
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 04/23/2014 Page i

PROFESSIONAL
TEAM FOUNDATION SERVER 2013

INTRODUCTION . xxxix

 ▸ PART I GETTING STARTED

CHAPTER 1 Introducing Visual Studio Online
and Team Foundation Server 2013 . 3

CHAPTER 2 Planning a Deployment . 13

CHAPTER 3 Installation and Confi guration . 45

CHAPTER 4 Connecting to Team Foundation Server . 63

 ▸ PART II VERSION CONTROL

CHAPTER 5 Overview of Version Control . 87

CHAPTER 6 Using Centralized Team Foundation Version Control 101

CHAPTER 7 Distributed Version Control
with Git and Team Foundation Server . 167

CHAPTER 8 Version Control
in Heterogeneous Teams . 201

CHAPTER 9 Migration from Legacy Version
Control Systems . 227

CHAPTER 10 Branching and Merging . 243

CHAPTER 11 Common Version Control Scenarios . 281

 ▸ PART III PROJECT MANAGEMENT

CHAPTER 12 Introducing Work Item Tracking . 303

CHAPTER 13 Customizing Process Templates . 333

CHAPTER 14 Managing Teams and Agile Planning Tools. 373

CHAPTER 15 Reporting and SharePoint Dashboards . 401

CHAPTER 16 Project Server Integration . 433

www.allitebooks.com

http://www.allitebooks.org

 ▸ PART IV TEAM FOUNDATION BUILD

CHAPTER 17 Overview of Build Automation . 447

CHAPTER 18 Using Team Foundation Build . 465

CHAPTER 19 Customizing the Build Process . 519

CHAPTER 20 Release Management . 557

 ▸ PART V ADMINISTRATION

CHAPTER 21 Introduction to Team Foundation Server Administration 587

CHAPTER 22 Scalability and High Availability . 625

CHAPTER 23 Disaster Recovery . 649

CHAPTER 24 Security and Privileges . 673

CHAPTER 25 Monitoring Server Health and Performance 699

CHAPTER 26 Testing and Lab Management . 725

CHAPTER 27 Upgrading Team Foundation Server . 757

CHAPTER 28 Working with Geographically Distributed Teams 775

CHAPTER 29 Extending Team Foundation Server . 795

INDEX . 825

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 04/23/2014 Page iii

PROFESSIONAL

Team Foundation Server 2013

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 04/23/2014 Page v

PROFESSIONAL

Team Foundation Server 2013

Steven St. Jean
Damian Brady
Ed Blankenship

Martin Woodward
Grant Holliday

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 04/23/2014 Page vi

Professional Team Foundation Server 2013

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-83634-7
ISBN: 978-1-118-83641-5 (ebk)
ISBN: 978-1-118-83631-6 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such
as a CD or DVD that is not included in the version you purchased, you may download this material at http://book-
support.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2014930418

Trademarks: Wiley, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trademarks or regis-
tered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other countries, and may not be
used without written permission.] All other trademarks are the property of their respective owners. John Wiley & Sons,
Inc., is not associated with any product or vendor mentioned in this book.

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://book-support.wiley.com
http://book-support.wiley.com
http://book-support.wiley.com
http://www.wiley.com
http://www.allitebooks.org

ffi rs.indd 04/23/2014 Page vii

For Kim, Danielle, and Jessica, who keep me

grounded. With all my love.

—Steven

For my amazing wife, Lisa—the best person I’ve
ever met.

—Damian

To Mom, Dad, Tiffany, Zach, Daniel, Mike, and

Grandma, and to all those on the product teams that

make this an amazing product that positively impacts

so many in the software engineering community.

—Ed

To Catherine.

—Martin

To my son, William Grant Holliday.

—Grant

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 04/23/2014 Page viii

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 04/23/2014 Page ix

ABOUT THE AUTHORS

STEVEN ST. JEAN is a Senior ALM Consultant with Microsoft’s Premier Support for Developers
team. Prior to that, he worked with Notion Solutions for six years as a Senior ALM Consultant. He
has twenty years of industry experience, the past seven focused on assisting clients with maturing
their development processes, including the use of the Microsoft tools stack. He is a former Microsoft
MVP in Visual Studio ALM, a Microsoft Certifi ed Solution Developer in Team Foundation Server
(TFS), and an author and technical editor of a number of books pertaining to ALM and TFS. He
speaks on various ALM process and tooling topics at user groups and code camps. In his free time,
he enjoys spending time with his wife and daughters, traveling, and photography. You can fi nd his
technical blog at http://sstjean.blogspot.com, and his Twitter handle is @SteveStJean.

DAMIAN BRADY is a Solution Architect and State Manager for SSW in Brisbane, Australia, special-
izing in Application Lifecycle Management and ASP.NET development. He spends most of his time
working with teams to mature their development process, but is never too far from a keyboard—
cutting code and bringing projects to completion. Damian is an MVP in Visual Studio ALM and
runs the Brisbane .NET User Group and the annual DeveloperDeveloperDeveloper Brisbane confer-
ence. He regularly presents at events in Australia and internationally, including Tech Ed Australia
and New Zealand. You can fi nd his blog at http://blog.damianbrady.com.au, and his Twitter
handle is @damovisa.

ED BLANKENSHIP works at Microsoft as the Product Manager for Visual Studio Online, Team
Foundation Server, and Application Lifecycle Management. Before becoming Product Manager, he
was the Program Manager for the Lab and Environment Management scenarios of the Visual Studio
ALM and Team Foundation Server product family. He began working with Team Foundation Server
and Visual Studio ALM from its inception nearly eight years ago.

Before joining Microsoft, Ed was awarded as a Microsoft Most Valuable Professional (MVP) for
fi ve years. In 2010, he was voted the Microsoft MVP of the Year for Visual Studio ALM & TFS by
his peers. Ed was also a TFS consultant and the ALM Practice Technical Lead at Imaginet (formerly
Notion Solutions). Prior to consulting, Ed was the Release Engineering Manager at Infragistics,
where he led a multi-year Team Foundation Server and Visual Studio Team System implementation
globally to improve the development process life cycle.

Ed has authored and served as technical editor for several Wrox books. He has also authored
numerous articles, and spoken at various user groups, events, radio shows, and conferences, includ-
ing TechEd North America. You can fi nd him sharing his experiences at his technical blog at www
.edsquared.com and on Twitter with his handle @EdBlankenship.

http://sstjean.blogspot.com
http://blog.damianbrady.com.au

ffi rs.indd 04/23/2014 Page x

MARTIN WOODWARD is a Principal Program Manager on the Visual Studio team at Microsoft. He
frequently speaks about Application Lifecycle Management and Team Foundation Server at events
internationally and has coauthored several books on the topic. Before joining Microsoft, Martin
worked at Teamprise and was the Team System MVP of the Year. You can fi nd more information at
his blog at http://woodwardweb.com, reach him at @martinwoodward on Twitter, or listen to his
podcast at http://RadioTFS.com.

GRANT HOLLIDAY is a Senior Service Engineer for Microsoft Visual Studio Online. Visual Studio
Online offers Team Foundation Server and other developer services hosted in Windows Azure,
accessible from anywhere using existing and familiar tools, and supporting all languages and
platforms. As a Service Engineer, he works behind the scenes to keep the service up and running
smoothly for customers around the world. Prior to this role, he traveled around Australia visiting
customers and performing TFS and SQL health checks as a Premier Field Engineer. He also spent
three years in Redmond, Washington as a Program Manager in the TFS product group. He was
responsible for the internal TFS server deployments at Microsoft, including the largest and busiest
TFS server in the world used by Developer Division. Grant shares his experiences managing TFS at
his blog http://blogs.msdn.com/granth/.

http://woodwardweb.com
http://RadioTFS.com
http://blogs.msdn.com/granth

ffi rs.indd 04/23/2014 Page xi

ABOUT THE CONTRIBUTOR

EDWARD THOMSON is a Software Development Engineer for Microsoft Visual Studio, where he
develops the core Git functionality for Visual Studio and Team Foundation Server. Prior to that,
he developed Team Explorer Everywhere, Microsoft’s set of cross-platform version control clients
for Team Foundation Server. Before joining Microsoft, Edward developed version control tools at
Teamprise and SourceGear. You can fi nd Edward on Twitter as @ethomson and online at http://
www.edwardthomson.com/.

ABOUT THE TECHNICAL EDITOR

ANTHONY BORTON is the lead ALM consultant for Enhance ALM Pty Ltd, an Australian consult-
ing and training company specializing in Application Lifecycle Management. He delivers training
on Microsoft’s ALM products through Seattle-based training provider QuickLearn Training, and
is the lead ALM trainer behind www.alm-training.com. Since passing Microsoft Exam 001 back
in 1993, Anthony has completed over 58 exams including Microsoft Certifi ed Solutions Developer:
Application Lifecycle Management. Anthony is a sought-after trainer and has delivered technical
training and consulting in the United States, Europe, and all across the Asia Pacifi c region. He is a
Microsoft MVP (Visual Studio ALM) and a Microsoft Certifi ed Trainer. In his spare time he enjoys
traveling and spending time with his family.

http://www.edwardthomson.com
http://www.edwardthomson.com
http://www.alm-training.com

ffi rs.indd 04/23/2014 Page xii

ffi rs.indd 04/23/2014 Page xiii

EXECUTIVE EDITOR
Robert Elliott

PROJECT EDITOR
Christina Haviland

TECHNICAL EDITOR
Anthony Borton

SENIOR PRODUCTION EDITOR
Kathleen Wisor

COPY EDITOR
Nancy Rapoport

MANAGER OF CONTENT
DEVELOPMENT AND ASSEMBLY
Mary Beth Wakefi eld

DIRECTOR OF COMMUNITY MARKETING
David Mayhew

MARKETING MANAGER
Ashley Zurcher

BUSINESS MANAGER
Amy Knies

VICE PRESIDENT AND EXECUTIVE
GROUP PUBLISHER
Richard Swadley

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Todd Klemme

PROOFREADER
Nancy Carrasco

INDEXER
Robert Swanson

COVER DESIGNER
Wiley

COVER IMAGE
©iStockphoto.com/36clicks

CREDITS

ffi rs.indd 04/23/2014 Page xiv

ffi rs.indd 04/23/2014 Page xv

ACKNOWLEDGMENTS

I’D LIKE TO THANK the entire team that worked to get this book out under an extremely tight dead-
line. To my coauthor, Damian Brady, it was a blast working with you. Thanks for your diligence on
top of your day job, holidays, and all the other things that life throws at you. To my Contributing
Author, Ed Thomson, a big thank you for jumping in at very late notice to make sure we did justice
to the Git content. To Ed Blankenship, Martin Woodward, Brian Keller, and Grant Holliday, thank
you for your work on the earlier versions of this book. You have provided us with a solid, com-
prehensive base to work from. A special thanks to our Tech Editor, Anthony Borton, whose deep
technical knowledge kept us honest and made this a better book than we would have made on our
own. To our Technical Proofreader, Anna Russo Vance, also a big thanks for stepping in late in the
process and giving the text one last sweep to ensure we made the best book possible.

A big thanks to the Editorial team at Wiley, which kept us on track (cracked the whip)—Christina
Haviland, Nancy Rapoport, and Robert Elliot—and to the Wiley Production team for making it all
look so good.

Thanks to Brian Harry and the original Visual SourceSafe team members from OneTree Software.
Visual SourceSafe was my “gateway drug” into the world of version control and Application
Lifecycle Management. I’ve realized that I wouldn’t have this level of passion for ALM if I had not
worked with this tool early in my career.

Thanks also to the Visual Studio team at Microsoft for producing the most complete set of ALM
tools on the market and for continuing to innovate into the cloud with Visual Studio Online. I’m
looking forward to some great features in the coming releases.

Finally and most importantly, I want to thank my wife, Kimberly, and my daughters, Danielle and
Jessica, for putting up with me during this whole process. I’m sure it wasn’t easy. Your love and sup-
port made this possible.

—Steven St. Jean

I WANT TO THANK my coauthors, Steve, Ed, Martin, and Grant, for allowing me to be a part of
this edition of the book, especially to Steve for his additional mentorship and advice along the way.
Thanks also to Ed Thomson for your expert contribution as we crept closer to the fi nal deadlines.
The help from the MVP community as well as members of the product teams at Microsoft has been
invaluable. I want to thank everyone who replied to e-mails and answered any questions I had, often
with a ridiculously short turnaround.

This book would not have been possible without the support of the editors, reviewers, and all at
Wiley who provided their support. A special thanks must go to Christina Haviland for her expert

ffi rs.indd 04/23/2014 Page xvi

guidance as well as her understanding when I had to put the book on the backburner for a few
weeks. Thanks also to Anthony for keeping us honest from a technical standpoint.

I want to thank the excellent and supportive team at SSW for pushing me to the high standards
you set as consultants, and for reminding me I had work to do by all too frequently asking, “How’s
the book going?” In particular, thanks to SSW’s illustrious leader Adam Cogan, whose infl uence
and enthusiasm have helped me achieve some goals that once seemed a long way off. I also want to
acknowledge the fantastic developer community in Australia and Brisbane, in particular. I’m privi-
leged to work in an environment with so many smart and dedicated professionals.

Finally, I want to thank my family: Johnny, Ma, Pat, Sarah, and Roo. I’m very lucky to have one of
those rare families you can always depend on when you need them. Most important, thank you to
my amazing wife, Lisa. Marrying you will always be my greatest achievement. You have encouraged
me, supported me through many a late night and weekend, and feigned interest in the book even
though I might as well have been writing in Latin. I love you and I’m so proud to have you with me
as we work toward our goal of being wealthy, unemployed, multilingual, professional surfers.
Or something.

—Damian Brady

I REALLY WANT to thank everyone involved with putting this book together, including the author
team, editors, reviewers, and everyone who was able to give us great feedback and help along the
way! Thanks to my coauthors for the great teamwork and contributions that have made this book
awesome. I have really appreciated their guidance along the way, as well as all of the new things that
I have learned from each author’s expertise. I truly enjoyed working with y’all.

The help from each of the product teams to put together such a great book can’t be discounted!
A personal thanks to Brian Harry, Sam Guckenheimer, Matt Mitrik, Mario Rodriguez, Anu,
Muthu, Aseem, Nipun, Satinder, Gregg Boer, Jim Lamb, Jason Prickett, Chad Boles, Phillip Kelley,
Christophe Fiessinger, and Chris Patterson on the product teams at Microsoft. I appreciate all of
their contributions, advice, and, most of all, their in-depth insight into the product over the years to
provide a better understanding of all the moving wheels of Team Foundation Server.

I also want to thank all of my former Microsoft MVP colleagues who have been a great group to
be a part of as well as to work with now. A special thanks goes to Mike Fourie, Tiago Pascoal,
Anthony Borton, Steve Godbold, Mickey Gousset, Steve St. Jean, Chris Menegay, Dave McKinstry,
Joel Semeniuk, Adam Cogan, and Neno Loje for all of their help.

Thank you to everyone who has helped me throughout my career over the years! Thanks for
pushing me to get better in my craft and fueling my enthusiasm. Thanks also to my family and
friends for their guidance along the way and for always supporting me. I couldn’t have done this
without each of you.

—Ed Blankenship

ffi rs.indd 04/23/2014 Page xvii

I WANT TO THANK my coauthors for allowing me to help them in putting this book together. You
will struggle to meet a group of folks who know the breadth of Team Foundation Server better than
they do, and it has been a pleasure to work with them all.

My colleagues in the entire Team Foundation Server group (past and present) have obviously been
essential in the making of this book, but I would like to especially acknowledge the help, advice, and
assistance from the following people both inside and outside Microsoft—Aaron Hallberg, Philip
Kelley, Chad Boles, Buck Hodges, Matthew Mitrik, James Manning, Jason Prickett, Ed Holloway,
Doug Neumann, Ed Thomson, Peter Provost, Terje Sandstrom, and William Bartholomew. I also
want to thank the ALM Rangers and ALM MVPs that make the Team Foundation Server commu-
nity such a vibrant community to be a part of.

Finally, I want to thank my wife, Catherine. I owe Catherine so much for so many things, both
big and small. I know that she signed up for “in sickness and in health” on that wonderful day in
Newcastle when she agreed to be my wife, but I’m pretty sure she’d have thought again if our vows
had been “in sickness and in health, through the course of four books and through the countless
nights apart or vacation days messed up due to my husband not understanding the term ‘work/life
balance.’” Lucky for me, she keeps her promises. And I promise to spend the rest of my days trying
to make her understand how grateful I am. For everything.

—Martin Woodward

I’D LIKE TO THANK everyone who made this book possible. Once again, we formed the dream team
of Team Foundation Server knowledge and experience.

Thank you to my co-authors, Steve, Damian, Ed, and Martin. Thank you to the Wiley project team
for keeping us on track and helping with the polish and production effort that a technical book like
this deserves.

Second, I’d like to thank the Microsoft Services team in Australia and the worldwide Premier Field
Engineering team. I returned home after some time in Corp, and you welcomed me with open arms
into your organizations—I am truly honored to call myself a PFE.

A big thank you to Brian Harry and the Team Foundation Server team in Redmond and Raleigh.
The TFS team is truly world-class in its customer focus, and I am lucky to work with such great
technical talent.

Finally, I want to thank my family for all the late nights and weekends it took to get this over
the line.

—Grant Holliday

www.allitebooks.com

http://www.allitebooks.org

ftoc.indd 04/23/2014 Page xix

CONTENTS

INTRODUCTION xxxix

PART I: GETTING STARTED

CHAPTER 1: INTRODUCING VISUAL STUDIO ONLINE
AND TEAM FOUNDATION SERVER 2013 3

What is Team Foundation Server? 3
What is Visual Studio Online? 5
What’s New in Team Foundation Server 2013? 5

Version Control 5
Team Collaboration 6
Web Access 6
Agile Product Management 7
Release Management 7

Acquisition Options 7
Visual Studio Online 8
Express 9
Trial 9
Volume Licensing 10
MSDN Subscriptions 10
Microsoft Partner Network 11
Retail 11

Summary 11

CHAPTER 2: PLANNING A DEPLOYMENT 13

Identifying and Addressing Software Engineering Pain 13
Transparency of the Release or Project 14
Collaboration across Different Teams and Roles 15
Automated Compilation, Testing, Packaging, and Deployment 15
Managing Test Plans 15
Parallel Development 16

Adopting Team Foundation Server 16
Adoption Timeline 16
Phased Approach 17
Hosting Team Foundation Server 19

xx

CONTENTS

ftoc.indd 04/23/2014 Page xx

Identifying Affected Teams 20
Generating Consensus 20
Team Foundation Server Administrator 21
Pilot Projects 21

Migration Strategies 22
Version Control 22
Work Item Tracking 23

Structuring Team Project Collections and Team Projects 24
Considering Limitations in Team Foundation Server 26
Server Limitations 29

Preparation for a Team Foundation Server Environment 30
Understanding the Architecture and Scale-Out Options 30
Hardware Requirements 33
Virtualization 33
Planning for Software Prerequisites 35
Service Accounts 38
File Share Folders 39
SMTP Server 40
Firewall Concerns and Ports Used 40
Friendly DNS Names 40
Legacy Visual Studio Versions 42

Summary 43

CHAPTER 3: INSTALLATION AND CONFIGURATION 45

What You’ll Need 45
Team Foundation Server 2013 46
Team Foundation Server 2013 Installation Guide 47
SQL Server 2012 48
Operating System 48
SharePoint 49
Client Software 49
Service Packs and Other Updates 49

Installing Team Foundation Server 50
Installation Types 51
Confi guring Team Foundation Server 54
Creating Your First Team Project 58
Confi guring Friendly DNS Names 61
Summary 61

xxi

CONTENTS

ftoc.indd 04/23/2014 Page xxi

CHAPTER 4: CONNECTING TO TEAM FOUNDATION SERVER 63

Team Foundation Server Architecture 63
Addressing Team Foundation Server 65
Introducing Team Foundation Server Security
and Roles 67

Users 68
Groups 68
Permissions 69

Team Explorer 69
Understanding Team Explorer in Visual Studio 70
Connecting to Team Foundation Server from Eclipse
and Cross-Platform 75

Alternate Ways to Connect to Team Foundation Server 78
Accessing Team Foundation Server through a Web Browser 78
Using Team Foundation Server in Microsoft Excel 79
Using Team Foundation Server in Microsoft Project 81
Windows Explorer Integration with Team Foundation Server 82
Connecting Microsoft Test Manager to
Team Foundation Server 83
Access to Team Foundation Server via Third-Party Integrations 84

Summary 84

PART II: VERSION CONTROL

CHAPTER 5: OVERVIEW OF VERSION CONTROL 87

What Is Version Control? 87
Repository 88
Working Copy 89
Working Folder Mappings 90
Get/Clone/Pull 90
Add 90
Check-Out 91
Changeset/Commits 91
Check-in/Commit 91
Push 92
History 92
Branching and Merging 92

xxii

CONTENTS

ftoc.indd 04/23/2014 Page xxii

Centralized Versus Decentralized Version Control 93
Centralized version Control 93
Distributed Version Control Systems 94
Differences between Centralized and
Distributed Version Control Systems 94

Common Version Control Products 95
Microsoft Visual SourceSafe 96
Apache Subversion 96
Team Foundation Version Control 97
Git in TFS 98

Summary 99

CHAPTER 6: USING CENTRALIZED TEAM FOUNDATION
VERSION CONTROL 101

Getting Started with Team Foundation Server Version Control 102
Learning What’s New in Team Foundation Server 2013
Version Control 105
Team Foundation Server Version Control Concepts 106

Workspace 106
Working Folder Mappings 110
Get 114
Check-Out 117
Locks 117
Check-In of Pending Changes 119
Undo Pending Changes 126
Changeset 126
Shelvesets 128
Branches 129

Using Source Control Explorer 130
Viewing History 132
Labeling Files 133
Recovering When Things Go Wrong 134

Keeping on Task with My Work 136
Managing Code Reviews 141

Requesting a Code Review 142
Performing a Code Review 143
Completing the Code Review 146

Team Foundation Server Version Control in Eclipse 147
Installing the Team Foundation Server Plug-In for Eclipse 149
Sharing Eclipse Projects in Team Foundation Server 150

xxiii

CONTENTS

ftoc.indd 04/23/2014 Page xxiii

Importing Projects from Team Foundation Server 153
Differences between the Eclipse and Visual Studio Clients 154
Team Foundation Server Version Control from the Command Line 155
Getting Help 156
Using the Command Line 156

Team Foundation Version Control Power Tools and
Third-Party Utilities 157

Microsoft Visual Studio Team Foundation Server Power Tools 157
Team Foundation Server MSSCCI Provider 158

Version Control Security and Permissions 158
Switching Version Control to Team Foundation Server 160

Working with Team Foundation Version Control for
Visual SourceSafe Users 160
Using Team Foundation Version Control for Subversion Users 162

Summary 164

CHAPTER 7: DISTRIBUTED VERSION CONTROL
WITH GIT AND TEAM FOUNDATION SERVER 167

Distributed Version Control Concepts 168
Git 168
Repository 169
Graph 170
Commit 171
Branches 171
Topic Branches 172
HEAD 173
Working Directory 174
Index 174

Microsoft Visual Studio Integration 175
Getting Started with a Repository 175
Making Changes in a Working Directory 179
Committing Changes 182
Branching and Merging 183
Synchronizing Changes with the Server 188

Using Git Command-Line Tools 191
Installing Git for Windows 192
Cloning Git Repositories Hosted in
Team Foundation Server 193
Making Changes in the Repository 194
Viewing History 196

xxiv

CONTENTS

ftoc.indd 04/23/2014 Page xxiv

Branching and Merging 197
Synchronizing with the Server 198
Using Posh-Git 199

Summary 200

CHAPTER 8: VERSION CONTROL
IN HETEROGENEOUS TEAMS 201

What Are Heterogeneous Teams? 201
Working Together Seamlessly 202
Xcode Development 202

Using a Git-Based Team Project 202
Using a TFVC-Based Team Project 206

Eclipse Development 206
Installing Team Explorer Everywhere 207
Connecting Team Explorer Everywhere to
Team Foundation Server 212
Using Team Foundation Version Control 215
Using Git 221

Working with the Cross-Platform Command-Line Client 221
Install and Connect 222
Creating a Workspace Mapping 224
Performing a Get from Team Foundation Server 224
Editing Files and Committing Changes 225

Summary 226

CHAPTER 9: MIGRATION FROM LEGACY VERSION
CONTROL SYSTEMS 227

Migration Versus Upgrade 228
Upgrade 228
Migration 228

Migrating History or Latest Version 229
Migrating from Visual SourceSafe 230

Preparing to Use the VSS Upgrade Wizard 231
Using the Visual SourceSafe Upgrade Wizard 232

Team Foundation Server Integration Platform 238
Popular Third-Party Migration Tools 240

Subversion, CVS, and StarTeam 240
ClearCase 241

Summary 241

xxv

CONTENTS

ftoc.indd 04/23/2014 Page xxv

CHAPTER 10: BRANCHING AND MERGING 243

Differences Between TFVC and Git When Branching
and Merging 244
Branching Demystifi ed 244

Branch 244
Merge 245
Confl ict 245
Branch Relationships 246
Baseless Merge 247
Forward/Reverse Integration 247
Push/Pull 247

Common Branching Strategies 247
No Branching 248
Branch per Release 250
Code Promotion Branching 251
Feature Branching 252

Implementing Branching Strategies in
Centralized Version Control 253

The Scenario 253
The Plan 254
Implementation 254
Dealing with Changesets 260
Tracking Change through Branches 272

Implementing Branching Strategies in Git 274
No Branching Strategy 274
Feature Branching Strategy 277

Summary 280

CHAPTER 11: COMMON VERSION CONTROL SCENARIOS 281

Setting Up the Folder Structure for Your Branches 281
Application Source Code 282
Automated Tests Source Code 283
Architecture Assets 283
Database Schema 283
Installer Assets 284
Build and Deployment Assets 284

Third-Party Source Code and Dependencies 284
Folder inside the Branch 285
Folder at Team Project Level 287

xxvi

CONTENTS

ftoc.indd 04/23/2014 Page xxvi

Internal Shared Libraries 289
Choosing a Location in Version Control 289
Storing Library Assemblies as Dependencies 292
Branching into Product Family Branches 294

Managing Artifacts Using Team Foundation Server 295
SQL Reporting Services Encryption Key Backup 296
Process Templates 297
Custom Build Assemblies 297
Master Build Process Templates 299
Source Code for Custom Tools 299

Summary 300

PART III: PROJECT MANAGEMENT

CHAPTER 12: INTRODUCING WORK ITEM TRACKING 303

Project Management Enhancements in
Team Foundation Server 2013 304

Rich Work Item Relationships 304
Test Case Management 305
Agile Portfolio Management 305
Enhanced Reporting 306
SharePoint Server Dashboards 306
Agile Planning Tools in Team Web Access 307

Work Items 308
Work Item Types 308
Areas and Iterations 309

Process Templates 313
MSF for Agile Software Development 314
MSF for CMMI Process Improvement 316
Visual Studio Scrum 320
Third-Party Process Templates 321
Custom Process Templates 321

Managing Work Items 321
Using Visual Studio 322
Using Microsoft Excel 327
Using Microsoft Project 329

xxvii

CONTENTS

ftoc.indd 04/23/2014 Page xxvii

Using Team Web Access 329
Using Third-Party Tools 331

Project Server Integration 332
Summary 332

CHAPTER 13: CUSTOMIZING PROCESS TEMPLATES 333

Anatomy of a Process Template 334
Plug-In Files 334
Default Security Groups and Permissions 336
Initial Area and Iteration Nodes 338
Work Item Type Defi nitions 338
Initial Work Items 349
Work Item Queries and Folders 349
Microsoft Project Column Mappings 349
Version Control Permissions and Settings 351
SharePoint Project Team Portal Document Library Settings 352
SQL Reporting Services Report Defi nitions 353

Using the Process Template Editor 353
Installing the Process Template Editor 353
Working with a Process Template 354
Using an XML Editor and WITAdmin 355

Deploying Updates to Process Templates 357
Uploading Process Templates in Team Foundation Server 357
Editing Work Items on an Existing Team Project 357

Customizing Agile Tools 359
Metastates and Backlogs 359
Effort, Remaining Work, and Stack Rank 361
Defi ning the Team 362
Other Process Confi guration Customizations 362

Common Work Item Type Customizations 362
Adding New States 362
Displaying Custom Link Types 363
Synchronizing Name Changes 364

Introducing Custom Work Item Controls 365
Work Item Clients 365
Work Item Control Interfaces 366

xxviii

CONTENTS

ftoc.indd 04/23/2014 Page xxviii

Deploying Custom Controls 370
Work Item Custom Control Deployment Manifest 371
Using the Custom Control in the Work Item Type Defi nition 371

Summary 372

CHAPTER 14: MANAGING TEAMS AND
AGILE PLANNING TOOLS 373

Defi ning a Team 374
Maintaining Product Backlogs 379

Managing the Backlog 379
Agile Portfolio Management 382

Planning Iterations 383
Tracking Work 386

Using the Kanban Board 386
Using the Task Board 388

Customization Options 390
Team Rooms 391
Stakeholder Feedback 393

Requesting Feedback 394
Providing Feedback 396
Voluntary Feedback 399

Summary 399

CHAPTER 15: REPORTING AND SHAREPOINT DASHBOARDS 401

What’s New in Team Foundation Server 2013? 402
Work Item Charting in Web Access 402
Cross-Collection Reporting Support 407
Changes to the Relational Warehouse 407
Changes to the Analysis Services Cube 408
Optional and Richer SharePoint Integration 409

Team Foundation Server Data Warehouse 410
Operational Stores 410
Relational Warehouse Database and Warehouse Adapters 411
Querying the Relational Warehouse Database 411
Analysis Services Cube 414
Data Warehouse Permissions 416

SharePoint Integration 417
SharePoint Extensions 417
Excel Services and Dashboard Compatibility 417
Adding a Project Portal and Reports to an Existing Team Project 418

www.allitebooks.com

http://www.allitebooks.org

xxix

CONTENTS

ftoc.indd 04/23/2014 Page xxix

Creating Reports 418
Tools 418
Excel Reporting from a Work-Item Query 419
SQL Server Reporting Services Reports 423
SharePoint Dashboards 428

Advanced Customization 430
Customizing Project Portals 430
Customizing Warehouse Adapters 430
TfsRedirect.aspx 431

Summary 431

CHAPTER 16: PROJECT SERVER INTEGRATION 433

Overview 433
Project Server Essentials 434
Bidirectional Synchronization 435
Relationship between Team Projects and
Enterprise Projects 440

Initial Confi guration 440
Necessary Permissions 440
Command-Line Tool for Confi guration 441
Project Server Installation Components 441
One-Time Integration Steps 442
Mapping Enterprise Projects to Team Projects 442
Necessary Software for Project Managers 443

Summary 443

PART IV: TEAM FOUNDATION BUILD

CHAPTER 17: OVERVIEW OF BUILD AUTOMATION 447

What’s New in Build Automation 447
Hosted Build Service 448
Server-Based Build Drops 448

Let’s Build Something 449
What Is Build Automation? 450

Scripting a Build 451
Make 452
Apache Ant 453
Apache Maven 454
NAnt 454

xxx

CONTENTS

ftoc.indd 04/23/2014 Page xxx

MSBuild 455
Windows Workfl ow Foundation 458

Using Build Automation Servers 459
CruiseControl 460
CruiseControl.NET 460
Hudson/Jenkins 460
Team Foundation Server 461

Adopting Build Automation 462
Summary 463

CHAPTER 18: USING TEAM FOUNDATION BUILD 465

Introduction to Team Foundation Build 466
Team Foundation Build Architecture 467
Setting Up the Team Foundation Build Service 468

Installing Team Foundation Build 469
Confi guring the Team Foundation Build Service 470
Additional Software Required on the Build Agent 476

Working with Builds 476
Creating a Build Defi nition 476
Queuing a Build 489
Build Notifi cations and Alerts 492
Managing Builds 493
Managing Build Quality Descriptions 500
Managing Build Controllers and Build Agents 500

Understanding the Build Process 503
DefaultTemplate Process 504
Building Ant and Maven Projects with
Team Foundation Server 517

Summary 518

CHAPTER 19: CUSTOMIZING THE BUILD PROCESS 519

Running Custom Build Scripts during Your Build 520
Extension Points in the Default Build Template 521
How to Access Build Information within Your Build Script 521

Customizing the Build Process to Stamp the Version Number into Your
Assemblies 522

Creating the PowerShell Script 523
Confi gure the Build to Run the Script 526
Confi gure the Build Number to Work with the Script 527

xxxi

CONTENTS

ftoc.indd 04/23/2014 Page xxxi

Available Custom Build Workfl ow Activities 531
Integrating Custom Activities into the Build Process Template 533

Acquiring a Copy of the Default Template 533
Acquiring and Confi guring the Community TFS Build Extensions Custom
Build Activities 535
Creating a Visual Studio Project to Support Editing the Build Template 536
Adding the Zip Activity to the Build Template 543
Confi gure a Build Defi nition to Use the New Build Process Template 546
Confi gure the Build Controller to Automatically Deploy Your Custom Build
Activities 550
Run Your Build and Check Your Work 552

Summary 555

CHAPTER 20: RELEASE MANAGEMENT 557

Getting Started with Release Management for Visual Studio 2013 557
Components 558
Licensing 558
Hardware and Software Requirements 558
Installing Release Management Server 561
Installing Release Management Client 562
Installing Deployment Agents 562

Confi guration 563
System Settings 563
Connecting to Team Foundation Server 564
Users and Groups 565
Pick Lists 567
Actions and Tools 568
Environments and Servers 570
Release Paths 572

Release Templates and Components 574
Deployment Sequence 575
Components 577
Confi guration Variables 578
Rollback Confi guration 579

Releasing Your Application 579
Manually Creating a Release 580
Releasing from Team Build 582
Release Explorer 583

Summary 584

xxxii

CONTENTS

ftoc.indd 04/23/2014 Page xxxii

PART V: ADMINISTRATION

CHAPTER 21: INTRODUCTION TO TEAM FOUNDATION SERVER
ADMINISTRATION 587

Administrative Roles 588
Infrastructure Administrator 588
Team Foundation Server Administrator 588
Project Administrator 588

Logical Architecture 589
Client Tier 589
Application Tier 590
Data Tier 590

Built-In Administration Tools 591
Team Foundation Administration Console 591
Command-Line Confi guration Tools 612

Operational Intelligence Hub 615
Activity Log 616
Job Monitoring 617

Other Administration Tools 619
Team Foundation Server Power Tools 619
Best Practices Analyzer 620
Team Foundation Server Administration Tool 622
Team Foundation Sidekicks 623

Summary 624

CHAPTER 22: SCALABILITY AND HIGH AVAILABILITY 625

An Evolving Architecture 626
Limiting Factors 627

Microsoft Recommendations 627
Data Tier 629
Application Tier 631
Web Access 632
Warehouse 632
Team Foundation Proxy 633

Principles 635
Scale Out to Multiple Servers 635
Eliminate Single Points of Failure 635
Anticipate Growth 635
Keep It Simple 636

xxxiii

CONTENTS

ftoc.indd 04/23/2014 Page xxxiii

Solutions 636
Data Tier 636
Application Tier and Web Access 639
Virtualization 647

Summary 647

CHAPTER 23: DISASTER RECOVERY 649

Business Continuity and Recovery Goals 649
Defi ning Responsibilities 650
Backing Up Team Foundation Server 650

Components to Back Up 651
Types of Database Backups 652
Important Considerations 654

Creating a Backup Plan 656
Team Foundation Server Backup Plan Details 663
Restoring a Backup to the Original Server 663

Summary 671

CHAPTER 24: SECURITY AND PRIVILEGES 673

Security When Using Visual Studio Online 673
Basic Authentication for Visual Studio Online 674

Users 674
Domain Users 674
Local Users 676
Identity Synchronization 676

Groups 678
Domain Groups 679
Distribution Groups 679
Local Groups 679
Team Foundation Server Groups 679

Permissions 683
Server Permissions 683
Team Project Collection Permissions 684
Team Project Permissions 685
Work Item Tracking 687
Version Control Permissions 690
Managing Git Repository Security 693
Build Permissions 694
Reporting 695

xxxiv

CONTENTS

ftoc.indd 04/23/2014 Page xxxiv

Security Management 696
Deny, Allow, and Unset Permissions 696
Use Active Directory Groups 696
Avoid Granting Individual User Permissions 697
Use Inheritance 697

Tools 697
Summary 698

CHAPTER 25: MONITORING SERVER HEALTH
AND PERFORMANCE 699

System Health 700
SQL Server 701

Dynamic Management Views 701
Currently Running Processes 702
SQL Wait Types 707
Storage Health 708
Memory Contention 709

Team Foundation Server 710
Command Log 710
Active Server Requests 713
Performance Counters 714
Server Tracing 715
Client Performance Tracing 716
Job History 717
Storage Usage 719
Data Warehouse 721

Tools 721
Performance Analysis of Logs Tool 721
Team Foundation Server Best Practices Analyzer 722
Team Foundation Server Management Pack for
System Center Operations Manager 723

Summary 724

CHAPTER 26: TESTING AND LAB MANAGEMENT 725

What’s New in Software Testing? 726
New Cloud-Based Load Testing Service 726
Web-Based Test Case Management 727

Software Testing 727
Test Case Management 728
Lab Management 729

xxxv

CONTENTS

ftoc.indd 04/23/2014 Page xxxv

Testing Architecture 729
Microsoft Test Manager 731

Test Plans 733
Test Suites 733
Test Cases 734
Test Runs 735
Exploratory Testing 736
Actionable Bugs 737
Test Settings 737
Test Attachments Cleaner 739
Assigning a Build to a Test Plan 739
Analyzing Impacted Tests 741
Build Retention 741
Custom Work Item Types 742

Test Automation 742
Visual Studio Lab Management 744

What’s New for Lab Management in Team Foundation Server 2013? 744
Installing and Confi guring Lab Management 745
Maintaining a Healthy Test Lab 752
Troubleshooting 755

Summary 755

CHAPTER 27: UPGRADING TEAM FOUNDATION SERVER 757

Overview 758
In-Place Upgrades versus Migrating to New Hardware 758
Planning Upgrades 760

Upgrading Prerequisites 761
SQL Server 762
SharePoint 763
Project Server 763
System Center 763

Using the Confi guration Utility 763
Upgrade Wizard 764
Verifi cation of Upgrade 765

Upgrading Legacy Team Projects 766
Feature Enablement 766
Allowing Access to Premium Features 769
Automated Builds 770
Enable Local Workspaces 771
Deploying New Reports 772

xxxvi

CONTENTS

ftoc.indd 04/23/2014 Page xxxvi

Deploying New SharePoint Team Portal Site 772
Upgrading Lab Management Environments 772

Summary 773

CHAPTER 28: WORKING WITH GEOGRAPHICALLY DISTRIBUTED
TEAMS 775

Identifying the Challenges 776
Latency over the Wide Area Network 776
Sources of Network Traffi c 776

Solutions 779
Using Visual Studio Online Geographically Distributed 779
Central Server with Remote Proxy Servers 779
Multiple Distributed Servers 779
Mirroring 780
Remote Desktops 780
Internet-Connected “Extranet” Server 780
Metadata Filtering 781

Build Servers 781
Local Build Server Farm 781
Remote Build Server Farm 781

Team Foundation Server Proxy 782
How the Team Foundation Server Proxy Works 782
Compatibility 782
Confi guring Proxies 783
Seeding Proxies 785
Personal Proxies 785

Mirroring with the Team Foundation Server Integration Tools 786
Capabilities 787
Examples 788

Working Offl ine 789
Version Control 790
Forcing Offl ine 790
Work Items 791

Other Considerations 791
Maintenance Windows and Time Zones 792
Online Index Operations with SQL Server Enterprise 793
Distributed Application Tiers 793
SQL Mirroring 793

Summary 794

xxxvii

CONTENTS

ftoc.indd 04/23/2014 Page xxxvii

CHAPTER 29: EXTENDING TEAM FOUNDATION SERVER 795

Extensibility Points 796
.NET Client Object Model 797

Connecting to the Server 798
Handling Multiple API Versions 799
Distributing the Client Object Model 801

SOAP Event Subscriptions 801
Available Event Types 802
Building an Endpoint 803
Adding the Subscription 804
Listing All Event Subscriptions 804

Server Object Model 805
Server Extensibility Interfaces 806
Server Plug-Ins 808

Visual Studio Extensibility 821
Other Resources 822
Summary 824

INDEX 825

www.allitebooks.com

http://www.allitebooks.org

fl ast.indd 04/23/2014 Page xxxix

INTRODUCTION

Over the past decade, Microsoft has been creating development tools designed for the ever-growing
engineering teams of software developers, testers, architects, project managers, designers, and
database administrators. In the Visual Studio 2013 line of products, there are tools for each team
member to use to contribute to a software release. However, it’s not enough to allow for awesome
individual contributions. You must also organize the collaboration of those contributions across the
larger team, including the stakeholders for whom the software is being built.

Beginning in the Visual Studio 2005 release, Microsoft introduced a new server product named
Team Foundation Server to complement its development products. Now in its fi fth release, Team
Foundation Server 2013 has grown with all of the investment from the past decade and fi ts nicely in
the Visual Studio Application Lifecycle Management (ALM) family of products. Before the Visual
Studio 2010 release, the Visual Studio ALM family of products was given the brand of Visual Studio
Team System, which is no longer used in the latest releases.

In September 2011, Microsoft announced the availability of Team Foundation Service Preview.
This service started by providing the base functionality of Team Foundation Server but built on the
Microsoft Azure cloud platform. Over the next two and a half years, the teams at Microsoft worked
to expand the feature set of the service from basic version control, work item tracking, agile project
management, and builds to the current feature set, which adds an elastic build service, cloud-based
load testing, better agile planning tools, and web-based test management. The Team Foundation
Service was renamed to Visual Studio Online in November 2013 to better refl ect the services pro-
vided to development teams.

As you will fi nd out, Team Foundation Server and Visual Studio Online are very large products
with lots of features for managing the software development life cycle of software projects and
releases. The authors of this book collectively gathered, from their past experience since the fi rst
release of Team Foundation Server, to document some of the tips and tricks that they have learned
along the way. The backgrounds of the authors are quite diverse—managing one of the largest
Team Foundation Server environments, designing the collaboration pieces for non-.NET develop-
ment teams, managing releases at a software development company, and a consulting background
where customers are helped each week to solve real-world challenges by taking advantage of Team
Foundation Server.

WHOM THIS BOOK IS FOR

If you have been looking to Team Foundation Server to meet some of your software development
team’s challenges for collaboration, then this book is for you. You may have seen the Team
Foundation Server product in your MSDN subscription and decided to set up a new environment
internally. You may now be wondering how to administer and confi gure the product. You may have

xl

INTRODUCTION

fl ast.indd 04/23/2014 Page xl

also noticed the new, Visual Studio Online service offering by Microsoft and wondered where to get
started.

This book is for everyone—from the developer using Team Foundation Server for day-to-day devel-
opment, to the administrator who is ensuring that the environment is tuned to run well and who
builds extensions to the product to meet the needs of their software development team. You may
also be preparing for any of the Application Lifecycle Management (ALM) Microsoft certifi cation
exams for administering or using Team Foundation Server, and you will fi nd many of the exam
topics covered in this book.

This book does not require any knowledge of Team Foundation Server to be useful, but it is not
meant for developers or testers who are just starting out their craft. Team Foundation Server can be
used for teams as small as one to fi ve team members to teams consisting of tens of thousands. Code
samples in the book are presented in C#, but they could also be implemented in other .NET lan-
guages (such as Visual Basic.NET).

You can fi nd a road map for the book based on your team role later in this Introduction in the
section “How This Book Is Structured.”

WHAT THIS BOOK COVERS

This book covers a complete overview of the Team Foundation Server 2013 product and provides
hands-on examples for using the product throughout many of the chapters. This book only covers
the latest version of Team Foundation Server 2013 and does not provide detailed information on
how to use earlier versions of Team Foundation Server.

The book is divided into fi ve main parts, with detailed chapters that will dive into each of the
feature areas of Team Foundation Server 2013.

 ➤ Part I, “Getting Started”

 ➤ Part II, “Version Control”

 ➤ Part III, “Project Management”

 ➤ Part IV, “Team Foundation Build”

 ➤ Part V, “Administration”

HOW THIS BOOK IS STRUCTURED

You may have picked up this book and are wondering where to get started. This book has been
written so that you can start reading in a particular chapter without needing to understand con-
cepts introduced in previous chapters. Feel free to read the book from cover to cover, or, if you are
in a hurry or need to reference a specifi c topic, jump to that particular chapter. The next sections

xli

INTRODUCTION

fl ast.indd 04/23/2014 Page xli

describe where you might get started in the book based on your role and the topics that might be
most relevant for you.

Developers
There are plenty of features that are available for developers who are using Team Foundation Server.
You might begin by reading Chapter 4, “Connecting to Team Foundation Server,” to get started
with exploring the different options available for connecting to your server.

After that, you can begin your review of the version control features available in Part II of the book:

 ➤ Chapter 5, “Overview of Version Control”

 ➤ Chapter 6, “Using Centralized Team Foundation Version Control”

 ➤ Chapter 7, “Distributed Version Control with Git and Team Foundation Server”

 ➤ Chapter 8, “Version Control in Heterogeneous Teams”

 ➤ Chapter 10, “Branching and Merging”

 ➤ Chapter 11, “Common Version Control Scenarios”

Once you have a good grasp of the version control features, you may want to familiarize yourself
with the work item tracking and reporting features in Part III of the book:

 ➤ Chapter 12, “Introducing Work Item Tracking”

 ➤ Chapter 14, “Managing Teams and Agile Planning Tools”

 ➤ Chapter 15, “Reporting and SharePoint Dashboards”

Finally, if you want to automate your build and release process, you can take advantage of reviewing
those features in Part IV of the book:

 ➤ Chapter 17, “Overview of Build Automation”

 ➤ Chapter 18, “Using Team Foundation Build”

 ➤ Chapter 19, “Customizing the Build Process”

 ➤ Chapter 20, “Release Management”

Testers
Team Foundation Server and Visual Studio include a host of new features for testing. You might
begin by reading Chapter 4, “Connecting to Team Foundation Server,” to get started with exploring
the different options available for connecting to your server.

After that, you will want to increase your understanding of the work item tracking features (which
help track test cases, bugs, tasks, requirements, and so on), as well as the project reporting features
in Part III of the book:

xlii

INTRODUCTION

fl ast.indd 04/23/2014 Page xlii

 ➤ Chapter 12, “Introducing Work Item Tracking”

 ➤ Chapter 14, “Managing Teams and Agile Planning Tools”

 ➤ Chapter 15, “Reporting and SharePoint Dashboards”

If you are a technical tester, and will be automating test cases using the numerous automated test
capabilities, then you will want to familiarize yourself with the version control features (which is
where you will store the source code for your automated tests) in Part II of the book:

 ➤ Chapter 5, “Overview of Version Control”

 ➤ Chapter 6, “Using Centralized Team Foundation Version Control”

 ➤ Chapter 7, “Distributed Version Control with Git and Team Foundation Version Server”

 ➤ Chapter 10, “Branching and Merging”

 ➤ Chapter 11, “Common Version Control Scenarios”

Finally, if you are interested in the testing and environment/lab management features available in
Team Foundation Server, you can consult Part V of the book:

 ➤ Chapter 26, “Testing and Lab Management”

MICROSOFT TEST MANAGER

If you are using Microsoft Test Manager (available if you have acquired either Visual
Studio 2013 Ultimate, Visual Studio 2013 Premium, or Visual Studio 2013 Test
Professional), you may want to consult the companion to this book, Professional
Application Lifecycle Management with Visual Studio 2013 Mickey Gousset,
Martin Hinshelwood, Brian A. Randell, Brian Keller, and Martin Woodward
(Wiley, 2014). Several chapters in that book discuss the features available in
Microsoft Test Manager for test case management, executing manual tests, starting
exploratory test runs to generate test cases, fi ling rich actionable bugs, creating tem-
porary environments for development and testing use, and automating user interface
tests. For more information about this book, visit http://aka.ms/ALM2013Book.

Project Managers and Business Analysts
As a project manager or business analyst, you will want to ensure that you have insight into the soft-
ware release or project, and be able to interact. You may also be interested in what customizations
are possible with the process that Team Foundation Server uses for your teams. Project managers
might also be interested in the capability to synchronize project data in Team Foundation Server with
a Microsoft Offi ce Project Server instance. Business analysts may want to create and track require-
ments, including the traceability options from inception to implementation. Additionally, project
managers and business analysts may want to learn how to seek feedback from customers and stake-
holders and turn that feedback into new requirements, change requests, or product backlog items.

http://aka.ms/ALM2013Book

xliii

INTRODUCTION

fl ast.indd 04/23/2014 Page xliii

You might begin by reading Chapter 4, “Connecting to Team Foundation Server,” to get started
with exploring the different options available for connecting to your server. All of the features that
would be relevant for project managers and business analysts are discussed in Part III of the book:

 ➤ Chapter 12, “Introducing Work Item Tracking”

 ➤ Chapter 13, “Customizing Process Templates”

 ➤ Chapter 14, “Managing Teams and Agile Planning Tools”

 ➤ Chapter 15, “Reporting and SharePoint Dashboards”

 ➤ Chapter 16, “Project Server Integration”

Project managers and business analysts may also be introduced in the companion to this book,
Professional Application Lifecycle Management with Visual Studio 2013 Mickey Gousset, Martin
Hinshelwood, Brian A. Randell, Brian Keller, and Martin Woodward (Wiley: 2014), which can be
found at http://aka.ms/ALM2013Book for further reading.

Executive Stakeholders
Executive stakeholders fi nd plenty of use for Team Foundation Server by gathering insight into
how software releases and projects are progressing, and often want easily accessible dashboards
with the information. The executive that leads the engineering organization may also be interested
in planning a Team Foundation Server deployment, including who should administer the server.
Additionally with Team Foundation Server 2013, development teams can request feedback from
stakeholders who then can provide rich feedback using the Feedback Client.

You might begin with the following chapters in Part I of the book:

 ➤ Chapter 2, “Planning a Deployment”

 ➤ Chapter 4, “Connecting to Team Foundation Server”

After you have a good understanding of the concepts in those chapters, you can then explore the
necessary work item tracking and reporting features available in Part III of the book:

 ➤ Chapter 12, “Introducing Work Item Tracking”

 ➤ Chapter 14, “Managing Teams and Agile Planning Tools”

 ➤ Chapter 15, “Reporting and SharePoint Dashboards”

Team Foundation Server Administrators
If you fi nd yourself in the position of administering a Team Foundation Server instance, this book
provides plenty of great information for performing that role. In Part I of the book, you might
begin by reading Chapter 2, “Planning a Deployment,” to understand what is required for setting
up a Team Foundation Server environment. You can then install a new server by going through
Chapter 3, “Installation and Confi guration.” If you are upgrading from a previous version of Team
Foundation Server, you may want to begin by reading through Chapter 27, “Upgrading Team
Foundation Server,” before you get started with the upgrade process.

http://aka.ms/ALM2013Book

xliv

INTRODUCTION

fl ast.indd 04/23/2014 Page xliv

It is recommended that, as a Team Foundation Server administrator, you understand all of the
aspects that end users will take advantage of, including version control, work item tracking, and
automated builds. You can read all of the chapters in Parts I through IV for information about those
aspects of Team Foundation Server.

Additionally, Part V is dedicated to topics that will be of interest to administrators:

 ➤ Chapter 21, “Introduction to Team Foundation Server Administration”

 ➤ Chapter 22, “Scalability and High Availability”

 ➤ Chapter 23, “Disaster Recovery”

 ➤ Chapter 24, “Security and Privileges”

 ➤ Chapter 25, “Monitoring Server Health and Performance”

 ➤ Chapter 26, “Testing and Lab Management”

 ➤ Chapter 27, “Upgrading Team Foundation Server”

 ➤ Chapter 28, “Working with Geographically Distributed Teams”

 ➤ Chapter 29, “Extending Team Foundation Server”

Extensibility Partner
If you are interested in extending the capabilities of Team Foundation Server 2013, you will fi nd
many opportunities and extensibility points throughout this book. You may want to begin by read-
ing through Chapter 29, “Extending Team Foundation Server.” You will also fi nd extensibility
options covered in several other chapters of the book:

 ➤ Chapter 13, “Customizing Process Templates”

 ➤ Chapter 15, “Reporting and SharePoint Dashboards”

 ➤ Chapter 19, “Customizing the Build Process”

WHAT YOU NEED TO USE THIS BOOK
To perform many of the hands-on examples in the book, it will be helpful to have a Team
Foundation Server 2013 environment or Visual Studio Online account that you can use to test out
the different features in the product. You do not necessarily need separate hardware because you can
install Team Foundation Server 2013 on client operating systems such as Windows 8 and Windows
7. Don’t worry about setting up and confi guring a new Team Foundation Server 2013 environment
yet; you learn about that in Chapters 2 and 3.

Chapter 1 discusses a few options for acquiring Team Foundation Server, including an entire virtual
machine image for demonstration purposes. Chapter 4 also discusses the different tools that you
can use to connect to your Team Foundation Server environment, which will be needed throughout
the book.

xlv

INTRODUCTION

fl ast.indd 04/23/2014 Page xlv

The source code for the samples is available for download from the Wrox website at:

http://www.wrox.com/go/proftfs2013

FURTHER LEARNING

Each of the authors write technical articles about Team Foundation Server and other Visual Studio
products from time to time that you may benefi t from for further learning. Feel free to check out the
authors’ blog sites and subscribe to them in your favorite RSS reader.

 ➤ Steven St. Jean—sstjean.blogspot.com

 ➤ Damian Brady—blog.damianbrady.com.au

 ➤ Ed Blankenship—www.edsquared.com

 ➤ Martin Woodward—www.woodwardweb.com

 ➤ Grant Holliday—http://blogs.msdn.com/b/granth

Additionally, the two main blogs and RSS feeds we recommend you follow for all of the latest news
and updates are:

 ➤ Brian Harry—http://blogs.msdn.com/b/bharry

 ➤ Visual Studio ALM Product Team—http://blogs.msdn.com/b/visualstudioalm

CONTINUOUS PRODUCT UPDATES AND RELEASE SCHEDULE

As you move forward with Visual Studio and Team Foundation Server, remember that the product
teams are now shipping updates more frequently—roughly every three months. These updates will
include a roll-up of performance and bug fi xes as well as new features that are completed. For those
that will be using Visual Studio Online, new updates and features are automatically deployed every
three weeks.

You will want to make sure you are always up to date on both your development machine where
Visual Studio products are installed and also your Team Foundation Server environment servers.
This book was written for the released version of Team Foundation Server.

You can fi nd out more information about this new release cadence for Visual Studio and Team
Foundation Server at http://aka.ms/TFSShippingCadence.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

http://www.wrox.com/go/proftfs2013
http://www.edsquared.com
http://www.woodwardweb.com
http://blogs.msdn.com/b/granth
http://blogs.msdn.com/b/bharry
http://blogs.msdn.com/b/visualstudioalm
http://aka.ms/TFSShippingCadence

xlvi

INTRODUCTION

fl ast.indd 04/23/2014 Page xlvi

WARNING Warnings hold important, not-to-be-forgotten information that is
directly relevant to the surrounding text.

NOTE Notes indicate notes, tips, hints, tricks, or asides to the current
discussion.

SIDEBAR

Asides to the current discussion are offset like this.

As for styles in the text:

 ➤ We highlight new terms and important words when we introduce them.

 ➤ We show keyboard strokes like this: Ctrl+A.

 ➤ We show fi le names, URLs, and code within the text like so: persistence.properties.

 ➤ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that is particularly important in the present
 context or to show changes from a previous code snippet.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually or to use the source code fi les that accompany the book. All the source code used in this book
is available for download at www.wrox.com. Specifi cally for this book, the code download is on the
Download Code tab at:

http://www.wrox.com/go/proftfs2013

You can also search for the book at www.wrox.com by ISBN (the ISBN for this book is 978-1-118-
83634-7) to fi nd the code. And a complete list of code downloads for all current Wrox books is
available at www.wrox.com/dynamic/books/download.aspx.

Most of the code on www.wrox.com is compressed in a .ZIP, .RAR, or similar archive format appro-
priate to the platform. Once you download the code, just decompress it with an appropriate com-
pression tool.

http://www.wrox.com
http://www.wrox.com/go/proftfs2013
http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com

xlvii

INTRODUCTION

fl ast.indd 04/23/2014 Page xlvii

Alternately, you can go to the main Wrox code download page at www.wrox.com/dynamic/books/
download.aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, such as a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To fi nd the errata page for this book, go to http://www.wrox.com/go/proftfs2013 and click the
Errata link. On this page, you can view all errata that has been submitted for this book and posted
by Wrox editors.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fi x the problem in
subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at http://p2p.wrox.com. The forums are a
web-based system for you to post messages relating to Wrox books and related technologies, and
interact with other readers and technology users. The forums offer a subscription feature to e-mail
you topics of interest of your choosing when new posts are made to the forums. Wrox authors,
editors, other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will fi nd a number of different forums that will help you, not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to http://p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

NOTE You can read messages in the forums without joining P2P, but in order to
post your own messages, you must join.

http://www.wrox.com/dynamic/books
http://www.wrox.com/go/proftfs2013
http://www.wrox.com/contact
http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com

xlviii

INTRODUCTION

fl ast.indd 04/23/2014 Page xlviii

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

www.allitebooks.com

http://www.allitebooks.org

fl ast.indd 04/23/2014 Page xlix

PROFESSIONAL

Team Foundation Server 2013

c01.indd 04/22/2014 Page 1

PART I
Getting Started

 ▸ CHAPTER 1: Introducing Visual Studio Online and Team Foundation
Server 2013

 ▸ CHAPTER 2: Planning a Deployment

 ▸ CHAPTER 3: Installation and Confi guration

 ▸ CHAPTER 4: Connecting to Team Foundation Server

c01.indd 04/22/2014 Page 3

Introducing Visual Studio
Online and Team Foundation
Server 2013

WHAT’S IN THIS CHAPTER?

 ➤ Getting to know Team Foundation Server 2013

 ➤ Understanding what’s new in Team Foundation Server 2013

 ➤ Acquiring Team Foundation Server 2013

This chapter introduces you to Microsoft Visual Studio Team Foundation Server 2013. Here
you learn what it is for, the key concepts needed when using it, and how to acquire it.

For those users already familiar with Team Foundation Server, the discussion in this chapter
highlights areas that are new or have changed substantially. However, because understanding
the legacy of a technology is always helpful, this chapter also includes some of the history of
the Team Foundation Server product, which will help explain how it became what it is today.

This chapter also discusses the improved release model, including the ability to have Microsoft
manage hosting, frequent upgrades, and backups by leveraging Visual Studio Online (formerly
Team Foundation Service). Later chapters go into more depth with an examination of the
architecture of the Team Foundation Server product.

WHAT IS TEAM FOUNDATION SERVER?

Developing software is diffi cult—a fact repeatedly proven by how many projects run overtime
or over budget, or fail completely. An essential factor in the success of any software develop-
ment team is how well the members of the team communicate with one another, as well as
with the people who wanted the software developed in the fi rst place.

1

4 ❘ CHAPTER 1 INTRODUCING VISUAL STUDIO ONLINE AND TEAM FOUNDATION SERVER 2013

c01.indd 04/22/2014 Page 4

Team Foundation Server provides the core collaboration functionality for your software develop-
ment teams in a very tightly integrated product. The functionality provided by Team Foundation
Server includes the following:

 ➤ Project management

 ➤ Work item tracking (WIT)

 ➤ Version control

 ➤ Test case management

 ➤ Build automation

 ➤ Reporting

 ➤ Release management

 ➤ Lab and environment management

 ➤ Feedback management

 ➤ Chat and team communication tools

Each of these topics is explored extensively in this book

Team Foundation Server is a separate server product designed specifi cally for software engineering
teams with developers, testers, architects, project managers, business analysts, and anyone else con-
tributing to software development releases and projects. Logically, Team Foundation Server is made
up of the following two tiers, which can be physically deployed across one or many machines:

 ➤ Application tier—The application tier primarily consists of a set of web services with which
the client machines communicate by using a highly optimized, web service-based protocol. It
also includes a rich web access site to interact with a server without having to install a client
such as Visual Studio.

 ➤ Data tier—The data tier utilizes SQL Server to house the databases that contain the data-
base logic for the Team Foundation Server application, the data for your Team Foundation
Server instance, as well as the data for your Team Project Collection. The data stored in the
data warehouse database and Analysis Services cube are used by Team Foundation Server’s
reporting functionality. All the data stored in Team Foundation Server is stored in the SQL
Server databases, thus making the system easy to back up.

Team Foundation Server was designed with extensibility in mind. It can integrate with a compre-
hensive .NET Application Programming Interface (API). It also has a set of events that allow it to
integrate with outside tools as fi rst-class citizens. The same .NET programming model and event
system are used by Microsoft to construct Team Foundation Server, as well as the client integrations
into Visual Studio.

Team Foundation Server has plenty of competitors, including other enterprise Application Lifecycle
Management (ALM) systems and purpose-specifi c products (such as source control systems). The
main benefi t of having all the different systems available in one product is that Team Foundation
Server fully integrates the different systems. This allows for true innovation in the development
tools space, as you will notice with several of the new tools available in this latest release. Instead of
worrying about integrating the separate systems yourself, you can take advantage of the work that

What’s New in Team Foundation Server 2013? ❘ 5

c01.indd 04/22/2014 Page 5

Microsoft has done for you. Jason Zander, currently Corporate Vice President of development for
Windows Azure, makes this particular point well in a blog post originally about Team Foundation
Server 2010. You can fi nd the blog post at http://aka.ms/IntegratedALMSolution.

When you compare enterprise ALM products currently on the market, you will discover that
Team Foundation Server was designed to be easily customized and extended. Team Foundation
Server ensures that developers using any development platform can participate and easily use Team
Foundation Server, including Visual Studio, Eclipse-based development, Xcode, and many more.

WHAT IS VISUAL STUDIO ONLINE?

Installing and confi guring Team Foundation Server has traditionally meant a signifi cant investment
in time and infrastructure. In addition to the initial setup, maintenance of an on-premises Team
Foundation Server instance required ongoing effort.

In October 2012, a hosted Team Foundation Server was released to the general public under the
name Team Foundation Service. This hosted service meant that a team could make use of many of
the features of Team Foundation Service without the signifi cant investment in infrastructure and
maintenance. Since its initial release, the product has been continuously extended and improved.

In November 2013, Team Foundation Service was rolled into a new product called Visual Studio
Online, which incorporates a number of developer services, including most of the features of an on-
premises Team Foundation Server installation as well as Visual Studio, collaboration tools, load testing
and build services, a diagnostic service called Application Insights, and even an online code editor.

Visual Studio Online is free for teams up to fi ve users, and is also available on a per-user per-month
subscription basis. A number of plans are available that include various features. These features
include access to a hosted Team Foundation Server with unlimited Team Projects and basic project
planning tools, and either the Visual Studio Express or Visual Studio Professional IDE. The plans
also include a certain amount of cloud build and load testing time.

WHAT’S NEW IN TEAM FOUNDATION SERVER 2013?

If you have used legacy versions of Team Foundation Server, you may be curious about what is new
in the latest release. As this book demonstrates, it is a big release with considerable new functional-
ity and improvements across the board. While many of these features are explained throughout this
book, if you have used a previous version of Team Foundation Server, the features described in the
following sections will be new to you. Some of the client-side topics are covered in more detail in
the companion book to this volume, Professional Application Lifecycle Management with Visual
Studio 2013 by Mickey Gousset, Martin Hinshelwood, Brian A. Randell, Brian Keller, and Martin
Woodward (Wiley, 2014).

Version Control
One major change with this release was the addition of an alternative, distributed source control
option within Team Foundation Server. While this was seen as a surprising move by many, it was
really just addressing a common complaint many organizations had with source control in Team
Foundation Server.

http://aka.ms/IntegratedALMSolution

6 ❘ CHAPTER 1 INTRODUCING VISUAL STUDIO ONLINE AND TEAM FOUNDATION SERVER 2013

c01.indd 04/22/2014 Page 6

There are many powerful project management features provided by Team Foundation Server, but
the primary reason for adopting a system like Team Foundation Server will always be source con-
trol. Developers have increasingly been moving to distributed version control products, such as
Git or Mercurial, and the limitations of the centralized source control system provided by Team
Foundation Server was a common reason cited by organizations choosing to use an alternative
product. While support for disconnected workspaces was provided with the addition of Local
Workspaces in the 2012 release of Team Foundation Server, team members were still limited to a
single server-side repository for a workspace.

By adopting Git as a fi rst-class version control alternative, Microsoft has added true distributed ver-
sion control to the product. Developers can keep a full local repository, which allows them to work
with multiple branches and commit locally before pushing their changes to the server.

We want to note two important points with respect to the distributed version control offering in
Team Foundation Server. First, the Git implementation is a standard implementation of Git rather
than one that has been specifi cally written for Team Foundation Server. This means you can work
with a Git repository in Team Foundation Server in exactly the same way as you would with any
other implementation. Second, despite the history of Team Foundation Server, both version control
options are considered equals and are supported fully. The project management functions in Team
Foundation Server are still available and code changes can still be linked to work items. Distributed
version control is covered in detail in Chapter 7.

Team Collaboration
Team Foundation Server 2012 introduced a built-in set of experiences for requesting, responding,
and managing code reviews. It uses the powerful work item tracking experiences behind the scenes
as well as some specialized user experiences to help you discuss changes. This was a powerful way
of formalizing collaboration between team members.

A new feature has been included in Team Foundation Server 2013 that allows team members to
make comments directly against code, right from Team Web Access. You can make comments on
an entire fi le, specifi c lines of code, or even a complete changeset, and just like code reviews, you
can have threaded discussions. This provides a great way for team members to collaborate, directly
against the code itself, without having to manage the complete code review process.

A new Team Room has also been added to Team Web Access in the 2013 release. This feature not
only allows developers to chat in real time, but it notifi es them of relevant events such as build com-
pletions and code changes.

Web Access
Team Web Access was completely redesigned in Team Foundation Server 2012 to provide an even
better experience for those without any of the traditional clients available. It is friendly to modern
browsers, including mobile browsers, and works well with both desktop and tablet devices.

Microsoft has further updated and improved Team Web Access in Team Foundation Server 2013.
The agile management tools have also been improved and now have support for tags, backlog and
board improvements, updated process templates, and support for Agile Portfolio Management.
Some new features have been implemented for Team Web Access as well, including a new Test Hub,
Team Rooms for live chat, and work item charts.

Acquisition Options ❘ 7

c01.indd 04/22/2014 Page 7

Agile Product Management
Additional new experiences added to Team Web Access are agile project management and product
planning. The new Agile Planning tools are specifi cally designed for users practicing Agile develop-
ment, but can actually be benefi cial for those using any process.

The primary changes introduced in this release include Agile Portfolio Management and a set of
improved process templates for managing projects.

The great thing about these changes is that they allow you to roll-up requirements so management
can see just the level of detail they are interested in. Each team can have its own set of backlog items
that contribute to a shared “feature” backlog.

Release Management
Release Management for Visual Studio 2013 is a powerful tool for automating the deployment pipe-
line for developed applications. Formerly known as InRelease, Microsoft acquired the product from
a Canadian company called InCycle in June 2013.

The Release Management tool allows teams to deploy applications to multiple server environments
and has strong integration with Team Foundation Service. Complex release workfl ows can be
defi ned with a visual interface. Importantly, teams can defi ne the promotion path of a single build
through multiple environments and enforce a process of approval and promotion.

NOTE Release Management for Visual Studio 2013 is discussed in more detail
in Chapter 20.

ACQUISITION OPTIONS

Microsoft has also greatly improved how you may acquire Team Foundation Server. Several options
are available to you, as discussed in the following sections.

Licensing can be somewhat confusing, but Team Foundation Server licensing follows the licensing
pattern of other Microsoft server products. There is a server license. Additionally, with some notable
exceptions, each user that connects to the server should have a Client Access License (CAL) for
Team Foundation Server.

NOTE For more information about those potential exceptions, or questions
about what you will need to purchase, you can seek help from a Microsoft
Partner with the ALM Competency or your local Microsoft Developer Tools
Specialist, or you can refer to the End-User License Agreement (EULA). A
licensing white paper dedicated to Visual Studio, MSDN, and Team Foundation
Server is also available at http://aka.ms/VisualStudioLicensing.

http://aka.ms/VisualStudioLicensing

8 ❘ CHAPTER 1 INTRODUCING VISUAL STUDIO ONLINE AND TEAM FOUNDATION SERVER 2013

c01.indd 04/22/2014 Page 8

Visual Studio Online
By far, the easiest way to get started with adopting Team Foundation Server is through a new hosted
option available directly from Microsoft called Visual Studio Online (formerly Team Foundation
Service). It shares a majority of the same code base as the same Team Foundation Server product
used on-premises but modifi ed to be hosted from Windows Azure for multiple tenants. It is available
at http://tfs.visualstudio.com.

The best part of using Visual Studio Online is that your team need not worry about backups, high
availability, upgrades, or other potentially time-consuming administration and maintenance tasks.
Another nice thing is that Visual Studio Online customers will receive frequent updates that even
include new features before on-premises customers.

NOTE Brian Harry, Product Unit Manager for Team Foundation Server,
announced that the internal product teams improved their engineering process
so well over the past two to three years that they are able to quickly provide
more frequent updates. Starting with Team Foundation Server 2012, the prod-
uct team has provided frequent updates that include the typical performance
and bug fi xes but also brand new features. The frequency of updates since this
announcement has been signifi cantly faster than in the past, with four post-RTM
releases to Team Foundation Server 2012 and one Team Foundation Server
2013 release in the past 12 months.

Team Foundation Service customers have seen updates made more frequently
than the on-premises edition. Brian mentioned that his teams are able to deploy
hotfi xes daily, but full-featured updates have thus far been released every three
weeks (with a small number of exceptions), which lines up with the internal
sprint schedule. You can learn more about this topic from Brian Harry’s blog
post at http://aka.ms/TFSReleaseCadence.

One thing to take away from this discussion is to make sure that your team
always uses the latest update of Team Foundation Server if you choose to install
it on-premises.

Teams using Visual Studio Online are able to leverage an elastic set of standard build servers. This
elastic build service provides standard build machines available and clean for each of your builds.
Teams can even integrate their elastic builds with their Windows Azure accounts to provide continu-
ous deployment to instances of their applications or sites hosted in Windows Azure. Teams can also
take advantage of on-premises build servers connected to Visual Studio Online.

Microsoft released the Team Foundation Service as a free trial in late 2012 and rolled it into the
commercial Visual Studio Online service in November 2013. They announced that the full feature
set will be provided to teams of up to fi ve at no cost. Additionally, MSDN subscribers will be able to
leverage Visual Studio Online as an additional benefi t to their MSDN subscription.

www.allitebooks.com

http://tfs.visualstudio.com
http://aka.ms/TFSReleaseCadence
http://www.allitebooks.org

Acquisition Options ❘ 9

c01.indd 04/22/2014 Page 9

Visual Studio Online is offered under a subscription model. The Basic plan is free for fi ve users, and
subsequent users can be added on a per-user, per-month basis. In addition to the Basic plan, two
other user plans are available with differing capabilities and inclusions.

To date, Visual Studio does not have full parity with the on-premises product. For example, the lab
management, reporting, and process template customization capabilities are features not currently
available. As Visual Studio Online evolves over time, there will be greater, if not full, parity with the
on-premises edition.

In the meantime, for teams that would like the full set of features but still have someone else man-
age their Team Foundation Server instance, options are available through several third-party hosting
companies.

Express
Small software engineering teams can leverage an Express version of Team Foundation Server 2013
that is available and free for up to fi ve developers. Team Foundation Server Express is available at
http://aka.ms/TFS2013Express. The Express edition includes, but is not limited to, the following
core developer features:

 ➤ Version control

 ➤ Work item tracking

 ➤ Build automation

This is a perfect start for small teams that want an on-premises Team Foundation Server instance
without any additional costs. If your team grows beyond fi ve, you can always buy CALs for users
six and beyond. The Express instance can even be upgraded at any time to take advantage of the full
set of features without losing any data.

Trial
One of the easiest ways to acquire Team Foundation Server is on a 90-day trial basis. You can
download the full version of Team Foundation Server and try out all of the features without having
to purchase a full copy. The DVD ISO image for the trial edition is available at http://aka.ms/
TFS2013Downloads.

If you install the trial edition of Team Foundation Server, you can easily apply a product key to
activate the trial edition. You could even move the team project collection from the trial server to
a different server instance once your team has decided to fully adopt Team Foundation Server.

Alternatively, if you need a 30-day extension, you can perform one extension using the Team
Foundation Server Administration Console once you’re near the end of the trial period. You can fi nd
out more information about extending the trial by visiting http://aka.ms/ExtendTFSTrial.

If you would rather have a virtual machine that is ready to use (including all of the software
necessary to demo and evaluate Visual Studio 2013 and Team Foundation Server 2013), you can
download the all-up Visual Studio 2013 virtual machine image. The virtual machine has a time

http://aka.ms/TFS2013Express
http://aka.ms
http://aka.ms/ExtendTFSTrial

10 ❘ CHAPTER 1 INTRODUCING VISUAL STUDIO ONLINE AND TEAM FOUNDATION SERVER 2013

c01.indd 04/22/2014 Page 10

limit that starts from the day that you fi rst start the machine. You can always download a fresh
copy of the machine to begin your demo experience over.

NOTE You can fi nd the latest version of the virtual machine available at
http://aka.ms/vs13almvm.

Volume Licensing
Microsoft has plenty of options for volume licensing, including Enterprise, Select, Open Value,
and Open License Agreements, that will help your company signifi cantly reduce the overall cost of
acquiring an on-premises edition of Team Foundation Server. Different options are available based
on your company size and engineering team size. This option is by far the most popular choice for
companies looking to acquire Team Foundation Server, MSDN subscriptions, and Visual Studio
licenses.

If your company acquired an earlier version of Team Foundation Server through a volume
licensing program, and also purchased Software Assurance (SA), you may be entitled to a license
for Team Foundation Server 2013 without additional cost, if the SA was still active on the date that
Team Foundation Server 2013 was released.

NOTE For more information about volume licensing, discuss your options with
your Microsoft internal volume licensing administrator, your local Microsoft
Developer Tools Specialist, or a Microsoft Partner with ALM Competency. You
can fi nd out more information from the Visual Studio Licensing white paper
available at http://aka.ms/VisualStudioLicensing.

MSDN Subscriptions
Beginning with the Visual Studio 2010 release, a full production-use license of Team Foundation
Server 2013 is included with each license of Visual Studio that includes an MSDN subscription.
Those MSDN subscribers also receive a Team Foundation Server 2013 CAL available for production
use.

This now enables developers, testers, architects, and others with an active MSDN subscription to
take advantage of Team Foundation Server without additional licensing costs.

NOTE For more information about MSDN subscriptions and for links to down-
load Team Foundation Server 2013, visit the MSDN Subscriber Downloads
website at http://msdn.microsoft.com/subscriptions.

http://aka.ms/vs13almvm
http://aka.ms/VisualStudioLicensing
http://msdn.microsoft.com/subscriptions

Summary ❘ 11

c01.indd 04/22/2014 Page 11

Microsoft Partner Network
Companies that are members of the Microsoft Partner Network and have achieved certain compe-
tencies can be entitled to development and test-use licenses of several of the products included with
an MSDN subscription, including Team Foundation Server 2013.

NOTE For more information about the requirements and benefi ts available for
Microsoft Partners, visit http://partner.microsoft.com.

Retail
If you are not able to use any of the other acquisition methods, you can always acquire Team
Foundation Server 2013 through retail channels, including the online Microsoft Store. You can
purchase the product directly from Microsoft online at http://aka.ms/TFS2013Retail. It is also
available from many other popular retail sites.

One of the nice benefi ts of purchasing a server license using the retail channel is that you also receive
a CAL exclusion for up to fi ve named users. This benefi t is available only from licenses purchased
through the retail channel, and it is not included with other acquisition avenues discussed in this
chapter.

SUMMARY

As you learned in this chapter, Team Foundation Server is a product with lots of features and function-
ality. This chapter introduced the types of features available, including those new to the latest release.
Additionally, you learned about the different acquisition methods for getting the software for Team
Foundation Server.

The next few chapters will familiarize you with planning a Team Foundation Server deployment and
installing a brand-new server. You will also learn about the different methods available for connect-
ing to your new server. Chapter 2 begins that discussion with an examination of deploying Team
Foundation Server.

http://partner.microsoft.com
http://aka.ms/TFS2013Retail

c02.indd 04/23/2014 Page 13

Planning a Deployment
WHAT’S IN THIS CHAPTER?

 ➤ Organizing a plan for adoption

 ➤ Setting up timelines for adoption

 ➤ Structuring team projects and team project collections

 ➤ Hardware and software requirements

Before installing or confi guring Team Foundation Server, it is helpful to lay out a plan and to
identify the areas that need some preparation work to ensure a successful adoption. This chapter
discusses methods for gaining consensus in your organization for the adoption. You will learn
about some potential adoption timelines and strategies to ensure a smooth transition for your
teams from legacy systems to Team Foundation Server 2013. Finally, the discussion walks you
through some of the immediate preparation steps for gathering what you will need before
you start the installation and confi guration of your new Team Foundation Server environment.

In Chapter 1, you read about the high-level features available in Team Foundation Server
2013, including new features for this release. Now it’s time to convince your boss and team
that it would be worthwhile to adopt Team Foundation Server 2013. The following sections
examine some of the ways you can prepare for your proposal to your team.

IDENTIFYING AND ADDRESSING SOFTWARE
ENGINEERING PAIN

One key to selling the idea of an Application Lifecycle Management (ALM) solution is to iden-
tify the pain points that your organization and teams are experiencing, and to address those
pain points with possible solutions. You may fi nd that some of the common problems people
are seeking solutions for are the same problems that plague your organization.

2

14 ❘ CHAPTER 2 PLANNING A DEPLOYMENT

c02.indd 04/23/2014 Page 14

This section identifi es some common problems that plague many development organizations, and it
provides some helpful discussion about how Team Foundation Server and the ALM family of Visual
Studio 2013 products attempt to address those pain points. You may have additional pain points
that you would like to solve, and it is always good to fl esh those out to ensure that you are identify-
ing and solving them as part of your adoption of Team Foundation Server.

This book covers many of the ALM topics because Team Foundation Server is a part of the Visual
Studio ALM family of products. You can fi nd out more information about all of the different ALM
tools available across the Visual Studio family in the companion book Professional Application
Lifecycle Management with Visual Studio 2013 available at http://www.wiley.com/WileyCDA/
WileyTitle/productCd-1118836588.html.

Transparency of the Release or Project
Does your team have diffi culty understanding any of the following questions during the release
cycle?

 ➤ Are we on track to release at the end of the month?

 ➤ How much implementation has been accomplished on the requirements in this release?

 ➤ How are our testers doing in authoring and executing their test cases?

 ➤ What changed in last night’s build?

 ➤ Why did this set of fi les change in this recent check-in? Was it used to implement a require-
ment or fi x a bug?

 ➤ Which requirements are getting good test coverage versus requirements that are largely
untested?

 ➤ Is the company investing in the right areas of our products based on feedback from
stakeholders?

 ➤ How do you balance the capacity of team members against the priority of work you want to
accomplish?

 ➤ How much work is your team capable of delivering for a given iteration?

 ➤ How can you be sure the release in production matches the release that was in a test
environment?

Teams that have a problem getting visibility into their release process often want to start by fi nd-
ing a tool that will gather all of the data necessary to easily answer some of these questions. Team
Foundation Server is one of the best products available for transparency because it allows you to
store all of the different artifacts from the beginning to the end of the software development
life cycle. Not only does it provide a way to capture that information, but it also allows you to make
informed decisions using rich links between those artifacts and systems. Team Foundation Server
provides rich information by exposing the end-to-end relationships that exist across artifacts.

http://www.wiley.com/WileyCDA

Identifying and Addressing Software Engineering Pain ❘ 15

c02.indd 04/23/2014 Page 15

Collaboration across Different Teams and Roles
Some teams have diffi culty providing information and communicating across different functional
groups. Testers may not feel that they have enough information about bugs returned to them as
rejected, and developers may feel that they don’t have enough information about the requirements
they are supposed to implement or the bugs they are supposed to fi x. Stakeholders and business
users may not feel that they have an easy way to provide feedback about the applications they inter-
act with so that the software development teams will be able to act appropriately.

If your team is experiencing some of these problems, you may benefi t from being able to eas-
ily see information and notes about the different artifacts in the software process stored in Team
Foundation Server.

Automated Compilation, Testing, Packaging, and Deployment
Teams may end up spending a lot of time at the end of release cycles completing manual steps to
compile, package, and deploy their applications. They may be performing these actions on a devel-
oper machine, and manually copying to staging and production environments.

These manual steps are often error-prone and can result in unforeseen issues and failed deploy-
ments. By taking advantage of the automated build system in Team Foundation Server, your team
can reduce the complexity of this process and turn it into a repeatable end-to-end solution that
occurs at regular intervals or is triggered by changes introduced by your developers.

Additionally, you can leverage the automated build system to introduce a “gauntlet” of checks that
each check-in may go through to verify the quality of those changes by using the gated check-in
feature in the Team Foundation Build system. This can help your team reduce entropy by preventing
defects from ever being introduced to the version control repository.

NOTE The new Release Management for Visual Studio 2013 product allows
teams to defi ne, confi gure, and automate deployments to multiple target envi-
ronments. This tool can reduce risk and ensure repeatable deployments that sup-
port your organization’s release pipeline and approval process.

See Chapter 20 for more information about Release Management for Visual
Studio 2013.

Managing Test Plans
The testing or quality assurance departments may be organizing their test cases using Word or Excel
documents, which can make it hard to organize your catalog of test cases. Additionally, tracking the
execution progress of each test case may be extremely diffi cult; thus, it becomes diffi cult to gauge
the progress of testing in your release.

16 ❘ CHAPTER 2 PLANNING A DEPLOYMENT

c02.indd 04/23/2014 Page 16

Team Foundation Server allows you to manage your collection of test cases; it also allows you to
manage the progress of test execution during the release cycle. This includes the ability to track tests
across multiple confi gurations that your product or application needs to support.

Parallel Development
Development teams have notoriously experienced diffi culty in managing changes across multiple
lines of development that can occur concurrently. By supporting the previous release, while stabiliz-
ing the next release, and then also performing early work on a feature release, you can end up
having trouble keeping each of those parallel lines of development organized. Integrating changes
made between those releases is especially time-consuming and error-prone, especially if developers
are manually applying fi xes to each of those code lines.

Testers are often curious about how bug fi xes and changes have been included in a particular
release. And they might often need to fi gure out if fi xes have been applied to other releases of the
application.

The Team Foundation Version Control system in Team Foundation Server provides excellent
branching and merging tools for easily managing parallel development, including the ability to track
changes across branches. This helps you to easily see which branches have changes integrated into
them as well as how and when those changes got there.

NOTE The new Distributed Version Control system gives developers more free-
dom to work on multiple parallel development tasks at once. Using Git, develop-
ers can work on multiple branches within local repositories before confi dently
committing changes to the server.

See Chapter 7 for more information about Distributed Version Control with Git.

ADOPTING TEAM FOUNDATION SERVER

The maximal value from Team Foundation Server is realized when it is used in a team. Therefore,
ensuring a successful Team Foundation Server adoption requires alignment with many people in
your organization. The following sections should help you avoid some common pitfalls and provide
you with some suggestions on where to start with what may seem like a large and daunting product.

Adoption Timeline
In general, splitting up the adoption by team/application has proven to be a successful approach.
Some of the effort may end up being the same for most teams, and lessons you learn from earlier
transitions will help you become more successful in the following transitions. Table 2-1 presents
a sample adoption timeline.

Adopting Team Foundation Server ❘ 17

c02.indd 04/23/2014 Page 17

TABLE 2-1: Sample Adoption Timeline

ACTIVITY ESTIMATED TIME

Planning for deploying Team Foundation Server One week

Identifying the process to adopt and process template customizations Two to four days

Designing the branching and merging strategy One day

Customizing the process template (dependent on the level of customization
of the process identifi ed)

One to four weeks

Table 2-2 discusses the additional adoption steps for each team or application.

TABLE 2-2: Sample Adoption Timeline for Each Team

ACTIVITY ESTIMATED TIME

Developing a custom migration tool (needed only if not using
one commercially or freely available)

Two to four weeks

Testing the migration One to two weeks

Initial training sessions for teams (occurs one week before
transition)

Half a day for each team member

Migrating source code One to two days

Migrating work items One to two days

Follow-up training sessions for teams (occurs one week after
transition)

Half a day for each team member

Phased Approach
Another approach that works well is adopting each piece of Team Foundation Server separately in
different phases of a larger deployment project. This allows you to plan each phase, execute that
adoption, and then train the teams on the new features and processes available in that particular
phase.

Some fi nd that teams are better able to absorb training for the new features when they are exposed
to them incrementally. You may have a higher success rate by splitting up the adoption project, and
then focusing your time and attention on making each part succeed. However, you’ll eventually fi nd
some teams very eager to adopt future phases, so be sure you don’t keep them waiting too long!

When introducing any new tooling into a large organization, it is important that you address the
key pain points fi rst. Many companies will identify traceability of work through the development

18 ❘ CHAPTER 2 PLANNING A DEPLOYMENT

c02.indd 04/23/2014 Page 18

life cycle, and this is often an area that is poorly addressed by existing tooling. For others, the
version control system being used may be out-of-date (unsupported) and performing poorly. It is,
therefore, usually the version control or work item tracking components that people begin using
when adopting Team Foundation Server.

Luckily, Team Foundation Server is fl exible enough that you can still get value from the product
when using only one or two components of the system. Once you have adopted both version con-
trol and work item tracking, the next area to tackle to gain the most benefi t is likely to be Team
Foundation Build. By automating your build system and increasing the frequency of integration, you
reduce the amount of unknown pain that always occurs when integrating components together to
form a product. The key is to gradually remove the unknown and unpredictable elements from the
software delivery process, and to always look for wasted effort that can be cut out. Using the new
Release Management helps your team deploy the same build across multiple environments, no mat-
ter how complex the confi guration.

Automating the builds not only means that the build and packaging process becomes less error-
prone, but it also means that the feedback loop of requirement traceability is completed. You are
now able to track work from the time that it is captured, all the way through to a change to the
source code of the product, and into the build that contains those changes.

At this point, you may identify the need to document your test cases and track their execution
throughout the release. With the traceability between test cases and requirements, you’ll be able to
better identify the requirements in your product that are covered appropriately by your testers.

After a period of time, you will have built up a repository of historical data in your Team
Foundation Server data warehouse, and you can start to use the reporting features to predict if you
will be fi nished when you expect (for example, is the amount of remaining work being completed at
the required rate?). You will also be able to drill into the areas that you might want to improve—for
example, which parts of the code are causing the most bugs.

To put all of this together, you will more than likely end up with the following adoption phases, but
you will want to adopt them in the order that works for your organization:

 ➤ Phase I: Version Control

 ➤ Phase II: Work Item Tracking

 ➤ Phase III: Automated Builds

 ➤ Phase IV: Test Case Management

 ➤ Phase V: Reporting

 ➤ Phase VI: Virtual Environments and Lab Management

You’ll notice that this book has generally been laid out in this order to help you address each area in
order of typical adoption.

www.allitebooks.com

http://www.allitebooks.org

Adopting Team Foundation Server ❘ 19

c02.indd 04/23/2014 Page 19

NOTE After getting used to the tooling, you should look at your overall process
and adopted process templates to ensure that all of the necessary data is being
captured—and that all the work item types and transitions are required. If there
are unnecessary steps, consider removing them. If you notice problems because
of a particular issue, consider modifying the process to add a safety net. It is
important to adjust the process not only to fi t the team and organization, but
also to ensure that you adjust your processes when you need to, and not only
because you can. See Chapter 12 for more information about process templates,
work items, and other topics related to tracking work.

Hosting Team Foundation Server
For the team to have trust in Team Foundation Server, you must ensure that it is there when they
need it, and that it performs as well as possible. For organizations that depend on creating software,
your version control and work item tracking repositories are critical to getting your work done.
Therefore, those features should be treated on the same level as other mission-critical applications in
the organization.

The Team Foundation Server infrastructure is a production environment for your company. Ideally,
it should be hosted on a server or multiple servers with adequate resources (both physical memory
and disk space). If hosted in a virtual environment, then you should ensure that the host machine
has suffi cient resources to handle the load of all guest machines, including superior disk
I/O performance.

When planning upgrades, confi guration changes, or when performing training, you should use a test
Team Foundation Server environment. For some organizations, the test requirements justify the pur-
chase of a hardware platform equivalent to the production environment.

However, for many scenarios, using a virtual Team Foundation environment will provide a suitable
environment for testing. These virtual environments are especially useful when developing a new
process template or testing work item process modifi cations. Microsoft provides an evaluation ver-
sion of Team Foundation Server preconfi gured as a virtual hard disk (VHD) fi le. This is frequently
used as a test bed for work item modifi cations and new process templates.

NOTE Brian Keller, Microsoft’s Principal Technical Evangelist for Visual Studio
ALM, publishes frequently-updated virtual machines with Team Foundation
already set up and populated with working projects. These can be extremely
useful for demonstration purposes and for testing new work item templates and
plug-ins. You can fi nd the full list of Visual Studio ALM virtual machines at
http://aka.ms/almvms.

http://aka.ms/almvms

20 ❘ CHAPTER 2 PLANNING A DEPLOYMENT

c02.indd 04/23/2014 Page 20

Identifying Affected Teams
One essential activity is to identify all of the different teams in your company that would be affected
by deploying Team Foundation Server. Following are some examples of those types of affected
teams:

 ➤ Developers

 ➤ Testers/Quality Assurance

 ➤ Product/Program Managers

 ➤ Project Managers

 ➤ Business Analysts

 ➤ Designers

 ➤ User Experience

 ➤ Change Management

 ➤ Release Management

 ➤ Technical Documentation/User Education

 ➤ Technical Support

 ➤ Information Technology

 ➤ Executives or other stakeholders

 ➤ Business Users

 ➤ Remote Teams

Generating Consensus
If anything, you should over-communicate any plans for rolling out Team Foundation Server and/or
a new process. Change is diffi cult for some people, and this has been one technique that seems to ease
those concerns.

Once you have identifi ed all of the affected teams, it’s helpful to generate consensus by suggest-
ing that each team nominate a team member to represent the team as decisions are made about the
deployment. This is generally a good way to ensure that everyone is involved, and that information
ends up getting disseminated throughout the organization. You can have this “advisory” group help
determine how to confi gure the server and the process that ends up being adopted. Going through
this process allows those who are involved to have some buy-in to the deployment and, ultimately,
champion the success of the change within their teams.

One word of caution, however, is that you should be sure to have an executive stakeholder in this
group who is available to make fi nal decisions when there are disagreements. It’s important to ensure
that decisions made by the group end up benefi ting the business, so having this “fi nal-authority”
representative is helpful. The others in the group will feel better about giving their input and hearing
why a particular decision is made, even if it’s not the decision they supported.

Adopting Team Foundation Server ❘ 21

c02.indd 04/23/2014 Page 21

Team Foundation Server Administrator
You will likely need to identify a resource who is responsible for managing the confi guration and
health of the Team Foundation Server environment. Your organization may not necessarily need
a full-time resource for this task, but this will generally take a good amount of regular effort to
ensure that this mission-critical environment is running smoothly for your company. This resource
might fi ll several of the following example hats:

 ➤ Champion and lead the adoption in the organization.

 ➤ Implement process changes.

 ➤ Identify and write new reports.

 ➤ Manage permissions and administer the environment.

 ➤ Identify and implement maintenance windows.

 ➤ Design and implement branching and merging strategies.

 ➤ Architect build resources and build processes for use in the organization.

 ➤ Administer the virtual lab management assets.

Some larger organizations have even identifi ed a team to manage each of the areas that Team
Foundation Server may touch in the software development life cycle. This can be considered a
shared engineering team that works with its “customers” in the organization to implement the
needs of the company. Those customers are the teams using the Team Foundation Server environ-
ment internally. This team’s work for managing the Team Foundation Server environment can even
be prioritized by the advisory group mentioned previously, and often the team’s leader serves as the
chairperson of the advisory group.

A common question comes up about whether an IT or engineering organization should own the
management of the Team Foundation Server environment. There are pros and cons to sole owner-
ship by either team. IT organizations have had experience in managing corporate applications, but
might not fully understand the needs of software development teams and departments. However,
engineering departments might not have the expertise to manage hardware and disaster-recovery
concerns that keep the servers running in optimal health.

A shared responsibility approach has proven to be successful. For example, the IT department may
maintain the actual hardware; run regular backups; and take care of networking, power, and cool-
ing needs. The engineering organization can own the application (Team Foundation Server) itself,
which would include installing service packs or patches, confi guring the team projects, and
managing security. That shared management responsibility requires close collaboration across each
department, which is essential for running a smoothly operating development environment.

Pilot Projects
A key way that your organization can learn what you might need to customize in Team Foundation
Server is to identify a team, small project, or release willing to be the “guinea pig” to test Team
Foundation Server. By setting up a pilot project, you can learn lots of information that might be
helpful before rolling out to a larger audience in your organization.

22 ❘ CHAPTER 2 PLANNING A DEPLOYMENT

c02.indd 04/23/2014 Page 22

Following is some of the information you will possibly discover:

 ➤ Custom reports you might need to provide that your business has been used to receiving from
legacy applications

 ➤ Common pitfalls your pilot team has experienced that can be addressed when training
other teams

 ➤ New features that might be more valuable to adopt ahead of other features in the products

Don’t underestimate the amount of information you will learn from this pilot team and project.
It can certainly give your organization more confi dence in proving that the system will help you
solve your organization’s pain points.

MIGRATION STRATEGIES

Oftentimes, software development teams will have been using several different systems to track their
source code, bugs, project management tasks, requirements, and even test cases. You might be in a
situation where you want to migrate from those legacy systems to Team Foundation Server. Several
different approaches and, thankfully, plenty of tools are available to assist you with your migration.

NOTE If you are upgrading from a previous version of Team Foundation Server,
be sure to see Chapter 27 for information on planning the upgrade instead of fol-
lowing the migration techniques mentioned in this section.

Version Control
Migrating from a legacy version control system to Team Foundation Server version control is one of
the most common starting places for software development teams.

Visual SourceSafe
If your team is still using Visual SourceSafe (VSS), you should be aware that the product’s sup-
port life cycle has ended. You should migrate to Team Foundation Server using the link to the VSS
Upgrade Wizard in the Team Foundation Server Administration Console. This wizard will help
you migrate source code from your VSS repositories to Team Foundation Server, keeping the change
history during the migration.

Other Version Control Systems
If you aren’t currently using VSS, then you have options as well. The Team Foundation Server prod-
uct team at Microsoft has been working on a platform for migration and synchronization scenarios.
This platform is freely available on CodePlex and is actively used internally at Microsoft. Out of the
box, it contains adapters for Team Foundation Server 2008 and up, as well as Rational ClearCase,
Rational ClearQuest, and fi le system-based version control systems.

Migration Strategies ❘ 23

c02.indd 04/23/2014 Page 23

The Team Foundation Server Integration Platform has been built on an extensible platform that
allows for different adapters to be created to migrate source code from other systems. The CodePlex
project has received numerous and regular contributions from the product team, and you can expect
more adapters to come out in the future.

If you are feeling up to the challenge, you can also create a custom adapter for your version control
system using the Team Foundation Server Integration Platform’s extensibility hooks. You might con-
sider contributing to the CodePlex project for others to take advantage of the custom adapter if they
run into the same migration scenario that you faced!

NOTE You can get more information about the Team Foundation Server
Integration Platform by visiting the CodePlex project’s site at http://aka.ms/
TFSIntegrationPlatform.

There is also a family of commercially available third-party migration solutions that will allow you
to migrate your source code from popular legacy and third-party source control systems.

NOTE Chapter 9 discusses more about migrating from legacy version control
systems, including Visual Source Safe.

Work Item Tracking
In addition to migrating source code, most teams will want to think about migrating work items
from their legacy systems. These may be bugs, requirements, test cases, tasks, and so on.

Thankfully, the Team Foundation Server Integration Platform mentioned previously was also
designed to move work items in addition to source code. Currently, an adapter allows you to move
your legacy artifacts over from IBM Rational ClearQuest into Team Foundation Server. Again,
custom adapters can be built using the extensible architecture of the Team Foundation Server
Integration Platform to migrate work items from other tracking systems.

There are several other methods that you could use to import your work item tracking data. You
may use Microsoft Offi ce Excel and the integration that Team Explorer adds to allow you to import
spreadsheets of information. Commercial tools are also available for importing artifacts from HP
Quality Center into Team Foundation Server.

NOTE Chapter 12 has more in-depth information and an introduction to Team
Foundation Server work item tracking.

http://aka.ms

24 ❘ CHAPTER 2 PLANNING A DEPLOYMENT

c02.indd 04/23/2014 Page 24

STRUCTURING TEAM PROJECT COLLECTIONS AND
TEAM PROJECTS

A common question that ultimately will come up after setting up Team Foundation Server is how
you should go about structuring your team project collections and team projects. It’s helpful to plan
your strategy before installing and setting up the environment so that you make the right choices
from the beginning. Changing the strategy can lead to a lot of effort in reorganizing, and you’ll even
fi nd that some changes are downright impossible. Team Foundation Server supports creating a strat-
egy that will be effective, fl exible, and scalable to your organizations.

Ultimately, the strategy will be formed based on the isolation needs for your organization. Software
development teams have traditionally described three constant concepts for how they managed their
applications:

 ➤ Projects—These are the units of work centered on a given effort with a start and end date.
You can easily map these to product releases, contracts, or initiatives. The projects and team
within it usually follow a process such as Scrum, Capability Maturity Model Integration
(CMMI), and so on.

 ➤ Products/codebases—These are described as the “source code” that makes up an application
product, or group of products (suite/family). It is what the developers, designers, and other
specialties work on, and its by-product (fi les such as .exe, .dll, and so on) is consumed by
a customer.

 ➤ Organizations—These are the divisions, business units, departments, or teams that work on
projects that deliver products to end customers.

Team project collections provide the ability to group a set of tightly related team projects. When you
are thinking about them, you should focus on correlating them with products/codebases or appli-
cation suites. For example, if your company makes four unique product lines that have almost no
codesharing between them, it might be practical to create four team project collections. If, on the
other hand, your company has several products that compose a solution or product suite with high
code reuse, framework sharing, or even simultaneous release, then you will have a single team proj-
ect collection.

Some organizations have multiple business units or departments that traditionally manage their own
software confi guration management servers/repositories. These organizations will fi nd that team
project collections also benefi t them by isolating each business unit, but are still able to consolidate
the management and maintenance of a single Team Foundation Server environment. This type of
functionality would be described as multi-tenancy.

Ultimately, you will need to decide the isolation needs of the departments in your organization
and how you might segregate certain resources, such as build and virtual lab resources based along
those lines.

Structuring Team Project Collections and Team Projects ❘ 25

c02.indd 04/23/2014 Page 25

NOTE Chapters 21 and 22 provide a more in-depth look at team project collec-
tions and scalability features.

SCOPE OF A TEAM PROJECT

At its very core, a Team Project contains all of the artifacts such as source code,
work items, builds, reports, and an associated SharePoint team portal site. In gen-
eral, a team project is “bigger than you think.” A good way of thinking about what
must be grouped into a single team project is to think about the impact of a typical
requirement for your software development project. If the requirement would affect
the ASP.NET front end, Java middleware, and SQL database repository, then
all these projects and teams of developers probably want to be working on the same
team project.

Following are three general areas that are used when scoping a team project.
But every organization is different, and yours might need to combine these aspects
when deciding on your approach. For some organizations, it makes sense to have
only a single team project in a single project collection. Others may have more than
a hundred.

 ➤ Team project per application—In general, team project per application is the
most common approach when scoping team projects, and probably the posi-
tion you should fi rst consider. Generally, requirements are addressed by the
entire application, and several people are assigned to work on it. The applica-
tions typically have a long life cycle, going from inception, active development
into the support, and then fi nally to end-of-life phases.

 ➤ Team project per release—The team project per release methodology is use-
ful for very large teams working on long-running projects. After every major
release, you create a new team project. At this point, you can carry out
changes that might have come about from your post-release review. You might
take the opportunity to reorganize your version control tree, improve process
templates, and copy over work items from the previous release that didn’t
make it.

 This methodology tends to be suited to large independent software vendors
(ISVs) working with products with a very long lifetime. In fact, Microsoft itself
uses this approach for many of its products. In these cases, it is generally safer
to start as a team project per application, and then move to a team project

continues

26 ❘ CHAPTER 2 PLANNING A DEPLOYMENT

c02.indd 04/23/2014 Page 26

 per release (if required) to make reporting easier. This is traditionally the case
if the releases tend to span a long timeframe (such as a multiyear project or
release cycle).

 ➤ Team project per team—For smaller teams (fewer than 50) where the number
of people working on the team tends to stay fairly static, but the applica-
tions they work on are in a constant state of fl ux, the team project per team
approach may be most suitable. This is most often seen in consulting-style
organizations, where the same group of people may be responsible for deliver-
ing applications for clients with rapid turnaround. If your team members are
often working on more than one project at a time, the same team or subset of
the team works together on those projects over time, or if the project life cycle
is measured in months rather than years, then you may want to consider this
approach.

As an alternative, a single team project collection per customer could be used for
the consulting-style organizations that must provide all of the artifacts (source
code, work item history, and so on) to the client at the end of the project, because
the team project collection contains the entire work. If you do not have to deliver
all of the artifacts of the project to the customer as a requirement, however, you
should not necessarily use the individual team project collections approach.

Considering Limitations in Team Foundation Server
When deciding the appropriate team project collection and team project structure for your organi-
zation, it is helpful to understand the limitations of the feature set in Team Foundation Server that
may affect your desired strategy based on your team’s goals with using the product.

Ultimately, you can use the knowledge of these limitations to arrive at the most appropriate scoping
of team project collections and team projects for your organization. You will want to ensure that
you think about possible changes to the products, application families, teams, and organizational
structure, and how these limitations may impact those changes in the future.

Renaming a Team Project
At the time of this writing, you unfortunately are not able to rename a team project once you
have created it. There is no workaround for this limitation. You should ensure that you have fully
reviewed and arrived at your team project structuring strategy before creating any team projects.

Additionally, you should consider the names you give to team projects that represent products or
product families whose names have not been determined. Once you pick a name for the team project
(especially if it uses a code name or some other early project name), that name will be used for the
entire lifetime of the team project.

continued

Structuring Team Project Collections and Team Projects ❘ 27

c02.indd 04/23/2014 Page 27

If you are using a larger team project, then you can use area paths to differentiate among different
product families, products, and ultimately the components in those products. Area paths can be
renamed and reorganized at any time. Chapter 12 provides more information about area paths.

One key difference for a team project collection is that you can change the name of a team project
collection at a later time, provided you have an on-premises installation.

Moving Work Items across Team Projects or Team Project Collections
Because you can choose to use completely different process templates for team projects, you are
unable to move work items across the team project boundary. Ensure that you pick the appropri-
ate scoping level for a team project. For example, if you want to create a bug in one application,
and later fi nd out that it is really for another application in another team project, you will fi nd out
that you cannot move the bug to the other team project. In this case, you will have to create a copy
(because the “bug” artifact may not even be named the same in the other team project’s process
template) of the work item in the next team project.

Instead, you may consider scoping the team project larger to include multiple applications in the
same application family. You can then organize the applications within the team projects by using
the area path hierarchy. To move a bug between two applications stored in the same team project,
you would then just change the area path to the one that represents the other application. However,
all applications or teams that use a team project must use the same process template. Chapter 12
provides more information about area paths.

Managing Work Items from Multiple Team Projects in Offi ce Excel,
Project, or Project Server

Similar to the previous limitation, because team projects can have different process templates, the
Microsoft Offi ce Excel and Project add-ins for managing work items do not work with work items
from multiple team projects. As mentioned, you will want to ensure that you scope the team project
to be larger, and use the area path hierarchy to distinguish between applications or teams. Then use
the iteration path hierarchy to distinguish between releases and iterations/sprints.

Additionally, now that you are able to set up two-way synchronization with Project Server, you will
notice that an enterprise project plan in Project Server can be mapped only to a single team project.
If you have an enterprise project that spans multiple applications that might exist in multiple team
projects, then your team project strategy will need to be modifi ed to have a team project that con-
tains all of those applications. However, multiple enterprise project plans in Project Server can be
mapped to a single team project in Team Foundation Server. Chapter 16 provides more information
about integration with Project Server and Team Foundation Server.

Managing Teams and Capacity Planning
Team Foundation Server 2012 introduced new support for managing team artifacts and membership
as well as Agile planning tools, including the ability to plan sprint/iteration/project/release resource
capacities. Portfolio management tools were added in Team Foundation Server 2013. These concepts
are scoped within a team project. That means that a “team” has members, and the work it performs
is defi ned inside the same team project.

28 ❘ CHAPTER 2 PLANNING A DEPLOYMENT

c02.indd 04/23/2014 Page 28

The capacity planning tools plan for work only inside the same team project. Therefore, if you have
team resources that are shared among multiple product releases/projects, then you will want to con-
tain the entire set of products team members work on in the same team project if you want a single
view from a team and a capacity planning standpoint. Chapter 14 discusses defi ning teams and
using the new Agile planning tools available in Team Web Access.

Tracking Merged Changes across Branches in Multiple Team Projects
You are unable to use the branch visualization and track merged changes visualization features for
branches that span across the team project boundary. In general, your branching and merging strat-
egy should avoid creating branches across team projects if you plan to use the visualization features
introduced in Team Foundation Server 2010.

You are able to have multiple branch “families” inside the same team project. You can even have dif-
ferent security permissions defi ned for each of the branch families to prevent one team from having
the same permissions as other teams. You can withhold read permissions for certain teams so that
they do not see all of the version control content inside the team project’s version control repository.
Chapter 11 discusses more options for setting up a version control repository, including the ability
to have multiple product families stored in the same team project.

Reports and Dashboards Scoped to Team Project
If you have larger team projects that encompass multiple applications in an application family, team,
and so on, you will notice that the standard reports and dashboards will be scoped to use the data
inside the entire team project. Each of the reports enables you to fi lter the data, including some by
area path and iteration path fi elds for the work item data. This does not mean that you are unable to
create reports with data across team projects. This only means that the default reports are scoped
to a team project.

Additionally, the SharePoint dashboard features allow you to create multiple custom dashboards.
Each custom dashboard can then include web parts that are scoped to a specifi c area path and itera-
tion path as well.

Moving Team Projects between Team Project Collections
Once a team project is created in one team project collection, you are unable to move the team proj-
ect to another existing team project collection because there may be a confl ict between the IDs used
for the different artifacts (such as changeset, work item, and build unique identifi ers).

One option you do have is to split a team project collection, which allows you to create a clone, and
then remove all of the unwanted team projects from each copy. This allows you to essentially move a
team project to a new team project collection. There is no workaround available for moving a team
project to an existing team project collection.

The key takeaway from this limitation is that it is possible to split a larger team project collection
into multiple team project collections but impossible to consolidate or reorganize team projects
among team project collections.

www.allitebooks.com

http://www.allitebooks.org

Structuring Team Project Collections and Team Projects ❘ 29

c02.indd 04/23/2014 Page 29

Artifacts Scoped to a Team Project Collection
One of the important features of team project collections is that all of the artifacts contained within
a team project collection are isolated from other team project collections. For example, all of the
different link types between version control fi les and changesets, work items, builds, test cases, test
results, and so on, can be contained only within the team project collection.

Another example is that you will not be able to add a link between a test case that exists in one
team project collection and a requirement that exists in another team project collection. If you need
this type of traceability, you should include team projects that need to link between artifacts within
the same team project collection.

Additionally, you are unable to branch and merge across team project collections, even though you
are able to branch across multiple team projects within the same team project collection. There is no
workaround available for this feature, so ensure that you scope the team project collection appropri-
ately to account for this feature limitation.

Certain hardware within a broader Team Foundation Server environment is also scoped to team
project collections. For example, build controllers and agents, as well as test controllers and agents,
are scoped only to a single team project collection.

Finally, you are unable to create work item queries that need to pull work items from team projects
across multiple team project collections. However, you can create a work item query to pull work
items from multiple team projects inside the same team project collection. Also, the reporting ware-
house contains information about artifacts stored in all team project collections and team projects,
so you can create custom reports that pull that information together.

Server Limitations
Team Foundation Server is an extremely scalable product. However, you should understand its
limitations so that you optimize the performance of the environment. It is also helpful to know that
most of the limits are not enforced by the product, and are general best practices and recommenda-
tions from the product group to maintain a certain level of performance.

Team Foundation Server can support thousands of team project collections mainly because of the
support for scale-out architecture. The limits are tied more to the SQL Server hardware used in
your deployment. A SQL Server instance can support 30 to 100 active team project collections. This
range is related to the physical memory available to SQL. Active team project collections are those
being accessed daily by the team.

Given this, if your deployment structure requires hundreds of team project collections, you have
essentially two choices:

 ➤ You may buy additional hardware and make available more SQL Server instances for use by
the Team Foundation Server environment.

 ➤ You could consider grouping team projects more aggressively within existing team project
collections.

30 ❘ CHAPTER 2 PLANNING A DEPLOYMENT

c02.indd 04/23/2014 Page 30

To maintain high performance, you should limit the number of team projects stored within a team
project collection. The actual number of team projects to include in a team project collection is
limited by the complexity of the work item types defi ned within the process templates being used
by each of those team projects. The work item types included in the standard process templates (for
example, the Microsoft Solutions Framework for Agile Software Development 2013 process tem-
plate) have been shown to support more than 500 team projects on a server on adequate hardware.

There is a linear relationship between performance degradation and the number of team projects
within a team project collection. Make sure you keep this in mind as you develop your team project
structuring strategy and that you appropriately plan for additional hardware resources if many team
projects will be required.

PREPARATION FOR A TEAM FOUNDATION SERVER
ENVIRONMENT

The following sections examine some of the preparation steps that are benefi cial to take care of
before you start to install a new Team Foundation Server.

NOTE If you are upgrading from earlier versions of Team Foundation Server,
you will fi nd the upcoming sections benefi cial in understanding the necessary
preparation steps. You can also consult Chapter 27, which is dedicated solely to
upgrading.

Understanding the Architecture and Scale-Out Options
You have multiple options when confi guring your Team Foundation Server deployments. You can
deploy all the components (Team Foundation Server application, SQL Server, SQL Analysis Services,
SQL Reporting Services, and Windows SharePoint
Services) onto one machine. This is called a
single-server installation and should work fi ne for
500 users or fewer. In general, single-server instal-
lations are the easiest installations, as shown in
Figure 2-1.

For more than 500 users, a multiserver installa-
tion should be considered. There are several
fl avors of multiserver installations. At its most
basic, there are two servers. One server is the
data tier, running SQL Server and SQL Analysis
Services, and the other is the application tier, running
Team Foundation Server, SQL Reporting Services, and SharePoint, as shown in Figure 2-2.

-Application Tier Services
-SQL Server

-SQL Reporting Services
-SQL Analysis Services

-SharePoint

Single Server

FIGURE 2-1: Single-server installation

Preparation for a Team Foundation Server Environment ❘ 31

c02.indd 04/23/2014 Page 31

-SQL Server
-SQL Analysis Services

-Application Tier Services
-SQL Reporting Services

-SharePoint

Application Tier Data Tier

FIGURE 2-2: Multiserver installation

NOTE Notice that the SQL Reporting Services component is actually installed
on the application tier server instead of the data tier server in a multiserver con-
fi guration. This is because the front-end SQL Reporting Services component is
web-based and can be load balanced along with the other web-based compo-
nents of Team Foundation Server. This will allow for easy and optimal scalabil-
ity in the future if required by your environment.

Your organization may have an existing SharePoint Portal Server and/or a SQL Server Reporting
Services Server that it wants to use in conjunction with Team Foundation Server. For that scenario,
you would then have a server for running the Team Foundation Server application tier, a server for
running the SQL Server databases, and separate servers for running SharePoint Portal Server and/or
Reporting Services. Figure 2-3 shows a sample topology using this particular scenario.

-SQL Server-Application Tier Services

Application Tier Data Tier

-SQL Analysis Services
-SQL Reporting Services

-SharePoint

SharePoint Reporting

FIGURE 2-3: Existing server used with Team Foundation Server

32 ❘ CHAPTER 2 PLANNING A DEPLOYMENT

c02.indd 04/23/2014 Page 32

NOTE Because SharePoint 2010 and later editions have higher system require-
ments, such as for RAM, and can be intensive on server resources, we actually
recommend that you have a separate server environment for SharePoint. This
is especially the case if you are taking advantage of the rich dashboard features
available when using the Enterprise edition of SharePoint.

This confi guration will ease the management and system resources requirement
for your Team Foundation Server environment. It will also make sure that Team
Foundation Server and SharePoint are not competing with one another for hard-
ware resources on the same server.

For high-availability scenarios, clustering of machines is available at each point in the archi-
tecture. As previously discussed, the Team Foundation Server application tier machines can be
located behind a network load-balancing device. The SQL Server instances referred to by the Team
Foundation Server application and team project collections can also be clustered. Figure 2-4 shows
an example of a larger topography that includes high-availability scaling.

Team Foundation
Server Farm

Application Tier

Data Tier Cluster Build Server Farm

Lab Management Farm

SharePoint

Data Tier Cluster

Reporting

Application Tier

Network
Load Balancer

Application Tier

FIGURE 2-4: Larger topography that includes high-availability scaling

Preparation for a Team Foundation Server Environment ❘ 33

c02.indd 04/23/2014 Page 33

Hardware Requirements
Table 2-3 shows the hardware requirements for a single-server installation, where the application
tier and data tier reside on the same physical machine. However, keep in mind that these numbers
are minimum recommendations, and, obviously, the more hardware you can throw at a problem,
the better, especially if you use the environment more heavily. You will want to continue to monitor
the environment for performance and utilization to scale the resources as necessary.

TABLE 2-3: Hardware Requirements for Single-Server Installation

NUMBER OF USERS CPU HARD DISK MEMORY

Fewer than 250 users One single-core 2.13 GHz processor 125GB 2GB

250 to 500 users One single-core 2.3 GHz dual-core processor 300GB 4GB

For a multiserver installation (where you have distinct physical servers for the application tier and
the data tier), Table 2-4 lists the application tier hardware requirements, and Table 2-5 lists the data
tier hardware requirements.

TABLE 2-4: Application Tier Hardware Requirements

NUMBER OF USERS CPU HARD DISK MEMORY

500 to 2,200 users One 2.13 GHz dual-core Intel Xeon processor 500GB 4GB

2,200 to 3,600 users One 2.13 GHz quad-core Intel Xeon processor 500GB 8GB

TABLE 2-5: Data Tier Hardware Requirements

NUMBER OF USERS CPU HARD DISK MEMORY

500 to 2,200 users One 2.33 GHz quad-core Intel Xeon
processor

2TB SAS Disk Array 8GB

2,200 to 3,600 users Two 2.33 GHz quad-core Intel Xeon
processors

3TB SAS Disk Array 16GB

Keep in mind that the application tier may be hosting SharePoint and/or SQL Server Reporting
Services, in addition to Team Foundation Server. This might require you to bump up your hardware
numbers in some form or fashion to account for the extra processing needed and the minimum
requirements for those products.

Virtualization
Virtualization is a hot topic these days. Virtualization allows you to buy a large server and then vir-
tually host several different servers on one physical machine. This allows an organization to make
the most of a physical machine’s resources. Some pieces of the Team Foundation Server environment

34 ❘ CHAPTER 2 PLANNING A DEPLOYMENT

c02.indd 04/23/2014 Page 34

can be safely hosted in a virtual environment, and some require careful consideration and perfor-
mance tuning before being virtualized.

Ideally, the following pieces should be installed on physical servers or properly tuned virtual
machines with peak performance specifi cations:

 ➤ SQL Server Database Engine

 ➤ SQL Server Reporting Services

 ➤ SQL Server Analysis Services

SQL Server is the foundation for holding all the information regarding Team Foundation Server.
Should it become corrupted, the entire Team Foundation Server system will go down. To minimize
the chances of database corruption, you should carefully consider the possible drawbacks before
hosting SQL Server 2012 or higher in a virtualized environment. In some earlier editions of SQL
Server, virtualization was not supported. However, this is no longer the case because there were
quite a few improvements included in the latest versions.

NOTE Microsoft has a great list of frequently asked questions specifi cally about
its support policy for running Microsoft SQL Server products in a hardware
virtualization environment in this knowledgebase article: http://aka.ms/
SQLVirtualizationSupportPolicy. We highly recommend that you follow the
advice in this support article to ensure that your organization is in the best sup-
ported position available under a virtualized confi guration.

Specifi cally, for Team Foundation Server, you will want to monitor the disk I/O metrics to ensure that
the virtualized database servers are able to keep up with the amount of I/O generated for database
transactions that come from Team Foundation Server. No matter which virtualization technology
you use, you will want to ensure that you set up the virtual environment for peak performance.
The key is to continually monitor the performance indicators for the environment, and make appro-
priate modifi cations. Any degradation of performance should be reviewed, especially if you choose to
virtualize your data tier server.

NOTE For some tips on properly setting up a virtual environment that will
include SQL Server, see the recommendations in Chapter 22.

The following can be safely installed in a virtualized environment with minimum to no impact on
the Team Foundation Server system:

 ➤ Team Foundation Server application tier components

 ➤ SharePoint

 ➤ Team Foundation Build servers

http://aka.ms

Preparation for a Team Foundation Server Environment ❘ 35

c02.indd 04/23/2014 Page 35

 ➤ Team Foundation Proxy servers

 ➤ Test Controllers and Agents

 ➤ Release Management Server and Agents

WARNING Be careful when deciding to virtualize a server running Build
Agents. A build will often require signifi cant disk I/O and CPU resources, so vir-
tualization may not be the best option. Build Controllers do not have the same
requirements, so it is usually safe for them to run on virtualized environments.

Planning for Software Prerequisites
In addition to the hardware requirements for Team Foundation Server, you will want to prepare for
a new installation by ensuring that certain software prerequisites are met.

Operating Systems
Like Team Foundation Server 2012, Team Foundation Server 2013 supports only 64-bit Windows
Server operating systems. However, Team Foundation Server can be installed on a 32-bit client
operating system (for example, Windows 8). Table 2-6 lists the supported operating systems for the
application tier server.

TABLE 2-6: Supported Operating Systems for Application Tier

OPERATING SYSTEM ADDITIONAL NOTES

Windows Server 2008 R2 with Service Pack 1 64-bit only

Standard, Enterprise, or Datacenter editions

Windows Small Business Server 2011 with
Service Pack 1

64-bit only

Standard, Enterprise, or Datacenter editions

Windows Server 2012 64-bit only

Essentials, Standard, or Datacenter editions

Windows Server 2012 R2 64-bit only

Essentials, Standard, or Datacenter editions

Windows 7 with Service Pack 1 Home Premium, Professional, Enterprise, or
Ultimate editions

Windows 8 Basic, Pro, or Enterprise editions

Windows 8.1 Basic, Pro, or Enterprise editions

36 ❘ CHAPTER 2 PLANNING A DEPLOYMENT

c02.indd 04/23/2014 Page 36

NOTE Team Foundation Server supports the capability to install on a server
running a client operating system such as Windows 8.1. However, client oper-
ating systems will not support reporting features, integration with SharePoint
products, or the ability to run a Team Foundation Server proxy.

SQL Server
Team Foundation Server uses SQL Server to store its data, SQL Server Analysis Services to store
an Online Analytical Processing (OLAP) cube for the data warehouse, and SQL Reporting Services
as a presentation layer for rich reports. You can use the default instance or a named SQL instance
for any of the components. Table 2-7 lists the supported versions of SQL Server.

TABLE 2-7: Supported SQL Server Versions

SQL SERVER VERSION ADDITIONAL NOTES

SQL Server 2012 with Service Pack 1 Recommended
Express, Standard, or Enterprise edition
Express is used when installing Team Foundation Server
using the “Basic” confi guration wizard or when using
Team Foundation Server Express Edition

SQL Server 2014 Express, Standard, or Enterprise edition

NOTE You can use an existing instance of SQL Server, as long as it meets
certain requirements. See the latest version of the Team Foundation Server
Installation Guide available on the Microsoft Downloads site at
http://aka.ms/TFS2013InstallGuide.

Included Edition
When purchasing Team Foundation Server 2013, you are able to install SQL Server 2012 Standard
for limited use if you are installing on a single server. This “limited use” privilege permits you to use
only that SQL instance for Team Foundation Server 2013 databases. This means that you would not
be able to use the instance for any custom databases or other applications that you have installed
within your organization.

You can use an additional production license of Team Foundation Server (for example, included
with an MSDN Subscription) for installing the limited-use SQL Server license on a separate data tier

http://aka.ms/TFS2013InstallGuide

Preparation for a Team Foundation Server Environment ❘ 37

c02.indd 04/23/2014 Page 37

server from the application tier server. You can read more about these licensing details
in the latest version of the Visual Studio Licensing Whitepaper available at http://aka.ms/
VisualStudioLicensing.

Enterprise Editions of SQL Server
If you are using an Enterprise edition of SQL Server that you have licensed separately, Team
Foundation Server 2013 will take advantage of features made available only in the Enterprise
edition. Following are some of the features that Team Foundation Server can take advantage of:

 ➤ Online re-indexing—This is particularly useful for the periodic maintenance jobs that Team
Foundation Server runs to keep the SQL instance healthy, because it is capable of keeping
the database online while it performs those steps. This can lead to better performance and
reduced blocking calls.

 ➤ Perspectives in Analysis Services—The schema for the OLAP cube for the data warehouse
will take advantage of a feature called perspectives. Perspectives in SQL Analysis Services
allow a more focused view of the dimensions, measures, and data included in the
OLAP cube.

 ➤ Index compression—Team Foundation Server will take advantage of index compression,
which will help increase performance by reducing I/O and memory utilization. (This feature
may require more CPU utilization, however, but shouldn’t be a problem because I/O is typi-
cally the bottleneck for the data tier.)

 ➤ Clustering data tiers for high availability and redundancy—If you are looking to have a
clustered data tier, then you will want to take advantage of the Enterprise edition because it
allows you to have as many failover clusters as the underlying operating system supports.

 ➤ Query optimizations—Team Foundation Server can benefi t from certain query optimizations
available only in the Enterprise edition of SQL Server.

 ➤ Data-driven subscriptions in Reporting Services—This feature allows you to subscribe to
a report and set up recurring e-mails, and so on, that use data to drive what parameters are
set in each report that gets sent.

 ➤ Scale-out deployment for Reporting Services—This feature is particularly necessary if you
decide to have multiple application tiers together as a Team Foundation Server farm, and
want to have SQL Reporting Services installed on each of those front-end servers to be load
balanced for high availability.

SharePoint Products
Team Foundation Server has the ability to integrate with a new or existing SharePoint environment.
Starting with Team Foundation Server 2010, this integration is optional and not required for instal-
lation. You can choose to integrate with SharePoint at the time of installation or add it later.

Table 2-8 lists the supported version of SharePoint products that can be used for integration.

http://aka.ms

38 ❘ CHAPTER 2 PLANNING A DEPLOYMENT

c02.indd 04/23/2014 Page 38

TABLE 2-8: Supported Versions of SharePoint Products

SHAREPOINT PRODUCT ADDITIONAL NOTES

SharePoint Foundation 2010

SharePoint Server 2010 Enterprise or Standard edition

SharePoint Foundation 2013

SharePoint Server 2013 Recommended

Enterprise or Standard edition

If you are using a full version of SharePoint Server such as SharePoint Server (SPS) 2010 or 2013, Team
Foundation Server will take advantage of features available only in the full Enterprise edition (such
as Excel Services). It does so by providing a set of “rich” dashboards that display charts contained in
Microsoft Offi ce Excel workbooks. The “rich” dashboards would not be available for your team por-
tal sites when using the other versions of SharePoint products (SharePoint Foundation 2010 or 2013),
but you would instead get a “lite” version of two dashboards based on SQL Server Reporting Services.

If you will be using a full version of SharePoint Server, you should consider installing the front-
end components on different hardware than the hardware that will be used for running Team
Foundation Server. This allows you to manage SharePoint independently of Team Foundation
Server, which, in turn, allows you to lower your maintenance burden and prevent performance
bottlenecks that may occur when both are running on the same server.

NOTE Chapter 15 provides a more in-depth look at integrating with SharePoint.

Service Accounts
You will need several accounts. Table 2-9 lists the recommended service accounts that you will likely
use when setting up your Team Foundation Server environment. The table assumes that you’re using
Team Foundation Server in an environment that uses Active Directory Domain Services.

TABLE 2-9: Recommended Service Accounts

SERVICE ACCOUNT SAMPLE ACCOUNT NAME ADDITIONAL NOTES

Team Foundation
Server

yourdomain\TFSSERVICE Should have the “Account is sensitive and
cannot be delegated” option enabled. Do
not use the same account you use to install
Team Foundation Server.

Team Foundation
Server Reporting

yourdomain\TFSREPORTS Must be a user account (not Network
Service). Should be given the “Allow log on
locally” permission.

www.allitebooks.com

http://www.allitebooks.org

Preparation for a Team Foundation Server Environment ❘ 39

c02.indd 04/23/2014 Page 39

SERVICE ACCOUNT SAMPLE ACCOUNT NAME ADDITIONAL NOTES

Team Foundation
Server Build

yourdomain\TFSBUILD

Team Foundation
Server Proxy

yourdomain\TFSPROXY

Lab Management yourdomain\TFSLAB Must be a user account (not Network
Service) and can be used with standard
environments, even when not using virtual
lab management features.

The following is a list of best practices for Team Foundation Server service accounts:

 ➤ Built-in service accounts such as Network Service are supported, except as noted in Table 2-9.

 ➤ The service account user should be an Active Directory account if the Team Foundation
Server environment consists of more than one server.

 ➤ Service accounts should be given the “Log on as a service” permission, except the Team
Foundation Server Reporting service account.

File Share Folders
As you are using certain features in Team Foundation Server, you will end up needing several shared
folder locations. Table 2-10 lists the recommended folder share locations and their purposes. The sug-
gested permissions for each of these shares is for full control for the TFSSERVICE and TFSBUILD service
accounts, and read-only permissions for all team members, with the exception of libraries for Visual
Studio Lab Management (which should include full control permissions for the TFSLAB service account).

TABLE 2-10: Suggested Folder Share Locations

DESCRIPTION SUGGESTED NAME PURPOSE

Build Drops \\builds.tfs.contoso.local
\Builds

Used by the automated build system to copy
outputs of the build process. Should be con-
tained on a fi le server separate from any build
server hardware.

Symbol Server \\symbols.tfs.contoso
.local\Symbols

Used by the automated build system for pub-
lishing debugging symbols. Should be
contained on a fi le server separate from any
build server hardware.

Lab Management
Library

\\library.lab.tfs.contoso
.local\LabLibrary

Used by the lab management system for stor-
ing virtual machine and environment templates

40 ❘ CHAPTER 2 PLANNING A DEPLOYMENT

c02.indd 04/23/2014 Page 40

SMTP Server
One of the nice features in Team Foundation Server is the ability to set up custom alerts with dif-
ferent events that occur on the system. This allows users to self-subscribe to receiving e-mails for
a multitude of different scenarios that may occur—for example, when a work item is assigned to a
user, a triggered build has failed, or a check-in occurs to a particular folder in version control.

To ensure that your team members will be able to take advantage of this functionality, you must
have a Simple Mail Transfer Protocol (SMTP) server that will accept e-mail traffi c from the Team
Foundation Server application tier server(s). Beginning with Team Foundation Server 2012, support
was introduced for advanced SMTP authentication settings such as a user name and password as
well as support for Windows authentication. SMTP servers no longer need to be confi gured only to
accept anonymous e-mail delivery from Team Foundation Server servers.

Firewall Concerns and Ports Used
To ensure the best connections between the servers in the Team Foundation Server environment and
also client connectivity, you will want to ensure that certain ports are opened at each fi rewall that
network traffi c may fl ow through. Table 2-11 lists the default ports that Team Foundation Server
uses for network traffi c.

TABLE 2-11: Required Ports

PORT DESCRIPTION

8080 Team Foundation Server Application Tier

8081 Team Foundation Server Proxy

9191 Team Foundation Server Build Service

80 SharePoint Default Website

17012 SharePoint Central Administration

1433 SQL Server

1434 SQL Browser Service

2382 SQL Server Analysis Services Redirector

2383 SQL Server Analysis Services

80 SQL Server Reporting Services

Source: Team Foundation Server 2013 Installation Guide

Friendly DNS Names
To ease future scenarios where you may want to move to new hardware, upgrade to new versions of
Team Foundation Server, or scale out components, you may want to create friendly DNS entries that
point to the individual components for Team Foundation Server. Additionally, it is helpful to have

Preparation for a Team Foundation Server Environment ❘ 41

c02.indd 04/23/2014 Page 41

something “friendly” to provide to end users as a connection address instead of server names that
can be cryptic.

It is particularly important for the new Web Access features and for the Source Server information
permanently stored inside of debugging symbols that the endpoint used for Team Foundation Server
components does not change over the lifetime of the environment, including upgrades. Friendly DNS
names set your team up for the best continuity of use of each of those component services.

NOTE You should set up each of the individual friendly DNS names for all of
the different components listed in Table 2-12, even if they are currently all on the
same server. You never know when you will want to scale out the environment to
additional or different hardware. Having these friendly DNS names confi gured
and used by the Team Foundation Server environment will allow you the most in
fl exibility for the change of infrastructure scenarios that will come in the future.

Table 2-12 lists the suggested friendly DNS entries that you should create for your Team Foundation
Server environment (even if it is only a single server). Each of these entries can either be DNS A or
CNAME records and assume an internal DNS suffi x of domain.local.

TABLE 2-12: Friendly DNS Records

DNS RECORD ENTRY POINTS TO

tfs.domain.local Application Tier server or Network Load Balancer IP for Team
Foundation Server Application Tier server farm. Used for
Team Foundation Server Application Tier, Team Web Access, and
SQL Reporting Services.

data.tfs.domain.local Data Tier server or SQL Server Cluster IP. Used for location of the
confi guration database, team project collection databases, and
the relational warehouse database.

warehouse.tfs.domain.local SQL Server Analysis Services instance

india.proxy.tfs.domain.local One friendly DNS entry for each remote location with a proxy
server (optional)

sharepoint.tfs.domain.local Separate friendly DNS entry for the SharePoint server if it is sepa-
rated from the application tier server (optional)

lab.tfs.domain.local System Center Virtual Machine Manager server used for Team
Foundation Server Lab Management (optional)

builds.tfs.domain.local The fi le share server(s) containing the build drops. This fi le
share could also be set up for Distributed File System (DFS) or
BranchCache with a single endpoint using this friendly DNS name.

symbols.tfs.domain.local The fi le share server(s) containing the Symbol Server repository.
This fi le share could also be set up for Distributed File System
(DFS) or BranchCache with a single endpoint using this friendly
DNS name.

42 ❘ CHAPTER 2 PLANNING A DEPLOYMENT

c02.indd 04/23/2014 Page 42

NOTE For more information about how to confi gure all of the components of
Team Foundation Server to use friendly DNS names instead of the default server
names, as well as the scenarios where this is helpful, visit the blog post by Ed
Blankenship at http://aka.ms/FriendlyDNSTFS.

Legacy Visual Studio Versions
If team members are using older versions of Visual Studio, you will want to ensure they are
able to connect to Team Foundation Server 2013. Microsoft provides excellent documentation
describing compatibility between Team Foundation clients and Team Foundation Server 2013,
including any software or patches required. You can fi nd this documentation at http://aka.ms/
TFS2013Compatibility.

The latest updates to the Visual Studio 2012 and 2013 versions of Team Explorer will work natively
with Team Foundation Server 2013, but support for Git is only provided with the Visual Studio
Tools for Git extension.

Earlier versions of Team Explorer can connect to Team Foundation Server 2013 after some addi-
tional installations. The Visual Studio 2010 version of Team Explorer has a Forward Compatibility
Update available to allow users to connect to a Team Foundation Server 2013 environment. Existing
essential functionality that was available in the IDE is maintained after installing the update.
However, no new features available in the Visual Studio 2013 release are made available with the
update. Those users can install Visual Studio 2013 or Team Explorer 2013 to use side by side with
the older version of the IDE.

Even with the forward compatibility update installed, you will not be able to perform many of the
administrative activities such as creating a team project in an older version of Visual Studio. For
administration activities, be sure to use a Visual Studio version that matches the server version.

If you have team members who will be using older versions of Visual Studio (such as Visual Studio
2008, Visual Studio 2005, Visual Studio 2003, Visual Studio 6, and so on) or other development envi-
ronments that support the Microsoft Source Code Control Interface (MSSCCI), then you can install
the latest version of the Team Foundation Server 2013 MSSCCI Provider currently available on the
Visual Studio Gallery. The MSSCCI Provider enables team members to perform essential version con-
trol operations in the legacy development environments. As with the Forward Compatibility Update,
those team members should have Visual Studio 2013 or Team Explorer 2013 installed and running
side by side to ensure they have access to the rest of the features of Team Foundation Server 2013.

http://aka.ms/FriendlyDNSTFS
http://aka.ms

Summary ❘ 43

c02.indd 04/23/2014 Page 43

NOTE Visual Studio 2012 introduced the ability for round-tripping support
of Visual Studio solutions and projects between Visual Studio 2012 and Visual
Studio 2010 SP1 without requiring an “upgrade” of the solution and projects.
This allowed for some team members to begin using the new functionality of
Visual Studio 2012 without requiring the entire team to upgrade at the same
time as long as they are at least using Visual Studio 2010 with Service Pack 1.

This support is continued in Visual Studio 2013 so other team members can
work with the same solutions and projects in Visual Studio 2013, Visual Studio
2012, and even Visual Studio 2010 SP1.

Not all Visual Studio project types will support this round-tripping function-
ality. Many of the common project types are supported. If you have a project
that does not support this, you can move it to a separate Visual Studio solu-
tion designed to be opened only in old versions of the Visual Studio IDE. More
information about which project types have round-tripping support with Visual
Studio 2012 or 2010 SP1 and which ones don’t can be found at http://aka.ms/
VS2013Compatibility.

SUMMARY

This chapter reviewed possible ways that you can approach gaining support for adopting Team
Foundation Server and examined potential timelines for adoption. You learned how to identify the
key players on your teams who will be instrumental in the success of the adoption.

There are many different ways for structuring your team project collections and team projects, and
this chapter discussed the different possibilities and limitations that should help you formalize the
most appropriate strategy for your teams.

You learned about the different hardware recommendations and software prerequisites that will
be required for certain functionality. Additionally, being prepared also means ensuring that the
environment and accounts are ready before in stallation, so we presented a list of suggested items to
check off.

In Chapter 3, you learn how to actually install and set up your new Team Foundation Server envi-
ronment. You also learn how to set up the prerequisites, and identify where each component of the
Team Foundation Server environment should be installed. Finally, you learn about the process of
confi guring Team Foundation Server and creating the fi rst team project.

http://aka.ms

c03.indd 04/22/2014 Page 45

Installation and Confi guration
WHAT’S IN THIS CHAPTER?

 ➤ Preparing to install Team Foundation Server 2013

 ➤ Installing and confi guring Team Foundation Server 2013

 ➤ Creating your fi rst team project with Team Foundation Server 2013

Before the 2010 release, installing and confi guring Team Foundation Server could have easily
consumed an entire weekend or more. Installation errors were diffi cult to diagnose,
confi guration was done entirely via the command line, and confi guration options were largely
infl exible. Thankfully, the 2010 release of Team Foundation Server was a monumental leap
forward when it came to installation, confi guration, and administration.

There were signifi cant improvements again in Team Foundation Server 2012, and the 2013
release further expedites the installation and confi guration process.

Team Foundation Server 2013 provides a GUI-based confi guration and administration con-
sole, a fl exible architecture with options for choosing which components you want to use,
robust validation logic before each confi guration step, and many more fi t-and-fi nish features.

In this chapter, you will learn how to install and confi gure Team Foundation Server 2013.
Some advanced confi guration areas will be reserved for later chapters, but after reading this
chapter, you will be able to install and confi gure a simple Team Foundation Server deployment
in a matter of minutes.

WHAT YOU’LL NEED

Before starting your installation, you should acquire the installation media for all of the com-
ponents you will need. It is also a good idea to think about which updates you may need (such
as service packs), and which clients and optional components you want to use with Team

3

46 ❘ CHAPTER 3 INSTALLATION AND CONFIGURATION

c03.indd 04/22/2014 Page 46

Foundation Server 2013. You should also download and review the latest Team Foundation Server
2013 Installation Guide, as it is updated periodically.

Team Foundation Server 2013
There are several ways to obtain Team Foundation Server 2013. By far, the most common is via an
MSDN subscription. When purchased with an MSDN subscription, all editions of Visual Studio
2013 include one server license and one client access license (CAL) for Team Foundation Server
2013. MSDN subscribers can log in to http://msdn.microsoft.com/subscriptions to download
software. Team Foundation Server 2013 can be found as part of the Developer Tools, and then the
Visual Studio 2013 category.

Another common way for organizations to obtain Team Foundation Server is via a volume licensing
agreement. You may need to contact the volume licensing administrator at your organization to get
access software from Microsoft’s Volume Licensing Service Center (VLSC). Usually, only a handful
of administrators at an organization have access to download software from the VLSC.

NOTE Most of the download packages available to MSDN subscribers and
volume licensing customers are provided as .iso fi les. An .iso fi le is essentially
a container of multiple fi les and directories packaged together as a single fi le.
An .iso fi le can be mounted as a virtual CD/DVD drive, or it can be burned
to physical CD/DVD media. Windows Server 2012 and Windows 8 and 8.1
include support for mounting .iso fi les, and no additional software is required
to be installed. For more details on working with .iso fi les, see http://aka.ms/
UsingMsdnDownloads.

Team Foundation Server 2013 is also available via traditional retail channels. If you purchased
Team Foundation Server 2013 via retail, you will receive physical DVD media in the software box.

Team Foundation Server 2013 is also available via a lightweight web installer. From the Microsoft
website, you can download a small (< 1MB) bootstrap setup utility and run it. This utility will then
download the required packages to a temporary directory and proceed with the installation. With a
fast Internet connection, this can be the easiest way to install Team Foundation Server, as it doesn’t
require downloading and mounting .iso fi les.

Finally, Microsoft makes a 90-day, fully functional trial edition of Team Foundation Server 2013
available for download. Team Foundation Server 2013 trial edition can be downloaded at http://
aka.ms/TFS2013Downloads, along with other trial editions of Visual Studio 2013 (such as Visual
Studio Ultimate 2013).

http://msdn.microsoft.com/subscriptions
http://aka.ms
http://aka.ms/TFS2013Downloads
http://aka.ms/TFS2013Downloads

What You’ll Need ❘ 47

c03.indd 04/22/2014 Page 47

USING A TRIAL EDITION

The trial edition of Team Foundation Server 2013 is a great way to evaluate the
product before making a purchasing decision. But you should set a reminder
for yourself at least 45 days before the end of the trial so that you can decide
whether to make a purchasing decision, or if you decide not to purchase, whether
any important data must be migrated off your Team Foundation Server trial
deployment.

Depending on the reseller you choose, and the purchasing process used by your
organization, it can sometimes take a few weeks to fulfi ll your purchase. You don’t
want to fi nd yourself locked out of your development project while you’re waiting
for an order to be processed.

Upgrading from a trial edition to a paid edition is a simple process that just
involves changing the product key. The steps are outlined at http://aka.ms/
Tfs2013ChangeKey.

Team Foundation Server 2013 Installation Guide
Before starting your installation, you should download the latest version of the Team Foundation
Server 2013 Installation Guide. This guidance is updated on a regular basis by Microsoft, and it
contains detailed system requirements, checklists, step-by-step instructions, and other important
information required to install and confi gure Team Foundation Server 2013. This chapter provides
additional context and walkthroughs to supplement the Installation Guide, but it is not a replace-
ment for the guide itself.

You can download the latest Team Foundation Server 2013 Installation Guide at http://aka.ms/
tfsInstallGuide.

NOTE The Installation Guide is provided as a .chm fi le. Because of security
restrictions on viewing .chm fi les obtained from the Internet, you may have
diffi culties opening the fi le. Before viewing this guide, you may have to save it
locally, right-click the fi le, and select Properties. In the properties dialog box,
select Unblock followed by OK. You can now double-click the fi le to open it.

http://aka.ms
http://aka.ms

48 ❘ CHAPTER 3 INSTALLATION AND CONFIGURATION

c03.indd 04/22/2014 Page 48

SQL Server 2012
In Chapter 2, you learned about how Team Foundation Server 2013 makes use of SQL Server 2012
to store your data. If you are using an existing deployment of SQL Server, you won’t need to down-
load installation media. However, if you are planning to use a separate SQL Server deployment for
your Team Foundation Server 2013 instance, you may need to obtain the appropriate SQL Server
media.

SQL Server Express 2012 can be used with Team Foundation Server 2013. But you will not be able
to take advantage of reporting capabilities with Team Foundation Server 2013 unless you use SQL
Server Standard edition (or higher). If you want to use the Express edition, this will be installed for
you automatically by Team Foundation Server 2013 (if it isn’t already installed).

If you plan to set up a separate instance of SQL Server 2012 Standard edition (or higher), you can
obtain this installation media by using the same channels described earlier (MSDN, VLSC, retail,
or trial). A limited-use license of SQL Server 2012 Standard edition is included with your license of
Team Foundation Server 2013.

NOTE As discussed in Chapter 2, Team Foundation Server 2013 supports SQL
Server 2012 with SP1 as well as SQL Server 2014. Support for SQL Server 2008
has been dropped with the Team Foundation Server 2013 release.

NOTE See the Visual Studio 2013 and MSDN Licensing whitepaper at http://
aka.ms/VS2013Licensing to help you understand the licensing implications
for each edition of SQL Server. For example, even though you can download
SQL Server 2012 SP1 (any edition) or SQL Server 2012 SP1 Enterprise edition
via your MSDN subscription, you must license this software separately. Using
it with Team Foundation Server 2013 is not included in your MSDN subscriber
product use rights.

Operating System
In Chapter 2, you learned about the operating systems supported by Team Foundation Server 2013.
Installing and confi guring your operating system is beyond the scope of this chapter, but is an
important step for you to undertake before you can set up Team Foundation Server 2013.

As you learned in Chapter 2, Team Foundation Server 2013 can be installed on a client operating
system (Windows 7 with Service Pack 1, Windows 8, or Windows 8.1). Installing on a client oper-
ating system will provide you with most of the capabilities of Team Foundation Server, including
source control, work-item tracking, test case management, build automation, and Lab Management.
If you wish to use reporting and/or SharePoint integration, or your Team Foundation Server deploy-
ment will be used by more than a few users, you should install Team Foundation Server on a sup-
ported Windows server operating system.

http://aka.ms/VS2013Licensing
http://aka.ms/VS2013Licensing

What You’ll Need ❘ 49

c03.indd 04/22/2014 Page 49

SharePoint
In Chapter 2, you learned about how SharePoint can be used as a supplemental workspace for your
development project. If you wish to use SharePoint Foundation 2013 with Team Foundation Server
2013, this can be automatically installed and confi gured during your Team Foundation Server 2013
confi guration. If you want to use another edition of SharePoint (such as SharePoint Server 2013 or
SharePoint Server 2010), you should install and confi gure this separately.

Client Software
You should also consider which client software you want to use with Team Foundation Server 2013.
Chapter 4 covers several types of software clients, such as Visual Studio, Eclipse, Project, and Excel.
At a minimum, to complete the exercises in this chapter, you should install Team Explorer 2013.

NOTE Team Explorer 2013 can be downloaded at http://aka.ms/
TeamExplorer2013. Team Explorer is also included with Visual Studio
Professional, Premium, and Ultimate editions, as well as with Microsoft Test
Professional. So if you have any of these products installed, you won’t need to
download and install Team Explorer separately.

Service Packs and Other Updates
Microsoft periodically releases service packs and other updates for the Visual Studio line of prod-
ucts, including Team Foundation Server. Before making Team Foundation Server available to your
development team, you may want to think about which updates you need to apply after you have
installed and confi gured the server. By installing updates before bringing the server online, you can
minimize potential downtime in the future when the service has active users.

There are several types of updates provided by Microsoft. The most common include the following:

 ➤ Service packs—Service packs are by far the most well-tested and supported updates provided
by Microsoft. It is highly recommended that you install service packs because they usually fi x
several bugs, improve stability and performance, and occasionally add or improve features.

 ➤ Cumulative updates—Shortly after the Team Foundation Server 2010 Service Pack 1 release,
the product team moved to a model of producing cumulative update packages regularly.
These cumulative updates are a rollup of all fi xes that the team has addressed in response to
customer issues. Cumulative updates receive an appropriate level of testing and we recom-
mend that all Team Foundation Server customers apply them when they become available.

 ➤ Hotfi xes—Hotfi xes (also called QFEs, which means Quick Fix Engineering) are provided
by Microsoft to address specifi c issues. Because hotfi xes don’t receive as much testing as a
service pack or cumulative update does, they can sometimes introduce new issues. For this
reason, you should consider installing a hotfi x only if it addresses a specifi c issue you have
observed in your environment.

http://aka.ms

50 ❘ CHAPTER 3 INSTALLATION AND CONFIGURATION

c03.indd 04/22/2014 Page 50

NOTE Microsoft Support can help you determine if you need a specifi c hotfi x.
Hotfi xes are usually described by a Microsoft Knowledgebase (KB) article. You
can search the Microsoft Knowledgebase at http://support.microsoft.com/
search/. Some hotfi xes are available for download, and others require that you
contact Microsoft Support to obtain access.

 ➤ General Distribution Release—A General Distribution Release (GDR) falls somewhere
between a hotfi x and a service pack. GDRs are also well-tested and supported but generally
address a narrower set of issues than a service pack does.

 ➤ Feature packs—Feature packs are updates that Microsoft provides, which add or enhance
new features to existing products. Some feature packs are available only to customers with
MSDN Ultimate subscriptions. This is a way for Microsoft to add extra value to the sub-
scription-based licensing.

 ➤ Team Foundation Server Power Tools—While not technically an update, the Microsoft
Visual Studio Team Foundation Server Power Tools provide a great set of enhancements and
utilities for increasing your productivity. You can download the power tools at http://aka
.ms/TFS2013PowerTools.

Once you have the installation media, and have confi gured your operating system and necessary pre-
requisites, you can begin to install Team Foundation Server 2013.

INSTALLING TEAM FOUNDATION SERVER

Setting up Team Foundation Server 2013 can be divided into two distinct phases: installation and
confi guration. During the installation phase, the components are copied onto your machine. During
the confi guration phase, you decide which optional components to enable, which accounts to use for
permissions, which SQL Server instance to use, and other such settings.

NOTE A common practice within many organizations is to make use of a
tool called Sysprep. This tool allows you to generalize an operating system
and additional installed software, which makes it easier to deploy to multiple
machines. However, not all software is compatible with the sysprepping pro-
cess. One advantage of the dual-phase setup approach employed by Team
Foundation Server is that you can now install it as part of a sysprepped image.
Team Foundation Server confi guration can then be deferred until after you have
specialized your sysprepped image onto specifi c machines. Sysprepping Team
Foundation Server 2013 after you have performed the confi guration phase is not
supported.

To begin the installation phase, download and run the web installer or load your Team Foundation
Server installation media. If you are using an .iso fi le, this may mean virtually mounting your .iso
fi le as a DVD, as explained earlier, and then running tfs_server.exe.

http://support.microsoft.com
http://aka

Installation Types ❘ 51

c03.indd 04/22/2014 Page 51

On the fi rst (and only) preinstallation screen you will be able to change the installation path and
accept the license terms, as shown in Figure 3-1. Once you have accepted the license terms, select
Install Now. The setup program will then proceed to copy and install all the required fi les to your
machine. This is a much more streamlined installation process than previous versions.

FIGURE 3-1: Team Foundation Server setup screen

After the installation phase is complete, the Team Foundation Server Confi guration Center will
be automatically started. If you close this tool, you can always launch it again by navigating to
the start screen and choosing Team Foundation Server Administration Console. Then, after the
console appears, click the component you want to confi gure (such as Application Tier or Build
Confi guration), and click Confi gure Installed Features.

Next, you will learn about the variety of installation types available to you via the Team Foundation
Server Confi guration Center.

INSTALLATION TYPES

Team Foundation Server includes several wizards for confi guring your server. This provides you
with a guided (yet fl exible) way of picking the best confi guration experience for your desired usage
of Team Foundation Server. The individual wizards can be accessed along the left-hand side of the
Confi guration tool, as shown in Figure 3-2.

The exact wizards available to you will depend on your operating system, and which components
(if any) have already been confi gured (as indicated by a green check mark). Table 3-1 describes the
individual wizards.

52 ❘ CHAPTER 3 INSTALLATION AND CONFIGURATION

c03.indd 04/22/2014 Page 52

FIGURE 3-2: Team Foundation Server Confi guration Center

TABLE 3-1: Available Wizards

WIZARD DESCRIPTION

Basic The Basic Wizard is the quickest and easiest way to get up and running with
Team Foundation Server for small teams. The Basic Wizard enables you to
use source control, work-item tracking, test case management, and Lab
Management. However, Reporting Services and SharePoint integration will not
be available using the Basic Wizard. These two components can be added later
if you are installing Team Foundation Server on a Windows Server operating
system. With the Basic Wizard, you can use an existing SQL Server instance, or
let Team Foundation Server install and confi gure SQL Server 2012 SP1 Express
edition for you.

Standard
Single Server

The Standard Single Server Wizard assumes that you are installing Team
Foundation Server on a single server. This wizard enables you to use source con-
trol, work-item tracking, test case management, Lab Management, reporting,
and SharePoint integration. You should not use this wizard if you want to install
using remote SharePoint or SQL Server deployments, or if you want to use a
version of SharePoint other than SharePoint Foundation 2013.

Installation Types ❘ 53

c03.indd 04/22/2014 Page 53

Advanced The Advanced Wizard provides maximum fl exibility for your confi guration. It
also provides the same capabilities of Team Foundation Server as the Standard
Single Server Wizard does. But the Advanced Wizard allows you to defi ne
remote systems for SharePoint, SQL Server, and SQL Server Reporting Services.
This wizard also allows you to confi gure Kerberos authentication, to use a
non-default instance of SQL Server, and to use editions of SharePoint other
than SharePoint Foundation 2013. Finally, the Advanced Wizard gives you the
option of disabling Reporting Services and/or SharePoint integration altogether,
though you can always add these components later.

Application-
Tier Only

The Application-Tier Only Wizard can be used to confi gure Team Foundation
Server in a high-availability environment, as described in Chapter 22. You can
employ multiple application tier nodes to provide load balancing and fault toler-
ance for your deployment. This wizard can also be used if you are moving your
Team Foundation Server application tier from one server to another, or in a
disaster-recovery scenario, as described in Chapter 23.

Upgrade The Upgrade Wizard is used if you are upgrading from a previous version of
Team Foundation Server. Upgrading is described in Chapter 27.

Confi gure
Team
Foundation
Server Proxy

This wizard can be used to confi gure this machine as a Team Foundation Server
proxy server. More information on confi guring proxy servers can be found in
Chapter 28.

Confi gure
Team
Foundation
Build Service

This wizard can be used if you want to confi gure this machine as a build control-
ler and/or one or more build agents. Team Foundation Build is detailed in
Part IV.

Confi gure
Extensions for
SharePoint
Products

This wizard should be used if you are planning on confi guring Team Foundation
Server to integrate with SharePoint running on a remote machine, or in a remote
SharePoint farm. If you are using a farm, you will need to run this wizard on
every machine in that farm.

The rest of this chapter uses the Basic Wizard as an example. If you are new to Team Foundation
Server, you may want to consider using the Basic Wizard to set up your fi rst Team Foundation
Server deployment on a testing server. When you are ready to confi gure your actual Team
Foundation Server deployment, you should spend some time reading the Team Foundation Server
Installation Guide and Part V of this book to familiarize yourself with the various confi guration
types that are available, and map these to the needs of your development team.

For example, if you have a very large team, you may want to consider confi guring Team Foundation
Server in a dual-tier environment. If you have a geographically distributed team, you may want to
set up Team Foundation Server proxy instances at remote sites. You may want to confi gure a dedi-
cated build farm with multiple machines running build agents, and so on.

Next, you will begin a simple confi guration using the Basic Wizard.

54 ❘ CHAPTER 3 INSTALLATION AND CONFIGURATION

c03.indd 04/22/2014 Page 54

CONFIGURING TEAM FOUNDATION SERVER
From the Team Foundation Confi guration tool, select the Basic Wizard and click Start Wizard.
Click Next to advance past the Welcome page. You will be prompted to indicate which instance of
SQL Server you want to use, as shown in Figure 3-3.

FIGURE 3-3: SQL Server instance selection page

You can choose an existing instance of SQL Server, or let the Basic Wizard install and confi gure
SQL Server Express for you.

NOTE Letting Team Foundation Server install and confi gure SQL Server
Express is a quick way to get up and running, and it should work well for a test
server. But for a production server, you should consider taking the time to install
and confi gure SQL Server 2012 SP1 Standard edition (or higher, if you have
licensed it separately). This will make it easier to take advantage of capabilities
like Reporting Services later on, and it will enable you to avoid the 10GB data-
base size limitation imposed by SQL Server 2012 Express Edition. The Team
Foundation Server Installation Guide includes step-by-step instructions for
installing SQL Server Standard edition for use with Team Foundation Server.

Confi guring Team Foundation Server ❘ 55

c03.indd 04/22/2014 Page 55

After selecting your SQL Server instance, click Next. You will be shown a list of the confi guration
settings you chose, such as those shown in Figure 3-4, and you will be given a chance to go back
and make changes. The Basic Wizard has only a few pages, but other wizards have more.

FIGURE 3-4: Confi guration settings review screen

When you are satisfi ed with your options, click Next. (Clicking Verify will also have the same
effect.) The wizard will attempt to verify that the changes you are proposing will be successful if
you proceed.

It is worth noting that no changes are being made to your server at this time. This process can be
valuable in helping you discover that you may be missing a prerequisite, or it can warn you that cer-
tain confi guration changes are going to be made for you.

56 ❘ CHAPTER 3 INSTALLATION AND CONFIGURATION

c03.indd 04/22/2014 Page 56

When this step has fi nished, you will see a screen similar to Figure 3-5. If there are potential prob-
lems with your confi guration, you will be shown any errors or warnings, usually with information
on how to address them.

FIGURE 3-5: Readiness Checks page

Click Confi gure when you are ready to proceed with your confi guration options. The wizard will
attempt to confi gure Team Foundation Server using the options you selected. If you opted to install
SQL Server Express as part of the confi guration, this process may take several minutes. Otherwise,
it should only take a few minutes.

When the confi guration is fi nished, you should see a confi rmation screen, as shown in Figure 3-6.
Take note of any warnings or errors displayed on this page, as well as any informational notices
(such as the message shown in Figure 3-6 indicating that an additional fi rewall port was opened
during confi guration). You can also access detailed log information by clicking the link at the bot-
tom of this page of the wizard. Click Close when you are fi nished.

Confi guring Team Foundation Server ❘ 57

c03.indd 04/22/2014 Page 57

FIGURE 3-6: Confi guration results page

At the conclusion of this step, you will have successfully confi gured an instance of Team Foundation
Server 2013 on your machine. This instance is now running as a service, and you can begin to
interact with it, or further confi gure it. You can even launch subsequent wizards from the Team
Foundation Confi guration Center, such as to confi gure a build controller and agent.

The Team Foundation Server Administration Console (shown in Figure 3-7) can now be used to
monitor your server, to stop or start services, and to make additional confi guration changes. Some
common confi guration changes include confi guring a Simple Mail Transfer Protocol (SMTP) server
(for e-mail alerts), enabling Kerberos authentication, assigning friendly names to the URLs used by
clients to connect to Team Foundation Server, or adding a System Center Virtual Machine Manager
(SCVMM) server to provide functionality for Lab Management.

58 ❘ CHAPTER 3 INSTALLATION AND CONFIGURATION

c03.indd 04/22/2014 Page 58

FIGURE 3-7: Team Foundation Server Administration Console

You may also want to add components that you skipped during the initial confi guration, such as
Reporting Services or SharePoint integration. The MSDN Library provides detailed instructions on
how to perform all of these tasks, and more, at http://aka.ms/TFS2013Manage.

Now that you have your Team Foundation Server instance deployed, you can create your fi rst team
project.

CREATING YOUR FIRST TEAM PROJECT

A team project is the basic container of work used by Team Foundation Server. You will learn much
more about team projects throughout the rest of this book. For now, you just need to know that
you’ll need to create a team project before you can store any source control, work items, or other
artifacts in Team Foundation Server.

To create a team project with Team Foundation Server 2013, you must use Team Explorer 2013.
Team Explorer 2013 is an add-on for Visual Studio 2013 that allows you to work with source
control, work items, build defi nitions, and more, without ever leaving Visual Studio. Team Explorer
also installs the necessary add-ins to work with Team Foundation Server 2013 from within Excel
and Project. You will learn more about clients that can access Team Foundation Server 2013 in
Chapter 4.

http://aka.ms/TFS2013Manage

Creating Your First Team Project ❘ 59

c03.indd 04/22/2014 Page 59

If you don’t already have Team Explorer 2013 installed, you can either install it by itself (see the
download link in the section, “What You’ll Need,” earlier in this chapter), or install Visual Studio
Professional 2013 (or higher) and Team Explorer will be included automatically.

After Team Explorer 2013 is installed, launch Visual Studio 2013 from the Start screen.

NOTE Even if you installed Team Explorer 2013 standalone, instead of as
part of Visual Studio Professional 2013 (or higher), you will still access Team
Explorer 2013 from within the Visual Studio 2013 shell. This is why you access
Team Explorer 2013 by opening Visual Studio 2013 from the Start screen.

If the Team Explorer window is not already visible within Visual Studio, you can enable it by click-
ing View ➪ Team Explorer. Team Explorer is shown in Figure 3-8. If this is the fi rst time you have
used this Team Foundation Server instance, you may be prompted to set up your Workspace map-
pings. You can do this now, or wait until you have a Team Project set up.

FIGURE 3-8: Team Explorer window

If you installed Team Explorer on the same machine as your Team Foundation Server 2013 deploy-
ment, your server name may already be populated for you (indicated by localhost or the computer
name, as shown in Figure 3-8).

If you installed Team Explorer on a different machine, you should add your Team Foundation
Server host manually by clicking the Select Team Projects link (near the top of the Team Explorer
window). From the Connect to Team Foundation Server dialog box, click Servers to add a new
server. Click Add and supply the address of your Team Foundation Server. You can fi nd this in the

60 ❘ CHAPTER 3 INSTALLATION AND CONFIGURATION

c03.indd 04/22/2014 Page 60

Team Foundation Server Administration Console under Application Tier ➪ Server URL (such as
http://tfs:8080/tfs).

After you have added your server, click OK to close the fi rst window, then click Close to close the
next window, and then select the server you want to connect to in the drop-down box for “Select a
Team Foundation Server.” If you used the Basic confi guration, you will have a single team Project
Collection called DefaultCollection. Select this collection and click Connect.

NOTE A team Project Collection provides a way of grouping together one or
more team projects. You learn more about team Project Collections later in this
book.

Click File ➪ New ➪ Team Project to launch the New Team Project Wizard shown in Figure 3-9.
Provide a name for your team project and, optionally, a description. Click Next when fi nished.

FIGURE 3-9: New Team Project Wizard

You will then be prompted to select the process template that you want to use for this new team
project, and afterward, you will be asked how you want to confi gure source control for your project.
For now, you can accept the default options and click Finish. The wizard will spend a few minutes
creating your team project.

When you are fi nished, the Team Explorer window will display your team project, as shown in
Figure 3-10. The appearance will differ depending on which source control option you chose in the

http://tfs:8080/tfs

Summary ❘ 61

c03.indd 04/22/2014 Page 61

previous wizard. You can now begin creating work items, source control, build defi nitions, and so
on for this team project.

FIGURE 3-10: New team project

CONFIGURING FRIENDLY DNS NAMES

If you have followed the previous steps, then you now have a Team Foundation Server deployment
that you can share with your team. You can start adding users to security groups (as explained in
Chapter 24), and these users can begin connecting to your server. However, as mentioned in
Chapter 2, there’s one additional confi guration step that you may want to take before advertising
the address of your server, and that is to consider assigning friendly DNS names to the endpoints.

Refer to Chapter 2 for instructions on how to confi gure friendly DNS names for your Team
Foundation Server endpoints. You can perform this step at any time in the future, but doing so now
(before your server is being used) means your clients will only ever need to use these names.

SUMMARY

 In this chapter, you learned how to install and confi gure a simple Team Foundation Server 2013
instance. Along the way, you learned about the incremental improvements Microsoft has made to
installation and confi guration in this release, such as a lightweight web installer. You also learned
how to create a team project, which will become the basic container of work for your software
development project.

In Chapter 4, you will learn more about the various client applications you can use to work with
Team Foundation Server.

c04.indd 04/22/2014 Page 63

Connecting to Team Foundation
Server

WHAT’S IN THIS CHAPTER?

 ➤ Understanding the basic Team Foundation Server architecture

 ➤ Understanding Team Foundation Server URLs

 ➤ Getting to know Team Foundation Server roles and security

 ➤ Connecting to Team Foundation Server from various development
tools

 ➤ Understanding Team Explorer concepts, tools, and windows

At this point, you should now have a working Team Foundation Server Project Collection—
either one that you have installed yourself using the instructions in Chapter 3 or one that has
been provided for you. This chapter teaches you how to connect to an instance from the vari-
ous products that can talk to Team Foundation Server; you also learn about some common
troubleshooting techniques if you are unable to connect. But fi rst, some more information on
the Team Foundation Server architecture would be useful.

TEAM FOUNDATION SERVER ARCHITECTURE

Figure 4-1 shows the major logical servers available in a Team Foundation Server installa-
tion. The main Team Foundation Server application is hosted on the application tier. The
initial contact from the client machine on your desktop is made to this application tier (AT)
machine. From this, the client machine obtains all the other connection information to allow it
to talk to the other components involved in a typical Team Foundation Server installation (the
SharePoint portal, Analysis Services for reports, and so on).

4

64 ❘ CHAPTER 4 CONNECTING TO TEAM FOUNDATION SERVER

c04.indd 04/22/2014 Page 64

HTTP(S)

SharePoint Portal

Analysis Services

Data Tier (DT)

Build Agent

TFS Proxy

Build Drop Server

Symbol Server

HTTP(S)

HTTP(S)Client Tier

Application Tier (AT)

FIGURE 4-1: Logical architecture of a Team Foundation Server installation

NOTE For more detailed information on Team Foundation Server architecture
and administration, see Chapter 21.

Communication between the client and the application tier is performed using the Team
Foundation Server Web Service Protocol. This is made up of a set of web services to which the
client connects using the HTTP or HTTPS protocol, depending on how the application tier was
confi gured. Authentication of the client connection is performed using Windows Integrated
Authentication (also known as NTLM), Kerberos, or, if over an SSL/TLS encrypted connection,
then Basic Authentication may be used.

For an on-premises Team Foundation Server, Windows Integrated Authentication is the typical
form of authentication, unless the server has been explicitly confi gured otherwise. For Visual Studio
Online, Internet identities (for example, Microsoft Account) and claims-based authentication are
used. If using distributed version control, Basic Authentication will be used for Git operations.

On a Windows-based client machine, the client’s default credentials for that server are used—usu-
ally the same credentials used to log in to the Windows machine in a domain environment. This
provides for a seamless, single sign-on (SSO) capability.

You normally use the same credentials to talk to Team Foundation Server that you use to log in to
your Windows workstation, and all the actions you perform against Team Foundation Server are
audited against these credentials. On non-Windows machines, the credentials (domain, user name,

Addressing Team Foundation Server ❘ 65

c04.indd 04/22/2014 Page 65

and password) can be provided to allow authentication, or Kerberos can be confi gured if you require
SSO infrastructure in your heterogeneous environments.

The majority of client/server communication in a Team Foundation Server instance is over HTTP
or HTTPS. This is true for all the version control, work item tracking, SharePoint, and Reporting
Services data. The exceptions to this are for connecting directly to the data warehouse running in
Analysis Services from an analytics client (such as Microsoft Excel) or when communicating with
the build drop location or Symbol server.

NOTE See Chapter 18 for more information on builds and Symbol servers.

In addition to the application tier machine address, clients may also need to be confi gured with the
address of a Team Foundation Server Proxy if used for remote development. A Team Foundation
Server Proxy provides a way to cache requests for fi les from version control and test attachments.
If two developers in a remote site request the same version of the same fi le, then the proxy server
allows for the second developer to be served the fi le from the local proxy, rather than having to
download the fi les over the wide area network (WAN) a second time.

NOTE For more information on the Team Foundation Server Proxy and
working with geographically distributed teams, see Chapter 28.

ADDRESSING TEAM FOUNDATION SERVER

A Team Foundation Server instance is referred to by the URL at which the actual application
hosting Team Foundation Server is located. Figure 4-2 shows the basic makeup when connecting to
Team Foundation Server.

Team Foundation Server

TFS Application

Application Instance

/

/ProjectCollectionA

/tfs

tfs.mycompany.com

/ProjectCollectionB

/DefaultCollection

Project Collection

FIGURE 4-2: Team Foundation Server URL scheme

66 ❘ CHAPTER 4 CONNECTING TO TEAM FOUNDATION SERVER

c04.indd 04/22/2014 Page 66

The URL is in the following format:

<protocol>://<serverName>:<port>/<virtualDirectory>/<collectionName>

The following is an explanation of the individual parts of the URL:

 ➤ protocol—This is the means used to connect to Team Foundation Server (HTTP or
HTTPS).

 ➤ serverName—This is the Domain Name Server (DNS) name pointing to your Team
Foundation Server application tier instance (or the network load balancer in front of it, if you
are using a high-availability architecture). Note that the DNS name can be a friendly name
that has been created in your organization to help locate the server. It doesn’t have to be the
actual machine name of your application tier. Also, if you ever plan on accessing the connec-
tion from outside of your company network (over the Internet), ensure that you use the fully
qualifi ed domain name such as tfs.mycompany.com.

 ➤ port—This is the port used to connect to the application tier. In a default installation, this is
port 8080. The port can be omitted if it is the standard port for the protocol (that is, port 80
for HTTP or port 443 for HTTPS).

 ➤ virtualDirectory—This is the path in which the Team Foundation Server application was
installed. By default, this is tfs. The virtualDirectory was added in Team Foundation
Server 2010. In previous versions, the application was always installed at the root of the web-
site that was hosting the application. However, in the 2010 release, this was moved down into
the tfs folder to make it easier to host Team Foundation Server on the same default website
as other applications on the server (such as SharePoint and the Reporting Services sites). This
makes it signifi cantly easier to have Team Foundation Server running on the standard port 80
or port 443, which, in turn, makes it much easier to make accessible over the Internet.

NOTE See Chapter 3 for more information on installation.

 ➤ collectionName—This is the name of the project collection to which you are connecting.
By default, Team Foundation Server has at least one project collection created—usually
called DefaultCollection. However, as discussed in Chapter 3 and covered in depth in
Chapter 21, multiple project collections can be created. In a graphical client such as Visual
Studio or Eclipse, providing the URL of the Team Foundation Server instance is suffi cient,
and the user interface will then present the available project collections on that instance that
are available for you to connect to. However, for many command-line tools, the full URL to
your project collection is required. If the collectionName is missing, the server will assume
that the collection marked as default is the desired one and will direct requests to it. If no
collection is marked as default, then the URL will result in an error.

Introducing Team Foundation Server Security and Roles ❘ 67

c04.indd 04/22/2014 Page 67

Following are some example URLs to connect to Team Foundation Server:

 ➤ http://vsalm:8080/tfs

 ➤ http://vsalm:8080/tfs/DefaultCollection

 ➤ http://vsalm:8080/tfs/AdventureWorks

 ➤ https://tfs.codeplex.com/tfs/TFS01

 ➤ https://mycompany.visualstudio.com/

 ➤ https://tfs.mycompany.com/tfs

Note that most of these URLs are not valid directly in a web browser. They are used as the root
of the URL that the Team Foundation Server client uses to locate and communicate with the web
services of that server instance. However, if you specify only the virtualDirectory part of the
URL, or if the special name of web is used, this will redirect you to a web-based client for Team
Foundation Server called Team Web Access (for example, http://vsalm:8080/tfs/, or https://
tfs.mycompany.com/tfs/).

NOTE See the section “Accessing Team Foundation Server Through a Web
Browser” later in this chapter for more information on Team Web Access.

INTRODUCING TEAM FOUNDATION SERVER SECURITY AND
ROLES

The signifi cant functionality that Team Foundation Server has in relation to security, groups, and
permissions can be very daunting at fi rst. However, at its core, there are a few simple concepts to
initially be aware of with Team Foundation Server security:

 ➤ Users

 ➤ Groups

 ➤ Permissions

NOTE For detailed information about Team Foundation Server security, see
Chapter 24.

http://vsalm:8080/tfs
http://vsalm:8080/tfs/DefaultCollection
http://vsalm:8080/tfs/AdventureWorks
https://tfs.codeplex.com/tfs/TFS01
https://mycompany.visualstudio.com
https://tfs.mycompany.com/tfs
http://vsalm:8080/tfs
https://tfs.mycompany.com/tfs
https://tfs.mycompany.com/tfs

68 ❘ CHAPTER 4 CONNECTING TO TEAM FOUNDATION SERVER

c04.indd 04/22/2014 Page 68

Users
The on-premises version of Team Foundation Server uses Windows accounts for security. There is
no separate concept of a Team Foundation Server user—just a Windows user who has permission to
use Team Foundation Server resources. If Team Foundation Server is in an Active Directory environ-
ment (the preferred confi guration), domain users can be granted permission to use Team Foundation
Server. Local users may also be used (users defi ned locally to that machine in what is considered
“Workgroup mode”).

When you install Team Foundation Server, the user who installs and confi gures the product is
required to have administrative permissions on the server. By default, that user is also granted the
permissions of a Team Foundation Server administrator within the product.

The user details (user name, display name, e-mail address, and so on) are all taken from the
Windows user details. Authentication of the users is performed using Windows authentication. This
means that there is no separate infrastructure required to create or administer users specifi cally for
Team Foundation Server. Existing user creation systems inside the company can be used, along with
the handling of password policies, password resets, and so on.

Groups
Team Foundation Server has two types of groups that you must be concerned with:

 ➤ Windows security groups (domain, distribution, or local groups)

 ➤ Team Foundation Server groups

As you will learn in Chapter 24, the Windows security groups are basically a collection of users
maintained by the Windows security systems. For example, to complete the installation of Team
Foundation Server as described in Chapter 3, the user must be in the local Administrators group on
the server.

Team Foundation Server has its own group structure maintained in the server. Within the system,
there are three levels of groups:

 ➤ Server groups

 ➤ Team project collection groups

 ➤ Team project groups

Server groups impact the Team Foundation Server instance and are one of the few things in Team
Foundation Server that cross the boundary between project collections. The default groups (detailed
in Chapter 24) have hard-coded names that cannot be changed or removed from the server (for
example, Team Foundation Administrators or Team Foundation Valid Users).

A user who is a member of the server group has permissions at the Team Foundation instance level.
For example, users in the Team Foundation Administrators group can create new project collec-
tions. Users in the Team Foundation Valid Users group can connect to the Team Foundation Server
instance and view which project collections are available (but they might not have permission to

Team Explorer ❘ 69

c04.indd 04/22/2014 Page 69

actually connect to a particular project collection). Modifi cations of the server groups must be
performed using the Team Foundation Server Administration Console, as introduced in Chapter 3.

Team project collection groups are created as part of the collection creation process. The default
groups and their members are detailed in Chapter 24. However, they control who is an administra-
tor for the project collection, who can connect and use it, and so on.

Finally, team project groups control who can do what inside a particular team project. The main
groups are as follows:

 ➤ Project Administrators—Members can perform all operations in the team project, including
the assignment of security permissions to other users.

 ➤ Contributors—Members can add, modify, and delete items within the team project. You
typically want your main development group for a team project to be a contributor.

 ➤ Readers—Members have read-only access to data in the team project.

 ➤ Build Administrators—Members have the ability to manage all aspects of test environments,
confi gurations, and test runs.

A Team Foundation Server group membership is made up of Windows users and groups, or other
Team Foundation Server groups. At each level, custom groups can be created and allocated certain
permissions.

Permissions
Each user or group in Team Foundation Server can be allocated one or more of nearly 100 separate
permissions available on the server controlling each aspect of the product. Each permission has an
explicit Allow or Deny state.

Typically, when getting started with Team Foundation Server, you should stick with controlling
access to the server by placing a user in one of the team project groups. Members of those groups
then inherit a default set of permissions from, and get assigned into, other groups (such as the Team
Foundation Valid Users group), allowing them to connect to the Team Foundation Server instance.

NOTE For more information about fi ne-grained control of users’ permis-
sions over the default Team Project Administrator, Contributor, or Reader, see
Chapter 24.

TEAM EXPLORER

Visual Studio Team Explorer is the client interface to Team Foundation Server. It provides the
functionality necessary to be able to connect to and work with Team Foundation Server. All Visual
Studio editions now include the Team Explorer client as part of the default installation. Team

70 ❘ CHAPTER 4 CONNECTING TO TEAM FOUNDATION SERVER

c04.indd 04/22/2014 Page 70

Explorer Everywhere is also available to provide the client-side interface in the Eclipse IDE and
cross-platform environments (on Mac, UNIX, or Linux machines).

Visual Studio Team Explorer is also available as a separate installation on the Team Foundation
Server installation media, on the Team Explorer Everywhere media, or as a separate download. If
installed on a machine without Visual Studio installed, it will install a cut-down version of Visual
Studio (known as Visual Studio Shell), and, inside that, it will provide all the rich client-side func-
tionality to work with Team Foundation Server.

Use of Team Explorer and Team Explorer Everywhere is covered by the Client Access License (CAL)
required for a specifi c user to connect to Team Foundation Server, regardless of the number of
machines from which the user connects.

Understanding Team Explorer in Visual Studio
By now, you should have provisioned a Team Foundation Server instance with a project collection
and team project created by doing one of the following:

 ➤ Installing one yourself (following the instructions in Chapter 3)

 ➤ Downloading a trial virtual machine (VM) from Microsoft

 ➤ Signing up to Visual Studio Online

 ➤ Leasing a hosted Team Foundation Server solution from a hosting provider

You must now connect to your Team Foundation Server instance from the machine that you want to
use for development.

Connecting to Team Foundation Server 2013 from Visual Studio 2013
The most common initial route is to attempt to connect to Team Foundation Server 2013 from
Visual Studio 2013. Luckily, there are many ways to get connected.

You can click Team ➪ Connect to Team Foundation Server, or, from the Start page in Visual Studio,
click the Open from Source Control link on the left-hand side. An alternative to Team Explorer is
to click View ➪ Team Explorer, use Projects ➪ Connect to Team Projects in the header drop-down,
and then click the Select Team Projects link.

Whatever way you use to connect, you are then presented with a rather dauntingly empty Connect
to Team Project dialog box, as shown in Figure 4-3.

Typically, at this point, the drop-down to select a Team Foundation Server will also be empty. To
add your server to the list, click the Servers button. This presents yet another empty dialog box—the
Add/Remove Team Foundation Server dialog box. Click the Add button.

Finally, you can enter the details of the Team Foundation Server instance to which you wish to con-
nect. Enter the name of your Team Foundation Server instance (vsalm or tfs.mycompany.com). At
the bottom of the dialog box shown in Figure 4-4, you will be given a preview of the URL that will
be used to connect to the Team Foundation Server.

Team Explorer ❘ 71

c04.indd 04/22/2014 Page 71

FIGURE 4-3: Connect to Team Project dialog box

FIGURE 4-4: Add Team Foundation Server dialog box

72 ❘ CHAPTER 4 CONNECTING TO TEAM FOUNDATION SERVER

c04.indd 04/22/2014 Page 72

For a default install of Team Foundation Server, this URL will be correct, as long as you have typed
in the correct name for the server. However, if the URL is not correct (for example, you need to
use HTTPS instead of HTTP, or perhaps you need to connect on a different port), you must alter
the settings accordingly. Alternatively, if you have the URL that you should use to connect to your
server, type it into the Name box at the top of the dialog box, and all the appropriate settings will
be picked up.

Click OK to add the server to the list, and then click Close to get back to the Connect to Team
Project dialog box. The dialog box should now be populated and a bit more welcoming. The exam-
ple shown in Figure 4-5 is a more typical view of the dialog box once a few team projects and an
additional team project collection have been created.

FIGURE 4-5: Populated version of the Connect to Team Project dialog box

Selecting a project collection on the left-hand side of the Connect to Team Project dialog box shown
in Figure 4-5 gets Visual Studio to request the team projects available on that project collection. If
you check the team project (or projects) check box and then click Connect, you control which team
projects are displayed in Team Explorer. Note that while you are selecting the team projects at this
point, it is actually the project collection that you are connecting to.

STORING YOUR TEAM FOUNDATION SERVER PASSWORD ON
WINDOWS

On Windows-based systems, the default credentials for that site are used when con-
necting to Team Foundation Server. These are usually your Windows login creden-
tials, which provide for a seamless SSO experience inside a domain.

Team Explorer ❘ 73

c04.indd 04/22/2014 Page 73

However, sometimes you must log in to Team Foundation Server using a different
set of credentials. This is especially true in the case where your Team Foundation
Server is being hosted over the Internet in a different domain from the one you
are logged in to. In situations in which the default credentials are not appropriate,
Team Explorer will prompt you for your user name and password using the stan-
dard Windows authentication prompt.

You can also store these credentials so that they are always used for that server
by Windows. On Windows 7 and later, click Start (or press the Windows key on
your keyboard), and then type Credential Manager. Once there, add the Team
Foundation Server instance that contains your project with the domain, user name,
and password that you should use. You can also manage network passwords using
the command-line tool CMDKEY.exe.

Team Explorer
Once connected, you should now see Team Explorer inside Visual Studio, as shown in Figure 4-6. If
you do not see Team Explorer, go to View ➪ Team Explorer.

FIGURE 4-6: Team Explorer inside Visual Studio

74 ❘ CHAPTER 4 CONNECTING TO TEAM FOUNDATION SERVER

c04.indd 04/22/2014 Page 74

The Team Explorer View has fi ve buttons along the top:

 ➤ Forward and Back—Enables you to navigate between the different sections of Team Explorer

 ➤ Home—Returns Team Explorer to the home screen from which all other screens can be
accessed

 ➤ Connect—Takes you to the Connect page in Team Explorer where you can choose which
Team Project to work with

 ➤ Refresh—Re-requests the data in the Team Explorer view from Team Foundation Server. The
data can take a while to populate

At the top of the Team Explorer View, you see the team project to which you are connected. You
can be connected to only one team project and therefore one project collection at a time from Visual
Studio, and you must use the Team ➪ Connect to Team Foundation Server link or the Connect page
in Team Explorer to swap connections.

Directly underneath the Team Project is an information section that will appear whenever an action
is required. Under that are links and tiles that provide shortcuts to Team Web Access and pages
within Team Explorer.

The links available to you will depend on the current state of your workspace. With Team
Foundation Server 2013, at a minimum you will see a link to the Web Portal, the Task Board, and
the Team Room.

Under these links are tiles for the major areas of Team Explorer. The fi rst of these tiles is for the
My Work section. This section is available only if you have Visual Studio Ultimate, Premium, or Test
Professional edition installed.

After My Work are links to the different pages that represent the different parts of the system. The
different pages or contexts available in Team Explorer are:

 ➤ My Work—Manage, suspend, and resume your work in progress and request a code review
(see Chapter 6 for more information).

 ➤ Pending Changes—Work with pending changes, shelvesets, confl icts, and perform other
version control tasks (see Chapters 6 and 7 for more information).

 ➤ Source Control Explorer—View and manage the source code tree for the project collec-
tion (see Chapter 11 for more information).

 ➤ Work Items—Add work items and view and manage work item queries (see Chapter 12 for
more information).

 ➤ Builds—Create, modify, manage, and organize build processes (see Chapter 18 for more
information).

 ➤ Settings—Manage the confi guration of team projects and team project collections (see
Chapter 21 for more information).

Team Explorer ❘ 75

c04.indd 04/22/2014 Page 75

NOTE For a detailed explanation of compatibility between versions of the cli-
ent and server, along with what was addressed in each version, see the article at
http://tinyurl.com/Tfs2013Compat.

Prior Visual Studio Versions
Before Visual Studio 2005, the source control programming interface popularized by Visual Studio
was MSSCCI (Microsoft Source Code Control Interface, pronounced “miss-key”). The MSSCCI
specifi cation was originally designed for the Visual Studio integration with Visual SourceSafe (VSS)
but was implemented by other development tool manufacturers, and implemented by other version
control tool vendors.

When Team Foundation Server 2012 was released, the product team decided not to issue a compati-
bility patch for Visual Studio 2005. This incompatibility carries through to Team Foundation Server
2013. There is, however, an updated MSSCCI provider that works for this combination.

The Team Foundation Server team also makes an MSSCCI provider available on the Visual Studio
Gallery at http://aka.ms/TfsMSSCCI. The MSSCCI provider requires that the corresponding version
of Team Explorer be installed on the machine. A 64-bit version of the MSSCCI provider is also available.

Connecting to Team Foundation Server from Eclipse and Cross-
Platform

As part of the Team Foundation Server 2013 release, Microsoft updated Team Explorer Everywhere.
Team Explorer Everywhere contains two major components:

 ➤ Team Foundation Server plug-in for Eclipse

 ➤ Team Foundation Server cross-platform command-line client

While the full name of the product is actually Team Explorer Everywhere 2013 for Team
Foundation Server 2013, it can work against the 2013, 2012, and 2010 versions of the server.
Therefore, we recommend that you upgrade and install the latest version of Team Explorer
Everywhere regardless of the Team Foundation Server version you currently have installed.

Unusually for a product in the Microsoft Visual Studio organization, Team Explorer Everywhere is
written in Java and is supported across the major platforms, including Windows, Mac OS X, and
forms of UNIX (such as Linux, HP-UX, Solaris, and AIX).

Team Foundation Server Plug-In for Eclipse
The plug-in for Eclipse provided as part of Team Explorer Everywhere installs as a standard
Repository Provider plug-in inside development environments based on Eclipse 3.4 and above. This

http://tinyurl.com/Tfs2013Compat
http://aka.ms/TfsMSSCCI

76 ❘ CHAPTER 4 CONNECTING TO TEAM FOUNDATION SERVER

c04.indd 04/22/2014 Page 76

not only includes the latest versions of the standalone Eclipse IDE, but also tools such as Rational
Application Developer, Adobe FlexBuilder, MyEclipse, and so on, as well as tooling to support
embedded development. By providing the functionality as a standard plug-in to Eclipse written using
100 percent Java technologies like the rest of the Eclipse IDE, the plug-in is very easy to install and
use for developers used to other version control providers in Eclipse.

As shown in Figure 4-7, Team Explorer Everywhere provides more than just version control capabili-
ties to Eclipse. The entire Team Explorer 2013 experience as described earlier in this chapter is pro-
vided to Eclipse developers, meaning that all parts of a development organization can be peers when
using Team Foundation Server to manage the development life cycle. Team Foundation Server treats
source code or any other fi le as just a fi le. From a version control point of view, all code is created
equal as far as Team Foundation Server is concerned.

FIGURE 4-7: Team Explorer Everywhere within Eclipse

The plug-in for Eclipse is installed from the Team Explorer Everywhere media, or via a download of
the plug-in update site archive.

NOTE To install the Team Foundation Server plug-in for Eclipse, simply use
the following update site in Eclipse (or install from the Eclipse Marketplace).
This will ensure that you always have the latest released version of the plug-in
installed: http://dl.microsoft.com/eclipse/tfs.

If you would like to run the latest public pre-release version of the Eclipse plug-
in, you can use the update site at http://dl.microsoft.com/eclipse/tfs/
preview instead.

For further information on getting started with version control using the Eclipse
integration, see Chapter 6. Building Java applications using Team Foundation
Server is also covered in Chapter 18.

http://dl.microsoft.com/eclipse/tfs
http://dl.microsoft.com/eclipse/tfs

Team Explorer ❘ 77

c04.indd 04/22/2014 Page 77

Cross-Platform Command-Line Client for Team Foundation Server
Team Explorer Everywhere also provides you with the ability to perform version control operations
with many UNIX and Linux style operating systems using the cross-platform command-line client
for Team Foundation Server (tf), as shown in Figure 4-8.

FIGURE 4-8: Cross-platform command-line client on Mac OS X

The command syntax is very similar to the version control command-line tool (tf.exe) installed on
Windows as part of the Team Explorer installation. This allows for tools and scripts to be written
against both fl avors of the tool.

USE HYPHENS FOR MAXIMUM PORTABILITY

The Team Foundation Version Control command line accepts a number of param-
eters for each command. In most of the documentation and examples, parameters
are prefi xed by a forward slash character
(/collection:TeamProjectCollectionUrl). However, in many UNIX shells, the
forward slash character is an escape character. This means that, to actually pass
a forward slash through to the tf command, you would need to escape it (usually
with another forward slash).

continues

78 ❘ CHAPTER 4 CONNECTING TO TEAM FOUNDATION SERVER

c04.indd 04/22/2014 Page 78

To avoid this confusion, all versions of the command-line client are capable of
accepting a hyphen or a forward slash to prefi x a parameter. For example,
-collection:TeamProjectCollectionUrl is a valid way to pass in the collection
URL on both Windows and in all UNIX shells.

Therefore, if you are writing a script or a tool that makes use of the command line,
use hyphens to ensure that the tool can run more easily on all platforms.

ALTERNATE WAYS TO CONNECT TO TEAM FOUNDATION
SERVER

Besides installing Team Explorer or Team Explorer Everywhere, there are many other ways of
connecting to Team Foundation Server. On the server itself, there is the Team Foundation Server
Administration Console. But from the client, there are many different connectivity options, depend-
ing on what you want to do.

Accessing Team Foundation Server through a Web Browser
In Team Foundation Server 2013, an easy-to-use web-based client called Team Web Access (TWA)
is installed by default on the application tier machines, and it is available under a special web direc-
tory under the virtualPath (http://vsalm:8080/tfs/web). This web-based client was completely
rewritten in Team Foundation Server 2012. As shown in Figure 4-9, TWA is ideal for users who do
not wish to install a dedicated Team Foundation Server client. It requires no additional software
to be installed on the client machine, other than a modern web browser (the site works in Firefox,
Safari, and Chrome, as well as Internet Explorer). It is also used in many places to provide a link
that can be used to point to data in Team Foundation Server—for example, when passing around a
link to a work item or shelveset.

At a high level, the following functionality is provided by TWA:

 ➤ Managing and prioritizing features, the Product Backlog, Sprint Backlog, and Task Boards

 ➤ Creating and editing work items and work item queries

 ➤ Managing areas, iterations, teams, groups, and security

 ➤ Managing e-mail alert subscriptions

 ➤ Read-only access to version control (including Source Control Explorer) as well as shelvesets,
and the capability to compare and comment on versions of fi les in version control

 ➤ Queuing and managing build defi nitions

 ➤ Managing and running test cases and test suites

 ➤ Communicating via Team Rooms

continued

http://vsalm:8080/tfs/web

Alternate Ways to Connect to Team Foundation Server ❘ 79

c04.indd 04/22/2014 Page 79

FIGURE 4-9: Team Web Access

When you initially browse to TWA, you are prompted to select which Team Project Collection,
Team Project, and Team that you wish to connect to. In subsequent visits, you will see recent Team
Projects and Teams listed for convenience.

Using Team Foundation Server in Microsoft Excel
As part of the Team Explorer installation process, team support is added to Microsoft Excel as a
new tab on the Ribbon bar. This allows for the capability to add and edit work items directly from
Excel spreadsheets, as shown in Figure 4-10.

80 ❘ CHAPTER 4 CONNECTING TO TEAM FOUNDATION SERVER

c04.indd 04/22/2014 Page 80

FIGURE 4-10: Adding and editing work items directly from Excel spreadsheets

To connect to Team Foundation Server from Excel, go to the Team Ribbon and click New List.
Select the query that you would like to use as the basis of data to load into Excel. Or, if you would
like to create a bunch of new work items, select Input List.

Usually, starting with a query is the easiest way, because you can still add and edit work items from
it. You may add additional fi elds from the work item into the spreadsheet by clicking the Choose
Columns button and adding additional columns into the list.

Note that if you select a hierarchical query—for example, a query that shows parent/child rela-
tionships such as an Iteration Backlog query in the standard Iteration folders created as part of
an Agile process template—then you will have multiple Title columns for each level in the hierar-
chy, as shown in Figure 4-10. Adding a work item as a child of another is as simple as creating a
new row and placing the title for that work item in the Title 2 column. If you need an additional
column, or wish to quickly insert a new line to create the child node, click the Add Child button
in the Team Ribbon.

To open an existing query as an Excel spreadsheet, you can right-click any work item query in Team
Explorer and select Open in Microsoft Excel.

You can also easily generate several reports in an Excel workbook that analyze current status and
historical trends based on the criteria specifi ed in a fl at (that is, not hierarchical) query. Right-click

Alternate Ways to Connect to Team Foundation Server ❘ 81

c04.indd 04/22/2014 Page 81

the query and select Create Report in Microsoft Excel. This will then connect Excel directly to
Analysis Services to show the data directly from the Team Foundation Server data warehouse.

NOTE For more information on creating Team Foundation Server reports
using Excel, see the MSDN documentation at http://tinyurl.com/
Tfs2013ExcelReports.

NOTE For more information on reporting, see Chapter 15.

Using Team Foundation Server in Microsoft Project
In addition to providing Excel integration, the installation of Team Explorer also installs a Team
Ribbon into Microsoft Project, as shown in Figure 4-11. This provides the capability to add and edit
work items directly in Microsoft Project and to view data about the progress of the work items.

FIGURE 4-11: Team Ribbon in Microsoft Project

Because of the enhanced linking capabilities introduced in Team Foundation Server 2010, predeces-
sors and successors can be created easily using Microsoft Project linked to work items, allowing you
to control which work items depend on each other.

http://tinyurl.com

82 ❘ CHAPTER 4 CONNECTING TO TEAM FOUNDATION SERVER

c04.indd 04/22/2014 Page 82

TEAM FOUNDATION EXTENSIONS FOR PROJECT SERVER

Introduced as a feature pack for Team Foundation Server 2010 Service Pack 1,
the integration with Project Server now requires an installation of Extensions for
Project Server. By enabling data fl ow between Team Foundation Server and Project
Server, project managers can access up-to-date project status and resource avail-
ability across agile and formal software teams who work in Team Foundation
Server. For more information, see the MSDN documentation at http://tinyurl
.com/Tfs2013ProjectServer.

Windows Explorer Integration with Team Foundation Server
As part of the Team Foundation Server Power Tools (http://aka.ms/TFS2013PowerTools),
Windows Shell Extensions can optionally be installed. Once it is installed, when you browse a folder
that is mapped in a Team Foundation Server workspace, fi les and folders are decorated depending
on the status (whether or not the fi les are checked out).

Right-clicking the fi le or folder provides access to some basic version control operations under the
Team Foundation Server menu (see Figure 4-12) that can be very useful when working with Team
Foundation Server outside of Visual Studio or Eclipse.

FIGURE 4-12: Windows shell extensions

http://tinyurl
http://aka.ms/TFS2013PowerTools

Alternate Ways to Connect to Team Foundation Server ❘ 83

c04.indd 04/22/2014 Page 83

Connecting Microsoft Test Manager to Team Foundation
Server

Microsoft Test Manager is the dedicated interface for testers working with Team Foundation Server.
It is installed as part of Visual Studio Test Professional, Visual Studio Ultimate, and Visual Studio
Premium 2013.

The fi rst time you start the application, you will be prompted to provide details about your Team
Foundation Server instance. You are then able to select the Project Collection, Team Project, and
Test Plan to which you wish to connect.

After the initial connection, your preference will be remembered, and you will automatically be con-
nected to that Test Plan. To change Test Plan, or to connect to a different project or project collec-
tion, click the name of the Test Plan in the top right-hand corner of the screen, as shown in
Figure 4-13.

FIGURE 4-13: Microsoft Test Manager

84 ❘ CHAPTER 4 CONNECTING TO TEAM FOUNDATION SERVER

c04.indd 04/22/2014 Page 84

Access to Team Foundation Server via Third-Party Integrations
Team Foundation Server supports a rich and vibrant third-party ecosystem through its powerful
extensibility mechanisms, as outlined in Chapter 29. The same .NET object model installed as part
of the Team Explorer integration is available for use by other third-party applications installed on
your machine.

Integrations are available in other parts of Microsoft Offi ce (such as Word and Outlook) from
partners using these APIs. Also, many development tools and projects now integrate with Team
Foundation Server using the extensibility hooks provided by Microsoft, or by wrapping calls to the
version control command-line client.

SUMMARY

 In this chapter, you learned how to get connected to Team Foundation Server from your desktop
machine. You learned about the architecture of a typical Team Foundation Server installation and
how the Team Foundation Server URL is used to provide the connection information to the server.
The discussion also highlighted the basic access control and permissions system used by Team
Foundation Server.

Finally, you learned about the client software for Team Foundation Server (Team Explorer) and how
to begin using this interface to access the functionality provided by the server.

The rest of this book examines that functionality in detail. Chapter 5 begins that examination with a
general discussion about version control and how to share your source code with the rest of the team.

c05.indd 04/22/2014 Page 85

PART II
Version Control

 ▸ CHAPTER 5: Overview of Version Control

 ▸ CHAPTER 6: Using Centralized Team Foundation Version Control

 ▸ CHAPTER 7: Distributed Version Control with Git and Team
Foundation Server

 ▸ CHAPTER 8: Version Control in Heterogeneous Teams

 ▸ CHAPTER 9: Migration from Legacy Version Control Systems

 ▸ CHAPTER 10: Branching and Merging

 ▸ CHAPTER 11: Common Version Control Scenarios

c05.indd 04/22/2014 Page 87

Overview of Version Control
WHAT’S IN THIS CHAPTER?

 ➤ Understanding the purpose, core concepts, and benefi ts of version
control

 ➤ Understanding the differences between Team Foundation Version
Control and Git-based repositories

 ➤ Analyzing the strengths and weaknesses of common version
control products

Version control is the single most important tool you can use when developing software,
regardless of the particular provider you use to give you version control functionality. Most
software developers use version control tools in their day-to-day jobs, and yet, the fundamen-
tal concepts and reasoning behind version control are rarely discussed.

This chapter starts by explaining the fundamental concepts of version control and what
functionality you typically fi nd from a tool-independent viewpoint. Then we will discuss the
similarities and differences between centralized and distributed version control systems. We
then examine various important version control tools and analyze their strengths and weak-
nesses. The chapter concludes with a high-level look at the version control capabilities of Team
Foundation Server, and looks at when Team Foundation Server is or is not the correct tool for
your team.

WHAT IS VERSION CONTROL?

Version control is known by many names. “Source control” is frequently used, but the term
“revision control” and even “software/source confi guration management” (SCM) can be used
to refer to the same broad set of functionality. Because a modern software project consists

5

88 ❘ CHAPTER 5 OVERVIEW OF VERSION CONTROL

c05.indd 04/22/2014 Page 88

of much more than merely a set of source code, the term “version control” is used throughout this
book, although the terms can be used interchangeably (and often are—even in the Team Foundation
Server product).

Broadly speaking, version control provides the following capabilities:

 ➤ A place to store the source code, images, build scripts, and so on needed to build your soft-
ware project

 ➤ The ability to track the history of changes to those fi les, and to view the state of the fi le at
various points in the software life cycle

 ➤ Mechanisms and tooling to make it easy to work in parallel with a team of software develop-
ers on the same project

If you make a mistake when editing your code, a version control system lets you roll back time and
get back to the state before you just accidentally deleted the past weeks’ worth of work. A version
control system allows you to know what code is running on someone’s machine. Version control
allows multiple teams of developers to work on the same fi les at the same time, and not get in each
other’s way.

Version control is so important that it is required for regulatory compliance in some industries, yet
a remarkable number of organizations still do not use a version control system. Copying the folder
containing your source code to another location is not a version control system—it is a backup.
In the past, version control systems could be expensive, complex, and diffi cult to use. Today, version
control is such a fundamental aspect of software development that, in its basic form, it is a commod-
ity item and is increasingly easy to use. But even if you are a developer working on your own for a
project, the safety net provided by a version control tool is worth the investment.

However, not all version control systems are the same. Even more confusing, some tools use the
same words for very different activities. To thoroughly understand the nature of a version control
system, you must be familiar with some core concepts.

Repository
In general, code is stored on a machine somewhere in a repository of some kind. The repository
is usually represented as a tree of fi les, similar to the regular directory structures that everyone is
familiar with in modern hierarchical fi le systems. However, the repository differs from a fi le system
in one very important aspect: time. Whereas a fi le system is a collection of folders and fi les, a ver-
sion control repository is a collection of folders and fi les and the changes made to those fi les over the
repository’s lifetime, thus allowing you to know the state of the fi les at any given point in time.

Additionally, a version control system must provide a number of features to make it useful. You need
a way to share that version control repository with others on your team, make changes to the code,
and share those changes with each other.

What Is Version Control? ❘ 89

c05.indd 04/22/2014 Page 89

NOTE To keep things simple, this chapter’s discussion refers to the repository
as if there is a single master repository on a central server somewhere allowing
your team to work. This is the traditional centralized version control system that
many developers are familiar with today. However, not all version control sys-
tems work that way. In a distributed version control system (DVCS) such as Git,
the machines work in a peer-to-peer manner. In other words, each machine has a
copy of the full repository in its own right. This has some advantages and disad-
vantages that will be examined later in this chapter within the larger distributed
version control discussion.

Obviously, storing every version of every fi le can take up a lot of disk space. Version control systems
frequently employ various tricks to ensure that the repository is effi cient with storage. For example,
Team Foundation Server will store the initial version of the fi le, and then store the changes between
each version (known as deltas) for subsequent changes.

The “delta-fi cation” process in Team Foundation Version Control is actually much more complex
than this. Optimizations are in place to ensure that this is done only for certain fi le types. It also
ensures that recently accessed versions of fi les are cached in a ready-to-download state to avoid the
computationally expensive task of rebuilding the fi le every time a developer requests a copy.

Working Copy
The fi les in the repository must be in a local area on the developer’s machine. This allows the devel-
oper to work with the fi les, make changes to them, and debug them before he or she decides to check
in or commit those changes to the repository. This local version is known as the workspace with
Team Foundation Server, but in some version control systems, it can also be called a sandbox or
working copy.

NOTE In Team Foundation Server, a workspace is actually more than just a
working copy of the fi le system. Check out Chapter 6 for more information on
workspaces.

Using a local working copy of the repository, a developer can work in parallel with others on the
team and know that the working copy of the code will not change until the developer performs a
specifi c action. The developer will either make a change to the code or update the code from the
repository by getting all the fi les that have changed since the last time he or she got a copy.

90 ❘ CHAPTER 5 OVERVIEW OF VERSION CONTROL

c05.indd 04/22/2014 Page 90

Working Folder Mappings
A working folder mapping is the link between the place in the repository where the fi les are stored
and the place in your local fi le system where you have a working copy of that part of the repository.
The terms working directory, workspace mapping, or sandbox can also be used to mean the work-
ing folder mapping.

NOTE Note that the terms “workspace,” “working folder,” and “sandbox”
have been used in different version control systems to mean slightly different, but
similar, things, which can be confusing when you are trying to understand a new
version control system. This is one of the reasons it is important to understand
the core concepts now so that this discussion can use a set of agreed-upon terms
throughout the rest of the book. Each version control system you use is slightly
different, and once you think about the problem in the way the tool allows
you to work, it is often diffi cult to think about version control in other ways.
This change in context is a problem that people encounter when moving from
one version control system to another and, therefore, one that is addressed in
Chapter 6 when discussing Team Foundation Server in more detail.

Get/Clone/Pull
Once you have set up a working folder mapping, you must download the fi les from the repository
to your local machine. In Team Foundation Version Control (TFVC) (as well as with some other
version control tools) this process is known as Get. In Concurrent Version Systems (CVS) and
Subversion (SVN), the same process is known as check-out—a word that means something slightly
different in some version control systems like TFVC, as will be described shortly.

In a DVCS tool such as Git, you do not get individual fi les from the repository, but rather you clone
the repository in its entirety. To initiate the creation of a local repository from a remote one, you
would execute a Clone operation. This will retrieve an exact copy of the remote repository and place
it on your local machine. While you are working on a local repository you might need changes from
other team members. In this case you would execute a Pull request from your colleague’s repository
to update yours.

Add
What if you have no fi les in your repository? When you fi rst start using a version control system,
it is empty. In this case, you need to add some fi les. You select which fi les and folders to take from
your local machine and add to the repository so that you can share them with the rest of your team.
When you do this, you seldom want to add all of the local fi les.

For example, you might have some compiled binaries derived from your source or fi les that are gen-
erated by your tools in the source directory each time your code is built. You typically do not need
or, indeed, want to share these fi les. Therefore, Team Foundation Server provides tooling to help
you select which fi les from a folder you are actually interested in adding, and fi lters out those you

What Is Version Control? ❘ 91

c05.indd 04/22/2014 Page 91

want to exclude such as DLLs, compiled classes, and object fi les that are typically part of the build
process and not the source code that you want to store.

Check-Out
If you want to work on a fi le, then some version control systems (such as Visual SourceSafe or Team
Foundation Version Control when working in a mode known as a Server Workspace described later
in this chapter) require you to inform the server that you are working on the fi le so that others on
the team can know (and so that the server can check that you still have permission to edit the fi le).
This operation is known as a check-out with Team Foundation Version Control.

In Visual SourceSafe (VSS), a single fi le can be edited by only one user at a time. Therefore, when
a fi le is checked out, it is locked for editing for other users. In Team Foundation Server, the default
behavior is that multiple people can edit the same fi le simultaneously (which is generally a best prac-
tice to allow a version control system to maximize productivity). However, you do have the option
of locking the fi le as you check it out if you wish to prevent edits for some reason.

Note that the use of the term “check-out” is slightly different in this context as opposed to the use of
the term in the context of CVS and SVN. In those systems, “check-out” means to download the fi les
to your working copy locally. This is equivalent to a Get in Team Foundation Version Control.

A new mode of working was introduced in Team Foundation Server 2012 called a Local Workspace,
and it’s examined in Chapter 6. As with systems like SVN, with a Local Workspace in TFVC, you
are not required to explicitly check out a fi le before working on it. Instead, you can edit any fi le that
you can download. All fi les in your working copy are writable when you download them from ver-
sion control and you just edit away. This has advantages because it means that there is much less
friction when editing fi les locally, especially from tools outside of the main development environ-
ment. It also involves less frequent communication with the server, which makes working with the
fi les offl ine much easier. However, you lose the ability to know exactly who on your team is cur-
rently working on which fi les.

Changeset/Commits
As you check out and edit fi les, you are building up a set of changes that will need to be applied to
the repository when you wish to commit those changes. This set of changes to be done is called a
changeset, commit, or changelist. The changeset consists of all the changes you have made to the
fi les (for example, editing, adding, or renaming a fi le); in some version control systems, the chang-
eset also contains metadata about the commit, such as which work items were associated with it
or, in the case of Git, the original author of the changes that the committer is committing (which is
important to track in many open source style workfl ows).

Check-in/Commit
At some point, you have a set of changes that you want to commit to the repository to share with your
team, or draw a line in the sand as being at a point that you want to save your state with the reposi-
tory. You want to commit your set of changes with the repository. This action is called a check-in in
Team Foundation Server but can be called by other names (such as “commit”) by other tools.

92 ❘ CHAPTER 5 OVERVIEW OF VERSION CONTROL

c05.indd 04/22/2014 Page 92

In more modern version control systems such as Team Foundation Server, Subversion (SVN), or
Git, the check-in is performed on the repository as a single atomic transaction. That is, if, for some
reason, your changes could not be applied to the repository (for example, if someone else has edited
a particular fi le with a confl icting change while you were working on it or an upload of a fi le failed
due to network issues), then none of the changes in your changeset are checked in until you resolve
any issues preventing the check-in. In addition, if someone were to get a copy of the repository while
you were doing your check-in, he or she would not get your changes. Only after your check-in has
completed successfully are your changes visible to the rest of the team.

When you check in, you can also provide some additional data. In most version control tools, you
can provide a comment describing the reason why you made the changes (and it is best practice to
leave a meaningful comment). Team Foundation Server also provides the ability to provide addi-
tional metadata about each check-in, which will be described in more detail in Chapter 6.

Push
In Git there will be times when you need to send one or more commits from your local repository
to a remote repository. This action is performed by executing a Push command to that repository.
This is how a developer using a Git-based team project would send his or her work to the Team
Foundation Server so that team members and the automated build process can use those fi les.
Automated builds are described in Chapter 18.

History
As mentioned previously, a version control repository is like a fi le system that stores all the changes
made to it. This extra dimension on the fi le system is known as the history. For a particular fi le or
folder, the version control system can tell you everything that has happened to that fi le or folder over
time. The history is one of the features that makes a version control system useful by allowing you
to know what code you actually shipped to a customer who received a release at a given time. But
it is also useful for many other things—for example, being able to go back in time and understand
why the code is as it is now, to understand who has worked on a particular area in the past, or to
fi gure out what has changed between two particular versions when suddenly something stops work-
ing that used to work well before.

The majority of version control systems provide the ability to label or tag fi les with a text description.
This is a way of marking the repository to leave a meaningful name to a set of fi les in a particular
version (for example, when you have done a build that you want to deploy). The label makes it easy
to fi nd that snapshot at a later time and to see what the repository contained at that instance.

Team Foundation Version Control provides for all of this history functionality; but, in addition,
it makes it very easy to see what changes occurred to a fi le before it had been renamed. Similarly,
changes that occurred before a fi le was branched or merged can be easily viewed from the fi le’s history.

Branching and Merging
A branch is a copy of a set of fi les in a different part of the repository. This allows two or more
teams of people to work on the same project at the same time, checking in changes as they go, but
without interfering with the other teams. At some point in the future, you may want some or all

Centralized Versus Decentralized Version Control ❘ 93

c05.indd 04/22/2014 Page 93

of the code to join up again. This is when you need to merge the changes from one branch into the
other branch. When merging changes from two fi les in separate branches, if the same bit of code has
been edited differently in both places, then this is called a confl ict, and the version control system
will require someone to decide what the code should be in the merged version.

In most centralized version control systems, a branch is simply another folder at a different path that
contains a copy of data from elsewhere in the repository. In Team Foundation Server, a branch folder
is decorated differently, and branches are a fi rst-class object with additional metadata and behavior
to a regular folder, but they still live inside the repository. In Git, a branch lives outside the path of
the repository and represents the versions of the fi les that particular repository has in that branch.

NOTE While Team Foundation Version Control logically shows branches in a
different folder inside the repository, the fi les are not actually copied. A branch
is just a pointer to where the fi les are stored in the repository. This saves space in
the repository and allows branches to be lightweight and quick to create. When
a fi le is fi rst edited, the branch will contain the delta between that version of the
fi le and the prior version on the parent branch.

There are many ways to approach branching, and you should carefully consider what branching
strategy you want to adopt. Chapter 10 provides more information on this.

If all you want to do is save your work in progress so that you can store a copy of it on the server, or
possibly share it with others in your team without checking in the code, then you may also want to
consider the shelving features of Team Foundation Version Control. Chapter 6 provides more infor-
mation on shelving and unshelving.

CENTRALIZED VERSUS DECENTRALIZED VERSION CONTROL

In the world of version control systems, there are many options to choose from. To begin the selec-
tion process, it is important that you understand that version control systems fall into two basic
categories, centralized and decentralized.

Centralized version Control
Centralized version control systems (CVCS) are structured so that there is a single, canonical copy
of source code with which all team members interact. The most widely used of these systems are
Visual SourceSafe (VSS), Subversion (SVN), and Team Foundation Version Control (TFVC). These
systems are described further later in this chapter.

The typical usage scenario for a CVCS is that the developer performs a Get from the repository
to create a local copy in his or her workspace. The developer then makes changes to the code
base—adding, editing, deleting, and renaming fi les. All of these changes are isolated on the develop-
er’s local machine and are not visible to colleagues. When the developer is done, he or she checks in
or commits the changes back to the central repository to allow other team members to retrieve those
changes and integrate them with their ongoing development efforts.

94 ❘ CHAPTER 5 OVERVIEW OF VERSION CONTROL

c05.indd 04/22/2014 Page 94

This model provides a single “source of truth” for the code base as well as a single location to back
up for disaster-recovery purposes. It also allows for the implementation of a central security model
to restrict access to individual fi les, folders, or entire sub-trees.

Distributed Version Control Systems
Distributed version control systems (DVCS) have been around for more than a decade, but only in
recent years have they gained widespread adoption with the creation of systems such as BitKeeper,
Git, Mercurial, Veracity, and Bazaar. Git and Mercurial are probably the most well-known of these
types of tools and have seen the widest adoption of DVCS to date. At the time of this writing, Git
is emerging as the most important of this generation of version control systems due in no small
part to the rapid rise of GitHub (http://www.github.com) as a central location for the sharing of
open source projects. Git interoperability is a requirement of most modern DVCS systems, and Git’s
fast-import fi le format is now the de facto standard fi le format for the import and export of DVCS
repositories.

Differences between Centralized and Distributed Version
Control Systems

There are some common (but fundamental) differences between the way a DVCS tool operates versus
the more traditional, centralized version control system tools discussed previously. The key difference
is that the local developer machines have the capability of acting as a DVCS repository themselves
and are peers to each other. Changes are not serialized as a set of versions in a centralized repository.
Rather, they are stored as changes in the local repository, which can then be pushed or pulled into
other users’ repositories. While a centralized repository is not required, in many environments, it is
common for a repository to act as the central hub that contains the master copy of the code on which
the team performs automated builds and that is considered by the team to be the defi nitive version.
Table 5-1 shows the strengths and weaknesses of a DVCS when compared to a CVCS.

TABLE 5-1: Strengths and Weaknesses of a DVCS

STRENGTHS WEAKNESSES

It has full repository support when offl ine from
others. It also has fast local repository access.

Using developer repositories can reduce the fre-
quency with which changes are synced with the
rest of the team, leading to a loss of visibility of
the progress of the teams overall.

You can easily have multiple repositories and
highly fl exible topologies. You can use reposi-
tories in circumstances where branches might
be used in a centralized server approach, which
can, therefore, help with scalability. Because all
the effort required to work with the repository is
performed on the client, DVCS solutions typically
have more modest hardware requirements on the
server.

There is no centralized backup of progress for
developers until changes are pushed to a central
repository.

http://www.github.com

Common Version Control Products ❘ 95

c05.indd 04/22/2014 Page 95

It encourages frequent check-ins to a local reposi-
tory, thus providing the capability to track those
changes and see the evolution of the code.

Current DVCS solutions lack some security, audit-
ing, and reporting capabilities common to enter-
prise requirements, such as the ability to control
access by path in version control. Access permis-
sions are controlled at the repository level, not at
the path level.

It is well-suited to many open source project
workfl ows. It allows participation in the project
without any centralized server granting permis-
sion. It works well for large projects with many
partly independent developers responsible for
certain areas.

Most centralized systems (such as SVN and Team
Foundation Server) allow for optional locking of
fi les to prevent later merge confl icts. The nature
of DVCS tools makes this impossible.

Because of the way DVCS systems typically track
changes, and because the nature of having dis-
tributed repositories means that merges happen
more frequently, DVCS merges are usually less
likely to produce confl icts, compared with similar
changes merged from separate branches in a cen-
tralized version control system. However, merges
can still obviously confl ict, and the more the code
has changed between merges, the more likely it is
to require effort in performing the merge.

Because the entire repository is cloned to every
machine, there can be an issue moving the large
repositories across the network. This is often
avoided by having multiple smaller repositories
rather than just a single global repository.

As each working copy of the repository is a copy
of the entire repository, including history, back-
ups of that repository are implicit in each client.
This increases the disaster recovery options with-
out requiring any centralized overhead.

At the time of this writing, the integrated tool-
ing or the tooling on Windows is not at the
same level of maturation as the most popular
centralized version control systems such as Team
Foundation Version Control or Subversion.

DVCS systems provide a greater number of work-
fl ows when managing fi le versions. While this vast
degree of freedom can be overwhelming to new-
comers, once a basic workfl ow is established in
the team it is quickly understandable.

COMMON VERSION CONTROL PRODUCTS

Many version control products have been created over time, and many are in use today. The most
common tools used as of this writing are Visual SourceSafe (VSS), Subversion (SVN), Team
Foundation Version Control (TFVC), and Git.

In Team Foundation Server 2013, Microsoft provided the ability to select a second version control
repository engine in addition to TFVC during team project creation. You can now select either
TFVC or Git as your version control engine. Distributed version control systems such as Git are

96 ❘ CHAPTER 5 OVERVIEW OF VERSION CONTROL

c05.indd 04/22/2014 Page 96

becoming increasingly important players in the development ecosystem, especially in the open
source community. This section also looks at distributed version control systems (DVCS).

Microsoft Visual SourceSafe
Visual SourceSafe (VSS) was originally created by One Tree Software and acquired by Microsoft in
1994. Microsoft Visual SourceSafe 2005 was the fi nal release of the product, and it was scheduled
for retirement from mainstream support in 2012. Despite its age, VSS, a pioneer in its day, is still a
well-used version control product. It is very easy to install and set up, largely because it uses a fi le
system–based repository and does not require a dedicated server. The early design did present some
issues, however. Check-ins into the repository were not atomic and thus caused problems in team
environments. Additionally, the fi le system–based approach could lead to instabilities in the reposi-
tory, which gave VSS a reputation for sometimes corrupting the repository. Table 5-2 shows
a contrast between the strengths and weaknesses of VSS.

TABLE 5-2: Strengths and Weaknesses of VSS

STRENGTHS WEAKNESSES

VSS is easy to install and use. This is an aging product; no longer actively developed.

VSS has broad support in developer tools. It does not perform well over wide area networks (WANs).

VSS has wide adoption in the industry. There are no atomic check-in transactions.

It has very limited branch support (through sharing
features).

Team Foundation Server is seen as Microsoft’s replacement product for VSS. But Team Foundation
Server also addresses far more scenarios (for example, work item tracking, reporting, team builds)
for which VSS was never intended.

Apache Subversion
Subversion (SVN) is an open source version control project founded by CollabNet in 2000. SVN
became a top-level project in the Apache Foundation in 2010. The system was originally designed to
be a successor to the older open source CVS version control project. Since that time, it has surpassed
the CVS market share and expanded beyond the original goal of replacing CVS. However, SVN is
still heavily infl uenced by that design and should be familiar to CVS users.

While SVN has a large market share today, it is being challenged by distributed version control
systems, most notably Git, in the open source space. But development of SVN is still continuing,
and features continue to be added. Table 5-3 shows a contrast between the strengths and weak-
nesses of SVN.

Common Version Control Products ❘ 97

c05.indd 04/22/2014 Page 97

TABLE 5-3: Strengths and Weaknesses of SVN

STRENGTHS WEAKNESSES

SVN works under an open
source licensing model
(free to use).

Like CVS, SVN makes use of .svn directories inside the source folders
to store the state of the local working copy and to allow synchroniza-
tion with the server. However, it can have the effect of polluting the
local source tree and can cause performance issues with very large
projects or fi les.

SVN is in wide use by open
source projects (but it is
declining in favor of Git).

Renames are handled as a copy-and-delete operation in the reposi-
tory, which can cause problems when merging branches.

The server works on a vari-
ety of operating systems.

Confi guring authentication and performing certain administration
functionality can be challenging in a Windows environment.

SVN provides broad sup-
port with developer tools
on all platforms.

There is no shelving functionality.

Team Foundation Version Control
First publicly released in 2006, Microsoft Visual Studio Team Foundation Server is the reason you
are reading this book, and so, by the end of this book, you will be very familiar with its functional-
ity. Chapter 6 provides more information on the version control capabilities. However, it is worth
highlighting the strengths and weaknesses of Team Foundation Version Control in this context,
as shown in Table 5-4.

TABLE 5-4: Strengths and Weaknesses of Team Foundation Version Control

STRENGTHS WEAKNESSES

It is more than just version control
and provides tight integration with
the work item tracking, build, and
reporting capabilities of the product.

Offl ine support and support for occasionally connected
developers is signifi cantly improved on previous releases
of Team Foundation Server, but centralized version control
tools such as TFS and SVN will never be as strong at offl ine
support as a Distributed Version Control tool such as Git.

It has fi rst-class Visual Studio and
Eclipse integration provided by
the same vendor who provides the
server.

A centralized server must be set up to allow check-in of
code and collaboration of team members. However, you
can have a centralized server set up quickly and easily for
you at http://www.visualstudio.com.

continues

http://www.visualstudio.com

98 ❘ CHAPTER 5 OVERVIEW OF VERSION CONTROL

c05.indd 04/22/2014 Page 98

STRENGTHS WEAKNESSES

It has many features appealing to
enterprise-class customers, such as
centralized security administration,
integration with Active Directory
for authentication, and single-sign-
on (SSO), as well as SharePoint
integration.

The server product runs only on Windows platforms, but a
client is available cross-platform.

It is highly scalable.

Shelveset support allows you to store
changes on the server without com-
mitting to the main code repository.

Check-in policies govern rules that
the code should pass before you are
able to commit it to the repository.

Gated check-in support allows a
build automation run to pass before
the code is committed to the main
repository.

All data is stored in a SQL Server
database for security and ease of
backup.

Git in TFS
The Git version control system is a free, open source DVCS that was designed and developed in
2005 by Linus Torvalds to support the development of the Linux kernel. Like all distributed version
control systems, it allows for each developer to maintain a complete copy of the source repository
on his or her local machine and makes it easy to share commits and entire branches between team
members.

There is a large body of support for Git in modern development environments from native integra-
tion, such as in Apple’s Xcode IDE, to support through plug-ins, like the EGit Eclipse plug-in,
to hybrid integration such as Visual Studio 2013 provides, where you can either use command-line
Git or Team Explorer integrated Git. For more information, see Chapter 7.

As stated earlier, Team Foundation Server 2013 now natively supports Git as a version control
repository. This allows development teams to have the fl exibility to work in a distributed fashion
with each team member managing local commits while still allowing the TFS server to house the
repository that is the “source of truth.” This integration opens up the ability to link commits in Git

TABLE 5-4 (continued)

Summary ❘ 99

c05.indd 04/22/2014 Page 99

to work items in TFS. It also allows Git branches to participate in automated builds. Let’s look at
the strengths and weaknesses of Git in TFS in Table 5-5.

TABLE 5-5: Strengths and Weaknesses of Git in TFS

STRENGTHS WEAKNESSES

It is more than just version control and provides
tight integration with the work item tracking,
build, and reporting capabilities of the product.

The server product runs only on Windows plat-
forms, but a client is available cross-platform.

Strong support for offl ine and occasionally
connected development patterns with local
repositories.

Does not have the ability to create shelvesets.

Makes merging of changes between branches
and repositories much easier.

Gated check-in support is not available.

It has many features that appeal to enterprise-
class customers, such as centralized secu-
rity administration, integration with Active
Directory for authentication, and single-sign-on
(SSO), as well as SharePoint integration.

Does not have graphical support in Source
Control Explorer, branch visualization, or
changeset history tracking.

It is highly scalable. “Source of truth” repository is defi ned only by
convention.

All data is stored in a SQL Server database for
security and ease of backup.

Security can only be set at the branch level
on the server. No security control on local
repositories.

Works with continuous integration automated
builds.

SUMMARY

This chapter introduced the basic concepts of version control and why it is needed. We then dis-
cussed the differences between centralized and distributed version control systems. You learned
about some of the common version control tools in the market today and about their strengths and
weaknesses.

Team Foundation Server is one of the leading tools in the market today. While it has some unique
version control capabilities, and scales well from very small to very large teams, broadly speaking,
when looking at the version control capabilities alone, it is comparable to most modern centralized
version control systems in terms of feature sets, and with the addition of Git, it is a compelling alter-
native in the distributed version control area.

The key factor that makes many organizations choose to standardize on Team Foundation Server is
the tight integration between work item tracking (which can include requirements, test cases, bugs,

100 ❘ CHAPTER 5 OVERVIEW OF VERSION CONTROL

c05.indd 04/22/2014 Page 100

tasks, and so on), version control, build, and reporting features, all the way through the product.
By closely binding your version control with your work item tracking, you get greater traceability.
The intimate knowledge of the version control system by the build system gives rise to power-
ful build features, with no additional work by the administrators. The close link between builds
and work items means that testers know which builds fi x which bugs, what fi les in version control
were affected, and which tests need to be re-run. It’s the sum of the whole that really makes Team
Foundation Server stand out from the competition.

As discussed, every version control system is different, and a developer’s understanding of a version
control system is key to effectively working with it. Chapter 6 delves deeper into the version control
features offered by Team Foundation Server and how to work with them. The core concepts and
tools will be discussed along with some help and advice in transitioning to Team Foundation Server
from other version control systems.

c06.indd 04/22/2014 Page 101

Using Centralized Team
Foundation Version Control

WHAT’S IN THIS CHAPTER?

 ➤ Understanding Team Foundation Version Control

 ➤ Learning what’s new in Team Foundation Server 2013

 ➤ Using the Source Control Explorer

 ➤ Using the My Work experience

 ➤ Requesting and responding to code reviews

 ➤ Viewing the history of fi les and folders

 ➤ Using the version control command line

 ➤ Using Team Foundation Version Control in Eclipse and on
non-Windows platforms

 ➤ Understanding version control security and permissions

 ➤ Working with Team Foundation Server for Visual SourceSafe users

 ➤ Using Team Foundation Server for Subversion users

Version control is one of the primary reasons that people adopt Team Foundation Server.
Most professional developers have had some prior experience with a version control system.
The fi rst thing you must come to terms with is that every version control system is different.
While change can be unsettling at fi rst, there are clear benefi ts in moving to Team Foundation
Server’s centralized version control system, called Team Foundation Version Control.

Team Foundation Version Control is a robust, powerful, and scalable version control infra-
structure that you can rely on to support the needs of your software development efforts.

6

102 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 102

From teams of 1 to teams of 5,000 or more, Team Foundation Server is a mission-critical system
supporting many organizations today. Team Foundation Version Control was built from scratch by
Microsoft, and is not based on its previous version control offering, Visual SourceSafe (VSS).

Team Foundation Server stores all its version control data in a SQL Server database alongside the
work item and build information. Team Foundation Server’s version control systems are designed
to work using Internet-based protocols. Centralized version control works great over high-latency
network connections, such as those found in the typical enterprise wide area network (WAN), or
over the public Internet. It provides highly fl exible security and permission capabilities tied into an
integrated authentication model.

This chapter fi rst examines the fundamental concepts that you must understand to come to grips
with the centralized version control model used by Team Foundation Server. Then we explain the
common version control tool windows, along with how to access common version control opera-
tions and get started using Team Foundation Server Version Control on your fi rst project.

In this chapter, you will look at the use of the version control command line and review special con-
siderations to take into account when using Team Foundation Version Control cross platform. You
will learn how to confi gure version control security and permissions in Team Foundation Server, and
how to confi gure common settings for source control. Finally, you will see a short guide to Team
Foundation Server for developers familiar with Microsoft VSS or Apache Subversion (SVN).

NOTE As noted in Chapter 5, version control goes by many names, including
“source control,” “revision control,” and so on. This book mostly uses the term
“version control” to indicate that Team Foundation Server can handle much
more than source code, including everything that you use to create your prod-
uct (such as build scripts, website images, and original artwork) that you wish
to version alongside your source. However, the terms “version control” and
“source control” can be used interchangeably. Even in Team Foundation Server,
you will see references to both terms.

But fi rst, let’s review getting started with Team Foundation Server Version Control. If you have used
Team Foundation Server before or in previous versions, then feel free to skip that section and jump
straight to “Learning What’s New in Team Foundation Server 2013 Version Control.”

GETTING STARTED WITH TEAM FOUNDATION SERVER VERSION
CONTROL

Before diving into the details of Team Foundation Server version control, you will add a Visual
Studio 2013 solution to version control. First, create a simple solution that you want to share with
your team. Use a simple HelloWorld console application (although you could use any of your own
applications). You must ensure that you are connected to Team Foundation Server. For more infor-
mation on this, see Chapter 4, but, basically, in Visual Studio, go to Team ➪ Connect to Team

Getting Started with Team Foundation Server Version Control ❘ 103

c06.indd 04/22/2014 Page 103

Foundation Server, and then click Select Team Projects. Click the Servers link to confi gure server
details, and then choose the project collection and team projects that you wish to connect to. Then
click Connect.

Now add the solution to version control. Right-click the solution in Solution Explorer and select
Add Solution to Source Control. You should see the screen shown in Figure 6-1.

FIGURE 6-1: The Choose Source Control dialog box

Choose Team Foundation Version Control and click OK. You should be shown a new dialog box
asking you to choose the Team Project to add your solution to, as shown in Figure 6-2.

FIGURE 6-2: Add to Source Control dialog box

104 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 104

NOTE If this is the fi rst source code being added to your team project, then we
recommend you reject the default of placing of your solution directly under the
team project in version control. Instead, make a new folder called Main and
place your solution in it—that is, $/MyTeamProject/Main/HelloWorld. This
will put you in a good position should you want to adopt a branching strategy
later on in your project development. Create the Main folder even if you have
no idea what a branch is yet. Chapter 10 explains all about branching, and this
folder will come in handy then.

You are nearly there. To commit your changes so that other people on the team can see your project,
you need to check in the fi les. To do this, open the Pending Changes page in Team Explorer (View ➪
Other Windows ➪ Pending Changes) and click the Check In button. You can provide a comment for
your changes if you wish, as shown in Figure 6-3.

FIGURE 6-3: Pending Changes view

And there you have it. Your changes are now in Team Foundation Version Control. If you look in
Solution Explorer, you will see a little padlock next to your fi les, as shown in Figure 6-4.

Learning What’s New in Team Foundation Server 2013 Version Control ❘ 105

c06.indd 04/22/2014 Page 105

FIGURE 6-4: Version controlled fi les in Solution Explorer

If you right-click the fi les, you will see new menu options available, such as Get Latest, Check Out
for Edit, and Compare, along with a Source Control submenu to allow you to View History, Undo
Changes, and Shelve Changes. All of these commands and more will be explained later in this chap-
ter, but fi rst you will step back a little and review some concepts at the core of Team Foundation
Server Version Control.

NOTE In Visual Studio, you can have a number of different version control
providers. While Team Foundation Server is installed by default in Visual
Studio 2013, if you have been using a different version control tool previously,
you may not see the Team Foundation Server functionality. To switch to Team
Foundation Server for version control, go to Tools ➪ Options ➪ Source Control,
and ensure that your current source control plug-in is set as Visual Studio Team
Foundation Server.

LEARNING WHAT’S NEW IN TEAM FOUNDATION SERVER 2013
VERSION CONTROL

The Team Foundation Server 2013 product has seen a large number of changes including the intro-
duction of Git repositories and general availability of a hosted Team Foundation Service. However,
with respect to centralized version control, there have been relatively few changes since Team
Foundation Server 2012. The biggest improvements related to Team Foundation Version Control for
Team Foundation Server 2013 are in the UI.

The Team Explorer window in Visual Studio has undergone a lot of usability improvements and
now represents a clean, easy-to-navigate way of working with Team Foundation Server. The layout
of the Team Explorer windows has been completely reengineered to give you easy access to your
projects. The Home page gives you one-click access to any Solutions you have in your Workspaces,
and the Connect page lets you quickly navigate between Team Projects.

106 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 106

Similarly, there have been great improvements in the Code Explorer in Team Web Access.
Web Access gives you very fi ne-grained visibility of changesets, with rich diff tools for fi le
comparison right in the browser. Lightweight code commenting even gives you the ability to
comment on changes directly in the browser.

A big drive in the previous Team Foundation Server 2012 release was to reduce friction in version
control operations. This was done throughout the product from big new concepts, such as Local
Workspaces, to moving UI that would have popped up in a modal window in the past into modeless
experiences in the editor area or in the new Team Explorer.

In Team Foundation Server 2013, Microsoft has continued to make improvements around source
control UI, while keeping the underlying Team Foundation Version Control functionality stable. If
you are familiar with Team Foundation Server 2012, you will already be comfortable with the cur-
rent version. If you’re coming from an earlier version of Team Foundation Server or another version
control system, you will fi nd the Team Foundation Server Version Control Concepts section of this
chapter very useful.

Team Foundation Version Control balances simplicity in day-to-day work with powerful functional-
ity supporting the requirements of an enterprise version control system. But, to understand Team
Foundation Server Version Control, you need to have a fi rm grasp of some fundamental concepts.

TEAM FOUNDATION SERVER VERSION CONTROL CONCEPTS

You can just dive in and start using Team Foundation Server Version Control with very little effort
or training. However, at some point, you might bump into a couple of areas that prove confusing
unless you understand the basics of how Team Foundation Server sees the world when it comes to
centralized version control. The fi rst fundamental concept you must understand is the notion of the
workspace.

Workspace
One of the fi rst problems with the term “workspace” is that it can be a somewhat overloaded term.
For example, to Eclipse developers, the term “workspace” can mean the Eclipse workspace, which is
entirely different from the Team Foundation notion of workspace, even though they both conceptu-
ally contain source code. To others familiar with version control systems, such as Polytron Version
Control System (PVCS), or ClearCase, the term “workspace” also means something similar, but
again quite different from Team Foundation Server. For SVN developers, the concept of a “work-
space” is completely foreign, and they might assume that this is just the working copy (it is, but also
more than just that).

A workspace can be thought of as the container that bridges the gap between your local computer
and the Team Foundation Server repository. As shown in Figure 6-5, the workspace contains several
important pieces of information.

Team Foundation Server Version Control Concepts ❘ 107

c06.indd 04/22/2014 Page 107

FIGURE 6-5: Workspace in Team Foundation Server

Workspaces are identifi ed by a name and the hostname of the computer the workspace is for. The
name can be up to 64 characters in length, and you can also provide a comment that may be a
useful reminder if you have multiple workspaces on the same computer. The workspace also
contains the working folder mappings that indicate which folders on your local machine map to
which folders on the server.

CHANGING THE COMPUTER NAME OR OWNER FOR A WORKSPACE

The owner and computer name of the workspace are not editable in Visual Studio
or Eclipse. However, you may occasionally need to edit these. To do this, use the
tf workspaces /updateComputerName:OldComputerName or tf workspaces /
updateUserName:OldUserName commands.

Note that the updateCompterName option does not move the workspace from one
machine to another. You are telling Team Foundation Server that the hostname of
the machine that this workspace is on has changed for some reason (that is, it was
renamed or restored from a backup). Similarly, the updateUserName option doesn’t
change the owner of the workspace. It tells Team Foundation Server that your
name has changed from, say, DOMAIN\dbrady to DOMAIN\damianb.

Under the hood, Team Foundation Server actually stored the Windows security
identifi er (SID) of the account. The update call simply tells the server to update its
cache with the current user name for that same SID.

108 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 108

The version control system needs to store information in the workspace, such as which version of
which fi les you have downloaded locally, which fi les you are in the process of editing, and so on.
In Team Foundation Server 2013, the workspace state information can be stored in either of two
locations, locally on disk or on the server. This leads to the terms Local Workspaces and Server
Workspaces. In Team Foundation Server 2010 and below, the workspace state was always stored
on the server (i.e., in what is now called a Server Workspace), but the default for new workspaces in
Team Foundation Server 2012 and 2013 is a Local Workspace.

NOTE If you’ve upgraded an existing Team Project from Team Foundation
Server 2010 or earlier, Server Workspaces will remain the default for that
project.

Local Workspaces
Local Workspaces were new to Team Foundation Server in the 2012 version and are available only
from compatible clients, such as Visual Studio 2012 and 2013, or Team Explorer Everywhere, for
Team Foundation Server 2012 or 2013. If you want to use a Local Workspace, you must be talking
to a 2012 version of the server (or higher) and be using one of the newer clients. If you need to work
on fi les from an older client, such as Visual Studio 2010 or Visual Studio 2008, at the same time as
working on those fi les from a newer client, you will need to use a Server Workspace as described
later in this section.

In a Local Workspace, state about that workspace is stored on the local disk. All the information is
stored inside a folder called $tf (or .tf on UNIX-based fi le systems). The folder resides at the root
of your workspace folder mappings. If there is no common root folder then it will reside at the root
of the fi rst active working folder mapping.

WARNING Because a Local Workspace stores information in a local data store
that only Visual Studio 2012 and above knows how to read, Local Workspaces
are invisible to Visual Studio 2010 and below.

If you want to share a workspace between Visual Studio 2012 or 2013 and an
earlier version of Visual Studio, you will have to convert your Local Workspace
to a Server Workspace.

In addition to storing the state information locally, Local Workspaces have a number of important
differences to the way they work. The primary benefi ts of Local Workspaces are that you can edit
fi les when offl ine from Team Foundation Server and that you can edit fi les outside of Visual Studio
or Eclipse without performing an explicit check-out operation fi rst.

To achieve this, when you perform actions, such as a check-in operation, or see what fi les you
have pending changes for, the Team Foundation Server client will scan the contents of your Local
Workspace and compare the contents of it with a copy of the last downloaded versions of those fi les

Team Foundation Server Version Control Concepts ❘ 109

c06.indd 04/22/2014 Page 109

(which are stored in a compressed form in the $tf folder). In this way, it can tell which fi les were
edited, which fi les have been deleted locally, and which fi les have been added.

Edits are automatically added to your Pending Changes list; however, adds and deletes of fi les per-
formed outside of Visual Studio or Eclipse are classifi ed as Detected (or candidate) Changes. They
are displayed to you, but not automatically added to your pending changes list in case you did not
mean to add or delete that fi le from the version control repository. Handling Detected Changes is
discussed later in this chapter.

If you perform rename or move operations outside of Visual Studio or Eclipse, then when the disk
scanner runs it has no way to tell that these fi les are related and sees that as an Add and Delete of
a fi le (add with the new name/path and delete with the old name/path). Therefore, in the Detected
Changes experience, you are able to associate those two changes and promote them as a Rename.

Because no server communication is required before editing a fi le locally, you cannot prevent a user
from editing the fi le when placing a lock on it. Locks are still available with a Local Workspace,
but they function like a Check In lock in Server Workspaces—that is, a lock prevents someone from
checking in their changes to that fi le.

The other downside of Local Workspaces is that as they store a local copy of fi les to enable you to
compare and undo while off-line and because a scan of the disk is required to tell you which fi les
you have edited, there is a tradeoff between the number of fi les in your Local Workspace and perfor-
mance. Depending on the speed of your local hard drive, you may notice performance degradation
in certain version control operations when working on workspaces containing more than 100,000
fi les; however, those scenarios are rare and the performance degradation is linear depending on the
number of fi les you have locally.

Because Local Workspaces make it so easy to edit and work with fi les under version control, they
became the default mode of working for all new workspaces created by Visual Studio 2012 and
above, and Team Explorer Everywhere for Team Foundation Server 2012 and above. You can easily
convert from Local to Server and vice-versa from the Edit Workspace dialog box in Visual Studio
2013 by going to File ➪ Source Control ➪ Advanced ➪ Workspaces ➪ Edit ➪ Advanced.

Server Workspaces
Server Workspaces are the mode of operation familiar to users of older versions of Team Foundation
Server and the only option available when using older versions of Visual Studio, such as Visual
Studio 2010 or Visual Studio 2008. If you had an existing workspace and upgraded the server to
Team Foundation Server 2012 or 2013 from an earlier release, then that workspace would initially
also be a server workspace.

With a Server Workspace, the information about the state of your workspace is stored on the server.
The server remembers which versions of which fi les you have downloaded to your local computer,
and also stores those fi les that you are in the process of changing, and any fi les that you have
decided to lock so that others cannot edit those fi les at the same time as you do.

Using the workspace to remember the fi les and versions downloaded is one of the ways that Team
Foundation Server can optimize performance for large workspaces. When you ask the server to
Get Latest, it already knows what versions you have of all the fi les, so it can send you only the ones

110 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 110

that have been modifi ed. Additionally, because a Server Workspace stores the fi les you are currently
working on, Team Foundation Server has the capability of highlighting this fact to others in your
team who are also using Server Workspaces so that they know that someone else is currently editing
a fi le that they were about to modify.

But, those benefi ts come at a tradeoff in terms of usability for developers. One of the most common
aspects of Server Workspaces that people often fi nd confusing (and frustrating for some developers
using older versions of Team Foundation Server) is the fact that you must always tell the server when
you do something to a fi le or folder in your workspace (such as editing the fi le, renaming it, or add-
ing a fi le into a folder).

This mode of operation works well if you are always in Visual Studio or Eclipse and are always
connected to your Team Foundation Server, as the IDE integrations automatically perform all the
necessary version control operations on behalf of the user. But, it can lead to confusion when a
developer drops out of the IDE and tries to work with the fi les.

For example, developers might open an image fi le in an external editor and get frustrated when
they are unable to save the fi le because it is read-only, making them switch over to Visual Studio to
explicitly check out the fi le.

Another common complaint with Server Workspaces is that developers might have deleted a fi le
locally in Explorer, realized their mistake and then gone to Visual Studio to do a Get Latest to
retrieve the latest version of that fi le only to be told by Visual Studio that “All fi les are up-to-date”
and the deleted fi le has not been restored. This makes sense when you understand Server Workspaces,
as you never told Team Foundation Server that you were deleting the fi le so it still assumes you
have it. The fi le is easily recoverable by going to Get Specifi c Version and performing a Force Get;
however, that requires a deeper understanding of Server Workspaces and the intricacies of Team
Foundation Server workings than many developers wish to have when all they want to do is edit their
fi les and check in their changes.

For this reason, Local Workspaces is the default when creating a new workspace in Visual Studio
2012 or 2013 against Team Foundation Server 2012 or 2013. However, Server Workspaces still
exist for backward compatibility and for those users who prefer the functionality they offer or
require the scalability in terms of the number of fi les in the workspace that a Server Workspace
can provide.

Working Folder Mappings
As mentioned previously, part of the information contained in the workspace is the working folder
mappings. At the simplest level, a working folder mapping says which folders on your local machine
map to which folders in the repository. For example, if you were to map C:\Local\MyTeamProject
to $/MyTeamProject and then download the fi les to your local machine by performing a Get Latest,
you would have a copy of the latest versions of all the fi les from the server in your local directory.

Team Foundation Server Version Control Concepts ❘ 111

c06.indd 04/22/2014 Page 111

NOTE .NET (and, therefore, Team Foundation Server) imposes a 260-character
limit for the full fi le path, which stems from a limitation of certain APIs in Windows
around fi le handling. Conventions for source code can result in long folder and fi le
names. This is especially true for Java projects, but can be true with many large
Visual Studio solutions. Therefore, a useful tip is to store source code in a folder
off the root of a hard drive (such as C:\source) on Windows, or at a suitable mount
point in UNIX fi le systems. This way, you will have more characters available for
the fi les in your local path.

With Team Foundation Server, working folder mappings are stored in your Team Foundation Server
workspace. They are not shared between other people using the repository (unlike PVCS, for exam-
ple). Viewing the current set of working folder mappings is very easy, as explained in the following:

 ➤ With Visual Studio, go to File ➪ Source Control ➪ Advanced ➪ Workspaces. Select your
workspace and click Edit.

 ➤ With Eclipse, right-click on the project in Package Explorer and go to Team ➪ Manage
Workspaces. Select your workspace and click Edit.

NOTE Alternatively, you can use the tf workfold command or the Team
Foundation Sidekicks tool, available at http://www.attrice.info/cm/tfs/.

Figure 6-6 shows the working folder mappings from Visual Studio. The example shows a fairly com-
plex working folder mapping layout—it is much more usual to see an example with only one or two
active working folder mappings. The fi gure demonstrates some additional working folder mapping
features available in Team Foundation Server. Figure 6-6 also shows all the Advanced options of the
workspace, which are usually hidden until the user presses the Advanced button. Take a closer look
at the working folder mappings.

Active Working Folder Mappings
The fi rst working folder mapping is straightforward. This maps the contents of $/MyTeamProject/
Main to C:\Dev\MyTeamProject\Main recursively. If you create this working folder mapping and
then perform a Get from $/MyTeamProject/Main/HelloWorld, the contents of that folder would be
downloaded to C:\Dev\MyTeamProject\Main\HelloWorld.

Cloaked Working Folder Mappings
The second mapping in Figure 6-6 is not an Active mapping, but is cloaked. A cloaked working
folder mapping tells the server that you do not wish to download the contents that are cloaked. In
other words, you do not want them to appear in your local fi le system, nor do you want to get any
fi les in that folder if the contents of that folder are changed on the server.

http://www.attrice.info/cm/tfs

112 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 112

FIGURE 6-6: Working folder mappings in Visual Studio

In Figure 6-6, you see a cloaked working folder mapping that is a child of the previous Active
recursive mapping for $/MyTeamProject/Main. This means that the large graphic fi les contained in
the $/MyTeamProject/Main/Mockups folder are not downloaded to the local machine, saving band-
width and disk space.

COPYING COMPLEX WORKING FOLDER MAPPING CONFIGURATIONS

A typical working folder mapping confi guration can be quite simple. However,
some version control trees require a more complex folder mapping to be used,
which you may want to share with the team or copy to another workspace on a
different machine. To copy the working folder mappings from another workspace,
you have several options.

From the Edit Workspace dialog box shown in Figure 6-6, you can copy and paste
working folder mappings between different instances of the dialog box. You can
even copy the mappings, paste them into a text editor, such as Notepad, to perform
a mass edit of them, and then copy/paste those back into the working folder map-
pings section.

From the command line, you can create a new workspace using the following
command:

tf workspace /new /template:workspacename[;workspaceowner]

Team Foundation Server Version Control Concepts ❘ 113

c06.indd 04/22/2014 Page 113

In this way, you can specify an existing workspace to use as a template for your
new workspace, taking the working folder mappings from that existing workspace.
The workspaceowner is optional. If you do not provide it, the server will look for a
workspace with that name belonging to your user. However, you can use the
workspaceowner fi eld to copy a working folder mapping set used by a colleague.

Recursive Working Folder Mappings
By default, a standard working folder mapping, as detailed previously, is applied recursively. When
you map a folder to a location in the version control repository, a mapping is implicitly created for
all subfolders. However, you can override the implicit mapping, as was done in the fourth line in
Figure 6-6.

If you do not want a working folder mapping to be recursive, then you can use an asterisk as a wildcard
to say that you wish to map only the server folder and its immediate fi les to your Local Workspace, as
shown in the third line of Figure 6-6.

Mapping Individual Files
Despite the name, working folder mappings do not only apply to folders. They can actually apply
to any path in version control, including individual fi les. For example, in Figure 6-6, the fi le called
HelloWorld.exe.config.dev is being called HelloWorld.exe.config in the Local Workspace.

WORKSPACE PERMISSIONS

With Team Foundation Server 2005 and 2008, the owner of the workspace was
set at the time the workspace was created, and could only be used by the owner
of the workspace. With Team Foundation Server 2010, these restrictions were
removed. Changing the owner is simply a case of editing the owner fi eld in the Edit
Workspace dialog box (see Figure 6-6). To control who can use the workspace, the
owner can select from one of three permission profi les for his or her workspace:
Private workspace, Public workspace (limited), or Public workspace.

Under the hood, a workspace actually has four permissions:

 ➤ Read—The Read permission exists but was not enforced in the shipping prod-
uct. In theory, it would control who would have the ability to see that the
workspace exists, what mappings it had, and what pending changes exist in
the workspace. However, when Team Foundation Server 2010 was released,
any valid users were able to view these properties just as they could do in the
2008 and 2005 releases.

 ➤ Use—The Use permission is more interesting. It dictates who is allowed to
change the state of the workspace—to get fi les, check out fi les, and so on.

continues

114 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 114

 ➤ CheckIn—The CheckIn permission is separated out so that, in certain cases,
other people can use the workspace, but only the owner can check in those
changes.

 ➤ Administer—The Administer permission controls who can change the map-
pings, name, owner, comment, computer, and so on, as well as who can delete
the workspace and change the workspace permissions.

With Visual Studio, these permissions are set by choosing one of the three permis-
sion profi les mentioned previously. A private workspace is the default, and the
behavior is similar to that familiar to users of Team Foundation Server before the
2010 release. Only the owner can use the workspace. The permissions for that
workspace are owner: Read, Use, CheckIn, and Administer.

A public workspace (limited) means that any valid user may use the workspace,
but only the owner is allowed to perform check-ins or change the properties of
the workspace. In this case, the permissions for the valid users would be
valid-user: Read, Use. If the owner sets a workspace to be a public workspace,
then all valid users essentially have the same rights as the owner (that is,
valid-user: Read, Use, CheckIn, and Administer). It also means that any valid
user would also be allowed to change the owner of the workspace, and then set the
workspace permissions back to Private, so this should be used with caution.

Public workspaces can be useful when different developers are sharing the same
machine to make changes in parallel. With a public workspace, you can maintain
a proper audit history to see which users actually checked in the changes from that
particular machine. The limited public workspaces can also be used when you have
requested that colleagues help you make some changes on a machine in your work-
space, but you want them to do it under their own logon credentials and have a
guarantee that they will not be able to check in those changes for you.

The Edit Workspace dialog box only allows you to pick from one of the three per-
mission profi les. If you have more complex workspace permission requirements
(such as sharing a workspace between a few specifi ed users, rather than with all
valid users), you can actually have full control using the .NET object model.

Get
Thus far in this chapter, you have seen the term “Get Latest” a few times already without explicitly
knowing what it means. To download the fi les from a Team Foundation Version Control repository
to your local fi le system, you perform what Team Foundation calls a Get. Note that this is a differ-
ent term from the one used by SVN or CVS to perform this action (referred to in those systems as

continued

Team Foundation Server Version Control Concepts ❘ 115

c06.indd 04/22/2014 Page 115

check-out). The term “check-out” means something else in Team Foundation Server, which you will
learn about shortly.

When you get fi les from version control you can do one of two things:

 ➤ Get Latest—This downloads the latest versions of all the fi les as of the time you asked to
start getting them.

 ➤ Get Specifi c Version—You can fi nd Get Specifi c Version under the Advanced menu in source
control. This downloads a version that you have specifi ed by date, label, changeset number,
or simply the latest version. This specifi cation of the version is called a versionspec in Team
Foundation Server.

FILE MODIFICATION TIMES

By default, with Team Foundation Server the modifi cation time of the fi les in your
workspace on your local machine is left as the current local time on your machine
when you happened to perform the Get from version control that resulted in down-
loading a new version of the fi le. In Team Foundation Server 2012 and 2013, you
can change this behavior by editing the File Time property in the workspace, as
shown in Figure 6-6. If you change the File Time to be Checkin, then the next time
you perform a Get, the modifi cation of the fi le will be the time that version of the
fi le was checked into Team Foundation Server (adjusted to local time on the com-
puter). This can be useful if you have processes that you run locally that use the
fi le’s modifi cation time to help it understand if it needs to include the fi le or not (for
example, when running robocopy to deploy only change fi les to an ASP.NET site or
running make or other timestamp-dependent build processes).

In Team Foundation Server, you get fi les only when you specifi cally tell the server that you want
to. This means that you can ensure that you know the state of your fi les; but, again, this can be a
little different from what VSS users expect who are used to getting the latest fi le as they perform a
check-out.

VERSIONSPECS

In the Get dialog box shown in the following fi gure, there is a section for Version.
Here, you specify what Team Foundation Server understands as a version specifi -
cation, or versionspec. A versionspec specifi es the version that you want to work
with, and can be specifi ed using one of the following types: changeset, label,
date, workspace, or latest.

continues

116 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 116

You learn more about changesets later in this chapter, but in brief, changesets are
the fundamental unit of versioning in Team Foundation Server. Changesets have a
numeric ID associated with them. A changeset versionspec is denoted by C123456
to Team Foundation Server, where 123456 is the ID of the changeset.

A label versionspec says you want a version that belongs to a particularly named
label. It is denoted by myLabel where myLabel is the label name.

Date versionspecs are denoted with a D, and then, in the command line, you can
pass any date format supported by the .NET Framework on any of the date formats
for the local computer (for example, D2008-04-22T22:15).

A workspace versionspec means the version most recently downloaded into
the workspace. This is denoted by a W, meaning the current workspace (or
WworkspaceName;workspaceOwner) when specifying a workspace written as a
string.

Finally, the latest version is a versionspec in its own right denoted by L when
written as a string. When you use the Get Latest command in Visual Studio or
Eclipse, you are actually telling the client to perform a Get of versionspec L.

Certain commands (for example, when viewing the history of a fi le) can accept
ranges of versionspecs denoted by the tilde character (~). Different types of version-
specs can be mixed in those instances. For example, D2004-04-11T18:37~L would
say you wanted a range of versions beginning with April 11, 2004 at 6:37 p.m. up
until the latest version.

continued

Team Foundation Server Version Control Concepts ❘ 117

c06.indd 04/22/2014 Page 117

Check-Out
With a Server Workspace in Team Foundation Server, the initial fi les destined for your workspace
would be marked read-only in your local fi le system. Before you start editing the fi les, you must
check out the fi les from Team Foundation Server to let the server (and others on your team) know
that you are editing the fi les. This happens automatically for you if you are editing fi les from within
Visual Studio as soon as you start typing in the fi les. But you must do it explicitly if you want to edit
the fi les outside Visual Studio when using a Server Workspace.

If you are using a Local Workspace (which is the default), there is no need to explicitly check out
a fi le. If a fi le has been modifi ed on your local fi le system, compared with the version you last did
a Get for, then the fi le is marked as having a pending edit, and it can still be said by some that it is
“checked out.”

When you have fi nished with the fi le and want to commit it back to the repository, you perform a
check-in.

As mentioned previously, the term “check out” is used by many version control systems, but means
different things, depending on the system. In VSS, “check out” means “give me the latest version of
the fi le and lock it so that no one else can edit it.” In SVN (and also CVS), “check out” means “get
the latest version.”

Locks
By default, with both Local and Server Workspaces, Team Foundation Server does not automatically
lock a fi le on check-out. That is, more than one person can edit a fi le at the same time. The fi rst per-
son to check in a fi le does so as normal. Subsequent people will be prompted to merge their changes
with the other modifi cations that have been made since getting the previous version of the fi le if it
was no longer the latest. This behavior is extremely useful in ensuring that teams can develop on
the same code base in parallel (especially with fi les such as a Visual Studio .vbproj or .csproj that
must be edited every time someone on the team adds or renames a fi le in the project).

However, there are times when you wish to temporarily prevent someone from making changes to
a particular fi le or folder in source control. For this reason, Team Foundation Server provides two
types of locks that you can place on a fi le in your workspace: a check-out lock or a check-in lock.

Check-Out Lock
Available only when working with a Server Workspace, a check-out lock will be familiar to users
of older version control systems such as VSS or PVCS. It prevents other users from checking out the
locked fi le while you hold the check-out lock. A check-out lock may not be placed on a fi le if other
users already have that fi le checked out in their workspaces.

118 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 118

As an example, you might use a check-out lock when you are making some major or complex revi-
sions to a fi le and you want to ensure that no one else makes any changes to that fi le until you are
done because you do not want the additional complexity of having to merge their changes into yours
before you check in.

One disadvantage of a check-out lock occurs when someone is using a Local Workspace. They do
not have to explicitly check out the fi le to modify it, which means that a check-out lock will not be
applied. Similarly, if a lock has been applied by someone else, the current user will not be prevented
from editing the fi le. For those people using Server Workspaces, they cannot easily make that fi le
editable in their Local Workspace, or work on it while you have the lock held. Therefore, you are
reducing the ability of your team to work in parallel on the same codebase.

Check-In Lock
Check-in locks are available for both Local and Server Workspaces. With a check-in lock, other
users can still edit the fi le on which you have placed the lock, but they will be unable to check it in
until you have released the lock. Check-in locks can be placed on fi les that others have checked out,
but, by placing the check-in lock on the fi le, you are guaranteeing that you will have the right of fi rst
check-in.

Using Locks Effectively
With any locks, you must ensure that your team communication is effective to explain why you need
to lock the fi le. Locking should be used only where necessary because it reduces the ability of your
team to work in parallel, and so can reduce productivity if overused.

In Source Control Explorer, you can see locks that other users might have on a fi le. If there are mul-
tiple changes, you might need to right-click the item, select Advanced ➪ Properties, and then look at
the Status tab. However, it does not tell you what type of lock they have. To determine this informa-
tion, you can use the tf status /format:detailed command.

Note that locking should be used only to temporarily lock a particular fi le or folder. The lock is held
as part of the locking user’s workspace. If you wish to restrict the ability of developers to edit a fi le
or folder for a longer term (for example, if you want to restrict access to a branch in your codebase
that represents the state of the code in production), then you should consider using version control
permissions as detailed later in this chapter.

Team Foundation Server Version Control Concepts ❘ 119

c06.indd 04/22/2014 Page 119

You can unlock a fi le at any time using the unlock command, but locks are also automatically
released when you check in any changes related to that item in version control.

Check-In of Pending Changes
As you make changes to the fi les in your workspace, you are building up a list of pending changes.
Any changes you make (edits, adds, deletes, undeletes, renames, moves, branches, merges, and so
on) are stored as pending changes in your workspace.

In Team Foundation Server, when you wish to commit your list of changes to the server, you
perform a check-in, as shown in Figure 6-7.

FIGURE 6-7: Pending Changes in Team Explorer

120 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 120

UNLOCKING FILES OF OTHER USERS

Occasionally, you will need to remove the lock placed on a fi le by another user in
your system—for example, when that person has left the company, or is unavailable
for a long period of time. To perform this operation, you need the UnlockOther per-
mission in version control, which is granted to team project administrators by default.

If you have permission, you can easily unlock individual fi les using the command-line
tf lock /lock:none command, from the Team Foundation Server Sidekicks tool,
or from the Team Members Team Foundation Server Power Tool in Visual Studio.

If you need to remove locks because the users have left the company and they
will no longer be working on the codebase, then the easiest way is to delete their
workspaces. This will not only remove the locks contained in the workspaces, but
also free up the resources associated with keeping track of that user’s workspace.
To do this, use the command-line tf workspace /owner:FormerUserName to
fi nd the workspaces belonging to that user and then the tf workspace /
delete WorkspaceName;FormerUserName command, or the Team Foundation
Sidekicks utility available from http://www.attrice.info/cm/tfs/.

A check-in is performed as a single atomic transaction. During the check-in operation, the server
fi rst checks to see if you are able to perform the check-in for these fi les (that is, you have the “Check
in” permission for the fi les set to Allow), that there are no check-in locks on the fi les, and that you
are attempting to check in a change of the latest version of the fi le. If, for some reason, the check-in
cannot occur (for example, because someone else has edited a fi le while you had it checked out and
has committed the changes), then the entire check-in operation will fail. You will be informed of the
reason, along with instructions on how to take corrective action. This is a different behavior from
systems such as VSS that do not have the notion of an atomic check-in.

Assuming you are able to check in the fi les, the modifi ed fi les are uploaded to the server and com-
mitted to the version control repository, along with any comment that you may have provided with
the change. Once a set of changes has been committed, it is known as a changeset. (Changesets are
examined in more detail shortly.)

Related Work Items
While performing a check-in, it is best practice to also associate the change with a work item (such
as a bug, task, feature, requirement, user story, and so on). In this way, you can easily get end-to-end
traceability of requirements on through to changes of code, and into builds, which is a key feature
of Team Foundation Server.

http://www.attrice.info/cm/tfs

Team Foundation Server Version Control Concepts ❘ 121

c06.indd 04/22/2014 Page 121

COMMENTING ON YOUR CHECK-INS

As is common with version control systems, when performing a check-in to Team
Foundation Server, you can provide a comment to summarize your change. It is
a best practice to add a comment, and with Team Foundation Server, you can
actually enforce this by using a check-in policy. In previous versions of Team
Foundation Server, the Changeset Comments Policy was available as part of the
Team Foundation Server Power Tools, but in Visual Studio 2012 and 2013 and
Team Explorer Everywhere for Team Foundation Server 2012 and 2013, it now
ships as standard. Adding comments means that when you look at the history later,
it is easy to quickly see why changes were made.

When providing comments, you should concentrate on why you were making the
change, not what. For example “edited HelloWorld.cs” or “Fixed bug 1234” are
not particularly useful comments because you could easily get that information
from looking at the details of the changeset. Instead, the comment “Refactored
code into more discrete methods to make it easier to test and maintain” would be
much more useful.

NOTE For more information on work items, see Part III (Chapters 12 through
16) of this book.

Included and Excluded Changes
When checking in fi les, the changes that you wish to be included in the check-in operation are listed
in the Included Changes section of the Pending Changes page. You can exclude changes by dragging
them from the Included Changes section over to the Excluded Changes section or by right-clicking
on the fi les and selecting Exclude. When you exclude a fi le from being checked in, this is remem-
bered in future Visual Studio sessions. This might be useful, for example, if you have edited a web
.config fi le to switch on some debugging to help you with a bug that you are trying to fi x, but you
do not want to accidentally check that fi le in.

With excluded changes, you can drag-and-drop them back into the Included Changes section
or right-click on them and select Include if you want to check them into a future changeset.
Alternatively, you can right-click Perform an Undo to restore the fi le back to the version it was
before you started editing it.

122 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 122

Detected Changes
In the Excluded Changes section in Figure 6-7, you can also see an area for Detected Changes. This
is important, as it shows changes that the Local Workspace disk scanner has detected that have
occurred outside Visual Studio, for which you might wish to pend changes. Clicking on the Detected
Changes link will show the Promote Candidate Changes dialog box (see Figure 6-8).

FIGURE 6-8: Promote Candidate Changes dialog box

In the example shown in Figure 6-8, three changes have been detected that occurred outside of
Visual Studio. The fi le readme.txt was added into a folder covered by the working folder map-
pings and Class2.cs was renamed to Messages.cs. As discussed earlier in this chapter, if renames
are performed inside Visual Studio or Eclipse, then the appropriate rename pending change will be
created and stored in the history for that fi le. However, if the fi les were renamed outside of Visual
Studio or Eclipse, then this will show up as an add and a delete of the fi le. To tell Team Foundation
Server that this is a rename and therefore maintain the full history, you can select both changes,
right-click, and select Promote as Rename, as shown in Figure 6-8.

Ignoring Files
If the Local Workspace disk scanner has detected fi les that you never wish to be part of version
control, you can specify that they be ignored by right-clicking on the fi le and selecting the appropri-
ate option, as shown in Figure 6-9.

This will create a fi le called .tfIgnore containing the details of the fi lename (or pattern) that
should be ignored. Once checked in, other team members will inherit these ignore settings, which
allows you to ensure that they do not accidentally add the fi les that you have said should be ignored
by Team Foundation Server.

Team Foundation Server Version Control Concepts ❘ 123

c06.indd 04/22/2014 Page 123

FIGURE 6-9: Ignoring changes from the Promote Candidate Changes dialog box

.TFIGNORE FILE SYNTAX

The syntax of the .tfIgnore fi le allows for more complex ignore patterns than are
possible to confi gure using the menu options in the Promote Candidate Changes
dialog box. The .tfIgnore fi le is a text fi le and the settings in it apply recursively
to all folders below it in the workspace unless the pattern is prefi xed by the \ char-
acter. Wildcards such as * and ? are allowed, and you can begin the ignore pattern
with a path to make it more specifi c (but wildcard patterns are not permitted in the
path portion, just in the fi lename portion of the pattern). A hash (#) character at
the start of the line allows you to create a comment for documentation purposes.
An exclamation point (!) means that you would like to specifi cally include fi les of
that pattern when they might otherwise be ignored because of the project collection
global exclusion patterns or by a .tfIgnore fi le higher up in the folder hierarchy.
Finally, to make it easier to apply a .tfIgnore pattern cross-platform, a path
separator character can be either a forward slash (/) or a backward slash (\)
character and they are interpreted as path separators on Windows and UNIX fi le
systems alike.

Because of the similarity of the .tfIgnore fi le syntax to similar fi les for other ver-
sion control systems, such as .cvsIgnore, .svnIgnore, or .gitIgnore, it is often
possible to convert ignore fi le patterns designed for one system to the other just by
copying the fi le and renaming it.

continues

124 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 124

The following is an example of a .tfIgnore fi le:

An example .tfIgnore file

Excludes all files ending in .txt in Alpha\Beta
and all its subfolders.
Alpha\Beta*.txt

Excludes all files ending in .cpp in this folder only.
*.cpp
Excludes all files ending in .cpp in this folder
and all subfolders.
*.cpp
If "Contoso" is a folder, then Contoso and all its children are
excluded. If it is a file, then only the "Contoso" in this
folder is excluded.
\Contoso
Include .dll's in the \lib folder inside this project
!\lib*.dll

Check-In Notes
While checking in fi les, it is often useful to capture metadata about the change from the person com-
mitting the check-in. For example, who performed a security review of the changes or a reference
to a third-party ticketing system? In other version control systems, this is often implemented by the
developers adopting a convention when providing check-in comments. However, Team Foundation
Server provides a mechanism for capturing structured data about a check-in—the check-in notes.

In the Pending Changes page of Team Explorer, you have direct access to the check-in notes to cap-
ture data about the check-in, as shown in Figure 6-7. Check-in notes are all text-based responses and
other than a simple check to enforce that a value has been entered, no other validation is available.
A check-in note could be many lines (in fact, up to 2GB of data). However, typically it is just a single
name or value.

To confi gure the check-in notes for a team project in Visual Studio, go to Team ➪ Team Project
Settings ➪ Source Control. Click the Check-in Notes tab, as shown in Figure 6-10.

From the Check-in Notes tab, you can add, edit, remove, and reorder check-in note titles, as well as
make any check-in note fi eld mandatory. If a check-in note is required, then, when a user attempts
to perform a check-in without providing a value for that fi eld, the user will be prompted for a value
before being allowed to check in.

Check-in Policies
A check-in policy is a piece of code that runs in the client performing the check-in, which validates
if the check-in is allowed to occur. For Visual Studio, this code is written in .NET. In Eclipse or the

continued

Team Foundation Server Version Control Concepts ❘ 125

c06.indd 04/22/2014 Page 125

cross-platform command-line client, the check-in policy is written in Java. Figure 6-11 shows the
check-in policies available in a standard installation of Visual Studio 2013.

FIGURE 6-10: Check-in Notes tab

FIGURE 6-11: Check-in policies for Visual Studio 2013

126 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 126

Additional check-in policies are available as part of the
Team Foundation Server 2013 Power Tools. Also note
that the check-in policies enforced by Team Explorer
Everywhere in Eclipse and the cross-platform command-
line client must be confi gured from a Team Explorer
Everywhere client by a user with appropriate permission.
This is because those clients use a separate (Java-based)
implementation for check-in policies. Once confi gured by
the administrator in Visual Studio and in Eclipse, the
check-in policies will be in effect for all users checking in
affected fi les to that team project.

If a user attempts to perform a check-in that fails valida-
tion of the check-in policy, the user will be warned about
the policy failure, as shown in Figure 6-12.

If necessary, it is possible to override the policy by clicking the Override Warnings link and entering
a comment.

Undo Pending Changes
Even the best developers sometimes make mistakes and wish that they could simply revert their
changes instead of checking them in. In Team Foundation Server, this is accomplished by perform-
ing an Undo Pending Changes. This will allow you to select which changes you wish to undo, and
those fi les will be rolled back to the previous version that you downloaded into your workspace (not
the latest version on the server, because that could be different).

If the change you are undoing is the addition of a fi le (called an add), the pending add is removed
from your list of pending changes. However, the fi le is not automatically deleted from the disk,
allowing you to go back to add that fi le if you have mistakenly undone the change.

Note that undoing a pending change reverts the state of the fi le back to the point at which you last
checked it in. If you want to actually undo a change that you have already checked in, you should
look at the rollback command covered later in this chapter.

Changeset
When you perform a check-in, all the information about that single atomic check-in operation is
stored as a changeset. The changeset is the fundamental unit of versioning in Team Foundation
Version Control. It is represented by a number—the changeset ID, which is a unique incrementing
number across the entire Team Project Collection. The only way that a change to the contents of a
version control repository can occur is by creating a changeset. In fact, this is true even when creat-
ing the version control repository. When you create a team project collection, one of the things that
the setup process does is check in the root of the version control repository $/ as changeset 1.

FIGURE 6-12: Policy Failure warning

Team Foundation Server Version Control Concepts ❘ 127

c06.indd 04/22/2014 Page 127

REMOVING SOURCE CONTROL FILES FROM YOUR LOCAL FILE SYSTEM

You can see that changeset numbers are the unique unit of versioning in Team
Foundation Server by noting how to remove a fi le from your local fi le system when
using a Server Workspace without deleting it from version control.

Occasionally, you will have a fi le in your workspace that you do not want locally
for some reason, but you want to leave it in version control. The obvious course of
action is just to go out to the fi le system and delete it from the disk. This works fi ne
with the new Local Workspaces in Team Foundation Server 2013, but with a Server
Workspace it would cause problems. In that case, it is because you have not told
Team Foundation Server that you have deleted it locally, so if you perform a Get
Latest on the folder, because the server thinks you already have that fi le version in
your Server Workspace, it doesn’t send the fi le to you again until someone makes a
change to that fi le.

However, if you perform a Get Specifi c Version on the fi le or folder and set the
changeset to 1, the fi le will be deleted locally and will show in Source Control
Explorer as Not Downloaded. Performing a Get Latest on the fi le will download
it again.

Why does this work? Because changeset 1 is the changeset that was created when
the team project collection was created, and the root of the version control reposi-
tory ($/) was checked in. By saying that you want to get the version of the fi le at
changeset 1, you are telling the server you want to get that fi le as it was at a point
in time, which is represented by changeset 1. The fi le didn’t exist at changeset 1,
and so it is deleted from your local fi le system.

You’ll be glad to know that if you are using Local Workspaces, which are the
default in Team Foundation Server 2013, then you don’t have to deal with any
of these peculiarities; just delete the fi le locally and do a Get when you want it
back. However, understanding the behavior helps understand changesets in Team
Foundation Server regardless of which workspace type you use.

The changeset contains all the information about the change—what adds, edits, renames, deletes,
branches, merges, and so on, occurred at that instant—along with the additional information of
what work items were associated with the change, any check-in notes, and check-in policy compli-
ance. The date of the changeset, and who checked it in, are also tracked by the server for auditing
purposes. Note that this is different from VSS, where the date on the client machines actually could
affect the date of that fi le in the version control repository.

Changeset IDs increment across the whole Project Collection. For example, a check-in to
$/TeamProjectA/FileX.txt could be changeset 25, and the next check-in might affect

128 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 128

$/TeamProjectB/FileY.txt, making that changeset 26. Therefore, if you view the history of a
single fi le, you will see the IDs of the changesets in which changes occurred to that fi le. Files are not
individually versioned as they are in VSS, but their version is the ID of the changeset in which they
were altered, as shown in Figure 6-13.

Changeset details
Compare
Annotate

Track changeset
Get this version

View

FIGURE 6-13: History view in Visual Studio 2013

The changes that occurred in a changeset are immutable—you cannot go back in time and rewrite
history. However, the owner of a changeset (or an administrator) is able to edit the changeset com-
ment and check-in notes after the event. In addition, a work item may be linked to a particular
changeset at any point after the changeset is created, and that work item would show up in the
associated work items channel when viewing the changeset details.

ROLLING BACK A CHANGESET

Occasionally, a change will be committed to the repository that needs to be
reverted. In Team Foundation Server 2010, rolling back a change was only avail-
able from the command line. However, since Team Foundation Server 2012 you
have been able to roll back a change from the history view by right-clicking, or
from the changeset details page in Team Explorer.

Shelvesets
Sometimes, when you work on a set of fi les, it is useful to store the changes on the server without
committing those changes to the main code line that the rest of the team is working on. Perhaps
because you want to save progress on a particularly large change, you might want to share a set of
changes with a colleague on a different machine. Team Foundation Server provides a simple mecha-
nism to help in those instances—the shelveset.

A set of pending changes can be saved to the server in a shelveset—a process called shelving. A
shelveset is uniquely identifi ed by the owner and a name given to the shelveset.

Team Foundation Server Version Control Concepts ❘ 129

c06.indd 04/22/2014 Page 129

Shelvesets share much in common with changesets. They can contain the same metadata (work item
associations, check-in notes, comments, and so on). However, they are not versioned in the same
way. If the same person saves a set of changes to a shelveset with the same name, the contents of
that shelveset will be overridden with the contents of the new shelveset. In addition, shelvesets can
be deleted. Unlike when a fi le is deleted in version control, if you delete a shelveset, the contents of
that shelveset are gone. A shelveset cannot be undeleted. Therefore, a shelveset is a temporary store
of data on the server, but one whose lifetime is controlled by the owner of the shelveset.

To get the contents of a shelveset into a workspace, you fi rst fi nd the shelveset and then you unshelve
it. To fi nd a shelveset belonging to you or another user, go to the Pending Changes page in Team
Explorer and select Find Shelvesets from the Actions menu. You can unshelve into different work-
spaces, on different computers. You can e-mail the name of a shelveset to a team member, and that
person can fi nd it by your user name, look at the details, compare the fi les in it with other versions,
and even unshelve the contents into their workspace, provided they have suitable working folder
mappings for the shelved fi les.

For many instances, judicious use of shelvesets can be a quick and easy way of passing around and
storing version control data with your team, and can reduce the need for temporary private branches
of code. However, shelvesets do take up some resources on the server, so you should delete old
shelvesets when no longer needed.

Shelvesets are used by the My Work feature covered later in this chapter and the gated build and
buddy build features discussed in Chapter 18.

Branches
Generally speaking, a branch in Team Foundation Server can be thought of as a folder that contains
a copy of the source tree from another area in the tree taken at a point in time. A branch is useful
when parallel areas of development are required.

NOTE For more information about branching concepts, see Chapter 5.
For more detail and best practices on how to branch and merge with Team
Foundation Server, see Chapter 10, and for some examples of using branching in
common version control scenarios see Chapter 11.

In Team Foundation Server 2005 and 2008, a branch was exactly that—a folder. However, in Team
Foundation Server 2010, branches were promoted to be a fi rst-class citizen. As shown in Figure
6-14, a branch has a unique icon in source control to distinguish it from regular folders. It also
can contain additional metadata (such as the owner), and description, as well as the relationships
between it and other branches.

130 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 130

FIGURE 6-14: Information displayed for a branch

You can convert an existing folder to a full branch object very easily by right-clicking the folder in
Source Control Explorer and selecting Branching and Merging ➪ Convert to Branch. If you created
a Main folder when adding your solution to version control at the beginning of this chapter, then
convert this to a full branch now.

USING SOURCE CONTROL EXPLORER

The Source Control Explorer (see Figure 6-15) provides a view of your current Team Foundation
Version Control workspace. You can show the Source Control Explorer by clicking the link in
the Team Explorer home page or in Visual Studio by going to View ➪ Other Windows ➪ Source
Control Explorer.

Using Source Control Explorer ❘ 131

c06.indd 04/22/2014 Page 131

FIGURE 6-15: Source Control Explorer

Apart from the fi les and folders, the Source Control Explorer contains several useful areas. In Visual
Studio 2013, the toolbar for the source control editor is inside the control—not part of the main Visual
Studio toolbars. In addition to shortcuts to a variety of actions, the toolbar also contains the Workspace
selection drop-down menu, which shows you which workspace you are currently viewing in Source
Control Explorer, and allows you to quickly switch between workspaces or manage workspaces.

BE CAREFUL WHEN SWITCHING WORKSPACES

In Visual Studio 2013, a lot has been done to reduce friction and also to allow
you to be very productive with version control without having to understand the
concept of workspaces. Therefore, you often have just a single workspace when
starting out with Team Foundation Server. However, if you do create additional
workspaces, be cautious that switching the workspace you are looking at in Source
Control Explorer does not affect the workspace viewed in the Pending Changes
page (which is switchable separately in the Pending Changes page when you have
multiple workspaces available).

132 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 132

The Source Location shows the server path that you are currently navigating. You can type in or
paste a server path if you know exactly where you want to browse. When you press Enter, you
will navigate to that area. If you click the drop-down arrow, you can navigate up the folder hierar-
chy from your current location. The Local Path shows which folder maps to the server path being
viewed. If a mapping is present, Local Path is clickable, and doing so will open a Windows Explorer
window showing that local path.

From Source Control Explorer, you can view, add, delete, and undelete fi les, as well as check in,
check out, branch, merge, view history, view properties, and perform all other version control
operations. Think of Source Control Explorer as your master control area for Team Foundation
Version Control.

MANAGING SOLUTION SOURCE CONTROL BINDINGS

The mapping between a solution in Visual Studio and the version control settings
is stored in the .sln fi le. If you wish to customize the bindings, or remove them
entirely, then go to File ➪ Source Control ➪ Change Source Control while editing a
fi le in the solution.

If you used the VSS upgrade wizard to import a VSS repository into Team
Foundation Server, you should fi nd that your bindings for the solution have been
automatically converted for you. If not, you can use the tfpt bind command in
the Team Foundation Server Power Tools to do this in an automated way. Or you
can fi x the bindings the fi rst time you open the solution by removing the old bind-
ings and adding the new ones in the Source Control dialog box.

However, if you manually moved your source over from the latest version from VSS
or any other version control system, you might have to modify the bindings the fi rst
time you open the solution. Equally, if you have been provided with a copy of some
source code that was previously checked into a Team Foundation Server reposi-
tory that you do not have access to, then you can use this dialog box to remove the
bindings.

Chapter 9 provides more information on migrating from legacy version control
systems.

Viewing History
To view the history of a fi le or folder, in Source Control Explorer, right-click the fi le or folder, and
select View History from the context menu. This opens a new document tab in Visual Studio.

The new History window is now a tabbed document window in Visual Studio. This allows you to
open multiple History windows for research, something that was not possible in Visual Studio 2010

Using Source Control Explorer ❘ 133

c06.indd 04/22/2014 Page 133

or below. The History window also provides a view of both the changesets associated with the fi le
or folder, as well as any labels.

You have several options when you click the Changeset tab. You can select a changeset and click
the View button to view the fi le version for that particular changeset. You can click the Changeset
Details button to view the details for a particular changeset, including all the fi les that make up the
changeset and any associated work items. You can compare two different versions of a fi le or folder
to see the differences. Clicking the Annotate button allows you to see, line by line, who made what
changes to a particular fi le.

You can select a changeset and click the Get This Version button. This will replace the current
version of this fi le in your workspace with the selected version, enabling you to easily return to
an earlier version of a fi le. Finally, you can right-click a fi le version and click Rollback Entire
Changeset. The effect of this is to revert all the changes that were made in that changeset. Note
that this applies not just to this fi le, but to all fi les in the selected changeset.

The History window also allows you to track the changes across multiple branches, merges, and
renames.

NOTE Chapter 10 provides more information on branching and merging.

Labeling Files
A label is a marker that can be attached to fi les and folders. This marker allows all the fi les and fold-
ers labeled together to be retrieved as one collective unit. Labeling was available in previous versions
of Visual Studio, but it had some issues. Labeling an item could sometimes be a tedious and complex
process, and labeling a large number of fi les could be very slow.

To create a new label, in Source Control Explorer, right-click the fi le or folder you want to label, and
from the Advanced context menu, select Apply Label. This opens the New Label window, as shown
in Figure 6-16.

FIGURE 6-16: New Label window

134 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 134

In this window, you can enter the label name and a comment. You can also select the version that
you want to label. You can choose to label by Changeset, Date, Label, Latest Version, or Workspace
Version. Click the Create button to create the label.

Notice that the Create button is a drop-down arrow. Clicking the arrow provides you with two
options. You can create the label as is, or you can create the label and then edit it. If you select
Create and Edit, the label will be created, and you will be presented with a new tab, as shown in
Figure 6-17.

FIGURE 6-17: Using Create and Edit to create a label

This tab allows you to make multiple changes to the label. You can add new fi les to the label.
You can change the version of an individual fi le that the label is currently applied to. And you can
remove fi les from the label. All of this is made easily accessible by using a tree-view control.

NOTE In Team Foundation Server, labels can be edited at any point after they
are created by any user who has the “Administer shelved changes” permission set
to Allow. This is very different from VSS, where labels are fi xed once created,
and more like the tagging behavior in SVN. Because of this reason, labels in
Team Foundation Server should not be used for strict auditing purposes.

Recovering When Things Go Wrong
Occasionally, you can get your workspace into a confusing state. This was more common with
Server Workspaces when you were initially learning Team Foundation Server and were doing a lot of

Using Source Control Explorer ❘ 135

c06.indd 04/22/2014 Page 135

changes outside of the IDE. However, even with Local Workspaces things can sometimes get confus-
ing when you get started.

Once you understand Team Foundation Version Control, you will fi nd that this never happens to
you. However, until you understand how the server thinks about version control, the following
tips can help you get your workspace back into a state that is more understandable. If you fi nd that
you have a development workfl ow that requires you to take any of the following steps as part of a
normal day, then you are doing something wrong, and you should look again at how you are using
Team Foundation Version Control.

Get Specifi c, Force Overwrite, Force Get
The Get Specifi c Version dialog box has options to “Overwrite writable fi les that are not checked
out” and “Overwrite all fi les even if the local version matches the specifi ed version.” These two
options can help you if you are using a Server Workspace, but have been editing fi les outside of
Visual Studio or Eclipse and you want to replace them with the server version.

The default behavior when doing a Get is to warn you when you attempt to download a new version
of a fi le that is writable locally, and not to download it. This is to prevent overwriting of changes
that you may have made locally and wanted to keep.

If you force a Get, you will download all fi les again, even if the server thinks you already have a
copy in your workspace. This allows you to recover from the situation where you have deleted a fi le
locally in a Server Workspace but have not told Team Foundation Server, and so it will normally
not send the fi le to you when you perform a Get because it thinks you have it. The Force options are
almost never required when using a Local Workspace.

Detect Local Changes in Eclipse
You can detect local changes in the Team Foundation Server plug-in for Eclipse, available as part
of Team Explorer Everywhere. You can do this by selecting Detect Local Changes from the Actions
menu in Team Explorer, or by right-clicking a project in Package Explorer. If you have a Local
Workspace, a full disk scan will be performed to detect changes. Even when used with a Server
Workspace, your Local Workspace will be compared with the server version, and the plug-in will
attempt to check out fi les that you have changed.

Re-Create the Workspace
If all else fails, then the nuclear option is to go to the Manage Workspaces dialog box (File ➪ Source
Control ➪ Workspaces in Visual Studio), delete your workspace, and create it again. Move any fi les
that were in your local working folders to a temporary directory, and start all over again.

This is the Team Foundation Server equivalent of rebooting your version control state. When you
delete a workspace, all information about what fi les you have downloaded, what locks you might
have invoked, and what fi les you had checked out is removed. Therefore, this option should not be
taken lightly but is guaranteed to get you back into a known good state.

136 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 136

KEEPING ON TASK WITH MY WORK

If you have Visual Studio Ultimate 2012 or 2013, or Visual Studio Premium 2012 or 2013 installed,
then you will see the My Work section in Team Explorer. This feature was added to Visual Studio
2012 and was designed to help you switch context between activities, thus allowing you to suspend and
resume tasks and bring along all the information and tool windows you need to work on those tasks.

A common problem with development is how long it takes you to get “into the zone” when solving a
problem or developing a feature. For example, imagine that you are working on a new complex task;
you have it partially implemented, but the code is nowhere near fi nished yet. You have a set of fi les
open in Visual Studio, a bunch of tool windows just in the position you are working, and a set of
breakpoints and watches that you have set up to help you solve the exact problem you are working
on. But then an urgent bug fi x is found that needs your immediate attention, or maybe colleagues
are requesting that you do a code review so that they can get their work checked in and move onto
the next task. Getting back to where you were before the interruption can take a long time, not just
getting your brain back into gear, but also all the mechanics of getting the fi les open again, and the
windows and breakpoints set up how you wanted them.

The My Work page in Visual Studio aims to help you get back into the zone as quickly as possible
and stay in the zone as much as possible by centralizing all your activities together. This makes it
easier for you to switch contexts when the inevitable interruptions occur and also makes it even
easier to keep your team up to date with what you are working on.

As previously stated, the My Work page is available only if you have Visual Studio Ultimate 2012
or 2013, or Visual Studio Premium 2012 or 2013 installed on your machine. If you have one of
those versions installed then you will see My Work is the fi rst tile of your Team Explorer home page.
Clicking the link will take you to the My Work page shown in Figure 6-18.

FIGURE 6-18: My Work page in Team Explorer

Keeping on Task with My Work ❘ 137

c06.indd 04/22/2014 Page 137

Note that the My Work page automatically picks up what your team context is from Team Explorer
and shows you work items assigned to you in the Available Work Items section. If you compare the
available work items in Figure 6-18 with the agile planning task board view on the web, as shown in
Figure 6-19, you can see the same three tasks assigned to Damian Brady.

FIGURE 6-19: Agile task board displaying work to do

NOTE The Agile planning tools are covered in detail in Chapter 14.

In this example, start work on Task 214, which is to create a Windows Phone application. To track
what you are working on (and also to let the team know that you are working on it), you drag the
task from Available Work Items up to In Progress Work. You could also right-click the task in the
Available Work section and select Add to In Progress. The My Work page will now look as shown in
Figure 6-20.

When you move the work item from Available to In Progress, Visual Studio updates the status of
the work item accordingly. This makes it easy for you to remember what you are currently work-
ing on, but also allows your team members to see what is happening when they check in with the
task board, as shown in Figure 6-21, where the highlighted task has moved over to the In Progress
column.

138 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 138

FIGURE 6-20: My Work updated

FIGURE 6-21: Task automatically updated in task board

Keeping on Task with My Work ❘ 139

c06.indd 04/22/2014 Page 139

LIMITED SYNCHRONIZATION OF IN PROGRESS WORK

Moving work items between states on the boards in Team Web Access is distinct
from moving them between sections in My Work. In Visual Studio, you are identi-
fying the items you are working on right now, while the State of a work item rep-
resents its state in the sprint as a whole. A work item may be In Progress without
anyone actively working on it.

Moving from Available to In Progress in My Work will change the status of your
work item to In Progress; however, moving it back to Available or suspending work
will not reset the value to To Do. Similarly, moving a work item to In Progress on
the board will not move it to In Progress in Visual Studio.

This limited synchronization makes sense if you consider that a single developer
may have a number of workspaces or Visual Studio instances running in different
locations, each of which is being used for working on different tasks. Indeed, a
team member may not be using Visual Studio at all in the case of designers or data-
base specialists.

As you start to make changes for your task, the state of your version control changes are shown in
the My Work page along with a View Changes link to take you to the pending changes page to see
more information, as shown in Figure 6-22.

FIGURE 6-22: Work in progress in Visual Studio

Then a coworker drops by your desk and asks you to take a quick look at the code review that she
just sent, as she needs to get the fi x checked as soon as possible. You want to suspend your current
work so that you can go do the code review and then come back to your task later. Simply press the
Suspend button in the My Work page.

When you press the Suspend button, it will create a new shelveset for you containing your changes
in version control. The shelveset will, by default, have the title of the fi rst work item you added to
your In Progress Work section, but you can edit the name before pressing the Suspend button again,
as shown in Figure 6-23.

140 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 140

FIGURE 6-23: Suspending work

In addition to creating the shelveset, Visual Studio also stored the windows that you had open, the
position of your tool windows and breakpoints, and so on as properties on that shelveset.

Next, you will do the code review as requested and send over your comments. A step-by-step guide
to the code review process in Visual Studio appears later in the chapter.

Once you have fi nished reviewing your coworker’s code, you are ready to pick up where you were.
Returning to the My Work page in Team Explorer, you see that your Suspended Work section con-
tains what you were last working on, as shown in Figure 6-24, which is very handy in case you had
forgotten. Select the suspended work and press Resume.

FIGURE 6-24: Resuming suspended work

Managing Code Reviews ❘ 141

c06.indd 04/22/2014 Page 141

This quickly unshelves the changes, restores the fi les that you had open, opens tool windows, and
restores your breakpoints.

Note that if you forget to resume your work immediately, but instead do what many people do and
just come back to your desk and start working on something else, you can select the suspended work
and merge it with the current work in progress (thanks to the changes in Team Foundation Server
2012 to support merge on unshelve and all the automerge improvements).

When the task is complete, you can press the Check In link directly in the My Work page. That will
take you to the Pending Changes page to review your changes, enter a comment, and check in. Note
that if you are associating a work item on check-in as Resolving the work item, then when you per-
form the check-in, the work item will automatically be moved onto its next state, which in your case
is Done.

The work item is then updated in the team task board, and a link is created between the changeset
created and the work item you associated the change with. All this happened simply and easily by
using the My Work page.

NOTE The My Work page is so useful that you might fi nd yourself going there
a lot. A quick keyboard shortcut to get to the My Work page from anywhere in
Visual Studio is Ctrl+0, then M. For a complete list of keyboard shortcuts in
Team Explorer see http://aka.ms/TEKeys2013.

MANAGING CODE REVIEWS

Code reviews are formal or informal reviews of code by a lead or peer developer before a developer
checks in his or her source code changes. Following are some examples of what code reviewers look
for when they review the code:

 ➤ Best practices

 ➤ Potential bugs

 ➤ Performance

 ➤ Security threats

 ➤ Following internal coding standards

 ➤ Previous code review suggested changes

Visual Studio Premium 2013 and Visual Studio Ultimate 2013 contain a code review feature that, in
conjunction with Team Foundation Server 2013, allows a rich code review experience.

http://aka.ms/TEKeys2013

142 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 142

NOTE While the Premium 2013 and Ultimate 2013 editions of Visual Studio
contain a rich code review experience, code reviews can still be carried out by
developers not using one of those Visual Studio SKUs by using Team Foundation
Server shelvesets to pass around the fi les to be reviewed and by making use of
Check-In notes to record the code reviewer for a particular changeset.

NOTE Team Foundation Server 2013 introduces a feature called lightweight
code comments for commenting on changes from within the browser. In Team
Web Access, team members can add notes to an entire changeset or shelveset, a
single fi le, or even to individual lines within a fi le. Users can reply to comments,
creating a hierarchy of messages like a message board.

Requesting a Code Review
You can request a code review of your current pending changes from the Home page of Team
Explorer from the My Work page, as shown in Figure 6-25, or from the Actions menu in the
Pending Changes page of Team Explorer. Alternatively, if you would like to request a code review
of changes already committed to the repository, then you can right-click a changeset in the History
view and request a review from there, as shown in Figure 6-26.

FIGURE 6-25: Requesting a code review from the My Work page

Managing Code Reviews ❘ 143

c06.indd 04/22/2014 Page 143

FIGURE 6-26: Requesting a code review of a changeset from the History view

Regardless of how you request the code review, you will be taken to the New Code Review page
of Team Explorer, as shown in Figure 6-27. Here, you enter the name of the people you want to
perform your review (you must provide at least one name, but you may request several reviewers).
You also provide a title for the code review (which is taken from the Changeset comment or any cur-
rently associated work items by default). Then you can specify an area path for your code reviews—
by default, these are scoped to the Team Project, but if you have areas defi ned for the different
elements of your project, then you might want to have reviews categorized by these areas. Finally,
you can add a description about what it is in particular you want the reviewers to focus on and press
Submit Request. Behind the scenes, a new Code Review Request work item is created to help track
the status of your review with a Code Review Response work item to track the responses. If this is a
review of pending changes (as opposed to a review of a checked-in changeset), then a new shelveset
will be created in Team Foundation Server containing your selected changes.

Performing a Code Review
Your team members will see your Code Review requests appear in their own My Work view, as
shown in Figure 6-28, from where they can open them. Selecting the link below the Code Reviews
section heading in the My Work page allows you to fi lter the reviews to show code reviews that you
have initiated, your reviews and requests for reviews sent to you, incoming code review requests,
and recently fi nished or recently closed reviews.

NOTE You may want to confi gure an e-mail alert so that team members are
notifi ed on new Code Review requests by e-mail as soon as they are created or
when someone leaves comments for them on a requested review. That way, if
users are not in Visual Studio or not using the My Work page, they will know
about a Code Review request. You can edit alerts by going to Team ➪ Project
Alerts in Visual Studio or by viewing the page directly in Web Access.

144 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 144

FIGURE 6-27: Creating a New Code Review request

FIGURE 6-28: Code Review requests in the My Work Page

Managing Code Reviews ❘ 145

c06.indd 04/22/2014 Page 145

Incoming requests are indicated by the arrow next to them, as shown in Figure 6-28. You can open
a Code Review request by double-clicking it, which will show you the Code Review page in Team
Explorer, as shown in Figure 6-29. You can see the details of the code review, the reviewers, related
work items, fi les, and any comments left by other reviewers.

The fi rst thing you should do is use the links at the top of the code review, as shown in Figure 6-29,
to indicate whether you Accept or Decline the Code Review request. This step is completely optional
but is useful to let others on your team know that you are signing up to do the code review. If you
decline the request, then you should provide a comment as to why you don’t need to review it. You
may also want to add additional reviewers if you think that someone else on the team should give a
second opinion on the changes.

FIGURE 6-29: Incoming Code Review page in Team Explorer

Once you have accepted the code review, you can inspect each fi le in the review. Clicking a fi le will
open it in the diff view. From here you can select an area of code, right-click, and leave a comment

146 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 146

on particular line ranges. You can right-click a particular fi le in the Code Review page and select
Add File Comment to leave an overall comment for the entire fi le. You can also use the check boxes
against the fi les in the Code Review page to indicate that you have reviewed that fi le, also shown in
Figure 6-30.

FIGURE 6-30: Conducting a code review in Visual Studio

Finally, you can leave an overall comment on the review and then click the Send and Finish link
shown in Figure 6-30 to indicate whether the code review is good (i.e., can be checked in) or needs
work before being checked in (and possibly another code review).

Completing the Code Review
As you receive code review comments, you will see them arrive in the My Work page in Team
Explorer. You may also want to sign up for e-mail alerts so that you are notifi ed when you get code
review comments back. From the Code Review page in Team Explorer, shown in Figure 6-31, you
can view the shelveset that contains the code review changes and easily unshelve the changes back
into your workspace. Doing so allows you to make any changes as appropriate based on the com-
ments from your team before checking the code in. For each comment provided, you may reply to
that user if you need to have further discussion on a point. You can also use the check marks on the
right side of the page to keep track of when you have completed all the changes you want to make to
fi les based on the feedback.

Team Foundation Server Version Control in Eclipse ❘ 147

c06.indd 04/22/2014 Page 147

FIGURE 6-31: Reviewing Code Review responses

Finally, assuming the code review is now complete, you can close the review as Complete or
Abandoned. Use Abandoned if the comments that came back indicated that you needed to rethink
your changes and will be sending those for another code review, or mark as Complete if you have
responded to all the comments and taken action as appropriate.

TEAM FOUNDATION SERVER VERSION CONTROL IN ECLIPSE

So far, this chapter has mostly focused on the experience when performing version control opera-
tions inside Visual Studio 2013. However, Team Foundation Server is available inside a number of
environments, not just older versions of Visual Studio (such as Visual Studio 2012, Visual Studio
2010, and Visual Studio 2008, which have Team Foundation Server integration), but also even older
versions or IDEs that support the Microsoft Source Code Control Interface (MSSCCI) API for
version control.

148 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 148

Team Explorer Everywhere is available to help you connect to Team Foundation Server from within
Eclipse or from UNIX-based operating systems such as Mac OS X, Linux, Solaris, AIX, or HP-UX.
With the 2012 release of Team Foundation Server, Microsoft made Team Explorer Everywhere
available free of charge to anyone with the appropriate license to connect to a Team Foundation
Server (i.e., anyone who has a Team Foundation Server Client Access License). Previously, Team
Explorer Everywhere was available as a separate commercial tool from Microsoft and before that
from a partner company called Teamprise. But, because of the popularity of Team Foundation
Server for use in enterprises for their Eclipse and cross-platform development, as well as their .NET
development, the decision was made to increase the investment in those integrations and make it
part of the core Team Foundation Server offering.

Team Explorer Everywhere is an implementation of the Team Foundation Server protocol written
entirely in Java, using the same web services that the .NET implementation uses. Therefore, the
Team Explorer Everywhere clients run anywhere that Eclipse and Java run, not just on Windows,
but on Mac, Linux, and many common UNIX platforms. Microsoft is fully committed to keeping
Team Explorer Everywhere and Eclipse up to date so that developers in Eclipse can be full contribu-
tors to a software development team using Team Foundation Server.

While many of the experiences in working with Team Foundation Server in Eclipse are similar to
working inside Visual Studio 2013, as shown in Figure 6-32 (especially the Source Control Editor,
work item tracking, and build automation functionality), there are a few differences because of the
way that version control tools typically integrate with an Eclipse environment.

FIGURE 6-32: Working in Eclipse

Team Foundation Server Version Control in Eclipse ❘ 149

c06.indd 04/22/2014 Page 149

ECLIPSE WORKSPACES VERSUS TEAM FOUNDATION SERVER
WORKSPACES

Unfortunately, the word “workspace” in the Eclipse and Team Foundation Server
worlds means different, yet slightly overlapping, things. A Team Foundation Server
workspace was defi ned earlier in this chapter. The Eclipse workspace contains a
set of Eclipse projects, along with the set of user preferences for that instance and
other confi guration data.

However, the set of projects in an Eclipse workspace maps well into the concept
of working folder mappings in a Team Foundation Server workspace. To reduce
the complexity of dealing with multiple concepts called “workspace,” the Team
Foundation Server plug-in for Eclipse allows for only one active Team Foundation
Server workspace per Eclipse workspace. In Team Explorer Everywhere for Team
Foundation Server 2013, you can easily switch which Team Foundation Server
workspace is the active one from the Pending Changes page in Team Explorer.

Installing the Team Foundation Server Plug-In for Eclipse
To install the Team Foundation Server plug-in from the media, go to Help ➪ Install New Software
in Eclipse. This displays the Available Software wizard. Click the Add button to add an Eclipse
update repository, and then enter the location as http://dl.microsoft.com/eclipse/tfs. Then
click OK.

Select the check box for the Team Foundation Server plug-in for Eclipse. Optionally, you can
uncheck the setting for “Contact all update sites during install to fi nd required software.” This
works because a typical Eclipse-based product contains the requirements for Team Explorer
Everywhere, and not checking external update sites will reduce the installation time.

ALTERNATIVE INSTALLATION METHODS

The recommended way to install Team Explorer Everywhere in Eclipse is via the
Eclipse marketplace or the Eclipse update site given previously. However, you can
also download Team Explorer Everywhere from the Microsoft Download Center or
from MSDN.

http://dl.microsoft.com/eclipse/tfs

150 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 150

Go through the rest of the wizard and accept the license terms. Once you click Finish, the Team
Foundation Server plug-in should be installed, and you will be prompted to restart Eclipse (which
you should do).

This will add the Team Explorer view to Eclipse, and a Team Foundation Exploring perspective that
you can use to connect and work with Team Foundation Server resources.

Sharing Eclipse Projects in Team Foundation Server
Now that you have the Team Foundation Server integration installed, the next thing you want to
do is add your Eclipse project into Team Foundation Server so that it is shared with the rest of the
team. This is done in a similar way to the “Add solution to source control” functionality in
Visual Studio.

However, in Eclipse, version control providers make this functionality available by right-clicking the
project in Eclipse and selecting Team ➪ Share Project. This displays a list of version control reposi-
tory types. As shown in Figure 6-33, Team Foundation Server will now be available in that list.

FIGURE 6-33: Team Foundation Server displayed as a repository type

Select Team Foundation Server. On the next screen, you will be prompted to select your Team
Foundation Server. If you have not set up an existing Team Foundation Server connection, then you
will be prompted for the name or fully qualifi ed URL for your Team Foundation Server instance.

Team Foundation Server Version Control in Eclipse ❘ 151

c06.indd 04/22/2014 Page 151

Note that if your Team Foundation Server instance is not installed at http://server_name:8080/
tfs, you will want to ensure that you share your Team Foundation Server address with the develop-
ment team using the fully qualifi ed URL (that is, https://fabrikam.tfspreview.com) instead of
the hostname to ensure that the right connection settings are used.

Once you have selected the server, you will be asked to pick the project collection and team project
in which you wish to share your Eclipse project, as shown in Figure 6-34.

FIGURE 6-34: Sharing a project with Team Foundation Server

Then, on the following page in the wizard, you will be prompted to select which Team Foundation
Server workspace to use to share your project. Note that you may wish to use multiple Team
Foundation Server workspaces on the machine to keep your Eclipse workspaces separate, or your
Eclipse and Visual Studio workspaces separate. However, a single workspace can safely be shared by
both Visual Studio and Eclipse on the same machine, should you have both applications installed.

If you have never connected to the Team Foundation Server project collection from this machine
before, a new private workspace will have been created for you by default. Select the workspace you
require (or add a new one and then select it) and click Next.

You will then be presented with the page shown in Figure 6-35, which asks you where to place your
project in the version control repository. Put your project into a folder called Main if you think you
might want to use the branching features of Team Foundation Server in the future.

http://server_name:8080
https://fabrikam.tfspreview.com

152 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 152

FIGURE 6-35: Choosing where to share a project in version control

The fi nal page in the Share Project Wizard will confi rm the details of the sharing, allowing you
to review the details before you click Finish. Note that the plug-in will automatically create any
required working folder mappings.

Once shared, the project resource in Package Explorer will be decorated, indicating that they are
under Team Foundation Server version control; however, they are not available on the server for
others to use until you have checked in the fi les that you are sharing.

You can check in your fi les from the Pending Changes page in Team Explorer or by right-clicking
your project and selecting Team, Check-in. The Pending Changes page in Team Explorer should
have been opened for you as soon as you fi nished sharing the project; however, if you ever lose the
Team Explorer window from your perspective, go to Windows ➪ Show View ➪ Other ➪ Team
Foundation Server ➪ Team Explorer. You can position the Team Explorer window where it most
makes sense to your workfl ow.

Once you have navigated to the Pending Changes page, check your project into Team Foundation
Server by clicking the Check In button, as shown in Figure 6-36.

Team Foundation Server Version Control in Eclipse ❘ 153

c06.indd 04/22/2014 Page 153

FIGURE 6-36: Check In button in Pending Changes page

Once you have checked in your fi les, you can work with the rest of your team using Team
Foundation Server just as the .NET developers would in Visual Studio. In Eclipse, the version
control functionality is available by right-clicking a fi le and selecting Team from the context menu.

Importing Projects from Team Foundation Server
If someone else on your team has already added the Eclipse project to Team Foundation Server, you
will want to download the project locally to work on it. In Eclipse, this is accomplished by import-
ing the project into your Eclipse workspace. You can run the Import Wizard by connecting to Team
Foundation Server through the Team Foundation Server Exploring Perspective, performing a Get
on the fi les using Source Control Explorer, and then right-clicking the project folder and selecting
Import from the context menu.

A simpler way to run the Import Wizard is to go to File ➪ Import in Eclipse. Under the Team node,
you will fi nd Team Foundation Server if you have the plug-in correctly installed. Connect to the
Team Foundation Server project collection and select your workspace in the same way as detailed
previously when you looked at the Share Wizard. Then you need to select which project to import,
as shown in Figure 6-37.

154 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 154

FIGURE 6-37: Selecting projects to import

You should select the folder that directly contains the Eclipse project (i.e., the one containing the
.project fi le). Note that if you have multiple projects to import, you can Shift-click to select a
range, or Ctrl-click the individual projects (Command-click on the Mac). With Team Explorer
Everywhere, it is recommended that you share your Eclipse .project fi les with Team Foundation
Server. However, if you do not, you will want to check the “Show the New Project Wizard for
folders that are not Eclipse projects” option on this dialog box so that you can defi ne your project
settings.

Finally, you will be given a confi rmation page explaining which projects you will be importing
before you click Finish to download the fi les to your local machine.

Now that you have a project in the workspace, right-clicking a fi le managed by Team Foundation
Server and selecting the Team menu will show the available version control functions.

Differences between the Eclipse and Visual Studio Clients
Microsoft is fully committed to supporting the needs of Eclipse developers using Team Foundation
Server, but there are some differences between the functionality available in one client over the
other. For example, Eclipse developers are often familiar with the notion of synchronize

Team Foundation Server Version Control in Eclipse ❘ 155

c06.indd 04/22/2014 Page 155

(a perspective allowing you to easily see the differences between your Local Workspace and the
server repository), and so the Team Foundation Server plug-in for Eclipse provides this capability.
The closest alternative in Visual Studio would be a folder compare.

However, the Eclipse integration is designed to provide support for development activities in Eclipse,
and so some Team Foundation Server administration activities (such as creating new team projects)
are not supported outside of Visual Studio.

Team Foundation Server Version Control from the
Command Line

You can manipulate the version control repository from the command line by using the tf command
(which is short for “Team Foundation”). In fact, the command-line tool offers much more fl exibility
and functionality.

NOTE In Visual Studio 2013 in Windows 8 and above, the command-line tools
are not added to your start page by default. This means using the global search
in Windows will not fi nd them unless you add them to your start page manually.

On Windows platforms, the command line ships as part of Visual Studio Team Explorer, which is
installed as part of Visual Studio 2013. From a VS2013 command prompt, you can use the tf help
command to see the available functionality. On non-Windows platforms, the command-line client is
available as part of Team Explorer Everywhere. Unzip the command-line client and put the tf com-
mand in your path. You can then use the tf help command to get a list of the commands available.

NOTE The majority of the documentation for the command-line client describes
arguments prefi xed by a forward-slash character (/). However, certain UNIX
shells use the / character as an escape character, meaning that if you wanted
to use it on the command line, you would have to escape it (that is, use //).
Therefore, both the Windows and cross-platform versions of the tf command
support the hyphen character (-) as a prefi x to arguments. For example, the fol-
lowing commands are identical on Windows:

tf checkin /comment:"This is a test"
tf checkin -comment:"This is a test"

The cross-platform and Windows clients are broadly compatible with mostly the same commands
and arguments supported across versions, allowing for reuse of scripts and integrations using the
command-line interface. However, they do come from two different implementations of the com-
mand-line interface. The Windows version is written in .NET, and the cross-platform implementa-
tion is in Java. Therefore, there are some small differences. However, the majority of functionality is
the same with both clients.

156 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 156

Getting Help
As mentioned previously, you can use the tf help command to see a list of commands available. To
see the syntax for a single command, type tf help command, where command is the name of the
command you want to see more about.

NOTE Consult the MSDN documentation online at http://aka.ms/
TFS2013cmd for more information regarding use of the tf command line.

Using the Command Line
Following is an example that shows a very basic way of working with the command line to demon-
strate how it works. Assuming you have never connected to Team Foundation Server before, the fi rst
thing you must do is create a workspace on your local computer.

tf workspace -new -collection:http://servername:8080/tfs/
 defaultCollection -login:user@DOMAIN,Passw0rd MyWorkspace

In this example, MyWorkspace is the name of your workspace and http://servername:8080/tfs/
defaultCollection is the URL to your team project collection. You are passing in your creden-
tials with the command. Note that if you do not provide any credentials when you are working on
Windows, or you are using Kerberos on non-Windows platforms, you will connect with the creden-
tials of the currently authenticated user. If you are trying to connect to a hosted TFS instance on
visualstudio.com from a non-Windows system, then you will need to have enabled basic authen-
tication in your user profi le and use those credentials. Once you have created the workspace, the
credentials used are cached in the current user’s profi le, unless told otherwise.

Next, you create a working folder mapping:

tf workfold -map -workspace:MyWorkspace $/TeamProject/Main/Path.

Here you are creating a working folder mapping in MyWorkspace between the server path $/
TeamProject/Main/Path and the current directory (.).

Now, you download the code:

tf get

Then you can edit the fi les (using the text editor of your choice—in this case, vi, but you might
choose Notepad on Windows). Note that as you are using Local Workspaces by default in Team
Foundation Server 2013, you do not need to explicitly check out the fi le fi rst.

vi myfile.txt

Then you want to check the status of your pending changes to make sure the list of edits that you
want to make is correct.

tf status

http://aka.ms
http://servername:8080/tfs
http://servername:8080/tfs

Team Foundation Version Control Power Tools and Third-Party Utilities ❘ 157

c06.indd 04/22/2014 Page 157

The status command will perform a full disk scan and automatically pend any edits that you
have made. If you created or deleted any fi les, these will be shown as candidates, but you have to
explicitly add or delete them using the tf add or tf delete commands if you want to check those
changes in. Next, you check in the pending changes in MyWorkspace:

tf checkin -comment:"Making changes from the command line"

Your changes have now been checked in and a changeset has been created. You can look at those
changes from any of the other version control clients by performing a Get to download the changes
you just committed using the command line.

TEAM FOUNDATION VERSION CONTROL POWER TOOLS AND
THIRD-PARTY UTILITIES

The functionality provided by Team Foundation Server is so rich, and the extensibility through the
Team Foundation Server .NET or Java-based API’s so straightforward, that a number of Power
Tools and third-party utilities have been created to expose that functionality in easier-to-use ways.
While there are too many to mention them all here, the following sections detail some of the more
invaluable ones that should be in every Team Foundation Server power user’s arsenal.

Microsoft Visual Studio Team Foundation Server Power Tools
The Team Foundation Server Power Tools are created by the Team Foundation Server team itself
at Microsoft, and provide a number of great features that might not have been ready to put into
the fi nal release at the time it was published, or were not considered necessary for the majority of
users. Many of the features originally delivered in Power Tools (such as Annotate, folder diff,
rollback, and so on) appeared fi rst in the Power Tools before arriving in the full product in a
later release.

NOTE The Power Tools are available free from http://aka.ms/TFS2013PowerTools

The main Power Tools install some extensions into Visual Studio, as well as a new command-line
client on Windows called tfpt. The Power Tools include the following, which are of particular
interest in the version control area:

 ➤ Windows shell extensions—This is a TortoiseSVN-like extension to both Windows Explorer
and the common fi le dialog boxes, which allow many basic source control operations from
Windows without having to run Visual Studio or the command-line tool.

 ➤ Command-line (tfpt) tool—tfpt help shows a list of the commands available, including
tf online, which will compare your local working folder with what the server thinks you
have in your workspace. It will also help you manage adds, edits, deletes, and so on for fi les
that you might have changed outside of Visual Studio or while offl ine and using a Server

http://aka.ms/TFS2013PowerTools

158 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 158

Workspace. Another useful command is tfpt scorch, which will ensure that your local
working folders match exactly what the server thinks you should have—any additional fi les
are deleted, while any modifi ed fi les are re-downloaded and replaced.

Team Foundation Server MSSCCI Provider
The MSSCCI provider enables integration of Team Foundation Server version control with
products that support the older MSSCCI API originally created for VSS but adopted by many
IDE developers. The MSSCCI provider is developed by the team at Microsoft responsible for
Team Foundation Server.

NOTE The MSSCCI provider is available as a free download from http://aka
.ms/MSSCCI2013

Because this provider was created long after the original developers probably created the tool using
the API, and because it is for a version control system very different from the ones that the develop-
ers of the IDE would have tested against, your mileage may vary. Many people use this in lots of dif-
ferent development environments. However, the download page for the MSSCCI provider states that
it is tested against the following products:

 ➤ Visual Studio 2005

 ➤ Visual Studio .NET 2003

 ➤ Visual C++ 6 SP6

 ➤ Visual Basic 6 SP6

 ➤ Visual FoxPro 9 SP2

 ➤ Microsoft Access 2007

 ➤ SQL Server Management Studio

 ➤ Enterprise Architect 7.5

 ➤ PowerBuilder 11.5

 ➤ Microsoft eMbedded VC++ 4.0

VERSION CONTROL SECURITY AND PERMISSIONS

Team Foundation Server is highly confi gurable, and contains a very fi ne-grained and fl exible secu-
rity model. This is especially true for version control.

http://aka

Version Control Security and Permissions ❘ 159

c06.indd 04/22/2014 Page 159

Before you start using the version control features widely in your team, you should determine which
individuals will take on the responsibility of being an administrator. The majority of the developers
on the team would typically be classifi ed as contributors. The way you organize your roles should be
determined by a matter of convenience and organizational requirements.

NOTE For more information on security and privileges, see Chapter 24.

Version control has a very fl exible permissioning model that can control exactly what is permissible
at the folder and even fi le level. You can view the security settings for a fi le or folder by right-click-
ing it in Source Control Explorer from Visual Studio, and selecting Advanced ➪ Security.

Figure 6-38 shows the Security dialog box and the inherited security settings. To alter the settings
for the folder or branch, select the setting to toggle between explicit allow or deny, or to allow if the
inherited permission would allow that action. To disable inherited permissions for that item, turn
the Inheritance off, as shown in Figure 6-38.

FIGURE 6-38: Settings in Security tab

160 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 160

SWITCHING VERSION CONTROL TO TEAM FOUNDATION
SERVER

Chapter 9 details your options for moving the code from your old version control system into Team
Foundation Server. However, in addition to bringing your code over, you must also ensure that your
developers are comfortable with Team Foundation Server’s version control capabilities. Regardless
of the version control system you used in the past, Team Foundation Server is going to behave differ-
ently from what you are used to.

The fi rst thing to understand is that Team Foundation Server is much more than just version control.
The true value of Team Foundation Server comes from the tight integration between version control,
work item tracking, build, and test data, all stored in the same SQL Server database, allowing you
to track the progress of your entire Application Development Lifecycle.

In terms of the version control capabilities, however, there are differences that usually trip up
unsuspecting developers who have previously used the most common version control systems outside
of Team Foundation Server (in particular, VSS and SVN).

Working with Team Foundation Version Control for Visual
SourceSafe Users

Team Foundation Version Control was designed to feel familiar to VSS users. Similar terms and
concepts, such as Get, check-out, check-in, and so on, are used to describe similar actions. However,
despite these similarities there are some fundamental differences between VSS and Team Foundation
Server.

Speed, Reliability, and Scalability
One of the fi rst things you will notice about Team Foundation Server is that operations such as
check out, get latest, or even just navigating down into folders are signifi cantly faster than in other
version control systems, especially if you have been using VSS over a WAN. Team Foundation Server
was designed for modern, Internet-style protocols and stores all of its data in a SQL Server database.
By contrast, a VSS repository is a collection of fi les stored in a network folder accessed by using
standard Windows fi le-sharing protocols, which do not scale well over high-latency networks.

Because Team Foundation Server uses a real SQL Server database for storage, the reliability of that
store is very high. With VSS, there is no atomic check-in process, and the transfer of data to the
repository is non-transactional. Therefore, if there was a loss of connectivity between the VSS
client and the network share during a version control operation, the integrity of the affected fi les
(and, thus, the repository as a whole) could be affected. This data integrity issue does not affect
Team Foundation Server because of the difference in architectures.

VSS was recommended for teams of 20 or fewer developers, whereas Team Foundation Server can
scale to thousands of active users. By using fl exible architectures, Team Foundation Server can scale
well when server resources become the limiting factor, or when you want to ensure server up-time.

Switching Version Control to Team Foundation Server ❘ 161

c06.indd 04/22/2014 Page 161

NOTE Chapter 22 provides more information about scalability and high avail-
ability with Team Foundation Server.

Versions
As discussed earlier in this chapter, Team Foundation Version Control determines fi le versions based
on the changeset in which they were modifi ed. Therefore, fi le versions do not increment individually.
The fi rst time VSS users look at the history of a fi le and see a nonsequential series of numbers in
the history is often the fi rst time that they realize they are talking to a fundamentally different ver-
sion control tool. With Team Foundation Server, the date and time of the change is recorded by the
server, not the client, so issues around dates and times caused by an incorrect clock on a VSS client
disappear.

Pinning and Sharing
Team Foundation Server does not have an exact equivalent to the pinning and sharing features
of VSS. Frequently, these were used as basic branch support, whereas Team Foundation Version
Control now has full branch and merge capabilities, encouraging more robust software engineering
practices.

NOTE Chapter 10 provides information on branching and merging.

Labels and History
In VSS, labels could be thought of as a point in time in the repository, and labels appear in the
History view. All changes before that point in time were included in the label. The closest equiva-
lent to this in Team Foundation Version Control is the changeset, which is the fundamental unit of
versioning in the repository. If you record the changeset at which a build is performed, you know
exactly which versions of fi les it contains.

In Team Foundation Version Control, labels are more fl exible. Now you can pick and choose which
version of a fi le is included in that label—and you can edit that later on. You can think of a label in
Team Foundation Version Control as tagging which fi le versions make up that label. Because labels
are so different in Team Foundation Version Control, they do not show up as points in time in the
standard view of a fi le’s history, but are instead shown on a separate tab in the History view.

Team Foundation Server stores and displays history differently than VSS. In VSS, when you create a
new fi le inside a folder, it creates a new version of the parents in addition to the new child. The same
is true for renames, deletes, and updates.

162 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 162

In Team Foundation Version Control, this is just recorded on the child item, and no new version
is created for the parents. The most noticeable effect of this is that the “Last Check-in” time of a
parent folder does not change when a change is made inside the folder or to one of its children. To
determine when the last changes were made to a folder in Team Foundation Version Control, you
right-click the folder and select View History, which is a signifi cantly faster operation than its VSS
counterpart.

Keyword Expansion
VSS has a feature called keyword expansion where source code could include certain keywords such
as $Author: $, $Revision: $, or $Date: $, and the appropriate data would be inserted into the
tag on every check-in to version control. This was especially useful when no integration into VSS
was available inside the IDE, and so fi nding out any of this information was often a fairly slow task
in the separate VSS client application, or when viewing a printout of code.

However, keyword expansion did present many issues when comparing the differences between fi le
versions, or when performing merges. Team Foundation Version Control takes a fundamentally
different approach, and does not alter the contents of your fi les as you check them in. Therefore,
keyword expansion is no longer supported. VSS users are often surprised by this, but the powerful
IDE integration combined with the speed and performance of Team Foundation Server means that
this is rarely an issue once you get over the fact that it is not there.

Concurrent Editing of Files
Team Foundation Version Control is capable of supporting multiple developers editing the same fi le
at the same time, and has powerful merge functionality to facilitate and resolve confl icts that might
occur as a result. The feature is usually enabled in most team project process templates, and is a
boon to developer productivity.

In VSS, check-outs and check-ins occur only when making an edit to a fi le. In Team Foundation
Version Control, a check-out is required for all modifi cations, including renames, moves, and
deletes. The check-in operation will also commit all those changes in a single atomic transaction,
including any adds, edits, moves, renames, and deletes. Because of this, it is much easier to maintain
a repository that is always consistent.

New Features in Team Foundation Server
VSS developers should familiarize themselves with the many new features offered by Team
Foundation Server, as described in this chapter and the rest of this book. Shelving is one such feature
that is often overlooked by new developers because equivalent functionality is not available in VSS.

Using Team Foundation Version Control for Subversion Users
With previous versions of Team Foundation Server, moving from Subversion was often the most
painful transition for developers because of the difference between that version control model
and the one employed by Server Workspaces. However, a Subversion user is going to have a much

Switching Version Control to Team Foundation Server ❘ 163

c06.indd 04/22/2014 Page 163

easier time using and understanding the Local Workspace model that is the new default for Team
Foundation Version Control. For that reason, if you are migrating users over from Subversion, it is
recommended that you have them in an environment where Local Workspaces are available.

Again, the key difference to understand is that Team Foundation Server is much more than just a
version control tool, and comes with very tight integration to work item tracking, build, and test
management. It also comes with a slightly different terminology.

Differences in Terminology
SVN (and CVS) users are used to a different set of terms than those used by Team Foundation
Version Control, as outlined in Table 6-1.

TABLE 6-1: Terminology Differences Between SVN and Team Foundation Version Control

SVN TEAM FOUNDATION VERSION CONTROL

Check-out Get Latest (and also Map Working Folder)

Update Get Latest (or Get Specifi c Version)

Commit Check-in

Revision Changeset (see also versionspec)

Add Add

Delete Delete

Copy Branch

Move Move, rename

Revert Rollback

Status Status, pending changes list

Diff Compare

Blame Annotate

Log History

Shell Extension Functionality
A popular method of accessing SVN from Windows platforms is via the TortoiseSVN Windows
Shell Extensions. Equivalent shell extension functionality is available as part of the Team
Foundation Server 2013 Power Tools, which, as mentioned earlier, is a separate free download from
Microsoft.

164 ❘ CHAPTER 6 USING CENTRALIZED TEAM FOUNDATION VERSION CONTROL

c06.indd 04/22/2014 Page 164

Differences in History
Team Foundation Version Control tracks renames as a specifi c change type, meaning that renames
can easily be tracked in history, rather than appearing as a delete and add. Viewing the history for a
specifi c fi le allows you to view the history before a rename occurred, and also changes that occurred
in a previous branch before the fi le was merged into the current location. In Visual Studio, a full
graphical visibility of merge history is available alongside the branch hierarchy, allowing you to
easily see in which branches a particular change has been merged.

Administration and Setup
Setup of Subversion is initially driven by a typical installer on Windows, or a package management
system on most UNIX-style operating systems. However, the initial confi guration of the server
for use by the team requires extensive use of the command line and editing of confi guration fi les.
Security confi guration is more complex, and confi guring Subversion to delegate to Windows user
accounts for authentication requires work. The Subversion server does run on many platforms, but
as a result, can feel a little alien to an administrator used to Windows-based systems.

Setup and administration of Team Foundation Server is performed via a set of wizards and graphi-
cal tools on Windows. Initial setup of a basic Team Foundation Server installation providing version
control, build, and work item tracking functionality is very straightforward, and will install any
prerequisites (such as IIS or SQL Server Express) if not present or no existing full SQL Server instal-
lation is available. Team Foundation Server can be installed on client versions of Windows, such as
Windows Vista, Windows 7, or Windows 8, but for a large team, we recommend that it be installed
on a full server version of Windows. Team Foundation Server can even be installed on editions of
Windows Server that include a domain controller such as Windows Server 2012 Essentials.

NOTE Chapter 9 provides more detail about the tools and techniques available
to help migrate your source code from another version control system into Team
Foundation Server.

SUMMARY

This chapter introduced you to all the core concepts in Team Foundation Server’s centralized version
control (Team Foundation Version Control), and provided some insights on how to get started and
use the tooling in day-to-day development. You also learned about where to fi nd settings and con-
fi guration for the server, and how to manage security permissions. You learned about the common
diffi culties people have when switching version control from VSS or SVN.

Summary ❘ 165

c06.indd 04/22/2014 Page 165

NOTE Chapter 10 provides a more detailed explanation and guidance relating
to branching and merging. Chapter 11 provides more detailed walkthroughs of
using version control in specifi c scenarios.

C hapter 7 will introduce you to the new distributed version control system supported by Team
Foundation Server.

c07.indd 04/22/2014 Page 167

Distributed Version Control
with Git and Team Foundation
Server

WHAT’S IN THIS CHAPTER?

 ➤ Introducing Distributed Version Control concepts

 ➤ Learning about Visual Studio integration with Git

 ➤ Learning about using Git command-line tools with Team
Foundation Server

Version control is one of the primary functions of Team Foundation Server and, as a result,
has seen major changes in each release. These changes have improved upon the core version
control functionality: providing features, enabling new workfl ows, and extending the scale
of TFS to still greater levels. In each of these changes, up until TFS 2013, the core concept of
Team Foundation Version Control as a centralized version control system has remained intact.
TFS 2013 breaks from tradition and provides the entirely new concept of a distributed version
control tool: Git.

Version control systems can be split into three types. With a check-out/edit/check-in system,
such as TFS server workspaces, you are required to explicitly check out a fi le before you can
make changes locally and check the changes back in to the server. TFS enforces this workfl ow
by marking your local fi les as read-only until the fi le is checked out. In some confi gurations,
checking out a fi le implies taking a lock as well, which prevents other developers from check-
ing out the fi le and eliminates concurrent development and the corresponding potential for
merge confl icts.

With an edit/merge/commit system, such as TFS Local Workspaces, you do not have to
explicitly check a fi le out or negotiate with the server before you make changes. Instead, your

7

168 ❘ CHAPTER 7 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

c07.indd 04/22/2014 Page 168

fi les are writable on disk and you can simply open the fi le with your text editor to make changes.
Because there is no automatic fi le locking, other developers can also make changes to the same fi les
you are editing. When that happens, you will have to get their changes and merge them with yours
before you can check in your changes.

With a distributed version control system such as Git, the client/server model is discarded in favor of
a decentralized model. Instead of checking in directly to a server, you commit the changes to a local
repository on your computer before pushing these changes to the server to share them with your
team. Having a repository locally enables even more concurrent development for a team of develop-
ers and provides more fl exibility for branching and merging.

In this chapter, you will look at the concepts of distributed version control, especially how Git manages
changes in local repositories and how those changes are synchronized with a server repository. You will
learn about new branching and merging workfl ows, including the “topic branch” workfl ow. Finally,
you will discover how to work with Git repositories from Visual Studio as well as the command line.

NOTE For an introduction to using Git in TFS from Xcode, watch Martin
Woodward’s introduction video at http://channel9.msdn.com/Events/
Visual-Studio/Launch-2013/AT110.

DISTRIBUTED VERSION CONTROL CONCEPTS

Distributed version control systems were fi rst adopted broadly by open source communities to
address the diffi culties they had working with a central version control server. Unlike a typical
offi ce environment where developers are connected over a fast network connection to the server, open
source developers tend to be spread out across the globe and it’s unlikely that every contributor has a
fast connection to the server. In fact, some contributors may not have reliable network access at all.

To address this problem, distributed version control systems provide a full copy of the repository
to every contributor when they “clone” the repository from the server. This clone isn’t merely a
copy of every fi le being placed in the working directory, though developers do have that. This
repository is a full-fi delity copy, including every fi le as it existed at each version throughout the
lifetime of the project. This allows you to view history, examine previous versions of fi les, perform
diffs and roll back changes without having to connect to a server. You can even commit changes
to the local repository.

Unlike a centralized version control system, where checking in changes places them in the server
repository for other users to access immediately, committing changes in a distributed system is a pro-
cess split up into two steps. When you commit, your changes are recorded in your local repository.
When you push these changes, they are made available to other developers.

Git
The Git version control system was created by Linus Torvalds when he grew dissatisfi ed with the
existing version control systems used to manage the development of the Linux kernel. He developed
Git as a distributed system to allow the many developers working on the kernel to coordinate their
changes effectively.

http://channel9.msdn.com/Events

Distributed Version Control Concepts ❘ 169

c07.indd 04/22/2014 Page 169

Git, when capitalized, refers to the version control system itself, including the format of the reposi-
tory and the protocols that tools use to communicate with each other. The reference implementation
of this system is a set of tools called git, without capitalization, or sometimes “git core.”

This distinction is important because while git is the reference implementation of the system, it is
not the only implementation. Linkable libraries exist for many programming languages including
C, C#, Java, and even JavaScript, which allows authors of development tools to easily include Git
repository management in their products. This wide support is owed to the simplicity and fl exibility
of the Git repository format.

NOTE Microsoft Visual Studio and Team Foundation Server use the libgit2 and
LibGit2Sharp libraries for repository management, which provide a powerful
Git library and a helpful .NET object model. These are open source libraries
maintained by Microsoft, GitHub, and others in the community. For more infor-
mation, see http://libgit2.github.com.

Repository
In order to enable this offl ine, concurrent development
strategy, the repository format of a distributed version
control system differs from the repository format of a
centralized version control system. In a centralized tool,
such as Team Foundation Version Control, each new
changeset builds on the last. Although two develop-
ers can make changes concurrently, their check-ins are
serialized.

Figure 7-1 illustrates the results of concurrent changes by
Alice and Bob. Both developers retrieved changeset 3 and
started making changes. Bob checked his changes in fi rst,
as changeset 4. When Alice went to check her changes in, she was forced to get Bob’s changes, merge
them with her own, and then continue checking in to produce changeset 5.

If Alice and Bob were using a distributed version control
tool, however, they would both be able to commit
changes to their local repositories independently.
Figure 7-2 shows the starting point for these changes:
Again, each developer will begin working at the same
time, making their changes against changeset 3.

Again, Bob will make a change and commit it, producing changeset 4 (see Figure 7-3).

Alice will also make a change, but unlike in the centralized version control system, she does not
need to merge her changes with Bob’s in order to commit. In fact, she cannot merge her changes
with Bob’s because he has only committed his changes, he has not yet published them. Instead, she
commits changeset 5, which contains only her changes, as illustrated by Figure 7-4.

FIGURE 7-1: Concurrent changes checked
in to Team Foundation Version Control

FIGURE 7-2: Starting history for both
developers

http://libgit2.github.com

170 ❘ CHAPTER 7 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

c07.indd 04/22/2014 Page 170

FIGURE 7-3: Bob’s history after a single commit

FIGURE 7-4: Alice’s history after a single commit

Once Bob does publish his change, Alice will be able to take it and “pull” it into her repository.
Once she does, she can merge her commit with Bob’s to produce a new commit that refl ects both
changes. Instead of merging before the commit, she merges their changes after the commit, and his-
tory appears as Figure 7-5.

FIGURE 7-5: Alice’s history after merging commit 5 from Bob

NOTE These examples use simple integers to represent the commits in order to
simplify the presentation. Later you will learn how Git creates commit IDs that
are unique to the repository.

Because each Git repository contains the full history, including all the fi les, care should be taken
to organize them into small, manageable units. A TFVC repository is meant to scale to large col-
lections of applications, often from many teams. A Git repository should instead contain a single
application at most. Many applications may need to be split along logical component boundaries to
ensure that the repositories and working directory remain small.

Graph
Unlike Team Foundation Version Control, which requires changes to occur in a linear fashion, you can
see that distributed version control systems allow changes to be made in two repositories at the same

Distributed Version Control Concepts ❘ 171

c07.indd 04/22/2014 Page 171

time. The repository history diverges as each developer makes a commit in their local repository before
merging back together when the changes are integrated. This divergence takes place at the repository
level itself: Instead of treating history as a linear fl ow, Git models history internally as a graph.

Some tools will display this internal representation in a graphical view,
like the tool shown in Figure 7-6.

Most tools, however, do not display the actual history graph because
it can become very complex with many contributors. These tools will
instead simplify the history to provide a list of commits in reverse
chronological order, like the one in Figure 7-7 from Visual Studio.

Commit
A commit is a snapshot of the repository at a point in
time, similar to a changeset in Team Foundation Version
Control. Unlike TFVC, however, you cannot simply
use monotonically increasing integers to represent the
commit ID because there is no central server to assign
these numbers. Two repositories could not simply use
the “next” integer for a commit ID, or else two differ-
ent repositories would create a commit ID 4 as the new
commit based on commit ID 3. Having two commits
with ID 4 in the universe of repositories would be con-
fusing and make merging repositories very diffi cult.

Instead, Git generates commit IDs based on the contents
of the commit itself, applying the SHA1 hash algorithm
to the data to produce a unique identifi er. This 160-bit hash value is represented as a string of 40
hexadecimal characters. For example:

661ebb2c07ca7630240cd0c1a7487461d90d3825

This is certainly a more diffi cult ID to work with than, say, the number 4. Fortunately, you do not
usually need to talk about a commit with its full ID; instead, you can talk about the “abbreviated
commit” with its fi rst few characters. Often, seven characters is enough to refer to a unique ID in
the repository, so most tools would allow you to refer to this commit as:

661ebb2

Branches
You’ve seen that the Git history model allows for parallel lines of development to occur between differ-
ent repositories. This concept is very similar to the process of working in different development branches.
In fact, branches in Git are implemented on top of the history model as simple pointers to commits in the
graph. As a result, branches in Git differ from branches in Team Foundation Version Control: Instead of
a branch being applied to folders inside the repository, a branch applies to the entire repository.

If, in the previous example, Alice and Bob had each created a new branch for their changes and named
it after themselves, Alice’s repository would show both her branch and Bob’s, as in Figure 7-8.

FIGURE 7-6: Viewing history
as a graph

FIGURE 7-7: Viewing history with reverse
chronological sorting

172 ❘ CHAPTER 7 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

c07.indd 04/22/2014 Page 172

FIGURE 7-8: Alice’s history with branches

When Alice went to merge Bob’s branch into hers, her branch would then advance to point to the
new commit which refl ects the merge of their changes (see Figure 7-9).

FIGURE 7-9: Alice’s history after merging Bob’s branch

Topic Branches
Because Git represents branches as a simple pointer to a commit, you can create branches quickly
and with little overhead. This is in contrast to a centralized version control system where creating
branches often requires an administrator to set up the branch, and users need to manage their work-
ing folder mappings to include it. The complexity of creating branches often discourages you from
doing so, except for features that are so large that the work needs to be split up over multiple
changesets and are destabilizing enough that it would disrupt other developers.

A distributed version control system, on the other hand, encourages you to create “topic branches”
for any work you perform, whether it’s a complex feature that will take weeks to complete or a simple
one-line bugfi x. By creating a branch, you can keep your work isolated from the main line, or “master,”

Distributed Version Control Concepts ❘ 173

c07.indd 04/22/2014 Page 173

branch, and merge it when you are ready. In longer-lived topic branches, you should take regular merges
from the master branch in order to keep up to date and make your merge back to master simpler.

When everybody works in a topic branch system, you see short-lived branches diverging from the
master branch before being merged back in, as illustrated in Figure 7-10.

FIGURE 7-10: Typical branch graph in a topic branch

Although this branching structure may look confusing, you generally only need to worry about the
master branch and the topic branch that you’re directly working on. When you look only at the
relationship between the topicF branch and the master branch, as in Figure 7-11, you see a simpler
view that shows how the topic branch was created from master, how commits were made in both
branches, and how the merges occurred between them.

FIGURE 7-11: The topicF branch and master

HEAD
Git has a special branch called “HEAD,” which does not usually point to a commit as a regular
branch would, but instead points to another branch. Git uses this to track the branch that you are
currently working on. If we extend Alice’s repository to show HEAD, we would see it pointing to
the “Alice” branch, as in Figure 7-12.

FIGURE 7-12: Alice’s history depicting HEAD

174 ❘ CHAPTER 7 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

c07.indd 04/22/2014 Page 174

Because the current branch is maintained as a simple pointer, Git makes it very easy to switch
branches: The HEAD pointer is simply updated to the new branch and the working directory is
updated with the changes. You will see this workfl ow in the section “Branching and Merging” later
in this chapter.

NOTE It is possible for HEAD to point to a commit instead of a branch. When
this occurs, you are not working on a branch and are instead said to have a
“detached HEAD.”

Working Directory
The working directory, as you might expect, is similar to a working folder in Team Foundation
Version Control and contains the fi les as they exist in the current branch. You can add, edit, and
delete fi les in the working directory as you would expect, and commit them when you are fi nished.

Unlike working folders in Team Foundation Server, however, a working directory applies to the
entire repository. This allows you to easily switch from one branch to another within the same
working directory. Checking out a new branch is as simple as updating the fi les on disk that have
changed and does not require any changes to working folder mappings.

Because there are no working folder mappings, however, you cannot use them to limit the size and
scope of what you have on your local disk. Instead, you are encouraged to create a repository for a
single, small component and use multiple repositories if you need multiple components. This will
benefi t your working directory as well as the size of your repository’s history.

Index
Git introduces a new concept called the index, which contains the changes that will be included
in the next commit. The index is sometimes also called the “stage,” and you are said to stage your
changes when you add them to the index. The index is similar to the pending changes list but with
an important distinction: When you stage a fi le, it is the contents at the time you stage it that will
be included in the next commit. If you modify that fi le further without staging it again, the new
changes will not be committed.

This distinction allows you fi ne-grained control over your commits, though it can be confusing
when you transition to Git from another version control system. Because of this added level of com-
plexity, Visual Studio’s Git integration does not display the index and instead shows the Included
Changes list and Excluded Changes list similar to Team Foundation Version Control.

You will need to use the index when you work with the git command line. You will see how to add
and remove fi les from the index in the section “Using Git Command-Line Tools” later in this chapter.

Although this is not a comprehensive guide to Git or distributed version control, understanding
these concepts should provide you with the knowledge to begin using the Git version control system.
In the next sections, you will discover how to use Visual Studio to manage your Git repository and
how to work with Git from the command line.

Microsoft Visual Studio Integration ❘ 175

c07.indd 04/22/2014 Page 175

MICROSOFT VISUAL STUDIO INTEGRATION
Beginning with Visual Studio 2013, Visual Studio adds Git repository management capabilities and
brings the most commonly used functions directly into Team Explorer. This provides a similar inter-
face to version control operations, whether you’re using Git or Team Foundation Version Control, so
existing TFS users should be able to get started with Git quickly.

In this section, you learn how to get started with a Git repository in Visual Studio and how to make
changes to fi les in the working directory and commit them. You learn how to create and manage
branches and how to merge changes from one branch into another. Finally, you learn how to publish
your changes to other developers, and fetch and merge their changes into your repository.

Getting Started with a Repository
As you learned earlier in this chapter, when you work with a Git repository, you make changes in your
working directory and then commit those changes to the Git repository that exists locally. Often, this
local repository is a copy of an existing repository from a version control server, but if you are just get-
ting started with a new project, you will also want to start with a new repository. Visual Studio pro-
vides the ability to get started either way, by cloning an existing repository or initializing a new one.

Cloning a Git Repository Hosted in Team Foundation Server
Like other features of Team Foundation Server, Git repository management is located in Team Explorer. To
clone a Git repository, navigate to the Team Explorer ➪ Connect page, and then click Select Team Projects.

If you have not connected to your Team Foundation Server before, click Servers to set your server
up. Once connected, a list of the Team Projects on your server will be displayed (see Figure 7-13).
Select the Team Project that contains your Git repository and click Connect. The remote Git reposi-
tory will then be added to the Connect page.

FIGURE 7-13: Connect to Team Foundation Server dialog box

176 ❘ CHAPTER 7 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

c07.indd 04/22/2014 Page 176

Once the Team Project has been added to the Connect
page, you can right-click the project and select Clone. You
will be prompted to enter the local path to clone to, as
shown in Figure 7-14. Once you enter the working direc-
tory path and click Clone, the repository will be down-
loaded from the server and checked out into the working
directory you specifi ed.

Cloning a Git Repository Hosted Outside TFS
Although Team Foundation Server 2013 provides easy-
to-use Git repository hosting, there are many options for
hosting your repositories. Some hosting providers, like
CodePlex, provide free hosting for open source projects
in publicly readable Git repositories, while others, like
Visual Studio Online, provide hosting only for private
repositories. Some providers, like GitHub, provide hosting
for both public and private repositories.

NOTE Because distributed version control systems work on a peer-to-peer
basis, the only thing that makes a repository authoritative is convention. When
you and your peers agree to publish your changes to a repository, you have
decided to make that repository the “server repository.” As a result, it’s very
easy to set up a simple Git repository server on your local network just by
exposing a fi le share.

Unfortunately, when you set up your own server repository, you often miss
out on the features that are included when you use a hosting platform, such as
integrated work item tracking and continuous integration. It is often more con-
venient to use a product or a hosting provider that can offer these amenities to
you. Hosting your repositories in Team Foundation Server provides many unique
capabilities like push auditing, unifi ed management, and Active Directory integra-
tion. You can learn more about these features at http://www.edwardthomson
.com/blog/hosting-git-repositories-in-tfs.

To clone a remote Git repository hosted in a different provider, navigate to Team Explorer ➪ Connect
page. In the Local Git Repositories section, click Clone and in the text box, enter your Git server URL.
In the second text box, you should enter the local path for your working directory. When you click the
Clone button, the repository will be downloaded and checked out to the working directory you specifi ed.

WARNING In Visual Studio 2013, Git repositories cannot be accessed using the
SSH protocol. Visual Studio does support both fi le shares and HTTP or HTTPS
repositories. If you were instructed to clone using SSH, contact your server
administrator for instructions on using HTTPS instead.

FIGURE 7-14: Clone a Team Project

http://www.edwardthomson

Microsoft Visual Studio Integration ❘ 177

c07.indd 04/22/2014 Page 177

Most of the features you will learn about in subsequent sections are available to you regardless of
the Git server you use, but some features are available only when your repositories are hosted in
TFS. The features that are only available with TFS servers will be noted explicitly.

Initializing a New Repository
Because Git repositories are frequently transferred from a local computer to the server, and from one
developer to another, they are necessarily very lightweight. As a result, creating a new repository is a
quick and simple operation.

To create a Git repository for an existing Visual Studio Solution, navigate to Solution Explorer.
Right-click on the solution and select Add to source control. In the Choose Source Control dialog
box, shown in Figure 7-15, select Git.

FIGURE 7-15: Choose Source Control dialog box

You can also create a repository in a new,
empty directory that is not associated with a
solution by navigating to the Team
Explorer ➪ Connect to Team Projects page. In
the Local Git repositories section, click New
and enter the path where you want to create a
working directory. When you click Create,
your working directory and Git repository will
be created, and the new repository will appear
in the list of Local Git Repositories (see
Figure 7-16).

You can begin making changes to the fi les in
your repository and commit them immediately. You will learn how to share this Git repository with
other developers in the section “Synchronizing with the Server.”

Opening a Repository
All the repositories that you’ve worked with previously appear in the Team Explorer Connect page
under the Local Git Repositories section. Repositories appear here when you clone or initialize them
with Visual Studio, when you select Open from the Team Explorer Connect page, and when you
open a Visual Studio solution that is inside a Git working directory.

FIGURE 7-16: A newly created Git repository

The newly
imported
Git
repository

178 ❘ CHAPTER 7 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

c07.indd 04/22/2014 Page 178

CREATING A GIT REPOSITORY WHEN CREATING A NEW PROJECT

You can create a Git repository at the same time you create a new solution by click-
ing Add to source control in the New Project Wizard (see the following fi gure). The
Select Version Control dialog box will open as soon as your solution is created.

Add to source
control ckeckbox

New Project Wizard with Add to source control selected

To start working with a Git repository, simply fi nd it in the list and double-click it. The Team
Explorer Home page will then open with this repository selected. If your repository contained a
Visual Studio Solution, that solution will appear in the Solutions section of the Home page (see
Figure 7-17). Double-clicking the Solution will open it. As you make changes to the fi les in your
working directory, you will see these changes refl ected throughout Visual Studio: in editor windows,
in Solution Explorer, and in Team Explorer.

The solution
in the
repository

FIGURE 7-17: Team Explorer Home with Solution imported

Microsoft Visual Studio Integration ❘ 179

c07.indd 04/22/2014 Page 179

Making Changes in a Working Directory
In order to commit changes to a repository, you start by editing the fi les directly in the working
directory. Once you are happy with the working directory changes, you can commit them to the
repository and, ultimately, publish these changes with your peers.

Included and Excluded Changes
Git does not require you to perform any special operations before you begin making changes to a fi le
such as checking it out or locking it. You only need to open that fi le, make your changes and save the
fi le. Git will scan your repository’s working directory to determine what fi les have changed.

When you fi rst change a fi le, it will appear in the Team Explorer Changes page in the Included Changes
section (see Figure 7-18). Files listed in this section will be included in the next commit you perform. If
you want to make changes to a fi le but not include it in the next commit, you can right-click on a fi le
in the Included Changes list and select Exclude. This will move the fi le to the Excluded Changes list,
which is useful if you are making simple, temporary changes that you will undo in the future or if you
want to split the changes you are making over several commits. When you are ready to include the fi le,
you can right-click on it and select Include to move it back to the Included Changes list.

FIGURE 7-18: An edited fi le in the Included Changes list

NOTE Conveniently, you can make changes outside of Visual Studio, with any
text editor you like, and those fi les will be refl ected in the Changes list. Visual
Studio listens for fi le system events that occur within your Git working directory
and updates the Changes list accordingly.

180 ❘ CHAPTER 7 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

c07.indd 04/22/2014 Page 180

New fi les that are added to the working directory are not immediately managed by Git; instead of
appearing in the Included Changes list, added fi les appear in the Untracked Files list. This is to pre-
vent new fi les from being inadvertently added to the repository without your knowledge.

When a new fi le appears in the Untracked Files list, you can add it to the repository by right-clicking
on it and selecting Add. The fi le will be moved to the Included Changes list and will be included in
your commit.

Ignoring Files
Generally, you want to promote items in the Untracked Files list to be Included Changes. If you have
fi les in your Untracked Files list that you do not want tracked by your version control tools, such as
local confi guration fi les, you probably want these to be ignored completely by Git so that they do
not clutter your view of the repository.

Git uses a fi le called .gitignore to manage the list of ignored fi les. When Git detects a new fi le in
your working directory, it compares the name against the contents of the .gitignore fi le. If the fi le-
name matches a line in the ignore fi le (wildcards are allowed), it will not be reported as a new fi le.

To ignore an untracked fi le in Visual Studio, simply right-click on its name in the Untracked Files
list and select Ignore This Local Item. Its fi lename will be added to the .gitignore fi le and you will
not be notifi ed of its presence again.

There are often many fi les in your working directory that you want to ignore, such as build output,
temporary fi les written by text editors, and the Visual Studio user preferences fi le. When you initial-
ize a new repository with Visual Studio, a default .gitignore will be set up in your repository for
you so that you do not have to confi gure their ignore settings in every repository you create.

If you created your repository outside of Visual Studio, you should download this default
.gitignore from https://github.com/github/gitignore/blob/master/VisualStudio
.gitignore and add it to your repository.

Undoing Changes
Sometimes you make a change in your working directory that you do not want to commit: Whether
you’ve made a temporary change to help test other changes, or if you’ve decided to abandon the
changes you were making, it’s very easy to undo them and replace them with the version from
HEAD.

To examine the changes that you’ve made to a fi le, fi nd the fi le in the Team Explorer Changes page,
right-click on it and select Compare With Unmodifi ed. This will open the fi le in the Diff Editor,
which shows the fi le as it exists in HEAD on the left and the working directory version of the fi le on
the right, as shown in Figure 7-19.

From within the Diff Editor, you can directly edit the contents of the working directory copy on the
right-hand side. This lets you back out small changes to areas of the fi le, bringing the contents from
the origin version, one line or one region at a time.

If you want to undo all the changes you’ve made to a fi le, you can right-click on the fi le in the Team
Explorer Changes page and select Undo. Any changes you’ve made locally will be lost and the fi le
contents will be replaced with the version of the fi le in HEAD.

https://github.com/github/gitignore/blob/master/VisualStudio

Microsoft Visual Studio Integration ❘ 181

c07.indd 04/22/2014 Page 181

FIGURE 7-19: Changes to be committed, in the diff viewer

Renames
In the previous section, “Distributed Version Control Concepts,” you learned that Git commits
are stored as snapshots of the repository at the time of the commit. Commits are not stored as a
list of “deltas” or changes from the previous commit,
they simply refl ect the entire state of the repository. This
means that there’s no way to represent that a fi le in your
Included Changes is a rename.

Despite that, you can select a fi le in Solution Explorer
and change its name and this rename is refl ected in the
Included Changes list, as you can see in Figure 7-20.

Instead of instructing the version control system to perform a rename, as in Team Foundation
Version Control, Git simply detects that the rename occurred when it examines the working direc-
tory for changes. Any fi les that are newly added in the working directory are compared to the pre-
vious version of any fi les that were deleted. If an added fi le is similar to a deleted fi le, Git does not
display this change as an add and a delete; it shows it as a rename.

Git can even take this a step further and detect similar fi les in complex renaming situations such as
a “circular rename”:

FIGURE 7-20: Team Explorer showing a
rename in the Included Changes list

182 ❘ CHAPTER 7 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

c07.indd 04/22/2014 Page 182

 1. Rename File1.cs to a temporary fi lename like temp.

 2. Rename File2.cs to File1.cs.

 3. Rename temp to File2.cs.

In this situation, you haven’t added or deleted fi les, so comparing the working directory to the
contents of HEAD would suggest only that File1.cs and File2.cs have changed. Git will analyze
these changes, however, comparing the modifi ed versions in
the working directory to the previous versions to determine
whether the fi les were “rewritten.” If a fi le is very dissimilar
to its previous version, it will be treated as if the fi le was
deleted and re-added for the purposes of rename detection.
This allows Git to detect even complex rename cases, as
shown in Figure 7-21.

Committing Changes
An advantage of working in a distributed version control system, and committing directly to a local
repository, is that you can commit your changes without publishing them to other developers. For
example, if you are fi xing several bugs, you can fi x each bug in a discrete commit, which allows your
version control history to accurately refl ect your changes, and allows reviewers to examine each
change independently.

Reviewing Your Changes
Although committing locally allows you to create several independent commits before publishing
them to your peers, each of these commits should still be of high quality and able to stand on its own.
To help maintain quality, you should review your changes before you commit them.

Open the Team Explorer Changes page to see what changes are about to be committed.
Examine the items in the Included Changes list to make sure that it is the complete list of
changes that you want included. Make sure that the fi les in the Excluded Changes list and the
Untracked Changes list should not be included in the commit. To get more detailed information
about the changes, right click on a fi le and select Compare with Unmodifi ed to open the fi le in
the Diff Editor.

Associating Work Items
Team Foundation Server embraces the notion of integration between version control and work item
tracking and that performing work on source control should be linked to a development task or a
bug. As a result, Visual Studio provides work item tracking integration with Git commits, just like
with TFVC.

NOTE Integrated work item tracking is only available when your Git repository
is hosted in Team Foundation Server.

FIGURE 7-21: Circular renames in Git

Microsoft Visual Studio Integration ❘ 183

c07.indd 04/22/2014 Page 183

You can associate work items with your commit from within the Team Explorer Changes page,
in the Related Work Items Section located directly above the Included Changes list. Click the
Queries button to display your work item queries, and then select the work item query to run. In
the Query Results Editor, navigate to the work item you want to associate your commit with, and
double click it to add it to the list of associated work items. Alternately, if you know the ID of the
work item that you want to associate, you can simply click Add Work Item by ID and enter the ID
in the text fi eld.

When you commit this change, the work item link is stored with the commit in your local reposi-
tory. When you push the commit to the server, the work item will be updated to refl ect your changes
and will be linked with the commit.

Committing
When you have reviewed your changes and associated work items, you are ready to provide a com-
mit message that describes your changes and save the commit. By convention, the fi rst line of the
commit message is a brief summary of the changes in the commit. If you want to provide additional
information, leave a blank line before writing a detailed description. When you are done, simply
click the Commit button to update your repository.

Branching and Merging
Branching is a critical component of software development that allows you to create parallel lines
of development for your software. You can have a stable development branch that refl ects the cur-
rent version that contains bug fi xes only, while another branch refl ects the next version and contains
unstable or less mature new feature work.

Creating a Branch
To create a new branch, start by navigating to Team
Explorer ➪ Branches. The Branches page shows all the
branches that exist in your local repository, with the
current branch displayed in bold. Click the New Branch
option to expose the branch creation options, shown in
Figure 7-22, and enter the name of your new branch in
the branch name text box.

Your new branch will be created from the current branch
by default. In a topic branch workfl ow, you should select
the master branch to create your branch from. Select the
Checkout branch option in order to switch to your new
branch immediately so that as soon as you click Create,
you will be working on that new branch. If you have
changes in the working directory when you create the
branch then they will remain as changes to be committed
in the new branch.

FIGURE 7-22: Branch creation options

184 ❘ CHAPTER 7 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

c07.indd 04/22/2014 Page 184

Switching Branches
Because Git branches at the repository level, switching branches is trivial because there are no work-
ing folder mappings to change. When you switch branches in Git, the working directory contents
are simply updated with the contents of the branch you’re
switching to. To switch branches, navigate to the Team
Explorer Branches page, right-click the branch and select
Switch.

You can switch branches even if you have changes in your
working directory, provided none of those fi les are also
changed in the target branch. Your local changes remain
in the Team Explorer Changes page, and will be applied to
the new branch during your next commit.

If you have made changes to fi les that have also changed in
the branch, you will receive an error message, like the one
you see in Figure 7-23. You will need to either commit or
undo your changes to switch branches.

Merging Branches
Branches provide a helpful way to isolate parallel lines of development, but this isolation isn’t helpful
unless you can easily take the changes from one branch and apply them to another. For example, you
may have a stable branch that contains the current version
of your software and only receives bug fi xes. After you
have fi xed a bug in the stable branch, you want to take that
change and merge it into your development branch so the
bug is fi xed there, too. Similarly, if you are working with a
topic branch strategy, you want to merge your topic branch
into the master branch once the topic is fi nished and ready
to be included broadly.

To perform a merge, open the Team Explorer Branches
page and click the Merge button. In the source branch
combo, select the branch that contains the changes that
you want to merge; in the target branch combo, select
the branch that should receive those changes. In a topic
branch strategy, you would select your topic branch as the
source and your master branch as the target, as shown in
Figure 7-24.

When you click Merge, your working directory will switch to the target branch and any changes
from the source branch will be merged. If a fi le has only changed in the source branch, and
not the target, that fi le will simply be brought over into the target. If a fi le has changed in both
branches, Git will try to automerge those changes by taking the modifi ed regions in the source fi le
and the modifi ed regions in the target fi le to produce a new fi le that contains both changes (see
Table 7-1).

FIGURE 7-23: Confl icting changes prevent
switching branches

FIGURE 7-24: Merging changes from
“topic” to “master”

Microsoft Visual Studio Integration ❘ 185

c07.indd 04/22/2014 Page 185

TABLE 7-1: The Results of an Automerge

COMMON ANCESTOR SOURCE BRANCH TARGET BRANCH AUTOMERGE RESULT

Line one Changed in source Line one Changed in source

Line two Line two Line two Line two

Line three Line three Line three Line three

Line four Line four Line four Line four

Line fi ve Line fi ve Changed in target Changed in target

If both branches contain changes to the same file, with changes in the same regions, the file cannot be
automerged. This file will be marked as a conflict and you will have to resolve the conflict manually and
commit the merge when you are done.

MERGING BRANCHES IN GIT VERSUS TFVC

Although merging branches is generally similar between Git and TFVC, Git does
have two advantages that make merging more convenient.

 ➤ Git allows you to merge any two branches, unlike Team Foundation Version
Control, which maintains a branch hierarchy and requires that merges move
up and down that hierarchy. The following fi gure shows a branch hierarchy in
TFVC: In this hierarchy, you cannot merge changes directly from the Working
branch to the Grandparent branch without fi rst merging those changes to the
Parent branch. Git has no such restriction.

Branch hierarchy

 ➤ Because Git encourages workfl ows that branch and merge regularly, merges tend
to occur more frequently. As a result, merges are smaller and have fewer confl icts.

186 ❘ CHAPTER 7 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

c07.indd 04/22/2014 Page 186

Resolving Confl icts
When merging two branches produces confl icts, the Team Explorer Changes page will provide a
message at the top of the page notifying you that your merge did not complete and you must resolve
the confl icts to continue. Clicking the Resolve the confl icts link (see Figure 7-25) takes you to the
Resolve Confl icts page.

FIGURE 7-25: Confl ict notifi cation in the Team Explorer Changes page

Clicking the Resolve the confl icts link (shown in Figure 7-25) takes you to the Resolve Confl icts
page. The Resolve Confl icts page lists each confl ict that exists in the working directory, and you
must resolve each of them to complete the merge. Select a confl ict to show the confl ict resolution
options (see Figure 7-26).

FIGURE 7-26: Confl ict resolution options

To see the changes that led to the confl ict, you can click the Compare Files button. This will open
the Diff Editor with the fi le in the source branch on the left and the target branch on the right,
allowing you to see the regions that confl icted directly. To look at only the changes that occurred in
one of the branches, click the Diff button next to the source or target branch.

If you want to take the changes from the source branch, overwriting the changes that occurred in the
target branch, you can click Take Source. Similarly, if you want to keep the changes from the target
branch, overwriting the changes that occurred in the source branch, you can click Keep Target.

Microsoft Visual Studio Integration ❘ 187

c07.indd 04/22/2014 Page 187

More often, however, you want to merge the changes in the branches manually. Click the Merge
button to open the fi le in the Merge Editor, shown in Figure 7-27. The Merge Editor shows you the
fi le as it exists in the source branch on the left and the fi le as it exists in the target branch on the
right. The fi le below these branched versions contains the result of the merge. You must edit the fi le
in the bottom row to include the source and target changes, as appropriate. Once you have fi nished,
save the fi le to accept your changes and resolve the confl ict.

FIGURE 7-27: Merge Editor resolving a confl ict

Once all confl icts have been resolved, the Confl icts list empties and indicates that there are no
confl icts remaining. Any time you have a merge with confl icts you should perform a build and test
pass locally before committing your changes. Once you have validated the merge results, click the
Commit Merge button.

NOTE The Diff Editor included in Visual Studio provides powerful three-way
merging functionality for resolving confl icts, but like text editors, merge tools
can be a personal preference. Visual Studio reads the Git merge.tool confi gura-
tion settings, so if you prefer to use your own merge tool, you can confi gure it
according to the git-mergetool documentation, available at https://www
.kernel.org/pub/software/scm/git/docs/git-mergetool.html.

https://www

188 ❘ CHAPTER 7 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

c07.indd 04/22/2014 Page 188

Synchronizing Changes with the Server
Downloading changes from other developers and publishing your changes are crucial parts of work-
ing with other developers on a project. In a typical collaborative workfl ow you will pull changes
from the server into your repository and merge them with any changes you made before pushing
your changes to the server.

Pulling Changes from the Server
Pulling changes from the server downloads any commits
that your peers have made and merges those changes into
your local repository.

An advantage of the topic branch workfl ow is that you
are not working directly in the master branch, so you can
pull the changes from the server’s master branch into your
own without worrying about merge confl icts. This will
keep your master branch in sync with the remote but not
force you to merge the changes with your topic branch
until it is convenient.

To pull changes from the server, fi rst switch to the master
branch. Then navigate to Team Explorer ➪ Unsynced
Commits. At the top of the Unsynced Commits page is the
Incoming Commits list, which shows all the changes that
are new on the server and will be merged into your local
repository, as shown in Figure 7-28.

When you have reviewed the incoming changes, click Pull
to merge them into your master branch. In a topic branch
workfl ow, this will generally complete without confl icts, so you can switch back to the topic branch
that you’re working on and merge the changes from your master branch when it’s convenient.

Examining Changes
To see the changes that were pulled into your branch, go to the Team Explorer Branches page, right-
click on the master branch and select View History. This will open the History Editor, displaying
the commits in reverse chronological order, as shown in Figure 7-29.

To see more detailed information about one of the changes, double-click on it to open the commit
details in Team Explorer. This will show you the complete commit details as well as the list of fi les
that were modifi ed in this commit (see Figure 7-30). You can double-click on any fi le to open the fi le
in the Diff Editor, with the previous version on the left and the contents of that commit on the right.

If, however, you know the fi le that changed but not the commit that contained the change, you can
view the changes that were made in a particular fi le. If you have the fi le open in an Editor window,
right-click in the window and select Source Control ➪ History. Otherwise, you can navigate to the
fi le in Solution Explorer, right-click on the fi le and select View History. This gives a list of every
commit that has changed the current fi le, but not what was changed.

FIGURE 7-28: Incoming changes

Microsoft Visual Studio Integration ❘ 189

c07.indd 04/22/2014 Page 189

FIGURE 7-29: History view

FIGURE 7-30: Commit details

For a more in-depth view of the changes, you can view the “annotated history” of a fi le by right-
clicking on the fi le and selecting Source Control ➪ Annotate. This will add a new column on the
right side of the Editor window, which shows the last commit that changed each line (see
Figure 7-31). The annotated history view is useful in determining what commit introduced a bug or
a change in behavior, and it can be helpful in quickly identifying the author who made the change
along with providing more information. Unsurprisingly, annotated history is also frequently called
the “blame” history.

190 ❘ CHAPTER 7 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

c07.indd 04/22/2014 Page 190

FIGURE 7-31: Annotated history

Pushing
Pushing your changes to the server uploads the commits that you’ve made in your local branch and
then sets the server’s branch to point to the same commit that your local branch points to. The
server will not merge any changes for you; instead, you must merge any changes on the server with
your local branch before you push it. The server enforces that you have performed the merge to
ensure that you do not accidentally overwrite any changes on the server.

Visual Studio allows you to pull any changes on the server, merge them with your local branch, and
then push the results back up to the server in a single step called “synchronizing.” Synchronizing
is most useful when you have fi nished making changes
in your topic branch and are ready to merge it into the
master branch and push it to the server. First, switch
to the master branch and perform the merge from
your topic branch to master. Then, navigate to Team
Explorer ➪ Unsynced Commits and press the Sync but-
ton. Your master branch will be synchronized with the
server and the changes from your topic branch will now
be merged.

For a new repository that you want to publish to a server
for the fi rst time, you will not be able to synchronize.
Instead, when you navigate to Team Explorer ➪ Unsynced
Commits, you will be prompted for the remote server
URL. Enter the Git repository URL that was provided
when you created the repository and click Publish, as
shown in Figure 7-32.

FIGURE 7-32: Publishing a new repository
to the server

Using Git Command-Line Tools ❘ 191

c07.indd 04/22/2014 Page 191

NOTE When you create a new Git repository in Team Foundation Server, it
provides you with the Git repository URL to get started, as shown in the follow-
ing fi gure.

Creating a new Git repository

USING GIT COMMAND-LINE TOOLS

You saw in the previous section that Visual Studio provides straightforward access to working with
Git repositories but, like TFVC, not all version control operations are available in Visual Studio.
If you want to perform more advanced Git repository operations, or if you just prefer a text-based
interface to a graphical user interface, you will want to use the command-line tools.

The command-line tools, Git for Windows, are a version of the git core utilities developed to
manage the Linux kernel repository. The original git core tools remain primarily targeted at run-
ning in Unix environments and as a result are written in a mixture of languages including Bourne
shell scripts, Perl, and Python, and expect to be able to invoke standard Unix utilities that are not
 typically available on a Windows system.

The Git for Windows project takes the git core tools, packages them with a minimal set of the
Unix utilities, and provides a helpful installer to handle setting up this environment for you. Git for

192 ❘ CHAPTER 7 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

c07.indd 04/22/2014 Page 192

Windows also includes an alternate command-line environment, Git Bash, which provides a Unix-
like command-line experience. You are not required to use Git Bash, however; you can perform
these operations directly from a command prompt or from PowerShell.

WARNING You may see Git for Windows referred to as “msysgit,” although
this is not generally correct. Git for Windows is the name of the project that
provides the git core tools for Windows users in an easy-to-use installer.
msysgit is actually the environment used to develop and build Git for
Windows itself.

In this section, you learn how to install Git for Windows and how to use some of the most com-
monly used commands. You will also discover the posh-git interface for PowerShell, which can be
helpful when working from the command line.

NOTE This section is not a comprehensive tutorial of the git core tools; it
is meant to provide an introduction to how they work and how to use them
alongside Visual Studio. Even if you prefer to use the interface in Visual Studio,
understanding how the command-line tools work is helpful to understanding
how the Git version control system works. For more information on using the git
command-line tools, refer to Pro Git by Scott Chacon, available at http://
git-scm.com/book.

Installing Git for Windows
Visit http://msysgit.github.io/ to download the latest version of Git for Windows in a helpful
self-extracting installer. The installer will offer you many options that allow you to make expert-
level confi guration settings. You can simply accept the defaults because they are generally safe, but
two options deserve explanation.

NOTE Martin Woodward provides a detailed explanation in his article “Setting
Up the Perfect Git Command Line Environment on Windows” at http://www
.woodwardweb.com/git/setting_up_the.html.

Setting Your PATH Environment Variable
By default, Git for Windows will modify your PATH environment variable to include the git com-
mand-line tool so that you can use it from either a command prompt or PowerShell. If you choose
to not modify the PATH, you will have to use the Git Bash environment to use git. If you choose to
include the entire set of Git for Windows tools in the PATH, you will have Unix tools available at the
command line, some of which override Windows tools of the same name. These options are only
suggested if you are very familiar with Unix.

Setting Your Line Ending Conversion
Git supports line ending conversion to support development in heterogeneous environments.
Typically, Windows uses two characters to represent the end of a line, using a carriage return

http://git-scm.com/book
http://git-scm.com/book
http://msysgit.github.io
http://www

Using Git Command-Line Tools ❘ 193

c07.indd 04/22/2014 Page 193

(ASCII 13) and a line feed (ASCII 10) character, while Unix uses a single newline character (ASCII
10). Most modern applications can read and write fi les in either format but some legacy applications
expect a particular format.

This line ending conversion is optional, but recommended. You should select the “Checkout
Windows-style, commit Unix-style” option, even if you are only working on Windows and never
collaborating with developers on Unix platforms. Some Git tools perform line-ending conversion by
default and do not honor this confi guration setting; they will expect the repository to contain Unix-
style line endings always.

If you were to confi gure Git to always write Windows-style line endings, but use one of these defi -
cient tools that did not honor this confi guration, it would lead to inconsistent settings in both your
repository and your working directory.

Working with Git for Windows
One the installation has fi nished, you can start working with the git command-line tools as soon
as you open a new command shell or a new instance of PowerShell. You will see the examples illus-
trated with command shell, but you should use whichever you prefer. If you are a PowerShell user,
make sure to see the section “Using Posh-Git” later in this chapter.

Cloning Git Repositories Hosted in Team Foundation Server
If you have cloned a repository using Visual Studio and you want to work with the git core tools, you
do not need to clone a repository again. You can simply open the working directory in a command
prompt and run the git commands in your working directory. If you would prefer to clone using the
command line instead, you must fi rst discover the URL of the server repository by opening Team
Web Access.

In a web browser, navigate to the Team Project that contains the Git repository you want to clone;
then navigate to the Code page, and select the Git repository to clone. Click the Clone button,
shown in Figure 7-33, to open a text fi eld that contains the URL of the server repository.

Once you have copied the URL of the server repository, you can simply run the git clone
command.

git clone http://servername:8080/tfs/DefaultCollection/_git/Project C:\Project

In this example, the server repository located at http://servername:8080/tfs/
DefaultCollection/_git/Project will be cloned to a new local working directory, C:\Project.

NOTE When you are prompted for your user name and password, you can sim-
ply press Enter twice to provide your Active Directory credentials to your Team
Foundation Server. If you are using TFS hosted in Visual Studio Online, you
should instead enter your Alternate Credentials, as described at http://aka
.ms/VSOAlternateCredentials.

http://servername:8080/tfs/DefaultCollection/_git/Project
http://servername:8080/tfs
http://aka

194 ❘ CHAPTER 7 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

c07.indd 04/22/2014 Page 194

URL of the
Git server
repository

FIGURE 7-33: The server repository URL in Team Web Access

Making Changes in the Repository
As you learned previously, Git does not require you to notify the version control system before you
start making changes in the working directory. However, the git core tools do not have the Include
Changes and Excluded Changes list, as you saw in Visual Studio, so you will need to update the Git
index to refl ect your changes after you have made them.

Making Changes and Staging Them for Commit
As you make changes in the working directory, you can use the git status command to look at
the working directory and report the changes you’ve made. New fi les in the working directory will
be reported as “untracked” and modifi ed and deleted fi les will be reported as “unstaged changes.”
None of these changes have been added to the index and these changes will not be included in the
upcoming commit. Figure 7-34 shows the status of a Git repository with unstaged changes.

If you want to prepare these changes to be committed, you need to “stage” them. To stage new fi les
or modifi ed fi les, add them to the index with the git add command. To stage deletions of removed
fi les, use the git rm command. Figure 7-35 shows the status of a git repository with a mix of staged
and unstaged adds, modifi cations, and deletes. The staged changes will be included in the next com-
mit; the unstaged changes will remain unstaged.

Using Git Command-Line Tools ❘ 195

c07.indd 04/22/2014 Page 195

FIGURE 7-34: Git repository status with unstaged changes

FIGURE 7-35: Git repository status with staged and unstaged changes

NOTE You can use the shorthand command git mv, which renames the source
fi le to the target fi le on disk, removes the source fi lename from the index, and
adds the target fi lename to the index.

As you learned earlier, you do not have to use git mv because Git repositories
detect renamed fi les using heuristics instead of storing rename information in the
repository. There is no difference between using git mv and simply renaming the
fi le yourself, staging the deletion of the source fi le with git rm and staging the
addition of the target with git add.

Reviewing Your Changes and Committing Them
When you have fi nished making changes and are ready to commit them, you should fi rst review
them for accuracy.

196 ❘ CHAPTER 7 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

c07.indd 04/22/2014 Page 196

Check the status of your repository to ensure that you have staged all the changes you want
included; review the list of unstaged changes carefully, making sure that there are no fi les that
should be included in the upcoming commit. Because you can stage incremental fi le changes to the
index, occasionally you may stage changes to a fi le and then edit that fi le further, which will cause
you to have both staged and unstaged changes to the same fi le. In this case, you should review the
changes on a line-by-line basis.

To see this deeper comparison of the changes that you have staged, you can compare the staged
changes against the HEAD commit.

git diff --staged

This will show you each line that you have changed and staged for commit, easily decorated to iden-
tify the changes. Added lines will be prefi xed with a “+” while removed lines will be prefi xed with a
“-”. Unchanged lines have no prefi x, and are provided for context (see Figure 7-36).

FIGURE 7-36: Output of git diff showing changes in a single fi le

When you have reviewed your changes and are ready to commit them, simply run the following:

git commit

You will be prompted to enter a commit message that describes the changes that you’re making.
Again, the fi rst line should be a brief summary of the change, followed optionally by a blank line
and additional details. When you have fi nished, save the fi le and exit your text editor, and your
changes will be committed.

Viewing History
You learned earlier that Git stores its history in a graph, but in the examples you’ve seen, history has
been portrayed as a fl attened list of commits, sorted reverse chronologically. To see the actual graph,
with history diverging and merging, you can use the git log command as shown in Figure 7-37.
Specify the --graph option to display the graph format, the --decorate option to show labels on
the commits that indicate the location of the branches, and the --oneline option to show a com-
pact display, with one commit per line.

Using Git Command-Line Tools ❘ 197

c07.indd 04/22/2014 Page 197

FIGURE 7-37: Git log with graph visualization

Branching and Merging
Creating a branch with the git command-line tools is simple and quick, just like creating a branch in Visual
Studio. To create a new topic branch based on the master branch, you use the git branch command:

git branch new_topic master

Once created, you can switch to the topic branch:

git checkout new_topic

Note that you can also perform this branch creation and branch switching from within Visual Studio.
In fact, Visual Studio will watch the git repository and update Team Explorer as you create branches
and switch to them. You can see Team Explorer updated to refl ect the new branch in Figure 7-38.

Branch added from
command line

FIGURE 7-38: Team Explorer showing the new branch

After you have made changes and committed them in your topic branch and you are ready to merge the
topic branch into master, you need only to switch to the master branch and merge the topic branch in.

git checkout master
git merge topic

198 ❘ CHAPTER 7 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

c07.indd 04/22/2014 Page 198

If the merge is successful, it will complete immediately and produce a new commit. However, if any
merge confl icts occurred, you will be notifi ed that you must resolve them before continuing.

You can edit each fi le manually and stage the resolved fi le, or you can resolve the confl icts in Visual
Studio, using the helpful Diff Editor that you’ve already seen. Visual Studio will even detect the con-
fl icts as soon as the merge produces them, and allow you to resolve them from the Team Explorer
Resolve Confl icts page.

Once you have staged a resolution for all your confl icts, you can git commit the results to complete the
merge. You can then synchronize your changes with the server to publish your topic branch to your peers.

Synchronizing with the Server
When working with Visual Studio, you pull changes from the server, merge them with your own,
and then push your changes to the server. This is the same workfl ow you should follow when
 working from the command line.

Pulling Changes from the Server
In order to retrieve changes from the server, merging the changes in the server’s master branch into
your master branch, fi rst switch to the master branch using git checkout master, and then use
the git pull command.

git pull origin

In this example, the argument “origin” refers to the name of the Git server. Because git provides
peer-to-peer access to other repositories, you can actually confi gure many remote repositories that
you share changes with. By convention, “origin” is the remote repository that you fi rst cloned from.

As in Visual Studio, the pull command both fetches the new commits on the server and merges
them into your repository. The git pull command is actually a combination of the fetch and
merge command. If you are on the master branch, locally, this is the equivalent of:

git fetch origin
git merge origin/master

WARNING A variation on the git pull workfl ow is to “rebase” your changes on
top of the upstream changes. This can be accomplished by:

git pull origin --rebase

which is the equivalent of:

git fetch origin
git rebase origin/master

Instead of performing a merge commit, this takes your local changes that have not
been pushed upstream and re-applies them on top of the upstream changes. As a
result, the repository history does not appear to diverge and merge; it appears like
a straight line. This may be visually appealing, but it obscures the actual direc-
tion that development took and if a bad merge occurs, it can hide the source. As
a result, you should generally merge the server’s changes unless your development
team has a convention to the contrary.

Using Git Command-Line Tools ❘ 199

c07.indd 04/22/2014 Page 199

Pushing Your Changes
To publish your changes to the server, you use the git push command to upload a branch to the server.

git push origin master

In this example, as with the pull command, the argument “origin” refers to the name of the Git
server. The argument “master” refers to the name of the branch you wish to push; the changes in
your master branch will be pushed to the server’s master branch.

If there are other changes on the server that you do not yet have in your repository, your push will
fail. You will be prompted to merge those changes into your repository and push again. To retrieve
the server’s changes and merge them into your repository, use the git pull command. After resolv-
ing any confl icts, you can push your newly merged changes to the server.

Using Posh-Git
Posh-Git is a set of PowerShell scripts that provide user interface enhancements when you’re using
the git command-line client. Posh-Git provides two simple, but powerful, features: an extension to
your shell’s prompt that provides a brief report of your repository’s status, and command-line com-
pletion for git commands and branches.

Installing posh-git is simple: Download the latest version from http://dahlbyk.github.io/
posh-git/, extract the Zip fi le, and run the included install.ps1 script from a PowerShell
prompt. The installer updates your startup profi le so that posh-git will be loaded by default every
time you start PowerShell; to rerun your startup profi le to take advantage of posh-git immediately,
follow the instructions provided in the installer.

Now, you can simply change directories into your git repository. As soon as you enter the working
directory, your prompt will change to include additional information about your repository status.
In a working directory with no changes, you will simply see the prompt include the name of the cur-
rently checked out branch.

C:\Projects\Summoner [topic]>

Switching branches by using the git branch command updates the prompt immediately to refl ect this
change. The color of the branch name indicates its relation to your server repository, as shown in Table 7-2.

TABLE 7-2: Posh-Git Remote Branch Indicators

COLOR STATUS

Blue Your branch is “up to date” with the server’s branch; your local branch points to the
same commit as the server’s branch.

Green Your branch contains new commits that you can push to the server.

Red The server’s branch contains new commits that you can pull.

Yellow Both your branch and the server’s branch contain new commits since the last time you
synced. You should pull commits from the server and then you can push your commits.

If you have any staged or unstaged changes in your working directory, a summary of the status will
be displayed in your prompt after the branch name. For example, if you add a fi le to the working
directory and stage a change to an existing fi le, the prompt will indicate those changes.

http://dahlbyk.github.io

200 ❘ CHAPTER 7 DISTRIBUTED VERSION CONTROL WITH GIT AND TEAM FOUNDATION SERVER

c07.indd 04/22/2014 Page 200

C:\Projects\Summoner [topic +0 ~1 -0 | +1 ~0 -0 !]>

The fi rst group of status indicators shows the staged changes in the working directory; the second
group of indicators shows the unstaged changes in the working directory. Table 7-3 explains the sta-
tus indicators in detail.

TABLE 7-3: Posh-Git Working Directory Status Indicators

SECTION 1: STAGED CHANGE INDICATORS

+ Number of new fi les in the working directory that are staged for addition

~ Number of modifi ed fi les in the working directory that have staged changes

- Number of deleted fi les in the working directory that are staged for removal

SECTION 2: UNSTAGED CHANGE INDICATORS

+ Number of untracked fi les in the working directory that are new and not staged

~ Number of modifi ed fi les in the working directory that are not staged

- Number of deleted fi les in the working directory that are not staged

! Number of unresolved confl icts

Having these indicators in your prompt is an exceptionally helpful way to have a constant, unobtru-
sive view of your repository status.

Posh-Git also provides command-line completion for git commands. This lets you type git ch and
press Tab, and posh-git will complete this to git checkout. You can type git stat and press
Tab, and posh-git will complete this to git status. Similarly, posh-git provides command-line
completion for git branches. You can type git checkout ma and posh-git will complete this to git
checkout master (provided you don’t have any other branches that start with “ma”).

If you’re a PowerShell user, posh-git will quickly become an indispensable part of your Git work-
fl ow. If you’re not a PowerShell user, the simple utility of posh-git may make you reconsider.

SUMMARY

 In this chapter, you learned about Git, the concepts of distributed version control systems and how
they differ from centralized version control. You learned how Git integrates into Visual Studio and
how to take advantage of common version control operations with Git, including making changes
and committing them, pushing your changes to other users, pulling changes from the server, and
branching and merging with the topic branch workfl ow strategy. You have also learned some basics
about how to work with Git repositories from the command line.

In Chapter 8, you will learn how you can work with Team Foundation Server Version Control from
heterogeneous environments.

c08.indd 04/22/2014 Page 201

Version Control in
Heterogeneous Teams

WHAT’S IN THIS CHAPTER?

 ➤ Understanding heterogeneous teams

 ➤ Working with Xcode

 ➤ Working with Eclipse

 ➤ Working from the command line

WHAT ARE HETEROGENEOUS TEAMS?

Heterogeneous teams are ones that comprise team members who focus on different technolo-
gies, languages, and tools. A typical example of a heterogeneous team is a team that maintains
an application with a web front-end written in ASP.Net MVC, an iPad app, a Windows Phone
app, and an Android app sitting on a business logic layer composed of RESTful APIs written
in C# that calls out to Java web services. The system may also create batches of data as CSV
fi les that get pushed over FTP to a folder where a COBOL application on the mainframe picks
them up at a specifi ed time each night for further processing.

Inside this team, you have Microsoft .NET developers, Java developers, COBOL developers,
Objective-C developers, and C++ developers all needing to work together to create a seam-
less application suite. Typically, each group would have its preferred version control tool that
would integrate with its toolset.

8

202 ❘ CHAPTER 8 VERSION CONTROL IN HETEROGENEOUS TEAMS

c08.indd 04/22/2014 Page 202

WORKING TOGETHER SEAMLESSLY

Managing changes in separate version control repositories based on the technology in use means
that creating builds and gathering check-in data, as well as coordinating changes, become much
more complex. Team Foundation Server offers these kinds of teams the ability to coordinate their
version control tooling by offering two types of version control repositories that will work across all
of these platforms.

Team Foundation Version Control allows teams that want to use a centralized version control
system to have an integrated experience regardless of platform. When working on a Windows oper-
ating system, the team members can use Team Explorer. Team members that use the Eclipse IDE
can install the Team Explorer Everywhere plug-in to gain many of the benefi ts derived from Team
Explorer.

Team members working on iOS, Linux, or Solaris can still install Eclipse with Team Explorer
Everywhere to access Team Foundation Version Control. If the team member is working on a
machine without a graphical user interface, Team Explorer Everywhere ships with a command-line
client that will let you perform all of the version control functions from a command line.

Team Projects based on a Git repository allow any team member across any platform and using
any IDE to utilize Team Foundation Server as their remote version control repository. Many IDEs
are able to integrate with Git out of the box, such as Apple’s Xcode, and there are a number of Git
implementations that allow use across Windows and non-Windows platforms alike.

XCODE DEVELOPMENT

Developers of iOS applications usually use Apple’s Xcode development environment to support their
application development efforts. The Xcode IDE has built-in support for Subversion and Git version
control repositories. Because Team Foundation Server has the option to create a team project with
a Git version control repository, Xcode developers can easily connect to a Git-based team project
using the built-in functionality.

Using a Git-Based Team Project
To connect your Xcode IDE to the Git repository in your team project, you will fi rst need to clone
the team project’s repository. Start by opening up Web Access and navigating to your team project.
Click on the Code link to bring up the source control page. If you have an empty repository, you
will see a page similar to Figure 8-1.

At the bottom of this page, you will see a section titled “Push an Existing Repository.” There are
two git commands in this section. The git remote command has a URL argument. You will need
this URL to connect from Xcode.

If you already have code in the repository, you will need to look to the right side of the page. There
you will see a Clone link. Click this link to display the URL needed to pass to Git to clone your
repository, as shown in Figure 8-2.

Xcode Development ❘ 203

c08.indd 04/22/2014 Page 203

FIGURE 8-1: Empty Git repository in Web Access

FIGURE 8-2: URL to clone an existing Git repository

204 ❘ CHAPTER 8 VERSION CONTROL IN HETEROGENEOUS TEAMS

c08.indd 04/22/2014 Page 204

Once you have that URL, you open your Xcode IDE and click on the Check out an existing project
link on the Welcome to Xcode screen as shown in Figure 8-3.

FIGURE 8-3: Welcome to Xcode dialog box

In the Check Out dialog box, enter the URL you copied from Web Access into the Repository
Location text box, as shown in Figure 8-4.

FIGURE 8-4: Set remote repository location

Xcode may prompt you for your credentials, as shown in Figure 8-5. Enter your user name and pass-
word and click the Next button.

Xcode Development ❘ 205

c08.indd 04/22/2014 Page 205

FIGURE 8-5: Enter repository credentials

ALTERNATE CREDENTIALS FOR VISUAL STUDIO ONLINE

If you are attempting to connect to a Git repository hosted on Visual Studio Online,
you will need to confi gure Alternate Credentials on your account. Some applica-
tions that work outside the browser use Basic Authentication credentials and other
applications have problems with user names that are e-mail addresses. To support
these tools, Visual Studio Online lets you confi gure alternate credentials. For more
information, see http://aka.ms/VSOAlternateCredentials.

Once Xcode has found the repository and verifi ed your credentials it will ask you to select a direc-
tory in which to check out the project. Select a folder and click the Check Out button, as shown in
Figure 8-6. When this step completes, Xcode will open with your project loaded.

FIGURE 8-6: Enter repository credentials

http://aka.ms/VSOAlternateCredentials

206 ❘ CHAPTER 8 VERSION CONTROL IN HETEROGENEOUS TEAMS

c08.indd 04/22/2014 Page 206

Using a TFVC-Based Team Project
What happens if the organization has decided to use a Team Foundation Version Control (TFVC)–
based repository for its team project? In this case, Xcode developers have two options, they can
create their own team project with a Git repository, or they can use Git locally and then push to the
TFVC repository using a tool called git-tf. Git-tf is a Java-based, open source, cross-platform,
command-line tool that serves to bridge the gap between local Git repositories and Team
Foundation Version Control repositories in a team project.

Installation is as simple as extracting the contents of the downloadable zip fi le to a local folder, add-
ing the extracted folder to your PATH environment variable, and ensuring that java.exe is also in
your PATH.

Because of the differences between Team Foundation Version Control and Git, we recommend that
the team select a single Git repository to interact with the team project’s repository. So in my team,
I would use git tf clone to clone the TFVC repository from Team Foundation Server. I would
then Push to a shared Git repository. The rest of my team would use git clone to clone the shared
Git repository, and we would develop our application there. When we are done, I would Pull
from the shared Git repository and then commit all of the work to TFVC using git tf checkin.
Nobody else in my team needs to interact with the TFVC repository.

NOTE For more information and typical workfl ows on the git-tf tool, see
http://gittf.codeplex.com.

ECLIPSE DEVELOPMENT

Back in 2009, Microsoft acquired a company that created a Team Foundation Server extension for
the Eclipse IDE called Teamprise. That product was later renamed to Team Explorer Everywhere
(TEE) and currently includes an Eclipse plug-in, a cross-platform command-line client, and a Java
SDK for building custom tools that access TFS. The team responsible for it has also built a set of
Team Build extensions that allow Team Build to compile Java applications that use Ant or Maven.

Team Explorer Everywhere’s Eclipse plug-in allows team members working on non-Microsoft
technologies to interact with their Team Foundation Server. It is written in Java and runs on the
operating systems and Java versions in the following lists. It supports IDEs that are based on
Eclipse 3.5 to 4.3, including Rational Application Developer.

 ➤ Team Explorer Everywhere Supported Operating Systems

 ➤ Windows 8.1 (x86 and x64)

 ➤ Windows 8 (x86, x64)

http://gittf.codeplex.com

Eclipse Development ❘ 207

c08.indd 04/22/2014 Page 207

 ➤ Windows 7 (x86, x64)

 ➤ Windows Vista (x86, x64)

 ➤ Windows XP (x86)

 ➤ Linux with GLIBC 2.3 to 2.11 (x86, x86_64, PowerPC)

 ➤ Mac OS X 10.8+ (Intel only)

 ➤ Solaris 8 to 11 (SPARC,x64)

 ➤ AIX 5.2 to 7.1(32- and 64-bit)

 ➤ HP-UX 11i v1 to v3 (PA-RISC, Itanium)

 ➤ Team Explorer Everywhere Supported Java Versions

 ➤ Oracle Java 1.5+ or IBM Java 1.5+ on Microsoft Windows

 ➤ Apple Java 1.5+ on Mac OS X

 ➤ Oracle Java 1.5+ on Linux or Solaris

 ➤ IBM Java 1.5+ on Linux or AIX

 ➤ HP Java 1.5+ on HP-UX

Team Explorer Everywhere has a look and feel that is very similar to the look and feel of Team
Explorer for Visual Studio. Because of this design similarity, almost all of the workfl ows are similar
between the two Team Foundation Server clients. As such, most of the help and tutorial documenta-
tion that applies to Team Explorer applies to Team Explorer Everywhere.

One of the new features of Team Explorer Everywhere 2013 is that it exposes functionality from
both TFVC- and Git-based team projects right in the plug-in in a manner similar to Team Explorer.

Installing Team Explorer Everywhere
The easiest way to install Team Explorer Everywhere on a computer with Internet access is to use
the Microsoft update site. Simply open Eclipse, navigate to the Help menu, and click Install New
Software. When the Install dialog box appears, click the Add button, as shown in Figure 8-7.

The Add Repository dialog box will appear. In the Name fi eld, enter something memorable like
“Team Explorer Everywhere” and set the location of the update site to http://dl.microsoft.com/
eclipse/tfs, as shown in Figure 8-8.

Click the OK button, which will bring up the list of features in the Install dialog box. Here, select
the TFS Plug-in for Eclipse check box, as shown in Figure 8-9.

Choose the Next button to download the metadata for Team Explorer Everywhere. When it fi nishes
downloading, the Install Details dialog box will be displayed, as shown in Figure 8-10. Review the
add-ins to be installed and click the Next button.

http://dl.microsoft.com

208 ❘ CHAPTER 8 VERSION CONTROL IN HETEROGENEOUS TEAMS

c08.indd 04/22/2014 Page 208

FIGURE 8-7: Available software page in the Install dialog

FIGURE 8-8: Add Repository dialog box

Eclipse Development ❘ 209

c08.indd 04/22/2014 Page 209

FIGURE 8-9: Feature selection in the Available Software page in the Install dialog

FIGURE 8-10: Install Details dialog box

210 ❘ CHAPTER 8 VERSION CONTROL IN HETEROGENEOUS TEAMS

c08.indd 04/22/2014 Page 210

In the Review Licenses dialog box, select “I accept the terms of the license agreements” and click
the Finish button, as shown in Figure 8-11. Eclipse will now download and install Team Explorer
Everywhere. When the installation is complete, you will need to restart Eclipse.

FIGURE 8-11: Review Licenses dialog box

Once Eclipse is restarted, you can access Team Explorer Everywhere’s windows by selecting
Window ➪ Open Perspective ➪ Other, as shown in Figure 8-12.

In the Open Perspective dialog box, select Team Foundation Server Exploring and click OK, as
shown in Figure 8-13. The Eclipse workbench now has a section holding Team Explorer, as shown
in Figure 8-14.

Eclipse Development ❘ 211

c08.indd 04/22/2014 Page 211

FIGURE 8-12: Open Perspective menu in the workbench

FIGURE 8-13: Open Perspective dialog box

212 ❘ CHAPTER 8 VERSION CONTROL IN HETEROGENEOUS TEAMS

c08.indd 04/22/2014 Page 212

FIGURE 8-14: Team Explorer Everywhere in the workbench

Connecting Team Explorer Everywhere to
Team Foundation Server

Now that you have Team Explorer Everywhere installed into Eclipse, you need to connect it up to
your Team Foundation Server. Start by clicking on the Connect to Team Foundation Server link in
Team Explorer, as shown in Figure 8-14. In the License Agreement page of the Add Existing Team
Project dialog box, click the “I have read and accept the terms in the License Agreement” and click
the Next button, as shown in Figure 8-15.

In the Team Project page, click the Servers button, as shown in Figure 8-16. In the Add/Remove
Team Foundation Server dialog box, click the Add button. In the Add Team Foundation Server dia-
log box, enter the name of your Team Foundation Server in the Name or URL of Team Foundation
Server text box, as shown in Figure 8-17, and click OK.

Eclipse Development ❘ 213

c08.indd 04/22/2014 Page 213

FIGURE 8-15: License Agreement page

FIGURE 8-16: Team Project page

214 ❘ CHAPTER 8 VERSION CONTROL IN HETEROGENEOUS TEAMS

c08.indd 04/22/2014 Page 214

FIGURE 8-17: Add Team Foundation Server dialog box

Back in the Add/Remove Team Foundation Server dialog box, click Close. Now you can select your
Team Foundation Server in the server drop-down, which will load the available team project collec-
tions. Select your team project collection to load the collection’s team projects, as shown in Figure 8-18.

FIGURE 8-18: Team Project page with team project selected

To complete the process, click Finish. This will fi nalize the connection between Team Explorer
Everywhere and Team Foundation Server. Your IDE is now ready to work with Team Foundation
Server, as shown in Figure 8-19.

Eclipse Development ❘ 215

c08.indd 04/22/2014 Page 215

FIGURE 8-19: Team Explorer Everywhere connected to TFS

Using Team Foundation Version Control
Once Team Explorer Everywhere is installed and connected to your TFVC-based team project, you
can click the Source Control Explorer link in TEE to open the Source Control Explorer window,
as shown in Figure 8-20.

Store an Existing Eclipse Project in TFVC
One of the fi rst things you have to do is take the source code for your project and place it into
your team project. To do this you will have to have your project open in Eclipse and TEE connected
to TFS.

Start by right-clicking on your project in Package Explorer and selecting Team ➪ Share Project from
the context menu, as shown in Figure 8-21.

216 ❘ CHAPTER 8 VERSION CONTROL IN HETEROGENEOUS TEAMS

c08.indd 04/22/2014 Page 216

FIGURE 8-20: Source Control Exploresr in Eclipse

FIGURE 8-21: Share Project menu

Eclipse Development ❘ 217

c08.indd 04/22/2014 Page 217

This will bring up the Share Project Wizard. Select Team Foundation Server from the repository
plug-in list, as shown in Figure 8-22, and then click Next.

FIGURE 8-22: Selecting the repository plug-in

When the Server Location step appears, navigate to your team project. Note that the Eclipse project
name is appended to the selected folder in the Project folder path text box, as shown in Figure 8-23.
Once you have your path selected, click Next.

FIGURE 8-23: Selecting a server location

218 ❘ CHAPTER 8 VERSION CONTROL IN HETEROGENEOUS TEAMS

c08.indd 04/22/2014 Page 218

Review your confi guration and then click Finish, as shown in Figure 8-24. This will create a set of
pending changes (adds) in version control, as shown in Figure 8-25.

FIGURE 8-24: Confi rmation pane in Share

In the Pending Changes pane, enter a comment and then click the Check in button as shown in
Figure 8-25 to commit your changes to the repository. Congratulations, you have successfully
shared your Eclipse project in Team Foundation Server.

Import an Existing Eclipse Project from TFVC
Now that you have your source code available, you will need to bring it into Eclipse. This is typi-
cally done when you get a new team member or when you have to support a codebase that hasn’t
been touched for a while. In either case, you want to start by importing your project code into
Eclipse.

Start by selecting File ➪ Import... to open the Import Wizard’s Selection pane. Expand the Team
node and select Team Foundation Server as an Import Source, as shown in Figure 8-26. Click Next.

In the Projects Selection pane, select the folder containing your application’s .project fi le and click
Next, as shown in Figure 8-27.

NOTE If you want to import multiple Eclipse projects, you can select multiple
folders in the tree view using Ctrl+left-click on each folder, or you can select a
range of folders by left-clicking on the fi rst folder and then using Shift+left-click
on the last folder.

Eclipse Development ❘ 219

c08.indd 04/22/2014 Page 219

FIGURE 8-25: Pending Adds in Source Control Explorer

FIGURE 8-26: The Select pane in the Import Wizard

220 ❘ CHAPTER 8 VERSION CONTROL IN HETEROGENEOUS TEAMS

c08.indd 04/22/2014 Page 220

FIGURE 8-27: Projects Selection in the Import Wizard

When the Confi rmation pane is displayed, review the list of Eclipse projects that have been selected
for import. When you are satisfi ed with the list, click Finish, as shown in Figure 8-28.

FIGURE 8-28: Confi rmation pane in the Import Wizard

Team Explorer Everywhere will download the project’s source code into your Eclipse workspace and
load the Eclipse Project into Package Explorer, as shown in Figure 8-29. You are now ready to work
with your application code.

Working with the Cross-Platform Command-Line Client ❘ 221

c08.indd 04/22/2014 Page 221

FIGURE 8-29: Eclipse project open in Package Explorer

Add, Delete, Edit, Rename, Check-Out, and Check-In Files
Team Explorer Everywhere provides much of the same functionality to Eclipse developers as Team
Explorer provides to Visual Studio developers. The features, commands, and even the look and feel are
almost identical. Because of this, the information contained in Chapter 6 relating to check-out, check-
in, adding, deleting, and renaming fi les in version control is also applicable to Eclipse developers.

NOTE Because of the similarity between Team Explorer Everywhere and Team
Explorer, much of the documentation available to Team Explorer users is also
applicable to Team Explorer Everywhere users. For more information on using
Team Explorer Everywhere, see Adopting Team Explorer Everywhere on MSDN
at http://aka.ms/AdoptingTEE.

Using Git
Eclipse developers working with a Git-based team project can use the EGit plug-in to access their team
project repository just like any other Git repository. EGit is maintained on the Eclipse website and can
be found in the Eclipse Marketplace or at http://www.eclipse.org/egit. When working with Git-
based team projects stored on Visual Studio Online, you need to enable Alternate Credentials on your
account so that basic authentication can be used to connect to the Service. For information on enabling
Alternate Credentials in Visual Studio Online see http://aka.ms/VSOAlternateCredentials.

WORKING WITH THE CROSS-PLATFORM
COMMAND-LINE CLIENT

Team members whose development machines are running an operating system that doesn’t provide a
GUI in which to run Eclipse and Team Explorer Everywhere can still participate in your team project.
For those team members, Microsoft provides the Team Explorer Everywhere Command-Line Client
(CLC), which can be used to access the team project’s version control repository from a command shell.

http://aka.ms/AdoptingTEE
http://www.eclipse.org/egit
http://aka.ms/VSOAlternateCredentials

222 ❘ CHAPTER 8 VERSION CONTROL IN HETEROGENEOUS TEAMS

c08.indd 04/22/2014 Page 222

Install and Connect
The fi rst step is to download the Command-Line Client fi les from Microsoft. The Command-
Line Client is part of Team Explorer Everywhere and can be downloaded from the Team Explorer
Everywhere download page at http://aka.ms/DownloadTEE. When you click the Download button
you will be given the option to select the fi les to be downloaded. Select the TEE-CLC-12.0.0.zip
fi le’s check box and click Next, as shown in Figure 8-30.

FIGURE 8-30: Team Explorer Everywhere download page

Once the zip fi le is downloaded, copy the archive over to the target machine and extract the fi les
from the archive. Now you will need to change the system/shell’s PATH environment variable to
include the folder where the archive was unzipped. You will also need to add the Java Runtime
Environment or Java Development Kit location to the PATH or set the JAVA_HOME environment vari-
able to point to your Java installation.

Once that is complete, open a command prompt and type tf and hit Enter. You should see output
from the Command-Line Client, as shown in Figure 8-31.

NOTE For additional information about any of the tf commands, type tf help
followed by the name of the command you want information about. So to see
how the merge command works, type tf help merge.

http://aka.ms/DownloadTEE

Working with the Cross-Platform Command-Line Client ❘ 223

c08.indd 04/22/2014 Page 223

FIGURE 8-31: Command-Line Client help

AUTHENTICATION

Every interaction with Team Foundation Server is constrained by your rights
within TFS. When you perform a version control operation, TFS needs to be able to
authenticate you prior to performing the operation.

When using the tf command-line tool you must provide your credentials by add-
ing the -login:<username>,<password> option to the tf command. For example,
if you want to perform a check-in, you would use tf checkin -login:tfs2013\
steve,myPassword. The user name can be specifi ed in domain\username or
username@domain format.

If you want to let Team Explorer Everywhere cache your credentials, you can set
the TF_AUTO_SAVE_CREDENTIALS environment variable to any value. When this
value is set, the next usage of the -login option will save the credentials to the cre-
dential cache. From that point on, those credentials will be used for each invocation
of the tf command.

For more information see http://aka.ms/CLCAuth.

http://aka.ms/CLCAuth

224 ❘ CHAPTER 8 VERSION CONTROL IN HETEROGENEOUS TEAMS

c08.indd 04/22/2014 Page 224

Creating a Workspace Mapping
Before you can perform any version control operations, you need to review and accept the Microsoft
Software License Terms. To view the License, type tf eula and press Enter. When the License is dis-
played, it will prompt you for acceptance. Type y or yes and press Enter. If you want to accept the
License without these steps, you can type tf eula /accept.

Now that the legal stuff is out of the way, you will need to create a workspace on your machine
that connects it to Team Foundation Version Control in your team project. In the fi rst command
in Figure 8-32, we are creating a workspace called MyApp inside the http://tfs2013:8080/tfs/
DefaultCollection team project collection.

FIGURE 8-32: Mapping a server folder to a local folder

Next you need to create a folder mapping from a location in version control to your local machine.
You’ll start by creating a local folder called MyApp in C:\, and then you’ll use the tf workfold
command to map the folder in version control to your local folder, as shown in Figure 8-32.

Performing a Get from Team Foundation Server
To perform version control activities, you need to change you working folder to the local directory
that Team Foundation Server knows about so you type cd c:\MyApp and press Enter. Once there,
you can use the tf get command to retrieve the latest version of all of the fi les in your project from
source control, as shown in Figure 8-33.

FIGURE 8-33: Retrieving the latest version from version control

http://tfs2013:8080/tfs

Working with the Cross-Platform Command-Line Client ❘ 225

c08.indd 04/22/2014 Page 225

Editing Files and Committing Changes
Now with that done, you can make changes to your fi les. When you’re ready to check in your
changes, you can issue a tf status command to see what is changed in my workspace. Figure 8-34
shows that you have made an edit to the HelloWorld.java fi le. To commit that change to version
control you’ll use the tf checkin command with the /comment parameter to add a comment to
your check-in, as shown in Figure 8-34.

FIGURE 8-34: Reviewing and committing changes

To show that these changes were actually committed to Team Foundation Server, you can open
Eclipse, go to your project folder in Source Control Explorer, and get the history of changes to that
folder. As you can see in Figure 8-35, Changeset 55 contains the comment that you added when you
checked in your edits.

FIGURE 8-35: Viewing the changeset in Eclipse

226 ❘ CHAPTER 8 VERSION CONTROL IN HETEROGENEOUS TEAMS

c08.indd 04/22/2014 Page 226

NOTE For more information on using the Team Explorer Everywhere
Command-Line Client, see http://aka.ms/CLCBeginnersGuide. For help with
the available commands, see the Team Explorer Everywhere Command-Line
Reference on MSDN at http://aka.ms/CLCCommands.

SUMMARY

In this chapter, you learned what constitutes a heterogeneous team and how Team Foundation
Server supports those teams across disparate operating system and development platforms. You were
shown how Xcode developers can use Team Foundation Version Control and Git-based team proj-
ects to safeguard their source code.

Additionally, you were introduced to Team Explorer Everywhere both as a plug-in to the Eclipse
IDE as well as in a command-line client for use in situations where development occurs in a non-
GUI-based environment.

In Chapter 9, you learn how you can migrate your source code from legacy version control systems
into Team Foundation Server.

http://aka.ms/CLCBeginnersGuide
http://aka.ms/CLCCommands

c09.indd 04/22/2014 Page 227

Migration from Legacy Version
Control Systems

WHAT’S IN THIS CHAPTER?

 ➤ Understanding the difference between upgrade and migration

 ➤ Comparing tip versus history migration techniques

 ➤ Migrating from Visual SourceSafe using the wizard

 ➤ Understanding Team Foundation Server Integration Platform

 ➤ Getting to know third-party tools for other legacy systems

Most teams adopting Team Foundation Server don’t have the good fortune of starting from
the very beginning with their applications. More than likely, there is an existing repository of
source code that teams will want to move in some capacity into Team Foundation Server so
they can continue software development from there.

That team may be using the latest version of Microsoft Visual SourceSafe (VSS) only to fi nd
themselves in an unsupported scenario since July 2012, which was when Microsoft discontin-
ued mainstream support for Visual SourceSafe 2005. The team’s goal may be to move to a
new version control system, such as Team Foundation Server or Visual Studio Online, so that
they can receive support if they are in a situation where they might need it in the future. They
may also be using one of the other available version control systems—either commercial or
open source.

One thing is certain: The process of moving to a new version control system gives you the rare
opportunity to reorganize and clean up parts of the source code organization that has needed
attention. This chapter explores the different options available for migrating existing source
code into Team Foundation Server.

9

228 ❘ CHAPTER 9 MIGRATION FROM LEGACY VERSION CONTROL SYSTEMS

c09.indd 04/22/2014 Page 228

MIGRATION VERSUS UPGRADE

Team Foundation Server administrators may say that they want to migrate from a previous version
of Team Foundation Server to Team Foundation Server 2013. More than likely, they mean that they
want to upgrade to the newer version. If the Team Foundation Server administrator chooses the
incorrect approach, the team will experience a loss of data and more work through the transition to
Team Foundation Server 2013.

Upgrade
The term upgrade refers to the process of using the Team Foundation Server Upgrade confi guration
wizard to move data from a previous version of Team Foundation Server to the latest version. This
scenario is different from setting up a new Team Foundation Server 2013 server and then attempting
to “move” source code and work items into that new server. Upgrades are always fully supported
and are tested in many confi gurations before being released. In an upgrade, data on the server is
transformed at the database level, and all data and metadata are preserved.

By using the appropriate confi guration wizard, the process is capable of using a full-fi delity upgrade
to keep all of the data and history with the least amount of effort for the administrator and the team
members using the server.

There are also different types of upgrades, such as the following:

 ➤ In-place upgrade—Defi ned as an upgrade that, when complete, will use the same set of hard-
ware running the current Team Foundation Server version.

 ➤ Migration-based upgrade—Defi ned as an upgrade involving a second, duplicate set of hard-
ware that will host the new version of Team Foundation Server when the process is complete.
Note that, despite having a similar name, a migration-based upgrade is not a migration.

REFERENCE Chapter 27 examines topics related to the process of upgrading
Team Foundation Server from previous versions.

Migration
A migration refers to the process of replaying actions from one system into another system. One of
the key differences, as compared to an upgrade, is that a migration is a lower fi delity data transfer. In
Team Foundation Server, only version control and work item tracking data can be migrated between
servers. Build data, reports, and numerous other pieces of metadata cannot be migrated. In general,
available migration tools have signifi cantly less testing than the upgrade process, and most available
tools have limited support (because they are released out-of-band for the normal release).

In the case of a migration, the data transformations are done using only the public APIs, which are
limited to providing only certain pieces of information while moving data. The result of these limi-
tations is that some data is lost or distorted in the process of migration. Examples of this are artifact
IDs (changeset numbers, work item IDs), date timestamps, area paths, and iteration paths.

Migrating History or Latest Version ❘ 229

c09.indd 04/22/2014 Page 229

NOTE Matthew Mitrik, a program manager on the Team Foundation Server
Version Control team, has written several blog posts about this particular con-
cept and discusses each of the different scenarios. For more information, visit
http://aka.ms/TfsUpgradeOrMigration.

MIGRATING HISTORY OR LATEST VERSION

One of the fi rst determinations your team must make is whether you want to migrate all of the
source code history from your legacy version control system or just take the latest version (which
is sometimes referred to as the tip version) at a particular milestone. Most teams will immediately
answer, “We want the history. We cannot move without all of the history.” However, that may not
always be the wisest choice for your team.

The clear advantage of migrating history is the ability to immediately benefi t from all of the history
your team has been putting into the version control system over time. Source code history can be
extremely valuable when you need to determine how long a change has been included in the prod-
uct, how it was fi rst introduced, or who introduced it.

Another advantage of moving the history to Team Foundation Server is the ability to take the legacy
servers that housed the existing source code out of commission. Not having to support two separate
systems can defi nitely be a strong benefi t for some teams in terms of maintenance, cost savings, and
licensing cost savings.

However, there are possible downsides to migrating the source code history into a new system such
as Team Foundation Server. Following are some of those downsides:

 ➤ Testing—Migrations should be treated like any type of software development project. Time
and effort should be dedicated to testing the migration numerous times in a test environment
to ensure that the migration occurs exactly as planned and the end-result is what you expect.

 ➤ Third-party purchase—It is possible that the team may want to leverage a third-party migra-
tion tool that is commercially available. This involves purchasing a license and a potential
support contract for help from the vendor when using the migration tool.

 ➤ Custom software development—It is also possible that a custom tool or Team Foundation
Server Integration Platform adapter will need to be developed and tested. This is particularly
the case whenever a tool is not available commercially.

 ➤ Playback execution time—In addition to planning, development, and testing time as part of
a migration effort, you must also consider the amount of time it will take to actually play
back all of the history into Team Foundation Server. Essentially, each action that has ever
occurred in the legacy version control system must be committed in sequence into Team
Foundation Server.

Ultimately, the return on investment for moving the source code history should be determined and
weighed against the downside. If the team does end up moving over only the tip version, it can
always leave around the legacy version control system in a read-only state to allow team members to
research history in the archive if needed.

http://aka.ms/TfsUpgradeOrMigration

230 ❘ CHAPTER 9 MIGRATION FROM LEGACY VERSION CONTROL SYSTEMS

c09.indd 04/22/2014 Page 230

NOTE For more information about this particular topic, the hosts of the
Developer Smackdown podcast and their guest, Ed Blankenship, discuss Team
Foundation Server Migrations. This episode is available as an mp3 download at
http://aka.ms/EdPodcastMigration.

MIGRATING FROM VISUAL SOURCESAFE

If a team is currently using Microsoft Visual SourceSafe (VSS), then it is in luck. Team Foundation
Server 2013 includes a streamlined VSS Upgrade Wizard that will take a VSS repository and migrate
it into a team project in Team Foundation Server or Visual Studio Online.

WHERE DID VSSCONVERTER.EXE GO?

In Team Foundation Server 2012, the VSSConverter.exe tool was updated and
renamed to VssUpgrade.exe. Unlike the VSS Upgrade Wizard, which is designed
to streamline the most common upgrade scenario, this tool allows a much fi ner
grain of control.

This tool includes several features that the wizard does not currently support,
including the following:

 ➤ Move entire repository or only specifi ed folders.

 ➤ Map locations from the legacy repository to new locations in the Team
Foundation Server version control repository.

 ➤ Analyze the VSS repository for corruption and other migration issues before
migration begins.

 ➤ Map VSS users to Active Directory (AD) domain user accounts.

 ➤ Update source control bindings during migration from VSS bindings to the
appropriate Team Foundation Server bindings in the Visual Studio solution
and projects.

The link in the Visual SourceSafe Upgrade section of the Team Foundation Server
2013 Administration Console links to the Visual SourceSafe Upgrade Tool page
that is compatible with Team Foundation Server 2010, 2012, and 2013. As of this
writing, the page does not explicitly state compatibility with Team Foundation
Server 2013.

For more information on the VssUpgrade.exe utility which also supports Team
Foundation Server 2013, see http://aka.ms/Tfs2012VSSUpgrade.

http://aka.ms/EdPodcastMigration
http://aka.ms/Tfs2012VSSUpgrade

Migrating from Visual SourceSafe ❘ 231

c09.indd 04/22/2014 Page 231

NOTE Microsoft Visual SourceSafe 2005 Standard Edition mainstream support
ended July 10, 2012. When Microsoft ends mainstream support for a product,
it ceases to release non-security hotfi xes, provide telephone support, and supply
other mainstream support options. Certain extended support options may be
available to some companies for some of the benefi ts, but such companies must
have acted within 90 days from the end of mainstream support to take advan-
tage of them. The most up-to-date information about the support life cycle for
Visual SourceSafe 2005 is available at http://aka.ms/SupportVSS. A company
can also contact its Microsoft representative to inquire further about support
options after mainstream support ended.

The VSS Upgrade Wizard plays back each of the check-ins into Team Foundation Server during the
migration. It does so by creating changesets of fi les that were checked in at relatively the same time
by the same user and with the same comment. Also, the changes must not confl ict with one another
to be included in the same changeset. For example, if a user added a specifi c fi le and then deleted
it in the relatively same time period, then those two actions will not be committed in the same
changeset during migration.

One of the outcomes that will be noticed is that the date and timestamp for the new changesets will
be set to the time that the migration action actually occurred, instead of the original time. The origi-
nal check-in date and timestamp will be stored in the changeset’s comment for reference purposes.
Additionally, the original user will not be stored in the comment if that user is not mapped appropri-
ately. If the user is mapped appropriately, the user name will be in the changeset’s user name fi eld.

This section examines the different options that teams have available if they want to migrate the full
history from VSS into the Team Foundation Server version control repository.

Preparing to Use the VSS Upgrade Wizard
The very fi rst step before attempting to begin a migration effort is to ensure that the VSS repository
has been fully backed up. This provides the ability to restore it to its original state if there are any
errors that occur during the migration. Be sure to always run the migration utility against a copy of
the database, instead of against the actual database.

One key step is to ensure that, if the VSS database version is older than the latest version (Visual
SourceSafe 2005) then the database should be upgraded before the migration occurs. The DDUPD
utility can be used for upgrading to the latest version after installing Visual SourceSafe 2005.

A second important step before starting the wizard is to run the Visual SourceSafe ANALYZE util-
ity on your VSS repository. This will check the integrity and fi x any structural errors.

NOTE More information on the VSS ANALYZE utility can be found at
http://aka.ms/VssAnalyze.

http://aka.ms/SupportVSS
http://aka.ms/VssAnalyze

232 ❘ CHAPTER 9 MIGRATION FROM LEGACY VERSION CONTROL SYSTEMS

c09.indd 04/22/2014 Page 232

Your development team may choose to not migrate all of the history stored in the VSS repository
and instead choose to migrate only a subset of that history. Your team might decide that it only
needs the last year’s history to reduce the amount of migration execution time needed. If that is the
case, the administrator should use the archive functionality available in VSS to archive all content
before the selected date.

WARNING Using the archive functionality in VSS will permanently remove the
source code and history specifi ed. Be sure to back up the VSS database before
taking this step if you need to keep that data.

For those instances where migration execution time needs to be minimized as much as possible,
ensure that all of the servers and computers needed in the migration exist on the same local network
or even on the same network switch. The servers and computers that will be used in the migration
effort are the migration computer that will be executing the VSS Upgrade Wizard, the server hosting
the fi le share that contains the VSS database, and the Team Foundation Server.

Finally, prepare the team for the migration by informing it of the timeframe when the migration will
occur. For example, some teams will start a migration at the close of business on Friday so that the
migration can be executed during the weekend, and the new location will be available by the begin-
ning of the business day on Monday. Ideally, the team will have checked in all fi les, removed any
check-outs, and not used the VSS database while the migration is occurring. To ensure that only the
upgrade wizard has access to the repository, permissions can be removed from the fi le share for all
users except the account that will be executing the migration.

Using the Visual SourceSafe Upgrade Wizard
Once you are ready to migrate, the fi rst step is to download and install the latest copy of the wizard.
To do that, open the Team Foundation Server Administration Console and navigate to Additional
Tools and Components, and then navigate to the Visual SourceSafe Upgrade. On the right, you
should see a link to download and install the latest version, as shown in Figure 9-1.

Once you have downloaded the wizard, run tfs_VssUpgrade.exe to start the installer. The instal-
lation wizard screen will appear and ask you for an installation path and to accept the license terms
and conditions, as shown in Figure 9-2. Click Install to continue.

Migrating from Visual SourceSafe ❘ 233

c09.indd 04/22/2014 Page 233

FIGURE 9-1: Visual SourceSafe Upgrade in the Administration Console

FIGURE 9-2: VSS Upgrade Installer

234 ❘ CHAPTER 9 MIGRATION FROM LEGACY VERSION CONTROL SYSTEMS

c09.indd 04/22/2014 Page 234

NOTE To streamline the process further, the installer contains a copy of the
Visual SourceSafe object model. This means that there is no need to have Visual
SourceSafe or other prerequisites already installed on the machine from which
you are performing the migration.

Once the wizard is installed, it can be launched from the Start menu under Microsoft Visual
Studio 2012 ➪ Team Foundation Server Tools ➪ VSS Upgrade Wizard, or by running
VssToTfs.exe from the installation path. (The default path is C:\Program Files (x86)\
Microsoft Visual SourceSafe Upgrade\VssToTfs.exe.)

On the wizard welcome screen, you need to provide the following information:

 ➤ Visual SourceSafe Repository—The folder that contains the srcsafe.ini fi le

 ➤ Visual SourceSafe Admin password (optional)—The password for the administrator account
of your repository

Once you have specifi ed a valid repository, you can click the List Available Projects link to attempt
to load the repository and enumerate the projects, as shown in Figure 9-3. When you are ready,
click Next.

FIGURE 9-3: VSS Upgrade Wizard options screen

Migrating from Visual SourceSafe ❘ 235

c09.indd 04/22/2014 Page 235

The following screen (see Figure 9-4) asks you for a destination team project. The destination team
project can be a local Team Foundation Server instance or Visual Studio Online. It is required that
this team project does not contain any existing source code folders. Click the Browse button to
select an appropriate destination. Click Next to proceed to the upgrade options screen.

FIGURE 9-4: Target team project screen

The upgrade options screen (see Figure 9-5) allows you to choose the fi delity of the upgrade. There
are two options:

 ➤ Full history—Migrate all changes back to the very fi rst commit.

 ➤ Tip—Migrate only the latest version of each fi le.

The VSS Upgrade Wizard also requires a SQL Server instance for temporary storage during the
upgrade process. It is best if this SQL Server instance is local or close to the upgrade wizard
machine. This minimizes the latency and ensures that the migration can proceed as fast as possible.

Once you have selected an upgrade option and a valid SQL Instance, select Next. After perform-
ing a series of readiness checks, click Next to start the upgrade process. The time the wizard takes
to run will depend upon the options that you chose and how many changes there are. The wizard
shows the progress and the current actions being performed, as shown in Figure 9-6.

236 ❘ CHAPTER 9 MIGRATION FROM LEGACY VERSION CONTROL SYSTEMS

c09.indd 04/22/2014 Page 236

FIGURE 9-5: Upgrade options screen

FIGURE 9-6: Upgrade progress screen

Migrating from Visual SourceSafe ❘ 237

c09.indd 04/22/2014 Page 237

Once the upgrade process is complete, you will be able to view an Upgrade Report. This report
details the migration settings—the number of changes, fi les, and folders migrated. The report will
also display any warnings or problems that were encountered. You can see an example of the report
in Figure 9-7.

FIGURE 9-7: Upgrade Report

One of the limitations of the upgrade wizard is that the date-timestamp for the changesets in Team
Foundation Server will be the time the migration occurred, rather than the original check-in time.
However, as you can see in Figure 9-8, the original VSS commit time is preserved in the comments
of the changeset.

238 ❘ CHAPTER 9 MIGRATION FROM LEGACY VERSION CONTROL SYSTEMS

c09.indd 04/22/2014 Page 238

FIGURE 9-8: View history dialog box showing the original VSS timestamps

TEAM FOUNDATION SERVER INTEGRATION PLATFORM

The Team Foundation Server product team at Microsoft has dedicated resources for creating a
platform called the Team Foundation Server Integration Platform, which enables customers to
build migration and synchronization tools. It is essentially an entire framework that includes a user
interface (UI) for confi guring the migration/synchronization run, a service for executing the actions,
and even a confl ict resolution experience for situations when the tool is unable to handle migration/
synchronization actions.

Microsoft has provided the free utility and source code on a dedicated CodePlex project site at
http://tfsintegration.codeplex.com/. Occasional updates are uploaded to the CodePlex
project site, and the Visual Studio ALM Rangers have created quite a bit of documentation that
is available to get you started. Figure 9-9 shows a screenshot of the Team Foundation Server
Integration Platform confi guration utility.

NOTE As of this writing, the Team Foundation Server Integration Platform
has not been recompiled against the 2013 object model. However, the 2012
Integration Platform is fully compatible with Team Foundation Server 2013.
To use it you must install either Team Explorer 2012 or the Team Foundation
Server 2012 Object Model Installer on the machine hosting the Integration
Platform. The Object Model Installer can be found at http://aka.ms/
TFS2012OMInstaller.

http://tfsintegration.codeplex.com
http://aka.ms

Team Foundation Server Integration Platform ❘ 239

c09.indd 04/22/2014 Page 239

FIGURE 9-9: Team Foundation Server Integration Platform confi guration utility

The Team Foundation Server Integration Platform can assist with migrating both version control
artifacts and work items from legacy systems to Team Foundation Server using an adapter system.
The Team Foundation Server adapters have been created, and all that you need to do is create a ver-
sion control or work-item tracking adapter for the legacy system.

Examples for creating custom adapters, as well as other adapters, are available out of the box.
Following are some of the adapters that were available as of this writing:

 ➤ Team Foundation Server 2008, 2010, and 2012 Version Control

 ➤ Team Foundation Server 2008, 2010, and 2012 Work Item Tracking

 ➤ Rational ClearCase

 ➤ Rational ClearQuest

 ➤ SharePoint List

 ➤ SharePoint Document Library

 ➤ File System

If the system you want to migrate from is a custom in-house system, you can create a custom
adapter using the API available in the Team Foundation Server Integration Platform. There are
samples of both types of adapters available in the source code for the Team Foundation Server
Integration Platform to get you started.

240 ❘ CHAPTER 9 MIGRATION FROM LEGACY VERSION CONTROL SYSTEMS

c09.indd 04/22/2014 Page 240

NOTE As mentioned earlier in the chapter, some items are not migrated when
using the tool, and this should be taken into consideration when deciding on
whether the tools meet your requirements. The following artifacts are not
migrated by the built-in adapters:

 ➤ Permissions

 ➤ Labels

 ➤ Shelvesets

 ➤ Work item queries

 ➤ File encodings

 ➤ Pending changes

 ➤ Check-in notes

 ➤ Workspaces

 ➤ Subscriptions

 ➤ Test cases

 ➤ Check-in policies

 ➤ Reports

 ➤ Team portal

 ➤ Process templates

 ➤ Builds

 ➤ Warehouse data

POPULAR THIRD-PARTY MIGRATION TOOLS

Several third-party tools are available commercially that can be used by teams that don’t have a
tool available for them or don’t feel like building a custom adapter for the Team Foundation Server
Integration Platform. Let’s take a look at a couple of them.

Subversion, CVS, and StarTeam
The team at Timely Migration has built a tool that is very successful at migrating source code his-
tory from a Subversion (SVN) repository to Team Foundation Server. It handles many common situ-
ations, such as migrating full or selected history, discovering branches and creating them in Team
Foundation Server, and converting tags into Team Foundation Server version control labels.

In addition to SVN, the Timely Migration tool supports migrating from a CVS or StarTeam reposi-
tory with similar features as the SVN migration tool.

Summary ❘ 241

c09.indd 04/22/2014 Page 241

NOTE For more information about the Timely Migration tool, visit the website
at http://aka.ms/TimelyMigration. There is a charge for the tool, as well as
any support hours needed during the test and actual migration execution runs.
You can download a trial version of the tool, which is a fully featured evalua-
tion edition that allows you to test migrations before purchasing the product.
However, it obscures the contents of each fi le when it is checked in to Team
Foundation Server.

ClearCase
Thankfully, the Team Foundation Server Integration Platform includes an adapter that will allow
teams to migrate from an IBM Rational ClearCase source control repository to Team Foundation
Server. You can choose to migrate either full history or selected history with the available adapters.

More information about the Team Foundation Server Integration Platform was presented earlier in
this chapter.

NOTE You can also use Team Foundation Server Integration Tools, which has
a compiled copy of the platform and is the minimally necessary tool for migrat-
ing from ClearQuest. The Integration Tools release can be located in the Visual
Studio Gallery at http://aka.ms/TFSIP.

SUMMARY

 Migrating source code from a legacy system can be a tough endeavor for administrators and teams.
This chapter reviewed the different techniques and tools necessary for migrating from a legacy sys-
tem, whether that be using the new Visual SourceSafe Upgrade Wizard, the Team Foundation Server
Integration Platform on CodePlex, or one of the popular third-party commercial tools. You also
learned about some suggestions for ensuring a smooth migration no matter which legacy source con-
trol system your team has been using.

In Chapter 10, you will learn about the branching and merging features available in Team
Foundation Server Version Control. You will learn about the new branching and track changes visu-
alization tools, as well as some common best practices for branching and merging strategies.

http://aka.ms/TimelyMigration
http://aka.ms/TFSIP

c10.indd 04/22/2014 Page 243

Branching and Merging
WHAT’S IN THIS CHAPTER?

 ➤ Understanding branching terminology and concepts

 ➤ Getting to know common branching strategies

 ➤ Using the branching and merging tools with TFVC

 ➤ Using the branching and merging tools with Git

Branching and merging in version control can open up a whole world of possibilities for
improving development productivity through parallelization. Yet, for many developers,
branching and merging are slightly scary and full of uncertainty. Because of a lack of good
tooling in the past, many developers still shy away from branching and merging, despite Team
Foundation Server having good support for both. At the other extreme, some people who see
all the great branching and merging functionality available can go a little crazy with their
newly found power. Overuse of branching and merging can impact developer productivity and
reduce the maintainability of their repository as a result.

With the addition of Git as a supported version control repository in Team Foundation Server
2013, you now have two different methods of branching and merging available to your teams.

No matter which side of the spectrum you fi nd yourself on, this chapter explains the funda-
mental principles behind the important branching and merging strategies, and it provides some
key guiding principles to help you apply them to your organization’s needs. This chapter high-
lights the branching and merging tooling available with Team Foundation Server 2013, and
then concludes by walking you through the application of this tooling with some examples.

10

244 ❘ CHAPTER 10 BRANCHING AND MERGING

c10.indd 04/22/2014 Page 244

DIFFERENCES BETWEEN TFVC AND GIT WHEN BRANCHING
AND MERGING

As you saw in Chapter 5, Team Foundation Server supports a centralized version control system,
Team Foundation Version Control (TFVC), and a distributed version control system, Git. Some of
the main differences between these two technologies lies in how they approach the idea of a “source
of truth” for your versioned items.

In centralized version control repositories, the source of truth is the repository located within the
server. The local client can have one or more copies of the source code on disk in the form of mul-
tiple workspaces, but local clients don’t have the ability to keep historical versions nor do they
actually have access to those historical versions if they are disconnected from the server. This means
that all branching and merging support comes from the server and not the local client.

In distributed version control systems there is no single “source of truth.” Every team member has
a full copy of the entire history of the source tree plus any branches they are working on. In addi-
tion, they have the same branching and merging facilities as the server does. As such, each client has
the ability to perform branching and merging locally as well as on the Team Foundation Server copy
of the repository. This feature is extremely fl exible and powerful, which can also make it diffi cult to
be successful if you aren’t familiar with how branching and merging work.

One of the biggest differences you will initially encounter is how your source repository is visualized
within Team Foundation Server. Team Foundation Version Control–based repositories are visual-
ized and manipulated through Source Control Explorer and Team Explorer. This allows for visual
manipulation of the repository and visualization of the branch relationships and changeset history,
which you will see later in this chapter.

While you can use Team Explorer to manage commits, branching, and merging in your Git-based work,
you do not have the same tooling to visualize branch relationships, changesets, and merge history.

Because these models are different, we will make note of which repository type is applicable to each
topic when there is a difference.

BRANCHING DEMYSTIFIED

Lots of terms and concepts are peculiar to the world of branching and merging. The following sec-
tions provide some defi nitions and context for those basic terms and concepts.

Branch
As stated in Chapter 5, a branch is a copy of a set of fi les in a different part of the repository that
allows two or more teams of people to work on the same part of a project in parallel. When you cre-
ate a branch in Team Foundation Version Control in Team Foundation Server 2013, it doesn’t actually
create new copies of all those fi les on the server. It just creates a record pointing to them—one reason
why creating a new branch containing thousands or even millions of fi les can be done quickly.

When using Git for version control, you will be able to create branches locally. When you feel the
code is ready, you can share them with other team members and the Git repository hosted within
your Team Project in Team Foundation Server.

Branching Demystifi ed ❘ 245

c10.indd 04/22/2014 Page 245

Merge
A merge takes the code in two branches and combines them into one codebase. For example,
if you had two teams of developers working on two branches, and you wanted to bring the changes
together, you would merge them. If the changes consisted simply of edits to different fi les in the
branches, the merge would be simple—but it can get more complicated, depending on what was
edited in both branches.

For example, if the same line of the same fi le was edited in both branches, the person performing the
merge must make a decision as to which change should win. In some circumstances, this will result
in a hybrid merge, where the combination of the intent behind the two changes requires a different
result than the text in those versions being combined. When you branch using centralized version
control, Team Foundation Version Control keeps track of the relationship between branches,
as shown in Figure 10-1.

Merge
Source

$/TeamProject/Releases/V1.0;L

Base
$/TeamProject/Main;C73

Target
$/TeamProject/Main;L

FIGURE 10-1: The relationship between the source and target branches

The branch containing your changes that you want to merge is called the source branch. The branch
you want to merge the changes into is the target branch. The common ancestor between them is the
base version. When you merge, you can select a range of changes in the source branch to merge into
the target branch.

When you branch using distributed version control, Git keeps track of the relationship between the
branches. Because each developer has a full copy of the Git repository, Git can search for a common
ancestor when performing a Merge. This makes merging between local branches and remote copies
of the repository very easy.

Confl ict
If the same fi le has been edited in both the source and target branches, Team Foundation Server may
fl ag this as a confl ict. In Team Foundation Server 2012 RTM, the merge experience for centralized
version control was simplifi ed, but if the same fi le had been edited in both branches, it was fl agged
as a confl ict, even if the changes are to completely different sections of the fi le. With the 2012.1
Update, the merge tools now check to see if the changes to the same fi le are actually overlapping and
will only generate a confl ict in this case.

For certain changes (such as a fi le that was edited in two different places), Team Foundation Server
can make a good guess about what should happen (you want to see a fi le containing the changes
from both places). This is called an automerge. In Team Foundation Server 2012, the number and
type of confl icts that can be automerged were increased from earlier releases. And, unlike earlier

246 ❘ CHAPTER 10 BRANCHING AND MERGING

c10.indd 04/22/2014 Page 246

releases, Team Foundation Server will automerge the fi le for you if it is safe to do so but allow you
to review those changes to ensure that the desired merge behavior has been performed. For example,
if two different bugs were fi xed, you probably want both changes. However, if the two changes were
just fi xing the same bug in two different ways, perhaps a different solution is in order. In most cases,
where the development team has good communication, the changes are a result of different changes
being made to the fi le. Automerge usually does a great job of merging them together, making it easy
for the developer to validate the changes.

There can also be many cases where the actual outcome is unclear, so automerging is not available.
For example, if you deleted the fi le in one branch and edited it in another, do you want to keep the
fi le with the changes or have it removed? The person performing the merge is responsible for decid-
ing the correct confl ict resolution based on an understanding of the code and communicating with
the team members who made the confl icting changes to understand their intent.

As with life in general, confl ict is never good in version control. Making the decision about the cor-
rect confl ict resolution in version control can be a complex and time-consuming process. Therefore,
it is best to adopt a branching strategy that minimizes the likelihood of confl icts occurring.
However, confl icts will occur, and Team Foundation Server provides the tooling to deal with them,
so confl icts should not be feared.

Branch Relationships
When you branch a folder in Team Foundation Version Control, the relationships between those
branches form a standard hierarchical relationship. The source of the branch is the parent, and the
target of the branch is the child, as shown in Figure 10-2. Children who have the same parent are
called sibling branches.

Main
Parent

Branch A
Child

Branch C
Child

siblings
Baseless Merge

Forward
Integration

Reverse
Integration

Branch A1
Branch B1 Branch B2

Branch B

FIGURE 10-2: Hierarchical relationship in branches

Common Branching Strategies ❘ 247

c10.indd 04/22/2014 Page 247

In Git, all branches in a repository are related at some point in their past, so the hierarchy of
branches is not relevant.

Baseless Merge
A baseless merge occurs when two arbitrary branches in centralized version control merge without ref-
erence to a base version. This is sometimes necessary if the source code was originally imported in a fl at
structure without the branch relationship being in place, or if you want to merge between a branch and
another branch not a direct parent or child (for example, Branch A1 and Branch B1 in Figure 10-2).

Because no base version is being used to compare against, the probability of the server detecting
confl icts occurring between the two branches is much higher. For example, if a fi le were renamed in
one branch and edited in the other, it will show up as a fi le delete confl icting with the fi le edit, and
then a fi le add that gives no hint as to which fi le it was related to, or that there was an edit intended
for this fi le in the other branch. For this reason, baseless merges are discouraged with Team
Foundation Server 2013 and a warning will appear whenever a baseless merge operation is selected
in Visual Studio. Standard merging (one with a base version) through the Visual Studio or Eclipse
clients are the encouraged method—and only one branch up or down (a parent to a child
or vice versa) is allowed. Therefore, your branching model should attempt to constrain most merges
between parent and child branches to minimize the amount of baseless merging required.

In Git, all branches in a repository have a common ancestor somewhere in their history. Git is very
good at fi nding these common ancestors. This means that every merge is considered a standard
merge and there is no concept of a baseless merge in Git.

Forward/Reverse Integration
Forward integration (FI) occurs when you merge code from a parent branch to the child branch.
Reverse integration (RI) occurs when you merge code from a child branch to the parent branch.
The terms FI and RI are specifi c to centralized version control repositories. They are often thrown
around quite freely during a branching debate, so it is important to understand what they mean.
If you are doing feature development in branches, it is common to use FI at various points during
the feature development cycle, and then to use RI at the end. See the section “Feature Branching”
later in this chapter for more information.

Push/Pull
In a decentralized version control repository the language used is relative to the branch you are
working with. There is no parent or child, so the notion of Forward or Reverse is irrelevant. Instead,
when you request changes from another branch, you are performing a Pull operation. When we send
changes to another branch, you are performing a Push.

COMMON BRANCHING STRATEGIES

Depending on the organization of your team, and the software that you need to develop, you can
adopt numerous branching strategies, all with various pros and cons. However, just as every strat-
egy in chess is made up of simple moves, every branching strategy uses one or more combinations of
some basic techniques. This section details some of the basic techniques, how they are used, and why.

248 ❘ CHAPTER 10 BRANCHING AND MERGING

c10.indd 04/22/2014 Page 248

When developing your own branching strategy, you should take into account the needs of your
organization. In all likelihood, you may adopt a strategy that combines one or many of the basic
techniques described here.

When looking at any strategy for branching and merging, you should keep in mind the following
important rules:

 ➤ Prefer simplicity over control.

 ➤ Branch only when you really need to. (You can branch after the fact if you need to.)

 ➤ If you ever want to merge two branches together, keep the time between the branch and the
merge to a minimum.

 ➤ Ensure that your branch hierarchy matches the path you intend your merges to follow.

NOTE For additional guidance on branching and merging with Team
Foundation Server, see the “Visual Studio Team Foundation Server Branching
and Merging Guide” project on CodePlex at http://vsarbranchingguide
.codeplex.com/. This guidance is created by a community of Visual Studio
ALM Rangers, and it combines the knowledge of Microsoft engineers and con-
sultants with Microsoft Most Valued Professionals (MVPs) and other technical
specialists in the community. The guidance also includes hands-on labs, along
with a set of diagrams. Although the guidance caters to very complex branching
and merging requirements, it can also be a useful starting point when creating
your own branching plan.

No Branching
It may be counterintuitive, but the simplest branching technique is to not branch at all. This should
always be your default position. Do not branch unless you need to. Remember, you are using a ver-
sion control tool that tracks changes over time. You can branch at any point in the future from any
point in the past. This gives you the luxury of not having to create a branch on the server “just in
case.” You create branches only when you need them. This strategy does not preclude your team
from creating local branches for their work if you are using a Git-based team project. In that case,
your team members will simply push their changes to the server from their local branches when they
feel their work is ready.

In Team Foundation Version Control, all branching is performed on the server, so there are things
you can do to prepare yourself to make branching easier in the future if you decide you need
a branch.

Figure 10-3 illustrates the most important thing that you should do if you think you might
possibly need to branch in the future. When you fi rst create your Team Foundation Version Control–
based team project in Team Foundation Server, create a folder called Main and check it in. Then,
right-click the folder in Source Control Explorer and select Branching and Merging ➪ Convert to

http://vsarbranchingguide

Common Branching Strategies ❘ 249

c10.indd 04/22/2014 Page 249

Branch to get to the screen shown in Figure 10-4. This gives you an easy point to branch from in the
future, and it also makes you think about the areas of your source code that live in the same branch
together, which will help you in the future if you ever do decide to branch.

FIGURE 10-3: A branch called Main

FIGURE 10-4: Convert Folder to Branch screen

With no branching, you have only one branch of code to work in for all teams. This technique
works great when you have small teams working on the same codebase, developing features for the
same version of the application and supporting only one version of the application at a time.
At some point, no matter how complex your branching strategy evolves to support your business
needs, you need at least one stable area that is your main (or mainline) code. This is a stable version
of the code that will be used for the build that you will create, test, and deploy.

However, during stabilization and test periods, while you are getting ready to release, it may be
necessary for the team to not check in any new code into the codebase (undergo a code freeze). With
smaller teams working on a single version, this does not impact productivity because the people who
would be checking in code are busy testing to ensure that the application works, as well as getting
ready for deployment.

With this technique, there is no way to start work on something new before the fi nal build of the
current version has been performed. The code freeze period, therefore, can be very disruptive
because there is no way to start work on the next version until the current one has shipped. It’s these
times when other strategies become useful for teams of any size, even a team of one.

250 ❘ CHAPTER 10 BRANCHING AND MERGING

c10.indd 04/22/2014 Page 250

Branch per Release
For teams that employ branching, the most common branching technique is branch per release.
With this technique, the branches contain the code for a particular release version, as shown in
Figure 10-5.

$/TeamProject/Releases/V1

$/TeamProject/Releases/V2

$/TeamProject/MainV1.0

V1.0 V1.1

V2.0

Reverse
Integrations

V2.0

FIGURE 10-5: Branch per release

Development starts in the Main branch. After a period of time, when the software is considered
ready, a branch is made to the V1 branch, and the fi nal builds are performed from it. It is then
released into production (with the code in the fi nal production build getting a label to indicate which
versions of which fi les were in that version). Meanwhile, development of new features for version 2
(V2) continues on the Main branch.

Say some bugs are discovered in production that must be addressed, and a small change is neces-
sary to refl ect how the business needs something to work. However, the development group does
not want to include all the work for V2 that has been going on in the Main branch. Therefore, these
changes are made in the V1 branch, and builds are taken from it. Any bug fi xes or changes that must
also be included in the next version (to ensure the bug is still fi xed in that next release) are merged
back (reverse-integrated) into the Main branch. If a bug fi x was already in the Main branch, but
needed to go into V1, it might simply be merged (forward-integrated) into it. At a certain point, the
build is determined to be good, and a new V1.1 build is performed from the V1 branch and deployed
to production.

During this time, development on the next version can continue uninterrupted without the risk of
features being added into the code accidentally and making their way into the V1.X set of releases.
When it is decided that V2.0 is ready to go out the door, the mainline of code is branched again to
create the V2 branch, and then the V2.0 build is created from the new branch. Work can continue on
the next release in the Main branch, but it is now easy to support and release new builds to custom-
ers running on any version that you want to keep supporting.

Branch per release is very easy to understand and allows many versions to be supported at a time.
It can be extended to multiple supported releases very easily, and it makes it trivial to view and com-
pare the code that was included in a particular version of the application. Branch per release is
well-suited to organizations that must support multiple versions of the code in parallel—such as
a typical software vendor.

However, for a particular release, there is still no more parallelism of development than in a stan-
dard “no branching” strategy. Also, if the organization must support only two or three versions at

Common Branching Strategies ❘ 251

c10.indd 04/22/2014 Page 251

a time (the latest version, the previous version, and, perhaps, the version currently being tested by
the business), this model can lead to a number of stale branches. While having lots of old, stale
branches doesn’t impact the performance of Team Foundation Server, or even cause any signifi cant
additional storage requirements, it can clutter the repository and make it diffi cult to fi nd the versions
you are interested in—especially if the organization frequently releases new versions. If this is the
case, you may want to move old branches into an Archive folder, and have only the active branches
(the versions that the development team are currently supporting) in the Releases folder.

Code Promotion Branching
An alternative to branch per release is code-promotion branching (or promotion-level
branching). This technique involves splitting the branches into different promotion levels, as
shown in Figure 10-6.

$/TeamProject/Releases/Test

$/TeamProject/Releases/Prod

$/TeamProject/Main

V1.0

Merge

V1.0 V1.1

V1.0 V1.1

V1.1

FIGURE 10-6: Code promotion branching

As before, development starts with just the Main branch. When the development team is ready to
test the application with the business, it pushes the code to the Test branch (also often called the QA
branch). While the code is being tested, work on the next development version is carried out in the
Main branch. If any fi xes are required during testing, they can be developed on the Test branch and
merged back into the Main branch for inclusion in the next release. Once the code is ready to release,
it is branched again from Test to Prod. When the next release cycle comes along, the same is done
again. Changes are merged from Main to Test, and then Test to Prod.

Code-promotion branching works well in environments that have a single version running in pro-
duction but have long test-validation cycles that do not involve all of the development team. This
allows development to continue on the next version in Main while test and stabilization of the build
occurs in the Test branch. It also makes it trivial for the development team to look at the code cur-
rently on each system. Finally, the branch structure makes it easy to create an automated build and
deployment system using Team Foundation Build that can automatically update the QA/Test envi-
ronment as code is pushed to the QA branch.

NOTE For more information on the build capabilities of Team Foundation
Server 2013, see Part IV of this book.

252 ❘ CHAPTER 10 BRANCHING AND MERGING

c10.indd 04/22/2014 Page 252

Feature Branching
The previous branching strategies all involve a single team working on the system in its entirety as
it works toward a release. All features for that release are developed in parallel, and the build can
be deployed only when all features in fl ight have been completed and tested. However, in large sys-
tems, or systems that require very frequent deployment (such as a large commercial website), feature
branching (or branch per feature), as shown in Figure 10-7, can be useful.

$/TeamProject/main

$/TeamProject/Feature/F4

$/TeamProject/Feature/F1

$/TeamProject/Feature/F3

$/TeamProject/Feature/F2

F1

F4

F3

F2

FIGURE 10-7: Feature branching

Feature branching is used when a project requires multiple teams to be working on the same code-
base in parallel. In Figure 10-7, you see four feature teams working in separate branches (F1, F2, F3,
and F4). Note that in a real branching structure, the feature branches themselves would likely have
meaningful names such as FlightSelling, InsuranceExcess, or whatever shorthand is used by
the project to refer to the feature under development. The Main branch is considered “gold code,”
which means that no active development goes on directly in this branch. However, a feature must be
reverse-integrated into this branch for it to appear in the fi nal release build and for other teams to
pick it up.

Initially, F1 is started with a branch from Main. But, while it is being developed, a second and third
team start F2 and F3, respectively. At the end of development of the feature, F1 is merged back into
the Main branch, and the F1 branch is deleted. Then that team starts on feature F4. The next feature
to fi nish is F3, followed by F2. At each point, once the feature is merged into the Main branch, a new
version of the software is released to the public website. But only one version is ever supported at
any time.

Feature branching allows for a large amount of parallel development. However, this comes at the
cost of delaying the pain of integrating each team’s changes until the feature is complete, and you
are merging the feature branch back into Main branch. For example, in Figure 10-7, when merging
the F2 branch, all changes and inevitable confl icts introduced by features F1, F2, F3, and F4 must be
analyzed and resolved.

The longer a period of time that code is separated into branches, the more independent changes
occur and, therefore, the greater the likelihood of merge confl icts. To minimize confl icts, and to
reduce the amount of integration debt building up, you should do the following:

 ➤ Keep the life of a feature short. Features should be as short as possible and should be merged
back into the Main branch as soon as possible.

Implementing Branching Strategies in Centralized Version Control ❘ 253

c10.indd 04/22/2014 Page 253

 ➤ Take integrations from the Main branch regularly. In the example shown in Figure 10-7,
when F1 is merged back into Main, the feature teams still working on their features should
merge those changes into their feature branches at the earliest possible convenient point.

 ➤ Organize features into discrete areas in the codebase. Having the code related to a particular
feature in one area will reduce the amount of common code being edited in multiple branches
and, therefore, reduce the risk of making confl icting changes during feature development.
Often, the number of teams that can be working in parallel is defi ned by the number of dis-
crete areas of code in the repository.

When using feature branching, the whole team doesn’t necessarily have to be involved. For example,
one or two developers might split off from the rest of the team to go work on a well-isolated fea-
ture when there is a risk of the merge not being possible (they are working on a proof of concept),
or when it is decided that the current release should not wait for that particular feature to be
implemented.

IMPLEMENTING BRANCHING STRATEGIES IN CENTRALIZED
VERSION CONTROL

So far, this chapter has covered a lot of the theory behind branching. This section puts that theory
into action as it walks you through implementing a branching strategy using the branch tools avail-
able with Team Foundation Server 2013 and a Team Foundation Version Control–based Team
Project.

The Scenario
For this example, you’ll look at a fi ctional organization called Tailspin Toys that has installed Team
Foundation Server and is using the version control functionality. Say that you are a member of the
internal IT team, which supports an order-fulfi llment intranet site critical to the operation of the
business. The team has only one version of the site in production at any one time. However, because
of the criticality of the software, the IT team has lengthy test cycles involving a series of experts
from the business to ensure that the software is working as required.

The IT team has a single team project called IT and a single ASP.NET web application checked into
the team project root folder at $/IT/Orders. They also have an automated build set up in Team
Foundation Server.

The team has some issues when it comes to managing sources. The development process is plagued
by problems and ineffi ciencies. There are signifi cant periods when developers are forbidden from
checking in to the repository while getting ready for a release. The delays cause the developers to
end up creating large shelvesets fi lled with changes that become unmanageable.

Occasionally, urgent bugs are required to be fi xed in the production codebase. This is done by the
developer getting the label that represents the production codebase, adding the fi x, building it on a
local machine, and manually pushing the modifi ed fi les out to production. Ensuring that the correct
fi les are pushed to production and the source code fi x is added back into version control is a manual
process that has caused some problems. There have been instances where fi xes to production were
missing when the next version rolled out and had to be repeated again.

254 ❘ CHAPTER 10 BRANCHING AND MERGING

c10.indd 04/22/2014 Page 254

But, luckily, there are some people in the development organization who recognize the problems and
want to come up with a branching plan to alleviate some of them. You have been selected to roll out
this plan.

The Plan
After some careful consideration, the team decides that a code-promotion strategy fi ts their organi-
zation quite well. Figure 10-8 shows the plan that the organization has decided to adopt.

$/IT/Releases/QA

$/IT/Releases/Prod

$/IT/Main

RI QA Fix
Promote Dev
Feature

Promote QA'd
Feature critical hotfix,

baseless merge

FIGURE 10-8: Example branch strategy

The code will consist of the following three branches, as suggested by the code-promotion branch-
ing strategy:

 ➤ Main—The main development effort is conducted here. This is the branch from which the
regular continuous integration build is performed, and where new features are developed.

 ➤ QA—The code will live here while it is being tested by the business. Because these test periods
can be lengthy, new code development will carry on in the Main branch. Any fi xes or modifi ca-
tions to the version under test will be performed directly on the QA branch and reverse-integrated
back into Main. An automated build will be created that will run early in the morning during the
week. The results of that build will be pushed to the QA web server daily for testing by the busi-
ness the following day.

 ➤ Prod—This represents the code currently running in production. Code normally goes from
Main to QA into Prod. A build is also created for this branch so that urgent hotfi xes can
be checked in and repeatedly built. Urgent hotfi xes like this are very much the exception,
though. If an urgent hotfi x is performed, a baseless merge is performed to push that fi x back
into Main. Note that the results of the Prod build are fi rst deployed to a test environment to
ensure that they work as expected before manually running a script that pushes the code
to production.

Implementation
Figure 10-9 shows the current codebase.

Implementing Branching Strategies in Centralized Version Control ❘ 255

c10.indd 04/22/2014 Page 255

FIGURE 10-9: Current codebase in Source Control Explorer

The fi rst thing you want to do is to move the code currently at the root of the team project in version
control into a Main branch. This will be the most disruptive of the changes because it will require
the build to be reconfi gured, and team members to re-sync their workspaces. So, you decide to do
this late one night, a few weeks before the IT team is due to push a release to the test team.

To move the code into a branch, you right-click the Orders folder containing the solution and select
Move. Then you manually enter a path of $/IT/Main/Orders in the Move dialog box shown in
Figure 10-10. Note that the Main folder does not have to exist at this point. Moving the fi les to that
location will cause Team Foundation Server to create the parent folder.

FIGURE 10-10: Entering a path in the Move dialog box

As soon as this is done and checked in, you edit the build defi nition’s workspace so that it looks at
only the Orders Source Control Explorer folder under the Main folder, as shown in Figure 10-11.

256 ❘ CHAPTER 10 BRANCHING AND MERGING

c10.indd 04/22/2014 Page 256

FIGURE 10-11: Editing the build defi nition’s working folders

You also modify the Process for the build to remove the solution fi le from the old location, and add
it in again at the new location, as shown in Figure 10-12. You then manually queue a new build to
ensure that everything is working well. Everything works, so you send an e-mail notifying the team
of the change to version control, and you go home for the evening.

Now, as an aside, note that the source is in the correct path, but the Main folder is not yet a branch.
In Team Foundation Server, branches are a fi rst-class entity in version control. They are repre-
sented by a different icon and have additional metadata such as Owner, Description, and Branch
Relationships. To convert a folder to a branch, you right-click the folder in Source Control Explorer
and select Branching and Merging ➪ Convert to Branch. This displays the Convert Folder to Branch
dialog box, as shown in Figure 10-13.

Note that to convert a folder to a branch, you must have the Manage Branch permission in Team
Foundation Server. Also, once you have converted a folder to a branch, no folders above or below it
may be a branch.

Implementing Branching Strategies in Centralized Version Control ❘ 257

c10.indd 04/22/2014 Page 257

FIGURE 10-12: Modifying the Process for the build

FIGURE 10-13: Convert Folder to Branch dialog box

If people had already created new branches from the Main folder, you would want to ensure that the
check box shown in Figure 10-13 is selected because this will also convert those folders to branches.
But this does not apply in our Tailspin Toys example.

258 ❘ CHAPTER 10 BRANCHING AND MERGING

c10.indd 04/22/2014 Page 258

In the future, if you ever need to convert a branch back to a regular folder, go to Visual Studio and
select File ➪ Source Control ➪ Branching and Merging ➪ Convert to Folder.

Now get back to the example implementation. You come in the next morning and start to get the
branches set up. You perform the Convert to Branch operation on Main as described previously, and
the source tree is now as shown in Figure 10-14.

FIGURE 10-14: Main as a branch folder

When the build is ready to be released to the QA team, instead of invoking the code freeze period
that used to be enforced, you take the latest version of code and branch it to create the QA branch.
You do this by right-clicking the Main branch and selecting Branching and Merging ➪ Branch,
which displays the Branch dialog box for a branch (see Figure 10-15).

FIGURE 10-15: Branch dialog box for the Main Branch

Implementing Branching Strategies in Centralized Version Control ❘ 259

c10.indd 04/22/2014 Page 259

In this dialog box, you enter the full path that you would like to create, which, in this example, is
$/IT/Releases/QA. If the Releases folder does not already exist, it will be created automatically as
part of this operation. As shown in Figure 10-15, there is a warning that this will be committed to
the repository as part of a single transaction.

This behavior is slightly different from that experienced when branching a folder or fi le. When you
branch a folder or fi le in the Visual Studio or Eclipse clients, it is assumed that you are making a
copy of the fi le in your local workspace as well. Figure 10-16 shows an example of the Branch dialog
box when a fi le is selected.

FIGURE 10-16: Branch dialog box when a fi le is selected

If you had selected a folder outside an existing branch, you would also get the option to convert the
folders to a full branch in Team Foundation Server—but you do not have to. This is a subtle point.
While branches are fi rst-class objects in Team Foundation Server, you can branch any folder or fi le
to another place in the repository. This is a great way to copy areas of the repository to a different
part of the repository, but make the history of changes that occurred in the old location easily acces-
sible in the new one. In Team Foundation Server, a rename is actually implemented under the covers
as a simultaneous branch and a delete of the source location.

In the instance of branching a fi le or folder, this is done as a two-phase operation. The branch
changes are made in your workspace, and then you check these in.

However, in the majority of instances, you want to branch an entire path in version control. Usually,
you will not be making changes to the fi les or performing validation before check-in.

So, performing these in a single atomic transaction is a much more effi cient use of server resources.
(This is functionally equivalent to the tf branch command line with the /checkin option sup-
plied.) Therefore, you perform the branch as indicated in Figure 10-15 and the source tree is now as
shown in Figure 10-17.

A new build defi nition (called Orders QA) is created for the QA branch, with a scheduled trigger of
6 a.m., Monday to Friday. That way, a fresh build is ready and waiting for the test team each morn-
ing if changes have been made to the QA branch during the day.

260 ❘ CHAPTER 10 BRANCHING AND MERGING

c10.indd 04/22/2014 Page 260

FIGURE 10-17: QA branch created

NOTE Chapter 18 provides more information on creating build defi nitions.

Dealing with Changesets
During initial testing, you notice a small bug with the stylesheet on Internet Explorer 6 on Windows
XP. None of the development team was old-fashioned enough to be running this confi guration, but
it is still commonly found in the company, so the team decides to create a fi x for it.

The modifi cation is made to the Site.css fi le in the QA branch and checked in as changeset 6. The
next scheduled build (Orders QA_20131231.1) picks up this change and adds it to the code running
in the test environment. Once the fi x has been verifi ed, it must be merged into the Main branch.

For merges like this, it is best if the merge is performed as soon as possible, and by the developer
that made the change. That way, it is fresh in his or her mind and isn’t forgotten, or the fi x misun-
derstood. The testing team has set a policy that the related bug cannot move to the Closed state
until an urgent fi x has been merged into the Main branch—which is a sensible policy.

To merge that code, the developer right-clicks the source branch (in this case, the QA branch) and
selects Branching and Merging ➪ Merge. This displays the Merge Wizard dialog box, as shown in
Figure 10-18.

The developer opts to merge selected changesets to ensure that only the change the developer is
aware of is picked up. The developer checks that the target branch has been identifi ed as Main, and
then clicks Next. This displays the changesets selection page.

On this page, you can select a single changeset or a continuous range of changesets that you want to
merge. In the case of the example testing team, it has just the one changeset it is interested in (6),
so the developer selects that and clicks Next, as shown in Figure 10-19. This provides a fi nal con-
fi rmation page and, when the developer clicks Finish, the merge is performed. The pending changes
page now looks like Figure 10-20.

Implementing Branching Strategies in Centralized Version Control ❘ 261

c10.indd 04/22/2014 Page 261

FIGURE 10-18: Source Control Merge Wizard

FIGURE 10-19: Changeset merge range selection page

262 ❘ CHAPTER 10 BRANCHING AND MERGING

c10.indd 04/22/2014 Page 262

FIGURE 10-20: Displaying the results of a merge

The stylesheet fi le currently has a pending merge on it. At this point, it is good practice to compare
the current version of the fi le with the latest version to ensure that the change you are making is still
the correct one, as shown in Figure 10-20. In this case, it is, so the developer associates the changeset
with the original bug, checks in the merge, and then marks the bug as Done.

At this point, if you right-click the fi le in Source Control Explorer and select View History, you will
see the History for the fi le, as shown in Figure 10-21 (once the tree nodes have been expanded).

FIGURE 10-21: History for the fi le

Implementing Branching Strategies in Centralized Version Control ❘ 263

c10.indd 04/22/2014 Page 263

In Figure 10-21, you can see the merge of the changes back into Main at changeset 7. By expanding
the node, you can see the changes made to that fi le in the source branch (in this case, the edit of the
fi le in the QA branch in changeset 6). Then, further back in history, you can see the rename (move)
of the fi le when the code was moved under the Main folder. Finally, if you expand that rename node,
you can see all the history of the fi le before it was in the current branch structure.

Another way to visualize this change and see that it made it into the correct branches is to right-
click changeset 7 in the History view and select Track Changeset. This displays the Select Branches
dialog box (see Figure 10-22), which allows you to select which branches you would like to view.

FIGURE 10-22: Select Branches dialog box inside the Track Changeset view

For the example scenario, the developer selected the Check All Visible check box and clicked the
Visualize button. Initially, this sequence will show a hierarchical view of branches, which are col-
ored according to which branches the changes in changeset 7 made it into. If you were to look at
Figure 10-23 in color, you would see that everything showed up green to indicate that everything
was good.

An alternative visualization is available by clicking the Timeline Tracking button, as highlighted in
Figure 10-23. This displays the changes in a familiar timeline style view, as shown in Figure 10-24.
Again, if this were in color, you would see that all the branches are green, which means that the
code made it to where it should be.

264 ❘ CHAPTER 10 BRANCHING AND MERGING

c10.indd 04/22/2014 Page 264

FIGURE 10-23: Branches shown in hierarchical view

FIGURE 10-24: Timeline Tracking view

Back at Tailspin Toys, the IT product has undergone a bunch more testing on the QA branch, and
development continues in the Main branch. At the end of the testing period, it is decided that the
application is working properly, so the build created with the stylesheet fi x in changeset 7 (build
Orders QA_20131231.1) is deployed to production.

However, all is not well. Once deployed to production, the Chief Information Offi cer (CIO) of the
company notices an incorrect footer fi le at the bottom of the main page. The page still contains text
that reads, “My ASP.NET MVC Application.” While this doesn’t affect functionality in any way,
the CIO would like the issue fi xed ASAP because she is about to demo the application to the board
of directors.

It’s a small, low-risk fi x. In days gone by, this would be exactly the sort of thing for which a member
of the IT team would jump into the production environment and just fi x it. However, it’s exactly the
sort of change that can be forgotten about back in the development branch. So, to ensure that the
change is not overlooked, the team decides to do it in version control using the new branch plan.

First, they must create the Prod branch. There are two ways to do this. One is to create the branch
from the label applied as part of the build process. Another is to branch by the changeset that
included the required fi x. Now take a brief look at both methods and see which is more appropriate
for this example scenario.

Implementing Branching Strategies in Centralized Version Control ❘ 265

c10.indd 04/22/2014 Page 265

Branch from Label
As previously discussed, it is possible to create branches after the fact by right-clicking in Source
Control Explorer and selecting Branching and Merging ➪ Branch as well as from the tf branch
command line.

In the Branch from QA dialog box, select Label from the Branch Version drop down, as shown in
Figure 10-25, and then click the ellipsis (. . .) button to fi nd the label created by the build process.
(By default, each build labels the fi les included in that build with the build number.) Enter the target
branch name of $/IT/Releases/Prod and click Branch.

FIGURE 10-25: Branch by Label in Visual Studio

To do the same thing from the command line, the developer opens up a Developer Command
Prompt for VS 2013 and enters the following command:

tf branch $/IT/Releases/QA $/IT/Releases/Prod /version:L"
 Orders QA_20121231.21@$/IT" /checkin

Whichever way you perform a branch by label, the advantage is that it will branch only the fi les
included in the specifi ed label, and that label was created automatically by the build process to
include only the fi les in the workspace defi nition of the build at the time the build was performed.

The major downside is that, as stated in Chapter 6, labels in Team Foundation Server are editable.
Someone with appropriate permissions could have edited the label and removed or included certain
key fi les after the label was created by the build process. This is unlikely in the example Tailspin
environment, but it is possible.

Branch from Changeset
From the build report shown in Figure 10-26, you can see the build associated with changeset 6 was
successful. As discussed in Chapter 6, the changeset represents a unique (immutable) point in time in

266 ❘ CHAPTER 10 BRANCHING AND MERGING

c10.indd 04/22/2014 Page 266

the version control repository. Therefore, if you were to branch from changeset 6, this would include
the fi les at the exact state that they were in when the build was performed.

FIGURE 10-26: Build report

The team decides to branch by changeset 6 so as to include all changes up until changeset 6 in
the QA branch when creating the Prod branch. To do this, the developer right-clicks the QA branch
in Source Control Explorer and selects Branching and Merging ➪ Branch. The developer then
changes the “Branch from Version” to changeset 6, and sets the Target Branch Name to be $/IT/
Releases/Prod.

Once the branch is created, the version control repository then looks like Figure 10-27.

If you were to right-click the Main branch and select Branching and Merging ➪ View Hierarchy, you
could see a visualization of the current branch structure, as shown in Figure 10-28. If you hover the
mouse over each branch, you see a tooltip with the additional metadata about that branch, including
any description that you entered.

Implementing Branching Strategies in Centralized Version Control ❘ 267

c10.indd 04/22/2014 Page 267

FIGURE 10-27: Prod branch created

FIGURE 10-28: Current branch hierarchy

At this point, the developer can now create a fi x in the Prod branch. The developer edits the offend-
ing cshtml fi le and checks it in as changeset 11. The developer then creates a build and deploys this
to production. Now you must ensure that the fi x is in the appropriate branches so that it also gets
included in the future releases.

To do this, you right-click the Prod branch, and select View History. Then, you right-click the
changeset and select Track Changeset. As before, you select the Check All Visible check box and
click Visualize. The change will show in green in the Prod branch only, as represented by the bot-
tom box in Figure 10-29.

268 ❘ CHAPTER 10 BRANCHING AND MERGING

c10.indd 04/22/2014 Page 268

FIGURE 10-29: Change being visualized for the changeset

To merge this change into Main, the developer now has two choices: a ladder merge or a baseless
merge. If you fi nd that during your branch process you frequently must perform baseless merges or
merges through other branches (ladder merges), this is a good indication that the model is no longer
optimized for the typical circumstances encountered in your environment, and you may want to
revise it.

However, in the Tailspin scenario, making ad hoc changes to production is very much an exception
case. So, the IT team wants to optimize the branch plan for the usual case of a change starting in
Main, getting promoted on to QA, and then to Prod. So the developer must use a ladder merge or
a baseless merge to go from Prod to Main.

Ladder Merge
As shown in Figure 10-29, the team has a change in Prod. To get that fi x into Main using standard
merges, the developer must fi rst merge it into the QA branch and then, from there, into Main. This is
because in Team Foundation Server, a standard merge can fl ow from parent to child, or vice versa.

To merge the changes, from the Tracking Changeset view shown in Figure 10-29, the developer uses
the mouse to drag and drop the Prod branch up to the QA branch. This will display the standard
Merge Wizard shown earlier in Figure 10-18. The developer clicks the Selected changesets radio but-
ton and clicks Next to display the changeset selection page shown earlier in Figure 10-19.

On this page, the developer would select the desired changeset and click Finish. The developer then
checks in the merged fi le, and clicks the Rerun button in the Tracking Changeset view to show the
change in the QA branch. Finally, the developer drags and drops the QA branch to the Main branch
and repeats the process through the Merge Wizard.

In this particular example, because of when the change occurred in production, it actually would
have been possible to get the change into Main in this way. However, if the change had been required
when there was a different (newer) version of the software in the QA branch, you may have not

Implementing Branching Strategies in Centralized Version Control ❘ 269

c10.indd 04/22/2014 Page 269

wanted to merge the changes in this way. Instead, you could have opted to do a baseless merge
directly into Main, and then the change would make it back up to the QA branch with the next
release to the test team.

Now take a look at how to plug in that option for the Tailspin Toys example scenario.

Baseless Merge
To discourage baseless merges, the simple drag-and-drop approach is not available inside Visual
Studio 2013. Instead, the developer must right-click the Prod branch and select Merge. The Source
Control Merge Wizard (refer to Figure 10-18) is displayed with the available parent or child target
paths shown in the drop down. In your example, $/IT/Releases/QA would be the only option
shown. But to perform a baseless merge, press the Browse button and then select the Main branch.
The merge dialog box then shows a warning (as shown in Figure 10-30) that a baseless merge is
going to be performed.

NOTE The same action could be performed from the command line using a
command such as the following:

tf merge /baseless /recursive /version:11
 $/IT/Releases/Prod $/IT/Main

FIGURE 10-30: Baseless merge warning

270 ❘ CHAPTER 10 BRANCHING AND MERGING

c10.indd 04/22/2014 Page 270

In your example, as in the case with many active development environments, development has
been ongoing by the rest of the team and additional check-ins have occurred in the Main branch.
Therefore, it is highly likely that a confl ict will occur. As discussed previously, Team Foundation
Server 2013 will automatically attempt to merge those confl icts for you, if possible. For example, if a
developer was editing on part of the fi le in the Main branch, and the change occurred to an unrelated
part of the fi le in the Prod branch, these changes would be merged automatically even though this
is a baseless merge. Sadly, in your example scenario, someone has renamed the _Layout.cshtml fi le
in the Main branch to _MainLayout.cshtml. If you had performed the ladder merge, as described in
the previous section, Team Foundation Server would have been able to use the common base version
to detect the rename operation and merge the changes into the fi le with the new fi lename. However,
as this is a baseless merge (with no common base version for comparison), Team Foundation Server
can use only the current state of the two branches when making its calculations. It therefore has no
way to determine that the rename on _Layout.cshtml occurred after a point in time in which the
branch that ended getting branched to Prod was performed. Therefore, Team Foundation Server
thinks that you want to add _Layout.cshtml back into Main, but it knows that a fi le used to exist
by this name and is clever enough to check with you fi rst to see if that is what you really wanted to
do by showing you the confl ict dialog box, as shown in Figure 10-31.

FIGURE 10-31: Resolving baseless merge confl icts

In this instance, you can see that something strange has happened. To dig into things a bit further,
you right-click the confl ict and look at the Target History. There you can see that _Layout.cshtml
was renamed to _MainLayout.cshtml. Most of the options that Team Foundation Server presents
requires you to restore the original _Layout.cshtml fi le, which is not what you want. Therefore,
you undo the pending merge change on _Layout.cshtml from the Pending changes page in Team
Explorer and try again.

This time, you now know that you want to merge the changes of the specifi c fi le _Layout.cshtml
in the Prod branch with the fi le _MainLayout.cshtml in the Main branch. To do this, you go into
Source Control Explorer and right-click the _Layout.cshtml fi le in the Prod branch and select
Branching and Merging ➪ Merge. Now you are just merging the one fi le. In the Target Branch, you
press the Browse button and select the _MainLayout.cshtml fi le that you want your changes to be
merged into, as shown in Figure 10-32.

This will again show the Resolve confl icts dialog box, but this time you will be presented with the
option to Merge Changes in Merge Tool. Selecting this option will show the improved integrated
merge tool in Visual Studio 2013, as shown in Figure 10-33.

Implementing Branching Strategies in Centralized Version Control ❘ 271

c10.indd 04/22/2014 Page 271

FIGURE 10-32: A baseless merge of a single fi le

FIGURE 10-33: Resolving confl icts inside Visual Studio 2013

272 ❘ CHAPTER 10 BRANCHING AND MERGING

c10.indd 04/22/2014 Page 272

The change from the source version on the left-hand side is selected and any additional changes
necessary to correctly merge the fi le are performed on the contents in the Results pane at the bottom
on the merge tool. The developer then presses the Accept Merge button to inform Team Foundation
Server that the confl ict on that fi le has been resolved.

NOTE If desired, external diff and merge utilities can be confi gured in Visual
Studio under Tools ➪ Options ➪ Source Control ➪ Visual Studio Team
Foundation Server ➪ Confi gure User Tools.

To fi nd out more about confi guring external diff and merge utilities for use with
Visual Studio, see http://aka.ms/ExternalDiffMerge. James Manning has a
blog post detailing the confi guration parameters necessary for many of the com-
mon tools at http://aka.ms/ExternalDiffMergeEx.

The developer can now check in the merge by using the command line or Visual Studio. Following is
the command to execute a check-in from the command line:

tf checkin /recursive /noprompt $/IT/Main

NOTE For more information on using the tf merge command to perform
merge operations (including additional examples), see the MSDN documentation
at http://aka.ms/tfmerge. For more information about past merges from the
command line for a known source and destination branch, see the Help docu-
mentation for the tf merges command on MSDN (http://aka.ms/tfmerges)
or type tf help merges at a Developer Command Prompt.

Tracking Change through Branches
As you have seen thus far, the branch visualization tooling in Visual Studio 2013 provides some pow-
erful capabilities for viewing your branch hierarchy and tracking the progress of changes through it.
Using the View Hierarchy functionality, you can immediately see the relationships of the branches in
your source tree, and navigate to their locations in the repository. By selecting Track Changeset for a
changeset in the History view, you see into which branches that change has been made, and you can
even merge the change into other branches by dragging and dropping between branches.

The Tracking Changeset visualization has some additional features not always displayed in simple
examples, such as those presented here. Figure 10-34 shows an example from a more complex
branch hierarchy.

In the example shown in Figure 10-34, the original change occurred in the FeatureB branch as
changeset 86. This was reverse-integrated into the FeatureInt branch as a standard merge in
changeset 87. That change was then merged into Main. But not all fi les were copied over as part
of the merge, as the cross-hatching and the asterisk next to changeset 88 indicates. This should
instantly be an area to investigate which fi les were checked in and why. Double-clicking the branch
will show the changeset details to begin the investigation.

http://aka.ms/ExternalDiffMerge
http://aka.ms/ExternalDiffMergeEx
http://aka.ms/tfmerge
http://aka.ms/tfmerges

Implementing Branching Strategies in Centralized Version Control ❘ 273

c10.indd 04/22/2014 Page 273

Then, rather than a standard merge back down from Main into the V2.0 branch, you can see
that three baseless merges have occurred to get all the changes into that branch (changesets 89,
90, and 91). Finally, a single baseless merge took all the code into the V3.0 branch. Figure 10-34
shows that the changes have yet to make it into the FeatureA branch or into the V1.0 and V1.1
branches. Clicking the Timeline Tracking button displays the timeline view for changeset 86, as
shown Figure 10-35.

Partial
Merge

Baseless
Merges

Merge

Original
Change

FIGURE 10-34: Complex branch hierarchy in Tracking Changeset visualization

FIGURE 10-35: Complex Timeline Tracking view

274 ❘ CHAPTER 10 BRANCHING AND MERGING

c10.indd 04/22/2014 Page 274

This view does not show the relationships between branches (the hierarchy) but instead shows the
merges as they happened. The sequence of events around the partial merges into Main and V2.0, and
the subsequent full merge into V2.0, are therefore much more clearly represented. Hovering over
each branch provides additional metadata, including its owner and description.

IMPLEMENTING BRANCHING STRATEGIES IN GIT

When discussing the implementation of branching strategies in a Git-based world, you have to
separate the discussion into server-side local branching activities. Many of the strategies and
implementations already discussed were based on the fact that the Team Foundation Version
Control–based repositories perform all of their branching on the server. Local copies of those
branches are implemented as separate folders within your Workspace or even as separate
Workspaces on your machine. With Git, you have the full power of branching and merging both
locally and between the local and remote repositories.

No Branching Strategy
As described earlier, this strategy is the simplest to use. It is simply a single branch residing within
the team project. Team members can branch and merge locally for any purpose, but they all must
Push and Pull from the single Master branch on the Team Foundation Server.

To implement this strategy, start by cloning the Master branch from the team project into your local
Git repository, as shown in Figure 10-36.

FIGURE 10-36: Clone a team project repository.

Now you have a local master that is considered a published branch, as shown in Figure 10-37.

This branch is your link back to the team project and the starting point for all of your local
branches. Now you can click on the New Branch link, which opens up a section where you can
name your branch. You’re expanding the HelloWorld app’s pool of languages so call the branch
ExpandLangs, as shown in Figure 10-38.

Notice also that you have your local master branch as the source and the Checkout branch check
box is selected. Click on the Create Branch button and your branch is created, checked out, and you

Implementing Branching Strategies in Git ❘ 275

c10.indd 04/22/2014 Page 275

are switched to it as denoted by the bold type in Figure 10-39. Notice that the ExpandLangs branch
is Unpublished. This means that it doesn’t have a counterpart on the remote repository.

FIGURE 10-37: Local master is Published

FIGURE 10-38: Create a branch

FIGURE 10-39: New branch

276 ❘ CHAPTER 10 BRANCHING AND MERGING

c10.indd 04/22/2014 Page 276

Now you can implement our feature and make as many commits as you like to the branch. When
your work is complete on the branch, you can go back to the Branches page in Team Explorer, right-
click on the ExpandLangs branch, and select View History, which will show that you have changes
that aren’t in your local master, as shown in Figure 10-40.

FIGURE 10-40: ExpandLangs branch history

To merge those changes back to Master, you click the Merge link in the Branches page, which
expands the Merge section. Here, you select ExpandLangs as your source and Master as your target
and click the Merge button, as shown in Figure 10-41.

FIGURE 10-41: Merge ExpandLangs to local Master

Implementing Branching Strategies in Git ❘ 277

c10.indd 04/22/2014 Page 277

Now you have your local Master branch updated. You can now Push your local changes up to the
team project’s repository by switching to the Master branch and then navigating to the Unsynced
Changes page, selecting your Commit, and clicking the Push link, as shown in Figure 10-42.

FIGURE 10-42: Push changes from a local branch to remote repository

Feature Branching Strategy
Feature branching in Git has been the subject of many discussions since its release. The main thing
to understand is that the reason for feature branching is the same regardless of the version control
tool used; only the implementation will differ.

In Git, you already use a local feature branch to implement your code locally. But what happens if
you are working with a couple of colleagues on that feature? You will either all have to have your
own local branch of Main and share code between each of your local repositories or you need some
central place to share code.

For this to work, you can create a branch locally and then publish that branch back to the team
project so your colleagues can Pull the branch locally and work on it.

Let’s assume that you need a feature branch to add an About page to your application. You’re
working with two other developers so you need a common feature branch. You’ve already got a
local copy of Master, as shown in Figure 10-37. You can create a local branch from Master called
AboutPage, as shown in Figure 10-43.

Then you right-click on the AboutPage branch and select Publish Branch, as shown in Figure 10-44.
This will make the branch available to your colleagues in your team project repository, as shown in
Figure 10-45.

278 ❘ CHAPTER 10 BRANCHING AND MERGING

c10.indd 04/22/2014 Page 278

FIGURE 10-43: Create an AboutPage branch from Master.

FIGURE 10-44: Publish branch

FIGURE 10-45: Published branch in team project

Implementing Branching Strategies in Git ❘ 279

c10.indd 04/22/2014 Page 279

Now you can each make changes locally and then commit them to your local AboutPage branch.
When you’re ready, you can go to the Unsynced Commits page, select your commits, and click
the Push link to push them to the AboutPage branch in the team project, similar to Figure 10-42.
Looking back at the repository in Web Access, you can now see in Figure 10-46 that the difference
between the AboutPage branch and Master is your commit.

FIGURE 10-46: Pushed commit in AboutPage branch

Now your colleague Tatiana needs to create a local branch from the AboutPage branch in the team
project. She will go to her Branches page in Team Explorer and click the New Branch link. In the
New Branch section, she will change the source drop-down from master to origin/AboutPage, as
shown in Figure 10-47. This will default the name of the local branch to AboutPage, which is fi ne.
She then clicks the Create Branch button to create the branch.

FIGURE 10-47: Creating a local AboutPage branch

She now opens the branch and makes changes to the application in one or more local commits.
When she is done, she pushes her changes to the team AboutPage branch in the team project as you
did earlier.

When you go to your Unsynced Changes page, you can click the Fetch button in the Incoming
Commits section to show her commits. You can then Pull those commits into your local branch by
clicking the Pull link, as shown in Figure 10-48.

280 ❘ CHAPTER 10 BRANCHING AND MERGING

c10.indd 04/22/2014 Page 280

FIGURE 10-48: Pulling a team member’s Commits

Your entire team can keep doing these steps until the entire feature is complete. You can then merge
the AboutPage branch with Master to deliver your work to the next release.

 SUMMARY

As you can tell from this chapter, the branch and merge capabilities of Team Foundation Server not
only allow for some complex software confi guration management scenarios, but also provide the
tooling to help understand what is happening with changes in your version control repository.

While confl icts are always going to happen with any parallel development process, Visual Studio 2013
and Team Foundation Server 2013 have tooling to help resolve and manage merge confl icts to make
branching and merging easier.

With the arrival of Git as a fi rst-class version control repository choice within Team Foundation
Server, you now have the ability to perform branching and merging locally, as well as on the server.

The chapter looked at the terminology used in branching, discussed some common branching tech-
niques, and then provided a detailed walkthrough of implementing a basic branching strategy in an
organization using the tools provided for Team Foundation Server 2013. Finally, this chapter exam-
ined the changeset tracking functionality available in Team Foundation Version Control to deter-
mine to which branches a particular change has propagated.

Chapter 11 builds on the knowledge gained so far in this book, and provides some best-practice
guidance over a few scenarios common across development teams (such as how to organize the
structure of the repository, manage third-party dependencies, and manage the dependencies for
internally developed libraries, such as common framework code). Chapter 11 also looks at the prac-
ticalities of using Team Foundation Server to manage Team Foundation Server artifacts, such as
process templates, custom build assemblies, custom tools, an d so on.

c11.indd 04/22/2014 Page 281

Common Version Control
Scenarios

WHAT’S IN THIS CHAPTER?

 ➤ Organizing folders within the branch structure

 ➤ Managing and storing third-party dependencies

 ➤ Managing source code and binaries for internal shared libraries

 ➤ Storing customization artifacts to manage Team Foundation Server
in the version control repository

A few scenarios are common across development teams when managing source code for their
applications and managing Team Foundation Server. Organizing and architecting the struc-
ture of the version control system can have a direct effect on improving the way applications
are managed and built. This chapter explores some of those scenarios and discusses possible
solutions to tackle each of them. When illustrating these scenarios, we will be using a Team
Foundation Version Control–based team project, although you could use a Git-based team
project just as easily.

SETTING UP THE FOLDER STRUCTURE
FOR YOUR BRANCHES

One common issue that development teams have centers on the organization of their source
control repositories. Over time, these repositories can become unruly and downright diffi cult
to locate. The common question around the offi ce can sometimes be, “Where is that located in
source control?”

By providing some organization to the version control repository in Team Foundation Server,
you can provide your team with better discoverability of source code assets. You can also

11

282 ❘ CHAPTER 11 COMMON VERSION CONTROL SCENARIOS

c11.indd 04/22/2014 Page 282

introduce best engineering practices that will make it easier to compile your applications locally and
on automated build servers.

Figure 11-1 shows a sample folder structure within a branch. Notice how the folders are inside the
folder indicated as a branch in Team Foundation Server version control. Essentially, the idea is to
store within the same branch all of the artifacts necessary for building, testing, architecting, and so
on, the product or product family. This allows you to create as many branches as the team needs to
contain everything necessary for the development effort.

FIGURE 11-1: Sample folder structure within a branch

Later on, when you are creating a build defi nition that will build the entire product family, it will
be useful to scope the build to the branch so that it has access to all of the artifacts that would be
necessary to compile, test, and package the product family. Each of these folders and its purposes
will be examined in this chapter.

Application Source Code
The primary version control folder needed for most teams is one that contains the source code for a
family of products. This folder is named Source in the branch shown in Figure 11-1. Each product
can be contained in a separate subfolder, and any shared libraries that are used only by the products
in the product family can have subfolders under the Source folder as needed.

Setting Up the Folder Structure for Your Branches ❘ 283

c11.indd 04/22/2014 Page 283

Additionally, teams may choose to store the source code for the automated unit tests in this folder
because the unit test projects are traditionally included in the same Visual Studio solution as the
product’s Visual Studio projects. The development team is usually the team that manages artifacts
in this version control folder, and the creation and management of unit tests is typically owned by
developers.

Automated Tests Source Code
The testing or quality assurance team may end up generating source code for automated tests such
as Coded UI, web performance, and load, as well as for other types of tests. They need a location in
which to store the source code that implemented those automated tests, so the version control folder
named Tests in the branch shown in Figure 11-1 serves that purpose.

By including the source code in the same branch as the rest of the product family, it can easily be
managed across the branching structure, and it can be included to be compiled or even run
in automated builds that use the branch as its source. Including the Visual Studio projects for your
automated tests in the same build as your application is also a requirement for queuing automated
test runs from Microsoft Test Manager to run inside of an environment.

Architecture Assets
Software architects can create valuable architecture diagrams that might also be helpful to team
members implementing and testing the product family. Visual Studio 2013 Ultimate provides some
powerful architecture tools, including a Visual Studio project type for modeling projects that enable
the capability to store UML and other architecture diagrams in a meaningful way. The architecture
assets also need a version control folder in the branch, which is shown in Figure 11-1 with the name
of Architecture.

Alternatively, the architecture modeling projects and diagrams can be stored in the Source folder
mentioned earlier in order to be included in the same Visual Studio solutions. The idea is to ensure
that they are included in the same branch alongside the rest of the assets for the product family.

Again, by including them in the same branch, the architecture components and artifacts could be
used in an automated build process. Specifi cally, you could perform architectural validation during
compilation using the layer diagrams stored in the Visual Studio architecture modeling projects.

Database Schema
Database developers also produce artifacts to manage the schema and data in the databases used in
the product family. Their artifacts can be stored in the same branch folder as well. To offer change
management for the database schema, Visual Studio 2013 also includes a project type for database
schema management that integrates with version control repositories. This functionality was avail-
able in Visual Studio 2012 by installing the SQL Server Data Tools add-in but is now available in
all versions of Visual Studio 2013. Thus, to edit a stored procedure, you would use the same version
control techniques as editing a source code fi le for an application.

284 ❘ CHAPTER 11 COMMON VERSION CONTROL SCENARIOS

c11.indd 04/22/2014 Page 284

The folder named DataSchema in Figure 11-1 is used to store database schema artifacts in the
branch. The automated build process can even use the database schema “source code” contained in
this version control folder to compile the schema into a deployable unit for creating a new database
from the schema or update an existing database automatically to the latest schema version.

Installer Assets
If your development team needs to produce installers for the product to ship to customers, or to
internal business users, or even to ease deployment of server or web applications, then a version con-
trol folder should be created inside the branch to store the installer artifacts. This particular folder
is represented in the example branch in Figure 11-1 as the folder named Installer. This allows for
the automated build process to have easy access within the same branch to the source code neces-
sary to compile the merge modules and/or installers.

Build and Deployment Assets
Finally, there might be artifacts that the development team may want to store that are necessary
during the build process or for deployment reasons. A version control folder dedicated to these
artifacts is helpful. The version control folder for these artifacts is shown in Figure 11-1 with the
name of Build.

You don’t necessarily need to store the build workfl ow process template (.XAML) fi le itself in this
folder. However, it is certainly an option if your team decides to store build process templates
inside the branch. If you store the build process template fi le inside the branch, then each of those
branched build process template fi les must be registered for use in the build system before they can
be used by a build defi nition.

NOTE Chapter 19 provides more information about managing and registering
build process templates.

THIRD-PARTY SOURCE CODE AND DEPENDENCIES

Traditionally, teams should not store binaries in version control. This best practice has evolved
because team members would check in the bin and obj folders created after compiling a solution
or project in Visual Studio. Those folders, and particularly the binaries that get created, should
generally not be stored in version control even with Local Workspaces. Problems may arise when
storing those folders in a server workspace because Team Foundation Server marks fi les coming
from version control as read-only, which prevents Visual Studio or MSBuild from being able to over-
write those fi les.

The idea around this is that you should store in the version control branch only those source code
fi les necessary to create the binaries and let the automated build system compile the source code into
the necessary binaries. The build drop folders can then be stored on a fi le share that is backed up

Third-Party Source Code and Dependencies ❘ 285

c11.indd 04/22/2014 Page 285

regularly and retained appropriately. Even though the Visual Studio Online (VSO) has introduced
the concept of storing the build drop folders inside Team Foundation Server, it does not store them
inside or check in to the branch but rather has a separate location inside the server for the outputs of
compilation. This is only done in this manner because VSO doesn’t have a way to talk to your drop
folder within your fi rewall.

NOTE The practice of not storing the binaries in the version control repository
can also be generally applied for other types of compiled “outputs,” depend-
ing on the circumstance. For example, storing the compiled help fi le (that is, a
.CHM fi le) in the version control repository would generally not be recommended
because it can be compiled during an automated build process. Instead, the
source fi les used for creating the compiled help fi le would be stored in version
control.

However, the guideline of not storing binaries in the version control branch does not apply when it
comes to managing third-party dependencies.

One folder you might have noticed in the branching structure shown in Figure 11-1 that has not
been discussed yet is the Dependencies folder. This folder is exactly the version control branch
location that can be used to manage the third-party dependencies. Let’s take a look at two
methods for managing a Dependencies folder and discuss the strengths and weaknesses of both
approaches.

Folder inside the Branch
The fi rst approach is based on the premise that everything necessary for the product family is stored
inside the branch folder. This means that a Dependencies folder could be created inside the branch
folder, as shown in Figure 11-1, and used to manage the third-party dependencies.

Subfolders can be created to manage the different types of third-party dependencies that might be
needed by the products in the product family. For example, a UIControls subfolder can be cre-
ated to store third-party custom UI controls, or an EnterpriseLibrary subfolder can be created to
store the assemblies that come from the Microsoft Enterprise Library. You might even create further
subfolders to isolate the different major versions that might become available for the dependency.
Separating and organizing the dependencies into subfolders will help ease the management and
discoverability of the dependencies over time.

The fi rst benefi t that comes from storing the Dependencies version control folder inside the branch
is that it allows the development team to manage changes to dependencies just like any other change
to the products. For example, the new version of a dependency could be updated in the DEV branch
for developing and testing, but the RELEASE and MAIN branches continue to use the older version
until the update is merged and promoted to those branches. This approach allows for effective
source confi guration management of the dependencies of your application because the teams can
choose when to “take” changes to the dependencies by performing the updates themselves.

286 ❘ CHAPTER 11 COMMON VERSION CONTROL SCENARIOS

c11.indd 04/22/2014 Page 286

Another benefi t is that it allows for relative references to be used in the HintPath property for fi le
references in Visual Studio project fi les. Visual Studio and MSBuild can use the HintPath prop-
erty to resolve the references in a project at compile time. Using relative paths in the fi le reference
(instead of an absolute path that may include the branch name) ensures that the reference can be
properly resolved by Visual Studio, or automated build servers, no matter what the physical struc-
ture ends up being for storing branches in version control.

Listing 11-1 shows how the relative path would be used if the Visual Studio project fi le for ProductA
used a dependency in the Dependencies folder, as shown in Figure 11-1.

LISTING 11-1: HintPath property in Visual Studio project fi le branch dependency folder

<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="4.0" DefaultTargets="Build" xmlns=
 "http://schemas.microsoft.com/developer/msbuild/2003">
<!-- Section Removed for Brevity -->
 <ItemGroup>
 <Reference Include="EnterpriseLibrary">
 <HintPath>..\..\Dependencies\EnterpriseLibrary.dll</HintPath>
 </Reference>
 <Reference Include="System" />
 <Reference Include="System.Data" />
 <Reference Include="System.Deployment" />
 <Reference Include="System.Drawing" />
 <Reference Include="System.Windows.Forms" />
 <Reference Include="System.Xml" />
 <Reference Include="System.Core" />
 <Reference Include="System.Xml.Linq" />
 <Reference Include="System.Data.DataSetExtensions" />
 </ItemGroup>
 <ItemGroup>
<!-- Section Removed for Brevity -->
</Project>

A drawback to this approach is that each product family’s set of branches contained in version con-
trol has a copy of dependencies that might be used by multiple product families. This can potentially
cause more data storage to be used in the Team Foundation Server database. It also means that, if an
update must be committed for all product families, the update must be made in each product fam-
ily’s branching structure independently.

However, the benefi ts outweigh the potential drawback in this particular case. This also ensures
that teams have a better understanding of the dependencies used by the products in their product
family. Teams can also actively manage the time when new dependencies are integrated into their
product family’s branch and actually take the update themselves on their own schedule to prevent
disruption.

This approach can be considered the preferred method for managing dependencies because it falls in
line with the concept of storing everything needed for an application inside the branch’s root folder.
It also provides for the minimal amount of drawbacks, which are negligible in the larger view of
software development.

http://schemas.microsoft.com/developer/msbuild/2003

Third-Party Source Code and Dependencies ❘ 287

c11.indd 04/22/2014 Page 287

Folder at Team Project Level
Another alternative for storing dependencies inside version control is to use a common
Dependencies version control folder across several product families. This folder is scoped at the
team project level, as shown in Figure 11-2.

The main benefi ts of this approach are that the storage space is
not an issue, and teams have the capability to make a change to
a dependency that would be picked up by all product families.
Even when using this approach, the same type of subfolder
organization that was described for the “folder inside branch”
option can be used and is encouraged for the same benefi cial
reasons described for that option.

Because this common version control folder is used to centrally
manage all dependencies, the work of the responsible teams
can be affected, and products in the different product families
can also be affected if a dependency being used causes changes
that break the applications. This causes the teams to immedi-
ately fi x their applications to address the breaking change in
each of the branches for their product families. Teams must also address the breaking change in a
branch that contains production source code (such as a RELEASE branch) before they can produce a
meaningful build that works with the updated dependency. This approach does not allow the devel-
opment teams to “take” changes as needed, and to fi t them into their normal development cycles.
Another immediate drawback that will surface is that the relative references in the Visual Studio
project fi les may not resolve correctly, depending on the physical placement of the branches in the
version control repository.

This approach can also be susceptible to breaking the fi le references when renaming or reorganizing
version control folders in the future. For example, if a Visual Studio project fi le in the DEV\Source\
ProductA version control folder included a fi le reference to the Enterprise Library assembly in the
common Dependencies version control folder, the HintPath would be listed as a relative path in the
project fi le, as shown in Listing 11-2.

LISTING 11-2: HintPath property in Visual Studio project fi le with common folder
dependency

<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="4.0" DefaultTargets="Build" xmlns=
 "http://schemas.microsoft.com/developer/msbuild/2003">
<!-- Section Removed for Brevity -->
 <ItemGroup>
 <Reference Include="EnterpriseLibrary">
 <HintPath>..\..\..\..\Dependencies\EnterpriseLibrary\
 EnterpriseLibrary.dll</HintPath>
 </Reference>
 <Reference Include="System" />
 <Reference Include="System.Data" />
 <Reference Include="System.Deployment" />

FIGURE 11-2: Alternative approach
with a common Dependencies
 version control folder

continues

http://schemas.microsoft.com/developer/msbuild/2003

288 ❘ CHAPTER 11 COMMON VERSION CONTROL SCENARIOS

c11.indd 04/22/2014 Page 288

 <Reference Include="System.Drawing" />
 <Reference Include="System.Windows.Forms" />
 <Reference Include="System.Xml" />
 <Reference Include="System.Core" />
 <Reference Include="System.Xml.Linq" />
 <Reference Include="System.Data.DataSetExtensions" />
 </ItemGroup>
 <ItemGroup>
<!-- Section Removed for Brevity -->
</Project>

However, if Features branches were created, as shown in Figure 11-3, then the HintPath property
would no longer be valid because it would need an extra “..\” to represent the extra path level that
the Features branches are now sitting under.

FIGURE 11-3: Features branches

Finally, if you use this approach, ensure that the common Dependencies version control folder is
included in the workspace defi nition for any build defi nitions, in addition to the branch that con-
tains the source code needed by the automated build, as shown in Figure 11-4.

LISTING 11-2: (continued)

Internal Shared Libraries ❘ 289

c11.indd 04/22/2014 Page 289

FIGURE 11-4: Including the Dependencies folder in the workspace defi nition

INTERNAL SHARED LIBRARIES

Companies may have multiple development teams that all work separately on the product families
that each of the teams owns. At some point, those development teams may come to the realization
that they want to have common types and source code to be shared among the products. There
are certainly benefi ts to having one code base for the common library. For example, bug fi xes, new
functionality, and performance improvements can be introduced to multiple product families easily,
and this allows for common usage patterns across the teams.

The key to a successful shared library strategy is to treat the package of common libraries as a
completely separate “product family” internally. This means that it would ideally have its own
release cycle (even if it is on the same cadence as another product family) and its own product
 backlog, and it would be owned by a specifi c team (whether a dedicated team or a team that also
works on another product family).

The shared library product family is essentially treated as though it is a third-party dependency by
the teams that want to use the shared library. It’s just a third-party dependency built internally. A
signifi cant example of this is how the .NET Framework (common library) is developed alongside
Visual Studio and Team Foundation Server in the Developer Division at Microsoft, both of which
have dependencies on the .NET Framework.

For the following discussion, refer to the sample product families and common libraries
shown in Figure 11-5. You will notice that both product families have a dependency on the
shared libraries.

Choosing a Location in Version Control
The fi rst decision that must be made is the location in version control in which to store the source
code for the shared libraries. Two common choices come up with Team Foundation Server:

 ➤ Dedicating a branching structure in the same team project

 ➤ Dedicating a branching structure in a different team project

290 ❘ CHAPTER 11 COMMON VERSION CONTROL SCENARIOS

c11.indd 04/22/2014 Page 290

Product C Product DProduct A Product B

Shared Library 1

Internal Shared Libraries

Product Family 2Product Family 1

Shared Library 2

FIGURE 11-5: Product families with a dependency on shared libraries

Dedicating a Branching Structure in the Same
Team Project

If the shared libraries are considered to be grouped together with multiple product families in one
team project, you might want to contain the source code for those shared libraries in the same team
project. This is especially the case if the release cycle for the shared libraries is on a similar cadence
as the other product families in the same team project. The release cycle of the shared libraries must
be set to “release” and stabilized before the release of the other product families. This is to ensure
that any bug fi xes are included, new features are implemented, and the shared libraries are tested
suffi ciently before any of the product family teams need to release their products.

Figure 11-6 shows an additional branching structure for the common libraries alongside the other
related product families in the same team project. The team that owns the development of the
shared libraries now has its own mechanism for managing change in version control.

Internal Shared Libraries ❘ 291

c11.indd 04/22/2014 Page 291

A different area path node structure and team can even be created to isolate the work item artifacts
related to the shared libraries. This allows managers and executives to still pull reports and work
item queries across the entire team project, which provides a high-level view of the progress across
multiple product families and the shared libraries. Figure 11-7 shows how those area paths might be
defi ned in the same team project.

FIGURE 11-6: Branching structure for the common libraries alongside the other related product families in
the same team project

If this approach is taken, you can also ensure that you have separate build defi nitions to create the
binaries that the other product family teams will end up using as dependencies in their products.
Figure 11-8 shows how the build defi nitions for common libraries might show up alongside the build
defi nitions of other product families in the same team project.

292 ❘ CHAPTER 11 COMMON VERSION CONTROL SCENARIOS

c11.indd 04/22/2014 Page 292

FIGURE 11-7: Area paths defi ned in the same team project

Dedicating a Branching Structure in a Different Team Project
Let’s say that the development teams for multiple product families have a dependency on the com-
mon libraries, and those product families exist across multiple team projects. In this case, you can
either choose one of the existing team projects or, if needed, create a new team project for managing
the source code and release for the common libraries. The concept is essentially the same except that
the new branching structure, build defi nitions, and area paths would exist in that new team project.

Storing Library Assemblies as Dependencies
Once you have defi ned the location for the branching structure for the common libraries, and you
have created build defi nitions that run successfully to produce the binaries, the product family teams
are ready to take a dependency on those shared libraries in their Visual Studio projects.

The process is very similar to how the team would manage this dependency as any other third-party
dependency. Team members would choose when to take a new version of the dependency based on
their release schedule and how they want to support their products against the new version of the
shared libraries. They then fi nd a build with high quality and navigate to its drop folder to grab the
binaries and check them into the respective Dependencies folder, as described earlier in this chapter.

Internal Shared Libraries ❘ 293

c11.indd 04/22/2014 Page 293

FIGURE 11-8: Build defi nitions for common libraries

It is important to ensure that the product family teams choose a build coming from a build
 defi nition that includes source indexing and publishing of its symbols to a Symbol Server. This
approach is used as opposed to grabbing the binaries compiled on a developer’s machine from Visual
Studio. This allows the developers to still debug and step through source code, even without having
the Visual Studio projects in the same solution.

ENABLING DEBUGGING FOR SHARED LIBRARIES USING SYMBOL AND
SOURCE SERVER

One common reason that developers would like to include the Visual Studio
 projects for the shared libraries in the same solution as their products is to make
it easier to step through the source code of the shared libraries at debug time. By
taking advantage of Source and Symbol Server support in Team Foundation Server
Build and Visual Studio, those developers can achieve that goal, even when using a
fi le reference for the dependency.

To support this, the development team will need to check in a binary that has been
produced from a build defi nition confi gured for Source Server indexing, and then
publish the symbols to Symbol Server. The development team will also need at
least read-only access to the branches that contain the source code for the shared
 libraries—regardless of whether those folders exist in the same team project or a
different team project.

continues

294 ❘ CHAPTER 11 COMMON VERSION CONTROL SCENARIOS

c11.indd 04/22/2014 Page 294

This is one of many scenarios that can be solved by using Source Server and Symbol
Server. Chapter 18 provides more information about enabling Source and Symbol
Server support in automated builds. You can also fi nd additional information about
the Symbol Server and Source Server features available in Team Foundation Server
by visiting this blog post by Ed Blankenship: http://bit.ly/SymbolServerTFS.

Branching into Product Family Branches
You may also choose to have a separate branching structure in the same or different team project,
and then branch the source code folders from the shared library branch into the other product fam-
ily branches. This allows developers to have copies of the shared library projects inside the same
solution, and then use project references to those shared library projects.

To enable this, you must create a branch by selecting Branching and Merging ➪ Branch from the
context menu of the shared library folder, as shown in Figure 11-9.

FIGURE 11-9: Creating a separate branching structure in the same or different team project

Once you select the Branch command, the Branch options dialog box shown in Figure 11-10 is dis-
played. Notice how this branch dialog box is different than the branch dialog box displayed when
creating a branch from an actual branch folder. This difference exists because you are attempting to
create a branch inside of an already existing branch root folder. Because the SharedLibrary1 folder
is not considered a branch, it will just be created with a version control branching relationship as a
folder at the target location.

One drawback for this approach is that you will not be able to take advantage of branch or track
changes visualizations. It is solely a branching relationship in version control that exists to allow for
merging changes into the branching structures of multiple product families.

The team should be careful about how the shared libraries are then deployed because each would be
compiling the shared library separately in the respective build defi nitions. The team could get in a

continued

http://bit.ly/SymbolServerTFS

Managing Artifacts Using Team Foundation Server ❘ 295

c11.indd 04/22/2014 Page 295

situation where it is deploying two assemblies with the same name, version number, and so on but
with different content in it.

FIGURE 11-10: Branch options dialog box

This also demonstrates another drawback. The shared libraries can start to quickly diverge on dif-
ferent paths if not managed appropriately. For example, one development team may introduce a new
exception-handling routine, and another team could introduce a different exception-handling rou-
tine at the same time. Later, those two teams could merge their changes back to the original parent
branch for the shared library and end up with two exception-handling routines.

MANAGING ARTIFACTS USING TEAM
FOUNDATION SERVER

Team Foundation Server administrators often fi nd that they need a place to organize and store arti-
facts needed for managing Team Foundation Server. Interestingly, this is where the version control
repository can help out those administrators. A dedicated team project can be created to store, in
one convenient location, all of the artifacts that would be necessary to manage Team Foundation
Server.

This team project (named, for example, TFS) can be stored in the default team project collection, and
its access can be limited to the administrators of the system. For example, you can provide access for
this team project only to members of the Team Foundation Server Administrators security group.

From time to time, other developers may help out with some of the custom tools that can be created to
extend Team Foundation Server, or build engineers may need access to use or contribute to the master
build process templates. In those situations, you can create specifi c team project security groups to
allow privileges on an ad hoc basis without giving full access to the entire team project’s repository.

The following sections explore the different types of artifacts that you might organize in this team
project. Each suggestion is certainly optional and depends on your particular scenario. The premise
is that you want to effectively organize the artifacts necessary to manage Team Foundation Server.

296 ❘ CHAPTER 11 COMMON VERSION CONTROL SCENARIOS

c11.indd 04/22/2014 Page 296

SQL Reporting Services Encryption Key Backup
In disaster-recovery scenarios, one of the commonly misplaced artifacts is a backup of the SQL
Reporting Services encryption key. Without this key artifact, you could experience problems with a
full restore after a disaster. Therefore, always be sure that a backup of the encryption key is stored
in the TFS team project.

The thinking behind storing it in version control is that most companies will ensure that they
have a backup of the key Team Foundation Server databases. The databases can be easily restored
from those backups, and access to the version control repository can happen early in the disaster-
recovery process. At the point when SQL Reporting Services will be restored, the administrator
will have access to the encryption key backup fi le available in the newly restored version control
repository.

WARNING To protect the contents of the encryption key, you need a password
when creating the encryption key backup fi le. Therefore, be sure to make a note
of the password in the appropriate location, according to your company’s inter-
nal security guidelines.

It may be acceptable for some employees at some companies to store a text fi le
alongside the encryption key backup fi le and check in that text fi le to the same
location in the version control repository. If that option is not an acceptable
practice in your organization, then ensure that the administrators will have ready
access to retrieving the password during a disaster-recovery scenario.

Figure 11-11 shows the encryption key backup fi le available in the root of the team project’s version
control repository folder.

FIGURE 11-11: Location of encryption key backup fi le

NOTE Chapter 23 provides more information about disaster-recovery proce-
dures for Team Foundation Server. Also, more information about the procedure
for generating an encryption key backup fi le for SQL Reporting Services is avail-
able at http://aka.ms/BackupReportingServicesKey.

http://aka.ms/BackupReportingServicesKey

Managing Artifacts Using Team Foundation Server ❘ 297

c11.indd 04/22/2014 Page 297

Process Templates
A primary reason why administrators want to manage artifacts is to be able to manage the change
of process templates used in the team projects on the Team Foundation Server. Work item type
defi nitions are the primary source of changes to the process templates in most organizations.

You should create a folder structure that is set aside especially to manage the changes to the process
templates. This allows for each change to go through a check-out/check-in procedure and be audited to
include the date and time the change was made, the user who made the change, and the details about
the change (for example, changeset comments and associated work items). This process is very similar
to how source code changes would be made to an application being built by a development team.

You can leverage each of the version control features available in Team Foundation Server. For
example, you can create two branches to maintain the changes to the process templates. One branch
would be for the version of the process templates used on the testing Team Foundation Server envi-
ronment, and one branch would be used to store the version of the process templates used in the
production Team Foundation Server environment. This allows administrators to make changes that
can be tested out fi rst in a separate environment, and then merge those changes to the production
branch when the quality of those changes has been determined.

Additionally, the TFS team project can even contain continuous integration build defi nitions for
automatically deploying the changes to the process template’s work item type defi nitions to the
appropriate environment whenever the change is checked in to the appropriate branch. One build
defi nition could be created for each branch to deploy to that specifi c environment (for example,
deploy to the production environment when changes are made to the Production branch).

NOTE Chapter 13 provides more information about process templates, mak-
ing changes to work item type defi nitions, and automatic deployment of those
changes using a Team Foundation Server build.

Figure 11-12 shows the branches created for managing process templates in the TFS team project’s
version control repository.

Custom Build Assemblies
In Team Foundation Server, build servers (specifi cally build con-
trollers and agents) can monitor a version control folder for cus-
tom assemblies that should be used during the build process and
deploy them automatically. This feature is particularly useful
for companies that have large numbers of servers in their build
farm and want an effective deployment tool and change control
method for the custom assemblies. It is also useful for teams
who want to leverage the hosted elastic build servers feature of
Visual Studio Online. FIGURE 11-12: Branches created

for managing process templates

298 ❘ CHAPTER 11 COMMON VERSION CONTROL SCENARIOS

c11.indd 04/22/2014 Page 298

These custom assemblies can contain custom build workfl ow activities or even custom MSBuild
tasks used by Visual Studio projects. By creating a version control folder in the TFS team project, the
custom assemblies can be managed from a central location alongside other artifacts used to manage
Team Foundation Server.

Interestingly, this version control folder is not used exclusively by the build servers but can also be
used by end-user machines connecting to Team Foundation Server. There could be custom types or
custom UI editors used by custom build process parameters that would need to be resolved when-
ever an end user queues a build manually. The Visual Studio clients will monitor the specifi ed loca-
tion and load the assemblies appropriately to resolve those custom types. For this reason, be sure to
provide all users of Team Foundation Server read-only access to this version control folder.

NOTE Chapter 19 provides more information about creating custom build
activities and deploying those activities to the servers in the build farm.

Each build controller should be confi gured to point to this version control folder for deploying cus-
tom build assemblies. Figure 11-13 shows the Build Controller Properties dialog box and the fi eld to
set for monitoring the version control folder. The fi gure also demonstrates how the properties cor-
respond to the version control folder created in the TFS team project.

FIGURE 11-13: Build Controller Properties dialog box

Managing Artifacts Using Team Foundation Server ❘ 299

c11.indd 04/22/2014 Page 299

Master Build Process Templates
Another version control folder that can be created in the TFS team project’s version control reposi-
tory is a folder used to store all of the master build process template .XAML fi les. After build engi-
neers have architected a build process template that will work for several build defi nitions, it is nice
to have such templates stored and managed from a central location.

Build defi nitions in the same team project collection can be confi gured to use the master build pro-
cess templates, even if those build defi nitions are defi ned in a different team project.

NOTE Chapter 19 provides more information about architecting and custom-
izing build process templates.

Source Code for Custom Tools
Custom tools and extensions can be created to further enhance the features available in Team
Foundation Server using the Team Foundation Server Software Development Kit (SDK). The TFS
team project’s version control repository is the perfect location for managing the source code to use
for building those custom tools.

Build defi nitions can be created for the suite of custom tools that compile and package those tools
using the source code stored in the TFS team project’s version control repository. The work item
tracking artifacts in the TFS team project can even be used to manage the releases for the custom
internal tools built for Team Foundation Server.

Following are examples of the types of tools that could be created and stored in this version control
repository:

 ➤ Custom check-in policies

 ➤ Custom build workfl ow activities and build tasks

 ➤ Custom work item controls

 ➤ Web Service event handlers for Team Foundation Server events

 ➤ Custom testing data collectors (or diagnostic data adapters)

 ➤ Migration utilities and Integration Platform adapters

 ➤ Custom Code Analysis rules

 ➤ Global Code Analysis spelling dictionary

 ➤ Custom IntelliTrace event collectors

300 ❘ CHAPTER 11 COMMON VERSION CONTROL SCENARIOS

c11.indd 04/22/2014 Page 300

Figure 11-14 shows an example of the version control folders that can be created to store the source
code for custom tools that extend Team Foundation Server and Visual Studio.

FIGURE 11-14: Version control folders used to store the source code for custom tools

SUMMARY

 The version control repository can quickly become unruly if left up to a team. By introducing some
organization (and, specifi cally, some targeted methods), not only will the discoverability of the
source code be improved but the method in which the application is developed is also improved.
This is especially the case when third-party dependencies and internal shared libraries are needed by
the application.

Additionally, storing artifacts used to manage Team Foundation Server in version control folders
will allow administrators to easily access all of those artifacts in one location. You will also be able
to locate key artifacts needed in disaster-recovery scenarios, as well as have a common place to man-
age source code for extensions to Team Foundation Server and Visual Studio.

Part II of this book has explored the features available in the version control repository in Team
Foundation Server. Part III introduces the features available in the work item tracking system of
Team Foundation Server. You will learn about project management, work item tracking, and report-
ing capabilities of Team Foundation Server. Chapter 12 introduces you to the concepts of the work
item tracking system and provides the fundamentals for managing projects and work using Team
Foundation Server.

c12.indd 04/22/2014 Page 301

PART III
Project Management

 ▸ CHAPTER 12: Introducing Work Item Tracking

 ▸ CHAPTER 13: Customizing Process Templates

 ▸ CHAPTER 14: Managing Teams and Agile Planning Tools

 ▸ CHAPTER 15: Reporting and SharePoint Dashboards

 ▸ CHAPTER 16: Project Server Integration

c12.indd 04/22/2014 Page 303

Introducing Work Item Tracking
WHAT’S IN THIS CHAPTER?

 ➤ Getting to know the additions and enhancements to project
 management capabilities in Team Foundation Server 2013

 ➤ Understanding work items and process templates

 ➤ Managing and querying work items

In Part II, you learned about the support that Team Foundation Server 2013 has for source
control. In Part III, you will learn about how Team Foundation Server 2013 helps with
project management.

Project management can involve many aspects of developing software, such as tracking
remaining work and open bugs, determining how much work you can commit to with your
available resources, and even helping to enforce a standard process of interaction between
your team members. You will see that Team Foundation Server 2013 provides capabilities to
help you achieve all of these things and more.

In this chapter, you will start by learning about the enhancements to project management
available in this release. This chapter also provides an overview of work item tracking, includ-
ing some ways to manage and query work items from Visual Studio, Excel, Project, and other
clients. You will also learn about the importance of process templates, including an overview
of the process templates provided by Microsoft for use with Team Foundation Server 2013.

Subsequent chapters in Part III of this book will also familiarize you with process template
customization (Chapter 13), describe the use of the new Agile Planning tools (Chapter 14),
provide an in-depth look at using reporting and SharePoint dashboards to get real-time
insights into how your software development project is going (Chapter 15), and discuss the
implementation of integration between Team Foundation Server and Microsoft Project
Server (Chapter 16).

12

304 ❘ CHAPTER 12 INTRODUCING WORK ITEM TRACKING

c12.indd 04/22/2014 Page 304

PROJECT MANAGEMENT ENHANCEMENTS IN TEAM
FOUNDATION SERVER 2013

In Team Foundation Server 2012, Microsoft made signifi cant strides to align Team Foundation
Server with Agile methods. In Team Foundation Server 2013, the focus has broadened to support
Agile project management at a larger scale. This section highlights some of the most signifi cant
improvements and additions you will fi nd in this release, as well as those introduced in Team
Foundation Server 2012. This will allow those readers coming from Team Foundation Server 2010
or 2008 to get up to speed on the signifi cant differences that the 2012 and 2013 releases bring. If
you are brand new to Team Foundation Server, concepts such as work items will be explained in
greater detail later in this chapter.

Rich Work Item Relationships
According to Microsoft, the top-requested project management feature by users of the fi rst two
releases of Team Foundation Server (2005 and 2008) was representing rich relationships between
work items. In these releases of Team Foundation Server, it was only possible to relate work items
with one another via a simple linking mechanism. But these links didn’t provide any explicit mean-
ing, directionality, or cardinality.

For example, a common project management use case for many software development projects is
to be able to model parent/child relationships between work items, such as for capturing a feature
catalog or for detailing the tasks required to implement a particular requirement. You could link
these work items together using early releases of Team Foundation Server, but the links didn’t carry
enough meaning to convey proper parent/child relationships. Without directionality, it’s not easy
to discern which work item is the parent and which work item is the child in this representation.
Furthermore, without cardinality, there isn’t a mechanism for restricting that each child work item
could only have (at most) one parent work item.

Beginning with Team Foundation Server 2010, Microsoft introduced rich relational linking between
work items. You can model rich relationships between work items using a variety of link types.
These link types can also include directionality and cardinality. Team Foundation Server 2013 ships
with many link types, but the following are the most common:

 ➤ Parent/child—This is a useful link type for representing hierarchies such as feature catalogs,
or for detailing task work items (children) that will be used to implement a requirement or
user story (parent). Any work item can have zero or more child work items, and zero or one
parent work item.

 ➤ Tests/tested by—This link type is primarily intended to model the relationships between test-
case work items and the requirements or user stories that they test. This makes it easier to
determine the quality of a given requirement or user story by examining the recent results for
its related test cases. A work item can test zero or more work items.

 ➤ Successor/predecessor—The successor/predecessor link type is used to indicate work items
that have a dependency relationship with one another. For example, designing the user
interface for a web page is generally a predecessor to writing the code and markup that will

Project Management Enhancements in Team Foundation Server 2013 ❘ 305

c12.indd 04/22/2014 Page 305

provide the implementation of that web page. A work item can have zero or more successor
and/or predecessor links to other work items.

 ➤ Related—The related link type is the same as the legacy linking system found in Team
Foundation Server 2005 and 2008. These link types are not directional and provide no addi-
tional context about the type of relationship. If you had linked work items in a project that
was upgraded to Team Foundation Server 2013, those relationships will be represented by
the related link type.

You will discover that rich work item relationships provide the basis for other features and
enhancements across the project management capabilities of Team Foundation Server 2013, such
as enhanced querying and reporting. It is also possible to defi ne your own link types if you wish,
although for most teams, the provided link types will be suffi cient. More information on creating
custom link types can be found at http://aka.ms/WICustomLinks2013.

NOTE Team Foundation Server 2013 does not have a mechanism for ensuring
that your links are semantically correct. For example, it’s possible to create circu-
lar chains of successor/predecessor links or tests/tested-by relationships between
two work items that don’t involve a test case. If you notice that you have invalid
link types in your project, you can easily delete them at any time.

Test Case Management
Test cases are represented as work items in Team Foundation Server 2013. This makes it possible
to create rich relationships between the code you are implementing and the results of your quality
assurance (QA) efforts.

For example, test case work items can be linked (via tests/tested-by link types) to requirement work
items. As tests are run, results can be reported on by querying a given requirement work item, navi-
gating to the related test cases, and viewing the results of recent test runs. Many of the new default
reports make use of this information to expose new perspectives on software quality.

NOTE You learn more about the role that testing plays in Team Foundation
Server 2013 in Chapter 26.

Agile Portfolio Management
In Team Foundation Server 2013, Microsoft added an additional category of work items to assist
in managing a project at a portfolio level. A management team can defi ne high-level goals and can
assign work to those goals in a hierarchical manner. Individual teams can work with their own
backlogs, while managers can see the progress of multiple projects across the entire scope of work
for one or more projects.

http://aka.ms/WICustomLinks2013

306 ❘ CHAPTER 12 INTRODUCING WORK ITEM TRACKING

c12.indd 04/22/2014 Page 306

By default, the out-of-the-box templates for Team Foundation Server 2013 contain one additional
layer to the hierarchy, called the Feature category. However, Team Foundation Server now gives you
the ability to create up to fi ve levels of portfolio backlog. For example, you may have an Initiative
work item that contains Goals, which are further broken down into Features. This hierarchy is fully
supported in the Team Web Access user interface.

NOTE To add additional work item categories, you will need to modify the
process template for your project. For more information on customizing process
templates, see Chapter 13.

Enhanced Reporting
One of the primary reasons Microsoft designed Team Foundation Server as an integrated solution
(including source control, project management, build automation, and so on) is to enable multidi-
mensional views into software development projects. Effectively managing a software project is not
unlike managing other complex projects. Making smart decisions requires you to have a rich set of
information resources available, usually in real time, which can help to inform resource allocations,
prioritizations, cuts, schedule changes, and other important evaluations.

The rich work item relationships that exist within Team Foundation Server 2013 enable Microsoft
to signifi cantly enhance the types of reports available. As just one example, parent/child relation-
ships between user stories and tasks can produce a report showing the amount of work required
in order to fi nish implementing any given user story. By further analyzing the tests/tested by links,
you can get a view into software quality for those same user stories based on the results of your test
cases. There are countless other examples.

Starting in the 2010 release, Microsoft made it much easier to customize existing reports, or create
new ones. The ad hoc reporting capabilities allow you to create reports from just a work item query.

Basic reporting has now been included in Team Web Access with the addition of work item charts
and Team Favorite tiles. These simple reporting elements can give insights into the state of your
project at a glance.

NOTE You learn more about reporting with Team Foundation Server 2013 in
Chapter 15.

SharePoint Server Dashboards
Most software development projects involve many stakeholders. In addition to the core program-
ming team, a team may include project managers, business analysts, testers, architects, and so on.
There may also be external stakeholders—such as end users or executive management—who have

Project Management Enhancements in Team Foundation Server 2013 ❘ 307

c12.indd 04/22/2014 Page 307

a vested interest in monitoring the progress of your project. Most of these people don’t use Visual
Studio; so how do you effectively communicate project status to everyone?

Microsoft has integrated Team Foundation Server with SharePoint for this reason. Whenever
you create a team project with Team Foundation Server 2013, you can optionally create a new
SharePoint site (or use an existing one). This site can be used as a dashboard to provide everybody
on your extended team with a view into your project. Your SharePoint site provides a web-based
view of reports from your team project, along with a document repository where you can store
artifacts such as specifi cations and storyboards.

NOTE At the time of writing, you cannot create a SharePoint site for Team
Projects created in Visual Studio Online.

NOTE In Chapter 15, you will learn about how these SharePoint dashboards
can be used and customized for your team.

Agile Planning Tools in Team Web Access
When planning for Team Foundation Server 2013, Microsoft noted that there was a signifi cant
shift among development organizations toward the group of Agile development methods. To help
support teams moving toward these methods, this release of Team Foundation Server includes
some “must-have” features to help you plan your backlog, track velocity, understand your capac-
ity, plan each iteration (or sprint), view a burndown of hours for each iteration, and view how
work is fl owing through your project. These tools will be immediately familiar to teams that
 practice Scrum.

While creating these tools, the Microsoft team wanted to ensure that usage was not limited to the
practitioners of Scrum or Agile development methods, but rather was available and usable by any
development team using Team Foundation Server. To support this, every process template that ships
with Team Foundation Server 2013 supports the agile planning and tracking tools. You can also
modify a custom or third-party process template to support these new features. You will learn more
about process template customization in Chapter 13.

Signifi cant improvements have been made in the Team Web Access interface in the 2013 release.
These include color-coding of work item types, drag-and-drop management of work items, and cus-
tomization of columns on the agile boards. Many more small UI changes have been included in the
various minor releases.

NOTE In Chapter 14, you learn more about managing teams and using the
Agile Planning tools.

308 ❘ CHAPTER 12 INTRODUCING WORK ITEM TRACKING

c12.indd 04/22/2014 Page 308

WORK ITEMS

If you’re new to Team Foundation Server, you may be wondering what exactly a work item is after
reading the preceding section. A work item is the basic building block of the project management
capabilities in Team Foundation Server. Microsoft defi nes a work item as “. . . a database record
that Team Foundation uses to track the assignment and progress of work.”

Work Item Types
There are many kinds of work items, known as work item types. An instance of a work item type is a
work item, in much the same way that, in object-oriented programming (OOP), an instance of a class is
an object. A work item can represent explicit work that needs to be completed (or has been completed),
such as with a Task work item type. Work items can capture details of the software you are building,
such as with Requirement or User Story work item types. Work items can be used to capture problems,
such as the Bug work item type (which indicates a problem with your software) or the Issue work item
type (which might describe a problem with tooling, processes, or people that may be slowing down
your project, or even preventing work from happening). In Team Foundation Server 2013, Feature work
items have been added for managing a portfolio of work. Team Foundation Server 2013 includes other
default work item types as well, and you can even create your own.

NOTE You learn more about work item type customization in Chapter 13.

Work items include a handful of key elements, as shown in Table 12-1.

TABLE 12-1: Work Item Elements

ELEMENT DESCRIPTION

Field Fields contain the information that can be captured as part of a work item. Some
fi elds are shared by all work item types (called system fi elds). Examples of system
fi elds include Title (a one-line description of your work item), ID (a number that is
globally unique across your team project collection), and Assigned to (which can
be a user, such as a developer, who is working on a fi x for a bug work item). Other
fi elds might be specifi c to a given work item type, such as the Steps to repro-
duce fi eld, which is found in the Bug work item type and describes how a bug was
discovered.

Rule Rules can dictate which values are allowed for given fi elds. For example, you might
decide that the Priority fi eld for bugs should be assigned a value of 0, 1, or 2 and
cannot be left blank.

Form A form describes the way work items are displayed by work item clients such as
Visual Studio. (You will learn more about some of the ways to view and interact with
work items later in this chapter.)

Work Items ❘ 309

c12.indd 04/22/2014 Page 309

State States indicate where in your project workfl ow a work item is. For example, a Bug
work item type in the MSF for Agile Software Development process template starts
out in an Active state when it is fi rst created. Once a developer declares that the
code has been written or modifi ed to fi x a bug, the developer changes the state of
the Bug work item to Resolved. If a tester can verify that the bug can no longer be
reproduced, the tester changes the bug work item state to Closed. But if a tester
can still reproduce the bug, it will need to be reactivated (that is, the tester will
change the state of the bug back to Active). This signals to the developers that they
still have work to do.

Transition Transitions are similar to rules, but they defi ne how a work item moves from one
state to another. In the previous example, a bug work item must begin in an Active
state, and can then move into a Resolved or Closed state. But, from a Resolved
state, it is also possible to move back to an Active state. This is all defi ned by the
transition model as part of the work item type. Additionally, transitions can dictate
that certain fi elds should be required in order to move from one state to another.
For example, to move a bug from an Active to a Resolved state, a developer must
assign a Reason (such as Fixed, As Designed, Cannot Reproduce, and so on).

Link Work items can include links to other work items, using any of the link types you
read about in the preceding section.

History Work items also contain a full history that includes information about all changes to
fi elds and transitions.

Figure 12-1 shows an example of a bug work item form that has been resolved by the developer.
This screenshot is taken from a bug that was created with the MSF for Agile Software Development
process template. You will learn more about process templates later in this chapter.

Figure 12-2 is a state diagram showing the transitions for the default Bug work item type included
with the MSF for Agile Software Development process template. State diagrams for each work item
type are included with the documentation for the process templates provided by Microsoft. They are
useful for understanding how a work item behaves.

Areas and Iterations
Most of the system fi elds available for work items (such as Title and ID) are fairly self-explanatory.
But there are two important fi elds—Area and Iteration—that warrant further discussion.

The Area fi eld is a versatile one that can be used to create logical categories for your work items. In
Team Foundation Server 2013, when you defi ne a Team, a corresponding Area is created by default.
This helps organize work items according to the team responsible for delivering them. There are
a number of other ways you can use areas, and another common approach is to defi ne an area for
each logical part of your application.

310 ❘ CHAPTER 12 INTRODUCING WORK ITEM TRACKING

c12.indd 04/22/2014 Page 310

FIGURE 12-1: Bug (Agile) work item form

For example, in Figure 12-1, this bug is assigned to the Tailspin Toys\Web site area to indicate
that it is part of the web application being developed by the Fabrikam Fiber Web Team for the
Tailspin Toys team project. The complete string that is used for this designation is referred to as
an area path. Other area paths might include Tailspin Toys\Database or Tailspin Toys\
Mobile Application, or can be several levels deep, such as Tailspin Toys\Web site\
Shopping cart\Update controller.

The Iterations fi eld is useful for project planning, and it can indicate a timeframe for when you plan
to address a work item. In Figure 12-1, this work item is assigned to Tailspin Toys\Iteration 2,
where Tailspin Toys is the name of the team project and Iteration 2 is the specifi c iteration this
work item is assigned to.

Work Items ❘ 311

c12.indd 04/22/2014 Page 311

Active

Resolved

Closed

[Fixed],
Deferred,
Duplicate,

As Designed,
Cannot Reproduce,
Copied to Backlog,

Obsolete

[Not fixed]
Test Failed

[Regression],
Reactivated

[New],
Build Failure

Verified

FIGURE 12-2: Bug (Agile) work item type state diagram

You can name your iterations whatever you’d like; some teams choose sequential iterations (such
as Iteration 1, Iteration 2, and so on), while others choose to map them to milestone releases (such
as Beta 1, Beta 2, and so on). You can also create trees of iterations and employ a blend of naming
strategies, such as Tailspin Toys\Version 2.0\Beta 1\Iteration 2. In addition, Iterations
allow you to set start and end dates, as shown in Figure 12-3. This metadata is used in the Agile
Planning tools discussed later in this chapter.

You are not required to use iterations and areas to categorize your work items, but they can be very
useful for querying, managing, and reporting on your work items as your team project grows. When
used effectively, areas and iterations can allow you to employ a single team project for dozens or
even hundreds of applications across many years of iterative releases.

A team project administrator can manage the list of valid areas and iterations from within Visual
Studio by selecting Team ➪ Team Project Settings ➪ Work Item Areas and iterations by clicking
Team ➪ Team Project Settings ➪ Work Item Iterations. This launches the Team Project’s Control
Panel in the Web Access portal. Figures 12-3 and Figure 12-4 show the screens for editing iterations
and areas, respectively.

312 ❘ CHAPTER 12 INTRODUCING WORK ITEM TRACKING

c12.indd 04/22/2014 Page 312

FIGURE 12-3: Iteration administration

FIGURE 12-4: Area administration

Process Templates ❘ 313

c12.indd 04/22/2014 Page 313

A nice feature of area and iteration administration is that you can use the Security option in the con-
text menu, as shown in Figure 12-4, to defi ne granular permissions for indicating who is allowed to
modify or even read work items in each part of your team project. For example, maybe you work for
a government security contractor and there are bugs of a sensitive nature that should only be viewed
by team members with a certain security clearance. Or maybe you are building a prototype of the
next version of your application and want to restrict access to minimize the potential for leaks that
your competitors could get access to. These sorts of restrictions are possible by using iteration and
area security settings.

At any time, you can return to the Area and Iteration settings to add, rename, move, or delete areas
and iterations. If you rename or move areas or iterations for which there are existing work items,
those work items will automatically be reassigned by Team Foundation Server using the new name
or location you choose. If you delete an area or iteration for which there are existing work items,
you will be prompted for the value that Team Foundation Server should use to replace the iteration
or area value in affected work items.

You will discover that work items are used throughout Team Foundation Server. They form the
basis of many of the reports you will read about in Chapter 15. They can be linked to changesets
(which you read about in Part II) to provide more information about what changes were made to a
set of fi les and why. They can be used by project managers and team leaders for project planning,
and they are used to help control which work team members should be focused on, and how they
should interact with other team members.

Work items, work item types, and all of the activities involving work items (editing, querying,
reporting, and so on) are usually referred to collectively as the work item tracking capability of
Team Foundation Server. Now that you understand the basics of work items, you are ready to learn
about process templates, which include the defi nitions for work item types.

PROCESS TEMPLATES

A process template defi nes the default characteristics of any new team project. Process templates are
a powerful concept in Team Foundation Server. A process template includes the default work item
types, reports, documents, process guidance, and other associated artifacts that provide you with
everything you need to get started with your software project.

Choosing the right process template is an important step in creating a new team project. You should
carefully choose the best process template for your team’s preferred work style and the type of proj-
ect you are working on. This section will help you understand the types of process templates avail-
able. While you are reading this section, you should be thinking about the following types
of questions:

 ➤ How does your team work today?

 ➤ Is there anything about how your team works today that you’d like to change?

 ➤ Do you need a formal process, or do you work better as a more agile team?

314 ❘ CHAPTER 12 INTRODUCING WORK ITEM TRACKING

c12.indd 04/22/2014 Page 314

 ➤ Are there areas of your process where you prefer to be more agile, but other areas where you
need to be more formal? (For example, maybe you want to manage your team’s iterations in
an agile manner, but decisions about requirements require formal negotiations with
your customer.)

 ➤ Do you have resources to invest in and maintain your own custom process template, or
would one provided by Microsoft or a reputable third party be a better solution?

 ➤ What other stakeholders should be involved in the decision-making process for answering
these questions?

If answering these questions proves diffi cult for you or your team, you may want to start with a
small pilot project fi rst and see how your team performs when using one of the existing process tem-
plates. You can then use the fi ndings from that pilot to determine which process template to start
with, and what changes (if any) need to be made to that process template before using it for subse-
quent projects. Process template customization is covered in Chapter 13.

Embracing the right process template can have a transformational effect on an organization by
providing everyone on the team with a predictable and repeatable process for capturing and com-
municating information, making decisions, and ensuring that you are delivering on customer expec-
tations. This, in turn, can drive up software quality and development velocity, which ultimately
delivers more value to your customers.

MSF for Agile Software Development
The MSF for Agile Software Development 2013 process template included with Team Foundation
Server 2013 is designed for teams who are practicing agile methodologies, such as Scrum or
Extreme Programming (XP). These methodologies have their roots in the now-famous Agile
Manifesto (www.agilemanifesto.org/).

NOTE MSF version 1 was introduced by Microsoft in 1993, and version 4 was
fi rst codifi ed as a set of process templates with the release of Team Foundation
Server 2005. MSF provides guidelines, role defi nitions, and other materials to
help organizations deliver IT solutions, including software development proj-
ects. Many of the guiding principles of MSF align closely with those of the Agile
Manifesto.

A key tenet of agile methodologies is that requirements will evolve over time, both as business
needs change and as customers begin to use interim releases of your software. For this reason,
the MSF for Agile Software Development process template assumes that teams will be frequently
refi ning requirements and reprioritizing work by maintaining a common backlog of requirements
(which are captured as user stories in this template). Periods of work are time-boxed into short
lengths of time (iterations). Prior to each iteration, the development team works with the cus-
tomer to prioritize the backlog, and the top user stories on the backlog are then addressed in
that iteration.

http://www.agilemanifesto.org

Process Templates ❘ 315

c12.indd 04/22/2014 Page 315

Another important aspect of agile methodologies is, as the Agile Manifesto describes it, valuing
“individuals and interactions over processes and tools.” This doesn’t mean that processes and tools
shouldn’t be used at all, but instead that they sometimes can get in the way of empowering people to
communicate and work together in order to make smart decisions.

This is also refl ected in the MSF for Agile Software Development process template, which defi nes
a relatively small number of states, fi elds, transitions, and work item types as compared with other
process templates such as the MSF for Capability Maturity Model Integration (CMMI) Process
Improvement process template. By keeping the process simple, the goal is to prevent any unnecessary
burdens from getting in the way of people making the right decisions.

The following are the work item types available in the MSF for Agile Software Development
process template:

 ➤ Bug

 ➤ Issue

 ➤ Task

 ➤ Test Case

 ➤ User Story

 ➤ Feature

NOTE There are a few additional work item types present in all of the
Microsoft-supplied process templates (and available to be added to custom and
third-party process templates), which cannot be created directly, but are instead
created during special situations. Code Review Request and Code Review
Response work items are used to provide the code review functionality, which
you read about in Chapter 6. Feedback Request and Feedback Response work
item types are created during the process of requesting feedback and provid-
ing feedback from stakeholders, which are covered in Professional Application
Lifecycle Management with Visual Studio 2013 (http://www.wiley.com/
WileyCDA/WileyTitle/productCd-1118836588.html). Finally, the Shared Steps
work item is essentially a special instance of a Test Case. You learn more about
shared steps and test cases in Chapter 26. Most team members won’t interact
with shared steps directly, so they are excluded from the preceding list.

The MSF for Agile Software Development process template works well with the Agile Planning tools
and Task Boards in Team Foundation Server 2013.

NOTE You can explore the MSF for Agile Software Development 2013 process
template in depth, including more detail on each of the included work item
types, at http://aka.ms/MSFAgile2013.

http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118836588.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118836588.html
http://aka.ms/MSFAgile2013

316 ❘ CHAPTER 12 INTRODUCING WORK ITEM TRACKING

c12.indd 04/22/2014 Page 316

MSF for CMMI Process Improvement
The MSF for CMMI Process Improvement 2013 process template is designed for teams who want
to, or may have to, take a more formal approach toward developing software. This process tem-
plate is based on the Capability Maturity Model Integration (CMMI) for Development, which was
 developed by the Software Engineering Institute, a part of Carnegie Mellon University. CMMI
defi nes not only a framework for developing software, but it also prescribes ways for an organiza-
tion to constantly improve its processes in an objective and repeatable way. An organization can
even become certifi ed by an outside appraiser who can verify whether or not it is performing at one
of fi ve CMMI maturity levels.

CMMI is a popular model for developing software by such organizations as systems integrators (SIs)
and software factories. There is very little subjectivity in the model, so it allows an organization to
represent its services using a standard that is well understood globally and can be appraised and cer-
tifi ed by a neutral third-party organization. CMMI is also used for developing many mission-critical
systems by organizations such as NASA or defense contractors. In fact, the Software Engineering
Institute at Carnegie Mellon was originally funded by the United States Department of Defense to
help them fi nd better ways of managing their projects.

As you might expect, the MSF for CMMI Process Improvement process template is more complex
than its Agile counterpart. The CMMI template includes the following work item types:

 ➤ Bug

 ➤ Change Request

 ➤ Issue

 ➤ Requirement

 ➤ Feature

 ➤ Review

 ➤ Risk

 ➤ Task

 ➤ Test Case

NOTE The Feedback, Code review, and Shared Steps work item types are also
omitted from this list for the same reason as mentioned previously in the discus-
sion of the MSF for Agile Software Development process template.

In addition to including three additional work item types, the work item types themselves are also
more complex in the CMMI process template than in the Agile process template. Compare the
screenshot of a bug work item form from the Agile process template, shown earlier in Figure 12-1,
with a bug work item form from the CMMI process template, shown in Figure 12-5. Take note of
the additional fi elds, such as Root Cause, Triage, and Blocked, which were not in the bug work item
from the Agile process template. There are also additional tabs across the lower half of the bug work
item from the CMMI process template.

Process Templates ❘ 317

c12.indd 04/22/2014 Page 317

FIGURE 12-5: Bug (CMMI) work item form

The states and transitions of work item types from the CMMI process template are also more com-
plex than in the Agile process template. Now compare the state diagram of the bug work item type
from the Agile process template, shown in Figure 12-2, with the state diagram of the bug work item
type from the CMMI process template, shown in Figure 12-6.

The key difference you should notice between these two state diagrams is that the CMMI process
template introduces an additional state—Proposed. This explicit decision stage is required in the
CMMI process template before a developer is ever assigned to work on a bug. This should cause the
team to ask such questions as, “Is this really a bug, or does this represent a request to change the
way certain functionality was designed? Will fi xing this bug have unintended side effects on other
parts of the software? If you choose to work on this bug, how should it be prioritized against your
other work?”

318 ❘ CHAPTER 12 INTRODUCING WORK ITEM TRACKING

c12.indd 04/22/2014 Page 318

Active

Resolved

Closed

[Fixed],
Deferred,
Duplicate,

As Designed,
Cannot Reproduce,
Copied to Backlog,

Obsolete

[Not fixed]
Test Failed

[Closed in Error],
Regression

[Approved],
Investigate

[Investigation
Complete]

Proposed

[New],
Build Failure

Verified

[Rejected],
Deferred,
Duplicate

FIGURE 12-6: Bug (CMMI) work item type state diagram

This shouldn’t imply that those aren’t important questions to be asking even if you are using the
Agile process template, and a seasoned team practicing an agile methodology will likely already be
mentally following this checklist as they triage bugs. But the CMMI process template makes this
step explicit, which helps to ensure that this step takes place for every bug, regardless of the experi-
ence level of the development team.

Process Templates ❘ 319

c12.indd 04/22/2014 Page 319

Another way of thinking of CMMI is to realize that by following the model, NASA isn’t guaran-
teed that it will never again develop a rocket that fails because of a software defect. But if NASA
is following CMMI correctly, then it can guarantee that an agreed-upon process was used to make
decisions leading up to that defect. And conversely, in the event of a defect, it can audit the process
that was used, examine the assumptions that went into the decision-making process, and learn from
those mistakes in the interest of refi ning its process and helping to ensure that the same mistake
never happens again.

It is also important to point out that using the MSF for CMMI Process Improvement process tem-
plate alone will not ensure that an organization can successfully pass a CMMI certifi cation audit.
This is akin to the fact that simply having a smoke alarm and a fi re extinguisher on hand won’t keep
a family safe if they don’t know how to properly use and maintain this equipment.

But Team Foundation Server 2013, along with the MSF for CMMI Process Improvement process
template, can be very useful for helping an organization that wants to adopt CMMI as its model of
development. Team Foundation Server features such as end-to-end traceability, multidimensional
reporting, rich linking (between work items, and with other artifacts such as builds and changesets),
and preservation of history are all incredibly useful capabilities that can help an organization to pre-
pare for and pass a CMMI audit.

NOTE You can explore the MSF for CMMI Process Improvement 2013 pro-
cess template in depth, including more detail on each of the included work item
types, at http://aka.ms/MSFCMMI2013.

CMMI DEVELOPMENT METHODOLOGY

There is a common misconception that CMMI dictates a waterfall, or “Big Design
Up Front,” development methodology. While there is certainly a strong correlation
between teams practicing waterfall methodologies and those following a CMMI
model, CMMI actually does not defi ne a development methodology. You can
choose to use an agile development methodology along with the MSF for CMMI
Process Improvement process template if you want to, although you might have a
hard time selling agile diehards from your team on the value of the additional rigor
imposed by its processes.

As a compromise solution, another approach is to pick and choose the aspects of the
CMMI process template that are most interesting to you, and incorporate those into
the Agile process template as a custom process template. For example, maybe you
like the explicit decision point created by having your bugs begin in a Proposed state
before being activated, but you don’t see a need for the additional work item types
in the CMMI template. In this example, you could start with the Agile process tem-
plate and import the Bug work item type from the CMMI process template.

http://aka.ms/MSFCMMI2013

320 ❘ CHAPTER 12 INTRODUCING WORK ITEM TRACKING

c12.indd 04/22/2014 Page 320

Visual Studio Scrum
While there are many development methodologies that make up the agile movement, Scrum has
established itself as the most popular for the time being. Scrum defi nes clear roles, responsibilities,
and activities that team members practicing Scrum must follow.

A team practicing Scrum uses a standard vocabulary to defi ne what they are doing. Teams hold
daily scrum meetings (meetings where team members talk about what they did yesterday, what they
will do today, and anything that might be blocking them—called an impediment). Instead of a proj-
ect manager, a team practicing Scrum is usually led by a Scrum Master. There are other terms as
well, which you can learn about in any of the dozens of books about Scrum, or from the hundreds
of Scrum user groups or trainers around the world.

The Visual Studio Scrum 2013 process template was introduced specifi cally to help teams who want
to practice Scrum and use Team Foundation Server 2013. The fi rst version was made available a few
months after Team Foundation Server 2010 fi rst shipped. The current version now ships in the box
with Team Foundation Server 2013; in fact, it was also made the default process template for team
project creation.

So, you might now be wondering, if the MSF for Agile Software Development process template is
designed to support any of the agile development methodologies—including Scrum—what is the
purpose of the Visual Studio Scrum process template? The Visual Studio Scrum process template
was created to provide teams practicing Scrum with the specifi c artifacts and terminology used uni-
versally by teams who have adopted Scrum.

Instead of User Stories or Requirements, Visual Studio Scrum uses Product Backlog Item work item
types. Instead of Issues or Risks, Visual Studio Scrum uses Impediment work item types. Sprints are
represented by the Iteration Path, and the dates you use to defi ne your Sprints are used when render-
ing your burndown and velocity reports. The Agile Planning Tools discussed in Chapter 14 were
created specifi cally with the Scrum template in mind. In short, if you practice Scrum or are consider-
ing practicing Scrum, the Visual Studio Scrum process template is designed to help you do so while
making the most of Team Foundation Server 2013.

NOTE You can explore the Visual Studio Scrum 2013 process template in depth,
including more detail on each of the included work item types, at http://aka
.ms/Scrum2013.

COMPROMISING WITH SCRUM

If you want to practice Scrum, the Visual Studio Scrum process template provides
a great option for doing so. But you shouldn’t feel locked into this process template
if there are other process templates you like better, such as the MSF for Agile
Software Development process template.

http://aka

Managing Work Items ❘ 321

c12.indd 04/22/2014 Page 321

For example, you may prefer some of the additional reports that are included
with the Agile process template. You can still use the Agile process template and
practice Scrum, but you will just need to make some mental translations between
the terminology you use as a Scrum team and the way the Agile process template
expects you to enter information (such as referring to Product Backlog Items as
User Stories).

Third-Party Process Templates
Several third parties provide process templates for use with Team Foundation Server 2012 and 2013.

There are several great third-party process templates available, but you should carefully consider
the support and road map implications of adopting a third-party process template. For example,
when the next version of Team Foundation Server is released, will the process template be upgraded
to take advantage of new or improved features? And if so, what is the upgrade path for migrating
existing projects to the new version of the process template?

If you aren’t prepared to take over the maintenance of the process template in the event that the
third party chooses to stop investing in it, then you might want to consider one of the aforemen-
tioned process templates that are built and supported by Microsoft.

Custom Process Templates
Finally, you might decide that none of the process templates provided by Microsoft or third parties
fi t the needs of your team or your development project. While you could certainly create your own
process template from scratch, a far more common approach is to start with an existing process
template and customize it to suit your needs. You can learn about customizing process templates
in Chapter 13.

Now that you understand your options for choosing a process template, the next section will intro-
duce you to some of the different ways you can manage your work items.

MANAGING WORK ITEMS

There are many ways of accessing your work items within Team Foundation Server 2013. Because
work items will be used by many stakeholders across your team (including programmers, testers,
project managers, and so on), and most of these roles don’t use Visual Studio as their primary tool,
you will discover that Microsoft provides many client options for accessing work items.

In this section you will be introduced to using Visual Studio, Excel, Project, and Team Web
Access to access your work items. This chapter won’t cover every aspect of accessing work items
from each of these clients, but it will give you a better idea of the ways each client can be used, as
well as the relative benefi ts of each, and provide you with pointers to detailed documentation for
each client.

322 ❘ CHAPTER 12 INTRODUCING WORK ITEM TRACKING

c12.indd 04/22/2014 Page 322

The list of clients in this section isn’t exhaustive. There are also dozens of third-party clients, a
few of which are examined in this section. Testers might use Microsoft Test Manager (discussed in
Chapter 26). Eclipse users can utilize Team Explorer Everywhere. You can even write your own
clients using the Team Foundation Server object model if you want to.

Using Visual Studio
In Chapter 4, you learned about using Team Explorer to work with Team Foundation Server
2013. Team Explorer not only provides access for Visual Studio users wanting to connect to Team
Foundation Server, but it also installs the add-ins required to work with Excel and Project. So, even
if you don’t plan on using Visual Studio, if you want to use Excel or Project with Team Foundation
Server, you should install Team Explorer.

NOTE The examples in this chapter assume that you are using Team Explorer
2013. While it is possible to use older versions of Team Explorer to connect to
Team Foundation Server 2013, you will not be able to access some of the new
features in the product. In particular, because earlier editions of Team Explorer
(2005 and 2008) aren’t aware of the rich relational-linking capabilities of Team
Foundation Server 2013, you won’t be able to manage these link types or use the
newer querying capabilities to navigate your work items.

You can still use older versions of Visual Studio along with Team Explorer
2013. Team Explorer 2013 will be installed “side by side” with your legacy ver-
sion of Visual Studio, and you can access it by opening the Visual Studio 2013
shell. You can continue to use your legacy Visual Studio client to check in code
changes, and then switch to Team Explorer 2013 to update your work items.

Creating Work Items
Work items are easy to create using Visual Studio. Open the Team Explorer window of Visual
Studio 2013 and click on the Work Items entry. Now, click on the New Work Item menu. The drop-
down menu will reveal the work item types that are available in your team project. Click the work
item type that you want to create an instance of. An empty work item form will appear, similar to
that shown in Figure 12-1.

The new work item form will vary in appearance based on the work item type you chose to create.
For the most part, fi lling out the work item form is self-explanatory, but there are a few things to
notice when creating and editing work items.

The fi rst is that your work item won’t have an ID until it has been successfully saved for the fi rst
time. Remember that the ID is a number that is globally unique across your team project collection,
numbered sequentially, starting with 1. This means that the fi rst work item you save within a new
team project won’t have an ID of 1 if there are existing team projects in your team project collection
that also contain work items.

Managing Work Items ❘ 323

c12.indd 04/22/2014 Page 323

For now, your work item probably says something like “New Bug 1” at the top of the form. The
number 1 isn’t your work item’s ID; it’s just a temporary number used by Visual Studio to track
unsaved work items in this session. In fact, until it is saved, Team Foundation Server won’t know
about your work item.

Before you can successfully save this work item, you will need to assign a Title to it at a minimum.
There may be other required fi elds as well, depending on the work item type you selected. An error
message at the top of the form will indicate any remaining fi elds that you must complete. Some
required fi elds may appear on other tabs.

Another thing you’ll notice about work items is that you can’t skip states. A work item must be
saved in one state prior to moving to the next state. For example, if you refer back to Figure 12-2,
you will notice that a bug from the MSF for Agile Software Development process template generally
moves from Active to Resolved to Closed.

You can’t immediately create a new bug and save it in the Resolved state, however, even if you already
fi xed the bug that you found, and you’re just creating the bug work item as a record of what you did.
You must fi rst save it in an Active state, change the state to Resolved, and then save it again.

This may seem cumbersome at fi rst, but the reason you can’t immediately change the state of a new
work item is that the work item type may defi ne rules that must be satisfi ed as a work item transi-
tion from one state to another. Additionally, the meaning of some fi elds changes during a work
item’s life cycle, so each time you save in a new state, the available choices for a fi eld may change.
For example, when you create a new bug using the Agile process template, the Reason fi eld helps
to indicate how a bug was discovered. When you are transitioning the same bug from Active to
Resolved, the Reason state indicates why you are doing so (the bug was fi xed, or couldn’t be repro-
duced, or was a duplicate, and so on).

The interface for creating and editing work items with Visual Studio is very straightforward. What
can be diffi cult to master is an understanding of all of the fi elds found throughout the work item
types, their transitions, when to use them, and so on.

For the process templates provided by Microsoft, the documentation is very thorough and is recom-
mended reading to help you decide how to best adopt these process templates within your team. But
wholesale adoption of these templates isn’t for every team. You should feel empowered as a team to
decide which fi elds are more or less important than others. You may even decide to add to or sim-
plify the work item types to better meet your needs. Process template customization is covered
in Chapter 13.

DELETING WORK ITEMS

A common complaint by people who are new to using work items with Team
Foundation Server is that work items can’t (easily) be deleted. This was a design
decision by Microsoft. Organizations do not want bugs, requirements, or other
important work items in a project to be accidentally (or maliciously) deleted, so
there isn’t an option within Visual Studio or the other clients you’ll read about in
this chapter for deleting work items.

continues

324 ❘ CHAPTER 12 INTRODUCING WORK ITEM TRACKING

c12.indd 04/22/2014 Page 324

Team Foundation Server 2013 makes deletion possible from a command prompt.
Open a Visual Studio command prompt and type witadmin destroywi /? for the
command-line syntax help. This action is not reversible, so take care when using it.
As a general rule, destructive operations are only available from the command line
and require Administrative permissions.

Microsoft’s recommended approach is to transition work items as appropriate
instead of deleting them. For example, if you examine the state diagram in Figure
12-2, you will see that valid reasons for resolving a Bug work item include indicat-
ing that the bug can’t be reproduced, it’s obsolete (maybe it refers to a feature or
functionality that has been removed or changed), or it’s a duplicate of a bug that
already exists.

While it might be tempting to just want to delete these work items instead of resolv-
ing them using one of these reasons, the resolution data might prove useful later for
a QA lead to discover that a tester isn’t doing his or her job effectively when fi ling
these erroneous bugs. It’s easy to generate a report later on showing, for example,
all of the bugs created by a tester that were later discovered to be duplicates of
existing bugs. But if those same work items are deleted, they won’t show up in such
a report.

CHANGING A WORK ITEM TYPE

In Team Foundation Server, the fi elds for each work item type can be vastly dif-
ferent. For this reason, it is not possible to simply change the type of a work item.
This is a common complaint by people familiar with alternative process manage-
ment tools such as Atlassian’s Jira.

Even though changing a work item type is not supported in Team Foundation
Server, both the Team Web Access and Visual Studio interfaces provide convenient
ways to create a copy of a work item. The copied work item can be a different type,
and all data in corresponding fi elds will migrate across. This includes all links to
work items.

For more information on copying work items, see the blog post at http://aka.ms/
ChangeWIType.

Work Item Queries
Now that you know how to create work items, the next task you should learn about is how to fi nd
them. You can type the ID of the work item directly in the Search box in Team Explorer, but this
assumes that you know the ID of all of your work items. Chances are you’ll want to use queries
most of the time.

continued

http://aka.ms

Managing Work Items ❘ 325

c12.indd 04/22/2014 Page 325

The process template you are using probably includes some useful built-in queries already. Open the
Work Items page of Team Explorer to reveal the My Queries and Shared Queries folders under
the Queries node. The contents of the Shared Queries folder are visible to everybody on the team,
whereas My Queries provides a personal location to save queries, which may only be useful to you.
By keeping specialized queries in My Queries, you can avoid creating too much clutter for your fel-
low team members.

NOTE You should consider using permissions to lock down queries within the
Shared Queries node. This will prevent someone from accidentally overwriting
a shared query with their own, which might cause unexpected results for others.
You can set security on a query or query folder within Team Queries by right-
clicking it and selecting Security.

If you have an existing query, you can simply double-click it to run it. Your results will vary based
on the type of query you run and the number of matching work items in your team project, but it
will look something like the query results shown in Figure 12-7.

FIGURE 12-7: Results of a tree query

The query results shown in Figure 12-7 are from a Tree of Work Items query. This query type
returns a list of work items matching your query and groups them according to their parent/child
relationships. In this example, there are top-level User Story work items that are linked to child task
work items.

Another type of query is Work Items and Direct Links. This type of query is similar to the Tree
of Work Items query, except that you are not limited to parent/child links. For example, you can
 specify that you want to see all user stories and their test cases as represented by a tested-by link
type. You can even construct a query that shows all of your user stories that do not have linked test
cases; this is useful for spotting potential holes in your test plan.

Finally, the Flat List query type does not show any link types and is the basic type of query found in
all versions of Team Foundation Server.

326 ❘ CHAPTER 12 INTRODUCING WORK ITEM TRACKING

c12.indd 04/22/2014 Page 326

From within the query results window, you can open a work item simply by double-clicking it.
You also have several options available to you from the toolbar located at the top of the query
results window. You can place your mouse over these toolbar icons to learn more about them. The
available options will vary slightly between query types, but all of them allow you to create new
work items (linked to any work items you have highlighted); to link the work item you have high-
lighted to another existing work item; to open your query results in Microsoft Project, Outlook, or
Excel (more on this later); to edit the query you are working with; and to change which columns are
displayed in your query results (and in which order).

The query editor shown in Figure 12-8 is the result of having opened the query from Figure 12-7
and clicking Edit Query.

FIGURE 12-8: Query editor

Even if you’ve never used queries with Team Foundation Server before, this query should be fairly
straightforward to reverse-engineer to learn what it does.

The fi rst row (Team Project = @Project) means that your query results should be scoped to the
team project where the query is saved. If you delete this row, your results may return work items
from the entire team project collection. @Project is a query variable. Query variables are converted
into their respective values when the query is executed. So, for this project, @Project will resolve to
“Tailspin Toys.” By using query variables, you can write more fl exible queries. The two other query
variables available to you are @Me (which is converted into the user name of the currently logged-in
user) and @Today (which is converted into today’s date).

The next row of the query (AND Area Path Under @Project) indicates that work items from any
area path of this project can be included because the area path specifi ed is the top-level area path
(for this project, that means that @Project will resolve to the \Tailspin Toys\ area path). You

Managing Work Items ❘ 327

c12.indd 04/22/2014 Page 327

could change this clause to something like AND Area Path Under Tailspin Toys\
Web site if you wanted to restrict results to work items related to your website. Because you
are using the Under operator, if you had further sub-paths (such as Tailspin Toys\Web site\
Shopping cart), these would be included as well. If you wanted to restrict the results so that
the area path matched exactly what was specifi ed in the rightmost column, you could change the
operator to the equals sign (=).

The third clause (AND Iteration Path Under Tailspin Toys\Iteration 2) is similar to the
second clause. This means that work items must be assigned to an iteration of Iteration 2 (or any-
thing under this path).

Clauses four and fi ve are grouped together (as shown by the vertical bracket on the far-left side of the
query). This means that they should be interpreted together, in much the same way that math opera-
tions within parentheses or brackets are interpreted together. These clauses, when interpreted together,
mean Return work items with a work item type of User Story OR a work item type of Task.

Finally, because the query type for this query is a “Tree of Work Items,” there is a second grid
(labeled “Filters for linked work items”), which allows you to specify any constraints on the child
work items that are returned. In this example, only task work items will be returned as children.

NOTE Work item queries can be very powerful, and the options for creating
queries are endless. A full guide for understanding how to use queries can be
found at http://aka.ms/TFSQueries2013.

Using Microsoft Excel
Microsoft Excel is another popular client for editing work items. If you have installed Team
Explorer 2013 on a machine with Microsoft Excel (2007, 2010, or 2013), you will have a Team tab
available from the Offi ce Ribbon, which allows you to interface with Team Foundation Server 2013.

There are two ways of opening work items in Excel. One option is to open query results from within
Team Explorer and then, from the query results toolbar, click Open in Microsoft Offi ce ➪ Open
Query in Microsoft Excel. The other approach is to start in Excel, open the Team tab from the
Offi ce Ribbon, and then click New List. You will be prompted to select your Team Foundation
Server and team project, along with the query for the work items you want to manage. Or, instead
of a query, you can start with an empty list. This allows you to enter new work items, or to select
individual work items to add to your list by clicking Get Work Items.

Managing work items in Excel is a fairly rich experience. You can create new work items, make
edits to existing work items, and even manage Trees of Work Items. Figure 12-9 shows the results
of the same query you saw earlier. Note that parent/child relationships are represented here as well.
Parent work items have their titles listed in the Title 1 column, and their children have their titles
listed in the Title 2 column. If you added a third level to the tree, grandchild work items would be
listed in a column named Title 3, and so on.

http://aka.ms/TFSQueries2013

328 ❘ CHAPTER 12 INTRODUCING WORK ITEM TRACKING

c12.indd 04/22/2014 Page 328

FIGURE 12-9: Work items in Excel

You can make any changes you want to within your Excel grid. You can add new work items for a
Tree of Work Items query by clicking an existing work item and clicking Add Child from the Team
tab of the Ribbon. To create a new work item, you can simply place your cursor on a new row at the
bottom of your grid, and start typing.

Note, however, that none of your work will be persisted to Team Foundation Server until you click
Publish from the Team tab of the Ribbon. Even if you save the Excel workbook fi le, your work items
won’t be synchronized to Team Foundation Server until you publish them. Similarly, you won’t see
any changes that have occurred in Team Foundation Server until you click the Refresh button in the
Team tab.

NOTE In order to access the Publish button from the Team tab, your cursor
will need to be within a cell that is a part of your work item grid. Otherwise, the
Publish button will be disabled.

You will receive an error message if the values you entered for work items in Excel do not conform
to the validation rules or state transition workfl ow for the work item type. At this point, you can
even view the offending work items using the same form view you are familiar with from
Visual Studio.

NOTE Excel is a useful tool for making bulk edits of work items, for quickly
importing several work items between team projects, or for people who just pre-
fer working with Excel over Visual Studio. You can read more about using Excel
as a work item client at http://aka.ms/TFSExcel2013.

http://aka.ms/TFSExcel2013

Managing Work Items ❘ 329

c12.indd 04/22/2014 Page 329

Using Microsoft Project
Microsoft Project is one of the most popular project management tools in the world and supports
integration with Team Foundation Server. If you have installed Team Explorer 2013 on a machine
with Microsoft Project Professional (2007, 2010, or 2013) or Standard, you will have a Team menu
that allows you to interface with Team Foundation Server 2013.

As with Excel, you can either start with a query in Team Explorer (and choose Open in Microsoft
Offi ce ➪ Open Query in Microsoft Project), or you can open Project and use the Team menu to
access a query of work items from Team Foundation Server. Figure 12-10 shows work items being
managed by Microsoft Project.

FIGURE 12-10: Work items in Project

Project will also display work items according to their parent/child relationships. A major benefi t of
using Project to view your work items is that it’s easy to visualize dependency relationships
(successor/predecessor) using the built-in Gantt chart visualization that Project is popular for. In
Figure 12-10, it’s easy to see that some work items have dependencies on others, which can be help-
ful for teams deciding how to prioritize their work.

Like Excel, changes to work items that you make within Project are not synchronized to Team
Foundation Server until you click Publish from the Team menu.

NOTE You can learn more about using Project for managing work items at
http://aka.ms/TFSProject2013.

Using Team Web Access
Team Web Access provides yet another way of managing your work items. You learned about how
to connect to Team Web Access in Chapter 4. Team Web Access provides a rich, web-based way of

http://aka.ms/TFSProject2013

330 ❘ CHAPTER 12 INTRODUCING WORK ITEM TRACKING

c12.indd 04/22/2014 Page 330

accessing Team Foundation Server. An obvious benefi t of Team Web Access is that users do not need
to have any software other than a web browser. Figure 12-11 shows Team Web Access being used to
manage work items.

FIGURE 12-11: Team Web Access

Team Web Access provides a surprising number of features for a web-based client. You can edit
queries, manipulate work items, manage tasks with the task board, manage security, and manage
team members.

Team Web Access makes an ideal work item client for users who don’t have Team Explorer installed.
Some organizations even encourage end users to fi le bugs and enhancement requests about their
software using Team Web Access.

NOTE You can read more about using Team Web Access as a work item client
at http://aka.ms/TFSWebAccess2013.

http://aka.ms/TFSWebAccess2013

Managing Work Items ❘ 331

c12.indd 04/22/2014 Page 331

NOTE If you are interested in using Team Web Access as a way for end users to
fi le and track bugs and enhancement requests, you should consider the Limited
Access or Work Item Only View version of Team Web Access. When users con-
nect to Team Foundation Server using the Limited Access View, they do not
need to have a client access license (CAL) for Team Foundation Server. For more
details on enabling Limited Access View for your end users, see http://aka
.ms/TFSWIOV.

Using Third-Party Tools
In addition to the tools mentioned previously, several third-party tools are available that integrate
with Team Foundation Server 2013 and make use of work items. The following sections examine
just a small sampling of the many tools that integrate with Team Foundation Server 2013.

AIT Tools Suite
The folks at AIT GmbH & Co. in Germany have created a number of free add-ons to the Team
Foundation Server system. They include tools to check dependencies between branches of code,
generate documentation and change logs during your build, and allow you to use Microsoft Word to
edit work items.

AIT WordToTFS is an add-in to Microsoft Word that allows the user the ability to create, modify,
and delete work items. You can import work items directly into a Word document or refresh exist-
ing work items from the data stored in Team Foundation Server. Once you have fi nished making
changes to the work items, you can publish those changes back to Team Foundation Server so that
the rest of your team can see them.

You can download the AIT Tools Suite programs for free at http://tinyurl.com/
AITToolsSuite.

TeamCompanion
TeamCompanion (by Ekobit) is an add-in to Microsoft Outlook that provides most of the same
functionality as Team Explorer but from within a tool that you probably always have open. This
is an excellent UI for those team members who live in Outlook, such as project managers. From
TeamCompanion, you can create new work items from received e-mails, send work items as an
e-mail, and send the results of a query as the body of an e-mail.

TeamCompanion can also schedule queries to run at intervals and let you know something in the
query results has changed in a manner similar to Outlook’s ability to show you that you have new
e-mails. You can also view reports, manage alert subscriptions, or use the powerful work item
search capabilities.

A free trial version of TeamCompanion can be downloaded from http://teamcompanion.com.

http://aka
http://tinyurl.com
http://teamcompanion.com

332 ❘ CHAPTER 12 INTRODUCING WORK ITEM TRACKING

c12.indd 04/22/2014 Page 332

PROJECT SERVER INTEGRATION

Earlier in this chapter, you learned about how Microsoft Project can be used to create project plans
with your work items in Team Foundation Server 2013. But organizations that utilize Project Server
may also be interested in the capability of Team Foundation Server 2013 to integrate with their
Project Server 2007, 2010, or 2013 deployments.

This integration allows planning and status information from your development team, using
Team Foundation Server, to fl ow through to your project management offi ce, using Project Server.
This enables the software development team to use a single tool—Team Foundation Server—for
 managing their work while allowing Project Server users to easily report on and participate in
 project management activities from those same projects. Project Server Integration is discussed in
detail in Chapter 16.

SUMMA RY

In this chapter, you learned about the project management capabilities of Team Foundation Server
2013, with a focus on work item tracking. You fi rst learned about some of the major features related
to project management that have been improved or introduced in this release. You were introduced
to work items, including the key components that make up work item types. You discovered the
importance of process templates, which include predefi ned work item types, and you read overviews
of several of the most popular process templates available for use with Team Foundation Server
2013. Finally, you were introduced to a variety of ways that you can manage your work items with
Team Foundation Server 2013, including from within Visual Studio, Excel, Project, and through
integration with Project Server.

In Chapter 13, you will learn about how work items and process templates are defi ned, and how you
can customize them to best suit the needs of your team.

c13.indd 04/23/2014 Page 333

Customizing Process Templates
WHAT’S IN THIS CHAPTER?

 ➤ Understanding the artifacts contained in a process template

 ➤ Using the Process Template Editor

 ➤ Learning about custom work item controls

 ➤ Deploying custom work item controls to client machines

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/go/
proftfs2013 on the Download Code tab. The code is in the Chapter 13 download and
individually named according to the names throughout the chapter.

Although Team Foundation Server contains several great out-of-the-box process templates,
and several quality third-party process templates exist in the supporting ecosystem, you may
fi nd the need to customize the process template in a multitude of different ways. Tools are
available for editing the artifacts necessary for customizing a team project’s process template.

This chapter introduces you to these tools and the different types of customizations available.
You will also learn how to easily deploy changes to work item type defi nitions through the use
of the automated build system in Team Foundation Server.

It is important to note that customizable process templates are currently enabled only for the
on-premises Team Foundation Server product and not for the hosted Visual Studio Online
offering at the time of this writing. It may be something that is enabled in the future but
until then, customers using the Visual Studio Online are not able to customize their process
templates.

13

http://www.wrox.com/go

334 ❘ CHAPTER 13 CUSTOMIZING PROCESS TEMPLATES

c13.indd 04/23/2014 Page 334

ANATOMY OF A PROCESS TEMPLATE

Process templates are built around the concept that a process should enable you, rather than hinder
you. If you implement too little of a process, you must expend signifi cant effort to stay on track.
The inroads you make on a project will fully depend on the organizational skills of your team. The
infrastructure will not support or enforce your process. Too much process inhibits productivity and
velocity.

Process templates in Team Foundation Server provide a way to introduce the process to the entire
team without getting in the way. When you create a new team project, process templates are used
to set up the work items, work item queries, agile tools settings and preferences, shared document
libraries, dashboards, reports, and more. A process template is a collection of fi les, including XML
fi les, documents, and reports.

Before you start exploring the contents of a process template, you might want to download an
existing one by going to the Process Template Manager. From the Team Explorer home hub, you
can choose the Settings link to take you to the Settings page where you will see a Process Template
Manager link in the Team Project Collection page section, as shown in Figure 13-1.

FIGURE 13-1: Downloading a process template

Next, you select a process template, click the Download button, and then choose the location where
you want to save the process template fi les. Figure 13-2 shows the Process Template Manager
dialog box.

Plug-In Files
Plug-in fi les are artifacts essential to the New Team Project Wizard. Each plug-in fi le defi nes the
tasks that will end up running during the wizard. The displayed screens used for gathering informa-
tion during the wizard are also defi ned in the plug-in fi les.

Anatomy of a Process Template ❘ 335

c13.indd 04/23/2014 Page 335

Each plug-in reads the list of tasks and dependencies and creates an automation sequence that will
run during the team project creation wizard experience.

FIGURE 13-2: Process Template Manager dialog box

Table 13-1 lists each of the plug-in folders, plug-in fi les, and a description of what each fi le contains.
Figure 13-3 also shows the directory layout inside a process template where each of the confi gura-
tion fi les is stored.

FIGURE 13-3: Directories in a process template

336 ❘ CHAPTER 13 CUSTOMIZING PROCESS TEMPLATES

c13.indd 04/23/2014 Page 336

TABLE 13-1: Process Template Plug-In Files

FOLDER PLUG-IN FILE DESCRIPTION

Build Build.xml Defi nes the tasks to confi gure the initial secu-
rity permissions assigned to identities for Team
Foundation Server Build, and it uploads the build
process template fi les.

Classifi cation Classifi cation.xml Defi nes the initial iterations and areas of a team
project

Groups and
Permissions

GroupsandPermissions
.xml

Defi nes the initial security groups of a team project
and their permissions

Lab Lab.xml Defi nes the tasks to confi gure the initial security
permissions assigned to identities for Visual Studio
Lab Management

Reports ReportsTasks.xml Defi nes the initial reports for a team project and
sets up the report site.

Test
Management

TestManagement.xml Defi nes the test management fi les to upload,
which will create the initial test variables, confi gu-
rations, settings, and resolution states of a team
project. These settings are used by Microsoft Test
Manager.

Version
Control

VersionControl.xml Defi nes the initial security permissions for version
control, check-in notes for a team project, and
whether exclusive check-out is required

Windows
SharePoint
Services

WssTasks.xml Defi nes the project portal for the team based on
a template for a SharePoint site; also defi nes tem-
plate fi les and process guidance

WorkItem
Tracking

WorkItems.xml Defi nes the initial work item types, queries, and
work item instances of a team project. This plug-in
also defi nes the settings to use for the agile-based
planning tools in Team Web Access.

Source: MSDN Library (http://aka.ms/ProcessTemplatePlugIns)

Default Security Groups and Permissions
Each team project can contain security groups, and each has a set of permissions scoped to the
team project level. The process template can create default team project security groups that can

http://aka.ms/ProcessTemplatePlugIns

Anatomy of a Process Template ❘ 337

c13.indd 04/23/2014 Page 337

be used for setting permissions in each of the other plug-ins for the team project, as well as which
 permissions should be initially granted or denied for those security groups. For example, the
Microsoft Visual Studio Scrum 2013 process template defi nes the following default team project
security groups:

 ➤ Readers

 ➤ Contributors

 ➤ Build Administrators

NOTE Additionally, the Team Project Creation Wizard will create a security
group called Project Administrators that will be granted all permissions. You do
not have to defi ne the group in the process template to be created.

Figure 13-4 shows an example of what the Visual Studio Scrum 2013 process template defi nes for
the default security groups.

FIGURE 13-4: Default security group defi nitions for the Visual Studio Scrum process template

338 ❘ CHAPTER 13 CUSTOMIZING PROCESS TEMPLATES

c13.indd 04/23/2014 Page 338

NOTE Chapter 24 provides more information about managing security privi-
leges and permissions.

Initial Area and Iteration Nodes
If there will be standard area path and iteration path
nodes that should be available for each new team project,
you can defi ne those initial nodes in the process template.
Figure 13-5 shows the default iteration nodes created
when using the Visual Studio Scrum process template.

Work Item Type Defi nitions
Work item type defi nitions are the fi les that contain
information about which states, transitions, fi elds, and
form layouts exist on a particular work item type. Work item type defi nition fi les are by far the most
commonly customized artifacts in a process template. The process template’s main work items fi le
lists each of the work item type defi nitions that should be included, as well as the location of the
individual work item type defi nition fi les, as shown in Figure 13-6.

FIGURE 13-6: Work item type defi nitions to be included and the location of fi les

NOTE Chapter 12 provides more information about the default work item types
available in the standard process templates.

FIGURE 13-5: Default iteration nodes

Anatomy of a Process Template ❘ 339

c13.indd 04/23/2014 Page 339

Work Item Fields
One of the defi ning parts of the work item type defi nition is the list of fi elds contained for that work
item type. Each fi eld can have the attributes shown in Table 13-2 that defi ne it.

TABLE 13-2: Field Attributes

FIELD DESCRIPTION

Name This is the friendly name used for the work item query. Each fi eld in a team project
collection must contain a unique name.

Field Type This attribute defi nes the type of data that will be stored in the fi eld. Among all
of the types available, the following types are commonly used: String, Integer,
Double, DateTime, PlainText, and Html. The correct type should be chosen,
because it cannot be changed after the fi eld is created in the team project
collection.

Reference
Name

This attribute defi nes a longer name for use in organizing multiple fi elds.
Each fi eld in a work item type defi nition must contain a unique reference name.
You will probably want to distinguish your company’s custom fi elds by prefacing
the reference name with your company name (for example, Contoso
.MyNewCustomField).

Help Text This describes the fi eld’s purpose to the end user. The help text is displayed
whenever hovering over a fi eld’s label on the work item forms.

Reportable This attribute indicates how the fi eld will be handled when the data warehouse
jobs process it. The possible values for this attribute are None, Dimension, Detail,
and Measure. For example, the number of hours remaining for a task would be
defi ned as a measure, but the task’s priority and to whom it is assigned would be
defi ned as dimensions. Fields marked as a Detail do not show up in the Analysis
Services warehouse cube, but they do show up in the relational data warehouse.

Formula If the value for the Reportable attribute is Measure, the Formula attribute
identifi es how the warehouse will aggregate the values for the fi eld. In most cases,
you should use Sum.

Reportable
Reference
Name

By default, the name used for the data warehouse is the reference name.
However, if fi elds in multiple team project collections must have a different
reference name, but still be reported as the same fi eld, this attribute can be defi ned.
The reportable reference name should be unique for each team project collection.

Reportable
Name

In addition to the reportable reference name, a friendly reportable name is offered
as well. It is similar to the name of the fi eld and is used in the warehouse.

Sync Name
Changes

If you have a fi eld meant to store a value for a user account/person and this
attribute is set to true, Team Foundation Server will update the contents of the
fi eld as changes are made to the display names in Active Directory, User Profi les,
and so on.

340 ❘ CHAPTER 13 CUSTOMIZING PROCESS TEMPLATES

c13.indd 04/23/2014 Page 340

WARNING You must be careful not to create too many fi elds, but, rather, reuse
them across work item types, team projects, and team project collections as nec-
essary. By reusing the same reference names (or reportable names if different) for
fi elds, you also benefi t from being able to report the same data across team proj-
ects and team project collections, even if they are using different process tem-
plate types. You can even create work item queries that use the same fi eld across
multiple team projects for showing up as a column in the query results.

The maximum number of fi elds for all work item types in a team project col-
lection is approximately 1,000. Additionally, approximately 1,000 reportable
fi elds can be defi ned across all team project collections for one Team Foundation
Server instance. These maximums happen to correspond to the number of col-
umns that can be created in a SQL Server table, less some overhead used by
Team Foundation Server.

Work item fi elds can also contain rules applied to the fi eld at run time. Multiple rules can be speci-
fi ed to be applied for a single fi eld. Table 13-3 shows some examples of common fi eld rules that can
be used.

TABLE 13-3: Field Rule Examples

RULE DESCRIPTION

DEFAULT This rule allows for a value to be specifi ed as the default value for a
fi eld. This can be the current date/time, user information, another
fi eld’s value, or a specifi ed literal value.

ALLOWEDVALUES This rule indicates a list of values allowed for this fi eld. This can be a list
of literal values or an entry for a global list. For example, you might want
to constrain the values of a Priority fi eld to the integers 1 through 4.

REQUIRED This rule indicates that the fi eld is required to contain a value.

VALIDUSER This rule indicates that the value of the fi eld must contain the name of
a valid user who has permissions to access Team Foundation Server.

SERVERDEFAULT This rule is particularly useful in states and transitions whenever the
current user, or the current date and time, should be stored in a
particular fi eld.

COPY This rule can be used to copy a value from another fi eld, date/time
from the clock, current user information, or from a specifi ed literal
value.

READONLY This indicates that that fi eld cannot be edited.

ALLOWEXISTINGVALUE This rule allows for an existing value to still be valid even if it is
removed as an allowed value in the future. This applies as long as the
fi eld does not change values.

Anatomy of a Process Template ❘ 341

c13.indd 04/23/2014 Page 341

Several rules have optional for and not attributes that can be specifi ed to indicate whether that rule
applies to a security group (for attribute) or does not apply to the security group (not attribute). For
example, a REQUIRED rule can be added to a fi eld for the Contributors security group by specifying
the group in the for attribute, but the Project Administrators security group can be excluded by
specifying the group in the not attribute.

NOTE More information about the available work item rules can be found in
the MSDN documentation article titled “Working with Field Rules” at http://
aka.ms/WITFieldRules.

Work Item States and Transitions
Work items can be classifi ed in different states, and a workfl ow between those states can be defi ned
using transitions. Each transition can contain a reason for the transition. For example, a bug can be in
the state of Active, and then transitioned to the Resolved state with a reason of Fixed, Duplicate, As
Designed, Cannot Reproduce, Deferred, and so on. The combination of state and reason can be used
for reporting and for work item queries to further distinguish between work items in the same state.

Each work item can have only one initial transition that can contain multiple reasons. Figure
13-7 shows the states and transitions for the Bug work item type in the MSF for Agile Software
Development 2013 process template. Figure 13-7 also shows the available reasons for the transition
between the Active and Resolved states.

FIGURE 13-7: States and transitions for the Bug work item type

http://aka.ms/WITFieldRules
http://aka.ms/WITFieldRules

342 ❘ CHAPTER 13 CUSTOMIZING PROCESS TEMPLATES

c13.indd 04/23/2014 Page 342

Rules for States and Transitions
Previously in this chapter, you learned that rules can be applied to fi elds globally for the work item
type. Rules can also be applied at the state level or at a particular transition or reason. A combina-
tion of all the rules is applied based on the rules defi ned at the fi eld, state, transition, and reason
scopes. Figure 13-8 shows the different fi eld rules specifi ed for the Microsoft.VSTS.Common
.ResolvedBy fi eld on the transition between the Active and Resolved states.

FIGURE 13-8: Different fi eld rules

You can also restrict certain transitions using the same for and not attributes used for certain
fi eld rules. Figure 13-9 shows those attributes being specifi ed for transition between the Active
and Resolved states. As an example in this fi gure, you are allowing those in the Contributors
security group to move the work item from the Active state to the Resolved state, but members
of the Readers security group can never make this transition, even if they are a member of the
Contributors security group.

FIGURE 13-9: Attributes being specifi ed for transition

Anatomy of a Process Template ❘ 343

c13.indd 04/23/2014 Page 343

Work Item Form Layouts
Once all of the fi elds and the workfl ow of states and transitions have been defi ned, you can specify
what the work item form will look like when it is opened in any of the Team Foundation Server
client tools. The layout is specifi ed by using a set of items. Figure 13-10 shows a partial example of
a layout for the Bug work item type in the MSF for Agile Software Development process template.

FIGURE 13-10: Layout for the Bug work item type

Following are the items that can be used on the form:

 ➤ Group—This container can include one or more columns, and optionally it can specify a dis-
play name for the container.

 ➤ Column—A column is contained within a group, and it can be either a fi xed width, or have a
percentage-based width relative to the other columns in the same group.

 ➤ Control—This item can be added to other container units, and it allows the presentation of a
work item control that can edit a fi eld or display other information.

 ➤ Tab Group—This container begins a new grouping of tab pages.

 ➤ Tab Page—This container stores all of the items that would exist inside a particular named
tab.

344 ❘ CHAPTER 13 CUSTOMIZING PROCESS TEMPLATES

c13.indd 04/23/2014 Page 344

CONSIDERATIONS FOR DIFFERENT CLIENT LAYOUTS

Work item type defi nitions can actually specify multiple layout sections that target
specifi c clients. For example, you might specify a particular layout when a work
item is opened in Visual Studio Team Web Access, versus one displayed for the
Visual Studio Team Explorer client. Following are the available work item form
layout values:

 ➤ WinForms—This layout target is used in the Visual Studio Team Explorer cli-
ent, and additionally in Microsoft Test Manager.

 ➤ Web—This layout target is used by Visual Studio Team Web Access.

 ➤ JavaSWT—This layout target is used by Visual Studio Team Explorer
Everywhere, which displays within Eclipse-based products.

 ➤ Unspecifi ed—If no other display targets are specifi ed, clients can ultimately fall
back to using the Unspecifi ed layout.

The current version of the Process Template editor available in the Team
Foundation Server 2013 Power Tools does not support editing multiple work item
form layouts. If you choose to use multiple work item form layouts, you must use
the XML editing approach described later in this chapter.

Standard Work Item Controls
Several standard work item controls are available for displaying and editing fi elds in the form layout.
Table 13-4 describes each of the available standard work item controls.

TABLE 13-4: Standard Work Item Form Controls

CONTROL DESCRIPTION

Field Used for standard fi eld editing and can accommodate many of the different fi eld
types without any special editing features

Date Time Has special editing features available for date/time fi elds. For example, this con-
trol can be used to provide a standard calendar control that the user can use to
edit a fi eld.

HTML Field Allows an end user to edit with rich text for HTML fi elds. A new rich editing tool-
bar is displayed immediately above the control to allow the end user to easily
reach the commonly used rich editing options available for an HTML fi eld.

Links Does not specify a particular fi eld to edit, but instead allows a user to edit the dif-
ferent links of multiple link types currently set on a work item. The control addi-
tionally has fi lter options to fi lter certain types of work item link types, work item
types, and external link types from showing in an instance of the links control.

Anatomy of a Process Template ❘ 345

c13.indd 04/23/2014 Page 345

Attachments Provides the end user with the ability to manage the fi le attachments on a work
item. However, it does not modify a particular work item fi eld.

Work Item
Classifi cation

Used only for editing the Area Path and Iteration Path fi elds and displays the
available nodes in a tree control

Work Item
Log

Shows a view of the historical revisions for a work item, including the comments
for each of the revisions. Additionally, end users can specify a rich-text comment
to be stored with a particular revision of the work item as soon as the end user
saves the work item changes.

Label Allows for a label to be specifi ed on the work item form. The label can specify
a plain-text value and include a link to a static URL or a dynamic-based link that
uses several supported macros, such as @ReportServicesSiteUrl,
@ReportManagerUrl, @PortalPage, @ProcessGuidance, and @Me.

Webpage Can display literal HTML data, or point to a static or dynamic-based URL that can
also use any of the support macros mentioned on the label control. Additionally,
the UrlPath attribute can contain string parameters (similar to when using format
strings in the .NET method String.Format()) and specify another fi eld’s value for
use as the parameter to the dynamic URL.

Associated
Automation

Used on the Test Case work item type to display and/or edit the associated auto-
mation for the Test Case work item

Test Steps Used on the Test Case work item type to show and/or edit the test steps for the
Test Case work item

Source: MSDN Library (http://aka.ms/WorkItemFormControls)

Work Item Categories
Team Foundation Server 2010 introduced a new work item tracking feature called work item
categories. This feature allows for work item types with different names in different team projects to
be used in external tools, in reporting, and in work item queries. For example, one team project may
have a work item type with the name of “Bug” where another has a work item type called “Defect”
that need to appear together in metrics on reports that pull data from both team projects.

Microsoft Test Manager is one example of an external tool that uses the work item categories to
create and select work items based on their categories. Multiple work item types can be included in a
work item category, and one is identifi ed as the default work item type for the individual category.

Figure 13-11 shows the default work item categories specifi ed in the Visual Studio Scrum 2013 pro-
cess template.

http://aka.ms/WorkItemFormControls

346 ❘ CHAPTER 13 CUSTOMIZING PROCESS TEMPLATES

c13.indd 04/23/2014 Page 346

FIGURE 13-11: Default work item categories for Visual Studio Scrum 2013 process template

The Hidden Types Category is unique in that it specifi es the set of work item types that you do
not want users to create manually. By default, the feedback and code review work item types are
included in this category because of tools specially made for those user experiences. Each of the dif-
ferent user interfaces then no longer exposes the work item types included in this category in the
lists of available work item types to use for creating a new work item.

Team Foundation Server 2013 introduced a new Features Category in its process templates. Work
items belonging to this category represent high-level goals in the project portfolio. They will be
shown at a high level in the Web Access UI and can be useful for managing groups of backlog items.

Work Item Link Types
Team Foundation Server 2010 introduced the concept of rich link types, which can be used through-
out Team Foundation Server for reporting and querying work items. These rich link types truly
allow full traceability between work items stored in Team Foundation Server. Each link type can
have a specifi c topology and also have a different name that describes each end of the link.

Table 13-5 shows the available standard defi ned link types.

Anatomy of a Process Template ❘ 347

c13.indd 04/23/2014 Page 347

TABLE 13-5: Standard Defi ned Link Types

FORWARD

NAME

REVERSE NAME LINK TYPE REFERENCE NAME TOPOLOGY

Successor Predecessor System.LinkTypes.Dependency Dependency

Child Parent System.LinkTypes.Hierarchy Tree

Related Related System.LinkTypes.Related Network

Tested By Tests Microsoft.VSTS.Common.TestedBy Dependency

Test Case Shared Steps Microsoft.VSTS.TestCase
.SharedStepReferencedBy

Dependency

Source: MSDN Library (http://aka.ms/WITLinkTypes)

You can also create custom link types for your own purposes in customized process templates.
Following are the different types of link topologies available in Team Foundation Server:

 ➤ Network—Link types of this topology have essentially no rules and no directionality. You
can have circular relationships, and the link looks the same from both ends. Figure 13-12
shows the network topology.

FIGURE 13-12: Network topology

 ➤ Directed Network—Link types of this topology are network links, except that there is
directionality. You can specify a name that appears at each link end. In other words, the
link looks different depending on which side you view it. Figure 13-13 shows the directed
 network topology.

http://aka.ms/WITLinkTypes

348 ❘ CHAPTER 13 CUSTOMIZING PROCESS TEMPLATES

c13.indd 04/23/2014 Page 348

FIGURE 13-13: Directed network topology

 ➤ Dependency—Link types of this topology are like directed network links in that they have
directionality, but they also have an additional constraint to prevent circular relationships.
Figure 13-14 shows the dependency topology.

FIGURE 13-14: Dependency topology

 ➤ Tree—Link types of this topology are essentially trees that enforce a one-to-many relation-
ship and do not allow circular relationships. Figure 13-15 shows the tree topology.

FIGURE 13-15: Tree topology

Anatomy of a Process Template ❘ 349

c13.indd 04/23/2014 Page 349

Global Lists
Global lists are available at the team project collection level to allow for managing common lists
used in the work item tracking system. For example, a company might have a list of departments
that it would like to use in multiple work item types across several team projects. The company can
specify an ALLOWEDVALUES fi eld rule that includes only the values listed in the global list created for
the departments. Anytime the list must be updated, the global list can be edited, and this does not
involve deploying new work item type defi nitions to each of the team projects.

Global Workfl ows and Fields
Team Foundation Server 2010 Service Pack 1 introduced a new concept to manage global fi elds
and workfl ows. Global fi elds and workfl ows were primarily added to support the Project Server
Integration feature released to synchronize changes between Team Foundation Server and Project
Server.

You can also take advantage of this new concept natively in Team Foundation Server 2013.
Essentially, by defi ning a global workfl ow for a team project collection or specifi c team project, you
are defi ning which fi elds should exist on all work item types across all of the team projects, or for
the specifi ed team project. Additionally, you can defi ne global lists in the global workfl ow defi nition.

NOTE You can fi nd more information about global workfl ows in the MSDN
documentation article at http://aka.ms/WITGlobalWorkflows.

Initial Work Items
The process template can also contain a list of work items that will be initialized during the team
project creation process. This is useful if each new team project should contain a certain set of
startup work items to kickstart the team project. By default, the standard out-of-the-box process
templates no longer defi ne any default work items.

Work Item Queries and Folders
Certain work item queries and their organizational folder structure should be defi ned for a
new team project in the process template. The standard work item queries should be included.
Additionally, the default security and privileges for the work item query folders can be specifi ed.

Figure 13-16 shows the default work item queries and query folders specifi ed in the MSF for Agile
Software Development process template.

Microsoft Project Column Mappings
The Microsoft Project column mappings fi le correlates work item fi elds to fi elds defi ned in a
Microsoft Project fi le. Figure 13-17 shows the default Project column mappings defi ned in the MSF
for Agile Software Development process template. This is not the same as the mappings used for

http://aka.ms/WITGlobalWorkflows

350 ❘ CHAPTER 13 CUSTOMIZING PROCESS TEMPLATES

c13.indd 04/23/2014 Page 350

fi elds in a Project Server integration implementation. These mappings are used only if you want to
open work items or a work item query directly in the Microsoft Project client when it is not con-
nected to a Project Server.

FIGURE 13-16: Default work item queries and query folders

FIGURE 13-17: Default Project fi le column mappings

Anatomy of a Process Template ❘ 351

c13.indd 04/23/2014 Page 351

Each mapping can additionally specify an IfSummaryRefreshOnly optional attribute, which indi-
cates that if a Project task is a summary task it will never publish its value back to Team Foundation
Server, but it will allow new values in Team Foundation Server to overwrite the value in the Project
fi le. This is particularly useful for calculated fi elds in Project that should not be pushed back into
Team Foundation Server.

NOTE More information about customizing the Microsoft Project fi eld
mappings fi les can be found in the MSDN Library at http://aka.ms/
WITProjectClientMappings.

Version Control Permissions and Settings
The process template can also include the settings and permissions on the version control repository
of the team project created during the team project creation wizard. For example, the “Enable mul-
tiple check-out” setting, “Enable get latest version on check-out” setting, and required “Check-in
notes” can be provided. Permissions for each group can also be specifi ed.

Figure 13-18 shows the default permissions available to the Contributors security group in the
MSF for Agile Software Development process template.

FIGURE 13-18: Default permissions

http://aka.ms

352 ❘ CHAPTER 13 CUSTOMIZING PROCESS TEMPLATES

c13.indd 04/23/2014 Page 352

SharePoint Project Team Portal Document Library Settings
If a SharePoint team project portal is created during the team project creation wizard, then the
initial content for the document libraries in that new SharePoint site can be specifi ed in the process
template. Additionally, the process guidance documents for the process template are specifi ed.

Figure 13-19 shows the default document libraries, folder structure, and some of the documents
available after a team project is created using the MSF for Agile Software Development process
template.

FIGURE 13-19: Default document libraries, folder structure, and some of the available documents

WARNING You cannot customize the Microsoft Excel reports and SharePoint
dashboards by customizing the process template fi les. These artifacts are created
for a team project depending on the selection you make in the New Team Project
Wizard.

Using the Process Template Editor ❘ 353

c13.indd 04/23/2014 Page 353

SQL Reporting Services Report Defi nitions
The initial folder structure and reports in the related Reports site can also be specifi ed in the pro-
cess template. Figure 13-20 shows the list of each of the folders and SQL Reporting Services report
defi nition fi les that will be uploaded to the Reports Manager site during the team project creation
wizard for the MSF for Agile Software Development process template.

FIGURE 13-20: Folders and SQL Reporting Services report defi nition fi les

USING THE PROCESS TEMPLATE EDITOR

Instead of editing each XML fi le by hand, you can use the Process Template Editor included with
the latest version of the Team Foundation Server Power Tools. The Process Template Editor com-
prises a set of tools integrated into Visual Studio Team Explorer that allow you to edit work item
type defi nitions and process template defi nition fi les, export/import work item type defi nitions, and
create/modify global lists, and it includes a work item fi eld explorer to view details about the fi elds
included in a team project collection.

Installing the Process Template Editor
The Team Foundation Server Power Tools installer is available from the Visual Studio Gallery and is
updated regularly.

The quickest way to fi nd the latest download for the Power Tools installer is to go to your pre-
ferred search engine and use the search term “Team Foundation Server Power Tools.” Currently,
a list of all the Power Tools for the entire Visual Studio product line is listed at http://aka.ms/
TFPowerTools.

http://aka.ms

354 ❘ CHAPTER 13 CUSTOMIZING PROCESS TEMPLATES

c13.indd 04/23/2014 Page 354

Before you begin installing the Power Tools, be sure to have all instances of Visual Studio com-
pletely closed because the installer will be setting up and confi guring several Visual Studio add-ins.

NOTE Always be sure that you are using the latest version of the Team
Foundation Server Power Tools. The Team Foundation Server product team at
Microsoft continually improves the Power Tools with bug fi xes and new fea-
tures. Traditionally, a new version of the Power Tools has been released every
three to six months.

Working with a Process Template
Instead of editing work item type defi nitions directly on the server (which is an option), it is a best
practice to download the process template, store it in version control, and then edit it offl ine. When
the changes you have made are ready and tested in a test environment, you can then deploy those
updates to your production Team Foundation Server team project collection(s).

NOTE Chapter 11 provides more information about storing process templates
and managing other Team Foundation Server artifacts in the version control
repository.

Whenever you have the process template stored in an offl ine location, you can open the
ProcessTemplate.xml fi le contained in the root folder for a process template, and the Process
Template Editor window will display in Visual Studio. Figure 13-21 shows the root Process
Template Editor window when opening the Visual Studio Scrum process template.

From the root window, you can edit all of the individual parts of the process template easily. For
example, you can edit the work item type defi nitions by navigating to the Process Template ➪ Work
Item Tracking ➪ Type Defi nitions node. Then select a work item type and click the Edit button.
Many of these different parts were shown in earlier fi gures for this chapter in each heading that
discussed the process template artifact types.

NOTE If you are interested in learning more about using the Process
Template Editor, you can read through the help documentation included in
the Team Foundation Server Power Tools installer. For 64-bit operating
systems, the default location for the help documentation is
C:\Program Files (x86)\Microsoft Team Foundation Server 2013
Power Tools\Help\ProcessEditor.mht.

Using the Process Template Editor ❘ 355

c13.indd 04/23/2014 Page 355

FIGURE 13-21: Process Template Editor window

Using an XML Editor and WITAdmin
An alternate approach for managing process template and work item type defi nitions is to edit the
XML fi les with your preferred XML fi le editor, and then use the command-line tools to export and
import the work item type defi nitions. The XML schema is completely documented in the MSDN
Library and is available in the following locations:

 ➤ Process Template Schema Reference—http://aka.ms/ProcessTemplateSchema

 ➤ Work Item Type Defi nition Schema Reference—http://aka.ms/WITSchema

The command-line tool named witadmin.exe is actually a tool installed whenever you install
Visual Studio Team Explorer (or another Visual Studio 2013 product). From a Developer Command
Prompt (and with the appropriate server permissions), you can perform several administrative func-
tions to manage the work item tracking system.

Table 13-6 shows a few of the available commands, but you can always discover the full list by
executing witadmin.exe /? at a Visual Studio command prompt window.

http://aka.ms/ProcessTemplateSchema
http://aka.ms/WITSchema

356 ❘ CHAPTER 13 CUSTOMIZING PROCESS TEMPLATES

c13.indd 04/23/2014 Page 356

TABLE 13-6: Sample Commands for witadmin.exe

COMMAND DESCRIPTION

Listfi elds Particularly useful when you need a list of all of the fi elds in a team
project collection and their details. Each of the entries will even list all
of the work item types and team projects that the fi eld is being used
by. When used with the /unused switch, you can also get a list of fi elds
that exist in the team project collection that are completely unused.

Changefi eld Allows you to update certain attributes for an existing fi eld after it has
been created. For example, you can update any of the name attributes,
but you will notice that not all attributes can be changed. An example
of this is the work item type fi eld. You are mostly not able to change
the work item type unless it is between HTML and PlainText.

Deletefi eld Will completely remove a fi eld once it is unused by any work item type
in any team project in the team project collection. It will also remove
the fi eld from the warehouse during the next warehouse processing
cycle if this was the last team project collection using the specifi ed fi eld
to be deleted.

Listwitd Helpful for listing the work item types available in a team project

Renamewitd Allows you to rename an existing work item type even if there are
already work items of that type created in a team project. For example,
you may decide to rename the Requirement work item type to User
Story or Feature at some point in the future.

destroywi, destroywitd Allows you to completely destroy a particular work item or a work item
type, and all its existing work items, in a team project. The data is not
destroyed in the warehouse and will remain until a full rebuild occurs.

exportwitd, importwitd Allows for exporting and importing work item type defi nitions from a
team project. If a work item type currently exists, it will be replaced
with the new work item type defi nition. Existing work items will use the
new defi nition after it is imported.

Listlinktypes Lists the available set of link types in a team project collection

exportlinktype,
importlinktype

Allows for exporting and importing new link types for the team project
collection. If the link type already exists, it will be updated.

exportcategories,
importcategories

Allows for exporting and importing new work item category defi nitions
for a specifi c team project. If the work item category already exists, it
will be updated.

exportgloballist,
importgloballist,
destroygloballist

Allows for exporting, importing, and destroying global list defi nitions
for a team project collection, respectively. If a global list has the same
name, it will be replaced with the newly imported global list defi nition.

Deploying Updates to Process Templates ❘ 357

c13.indd 04/23/2014 Page 357

exportprocessconfi g,
importprocessconfi g

Allows you to customize several process confi guration elements to
meet your Agile planning and Scrum processes. Many of these ele-
ments control the interactive tools and visual displays provided in Team
Web Access. This can also be useful when using the MSF CMMI and
third-party process templates to confi gure the agile planning tools
appropriately.

exportglobalworkfl ow,
importglobalworkfl ow

Allows you to export or import the global workfl ow defi nitions, which
allows you to share defi nitions of fi elds and list items among multiple
types of work items, as previously discussed in this chapter

DEPLOYING UPDATES TO PROCESS TEMPLATES

Now that you have a grasp of how to fully customize your process template, you can use that new
process template in several ways. You can deploy your process template in one of two scenarios:

 ➤ Updating individual components of an existing team project

 ➤ Using it in the team project creation wizard for new team projects

Uploading Process Templates in Team Foundation Server
To allow project collection administrators to create a new team project using the customized process
template, you must add the process template to the available process templates for the team project
collection. You can manage the available process templates by using the Process Template Manager
window described earlier in this chapter (and shown in Figures 13-1 and 13-2).

You will notice that an Upload button is available. During the upload process, the process template
will be validated for compliance, and any errors encountered during validation will be displayed in a
message box. If the upload button is not enabled, you are likely connected to a hosted Visual Studio
Online instance. Because Visual Studio Online does not currently support customized process tem-
plates, the Upload button will be disabled.

Editing Work Items on an Existing Team Project
The most common way to deploy updates for a process template for an existing team project is
updating the work item type defi nitions. You can use the witadmin.exe importwitd command-line
tool option for importing a new defi nition for an existing work item type defi nition in a
team project.

Concerns
Updating work item type defi nitions for existing team projects can be particularly risky. You should
always ensure that you are testing your work item type defi nition updates in a test environment that

358 ❘ CHAPTER 13 CUSTOMIZING PROCESS TEMPLATES

c13.indd 04/23/2014 Page 358

includes waiting for a successful warehouse processing cycle to occur without any errors from the
updates.

Some work item type defi nition changes have minimal impact, where others might take a little more
effort to be fully implemented. For example, adding a new reportable fi eld to an existing work item
type defi nition does not impact the health of the Team Foundation Server, unless it confl icts with
a fi eld in another team project collection that has the same name, but different attributes. You will
begin seeing a problem whenever the next warehouse processing cycle begins, because the confl ict-
ing fi eld defi nitions will block further warehouse processing.

An additional scenario that has a higher impact would be changing the state name for an existing
work item type defi nition. You must handle all existing work items in the old state name. Also, there
may be existing work item queries that have used the particular state name and standard reports
that rely on the old state name, all of which must get updated.

NOTE One method you might use for changing a state name on existing work
items is to create a temporary transition from the old state name to the new state
name. You can then update the work item type defi nition with the temporary
transition. Then, move all of the work items in the old state to the new state
using that temporary transition. Remove the temporary transition, and then
upload the fi nal work item type defi nition without the old state and the tempo-
rary transition to update the team project.

When adding fi eld rules you will want to think about the impact of those changes on the existing
work items in a team project. For example, if you were to add a new REQUIRED fi eld rule, or
change the values in the ALLOWEDVALUES rule list, you could potentially use a combination of
ALLOWEXISTINGVALUE and DEFAULT fi eld rules to ensure that the existing work items are still con-
sidered valid work items. You can then update all of the existing work items using a tool such as
Microsoft Excel to bulk-edit the fi eld value in all of the existing work items.

Using an Automated Build to Deploy Work Item Type Defi nition Changes
When you are editing source code for an application, it is helpful to have regular automated builds
to compile and deploy the application for testing. Similarly, when making changes to work item type
defi nitions in version control, it is helpful to have an automatic deployment process. You can use a
customized build process template that will automatically deploy multiple work item type defi ni-
tions to multiple team projects. You can create an automatic deployment build for both Production
and Test branches that contain the process templates that would deploy to their respective Team
Foundation Server environments.

An automated deployment process for work item type defi nitions should ideally have the following
features:

 ➤ Specify multiple team projects to update.

 ➤ Specify multiple work item types to update.

Customizing Agile Tools ❘ 359

c13.indd 04/23/2014 Page 359

 ➤ Back up each of the existing work item type defi nitions currently in use.

 ➤ Copy the latest version of the work item type defi nition and backups to a build drop folder.

 ➤ Indicate errors during the deployment process in the build log.

Additionally, the following standard build features would be included because it is an automated
Team Foundation Server build:

 ➤ Build versioning

 ➤ Labeling the source code for the process template

 ➤ Getting the latest version of the process template

 ➤ Associating changesets and work items

 ➤ Gated check-in, continuous integration, scheduled, and so on

NOTE There is a work item type defi nition deployment build process template
available with instructions for use on Ed Blankenship’s blog at http://aka.ms/
DeployTFSProcessChanges. This build template was originally created for Team
Foundation Server 2010, but has been updated to support Team Foundation
Server 2012. At the time of this writing this has not been tested for Team
Foundation Server 2013, but it would serve as a great starting point.

See Chapter 18 for more information about automated builds and build process
templates.

CUSTOMIZING AGILE TOOLS

The Agile planning and developer productivity tools that you will learn more about in Chapter
14 provide several customization options for your process templates. This is nice because you can
essentially get the tools to work with even customized process templates not based on any Agile
methodology.

Here you will review a few of the top customization topics for the new common process confi gura-
tion and agile process confi guration fi les available in a process template. To read more about these
fi les, visit this MSDN article: http://aka.ms/CustomAgileProcessConfig.

Metastates and Backlogs
Team Foundation Server 2012 introduced a concept called metastates. Metastates are important
because these tools need a way of defi ning what to show in certain situations. For example, the My
Work page in Team Explorer has a section that displays available work items that a team member
can use to start working on something. However, it only really wants to display “open” work items

http://aka.ms
http://aka.ms/CustomAgileProcessConfig

360 ❘ CHAPTER 13 CUSTOMIZING PROCESS TEMPLATES

c13.indd 04/23/2014 Page 360

to team members so they are not inundated with a long list of work items. The problem though is
how to limit the work item states that are considered “open.” This is where metastates come in.

In Team Foundation Server 2013, confi guration of the metastates and agile project management
tools has been combined into a single ProcessConfiguration.xml fi le. This fi le contains the
defi ned metastates used for each work item category as well as (if appropriate for that group) the
columns that will be displayed, and fi elds included in the quick addition panel of Team Web Access.
The following is an excerpt from the defi nition of the requirement category:

<RequirementBacklog category="Microsoft.RequirementCategory"
 pluralName="Backlog items" singularName="Backlog item">
 <States>
 <State value="New" type="Proposed" />
 <State value="Approved" type="Proposed" />
 <State value="Committed" type="InProgress" />
 <State value="Done" type="Complete" />
 </States>
...
</RequirementBacklog>

You will notice that each of the states defi ned in the work item type defi nitions maps to known
metastates. There are three categories of metastates in Team Foundation Server. Table 13-7 defi nes
the available metastates for each of these categories.

TABLE 13-7: Allowed Metastates and Descriptions

STATE WORK

ITEM

TYPES

DESCRIPTION

Proposed All Indicates work items that are new, not yet committed, or not yet
being worked on. Work items in this state appear on the product
backlog page. Sample states that could fall into this metastate: New,
Proposed, Approved, and To Do.

InProgress All Indicates work items that have been committed or are actively being
worked on. Work items in this state are removed from the product
backlog page because they have been committed to an iteration
or sprint. Sample states that could fall into this metastate: Active,
Committed, In Progress, and Resolved.

Complete All Indicates work items that have been implemented. The effort repre-
sented by backlog items in this metastate is included in calculating
the team’s velocity. Sample states that could fall into this metastate:
Closed and Done.

Resolved Bugs Indicates bugs that have been resolved but not yet verifi ed

Customizing Agile Tools ❘ 361

c13.indd 04/23/2014 Page 361

Requested Feedback Indicates feedback items that have been requested but have not yet
been received or responded to

Received Feedback Indicates feedback items that have been received by the recipient
but have not yet been completed

Reviewed Feedback Indicates feedback items that have been received and completed by
the recipient

Declined Feedback Indicates feedback items that have been received by the recipient,
but were declined and not completed

Effort, Remaining Work, and Stack Rank
Two of the most important fi elds used in the Agile planning tools involve the estimated effort for
a product backlog item and the remaining work on tasks. The following is an excerpt from the
ProcessConfiguration.xml fi le that demonstrates the defaults used in the MSF for Agile Software
Development 2013 process template. Notice that you can even specify the units used for the values
in the remaining work fi eld for the Task work item type. If you want to use something other than
hours, such as story points, this would be where you would edit this setting:

<TypeFields>
 <TypeField refname="System.AreaPath" type="Team" />
 <TypeField refname="Microsoft.VSTS.Scheduling.RemainingWork"
 type="RemainingWork" format="{0} h" />
 <TypeField refname="Microsoft.VSTS.Common.StackRank" type="Order" />
 <TypeField refname="Microsoft.VSTS.Scheduling.StoryPoints" type="Effort" />
 <TypeField refname="Microsoft.VSTS.Common.Activity" type="Activity" />
 <TypeField refname="Microsoft.VSTS.Feedback.ApplicationStartInformation"
 type="ApplicationStartInformation" />
 <TypeField refname="Microsoft.VSTS.Feedback.ApplicationLaunchInstructions"
 type="ApplicationLaunchInstructions" />
 <TypeField refname="Microsoft.VSTS.Feedback.ApplicationType"
 type="ApplicationType">
 <TypeFieldValues>
 <TypeFieldValue value="Web application" type="WebApp" />
 <TypeFieldValue value="Remote machine" type="RemoteMachine" />
 <TypeFieldValue value="Client application" type="ClientApp" />
 </TypeFieldValues>
 </TypeField>
</TypeFields>

Additionally, the product backlog prioritization tools will update the “stack rank” of the items auto-
matically as they are reprioritized. The tool uses the fi eld defi ned for Order and automatically fi lls in
values so that the backlog items are able to be sorted from lowest to highest order.

362 ❘ CHAPTER 13 CUSTOMIZING PROCESS TEMPLATES

c13.indd 04/23/2014 Page 362

Defi ning the Team
By default, teams in Team Foundation Server projects are defi ned based on the Area Path nodes that
the team owns. However, if you don’t use Area Path to defi ne your teams, you could use an alter-
nate fi eld. For example, you might have a custom fi eld on all of your work items with the name of
Department that defi nes which work items belong to which team. You can specify that by setting
the Team fi eld to use in the process confi guration fi le:

<TypeFields>
 <TypeField refname="System.AreaPath" type="Team" />
</TypeFields>

Other Process Confi guration Customizations
Other common types of process confi gurations are available in the ProcessConfiguration.xml
fi le. The following list includes a few examples of additional customizations:

 ➤ Add or remove fi elds from the “quick add” pane in the product backlog view. For example,
in addition to setting a title you might also want to specify an effort estimate with each new
item.

 ➤ Add or remove columns from the backlog and iteration views.

 ➤ Change the list of activities that task work items and team members can be assigned to.

 ➤ Change the working days to be used when calculating the iteration’s capacity and rendering
the live burndown chart. By default, Saturday and Sunday are considered nonworking days,
but you can remove or include additional weekdays as nonworking days.

 ➤ Confi gure the types of work items to be used as parents and children in the different tooling
options.

 ➤ Customize the options available and the work item fi elds used for the stakeholder feedback
tools.

 ➤ Change the accent color assigned to a work item of a particular type.

COMMON WORK ITEM TYPE CUSTOMIZATIONS

Certain customizations are commonly made to the existing process template. The following discus-
sions provide an overview of some of those common customizations.

Adding New States
Teams often might not feel that the states provided in the standard process templates fi t well with
their team’s process. They might decide that a new state should be created in the workfl ow.

If you can avoid adding too many states, you can make it easier for end users to understand and use
these new states during normal day-to-day interaction with work items. This will also reduce the

Common Work Item Type Customizations ❘ 363

c13.indd 04/23/2014 Page 363

amount of effort required to customize reports to take advantage of each of those states. Instead,
you can use the combination of states and reasons to help you distinguish between work items in a
specifi c state when querying or reporting on work items.

Adding a state can be done pretty easily. For example, if you wanted to add a Proposed state to a
work item type defi nition, you might add a snippet similar to the following in the work item type’s
XML fi le:

<WORKFLOW>
 <STATES>
 <STATE value="Proposed">
 </STATE>
 <STATE value="Active">
 <FIELDS>
 <FIELD refname="Microsoft.VSTS.Common.ClosedDate">
 <EMPTY />
 </FIELD>
 <FIELD refname="Microsoft.VSTS.Common.ClosedBy">
...

You might also want to move around some of the fi eld rules (for example, empty out the Closed
Date and Closed By fi elds), as well as change some of the existing transitions to take advantage of
the new state.

NOTE A full how-to article about adding a new state to a work item type defi ni-
tion is available in the MSDN Library at http://aka.ms/WITCustomizeStates.

However, adding a state does mean that certain reports will be affected. For example, some of the
following reports in the MSF for Agile Software Development process template may be impacted:

 ➤ Bug Status Report—This report has a stacked area chart that lists bugs by state and has
a particular color assigned to each state. Additionally, it shows the number of bugs in the
Resolved and Active state assigned to each team member.

 ➤ Stories Overview Report—This report shows how many bugs are open for each user story
and displays them in a segmented bar chart by state.

 ➤ Status on All Iterations—This report shows how many bugs exist in each iteration path and
displays them in a segmented bar chart by state.

Displaying Custom Link Types
The Links control allows for rich interaction with the link types available in Team Foundation
Server, including any custom link types you create for your process template. You can take advan-
tage of the Links control to create an additional instantiation of a Links control on your work item
form that fi lters by work item type, work item link type, and/or external links.

http://aka.ms/WITCustomizeStates

364 ❘ CHAPTER 13 CUSTOMIZING PROCESS TEMPLATES

c13.indd 04/23/2014 Page 364

In the MSF for Agile Software Development process template, you will notice a tab named
Implementation on a User Story and Task that displays any parent and children tasks and user sto-
ries. It also allows for easily creating new links scoped to the particular link type.

One example customization you might make would be to specify a new tab for tracking dependen-
cies between work items. For example, you might add the following XML entry into the form layout
for the work item type defi nition. Notice that the System.LinkTypes.Dependency link type is used
for fi ltering for this particular links control instantiation:

<Tab Label="Dependencies">
 <Control Type="LinksControl" Name="Dependencies">
 <LinksControlOptions>
 <LinkColumns>
 <LinkColumn RefName="System.Id" />
 <LinkColumn RefName="System.WorkItemType" />
 <LinkColumn RefName="System.Title" />
 <LinkColumn RefName="System.AssignedTo" />
 <LinkColumn RefName="System.State" />
 <LinkColumn RefName="Microsoft.VSTS.Scheduling.OriginalEstimate" />
 <LinkColumn RefName="Microsoft.VSTS.Scheduling.RemainingWork" />
 <LinkColumn RefName="Microsoft.VSTS.Scheduling.CompletedWork" />
 <LinkColumn RefName="Microsoft.VSTS.Scheduling.StartDate" />
 <LinkColumn RefName="Microsoft.VSTS.Scheduling.FinishDate" />
 <LinkColumn LinkAttribute="System.Links.Comment" />
 </LinkColumns>
 <WorkItemLinkFilters FilterType="include">
 <Filter LinkType="System.LinkTypes.Dependency" />
 </WorkItemLinkFilters>
 <ExternalLinkFilters FilterType="excludeAll" />
 <WorkItemTypeFilters FilterType="includeAll" />
 </LinksControlOptions>
 </Control>
</Tab>

Synchronizing Name Changes
For work item fi elds that contain names of people, handling name changes can be particularly
tricky. The names used for fi elds such as the Assigned To fi eld are actually the display names for
each Active Directory account, and are synchronized from Active Directory if you are using an
on-premises edition of Team Foundation Server. If you are using a hosted Visual Studio Online
instance, this will be the display name that users have entered in their personal profi le details for
their account.

You can specify an attribute on work item fi elds named syncnamechanges and set its value to True
to indicate that the particular fi eld should be automatically updated across all existing work items
any time the display name changes. This should help the management of work items tremendously,
and ensure that work items are not orphaned to users who have experienced name changes.

The following XML excerpt for a fi eld defi nition demonstrates the use of this attribute:

<FIELD name="Assigned To" refname="System.AssignedTo" type="String"
 reportable="dimension" syncnamechanges="true">
 <HELPTEXT>The person currently working on this bug</HELPTEXT>

Introducing Custom Work Item Controls ❘ 365

c13.indd 04/23/2014 Page 365

 <ALLOWEXISTINGVALUE />
 <VALIDUSER />
</FIELD>>

You can also use the witadmin.exe changefield command-line tool option to update an existing
fi eld’s syncnamechanges value.

NOTE Team Foundation Server can actually detect if multiple accounts use the
same display name in Active Directory. The display name used in work item
fi elds in this case would be a disambiguated name that is a combination of the
Active Directory display name, and the full user name, in the format of DOMAIN\
user.

INTRODUCING CUSTOM WORK ITEM CONTROLS

The standard work item controls provide plenty of functionality for editing the work item fi elds that
can be created in Team Foundation Server. However, there may be additional functionality that you
would like to add to the work item forms or custom editors for the work item fi elds. You can do this
by creating custom work item controls and deploying them to all of the end users’ machines to use
while editing work items.

Custom work item controls do not have to edit a work item fi eld at all. Several of the standard work
item controls (such as the Webpage control) do not contain any fi elds and only display information.
An example of this would be a custom work item control to pull information from an external sys-
tem related to the opened work item.

Work Item Clients
A different implementation of the custom work item control must be created based on the client that
will be displaying the work item control. The following clients are currently available for displaying
custom work item controls:

 ➤ Visual Studio Team Explorer—Windows Forms control

 ➤ Microsoft Test Manager—Windows Forms control

 ➤ Visual Studio Web Access—jQuery-based control

 ➤ Visual Studio Team Explorer Everywhere—Java SWT control

Team Web Access Custom Work Item Controls
Because Team Web Access was completely rewritten in Team Foundation Server 2012, the model for
creating a custom work item control completely changed and is now fully supported. You will end
up creating a jQuery-based control and then deploy it using the Web Access extensions administra-
tion experience. This allows you to not worry about deploying anything to the server.

366 ❘ CHAPTER 13 CUSTOMIZING PROCESS TEMPLATES

c13.indd 04/23/2014 Page 366

For more information, check out these two blog posts by Serkan Inci for creating and deploying a
new Team Web Access custom work item control:

 ➤ http://aka.ms/TWACustomControls

 ➤ http://aka.ms/TWADeployCustomControls

Preferred and Fallback Control
If a particular client does not have an implementation of the custom control, or cannot locate the
custom control, you can specify a control in the work item form’s layout section of the work item
type defi nition to be used. You can then specify the preferred control to use if it is deployed.

The following work item form layout excerpt demonstrates the use of the preferred control attribute:

<Control Type="FieldControl" PreferredType="MyCustomControl"
 FieldName="System.AssignedTo" Label="Assigned To" LabelPosition="Left" />

Work Item Control Interfaces
To create a custom work item control for Windows Forms, you must essentially create a new
Windows Forms control that implements specifi c interfaces in the Team Foundation Server SDK.
The following sections describe some of the most common interfaces that can be implemented for
work item controls.

IWorkItemControl
The IWorkItemControl interface is actually the primary interface to be implemented and is
required for custom work item controls. It contains the base functionality for a custom work item
control, and its members are used by the work item form in Visual Studio Team Explorer.

Listing 13-1 shows the full signature for the IWorkItemControl interface.

LISTING 13-1: IWorkItemControl interface defi nition

// C:\Program Files (x86)\Microsoft Visual Studio 12.0
 \Common7\IDE\PrivateAssemblies
 \Microsoft.TeamFoundation.WorkItemTracking.Controls.dll

using System;
using System.Collections.Specialized;

namespace Microsoft.TeamFoundation.WorkItemTracking.Controls
{
 public interface IWorkItemControl
 {
 StringDictionary Properties { get; set; }
 bool ReadOnly { get; set; }
 object WorkItemDatasource { get; set; }
 string WorkItemFieldName { get; set; }

http://aka.ms/TWACustomControls
http://aka.ms/TWADeployCustomControls

Introducing Custom Work Item Controls ❘ 367

c13.indd 04/23/2014 Page 367

 event EventHandler AfterUpdateDatasource;
 event EventHandler BeforeUpdateDatasource;

 void Clear();
 void FlushToDatasource();
 void InvalidateDatasource();
 void SetSite(IServiceProvider serviceProvider);
 }
}

Table 13-8 shows common members used to provide the base functionality for the work item
control.

TABLE 13-8: Common Members Used to Provide Base Functionality

MEMBER DESCRIPTION

WorkItemDatasource Contains a reference to the actual WorkItem object (and must be
cast properly to the Microsoft.TeamFoundation.WorkItemTracking
.Client.WorkItem type). It can end up being null during initialization,
so be sure to handle the situation gracefully.

WorkItemFieldName Contains the name of the fi eld used by the work item control for
editing. This is something defi ned in the work item type defi nition’s
form layout section in the control defi nition. Not all controls need to
edit work item fi elds, so the value for this property could be empty.

Properties Provides all of the properties defi ned in the work item type defi ni-
tion’s control item. In Team Foundation Server 2013, you can even
use a CustomControlOptions type, which contains custom proper-
ties to be used by the control.

ReadOnly Specifi es whether the control should render itself as read-only to the
end user

BeforeUpdateDatasource/
AfterUpdateDatasource

These events should be implemented and raised before and after
data is fl ushed to the data source (the work item).

Clear May be called by the work item system. It indicates to the control
that the control should be cleared.

FlushToDatasource Called by the work item system to indicate that the value stored by
the control should be saved to the work item object immediately.
This often occurs when the end user chooses to save the work item.

continues

368 ❘ CHAPTER 13 CUSTOMIZING PROCESS TEMPLATES

c13.indd 04/23/2014 Page 368

MEMBER DESCRIPTION

InvalidDatasource Called by the work item system to indicate to the control that it
should redraw itself. Typically, the control will refresh its display by
reading the data from the work item object.

SetSite Provides a pointer to the IServiceProvider object that allows
you to take advantage of Visual Studio services such as the
DocumentService or the IWorkItemControlHost service. You do not
have to store this service provider reference if you will not be using
any of the services provided by Visual Studio.

IWorkItemToolTip
The label for the custom control can display a tooltip with information about the work item
fi eld or the custom control. You can decide what and how to display the tooltip implemented
by the IWorkItemToolTip interface. Listing 13-2 shows the full interface signature for the
IWorkItemToolTip interface.

LISTING 13-2: IWorkItemToolTip interface defi nition

// C:\Program Files (x86)\Microsoft Visual Studio 12.0
 \Common7\IDE\PrivateAssemblies
 \Microsoft.TeamFoundation.WorkItemTracking.Controls.dll

using System.Windows.Forms;

namespace Microsoft.TeamFoundation.WorkItemTracking.Controls
{
 public interface IWorkItemToolTip
 {
 Label Label { get; set; }
 ToolTip ToolTip { get; set; }
 }
}

Once each member is set, you can then make a call to ToolTip.SetToolTip(string) to provide a
meaningful tooltip when the end user hovers over the label.

IWorkItemUserAction
The IWorkItemUserAction interface is implemented when the control requires some type of
user action (such as the control or work item fi eld being in a bad state and you want to prevent
the user from saving the work item). Listing 13-3 provides the full interface defi nition for the
IWorkItemUserAction interface.

TABLE 13-8 (continued)

Introducing Custom Work Item Controls ❘ 369

c13.indd 04/23/2014 Page 369

LISTING 13-3: IWorkItemUserAction interface defi nition

// C:\Program Files (x86)\Microsoft Visual Studio 12.0
 \Common7\IDE\PrivateAssemblies
 \Microsoft.TeamFoundation.WorkItemTracking.Controls.dll

using System;
using System.Drawing;

namespace Microsoft.TeamFoundation.WorkItemTracking.Controls
{
 public interface IWorkItemUserAction
 {
 Color HighlightBackColor { get; set; }
 Color HighlightForeColor { get; set; }
 string RequiredText { get; set; }
 bool UserActionRequired { get; }

 event EventHandler UserActionRequiredChanged;
 }
}

Following are some of the interface members:

 ➤ RequiredText—This property stores the friendly error message displayed to the end user
about what action needs to be taken. It is commonly displayed in an information bar in
Visual Studio at the top of the work item form.

 ➤ HighlightBackColor/HighlightForeColor—These properties store the background and
foreground colors that should be used in your custom control to stay consistent with the
theme of the work item form.

 ➤ UserActionRequired—This property indicates to the work item form whether the control
needs input from the user.

 ➤ UserActionRequiredChanged—This event should be raised any time the
UserActionRequired property is changed by the control.

IWorkItemClipboard
The IWorkItemClipboard interface provides functionality to your control for integrating with the
clipboard functionality in Visual Studio. Listing 13-4 provides the full interface defi nition for the
IWorkItemClipboard interface.

LISTING 13-4: IWorkItemClipboard interface defi nition

// C:\Program Files (x86)\Microsoft Visual Studio 12.0
 \Common7\IDE\PrivateAssemblies
 \Microsoft.TeamFoundation.WorkItemTracking.Controls.dll

using System;

namespace Microsoft.TeamFoundation.WorkItemTracking.Controls

continues

370 ❘ CHAPTER 13 CUSTOMIZING PROCESS TEMPLATES

c13.indd 04/23/2014 Page 370

LISTING 13-4 (continued)

{
 public interface IWorkItemClipboard
 {
 bool CanCopy { get; }
 bool CanCut { get; }
 bool CanPaste { get; }

 event EventHandler ClipboardStatusChanged;

 void Copy();
 void Cut();
 void Paste();
 }
}

Each of the methods should be implemented and should handle the appropriate user-initiated
command. If any of the Boolean properties (such as CanCopy) are changed, the
ClipboardStatusChanged event should be raised to indicate to the work item form that the
clipboard status for the control has been updated.

NOTE A group of developers has teamed together and released a set of com-
monly requested custom work item controls (including their source code) on a
CodePlex project available at http://witcustomcontrols.codeplex.com/.

Deploying Custom Controls
Once you have implemented the appropriate interfaces on your work item control, you must com-
pile the .NET project and deploy both the compiled assembly that contains the custom work item
control and a work item custom control deployment manifest fi le. Each of the artifacts should be
deployed to one of the following locations for Visual Studio 2013 and Microsoft Test Manager 2013
clients. The clients will search for custom work item controls in the following order:

 ➤ Value Name Entries in Registry—If you want to store the artifacts in a custom folder, you
can add a custom value list to the following registry key to point to that custom folder. Note
that this registry key does not exist unless it is manually created by you or a custom installer.

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\12.0
 \WorkItemTracking\WorkItemTracking\CustomControls\LookInFolders]
"C:\\CustomControls\\MyCustomLocation"=""

http://witcustomcontrols.codeplex.com

Introducing Custom Work Item Controls ❘ 371

c13.indd 04/23/2014 Page 371

 ➤ Common Application Data 2013–Specifi c Location—For example, C:\ProgramData\
Microsoft\Team Foundation\Work Item Tracking\Custom Controls\12.0\

 ➤ Local Application Data 2013–Specifi c Location—For example, C:\Users\UserName\
AppData\Local\Microsoft\Team Foundation\Work Item Tracking\Custom

Controls\12.0\

 ➤ Visual Studio Private Assemblies Location—For example, C:\Program Files (x86)\
Microsoft Visual Studio 12.0\Common7\IDE\PrivateAssemblies\. Storing custom
work item controls in this folder is not recommended.

 ➤ Common Application Data Location—For example, C:\ProgramData\Microsoft\Team
Foundation\Work Item Tracking\Custom Controls\

 ➤ Local Application Data Location—For example, C:\Users\UserName\AppData\Local\
Microsoft\Team Foundation\Work Item Tracking\Custom Controls\

One of the fi rst three approaches is recommended when deploying your custom work item controls
to a team member’s machines.

Work Item Custom Control Deployment Manifest
The work item custom control deployment manifest fi le has a .wicc extension. It contains the full
class name for the custom work item control, as well as the name of the assembly that contains the
custom work item control. That is the fi lename for the fi le where .wicc is the fi le’s extension, as in
MyCustomControl.wicc. The contents of the custom control deployment manifest would contain
something similar to Listing 13-5.

LISTING 13-5: Work item custom control deployment fi le

<?xml version="1.0"?>
<CustomControl xmlns:xsi="http://www.w3.org/2001
 /XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <Assembly>Wrox.CustomWorkItemControl.dll</Assembly>
 <FullClassName>Wrox.CustomWorkItemControl.MyCustomControl</FullClassName>
</CustomControl>

Using the Custom Control in the Work Item Type Defi nition
Once the work item custom control artifacts have been deployed to each of the client machines, you
can then confi gure the control defi nition in the work item type defi nition’s form layout section by
setting the Type attribute as shown here. The value for this attribute is the fi lename of the custom
work item control deployment manifest, without the .wicc extension.

<Control Type="MyCustomControl" FieldName="System.AssignedTo"
 Label="Assigned To:" LabelPosition="Left" />

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema

372 ❘ CHAPTER 13 CUSTOMIZING PROCESS TEMPLATES

c13.indd 04/23/2014 Page 372

Remember that you can now use the preferred and fallback controls mechanism discussed earlier in
the chapter to make a better experience for your team members.

SUMMARY

 Process templates are the most customized part of Team Foundation Server. They allow teams to
easily modify their process and have the tool help them with day-to-day activities for managing their
process. In this chapter, you learned about the different artifacts that make up a process template,
how to deploy changes to the work item type defi nitions, and how to edit work item type defi nitions
to include common customizations.

You also learned about custom work item controls and the specifi c Team Foundation Server SDK
interfaces that should be implemented when creating the custom work item control. Deployment of
those work item controls to each of the client machines was also covered.

In Chapter 14, you will learn how to manage your teams using the new Agile-based planning tools
in Team Web Access.

c14.indd 04/22/2014 Page 373

Managing Teams and
Agile Planning Tools

WHAT’S IN THIS CHAPTER?

 ➤ Defi ning and managing your portfolio and product backlog

 ➤ Planning an iteration while balancing resource capacity

 ➤ Tracking your work using task boards

 ➤ Understanding options for customizing the agile planning and
tracking tools

 ➤ Communicating with your team using Team Rooms

 ➤ Discovering how the development team can request feedback
from stakeholders on specifi c features or requirements

 ➤ Learning how project stakeholders can use the Microsoft Feedback
Client to provide rich feedback about your software

The Agile Manifesto defi nes several guiding principles that have implications on the ways in which
teams manage projects. Instead of attempting to defi ne an entire project schedule up front, as with
a waterfall methodology, an agile team allows the plan to evolve over time. Work is broken down
into multiple successive iterations, each of which might last between one and four weeks.

Teams practicing an agile development methodology tend to embark upon a journey of mutual
discovery with their customers to determine new work dynamically, based on changing busi-
ness priorities or on feedback from work done in previous iterations. The customer, or at least
a proxy for the customer, is considered a virtual member of the team and participates in defi n-
ing and prioritizing (and often re-prioritizing) work over time.

The pursuit to embrace agile development, with dynamic schedules and evolving requirements,
has meant that many of the tools and techniques used for traditional project management are

14

374 ❘ CHAPTER 14 MANAGING TEAMS AND AGILE PLANNING TOOLS

c14.indd 04/22/2014 Page 374

no longer suffi cient. Agile practitioners have needed to look for different ways of capturing work,
balancing resource capacity, tracking status, and so on.

Scrum, which is by far the most popular agile development methodology in use today, defi nes such
tools, terminology, and methodology. Future work is captured and prioritized on a product backlog,
which can then be committed into specifi c iterations, called sprints. Each sprint has its own sprint
backlog in which work is further decomposed into smaller units of work. This work is tracked to
completion on a task board, which usually takes the form of sticky notes on a whiteboard.

Team Foundation Server 2013 has embraced these concepts by providing a set of web-based tooling for
managing your product backlog, decomposing your work into iterations, and tracking your work using
a digital task board. Anyone familiar with or practicing Scrum should feel immediately at home with
this set of tooling, although it cannot be understated that this same set of tooling can be adopted by
any team who wants to use it, even if they aren’t practicing Scrum per se. One of the design principles
of Team Foundation Server has always been that teams can use any process they want to, and Team
Foundation Server provides the right level of fl exibility and customization to support such a process.

In this chapter, you learn about the web-based tooling available within Team Foundation Server
2013 to support agile project management and tracking. This book is not a true primer on how to
run a project using a Scrum (or any other) development methodology, but there are several great
books to choose from that cover this topic.

Later in this chapter, you will also explore the new tools available for teams that allow them to
communicate with each other and be notifi ed of useful events in real time. You will also learn how
team members can request feedback from stakeholders. Stakeholders are then able to respond to that
request using a new Feedback Client that they can then submit, which will then be available for the
requesting team to manage and process.

DEFINING A TEAM

Team Foundation Server 2013 defi nes the notion of a team, which you can use to organize people
who are working together. This should not be confused with the concept of a team project within
Team Foundation Server, which is a large container of work, consisting of source control and work
items that all share a common process template. A team project usually contains multiple teams,
and each team can have its own product backlog, iterations, and task board. A single person might
also participate in more than one team. For instance, a graphic designer might be a shared resource
responsible for contributing artwork to different teams.

NOTE For more information about making decisions about the scope and size
of your team projects, see Chapter 2 about planning your Team Foundation
Server deployment.

To create a team, follow these steps:

 1. Open a browser and visit the Team Web Access home page for your team project. You can
access this by clicking the Web Access link in Team Explorer. The address takes the format
of http://<server>:<port>/tfs/<collection-name>/<team-project-name>.

Defi ning a Team ❘ 375

c14.indd 04/22/2014 Page 375

 2. Now open the administrative context by clicking the gear icon in the upper-right corner. If
you do not have administrative privileges for your team project, you need to contact your
team project administrator to perform these steps. On this screen you should see a list of any
teams already confi gured for your team project.

 3. Click New Team to display the Create New Team dialog box, as shown in Figure 14-1. You
can provide a name and description for your team and specify what default permissions new
team members should inherit. From the Settings tab, you can declare any users who should
be team administrators.

FIGURE 14-1: Create New Team dialog box

The Create New Team dialog box also lets you create an area path for this team. You were
introduced to the concept of areas in Chapter 12. Areas provide a way for you to categorize
your work within a team project. You can choose to create areas for each of your teams, so
that (for example) bugs that are fi led against the \Fabrikam Fiber Web Site area path are
automatically routed to the Fabrikam Fiber Web Team.

 4. Click Create Team when you are fi nished to create your team and return to the list of teams
on your team project. Click your team in this list to display the team administrative dialog
box shown in Figure 14-2. From here you can easily add new team members or team admin-
istrators. You can also change the name of your team or the description, or choose an image
to represent your team.

376 ❘ CHAPTER 14 MANAGING TEAMS AND AGILE PLANNING TOOLS

c14.indd 04/22/2014 Page 376

FIGURE 14-2: The team administrative dialog box

You are able to add whole Team Foundation Server groups to teams as well as individuals. If
you have added groups, you can toggle between seeing individual members and their teams
by clicking on the membership fi lter at the top right of the list.

 5. Click the Iterations tab to select the iterations your team is participating in, as shown in
Figure 14-3. In Chapter 12, you also learned how to manage iterations and assign start and
end dates to them. On this screen, you are indicating which iterations your team is using to
structure its work. You should ensure that the iteration dates do not overlap.

FIGURE 14-3: The Iterations dialog box

Defi ning a Team ❘ 377

c14.indd 04/22/2014 Page 377

Your iterations need to be hierarchical, consisting of at least one parent and one child. This is
required so that your backlog iteration (representing unscheduled work) can exist at the root
or parent node, and specifi c iterations (representing scheduled work) are represented by child
nodes. In Figure 14-3, Release 2 is the parent node representing the backlog iteration. You
can select a new backlog iteration by highlighting that iteration, clicking the small drop-down
arrow to the left of the iteration name, and then selecting Set as Team’s Backlog Iteration. But
you need to fi rst ensure that your desired backlog iteration has at least one child iteration.

NOTE It may be necessary to create different iteration structures for each team
within your team project. For example, if your Web Team is using the term
“Sprint 3” to defi ne an iteration that begins on March 1, but your Database
Team thinks of Sprint 3 as beginning on April 15, each team should have its own
iteration structure. You can use any naming convention you want for this, such
as WebTeam\Sprint3 and DataTeam\Sprint3. This way, each node can have its
own start and end date independently.

If your organization’s goal is to report across multiple teams, it is recommended
that you not take this approach and attempt to align the team’s iteration sched-
ules appropriately. You can even have some teams on differing lengths as long
as the time spans are equally divided. For example, one team may work on
four-week iterations and another may work on two-week iterations. That can be
accommodated by placing two child iteration nodes for each four-week iteration
node. One team would select the four-week iteration node and the other would
select the two children that represent the two-week iterations.

Similarly, click Areas to confi gure which area paths your team is using to manage its work,
as shown in Figure 14-4. You can select multiple areas, or the root area path, although if
you have many people using your team project you might want to use areas to more care-
fully segregate work—for example, based on application, project, team, and so on.

FIGURE 14-4: The Areas dialog box

378 ❘ CHAPTER 14 MANAGING TEAMS AND AGILE PLANNING TOOLS

c14.indd 04/22/2014 Page 378

You can use the Security tab to confi gure permissions for your team, and you can use the
Alerts tab to confi gure e-mail notifi cations for your team. For example, you might want to
automatically send an e-mail to any team member if a work item assigned to that person
changes. Or you can e-mail the entire team if a daily build fails.

Finally, you can click the Version Control tab to change permissions specifi c to source code
fi les and folders if you are using Team Foundation Version Control, or repositories and
branches if you are using Git.

 6. Close the administrative context when you are fi nished, and return to Team Web Access.
You can now access the team home page for any team you are a member of by clicking the
drop-down to the right of “Visual Studio Team Foundation Server 2013” in the header of the
Team Web Access view and selecting the appropriate team. For example, Figure 14-5 shows
the home page for the Fabrikam Fiber Web Team.

FIGURE 14-5: Home page for the Fabrikam Fiber Web Team

Maintaining Product Backlogs ❘ 379

c14.indd 04/22/2014 Page 379

If you just created a brand-new team, your home page won’t yet look as rich as the one shown in
Figure 14-5. The top half of this view shows information relevant to your current iteration. The
status bar on the left shows the amount of work remaining as compared to the capacity of your
team (in this example, 49 hours of work have been completed and the team has a total capacity of
achieving 108 hours of work). The burndown graph is a trend that shows how remaining work has
decreased (or increased) over time during your current iteration. You learn more about iteration
capacity and burndown visualizations later in this chapter.

The bottom half of this view shows any Team Favorites you have
confi gured. These can represent work item queries—such as open
bugs or in-progress tasks. They can also display graphs of recent
builds or even recent changesets that have been checked into a par-
ticular branch. To add Team Favorites to this view, you should fi rst
open a relevant work item query, branch, or build within Team Web
Access. You can then click the small drop-down arrow located to the
left of the object and select Add to team favorites, as shown in
Figure 14-6. This adds a new tile to your team’s home page, which
can make it easy for the entire team to see the metrics you believe are
most important to track. You can then drag and drop each of the tiles
to reorganize the fi nal view.

Next you will see how to defi ne and manage your team’s product
backlog.

MAINTAINING PRODUCT BACKLOGS

A product backlog is essentially just a list of work that your team has identifi ed but hasn’t yet sched-
uled for implementation. The product backlog is a useful tool for collaborating with customers
or other project stakeholders. As new work is requested by your stakeholders, you can track it in
a central location on the product backlog. You can also estimate and prioritize this work, usually
with input from your customer or stakeholders to help determine which items are most important to
deliver fi rst.

The 2013 release of Team Foundation Server introduces the concept of Agile Portfolio Management.
While in previous versions, the product backlog was defi ned without a hierarchy, now you can
defi ne your work at multiple granularities. This allows you to defi ne high-level goals or features that
contain multiple product backlog items.

All of the standard process templates that come with Team Foundation Server have been updated
to provide support for this new hierarchy. Each template includes a new Feature work item type for
this purpose.

Managing the Backlog
From your team’s home page, click View Backlog to display your product backlog, such as the one
shown in Figure 14-7. In Team Foundation Server 2013, a small colored bar has been added next to

FIGURE 14-6: Add to team
favorites option

380 ❘ CHAPTER 14 MANAGING TEAMS AND AGILE PLANNING TOOLS

c14.indd 04/22/2014 Page 380

work items to indicate the work item type. In Figure 14-7, you can see one red Bug in our backlog
surrounded by blue Product Backlog Items. The “quick add” panel at the top of this page, shown as
a light gray box, enables you to quickly enter new work as it is identifi ed. You can select the type of
work to add (such as Product Backlog Item or Bug), provide a title, and press Enter (or click Add) to
quickly add this work to your backlog. When you do this, you automatically create a new work item
within Team Foundation Server.

FIGURE 14-7: Product Backlog hub

If you highlight a row within your backlog, any new work you add from the Quick Add panel is
inserted above this highlighted row. The exception to this rule is when you have highlighted the last
row in your backlog; new work is added at the end of your backlog.

NOTE The screenshots in this chapter refl ect a team project created with the
Visual Studio Scrum 2013 process template included with Team Foundation
Server 2013. The terminology varies slightly if you are using either the MSF for
Agile Software Development 2013 or MSF for CMMI Process Improvement
2013 process templates, but you can still take advantage of the same tooling.
You can even customize this tooling for use with your own custom or third-party
process templates. Customization options are discussed later in this chapter.

You can easily reprioritize work by dragging and dropping it on the backlog. Changes you make
here are saved to Team Foundation Server in the background. You can also double-click an item in
this view to open the work item editor to provide additional detail or make changes.

Maintaining Product Backlogs ❘ 381

c14.indd 04/22/2014 Page 381

NOTE If you have used previous versions of Team Foundation Server then you
are used to changing priority by hand-editing a fi eld within each work item.
But notice that the Priority fi eld is no longer visible within Team Web Access or
Visual Studio when viewing work items. Backlog Priority is now a hidden fi eld by
default. The recommended way of setting this value is to use the Team Web Access
view to drag items up and down the backlog. Behind the scenes, Team Web Access
uses large integers and an algorithm to assign Backlog Priority values. The use of
large integer values here makes it possible to insert a work item between two items
on a backlog without needing to make updates to each of the surrounding items.

Team Foundation Server 2013 introduces a few new options at the top of your backlog. You can
click Create query to create a work item query representing the current view. You can change the
columns that are shown by clicking Column options, and you can even e-mail your backlog by
clicking the envelope icon.

Teams practicing Scrum will be familiar with a concept known as velocity. Velocity is a metric
used to calculate the amount of work that a team is able to deliver for a given iteration. It is usually
measured in story points on Scrum teams. Other teams may prefer to do their estimations in hours,
or days, or ideal days, and so on. Regardless of the estimation technique used by your team, you
can use the product backlog view to get a sense for when you will be able to deliver items on your
backlog. The only requirement is that you should be consistent with your estimation techniques. For
example, when some people on the team are estimating in days and other people are estimating in
story points, it’s diffi cult to create consistent plans.

Toggle forecast lines on or off by clicking the On/Off link in the upper right of this page labeled
“Forecast.” Forecast lines display, as shown in Figure 14-7, to indicate when work is estimated to be
delivered based on your current team’s velocity. This approach requires that you have estimated your
backlog items by providing a value for effort. Do this by double-clicking each item in your backlog
to provide this additional level of detail.

NOTE Most teams practicing Scrum also transition the state of an item on the
backlog from New to Approved at the time that the team provides an Effort
estimate. You are not required to follow this protocol, but it can be helpful for
differentiating between truly new work (which might only be in the “idea” stage)
and work that your team has taken time to estimate.

The Forecasting Based on Velocity Of text box enables you to experiment with different values to see
the effect that given values for velocity might have on delivering work. For example, you might be
able to ask for additional funding from your customer to hire new team members and speed up the
rate at which items are delivered. Or you might know that there are several upcoming holidays that
will affect your team’s ability to deliver. You can also click the velocity column graph in the upper-
right corner of this screen to see your historical velocity for the preceding (and current) iterations.

382 ❘ CHAPTER 14 MANAGING TEAMS AND AGILE PLANNING TOOLS

c14.indd 04/22/2014 Page 382

The forecast lines are purely estimates. In order to actually schedule work for a given iteration, you
can drag and drop it onto either the current or future iterations listed on the left-hand side of this
view. When you drag and drop work onto an iteration, the value in the Iteration Path column is
updated to refl ect the assigned iteration, and the Iteration fi eld is updated within the work item in
Team Foundation Server.

Teams practicing Kanban will be familiar with the Cumulative Flow diagram visible on the upper right
of the product backlog page that was introduced in the 2012 Update 1 release. This diagram shows you
how your backlog items are moving through their state transitions over time. It shows up to 30 weeks
of data and is an easy way to visualize how your team is working, highlighting any bottlenecks.

NOTE Even though you have assigned work to a particular iteration, it continues
to show up in your product backlog until you have transitioned the work item to a
state that shows it is in progress. For the Scrum process template, work is consid-
ered to be in progress when it reaches the Committed state. By convention, most
teams typically wait until they have broken work down into child tasks before they
transition it to a Committed state. Next, you fi nd out how to break work down.

Agile Portfolio Management
If you are familiar with Team Foundation Server 2012, you’ll notice a few new additions to the
backlog page in the 2013 release to support the new portfolio management functions.

Click the On/Off link next to the Mapping label below the graphs to toggle mapping of backlog
items to features. A Features panel will open on the right of the screen, enabling you to drag backlog
items into features to group them.

You will also notice a link next to a View label in this section. Clicking the link expands a drop-
down with various views of your backlog. The text in the drop-down options and the views they
trigger varies between process templates, but there is some consistency. The fi rst option will show
you a fl at view of your backlog items. The subsequent views will show you hierarchical views. For
example, if you are using the Visual Studio Scrum 2013 process template, you will be able to see the
Backlog items to Features hierarchy, or the Backlog items to Tasks hierarchy.

NOTE When you’re on the Backlog items page, Team Web Access will only give
the option of forecast lines if you’re viewing a fl at list of items. To see forecast
lines, you must choose the basic view.

Team Web Access introduces an entirely new Features page accessible via the link on the left of the
page. The Features page is very similar to the backlog page but it allows you to manage the work
items above your backlog items in the hierarchy. You can switch between various views in a similar
way to the Backlog items page. In the case of the Visual Studio Scrum 2013 template, you can see
a fl at list of Features, Features to Backlog items, or even Features to Tasks, which shows you two
 levels of hierarchy.

Planning Iterations ❘ 383

c14.indd 04/22/2014 Page 383

NOTE In Team Foundation Server 2013, the backlog board has been moved.
In the previous release, the board was another option under the top-level Work
hub. The backlog board can be considered another view of the Backlog items
page so it exists as a link at the top of the page. This is consistent with the board
for an Iteration, and the board for Features.

PLANNING ITERATIONS

After you have identifi ed the work that you want to deliver for a given iteration, you can click an
iteration from the list on the left-hand side of the product backlog view to open the iteration plan-
ning view shown in Figure 14-8. This fi gure shows an iteration that is mid-sprint, meaning that the
team has already completed some work and is preparing to fi nish this iteration.

FIGURE 14-8: The Iteration Backlog view

When you fi rst add items to an iteration (such as a Product Backlog Item or a Bug) you are only
declaring your intention to deliver this functionality. The next phase of planning this work is to
actually break it down into the individual tasks that people on your team need to complete in order
to perform the work. When you hover over a Product Backlog Item, you can click the plus (+) sign
that appears to display the dialog box shown in Figure 14-9, which enables you to add a new task
work item as a child to the parent you clicked on.

384 ❘ CHAPTER 14 MANAGING TEAMS AND AGILE PLANNING TOOLS

c14.indd 04/22/2014 Page 384

FIGURE 14-9: New task dialog box

You should provide a title for this task and, if possible, an estimate for the amount of remaining
work. By default, remaining work is assumed to be provided in hours, but you can also customize
this (see the section “Customization Options” later in this chapter). You can assign this to a team
member who will complete this work, but you are not required to do so. Save this work item and
proceed to break down the rest of your work into child tasks. If you haven’t already done so, set
the state of parent work items to Committed as each item is broken down.

NOTE A common question that many people have is about the relationship
between effort, provided earlier when defi ning an item for the backlog, and
remaining work, provided for tasks. Effort is typically a rough estimate used to
provide a quick indication about the size of work in relation to other items on
the backlog. Remaining work values in your iteration should be much more pre-
cise, and represent the additional level of planning and estimation analysis that
has been given to considering how a given feature or user story will be imple-
mented. As a team gains experience, it becomes better at providing more realis-
tic estimates while the product backlog is being defi ned.

As you begin to create tasks with values for remaining work, you will notice that the capacity graphs
on the right-hand side of this screen begin to render. These graphs are broken into three areas:

Planning Iterations ❘ 385

c14.indd 04/22/2014 Page 385

 ➤ Work—shows the total amount of work remaining for this iteration, calculated as the sum of
the remaining work across all task work items.

 ➤ Work By: Activity—enables you to categorize the amount of remaining work into categories.
When creating tasks, you can use the activity fi eld to categorize tasks, such as Development,
or Testing, and so on. If you don’t provide a value for activity, work simply shows up as
Unassigned.

 ➤ Work By: Assigned To—shows the amount of remaining work that is assigned to each
person on your team.

Click the Capacity tab to assign the capacity for each of the members of your team, as shown in
Figure 14-10. The Capacity Per Day column enables you to specify the average number of hours per
day that a given resource is working on tasks. The Activity column enables you to specify the dis-
cipline of a team member, which is necessary if you want to view capacity by activity type. Finally,
you can use Days Off to defi ne days that a team member is sick or on holiday, and you can use
Team Days Off to defi ne days that the whole team will be unavailable, such as during a holiday or
 company retreat.

FIGURE 14-10: Capacity planning for iteration

The values you enter for this table are specifi c to this team and this iteration. So a shared resource
who works on multiple teams might have different values for Capacity Per Day or Days Off depend-
ing on the team. Also a resource who works fi ve hours per day on one iteration might work only two
hours per day during a subsequent iteration. If you like the capacity settings for the team from the
previous iteration or just like a quick start, you can even copy those values by clicking Copy Now to
copy capacity from the previous iteration tool, as shown in Figure 14-10.

After you assign capacity values for your team, the capacity indicators on the right change to either
green, if a resource is at or under capacity, or red, if there is too much work given the planned
capacity. The iteration plan is designed to be viewed on a regular basis so that you can make adjust-
ments to the plan as needed. For example, if a team member is sick, you might need to reschedule
work that was originally planned for this iteration. You can drag and drop parent items from this
list onto other iterations on the left-hand side of the page.

386 ❘ CHAPTER 14 MANAGING TEAMS AND AGILE PLANNING TOOLS

c14.indd 04/22/2014 Page 386

TRACKING WORK

When you are satisfi ed with the iteration plan, it’s time to start writing code, authoring documenta-
tion, designing user interfaces, and doing all the other work that’s required to develop great
software. During the course of this activity, it can be helpful to have a single location to easily
determine the status of the work that everybody is doing.

Scrum teams typically use a task board for this purpose. In its simplest form, a task board takes the
form of a whiteboard with sticky notes on it that you move from the left side of the board (work that is
not yet started) to the middle (work that is in progress) to the right (completed work). Similarly, Kanban
teams often use these boards to help visualize the fl ow of backlog items through various phases.

Physical boards work very well for teams that are co-located, especially if they share a team room,
because anybody can quickly look up at the whiteboard to determine the state of the team’s work.
Of course, this approach has its challenges for teams who work in different geographic locations,
have individual offi ces, or even spread across multiple fl oors or buildings.

Team Foundation Server 2013 provides digital versions of these boards that overcome the limita-
tions imposed by traditional physical boards. There are Kanban boards available for managing
Features and Product Backlog Items, and task boards for managing individual Iterations.

Using the Kanban Board
To view a Kanban board, choose either the Features or Backlog items view, and then click Board
at the top of the page. The boards are very similar; they simply show different types of work items.
Figure 14-11 shows a Backlog Kanban board. The board consists of tiles that represent individual
Product Backlog Items or Features, and columns that represent the progress of each item.

FIGURE 14-11: Kanban board

Tracking Work ❘ 387

c14.indd 04/22/2014 Page 387

To change the state of a backlog item or feature, you can drag and drop the tiles to move them
between columns, provided the process template transitions allow you to do so.

WARNING Moving a Feature or Backlog item from one column to another does
not affect the children of that work item. To mark a backlog item or feature as
completely “done,” you need to ensure all child work items have an appropriate
completed status.

A key concept in Kanban is limiting work in progress. This means that a team should not have too
many items in one column, as this represents a potential bottleneck. With the exception of the fi rst
and last columns (which represent brand new and completed work items, respectively) you will see
two numbers in the column header. These represent the number of backlog items currently in the
column, and the “work in progress limit” assigned to that column. You will see how to customize
the work in progress limit soon. In Figure 14-11, you can see the team has committed to more items
than the work in progress limit for the Committed state. Team Foundation Server will not prevent
you from committing to more items, but it will alert you by coloring the header red.

By default, the columns map one-to-one with the available states for the work items. You can click
the Customize columns link to add additional columns with the Customize Columns dialog box
shown in Figure 14-12.

FIGURE 14-12: Customizing columns

The Customize Columns dialog box allows you to add and remove columns using the plus (+) signs
between columns and the crosses at the top right of each column respectively. You also can change
the display name of a column, change its work-in-progress limit, and change the work item state
that that column maps to.

388 ❘ CHAPTER 14 MANAGING TEAMS AND AGILE PLANNING TOOLS

c14.indd 04/22/2014 Page 388

This feature allows you to manage your portfolio or backlog in more detail than your process
 template may allow. Teams can take advantage of this feature to temporarily introduce columns
for situations such as external audits, deployment or test processes, or even code reviews.

NOTE Changes you make using the Customize Columns dialog box are local
to that Web Access board and do not change the available states for the process
template. New columns represent pseudo-states that will not be available for
selection when changing the state of a work item, and name changes will only be
shown on the board.

Be careful when adding and removing pseudo-states as they will show in the
Cumulative Flow graph if at least one work item has moved into that pseudo-
state at any point in time. If you are frequently adding and removing pseudo-
states, your Cumulative Flow graph can become very messy.

Using the Task Board
Agile task boards will be familiar to anyone coming from Team Foundation Server 2012, but there
have been some useful changes in this release. To view an individual iteration’s Task board, select an
Iteration and then click Board at the top of the page to see a task board like the one in Figure 14-13.

FIGURE 14-13: Agile task board

Tracking Work ❘ 389

c14.indd 04/22/2014 Page 389

Each row on this task board represents a parent backlog item from your current iteration. The tiles
on this task board represent the individual child tasks that you created. Each task begins in the To
Do column. When a team member is ready to begin a task, he or she can drag and drop it onto the
In Progress column. As the team member makes progress against a given task, he or she can click
the number on the task to update the remaining work. If he or she has fi nished a task, he or she
drags it into the Done column to automatically set the amount of remaining work to zero. Clicking
the name of the team member for a given task opens a drop-down menu that enables you to quickly
reassign work. Similarly, clicking the number of hours remaining opens a drop-down menu allowing
you to change the remaining hours.

Click a task to open it in a full editor, such as the one previously shown in Figure 14-9. This is often
helpful if you want to add more detail to a task or comment on its progress.

NOTE The task board understands the rules and limitations of the underly-
ing process template your team project is based upon. For example, consider
a scenario where you have prematurely moved a task from In Progress to
Done—perhaps by mistake, or perhaps you realized there is additional work
that needs to be fi nished. If you try to move work from the Done column
back to the In Progress column, you receive an error message indicating that
work that is In Progress cannot have a value of 0 for remaining work. To fi x
this, click the task to open the full editor and assign a new value for remain-
ing work.

The entire interface is touch-friendly. If you have a touch-screen monitor, such as in a shared
team room, you can confi gure it to display your task board and make it easy for team members to
update the status of their work whenever they walk by it. And because everything is stored in Team
Foundation Server, remote workers can access the same view in any modern web browser and device
to see what their colleagues are working on and provide their own status updates.

If you fi nd yourself constrained for space in this view, you can collapse fi nished backlog items by
clicking the arrow to the left of the parent work item title. You can also use your browser’s zoom
functionality (usually Ctrl plus a hyphen or a ++ sign) to fi t more work on a single screen.

You can change the view to focus on individual team members by clicking the Person: All link and
selecting the name of any team member. This highlights the work assigned to that team member,
making it easier to differentiate from the rest of the team’s work.

You can also click the Group By: Backlog items link to change the view such that tasks are orga-
nized by the team member they are assigned to, instead of by their parent work item. This is a help-
ful view for team meetings, where team members might be expected to tell their peers what they
worked on yesterday and what they are planning to work on today. This view is also helpful for
seeing whether there are any team members with too much work remaining and whether other team
members might have the capacity for picking up some of that work.

As work is fi nished, the team can transition parent backlog items to a state of Done. Open a parent
backlog item by clicking the title of the item on the left-hand side of the screen. This state transition

390 ❘ CHAPTER 14 MANAGING TEAMS AND AGILE PLANNING TOOLS

c14.indd 04/22/2014 Page 390

is not done automatically when all of the tasks are fi nished because there may be additional check-
points or quality gates in place before work is considered to be truly fi nished. For example, you
might want to request feedback from your project’s stakeholders to ensure that everybody is satisfi ed
with the work as it has been implemented. You will explore requesting feedback from stakeholders
later in this chapter.

The burndown chart in the upper-right corner of this screen displays a trend of the remaining work
over time for your iteration. This chart is updated in real time as your team completes work (or
identifi es new work) during the course of an iteration. You can display the burndown chart in full
screen by clicking it, as shown in Figure 14-14.

FIGURE 14-14: Burndown chart

CUSTOMIZATION OPTIONS

As mentioned previously, the examples in this chapter follow the default experience you get by
using the Visual Studio Scrum 2013 process template for a team project. If you are practicing
Scrum today, then you are likely already familiar with the types of tools available in this chapter.
But even if you aren’t practicing Scrum or using the Scrum process template, you can still benefi t
from these tools.

Depending on the process template you choose, the default terminology and views might vary. For
example, a team using the MSF for CMMI process template tracks Requirements instead of Product

Team Rooms ❘ 391

c14.indd 04/22/2014 Page 391

Backlog Items as the primary backlog work item type to be planned. An MSF for CMMI Software
Improvement 2013 task board contains four columns (Proposed, Active, Resolved, and Closed)
instead of the three shown earlier for a Scrum project (To Do, In Progress, and Done).

If you are using a team project that was created using one of the process templates provided by
Microsoft with Team Foundation Server 2013 (Scrum 2013, MSF for Agile 2013, or MSF for
CMMI Process Improvement 2013) then this tooling is preconfi gured automatically to work with
your team projects. If you are upgrading an existing team project from an earlier release of Team
Foundation Server, then you need to perform some additional steps in order to begin using the agile
planning and tracking tools mentioned in this chapter. These steps are outlined at http://aka.ms/
TeamProjectUpgrade2013.

NOTE Upgrading from previous versions of Team Foundation Server is covered
in more detail in Chapter 27.

There are also several ways you can customize these tools to change their appearance and behavior.
For example:

 ➤ Add or remove fi elds from the “quick add” pane in the product backlog view. For example,
in addition to setting a title, you might also want to specify an effort estimate with each
new item.

 ➤ Change the available states for work items in the feature, backlog, and iteration boards.

 ➤ Change the list of activities that task work items and team members can be assigned to.

 ➤ Change the working days to be used when calculating capacity and rendering the burndown
graph. By default, Saturday and Sunday are considered nonworking days, but you can mod-
ify these.

 ➤ Confi gure the types of work items to be used as parents and children throughout the tooling.

 ➤ Change the color used for different work item types in the backlogs and boards.

The types of customizations and other process template customizations are covered in more detail in
Chapter 13.

TEAM ROOMS

Team rooms are a new feature in Team Foundation Server 2013. A team room provides an online
area that encourages and captures communication between team members, regardless of their physi-
cal location. Team rooms are created for each team defi ned in a project, but you can create addi-
tional rooms for any purpose.

On your team’s home page, you will see a tile showing the number of people currently in your
team room. To open a team room, click the room tile. Figure 14-15 shows an example team room
interaction.

http://aka.ms

392 ❘ CHAPTER 14 MANAGING TEAMS AND AGILE PLANNING TOOLS

c14.indd 04/22/2014 Page 392

FIGURE 14-15: Team room

The main area of the page shows the conversation between team members as well as any Team
Foundation Server events that team members have chosen to be notifi ed about. You can change the
date you are looking at using the calendar links at the top of the page. Contributing is as easy as
typing in the “Post a message” text area and pressing Enter. Messages are primarily text, but can be
enriched in a number of ways.

Clicking on the smiley face icon gives you access to various emoticons. These will also replace
known character combinations in your message. For example, :(will be replaced by a face with
a frown.

You can mention a specifi c team member using the @ character, and when you type @, a drop-down will
appear to help you choose valid members. As a team member, you will be notifi ed if you’re mentioned in
a message, and your name will appear with an orange background and border, as in Figure 14-15.

Finally, you can link directly to any work item using the # character. In Figure 14-15, you can see
a link to work item #230. This is a rich link that can be clicked on to view and edit the work item
details.

NOTE Team rooms are only offi cially available in Team Web Access, but a
Visual Studio extension has been created by MVPs Utkarsh Shigihalli and Tarun
Arora. You can download the extension at http://aka.ms/VS2013TeamRooms.

http://aka.ms/VS2013TeamRooms

Stakeholder Feedback ❘ 393

c14.indd 04/22/2014 Page 393

On the left of the page, you will see all the rooms you have permission to enter. You can click on any
of these to enter the room and start chatting with the other members of your team.

On the right side of the page, you can see everyone who is currently in the room. You can also
click the small arrow next to Away to see people who have access to the room but are not currently
 present. Finally, you can manage the users who have access to the room and the Team Foundation
Server events that will be surfaced in the main chat area.

To invite other Team Foundation Server members to a team room, click on the Manage users link.
This dialog box allows you to add individual users or entire teams to the team room.

Team rooms can also surface Team Foundation Server events such as the check-in and build failure
visible in Figure 14-15. To manage the events that are shown, click the Manage events link. You will
see a dialog box with four categories of events, as in Figure 14-16.

FIGURE 14-16: Confi guring team room events

This dialog box enables you to subscribe to multiple events for build completions, code changes,
work item updates, and code reviews. You can further fi lter these to only members of the room, and
in the case of work item updates and code reviews, restrict them to a specifi c area path.

STAKEHOLDER FEEDBACK

You have learned about the importance of engaging with your software development project’s stake-
holders to ensure that you have a clear understanding of what your stakeholders want you to build
before you start implementing it. However, regardless of how much time you spend up front during
this requirement’s elicitation phase, the fi rst iteration of software you create is rarely going to meet
all of their expectations.

394 ❘ CHAPTER 14 MANAGING TEAMS AND AGILE PLANNING TOOLS

c14.indd 04/22/2014 Page 394

There are a variety of reasons for this: Technical challenges might get in the way of the originally
planned implementation; business requirements may evolve from the time when you fi rst captured
them to the time that you implement the fi rst working code; the opinions of users can be fi ckle, even
infl uenced by seeing the software in action for the fi rst time; you may not have truly understood
what your stakeholders were asking for when you were capturing their requirements; or, you may
not have had time to implement all the requirements in the initial release.

These possibilities will be anticipated by any agile software development team that embraces the
fact that software development is something of an art form, requiring iterative cycles of requirement
gathering, implementation, and feedback, which in turn informs an additional round of require-
ments and changes that must be implemented. However, the challenge for any team is in fi nding
a way to effectively capture feedback from its stakeholders in a manner that can be analyzed,
synthesized, and acted upon. This problem is made harder when stakeholders are time-shifted or
geography-shifted away from the software development team. Even if the development team shares
a common location with its stakeholders, fi nding a systematic way of gathering feedback from all of
its stakeholders on a recurring basis can be a burdensome task.

In Visual Studio 2013, Microsoft has integrated the process of collecting stakeholder feedback
directly into its application life-cycle management tooling capabilities. In this chapter, you fi nd out
how to use this tool to solicit and capture feedback from your stakeholders in a rich, actionable way.

Requesting Feedback
The fi rst step toward getting great feedback from your stakeholders about your software is to prop-
erly frame the question of what you are asking for feedback on. The question of whether or not your
software provides the right level of functionality is a very different question from whether or not your
software is designed properly. Functionally, a tractor can get you from your house to your offi ce in
the morning, but it is probably not what you feel comfortable being seen in as you pull into the park-
ing lot at work. But early on in a software development iteration, the team may be focused squarely
on strictly implementing the required functionality with the understanding that it can make it look
nice later on. Unless you properly scope your request to the stakeholders when you ask for feedback,
you may get a lot of feedback on things that you haven’t yet started to address in the software.

With Team Foundation Server 2013, you can request specifi c feedback from your stakeholders by
visiting the Team Web Access home page for your project or team. In the list of Other Links, click
Request feedback. You are presented with the dialog box shown in Figure 14-17, which allows you
to specify what you are requesting feedback on and from whom.

NOTE If you don’t see Request Feedback under the list of activities, this indi-
cates that your Team Foundation Server instance has not been confi gured to
use an SMTP e-mail server. Your Team Foundation Server administrator will be
able to confi gure this using the Team Foundation Administration Console on the
application tier server.

You will also need to ensure that your user account has appropriate licensing access
level to request feedback. Only users with Visual Studio Test Professional 2013,
Visual Studio Premium 2013, or Visual Studio Ultimate 2013 are permitted to request
feedback using this capability. This can be confi gured using the Administration fea-
tures of Team Web Access, as described in more detail in Chapter 24.

Stakeholder Feedback ❘ 395

c14.indd 04/22/2014 Page 395

FIGURE 14-17: The Request Feedback dialog box

Follow these steps in the dialog box to request feedback from your stakeholders:

 1. Specify the names of the users you want to request feedback from. These users need to be
 recognized as users who have access to your team project.

 2. Specify how users should access the functionality you are asking them to test. For a web
application, users might need to access a staging server (potentially in a Lab Management
environment) that contains a recently deployed build. For other applications users might need
to remote into another machine or install an interim build. Use this space to give the users
any specifi c instructions they need in order to get started with your software.

 3. Specify up to fi ve aspects of your software that you want feedback on.

When specifying what you want to collect feedback on, be as specifi c as possible. You can also use
the area below each feedback title to provide additional instructions that might help your stakehold-
ers access certain features or scope their feedback to what you care most about. When applicable,
you might want to also specify the things that you do not want feedback on. For example, if you

396 ❘ CHAPTER 14 MANAGING TEAMS AND AGILE PLANNING TOOLS

c14.indd 04/22/2014 Page 396

know that the staging server you are using is very slow and doesn’t refl ect the performance of your
production environment, then you might want to mention this to the users so they don’t waste time
giving you a lot of feedback on the performance of the application. If the user interface hasn’t yet
received attention from a designer (affectionately known as “programmer art”), be sure to specify
this as well, so users don’t spend time critiquing anything other than the application’s functionality.
The 2013 release of Team Foundation Server added rich text capabilities to the feedback fi elds to
allow you to highlight important points.

After you have told your users how to access your software and what you are looking for feedback
on, click Preview to see the e-mail that your stakeholders will receive. Click Send to deliver an
e-mail to the stakeholders you specifi ed earlier and also create Feedback Request work items (up to
fi ve, one for each item you added in Step 3) for you to track this request in Team Foundation Server.

Providing Feedback
After you have requested feedback from your stakeholders, they will receive an e-mail like the
one shown in Figure 14-18. Before stakeholders can provide feedback, they need to fi rst install the
Microsoft Feedback Client by clicking the Install the Feedback Tool link in the e-mail.

FIGURE 14-18: Request feedback e-mail

NOTE The Feedback Client is freely downloadable from Microsoft and does
not require a Team Foundation Server client access license. Users will, however,
need to have appropriate permissions to your Team Foundation Server instance.
At a minimum, users will need to be a member of the Limited access level group.
See http://aka.ms/TFS2013FeedbackPermission for details.

http://aka.ms/TFS2013FeedbackPermission

Stakeholder Feedback ❘ 397

c14.indd 04/22/2014 Page 397

After the feedback tool is installed and stakeholders are ready to give feedback, they can click
the Start Your Feedback Session link in the e-mail to open the Feedback Client shown on the left
side of Figure 14-19. The menu at the top enables the stakeholders to dock the Feedback Client on
either side of the monitor or to fl oat the window to another monitor. The instructions provided on
this fi rst page are from the feedback request that you created earlier. After the stakeholders have
installed or otherwise launched the application for which they are providing feedback, they can click
the Next button to start giving feedback.

FIGURE 14-19: The Feedback Client

Figure 14-20 shows a stakeholder in the middle of providing feedback on this web application.
The top half of the Feedback Client scopes the specifi c questions the stakeholder has been asked
to address. In this case, you asked if the right information is displayed in the summary table. The
stakeholder responded by asking if an Employee ID column can be added to this table. The stake-
holder then used the Screenshot button to capture a snippet of the table and double-clicked that
snippet so that he could annotate it with a red rectangle showing where the Employee ID column
should go.

NOTE By default, Microsoft Paint is used to edit a screen clipping any time the
user double-clicks within the Feedback Client. You can confi gure the Feedback
Client to use your own favorite image-editing tool by clicking on the gear icon
at the top of the window. For example, if you want to make annotations with a
tool like SnagIt, you can confi gure it as your tool of choice. For more informa-
tion, take a look at http://bit.ly/VSFeedbackwithSnagIt.

http://bit.ly/VSFeedbackwithSnagIt

398 ❘ CHAPTER 14 MANAGING TEAMS AND AGILE PLANNING TOOLS

c14.indd 04/22/2014 Page 398

FIGURE 14-20: Providing feedback

The Feedback Client can also be used to capture video and audio recordings while the stakeholder is
using the application. This can be the next best thing to actually being in the room, watching over
the shoulder of the stakeholder as he or she uses the application. A video recording can be a power-
ful way of truly understanding the way in which a user tends to interact with your software. Audio
annotations enable a stakeholder to provide commentary about his experience without having to
take the time to type notes. Video and audio contextualize the feedback you get from your stake-
holders so that you can better understand how to respond to it.

After a stakeholder is fi nished providing feedback on a particular feedback item, he or she can
 provide a star rating before clicking Next. If there were other feedback items specifi ed in this
request, the stakeholder would now be prompted with each one sequentially. At the end of the
feedback session, the stakeholder has an opportunity to review the feedback he or she has captured
before submitting it to Team Foundation Server. This creates new Feedback Response work items
(one for each Feedback Request, which was created earlier), which include all of the artifacts cap-
tured by the Feedback Client (video recordings, text and audio annotations, screen clippings).

The software development team can view the feedback responses using the built-in Feedback work
item query (see Figure 14-21). If a piece of feedback results in a new bug or new requirement, the
team can use the New Linked Work Item button to create a new work item linked to this specifi c
Feedback Response work item. By linking the feedback directly from the stakeholders into the new
work item, you can provide additional context and traceability for the developer who is assigned to
implement the fi x or new requirement specifi ed in that work item.

As feedback is reviewed and any necessary actions have been taken (such as fi xing bugs or imple-
menting requirements), you can transition the State fi eld of each Feedback Response to Closed.

Summary ❘ 399

c14.indd 04/22/2014 Page 399

FIGURE 14-21: The Feedback Requests work item query results

Voluntary Feedback
Stakeholders can also provide unsolicited or voluntary feedback at any time by launching the
Feedback Client directly instead of from a feedback request e-mail. They are fi rst prompted to
 connect to the appropriate Team Foundation Server instance and team project where they want to
provide feedback. After doing so, they can fi le feedback using video, audio, text, and screen clip-
pings as they did previously. The one thing to be careful of here is that Feedback Response work
items created when using a voluntary feedback method do not show up in the default Feedback
Requests work item query. Instead, you should write a custom query to search for all work items of
the type called Feedback Response. Feedback that is generated by the Feedback Client in an unsolic-
ited manner will, by default, have a title that starts with Voluntary.

SUMMARY

In this chapter, you discovered the new tools available with Team Foundation Server 2013 for plan-
ning and tracking work in an agile manner. You found out how to use the product backlog view for
defi ning and managing items that your team may schedule and implement in the future, as well as
the new feature hierarchy available in Team Foundation Server 2013. You then saw how to break

400 ❘ CHAPTER 14 MANAGING TEAMS AND AGILE PLANNING TOOLS

c14.indd 04/22/2014 Page 400

down work for an iteration into tasks and examine the remaining work for these tasks against the
capacity of your team.

You also learned about using the digital boards to track work during the course of a project and an
iteration so that everybody on the team can easily understand what their colleagues are working on
and how much work is left to deliver.

You learned about the new team rooms that facilitate communication between team members and
notify them of Team Foundation Server events, regardless of where they are. You saw how to sub-
scribe to relevant events so the team can see what is happening with your server at any time.

You learned how you can request scoped feedback from your stakeholders to get actionable data
that can help you refi ne your application development. You learned about the new Feedback Client
that can capture rich information—including video recordings, text and audio annotations, and
screen clippings—from your users as they give feedback about your applications. Finally you learned
how you can use this feedback to create actionable bugs or new requirements that your team can use
to ensure that you are continuing to build the right software to please your stakeholders.

In Chapter 15, you will have the opportunity to learn about the rich reporting features of Team
Foundation Server 2013 as well as collaboration integration with team portals hosted in Microsoft
Offi ce SharePoint Server.

c15.indd 04/22/2014 Page 401

Reporting and SharePoint
Dashboards

WHAT’S IN THIS CHAPTER?

 ➤ Learning about the changes and new features

 ➤ Understanding the Team Foundation Server data warehouse

 ➤ Understanding the tools available to create and manage reports

 ➤ Using the new Work Item Charting in Web Access

 ➤ Creating and customizing reports using Excel

 ➤ Extending and customizing the data warehouse and dashboards

One of the key value propositions for Team Foundation Server has always been the reporting
features that it provides. When you have your source control, work-item tracking, and build
and test case management systems all integrated in a system like Team Foundation Server, the
reporting can provide powerful insight into the status of your projects. The data collected and
the reports provided by Team Foundation Server gives your projects a level of transparency
that allows you to react and adjust to changing conditions.

In this chapter, you will fi rst learn about the Work Item Charting tools that are new in Team
Foundation Server 2013 Web Access. Then you will see changes that were fi rst introduced in
Team Foundation Server 2010 and the minor changes since. These changes are designed to
support multiple team project collections on a single server and, thus, improve reporting capa-
bilities. You will then learn about the three data stores in the Team Foundation Server data
warehouse. This chapter also provides an overview of how to set up and confi gure the integra-
tion with SharePoint, and how to take advantage of the excellent reporting features. Finally,
you will learn how to customize project portals and warehouse adapters.

15

402 ❘ CHAPTER 15 REPORTING AND SHAREPOINT DASHBOARDS

c15.indd 04/22/2014 Page 402

WHAT’S NEW IN TEAM FOUNDATION SERVER 2013?

Team Foundation Server 2010 included a signifi cant investment in the reporting infrastructure and
capabilities. This prior investment means that very little has changed in the reporting features of the
product in the 2012 and 2013 releases. However, Microsoft has begun a signifi cant push to give you
the ability to report against more current data by introducing Work Item Charting, which allows
you to visualize the results of your work item queries. They are continually improving the feature set
of Team Foundation Server through roughly quarterly updates. Work Item Charting will continue
to be improved in these updates.

For customers who are upgrading from Team Foundation Server 2010, this news will bring some
comfort. There were almost zero schema changes to the relational warehouse database and the
Analysis Services cube, which means all your custom reports and dashboards should continue to
work without modifi cation. Contrast this to upgrading from the 2008 version to the 2010 version
where the entire structure changed and almost all reports needed to be rewritten from scratch.

Following are the biggest changes for reporting and SharePoint integration since Team Foundation
Server 2008:

 ➤ Work Item Charting has been added to Web Access.

 ➤ Cross-collection reporting is now supported.

 ➤ A relational warehouse schema is now supported.

 ➤ The Analysis Services cube schema is more usable.

 ➤ An optional, but richer, SharePoint integration is now supported.

 ➤ Excel-based reporting features have been added.

Work Item Charting in Web Access
Work Item Charting is a new feature in Team Foundation Server 2013 that allows you to visualize
the results of work item queries in a myriad of formats including pie, bar, column, and stacked bar
charts, as well as showing the data in a Pivot table format. Figure 15-1 shows the results of the
My Work Items query in each of these formats on a single dashboard.

The Work Item Charting capabilities are included in the on-premises version of Team Foundation
Server as well as Visual Studio Online. To create a chart, open the Team Foundation Server
Web Access portal and navigate to your team’s home page. Click on the View queries link in the
Activities section. As you can see in Figure 15-2, there is an All Bugs query that returns all of
the Bug work items for the Mobile System team.

Looking just below the All Bugs query results title, you can see three links, the standard Results and
Editor links and the new Charts link. Clicking the Charts link brings up the Charts page for the
All Bugs query, as shown in Figure 15-3. Each query now has its own page for charts of the results
of that query. Each page can hold multiple charts and is visible to the entire team.

What’s New in Team Foundation Server 2013? ❘ 403

c15.indd 04/22/2014 Page 403

FIGURE 15-1: My Work Items query in multiple chart formats

To create a new chart for this query, simply click the New chart link in the toolbar. This will bring up
the Confi gure Chart dialog box, as shown in Figure 15-4. We have fi lled in the values in Figure 15-4
to create a pie chart that shows the query results by Assigned To fi eld value. We have renamed the
chart to All Bugs By Assignment. Notice that the Confi gure Chart dialog box shows an example of
the chart that changes as we change the criteria.

When the chart has been confi gured, you can click OK and the chart will be saved to the Charts
page for the All Bugs query, as shown in Figure 15-5. It will now update as the underlying query
results change.

404 ❘ CHAPTER 15 REPORTING AND SHAREPOINT DASHBOARDS

c15.indd 04/22/2014 Page 404

FIGURE 15-2: All Bugs query results

FIGURE 15-3: Empty Charts page for the All Bugs query

What’s New in Team Foundation Server 2013? ❘ 405

c15.indd 04/22/2014 Page 405

FIGURE 15-4: Confi gure Chart dialog box

FIGURE 15-5: All Bugs query single chart

406 ❘ CHAPTER 15 REPORTING AND SHAREPOINT DASHBOARDS

c15.indd 04/22/2014 Page 406

The Charts page can hold multiple views of your data. We have created two additional charts for
the All Bugs query, as shown in Figure 15-6. If you need to change the criteria for a chart, you can
simply click the pencil icon on that chart to open the Confi gure Chart dialog box.

FIGURE 15-6: All Bugs query multiple charts

Different queries will provide different fi elds to Group By. For example, my All Bugs Query’s pie
chart could only Group Work Item Type, Assigned To, and State, whereas the Assigned To Me query
has the ability to be grouped by Work Item Type, State, Area Path, and Iteration Path. The fi elds
available are dependent on the types of work items returned in the query results.

NOTE This section has shown the charting functionality in Team Foundation
Server 2013 RTM. As of this writing, Visual Studio Online has already provided
the ability to Pin charts to the team home page. This feature will be provided to
on-premises Team Foundation Server installation in one of the Team Foundation
Server 2013 Updates.

What’s New in Team Foundation Server 2013? ❘ 407

c15.indd 04/22/2014 Page 407

Cross-Collection Reporting Support
Team Foundation Server 2008 allowed a single relational warehouse and cube per server. Ironically,
organizations that were large enough to need multiple Team Foundation Servers were the same
organizations that most needed aggregated reporting across their entire organizations.

Team Foundation Server 2010 allowed organizations like this to consolidate their multiple, separate
servers into a single logical server. Now that they have a single logical server, they also have a single
data warehouse across which they can do reporting.

Team project names are unique within a team project collection. Because of this, the data warehouse
schema was modifi ed to support a hierarchy of collections and projects.

None of the reports included with the out-of-box process templates are confi gured for cross-project
or cross-collection reporting. However, it is possible to modify the Team Project fi lter on the reports
to select multiple projects.

Changes to the Relational Warehouse
Before Team Foundation Server 2010, customer feedback refl ected that the latency for reporting
from the cube was too high. Customers wanted their work-item updates to be available in reports
almost immediately.

A common example was a daily stand-up meeting, whereby the team would be looking at the
Remaining Work report and question why the report showed that an individual or team hadn’t
made any progress. Often, it turned out that they had, in fact, updated their work items, but those
updates hadn’t been processed in the cube before the report was rendered.

NOTE One of the useful features that arrived in Team Foundation Server 2012
was the task boards. At the top of each task board page is a miniature burndown
chart, updated automatically every time you update any work item in the cur-
rent iteration. This is also true for the velocity graph at the top of the product
backlog screen and the capacity graph at the right of the sprint backlog screen.

Because this graph is not using the data warehouse functionality, it is always up
to date and does not incur any delays in updating. This makes it an ideal candi-
date for pasting into, say, a project status e-mail.

For more information, see Chapter 14.

Until the 2010 release, reporting against the relational warehouse was not supported. Since the 2010
release, that is no longer the case. There are now several views on top of the warehouse to support
reporting. These views make it easier to query for data and keep compatibility with future versions.
Additionally, the naming conventions have been standardized to help differentiate fact tables and
dimension tables. For example, dbo.Work Item is now called dbo.DimWorkItem, which identifi es it
as a dimension table.

408 ❘ CHAPTER 15 REPORTING AND SHAREPOINT DASHBOARDS

c15.indd 04/22/2014 Page 408

NOTE A more detailed discussion about fact tables and dimensions is provided
later in this chapter.

Along with supporting queries against the relational warehouse, the work-item tracking warehouse
adapters were updated for improved performance. The new adapters are now capable of moving
data from the operational store to the relational warehouse much faster than in previous releases.
The goal for the adapters was to keep the latency for work-item tracking less than fi ve minutes dur-
ing normal operations.

In the 2012 release, the only schema changes to the relational warehouse were:

 ➤ The addition of the Start Date and End Date to the iterations

 ➤ The removal of some of the fi elds that were used internally in the 2010 release for confi gura-
tion of the warehouse

Changes to the Analysis Services Cube
Although the cube in Team Foundation Server 2005 and 2008 provided useful data and was rea-
sonably well-used by customers, there was room for improvement. Along with supporting the
architecture improvements, the changes in Team Foundation Server 2010 improved usability, query
performance, and processing performance.

The main changes to the cube schema starting with Team Foundation Server 2010 include the
following:

 ➤ The Current Work Item and Work Item History measure groups were combined into the
Work Item measure group. Now you just include the Date measure to show historical trends.

 ➤ Area and iteration dimensions have been folded into the Work Item dimension as true
hierarchies.

 ➤ Some dimension names have been updated to make them more meaningful and provide
context, especially when looking at the entire list. For example, Platform is now
Build Platform.

 ➤ Dimensions starting with Related have been moved to the Linked Work Item dimension.

A more detailed discussion of measures is presented later in this chapter.

The main additions to the cube schema starting with Team Foundation Server 2010 include the
following:

 ➤ Work-item hierarchy and linking are now supported in the cube through the
Linked Work Item and Work Item Tree dimensions.

 ➤ Work-item types can now be grouped into categories. For example, the Bug category can
group Bug and Defect work-item types together. This is useful if you have different terminol-
ogy across your team projects and need a meaningful report across all of them.

What’s New in Team Foundation Server 2013? ❘ 409

c15.indd 04/22/2014 Page 409

 ➤ Area Path and Iteration Path are now available as attributes on the Work Item dimen-
sion. This allows you to show a fl at string (rather than a hierarchy) on your reports.

 ➤ As shown in Figure 15-7, display folders have been added to the Work Item dimension to
make it easier to group fi elds, rather than display one long list.

FIGURE 15-7: Display folders on the Work Item dimension

NOTE For more information on the data warehouse changes and the rea-
sons behind them, refer to John Socha-Leialoha’s three-part blog post titled
“Upgrading Team Foundation Server 2008 Reports to 2010” (Part I at http://
aka.ms/UpgradeTfsReports1; Part II at http://aka.ms/UpgradeTfsReports2;
and Part III at http://aka.ms/UpgradeTfsReports3). Also see the offi cial
MSDN documentation, “Changes and Additions to the Schema for the Analysis
Services Cube,” at http://aka.ms/TfsCubeChanges.

Optional and Richer SharePoint Integration
Integration with SharePoint is an important feature for Team Foundation Server. However, the
installation and confi guration of the integration was a signifi cant source of problems. Along with
the other architectural changes designed to support different server topologies, SharePoint integra-
tion is optional.

If you want to use the SharePoint integration features, you can confi gure SharePoint at install time
or at a later time. The confi guration options are designed to be fl exible.

Team Foundation Server 2013 integration is available with both SharePoint 2010 and
SharePoint 2013.

WARNING The reporting and SharePoint integration features are not available
when Team Foundation Server is confi gured in the Basic confi guration, when
Team Foundation Server Express is used, or when installed on a client operating
system (such as Windows 8). If you have any of these confi gurations and would
like to enable the reporting features, you must use a Standard or Advanced con-
fi guration on a server operating system.

http://aka.ms/UpgradeTfsReports1
http://aka.ms/UpgradeTfsReports1
http://aka.ms/UpgradeTfsReports2
http://aka.ms/UpgradeTfsReports3
http://aka.ms/TfsCubeChanges

410 ❘ CHAPTER 15 REPORTING AND SHAREPOINT DASHBOARDS

c15.indd 04/22/2014 Page 410

TEAM FOUNDATION SERVER DATA WAREHOUSE

The Team Foundation Server reporting and data warehouse features comprise three data stores, as
shown in Table 15-1.

TABLE 15-1: Team Foundation Server Reporting Data Stores

DATA STORE DATABASE NAMES CHARACTERISTICS

Operational Tfs_Confi guration,
Tfs_Collection

Normalized, optimized for retrieving the most
recent data, and transactional

Relational warehouse
database

Tfs_Warehouse Has a star schema, and includes all historical data
designed to be used for analysis

Analysis Services
cube

Tfs_Analysis Data is preaggregated, preindexed, and includes
advanced analysis features.

Along with these three data stores is a set of scheduled jobs that move data between the stores:

 ➤ Warehouse adapter jobs (sometimes called sync jobs) periodically copy changes from the
operational store to the relational database.

 ➤ Analysis processing jobs instruct the cube to begin either an incremental or full process.

Figure 15-8 shows a high-level representation of this data movement and processing.

Operational Stores Warehouse
Adapters Process

Warehouse
Relational Database

Analysis Services
OLAP Cube

• Tfs_Configuration
• Tfs_Collection1
• Tfs_Collection2

• Tfs_Warehouse
• Tfs_Analysis

FIGURE 15-8: High-level architecture of the Team Foundation Server data warehouse

Operational Stores
The operational stores in Team Foundation Server are nothing more than the databases
that support the normal day-to-day operations of the server. In previous versions of Team
Foundation Server, there were different databases for the different feature areas (for example, the
TfsWorkItemTracking and TfsVersionControl databases). In Team Foundation Server 2010, the
contents of these databases were merged into a single Tfs_Collection database for each team proj-
ect collection.

The schema of these databases is optimized for Team Foundation Server commands, rather than
reporting. The data in these databases is changing all the time and does not lend itself to historical
reporting and analysis.

Team Foundation Server Data Warehouse ❘ 411

c15.indd 04/22/2014 Page 411

The operational stores should not be accessed directly. The only supported interface for accessing
them is through the Team Foundation Server object model.

Relational Warehouse Database and Warehouse Adapters
Each component in Team Foundation Server has different requirements for storing data in the rela-
tional warehouse database. The warehouse adapters for each operational store are responsible for
transferring data to the data warehouse for their store.

Although the warehouse adapters are set to run on a schedule, they are also triggered and run on-
demand when data changes. This keeps the latency in the relational warehouse low.

The warehouse adapters are also responsible for making schema changes in the relational warehouse
and cube. For example, when you add a new fi eld to a work-item type and mark it as reportable,
the warehouse adapter will perform a schema change and add a new column to the relational ware-
house, as well as make changes to the cube defi nition.

The dynamic nature of these data adapters allows the structure and mechanics of the data warehouse
to be hidden from project administrators. This is one of the unique benefi ts of reporting in Team
Foundation Server. You can defi ne your work item types in a single place using relatively straightfor-
ward schema and tools. You then automatically get access to rich reporting features based on these
customizations. You never have to deal with database schema changes or updating cube structures.

The downside of this, however, is that if you want to make customizations to either the relational
warehouse or cube, you must deploy them as a custom warehouse adapter. If you don’t, your cus-
tomizations will be lost when the warehouse is rebuilt.

The relational warehouse database stores data in a set of tables organized in a star schema. The central
table of the star schema is called the fact table, and the related tables represent dimensions. For exam-
ple, the dbo.FactCurrentWorkItem table has one row for every work item stored in the work-item
tracking operational store. A dimension table stores the set of values that exist for a given dimension.
For example, a Person dimension is referenced by the Work Items fact table for the Assigned To and
Closed By properties. You’ll learn more about fact tables and dimensions later in this chapter.

Querying the Relational Warehouse Database
In Team Foundation Server 2010, writing reports against the relational warehouse database using
Transact-SQL (TSQL) queries became offi cially supported. As a rule of thumb, you’ll generally want
to use the cube for historical reports, or reports that require a lot of slicing and dicing using parame-
ters or aggregate data. The cube is preaggregated and indexed, and is ideal for this sort of reporting.

The relational warehouse, on the other hand, allows you to create reports that pull loosely related
data together in ways not possible with the cube.

Following are the nine views against which you can query and write reports with some level of assur-
ance that they will work when the server is upgraded to a future version of Team Foundation Server:

 ➤ CurrentWorkItemView

 ➤ WorkItemHistoryView

412 ❘ CHAPTER 15 REPORTING AND SHAREPOINT DASHBOARDS

c15.indd 04/22/2014 Page 412

 ➤ BuildChangesetView

 ➤ BuildCoverageView

 ➤ BuildDetailsView

 ➤ BuildProjectView

 ➤ CodeChurnView

 ➤ RunCoverageView

 ➤ TestResultView

The other views that begin with v and end with Overlay are used for processing the cube, and, as
such, aren’t meant for use in your own reports.

The relational warehouse is an ideal store to use if you require reports with a lower latency than the
cube can provide.

NOTE As with previous versions of Team Foundation Server, fi elds that have
the Html data type are not stored in the relational warehouse. Therefore, they
are not available in the cube. For reporting against those fi elds, you must use the
Work Item Tracking object model to query and retrieve them.

Querying the Current Work-Item View
Using the CurrentWorkItemView, you can query the relational warehouse and retrieve a list of work
items without using the Work Item Tracking object model. For example, following is a work item
query (WIQ) that returns all non-closed bugs assigned to John Smith in the Contoso project:

SELECT
[System.Id],
[Microsoft.VSTS.Common.StackRank],
[Microsoft.VSTS.Common.Priority],
[Microsoft.VSTS.Common.Severity],
[System.State], [System.Title]
FROM WorkItems
WHERE [System.TeamProject] = 'Contoso'
AND [System.AssignedTo] = 'John Smith'
AND [System.WorkItemType] = 'Bug'
AND [System.State] <> 'Closed'
ORDER BY
[System.State],
[Microsoft.VSTS.Common.StackRank],
[Microsoft.VSTS.Common.Priority],
[Microsoft.VSTS.Common.Severity],
[System.Id]

And here’s an equivalent query that retrieves the same data from the relational warehouse:

SELECT
[System_Id],
[Microsoft_VSTS_Common_StackRank],
[Microsoft_VSTS_Common_Priority],

Team Foundation Server Data Warehouse ❘ 413

c15.indd 04/22/2014 Page 413

[Microsoft_VSTS_Common_Severity],
[System_State],
[System_Title]
FROM CurrentWorkItemView
WHERE
[ProjectPath] = '\ContosoCollection\Contoso'
AND [System_AssignedTo] = 'John Smith'
AND [System_WorkItemType] = 'Bug'
AND [System_State] <> 'Closed'
ORDER BY
[System_State],
[Microsoft_VSTS_Common_StackRank],
[Microsoft_VSTS_Common_Priority],
[Microsoft_VSTS_Common_Severity],
[System_Id]

DYNAMICALLY RETRIEVING THE WEB ACCESS ADDRESS

One of the things that people want to do is provide a hyperlink from a work item in
a report to the Web Access view of that work item. This is useful, because it allows
others to interact with the work item without needing Visual Studio installed.

To be able to create the hyperlink, you need to know the address of the server.
Additionally, instead of surfacing the URL as a report parameter, or hardcoding it,
it is ideal to somehow retrieve it from the database. But how, you might ask?

From within a SQL query of the relational data warehouse, this can appear to
be diffi cult at fi rst. However, with the ToolArtifactDisplayUrl fi eld in the
DimToolArtifactDisplayUrl table, you can easily fi nd it.

The following SQL query essentially takes the fi rst artifact display URL and
retrieves the fi rst half of the string before /CollectionName/WorkItemTracking/
WorkItem.aspx?artifactMoniker=. This means that it will continue to work
regardless of whether the server is confi gured with a virtual directory (/tfs/) or
not, as well as HTTPS, custom port numbers, and so on.

SELECT TOP 1
 SUBSTRING(
 ToolArtifactDisplayUrl,
 0,
 PATINDEX(
 '%/' + ProjectNodeName + '%',
 ToolArtifactDisplayUrl
)
 + 1
) + 'web/' as WebAccesBaseUrl
FROM DimToolArtifactDisplayUrl
INNER JOIN DimTeamProject tp
ON
tp.ParentNodeSK = DimToolArtifactDisplayUrl.TeamProjectCollectionSK
WHERE ToolType = 'WorkItemTracking/Workitem'
AND ProjectNodeTypeName = 'Team Project Collection'

414 ❘ CHAPTER 15 REPORTING AND SHAREPOINT DASHBOARDS

c15.indd 04/22/2014 Page 414

Querying the Work-Item History View
You can construct an “as of” query that returns only the last records for each work item that was
modifi ed before a certain date. For example, the following “as of” query returns the remaining work
as of the end of December 2011:

SELECT System_Id, Microsoft_VSTS_Scheduling_RemainingWork
FROM WorkItemHistoryView WHERE System_ChangedDate < '1/1/2012'
AND System_RevisedDate >= '1/1/2012'
AND RecordCount > 0
AND ProjectPath = '\ContosoCollection\Contoso'

Other Considerations for Querying the Relational Warehouse
The relational warehouse is not suitable for all queries and, therefore, some will be faster using the
Work Item Tracking object model that uses the operational store. Team Foundation Server 2010
introduced multiple project collections, and these collections share the same relational warehouse
and cube.

The following are important considerations to keep in mind when writing queries against the views:

 ➤ Use ProjectPath or ProjectNodeGUID as the fi lter. A team project’s name is not necessar-
ily unique across multiple collections on the same logical server, whereas the project’s path is
fully qualifi ed with the collection name and a project’s GUID is also unique.

 ➤ Use unique keys for joins. For example, a work item ID is no longer guaranteed to be unique
within the warehouse, because the same work item ID could exist in different team project
collections.

 ➤ Be aware of compensating records. Whenever a work item is updated, a pair of records is
added to the warehouse. The fi rst record negates the previous record. This makes querying
the relational warehouse faster for some types of queries.

NOTE For more information on compensating records, see “Compensating
Records” on MSDN at http://aka.ms/TfsCompensatingRecords, and
“Work Item Tracking Compensating Records” at http://aka.ms/
TfsCompensatingBlog.

Analysis Services Cube
The fact tables in the relational warehouse are suitable for reporting on current information.
However, reporting on historical trends of data over time requires duplicating the data for every
time interval that you want to report on.

Each time the cube is processed, the relational warehouse data is aggregated, summarized, and
stored. The cube is a single central store to report against without having to aggregate across the
different operational stores.

http://aka.ms/TfsCompensatingRecords
http://aka.ms

Team Foundation Server Data Warehouse ❘ 415

c15.indd 04/22/2014 Page 415

The cube contains dimensions, facts, attributes, and measures. Table 15-2 and Figure 15-9 show the
defi nitions and the relationships of these items, respectively.

TABLE 15-2: Cube Terminology

TERM DESCRIPTION

Dimension Dimensions enable the data to be sliced in many ways. Data values are associated
with a set of dimensions, allowing you to show aggregate results sliced using a spe-
cifi c set of dimension values.

Fact Facts are data that can be associated with multiple dimensions. This data may also
be aggregated. Fact tables hold these values.

Attribute Under each dimension, you’ll fi nd a set of attributes, and possibly hierarchies (areas
and iterations are hierarchies). Each attribute is connected to a column in the corre-
sponding dimension table in the relational warehouse.

Measure Measures are values that correspond to columns in the corresponding fact table.

Dimension

Dimension

Dimension

Dimension Dimension

Measure

Attribute Attribute

Fact

FIGURE 15-9: Relationships of objects in the cube

NOTE For more information, see “Perspectives and Measure Groups Provided
in the Analysis Services Cube” on MSDN at http://aka.ms/Tfs2013Cube.

http://aka.ms/Tfs2013Cube

416 ❘ CHAPTER 15 REPORTING AND SHAREPOINT DASHBOARDS

c15.indd 04/22/2014 Page 416

Cube Perspectives
In the cube, perspectives are groups of related dimensions and measure groups. A perspective is a
subset of the features and objects of a cube. They are useful because you don’t have to scroll through
the whole Team System cube to get to where you need to be.

Perspectives are available only when you are using the Enterprise edition of SQL Server Analysis
Services. A license for only the Standard edition is included with Team Foundation Server, so you’ll
need to license the other edition separately if you want to use cube perspectives.

Cube Processing
The Analysis Services cube is processed periodically on a schedule. The processing is triggered by
two built-in Team Foundation Server jobs that correspond to the two different processing types:

 ➤ Full Process—Re-creates the cube from its defi nition, and processes every object in the cube.
The default processing interval is every day at 2 a.m. for a full process.

 ➤ Incremental Process—Processes only objects that have changes since the last full or incremen-
tal process. The default processing interval is every two hours for an incremental process.

If the previous cube process failed, or the cube schema has changed, the next process is upgraded
from an incremental process to a full process.

NOTE If you would like to change the processing interval, see the article
“Change a Process Control Setting for the Data Warehouse or Analysis Services
Cube” on MSDN at http://aka.ms/Tfs2013CubeConfig.

Data Warehouse Permissions
Users within Team Foundation Server are not automatically granted access to the relational ware-
house or cube. They must be explicitly granted access. The reason for this is that there are no
fi ne-grained permissions provided or security trimming performed in the warehouse. When users
have permission to view the warehouse, they have full access to the warehouse data for all team
projects in all team project collections.

In some organizations, it is perfectly acceptable to allow any individual with work-item access in
a particular project to have access to the whole data warehouse. However, in other more regulated
industries and organizations, these permissions are reserved for a smaller subset of users.

To grant access, the TfsWarehouseDataReader role exists in both the Tfs_Warehouse relational
database and the Tfs_Analysis cube. Users and groups can be added to these roles to allow them
access to the resources.

NOTE For more information, see the article “Grant Access to the Databases
of the Data Warehouse for Visual Studio ALM” at http://aka.ms/
Tfs2013CubeAccess.

http://aka.ms/Tfs2013CubeConfig
http://aka.ms

SharePoint Integration ❘ 417

c15.indd 04/22/2014 Page 417

SHAREPOINT INTEGRATION

Once you have the standard reporting features working correctly, you can optionally confi gure inte-
gration with SharePoint. SharePoint integration is comprised of the following parts:

 ➤ Team Foundation Server Extensions for SharePoint

 ➤ Excel Services and dashboard compatibility

SharePoint Extensions
In order for a team project to have SharePoint integration, Team Foundation Server must have
an association with a SharePoint web application. In order for this association to be confi gured,
the SharePoint server must have the Team Foundation Server Extensions for SharePoint Products
installed and confi gured.

There is no requirement that SharePoint be installed on the same server as Team Foundation Server,
or even managed by the same people. Many organizations already have an existing SharePoint farm,
and Team Foundation Server can integrate with the farm, as long as the Extensions are installed and
confi gured.

The Extensions include site templates, web parts, and SharePoint timer jobs that maintain the asso-
ciations between team projects and project portals, among other things.

NOTE For more information, see “Extensions for SharePoint Products” at
http://aka.ms/TFS2013SPExt.

Excel Services and Dashboard Compatibility
Excel Services is a feature of the Enterprise edition of SharePoint. It allows an Excel workbook to be
rendered on the SharePoint server and presented to the user as a web page. This is incredibly useful
because of the following:

 ➤ For report producers, pivot tables and pivot charts can easily be created in Excel.

 ➤ For report consumers, no extra software is required. The reports are simply web pages.

NOTE For detailed instructions on manually integrating Team Foundation
Server and SharePoint, you should consult some articles on MSDN. See “How
to: Set up remote SharePoint Products Team Foundation Server” at http://
aka.ms/TFS2013SetupSP, and “Confi gure Team Foundation Server Extensions
for SharePoint Products” at http://aka.ms/TFS2013SPExt.

http://aka.ms/TFS2013SPExt
http://aka.ms/TFS2013SetupSP
http://aka.ms/TFS2013SetupSP
http://aka.ms/TFS2013SPExt

418 ❘ CHAPTER 15 REPORTING AND SHAREPOINT DASHBOARDS

c15.indd 04/22/2014 Page 418

Adding a Project Portal and Reports to an Existing
Team Project

For a number of reasons, you might not have a project portal or reports associated with your team
project, such as in the following scenarios:

 ➤ The server or team project collection may not have had reporting or SharePoint integration
confi gured when the team project was created.

 ➤ The process template used to create the team project may not have included the reporting or
SharePoint tasks.

 ➤ Creating a SharePoint site might have been skipped during the project creation wizard.

 ➤ The connection between the team project and project portal may have been removed, or been
invalid, before an upgrade.

During a TFS 2005/2008 to 2013 upgrade, the TFS installation was fi rst upgraded to TFS 2010
before upgrading to TFS 2013. If the 2005 or 2008 server was imported to 2010 rather than
upgraded, the project portal and reporting settings would have been lost.

Fortunately, with the help of the Team Foundation Server Power Tools, it’s easy enough to add either
a project portal or the default reports from a process template after the fact. From a Visual Studio
command prompt, you can use the following commands:

 ➤ tfpt addprojectportal—Create a project portal for an existing team project that doesn’t
currently have one.

 ➤ tfpt addprojectreports—Create (or overwrite) the reports for an existing team project.

Additionally, you can use Visual Studio and navigate to the Team menu bar,
Team Project Settings, and then Portal Settings to modify the association of a team
project with a SharePoint site at any time, as shown in Figure 15-10.

CREATING REPORTS

Reporting is a powerful feature in Team Foundation Server. It breaks down the usual barrier within
teams that is often caused by a lack of information. Team Foundation Server provides a powerful set
of reports in the box, and provides the capability to add additional reports based on your needs.

Tools
Because reporting in Team Foundation Server is based upon SQL Server, any tool that can produce
reports from SQL Server can be used. Following are the main tools that Team Foundation Server is
designed to work with:

 ➤ Excel for pivot tables, pivot charts, and dashboards

 ➤ SQL Server Report Builder

 ➤ SQL Server Business Intelligence Development Studio (BIDS)

 ➤ SQL Server Data Tools

Creating Reports ❘ 419

c15.indd 04/22/2014 Page 419

FIGURE 15-10: Portal Settings dialog box

Each of these tools has different capabilities, as well as an associated learning curve. Figure 15-11
shows this comparison.

Lower Complexity

Excel Reports

Report Builder

SQL Server
Data Tools

Business
Intelligence

Development
Studio (BIDS)

Le
ss

 C
ap

ab
ili

ty
M

o
re

 C
ap

ab
ili

ty

Higher Complexity

FIGURE 15-11: Comparison of report authoring tools

Excel Reporting from a Work-Item Query
Creating reports with Excel has the lowest barrier to entry. It’s powerful enough for most purposes,
and leverages a tool that most people are already familiar with. Perhaps the most impressive new
reporting feature, originally introduced in Team Foundation Server 2010, is the capability to create
reports from work item queries.

420 ❘ CHAPTER 15 REPORTING AND SHAREPOINT DASHBOARDS

c15.indd 04/22/2014 Page 420

Although many people working with previous versions of the product used Excel to create reports
based on the cube, it was still not approachable for many. You fi rst had to be given access to the
cube, be told the server name, and then wade through all the dimensions to fi nd the ones you
wanted in your report.

Starting with Team Foundation Server 2010, you can go from a Work Item Query to a pivot chart
report in as little as two steps. No special knowledge is required. To do this, open Team Explorer, select
the Work Items link, and start by expanding either the Shared Queries or My Queries folder. Then,
right-click one of the queries and select Create Report in Microsoft Excel, as shown in Figure 15-12.

FIGURE 15-12: Selecting the Create Report in Microsoft Excel option

The fi rst thing that happens is that Excel translates the Work Item Query into a query for the
Analysis Services cube. After that, it presents a New Work Item Report dialog box, as shown in
Figure 15-13. From this dialog box, you select which fi elds that you would like to pivot by, as well as
the type of reports to generate.

Creating Reports ❘ 421

c15.indd 04/22/2014 Page 421

WARNING Sometimes translating the Work Item Query can take longer than
expected. The more columns that you have in your query, the longer the transla-
tion will take. It’s a good idea to have only the columns that you want to pivot
on in your query before you try generating a report.

FIGURE 15-13: New Work Item Report dialog box

There are two different types of reports:

 ➤ Current reports—These reports show the current state of the work items, represented as pie
charts, as shown in Figure 15-14.

 ➤ Trend reports—These reports show the historical trend of the work items, represented as
area charts, as shown in Figure 15-15.

422 ❘ CHAPTER 15 REPORTING AND SHAREPOINT DASHBOARDS

c15.indd 04/22/2014 Page 422

FIGURE 15-14: Current Report pivoted by State

FIGURE 15-15: Trend Report pivoted by State

Creating Reports ❘ 423

c15.indd 04/22/2014 Page 423

Once the reports are generated, you have a workbook prepopulated with the Analysis Services data-
base connection. You can further fi lter and customize the automatically generated reports, or create
entirely new reports.

NOTE For more information, see “Creating Reports in Microsoft Excel by
Using Work Item Queries” at http://aka.ms/Tfs2013ExcelReports.

SQL Server Reporting Services Reports
SQL Server Reporting Services provides a powerful reporting platform. Along with allowing you to
run rich reports, Reporting Services also provides the following features:

 ➤ Subscriptions—Reports can be executed on a regular schedule, and the results can be
e-mailed to the team (for example, a weekly progress report).

 ➤ Data-driven subscriptions—Reports can be executed and the parameters or delivery schedule
can be dynamically changed based upon the results of a database query. For example, you
could send a daily e-mail to team members who have high-priority bugs open.

 ➤ Caching and snapshots—If a report is particularly complex, or is refreshed regularly, you can
confi gure caching and snapshots to improve performance.

 ➤ Linked reports—By using linked reports, you can create multiple reports with different
parameters off a single base report (for example, a remaining work report with different area
and iteration parameters for different teams within a project).

These Reporting Services reports are also the most accessible. For example, they are available from
the following:

 ➤ Directly from the Report Manager website

 ➤ Integrated in Visual Studio Team Explorer

 ➤ As web parts on the SharePoint project portal

Permissions
Before you can access SQL Server Report Builder from the Report Manager website,
you must be granted the appropriate permission. In addition to this permission, if you want
to publish your report for others to use, you will need that permission as well. The
Team Foundation Content Manager role is created as part of the Team Foundation Server
confi guration and includes both of these permissions.

NOTE For more information, see “SQL Server Reporting Services Roles” at
http://aka.ms/Tfs2013SSRSRoles.

http://aka.ms/Tfs2013ExcelReports
http://aka.ms/Tfs2013SSRSRoles

424 ❘ CHAPTER 15 REPORTING AND SHAREPOINT DASHBOARDS

c15.indd 04/22/2014 Page 424

SQL Server Report Builder
Report Builder provides a Microsoft Offi ce–like report authoring environment. Using the tool, you
can create and edit reports directly from the Reporting Services server.

You can download and install SQL Server 2012 Report Builder from http://aka.ms/sql2012rb.
Once it is installed, you can access Report Builder from the Start menu under the
Microsoft SQL Server 2012 Report Builder 3.0 folder.

To build a simple report, open Report Builder and select the Chart wizard icon on the design sur-
face. When the New Chart Wizard appears, click the Create a dataset radio button and then click
Next. Then, on the Data Source Connections screen, select Browse. When the Select Data Source
screen appears, select the Tfs2010OlapReportDS shared data source from your Reporting Services
Server, as shown in Figure 15-16. Continue through the wizard. When prompted for Data Source
credentials, select Use the current Windows user.

FIGURE 15-16: Select Data Source screen

On the Design a query screen shown in Figure 15-17, drag the Work Item.Area Path dimension
attribute and the Work Item Count measure onto the query pane and click Next.

On the Choose a chart type screen, select a Column or Bar chart and click Next. On the Arrange
chart fi elds screen shown in Figure 15-18, drag Area_Path from the available fi elds list to the
Categories list. Then drag Work_Item_Count to the Values list and click Next.

http://aka.ms/sql2012rb

Creating Reports ❘ 425

c15.indd 04/22/2014 Page 425

FIGURE 15-17: Design a query screen

FIGURE 15-18: The Arrange chart fi elds screen

426 ❘ CHAPTER 15 REPORTING AND SHAREPOINT DASHBOARDS

c15.indd 04/22/2014 Page 426

Select a chart style and, when the wizard completes, select Run from the Ribbon (or press F5).
The report should be rendered, and you should see something similar to Figure 15-19.

FIGURE 15-19: Example report created with Report Builder

When you are fi nished with your report, you can save it to your Reporting Services server and share
it with other team members.

NOTE For more information, see “Getting Started with Report Builder” at
http://aka.ms/RBGettingStarted.

NOTE Both SQL Server 2008 R2 and SQL Server 2012 include Report Builder
3.0. This version includes new wizards and many other improvements over the
previous versions that make it a compelling choice for report authors.

http://aka.ms/RBGettingStarted

Creating Reports ❘ 427

c15.indd 04/22/2014 Page 427

SQL Server Business Intelligence Development Studio and
SQL Server Data Tools

SQL Server provides an integrated environment for developing cubes, data sources, and reports.
This tool has a different name depending on the version of SQL Server you have installed. In SQL
Server 2008 and 2008 R2, this tool is called Business Intelligence Development Studio (BIDS).
In SQL Server 2012, this tool is called SQL Server Data Tools (SSDT). To install BIDS, run the
Setup program for SQL Server 2008 or 2008 R2 and select the Client Components check box when
you specify the components to install. In SQL Server 2012, you will select SQL Server Data Tools
instead. Because BIDS and SSDT are add-ins to Visual Studio, they will install the Visual Studio
shell if you don’t already have it installed. BIDS and SSDT are usually installed with an older-than-
current Visual Studio Shell, so BIDS 2008 R2 runs inside Visual Studio Shell 2008, and SSDT 2012
runs inside the Visual Studio 2010 shell. These tools can be installed side by side on a computer with
newer versions of Visual Studio.

If you need to create complex and rich reports like the ones that are included with the product,
you should refer to the white paper by John Socha-Leialoha. The paper is called “Creating
Reports for Team Foundation Server 2010,” and it’s available at http://aka.ms/
Tfs2010Reports.

SETTING DEFAULT REPORT PARAMETERS WITH LINKED REPORTS

The reports that are included in the Scrum, Agile, CMMI process templates are
very powerful while, at the same time, very generic. (These process templates are
examined in more detail in Chapter 12.)

For them to be generic, a lot of their behavior is driven through parameters. For
example, there are parameters for areas, iterations, and work-item types. Without
any customization, each time users open the report, they must select the correct
parameters before the report is meaningful to them.

If you have multiple teams using a team project, and they are using different area
paths to keep their work items separate, the default parameter settings of the
reports can be frustrating. Even if you’re the only team working in a team project,
you might want quick access to reports with preconfi gured iteration parameters.

With the use of linked reports, you can predefi ne a set of parameters for a report
and have it appear as a new report without creating an actual copy of the original
report.

For more information, see the following blog posts:

 ➤ “Customizing Report Parameters—Cube Reports” at http://aka.ms/
TfsReportParams1

 ➤ “Customizing Report Parameters—SQL Reports” at http://aka.ms/
TfsReportParams2

http://aka.ms
http://aka.ms
http://aka.ms

428 ❘ CHAPTER 15 REPORTING AND SHAREPOINT DASHBOARDS

c15.indd 04/22/2014 Page 428

SharePoint Dashboards
SharePoint dashboards are a feature made possible through the integration between Team
Foundation Server 2013 and SharePoint 2010 or 2013. Each dashboard is made up of three different
types of web parts:

 ➤ Team Foundation Server web parts—These access the operational store, and show the cur-
rent data in the system. They are interactive and can be used to update work items.

 ➤ Page Viewer web parts—These display SQL Server Reporting Services reports. They pass
through parameters and cache results.

 ➤ Excel Services web parts—These render charts from Excel workbooks stored in a SharePoint
document library. They use the Single Sign-On (SSO) or Secure Store Service (SSS) to authen-
ticate to the cube server.

When Team Foundation Server is integrated with the Enterprise edition of SharePoint (which
includes Excel Services), the dashboards will display Excel Services web parts. For servers that don’t
have Excel Services available, the dashboards will use Page Viewer web parts and display Reporting
Services reports.

Both the Agile and the CMMI process templates come with the following dashboards. However,
only the fi rst two dashboards are available on a server without Excel Services:

 ➤ My Dashboard—Quickly access work items assigned to you.

 ➤ Project Dashboard—Review progress with the team. Shows the Task Burn Down and Burn
Rate reports.

 ➤ Progress Dashboard—Track progress toward completing an iteration.

 ➤ Bugs Dashboard—Monitor bug activity.

 ➤ Build Dashboard—Monitor code coverage, code churn, and build activity.

 ➤ Quality Dashboard—Troubleshoot software quality issues with the team.

 ➤ Test Dashboard—Monitor test progress and fi nd gaps in test coverage.

NOTE For more information, including detailed descriptions and samples
of each of the dashboards, see “Dashboards (Agile)” at http://aka
.ms/Tfs2013AgileDash and “Dashboards (CMMI)” at http://aka.ms/
Tfs2013CMMIDash.

Accessing Dashboards
The easiest way to access dashboards for a team project is to select the Documents link in Team
Explorer, and then select the Show Project Portal link, as shown in Figure 15-20. This will then
open the default web browser and navigate to the SharePoint site associated with that team project.

http://aka
http://aka.ms

Creating Reports ❘ 429

c15.indd 04/22/2014 Page 429

FIGURE 15-20: Show Project Portal link in Team Explorer

If there is no project portal associated with the team project, then the documents link will not be
available on the home screen.

Customizing a Dashboard
The default dashboards have no fi lters applied and, therefore, the fi rst customization you’ll want to
make is to scope them to the area and iteration that your team is currently using.

To create a customized dashboard for your team, follow these steps:

 1. Browse to an existing dashboard on your project portal site.

 2. Select the Copy Dashboard button in the site toolbar, as shown in Figure 15-21.

FIGURE 15-21: Toolbar showing Copy Dashboard button

 3. On the Copy Dashboard Page screen shown in Figure 15-22, enter a Dashboard File Name
and Title for the new dashboard. Then, click the Copy Dashboard button.

FIGURE 15-22: Copy Dashboard Page screen

430 ❘ CHAPTER 15 REPORTING AND SHAREPOINT DASHBOARDS

c15.indd 04/22/2014 Page 430

Now you can modify the web parts on the dashboard to show details specifi c to your team.

ADVANCED CUSTOMIZATION

A few advanced customization topics to briefl y look at include:

 ➤ Customizing project portals

 ➤ Customizing warehouse adapters

 ➤ TfsRedirect.aspx

Customizing Project Portals
Project portals are designed to be customized to the team or the organization’s needs. Beyond
the simple customization available within SharePoint, you can modify the process template to
change project portals created in the future. Following are a few scenarios that you might want
to do this for:

 ➤ Your organization has an existing SharePoint site template, and you want to modify it to
include the Team Foundation Server dashboards.

 ➤ You want to modify the existing Team Foundation Server site templates to include your cus-
tomizations for future project portals.

 ➤ You want to change the visual appearance of the portal site.

NOTE For more information, refer to the white paper, “Customizing Team
Foundation Server Project Portals,” by Phil Hodgson at http://aka.ms/
TfsProjPortals.

Customizing Warehouse Adapters
As discussed earlier, if you want to make customizations to either the relational warehouse or cube
that are beyond simple fi eld changes, you must deploy them as a custom warehouse adapter. If you
don’t deploy the changes as an adapter, your customizations will be lost when the warehouse is
rebuilt.

A custom adapter must know how to do the following:

 ➤ Create the schema in the relational warehouse.

 ➤ Retrieve and transform data from the operational store, and load it into the relational
warehouse.

 ➤ Create the schema in the analysis database.

 ➤ Create a warehouse adapter sync job and schedule it.

http://aka.ms

Summary ❘ 431

c15.indd 04/22/2014 Page 431

NOTE For more information, refer to the Team Foundation Server 2010 sample
warehouse adapter from Nick Ericson in the MSDN Code Gallery at http://
aka.ms/Tfs2010SampleAdapter. Even though it is for Team Foundation
Server 2010, it will work with Team Foundation Server 2013 once you update
the project references.

TfsRedirect.aspx
If you look at the Link property for the Page Viewer web parts on the dashboards, you’ll see that
they’re set to a value like the following:

/sites/DefaultCollection/FabrikamFiber/_layouts/TfsRedirect.aspx?tf:type=Report&tf:
 ReportName=Dashboards/Burndown&tf:ShowToolbar=0&Width=381pt&Height=180pt

TfsRedirect.aspx is a special piece of glue that helps SharePoint, Reporting Services, and Team
Foundation Server work together. For example, several items on a project portal that point to other
related resources are:

 ➤ Team Web Access

 ➤ Process Guidance

 ➤ Reports on the dashboard pages

Because these settings are stored only in Team Foundation Server and can be changed at any time,
SharePoint uses the TfsRedirect.aspx page to retrieve them.

By specifying the tf:Test parameter, you can see the underlying settings, which may be useful in
debugging project portal confi guration problems. For any existing project portal, simply append the
following to the site URL:

/_layouts/TfsRedirect.aspx?tf:type=ReportList&tf:Test=1&tf:clearcache=1

NOTE For more information, see “Using TfsRedirect to Display Reports in TFS
2010 Dashboards” at http://aka.ms/TfsRedirect.

SUMMARY

In this chapter, you learned about the compelling new Work Item Charting features that were
introduced in Team Foundation Server 2013. You also learned about the reporting feat ures
introduced in Team Foundation Server 2010, as well as the changes incorporated into the 2012
release. In addition, you learned about the various data stores in the system and how data fl ows
between them.

http://aka.ms/Tfs2010SampleAdapter
http://aka.ms/Tfs2010SampleAdapter
http://aka.ms/TfsRedirect

432 ❘ CHAPTER 15 REPORTING AND SHAREPOINT DASHBOARDS

c15.indd 04/22/2014 Page 432

This chapter covered the two main reporting technologies (Reporting Services and Excel Services),
along with the tools to create and customize the reports. This chapter also described how to quickly
and easily create a report from a simple Work Item Query. Finally, this chapter looked briefl y at
some advanced customization topics.

Chapter 16 takes a look at how you can integrate Team Foundation Server with Microsoft Project
Server and receive up-to-date project status and resource availability reports across multiple teams.

c16.indd 04/22/2014 Page 433

Project Server Integration
WHAT’S IN THIS CHAPTER?

 ➤ Getting to know the benefi ts of Project Server for Software
Development Teams

 ➤ Understanding scenarios where integration may be helpful

 ➤ Introduction to the key steps necessary to integrate Team
Foundation Server and Project Server

 ➤ Review the necessary software to be installed on a project
manager’s machine

In some organizations, working with traditional project managers or project management
offi ces (PMOs) is a fact of life for development and software engineering teams. Many of those
software engineering teams wonder how they can better interact with project managers or
PMOs without having to enter project tracking data twice or even worry about
another system.

Project Server, and Project Client, which connects to it, have become popular tools of choice
for those in the PMO community just as Team Foundation Server has been leveraged by soft-
ware development teams. This chapter discusses the key parts of both products and how to
begin integrating them for a better overall project planning and tracking experience.

OVERVIEW

Software development tasks may also be part of a larger project that contains activities and
tasks outside software engineering work. Those tasks outside the software engineering process
could have dependencies on software engineering milestones and deadlines. For example, after
a software project is “done,” it still needs to be deployed to an IT environment, users need to

16

434 ❘ CHAPTER 16 PROJECT SERVER INTEGRATION

c16.indd 04/22/2014 Page 434

be trained, marketing updated, and so on. Teams could certainly track those non-software develop-
ment tasks in Team Foundation Server, but it may not always be the appropriate solution depending
on the project. This is a place where the integration between Project Server and Team Foundation
Server really shines and gives you the best holistic approach for everyone involved.

There certainly are useful and innovative project management features in Team Foundation Server,
including many of the purpose-built Agile planning tools for managing software releases. There are
also really great tools and features built into Project Server that do not necessarily make sense to be
implemented in Team Foundation Server. Finally, there is a middle ground of features common to
both platforms. Integration provides the ability to utilize those features that are great in
each toolset.

The integration between Team Foundation Server and Project Server was initially shipped in Service
Pack 1 for Team Foundation Server 2010. It’s now included natively in Team Foundation Server
since the 2012 release and supports integration with Project Server 2010 with Service Pack 1, or
Project Server 2013.

If you want to try this integration, a demo environment is available to download at http://
aka.ms/ProjectServerTFSIntegrationVM2012, which includes a set of step-by-step walkthroughs
of how to use the tools. It was originally built for integration in Team Foundation Server 2012, but
it is very easy to take that environment and upgrade it to use Team Foundation Server 2013 and
Visual Studio 2013. Those simple upgrade steps are available in a blog post at http://aka.ms/
UpgradeProjectServerTFS2013VM.

Project Server Essentials
Project Server is particularly great at solving a few scenarios that some development and testing
teams are facing. Not all teams and organizations need these types of scenarios addressed, but those
that do might fi nd some comfort with leveraging them in Project Server. The following list describes
some scenarios that have come from organizations that have software development teams contribut-
ing to their projects:

 ➤ Budgeting and cost of projects—Project Server is able to apply costs to resources used, which
can include people and other material resources. It can then use those costs at a project level
to track an overall budget, especially across an organization’s portfolio of projects
in progress.

 ➤ Visibility into tracking shared resources—Because an organization may have multiple proj-
ects in progress, some team members might need to contribute to multiple projects. Project
Server is able to help “book” shared team members and has tools to track when a particular
team member will be over-used across multiple projects.

 ➤ Portfolio analysis—Project Server provides an organization with deep insight into its overall
portfolio of projects. This also includes the ability to customize the project request life cycle
from the early inception phases to include project costing estimates all the way to the comple-
tion of selected projects. Project Server’s portfolio analysis features also allow organizations
to help address a situation in which you have a certain budget available for projects in a

http://aka.ms/ProjectServerTFSIntegrationVM2012
http://aka.ms/ProjectServerTFSIntegrationVM2012
http://aka.ms

Overview ❘ 435

c16.indd 04/22/2014 Page 435

given year, but you’re wondering which projects to select for approval to deliver the highest
value to the organization for the budget we have available?

 ➤ Cross-project dependencies and deliverables—Project Server is able to track the effects of
your current project when another project’s deliverables are starting to fall behind.

 ➤ Schedules — Project Server is very much date-aware so that project managers are able to
schedule tasks and get estimates of project completion dates and task critical paths to
meet deadlines.

 ➤ Timesheets and administrative time—Teams that need to perform time tracking can do so
with Project Server.

 ➤ Vacation, holidays, and time off—By tracking when team members will not be available
because of company holidays, vacation, and other types of time off, Project Server is able to
help project managers with tracking overall project schedules and team members’ availability
based on that information.

 ➤ Non-people project resources—Certain projects may have non–people-related resources, such
as manufacturing equipment, event locations, and so on, that need to be tracked within a
project’s schedule and budget. Project Server can track those along with people-related tasks
and resources.

If any of these benefi ts sound particularly interesting to your organization then you may want to
look into integrating Project Server with your Team Foundation Server instance. The integration of
the two becomes an extremely powerful platform for tracking your projects and software releases.

Bidirectional Synchronization
One of the nice parts about the Team Foundation Server and Project Server integration is that it is
a two-way synchronization once it is set up. This means that project managers can make changes
and publish them to Project Server, which then gets pushed over to Team Foundation Server. Then
developers/testers can make changes in Team Foundation Server that are sent over as project change
requests to Project Server, which a project manager can approve and include in his or her projects.

Both clients have additional information displayed to the team member so that they can view details
about the integration. For example, team members using Visual Studio and Team Foundation Server
will notice a new tab on the work item form named Project Server, which contains fi elds related
to the integration, as shown in Figure 16-1. Additionally, the history of the work item will begin to
show all of the different synchronization events that occur for that work item.

Similarly, when the integration is set up and an enterprise project is mapped in Project Server, a
project manager will be able to open his or her enterprise project in Microsoft Project and notice a
few fi elds related to Team Foundation Server. Figure 16-2 shows a project plan including fi elds that
identify whether the plan should be published to the Team Foundation Server Team Project and as
what work item type. There is a new view added to the project plan called “Team Foundation Gantt
(Project Server),” which is where the additional fi elds are added.

436 ❘ CHAPTER 16 PROJECT SERVER INTEGRATION

c16.indd 04/22/2014 Page 436

FIGURE 16-1: Project Server tab on the work item form

FIGURE 16-2: Microsoft Project Plan with Team Foundation Server-specifi c columns

Work Item Synchronization Life Cycle
A Team Foundation Server administrator should understand the life cycle of a Team Foundation
Server work item, as it is synchronized with a task in an enterprise project stored in Project Server.
Let’s begin the discussion with a simple example showing the steps a project manager would take to
add a task to the project plan in Project Server and wanting to submit it to Team Foundation Server.

Overview ❘ 437

c16.indd 04/22/2014 Page 437

 1. The project manager opens his or her enterprise project from Project Server in
Microsoft Project.

 2. The project manager then adds a new task (or chooses an existing task) and changes the fi eld
value of “Publish to Team Project” to Yes and provides a value for the Work Item Type fi eld,
such as Requirement, User Story, Product Backlog Item, or Task depending on the process
template being used.

 3. The project manager then saves and publishes the enterprise project plan back to Project
Server. Project Server then takes the line marked to publish and creates a work item in Team
Foundation Server. At that point, any changes will be synchronized across.

 4. For example, now that the work item is created in Team Foundation Server, the develop-
ment manager can make changes such as creating children implementation tasks and updated
assignments and effort fi elds. Those changes will then get submitted to the Project Server to
be approved.

 5. However, the update changes have not been made to the enterprise project plan just yet.
Enterprise projects in Project Server have a concept of Status Update Approvals before they
are committed to the project plan. The project manager visits the Approval Center in Project
Server to approve each of the status updates that have come from Team Foundation Server.

 6. The project manager will open the enterprise project again, which includes the new status
updates, and then save and publish the enterprise project back to Project Server, which then
completes the synchronization life cycle.

The last two steps may not seem obvious if you have not interacted with Project Server before. By
default, all status updates not made by the project manager need to be approved. As mentioned
previously, this is done by the project manager in the Approval Center, as shown in Figure 16-3.

FIGURE 16-3: Approval Center in Project Server web app

The second item that may not be obvious is the publishing step. After any changes by the project
manager, those changes need to be published back to Project Server before they are completely

438 ❘ CHAPTER 16 PROJECT SERVER INTEGRATION

c16.indd 04/22/2014 Page 438

committed. This step allows project managers to make interim draft changes to their project plan
without making it “fi nal.”

These two steps may seem to be burdensome to some project managers, so they can set up an
auto-approval rule to remove one of the steps. Beginning in Project Server 2010 Service Pack 1,
project managers can also add an auto-publish rule as well, which will remove the second step.
However, some project managers prefer the granularity of this approach. These two concepts are
important for administrators of the integration to understand because this will likely come into
play when team members are concerned that something has completely synchronized from Team
Foundation Server.

The steps of the second life cycle covered here occur when the items start with the development team
and are synchronized over to Project Server. There are a few differences from the life cycle men-
tioned previously:

 1. A development manager creates a new product backlog item and children tasks for the indi-
vidual work that will be done to implement that product backlog item. The development
manager then opens the Project Server tab on the product backlog item’s work item form and
sets the value of the Submit to Project Server fi eld to Yes, and then chooses the name of the
enterprise project in the Enterprise Project fi eld. The development manager will then save the
work item and notice in the history fi eld submitted to Project Server for approval.

 2. The new item has not appeared on the project plan yet. The project manager needs to open
up the Approval Center in Project Server and approve the status updates.

 3. The project manager then opens up the enterprise project plan from Project Server and saves
and publishes the project plan to incorporate the newly synchronized item. At this point, the
work item in Team Foundation Server will show as fully approved and synchronized. The
project manager will also notice that the single summary item will have a roll-up from all of
the child tasks, including the assigned-to list and how many hours are remaining/completed
for each of those team members.

You will notice in step 1 that the development manager chose to submit only the parent product
backlog item and not the product backlog item and the child tasks. The development manager could
have taken the latter approach, but by sending over only the parent, the synchronization process will
roll-up the resource information automatically, and updates from the children are automatically syn-
chronized to the parent level as a summary to Project Server. That way, teams can work with their
project managers and choose to send over only summary level information updates or send over
even the details of the implementation tasks.

Default Field Mappings
By default, a limited number of fi elds are synchronized between Project Server and work items in
Team Foundation Server. Some fi elds depend on the work item type and which process templates are
used for team projects in Team Foundation Server. Table 16-1 discusses a sampling of the default
fi eld mappings that you will fi nd.

Overview ❘ 439

c16.indd 04/22/2014 Page 439

TABLE 16-1: Default Field Mappings

TEAM FOUNDATION SERVER FIELD PROJECT SERVER FIELD PROJECT SERVER STATUS QUEUE FIELD

Title Task Name Title

Assigned To Resources Resources

Completed Work Task Actual Work Resource Actual Work

Remaining Work Task Remaining Work Resource Remaining Work

Original Estimate Baseline Work

Start Date Task Start Resource Start

Finish Date Task Finish Resource Finish

You might notice from the table that two fi elds are stored for certain fi elds in Project Server. This is
because of the “approvals” workfl ow for a particular item in an enterprise project. The value may be
different from what is contained in the fully published enterprise project and what is currently in the
status approval queue.

You can also customize these fi eld mappings, including adding additional fi elds to synchronize.
Also, additional steps are required if you are using the Scrum process template for your team proj-
ect in Team Foundation Server. More information about how to customize the fi eld mappings and
what additional steps are necessary if you are using the Scrum process template can be found in the
MSDN article at http://aka.ms/CustomizeTFSPSFields.

Mirror Fields
Because of the “approval” cycle in Project Server, there are times when the value of the work item fi eld
may differ from what is currently in Project Server. This can be more prominent when a project man-
ager declines a status update approval. These types of situations can be monitored and are the reason
that work item types in Team Foundation Server have additional work item fi elds called mirror fi elds.

Mirror fi elds are used to store the intermediate value before status updates are approved. Mirror
fi elds are essentially a “second set of books.” For example, the mirror fi eld for the Remaining Work
fi eld is named Project Remaining Work. Whenever the values of those two fi elds are not the same
then it is an intermediate state where a status update has not been approved yet or has been declined.

MONITORING WORK ITEM SUBMISSIONS TO PROJECT SERVER

As an administrator, you will likely want to monitor the fl ow of status updates
between Team Foundation Server and Project Server. You can create a work item
query to fi nd problems in the synchronized-by fi ltering on Project Server Last
Submit Status = Failure. This will return a list of work items that have an issue
in the synchronization that you can then troubleshoot.

For more information about this process, you can read about additional trouble-
shooting steps at http://aka.ms/MonitorTFSPSIntegration.

http://aka.ms/CustomizeTFSPSFields
http://aka.ms/MonitorTFSPSIntegration

440 ❘ CHAPTER 16 PROJECT SERVER INTEGRATION

c16.indd 04/22/2014 Page 440

Team Foundation Server Global Workfl ows
A new concept was introduced for work item type defi nitions and process templates called
global workfl ows, which simplify the Project Server and Team Foundation Server integration. Global
workfl ows are not dedicated to this integration only, but can be used in other scenarios as well.

Global workfl ows defi ne a certain set of fi elds and rules that should exist on every work item type,
even if not defi ned in the work item type defi nition. Global workfl ows can be scoped to either a
team project or a team project collection. They can also defi ne global lists that should exist and be
used by fi elds defi ned in the global workfl ow fi elds.

Global workfl ows are used for several Project Server integration-specifi c fi elds that are needed and
simplify the process of easily defi ning those fi elds. Those administrators able to customize work item
type defi nitions need not worry about specifying the fi elds defi ned in the global workfl ow, which
simplifi es maintenance of those defi nitions. If you are customizing what fi elds are mapped to Project
Server, you may also want to make appropriate customizations to the global workfl ow for your team
project collection as well.

You can fi nd out more about Global Workfl ows by reading the MSDN article at http://aka.ms/
TFSGlobalWorkflow.

Relationship between Team Projects and Enterprise Projects
Each team project in Team Foundation Server can have multiple Project Server enterprise projects
mapped to it. However, it is important to know that an enterprise project in Project Server can be
mapped only to a single team project in Team Foundation Server. This relationship should be con-
sidered as your company forms its team project structuring strategy, as discussed in Chapter 2.

INITIAL CONFIGURATION

Confi guring integration between Team Foundation Server and Project Server has some fairly simple
initial steps that you must perform only one time. One step needs to be performed any time a new
enterprise project is created that will contain tasks synchronized with Team Foundation Server. This
section covers the essentials for setting up the integration.

Necessary Permissions
As an administrator, you want to make sure that the proper permissions are provided to the service
accounts used to run both Team Foundation Server and Project Server. This is one area that you will
want to make sure is completely implemented. It is commonly overlooked and will cause problems if
not set up correctly. The following list provides a summary of the necessary permissions:

 ➤ For Project Server 2010 and Project Server 2013, you must grant the Team Foundation
Server service account Full Control permissions for the Project Server Service Application so
it can be accessed properly.

 ➤ You must also grant the Team Foundation Server service account the permissions required
to access each mapped instance of Project Web Access (PWA). These differ by Project Server
version, so see the reference link in the paragraph following this list for the specifi c details.

http://aka.ms

Initial Confi guration ❘ 441

c16.indd 04/22/2014 Page 441

 ➤ Team members assigned tasks in enterprise projects in Project Server synchronized to Team
Foundation Server should be recognized as Contributors to the team project.

 ➤ Team members assigned to work items in Team Foundation Server synchronized to Project
Server should exist in the Enterprise Resource Pool in Project Server and should be granted
permissions to log in to Project Web Access.

Be sure to double-check the last two bulleted items. They both seem to be an area that many teams
forget to ensure. You can fi nd out more information about the necessary permissions for the inte-
gration and how to provide those permissions by reading the MSDN article at http://aka.ms/
TFSPSPermissions.

Command-Line Tool for Confi guration
The command-line tool used to administer the integration between Team Foundation Server and
Project Server is named TfsAdmin.exe. It is available whenever you install any version of Visual Studio
2013 because all versions include the Team Explorer components. You will fi nd the tool by opening a
command prompt window and navigating to the following directory for 32-bit operating systems:

cd %ProgramFiles%\Microsoft Visual Studio 12.0\Common7\IDE

and the following directory for 64-bit operating systems:

cd %ProgramFiles(x86)%\Microsoft Visual Studio 12.0\Common7\IDE

Project Server Installation Components
Additionally, you will need to install the Team Foundation Server Extensions for Project Server on
each web-tier and application-tier server that hosts a Project Server 2010 or Project Server 2013
installation that will synchronize with Team Foundation Server.

The Team Foundation Server Extensions for Project Server are available as part of the Team
Foundation Server 2013 ISO image, as shown in Figure 16-4.

FIGURE 16-4: Team Foundation Server ISO/DVD image with Project Server Extensions folder

http://aka.ms

442 ❘ CHAPTER 16 PROJECT SERVER INTEGRATION

c16.indd 04/22/2014 Page 442

One-Time Integration Steps
As mentioned earlier, some one-time steps are necessary to map the Project Server and Team
Foundation Server instances so that they know about each other for synchronization. The following
is a quick overview of each of these steps; more information can be found in the MSDN article at
http://aka.ms/TFSPSConfiguration.

 1. Register the Project Web Access (PWA) instances that will contain enterprise projects for
synchronization with Team Foundation Server. You perform the fi rst step by running this
command line, using the appropriate values for your setup:

TfsAdmin ProjectServer /RegisterPWA
 /pwa:http://project.contoso.local/pwa
 /tfs:http://tfs.contoso.local:8080/tfs

 2. You will want to map the Project Web Access (PWA) instance to the team project collections
it will synchronize with. You can perform this step by running the following command line
and replacing the appropriate values for your setup:

TfsAdmin ProjectServer /MapPWAToCollection
 /pwa:http://project.contoso.local/pwa
 /tfs:http://tfs.contoso.local:8080/tfs/DefaultCollection

 3. You will then defi ne the fi eld mappings for each of the team project collections that will par-
ticipate in the synchronization. You can use either the default fi eld mappings or a customized
set of fi eld mappings as described earlier in this chapter:

TfsAdmin ProjectServer /UploadFieldMappings
 /collection:http://tfs.contoso.local:8080/tfs/DefaultCollection
 /useDefaultFieldMappings

Once these three steps are fi nished, the synchronization will be ready, and you should not need to
run these commands again in the future. You have one more step for each enterprise plan, which is
covered in the next section.

Mapping Enterprise Projects to Team Projects
Now that the initial integration has been confi gured for Team Foundation Server and Project Server,
there is one fi nal action for each enterprise project that you want to participate in the synchroniza-
tion. You need to do this step each time project managers create new enterprise projects, so you need
to communicate to your project managers that they must let a Team Foundation Server administra-
tor know when they have created new enterprise projects.

This step needs to be done only once for each enterprise project. The enterprise project needs to be
mapped to a team project, and you should specify the types of work items that should participate for
synchronization with the particular mapping:

TfsAdmin ProjectServer /MapPlanToTeamProject
 /collection:http://tfs.contoso.local:8080/tfs/DefaultCollection
 /enterpriseproject:"E-Commerce Site Project Plan"
 /teamproject:"Engineering"
 /workitemtypes:"User Story,Task"

http://aka.ms/TFSPSConfiguration
http://project.contoso.local/pwa
http://tfs.contoso.local:8080/tfs
http://project.contoso.local/pwa
http://tfs.contoso.local:8080/tfs/DefaultCollection
http://tfs.contoso.local:8080/tfs/DefaultCollection
http://tfs.contoso.local:8080/tfs/DefaultCollection

Summary ❘ 443

c16.indd 04/22/2014 Page 443

The fi nal option for work item types will change depending on the process template used by your
team project. The previous example’s command-line entry used the MSF Agile process template. If
you are using the Scrum process template, you may want to specify for Product Backlog Items and
Tasks to be used. For the MSF CMMI process template, you might specify Requirements and Tasks.

You might also notice that the list of work item types includes a comma to separate each of the work
item types but does not include a space character between each list entry. Spaces are not accepted, so
be sure to watch for the proper syntax when you run this command-line entry in the future.

Necessary Software for Project Managers
The next thing to remember is that project managers using Project Server will need to have the
appropriate software installed on their machines if they want to open enterprise projects that are
published. The minimal install necessary for a project manager’s machine is as follows:

 ➤ Microsoft Offi ce Project Professional 2007, Microsoft Project Professional 2010, or
Microsoft Project Professional 2013

 ➤ Team Explorer for Visual Studio 2013 (http://aka.ms/TeamExplorer2013)

TEAM FOUNDATION SERVER CAL REQUIREMENT FOR
PROJECT MANAGERS

Even though Team Explorer needs to be installed to get the proper add-ins avail-
able in Microsoft Project, a Team Foundation Server Client Access License (CAL)
is not needed for project managers if they will be connecting only to Project Server.
If they need to look at details and interact in other ways with Team Foundation
Server that require a CAL, then you will still need a CAL for the project manager.
You can fi nd out more information about this requirement in the MSDN article at
http://aka.ms/TFSPSConfiguration.

SUMMARY

 As you can see, the Project Server and Team Foundation Server integration can be extremely benefi -
cial for certain teams and organizations to bring their project managers and software engineering
teams better in line with one another.

In this chapter, you learned about the integration between Project Server and Team Foundation
Server. You reviewed the scenarios about when Project Server makes sense and where it excels, as
well as the types of situations in which the integration might be benefi cial.

You also reviewed the features and benefi ts of the integration and the steps necessary to set up the
integration. Finally, you reviewed what was necessary for project managers to have installed on
their machines.

You begin the next part of the book in Chapter 17, which discusses the automated build system of
Team Foundation Server.

http://aka.ms/TeamExplorer2013
http://aka.ms/TFSPSConfiguration

c17.indd 04/22/2014 Page 445

PART IV
Team Foundation Build

 ▸ CHAPTER 17: Overview of Build Automation

 ▸ CHAPTER 18: Using Team Foundation Build

 ▸ CHAPTER 19: Customizing the Build Process

 ▸ CHAPTER 20: Release Management

c17.indd 04/22/2014 Page 447

Overview of Build Automation
WHAT’S IN THIS CHAPTER?

 ➤ Getting to know build automation

 ➤ Scripting a build

 ➤ Using build automation servers

 ➤ Adopting build automation

After version control, automating the build is the second most important thing you can do to
improve the quality of your software. This chapter defi nes build automation and examines
why it benefi ts the overall software engineering process. This is followed by a look at the
high-level capabilities and limitations of Team Foundation Server, and a comparison with
other common build systems in use today. Finally, some general advice is provided to assist in
adopting build automation in your environment today.

Subsequent chapters of this book dive deeper into Team Foundation Server’s build capabilities,
discuss how to customize the build process, and demonstrate this by working through a series
of common build customizations used in real-world scenarios.

WHAT’S NEW IN BUILD AUTOMATION

Team Foundation Server 2013 and Visual Studio Online have shipped with some improve-
ments to the automated build system that make it easier to get an automated build running
and to quickly extend the build functionality. These improvements include the ability to host
your build servers in Windows Azure, store build outputs in the Team Foundation Server
or Visual Studio Online server, and extend your build to perform custom actions using
PowerShell scripts. Each of these will be discussed further in this and in the following chapters
of Part IV.

17

448 ❘ CHAPTER 17 OVERVIEW OF BUILD AUTOMATION

c17.indd 04/22/2014 Page 448

Hosted Build Service
Within the Visual Studio Online service ecosystem is a capability known as the Hosted Build Service.
This service provides a relatively unlimited pool of build machines that are managed by Microsoft
and hosted in Windows Azure. The services provided mimic the Team Foundation Build architecture
described in Chapter 18 but without the cost of hardware acquisition, setup, and maintenance.

Visual Studio Online provides a hosted build controller that will provision a temporary build agent
to service your build request. The output of the build will be placed in the new server build drop
location in your Visual Studio Online account or in a version control folder that you specify.

The build agents provided in the service have a plethora of preinstalled software packages that your
build can utilize. Anything else it needs will have to be pulled from your version control repository
during the build.

NOTE To get a list of the software packages provided on the hosted
build agent you can view the offi cial list of software at http://aka.ms/
SoftwareOnHostedBuild. You can see a live list of the available software
packages by browsing to http://listofsoftwareontfshostedbuildserver
.azurewebsites.net/.

If you fi nd that you need software that is not provided by Microsoft, you still have the option to
register additional build controllers and agents that run on premises. These machines are registered
with your Visual Studio Online account, but their confi guration is fully controlled by you.

Server-Based Build Drops
In all versions of Team Foundation Server, you have the option to either have the build process copy
all of the outputs of compilation to a folder on a fi le server known as the build drop or to not copy
any fi les off the build agent machine. In Visual Studio Online and Team Foundation Server 2013,
you now have the option to have the outputs of compilation stored in a special location on
the server. The reason for this addition is that when the Hosted Build Service in Visual Studio
Online was implemented, it didn’t have any way to access your local fi le share. Storing the outputs
of compilation on the server solved this problem.

Some of the nice side-effects of this change is that now your build drops can be managed by Team
Foundation Server so you don’t have to go to IT to get access to a fi le share for your build outputs.
The server drops are also backed up with all of the other Team Foundation Server data.

REFERENCE Server drops are discussed further in Chapter 18.

http://aka.ms
http://listofsoftwareontfshostedbuildserver

Let’s Build Something ❘ 449

c17.indd 04/22/2014 Page 449

LET’S BUILD SOMETHING

Imagine building a house. You visit the site every day and see nothing but a muddy fi eld. The con-
struction team tells you, “Yup, we’re making excellent progress. The doors are all done and look
great. Walls are 80 percent there. Plumbing is ready to go, and the kitchen is ready to drop in.”
Every day that you visit, you see that same muddy fi eld. The construction teams tell you how well
progress is going. Sometimes they regale you with stories about how they decided the doors were
not going to be up to the job, so they threw them on a bonfi re and built new ones from scratch that
can open both ways, and even have little fl aps ready should you ever decide to get a cat.

But you never see any progress—just a muddy fi eld with lots of busy people running around
looking stressed.

Then, the day before you are due to move in, everything arrives on site at the same time. Things are
stuck together in a hurry—but it takes longer than everyone seemed to think it would. The day
draws on, night begins to fall, and everyone gets tired, but they heroically continue trying to get the
thing to fi t together.

In the morning, you take a look at your house. It’s a house for sure. A couple of the rooms are not
quite fi nished yet, because they didn’t fi t when they arrived onsite. A few of the screws are missing,
none of the paint is the color you would have chosen, and many things aren’t exactly how you’d
envisioned them when you drew up the plans six months ago. More embarrassingly for you, now
when you see the house you think of several places where it would have been great to have an extra
power outlet, and you realize you will probably never get to use the expensive hot tub that you asked
for. You can’t help wondering why they spent all that time putting cat fl aps in your doors when you
are allergic to cats, and yet they didn’t get the toilet plumbed in the main bathroom.

Now, try to imagine how your customers feel when dealing with something as ephemeral as
software. How do you show progress to a customer? How do you know how complete you are?
How do you know if everything works? How do you know if you are done with a particular feature
or if a feature is done enough to move onto the next one?

The only way to know all this is to assemble your software together and try it out as a whole, to
run your application, or to visit your website. Sure, some areas are missing or not quite functional
yet. But once you are able to see your application running, you know how close you are to fi nishing,
and it is also very easy for your customer to know how things are going. Once the customer sees it
for real, he or she might say that a particular feature you thought was only partially implemented
is actually enough to do what he or she wanted. The customer can suggest some course corrections
early on, which will make everyone happier with the end result. But you didn’t have to change too
much to get there.

The problem is that assembling your application can take time. But by making an investment in
automating this experience as you go through the software development process, you not only
ensure that you can accurately measure and demonstrate progress, but you also remove a huge
source of error when it comes to that last-minute push to completion.

450 ❘ CHAPTER 17 OVERVIEW OF BUILD AUTOMATION

c17.indd 04/22/2014 Page 450

If you are serious about the quality of the software you deliver then you need to be serious about
build automation.

WHAT IS BUILD AUTOMATION?

Build automation is the process of streamlining your build process so that it is possible to assemble
your application into a usable product with a simple, single action. This entails not just the part of
code a particular developer is working on but other typical activities such as the following:

 ➤ Compiling source code into binaries

 ➤ Packaging binaries into installable modules such as MSI fi les, XAP fi les, JAR fi les, DMG images,
and so on

 ➤ Running tests

 ➤ Creating documentation

 ➤ Deploying results ready for use

Only after the parts of your application come together can you tell if your application works and
does what it is supposed to. Assembling the parts of an application is often a complex, time-
consuming, and error-prone process. There are so many parts to building the application that,
without an automated build, the activity usually falls on one or two individuals on the team who
know the secret. Without an automated build, even they sometimes get it wrong, with show-
stopping consequences that are often discovered very late, making any mistakes expensive to fi x.

Imagine having to recall an entire manufacturing run of a DVD because you missed an important
fi le. Worse still, imagine accidentally including the source code for your application in a web distri-
bution or leaving embarrassing test data in the application when it was deployed to production. All
these things made headlines when they happened to organizations building software yet they could
have easily been avoided.

Integration of software components is the diffi cult part. Developers work on their features in
isolation, making various assumptions about how other parts of the system function. Only after the
parts are assembled do the assumptions get tested. If you integrate early and often, these integra-
tions get tested as soon as possible in the development process—thus reducing the cost of fi xing the
inevitable issues.

It should be trivial for everyone involved in the project to run a copy of the latest build. Only then
can you tell if your software works and does what it is supposed to. Only then can you tell if you are
going to have your product ready on time. A regular, automated build is the heartbeat of your team.

In Visual Studio, a developer can usually run his or her application by pressing the famous F5 key to
run the code in debug mode. This assembles the code together on the local workstation and executes
it, which makes it trivial for the developer to test his or her part of the code base. But what it doesn’t

What Is Build Automation? ❘ 451

c17.indd 04/22/2014 Page 451

do is ensure that the code works with all the latest changes committed by other members of the
team. In addition, pressing the F5 key simply compiles the code for you to run and test manually.

As part of an automated build, not only can you test that the code correctly compiles, but you can
also ensure that it always runs a full suite of automated tests. This instantly gives you a high degree
of confi dence that no changes that have been introduced have broken something elsewhere.

Pressing the F5 key is easy for a developer. You want your automated build to make it just as easy to
run your application—if not easier. This is where a build automation server plays a part.

The build automation server is a machine that looks for changes in version control and automati-
cally rebuilds the project. This can be on demand, on a regular schedule (such as nightly or daily
builds), or can be performed every time a developer checks in a fi le—a process that is often referred
to as continuous integration. By giving you rapid feedback when there is a problem with something
that has been checked in, the software development team has the opportunity to fi x it right away
when it is fresh in the mind of the person just checking in code. Fixing the issue early minimizes the
cost of the repair as well as the impact the problem code would have on the development efforts of
your team members.

However, before you can set up a continuous integration build on a build server, you must script
your build so that it can be run with a single command.

MARTIN FOWLER ON CONTINUOUS INTEGRATION

The term continuous integration (CI) emerged from Agile software development
methodologies such as Extreme Programming (XP) at the turn of the millennium.
Martin Fowler’s paper on continuous integration from 2000 is still worth reading
today at http://www.martinfowler.com/articles/continuousIntegration
.html.

Note that, as originally described, the term refers to increasing the speed and quality of software
delivery by decreasing the integration times, and not simply the practice of performing a build for
every check-in. Many of the practices expounded by Fowler’s paper are supported by tooling in Team
Foundation Server—not simply this one small feature of the build services. However, the term contin-
uous integration has come to be synonymous with building after a check-in has occurred and is, there-
fore, used by Team Foundation Server as the name for this type of trigger, as discussed in Chapter 18.

Scripting a Build
The most basic form of build automation is to write a script that performs all the operations neces-
sary for a clean build. This could be a shell script, batch fi le, PowerShell script, and so on. However,
because of the common tasks that you perform during a build (such as dependency
tracking, compiling fi les, batching fi les together, and so on), a number of specialized build scripting
languages have been developed over the years.

http://www.martinfowler.com/articles/continuousIntegration

452 ❘ CHAPTER 17 OVERVIEW OF BUILD AUTOMATION

c17.indd 04/22/2014 Page 452

Make
The granddaddy of specialized build scripting languages is Make. Originally created at Bell Labs
by Dr. Stuart Feldman in 1977, Make is still commonly used on UNIX-based platforms to create
programs from source code by reading the build confi guration as stored in a text-based fi le called
makefi le. Typically, to build an executable, you had to enter a number of commands to compile and
link the source code, also ensuring that dependent code had been correctly compiled and linked.
Make was designed specifi cally to help C programmers manage this build process in an
effi cient manner.

A makefi le defi nes a series of targets, with each command indented by a tab inside the target:

#Comment
target: dependencies
<TAB>command

For example, a simple Hello World application could have the following makefi le:

Define C Compiler and compiler flags
CC=gcc
CFLAGS=-g

The default target, called if make is executed with no target.
all: helloworld

helloworld: helloworld.o
 $(CC) $(CFLAGS) -o $@ $< # Note: Lines starts with a TAB

helloworld.o: helloworld.c
 $(CC) $(CFLAGS) -c -o &@ $<

clean:
 rm -rf *o helloworld

Note that one of the main features of Make is that it simplifi es dependency management. That is to
say that to make the executable helloworld, it checks if the target helloworld.o exists and that
its dependencies are met. helloworld.o is dependent on the C source fi le helloworld.c. Only if
helloworld.c has changed since the last execution of Make will helloworld.o be created and,
therefore, helloworld.

The previous script is the same as typing the following commands in sequence at the
command line:

gcc -g -c -o helloworld.o helloworld.c
gcc -g -o helloworld helloworld.o

In a simple makefi le like the one shown previously, everything is very readable. With more com-
plex makefi les that do packaging and deployment activities, it can take a while to fi gure out which

What Is Build Automation? ❘ 453

c17.indd 04/22/2014 Page 453

commands are executed in which order. Make uses a declarative language that can be diffi cult to
read for developers used to coding in more imperative languages (like most modern program lan-
guages are). For many developers, it feels like you must read a makefi le slightly backward—that is,
you must look at the target, and then follow all its dependencies, and then their dependencies, to
track back what will actually occur fi rst in the sequence.

Since its inception, Make has gone through a number of rewrites and has a number of derivatives
that have used the same fi le format and basic principles, as well as providing some of their own
features. There are implementations of Make for most platforms, including NMAKE from
Microsoft for the Windows platform.

Apache Ant
Ant is a build automation tool similar to Make, but it was designed from the ground up to be a
platform-independent tool. James Duncan Davidson originally developed Ant at Sun Microsystems.
It was fi rst released in 2000. According to Davidson, the name “Ant” is an acronym for “Another
Neat Tool.” It is a Java-based tool and uses an XML fi le, typically stored in a fi le called build.xml.
With its Java heritage and platform independence, Ant is typically used to build Java projects.

Ant shares a fair number of similarities with Make. The build fi le is composed of a project that
contains a number of targets. Each target defi nes a number of tasks that are executed and a set of
dependencies. Ant is declarative and does automatic dependency management. For example, a sim-
ple Hello World application in Java could have the following build.xml to compile it using Ant:

<?xml version="1.0" encoding="utf-8"?>
<project name="helloworld" basedir="." default="package">

 <target name="compile">
 <mkdir dir="${basedir}/bin" />
 <javac srcdir="${basedir}/src"
 destdir="${basedir}/bin"
 debug="on"
 includeAntRuntime="false"/>
 </target>

 <target name="jar">
 <jar destfile="${basedir}/helloworld.jar"
 basedir="${basedir}/bin" />
 </target>

 <target name="clean">
 <delete file="helloworld.jar" />
 <delete dir="${basedir}/bin" />
 </target>

 <target name="package" depends="compile,jar">
 <!-- Comments are in standard XML format -->
 </target>

</project>

454 ❘ CHAPTER 17 OVERVIEW OF BUILD AUTOMATION

c17.indd 04/22/2014 Page 454

The tasks in Ant are implemented as a piece of compiled Java code implementing a particular inter-
face. In addition to the large number of standard tasks that ship as part of Ant, a number of tasks
are available in the open source community. Manufacturers of Java-related tooling will often pro-
vide Ant tasks to make it easier to work with their tools from Ant.

Ant scripts can get quite complex, and because the XML used in an Ant script is quite verbose,
scripts can quickly get very large and complicated. Therefore, for complex build systems, the main
build.xml fi le can be broken down into more modular fi les.

Ant is so common among the Java community that most of the modern IDEs ship with a version of
Ant to allow automated builds to be easily executed from inside the development environment as
well as with tooling to help author Ant scripts.

Apache Maven
Maven is an open source project management and build automation tool written in Java. It is
primarily used for Java projects. The central concept in Maven is the Project Object Model (pom
.xml) fi le that describes the project being built. While Maven is similar in functionality to Make
and derivations such as Ant, it has some novel concepts that defi ne a distinct new category of build
tools, making Maven worth discussing in this book.

Make and Ant allow a completely free-form script to be coded, and for you to have your source
fi les located in any manner. Maven takes the not-unreasonable assumption that you are perform-
ing a build and uses conventions for where fi les should be located for the build process. It applies
the Convention over Confi guration software design paradigm to builds. The main advantage of this
paradigm is that it helps you fi nd your way around a Maven project because they all must follow
certain patterns to get built (at the disadvantage of losing some fl exibility).

The other main difference between Maven and the Make-inspired build tools is that it takes depen-
dency management to the next level. While Make and Ant handle dependencies inside the project
being built, Maven can manage the dependencies on external libraries (which are especially com-
mon in many Java projects). If your code takes a dependency on a certain version of a library, then
Maven will download this from a project repository and store it locally, making it available for
build. This helps the portability of builds because it means that all you need to get started is Java
and Maven installed. Executing the build should take care of downloading everything else you need
to run the build.

NOTE For more information about Maven, visit http://maven.apache.org/.

NAnt
NAnt (http://nant.sourceforge.net/) was inspired by Apache Ant, but it was written in .NET
and designed to build .NET projects. Like Ant, it is also an open source project and was originally
released in 2001. Interestingly, according to the NAnt FAQ, the name NAnt comes from the fact

http://maven.apache.org
http://nant.sourceforge.net

What Is Build Automation? ❘ 455

c17.indd 04/22/2014 Page 455

that the tool is “Not Ant,” which, to extract Ant from its original acronym, would mean that NAnt
was “Not Another Neat Tool.” But, in fact, NAnt was a very neat way of performing build automa-
tion, and it was especially useful in early .NET 1.0 and 1.1 projects.

Syntactically very similar to Ant, NAnt fi les are stored with a .build suffi x such as nant.build.
Each fi le is composed of a project that contains a number of targets. Each target defi nes a number
of tasks that are executed and a set of dependencies. There are tasks provided to perform common
.NET activities such as <csc /> to execute the C# command-line compiler tool.

The main problem with NAnt fi les is that they are not understood by Visual Studio, and so changes
made to the Visual Studio solution fi les (.sln) and project fi les must also be made in the NAnt fi le;
otherwise, the dependencies would not be known to the automated build script. To execute a build
using the .sln fi le or the .vbproj/.csproj fi les, you must install Visual Studio on the build server
and use the devenv task to drive Visual Studio from the command line, which most people avoid.

MSBuild
MSBuild is the build system that has been used by Visual Studio since Visual Studio 2005. However,
the MSBuild platform is installed as part of the .NET Framework, and it is possible to build projects
using MSBuild.exe from the command line without using the Visual Studio IDE.

Visual Studio keeps the MSBuild fi le up-to-date for the project. In fact, the .csproj and .vbproj
fi les that are well known to developers in Visual Studio are simply MSBuild scripts.

MSBuild was heavily infl uenced by XML-based build automation systems such as Ant or NAnt,
and also by its predecessor NMAKE (and therefore Make). MSBuild fi les typically end with a *proj
extension (for example, TFSBuild.proj, MyVBProject.vbproj, or MyCSharpProject.csproj). The
MSBuild fi le follows what should by now be a familiar pattern. It consists of a project, and inside
the project, a number of properties and targets are defi ned. Each target contains a number of tasks.

Following is an example of a simple MSBuild script that you could execute from a Visual Studio
command prompt with the command msbuild helloworld.proj:

<?xml version="1.0" encoding="utf-8"?>
<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 DefaultTargets="SayHello" >

 <PropertyGroup>
 <!-- Define name to say hello to -->
 <Name>World</Name>
 </PropertyGroup>

 <Target Name="SayHello">
 <Message Text="Hello $(Name)!" />
 </Target>

</Project>

However, MSBuild has some notable exceptions. In addition to simple properties in a
PropertyGroup, as shown previously (which can be thought of as key-value pairs), there is also a

http://schemas.microsoft.com/developer/msbuild/2003

456 ❘ CHAPTER 17 OVERVIEW OF BUILD AUTOMATION

c17.indd 04/22/2014 Page 456

notion of an Item. Items are a list of many values that can be thought of as similar to an array or
enumeration in programming terms. An Item also has metadata associated with it. When you create
an Item, it is actually a .NET object (implementing the ITaskItem interface). There is a predefi ned
set of metadata available on every Item, but you can also add your own properties as child nodes of
the Item in the ItemGroup.

Another way that the use of MSBuild differs from tools such as Ant or NAnt is that Visual Studio
and Team Foundation Server ship with a number of templates for the build process. These are stored
in an MSBuild script with a .targets extension. They are usually stored in %ProgramFiles%/
MSBuild, %ProgramFiles(x86)%/MSBuild or in the .NET Framework folder on the individual
machine. The actual build script created by Visual Studio usually just imports the relevant
 .targets fi le and provides a number of properties to customize the behavior of the build process
defi ned in the .targets fi le. In this way, MSBuild shares some slight similarities to Maven in that a
typical build pattern is presented, which the project customizes to fi t.

In an MSBuild script, reading the fi le from top to bottom, the last place to defi ne a property or
target wins (unlike in Ant, where the fi rst place defi ned is the winner). This behavior means that
anything you write after you import the .targets fi le in your MSBuild script will override behavior
in the imported build template.

The standard templates provided by Microsoft include many .targets fi les that are already called
in the standard template prefi xed with Before or After, which are designed as hook points for your
own custom logic to run before or after these steps. A classic example would be BeforeBuild and
AfterBuild. It is considered good practice to override only targets designed to be overridden like
this, or to override properties designed to control the build process. The imported .targets fi les are
typically well-commented and can be read if you would like to learn more about what they do.

The following is a basic .vbproj fi le as generated by Visual Studio 2013 for a simple Hello World
style application. Hopefully, you will now recognize and understand many of the elements of the
fi le. Notice that is doesn’t contain any actual Targets—these are all in the imported Microsoft
.VisualBasic.targets fi le, including the actual callout to the Visual Basic compiler. The .vbproj
fi le just contains properties and ItemGroups, which confi gure how that .target fi le behaves:

<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="12.0" DefaultTargets="Build"
 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <Import Project="$(MSBuildExtensionsPath)\$(MSBuildToolsVersion)
 \Microsoft.Common.props"
 Condition="Exists('$(MSBuildExtensionsPath)\$(MSBuildToolsVersion)
 \Microsoft.Common.props')" />
 <PropertyGroup>
 <Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration>
 <Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
 <ProjectGuid>{1B7AC2CB-6612-475A-837D-A7CAB495109E}</ProjectGuid>
 <OutputType>Library</OutputType>
 <RootNamespace>HelloWorld</RootNamespace>
 <AssemblyName>HelloWorld</AssemblyName>
 <FileAlignment>512</FileAlignment>
 <MyType>Windows</MyType>
 <TargetFrameworkVersion>v4.5</TargetFrameworkVersion>
 </PropertyGroup>

http://schemas.microsoft.com/developer/msbuild/2003

What Is Build Automation? ❘ 457

c17.indd 04/22/2014 Page 457

 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU' ">
 <DebugSymbols>true</DebugSymbols>
 <DebugType>full</DebugType>
 <DefineDebug>true</DefineDebug>
 <DefineTrace>true</DefineTrace>
 <OutputPath>bin\Debug\</OutputPath>
 <DocumentationFile>HelloWorld.xml</DocumentationFile>
 <NoWarn>42016,41999,42017,42018,42019,42032,42036,42020,42021,42022</NoWarn>
 </PropertyGroup>
 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Release|AnyCPU' ">
 <DebugType>pdbonly</DebugType>
 <DefineDebug>false</DefineDebug>
 <DefineTrace>true</DefineTrace>
 <Optimize>true</Optimize>
 <OutputPath>bin\Release\</OutputPath>
 <DocumentationFile>HelloWorld.xml</DocumentationFile>
 <NoWarn>42016,41999,42017,42018,42019,42032,42036,42020,42021,42022</NoWarn>
 </PropertyGroup>
 <PropertyGroup>
 <OptionExplicit>On</OptionExplicit>
 </PropertyGroup>
 <PropertyGroup>
 <OptionCompare>Binary</OptionCompare>
 </PropertyGroup>
 <PropertyGroup>
 <OptionStrict>Off</OptionStrict>
 </PropertyGroup>
 <PropertyGroup>
 <OptionInfer>On</OptionInfer>
 </PropertyGroup>
 <ItemGroup>
 <Reference Include="System" />
 <Reference Include="System.Data" />
 <Reference Include="System.Xml" />
 <Reference Include="System.Core" />
 <Reference Include="System.Xml.Linq" />
 <Reference Include="System.Data.DataSetExtensions" />
 </ItemGroup>
 <ItemGroup>
 <Import Include="Microsoft.VisualBasic" />
 <Import Include="System" />
 <Import Include="System.Collections" />
 <Import Include="System.Collections.Generic" />
 <Import Include="System.Data" />
 <Import Include="System.Diagnostics" />
 <Import Include="System.Linq" />
 <Import Include="System.Xml.Linq" />
 <Import Include="System.Threading.Tasks" />
 </ItemGroup>
 <ItemGroup>
 <Compile Include="Class1.vb" />
 <Compile Include="My Project\AssemblyInfo.vb" />
 <Compile Include="My Project\Application.Designer.vb">
 <AutoGen>True</AutoGen>
 <DependentUpon>Application.myapp</DependentUpon>

458 ❘ CHAPTER 17 OVERVIEW OF BUILD AUTOMATION

c17.indd 04/22/2014 Page 458

 </Compile>
 <Compile Include="My Project\Resources.Designer.vb">
 <AutoGen>True</AutoGen>
 <DesignTime>True</DesignTime>
 <DependentUpon>Resources.resx</DependentUpon>
 </Compile>
 <Compile Include="My Project\Settings.Designer.vb">
 <AutoGen>True</AutoGen>
 <DependentUpon>Settings.settings</DependentUpon>
 <DesignTimeSharedInput>True</DesignTimeSharedInput>
 </Compile>
 </ItemGroup>
 <ItemGroup>
 <EmbeddedResource Include="My Project\Resources.resx">
 <Generator>VbMyResourcesResXFileCodeGenerator</Generator>
 <LastGenOutput>Resources.Designer.vb</LastGenOutput>
 <CustomToolNamespace>My.Resources</CustomToolNamespace>
 <SubType>Designer</SubType>
 </EmbeddedResource>
 </ItemGroup>
 <ItemGroup>
 <None Include="My Project\Application.myapp">
 <Generator>MyApplicationCodeGenerator</Generator>
 <LastGenOutput>Application.Designer.vb</LastGenOutput>
 </None>
 <None Include="My Project\Settings.settings">
 <Generator>SettingsSingleFileGenerator</Generator>
 <CustomToolNamespace>My</CustomToolNamespace>
 <LastGenOutput>Settings.Designer.vb</LastGenOutput>
 </None>
 </ItemGroup>
 <Import Project="$(MSBuildToolsPath)\Microsoft.VisualBasic.targets" />
 <!-- To modify your build process, add your task inside one of the
 targets below and uncomment it.
 Other similar extension points exist, see Microsoft.Common.targets.
 <Target Name="BeforeBuild">
 </Target>
 <Target Name="AfterBuild">
 </Target>
 -->
</Project>

Windows Workfl ow Foundation
Although this chapter has familiarized you with specialized build scripting languages, so far no
mention has been made of other programming and scripting methods that could also be used to cre-
ate a build (such as PowerShell, batch fi les, or even UNIX shell scripts). But one such general-
purpose framework is worth mentioning here because of its use by the build automation functional-
ity in Team Foundation Server—Windows Workfl ow Foundation (WF).

Using Build Automation Servers ❘ 459

c17.indd 04/22/2014 Page 459

WF is a programming framework from Microsoft used for defi ning and executing workfl ows.
The WF version used by Team Foundation Server is version 4.5 and is part of the .NET Framework
4.5. WF can be coded using the XML-based XAML markup or in any .NET language directly
against the Windows Workfl ow Foundation APIs, which ship with the .NET Framework.

Unlike the specialized build languages, WF contains no functionality built in for dependency
management—or even methods for mass manipulation of fi les. Therefore, its use by Team
Foundation Server for build automation might seem a little odd at fi rst. However, WF provides a
couple of capabilities that traditional build scripting languages do not.

The build scripting languages do not typically store states between instances, but workfl ow is all
about state. WF maintains state, gets input and sends output to the world outside of the workfl ow
engine, provides the control fl ow, and executes the code that makes up the work.

In addition, most build scripting languages control the execution on a single machine. The state
persistence nature of WF brings with it the ability to take components of the build and deploy them
across multiple machines. This means that you can split some of the workload of your build across
several machines and bring the results back together before proceeding with the rest of the build
process. For example, you could perform compilation on one machine, while generating documenta-
tion from the source on another, and bring them both together when you package your build. This
capability provides another weapon in your arsenal when trying to reduce the overall time for a
build to complete, and thus tightening the feedback loop for your builds.

For activities that require more traditional build capabilities (such as amassing a bunch of fi les
together and compiling them), the WF templates used by Team Foundation Server rely on the tradi-
tional build scripting languages—typically MSBuild.

Chapters 18 and 19 explain more about WF and how it is used by Team Foundation Build. The rest
of this chapter looks in more detail at the concept of a build automation server.

USING BUILD AUTOMATION SERVERS

Once you have a single command that can run your build, the next step is to run it periodically. This
ensures that the product in version control is not only always in a runnable state, but also removes
yet another manual step in the chain and fully automates the build process. Having the build run-
nable on a server ensures that the build is repeatable on a machine other than the one used by the
developer to code the project. Just this simple act of separation helps to ensure that all dependencies
are known about and taken into account by the build, which is what helps build repeatability.

In the earliest days of build automation, the build was performed periodically (typically weekly,
nightly, or daily) using a simple cron job or scheduled task.

Building on every single check-in to the version control system requires a machine with dedicated
build server logic. It was exactly this logic that was built for a project being implemented by a com-
pany called ThoughtWorks (an IT consultancy focused on Agile software development practices).

460 ❘ CHAPTER 17 OVERVIEW OF BUILD AUTOMATION

c17.indd 04/22/2014 Page 460

The Continuous Integration (CI) build server logic was then later extracted into a standalone
project, which became CruiseControl.

CruiseControl
CruiseControl (http://cruisecontrol.sourceforge.net/) is an open source build server imple-
mented in Java. Therefore, it runs on many platforms, including Windows and Linux. At the heart
of CruiseControl is the build loop that periodically checks the confi gured version control system for
changes to the code and, if a change is detected, will trigger a new build. Once the build is complete,
a notifi cation can be sent regarding the state of the build.

Confi guration of CruiseControl is performed using a single config.xml fi le. Because of its
long life as a vibrant and active open source project, many extensions have been contributed to
CruiseControl over time. Many different version control systems (including Team Foundation
Server) can be queried by CruiseControl using these extensions. An equal number of notifi ca-
tion extensions exist including e-mail, a web-based console, instant messenger, or even a system
tray application in Windows. Output from the build (including results of unit tests, code coverage
reports, API documentation, and so on) is available via the web interface.

While any build process can, in theory, be executed by CruiseControl, it is typically used to auto-
mate Ant builds. Therefore, it is typically used to build Java projects.

As discussed, Team Foundation Server is supported by CruiseControl as a version control reposi-
tory. However, data about the build and build notifi cations are kept within the CruiseControl
system.

CruiseControl.NET
CruiseControl.NET (http://www.cruisecontrolnet.org/) is an open source build server, but, as
the name suggests, it is implemented using .NET. It was loosely based on the original Java version of
CruiseControl, and it was also originally developed by the same ThoughtWorks consultancy.

Confi guration of CruiseControl.NET is typically performed by editing an XML fi le called
ccnet.config. It is also capable of working with a number of version control systems, including
Team Foundation Server, and because of its focus on .NET developers, it is capable of building
.NET projects by using NAnt or MSBuild scripts and notifying the developers of the results.

Hudson/Jenkins
Hudson is another open source build server implemented in Java. Hudson was the original name
for the server but after a bit of an acrimonious falling out between the main community maintainer
of the project and the holders of the Hudson trademark, a community fork of the project was cre-
ated called Jenkins. In recent years, they have become a popular alternative to CruiseControl, not
least because of an easy-to-use web-based interface for confi guring new builds, rather than relying
on manual editing of XML fi les.

http://cruisecontrol.sourceforge.net
http://www.cruisecontrolnet.org

Using Build Automation Servers ❘ 461

c17.indd 04/22/2014 Page 461

While Hudson/Jenkins is capable of building a number of projects (including Ant and even
MSBuild), it has some special features for handling Maven builds and tracking dependencies
between the builds for Maven projects, which is what makes it worth calling out in particular in
this book.

Hudson is capable of working with many version control tools, including Team Foundation Server.
However, like all external build systems, data about these builds is kept inside the Hudson system,
though it does have some useful build reporting capabilities.

Team Foundation Server
Build automation is so vital to improving the quality of software development that, since its original
release in 2005, Team Foundation Server has included build automation capabilities. Internally, the
feature was known by the name “Big Build,” but people refer to the build automation component of
Team Foundation Server as Team Build or Team Foundation Build.

MSBuild fi rst shipped with Visual Studio in 2005, and the original incarnation of Team Foundation
Build in 2005 was based heavily around MSBuild. A build was defi ned by an MSBuild script called
TFSBuild.proj located in a folder under $/TeamProject/TeamBuildTypes/BuildTypeName in
Team Foundation Server version control.

When a build was triggered, the TFSBuild.proj fi le was downloaded to the build server and exe-
cuted. Results of the build were published back to the server, and, importantly, metrics about it were
fed into the powerful Team Foundation Server data warehouse. Additionally, the build results were
automatically linked with entries in the Team Foundation Server work item tracking engine.

However, in the original 2005 release, the capabilities of Team Foundation Build were very limited.
There was no built-in process for triggering builds—they had to be triggered manually, or users had
to confi gure their own jobs to trigger builds periodically or listen for check-ins and trigger continu-
ous integration builds.

Thankfully, the 2008 release of Team Foundation Server saw huge improvements in the build capa-
bilities. In fact, Team Foundation Build was probably the single biggest reason to upgrade from
Team Foundation Server 2005. In 2008, you had the ability to trigger builds by one of several trig-
ger types, including scheduled builds and continuous integration style builds.

The 2010 release saw even more improvements to Team Foundation Server’s build capabilities. The
biggest of these was the move from a totally MSBuild-based solution to one using WF as the build
orchestration engine. This had several important advantages, including the ability to easily surface
common build confi guration properties into the user interface in Visual Studio, as well as the ability
to distribute a build across multiple servers (or Build Agents).

While you get very rich integration in Team Foundation Server within the version control, build,
and work item tracking functionality, it is important to note that the build automation capabilities
of Team Foundation Server can be used only with Team Foundation Server version control or Git.
While this should not be an issue for readers of this book, it is an important element to factor in

462 ❘ CHAPTER 17 OVERVIEW OF BUILD AUTOMATION

c17.indd 04/22/2014 Page 462

when planning your migration to Team Foundation Server. Only after your source code is in Team
Foundation Server does it make sense to switch on its build automation capabilities.

ADOPTING BUILD AUTOMATION

Hopefully, by now, you are suitably convinced that build automation is something that you want to
do. But how should you go about adopting build automation as a practice?

The fi rst step is to ensure that you have a single command that you can run to fully build and pack-
age your product ready for deployment. If you use Visual Studio then this is very easy because most
Visual Studio project types are easily built using MSBuild. However, if you have components devel-
oped in Java or other software languages then you will need to do some work to put together your
build script using the most appropriate scripting language (such as Ant or Maven).

Next, you should ensure that everyone knows how to build the project and that all the developers
can run this from their machines.

Once the build is easy to run, the next step is to periodically run the build to ensure that you always
have a clean code base. If you have suffi cient resources, and your build is fast enough, then strive for
a continuous integration style of build and ensure that you have a fast (and hopefully fun) method of
notifi cation to tell the developers when the build has been broken. A simple e-mail notifi cation will
suffi ce and should be used at a minimum, but you can be more creative if you would like.

BRIAN THE BUILD BUNNY

Some ways of making the team pay attention to the state of the build are more
imaginative than others. A popular way of encouraging the team to pay attention
to the current state of the build is to make creative and eye-catching build status
notifi cation mechanisms. While wall displays and lava lamps are a good way of
communicating this information to the team, Martin has even gone so far as to
connect a talking, moving robot rabbit into Team Foundation Server. For more
information on this project (including a prize-winning YouTube video and full
source code), see http://aka.ms/BrianTheBuildBunny.

Sadly, the company that created Brian the Build Bunny is no longer in business.

Just this simple step of running the build regularly will signifi cantly affect the productivity of your
team. No longer will developers need to roll back changes they have downloaded because they do
not compile in their environment. At this point in your adoption of build automation, the trick is
to keep things fun, but to gradually introduce a little peer pressure to ensure that the build status
is usually good. If a build fails for some reason, that build failure should be the team’s immediate
priority. What change to the system made the build fail? Who just broke the build? Fix the build and
then resume normal work.

http://aka.ms/BrianTheBuildBunny

Summary ❘ 463

c17.indd 04/22/2014 Page 463

If you are developing a website, then make your build automatically deploy to a server so that people
can easily play with the latest version of the code. If you are building a client-side application, try to
package it so that it can easily be executed by anyone involved in the project. MSI fi les or ClickOnce
installers are good ways of doing this on Windows, but DMG images for the Mac, RPM/DEB fi les on
Linux, or Eclipse Update sites for Eclipse developers are all great ways of making it easy to run the
latest build.

Once the team has become familiar with the notion of builds happening automatically, and gotten
into the habit of ensuring that the build is “good” at all times, you can gradually raise the bar on
determining what makes a good build.

To begin with, simply being able to compile the build and package it for deployment is good enough.
Next, you want to introduce things such as automated unit tests (again, slowly at fi rst) so that not
only does the build compile, but it also actually works as originally intended. You can also intro-
duce other code-quality indicators at this point, such as ensuring that code meets team-wide cod-
ing standards. Over time, you can introduce targets—such as 20 percent of code being covered by
the unit tests—and then gradually increase this percentage. In Team Foundation Server, you can
also increase quality by making the build run before the code being checked in is committed to the
 version control system. This feature is known as Gated Check-in and is discussed in Chapter 18.
Using the Lab Management features described in Chapter 26, you can even deploy your complex
n-tier application out to a series of servers in your lab, and then execute full integration tests in that
environment, to validate your build. For the developer, this is still incredibly easy; all she has to do
is check in her code.

The trick is to be constantly improving the quality of your builds but still ensuring that checking
in and getting a clean build is fast and easy. By keeping the feedback loop between a check-in and a
working, deployable product to test as short as possible, you will maximize the productivity of your
team, while also being able to easily demonstrate progress to the people sponsoring the development
activity in the fi rst place.

SUMMARY

 This chapter provided a glimpse of what’s new in build automation in Team Foundation Server
2013. It explained what build automation is and the benefi ts it brings. You learned about some of
the various ways to script an automated build and how to run that build periodically using a build
automation server. Finally, the chapter provided tips on how to adopt build automation, in general,
inside the organization.

Once you have migrated your source code into Team Foundation Server, getting builds confi gured
is an important next step. As discussed in this chapter, if you are already using an existing build
automation server, then most of these are already able to use Team Foundation Server as a ver-
sion control repository from which to draw when automating the build. However, there are several
advantages to using Team Foundation Server’s built-in build automation capabilities—primarily
the integration you get between the version control and work item tracking systems, but also the

464 ❘ CHAPTER 17 OVERVIEW OF BUILD AUTOMATION

c17.indd 04/22/2014 Page 464

excellent reporting capabilities provided by Team Foundation Server. The regular builds act as a
heartbeat to which you can track the health of your project once all the data from version control,
work item tracking, and build automation is combined in the reports provided by Team
Foundation Server.

Things have been somewhat generalized in this chapter because build automation is important
regardless of the technology or platform you choose to use. However, Team Foundation Server has
some innovative features around build automation.

Chapter 18 describes in detail how to create automated builds inside Team Foundation Server. It
describes all the features that Team Foundation Server provides, and it highlights new features in
the 2013 release. You will learn about the architecture of the Team Foundation Build system and
how to work with builds. Finally, the build process will be examined in detail, describing what it
does and how it works.

c18.indd 04/22/2014 Page 465

Using Team Foundation Build
WHAT’S IN THIS CHAPTER?

 ➤ Getting to know the build automation features provided by Team
Foundation Server

 ➤ Understanding the Team Foundation build architecture

 ➤ Installing a build controller and build agent

 ➤ Working with builds

 ➤ Understanding the build process

 ➤ Editing build process parameters

 ➤ Building both .NET and Java projects with Team Foundation Server

This chapter introduces the build automation capabilities of Team Foundation Server, the
core concepts, and how to install the build server functionality. You will learn how to create
your own builds based on the standard build process templates, along with how to use and
manage them.

NOTE For information on customizing the standard build process, see
Chapter 19.

18

466 ❘ CHAPTER 18 USING TEAM FOUNDATION BUILD

c18.indd 04/22/2014 Page 466

INTRODUCTION TO TEAM FOUNDATION BUILD

The build automation capabilities of Team Foundation Server have probably undergone the most
signifi cant change since the initial release of Team Foundation Server 2005. Originally, the build
functionality extended MSBuild to allow for a basic level of build automation integrated with Team
Foundation Version Control and work item tracking.

In the 2008 release, the build system came of age in its own right as a fully enterprise-ready build
automation system. That release introduced new fi rst-class concepts into Team Foundation Server,
such as the build defi nition and build agent, and it also had fl exible build triggering functionalities
provided out of the box. However, the build process was still tightly tied to MSBuild.

The 2010 release introduced even more features into the build automation area. The biggest change
was the introduction of Windows Workfl ow Foundation as the main build orchestration mecha-
nism. The actual compilation of solutions is still handled by the specialized build language (such as
MSBuild for .NET solutions, but also Ant or Maven for Java-based projects). However, the rest of
the process is governed by a build process template written using Windows Workfl ow Foundation.

NOTE For more information on these build languages, see Chapter 17.

Other notable features new in the 2010 release include gated check-in support, private builds,
build notifi cations, common build customization properties, integration with Symbol and Source
servers, enhanced build deletion capabilities, and the introduction of a new concept called the build
controller.

For customers who run their own on-premises Team Foundation Server, the 2012 release of Team
Foundation Build was largely a refi nement of existing functionality. One of the notable features is
the ability to increase the effi ciency of the gated check-in process by confi guring it to build multiple
check-ins at the same time.

For the 2012 release, a lot of effort was put into re-architecting how the build controllers and agents
communicate with Team Foundation Server. In previous releases, the Team Foundation Server
reached out to the build servers to try and establish a connection and initiate builds. This became
a problem when the build server was behind a fi rewall or otherwise not routable location.

Team Foundation Server 2013 brings additional refi nements, such as the inclusion of Server Drop
Folders, which allow the build to push the outputs of compilation onto the Team Foundation Server
instance rather than to a local fi le share.

With the introduction of the Visual Studio Online service, the product team needed to allow
customers to run their own build servers with the hosted service. This necessitated a move to a poll-
ing-based messaging architecture for build server communication. Essentially, the Team Foundation

Team Foundation Build Architecture ❘ 467

c18.indd 04/22/2014 Page 467

Server maintains a message queue for each build server, and the build servers poll the queue continu-
ously to keep in sync.

TEAM FOUNDATION BUILD ARCHITECTURE

Figure 18-1 shows several of the logical components that are critical in the Team Foundation Build
architecture. A build is defi ned by a build defi nition, which describes the build in detail, including
what should be built, how, and when. More information about build defi nitions, as well as how to
create and manage them, is provided later in this chapter.

Build Service

Symbol
Server

Drop
ServerBuild

Build
Agent

Build
Definition

Executes

Build
Controller

Application
Tier

Queues

Publishes

Archives

Agent polls the Controller
for available builds

FIGURE 18-1: Team Foundation Build logical architecture

The build defi nition belongs to a team project in Team Foundation Server. When the application tier
determines that a build for the build defi nition should be performed, it sends a build request mes-
sage to the queue for that build controller.

The build controller then downloads the Windows Workfl ow–based build process template defi ned
for the build defi nition and executes it. By default, this causes a build to be queued on the next
available build agent in the controller’s pool of agents. When the selected build agent polls the build
controller during the next polling interval, it picks up the build request from its queue.

A build agent is the actual machine that performs the build. Each build agent has a build control-
ler as a parent, but one build controller can have multiple build agents that it can use for the build.
Each build controller must be assigned to a single project collection.

468 ❘ CHAPTER 18 USING TEAM FOUNDATION BUILD

c18.indd 04/22/2014 Page 468

The build agent executes the main part of the build process as described in the build defi nition’s
process template—including calling MSBuild to perform the actual compilation and test steps.

Once the build agent has successfully executed the build, the default build process template then
archives the build results (such as the website, executable fi les, assemblies, and so on) to a Windows-
based fi le share or the server drop location. It will also publish any symbols to the symbol server (if
confi gured).

All the information about the resulting build (including the build number, status, and information
on the individual build’s progress for a particular build defi nition) are called the build details. These
details are displayed in a build report.

Note that the build controller and build agent processes are hosted by the build service. The build
controller and build agent may live on the same machine. However, it is recommended that they do
not reside on the same machine as the Team Foundation Server application tier in a production
confi guration. Executing a build is very CPU- and disk I/O-intensive. Therefore, the operation of
builds could affect the performance of your application tier if running on the same machine, which
could reduce the productivity of your entire development group.

SETTING UP THE TEAM FOUNDATION BUILD SERVICE

This section details how to set up the build service to enable build automation. This is useful for
those administering a Team Foundation Server instance. If you already have a build controller for
your project collection, you may wish to skip this section and go straight to the section “Working
with Builds” to discover how to create new build defi nitions and manage them.

NOTE The build service for Team Foundation Server is installed from the
Team Foundation Server media. This section briefl y touches on installing the
build service; but, for the most recent information on how to install and con-
fi gure the build service, as well as the list of supported hardware and software,
see the “Team Foundation Server Installation Guide.” The guide is included
in the install media for Team Foundation Server, but the latest version is pub-
lished at http://aka.ms/tfsInstallGuide. Microsoft continues to update the
“Installation Guide” download to include extra guidance or any new issues
that surface. Therefore, it is always worth working from the downloaded ver-
sion. After you download the “Installation Guide,” you cannot view its contents
unless you right-click the .chm fi le, click Properties, and then click Unblock. As
an alternative, you can double-click the .chm fi le to open the Open File-Security
Warning dialog box, clear the “Always ask before opening this fi le” check box,
and then click Open.

As discussed, for production use, we recommend that you install the build service on a separate
machine from the application tier. However, a build machine (any machine running the build service

http://aka.ms/tfsInstallGuide

Setting Up the Team Foundation Build Service ❘ 469

c18.indd 04/22/2014 Page 469

in either the build controller or build agent role—or both) is well-suited to installation in a virtual
machine. In the case of a build agent machine, it is particularly important that the virtual machine
has fast disk access and plenty of CPU resources allocated.

Hosting the build agent in a virtual machine has several advantages that come along with the tech-
nology, such as the ability to rapidly add machines to the available pool of build agents for a con-
troller and manage those agents across the physical hardware hosting them. Because a build process
requires access to the machine to run any code that may execute as part of the build and test scripts,
running in virtualization also provides for a degree of isolation between build agents to ensure that
the actions of one build do not affect the outcome of another. Another benefi t of virtualization
worth mentioning is that the build agent can easily be restored to a known clean state at any time—
again, ensuring a clean build environment.

You must have local administrative permission to install the build controller or agent services on a
machine. As part of the installation, you must provide a service account under which the installed
services will run. This user is often referred to as the TFSBUILD user.

If standard builds are required, and the policy in your company permits it, it is recommended to
use the Network Service account. This will avoid issues encountered when using a real domain user
account such as expiring passwords, and so on. The Network Service option is available only when
running the build services as a Windows service in a domain environment where the build agent and
the application tier machine are in the same domain or have a trusted domain relationship.

If you need to manually add a Network Service account to a group such as the Project Collection
Build Service Accounts, the format to use is DOMAIN\MACHINE_NAME$, where DOMAIN is the build
server’s domain name, and MACHINE_NAME is the machine name of the build server.

If the user performing the installation is also part of the Project Collection Administrators group
on the project collection to which you will be attaching the build service, this installation pro-
cess will automatically add the TFSBUILD user to the appropriate Build Services group in the
project collection. Otherwise, you must manually add the TFSBUILD user to the group. (See the
“Team Foundation Server Installation Guide http://aka.ms/TFS2013InstallGuide” for more
information.)

Just as with the Team Foundation Server installation, setting up the build service is done in two
parts: installation followed by confi guration.

Installing Team Foundation Build
From the Team Foundation Server installation media, navigate to the tfs_server.exe fi le and run
it. You will then be prompted for the installation directory and to accept the License Terms before
you can click Install Now.

The installation will then proceed. Depending on the prerequisites required, you may be forced to
do a reboot as part of the installation process. Note that the install will add prerequisites (such as
.NET) to do a basic build. However, if you wish to perform more-advanced operations (such as
a test impact analysis), you must install a suitable version of Visual Studio (such as Visual Studio
Ultimate or Visual Studio Premium) onto the build agent machine as well.

http://aka.ms/TFS2013InstallGuide%E2%80%9D

470 ❘ CHAPTER 18 USING TEAM FOUNDATION BUILD

c18.indd 04/22/2014 Page 470

Confi guring the Team Foundation Build Service
Once the installation has completed, the Team Foundation Server Confi guration Center Wizard
will be displayed. If you wish to confi gure the build service after installation, you can access it by
running the Team Foundation Server Administration Console from the Start menu. Click Build
Confi guration ➪ Confi gure Installed Features ➪ Confi gure Team Foundation Build Service, and
click Start Wizard.

Regardless of whichever way you get into it, you will be presented with the Welcome screen, which
you should read before clicking Start Wizard. After reading the next Welcome screen and opting to
send any setup information to Microsoft, click Next to go to the Select a Team Project Collection
screen of the wizard, as shown in Figure 18-2.

FIGURE 18-2: Build Service Confi guration Wizard

Here you must defi ne the project collection to which the build service is bound. Note that this can
be one (and only one) project collection per build service instance. If you have many project collec-
tions in your organization, but want them to share the same build hardware, you should use virtual-
ization to host several virtual machines running the build controllers for each project collection.

Click the Browse button shown in Figure 18-2 to select the server and project collection. If the
server drop-down in the Connect to Team Project Collection dialog box shown in Figure 18-3 is
empty, or does not display the server you need to talk to, clicking the Servers button will allow you
to add a new server instance fi rst, and then select the project collection.

Setting Up the Team Foundation Build Service ❘ 471

c18.indd 04/22/2014 Page 471

FIGURE 18-3: Connect to Team Project Collection dialog box

Clicking the Connect button in the dialog box shown in Figure 18-3 will then populate the selected
project collection in the Build Service Confi guration Wizard, and it will allow you to proceed to the
Confi gure Team Foundation Build Service screen shown in Figure 18-4 by clicking Next.

FIGURE 18-4: The Build Services screen of the Build Service Confi guration Wizard

472 ❘ CHAPTER 18 USING TEAM FOUNDATION BUILD

c18.indd 04/22/2014 Page 472

Depending on the number of processors that you have available, you may wish to confi gure multiple
build agents to run on the same machine under the build service. This allows for parallel building
of projects on the same machine. However, you should be sure that your build server has suffi cient
CPU resources and fast enough disks to ensure that it can perform adequately in this way. The
default setting (and likely most appropriate for a virtualized build server) is to have one build agent
per CPU. A dual core virtual machine is shown in Figure 18-4, which is why two agents are shown
as the default.

Note that, if you have selected a project collection that already has a build controller, the Confi gure
Team Foundation Build Service screen will look as shown in Figure 18-5. In that instance, if you
wanted to add the current machine as a build agent to the selected build controllers pool, you could
do so, or you could replace the existing controller with this current machine.

FIGURE 18-5: The Build Services screen of the Build Service Confi guration Wizard

Setting Up the Team Foundation Build Service ❘ 473

c18.indd 04/22/2014 Page 473

Either way, you will now need to provide a build service account (the TFSBUILD user), as shown in
Figure 18-6.

FIGURE 18-6: Confi gure build machine screen

Click Next to proceed to the review page, where you can check the confi guration about to occur.
Clicking Next will perform the readiness checks. If you need to correct any errors, do so and then
click the link at the bottom of the dialog box that says “Click here to rerun Readiness Checks.”
Once everything has passed, click Confi gure to actually begin the build agent confi guration process.
When this has completed successfully, fi nish the wizard and your confi guration will be complete.

You will now be presented with the Team Foundation Server Administration Console. Viewing the
Build Confi guration screen shown in Figure 18-7 will allow you to check the status of the build ser-
vice and the defi ned controller and agent(s).

474 ❘ CHAPTER 18 USING TEAM FOUNDATION BUILD

c18.indd 04/22/2014 Page 474

FIGURE 18-7: Build Confi guration screen

The top part of the Build Confi guration screen shown in Figure 18-7 controls the actual
build service hosting the build controller and/or build agent(s). You can control the service
from here by starting, stopping, or restarting it. The same could also be done using the usual
Windows Services section of Server Manager in Windows Server and selecting the Visual
Studio Team Foundation Build Service Host 2013 service, or by issuing the typical
net start "TFSBuildServiceHost.2013" commands from an Administrative command line.
For example, you might need to restart the build service to pick up any changes such as
modifi cations to system environment variables.

More useful is the capability to unregister the build service and adjust the build service properties.
Unregistering will remove the build service from the project collection and remove the associated
build controller and agents if you wish to decommission the build machine. Once the build service is
stopped, clicking the Properties link will display the Build Service Properties dialog box, as shown
in Figure 18-8.

In the dialog box, as shown in Figure 18-8, you can change the project collection to which the build
services are connected, which is useful if the URL to access the project collection changes because
of a move of that collection to a new application tier. You can also specify the web service endpoint
for the build services. By clicking Change, you can adjust the confi guration to a different port, force
SSL, and optionally require client certifi cate authentication in the instances where you want a cryp-
tographically secure link between the application tier machine and the build service.

Setting Up the Team Foundation Build Service ❘ 475

c18.indd 04/22/2014 Page 475

The Build Service Properties dialog box also allows you to specify that the build service host process
be run as an interactive process, rather than a Windows service, if a session with a desktop login is
required (such as when running coded UI tests).

FIGURE 18-8: Build Service Properties dialog box

RUNNING THE BUILD SERVICE HOST AS AN INTERACTIVE PROCESS

It is sometimes necessary to run the build service host as an interactive process
with a real domain user account. The most common example is when you require
the build agent to interact with a running application through the desktop, such
as when you want to run coded UI tests without a full test agent. Several steps are
available to ensure this kind of confi guration is as reliable as possible.

The fi rst is to confi gure the build service host to run as an interactive service using
the Build Service Properties dialog box, as shown in Figure 18-8.

Next, you should confi gure the build service user as an auto-logon account for
the server. This will ensure that when the machine reboots because of Windows
updates requiring restarts or other events, it will go straight to an interactive
session for the build user. For more information, see http://aka.ms/KB324737.

You should then ensure that the screen saver is disabled for the build user account
to prevent it from locking the session.

Note that all these options degrade the security of the build agent machine because
anyone with physical access to the machine would then be able to interact with it as
the logged-on build user. Therefore, any build agent confi gured in this way should
be placed in an environment with the appropriate level of physical security.

For more information on coded UI tests and test agents, see Chapter 26.

http://aka.ms/KB324737

476 ❘ CHAPTER 18 USING TEAM FOUNDATION BUILD

c18.indd 04/22/2014 Page 476

Additional Software Required on the Build Agent
To perform basic compilation and unit tests of many project types in Visual Studio, no additional
software is required on the build agent after installing the build service. However, you must install
a suitable Visual Studio edition for other types of projects and activities. For example, to build an
ASP.NET Web Application project or a C++ project, you must have Visual Studio 2013 installed on
the build agent computer.

Additionally, you may need to install third-party component libraries if they are required to be in
the Global Assembly Cache (GAC) by your projects. If your build process requires additional
functionality to be present (such as the Build Extensions power tool, along with Java and Ant or
Maven to build Java projects), these must also be installed.

WORKING WITH BUILDS

Now that you have confi gured a build controller and build agent, you can go about automating the
build of your project. This section focuses primarily on building Visual Studio projects and manag-
ing the build automation from within the Visual Studio IDE. For information on building Ant or
Maven projects, see the section “Building Ant and Maven Projects with Team Foundation Server”
later in this chapter. Many of the tools and windows are identical (or at least very similar) in Eclipse
for Java-based projects, so the following is still relevant.

This discussion assumes that you have a project that cleanly builds in Visual Studio, that you are
sharing the source for the build in version control with the rest of your team, and that you want to
automate in the build process for that project.

Creating a Build Defi nition
As previously mentioned, the build defi nition defi nes how, what, when, and where to perform your
build. You create a new build defi nition in Visual Studio from the Builds page, and then select New
Build Defi nition or right-click the Builds node in Team Explorer for the team project and select
New Build Defi nition, as shown in Figure 18-9.

This will then show the build defi nition editor. In Visual Studio, it will show in the main document
(see Figure 18-10), and in Eclipse it is a new modal dialog box. The build defi nition editor is divided
into two parts. The area on the left shows the various sections of the build defi nition, and the area
on the right is the form for that section.

Working with Builds ❘ 477

c18.indd 04/22/2014 Page 477

FIGURE 18-9: New Build Defi nition link in Team Explorer

FIGURE 18-10: General section

478 ❘ CHAPTER 18 USING TEAM FOUNDATION BUILD

c18.indd 04/22/2014 Page 478

Note that when you fi rst create the build defi nition, a number of warning triangles appear on the
left-hand side of the dialog box. This is completely normal and just indicates which sections have
data that must be fi lled out before proceeding. However, it is a good practice to go through every
section and fi ll in the relevant data because the defaults are not always what you might want.

NOTE In Visual Studio, if you have the solution open for which you wish to
automate the build, when you create the new build defi nition, it will default a
number of values into the build defi nition form for you (such as the build defi ni-
tion name, the workspace template, and which solution to build). You can still
edit these as you go through the form, but having the solution open before creat-
ing the new build defi nition can save you some time.

General Section
The General section shown in Figure 18-10 allows you to set the build defi nition name and descrip-
tion, and you can optionally disable or pause the build defi nition. It is easy to rename a build
defi nition at any point in the future, so do not worry too much at this point about what naming con-
vention to use if you do not have one already.

For the description of the build, it is a good practice to provide a short (one-line) description of what
the build is for, as well as contact details for the build owner or “build master.” The fi rst three lines
of the build descriptions are displayed in other dialog boxes in Team Foundation Build without
scrolling, and they are, therefore, quite useful to add data to in order to make your development
system more discoverable and easy to use for new team members.

Trigger Section
The Trigger section controls when the build should be run. As shown in Figure 18-11, there are a
number of triggers defi ned that can allow a build to run. Note that these are the only built-in trig-
gers in Team Foundation Server, and they are not extensible. Therefore, if they do not meet your
needs, you must create your mechanism for queuing the build using the extensibility APIs for Team
Foundation Server. For an example of using the extensibility API to queue a build, see the blog post
at http://aka.ms/TfsBuildApiExample.

NOTE See Chapter 29 for more details on Team Foundation Server
extensibility.

However, the following built-in trigger types are very comprehensive, and they cover the vast
majority of build scenarios:

 ➤ Manual

 ➤ Continuous Integration

http://aka.ms/TfsBuildApiExample

Working with Builds ❘ 479

c18.indd 04/22/2014 Page 479

 ➤ Rolling Builds

 ➤ Gated Check-in

 ➤ Schedule

FIGURE 18-11: Trigger section

Manual
The Manual trigger was the only trigger available in Team Foundation Server 2005. When a build is
manually triggered, it will be run only when the build is explicitly queued by a user in Visual Studio,
Eclipse, by the tfsbuild.exe command, or by other code using the extensibility APIs for Team
Foundation Server.

Manual builds are useful when fi rst creating the build defi nition to ensure that everything is work-
ing correctly before turning to one of the other triggers. They are also commonly used for a QA
build—that is, a build performed when the team wishes to push code to a QA environment. The QA
build might perform additional automated tests and documentation activities that take a
signifi cant amount of time, and they would be overkill for a standard development build but only
necessary when creating a build that may be used in production. Any build defi nition can always be
manually triggered as desired, regardless of the confi gured trigger type.

480 ❘ CHAPTER 18 USING TEAM FOUNDATION BUILD

c18.indd 04/22/2014 Page 480

Continuous Integration
The Continuous Integration trigger monitors every check-in affecting the build fi les and causes a
new build to be queued. The folders and fi les that trigger the build are determined by the Workspace
defi nition examined later in this chapter. Because check-ins to Team Foundation Server are denoted
by the changeset number as a single atomic transaction, by performing a build for every check-in, it
is easy to see which check-in caused a problem (“Who broke the build?”).

For systems that have a lot of check-ins, it is essential that the continuous integration build runs as
quickly as possible to provide feedback as to whether the build is “good” or not so that the feedback
loop is maintained and developers get into the habit of ensuring that their check-ins always result in
good builds. If a build agent is busy building the previous check-in, the build controller will look for
the next available build agent or keep the builds in a queue until a build agent is available.

The state of the version control repository at the point of time represented by the changeset that trig-
gered the build is what is used when performing the build. Therefore, it doesn’t matter if the build
for changeset 17 runs after the build for changeset 19 because of build agent availability or build
priorities—the builds will represent the state at exactly that point in time.

Because of the precise nature of continuous integration builds—and the clear way in which they
indicate which check-in broke the build—they are the preferred trigger to use for a standard devel-
opment automated build.

NOTE To prevent a check-in from triggering a build, insert the text ***NO_
CI*** anywhere in the comment string. This special string indicates the check-in
should be ignored by the build system triggers.

Rolling Builds
A Rolling Build trigger is similar to the build trigger called Continuous Integration by Team
Foundation Server. However, it will group together several check-ins to ensure that the build con-
troller never has a large queue of builds waiting to be processed. Optionally, a time interval can be
specifi ed to control the minimum duration that must have passed before a new build is triggered.
This is the type of trigger that was fi rst used by the continuous integration build servers such as
CruiseControl or CruiseControl.NET.

Rolling builds reduce the number of builds performed and, therefore, can guarantee a time in which
the results of a particular check-in will be known. However, the grouping of check-ins from several
developers can make it diffi cult to identify which change was responsible for any build failure.

A build defi nition with a Rolling Build trigger can also be used in conjunction with a continuous
integration build. Both can build the same resources. However, the continuous integration build
can be responsible for providing a quick check on quality for the build, whereas the Rolling Build
can perform additional activities such as running a full UI automation pass, generating code docu-
mentation, packaging the build into MSI installers and ISO images ready for distribution, or even
deploying the build into a test environment ready for evaluation.

Working with Builds ❘ 481

c18.indd 04/22/2014 Page 481

Gated Check-In
The Gated Check-in trigger was new to Team Foundation Server 2010. It is similar to a Continuous
Integration trigger, but with a twist. When a check-in is performed into the area covered by a Gated
Check-in build defi nition, the developer is presented with the dialog box shown in Figure 18-12.

FIGURE 18-12: Gated Check-in dialog box

Any check-ins are fi rst automatically stored as a shelveset. The build server then merges the code as
it was before the check-in was attempted with the code stored in the shelveset. Only when the build
is successful are the changes then committed to the version control repository by the build controller
on behalf of the person performing the check-in (but with the addition of ***NO_CI*** appended
to the end of the check-in comment to ensure a subsequent build is not required). If the merge of the
shelveset with the latest version of source control is not possible because of a merge confl ict, then the
build will fail. If the build fails for any reason, then no code is checked in, but the shelveset is kept
on the server for remediation.

Team Foundation Server 2012 provided the ability to accumulate gated check-in submissions. This
feature is useful if your build server can’t keep up with the number of submissions. When this fea-
ture is enabled, the server will merge and build a number of submissions as part of a single build
execution. However, if a combination of multiple submissions fails, the server will attempt to build
them as individual submissions. This allows the valid check-ins to be committed and the invalid
check-ins to be rejected without manual intervention.

The user will be notifi ed of the check-in build completion via the build notifi cation tool running in
the system notifi cation area on Windows or via the Gated Check-ins view in Eclipse. At this point,
the user may reconcile his or her workspace—that is, remove the pending changes that were com-
mitted as part of the build from the current pending changes list.

If more than one build defi nition is affected by a gated check-in, the user will be prompted to select
the one he or she wishes to use to validate the build in the Gated Check-in warning dialog box
shown in Figure 18-12.

Because gated check-ins require the code to be automatically merged as part of the build process,
this has two important effects:

482 ❘ CHAPTER 18 USING TEAM FOUNDATION BUILD

c18.indd 04/22/2014 Page 482

 ➤ The actual code checked in may differ slightly from the code submitted as part of the
shelveset.

 ➤ Even though Team Foundation Server has built-in agent pooling capabilities, only one build
of a gated check-in may be executed at a time to prevent merge confl icts.

Gated check-ins are useful in organizations that have very large numbers of developers working
in the same codebase where traditional gated continuous integration builds are failing too often
because of human error. (Even the best developer might break the build once or twice a year; but, if
you have 300 developers checking into the same tree, that means the build breaks at least every day.)

More commonly, gated check-ins are used when organizations wish to ensure that code committed
to the main codebase meets certain requirements, such as code quality, test coverage, and so on.
These factors can sometimes be determined by deploying custom check-in policies to every developer
machine. However, that may require signifi cant overhead and make for a very complex check-in
experience. Gated check-ins move all the check-in validation to a centralized server infrastructure.

Schedule
The Schedule trigger can defi ne a time on a weekly schedule that a build is queued—that is, a daily,
nightly, or weekly build. Note that only a single time may be provided for each build defi nition, and
that time is used on the chosen days of the week repeated weekly. This time should be selected so
that it does not confl ict with any ongoing backup or other maintenance jobs in the network, and
ideally it should also be selected so that, when the build is due to complete, there are people avail-
able to help fi x the build if any errors have occurred.

The time in which the build is run is converted to the time zone for the application tier when the
build defi nition is saved, but it is always displayed in the local time zone of the user editing the build
defi nition. Therefore, there can be some confusion around periods when daylight savings is in
operation in one of those times zones and not the other.

If a more complex schedule is required (such as every second Thursday or the last Tuesday of the
month), it may be preferable to create a build defi nition using a Manual trigger, and then set up a
Windows Scheduled Job to run on the defi ned schedule that will queue the build using the
tfsbuild.exe command line.

MANAGING BUILDS FROM THE COMMAND LINE WITH TFSBUILD.EXE

Visual Studio Team Explorer installs a number of command-line tools, one of
which is the tfsbuild.exe command. The command can be used to perform a
limited number of Team Foundation Build tasks and is also useful in scripting sce-
narios where full access to the Team Foundation extensibility APIs is not required.

Working with Builds ❘ 483

c18.indd 04/22/2014 Page 483

For example, to trigger a build, a command similar to the following could be used:

tfsbuild start http://vsalm:8080/tfs/DefaultCollection
 AdventureWorks "My Build Definition"

In this example, http://vsalm:8080/tfs/DefaultCollection is the URL for
the team project collection, AdventureWorks is the name of the team project, and
My Build Definition is the name of the build defi nition for which you wish to
queue a build.

For more information on the tfsbuild command, open a Developer Command
Prompt for VS2013 and type TFSBuild help, or visit http://aka.ms/
TfsBuildExe.

Workspace Section
The Workspace section shown in Figure 18-13 allows you to defi ne the working folder mappings
that should be used for your build. This determines not only where the fi les should be placed on the
disk to perform the build, but also which fi les are relevant to the build defi nition and, therefore,
should be included in any build label or monitored as part of the build trigger.

FIGURE 18-13: Workspace section

http://vsalm:8080/tfs/DefaultCollection
http://vsalm:8080/tfs/DefaultCollection
http://aka.ms

484 ❘ CHAPTER 18 USING TEAM FOUNDATION BUILD

c18.indd 04/22/2014 Page 484

The default working folder mapping is usually given as the root of the team project (for example,
$/AdventureWorks) mapped to the sources directory represented by the environment variable
$(SourceDir). This is almost always too broad of a mapping and covers many fi les that should
not be part of your build. It has the effect of triggering builds when they should not be and slowing
down the build process (because fi les outside the area of a source that you are interested in must be
downloaded).

The working folder mappings should be altered to include an active mapping with as fi ne of a granu-
larity as possible (usually the folder containing the solution to be built inside the branch you wish to
build, as shown in Figure 18-13). Also, any fi les or folders that should not trigger a build should be
cloaked.

In the example in Figure 18-13, a directory containing a series of UI mockup images is excluded
from the build because, while they are checked in alongside the source tree, the fi les do not make up
part of the software being built. (They are for reference by the development team during develop-
ment and would take a signifi cant amount of time to download in each build because of their large
size.)

NOTE For more information on working folder mappings and cloaked map-
pings, see Chapter 6.

Build Defaults Section
In the Build Defaults section shown in Figure 18-14, you select which controller you wish to be
responsible for the build defi nition by default, and select where you want the results of the build to
be staged after they have been built (the drop location).

Installing the build service host registers the build controller with the server. If there are no build
controllers present in the drop down, you do not have one installed for your current project col-
lection. See the section “Setting Up the Team Foundation Build Service” earlier in this chapter for
details on how to do this.

The Description fi eld shows the description assigned to the build controller (useful for conveying
information about who owns the controller or what it should be used for), and it is read-only in
this section. To edit the description, see the Build Controller Properties dialog box from the Team
Foundation Server Administration Console.

The drop location must be a UNC path to a Windows fi le share on the network. The build agent
machine must have network access, and the user running the build service must have permission
to write to that location, because fi les are copied directly from the build agent to the drop location
as part of the build. There is a 260-character limit to the full path of all fi les copied to the drop

Working with Builds ❘ 485

c18.indd 04/22/2014 Page 485

location, so you should ensure that the server name and path are reasonably short, leaving you the
maximum space for your output. However, you should put builds in directories in the drop location
that correspond to the build defi nition to help keep them organized. If your build does not have any
output, you can select the fi rst option, which allows the build defi nition to be valid without fi lling in
a drop location. You can also have the build outputs stored in a special location in Team Foundation
Server known as the Server Drop. This feature, new in Team Foundation Server 2013, is handy if
you don’t have the ability to confi gure a drop location that can be accessed through a UNC path.

FIGURE 18-14: Build Defaults section

Process Section
The Process section determines which of the registered build process templates should be used for
the build defi nition and what properties should be passed into that Windows Workfl ow process
when it is started, as shown in Figure 18-15.

486 ❘ CHAPTER 18 USING TEAM FOUNDATION BUILD

c18.indd 04/22/2014 Page 486

FIGURE 18-15: Process section

Each process can defi ne a number of customizable properties to control how the build behaves.
Properties that are mandatory but not populated are marked with a warning triangle when the build
defi nition is created. If the build defi nition was created while a solution was open in Visual Studio,
this solution will be prepopulated in the Projects area. If this occurs, ensure that this is the correct
solution or project that you wish to build.

Note that the Process section is one area that differs greatly when creating Java-based builds from
Eclipse using Team Explorer Everywhere. For more information, see the section “Building Ant and
Maven Projects with Team Foundation Server,” later in this chapter.

The build process, along with more details on the various properties used by the main process
templates that ship out of the box, is described in more detail later in this chapter in the section
“Understanding the Build Process.”

Retention Policy Section
The Retention Policy section shown in Figure 18-16 specifi es the rules by which builds should be
retained automatically and what should be deleted for builds that fall outside of the retention policy.

Working with Builds ❘ 487

c18.indd 04/22/2014 Page 487

FIGURE 18-16: Retention Policy section

Once you start building on every check-in, the number of builds created by the system can rapidly
increase. However, not all of the builds are relevant for very long once the status (passed or failed)
is known. Finding the build that you are looking for can get complicated but also the disk space
required to store all the build results grows for each build retained.

With Team Foundation Server, a build may fi nish in one of four states:

 ➤ Succeeded—Everything in the build is good and is what you want to see.

 ➤ Partially Succeeded—This is the default state given to a build that has passed compilation
but something else has gone wrong during the build (such as unit tests failing). In the case
of unit test failures, it is possible to completely fail the build. (See the section “Build Process
Parameters” later in this chapter for more information.)

 ➤ Failed—A Failed build is one that has completely failed for some reason.

 ➤ Stopped—A Stopped build is one that has been terminated manually while it was running.

The retention policy controls how many results you would like to keep by default for each type of
build result. At any time, from the context menu of the build details, or from the build report, you

488 ❘ CHAPTER 18 USING TEAM FOUNDATION BUILD

c18.indd 04/22/2014 Page 488

can indicate that a particular build should be marked Retain Indefi nitely (or Keep Forever). Marking
a build as Retain Indefi nitely means that it will be excluded from the automatic retention policies.

Separate retention policies are in place for both the team builds triggered (or manually queued) and
for the private builds queued by individual developers. More information is given on private builds
later in this chapter. Changing the private build retention policy affects all the developers perform-
ing private builds for that defi nition—not just the developer editing the setting.

WARNING For teams making use of Microsoft Test Manager to record fast-
forward test executions, deleting test results will destroy the action recordings
required for fast-forwarding. Therefore, be careful with the retention policy set-
tings for build defi nitions used by your test teams. You may alter the retention
policy to exclude test results from the items deleted, as shown in Figure 18-16, or
mark any builds used by your test teams as Retain Indefi nitely. For more infor-
mation, see Chapter 26.

For each retention policy, you can determine what is automatically deleted by selecting the “What to
Delete” column. Selecting <Specify What to Delete> displays the dialog box shown in Figure 18-17,
which allows a custom setting to be applied when the build is automatically deleted from that point
onward.

FIGURE 18-17: Build Delete Options dialog box

For more information on what each of the delete options means, see the section “Deleting Builds”
later in this chapter.

Working with Builds ❘ 489

c18.indd 04/22/2014 Page 489

Saving the Build Defi nition
Once you are happy with the settings for the build defi nition, you can save it by clicking the Save
button or pressing Ctrl+S. In Eclipse, click OK to save the changes to the server.

Queuing a Build
When you have created a new build defi nition, you should manually queue the build the fi rst time to
ensure that it is working as desired. The latest successful build for a build defi nition is used to deter-
mine which changesets and work items will be associated with the subsequent build, so this fi rst
build will be the baseline by which the next triggered build is compared.

To manually queue a build in Visual Studio, go to Build ➪ Queue New Build. Alternatively, in either
Eclipse or Visual Studio, you can right-click on the build defi nition in the Builds node of Team
Explorer and select Queue New Build.

You will then be presented with the Queue Build dialog box, as shown in Figure 18-18.

FIGURE 18-18: Queue Build dialog box

490 ❘ CHAPTER 18 USING TEAM FOUNDATION BUILD

c18.indd 04/22/2014 Page 490

Understanding the Queuing Process
When you manually queue a build, you may specify on which controller you would like this to run
(overriding the default, which is used for a triggered build). Additionally, you can set the priority of
the queued build and get an indication as to where in the queue this priority would put you when
submitting the build.

Builds triggered using one of the build defi nition triggers are done so with a priority of Normal. You
can set this to High, Above Normal, Normal, Below Normal, or Low, depending on the priority of
your manual build request. Click Queue to trigger the build at this point.

When manually queuing a build, an additional Parameters tab will be displayed. There you will fi nd
a customizable list of properties as defi ned by the build process template, allowing you to alter the
value of that property for this single invocation of the build.

For example, if you wanted to manually queue a build of the source tree based on the label
ReadyForTest, you could manually specify the Get Version property for the build to be
LReadyForTest@$/ProTFS2013-TFVC (where L specifi es that this is a Label version specifi cation,
and @$/ProTFS2013-TFVC specifi es that this label was in the scope of a Team Project folder called
$/ProTFS2013-TFVC in version control), as shown in Figure 18-19.

FIGURE 18-19: Manually queuing a build from a Label

Working with Builds ❘ 491

c18.indd 04/22/2014 Page 491

Private Builds
A feature of Team Foundation Server is the ability to request that a build be performed using the
latest sources merged with a shelveset specifi ed by the developer as a private build (sometimes called
a buddy build). You do this from the Queue Build dialog box when manually queuing a build by
changing the “What do you want to build option” to “Latest sources with shelveset,” and then
specifying the shelveset, as shown in Figure 18-20.

FIGURE 18-20: Manually queuing a private build

Private builds are useful when you want to ensure that you are including all the changes necessary
to successfully perform the build on a different machine before committing the changes to the main
source repository. They are also very useful when you want to make use of the build process set up
on the server to test and create all the build output, but you are not yet sure if the change you are
proposing should be included in the codebase.

A private build is similar to a gated check-in, except that the use of shelvesets is not enforced, and
checking in of the code in the shelveset after a successful build is optional.

Private builds (those performed without selecting the check-in option) do not follow the same build
numbering scheme defi ned for the regular team builds and have separate retention policies, as dis-
cussed earlier in this chapter. The results of the private build are shown to that developer only and

492 ❘ CHAPTER 18 USING TEAM FOUNDATION BUILD

c18.indd 04/22/2014 Page 492

are not displayed to the entire team. However, build alerts may notify of private builds depending
on their confi guration.

Build Notifi cations and Alerts
Team Foundation Server exposes a powerful eventing model and extensibility APIs that allow for
custom integrations of any imaginable application or device for notifi cation of build results, from
standard e-mail alerts to lava lamps, confetti-fi lled leaf blowers, build status screens, and even talk-
ing robotic rabbits. However, there are two main notifi cation systems exposed to the developer out
of the box:

 ➤ Build notifi cations tool on Windows

 ➤ E-mail alerts

Build Notifi cations Tool
The notifi cation tool is a small application that runs in
the system notifi cation area on Windows. In the 2008
release, this was provided as part of the Team Foundation
Server Power Tools but ships with Visual Studio and
Visual Studio Team Explorer in the 2010 release and
beyond.

Figure 18-21 shows the build notifi cation tool running
and displaying a notifi cation to the user
as an Outlook style pop-up message in
the bottom-right corner of the screen. It
can be confi gured to run on login, but
will be run by Visual Studio if a gated
check-in is requested. In the case of a
gated check-in, if the build is success-
ful, the notifi cation tool will display
a dialog box to the users (see Figure
18-22) asking them if they would like to
Reconcile their workspaces. The build
notifi cation tool works by polling Team
Foundation Server at a regular interval,
and therefore notifi cations may take up
to two minutes to be displayed to the
user after the build has been completed.

FIGURE 18-21: Notifi cation tool
pop-up

FIGURE 18-22: Notifi cation prompting for reconciliation
of workspace

Working with Builds ❘ 493

c18.indd 04/22/2014 Page 493

E-mail Alerts
Basic e-mail alerts can be confi gured from the Team ➪ Project Alerts menu in Visual Studio once
the selected team project has been highlighted in Team Explorer. Using the interface shown in
Figure 18-23, e-mail alerts can be enabled when a build quality changes, when any build completes,
or when builds are initiated by the developer.

FIGURE 18-23: Enabling e-mail alerts

E-mails can be sent to any e-mail address, including team distribution lists, provided the Team
Foundation Server application tier is confi gured with the correct SMTP server details to send the
messages. However, the e-mail alerts belong to the user who created the alert, and that user must
delete or edit the alert through the web interface.

On the Team Foundation Server application tier machine, the BisSubscribe.exe command is avail-
able in the Team Foundation Server\Tools folder and can be used to script the creation of project
alerts for a team project.

Managing Builds
The main build management activities are performed using the Builds page in Visual Studio or
Eclipse, which is accessed by clicking on the Builds link in Team Explorer. Figure 18-24 shows the
Build Explorer.

494 ❘ CHAPTER 18 USING TEAM FOUNDATION BUILD

c18.indd 04/22/2014 Page 494

FIGURE 18-24: Build Explorer

All the build defi nitions for a particular team project are listed under the All Build Defi nitions sec-
tion in Team Explorer. Although there is no way to order the builds into folders, the build defi ni-
tions can be searched and fi ltered.

Build Explorer
The Build Explorer allows access to builds that the system is aware of, to those that have run, and
to those that are running or are waiting to run. The Build Explorer is organized into two tabs as
follows:

 ➤ Queued builds

 ➤ Completed builds

Queued Builds
From the Queued builds tab shown in Figure 18-25, you can cancel, pause, or change the priority of
any build currently waiting to be built. You can also stop builds currently executing. By default, the
Queued builds tab will also show you builds that have completed in the past fi ve minutes.

Working with Builds ❘ 495

c18.indd 04/22/2014 Page 495

FIGURE 18-25: Queued builds tab

Completed Builds
The Completed builds tab shown in Figure 18-26 displays builds that have completed (have fi nished
execution and are Successful, Partially Successful, Failed, or Stopped). An icon shows the status of
the build, with another icon to the left showing the build reason (scheduled build, continuous
integration, rolling build, private build, gated check-in, and so on). Hovering over an icon will dis-
play a tooltip with a full description.

The builds are fi ltered by the criteria at the top of the Completed builds tab—by default, showing all
builds for that day by everyone on the team. You can constrain the list to show only your builds, or
show a greater date range, and so on, by adjusting the options.

496 ❘ CHAPTER 18 USING TEAM FOUNDATION BUILD

c18.indd 04/22/2014 Page 496

The Completed builds tab is where much of the build management is performed for individual
build details. You can mark a build to Retain Indefi nitely to prevent it from being included in the
automatic retention policy rules. You can also delete builds and edit the build quality.

Team Foundation Server 2013 also has the capability of retrying a build. This option will queue the
build again with the same parameters as executed in the original build. This functionality is useful
if your build fails because of an environmental issue, such as a power failure, rather than a coding
issue.

FIGURE 18-26: Completed builds tab

Deleting Builds
If you delete a build, you are presented with the Delete Build dialog box shown in Figure 18-27,
which allows you to control the parts of the build you wish to delete.

Working with Builds ❘ 497

c18.indd 04/22/2014 Page 497

FIGURE 18-27: Delete Build dialog box

You can delete the following:

 ➤ Details—This is the build record in the Team Foundation Server database, and deleting this
means that the build no longer shows in the Build Explorer. The build is actually still in the
database, just marked as deleted. To completely remove the build record, you must destroy it
using the tfsbuild.exe command line.

NOTE For more information about this, as well as what information does and
doesn’t get deleted and why, see Adam Root’s blog post at http://aka.ms/
DeletedBuilds.

 ➤ Drop—These are all the build outputs copied to the network share. These can be very signifi -
cant in size and, therefore, the most likely thing that you wish to delete. Using this dialog box
is a quick way to clean up the drop location without removing the rest of the data for the
build.

 ➤ Test Results—This includes all the test results from test runs and any associated test data
(including video fi les and action recordings). Be careful when deleting test data because it
may impact testers and developers if there are unresolved bugs with test results.

http://aka.ms

498 ❘ CHAPTER 18 USING TEAM FOUNDATION BUILD

c18.indd 04/22/2014 Page 498

NOTE For more information, see Chapter 26.

 ➤ Label—This is the label associated with the built-in version control. For auditing and track-
ing purposes, it is common to leave the label for all builds.

 ➤ Symbols—If you are using Symbol and Source servers, you may have confi gured your build
to have symbol fi les stored on a Symbol server that may take up signifi cant space. However,
if you have released this build to anyone (including the test team), you might want to keep
the symbols around for debugging purposes.

It is worth noting that the “Found in Build” and “Fixed in Build” fi elds that are used by some of
the process templates in Team Foundation Server work item tracking make use of a global list in the
work item system. In previous versions of Team Foundation Server, there was no way to automati-
cally delete these build numbers from the global lists. In Team Foundation Server 2012 and later,
there is a maintenance job that runs on a weekly basis to clean up the build number global lists and
remove entries that no longer exist.

Build Details View
When you double-click a build in the Build Explorer, you can see a report of the build details, as
shown in Figure 18-28. This is known as the Build Details View or the Build Report.

When the build is executing, you will see the build log periodically refreshing to show the latest
results of the build. A small bar chart in the top-left corner of the build shows the build duration in
comparison with the previous builds to give you an indication of how much longer the build is likely
to run.

As the build progresses, more information is added to the build log. If you scroll to the bottom of
the build log, the view will maintain that bottom scroll position, and the results will scroll up as the
build proceeds further.

The information is displayed in a hierarchical tree, with the duration of each step displayed in the
top right-hand side of that node. For steps that create additional log fi les (such as MSBuild, Ant, or
Maven that perform the actual compilation of the code), you can click on the report to download it
from the drop location and view it.

Once the build has completed, you will see the build summary view by default (refer to Figure
18-28). This shows all the compilations, test runs, and any unit test results, code coverage, and test
impact analysis data. You will also see information regarding the changesets included since the last
successful build of that build defi nition, along with any work items that were associated with those
changesets as they were checked in.

In this way, you can see how the full requirement traceability data is being tracked by Team
Foundation Server, and why the build automation system completed the feedback loop for the

Working with Builds ❘ 499

c18.indd 04/22/2014 Page 499

development process. By performing the build, you can see which code was changed, what work
items that change was associated with, and what build the changes went into. You can also see
which unit tests were run, what the code coverage was, which tests might be impacted by the code
that was changed, and so on. All this data is being stored in the Team Foundation Server data ware-
house and is available for later analysis.

FIGURE 18-28: Report of the build details

From the Build Details View, you can open the drop location to view the actual outputs of the build
(the website or executable fi les). You can also mark the build to be retained indefi nitely and set the
build quality. You can even delete the build from this view.

500 ❘ CHAPTER 18 USING TEAM FOUNDATION BUILD

c18.indd 04/22/2014 Page 500

Managing Build Quality Descriptions
For each build, you can set a build quality from the Completed builds tab or from the build report.
The build quality is a text string that allows the team to tag the build with additional metadata, and
it is useful for communicating the quality of the build with the rest of the team. For example, you
can easily identify builds that have been released or are ready for testing. Note that, in addition to
setting the build quality, you may want to mark the build to be retained indefi nitely in those cases.

To manage the options available for the build quality, go to Build ➪ Manage Build Qualities in
Visual Studio. This displays the Edit Build Qualities dialog box shown in Figure 18-29, which you
can use to add new entries and remove ones that are not used.

FIGURE 18-29: Edit Build Qualities dialog box

Managing Build Controllers and Build Agents
The build controllers and agents can be managed from the Team Foundation Administration
Console on the build controller machine or application tier. However, the controller and agent
properties are also available from Visual Studio by going to Build ➪ Manage Build Controllers,
which displays the Manage Build Controllers dialog box. Selecting a build controller and clicking
Properties will show you its Properties dialog box (see Figure 18-30), and selecting an agent and
clicking Properties will show you its properties (see Figure 18-31).

Working with Builds ❘ 501

c18.indd 04/22/2014 Page 501

FIGURE 18-30: Build Controller Properties dialog box

FIGURE 18-31: Build Agent Properties dialog box

502 ❘ CHAPTER 18 USING TEAM FOUNDATION BUILD

c18.indd 04/22/2014 Page 502

From the Build Agent Properties dialog box, you can add a number of tags to the agent to signify
capabilities of that agent, as shown in Figure 18-31. For example, you could use CodeSign if you
have the project’s code signing certifi cate installed on that machine, DataCenter1 if it is located in
your main data center, or Ireland if it is located remotely.

As part of the build process, you can then fi lter by these tags to ensure that you are allocated a build
agent that meets the requirements necessary for the build. For more information on this, see the sec-
tion “Understanding the Build Process” later in this chapter.

MINIMIZING THE BUILD PATH

Because of limitations in the way that the tools interact with the fi le system, there
is a 260-character limit on the full path of fi les that make up the build process.
In previous versions of Team Foundation Server, the initial working directory for
a build agent was in the build service users profi le directory, which signifi cantly
reduced the number of characters in the path available for your build fi les.

In Team Foundation Server 2010, the build working folder was reduced to
$(SystemDrive)\Builds\$(BuildAgentId)\$(BuildDefinitionPath),
which, for a typical build, is something like C:\Builds\1\Team Project
\Build Definition Name\. While this is much improved, you may still run into
issues with build path length and need to reduce it further.

The shortest common build path can be created by setting the build agent working
directory to something like $(SystemDrive)\B\$(BuildAgentId)\
$(BuildDefinitionId), which will create a typical build working folder of
C:\B\1\42\, leaving you with some valuable additional characters if you fi nd
yourself pushing the 260-character limit. Using the BuildDefinitionId also
guarantees that each new working folder created is unique, and it prevents any
workspace issues that sometimes happen when deleting and then adding a build
defi nition with the same name for a team project.

NOTE Both Visual Studio and Team Foundation Server have shifted to a quar-
terly update cycle. One of the improvements introduced in the fi rst quarterly
update for Team Foundation Server 2012 was an increase in the server path limit
from 260 to 400 characters.

This doesn’t completely eliminate the problem, as it is only the server path (for
example, $/Project/Folder/File.cs), not the local path length.

For more information, refer to Brian Harry’s blog post at http://aka.ms/
Tfs2012FirstUpdate.

http://aka.ms

Understanding the Build Process ❘ 503

c18.indd 04/22/2014 Page 503

UNDERSTANDING THE BUILD PROCESS

The end-to-end build process performed by a build is defi ned in a Windows Workfl ow XAML fi le
stored in the version control repository and in the Team Foundation Server app tier. The initial build
process templates available are defi ned by the overall Team Foundation Server process template and
are created as part of the Team Project creation process. In Team Foundation Server 2013 these
templates were moved from a folder under each Team Project’s node in version control to a storage
location inside the App Tier. Locating and downloading these base templates will be discussed in
Chapter 19. Any time after the Team Project is created, base build process templates can be down-
loaded and modifi ed and new build process templates can be created. In both cases, the process tem-
plate can be registered with Team Foundation Server and stored in version control. Those fi les can
be modifi ed to adjust the behavior of new builds for that particular process template.

The rest of this section focuses on using the process templates that ship in the box with Team
Foundation Server. These include the following:

NOTE For more information on customizing the build process templates, see
Chapter 19.

 ➤ DefaultTemplate (TfvcTemplate.12.xaml)—The default template for all new builds cre-
ated for Team Foundation Version Control (TFVC) team projects in Team Foundation Server
2013. This is the template that will be the primary focus of discussion in the remainder of
this section.

 ➤ DefaultTemplate (GitTemplate.12.xaml)—The default template for all new builds cre-
ated for Git team projects in Team Foundation Server 2013.

 ➤ UpgradeTemplate—The build template using the MSBuild-wrapped approach from previ-
ous versions of Team Foundation Server and also used for non–.NET compilation projects
such as VB6, C++, and also Java-based builds with Ant or Maven. The UpgradeTemplate is
used by any existing build defi nitions that existed in a Team Foundation Server 2008 instance
upgraded to Team Foundation Server 2010, 2012, or 2013. UpgradeTemplate basically
performs some simple housekeeping functionality that used to be hard-coded into the build
agent process in earlier versions of Team Foundation Server. It then wraps the call to the
MSBuild fi le called TFSBuild.proj that controls the rest of the MSBuild-based build process.

In addition, the LabDefaultTemplate.11 will also be present for use with the Lab Management
functionality described in Chapter 26.

As stated previously, all the base build process templates are stored as XAML fi les in
the Team Foundation Server App Tier. In versions prior to 2013, they lived in a folder
called BuildProcessTemplates in the root of the team project ($/TeamProject/
BuildProcessTemplates). You can still create this folder in your Team Project, store downloaded
templates or create new ones here, and register them with the build system for use. You may also
store them inside your team project branching structure so that your build defi nitions version along
with the code they build. You may also store the build process templates alongside your code in
version control. In this way your templates version along with the code they build.

504 ❘ CHAPTER 18 USING TEAM FOUNDATION BUILD

c18.indd 04/22/2014 Page 504

DefaultTemplate Process
The DefaultTemplate (TfvcTemplate.12.xaml) process (referred to as DefaultTemplate for
brevity) as defi ned in the fi le TfvcTemplate.12.xaml is used for all new, un-customized build
defi nitions in Team Foundation Server 2013 for team projects that have a centralized version control
repository. The DefaultTemplate is greatly simplifi ed from its Team Foundation Server 2012
counterpart. The process is described at a high level in Figure 18-32. To view the process template,
you will have to download the process template’s XAML fi le, as described in Chapter 19.

Update Build Number

Initialize Environment

Get Sources

Associate Changesets

Run pre-MSBuild script

Run post-MSBuild script

Run pre-Test script

Run post-Test script

Calculate Impacted Tests

Index sources

Publish Symbols

Copy Build Outputs to Drop Folder

Check in Gated Changes

Run Tests

Run MSBuild

DefaultTemplate Process

Run On Agent

FIGURE 18-32: DefaultTemplate process

Understanding the Build Process ❘ 505

c18.indd 04/22/2014 Page 505

WARNING Chapter 19 describes in more detail how to edit a build process
template. However, it is worth noting at this point that, while you can edit the
DefaultTemplate from Visual Studio, the best practice is to create a new pro-
cess template from the Process section of the Build Defi nition editor based on
the DefaultTemplate and edit this fi le. All builds in the team project sharing
the same build process template will be affected by a change to that template.
Therefore, it is good to leave the standard unedited DefaultTemplate.xaml
fi le alone in version control to avoid confusing team members who expect the
DefaultTemplate to perform the same between systems using Team Foundation
Server.

Understanding the Process
On the build controller, the BuildDetail object corresponding to this running instance of the build
is populated from the Team Foundation Server application tier machine and stored in a variable for
later use. Then the build number is created based on a passed build number format (more on that
later). If the build requires a drop folder, the next thing to occur is that a folder corresponding to the
build number is created in the drop location specifi ed by the build defi nition. This is the reason why
the user running the build service must have write permission to the drop location network share.

The build controller now must determine on which build agent to execute the actual build. It does
this by using the Agent Settings property described later in this chapter to determine which build
agents to pick from, and then picks the next available build agent. If this is a gated build, only one
build may be executed at a time. Otherwise, the build controller will attempt to run as many builds
in parallel as it has spare build agents (unless constrained to a maximum number of concurrent
builds in the build controller properties shown in Figure 18-30). Once the agent has been deter-
mined, execution passes to the build agent.

The build agent determines where the build directory should be located based on the agent working
directory property defi ned in Figure 18-31. It then determines the name of the Team Foundation
Server workspace that it should use on the build agent to download the sources into. Then the build
agent initializes the workspace and fi gures out what the root Sources directory should be, along
with the Binaries and Test Results folders—creating them if they do not already exist.

Note that if the build requires a clean workspace, the initialization process would have consisted of
deleting the old workspace, creating a new one, and setting up the folder structure again. Equally, if
incremental builds are not enabled, the Test Results and Binaries folders will be cleaned of all
contents to ensure that binaries are built fresh for every build.

Once the workspace has been initialized as per the working folder template defi ned in the build defi -
nition, a Get is performed from version control to download the source fi les to the build agent. If a
shelveset is included with the build (for example, for a gated check-in or for a private build), the con-
tents of the shelveset are automerged with the source code at this point. If a label should be created
(the default for most builds), the label name is generated (created based on the version of the source
downloaded) and is stored in the build details.

506 ❘ CHAPTER 18 USING TEAM FOUNDATION BUILD

c18.indd 04/22/2014 Page 506

A pre-build script will be run, if confi gured, once before the compilation occurs. Then, for every
project and confi guration in the build defi nition, MSBuild is executed to compile the project. Once
all of the compilation is complete, a post-build script will run, if confi gured.

Once compilation is complete, the system will execute a pre-test script. Then the VS Test Runner
will run unit tests after which the post-test script is run. The status of the compilation and test
phases of the build are also stored in the build details. At this point, if the build has been defi ned to
treat test failures as build failures, the build will fail here if any failed tests have been detected. By
default, a build will carry on from this point regardless of test status. If the build had a successful
compilation, but any other phase of the build resulted in an error being thrown, the build will com-
plete with a status of Partially Successful.

The changesets included in the build since the last successful build label was created are recorded. Each
of the changesets is analyzed to determine which work items were associated with those changesets.
These associated work items are recorded in the build details. If any of the bugs were resolved as a
result of one of these changesets, the “Fixed in Build” fi eld for the bug will be updated to inform any-
one investigating the resolved work item, which build to test that it was indeed fi xed.

Next, the tests impacted by the changes included in the build are determined and stored in with the
build details. The sources are indexed, and symbols are published to the Symbol server if specifi ed.

Finally, the binaries generated by the build are copied over to the drop folder created by the build
controller. If the build is still successful, then any changes that were being built as part of a gated
check-in validation are checked in to version control on the triggering user’s behalf.

Build Process Parameters
As you may have noticed already, there are lots of variables in the build process that can control
how the build performs. These are stored as workfl ow parameters that are passed into the build as it
is queued, based on the parameters defi ned in the build defi nition editor and any parameters modi-
fi ed when manually queuing a build.

Figure 18-33 shows the parameters available when editing the build defi nition.

Parameters are ordered into groups: TF Version Control, Build, Test, Publish Symbols, and
Advanced. For more information on a particular parameter, select it in the build defi nition editor;
the help section at the bottom of the Process section will show more information about that param-
eter, as shown at the bottom of Figure 18-33.

In the Build section of the DefaultTemplate, the items to build are specifi ed. These are made up of
the Projects and Confi gurations.

Confi gurations
The default Visual Studio build confi guration to use is the default build confi guration for the
selected solution. However, you can override this—for example, if you would like to do a Release
build on the build server, but the default in the solution is a Debug build.

To modify the confi guration, use the Confi gurations dialog box displayed when you click the “. . .”
button in the Configurations parameter.

Understanding the Build Process ❘ 507

c18.indd 04/22/2014 Page 507

FIGURE 18-33: Parameters available when editing the build defi nition

NOTE Team Foundation Build typically deals with solution confi gurations.
These allow you to specify a named collection of project-level platforms and
confi gurations that should be built. For more information on solution confi gura-
tions, see a blog post by Aaron Hallberg (former lead of the Team Foundation
Build team at Microsoft) at http://aka.ms/TfsBuildSolConf.

Projects
The Projects parameter was discussed earlier in this chapter when the build defi nition was created.
This parameter describes which MSBuild project fi les (.vbproj or .csproj fi les) or Visual Studio
Solution fi les (.sln fi les) should be built as part of the build defi nition.

Projects will be executed in the order they are provided in this property. So, if you wish to call a
project after performing the build of the solution (for example, a .wixproj fi le to create an MSI
installer using the open source project WiX), specify that second. Clicking the “. . .” button in the

http://aka.ms/TfsBuildSolConf

508 ❘ CHAPTER 18 USING TEAM FOUNDATION BUILD

c18.indd 04/22/2014 Page 508

Projects parameter displays the Solutions/Projects dialog box, allows you to add other fi les to the
list, and allows you to control the order.

The server paths to the projects to build are provided. These server paths must be mapped by the
working folder template defi ned in the build defi nition. Otherwise, the build will fail when the build
agent attempts to convert the server path of the fi le to build into a local path on the build agent to
use when running the build.

Automated Tests
Under the Test section of the DefaultTemplate, the Automated Tests parameter provides the
tests that will be executed as part of the build. By default, this is set to execute all tests found in
an assembly created by the build matching the patterns *test*.dll and *test*.appx—that is,
HelloWorldTests.dll would be inspected for tests implemented using the Visual Studio Test
Runner.

Clicking the “. . .” button in the Automated Tests parameter allows you to specify more tests that
should be run, as well as their confi guration, as shown in Figure 18-34. When editing a particular
set of tests, you can control if the build should fail if those tests fail execution.

FIGURE 18-34: Specifying more tests should be run

Understanding the Build Process ❘ 509

c18.indd 04/22/2014 Page 509

Tests can be fi ltered based on the test category or test priority using the Criteria/Arguments tab for
the test, as shown in Figure 18-35. By categorizing your unit tests, you could set up your build veri-
fi cation tests differently from your coded UI or integration tests. Build verifi cation tests (signifi ed by
a category of BVT) could fail the build, whereas failures in integration tests or coded UI tests (which
are more prone to failure from external factors) may be recorded and the build marked as Partially
Successful. An example of fi ltering based on category is shown in Figure 18-35.

FIGURE 18-35: Criteria/Arguments tab

Another example of using this functionality is that you may set up a build so that all tests with a
priority of 1 or less are run as part of the standard continuous integration build, but all tests are
run in an additional build defi nition triggered as a rolling build set to build no more often than
once every 30 minutes. That way, the continuous integration build can give rapid feedback on the
approximate build quality, but the rolling build can come along later and do a fi nal check that
everything is satisfactory.

NOTE The Automated Tests section also specifi es the TestSettings fi le to be
used for a test run. In the example shown in Figure 18-33, this is set to $/
ProTFS2013-TFVC/HelloWorldApp/Main/TraceAndTestImpact
.testsettings. Your Visual Studio solution can contain a number of
.testsettings fi les to control the behavior of the test environment, and to
enable confi guration settings such as code coverage and test impact analysis as
part of the test run. If you have unit tests executing as part of the build, it may
be very useful to enable these.

510 ❘ CHAPTER 18 USING TEAM FOUNDATION BUILD

c18.indd 04/22/2014 Page 510

NOTE For more information about running third-party unit testing frame-
works, such as xUnit.net, NUnit, MbUnit Chutzpah for QUnit, and Jasmine, see
the blog post at http://aka.ms/VSUnitTestPlugins.

Code coverage tracks how much of the application code is being tested by the tests under execution.
Test impact analysis determines which tests were affected by the changes since the last successful
build—which gives an important indication to your testers about the impact of a particular change
and which tests should be revisited fi rst when testing a build.

It is best practice to create a new test settings fi le specifi cally for your build server settings. That
way, developer test settings used locally by the development team and the actual build server test
settings are kept separate but are available to the developer team to validate against locally, if
needed.

To create a new server test settings fi le, open the Local.testsettings fi le in the Solution Items.
Then change the name in the General section to Build Server and click the Save As button to save
the fi le as BuildServer.testsettings. If you do not have a .testsettings fi le, you can right-
click the solution and choose Add New Item ➪ Test Settings fi le.

In the Data and Diagnostics section of the Test Settings dialog box, check both the Test Impact
options, as shown in Figure 18-36. Note that this is also where IntelliTrace can be enabled to get a
rich diagnostic trace of any test failures, as well as many other test settings. Once confi gured, save
the test settings fi le and check-in to version control. Then edit the TestSettings File parameter
for the test assembly to point to the BuildServer.testsettings fi le.

To get Code Coverage, you will need to select Enable Code Coverage in the Options list in the
Add/Edit Test Run dialog box, as shown in Figure 18-34.

SPECIFYING WHICH ASSEMBLIES TO MEASURE CODE COVERAGE

In a typical build, you will only want to measure code coverage for your applica-
tion’s assemblies. Unit test assemblies or Framework assemblies tested by other
builds would need to be excluded. To tell the build how to exclude these assemblies
from measurement, you will need to add a .runsettings fi le to your solution and
specify this fi le in your build’s Run settings fi le parameter. For more information on
Run Settings fi les, see http://aka.ms/CodeCoverageInBuilds.

http://aka.ms/VSUnitTestPlugins
http://aka.ms/CodeCoverageInBuilds

Understanding the Build Process ❘ 511

c18.indd 04/22/2014 Page 511

Build Number Format
In the Advanced section of the DefaultTemplate, the Build Number Format parameter
controls the format used when creating the build number at the beginning of the build process.
By default, builds are created with the number format of $(BuildDefinitionName)_
$(Date:yyyyMMdd)$(Rev:.r), for example, HelloWorld_20131104.18, where this is the 18th
build for the HelloWorld build defi nition on November 4, 2013. Build numbers must be unique
across a team project, and, therefore, this format serves as a good default. However, it is common
that users wish to customize the build numbering.

FIGURE 18-36: Test Settings dialog box

In Team Foundation Server 2013, this is simply a matter of editing the build number format by
clicking the “. . .” button to show the BuildNumber Format Editor. Initially, the dialog box shows
the current build number format, along with a preview of what a build number generated with this
format would look like. Clicking the Macros button expands the dialog box to show a number of
available macros, as shown in Figure 18-37.

512 ❘ CHAPTER 18 USING TEAM FOUNDATION BUILD

c18.indd 04/22/2014 Page 512

FIGURE 18-37: BuildNumber Format Editor dialog box

A common number format to use is one that matches the version numbers baked into the product
assemblies as part of the build. For example, if the build was for version 4.1.0 of the product (where
4 is the major version, 1 is the minor version, and 0 is the servicing version), and the revision num-
ber is incremented for each build, the build number format should be set to
$(BuildDefinitionName)_4.1.0$(Rev:.r), as shown in Figure 18-37.

NOTE See Chapter 19 for an example of how to then customize the build pro-
cess template to add this build number into the assemblies as the build is being
performed.

Clean Workspace
By default, the Clean Workspace parameter in the TF Version Control section is set to True, mean-
ing that all existing build outputs and sources for that build defi nition will be deleted at every
build. This is the safest option, but it is also the slowest, because it means that all fi les must be
downloaded from version control, and everything built each time, regardless of how little changed
between each build.

Understanding the Build Process ❘ 513

c18.indd 04/22/2014 Page 513

As discussed in Chapter 6, Team Foundation Server manages workspaces to ensure that fi les are
deleted, moved, and renamed as they are deleted, moved, and renamed in version control, thus
ensuring that there are no orphaned fi les. Therefore, enabling the workspace to be maintained
between builds can dramatically improve build performance, especially for continuous integration
builds, where the changes between each build are typically small.

If you set the value of the Clean Workspace parameter to False, neither the sources nor the build
outputs will be deleted at the start of a build. Only the fi les that have been modifi ed in version con-
trol will be updated, and only the items that have changed will be recompiled.

In a continuous integration build where the scope of changes between builds is typically small, this
setting gives a further performance increase. In addition, it can also be useful for ASP.NET-based
websites. In that case, you might only subsequently publish the items that have changed between the
build output and your website to minimize the upgrade impact of a new version, thus better facili-
tating continuous deployment.

CLEAN WORKSPACE SETTING IN VISUAL STUDIO ONLINE

If you are using the Hosted Build Controller provided with your Visual Studio
Online account, you will fi nd that this parameter is ignored. By design, you get a
new working directory with each build.

Logging Verbosity
In Team Foundation Server 2013, the Logging Verbosity parameter was removed and the system
was modifi ed to no longer store build log information in the database. Instead, diagnostic-level log-
ging is always performed and the results are stored in the diagnostic log fi les. For more information
on diagnostic logs, see http://aka.ms/DiagnosticBuildLogs.

Perform Code Analysis

NOTE Static code analysis allows you to provide a set of rules that can be
checked during a build to ensure that code conventions are being adhered to and
common bugs and security issues are avoided. The Managed Code Analysis tool
(also known as FxCop) is a tool used by Visual Studio to analyze code against a
library of rules. Nearly 200 rules are provided out of the box based on the .NET
Framework Design Guidelines. They are organized into a series of rule sets and
groups.

http://aka.ms/DiagnosticBuildLogs

514 ❘ CHAPTER 18 USING TEAM FOUNDATION BUILD

c18.indd 04/22/2014 Page 514

NOTE For more information about the updated Static Code Analysis features
for C++, which arrived in Visual Studio 2012, see the MSDN article at http://
aka.ms/VS2013CppAnalysis.

By default, the use of code analysis is set at the project level in Visual Studio. However, the
Perform Code Analysis parameter in the Build section of the build parameters can set the code
analysis to be run Always, Never, or AsConfigured in the Visual Studio project.

If set to Always, then code analysis will force all projects in the solution to be analyzed. If a code
analysis Rule Set has not been defi ned for a particular project, then the default Rule Set (Microsoft
Minimum Rules) will be used.

NOTE For more information on using static code analysis with Visual Studio
projects, see Chapter 20 of the book Professional Application Lifecycle
Management with Visual Studio 2013 (Mickey Gousset, Martin Hinshelwood,
Brian A. Randell, Brian Keller, and Martin Woodward, Wiley, 2014).

Source and Symbol Server Settings
A Symbol server is a fi le share used to store the symbols or program database (.pdb) fi les for your
executable binaries in a defi ned layout. Visual Studio can then be confi gured with the details of this
server. From then on, when debugging code live or using the advanced historical debugging features
(IntelliTrace), Visual Studio is capable of taking you directly to the version of the source code that
was used to create the binary being debugged.

The confi guration of the Symbol server is performed by providing the Windows fi le location to be
used for the Symbol store in the Path to Publish Symbols parameter of the Publish Symbols sec-
tion of the DefaultTemplate.

NOTE For more information on what every developer should know about sym-
bol fi les, see the blog post by John Robbins at http://aka.ms/PdbFiles.

Agent Settings
The Agent Settings are located in the Advanced section of the build parameters in the
DefaultTemplate. In addition to controlling how long a build may execute before being cancelled,
and the maximum time a build may wait for an available agent, the Agent Settings provide for a
Name and Tag fi lter. These can be used by the build controller to restrict the selection of agents
when determining on which agent the build should execute.

http://aka.ms/VS2013CppAnalysis
http://aka.ms/VS2013CppAnalysis
http://aka.ms/PdbFiles

Understanding the Build Process ❘ 515

c18.indd 04/22/2014 Page 515

Specifying a full name of a build agent allows you to force it to run on a particular machine. If you
adopt a naming convention for your build agents such as TeamXAgent1, then using wildcards for the
name fi lter will allow scoping to a particular set of build agents (for example, TeamX*).

A more fl exible way is to use build agent tagging as shown earlier in this chapter in the “Managing
Build Controllers and Build Agents” section. In this way, you can tag a build agent with its capabili-
ties, and then use the Tags fi lter to specify the tags that you require (such as BizTalk to indicate a
machine with the BizTalk Server toolkit installed, which is, therefore, suitable for compiling those
projects). You can then change the Tag Comparison Operator from the default of MatchExactly to
MatchAtLeast, which means that you will accept any build agent that has the BizTalk tag, regard-
less of the other tags it might have.

Analyze Test Impact
If the .testsettings fi le provided for the test run indicates that test impact analysis should be per-
formed, the default setting of True for the Analyze Test Impact parameter in the Advanced item
of the Test section of the DefaultTemplate means that the analysis will be performed. Setting this
to False means that the impact analysis will not be performed, regardless of the .testsettings.

Update Work Items with Build Number
By default, the Update work items with build number parameter in the Advanced section of the
DefaultTemplate is set to True. This means that the build system will determine which changesets
were committed to the build workspace since the last successful run of this build defi nition by com-
paring this build’s label in version control with the earlier, successful build’s label. It will then select
all of the work items linked to those changesets. Finally, it will update those work items with the
current build number.

This analysis can take a long period of time and can require several server calls, which will impact
the performance of your Team Foundation Server instance. Therefore, if you decide that you do not
require that functionality for a particular build defi nition, you can disable it by setting the value to
False.

Create Work Item on Failure
When a build fails, the default behavior is to create a work item assigned to the person for whom
the build was running (the person that checked in fi les, for example, in the case of a Continuous
Integration triggered build defi nition). Set the Create Work Item on Failure parameter in the
Advanced section of the DefaultTemplate to False if you do not require work items to be created
automatically.

Disable Tests
By default, the tests specifi ed in the Automated Tests setting will be executed unless the
Disable Tests parameter in the Advanced section of the DefaultTemplate is set to True.
This is usually selected when you want to perform a manual build that runs without tests. This
may be done to temporarily expedite the build process.

516 ❘ CHAPTER 18 USING TEAM FOUNDATION BUILD

c18.indd 04/22/2014 Page 516

Get Version
By default, the Latest version of source is used to perform a build. However, you may wish to create
a build defi nition that always builds the fi les with a particular label—for example, QARelease in
the project MyTeamProject. Setting the Get Version parameter in the TF Version Control section
of the DefaultTemplate to LQARelease@$/MyTeamProject would force the build defi nition to get
fi les only with this label. Because labels can be edited in Team Foundation Server, you can now label
the versions and fi les that make up that QA release and know that they will be included in the build
once triggered.

An alternative approach to using Get Version in this way would be to have a branch in version con-
trol representing the fi les that were in QA and merge changes into this branch to be included in that
build. For more information on branching, see Chapter 10.

Label Sources
By default, the Label Sources parameter in the TF Version Control section of the
DefaultTemplate is set to True, which means that the sources in the workspace of the build are
labeled at the start of the build process so that the exact versions included in the build can be easily
determined. Set this to False if you do not require a label to be created. However, be warned that
this also disables much of the change analysis functionality that relies on the last successful build
label to determine the differences between builds.

MSBuild Arguments
Use the MSBuild Arguments parameter in the Advanced item of the Build section of the
DefaultTemplate to pass an additional command-line argument to MSBuild.exe whenever it is
invoked in the build process.

MSBuild Platform
By default, the MSBuild platform used to execute the build process is auto-detected, based on the
current operating system of the build agent. However, this parameter in the Advanced item of the
Build section of the DefaultTemplate can be set explicitly to, say, x86 if an explicit platform is
required (for example, when the project is calling assemblies that are not x64 compatible so you
need to force them to be loaded into the correct version of the CLR).

Pre- and Post-Build Script Arguments
Use the Pre-build script arguments property to specify the command-line arguments to be
passed to the script fi le specifi ed in the Pre-build script path property when it is executed.
The Post-build script argument parameter specifi es the command-line arguments to pass to
the script specifi ed in the Post-build script path parameter. These properties are found in the
Advanced item of the Build section of the DefaultTemplate.

Pre- and Post-Build Script Path
Use the Pre-build script path property to specify a batch fi le or PowerShell script to be run
before MSBuild compilation of your source code occurs. The Post-build script path property

Understanding the Build Process ❘ 517

c18.indd 04/22/2014 Page 517

will specify a script fi le that will be run after MSBuild compilation. These properties are found in
the Advanced item of the Build section of the DefaultTemplate.

Pre- and Post-Build Test Arguments
Use the Pre-test script arguments property to specify the command-line arguments to be
passed to the script fi le specifi ed in the Pre-test script path property when it is executed. The
Post-test script arguments property specifi es the command-line arguments to pass to the script
specifi ed in the Post-test script path property. These properties are found in the Advanced item
of the Test section of the DefaultTemplate.

Pre- and Post-Test Script Path
Use the Pre-test script path property to specify a batch fi le or PowerShell script to be run
before Visual Studio Test Runner tests your application. The Post-test script path property
will specify a script fi le that will be run after the test runner fi nishes. These properties are found in
the Advanced item of the Test section of the DefaultTemplate.

Output Location
Use the Output location parameter in the Build section of the DefaultTemplate to specify where
the build system places build outputs. The default value is SingleFolder, which will place all of the
outputs fi les together into the drop folder. This is the same default behavior as all previous versions
of Team Foundation Server. The PerProject setting will put build outputs into folders based on the
solution name. The AsConfigured setting will leave the binaries in the build’s Sources folder in the
same structure that you see when compiling the code on your local dev machine. This parameter is
new in 2013.

THE ASCONFIGURED SETTING WILL REQUIRE EXTRA CODING

If you use the AsConfi gured setting in the Output Location parameter, Team
Foundation Build will not copy your build outputs to the drop folder. You will have
to create a post-build script that gathers your outputs and copies them to the loca-
tion specifi ed by TF_BUILD_BINARIESDIRECTORY so they can be copied to the drop
folder.

Building Ant and Maven Projects with Team Foundation Server
A standard build agent may perform basic compilation and test activities for most .NET project
types. Visual Studio Ultimate or Visual Studio Premium is required on the build agent to perform
advanced .NET builds with features such as code coverage or static code analysis.

It is also possible to execute Java builds from the Team Foundation build agent by installing the
Build Extensions Power Tool on the build agent, along with a suitable Java Development Kit (JDK)
version as well as Ant and/or Maven. The latest version of the Build Extensions Power Tool can be
found at http://aka.ms/TFS2013BuildExtensions.

http://aka.ms/TFS2013BuildExtensions

518 ❘ CHAPTER 18 USING TEAM FOUNDATION BUILD

c18.indd 04/22/2014 Page 518

This Power Tool provides a set of Workfl ow activities and MSBuild tasks that allow a build defi ni-
tion to call Ant or Maven. The results of the build tool are then interpreted and published back to
Team Foundation Server by the build agent, along with any JUnit test results. The data for the Java
build process is then available in Team Foundation Server in just the same way as Visual Studio
builds are.

The easiest way to create a Java-based build defi nition is to create it from Eclipse using Team
Explorer Everywhere. Right-click the Builds node in Team Explorer and follow the build defi nition
creation process as outlined earlier in the chapter. The only signifi cant difference is that, instead
of the Process section described earlier, the build defi nition in Eclipse requests that a project fi le be
created.

Click the Create button to display the Create Build Confi guration Wizard, and then select the Ant
build.xml or Maven pom.xml fi le that you wish to use to perform the build.

Note that this creates a build using the UpgradeTemplate process template, with all the function-
ality controlled by a TFSBuild.proj fi le with an MSBuild-based wrapping script. In this way, the
build functionality can be easily edited from Eclipse or a cross-platform text editor where a suitable
Windows Workfl ow editor is not easily available.

SUMMARY

This chapter was all about using the build functionality provided by Team Foundation Server. You
learned about installation of the build services and about the creation of a build defi nition. You
became familiar with the tools and windows used to manage builds with Team Foundation Server.
Finally, the chapter described the build process, provided a detailed examination of the available
confi guration parameters for the DefaultTemp late, and described how to build Java projects (as
well as Visual Studio ones) with Team Foundation Server.

Chapter 19 examines customization of the build process in more detail and presents some examples
of common build customizati ons.

c19.indd 04/23/2014 Page 519

Customizing the Build Process
WHAT’S IN THIS CHAPTER?

 ➤ Getting to know build extension points

 ➤ Creating and confi guring script extensions

 ➤ Reviewing common custom activities

 ➤ Extending a build with custom activities

 ➤ Confi guring the Build Controller to deploy custom activities
automatically

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/go/
proftfs2013 on the Download Code tab. The code is in the Chapter 19 download and indi-
vidually named according to the code fi lenames noted throughout this chapter.

As you learned in Chapter 18, Team Foundation Server includes a rich set of features for auto-
mated builds based on the Windows Workfl ow Foundation technology included in the .NET
Framework. The main functionality for an automated build is included in the default build
process template available in the standard process templates. More than likely, however, you
will fi nd yourself needing to customize that functionality or add actions for your build process.

In Team Foundation Server 2013, Microsoft has revamped the build system to make it easier to
add customizations. In earlier versions, you would have to make changes to the build process
template XAML fi le to customize the process. You can still do this, but now you can also sim-
ply hook in your own build scripts (PowerShell or Batch fi les) to make these customizations.

In this chapter, you learn the fundamentals for working with Windows Workfl ow Foundation
and how to customize the build process template using the workfl ow designer tools available
in Visual Studio 2013. You also learn how to create and call a custom script that can be run
during your build.

19

http://www.wrox.com/go

520 ❘ CHAPTER 19 CUSTOMIZING THE BUILD PROCESS

c19.indd 04/23/2014 Page 520

RUNNING CUSTOM BUILD SCRIPTS DURING YOUR BUILD

Team Foundation Server 2013 introduced a set of scriptable extension points into the default build
templates for builds based inside Team Projects that use either TFS Version Control or Git-based
source control repositories. These extension points allow you to call your own custom scripts and
can pass arguments into those scripts, as shown in Figure 19-1.

FIGURE 19-1: Script extension points in the Default build template

c19.indd 04/23/2014 Page 521

Running Custom Build Scripts during Your Build ❘ 521

Extension Points in the Default Build Template
Each extension point is supported by two build process parameters, the Script Path and the Script
Arguments. The Script Path is the location of your PowerShell script or batch fi le in version control.
By selecting the fi le in version control, you get the benefi t of having versioned copies of all of the
script changes, as well as not having to worry about calling the script from a local path on the build
agent. This is handled for you inside the Default Build Template. The Script Arguments parameter
lets you pass arguments into your script from the running build process.

The available script extension points are described in Table 19-1.

TABLE 19-1: Script Extension Points in the Default Build Templates

EXTENSION POINT DESCRIPTION

Pre-build This script is invoked prior to the compilation of the fi rst solution/
confi guration pair in your build defi nition. It is invoked only once per
build and not once per solution in the build.

Post-build This script is invoked after compilation of all of the solutions and confi gu-
rations in your build.

Pre-test This script is invoked prior to the fi rst unit test run. It is a good place to
set up your test data and confi gure your test environment.

Post-test This script is invoked after all of the test runs have completed. It is a
good place to perform any cleanup operations you may need after
testing.

How to Access Build Information within Your Build Script
When your scripts are invoked, the build system will make all of the build’s environment variables
available to you. These environment variables are prefi xed with TF_BUILD. Some of the commonly
used build values are shown in Table 19-2. For a complete list of well-known environment variables,
see http://aka.ms/WellKnownEnvVariables.

TABLE 19-2: Common Build Values Available through TF_BUILD Environment Variables

BUILD VALUE ENVIRONMENT VARIABLE DESCRIPTION

Binaries
Directory

TF_BUILD_BINARIESDIRECTORY The location where the build will
store the outputs of compilation on
the Build Agent

Build Defi nition
Name

TF_BUILD_BUILDDEFINITIONNAME The name of the build defi nition that
is being run

continues

http://aka.ms/WellKnownEnvVariables

522 ❘ CHAPTER 19 CUSTOMIZING THE BUILD PROCESS

c19.indd 04/23/2014 Page 522

BUILD VALUE ENVIRONMENT VARIABLE DESCRIPTION

Build Number TF_BUILD_BUILDNUMBER This is the unique number generated
for the build to identify the build.

BuildURI TF_BUILD_BUILDURI The address of this build on the TFS
Server. Used to query TFS for build
information.

Drop Location TF_BUILD_DROPLOCATION The location of the Drop folder for
this build

Sources
Directory

TF_BUILD_SOURCESDIRECTORY This is the location where the source
code for the build was placed on the
Build Agent.

Source Get
Version

TF_BUILD_SOURCEGETVERSION The version of the source fi les
retrieved into the build’s workspace
on the build agent

CUSTOMIZING THE BUILD PROCESS TO STAMP THE VERSION
NUMBER INTO YOUR ASSEMBLIES

With the introduction of the script extensions into the Default Build Template, you now have a
choice in how you go about extending your builds. You can write a PowerShell script to perform the
task or, if it’s too complex for a script, you can use a custom build workfl ow activity. Custom build
workfl ow activities can be acquired from open source projects, as described later in this chapter, or
you can create your own in any .NET language.

NOTE Microsoft has been using Windows Workfl ow Foundation as the basis
for the Team Build system for years now. As with any mature system, a healthy
ecosystem of add-ons has emerged. Most of the custom activities you will need
for your build have already been built, so you should only have to write your
own activities on rare occasions.

If you do fi nd that you need to write a custom build activity, then look over
Andy Leonard’s Customize Your Team Foundation Build process page at
http://aka.ms/CustomizeTFBuild, MSDN’s Customizing the Build Process at
http://aka.ms/CustomizeBuildProcess, and the Visual Studio Ranger’s Build
Customization Guide at http://vsarbuildguide.codeplex.com.

TABLE 19-2: (continued)

http://aka.ms/CustomizeTFBuild
http://aka.ms/CustomizeBuildProcess
http://vsarbuildguide.codeplex.com

Customizing the Build Process to Stamp the Version Number into Your Assemblies ❘ 523

c19.indd 04/23/2014 Page 523

Creating the PowerShell Script
Andy Lewis, a member of the Visual Studio ALM group, has written a couple of blog posts describ-
ing how one would go about creating a PowerShell script that can be run during the build to stamp
the build number into the AssemblyInfo fi les for your project. Let’s have a look at the script he built
as well as how that script is hooked into your build.

NOTE The entire PowerShell script referenced here can be downloaded from
this book’s website or from http://aka.ms/StampAssemblyInfoPS.

The ApplyVersionToAssemblies.ps1 PowerShell script shown in Listing 19-1 reads the current
build number from the running Team Build, parses it to extract the version string, and then uses a
regular expression to fi nd the version entries within the AssemblyInfo fi les in the source’s directory
structure and replaces them with the extracted version string.

LISTING 19-1: PowerShell script to stamp build number into assemblies (code fi le:
ApplyVersionToAssemblies.ps1)

##---
<copyright file="ApplyVersionToAssemblies.ps1">
(c) http://TfsBuildExtensions.codeplex.com/.
This source is subject to the Microsoft Permissive License.
See http://www.microsoft.com/resources/sharedsource
 /licensingbasics/sharedsourcelicenses.mspx.
All other rights reserved.</copyright>
##---
Look for a 0.0.0.0 pattern in the build number.
If found use it to version the assemblies.
#
For example, if the 'Build number format' build process parameter
$(BuildDefinitionName)_$(Year:yyyy).$(Month).$(DayOfMonth)$(Rev:.r)
then your build numbers come out like this:
"Build HelloWorld_2013.07.19.1"
This script would then apply version 2013.07.19.1 to your assemblies.

Enable -Verbose option
[CmdletBinding()]

Disable parameter
Convenience option so you can debug this script or disable it in
your build definition without having to remove it from
the 'Post-build script path' build process parameter.
param([switch]$Disable)
if ($PSBoundParameters.ContainsKey('Disable'))
{
 Write-Verbose "Script disabled; no actions will be taken on the files."
}

continues

http://aka.ms/StampAssemblyInfoPS
http://TfsBuildExtensions.codeplex.com
http://www.microsoft.com/resources/sharedsource

524 ❘ CHAPTER 19 CUSTOMIZING THE BUILD PROCESS

c19.indd 04/23/2014 Page 524

Regular expression pattern to find the version in the build number
and then apply it to the assemblies
$VersionRegex = "\d+\.\d+\.\d+\.\d+"

If this script is not running on a build server, remind user to
set environment variables so that this script can be debugged
if(-not $Env:TF_BUILD -and -not ($Env:TF_BUILD_SOURCESDIRECTORY -and
 $Env:TF_BUILD_BUILDNUMBER))
{
 Write-Error "You must set the following environment variables"
 Write-Error "to test this script interactively."
 Write-Host '$Env:TF_BUILD_SOURCESDIRECTORY - For example, enter
something like:'
 Write-Host '$Env:TF_BUILD_SOURCESDIRECTORY =
"C:\code\FabrikamTFVC\HelloWorld"'
 Write-Host '$Env:TF_BUILD_BUILDNUMBER - For example, enter something like:'
 Write-Host '$Env:TF_BUILD_BUILDNUMBER = "Build HelloWorld_0000.00.00.0"'
 exit 1
}

Make sure path to source code directory is available
if (-not $Env:TF_BUILD_SOURCESDIRECTORY)
{
 Write-Error ("TF_BUILD_SOURCESDIRECTORY environment variable is missing.")
 exit 1
}
elseif (-not (Test-Path $Env:TF_BUILD_SOURCESDIRECTORY))
{
 Write-Error "TF_BUILD_SOURCESDIRECTORY does not exist:
 $Env:TF_BUILD_SOURCESDIRECTORY"
 exit 1
}
Write-Verbose "TF_BUILD_SOURCESDIRECTORY: $Env:TF_BUILD_SOURCESDIRECTORY"

Make sure there is a build number
if (-not $Env:TF_BUILD_BUILDNUMBER)
{
 Write-Error ("TF_BUILD_BUILDNUMBER environment variable is missing.")
 exit 1
}
Write-Verbose "TF_BUILD_BUILDNUMBER: $Env:TF_BUILD_BUILDNUMBER"

Get and validate the version data
$VersionData = [regex]::matches($Env:TF_BUILD_BUILDNUMBER,$VersionRegex)
switch($VersionData.Count)
{
 0
 {
 Write-Error "Could not find version number data in TF_BUILD_BUILDNUMBER."
 exit 1
 }
 1 {}

LISTING 19-1: (continued)

Customizing the Build Process to Stamp the Version Number into Your Assemblies ❘ 525

c19.indd 04/23/2014 Page 525

 default
 {
 Write-Warning "Found more than instance of version data in
 TF_BUILD_BUILDNUMBER."
 Write-Warning "Will assume first instance is version."
 }
}
$NewVersion = $VersionData[0]
Write-Verbose "Version: $NewVersion"

Apply the version to the assembly property files
$files = gci $Env:TF_BUILD_SOURCESDIRECTORY -recurse -include "*Properties*",
 "My Project" |
 ?{ $_.PSIsContainer } |
 foreach { gci -Path $_.FullName -Recurse -include AssemblyInfo.* }
if($files)
{
 Write-Verbose "Will apply $NewVersion to $($files.count) files."

 foreach ($file in $files) {

 if(-not $Disable)
 {
 $filecontent = Get-Content($file)
 attrib $file -r
 $filecontent -replace $VersionRegex, $NewVersion | Out-File $file
 Write-Verbose "$file.FullName - version applied"
 }
 }
}
else
{
 Write-Warning "Found no files."
}

Once you have this script created, you can check it into version control so that it is available to your
builds, as shown in Figure 19-2.

FIGURE 19-2: ApplyVersionToAssemblies.ps1 in Version Control

526 ❘ CHAPTER 19 CUSTOMIZING THE BUILD PROCESS

c19.indd 04/23/2014 Page 526

Confi gure the Build to Run the Script
You now want to get your build to run the script so that your AssemblyInfo fi les have their version
strings updated prior to compilation. As shown in Table 19-1, the Pre-Build extension point is trig-
gered before compilation occurs, so that is the one you want to use.

To set up the Pre-Build extension point, select your build defi nition in Team Explorer’s Builds
pane, right-click on the build defi nition, and select the Edit Build Defi nition option. Once the
Build Defi nition Editor opens, select the Process tab and make sure your build is using the Default
Template build process template, as shown in Figure 19-3. In the Build process parameters grid,
navigate to the 2. Build ➪ Advanced ➪ Pre-build script path parameter. In this parameter fi eld, click
the ellipsis button on the right to show the Browse dialog box, as shown in Figure 19-4, to browse
your version control repository. Select the location of the ApplyVersionToAssemblies.ps1 fi le and
click OK to store the version control path in the parameter fi eld.

FIGURE 19-3: Build Defi nition Editor

Customizing the Build Process to Stamp the Version Number into Your Assemblies ❘ 527

c19.indd 04/23/2014 Page 527

FIGURE 19-4: Browse version control dialog box

You now have the build confi gured to run the ApplyVersionToAssemblies.ps1 script on every
build. All that’s left is to make sure the script has everything it needs to be successful.

PASSING ARGUMENTS FROM THE RUNNING BUILD TO A SCRIPT

As described earlier in this chapter, many of the build details are made available
to your script through environment variables. There are times, however, when you
may want to explicitly pass arguments (explicit or variables) on the script’s com-
mand line.

To accomplish this for your Pre-build script, you can use the Pre-build script
 arguments build parameter in your build defi nition, as shown in Figure 19-3.

For more information, see http://aka.ms/PassArgumentsToScripts.

Confi gure the Build Number to Work with the Script
Listing 19-2 shows a portion of the ApplyVersionToAssemblies.ps1 fi le, which shows that
there are some assumptions made by the script as to the format of the build number generated
by Team Build.

http://aka.ms/PassArgumentsToScripts

528 ❘ CHAPTER 19 CUSTOMIZING THE BUILD PROCESS

c19.indd 04/23/2014 Page 528

LISTING 19-2: Assumptions of the ApplyVersionToAssemblies.ps1 script

##---
Look for a 0.0.0.0 pattern in the build number.
If found use it to version the assemblies.
#
For example, if the 'Build number format' build process parameter
$(BuildDefinitionName)_$(Year:yyyy).$(Month).$(DayOfMonth)$(Rev:.r)
then your build numbers come out like this:
"Build HelloWorld_2013.07.19.1"
This script would then apply version 2013.07.19.1 to your assemblies.

To meet this assumption, you need to look at how Team Build generates its build numbers. The
build number pattern is stored in the Process Tab ➪ Advanced ➪ Build number format parameter,
as shown in Figure 19-5.

FIGURE 19-5: Initial build number format parameter

The default value for this parameter is $(BuildDefinitionName)_$(Date:yyyyMMdd)$(Rev:.r).
The $(BuildDefinitionName) portion represents the name of the build defi nition, which in this

Customizing the Build Process to Stamp the Version Number into Your Assemblies ❘ 529

c19.indd 04/23/2014 Page 529

case is HelloWorld-CI. The $(Date:yyyyMMdd) portion represents the current date formatted in a
year, month, day pattern; so if today is December 10, 2013, this portion would return 20131210.
The $(Rev:.r) portion represents the Revision, which is the number of times this build defi nition
has been run with the same values in the prior segments; so in this case this number starts at 1 when
the build is run for the fi rst time each day and then increments all day long. It will reset to 1 the
 following day because the date portion of the build number string has changed.

For example, if you have a build called HelloWorld-CI that you run for the third time on December
12, 2013, your build number would be HelloWorld-CI_20131212.3.

Of course this won’t work for the purposes of the ApplyVersionsToAssemblies script so you
need to change the format to something like $(BuildDefinitionName)_$1.0.0$(Rev:.r), as
shown in Figure 19-6. This will give you a build number of HelloWorld-CI_1.0.0.1 the fi rst
time it is run and will increment the revision until someone changes the format string to a new
version number.

FIGURE 19-6: Final build number format parameter

You can now save your build defi nition and run it to see the results.

530 ❘ CHAPTER 19 CUSTOMIZING THE BUILD PROCESS

c19.indd 04/23/2014 Page 530

NOTE For more information on the Build Number Format string and the avail-
able macros, see Chapter 18.

When you run the build, you should note that the build number at the top of the build log now
refl ects the new build numbering scheme, as shown in Figure 19-7.

FIGURE 19-7: Build run using new build number format

You can open the Drop folder and get the properties for each of the compiled assemblies in your
build. Looking at the Details tab of each, you can see that they all have the same File Version value,
and that value matches the build number, as shown in Figure 19-8.

FIGURE 19-8: File versions of compiled assemblies

Available Custom Build Workfl ow Activities ❘ 531

c19.indd 04/23/2014 Page 531

As you read in Chapter 18, when a build runs, it performs a number of steps. One of these steps is
that it creates a label in version control with the build number as its name, which contains all of the
fi le versions that went into the build. You can now look in version control, search for the label, and
see its contents, as shown in Figure 19-9.

FIGURE 19-9: Build label contents

With this system in place, you can now grab any assembly on your server, get its fi le version, and
trace it back to the label that contains the source code that went into it. You can also trace it back
to the build that compiled it, which has references to the changesets and tasks that defi ne the func-
tionality. You can go even further by tracing the tasks back to their User Stories, Requirements, or
Product Backlog Items (depending on your process template) to see which features of your applica-
tion were touched in this build. All in all, you have a very powerful system of traceability imple-
mented with a simple PowerShell script and two build process parameter changes.

AVAILABLE CUSTOM BUILD WORKFLOW ACTIVITIES

A lot of great workfl ow activities are available in the .NET Framework and provided by Team
Foundation Server. However, there may be times when you need to perform a certain functionality
and cannot use the standard workfl ow activities available from Microsoft. Creating custom work-
fl ow activities is one of the extensibility points for Team Foundation Server. Over the years, this
extension point has been exercised quite a bit by the development community.

One of the most prolifi c community groups is the Community TFS Build Extensions project on
CodePlex. This project is maintained by a dedicated group of Microsoft employees, Visual Studio
ALM Rangers, and Microsoft MVPs for Team Foundation Server who have grouped together to
provide commonly requested custom workfl ow activities for Team Foundation Server Build. Some of
the build activities currently provided include the items in Table 19-3.

532 ❘ CHAPTER 19 CUSTOMIZING THE BUILD PROCESS

c19.indd 04/23/2014 Page 532

TABLE 19-3: Handy Community TFS Build Extensions Activities

ACTIVITY DESCRIPTION

AssemblyInfo An activity to set the build number into the AssemblyInfo fi les

CatNetScan Runs the CATNetCmd.exe to check for security issues in an
assembly

CheckCoverage Checks Code Coverage and fails build if below a threshold

CodeMetric Runs code metrics and static analysis (FxCop) against your
.NET code during the build and saves the results to a history
log

DateAndTime Performs date-related activities such as date math, checks if a
date falls between two others, if a date is later than another,
gets the current date, and gets elapsed time from a given
date

Email Sends e-mail to a set of users using a specifi c SMTP server

Ftp Used to interact with FTP sites during your build

IIS7 Used to manipulate IIS7 servers during your build

RoboCopy Used to copy fi les between locations using RoboCopy

SharePointDeployment Used to deploy a SharePoint solution to a SharePoint 2010
site via PowerShell commands

SSH Used to interact with a server using a Secure Shell

SqlExecute Used to run a SQL script against a SQL Server from your build

TFSVersion Used to manipulate TFS Version Control during a build

VB6 Used to compile Visual Basic 6 applications

WorkItemTracking Used to manipulate TFS Work Item Tracking during a build

XML Used to manipulate XML fi les

Zip Used to create and manipulate Zip fi les

NOTE The source code for all the activities is available and licensed under the
Microsoft Permissive License, which allows you to use the activities for commer-
cial purposes. For more information about the project, to request new custom
activities, or to vote on current requests for new activities, visit http://
tfsbuildextensions.codeplex.com.

http://tfsbuildextensions.codeplex.com
http://tfsbuildextensions.codeplex.com

Integrating Custom Activities into the Build Process Template ❘ 533

c19.indd 04/23/2014 Page 533

INTEGRATING CUSTOM ACTIVITIES INTO THE BUILD
PROCESS TEMPLATE

If you fi nd that the script extensions on the Default Template build template aren’t suffi cient for your
needs, you will have to modify a copy of the build process template and then confi gure your build
defi nition to use the new template.

For this example, let’s assume that you want to take the contents of your Binaries directory and add
it to a Zip archive so that only the Zip fi les are copied to the Drop folder. To implement this, you’ll
need to use the Zip activity as well as some standard activities provided by Microsoft.

Acquiring a Copy of the Default Template
The fi rst thing you need to do is to get your hands on a copy of the Default Template build template.
As noted in Chapter 18, Microsoft moved the out-of-box build process templates from a folder in
the version control repository of each team project to a private location inside the Team Foundation
Server Application Tier server. This change ensured that Microsoft could easily update the out-of-
box templates without having to worry about breaking a customer’s build because the upgrade tools
didn’t notice that the build template was modifi ed. Unfortunately, this change means that you have
some extra steps to go through.

 1. From the Builds panel in Team Explorer, click the New Build Defi nition link, as shown in
Figure 19-10.

FIGURE 19-10: New Build Defi nition link in Team Explorer

 2. In the Build Defi nition Editor, click the Process tab to display the build process template
parameters, as shown in Figure 19-11.

534 ❘ CHAPTER 19 CUSTOMIZING THE BUILD PROCESS

c19.indd 04/23/2014 Page 534

FIGURE 19-11: Process tab in Build Defi nition Editor

 3. Click the Show Details button to expand the Build process template section of the editor.

 4. Click the Download button, as shown in Figure 19-12. The Save As dialog box will appear.
Navigate to a folder that is mapped into your local workspace and save the build template’s
XAML fi le. It’s a good idea to change the name of the template fi le so that it doesn’t confuse
your team members when they try to make builds after you are done. For this example, we
decided to call the template TfvcTemplate.WithZip.12.xaml and store it in a folder under
the root of our team project called BuildSupport, as shown in Figure 19-13.

FIGURE 19-12: Download link in the Build Defi nition editor

 5. In Source Control Explorer, select the folder where you saved the build process template and
then select the File ➪ Source Control ➪ Add items to folder menu item to launch the Add to
Source Control Wizard. Use the wizard to add the XAML fi le to version control, as shown in
Figure 19-14.

 6. In the Pending Changes window in Team Explorer, add a check-in comment and click the
Checkin button to commit the build process template to version control.

You now have a build process template that you can safely modify for your needs.

Integrating Custom Activities into the Build Process Template ❘ 535

c19.indd 04/23/2014 Page 535

FIGURE 19-13: Save As dialog box

FIGURE 19-14: Build template in version control

Acquiring and Confi guring the Community TFS Build
Extensions Custom Build Activities

Once you have the build process template, you need to download a copy of the open source TFS
Build Extensions custom build activities from CodePlex. After you retrieve the activities you will
need to store them in a location that is available to the build controller and agents.

 1. Open a browser and navigate to http://tfsbuildextensions.codeplex.com and click the
big Download button to download the latest version of the extensions, as shown in Figure
19-15. Save the resulting Zip fi le to your computer.

http://tfsbuildextensions.codeplex.com

536 ❘ CHAPTER 19 CUSTOMIZING THE BUILD PROCESS

c19.indd 04/23/2014 Page 536

FIGURE 19-15: Community TFS Build Extensions

 2. Extract the Zip fi le contents to your desktop, and then open the folder. Navigate to the
TfsBuildExtensions [Month] [Year]\Code Activities\VS2013 folder where
[Month] [Year] represents the release month and year of the activities, as shown in
Figure 19-16. In our example, the release is October 2013. Find the TfsBuildExtensions
.Activities.dll and Ionic.Zip.dll fi les and copy them to the clipboard.

 3. In Source Control Explorer, create a new folder under your team project to hold the cus-
tom activity assemblies. As shown in Figure 19-17, we have created a Deploy folder under
the existing BuildSupport folder. Paste the TfsBuildExtensions.Activities.dll and
Ionic.Zip.dll fi les into the new folder and check them into version control.

In the future, any new custom assemblies can be placed into this same folder in version control. In
a later step, you will tell our Build Controller to grab this folder and deploy it to your build agents
before each build.

Creating a Visual Studio Project to Support Editing
the Build Template

To edit and debug a build process template, you must create a Visual Studio project so that all of the
assembly references needed by the build template can be found.

Integrating Custom Activities into the Build Process Template ❘ 537

c19.indd 04/23/2014 Page 537

FIGURE 19-16: Extracted build activities

FIGURE 19-17: The custom build activities assembly in version control

Let’s walk through the process for getting a Visual Studio project created so that you can use it for
editing test versions of the build process templates. Follow these steps:

 1. From the Visual Studio menus, click File ➪ New ➪ Project to create a new solution and
project.

 2. At this point, you can choose to use any type of project. However, we’re choosing to use a
C# Class Library because it has very few default fi les. Give your class a meaningful name and
click OK, as shown in Figure 19-18.

538 ❘ CHAPTER 19 CUSTOMIZING THE BUILD PROCESS

c19.indd 04/23/2014 Page 538

FIGURE 19-18: Choosing the Class Library Visual Studio project type

 3. Add the build process template to the new Visual Studio project. You can do that by choos-
ing the new Visual Studio project in the Solution Explorer window and then right-clicking
on the project to bring up the context menu. Select Add ➪ Existing item to open the Add
Existing Item dialog box.

 4. In the Add Existing Item dialog box, change the fi le type fi lter to XAML Files
(*.xaml, *.xoml), as shown in Figure 19-19.

 5. Browse to the folder where you stored your build process template and select the template’s
XAML fi le, as shown in Figure 19-19.

 6. Click the arrow next to the Add button and select the Add as link entry, as shown in Figure
19-19. This will add a link to your project that points to the XAML fi le without copying the
XAML fi le from its current location to the project’s folder, as shown in Figure 19-20. This
allows you to use Visual Studio to manage the template while leaving the template XAML
fi le as the only one that needs to be checked into version control.

 7. If you were to attempt to compile the solution at this point, you would end up with some
compilation errors. This is because, by default, XAML fi les added to a Visual Studio project

Integrating Custom Activities into the Build Process Template ❘ 539

c19.indd 04/23/2014 Page 539

are set to compile. Some walkthroughs available about this topic would instruct you to add
the appropriate references to ensure that they compile correctly. However, you can instead
instruct MSBuild to ignore the build process template fi les altogether, and simply copy them
to the output directory. You can do this from the Properties window in Visual Studio by
 setting the Build Action property to None and the Copy to Output Directory property to
Copy always, as shown in Figure 19-21.

It has taken a bit to get to this point, but you should be able to compile the entire solution
successfully. You can edit process template fi les from now on by opening the solution and
opening the process template fi le from its location in the Visual Studio project.

FIGURE 19-19: Adding a link to the build process template XAML fi le

FIGURE 19-20: The Visual Studio project with the XAML fi le linked

540 ❘ CHAPTER 19 CUSTOMIZING THE BUILD PROCESS

c19.indd 04/23/2014 Page 540

FIGURE 19-21: Copying the build process template fi les to the output directory

 8. Double-click on the process template in Solution Explorer to open the template in the
XAML editor.

 9. To make the Zip activity available, you need to add a reference to the activity’s assembly. In
Solution Explorer, right-click on the project’s References node and then select Add Reference,
as shown in Figure 19-22. This will bring up the Reference Manager dialog box.

FIGURE 19-22: Add Reference

Integrating Custom Activities into the Build Process Template ❘ 541

c19.indd 04/23/2014 Page 541

 10. In the Reference Manager, click the Browse button at the bottom of the dialog box. This
will bring up the Select the fi les to reference dialog box. Navigate to the local copy of the
TfsBuildExtensions.Activities.dll fi le that you stored in version control, as shown
in Figure 19-23. In our case, the path is C:\Source\ProTFS2013-TFVC\BuildSupport\
Deploy. When you have selected the fi le, click Add.

FIGURE 19-23: Browse for Assembly

 11. Repeat Step 10 to add the Ionic.Zip.dll fi le.

 12. Back in Reference Manager, click Okay to add the references to your project, as shown in
Figure 19-24.

 13. You need to also add references to the assemblies listed in Table 19-4. Now that you have all
of the references set, you need to add the new custom build activities to your toolbox so you
can drag them onto the build template’s XAML editor canvas.

 14. Scroll to the bottom of the Toolbox, right-click on the General section header, and select
Choose items, as shown in Figure 19-25.

 15. In the Choose Toolbox Items dialog box, click the Browse button.

 16. In the Open dialog box, navigate to the location of your custom activities, select the
TfsBuildExtensions.Activities.dll fi le, and click Open, as shown in Figure 19-26.

542 ❘ CHAPTER 19 CUSTOMIZING THE BUILD PROCESS

c19.indd 04/23/2014 Page 542

FIGURE 19-24: Correct References in the Project

TABLE 19-4: Additional References Needed to Modify the Build Template

ASSEMBLY LOCATION

Microsoft.Teamfoundation.Build.Activities Assemblies\Extensions

Microsoft.TeamFoundation.Build.Client Assemblies\Extensions

Microsoft.TeamFoundation.Build.Common Assemblies\Extensions

Microsoft.TeamFoundation.Build Workfl ow Assemblies\Extensions

Microsoft.TeamFoundation.Client Assemblies\Extensions

Microsoft.TeamFoundation.TestImpact
.BuildIntegration

Browse to %ProgramFiles%\Microsoft
Team Foundation Server 12.0\Tools

Microsoft.TeamFoundation.TestManagement
.Client

Assemblies\Extensions

Microsoft.TeamFoundation.VersionControl
.Client

Assemblies\Extensions

Microsoft.TeamFoundation.VersionControl
.Common

Assemblies\Extensions

Microsoft.VisualBasic Assemblies\Framework

System Assemblies\Framework

System.Activities Assemblies\Framework

Integrating Custom Activities into the Build Process Template ❘ 543

c19.indd 04/23/2014 Page 543

FIGURE 19-25: Choose Items in the Toolbox

 17. Scroll down to the bottom of the Choose Toolbox Items dialog box and you should see the
Zip activity with a check box next to it along with all of the other build activities in the
assembly, as shown in Figure 19-27. Click OK.

 18. Scroll down in the toolbox and you will see all of the new custom activities under the
General section (see Figure 19-28).

Adding the Zip Activity to the Build Template
Now you are going to add the Zip activity to our build template and wire it up so that you get a Zip
fi le of your application in your Drop folder.

544 ❘ CHAPTER 19 CUSTOMIZING THE BUILD PROCESS

c19.indd 04/23/2014 Page 544

FIGURE 19-26: Select the custom activity assembly for the Toolbox

You fi rst need to grab the location of the Binaries folder from the build. To get this value, you need
to create a variable called outDir and populate it using a build activity from the environment vari-
ables made available by the build process.

 1. Click the Variables tab at the bottom of the XAML editor.

 2. Click the Compile, Test and Publish activity in the body of the XAML editor to set your vari-
able’s scope.

 3. Click the Create variable row in the Variables section to create a new variable. Set the vari-
able name to outDir and the variable type to String. Leave the remaining fi elds with their
defaults, as shown in Figure 19-29.

 4. Create a second variable row. Set the variable name to buildNumber and the variable type to
String, as shown in Figure 19-29.

 5. Find the GetEnvironmentVariable<T> activity in the Team Foundation Build Activities
 section of the Toolbox and drag it beneath the Publish Symbols activity in the build template,
as shown in Figure 19-30. When prompted with the Select Types dialog box, select String.

 6. Set the Properties of the GetEnvironmentVariable<String> activity to the values
in Table 19-5.

 7. Add a second GetEnvironmentVariable<T> activity below the fi rst one. When prompted
with the Select Types dialog box, select String.

 8. Set the Properties of the second GetEnvironmentVariable<String> activity to the values in
Table 19-6.

Integrating Custom Activities into the Build Process Template ❘ 545

c19.indd 04/23/2014 Page 545

FIGURE 19-27: Zip custom activity ready for the Toolbox

 9. Now you need to confi gure the template to create Zip fi les. For simplicity’s sake, we’ve con-
fi gured the Zip activity to collect everything in the Binaries directory and store it in a single
Zip fi le that is named [Build Number].zip where. [Build Number] resolves to the full
build number retrieved from the build environment and is based on your build defi nition’s
build number format parameter.

Find the Zip activity in the General section of the Toolbox and drag it onto the XAML
design surface just after the second GetEnvironmentVariable<String> activity, as shown
in Figure 19-31.

546 ❘ CHAPTER 19 CUSTOMIZING THE BUILD PROCESS

c19.indd 04/23/2014 Page 546

FIGURE 19-28: The custom activities in the Toolbox

 10. Right-click on the Zip activity and select Properties from the context menu to display the
Properties pane. Set the Zip activity’s properties to the values in Table 19-7.

 11. Go to the Pending Changes panel in Team Explorer and check in the Build Process Template
XAML fi le.

Confi gure a Build Defi nition to Use the New Build
Process Template

Once the updated Build Process Template has been checked into version control, you need to regis-
ter it with the build system. This is a one-time activity that will make it available to all subsequent
builds. After it is registered, you will be able to update the HelloWorld-CI build defi nition to use the
new template.

Integrating Custom Activities into the Build Process Template ❘ 547

c19.indd 04/23/2014 Page 547

 1. Open an existing build defi nition or create a new one. In this example, we’re going to open
the HelloWorld-CI build created earlier.

 2. Navigate to the Process tab in the Build Defi nition Editor and click on the Show Details
button. The dialog box should look like Figure 19-12.

 3. Click New to open the Browse dialog box, as shown in Figure 19-32.

 4. Select your Team Project, and then click the Browse button to browse version control for
your build process template.

 5. Navigate to your custom build process template, select the template, and click OK in both
Browse dialog boxes, as shown in Figure 19-32.

FIGURE 19-29: Create the outDir and buildNumber variables.

548 ❘ CHAPTER 19 CUSTOMIZING THE BUILD PROCESS

c19.indd 04/23/2014 Page 548

 6. When you return to the Build Defi nition Editor, you will see that your new build process
template is selected, as shown in Figure 19-33.

 7. Save your Build Defi nition.

FIGURE 19-30: Add the GetEnvironmentVariable<T> activity.

TABLE 19-5: GetEnvironmentVariable<String> Activity Properties

PROPERTY VALUE

Name WellKnownEnvironmentVariables.BinariesDirectory

DisplayName Get Binaries folder

Result outDir

Integrating Custom Activities into the Build Process Template ❘ 549

c19.indd 04/23/2014 Page 549

TABLE 19-6: GetEnvironmentVariable<String> Activity Properties

PROPERTY VALUE

Name WellKnownEnvironmentVariables.BuildNumber

DisplayName Get Build Number

Result buildNumber

FIGURE 19-31: Add the Zip activity.

550 ❘ CHAPTER 19 CUSTOMIZING THE BUILD PROCESS

c19.indd 04/23/2014 Page 550

TABLE 19-7: Zip Activity Properties

PROPERTY VALUE

Action Create

CompressPath outDir

ZipFileName String.Format(“{0}\{1}”, outDir, WellKnownEnvironmentVariables
.BuildNumber & “.zip”)

FIGURE 19-32: Register the custom build process template.

Confi gure the Build Controller to Automatically
Deploy Your Custom Build Activities

Before you can run the update build you need to perform one fi nal confi guration.

When the build runs, the build process template is sent to the build controller and build agents to
orchestrate their actions. When the Zip activity is hit in the build process, the build system will try
to fi nd the TfsBuildExtensions.Activities.dll and Ionic.Zip.dll fi les, which don’t exist on
your build servers.

Integrating Custom Activities into the Build Process Template ❘ 551

c19.indd 04/23/2014 Page 551

 FIGURE 19-33: Custom Build process template selected

To remedy this you could deploy the fi les to every build machine, but if you create an additional
build machine and forget to deploy the fi les, then any builds that run on that machine will fail.

A better way to handle this is to confi gure the Build Controller to automatically deploy these fi les
for you every time a build runs. This way, you don’t have to remember anything and new build
machines get the fi les the fi rst time they perform a build. You can achieve this by confi guring a
folder in version control for the build system.

The build controller and the agents managed by the controller will monitor this version control
folder and load any appropriate assemblies into the build service for use by build process tem-
plates. All you must do to deploy a new version of the custom assemblies is check them into the
version control folder. When you check in a new version of the assemblies, the build controllers
and agents will restart their services after completing any current builds running by the agents.
They then load the new version of the assemblies and continue with any builds currently in the
build queue.

This process signifi cantly reduces the complexity of deploying custom assemblies. You can easily
add additional build machines to the build farm without having to worry about how to deploy the
appropriate custom assemblies to them.

 1. In the Build pane of Team Explorer, click the Actions ➪ Manage Build Controllers menu, as
shown in Figure 19-34.

 2. Select the Build Controller and click the Properties button to show the Build Controller
Properties dialog box, as shown in Figure 19-35.

 3. Click the ellipsis button next to the Version control path to custom assemblies text box.

 4. In the Browse dialog box, select your Team Project. If you have a mix of Team Foundation
Version Control and Git-backed Team Projects, changing this selection will change the layout
of the dialog box. The following steps are for a Team Foundation Version Control–backed
Team Project.

 5. Click the Browse button to open the Browse for Folder dialog box.

552 ❘ CHAPTER 19 CUSTOMIZING THE BUILD PROCESS

c19.indd 04/23/2014 Page 552

FIGURE 19-34: Manage Build Controllers menu

 6. Navigate to the folder in version control that holds the TfsBuildExtensions.Activities
.dll and Ionic.Zip.dll fi les. Select that folder and click OK.

 7. To fi nish the confi guration, click OK, and then OK again, and then Close.

To ensure that assemblies are added into the Deploy directory when they are copied into the local
directory on disk, you may want to create a fi le called .tfIgnore in the root of the Deploy folder,
the contents of which are shown in Listing 19-3. The single line of !*.dll tells Team Foundation
Server to include any DLL fi les that it fi nds when scanning the local disk, detecting changes that
require adding fi les into version control.

LISTING 19-3: CUSTOMASSEMBLIES .TFIGNORE FILE

Ensure that the custom assembly DLLs are included in version control
!*.dll

Run Your Build and Check Your Work
You now have everything in place to test out the build, so queue the update build defi nition using
the default values. When the build completes, switch from the Summary view to the Log view.
Toward the bottom of the log, you should see three new entries, Get Binaries folder, Get Build
Number, and Zip, as shown in Figure 19-36.

Integrating Custom Activities into the Build Process Template ❘ 553

c19.indd 04/23/2014 Page 553

FIGURE 19-35: Build Controller properties for custom assemblies folder

You can now click on the Open Drop Folder link in the build report. The drop folder still con-
tains all of the fi les and folders that you saw in prior runs, but now it contains a Zip fi le called
HelloWorld-CI_1.0.0.6.zip, which is the build number on this build run, as shown in Figure
19-37. Congratulations!

554 ❘ CHAPTER 19 CUSTOMIZING THE BUILD PROCESS

c19.indd 04/23/2014 Page 554

FIGURE 19-36: Build report showing customizations

Summary ❘ 555

c19.indd 04/23/2014 Page 555

FIGURE 19-37: Drop folder showing Zip fi le

SUMMARY

In this chapter, you learned how to customize the automated build process by using custom script-
ing and standard workfl ow activities available from the .NET Framework, Team Foundation Server,
and open source build activity projects. You reviewed the essential functionality from Windows
Workfl ow Foundation (WF) leveraged in Team Foundation Server Build, including creating local
workfl ow variables, setting them from custom activity outputs, and consuming them as custom
activity inputs.

You also learned how to confi gure Build Controllers to automatically deploy dependencies to their
Build Agents to support your build process customizations.

In Chapter 20 you learn about the new Release Management tools that can help your team manage
the workfl ow, which supports moving your application from development, to test, and eventually to
production.

c20.indd 04/22/2014 Page 557

Release Management
WHAT’S IN THIS CHAPTER?

 ➤ Learning about the new Release Management tool

 ➤ Installing and confi guring Visual Studio Release Management

 ➤ Planning and managing a release

Team Foundation Server has long supported excellent software development practices, but
deployment of built software has traditionally been managed separately. Often, it has involved
manual steps at the end of a build, which are prone to human error. Release Management for
Visual Studio 2013 provides an integrated and feature-rich deployment tool to ease the release
process for developed applications.

A primary goal of any deployment process should be its ability to support frequent releases.
If a deployment process is straightforward and relatively hands-off, teams can release more
 frequently and can respond to change quickly and safely.

Another important consideration, particularly in large enterprises, is transparency and com-
pliance to an established process. It is important to know which version of a project has been
released to an environment and who authorized that release.

GETTING STARTED WITH RELEASE MANAGEMENT FOR
VISUAL STUDIO 2013

Release Management for Visual Studio 2013 is a set of software applications and components
that work with Team Foundation Server to provide an automated deployment solution. It facil-
itates repeatable and transparent deployment pipelines from Team Foundation Server 2010,
2012, or 2013 to deployment environments right up to production. It also supports managed
deployment of packages created outside Team Foundation Server.

20

558 ❘ CHAPTER 20 RELEASE MANAGEMENT

c20.indd 04/22/2014 Page 558

Release Management allows complex deployments of builds to client computers, servers, and
Windows Azure. It also helps manage release processes by tracking approvals and sign-offs to provide
enterprise-level traceability.

Like many Team Foundation Server components, Release Management began its life as a third-
party product. In mid-2013, Microsoft acquired InCycle Software’s InRelease product and, in
November 2013, re-released it as Release Management for Visual Studio 2013.

Components
Release Management for Visual Studio 2013 consists of four main components:

 ➤ Release Management Server—Consists of the database, the workfl ow controller, and the
release dispatcher

 ➤ Release Management Client—Includes two user interfaces: a WPF client that exposes
all available functionality; and a lightweight web client for testers, approvers,
and managers

 ➤ Release Management Deployer—A service installed on target servers that pulls information
from the release management server. This greatly eases deployment as the server does not
need security permissions to every target server.

 ➤ Deployment Tools—A set of powerful tools used in deployment steps for installing or unin-
stalling components, deploying fi les to specifi c locations, and starting and stopping services.
These tools are embedded in the product and don’t require separate installation.

Licensing
You should work with your Microsoft Partner or Microsoft Consulting Services representative to
identify your license requirements for Release Management, but the following general licensing guide-
lines apply:

 ➤ Each person using the Release Management Client for administration of a release pipeline
must be licensed for Visual Studio Ultimate with MSDN, Visual Studio Premium with
MSDN, Visual Studio Test Professional with MSDN, or MSDN platforms.

 ➤ Each person triggering a release must be licensed with a Team Foundation Server CAL.

 ➤ Each target endpoint to which a release is deployed must be licensed with either Visual
Studio Deployment Standard 2013 (one license is included with Visual Studio Ultimate with
MSDN) or Visual Studio Deployment Datacenter 2013.

 ➤ Approval of release stages, or signing off a release, does not require a license.

Hardware and Software Requirements
Prior to installing Release Management for Visual Studio 2013, you should ensure that each server
and target machine meets the minimum hardware and software requirements.

Getting Started with Release Management for Visual Studio 2013 ❘ 559

c20.indd 04/22/2014 Page 559

The server component should be installed on a single machine. In environments with frequent releases,
we recommend provisioning a dedicated physical or virtual machine for this purpose. For teams with
relatively basic or infrequent release processes, we recommend installing the server components on the
Team Foundation Server Application Tier, and using the SQL Server database on the Team Foundation
Server Data Tier. Table 20-1 shows the hardware and software requirements for the server components.

TABLE 20-1: Requirements for Release Management Server

COMPONENT REQUIREMENTS

CPU 1 GHz Pentium processor or equivalent (minimum)

2 GHz Pentium processor or equivalent (recommended)

RAM 1024MB (minimum)

2048MB (recommended)

Hard disk Up to 2.2GB of available space may be required for initial installation due to
the dependency on .NET.

Depending on usage, the database can grow up to 1GB per year.

Database Microsoft SQL Server 2008

Microsoft SQL Server 2008 R2

Microsoft SQL Server 2012 (recommended)

Operating system Windows Server 2008 R2 SP1

Windows Server 2012

Windows Server 2012 R2 (recommended)

You have the option of installing the Release Management client application on one or more dif-
ferent servers or client machines. Each machine with the client application installed must meet the
minimum requirements shown in Table 20-2.

TABLE 20-2: Requirements for Release Management Client

COMPONENT REQUIREMENTS

CPU 1 GHz Pentium processor or equivalent (minimum)

2 GHz Pentium processor or equivalent (recommended)

RAM 512MB (minimum)

1024MB (recommended)

Hard disk Up to 2.2GB of available space may be required for initial installation due to
the dependency on .NET.

continues

560 ❘ CHAPTER 20 RELEASE MANAGEMENT

c20.indd 04/22/2014 Page 560

COMPONENT REQUIREMENTS

Operating system Windows 7 SP1

Windows 8

Windows 8.1

Windows Server 2008 R2 SP1

Windows Server 2012

Windows Server 2012 R2 (recommended)

We strongly recommend installing the Release Management Client on the Team Foundation
Build Server. Having the Release Management Client on the build server allows it to build release
packages directly from Team Foundation Server. This is particularly important for continuous
 integration scenarios.

Each target computer needs a Microsoft deployment agent installed to enable deployment of
 software. Software and hardware requirements are more fl exible for the deployment agents because
of the large number of potential deployment targets. Table 20-3 shows the minimum requirements
for a target machine running the deployment agent.

TABLE 20-3: Requirements for Release Management Deployment Agent

COMPONENT REQUIREMENTS

CPU 400 MHz Pentium processor or equivalent (minimum)

1 GHz Pentium processor or equivalent (recommended)

RAM 256MB (minimum)

1024MB (recommended)

Hard disk Up to 2.2GB of available space may be required for initial installation due to
the dependency on .NET.

You should allow suffi cient disk space for the applications you are
deploying.

Operating system Windows Vista (latest service pack)

Windows 7 SP1

Windows 8

Windows 8.1

Windows Server 2008 R2 SP1

Windows Server 2012

Windows Server 2012 R2

TABLE 20-2 (continued)

Getting Started with Release Management for Visual Studio 2013 ❘ 561

c20.indd 04/22/2014 Page 561

Installing Release Management Server
To install Release Management Server, you will need to be logged into the server as a user with local
administrator rights. You will also need to have sysadmin rights on the SQL Server you intend to use.

To start installation, run the rm_Server.exe fi le from the package or ISO you downloaded and
select a destination folder, as shown in Figure 20-1. In most cases, you should use the default instal-
lation directory.

FIGURE 20-1: Release Management Server installation folder

After agreeing to the terms and conditions, click Install to start the installation process. Installation
may take several minutes and you may be prompted to restart your machine.

Like Team Foundation Server itself, the installation of each Release Management component is
separate from its confi guration. After installation, you will be prompted to confi gure your Release
Management server.

In the Identity for Release Management services section, specify the credentials you want to use to
run the Release Management Server. The identity you set here will become the owner of the Release
Management database, so we recommend using a specifi c local or domain account rather than the
default NetworkService account. You should also make sure the account is a local administrator. For
convenience, you may want to use the same service account you use for Team Foundation Server itself.

The Release Management Server settings section lets you set the web service port and the database
server details. We recommend using the default port of 1000 unless this will cause problems

562 ❘ CHAPTER 20 RELEASE MANAGEMENT

c20.indd 04/22/2014 Page 562

in your environment. Using a local database instance will improve performance, but you can use
any server running SQL Server 2008, SQL Server 2008 R2, or SQL Server 2012. For convenience,
you may want to use the existing Team Foundation Server Data Tier for SQL Server.

The confi guration dialog box provides useful Test links so you can ensure the credentials you have
provided are correct.

When you’re confi dent your settings are correct, click the Apply Settings button to confi rm. The
setup process will confi gure the database, web server, and windows services required for Release
Management. If there are any issues during confi guration, the Confi guration summary dialog box
will show details and will provide links to the log fi le for troubleshooting.

Installing Release Management Client
To allow continuous deployment of your projects, the Release Management Client application
should be installed on the Build Server of your Team Foundation Server environment. This will
allow the build agent to automatically create releases as part of a build.

To install the Release Management Client, run the rm_Client.exe fi le from the package or ISO
you downloaded. You will be prompted to choose the installation directory and accept the License
Terms and Privacy Policy before clicking Install.

After installation, you will need to confi gure the client to connect to the web service you set up
when installing the server component, as shown in Figure 20-2.

FIGURE 20-2: Confi guring the web service connection

Installing Deployment Agents
Deployment agents should be installed on every target machine you want to deploy to. For large
projects where you may have to install the agent on a lot of machines, make sure you have a license
for each of these services.

To install the deployment agent, run the installer executable from the package or ISO you down-
loaded. The installer will have a different fi lename depending on your license model, but the fi lename
will start with rm_Deployment. Choose your setup folder and agree to the License Terms and Privacy

Confi guration ❘ 563

c20.indd 04/22/2014 Page 563

Policy before clicking Install. Ensure you run the installation using an account that has local admin
privileges.

After installation, you will be prompted to confi gure the deployment agent, as shown in Figure 20-3.

FIGURE 20-3: Confi guration of the deployment agent

Because the deployment agent is responsible for installing components on the target server, you
should change the default NetworkService account to a specifi c account that has suffi cient per-
missions to install your application. This account should be set up as a Service User in the server
 confi guration so it doesn’t appear as an option in pick lists. We recommend you create a custom
domain account for this purpose.

CONFIGURATION

Before you can use Release Management for Visual Studio 2013, you will need to perform some
 initial confi guration steps.

System Settings
Navigate to the Administration ➪ Settings page to view the system settings and deployer settings for
Release Management, as shown in Figure 20-4. Most settings on this page have a help icon you can
hover over to learn more.

564 ❘ CHAPTER 20 RELEASE MANAGEMENT

c20.indd 04/22/2014 Page 564

FIGURE 20-4: Release Management system settings

You are likely to leave most of these settings alone at the moment, but you should take the time to
set up SMTP settings in this section so that Release Management can send Approval and other
notifi cations to users.

Connecting to Team Foundation Server
One of the fi rst things you will want to confi gure is the connection to Team Foundation Server. A
connection is local to a project collection, but you can confi gure many connections if you want to
manage releases for more than one Team Foundation Server instance or project collection.

WARNING Release Management currently supports only on-premises installa-
tions of Team Foundation Server. If you are using Visual Studio Online, you will
be unable to connect with this release of the product.

Navigate to Administration ➪ Manage TFS and click New to add a connection. Confi gure the
appropriate settings for your Team Foundation Server and click Verify to ensure they are correct. If
your Release Management account does not have appropriate permissions, you may need to specify
another account in the Connect As section, as shown in Figure 20-5. To avoid having to set indi-
vidual permissions in Team Foundation Server, we recommend using an account that belongs to the
Project Collection Service Accounts in Team Foundation Server.

Confi guration ❘ 565

c20.indd 04/22/2014 Page 565

FIGURE 20-5: Confi guring the Team Foundation Server Connection

Users and Groups
All users that will interact with Release Management will need to be confi gured. You can confi gure
individual users from Active Directory as well as import groups from Active Directory or Team
Foundation Server.

To confi gure users, navigate to the Manage Users section in the Administration tab. You will see a
list of users currently confi gured. Click the New button to set up a new user.

Figure 20-6 shows the confi guration for a new user. Click the ellipsis button next to the Windows
Account fi eld to choose a user and automatically populate the name and e-mail fi elds. You can
 confi gure the user to be a Release Manager and can set e-mail notifi cation settings.

Any Release Management groups the user belongs to will be shown in the Member Of table at the
bottom of the page.

NOTE Any domain accounts used by deployment agents should be set up as
Service Users in Release Management.

To confi gure groups in Release Management, navigate to Administration ➪ Manage Groups. You
will see all currently confi gured groups.

566 ❘ CHAPTER 20 RELEASE MANAGEMENT

c20.indd 04/22/2014 Page 566

FIGURE 20-6: Confi guring Release Management users

Release Management contains a reserved group called “Everyone” that contains every user
 confi gured in the system. You can’t delete this group, but you can change some of its permissions
if you would like to control them manually within other groups.

To create a new group, click the arrow next to the New button on the top right of the screen. You
can choose to create a new empty group, import a group from Active Directory, or import a group
from Team Foundation Server.

NOTE Group permissions in Release Management are evaluated to the most
permissive for a user. If a user is in more than one group, but only one group has
a certain permission, that user will be granted that permission.

If you add a Team Foundation Server group, you will be given a dialog box allowing you to choose
a group from any of your connections and the Team Projects in that project collection. After
clicking OK, the group will be automatically created and will be periodically synced with Team
Foundation Server. The synchronization interval can be set in the System Settings section described
earlier.

Similarly, adding an Active Directory group will show a dialog box asking you to choose an Active
Directory group. Active Directory groups will be periodically synced with Active Directory at an
interval that can be set in the System Settings section.

Confi guration ❘ 567

c20.indd 04/22/2014 Page 567

NOTE When you import a Team Foundation Server or Active Directory group,
any users in those groups that do not already exist in Release Management will
be added. You can see these users in the Manage Users section.

Choose a group and click the Open button to view the details of the group, as shown in Figure 20-7.

FIGURE 20-7: Confi guring groups

On this page, you can delete or deactivate groups and set basic information. The Members tab
on this page shows you each member of the group and allows you to create a new user or link an
 existing user. You can see any permissions set for specifi c Release Management objects in the Object
Permissions tab. If the group is synchronized with Team Foundation Server or Active Directory, you
will see an additional tab with information about the synchronization.

The Security tab shown in Figure 20-7 allows you to set permissions for Release Management in
general, as well as permissions for confi guring individual stages.

Pick Lists
There are two fully confi gurable pick lists used by Release Management for identifying stages and
technology stacks. To confi gure these lists, navigate to Administration ➪ Manage Pick Lists.

Stages are used when defi ning release paths to identify the stages a deployment will transition
through. Typically you may have stages such as Development, Staging, QA, and Production. Note
that not every release path needs to use every stage.

568 ❘ CHAPTER 20 RELEASE MANAGEMENT

c20.indd 04/22/2014 Page 568

The Technology Type pick list is used to categorize applications by technology stack. For example,
you may have an entry for ASP.NET and another for Windows 8 applications.

Actions and Tools
Actions in Release Management represent steps that can be taken during a release. You will combine
and sequence Actions together to create a Release Template. Each Action uses a Tool to perform a
particular task.

Out of the box, Release Management comes with 15 Tools and more than 50 Actions you can use to
deploy your application.

Navigate to the Inventory tab to see the Actions and Tools currently confi gured for your Release
Management instance. Table 20-4 lists some of the more common Actions you may use to deploy
your application. For a complete list of available Actions with detailed descriptions, refer to the Release
Management for Visual Studio 2013 User Guide available at http://aka.ms/ReleaseManagement2013.

TABLE 20-4: Useful Actions in Release Management

CATEGORY ACTION(S)

Windows Azure Start/Stop a Windows Azure VM

IIS Create/Remove Application Pool

Start/Stop Application Pool

Create/Remove Web Site

Confi gure Web Site

Create/Remove Web Application

Confi gure Web Application

MS-SQL Create SQL Database

Drop SQL Database

Back up SQL Database

Restore SQL Database

Windows OS Copy/Delete/Move/Rename File or Folder

Create Folder

Create/Modify/Delete Environment Variable

Create/Modify/Delete Registry Key

Run Command Line

Run Command Line as User

Kill Windows Process

INI File Create/Modify/Remove Key and Value

Modify Section Name

http://aka.ms/ReleaseManagement2013

Confi guration ❘ 569

c20.indd 04/22/2014 Page 569

If you have a custom tool you use as part of your deployment, you can add it by navigating to the
Tools section and clicking the New button. After giving your tool a name and optional description,
set the command to execute as well as the arguments to pass to your tool.

When specifying arguments, you can use tokens to automatically create parameters that can be used
by actions to pass information. A token should begin and end with two underscores (__), as shown
in the MSI Deployer tool in Figure 20-8.

FIGURE 20-8: Tool confi guration

You should also specify any additional resources required by your tool in the Resources section. To
ensure the deployment agent will be able to fi nd your tool, you might want to include the executable
in the Resources list directly.

To create a new Action, click the New button in the Action section of the Inventory tab. Give the
Action a name and description and optionally choose a Category. If none of the categories are appro-
priate, you can create a new one from this page by clicking the New button alongside the dropdown.

For an action to work, it needs to make use of a tool. You can choose an existing tool from the
drop-down or click New to create a new one. Depending on the tool you choose, you will be
shown the command that will run along with the arguments to be set and any parameters to be
passed. You are able to change the default arguments for the tool in this section if you have specifi c
requirements.

570 ❘ CHAPTER 20 RELEASE MANAGEMENT

c20.indd 04/22/2014 Page 570

Environments and Servers
An Environment is a set of one or more servers used for one or more deployment stages. For exam-
ple, a “Staging” environment might consist of a web server and a database server used for testing an
application prior to fi nal release.

To confi gure your environments, navigate to Confi gure Paths ➪ Environments. Clicking the New
button will show a page similar to Figure 20-9. You can set the environment name and description
as well as an owner for the environment.

FIGURE 20-9: Confi guring environments

The tabs at the bottom of the page show the servers that are part of the environment, the technolo-
gies that are supported, and the stages that are able to use this environment. It is good practice to
set stage permissions in this section to ensure each stage can only use the appropriate environments.
For example, you might want to prevent production environments from being used when deploying
a Testing stage.

The Servers tab available in the environment settings allows you to create a new server or link to
an existing server. Alternatively, you can navigate to the Confi gure Paths ➪ Servers section and add
servers independently. Figure 20-10 shows this section where you can see all the confi gured servers
as well as their status.

If you have installed the Release Management deployment agent on a server that is not in this list,
you can scan for it automatically by clicking on the arrow next to the New button and choosing

Confi guration ❘ 571

c20.indd 04/22/2014 Page 571

Scan for New, as in Figure 20-10. This will search for any unregistered servers running a deploy-
ment agent. Figure 20-11 shows a successful scan on a local network.

FIGURE 20-10: Setting up Servers

FIGURE 20-11: Scanning for Deployment Servers

You can also add servers by clicking the New button and entering the server details manually, but
we strongly recommend adding servers using the Scan for New feature. By using this method, you
can avoid typos and be assured the Release Management server can locate the target server.

When defi ning a server, you will need to specify whether the server is a “cloned” server (refer to
Figure 20-11). Cloned servers are effectively identical other than their IP addresses. For this reason,
cloned servers must have static IP addresses to allow them to be uniquely identifi ed.

A server can also have a “Server” or “Gateway” type of IP address (again, refer to Figure 20-11).
This determines whether the IP address belongs to the actual server or a gateway. The Gateway IP
address type is commonly used when the target server is located behind a gateway or fi rewall with
Network Address Translation (NAT).

572 ❘ CHAPTER 20 RELEASE MANAGEMENT

c20.indd 04/22/2014 Page 572

Choosing a server from the list shown in Figure 20-10 and clicking Open will take you to the server
details, as shown in Figure 20-12. The Deployer tab shows the status of the deployment agent and
lets you set how fi les are retrieved by the deployment agent. Using a UNC path will result in faster fi le
transfers to the target servers, but the service account used by the deployment agent requires security
access to the drop location. If this is a problem, you can transmit fi les via the Release Management
Server over HTTPS. File transfer rates using this mechanism will be signifi cantly slower, but it can
be useful for servers outside the local environment. If you are using HTTPS, the identity of the
ReleaseManagementAppPool application pool used by the Release Management web services will
need read permissions on the drop location.

FIGURE 20-12: Deployment Server settings

The Environments tab shows the environments currently using this server and allows you to link
to an existing environment. The Supported Technology Types section allows you to specify technol-
ogy stacks supported by this server, and the Installed Tools tab shows any additional tools you have
installed on the server.

Release Paths
A release path is a defi ned process workfl ow used to distribute a release in a specifi c scenario. For
example, a standard weekly release might follow a different release path than an emergency patch.
A release path defi nes the stages the release will go through as well as the groups that are allowed to
use this release path.

Confi guration ❘ 573

c20.indd 04/22/2014 Page 573

Navigate to Confi gure Paths ➪ Release Path to view the release paths confi gured for your environ-
ment. The fi rst time you go to this section, you may see a guide to help you complete any steps you
haven’t yet fi nished. These steps are shown in an order that eases confi guration. Any steps you have
completed will be shown with a check mark, and the next step you should complete will be shown
in bold, as in Figure 20-13.

FIGURE 20-13: Steps required before creating a release path

Each release path consists of stages and each stage has settings that must be confi gured. The Stages
tab allows you to add and remove stages in a release path and change the order. Figure 20-14 shows
a release path through Dev, QA, and Prod stages.

Each stage must specify an Environment as well as rules for the Acceptance, Deployment,
Validation, and Approval steps. For each step, you will need to specify a user or group who is
responsible for approving or rejecting progression to the next step. The Acceptance step can be
 automated such that a deployment is triggered automatically. Similarly, the Validation step can
be automated so the release moves straight to approval.

The Deployment and Validation steps can be considered part of the same process. Validation occurs
immediately after all components have been deployed successfully and doesn’t require any addi-
tional interaction.

Finally, one or more users or groups can be listed in the Approval step to approve or reject the
release. If no users or groups are specifi ed, the stage is considered to have succeeded.

In the QA stage in Figure 20-14, you can see a deployment to the Int-QA environment with automated
Acceptance and Validation steps. The QA group is responsible for all the steps in this stage.

574 ❘ CHAPTER 20 RELEASE MANAGEMENT

c20.indd 04/22/2014 Page 574

FIGURE 20-14: An example release path

RELEASE TEMPLATES AND COMPONENTS

A Release Template defi nes a workfl ow used for releasing an application. It consists of deployment
steps to follow for each stage in a specifi c Release Path. Components represent the details of your
software, including the compiled package and how to deploy it. Deployment of one or more compo-
nents will usually be one of the main steps in your Release Template workfl ow.

To view your Release Templates, navigate to Confi gure Apps ➪ Release Templates. From here you
are able to open existing templates and create new templates, either from scratch or by copying
existing templates.

When you create a new template or copy an existing one, you will be given a dialog box similar to
the one in Figure 20-15.

In addition to setting a name and optional description, you will also have to choose a Release Path
to use and, optionally, a Team Project and Build Defi nition. You are also able to specify whether you
can trigger a release directly from the build.

Release Templates and Components ❘ 575

c20.indd 04/22/2014 Page 575

FIGURE 20-15: Creating a new component

The Security tab allows you to set which users are able to manage or use this release template.

NOTE While you are editing a Release Template, the template will be locked to
 prevent another user from making changes that overwrite your own. Other users will
see a small lock icon to the left of the Release Template and will not be able to edit.

Deployment Sequence
After setting the basic values of a new Release Template, you will be taken to the Deployment
Sequence view. This view consists of a number of sections, as you can see in Figure 20-16.

The top of the screen shows buttons for deleting and deactivating the template, as well as triggering a
new release. If you have made any changes to the sequence, buttons to save your changes will be enabled.

Below that are the stages that have been defi ned by the Release Path in use. Each of these defi nes a
separate Deployment Sequence that can be shown in the main area by clicking on it.

The Toolbox on the left of the screen is organized into categories. There are categories for control-
ling the workfl ow, categories representing the servers, and a Components category representing the
available components. You learn more about the components in the next section. The remaining
 categories contain every Action available to you.

The main area of the application is the Deployment Sequence itself. By dragging activities from the
Toolbox to the Deployment Sequence window, you can build up your workfl ow process. This will be
familiar to anyone who has worked with the Windows Workfl ow designer in the past.

576 ❘ CHAPTER 20 RELEASE MANAGEMENT

c20.indd 04/22/2014 Page 576

FIGURE 20-16: The Deployment Sequence view

Each Stage has its own Deployment Sequence. Sequences can be copied and pasted between stages
by right-clicking on the stage, making it easy to duplicate complex processes. If a specifi c server is
not available for a stage, you will be prompted to provide a server that is available.

Actions and Components can only be added to Server activities, and a Server activity cannot be left
blank. Server activities can be organized in sequence or in parallel. That means you can deploy com-
ponents to multiple servers at the same time.

Components or Actions can be temporarily disabled or skipped by clicking on the activity’s icon.
This can be useful for deployment sequences that are mostly the same across stages but where one or
more activities are inappropriate for an environment.

While many useful Actions are available to you to assist in deployment, your primary aim is to
deploy your own software. To do so, you must confi gure a new Component.

NOTE The steps required to deploy an application will be very different depend-
ing on what software you are deploying.

For more information on the actions that might be appropriate for your specifi c
case, see the Actions Catalog appendix in the Release Management for Visual
Studio 2013 User Guide available at http://aka.ms/ReleaseManagement2013.

http://aka.ms/ReleaseManagement2013

Release Templates and Components ❘ 577

c20.indd 04/22/2014 Page 577

Components
You can set up a new Component in two ways. On the Deployment Sequence view, you can right-
click on the Components category in the Toolbox and choose Add, as shown in Figure 20-16.
Alternatively, you can add a new component by navigating to Confi gure Apps ➪ Components and
clicking the New button.

After supplying a name and optional description, open the Source tab to choose one of three
 methods to get the package to deploy. Each of these options has a help icon you can hover over for
more information.

If you select “Builds with application,” the build defi nition is specifi ed automatically from the
release template. You must provide a path to the built package, as shown in Figure 20-17.

FIGURE 20-17: Confi guring a Component

Choosing the “Builds independently” option requires you to additionally select a Team Project and a
build defi nition to use for the component. You will be able to select the build when you release.

If your project is built externally from Team Foundation Server, you should use the “Builds exter-
nally option” and provide a UNC path to the base package location.

The Deployment tab allows you to select the Tool that will be used to deploy your component as
well as any required command arguments and parameters. In line with the confi guration for Actions
and Tools, Parameters are created automatically for any arguments that start and end with two
underscores (__). You can also set an optional timeout for deployment. This will kill the process if
deployment has gone on for too long.

578 ❘ CHAPTER 20 RELEASE MANAGEMENT

c20.indd 04/22/2014 Page 578

The Confi guration Variables tab allows you to set variables to be set during your release. You
can use these variables to set properties that may change based on the stage your deployment
is up to.

In this tab, you can also defi ne when the confi guration variable values will be set during
 deployment. Different components may require their variables set prior to installation or after
installation. Table 20-5 shows the different options and their behavior.

TABLE 20-5: Confi guration Variable Replacement Modes

MODE DESCRIPTION

Only in Command Only variables specifi ed in command arguments will be replaced.

Before Installation In addition to arguments, fi les will be searched for appropri-
ate tokens and changes will be applied prior to running the
 installation tool.

You can specify a fi le extension fi lter to target a subset of fi les
to modify.

After Installation In addition to arguments, fi les will be searched for appropri-
ate tokens, and changes will be applied after running the
 installation tool.

This is useful for packages such as MSI fi les where the target fi les
may not exist until after installation.

You can specify a fi le extension fi lter to target a subset of fi les
to modify.

Before and After Installation Command arguments and fi les will be modifi ed both before and
after the installation step.

This can be useful for installation processes that depend on variables
in external fi les and also produce fi les that need replacements made.

The fi nal tab shows the Release Templates that are using the Component.

Confi guration Variables
As you’ve seen, Actions and Components can be confi gured with variables, referred to as
Confi guration Variables. When confi guring a Deployment Sequence, these variables can be set with
values specifi c to a stage. When you add a Component or Action to the Deployment Sequence panel,
you will see the Confi guration Variables you must set for that activity. You saw Confi guration
Variables for two activities in the Release Template in Figure 20-16.

There are two ways to set confi guration variable values when confi guring a Release Template.
The easiest way is to set them inline simply by choosing the confi guration variable in the work-
fl ow and typing. Alternatively, you can expand the Confi guration Variables panel by clicking the
Confi guration Variables text under the Toolbox. This will allow you to set the values for all stages
at once and makes it easy to compare values between stages.

Releasing Your Application ❘ 579

c20.indd 04/22/2014 Page 579

NOTE Confi guration Variables can be particularly useful for settings in confi gura-
tion fi les such as web.config and app.config. A single build can be used with
a confi guration transform fi le that replaces settings with Release Management
tokens. These tokens can then be replaced using Confi guration Variables during
release.

The Build Templates provided with Release Management already contain logic
to perform this task.

Rollback Confi guration
The Control Flow category in the Toolbox con-
tains two special containers: Rollback and Rollback
Always. During normal execution of a release, the
activities in these containers will not be executed.
However, if there is an error in execution, the deploy-
ment sequence will terminate (parallel activities will
fi nish their execution) and activities in a Rollback or
Rollback Always container may be run. Whether or
not these activities will run depends on the container,
each of which has subtly different behavior.

An activity in a Rollback container will only execute
if it follows an activity that may need to be rolled
back. In other words, Rollback activities will only
run if they are in the deployment sequence before the
failed activity, or are the fi rst rollback activity after
the failed activity.

An activity in a Rollback Always container will
execute if any normal activity fails during execution.
In other words, failure of any step in a sequence will
cause Rollback Always activities to be run.

Figure 20-18 shows an example process in which the fi rst normal step fails. In this scenario, the
activities in the fi rst Rollback container will run while the activities in the second will not. The
activities in the fi nal Rollback Always container will run.

RELEASING YOUR APPLICATION

Now that you’ve set up your Release Template, you can release your application. From a template,
you can deploy all the way through a release path until the target stage is reached.

You can view, manage, and create releases by clicking on the Releases tab and navigating to the
Releases section. If there are any outstanding confi guration steps, you will be shown a similar guide
to the one displayed in the Release Template section. You will have to complete these tasks before
creating your fi rst release.

FIGURE 20-18: Rollback Container example

580 ❘ CHAPTER 20 RELEASE MANAGEMENT

c20.indd 04/22/2014 Page 580

Manually Creating a Release
You can manually create a new release by clicking the New button in the Releases view. You will be
asked to name your release and select a Release Template and then a target stage. Not every release
needs to go all the way to the fi nal stage.

When you have chosen a template and target stage, you may be prompted to provide additional
information about the build to use for the release or a location for the package depending on
the components you are deploying. For builds from a Team Foundation Server you can click
the Latest link to choose the most recent successful build, or you can click Select to choose
a specifi c build.

Figure 20-19 shows an example release with a target stage of QA. This means the release won’t
be able to progress any further than this stage. The Build defi nition has been selected using the
Latest link.

FIGURE 20-19: Creating a release

When you’ve supplied the required information, you can either start the release immediately by
clicking Start or choose Create In Draft to save the release without starting it.

You can also click the Show More link on the bottom left of the window to show all the details of
the release.

In the Releases view, you can select a release and click Open to see its details. After creating a new
release, you are taken to this screen automatically. You will see the progress of the release through
its stages and steps so far. You can check the Include Future Steps option in the bottom left of the
screen to show steps that haven’t yet been reached. Figure 20-20 shows the progress of a release that
is awaiting Approval from a team member. Clicking on any ellipsis button in the Details column will
show a log of the actions for that step including any errors that occurred.

Releasing Your Application ❘ 581

c20.indd 04/22/2014 Page 581

FIGURE 20-20: Viewing the progress of a release

Expanding the Confi guration Variables section from the bottom left of the screen allows you to
view and change the values for this release. Expanding Components shows you the details of the
components being deployed.

You can change your view from the default Log view to the Sequence view by clicking View
Sequence above the log entries. This view shows you the Release Template’s deployment sequence
for each of the stages. The Target Stage for the release is shown with a bulls-eye icon. You can
change the target stage for this release by clicking on the Properties link.

If your deployment fails at any stage, you have the ability to retry the failed deployment or
restart the stage using the buttons at the top of the screen. This can be useful in cases where fi le
or server permissions have not been set up correctly and are relatively easy to fi x. You can make
the required changes and try the deployment again without having to run through the complete
release process.

While you are using the Release Management Client, you may need to act on an Approval Request.
If so, an additional My Approval Requests link will appear next to the Properties, View Sequence,
and View Log links, as you can see in Figure 20-20. Clicking this link will show you a list of all
pending items awaiting your action. You can approve or reject an item by selecting an entry and
clicking Approve or Reject. You can also view all approval requests across multiple releases in the
Releases ➪ My Approval Requests section.

582 ❘ CHAPTER 20 RELEASE MANAGEMENT

c20.indd 04/22/2014 Page 582

Releasing from Team Build
Release Management for Visual Studio 2013 facilitates Continuous Deployment from Team
Foundation Server by allowing releases to be triggered from builds.

Prerequisites
A number of conditions must be met to allow a TFS build to trigger a release:

 ➤ The Release Management Client needs to be installed on the machine(s) running the build agent.

 ➤ The Release Template must have the Can Trigger a Release from a Build option checked.

 ➤ All components in the template must be confi gured with a Team Foundation Server build. If
any component has a deployment setting of Builds Independently, it cannot be triggered from
a Team Foundation Build.

 ➤ The Acceptance and Deployment steps must be set to Automated.

 ➤ The build must be using an appropriate template with logic to trigger a release.

Build Templates
Release Management for Visual Studio 2013 ships with its own set of build templates. The
ReleaseDefaultTemplate.11.1.xaml template is designed for Team Foundation Server 2012 and
2013, while the ReleaseDefaultTemplate.xaml template is for Team Foundation Server 2010.

NOTE The build templates can be found in the bin folder of the Release
Management installation directory. By default, this is located at C:\
Program Files (x86)\Microsoft Visual Studio 12.0\Release
Management\bin.

To use a template, you will need to check it into version control in your Team
Project and specify it in the Process tab of your build defi nition.

For more information about using Team Foundation Build, see Chapters 18 and 19.

These build templates contain two important pieces of functionality. They contain steps to trigger a
release from a build, and they contain the logic for tokenizing your application confi guration fi les.

To make use of the latter function, you should create a version of your confi guration fi le with a suf-
fi x of .token, which contains the variable names you want to replace, starting and ending in two
underscores (__) as per the parameters set up for Actions and Components. During the build, the
templates will replace your web.config fi le (for example) with the web.config.token fi le, allowing
Release Management to replace the tokens with Confi guration Variable values.

NOTE It is possible to include the Release Management logic into your exist-
ing build template, but we recommend using the provided templates if pos-
sible. The Release Management user guide available at http://aka.ms/
ReleaseManagement2013 describes the steps you need to take to add this func-
tionality to your existing build template.

http://aka.ms

Releasing Your Application ❘ 583

c20.indd 04/22/2014 Page 583

A build using one of the provided build templates will contain additional arguments for the confi gu-
rations to release, the target stage, and whether this build should trigger a release at all.

Release Explorer
Release Management for Visual Studio 2013 provides an additional web interface called Release
Explorer. This is a lightweight web application designed to be used by approvers to avoid installing
the full Release Management Client. Release Explorer exposes the following functions:

 ➤ Approving and rejecting releases

 ➤ Reassigning a release

 ➤ Viewing Components used in a release

 ➤ Viewing the current stage and step of a release

 ➤ Viewing the list of Approved and Rejected releases

To access Release Explorer from a browser, use the server name and port you confi gured for the
Release Management web service followed by /ReleaseManagement. On a default installation, the
URL will be of the form http://servername:1000/ReleaseManagement.

Figure 20-21 shows the default view with one approval pending. This view shows the current status as
well as basic details for the release. Under the required approver’s name or group is the number of com-
ponents being released, and on the far right you can see the stage the release is up to. In Figure 20-21,
the current stage of the release contains a single component pending approval at the Dev stage.

FIGURE 20-21: Release Explorer

You can click on the release to Approve, Reject, or reassign this approval to another user. You will
be prompted to confi rm an approval or rejection, and you can provide comments if you wish. If you
reassign the approval, you will be asked which user or group you wish to assign it to.

Clicking on the shaded box showing the number of components to be deployed will open a window
showing details about each component and any related builds. Clicking on the progress diagram
on the far right will open a window showing the steps for the current stage as well as their current
 status. You can use the links in this window to view the next and previous stages in the release.

On the left of the page, you can click the Previously approved link to view historical releases and
their status.

http://servername:1000/ReleaseManagement

584 ❘ CHAPTER 20 RELEASE MANAGEMENT

c20.indd 04/22/2014 Page 584

SUMMARY

In this chapter, you learned about the new Release Management for Visual Studio 2013 product
available with Team Foundation Server 2013. You were introduced to the different components and
their responsibilities, as well as how and where to install them. You learned about the concepts and
terms used by Release Management and discovered the confi guration options required to set up
a build.

You learned how to create and confi gure a Release Template by combining Deployment Sequences,
Components, and Actions. You learned how to create a release from that Release Template manually
and by way of a Team Foundation Build, and how to help it progress through the approval process
required for each stage.

Finally, you were introduced to the lightweight Release Explorer interface available for approvers.

In the fi nal part of the book, you learn about the different topics for administering Team
Foundation Server. In Chapter 21, you are introduced to Team Foundation Server administration,
including an overview of the different parts of the server, as well as the tools and utilities that will
be benefi cial for administration.

c21.indd 04/22/2014 Page 585

PART V
Administration

 ▸ CHAPTER 21: Introduction to Team Foundation Server
Administration

 ▸ CHAPTER 22: Scalability and High Availability

 ▸ CHAPTER 23: Disaster Recovery

 ▸ CHAPTER 24: Security and Privileges

 ▸ CHAPTER 25: Monitoring Server Health and Performance

 ▸ CHAPTER 26: Testing and Lab Management

 ▸ CHAPTER 27: Upgrading Team Foundation Server

 ▸ CHAPTER 28: Working with Geographically Distributed Teams

 ▸ CHAPTER 29: Extending Team Foundation Server

c21.indd 04/22/2014 Page 587

Introduction to Team
Foundation Server
Administration

WHAT’S IN THIS CHAPTER?

 ➤ Understanding the architecture of the system

 ➤ Getting to know the administration console

 ➤ Using the command-line tools

 ➤ Getting to know other administration tools

Team Foundation Server is a system with lots of moving parts and lots of integration with
other systems. For the person (or persons) entrusted with administering all this, it can seem
like quite a daunting task at fi rst. For someone not familiar with developer tools, there are lots
of new concepts and different things to consider while administering the server.

Don’t be discouraged though! As with many products, the administration tools have evolved
over time. There was a huge investment in improving the administrative experience for the
2010 and 2012 releases and continued investment with the 2013 release. The biggest improve-
ment for the 2010 release was the streamlined setup and installation experience. These invest-
ments also led to the creation of the Team Foundation Server Administration Console, along
with the powerful command-line equivalent TfsConfig.exe.

In Team Foundation Server 2012, perhaps the biggest change for administrators is the shift
of security and permissions management to the web interface, which is covered in detail in
Chapter 24.

In Team Foundation Server 2013, the Administration Hub in Team Web Access has been
updated to include the permissions needed to manage a Git repository. This is also covered in
Chapter 24.

21

588 ❘ CHAPTER 21 INTRODUCTION TO TEAM FOUNDATION SERVER ADMINISTRATION

c21.indd 04/22/2014 Page 588

Before you get started with learning about Team Foundation Server administration, it’s important to
understand the different administrative roles in a Team Foundation Server environment.

ADMINISTRATIVE ROLES

Team Foundation Server has many different administrative roles. Each of these roles has slightly dif-
ferent responsibilities and deals with a different part of the overall system. In smaller organizations,
all of these roles may be performed by the same person. In larger organizations with an established
IT department, these roles may be performed by many different people and groups.

Infrastructure Administrator
Infrastructure administrators are responsible for anything with a power cord. They manage the
physical servers, the networks, and the storage. In some cases, a separate database administrator
manages the database servers. In any case, however, the two roles (should) work closely together.

An infrastructure administrator is concerned with reliability, availability, performance, disaster
recovery, and security. The infrastructure administrator ensures that the servers are running smoothly
and that Team Foundation Server works within the requirements of the organization.

Team Foundation Server Administrator
Team Foundation Server administrators are responsible for confi guring and managing the software
running on the server. They have the expertise in running software confi guration management for
the organization, and they often have specialized knowledge about how to operate Team Foundation
Server.

This administrator is concerned with the performance of the application and the smooth opera-
tion of version control, work item tracking, data warehouse, and any other related applications.
Typically, this person acts as a bridge between the development and infrastructure teams. The Team
Foundation administrator handles the delicate balance and needs of both groups. Sometimes these
administrators coordinate upgrades and patches to the server because it’s a critical piece of infra-
structure for the teams.

Project Administrator
A server will contain collections that house team projects. For each project, someone who has the
ability to change the structure and permissions within that project will perform this role. In some
cases, a project administrator might be a project collection administrator who has the ability to cre-
ate new team projects and manage multiple team projects.

The project administrator role is an important one because it is the closest to the users of the server.
People in this role manage groups and permissions for their projects. They have the ability to change
the work item type defi nitions and modify areas and iterations for their projects.

Logical Architecture ❘ 589

c21.indd 04/22/2014 Page 589

LOGICAL ARCHITECTURE

Before discussing the administration of Team Foundation Server, it’s helpful to understand the
architecture of the system. As shown in Figure 21-1, Team Foundation Server contains three
logical tiers:

 ➤ Client tier

 ➤ Application tier (AT)

 ➤ Data tier (DT)

Client Tier

Application Tier (AT)

Data Tier (DT)

Configuration
Database

Relational
Warehouse

OLAP Cube
Database

Collection
Databases

FIGURE 21-1: Logical three-tier architecture

These logical tiers might be deployed across two or more computers.

NOTE Chapter 22 contains a discussion on the physical architecture for scal-
ability and high availability.

Client Tier
The client tier is any computer that contains tools for accessing the server. An installed application
such as Visual Studio Team Explorer or Team Explorer Everywhere can be used as a client. A web

590 ❘ CHAPTER 21 INTRODUCTION TO TEAM FOUNDATION SERVER ADMINISTRATION

c21.indd 04/22/2014 Page 590

browser and the Team Foundation Server web access interface can also be used. Additionally, any
application that uses the Team Foundation Server object model or web services is considered a client
of the system.

Application Tier
The application tier is commonly referred to as the “AT.” It includes the Team Foundation Server
Web Application, which hosts a number of different web services, including the following:

 ➤ Version control

 ➤ Work item tracking

 ➤ Lab management

 ➤ Framework services

These all run on Windows Server 2008 R2, 2012, or 2012 R2 running Internet Information
Services (IIS) and ASP.NET.

The Visual Studio Team Foundation Background Job Agent (or “job agent,” for short) is a Windows
service that executes Team Foundation Server jobs asynchronously. These jobs implement the Run
method in ITeamFoundationJobExtension and are loaded as plug-ins.

The job agent runs continuously on each application tier using the same service account as the web
application. You should not need to manually stop or start this service. It will restart automatically
when a server is restarted.

There is no direct confi guration required for the job agent. The jobs are defi ned and scheduled using
either the client or server object models and stored in the Tfs_Configuration database.

The job agent has direct access to the data tier. Because of this, most of the jobs use the server object
model to access the data tier directly, as opposed to using the client object model and making web
requests.

Data Tier
The data tier is commonly referred to as the “DT.” It includes the databases and data warehouse
infrastructure. The data tier runs on SQL Server 2012 with Service Pack 1 or newer and hosts the
databases for the system.

Confi guration Database
The Tfs_Configuration database stores information central to a Team Foundation Server instance,
as shown in Table 21-1.

Relational Warehouse and OLAP Cube Database
The Tfs_Warehouse database and Tfs_Analysis cube are the key stores that support the data
warehouse and reporting capabilities of Team Foundation Server. These are discussed in more detail
in Chapter 15.

Built-In Administration Tools ❘ 591

c21.indd 04/22/2014 Page 591

TABLE 21-1: Contents of the Confi guration Database

COMPONENT DESCRIPTION

Team Project Collection
connection strings

The SQL connection strings for the collections associated with this
instance

Registry Team Foundation Server has a registry service for storing key and
value pairs. This is different from the Windows registry.

Catalog The catalog is a hierarchical store that describes team projects and all
their properties.

Job history History about when a job was executed and the result of the job is
recorded here.

Identity cache Identities are shared across all team project collections. The identity
tables in the confi guration database are the master store.

Servicing Details about the servicing and patching operations are stored in this
database.

Team Project Collections
In Team Foundation Server 2008 and earlier, seven different databases made up a server. In Team
Foundation Server 2010, these databases were folded together into a single collection database. Note
the following key points:

 ➤ These databases are the main store for all data in Team Foundation Server.

 ➤ A collection is almost entirely self-contained within a single database.

 ➤ A server can have one or more collection databases attached to it.

 ➤ One database contains a group of coupled team projects.

 ➤ A collection can exist on a different physical SQL server than the confi guration database.

BUILT-IN ADMINISTRATION TOOLS

Team Foundation Server has a number of built-in administration tools. This section examines both
the Administration Console and the command-line equivalent.

Team Foundation Administration Console
The Team Foundation Administration Console was added in Team Foundation Server 2010. It’s
the centralized management tool for server administrators. The tool was originally implemented
as a Microsoft Management Console (MMC) snap-in. However, there were limitations with what
was possible in this implementation, as well as the version of the .NET Framework that the snap-in
could use.

592 ❘ CHAPTER 21 INTRODUCTION TO TEAM FOUNDATION SERVER ADMINISTRATION

c21.indd 04/22/2014 Page 592

Perhaps the biggest limitation of the tool (and most of the built-in administration tools) is that it
must be run on the application tier servers themselves. Although you can use Remote Desktop and
tools such as PSExec.exe to connect to the server remotely, the tools must still execute locally on
the server. After logging on to your application tier server, navigate to the Team Foundation Server
Administration Console icon and the administration console will open.

License Information
When previous versions of Team Foundation Server were released, they were fi rst made available to
download as a 180-day trial. The fi nal version wasn’t available through licensing programs for a few
weeks. This meant that a lot of people installed or upgraded using the time-limited version with the
plan to enter their license keys before the trial expired.

However, some people got a rude shock when their trial expired and the server suddenly started
refusing commands six months later. One of the reasons this occurred was that it wasn’t easy to
determine whether you were running a trial license, and when that license might expire.

Figure 21-2 shows how you can see your current license type and when it will expire. To see your
current license information, open the Team Foundation Server Administration Console from the
Start menu. Select your server name in the tree view on the left. You will then see the licensing infor-
mation on the right. This screen allows you to enter a product key to upgrade to the full version.
The Administration Console will also warn you that your trial is about to expire when you open it.

FIGURE 21-2: License information screen

Built-In Administration Tools ❘ 593

c21.indd 04/22/2014 Page 593

This dialog box will also show you the version number and installation path of Team Foundation
Server on this machine. This can be useful for verifying whether you have the latest version
installed.

Managing Application Tiers
Possibly the most commonly used dialog box of the Administration Console, the Application Tier
section of the console, contains all the confi guration settings pertinent to the installation, as shown
in Figures 21-3 and 21-4. From this section, you can perform most of the common administrative
tasks. Table 21-2 describes each of the settings.

FIGURE 21-3: Application Tier screen

594 ❘ CHAPTER 21 INTRODUCTION TO TEAM FOUNDATION SERVER ADMINISTRATION

c21.indd 04/22/2014 Page 594

FIGURE 21-4: Continuation of the Application Tier screen

TABLE 21-2: Settings Displayed in the Application Tier Section

SETTING DESCRIPTION

APPLICATION TIER SUMMARY

Service Account The user account under which the application pool and job agent are con-
fi gured to run

Web Site The name of the website as it appears in IIS Manager

Application Pool The name of the application pool as it appears in IIS Manager

Authentication The current authentication mode. It will be either NTLM (Windows
Authentication) or Kerberos.

Notifi cation URL The URL that users use to connect to the system, and the URL used in the
text of e-mail alerts

Built-In Administration Tools ❘ 595

c21.indd 04/22/2014 Page 595

Server URL The URL used for server-to-server communication. This is especially impor-
tant in environments with multiple application tiers. In this case, you don’t
want one node making requests to another node that the fi rst node could
have handled itself. That is why the default is localhost, and it’s recom-
mended for most confi gurations.

Web Access URL The URL that web access should identify itself as. This is used when the
Team Explorer client generates web access links, such as in the Open with
Microsoft Offi ce Outlook feature.

Machine Name The name of the computer that the application tier is running on. Since the
Administration Console doesn’t allow remote server administration, this is
always going to be the same as the computer that the console is open on.

Ports The TCP port that the application is currently accepting requests on. By
default, this will be 8080. However, it may be port 443 for servers confi g-
ured with secure SSL (HTTPS). Or, it may be changed to another port that
is friendlier with your company’s fi rewall policy.

Virtual Directory This is sometimes referred to as the “vdir.” The purpose of adding the
virtual directory is to allow other future applications to share the same port
and differentiate them by their URLs.

Version This is a way to identify which version of Team Foundation is running on
this server, as well as the current patch level that’s installed. This is use-
ful in two scenarios. First, it is an easy way to check whether you have a
service pack or hotfi x installed. Second, if you are thinking about moving
a collection from another server, this is where you can check that the ver-
sions match.

E-MAIL ALERT SETTINGS

Enabled Show whether TFS will send e-mails when confi gured alerts are triggered.
A value of true means alerts will be e-mailed; false means that they will not
be e-mailed.

SMTP Server The SMTP Server to which e-mail alerts should be directed

E-mail From
Address

The address to show on the From: line of the e-mailed alert message

continues

596 ❘ CHAPTER 21 INTRODUCTION TO TEAM FOUNDATION SERVER ADMINISTRATION

c21.indd 04/22/2014 Page 596

SETTING DESCRIPTION

ADMINISTRATION CONSOLE USERS

User Names The list of individuals who have been granted administrative access to
the Team Foundation Server environment, including SharePoint Services,
Reporting Services, and SQL Server databases. You can add and remove
administrative users by selecting the Add or Remove links. The Reapply
link will re-apply the permissions for those users.

DATA TIER SUMMARY

Data Tier Server The SQL Database Server currently running the Tfs_Configuration
database for this Team Foundation Server environment

SQL Server Instance SQL Server can have multiple instances running on the same server, dif-
ferentiated by the instance name. This shows the instance that Team
Foundation Server is confi gured to use.

Connection String The connection string is the combination of the server name, instance
name, and Tfs_Configuration database name, which allow the applica-
tion to connect to the database.

Database Label Databases from multiple Team Foundation Server environments can
be hosted on a single SQL server instance. To avoid database name
collisions, the databases can be given a label. For example, Tfs_
ContosoConfiguration and Tfs_ContosoDefaultCollection might
represent the databases associated with Contoso’s environment on a
shared SQL server.

Version The server has a version of code it is running, and the Tfs_
Configuration database has a version stamp in the extended proper-
ties. This shows what that stamp is, and it must match the application tier
version.

APPLICATION TIERS

Machine List The list of application tier servers that have ever been associated with this
Team Foundation Server environment. If a server has not been active in
the last three days, it can be fi ltered out of the list by selecting the check
box.
Additionally, if you have an application (not a server plug-in) that uses the
server object model, it will show up in this list.

TABLE 21-2 (continued)

Built-In Administration Tools ❘ 597

c21.indd 04/22/2014 Page 597

REPORTING SERVICES SUMMARY

Reporting Services
Manager URL

The URL to the root folder of the web-based report manager

Reporting Services
Server URL

The URL to the root of the Reporting Services web services

Reader Account Team Foundation Server uses two reporting data sources, which allow
reports to connect to the data warehouse as the account specifi ed here.

Update Service Account Password
Team Foundation Server allows you to use a built-in Windows account as the service account, such
as NT AUTHORITY\Network Service or NT AUTHORITY\Local Service. These special built-in
accounts don’t require manual password changes, and they are good choices to minimize the admin-
istrative overhead. However, for an environment with multiple application tiers, using a built-in
Windows account is not supported, and you’ll have to update the password on the server when it is
changed.

Some corporate environments have password policies that require passwords to be changed as fre-
quently as every month. This requirement can make changing passwords for applications a common
administrative task.

Fortunately, it’s simple to do in Team Foundation Server. After clicking the Update Password link
in the Administration Console, you are presented with the dialog box shown in Figure 21-5, which
allows you to enter the new password and test it to ensure that it’s correct.

FIGURE 21-5: Update Account Password dialog box

Once you click OK, the password is verifi ed and then the Administration Console changes the
password in all the locations where it’s used on the current server.

598 ❘ CHAPTER 21 INTRODUCTION TO TEAM FOUNDATION SERVER ADMINISTRATION

c21.indd 04/22/2014 Page 598

NOTE For more information, see “Change the Service Account or
Password for Team Foundation Server” on MSDN at http://aka.ms/
Tfs2013ChangePassword.

Change Service Account
Changing the service account that Team Foundation Server runs as is not a common administrative
task. Changing it is as simple as clicking the Change Account link in the Administration Console.
In the resulting dialog box shown in Figure 21-6, you either select a built-in system account or enter
the credentials for a domain account. Similar to changing passwords, it’s also possible to verify the
credentials before attempting to apply them by clicking the Test link.

FIGURE 21-6: Change Service Account dialog box

Reapply Service Account
In some cases, a server may have had its service account confi guration changed manually. This
means that the service accounts might not match across the different components, and this would
put the server in an inconsistent state. To return the server to a consistent state, you can choose the
Reapply Account link from the Administration Console. This will set the service account of all
components to the specifi ed service account (see Figure 21-7) and reset the correct permissions.
Similar to Figure 21-8, you should see all changes that were made, along with the successful
completion message.

FIGURE 21-7: Reapply Service Account dialog box

http://aka.ms

Built-In Administration Tools ❘ 599

c21.indd 04/22/2014 Page 599

FIGURE 21-8: Reapply Service Account results dialog box

Change URLs
When Team Foundation Server makes requests to itself, it should use localhost. However, if you are
using multiple application tiers, or you have a DNS alias confi gured for your server, then the Server
URL setting may need to be changed.

After clicking the Change URLs link in the Administration Console, you see a dialog box similar to
Figure 21-9 that allows you to change the two URLs used by the system.

FIGURE 21-9: Change URLs dialog box

600 ❘ CHAPTER 21 INTRODUCTION TO TEAM FOUNDATION SERVER ADMINISTRATION

c21.indd 04/22/2014 Page 600

Add Team Foundation Server Administration Console User
Users who aren’t Team Foundation Server administrators can be given access to open the
Administration Console, as well as to create collections and change service accounts. By default,
anyone who is an administrator on the server already is a Team Foundation Server administrator.

By clicking the Add link under Administration Console Users, you can give users administrative
access in Team Foundation Server. Figure 21-10 shows you the advanced options available to restrict
the permissions.

FIGURE 21-10: Add Team Foundation Server Administration Console User dialog box

Installed Updates
The main Administration Console screen will show you the currently installed version of the server.
Server patches are cumulative, which means that every new patch includes all the patches released
before it. There are some cases where you might want to know each individual patch that has been
installed on a server and when it was installed.

By clicking the Installed Updates link in the Administration Console, you can see all the installed
patches, as shown in Figure 21-11.

FIGURE 21-11: Team Foundation Server Installed Updates dialog box

Built-In Administration Tools ❘ 601

c21.indd 04/22/2014 Page 601

Managing Team Project Collections
The Team Project Collections section is perhaps the second-most used section of the Administration
Console. This section of the console allows you to perform all tasks that relate to collections. The
tasks range from creating new collections to managing security, moving collections, and viewing
collection logs.

To get to the Team Project Collections section of the tool, log on to your application tier server and
open the Team Foundation Server Administration Console from the Start menu. The tree in the left
pane will show Application Tier and then Team Project Collections. As shown in Figure 21-12, you
will see a list of the Team Project Collections available in your environment.

FIGURE 21-12: Team Project Collections

NOTE If you are using a Basic or Express confi guration of Team Foundation
Server, or your application tier is running on a client operating system (such
as Windows 7 with SP1, Windows 8, or Windows 8.1), the SharePoint and
Reporting tabs described in this section won’t be available.

602 ❘ CHAPTER 21 INTRODUCTION TO TEAM FOUNDATION SERVER ADMINISTRATION

c21.indd 04/22/2014 Page 602

General Tab
The General tab shows the full URL of the collection that can be used to connect from Microsoft
Test Manager and Team Explorer Everywhere. Each collection can (but does not have to) reside on a
different SQL Server Instance to the Tfs_Configuration database. The General tab shows the SQL
Server Instance that the current collection is hosted on.

As shown in Figure 21-13, you can also view or edit the description of the collection from the General
tab, and administer the group membership and permissions for users and groups in the collection.

FIGURE 21-13: General tab

Stop and Start a Collection
From the General tab of a collection, if a collection is currently running, you can stop it and prevent
all new requests by clicking the Stop Collection link. This presents the dialog box shown in
Figure 21-14, which allows you to specify a message that users will receive when they attempt to
connect to the collection.

FIGURE 21-14: Team Project Collection Status Reason dialog box

This is useful if you need to perform maintenance on the underlying SQL server, or for any other
reason that you need to take a single collection offl ine. Once the collection is stopped, you can click
the Start Collection link to bring the collection back online and start accepting requests again.

Status Tab
As shown in Figure 21-15, the Status tab displays each of the jobs that have been executed for that
collection. You can open the log for any of these jobs by double-clicking the entry.

Built-In Administration Tools ❘ 603

c21.indd 04/22/2014 Page 603

FIGURE 21-15: Status tab

In some circumstances, a job may fail. This can occur because of an interrupted patch installation,
a mismatched server and collection version, or a timeout. In these cases, it is possible to attempt
the job again by clicking the Rerun Job link. You can view the current progress of a running job by
double-clicking the entry.

When you are performing a server upgrade, it’s possible to close the upgrade wizard before all the
collections have fi nished upgrading. Additionally, when you are performing a collection import, the
import process is command-line only, and it can be diffi cult to gauge the progress of the import. In
these cases, you can also double-click the job to view the current progress of the upgrade or import job.

Team Projects Tab
This tab displays the list of team projects in the collection, along with their descriptions. Because of
the existing implementation of the Project Creation Wizard, it’s not possible to add new team proj-
ects through the Administration Console. You still must use Visual Studio Team Explorer 2013 to
create new team projects in a collection.

From the Team Projects tab shown in Figure 21-16, an administrator can delete a team project.
Once a project is selected, the Delete link is available.

FIGURE 21-16: Team Projects tab

After clicking the Delete link, you can optionally delete lab management, reporting, and build arti-
facts that relate to the team project. Figure 21-17 shows the dialog box you would use to do this.
Additionally, you can optionally delete the version control workspace associated with the project.

604 ❘ CHAPTER 21 INTRODUCTION TO TEAM FOUNDATION SERVER ADMINISTRATION

c21.indd 04/22/2014 Page 604

FIGURE 21-17: Delete Team Projects dialog box

DATA MAY REMAIN UNDELETED AFTER DELETING A TEAM PROJECT

Deleting a team project can leave remnants of the team project in the system. For
example, the team project data will remain in the data warehouse until it is rebuilt.
Work item tracking metadata shared between other team projects is not deleted.
Version control shelvesets that contain code from other team projects are also not
deleted.

For more information on deleting a team project, see “TFSDeleteProject: Deleting
Team Projects” on MSDN at http://aka.ms/Tfs2013DeleteProject.

SharePoint Site Tab
Team Foundation Server allows you to confi gure any SharePoint site for your team project’s project
portal. As shown in Figure 21-18, this tab shows you the default site location that will be used to
create project portals for new team projects. When you create a team project or confi gure a project
portal for an existing team project, this is the URL that will be used by default.

FIGURE 21-18: SharePoint Site tab

http://aka.ms/Tfs2013DeleteProject

Built-In Administration Tools ❘ 605

c21.indd 04/22/2014 Page 605

If you don’t specify a default site location here, then no default will be provided for new or existing
team projects when they are created or modifi ed.

Reports Folder Tab
As shown in Figure 21-19, this tab displays the path under which report folders for team projects
will be created by default. If you create or modify a team project, you can specify another folder, but
this root path will be used as the default.

FIGURE 21-19: Reports Folder tab

Create a Team Project Collection
This is also the section where you create new team project collections. To do so, click the Create
Collection link as shown on the right side of Figure 21-12. A dialog box is displayed, as shown in
Figure 21-20. After you specify a name for the collection and an optional description, a series of
readiness checks are run to confi rm that a collection can be created on the specifi ed server.

Once the checks pass and you proceed with the wizard, you should see green check marks, as shown
in Figure 21-21. In the background, a Create Collection job was queued on the server and the collec-
tion was created by the background job agent.

NOTE For more detailed instructions on this process, see “Create a Team
Project Collection” on MSDN at http://aka.ms/Tfs2012CreateTPC.
Although these instructions are for Team Foundation Server 2012, the process is
unchanged for 2013.

http://aka.ms/Tfs2012CreateTPC

606 ❘ CHAPTER 21 INTRODUCTION TO TEAM FOUNDATION SERVER ADMINISTRATION

c21.indd 04/22/2014 Page 606

FIGURE 21-20: Create Team Project Collection name and description screen

FIGURE 21-21: Successful creation of a Team Project Collection

Built-In Administration Tools ❘ 607

c21.indd 04/22/2014 Page 607

Move a Team Project Collection
In Team Foundation Server, it’s easy to move a team project collection between two servers of
matching versions. To detach a collection, click the Detach Collection link shown in Figure 21-13 on
the General tab. To attach a collection, click the Attach Collection” link, shown on the right side of
Figure 21-12. Following are the two most common scenarios for detaching a collection:

 ➤ You are a consulting company that has been developing a product for a client, and you want
to deliver the code and the collection to the client at the end of the project.

 ➤ The organizational structure has changed, or the company has been acquired, and you must
move the collection to a different Team Foundation Server.

The process is quite safe and relatively straightforward.

NOTE For more detailed instructions, see “Move a Team Project Collection”
on MSDN at http://aka.ms/TfsMoveTPC. Although these instructions are for
Team Foundation Server 2012, the process is unchanged for 2013.

Detach a Team Project Collection
Each collection has shared information (such as identities) stored in the instance’s Tfs_
Configuration database. Because of this, it’s necessary to detach a collection before it can be
attached to another server. This detach process copies the shared information into the collection
database before disconnecting it from the instance. The database remains online on the SQL server,
but it is not associated with the Team Foundation Server anymore.

To start the detach process, click Detach Collection from the General tab for the Team Project
Collection node in the Administration Console. For the relatively short duration (typically a few
minutes) while the detach operation is in progress, the collection will be offl ine.

The wizard allows you to optionally specify a message that will be displayed to users who connect
during this period, as shown in Figure 21-22. However, once the detach operation fi nishes, the col-
lection effectively doesn’t exist on the server anymore, and this message won’t be displayed to users.
Instead, they will receive a message indicating that the collection couldn’t be found.

Once you proceed with the wizard, the background job agent executes a series of jobs. After a short
period, you should receive six green check marks, as shown in Figure 21-23.

http://aka.ms/TfsMoveTPC

608 ❘ CHAPTER 21 INTRODUCTION TO TEAM FOUNDATION SERVER ADMINISTRATION

c21.indd 04/22/2014 Page 608

FIGURE 21-22: Detach Team Project Collection servicing message

FIGURE 21-23: Successful detach of a Team Project Collection

Built-In Administration Tools ❘ 609

c21.indd 04/22/2014 Page 609

Once the database is detached, you can use SQL Server Management Studio to back up the col-
lection database and move it to another SQL server, or provide the backup to another person.
Remember to treat this backup with care because anyone with access to the fi le can restore it to
Team Foundation Server, and that person will have administrator access to the collection.

WARNING Detaching a collection requires additional steps beyond just click-
ing Detach Collection in the Administration Console. To achieve full fi delity,
you must save the reports from Reporting Services, delete any Lab Management
resources, and rebuild the data warehouse as part of any detach operation.

Attach a Team Project Collection
Before attaching a previously detached collection, you must have already restored the database
backup to the SQL server that you want to use. To start the process, click the Attach Collection link
from the Administration Console on the Team Project Collections node, as shown in Figure 21-12,
earlier in this section. When the dialog box appears, specify the SQL Server instance and verify that
you have a backup of the collection database, as shown in Figure 21-24.

FIGURE 21-24: Specifying a SQL Server instance and database to attach

Once the collection is verifi ed and you proceed with the wizard, a job is executed on the back-
ground job agent. This job copies the shared data out of the collection database and places it in the

610 ❘ CHAPTER 21 INTRODUCTION TO TEAM FOUNDATION SERVER ADMINISTRATION

c21.indd 04/22/2014 Page 610

Tfs_Configuration database, for the instance. As shown in Figure 21-25, once the job is com-
pleted, the collection is brought online and users can begin accessing it.

FIGURE 21-25: Successful attach of a Team Project Collection

All Team Foundation Servers and all collections have unique instance IDs. As part of the attach pro-
cess, the server will check the instance ID of the collection and ensure that it doesn’t confl ict with
an existing collection on the server. If a confl ict is detected, then the new collection’s instance ID is
automatically changed.

Delete a Team Project Collection
To delete a team project collection, click the Detach Collection link from the Administration
Console on the Team Project Collections node, as shown in Figure 21-12. Once the collection has
been detached, you can then delete the underlying database from SQL Server.

If you would like to delete a team project collection without fi rst detaching it, this is possible using
the TFSConfig.exe command-line tool. Open a command prompt on an application tier server and
run the following command:

TFSConfig.exe collection /delete /collectionName:YourCollection

The difference between deleting a collection and fi rst detaching a collection is that a deleted collec-
tion cannot be reattached to a server.

Built-In Administration Tools ❘ 611

c21.indd 04/22/2014 Page 611

NOTE For more details, see “Delete a Team Project Collection” on MSDN at
http://aka.ms/Tfs2012DeleteTPC. Although these instructions are for Team
Foundation Server 2012, the process is unchanged for 2013.

Managing SharePoint Products
As you can see in Figure 21-26, in this section you establish the connection between your Team
Foundation Server instance and your SharePoint web applications. If you already have a SharePoint
server confi gured, or you’d like to allow project portals on an additional server, you can add that
server here.

FIGURE 21-26: SharePoint Web Applications section

Managing Reporting
As you can see in Figure 21-27, all the Reporting settings are confi gured for your Team Foundation
Server instance in this section. The main screen shows you the current settings, which you can
change by clicking the Edit link.

http://aka.ms/Tfs2012DeleteTPC

612 ❘ CHAPTER 21 INTRODUCTION TO TEAM FOUNDATION SERVER ADMINISTRATION

c21.indd 04/22/2014 Page 612

FIGURE 21-27: Reporting section

NOTE For a more detailed look at the administration aspects of reporting, see
Chapter 15.

NOTE For details on the other options available in the Administration Console,
see the following chapters and sections in this book:

 ➤ “Confi guring the Team Foundation Build Service” in Chapter 18.

 ➤ “Installing and Confi guring Lab Management” in Chapter 26.

 ➤ “Team Foundation Server Proxy” in Chapter 28.

Command-Line Confi guration Tools
Quite a few command-line confi guration tools are available in Team Foundation Server. In Team
Foundation Server 2010, a number of disparate administration tools were consolidated into two. For
example, the WITImport.exe, WITExport.exe, and WITFields.exe tools are now commands avail-
able in the consolidated WITAdmin.exe tool.

Built-In Administration Tools ❘ 613

c21.indd 04/22/2014 Page 613

Many of the administration tools are examined in other chapters of this book, and you should refer
to the following chapters for more details.

 ➤ Chapter 13—WITAdmin.exe

 ➤ Chapter 24—TFSSecurity.exe and TF.exe Permission

 ➤ Chapter 28—TF.exe Proxy

TFSConfi g.exe
The TFSConfig.exe tool allows an administrator to perform most server confi guration tasks
from the command line. When paired with a remote execution tool such as PSExec.exe (which
is available at http://aka.ms/PsExec), TFSConfig.exe can help you achieve remote server
administration.

Table 21-3 provides an overview of each of the commands available with TFSConfig.exe and what
they can be used for.

TABLE 21-3: Commands Available with TFSConfi g.exe

COMMAND DESCRIPTION

Accounts Allows you to update passwords, change service accounts, add new ser-
vice accounts, remove service accounts, and reset database ownership

Authentication Allows you to view or change the current authentication settings (NTLM
or Kerberos) for the server

Certificates Confi gures how client authentication certifi cates are used when Team
Foundation Server connects to itself using a secure (HTTPS) connection

ChangeServerID Initializes the Team Foundation Server instance and all of its collections
with a new instance ID. This command is required when you restore a
copy of your server while the original copy remains online. If you don’t
change the instance ID of the new server, clients will be confused and will
communicate with the original server instead of the new server.

CodeIndex Manages the Code Indexing Services that support the CodeLens tooling
in Visual Studio

Collection Attaches, detaches, or deletes a team project collection from the server

ConfigureMail Changes the e-mail From address and the SMTP host used by the server
to send notifi cations

Diagnose Diagnoses software update problems that might prevent Team
Foundation Server from working correctly. This command inspects the
system to fi nd any service level (patch) mismatches between the applica-
tion tier and the collection databases.

continues

http://aka.ms/PsExec

614 ❘ CHAPTER 21 INTRODUCTION TO TEAM FOUNDATION SERVER ADMINISTRATION

c21.indd 04/22/2014 Page 614

COMMAND DESCRIPTION

Identities Lists the status or changes the security identifi ers (SIDs) of identities
stored by the server. This command is used when you move a server from
one domain to another where the user names match, but the SIDs are
different.

Import Imports databases from either a 2005 or 2008 data tier as a new project
collection. This command is used when you want to consolidate multiple
instances onto a single instance, and don’t want to perform an in-place
upgrade fi rst.

Jobs Allows you to retrieve the logs or retry a job on a single, or all,
collection(s)

Lab Confi gures Lab Management and manages host group and library share
assignments for a collection

License Used to display or modify Team Foundation Server licensing information.
Using this command, you can extend your trial period by an additional
30 days.

PrepareClone Prepares an existing confi guration database after cloning. This will reset
the SharePoint and Reporting Services URLs to the local machine and cre-
ate the required SQL roles in the master database.

Proxy This command can be used to update the Team Foundation Server proxy
confi guration. For example, you can change the list of servers that the
proxy is able to proxy for.

The proxy server must be initially confi gured in either the Team
Foundation Server Administration Console or by using the TfsConfi g.exe
Unattend command.

RebuildWarehouse Rebuilds the Analysis Services database and the relational database of the
warehouse. Unlike the Start Rebuild link in the Administration Console,
you can specify the /analysisServices parameter, which will rebuild
only the Analysis Services database without rebuilding the relational
database.

RegisterDB Changes the database the application tier uses. This command is usually
used when you restore a set of databases and want to connect them to a
new application tier.

RemapDBs Enumerates the databases in the specifi ed SQL instances, and validates
that the connection strings match the locations of the found databases

TABLE 21-3 (continued)

Operational Intelligence Hub ❘ 615

c21.indd 04/22/2014 Page 615

Repair Re-creates all stored procedures, functions, indexes, constraints, and
tables in the confi guration and collection databases. It doesn’t repair any
of the data, only the structure of the databases.

This command was deprecated in Team Foundation Server 2012 and
should not be used.

RepairCollection As above for Repair, however, it operates only on a single collection.

Settings Manages the notifi cation and server URL settings for the server

Setup Used for unconfi guring a Team Foundation Server. After running this com-
mand, you can open the Administration Console and run the server con-
fi guration wizard again.

Unattend Used for confi guring Team Foundation Server using an unattended con-
fi guration fi le. For example, you can use TfsConfig.exe Unattend
/configure /type.basic to confi gure a server with the essential devel-
opment services (Source Control, Work Item Tracking, and Test Case
Management).

Updates Reapplies software updates required to synchronize the service level
of the databases for Team Foundation Server to the level of the applica-
tion tier

NOTE For more details on this command-line tool, see “Managing Server
Confi guration with TFSConfi g” on MSDN at http://aka.ms/TfsConfig2013.

TFSServiceControl.exe
The TFSServiceControl.exe tool is used to stop or start all of the services and application pools
that Team Foundation Server uses on a server. If you have multiple application tier servers, you will
need to run this command on each server to completely start or stop the environment.

The quiesce option will gracefully stop all related services on the server, and the unquiesce option
will start them. For example, you might want to gracefully stop services when you need to perform
maintenance on a server.

OPERATIONAL INTELLIGENCE HUB

Starting in Team Foundation Server 2012, Microsoft provided a “hidden” web-based administra-
tion interface that provides insight into the activity within the environment as well as the activities
of the Background Job Agent called Operational Intelligence. To access the Operational Intelligence
hub, browse to http://yourServer:8080/tfs/_oi on your server where you will fi nd the page

http://aka.ms/TfsConfig2013
http://yourServer:8080/tfs/_oi

616 ❘ CHAPTER 21 INTRODUCTION TO TEAM FOUNDATION SERVER ADMINISTRATION

c21.indd 04/22/2014 Page 616

shown in Figure 21-28. Notice that there are two tabs on this page named Activity Log and Job
Monitoring.

FIGURE 21-28: Activity Log tab in the Operational Intelligence Hub

Activity Log
The Activity Log shows data from the tbl_Command table in the Tfs_Configuration database and
the tbl_Parameter table in each Team Project Collection database. These tables keep track of all of
the commands from every user that have been executed against the server in the last 14 days.

Table 21-4 provides an overview of each column in the Activity Log and how each is interpreted.

TABLE 21-4: Activity Log Columns

COLUMN DESCRIPTION

Id The unique ID of this command execution

Application The Team Foundation Server component against which this command
was executed. Some common applications are TFS Build, Framework,
Lab Management, Test Management, and Work Item Tracking.

Command The name of the command given by the server. These command
names are not documented anywhere but they are names similar to
their corresponding API calls.

Operational Intelligence Hub ❘ 617

c21.indd 04/22/2014 Page 617

Status Shows 0 on success, –1 on failure

Start Time The Date/Time when the command was received by the server

Execution Time The amount of time it took for the command to run. Expressed in
microseconds (1 one-millionth of a second)

Identity Name The user name of the person or service executing the command

IP Address The IPv4 or IPv6 address of the machine where the command
originated

Unique Identifier A GUID that is used to correlate multiple server-side requests that are
generated by a single client-side request

User Agent The User-Agent HTTP request header fi eld value from the client. This
value gives you the name of the executable making the call if it used
the API as well as the version/SKU of the caller.

Command Identifier The command the user called. If using the tf command-line tool, then
this is the sub-command given, i.e., tf get or tf diff.

Execution Count The number of times this command was executed. If multiple calls are
made to the same command, they will not be listed separately, but
rather the Execution Count will be incremented for each. In Figure
21-28 you can see that the Connect command at Id 69 was executed
three times.

Authentication Type The authentication method used on this request. Values are NTLM or
Kerberos.

You can view additional details for each Activity Log entry by double-clicking on the entry. This
opens the Activity Log Entry dialog box shown in Figure 21-29.

Job Monitoring
The Job Monitoring tab shows information about the background jobs that Background Job Agent
runs regularly. As shown in Figure 21-30, there are three sub-tabs, which show Job Summary infor-
mation, the current Job Queue, and Job History.

Job Summary
The Job Summary tab shows three charts that allow you to see the job activity in your system: Total
Run Time for Each Job, Result Counts, and Number of Jobs Run.

The Total Run Time for Each Job chart shows the total amount of time that a particular back-
ground job took over the time period shown on the bar chart. You can hover your cursor over a bar
to see the number of job runs whose time was calculated into the total run time. You can click on a
bar to bring up the Job History tab with specifi c data about that background job.

618 ❘ CHAPTER 21 INTRODUCTION TO TEAM FOUNDATION SERVER ADMINISTRATION

c21.indd 04/22/2014 Page 618

FIGURE 21-29: Activity Log Entry dialog box

FIGURE 21-30: Job Monitoring tab in the Administration Hub

Other Administration Tools ❘ 619

c21.indd 04/22/2014 Page 619

The Result Counts chart shows a pie chart of the count of the different result types encountered
by the background jobs over the period shown in the chart. Some of the result types shown are
Succeeded, Failed, and Blocked. Clicking on a result type section of the chart will bring you to the
Job History tab fi ltered to show the jobs with the selected result type.

The Number of Jobs Run chart is a stacked bar chart that shows the number of times a job has run
segmented by the result type for that particular job. If the Synchronize Test Cases job ran ten times,
of which six were successful and four failed, then the bar for that job would be ten units long—and
six units would be green and four red. Hovering over a bar will show a breakdown of the result types
for that job. Clicking on any bar will bring you to the Job History tab fi ltered by the selected job.

Job Queue
The Job Queue tab provides information about the current state of the job queue. The Job Queue
Types chart breaks down the queue by queue type to show jobs that are in progress, queued, sched-
uled, or waiting to run on an offl ine or dormant application tier server. Clicking on any bar in the
chart will populate the Job Queue Details list with the job queue entries for the selected queue type.

Job History
The Job History tab provides information about past performance of background jobs. The Average
Run and Queue Time With Total Number of Jobs chart displays the number of jobs run at each
hour overlaid with the average time the jobs waited in the queue and the average run time of those
jobs. The Job History list shows the detailed job history results over the period shown in the chart.
This list excludes successful jobs to make it easier to navigate.

OTHER ADMINISTRATION TOOLS

As with most products, there are gaps in functionality. As with most products, Team Foundation
Server 2013 has gaps in functionality. There are many Microsoft-sponsored and non-Microsoft-
sponsored utilities available. This section examines the ones released outside Microsoft’s normal
release cycle, as well as a useful tool developed by another company.

Team Foundation Server Power Tools
Power Tools are extra features developed by Microsoft outside of the normal release cycle. They are
always “additive,” which means that they are extensions of the shipping product and don’t change
any core functionality. Typically, they are used to temporarily address customer pain points and
adoption blockers. In an ideal world, all the Power Tool features would eventually make it in to the
normal product, but that can take some time.

The Power Tools include some useful utilities for administrators, such as the Process Editor (for
managing work item types and fi elds), the Test Attachment Cleaner (tcmpt.exe), and the Best
Practices Analyzer.

620 ❘ CHAPTER 21 INTRODUCTION TO TEAM FOUNDATION SERVER ADMINISTRATION

c21.indd 04/22/2014 Page 620

NOTE The latest version of the Team Foundation Server Power Tools can be
downloaded from http://aka.ms/TFS2013PowerTools.

Best Practices Analyzer
Perhaps the most useful Power Tool for administrators is the Best Practices Analyzer (BPA). The
BPA is the same tool used by the Microsoft Support team when customers call with a server
problem.

The health check scan types have hundreds of rules and alerts built in. These check all the different
confi guration settings in an environment against expected settings, and generate warnings or errors
when something doesn’t look correct.

In addition to one other scan that collects statistics of your server, the following are different varia-
tions of the health check scan:

 ➤ Team Foundation Server Complete Health Check

 ➤ Team Foundation Server Framework Health Check

 ➤ Team Foundation Server Warehouse Health Check

 ➤ Team Foundation Build Health Check

 ➤ Visual Studio Lab Management Health Check

 ➤ SharePoint Products Health Check

 ➤ Project Server Confi guration Health Check

 ➤ Project Server Synchronization Engine Health Check

 ➤ Visual Studio Client Health Check

Team Foundation Server Complete Health Check is the most comprehensive scan, and will take
the longest to run. As you can see in Figure 21-31, it enumerates all the servers in an environment
(including build agents and lab management components), and it performs the health check scan on
them. If you have an environment with more than a few build servers, then this scan type is prob-
ably not very useful because it will take a long time to run and scan all your servers.

http://aka.ms/TFS2013PowerTools

Other Administration Tools ❘ 621

c21.indd 04/22/2014 Page 621

FIGURE 21-31: Microsoft Team Foundation Server Best Practices Analyzer

WARNING If you have build agents in remote locations that have slow network
links, the health check may take a much longer time to complete.

Additionally, if you are having a problem with a particular component (such as the Warehouse or
SharePoint Products), you can just run the health check for those components.

Once the scan completes, you can select each issue and click the “Tell me more about this issue and
how to resolve it” link shown toward the bottom of Figure 21-32. This will display the documentation
for that particular check and describe the steps to resolve the issue. This is an often overlooked and very
valuable resource for diagnosing and troubleshooting Team Foundation Server confi guration issues.

622 ❘ CHAPTER 21 INTRODUCTION TO TEAM FOUNDATION SERVER ADMINISTRATION

c21.indd 04/22/2014 Page 622

FIGURE 21-32: View Best Practices Report

It’s not very well known, but you can actually run the BPA tool from the command line using the
TfsBpaCmd.exe tool. With this functionality, you might consider running it once a week as a sched-
uled task to proactively detect any server confi guration issues.

NOTE Chapter 25 covers the usage of the BPA tool in more detail.

Team Foundation Server Administration Tool
Team Foundation Server includes integration with SharePoint Products and SQL Reporting
Services. However, this integration isn’t as great as it could be for project or server administrators.
Permissions between Team Foundation Server and these other systems aren’t integrated. This means
that you have to manage the permissions and group memberships separately through each system’s
own administration interface.

Other Administration Tools ❘ 623

c21.indd 04/22/2014 Page 623

NOTE Fortunately, this permission integration issue was identifi ed as an early
gap for administrators, and the Team Foundation Server Administration Tool
was created. This tool will be discussed further in Chapter 24.

Team Foundation Sidekicks
As a Team Foundation Server administrator, you may be required to venture beyond SQL servers,
application tiers, collections, and team projects. If you must delete old workspaces or unlock fi les
from users who are on vacation, you can use the tf.exe command-line tools to do so. For those
who are not intimately familiar with the client tools, this can be a little tricky, and you would be
much more comfortable in a graphical user interface (GUI).

The Attrice Corporation has created a free suite of tools called the Team Foundation Sidekicks. The
tools allow server administrators and advanced users to use a GUI to perform many administrative
and advanced version control tasks. Figure 21-33 shows an example of the Workspace sidekick.

FIGURE 21-33: Team Foundation Workspace Sidekick

624 ❘ CHAPTER 21 INTRODUCTION TO TEAM FOUNDATION SERVER ADMINISTRATION

c21.indd 04/22/2014 Page 624

The standalone edition of the tool suite provides a GUI for managing different parts of Team
Foundation Server. Table 21-5 provides a brief description of each sidekick.

TABLE 21-5: Team Foundation Sidekicks Available in the Standalone Version

SIDEKICK DESCRIPTION

Workspace Sidekick View, search, delete, and modify workspaces.

Status Sidekick View pending changes, and unlock locked fi les and folders.

History Sidekick View, search, and compare the history of fi les and folders, along with their
associated branches and merges.

Label Sidekick View, search, and compare labels, along with any linked changesets and
work items.

Shelveset Sidekick View, delete, compare, and download the contents of a shelveset, along
with any linked work items and check-in notes.

Permission Sidekick View a user’s effective global, project-specifi c, and fi le permissions.

Users View Sidekick Display and search all valid users in the system.

These sidekicks are a useful addition to any Team Foundation Server administrator’s toolkit and
will save plenty of time. To download the Team Foundation Sidekicks, please see the Attrice website
at http://www.attrice.info/cm/tfs/.

SUMMARY

Along with a brief look at the server architecture, this chapter was all about tools for administra-
tors. The chapter provided a walkthrough of all the different screens and functionality of the Team
Foundation Server Administration Console and the new Administration Hub in Team Web Access.

This chapter also provided a brief look at the command-line administration tool TFSConfig.exe ,
and all its different commands. You learned that from this tool, you can change almost any setting
in the server.

You also learned about some additional tools that aren’t included in the product but are very useful
to a server administrator. You learned that the Best Practices Analyzer is great for identifying server
misconfi gurations. Finally, you learned that the Team Foundation sidekicks allow you to manage
workspaces and shelvesets on behalf of other users as well as other administrative and version con-
trol focused tasks.

Chapter 22 covers two important topics for server administrators: scalability and high availability.
Along with a look at the physical architecture of the system, Chapter 22 includes guidance from
and several lessons learned by the Team Foundation Server administrators supporting the Microsoft
Developer Division.

http://www.attrice.info/cm/tfs

c22.indd 04/22/2014 Page 625

Scalability and High Availability
WHAT’S IN THIS CHAPTER?

 ➤ Understanding architectural changes

 ➤ Understanding scale limitations

 ➤ Exploring availability solutions

 ➤ Exploring load balancing

 ➤ Getting to know confi guration best practices

Scalability and high availability are very involved topics, and an entire book could be written
on each of them. Every Team Foundation Server environment is unique, and every organiza-
tion has a different usage pattern and availability requirements.

It’s not the purpose or intent of this chapter to provide prescriptive guidance on exact confi gu-
rations to support your environment or usage pattern. Rather, this chapter is intended to give
you insight into the different factors that affect scalability and to offer some solutions to
consider in your overall environment design.

NOTE If you need advice specifi cally tailored to your organization’s needs, your
best option is to contact Microsoft Support, Microsoft Services, or a Microsoft
Certifi ed Partner in your area. These organizations have deep knowledge, exten-
sive resources, and ample hands-on experience to best meet your individual
needs.

22

626 ❘ CHAPTER 22 SCALABILITY AND HIGH AVAILABILITY

c22.indd 04/22/2014 Page 626

AN EVOLVING ARCHITECTURE

Team Foundation Server 2010 introduced signifi cant architecture and infrastructure changes. On
the product team, these product changes were referred to as Enterprise TFS Management (ETM). It
was a signifi cant and necessary investment of effort to allow the product to handle the future scale
demands of enterprises and the Internet.

The full value of these investments is beginning to be realized. With the release of Team Foundation
Server 2013 also comes the production release of Visual Studio Online, a cloud-based version of
Team Foundation Server. Although the service is running on the Windows Azure Platform, it is built
from the same codebase as the on-premises product.

The introduction of team project collections was perhaps the largest architectural change. This
innovation took the seven databases that used to make up a server and “folded” them into a single
database that represents a collection. This database becomes the unit of isolation, and a collection
can be detached and moved between different servers. Collections enable the following:

 ➤ The consolidation of multiple pre-2010 Team Foundation Server instances onto a single
shared instance

 ➤ The scale-out of a single instance to multiple physical servers

Team Foundation Server 2008 and previous releases included many built-in assumptions about your
deployment. For example, you could have only a single application tier. This application tier couldn’t
be installed on a 64-bit operating system. Analysis Services had to be installed on the same server as
SQL Server (although you could move it later if you wanted to). These restrictions made the initial
installation and any future confi guration changes to the server quite fragile and error-prone.

One of the core deliverables of ETM was to enable confi guration fl exibility and remove these limita-
tions. Team Foundation Server supports the following features critical to scalability and availability:

 ➤ Confi guration fl exibility

 ➤ Multiple application tiers with load balancing

 ➤ 64-bit application-tier installation

 ➤ Stateless application tier and web access

On top of all these infrastructure improvements, there was also a huge investment in the setup, con-
fi guration, and administration experiences. All this investment made Team Foundation Server 2010
an exceptionally scalable and robust release.

Because Team Foundation Server 2013 shares the same codebase as the Visual Studio Online, many
of the core scalability improvements in the cloud version also fl ow through to the on-premises
version.

An example of these improvements is the memory usage per collection in the environment. For an
on-premises server, it would be rare to see more than 100 collections on a single deployment. In the
cloud, the target is many thousands of collections. For the server to support this number of collec-
tions, a lot of optimization and testing was done around the collection management internals. These

Limiting Factors ❘ 627

c22.indd 04/22/2014 Page 627

changes mean that each collection consumes the least amount of server memory. There are also opti-
mizations such as placing a collection in a dormant state and pausing certain jobs if the collection
has not been accessed.

Another signifi cant change that fi rst appeared in Team Foundation Server 2012 is the generalization
of the version control content store. Before the 2012 release, Work Item Tracking and Test attach-
ments were stored in their own tables. For the cloud-based service, it is more cost effective to store
content in Windows Azure blob storage than inline in Windows Azure SQL Databases. This change
also allows the Team Foundation Proxy server to cache additional artifact types.

Much of this chapter is relevant to only the largest Team Foundation Server environments. However,
because Team Foundation Server is built on the Microsoft platform, you might fi nd these sugges-
tions also useful for scaling your own applications built on the Microsoft platform.

LIMITING FACTORS

Implementing a system that scales is all about fi nding the largest bottleneck, removing it, and then
fi nding the next one. A system with as many moving parts as Team Foundation Server has many
opportunities for bottlenecks. Even when you manage to remove the largest bottlenecks, you still
have some inherent limitations in the architecture to consider.

Microsoft Recommendations
The offi cially tested and recommended system confi gurations for deploying Team Foundation Server
2013 are detailed in the Installation Guide at http://aka.ms/tfsInstallGuide.

As you can see in Table 22-1 (which information is gathered from the offi cial Installation Guide),
the hardware requirements for a small team are quite modest. It’s perfectly reasonable to run a
server that supports 250 users on a single core machine that has a reasonable hard disk. You should,
however, consider these recommendations with respect to your own individual circumstances. In
general, the larger your team is, the greater your need will be for a robust hardware confi guration.

TABLE 22-1: Recommended Hardware Confi gurations

NUMBER OF

USERS

CONFIGURATION CPU MEMORY HARD DISK

Fewer than
250 users

Single-server (Team
Foundation Server and
the Database Engine
on the same server)

1 single core proces-
sor at 2.13 GHz

2GB 1 disk at 7.2 K
rpm (125GB)

250 to 500
users

Single-server 1 dual core processor
at 2.13 GHz

4GB 1 disk at 10K
rpm (300GB)

continues

http://aka.ms/tfsInstallGuide

628 ❘ CHAPTER 22 SCALABILITY AND HIGH AVAILABILITY

c22.indd 04/22/2014 Page 628

NUMBER OF

USERS

CONFIGURATION CPU MEMORY HARD DISK

500 to
2,200 users

Dual-server (Team
Foundation Server and
the Database Engine
on different servers)

Application tier 1 dual core Intel
Xeon processor at
2.13 GHz

4GB 1 disk at 7.2K
rpm (500GB)

Data tier 1 quad core Intel
Xeon processor at
2.33 GHz

8GB SAS disk array
at 10K rpm
(2TB)

2,200 to
3,600 users

Dual-server

Application tier 1 quad core Intel
Xeon processor at
2.13 GHz

8GB 1 disk at 7.2K
rpm (500GB)

Data tier 2 quad core Intel
Xeon processors at
2.33 GHz

16GB SAS disk array
at 10K rpm
(3TB)

As discussed later in this chapter, the number of team project collections and team projects in an
environment will also affect the performance of the system. These hardware recommendations don’t
give an indication of how many collections they can support, only the number of users.

One important distinction for the number of collections is the number of active collections com-
pared to the number of dormant collections. An active collection is one that has been accessed in
the past fi ve minutes. When a collection is automatically marked as dormant in the system, it will be
unloaded from memory until another request for that collection is received. Table 22-2 describes the
maximum number of active collections per SQL server based upon total available memory.

TABLE 22-2: Recommended Maximum Active Collections per SQL Server

RAM AVAILABLE TO SQL SERVER ACTIVE COLLECTIONS

2GB 1 to 5

4GB 5 to 10

8GB 30 to 75

TABLE 22-1 (continued)

Limiting Factors ❘ 629

c22.indd 04/22/2014 Page 629

16GB 40 to 90

32GB 50 to 125

64GB 75 to 195

For a recommendation of the number of collections per SQL server, you should refer to the “Visual
Studio Team Foundation Server Planning Guide” at http://vsarplanningguide.codeplex.com/.
More specifi cally, you should refer to the “Capacity Planning” workbook, which is available to
download from this site.

This planning workbook lets you enter the maximum expected users and the current number of
users for your environment. Using the offi cial hardware recommendations from Table 22-2, the
workbook will tell you the recommended confi guration for your expected number of users and a
maximum number of active collections it can support.

Data Tier
The vast majority of work in Team Foundation Server happens on the data tier. Therefore, it makes
sense that the most common bottlenecks are found on the data tier. Team Foundation Server per-
formance is directly proportional to the performance of your SQL server. For a large environment,
you must pay the same level of attention that you pay to other critical database applications in your
organization, such as your Human Resources, Finance, or Sales databases.

Beware of several opportunities for bottlenecks in the data tier:

 ➤ Storage performance

 ➤ SQL query plan cache

 ➤ SQL buffer cache

Storage Performance
The single biggest factor that contributes to server performance is the storage performance. If your
storage isn’t matched to the demands of the system, then the performance of everything will suffer.
Team Foundation Server makes heavy use of SQL Server’s TempDB database for large version control
commands, which makes that a common source of bottlenecks.

SQL Query Plan Cache
SQL stored procedures have query plans. These plans are precompiled and the server uses them to
work out the most effi cient way to execute a particular stored procedure. Some commands (such as
Merge) in Team Foundation Server contain some very complex logic. This makes the query plans
quite detailed, and their size adds up. Because each project collection is a separate database, a sepa-
rate plan is cached in SQL for each stored procedure.

http://vsarplanningguide.codeplex.com

630 ❘ CHAPTER 22 SCALABILITY AND HIGH AVAILABILITY

c22.indd 04/22/2014 Page 630

The scalability limitation here is that the plan cache is shared among all databases on the same SQL
instance. In SQL Server 2008, the plan cache is sized according to this formula:

 ➤ 75 percent of visible target memory from 0 to 4GB

 ➤ plus 10 percent of visible target memory from 4GB to 64GB

 ➤ plus 5 percent of visible target memory greater than 64GB

This means that as you add more collections to a SQL server, there will be more contention for
resources in the plan cache. When a stored procedure’s plan isn’t in the cache, it must be recalcu-
lated and recompiled. Although this is not a signifi cant overhead, it’s not optimal to be recompiling
plan caches all the time.

In Team Foundation Server 2010, most work item tracking queries generated ad hoc SQL and
required a new query plan with every execution. In the 2012 release, some optimizations were made
to improve caching of work item tracking query plans.

NOTE For more information on how the SQL plan cache works, see the “Plan
Caching in SQL Server 2008” whitepaper from Greg Low at http://aka.ms/
SQLPlanCache.

SQL Buffer Cache
The SQL buffer cache is where recently accessed database pages are kept in memory. Having pages
in memory is a good thing because this results in the best performance.

Work item tracking uses a series of tables to store work items with a set of views over those tables.
When you run a query from Team Explorer, that query is translated into a SQL query and executed
in the database. Because work item tracking is completely customizable and has a dynamic schema,
it performs best when all the tables are in the buffer cache.

The buffer cache is shared across all databases on a SQL server. So, if your work item tracking
tables are competing in the buffer cache with other tables, then they may get pushed out. When they
get pushed out, work item query performance will suffer.

This can be observed as you add more project collections to a server or your collections get bigger.
If you look at the SQL Server “Memory Manager\Buffer Cache Hit Ratio” performance counter, it
will drop and performance may start to suffer. In particular, when using SQL Express Edition, work
item queries that use the contains clause will suffer the most noticeable effects because they require
a table scan and cannot make use of the SQL Full-Text indexing service. If the pages aren’t in the
buffer cache, then SQL must fetch them from the disk.

http://aka.ms

Limiting Factors ❘ 631

c22.indd 04/22/2014 Page 631

To summarize, the size of the SQL buffer cache (which is calculated based upon total server mem-
ory) will limit the size of the project collections that SQL server can support while maintaining rea-
sonable performance.

NOTE More information on SQL Server Memory Architecture can be found at
http://aka.ms/SQLMemoryArch.

Application Tier
You’re more likely to encounter bottlenecks in the data tier than the application tier. However, the
two main scale limitations that affect the application tier are:

 ➤ Memory

 ➤ ASP.NET worker threads confi guration

Memory
Access control checks for version control are performed on the application tier. At a high level, this
is the way it works:

 1. The client makes a Get request to the application tier.

 2. The application tier runs the prc_Get stored procedure on the data tier.

 3. The data tier executes the request and returns all the relevant fi les, regardless of the permis-
sions of the requesting user.

 4. The application tier then retrieves the permissions associated with the paths returned. If the
permissions are in the cache, then the cached permissions are used. If the permissions are not
in the cache, then they are requested from the data tier.

 5. The application tier then evaluates the permissions of the requesting user against the path
permissions. Any fi le that the user does not have access to is removed from the response.

 6. The application then sends the trimmed response to the client.

What’s important here is that each application-tier server keeps a cache of all version control path
permissions that it has evaluated. The cache is not persisted and is reset every time the application
pool restarts. Cached permissions are also invalidated when the permissions change.

Version control uses Access Control Entries (ACEs) on paths to defi ne which users and groups
have access to which fi les and folders. By default, these permissions are inherited to subdirectories.

http://aka.ms/SQLMemoryArch

632 ❘ CHAPTER 22 SCALABILITY AND HIGH AVAILABILITY

c22.indd 04/22/2014 Page 632

However, you can set explicit permissions on subdirectories. Each of these explicit permissions
results in an additional ACE that the server must store, evaluate, and cache.

To summarize, if you have many paths, or many paths with explicitly set permissions, then you may
run into issues where the cache isn’t large enough to be effective. In this scenario, the application
tier will be constantly retrieving permissions from the data tier, and this may affect version control
performance.

ASP.NET Worker Threads Confi guration
ASP.NET 2.0 introduced the processModel/autoConfig confi guration element, which defi nes how
many worker threads should be running to serve requests. The default confi guration setting may not
work for everyone because it limits the number of concurrently executing requests per CPU to 12.

This works well for websites with low latency. But in an application like Team Foundation Server,
which has longer running requests and higher latency, it may become a bottleneck. If ASP.NET has
reached these limits, then users may receive intermittent timeout or “Server does not exist” error
messages.

Web Access
Similar to the 2010 release, web access is integrated into the product. However, the 2012 release
fully integrated web access with the other web services and it runs in the same application pool. It is
not possible to install web access by itself, or separate it from the other web services.

Warehouse
As discussed at the beginning of this chapter, Team Foundation Server 2010 introduced some major
architectural changes to support server consolidation and scale-out. One of the commonly requested
features from large organizations was the capability to do cross-server (and, therefore, in 2010,
cross-collection) reporting. Users wanted the capability to roll up metrics into a company-wide view.

This requirement drove the architectural decision to have a single, shared relational data warehouse
and Analysis Services Online Analytical Processing (OLAP) cube per Team Foundation Server
instance. This, in itself, is not a big problem. The limitations of the architecture start to emerge
when you have multiple project collections attached to an instance that would, by themselves, strain
a dedicated data warehouse per collection architecture.

The main limitations with the data warehouse in Team Foundation Server 2013 are:

 ➤ The relational warehouse has a limit of approximately 1,000 unique reportable fi elds across
all project collections. This is the limit of columns in a SQL Server table, less some overhead.

 ➤ The time to process the OLAP cube is proportional to the number of reportable fi elds.

 ➤ Different fi eld data types will be expanded to more than one dimension in the cube. For
example, a datetime fi eld is expanded to six dimensions to support the different data slicing
requirements of a date: Year Month Date, Year Week Date, Date, Month, Week, and Year.

Limiting Factors ❘ 633

c22.indd 04/22/2014 Page 633

 ➤ Analysis Services does not have a scale-out solution for processing a single cube. You can add
additional query servers, or process multiple cubes on separate processing servers and swap
them in later. But you cannot process a single cube across multiple servers.

In summary, if your SQL Server hardware and application-tier server are not scalability bottlenecks
in your environment, some architectural limitations in the data warehouse may affect you.

Team Foundation Proxy
The Team Foundation Proxy is a very effective method of increasing version control performance for
users and reducing the load on the application-tier servers. As noted earlier, the 2012 release added
support for more than just version control downloads.

The most signifi cant limitations in the performance of the proxy server are:

 ➤ Network performance—Latency and throughput

 ➤ Storage performance—Disk size and throughput

Network Performance
The largest infl uence on the performance of the proxy server is the network performance between
the proxy server and the clients. If the clients are separated from the proxy by a slow link, then the
proxy may not provide any benefi t at all compared to accessing the application tier directly.

Storage Performance
The amount of disk space available for the fi le download cache is the next most important infl uence
on the performance of the proxy server. If the cache size isn’t large enough then the proxy will be
constantly cleaning up and refi lling the cache.

Periodically, the cleanup job will scan the entire directory and look for fi les that have not been
accessed recently (more than 14 days by default). The cleanup job will then delete these fi les. For
caches with large numbers of fi les, the cleanup algorithm can be quite ineffi cient and can take many
hours to identify and clean up stale fi les. It’s important that your disks can handle the normal proxy
load in addition to this cleanup load.

To get an estimate of how long this cleanup identifi cation process takes, you can open a command
prompt and run a directory listing of your cache directory. To do so, follow these steps:

 1. Open a command prompt.

 2. Change to your cache directory by typing the following (all on one line):

CD /D "C:\Program Files\Microsoft Team Foundation Server 11.0\
 Application Tier\Web Services_tfs_data"

 3. Perform a directory listing by typing the following:

dir /s > NUL

634 ❘ CHAPTER 22 SCALABILITY AND HIGH AVAILABILITY

c22.indd 04/22/2014 Page 634

This will retrieve the fi le descriptors of every fi le in the cache directory and redirect the output to
the NUL device so that it doesn’t fl ood your console. The time it takes for this command to return is
roughly the same time it takes for the proxy to identify fi les for cleanup.

In the case of a cache miss, the proxy server streams the content from the SQL server and writes the
stream to the cache drive simultaneously while sending it to the client. In the case of a cache hit,
the proxy server streams the content from the disk to the client. This means that the memory and
processor demands of the proxy server are relatively moderate. Therefore, if the network speed is
not a bottleneck, the throughput of the proxy server is directly proportional to the performance of
the disks.

MICROSOFT DEVELOPER DIVISION ADOPTION

The adoption of Team Foundation Server at Microsoft is something that has
steadily increased since the early days of the product’s development. Brian Harry
and others on the product team have been blogging the internal adoption numbers
over the years and sharing them with the public. You can see an example of these
numbers at http://aka.ms/TfsDogfoodStats.

The Developer Division is the division in which the Team Foundation Server prod-
uct group works. Until the release of Team Foundation Server 2008, the usage was
limited to the product group, and the larger division used the existing Microsoft-
only internally developed tools (Product Studio and Source Depot).

Once the division had shipped the 2008 wave of developer tools, there was a huge
push to move all the people and systems over to Team Foundation Server. It’s fair to
say that this was not without its challenges, and the server was constantly patched
to meet the scalability demands of the division’s 4,000 users and build lab.

These patches made up the majority of the performance-related improvements in
Team Foundation Server 2008 Service Pack 1. You can get an overview of these
improvements on Brian Harry’s blog under the “Performance & Scale” heading at
http://aka.ms/Tfs2008Sp1Changes.

Although the use of these systems was painful at times for people in the division
and across the company, it has pushed the product team to ensure that the product
scales well. The widely varied usage patterns and user base have proven that the
product can scale in real-world use far beyond what any load simulation can do.

This internal adoption and usage continued throughout the development of the
2013 release. Perhaps the most important usage though is the usage of the Visual
Studio Online service. As scalability and availability issues are found in the service,
updates are developed and deployed on at least a weekly basis. By the time Team
Foundation Server 2013 was released, the product had been used on a day-to-day
basis by many thousands of users.

http://aka.ms/TfsDogfoodStats
http://aka.ms/Tfs2008Sp1Changes

Principles ❘ 635

c22.indd 04/22/2014 Page 635

PRINCIPLES

If you are designing a new Team Foundation Server environment, or if you anticipate having to scale
your existing installation, you can generally apply a number of principles. When implemented, these
principles will also help you achieve your goals of high availability. These principles are:

 ➤ Scale out to multiple servers.

 ➤ Eliminate single points of failure.

 ➤ Anticipate growth.

 ➤ Keep it simple.

Scale Out to Multiple Servers
The fi rst principle is to spread out the different components that make up a Team Foundation Server
environment over multiple physical or virtual servers. The biggest benefi t of doing this is to allow
each component to make maximum use of the hardware that it sits on without competing with other
components. As bottlenecks develop, the hardware for that single component can be scaled up or
scaled out, without touching the other components. It’s much easier for users to accept “Reporting
won’t be available this weekend while we upgrade the reporting server hardware” than it is “The
whole server won’t be available this weekend while we upgrade the hardware.” This reduces overall
risk and increases the ability to react to changing usage patterns.

Eliminate Single Points of Failure
The second principle is the well-known formula for achieving high availability. By introducing
redundancy in the environment and eliminating single points of failure, you reduce the chances that
a failed component will impact the overall availability of the service. Depending on your goals for
availability, this can be the most costly principle to implement. However, for some organizations,
the impact of a failure greatly outweighs the infrastructure cost to avoid that failure, and it’s an easy
decision to make.

Anticipate Growth
The third principle can be a diffi cult one to gauge and plan for. Team Foundation Server is a power-
ful system with some very compelling features. Without proper planning and preparation, the use
of these features can overwhelm the planned capacity of the system. The most common limitation
that people encounter in a successful Team Foundation Server environment is the lack of storage
space. Once people discover the value of an integrated version control, work item tracking, build,
and test case automation system, the storage requirements start to grow rapidly. Without careful
growth estimates and foresight in the storage design, this can have a dramatic impact on the
stability of the system.

636 ❘ CHAPTER 22 SCALABILITY AND HIGH AVAILABILITY

c22.indd 04/22/2014 Page 636

Keep It Simple
The fi nal principle applies not just to Team Foundation Server but also to any system. Keep it sim-
ple. Simple things are easy to get right, and they usually cost less to set up and maintain.

SOLUTIONS

Now that the limitations have been covered, it’s time to discuss some of the solutions, including:

 ➤ Data tier

 ➤ Application tier and web access

 ➤ Virtualization

This section covers the different components of Team Foundation Server and some strategies to
increase their availability and scalability.

Data Tier
If scalability and high availability are important to you, then the data tier is where you will need to
invest most of your resources.

High Availability
Availability is not only impacted by unexpected failures but also expected failures or maintenance
work. Without a redundant system in place that can respond to requests while the primary system is
undergoing maintenance, the system will be unavailable.

When planning for high availability, the most important database is the Tfs_Configuration data-
base. Within the current architecture of the system, this is a single point of failure. An issue with
this database will cause the entire instance to be unavailable.

SQL Server 2012 introduced a new comprehensive high availability and disaster recovery solu-
tion called SQL Server AlwaysOn. These features increase the high availability options for a Team
Foundation Server deployment. AlwaysOn offers two core capabilities:

 ➤ AlwaysOn Availability Group—This is a capability that helps protect application databases
from both planned and unplanned downtime. The key availability features are failover of a
group of databases, multiple secondary copies for improved redundancy, and virtual names
for fast application failover.

 ➤ AlwaysOn Failover Cluster Instance (FCI)—This provides protection for the entire instance
and is an enhancement to the existing SQL Server Failover Cluster Instance. It includes
multi-site clustering across subnets and TempDB on a local drive that allows better query
performance.

Both of these capabilities rely on the Windows Server Failover Clustering (WSFC) infrastructure,
which provides a robust and reliable high-availability platform.

Solutions ❘ 637

c22.indd 04/22/2014 Page 637

These capabilities can be used by themselves or in combination with each other, depending on your
availability needs. AlwaysOn Availability Group is the recommended high availability capability for
database availability. It does not require shared storage as each SQL Server in the topology has its
own copy of the data and does not need to share. Additionally, the replica can be used as an Active
Secondary server for offl oading backup operations.

NOTE For more information on the deployment options, see SQL Server 2012
AlwaysOn High Availability and Disaster Recovery Design Patterns at http://
aka.ms/SQL2012AlwaysOnHADRPatterns.

BE CAREFUL OF THE COMPLEXITY

Although a Failover Cluster Instance is a fully supported confi guration, it violates
the fourth principle of achieving high availability: “Keep it simple.” The Developer
Division server at Microsoft used to run a two-node, two-instance cluster confi gu-
ration with the SQL Server instance running on one node and the Analysis Services
instance normally running on the other. This worked fi ne until it came time to
upgrade from SQL Server 2005 to SQL Server 2008.

The upgrade wizard supported failover cluster upgrades, but it did not support an
online upgrade of a failover cluster with multiple resource groups. In the end, mov-
ing Analysis Services out of the cluster and off to its own dedicated hardware kept
the confi guration simple and allowed the team to use the online upgrade capabili-
ties of the upgrade wizard.

Scalability
Earlier in this chapter, storage performance was identifi ed as the biggest potential bottleneck of
Team Foundation Server performance. In general, the same recommendations that generally apply
for SQL Server also apply for Team Foundation Server.

You should start with the SQL Server Customer Advisory Team (CAT) “Storage Top 10 Best
Practices” at http://tinyurl.com/SQLServerStorageTop10. Following are the most important
of these 10 best practices:

 ➤ More or faster spindles are better for performance.

 ➤ Isolate transaction log fi les from data fi les at the physical disk level.

 ➤ Consider the confi guration of the TempDB database.

 ➤ Don’t overlook some of SQL Server basics.

 ➤ Don’t overlook storage confi guration basics.

http://aka.ms/SQL2012AlwaysOnHADRPatterns
http://aka.ms/SQL2012AlwaysOnHADRPatterns
http://tinyurl.com/SQLServerStorageTop10

638 ❘ CHAPTER 22 SCALABILITY AND HIGH AVAILABILITY

c22.indd 04/22/2014 Page 638

Physical disks have physical limitations with the performance they can provide. The only way to
increase your storage performance is to have faster spindles or to have more of them to spread the
load out onto.

It’s fairly common knowledge that SQL transaction logs, data fi les, and TempDB fi les should reside
on physically separate drives. Because all of these are used at the same time, you don’t want conten-
tion for resources among them. The aforementioned article includes this advice, along with many
other storage confi guration best practices.

Your storage is the most critical component of your Team Foundation Server environment. You must
collaborate with your storage administrators and vendors to ensure that the storage is optimally
confi gured for your needs.

A STORAGE MISCONFIGURATION

An upgrade of the particularly large Developer Division server at Microsoft
occurred during 2008. In the weeks leading up to the upgrade, the storage vendors
had identifi ed an issue on the storage array that required a fi rmware update. This
update was supposed to have minimal impact on storage performance, and the
team was told that it could be done while the server was online.

Unfortunately, this was not the case. It turns out that the fi rmware update reset the
confi guration back to factory defaults. It disabled the write cache setting on the
array. It wasn’t until halfway through the upgrade that a team member noticed the
storage wasn’t performing as expected. After some frantic phone calls and support
investigations from the vendor, the missed confi guration setting was identifi ed and
restored. The upgrade still failed for other reasons, but it certainly taught the team
to keep the storage administrators close by during critical times.

SQL Server Enterprise Edition
If you separately license the high-end SQL Server edition, Team Foundation Server can use the extra
features that it provides. The following features can be used to increase the availability and scalabil-
ity of the system.

NOTE For more information on the features available, see “Features Supported
by the Editions of SQL Server 2012” at http://aka.ms/SQL2012Features.

 ➤ Online index operations—Index rebuilds and reorganization will be automatically done using
the WITH ONLINE condition as part of the Optimize Databases job. Normally, indexes are
taken offl ine, and operations that rely on those indexes are blocked while they are rebuilt.

 ➤ Page compression—Page compression can yield signifi cant storage savings and increased
storage performance. However, compression increases processor use, so be sure that

http://aka.ms/SQL2012Features

Solutions ❘ 639

c22.indd 04/22/2014 Page 639

you have enough available capacity. When you create a new collection on a SQL Server
Enterprise Edition server, the majority of the version control tables and relational warehouse
tables have page compression enabled. With page compression on these tables, storage usage
can be reduced by up to a quarter of the uncompressed size. Additionally, the pages remain
compressed in the buffer pool, which also results in increased performance.

UPGRADING TO ENTERPRISE EDITION

If you upgrade an existing SQL Server instance that hosts Team Foundation Server
databases, compression will not be automatically used for existing collections.
Existing collections will need to have compression enabled and their indexes rebuilt
to see the benefi ts of compression. You can do this by running the following script
in each of your collection databases:

EXEC prc_EnablePrefixCompression @Online = 1, @disable = 0

Newly created collections will have compression enabled automatically.

 ➤ Table and index partitioning—On large Team Foundation Server 2010 systems with many
fi les and workspaces, the tbl_LocalVersion table can become very large and unwieldy.
At Microsoft, this table peaked at fi ve billion rows. This caused all kinds of problems, most
notably that it would take more than a week to rebuild the index. If it fi nished rebuilding,
it would need to start again because of the high churn in the table. The obvious solution to
this was to implement table partitioning and split the table into more manageable chunks.
Because this isn’t documented, if you need table partitioning, you must contact Microsoft
Support and they will guide you through the process. Team Foundation Server 2013 has a
feature enabled by default called Local Workspaces. This removes the need to store work-
space state on the server and dramatically reduces the size of the tbl_LocalVersion table.

 ➤ Larger read-ahead buffering—Enterprise Edition uses 1024KB read-ahead buffering
compared to 64KB in Standard Edition. This increased buffering makes some of Team
Foundation Server’s expensive queries faster.

 ➤ Cube perspectives—A cube perspective is a defi nition that allows users to see the cube in a
simpler way. If you are using the Enterprise Edition of Analysis Services, Team Foundation
Server defi nes individual perspectives for work items, builds, and so on, in addition to the
Team System cube.

NOTE For more information on cube perspectives, see the article on MSDN at
http://aka.ms/SQL2012CubePerspectives.

Application Tier and Web Access
As discussed at the beginning of this chapter, since the 2008 release there have been some signifi cant
changes to the architecture of the system. These changes enable the application tier to be scaled out

http://aka.ms/SQL2012CubePerspectives

640 ❘ CHAPTER 22 SCALABILITY AND HIGH AVAILABILITY

c22.indd 04/22/2014 Page 640

and meet your scalability and high-availability requirements. With the exception of Web Access, the
changes since Team Foundation Server 2010 are minor.

Web Access REST API
The largest limiting factor of web access scalability in Team Foundation Server 2010 was that it
used the client object model to access the collections. The client object model was just not designed
to operate in a high throughput web application and consumed a large amount of memory.

Therefore, in the 2012 release, the team implemented a lightweight REST API that uses the server
object model. This dramatically improves the performance and scalability of web access along with
reducing the overall load on the server. They have continued to expand the REST API in the
2013 release.

Stateless
In the 2010 release, aside from the change to support 64-bit architectures, changing web access to
be stateless was the biggest change in the application tier from previous versions. Before this change,
users would lose their sessions, along with the page they were on or the changes they were making.
The lost session was usually triggered by a timeout, an application pool recycle, or by being directed
to a different back-end server by a load balancer. This was an extremely frustrating experience
for users.

The stateless implementation of web access dehydrates and rehydrates the client’s session as
required. This eliminates the session timeouts and allows any application tier to serve a user’s
request.

Load Balancing
Load balancing is an important feature for scalability and high availability. It allows the load to be
spread across multiple servers. This increases the number of requests that can be handled by the sys-
tem, as well as provides protection against planned and unplanned server downtime.

There are many load-balancing options. Whether you use Windows Network Load Balancing, the
IIS Application Request Routing (ARR) extension, or a third-party load-balancer device, you need
to consider some settings. Table 22-3 provides an overview of these settings and their recommended
confi gurations.

TABLE 22-3: Recommended Load Balancer Confi guration Settings

SETTING DESCRIPTION

Idle Timeout 60 minutes

Affi nity, Stickiness, or Persistence No Affi nity

IP Pass Through Enabled

Solutions ❘ 641

c22.indd 04/22/2014 Page 641

Idle Timeout
Most load balancers have an idle connection timeout setting. This is because every connection con-
sumes memory, and they want to close the connection if it’s idle. The usual default setting of fi ve
minutes can cause problems with version control in Team Foundation Server.

If the client sends a request that takes a long time to calculate in SQL Server (such as a large Get),
there will be no data transferred over the connection, and it will appear to be idle. If the setting is
not long enough, then the load balancer will close the connection and the client will get an error
like “The connection was forcibly closed by the remote server.” In this scenario, you want to match
the idle timeout setting of the load balancer with the request timeout setting of Team Foundation
Server, which is 60 minutes.

Team Explorer 2013 and the forward-compatibility patches for earlier versions will send TCP Keep-
Alive packets after a connection is idle for 30 seconds. This is enough to keep most load balancers
from closing the connection. However, if your connection to the remote server relies on an interme-
diate proxy server (Microsoft Forefront Threat Management Gateway, for example), then the TCP
Keep-Alive packets may not propagate to the destination server. In this situation, you may continue
to have problems with long-running commands.

HTTP KEEP-ALIVE AND TCP KEEP-ALIVE EXPLAINED

When people talk about Keep-Alive settings in the context of a web application,
they normally mean HTTP Keep-Alive. HTTP Keep-Alive is a feature of the HTTP
1.1 protocol that instructs the server to keep the client’s connection open after it
has responded to a request. This avoids the cost of connection handshaking and is
very useful for when web browsers open web pages with many images. Instead of
opening and closing connections for every single image, connections are reused.

TCP Keep-Alive operates at a level below the HTTP traffi c. It periodically sends
a benign packet to the server over an existing connection, which then sends an
acknowledgement response. This all happens without interfering with the client’s
HTTP conversation with the server.

Affi nity
Affi nity is the setting that determines if a client should be routed to the same back-end server for
successive requests. Depending on the load balancer implementation, it is sometimes referred to as
persistence or stickiness.

Some operations in Team Foundation Server can take a long time to process. Some operations (such
as downloading version control fi le content) will use multiple threads. If you have affi nity enabled,
then it’s possible that the load won’t be evenly distributed between your back-end servers. In the
case of a two-server, load-balanced instance, it’s possible for one server to be overloaded processing

642 ❘ CHAPTER 22 SCALABILITY AND HIGH AVAILABILITY

c22.indd 04/22/2014 Page 642

most of the requests while the other server is sitting idle. For this reason, you may want to disable
connection affi nity.

Unfortunately, some load-balancing technologies don’t handle authentication well. Users may
receive generic authentication errors if they were authenticated against one back-end server, but then
are load-balanced to another back-end server. In this scenario, you will need to fi x the authentica-
tion issues or enable affi nity.

IP Pass Through
One of the useful diagnostic tools in Team Foundation Server is the activity log. (See Chapter 25
and the Operational Intelligence Hub in Chapter 21 for more information on this.) The activity log
records the IP address of each request in the system. The use of a load balancer can mask the actual
IP address of the client. In this case, the activity log will show that the load balancer is the only cli-
ent of the system.

To avoid this masking, you will want to enable the IP pass-through setting or some equivalent set-
ting. If the load balancer sets the X-Forwarded-For HTTP header with the actual client IP address,
then the activity log will show this address.

ASP.NET Worker Threads
As discussed earlier, the default confi guration of ASP.NET limits the number of concurrently exe-
cuting requests per CPU to 12. You can check to see if you are reaching this limit by monitoring the
ASP.NET Applications\Requests in the Application Queue performance counter. If this is a non-zero
value, then it means you defi nitely have a performance problem.

To enable increased concurrency, you can follow the guidance in the KB821268 article at http://
aka.ms/KB821268. This describes the steps to change the maxWorkerThreads and maxIoThreads
settings.

If your bottleneck is the throughput of your SQL server, then the majority of the concurrent requests
will be sitting idle waiting for a response from the data tier. In this scenario, you can safely increase
the settings to allow more concurrent connections.

Resource Governor
Similar to the Resource Governor feature available in SQL Server, Team Foundation Server also
includes its own resource governor. Every command in the system is assigned a cost based on how
resource intensive it is. Once the total cost of all the commands currently executing hits a confi gu-
rable limit, subsequent requests are queued until suffi cient resources are available. Each individual
command can have a limit on its concurrency as well.

This resource governor prevents the server from becoming overwhelmed with a large number of
requests and overloading the SQL server.

http://aka.ms/KB821268
http://aka.ms/KB821268

Solutions ❘ 643

c22.indd 04/22/2014 Page 643

RESOURCE GOVERNOR AT MICROSOFT

While running the internal servers for the Developer Division at Microsoft, the
team constantly battled to keep the server performance ahead of user demand. It
seemed that no matter how many optimizations and hardware upgrades they did,
the gains were quickly eroded. This was usually because of the sheer growth of
data in the system or, more commonly, a misbehaving tool.

This problem was tackled in two ways. The fi rst approach was to do some analy-
sis on the server’s activity logs and identify the tools or users generating the most
load. In one case, a single user was responsible for more than 50 percent of the load
on the system. Once identifi ed, the team worked with the tool owners to under-
stand their requirements and made suggestions for using the object model more
effi ciently.

This effort yielded some great results but left the team vulnerable and waiting for
the next rogue tool to hit the system.

Toward the end of the 2010 release, the team implemented a resource governor
with a default policy.

As an example, the (recursive) Merge command is assigned a cost of VeryHigh (5). The default limit
for a server is 200. This means that, by default, each application tier will allow only 40 Merge oper-
ations to execute concurrently. Table 22-4 includes a listing of common commands and their costs.

TABLE 22-4: Resource Governor Command Costs

METHOD NAME ESTIMATED METHOD COST

CancelRequest Free (0)

CheckIn High (4)

CreateBranch High (4)

DeleteCollection High (4)

Destroy VeryHigh (5)

Get (non-recursive) Low (2)

Get (recursive) Moderate (3)

LabelItem High (4)

continues

644 ❘ CHAPTER 22 SCALABILITY AND HIGH AVAILABILITY

c22.indd 04/22/2014 Page 644

METHOD NAME ESTIMATED METHOD COST

Merge (non-recursive) Low (2)

Merge (recursive) VeryHigh (5)

MethodologyUpload High (4)

QueryHistory Moderate (3)

ReadIdentityFromSource Moderate (3)

VCDownloadHandler VeryLow (1)

Confi guration of the resource governor is performed within the Team Foundation Server registry
(not the Windows Registry). The confi guration isn’t documented by Microsoft, so if you have a
specifi c need to change the default confi guration, you will need to contact Microsoft Support, and
they will be able to guide you through.

Team Foundation Server 2013 has additions to the Windows performance counters and event
logging. These changes help you identify if you are reaching a scalability limit and need to confi gure
the resource governor. More information on these changes can be found in Chapter 25.

NOTE Although the confi guration isn’t documented by Microsoft, if you are
experienced with modifying the server registry, you can use the following infor-
mation to change the confi guration:

 ➤ By default, the resource governor is always enabled. You can disable it by
setting the following registry key:

/Service/ResourceGovernor/Settings/Enabled = false

 ➤ To limit the number of Merge commands that can execute concurrently, cre-
ate and set a key that specifi es the total cost limit. For example:

/Service/ResourceGovernor/Method/Merge = 10

 ➤ To limit the total resources an individual user can consume, you will need to
create and set a key that specifi es the total cost limit for that user. The key
name is the unique Team Foundation Identity of the user. This is different
than the Windows SID and can be found by querying the tf_id column in
the tbl_security_identity_cache table of the Tfs_Configuration data-
base. The following example limits a particular user to executing commands
with a total cost of 10:

/Service/ResourceGovernor/User/<tf id> = 10
/Service/ResourceGovernor/User/
0DA27F4C-61CB-4F18-B30A-3F65E62899CD = 10

TABLE 22-4 (continued)

Solutions ❘ 645

c22.indd 04/22/2014 Page 645

File Download Cache Directory
If you have a large or busy server, the fi le download cache directory is going to be important for
you. Previously, this cache directory was used only for version control content, but it now includes
Work Item Tracking and Test attachments. By default, it lives in the \Web Services_tfs_data
directory where Team Foundation Server is installed. Depending on the usage patterns of your
server, this directory can become very large, very quickly, and you should consider moving it to its
own dedicated disk drive. You can move this directory in two ways:

Option 1—The fi rst option doesn’t require any Team Foundation Server confi guration
changes. You can use the Disk Management administrative tools and use a mount point
to mount the additional drive to the _tfs_data path.

Option 2—The second option is to follow these steps:

 1. On the application-tier server, create a cache folder.

 2. Right-click the folder, and click Properties. The Properties dialog box for the folder
opens.

 3. Click the Security tab, and click Add.

 4. Add the local group TFS_APPTIER_SERVICE_WPG, and click OK.

 5. Select both the Read and Write check boxes, clear all other check boxes, and then
click OK.

 6. Open Windows Explorer, and browse to C:\Program Files\
Microsoft Team Foundation Server 11.0\Application Tier\Web Services.

 7. Open the Web.config fi le in a text or XML editor, and locate the <appSettings>
section.

 8. Add a new line within the <appSettings> section and change the value to match
the new location:

<add key="dataDirectory" value="D:\Cache" />

 9. Save and close the Web.config fi le. The application pool will be recycled automati-
cally. The next time a fi le is downloaded from the application tier, it will be cached
to this new location.

 10. If the old cache folder has fi les in it, you should delete it to free up disk space on the
server.

646 ❘ CHAPTER 22 SCALABILITY AND HIGH AVAILABILITY

c22.indd 04/22/2014 Page 646

NOTE An alternative (and possibly better) way to confi gure the fi le download
cache directory is to use a setting in the Team Foundation Server registry. The
benefi t of using the registry is that the confi guration is maintained after a server
upgrade and when additional application-tier servers are added to an environ-
ment. To confi gure the cache directory location, you will need to set the follow-
ing Team Foundation Server registry key:

/Configuration/Application/DataDirectory = "D:\Cache"

When you use this key, it is automatically applied to any new application tiers
that you confi gure. If the specifi ed drive or directory does not exist on that
server then that server will have an invalid cache confi guration. This will impact
performance until rectifi ed by creating the specifi ed directory with the correct
permissions. The invalid confi guration will manifest itself through errors in the
Application Event Log on the server.

If you set the dataDirectory key in the Web.config fi le, that setting will over-
ride any registry settings.

Team Foundation Proxy
The proxy server is completely stateless and has always supported being in a load-balanced confi gu-
ration. If your proxy server is overloaded, the simplest solution is to set up an additional server and
confi gure network load balancing.

When designing a proxy server for scalability, you should prioritize the following:

 1. Proximity to build servers and users

 2. Storage size

 3. Storage performance

If your application tier is in another building or another city, then having a proxy server in the same
building as your biggest group of users is important. You want to keep the latency low for the most
benefi t.

Given the choice of storage size or storage speed, you should prioritize for storage size. For example,
there’s no point in having high-performance, solid-state drives for your proxy if they’re not big
enough to hold a day’s worth of fi les.

The more storage that the proxy server can use, the more fi les and versions of fi les it can store. This
increases the chance of a cache hit and decreases the number of times a fi le must be downloaded
from the main server.

Like the application tier, you should also change the version control cache directory for the proxy
server to be a dedicated drive.

Summary ❘ 647

c22.indd 04/22/2014 Page 647

NOTE For more information, see “How to: Change Cache Settings for Team
Foundation Server Proxy” at http://aka.ms/TfsProxySettings.

Virtualization
Virtualization can be a great solution for achieving your high-availability goals. You can confi g-
ure your application tier and data tier servers as virtual machine guests on a highly available host
machine. If the underlying host requires planned or unplanned maintenance, you can perform a
quick migration of the guest machines to another host without interruption.

NOTE This confi guration is beyond the scope of this chapter, and you should
refer to the article “Reference Architecture for Private Cloud” at http://aka
.ms/PrivateCloudRefArch.

Microsoft supports virtualization of Team Foundation Server in supported virtualization environ-
ments. For more information, see the following pages on the Microsoft website:

 ➤ Microsoft server software and supported virtualization environments at http://aka.ms/
VirtSupport1

 ➤ Support policy for Microsoft software running in non-Microsoft hardware virtualization
software at http://aka.ms/VirtSupport2

 ➤ Support partners for non-Microsoft hardware virtualization software at http://aka.ms/
VirtSupport3

 ➤ Server Virtualization (offi cially supported products) at http://aka.ms/VirtSupport4

You should also read the best practices and performance recommendations on “Running SQL
Server 2008 in a Hyper-V Environment” at http://aka.ms/SQLHyperV along with “Running SQL
Server with Hyper-V Dynamic Memory” at http://aka.ms/SQLHyperVDM. Regardless of your
virtualization technology, the tests and recommendations are very relevant.

SUMMARY

 This chapter explored some of the scalability and availability limitations of Team Foundation
Server, as well as the issues faced by large and busy environments. You learned that the performance
of Team Foundation Server is tied directly to the performance of SQL Server. Finally, solutions and
best practices were discussed for overcoming these limitations to meet your scalability and high-
availability goals.

Chapter 23 discusses another important aspect of Team Foundation Server administration—disaster
recovery.

http://aka.ms/TfsProxySettings
http://aka
http://aka.ms
http://aka.ms/VirtSupport2
http://aka.ms
http://aka.ms/VirtSupport4
http://aka.ms/SQLHyperV
http://aka.ms/SQLHyperVDM

c23.indd 04/22/2014 Page 649

Disaster Recovery
WHAT’S IN THIS CHAPTER?

 ➤ Using the backup-and-restore wizard

 ➤ Walking through step-by-step examples of how to back up and
restore your Team Foundation Server environment

 ➤ Learning about backup plan considerations

Disaster recovery is an important topic, but it is too broad to cover in a single chapter. The
purpose of this chapter is to prompt you to think about what your disaster-recovery plan is
and how it relates to Team Foundation Server.

NOTE For more information, see “Proven SQL Server Architectures for High
Availability and Disaster Recovery” at http://tinyurl.com/SQLHADR.

BUSINESS CONTINUITY AND RECOVERY GOALS

Before discussing disaster recovery in detail, let’s establish some goals. You should consult
with the team that will be using Team Foundation Server and ask some important ques-
tions. The answer to each question has an effect on the cost and complexity of your solution.
Following are examples of some questions to ask:

 ➤ In the event of a hardware failure (for example, a hard drive crash or a network out-
age), how quickly must service be restored?

 ➤ In the event of a major disaster (for example, a hurricane or an earthquake), how
quickly must service be restored?

23

http://tinyurl.com/SQLHADR

650 ❘ CHAPTER 23 DISASTER RECOVERY

c23.indd 04/22/2014 Page 650

 ➤ If the service is unavailable for a period of time, what is the cost to the business?

 ➤ What is an acceptable level of data loss (for example, 15 minutes or 15 hours)?

 ➤ How long and how often should backup copies be kept (for example, seven days, seven
weeks, or seven years)?

 ➤ When can backup media be overwritten? When should backup media be retired? How is
backup media retired?

 ➤ Where are backups kept (for example, on-site, in another building, another city, or another
continent)?

 ➤ Who should have access to the backups? Are they encrypted?

The answers to these questions will be different for every organization. At one end of the scale will
be the highly regulated fi nancial and engineering industries. At the other end will likely be the small
companies and individuals. With different needs and requirements, the costs will be very different
depending on the chosen solution.

DEFINING RESPONSIBILITIES

Having a robust and reliable disaster-recovery plan is an important responsibility of any Team
Foundation Server administrator. In large organizations, this responsibility may fall on a central
business continuity team or maybe the database administration team.

As the Team Foundation Server administrator, it is your responsibility to ensure that the imple-
mentation of the plan is supported by Team Foundation Server. Backups that were not taken cor-
rectly, or that cannot be restored, are a risk to the business and effectively useless. For this reason,
it’s important to not only have a backup plan but also to regularly test that plan to ensure that it’s
working for when you need it.

BACKING UP TEAM FOUNDATION SERVER

Team Foundation Server includes many components. There’s the data tier, application tier(s), SQL
Reporting Services, SharePoint server, Lab Management environments, fi le shares for build drops
and symbol server repositories, test controllers and agents, and Team Build.

The most important components to back up are the databases on the data tier. These are the
“crown jewels” of Team Foundation Server, where the majority of the information is kept. If
you are unable to recover at least these databases in the event of a disaster, it’s time to look for a
new job.

For example, if you are able to recover a collection database, the relational warehouse and Online
Analytical Processing (OLAP) cube can be rebuilt from the original data. It takes time, but it’s pos-
sible. As another example, if you can restore the source control data, then you can re-create a build
from that source.

Backing Up Team Foundation Server ❘ 651

c23.indd 04/22/2014 Page 651

Components to Back Up
Table 23-1 provides an overview of the different components that should be backed up.

TABLE 23-1: Components to Back Up

COMPONENT ARTIFACTS

Data tier Confi guration database, collection databases, warehouse database,
Reporting Services databases

Application tier Confi guration settings, user names and passwords, custom controls, SQL
Reporting Services encryption key, confi guration settings for third-party tools

SharePoint SharePoint products confi guration databases, site content databases, site
collection custom controls, encryption keys, databases

Lab Management System Center Virtual Machine Manager (SCVMM) confi guration, virtual
machines, lab environments, environment and VM templates

Team Build Server confi gurations, custom activities, build-drops fi le share, symbol server
fi le share

Clients No client-side backups required, although you might want to use shelvesets
for saving in-progress work to the server

SharePoint Products
For the offi cially supported procedures to back up SharePoint products associated with a Team
Foundation Server, you should refer to “Overview of backup and recovery in SharePoint 2013”
at http://tinyurl.com/SharePointBackup. In particular, if you have any customizations to
SharePoint products, you must also back those up so they can be reproduced on a new server.

SQL Reporting Services Encryption Key
SQL Reporting Services uses an encryption key to encrypt data source connection strings, report
credentials, and shared data source credentials. You should include the encryption key backup and
the associated password to restore the key in your backup plan.

Chapter 11 discussed a method of using a team project designed for administering artifacts for
Team Foundation Server, including storing the reporting services encryption key in version control.
The team project collection databases are likely to be backed up and restored, so this is a great
location for always ensuring that the encryption key is backed up appropriately.

NOTE For more information, see “Back Up the SQL Reporting Services
Encryption Key” at http://aka.ms/BackupReportingServicesKey. This
link points to a Team Foundation Server 2010 article which is applicable to
Team Foundation Server 2013.

http://tinyurl.com/SharePointBackup
http://aka.ms/BackupReportingServicesKey

652 ❘ CHAPTER 23 DISASTER RECOVERY

c23.indd 04/22/2014 Page 652

YOU LOST THE REPORTING SERVICES ENCRYPTION KEY?

An encryption key? That must be important, right? Have you ever wondered what
would happen if you didn’t back it up and you lost it? Or, even worse, what if you
did back it up, but you don’t know the password to restore it?

It turns out that it’s not the end of the world. If you are unable to restore the
encryption key, you will have to use the Reporting Services Confi guration Manager
to delete the encrypted data. After you delete the encrypted content, you must
create the encrypted data again.

Without re-creating the deleted data, the following will happen:

 ➤ Connection strings in shared data sources are deleted. Users who run reports
get the error, “The ConnectionString property has not been initialized.”

 ➤ Stored credentials are deleted. Reports and shared data sources are reconfi g-
ured to use prompted credentials.

 ➤ Reports based on models (and require shared data sources confi gured with
stored or no credentials) will not run.

 ➤ Subscriptions are deactivated.

For more information, see the “Deleting and Re-creating Encryption Keys” article
on MSDN at http://aka.ms/RecreateRSEncryptionKey.

Lab Management
If you are using Lab Management in your Team Foundation Server environment, you will need to
include backups of your SCVMM environment. You will also want to be sure that any SCVMM
Library fi le shares are included in normal backups because they will contain the environment and
 virtual machine templates as well as stored environments that your engineering teams will need to
get back up and running.

NOTE For more information, see “Backing Up and Restoring the VMM
Database” at http://aka.ms/BackupSCVMM.

Types of Database Backups
SQL Server has the following recovery modes, which are set on a per-database basis:

 ➤ FULL recovery mode—In this mode, each transaction is kept in the transaction log until the
log is backed up and a checkpoint is set.

 ➤ SIMPLE recovery mode—In this mode, each transaction is written to the transaction log, but
it can be overwritten at a later time.

The default recovery mode used by SQL Server for all user databases is FULL. The recovery mode of
a database can be changed at any time without impacting currently running commands.

http://aka.ms/RecreateRSEncryptionKey
http://aka.ms/BackupSCVMM

Backing Up Team Foundation Server ❘ 653

c23.indd 04/22/2014 Page 653

TRANSACTION LOG GROWING OUT OF CONTROL?

In FULL recovery mode, without transaction log backups, the log will continue to
grow until it reaches the confi gured limit. If the log is set to AUTOGROW, it will
continue growing until the disk is full if no limit is set. When either the database
or transaction log is full, users will receive a “Database is full” message when per-
forming operations in Team Foundation Server.

If your database recovery targets are met without doing transaction log backups,
then you may want to change your databases to SIMPLE recovery mode. This means
that the transaction logs will grow only to the size of your largest transaction.

Full Database Backups
At least one full database backup is required to restore a database. A full database backup includes
the entire contents of the database at the time the database backup fi nished. It does not include any
uncommitted transactions. Typically, full backups are performed once a month or once a week,
depending on the rate of data change.

NOTE For more information, see “Full Database Backups” on MSDN at
http://aka.ms/FullSQLDatabaseBackups.

DATABASE EDITIONS AND VERSIONS

When you use the built-in native SQL Server backup and restore functions, you
should be aware of the version compatibility. For example, a database backup from
SQL Server 2012 cannot be restored to a server with a down-level version, such as
SQL Server 2008 R2.

Additionally, if you create a backup with compression enabled, it can be restored only
on a server that also has compression available. This can be a problem when moving
a database from a SQL Server Enterprise instance to a SQL Server Standard instance.

Differential Database Backups
A differential backup includes everything that has changed since the last full backup. This is some-
times referred to as a “diff” or incremental backup. Because a differential backup is only recording
differences, it usually takes less time and uses less storage than a full backup.

Over time, as more data changes in the database since the last full backup, the differential backup
will become larger. At some point, the differential backup may become larger than the original full
backup, and it will be more effi cient to run a new full backup. Typically, differential backups are
performed once per day.

http://aka.ms/FullSQLDatabaseBackups

654 ❘ CHAPTER 23 DISASTER RECOVERY

c23.indd 04/22/2014 Page 654

NOTE For more information, see “Differential Database Backups” at http://
aka.ms/DifferentialSQLDatabaseBackups.

Transaction Log Backups
When a database is in FULL recovery mode, the transaction log contains all the data changes in the
database. By performing transaction log backups (along with full and differential backups), you can
later restore a database to a point in time or a specifi c transaction. Typically, transaction log backups
are performed anywhere from every 5 minutes to every 60 minutes, depending on data recovery goals.

NOTE For more information, see “Working with Transaction Log Backups” at
http://aka.ms/SQLTransactionLogBackups.

Important Considerations
Team Foundation Server has two types of databases: the Tfs_Configuration database and the
collection databases. Users who have access to Team Foundation Server have their name, e-mail,
and group memberships synchronized with Active Directory. Rather than synchronizing this
information with each individual collection, it is stored in the confi guration database.

Because of this dependency between the databases, it is vital that the confi guration database and
collection databases are backed up in a way that they can be restored to a common point in time.
Achieving this can become more diffi cult when your confi guration database is on a different server
or instance than your collection databases.

If this synchronization between the databases is not maintained, then it is possible that an iden-
tity is referenced in a collection database that doesn’t exist in the confi guration database. Team
Foundation Server does not handle this scenario well, and the databases will be in an inconsistent
state. Users may lose their permissions to their projects, and other data inconsistencies may be seen.

NOTE If you do fi nd yourself in the situation where your confi guration and
collection backups are out of sync, you should contact Microsoft Support
(http://support.microsoft.com). In some cases, the identity data can be
reconstructed to overcome the inconsistencies. However, you should design your
backup plan to avoid this situation.

SQL Marked Transactions
The SQL Server solution to ensure synchronization across databases and database servers is to use
marked transactions. Establishing a transaction that spans all the databases in the environment
provides a common point that can be restored to and ensure synchronization.

http://aka.ms/DifferentialSQLDatabaseBackups
http://aka.ms/DifferentialSQLDatabaseBackups
http://aka.ms/SQLTransactionLogBackups
http://support.microsoft.com

Backing Up Team Foundation Server ❘ 655

c23.indd 04/22/2014 Page 655

New Collections
Each time a new collection is created on a Team Foundation Server instance, a new database will be
created. You must ensure that this database is added to your backup plan. It’s best if new databases
are backed up automatically by your backup scripts so that they aren’t accidentally excluded.

Virtualization and Backups
If you are virtualizing your data tier, you can back up the entire virtual machine that your SQL server is
running in. But you should consider SQL database backups as well. Not all virtual backup technologies
ensure transactional consistency within the database. If transactional consistency is not maintained,
then it is not safe to restore from your virtual machine backups, and you may encounter data loss.

In an environment with multiple SQL servers, it’s impossible to keep the database backups synchro-
nized without using marked transactions. Additionally, transaction log backups can be run much more
frequently than a backup of a virtual machine, and they allow a much fi ner-grained recovery point.

Also, when using a virtualized SQL Server, avoid using the snapshot features of many virtualization
technologies while the server is turned on. Take snapshots only when the system has been shut down
completely. Virtualization snapshots that are taken while a server is turned on with SQL Server
instances are not supported.

Data Security
One of the most common breaches of data security is mishandled backup media. After you have
defi ned how you are going to run your SQL backups, you must defi ne how you are going to store
them to meet your retention and off-site backup requirements.

Because a database backup contains all of your data, it would be a big problem if it weren’t adequately
protected and an untrusted person was able to restore it. This person could restore the data to another
server and use his or her own administrative credentials to access the contents of the databases.

For this reason, it’s important to consider the security of your backups in the same way you consider
the security of your server itself. Consider using encryption as well as secure transport, handling,
and storage of your backups.

Software Versions, Installation Media, and License Keys
In the event of a major disaster or a hardware failure, the backups by themselves are not usually
enough to bring the server back online. You will also need software installed to restore those back-
ups to. You should consider the following software in your backup plan:

 ➤ Windows installation media and product keys

 ➤ Drivers for the server and storage hardware

 ➤ Team Foundation Server installation media and product key

 ➤ SQL Server installation media and product keys

 ➤ Third-party backup software (if you are not using SQL Server backups)

 ➤ Service Packs and Updates for Windows, SQL Server, and Team Foundation Server

656 ❘ CHAPTER 23 DISASTER RECOVERY

c23.indd 04/22/2014 Page 656

SQL Server 2012 AlwaysOn Technology
Team Foundation Server 2012 introduced support for the new high-availability feature AlwaysOn in
SQL Server 2012. This can be particularly useful in a disaster recovery and high-availability strategy
for Team Foundation Server. It enhances the existing SQL Server features of database mirroring and
clustering. To fi nd out more information about SQL Server 2012 AlwaysOn, visit http://aka.ms/
SQLAlwaysOn. Team Foundation Server has some special steps required if you intend to use a SQL
AlwaysOn instance, which are documented at: http://aka.ms/SQLAlwaysOnTFSConfig.

CREATING A BACKUP PLAN

Creating a reliable backup plan can be quite a daunting task. Fortunately, the Team Foundation
Server team has made it simple by making a backup-and-restore wizard available in the Scheduled
Backups section of the Team Foundation Server Administration Console.

The Team Foundation Server backup-and-restore wizard takes care of two of the important backup
considerations discussed earlier:

 ➤ It confi gures and uses SQL-marked transactions to keep the databases in sync.

 ➤ It automatically adds new collections to the backup plan so that they don’t miss out on backups.

To access the Scheduled Backups Wizard, open the Team Foundation Server Administration
Console. As shown in Figure 23-1, when you select the Scheduled Backups option for the fi rst time,
you get a link to create a scheduled backup and one to restore backed up databases.

FIGURE 23-1: Team Foundation Server Administration Console

http://aka.ms
http://aka.ms/SQLAlwaysOnTFSConfig

Creating a Backup Plan ❘ 657

c23.indd 04/22/2014 Page 657

Once you click the Create Scheduled Backups link, the Scheduled Backups Wizard appears. Figure
23-2, shows that the wizard is very similar to the confi guration wizard that you used to confi gure
Team Foundation Server the fi rst time. The left pane shows each of the wizard pages, and the
wizard ends with a Review screen before making any changes.

FIGURE 23-2: Scheduled Backups Wizard

The fi rst step of the wizard allows you to specify a location to store the backups. This is specifi ed as
a UNC network path, which means that the share must already exist. When you specify the backup
account later in the wizard, it will be given read-and-write access to the share.

Even though the wizard asks for a Network Backup Path, it is possible to back up to the local
machine. To do this, you must create a share that is accessible by the backup account, and then
specify the local machine as a backup path. For example, in Figure 23-2, the path specifi ed refers to
the name of the Team Foundation Server machine itself.

It is also possible to specify the backup retention period. Each time the backup runs, it will delete
any backups that are older than this number of days. The default retention period is 30 days. If you
expand the Advanced section, you can confi gure the database and transaction log backup fi le exten-
sions to match your corporate standards.

If you have Team Foundation Server installed on a server operating system and you are not using the
“Basic” confi guration of the server, you will have the option to back up the Reporting Services data-
base, as shown in Figure 23-3. This database may be located on the same SQL server as your Team
Foundation Server, or on a remote instance.

658 ❘ CHAPTER 23 DISASTER RECOVERY

c23.indd 04/22/2014 Page 658

FIGURE 23-3: Reporting instance database backup

FIGURE 23-4: Reporting Encryption Key backup

Creating a Backup Plan ❘ 659

c23.indd 04/22/2014 Page 659

The backup plan will also automatically back up the SQL Reporting Services encryption key so
this screen prompts for a password to use for the key backup fi le, as shown in Figure 23-4. As
with Reporting Services, if you have SharePoint installed, you will have the option to back up the
SharePoint databases, as shown in Figure 23-5.

FIGURE 23-5: SharePoint database backup

As an administrator, you will want to know when the backup fails so you can investigate and fi x
it. The Alerts page of the wizard (shown in Figure 23-6) allows you to specify whether you receive
an e-mail on success, failure, both, or neither. Because the Scheduled Backups Wizard has access to
the Team Foundation Server confi guration database, it retrieves the e-mail server settings from the
instance. If you want to change the e-mail server or the From address, then you must change it in the
Team Foundation Server Administration Console before starting the Scheduled Backups Wizard.

The Backup Schedule page allows you to set the schedule and backup types. As discussed earlier
in this chapter, there are three different types of SQL Server backups. You can choose one of these
three options from the Scheduled Backups Wizard dialog box shown in Figure 23-7:

 ➤ If it’s acceptable to your business to lose up to a day’s worth of data and your database is not
very big, the Nightly Full Backups schedule is the simplest option to choose. This will sched-
ule a full database backup to happen once every day.

 ➤ If you don’t use the server very often, or you don’t have any need for a regularly scheduled
backup, you can choose the Manual Backup Only option.

 ➤ If you want the backups to run automatically, but need the fl exibility to specify a mix of set-
tings, then select the Custom Schedule option. This option allows you to confi gure any mix of
Full, Differential, and Transactional backup at different times on different or overlapping days.

660 ❘ CHAPTER 23 DISASTER RECOVERY

c23.indd 04/22/2014 Page 660

FIGURE 23-6: Alert confi guration screen

FIGURE 23-7: Backup schedule screen

Creating a Backup Plan ❘ 661

c23.indd 04/22/2014 Page 661

Similar to the Server Confi guration Wizard, the Scheduled Backups Wizard allows you to review
and confi rm your settings (see Figure 23-8) before any changes are made to your server. Review the
settings and, if they are correct, click Verify to start the verifi cation process.

FIGURE 23-8: Review screen

Without making any changes to the system, the Readiness Checks screen shown in Figure 23-9
verifi es that the confi guration changes can be made and the backup plan can be set up without any
problems. If any of the checks don’t pass, then you must address them before you can continue.
When you are ready to create the backup plan, click Create Plan.

In the fi nal stage of the wizard (shown in Figure 23-10), you set server permissions, create the tables
for marked transactions, and create the scheduled tasks.

The Team Foundation Server backup plan runs as a scheduled task on the application tier that you
ran the wizard from. As part of setting up the backup plan, the wizard will add a table to each
database included in the plan. This table is required to establish a marked transaction that spans
multiple databases.

662 ❘ CHAPTER 23 DISASTER RECOVERY

c23.indd 04/22/2014 Page 662

FIGURE 23-9: Readiness Checks screen

FIGURE 23-10: Confi guration Progress screen

Creating a Backup Plan ❘ 663

c23.indd 04/22/2014 Page 663

Team Foundation Server Backup Plan Details
Once you have confi gured a backup plan, the Scheduled Backups tab in the Team Foundation Server
Administration Console will show the details of the backup plan. The details screen in Figure 23-11
shows confi guration settings such as the path that backups are being sent to, along with the data-
bases and SQL servers included in the backup plan.

As shown in Figure 23-11, the lower half of the Backup Plan Details screen shows you the scheduled
tasks information. This is the same information you will see if you open Task Scheduler from the
control panel in Windows. It shows you each of the scheduled tasks that were created as part of the
plan, when they are scheduled to run, and when they last ran.

Take Full Backup Now
Once you’ve created a backup plan, regardless of which schedule option you chose, you can manu-
ally take a full database backup at any time. This is done by clicking “Take Full Backup Now” in
the Backup Plan Details pane. Once you select it, a dialog box similar to Figure 23-12 will allow
you to monitor the progress of the backup. As discussed earlier, for a valid backup, it’s required to
have a marked transaction that spans all databases in the backup. After completing the full backup,
the backup engine will automatically create a marked transaction and perform a transaction log
backup that includes the marked transaction.

Restoring a Backup to the Original Server
Even with the backup-and-restore wizards, there are a lot of steps to follow when restoring database
backups. To restore a backup of Team Foundation Server, you should refer to the offi cial documen-
tation, “Back Up and Restore TFS,” on MSDN at http://aka.ms/TFS2013BackupRestore.

At a high level, following are the steps from the offi cial documentation that you will need to per-
form to successfully restore your deployment from a database backup:

 1. Stop services that Team Foundation Server uses.

 2. Restore Team Foundation databases.

 3. Clear the version control cache.

 4. Update all service accounts.

 5. Rebuild the warehouse.

 6. Restart services that Team Foundation server uses.

Stop Services That Team Foundation Server Uses
Team Foundation Server has an application pool and a job agent. If you restore a backup while
either of these is running, the restore may fail or you may end up in an inconsistent state.

To safely stop the services, you should use the TFSServiceControl.exe command with the
quiesce option in the Tools directory of each application tier. This utility stops the application pool
and the job agent. You must run it on every application tier in your Team Foundation Server farm if
you have multiple application tier servers.

http://aka.ms/TFS2013BackupRestore

664 ❘ CHAPTER 23 DISASTER RECOVERY

c23.indd 04/22/2014 Page 664

NOTE For more information, see “TFSServiceControl Command” at http://
aka.ms/TFSServiceControl.

QUIESCE COMMAND FAILED?

In certain situations in Team Foundation Server, the quiesce command may fail. If the
application pool takes too long to stop, then the TFSServiceControl.exe command
may time out and display an error message. Additionally, if the Team Foundation job
agent is currently executing a long-running job, the command may also time out.

In either of these situations, you should try to run the quiesce command a second
time. If that does not work correctly, then you can run IISReset and use Task
Manager to end the TFSJobAgent.exe process.

Restore Team Foundation Databases Using the Restore Wizard
Once you have stopped the Team Foundation services, it’s time to restore the databases from back-
ups. The Restore Wizard will not let you overwrite an existing database, so you will need to delete it
or move it out of the way fi rst.

NOTE If you have SQL Server Management Studio installed, you can use it.
For more information, see “How to: Delete a Database” at http://aka.ms/
DeleteSQLDatabase. If you are using SQL Server Express, then you will need
to download and install SQL Server Management Studio Express from http://
aka.ms/SQLManagementStudio before you can delete the database.

To start the wizard, follow these steps:

 1. Log on to your Team Foundation Server application tier.

 2. Start the Team Foundation Server Administration Console from the Start menu.

 3. Select Team Foundation Server Backups.

 4. Select the Restore Databases link from the Backup Details pane.

http://aka.ms/TFSServiceControl
http://aka.ms/TFSServiceControl
http://aka.ms
http://aka.ms/SQLManagementStudio
http://aka.ms/SQLManagementStudio

Creating a Backup Plan ❘ 665

c23.indd 04/22/2014 Page 665

When the wizard starts, as shown in Figure 23-13, you’ll see that it has a similar look and feel to the
Server Confi guration Wizard and the Scheduled Backups Wizard.

The fi rst page of the Restore Wizard allows you to select a UNC network backup path and a backup
set to restore. By default, the backup path is the same as the one that the backup plan is confi gured
for. You may choose a different path if you have a backup stored elsewhere that you want to use.
When you select the List Backups link, the wizard will look on the share for any backup sets and
display them in the list, as shown in Figure 23-13. Once you have selected the backup set from the
date that you want to restore to, click Next.

On the Select Databases to Restore screen shown in Figure 23-14, you can select which databases
you want to restore and which SQL server you want to restore them to. By default, the SQL Server
fi eld for each database will be the original server that the backup was taken on. If you want to
restore a database to a different SQL server, you should enter its name before clicking Next.

Just like the other wizards in Team Foundation Server, the review screen shown in Figure 23-15
allows you to confi rm all the confi guration settings before making any changes to your server. When
you click the Verify button, the wizard will start performing readiness checks.

If the destination databases already exist, or the destination SQL server is not accessible, then the
readiness checks will fail. You will need to address the errors and rerun the readiness checks.

Once the readiness checks pass and the confi guration details are verifi ed, as shown in Figure 23-16,
you can click the Restore button to begin the database restore process.

Depending on the size of your backup and the speed of your hardware, the restore process may take
some time. Once the restore is completed, as shown in Figure 23-17, you can close the wizard and
continue with the other steps required to restore your Team Foundation Server.

Clear the Version Control Cache
Each application tier and Team Foundation Proxy server includes a version control cache. The ver-
sion control cache keeps a copy of every fi le requested by a user. Each version of each fi le has a
unique FileID assigned when the fi le is checked in the fi rst time. The version control cache uses this
FileID to store the fi les. If you restore a backup from a different Team Foundation Server or from
a previous point in time, it’s likely that the FileID of the fi les in the cache will be different from the
ones in the database.

It’s very important that you purge each version control cache before starting the server again. If you
don’t, then users will unknowingly download incorrect fi les and versions.

666 ❘ CHAPTER 23 DISASTER RECOVERY

c23.indd 04/22/2014 Page 666

FIGURE 23-11: Scheduled Backup details

FIGURE 23-12: Manual backup progress screen

NOTE For more information on the procedure, you should refer to the
KB2025763 article at http://aka.ms/TFSPurgeVersionControlCache.
Essentially, it involves deleting the contents of the version control cache direc-
tory on each application tier and proxy server.

http://aka.ms/TFSPurgeVersionControlCache

Creating a Backup Plan ❘ 667

c23.indd 04/22/2014 Page 667

FIGURE 23-13: Select Backup Sets screen

PURGING LARGE VERSION CONTROL CACHES

On application tiers and proxy servers with a large drive for the version control
cache, there will be a large number of cached fi les. Deleting all of these fi les indi-
vidually will take a considerable amount of time and will increase the time it takes
to bring the server back online.

There are two ways to mitigate this and allow you to bring the server back online
sooner:

 ➤ Format the drive—If you have confi gured the cache directory on a separate
partition or a separate drive, the fastest way is to perform a Quick Format of
the drive. After formatting the drive, you will need to re-create the top-level
cache directory and confi gure the correct permissions.

 ➤ Rename the cache directory—By moving the cache directory out of the way, it
allows the server to start with an empty directory. Because renaming a direc-
tory is a metadata-only operation on a single folder, it will be done almost
instantly. Then you can start deleting the old directory in the background after
bringing the server back online.

668 ❘ CHAPTER 23 DISASTER RECOVERY

c23.indd 04/22/2014 Page 668

FIGURE 23-14: Select Databases to Restore screen

Update All Service Accounts
Once you restore Team Foundation Server databases, you must ensure that the current Team
Foundation Server service accounts have the required access and permissions on the databases. This
is done by using the TfsConfig.exe command, which is found in the Tools directory of your appli-
cation tier.

NOTE For more information on this procedure, refer to the “Restore
Data to the Same Location” article on MSDN at http://aka.ms/
TFSRestoreSameLocation.

Rebuild the Warehouse
If you restored the Tfs_Warehouse relational database to the same point in time as your other data-
bases, then it should be in sync already. The only remaining step is to re-create the Tfs_Analysis
analysis services database. You can do this by following these steps:

 1. Log on to one of your application tier servers.

 2. Open a command prompt.

http://aka.ms

Creating a Backup Plan ❘ 669

c23.indd 04/22/2014 Page 669

 3. Change directories to \Program Files\Microsoft Team Foundation Server\Tools.

 4. Type the following command:

TfsConfig rebuildwarehouse /analysisServices

FIGURE 23-15: Confi guration review screen

This will drop the Analysis Services database if it exists and create a new one from the operational
store. This is slightly different than selecting the Start Rebuild link from the Reporting view in
the Administration Console. That link will drop the relational warehouse as well as the Analysis
Services Cube, and your rebuild will take much longer.

NOTE For more information, see “Manually Process the Data Warehouse
and Analysis Services Cube for Team Foundation Server” at http://aka.ms/
TFSWarehouseManualUpdate.

Restart Services That Team Foundation Server Uses
The last step to bring the server back online is to restart the application pool and job agent. Using a simi-
lar procedure to when you stopped the services, you can do this by running the TFSServiceControl
.exe command with the unquiesce option on each application tier server in your deployment.

http://aka.ms

670 ❘ CHAPTER 23 DISASTER RECOVERY

c23.indd 04/22/2014 Page 670

FIGURE 23-16: Readiness Checks screen

NOTE For more information, see “TFSServiceControl Command” at http://
aka.ms/TFSServiceControl.

Restoring to Different Hardware
If you have suffered a hardware failure, or you just want to move to a new server, you will need to
restore backups to the new server. The steps for restoring data to different hardware are not the
same as the steps to restore to the same hardware.

For the offi cially supported procedures, you should refer to the following documents:

 ➤ “Restore a Single-Server Deployment to New Hardware” at http://aka.ms/
TFSRestoreNewHardware

 ➤ “Restore Data to a Different Server or Instance” at http://aka.ms/
TFSRestoreDifferentServer

http://aka.ms/TFSServiceControl
http://aka.ms/TFSServiceControl
http://aka.ms
http://aka.ms

Summary ❘ 671

c23.indd 04/22/2014 Page 671

FIGURE 23-17: Successful restore screen

SUMMARY

 This chapter started with the important questions to ask when defi ning your disaster-recovery plan.
It highlighted that it is the responsibility of a Team Foundation Server administrator to make sure
that the server is correctly backed up.

The main part of the chapter covered a walk-through with screen-by-screen examples of how to
back up and restore your Team Foundation Server environment. It also discussed the important
considerations that your backup plan must take into account, such as the use of SQL-marked
transactions to synchronize backups.

Chapter 24 examines all things related to security and permissions in Team Foundation Server. The
chapter will take a look at all the different places that security can be set, along with some best
practices for avoiding a permissions mess.

c23.indd 04/22/2014 Page 672

c24.indd 04/22/2014 Page 673

Security and Privileges
WHAT’S IN THIS CHAPTER?

 ➤ Getting to know the different types of users and groups

 ➤ Understanding the new and interesting permissions

 ➤ Using tips for managing security

 ➤ Learning about useful tools

When you fi rst start looking at security, groups, and permissions in Team Foundation Server,
you might fi nd it very daunting. This is a large system with many different features. A large
part of the customer base also demands fi ne-grained controls in order to meet compliance
goals. Combined, these two features make managing security a sometimes tricky task.

However, by understanding some basic principles and avoiding some of the traps, Team
Foundation Server security can be corralled to achieve your security objectives. This chapter
examines those principles and provides the information you’ll need to avoid common pitfalls.

SECURITY WHEN USING VISUAL STUDIO ONLINE

The Visual Studio Online service provides the same core Team Foundation Server capabilities
as does its on-premises counterpart. Where it diverges is in the security realm. As you will see
later in this chapter, Team Foundation Server can work with Domain and Workgroup user
accounts. The problem encountered with a cloud-based service is that there is no common
Domain or Workgroup that can be called upon to provide authentication. To resolve this,
Microsoft built the service’s security model around the Microsoft account system (formerly
Windows Live ID). This means that anyone that wishes to use Visual Studio Online must have
a Windows account. Fortunately, if you use an e-mail address and a password to sign in to

24

674 ❘ CHAPTER 24 SECURITY AND PRIVILEGES

c24.indd 04/22/2014 Page 674

Hotmail, Outlook.com, OneDrive, Windows Phone, Xbox LIVE, or other Microsoft services, you
already have a Microsoft account.

Authorization using a Microsoft account isn’t ideal in some situations because it requires an interac-
tive web page login. When using non-browser–based tools such as the Team Explorer Everywhere
command line, this becomes an issue. To mitigate this, Microsoft added the ability to log in with
alternate credentials.

Basic Authentication for Visual Studio Online
Basic Authentication in Visual Studio Online is provided through a standard HTTP basic authen-
tication implementation. If you need to access the system from a tool that works outside a browser,
enable basic authentication by creating alternate credentials for your account.

To create alternate credentials, log in to Visual Studio Online, click on your name, and then select
My Profi le to open your User Profi le dialog box. Now click on the Credentials tab and click the
Enable alternate credentials link. You will see the e-mail address used in your Microsoft account as
the primary user name along with a location to enter a password. You can simply set a password
here and click the Save Changes button. This does not change your Microsoft account password, but
rather, gives you a second password to use for basic authentication. Once you save these changes,
you can log in with your e-mail address and basic authentication password when using applications
that work outside a browser.

HAVING TROUBLE WITH THAT E-MAIL ADDRESS?

Some programs that use basic authentication have diffi culty with special characters
such as the @ sign, which makes it diffi cult to use an e-mail address as your user
name. If you encounter this problem, you can set a secondary user name on the
Credentials tab, which can be used in place of your e-mail address during login.

USERS

A key concept to understand in Team Foundation Server security is that there are different types of
users, including the following:

 ➤ Domain users

 ➤ Local users

Domain Users
A domain in a Windows network usually means an Active Directory (AD) domain. AD is a direc-
tory and authentication service that comes with Windows Server. User accounts created in the
directory are called domain users. In the directory, each user object has a set of properties, including
a unique identifi er (called a security ID, or SID), a display name, and an e-mail address.

Users ❘ 675

c24.indd 04/22/2014 Page 675

NOTE Currently, the Visual Studio Online service is using Microsoft Accounts
as its mechanism for authentication and identity management. However,
because the product team is implementing identity using the Windows Azure
Access Control Service, it could potentially support other identity providers in
the future, such as Active Directory federation, with on-premises AD servers,
Google ID, Yahoo, Facebook, and so on. This chapter primarily focuses on the
on-premises version of Team Foundation Server and may not be completely
applicable to the Visual Studio Online Service.

Service Accounts
A service account is nothing more than just another domain user. The main difference is that a
domain user is usually a real person. A service account is a domain account created and used specifi -
cally to run a Windows service or other application.

It’s generally considered a bad practice to run services as accounts that real people use for their day-
to-day work. A service account usually has elevated privileges compared to a normal user. For this
reason, the service account passwords are often randomly generated strong passwords, and they are
kept a closely guarded secret by the owners.

Machine Accounts
Three accounts are built into a Windows computer:

 ➤ Local System

 ➤ Local Service

 ➤ Network Service

The fi rst two accounts cannot be used to authenticate to other computers. Local System is an
administrator on the system. Local Service has limited privileges, and it is designed for running
Windows services. Similarly, Network Service has limited local privileges. However, it is capable
of connecting to other computers on the domain.

When a computer is joined to a domain, a trust relationship is established between the computer
and the domain. Once this trust is established, the computer is essentially under the control of the
domain. This allows domain policies to be applied and enforced from the central directory service.

When the domain join occurs, a special domain account called a machine account is created with
an automatically generated password. As long as the computer remains in contact with the domain,
this password will change periodically, and the trust relationship will remain. If the computer does
not connect to the domain controller for a period of time, the account will be disabled, and the trust
relationship will be voided.

A machine account is represented as a domain user followed by $ in its account name, as shown in
the following example:

MYDOMAIN\MYCOMPUTER$

676 ❘ CHAPTER 24 SECURITY AND PRIVILEGES

c24.indd 04/22/2014 Page 676

To give the Network Service account permissions on the machine itself, you can use either the
Network Service account or the machine account. To give the Network Service account permis-
sions on a remote resource, you must use the machine account.

Local Users
If you install Team Foundation Server on a computer that isn’t joined to a domain, it is considered
to be running in workgroup mode. In workgroup mode, there is no domain, so the only users that
exist are users on that local computer. These users are called local users.

Even if your computer is installed on a domain, you can still have local users. However, these
local users cannot be added to domain groups or used for authenticating to other computers in the
domain.

SHADOW ACCOUNTS

If you have computers in different domains, or computers that are not part of any
domain, there are cases where you want to be able to authenticate between them.
When connecting to a remote machine, normally you must provide a user name
and password to an account on that machine.

There is a trick called “shadow accounts” that you can use to avoid being prompted
for credentials. To use shadow accounts, you establish a local account on both
machines with a matching user name and password. When the user from one
machine tries to connect to the other machine, the account fi rst tries to connect
using the current user name and password. Because the user names and passwords
match on both machines, this works without prompting for credentials.

Identity Synchronization
Team Foundation Server synchronizes some properties of every user that is a member of a group in
the system. This is so that domain group membership changes are refl ected in the system, and other
property changes (such as display names and e-mail addresses) are kept up to date.

Identity Synchronization Job
The Team Foundation Background job agent on each application tier server periodically executes the
Identity Synchronization job. By default, it runs once per hour, and it is also triggered when a new
domain group is added to Team Foundation Server.

The job agent runs as the Team Foundation Server service account. This will be either a domain
user, Network Service, or a local user (in the case of a server running in workgroup mode).

Users ❘ 677

c24.indd 04/22/2014 Page 677

Domains and Trusts
Because the Identity Synchronization job runs on the job agent, it accesses Active Directory using
these credentials. If the appropriate domain trusts aren’t in place, or the account doesn’t have per-
missions to list users in the directory, those users will not be able to access Team Foundation Server.
There are lots of different permutations on domain topologies, fi rewalls, and trust relationships.

NOTE For more information on what is supported by Team Foundation Server,
see “Trusts and Forests Considerations for Team Foundation Server” at http://
aka.ms/TFSADTrusts.

Handling Display Name Changes
One of the big changes introduced in Team Foundation Server 2010 was server updates to your
display name when it changed in AD. This is a fairly common scenario, similar to when people get
married and change their names from their maiden names to married names.

In Team Foundation Server 2008, even though the change was made in AD, Team Foundation
Server would keep using the old name. In all Team Foundation Server versions after 2008,
the change is detected as part of the identity synchronization job and updated throughout the
environment.

Display Name Disambiguation
Another change introduced in Team Foundation Server 2010 was something called display name
disambiguation. In the 2008 version, if you had two different user accounts with the same display
name, that display name would show only once in people fi elds such as the “Assigned To” fi eld.
There was no way to distinguish which user account was actually being referred to. Some people
tried to solve this by changing the display name of one of the users in AD, but without the previ-
ously mentioned display name changes detection feature, this did not solve the problem.

With the disambiguation feature, if two user accounts with the same display name exist within the
same team project collection, the identity synchronization job will append the domain and account
name to the end. For example, imagine two users that have the same display name John Smith.
One user’s account is MYDOMAIN\JSmith, and the other user’s account is MYDOMAIN\JohnS. Team
Foundation Server 2013 will disambiguate these and show them as two separate entries in the
“Assigned To” fi eld, as shown here:

 ➤ John Smith (MYDOMAIN\JSmith)

 ➤ John Smith (MYDOMAIN\JohnS)

In a large organization where you have many domains and trusts, sometimes a user will be moved
to or re-created in a different domain. Think of the example where someone moves from a posi-
tion in Australia to a position in Seattle, and the organization has an AD domain for each region.

http://aka.ms/TFSADTrusts
http://aka.ms/TFSADTrusts

678 ❘ CHAPTER 24 SECURITY AND PRIVILEGES

c24.indd 04/22/2014 Page 678

If both users still exist (whether disabled or not) and continue to be members of a group in Team
Foundation Server, this will also be disambiguated to the following:

 ➤ John Smith (AUSTRALIA\JSmith)

 ➤ John Smith (USA\JSmith)

If you want to remove this artifact of disambiguation in the display name, you have two options:

 ➤ Change the display name of one of the users in AD.

 ➤ Remove one of the users from all groups in that team project collection and remove all of the
individual security access grants that exist in each of the team project collection(s).

NOTE If you fi nd yourself in the latter situation, it may be helpful to open a
Microsoft product support case to assist with fi nding all of the artifacts and
security permission entries that Team Foundation Server is using to keep the
account active in its identity cache. The product support team can assist with
removing everything that would cause the disambiguation to occur.

Customizing Display Name Options and Alias Mode
Some organizations don’t set the display name fi eld in AD to a useful value. Instead, they use it
to store an employee ID or something like that. In these environments, it’s not very easy to run a
work item tracking query looking for bugs assigned to Grant Holliday when you have to specify
it as assigned to GH31337. Additionally, this becomes more important in Team Foundation Server
2012 because the display name is used in additional locations such as in the build system and in
version control.

Fortunately, there are two options for customizing the user’s display name. The fi rst and preferred
option is that each team member can log in to Team Web Access and customize their display name,
e-mail address, and other preferences in the Manage Profi le dialog box available by clicking on the
user’s name in the upper-right corner of any Team Web Access page. This is actually the primary
method for display name updates when using the Team Foundation Service because the Identity
Synchronization service does not import a display name with Windows Live ID accounts.

The second option is a privately supported feature called alias mode. When this feature is enabled,
Team Foundation Server will use the user name for the “Assigned To” fi eld instead of the display
name. Of course, this is not useful if your account name is also meaningless, but it is useful in some
environments. To enable alias mode, you will need to contact Microsoft Support. It also must be
done before you install Team Foundation Server for the fi rst time.

GROUPS

Another Team Foundation Server security concept that you should be familiar with involves the use
of different types of groups. These include:

Groups ❘ 679

c24.indd 04/22/2014 Page 679

 ➤ Domain groups

 ➤ Distribution groups

 ➤ Local groups

 ➤ Team Foundation Server groups

Domain Groups
Like domain users, domain groups are groups that exist in AD. Sometimes they are also referred to
as security groups. They can contain other domain users, groups, and machine accounts.

Distribution Groups
In an AD environment that also has Microsoft Exchange mail confi gured, you can create
distribution groups. These distribution groups can be used to send mail to a list of recipients.

Distribution groups cannot be used to secure resources; only domain groups can be used for that.
If you want a group that can be used to secure resources as well as receive mail, you can have a
mail-enabled security group.

Local Groups
Like local users, local groups exist only on a single machine. These can be used only to secure
resources that exist on that machine. One feature of local groups is that they can contain domain
users and groups as members.

This is useful, for example, if you want to allow administrative access to your machine to mem-
bers of a domain group. You can add a domain group called MYDOMAIN\MyGroup to the BUILTIN\
Administrators local group on your computer.

Team Foundation Server Groups
Team Foundation Server also has its own application group structure. There are groups at three dif-
ferent levels within the system:

 ➤ Server groups

 ➤ Team project collection groups

 ➤ Team project groups

Server Groups
The default server groups (as shown in Table 24-1) have hard-coded names that cannot be changed
or removed from the server. To modify the group memberships or permissions of server groups,
you will need to use the Team Foundation Server Administration Console or the TFSSecurity.exe
command-line tool.

680 ❘ CHAPTER 24 SECURITY AND PRIVILEGES

c24.indd 04/22/2014 Page 680

TABLE 24-1: Built-In Team Foundation Server Groups

GROUP NAME GROUP DESCRIPTION GROUP MEMBERS

Team
Foundation
Administrators

Members of this group
can perform all operations
on the Team Foundation
Application Instance.

By default, this group contains the
Local Administrators group (BUILTIN\
Administrators) for any server that hosts
the application services for Team Foundation
Server. This group also contains the members of
the Service Accounts server group.

Team
Foundation
Proxy Service
Accounts

This group should include
only service accounts
used by Team Foundation
Server Proxy.

No group members included by default

Team
Foundation
Service
Accounts

Members of this group
have service-level per-
missions for the Team
Foundation Application
Instance. This is for service
accounts only.

This group contains the service account that
the server is currently running as. If you fi nd
that this group includes personal user accounts,
you should remove them because those users
will have a degraded experience in Team
Foundation Server 2013 in areas such as e-mail
alerts management/ownership. If you need
to remove user accounts, you can use this
blog post for instructions: http://aka.ms/
TFSRemoveFromServiceAccountGroup.

Team
Foundation
Valid Users

Members of this group
have access to the Team
Foundation Application
Instance.

Members of this group have access to Team
Foundation Server. This group automatically
contains all users and groups that have been
added anywhere within Team Foundation
Server. You cannot modify the membership of
this group.

SharePoint Web
Application
Services

This application group
should contain ser-
vice accounts only
for SharePoint web
applications.

If your Team Foundation Server is confi gured
for integration with SharePoint Products, the
SharePoint Web Application service account will
be a member.

Project Server
Integration
Service
Accounts

Members of this group
have service-level permis-
sions for Project Server
Integration. It is for service
accounts only.

No group members included by default

http://aka.ms

Groups ❘ 681

c24.indd 04/22/2014 Page 681

Team Project Collection Groups
The default team project collection groups are created as part of the collection-creation process.
Table 24-2 shows each of the groups and their members.

TABLE 24-2: Default Team Project Collection Groups

GROUP NAME GROUP DESCRIPTION GROUP MEMBERS

Project Collection
Administrators

Members of this application
group can perform all privi-
leged operations on the team
project collection.

By default, this group contains the Team
Foundation Administrators server group.
It also contains the Project Collection
Service Accounts group and the user
who created the team project collection.

Project
Collection Build
Administrators

Members of this group should
include accounts for people
to able to administer the build
resources.

No group members included by default

Project Collection
Build Service
Accounts

Members of this group should
include the service accounts
used by the build services set
up for this project collection.

No group members included by default

Project Collection
Proxy Service
Accounts

This group should include only
service accounts used by prox-
ies set up for this team project
collection.

This group contains the Team
Foundation Proxy Service Accounts
server group. This allows a proxy server
access to all collections in an environ-
ment. If you fi nd that this group includes
personal user accounts, you should
remove them because those users will
have a degraded experience in Team
Foundation Server 2013 in areas such
as e-mail alerts management and own-
ership. If you need to remove user
accounts, you can use this blog post
for instructions: http://aka.ms /
TFSRemoveFromServiceAccountGroup.

Project Collection
Service Accounts

This application group contains
Team Project Collection service
accounts.

This group contains the Team
Foundation Service Accounts server
group.

continues

http://aka.ms

682 ❘ CHAPTER 24 SECURITY AND PRIVILEGES

c24.indd 04/22/2014 Page 682

GROUP NAME GROUP DESCRIPTION GROUP MEMBERS

Project Collection
Test Service
Accounts

Members of this group should
include the service accounts
used by the test controllers set
up for this project collection.

Project Collection
Valid Users

This application group contains
all users and groups that have
access to the team project
collection.

This group automatically contains all
users and groups that have been added
anywhere within the team project collec-
tion. You cannot modify the membership
of this group.

To modify a team project collection group’s memberships or permissions, you can use the Team
Foundation Server Administration Console, Visual Studio Team Web Access, or the TFSSecurity
.exe command-line tool.

Team Project Groups
Team project groups are initially defi ned in the process template and created as part of the team
project creation wizard. Table 24-3 shows the default groups included with the Microsoft Solutions
Framework (MSF) for Agile Software Development and MSF for Capability Maturity Model
Integration (CMMI) Process Improvement process templates. You may additionally create security
groups or use the team project groups created when defi ning teams to further defi ne security inside a
team project.

TABLE 22-3: Default Team Project Groups

GROUP NAME GROUP DESCRIPTION GROUP MEMBERS

Builder
Administrators

Members of this group can create, modify, and
delete build defi nitions, as well as manage queued
and completed builds.

No group members
included by default

Contributors Members of this group can add, modify, and delete
items within the team project.

No group members
included by default

Project
Administrators

Members of this group can perform all operations in
the team project.

The user who created
the team project

Readers Members of this group have access to the team
project.

No group members
included by default

TABLE 24-2 (continued)

Permissions ❘ 683

c24.indd 04/22/2014 Page 683

PERMISSIONS

Rather than providing a listing of the more than 80 different permissions available in Team
Foundation Server, this section focuses on the permissions that are new in the 2013 version, or are
otherwise ambiguous or interesting. In particular, this discussion examines the following:

 ➤ Server permissions

 ➤ Team project collection permissions

 ➤ Team project permissions

 ➤ Team Room permissions

NOTE For a comprehensive list of all the permissions available, refer to “Team
Foundation Server Default Groups, Permissions, and Roles” at http://aka.ms/
TFSDefaultSecurity.

Server Permissions
The Team Foundation Administrators group, along with the Team Foundation Service Accounts
group, has hard-coded permissions. This is to prevent an administrator from being inadvertently
locked out of the system. Table 24-4 shows some of the interesting server-level permissions.

TABLE 24-4: Server Permissions

PERMISSION NAME COMMAND-LINE

NAME

DESCRIPTION

Make requests on
behalf of others

Impersonate Users who have this permission can perform operations
on behalf of other users or services.

Edit instance-
level information

GENERIC
_WRITE

Users with this permission can start and stop a collection,
edit the description, manage the group memberships,
and manage the permissions for users and groups in a
collection. It’s a powerful permission.

Use full Web
Access features

FullAccess Users who have this permission can use all of the fea-
tures of Team Web Access. If this permission is set to
Deny, the user will see only those features permitted for
the Limited group in Team Web. A Deny will override
any implicit Allow, even for accounts that are members
of administrative groups such as Team Foundation
Administrators.

View instance-
level information

GENERIC
_READ

Users who have this permission can view server-level
group membership and the permissions of those users.

http://aka.ms

684 ❘ CHAPTER 24 SECURITY AND PRIVILEGES

c24.indd 04/22/2014 Page 684

Team Project Collection Permissions
Most of the permissions that used to be at the server level in Team Foundation Server 2008 have
been moved to the team project collection level in Team Foundation Server 2010 to 2013. This is
useful when you have many collections running on a single consolidated and shared server instance.
In this kind of environment, you can delegate permissions that allow someone to create team proj-
ects within a collection without having to grant them full server administrator rights.

Table 24-5 shows some of the permissions available at the collection level.

TABLE 24-5: Team Project Collection Permissions

PERMISSION NAME COMMAND-LINE NAME DESCRIPTION

Edit collection-level
information

GENERIC_WRITE Users who have this permission can edit
collection-level permissions for users and
groups in the team project collection.
They can add or remove collection-level
Team Foundation Server application
groups from the collection.

View collection-level
information

GENERIC_READ Users who have this permission can view
collection-level group membership and
the permissions of those users.

Manage build resources ManageBuildResources Users who have this permission can man-
age the build computers, build agents,
and build controllers for the team project
collection. These users can also grant or
deny the “View build resources” and “Use
build resources” permissions for other
users.

Use build resources UseBuildResources Users who have this permission can
reserve and allocate build agents. This
permission should be assigned only to
service accounts for build services.

View build resources ViewBuildResources Users who have this permission can
view build controllers and build agents
confi gured for the collection. To use
these resources, you need additional
permissions.

Permissions ❘ 685

c24.indd 04/22/2014 Page 685

Manage test controllers MANAGE_TEST_
CONTROLLERS

Users who have this permission can regis-
ter and de-register test controllers for the
team project collection.

Manage work item link
types

WORK_ITEM_WRITE Users who have this permission can add,
remove, and change the types of links for
work items.

Administer Project
Server integration

AdministerProjectserver Users who have this permission can con-
fi gure the integration of Team Foundation
Server with Project Server to support
synchronization between the two server
products.

Alter trace settings DIAGNOSTIC_TRACE Users who have this permission can
change the trace settings for gathering
more detailed diagnostic information
about Web Services for Team Foundation
Server.

The ManageBuildResources permission can cause some angst for organizations using Team
Foundation Build. There are three problems with this permission:

 ➤ It is very broad and powerful.

 ➤ It is required to be able to connect a build agent to a collection.

 ➤ When you confi gure a build server, if you do not have the “Edit collection-level information”
permission, confi guration will fail.

These three problems work against each other when you want to allow people to run their own
build agents without making everybody a project collection administrator.

Fortunately, there is a reasonable solution. Before anyone runs the Team Foundation Build confi gu-
ration wizard, the service account they want to run the build service as can be added to the Project
Collection Build Services group. This avoids the second and third problems.

If you force people to use Network Service or a service account as the account for their build ser-
vice, you can avoid the problem of having normal user accounts as project collection administrators.

Team Project Permissions
As shown in Table 24-6, Team Foundation Server 2010 introduced several new team project level
permissions that control access to some of the Microsoft Test Manager assets.

686 ❘ CHAPTER 24 SECURITY AND PRIVILEGES

c24.indd 04/22/2014 Page 686

TABLE 24-6: Team Project Permissions

PERMISSION NAME COMMAND-LINE NAME DESCRIPTION

Create test runs PUBLISH_TEST_RESULTS Users who have this permission can
add and remove test results, as well
as add or modify test runs for the
team project.

Delete test runs DELETE_TEST_RESULTS Users who have this permission can
delete a scheduled test for this team
project.

Manage test
confi gurations

MANAGE_TEST_
CONFIGURATIONS

Users who have this permission can
create and delete test confi gura-
tions for this team project.

Manage test
environments

MANAGE_TEST_ENVIRONMENTS Users who have this permission can
create and delete test environments
for this team project.

View test runs VIEW_TEST_RESULTS Users who have this permission can
view test plans in this node.

Delete team
project

DELETE Users who have this permission
can delete from Team Foundation
Server the project for which they
have this permission.

Edit project-level
information

GENERIC_WRITE Users who have this permission
can edit project-level permissions
for users and groups on Team
Foundation Server.

View project-level
information

GENERIC_READ Users who have this permission can
view project-level group member-
ship and the permissions of those
project users.

Let’s take a closer look at a couple of these permissions.

View Project-Level Information
When users have the “View project-level information” permission, they are able to see that the proj-
ect exists in the collection, as well as list the project’s group memberships and permissions. Before
Team Foundation Server 2010, the Valid Users group was given this permission for every team proj-
ect by default. This meant that users could see all the projects that existed on a server. It also made
the list of projects in the team project connect dialog box quite long on a server with many projects.

Starting in the 2010 version, this was no longer the case. However, if your server was upgraded from
an earlier version, these permissions will still exist. If you want to trim down the projects that users
see when they connect to the server, you can remove this permission for them.

Permissions ❘ 687

c24.indd 04/22/2014 Page 687

Edit Project-Level Information
The “Edit project-level information” permission is also very generic, and it’s not very clear from
the name what a user with this permission can do. To clarify, a user with this permission can do the
following:

 ➤ Edit areas and iterations.

 ➤ Change the version control check-in policies enabled for a project.

 ➤ Create and modify team queries, team query folders (discussed later in this chapter), and the
team query folder permissions.

 ➤ Modify group memberships and project-level permissions.

Work Item Tracking
Within the work item tracking components of Team Foundation Server are three different sets of
permissions that can be managed. There are permissions on the following:

 ➤ Areas

 ➤ Iterations

 ➤ Team query folders

Areas
Area path permissions can be applied to any node in the tree. The permissions on a parent node
can be inherited by the child nodes if inheritance is enabled. The available permissions fall into two
categories:

 ➤ Permissions to modify work items in area paths

 ➤ Permissions to modify the area paths themselves

The permissions shown in Table 24-7 are particularly interesting because they can be used to hide or
lock down parts of the tree for different sets of users.

TABLE 24-7: Selected Area Level Permissions

PERMISSION NAME COMMAND-LINE NAME DESCRIPTION

Edit work items in this
node

WORK_ITEM_WRITE Users who have this permission can edit
work items in this area node.

View work items in
this node

WORK_ITEM_READ Users who have this permission can view,
but not change, work items in this area
node.

For example, say you had a large team project that your whole organization or product engineering
department shared. You might do this if you wanted to do all work with one set of work items, instead
of having projects in silos. If there was a super-secret product that a team was working on, and you

688 ❘ CHAPTER 24 SECURITY AND PRIVILEGES

c24.indd 04/22/2014 Page 688

didn’t want anyone else in the organization to see those work items, you could remove the “View work
items in this node” permission.

Another example might be a change request area path. Your team could have a set of area paths,
and one of those area paths could be called \Change Requests. You could confi gure the permis-
sions so that anyone on the server could create a work item in just that area path.

Iterations
The permissions for iterations are much the same as those for area paths. The notable difference
though is the lack of the “View work items in this node” and “Edit work items in this node” permis-
sions. This means that you cannot control who can move work items into iteration paths. You can
control modifi cations only to the iteration path structure itself.

Team Query Folders
Team query folders is a new feature introduced in Team Foundation Server 2010. Before these fold-
ers, you could have only a fl at list of queries. Some people tried to work around this by coming up
with elaborate naming schemes. Others used a SharePoint document library with folders and *.WIQ
fi les in each folder to achieve the same thing.

Team query folders were actually available before 2010 on an internal release of Team Foundation
Server built especially for the Windows and Offi ce organizations at Microsoft. The feedback from
teams using the folders was that there needed to be permissions on them. Because of this feedback,
the team added the permissions shown in Table 24-8 before including the feature in the fi nal Team
Foundation Server 2010 release.

TABLE 24-8: Team Query Folder Permissions

PERMISSION NAME DESCRIPTION

Read View this folder and its contents.

Contribute View and edit this folder and its contents.

Delete View, edit, and delete this folder and its contents.

Manage Permissions Manage permissions for this folder and its contents.

Team Web Access and Licensing Access Levels
The legacy Work Item Only View (WIOV) feature allows users in your organization to create and
view work items that they created in Team Web Access without having a client access license (CAL).
This is useful if you want to allow others to log bugs or feature requests for your product directly
into Team Foundation Server.

NOTE For more information, see the latest version of the “Visual Studio
Licensing White Paper” at http://aka.ms/VisualStudioLicensing. This
licensing white paper is updated regularly.

http://aka.ms/VisualStudioLicensing

Permissions ❘ 689

c24.indd 04/22/2014 Page 689

BYPASS RULES AND THE FORCING ROLLBACK ERROR

Team Foundation Server has a ClientService.asmx web service. This is the same
web service that the Team Foundation object model uses.

If you are migrating work items from another system, you will likely need to save
work items with invalid values. Team Foundation Server provides a mechanism for
doing this, which is commonly called Bypass Rules.

By calling the web service directly from your own code (which is not recom-
mended), you can set the BypassRules fl ag and submit an XML package that
includes the values that you want to set. Only members of the Project Collection
Service Accounts group are able to use this functionality because it can put a work
item into an invalid state.

If you try to use this functionality and the account is not in the correct group,
you’ll receive a very cryptic SoapException:

Forcing rollback ---> Forcing rollback ---> Forcing rollback

This indicates that SQL was trying to apply your changes but found that you didn’t
have the required permissions.

There is an administration page in Team Web Access that was introduced in Team Foundation
Server 2012 to help assist with the management of different features available to end users in Team
Web Access, as shown in Figure 24-1. This tab is labeled “Access Levels.” Users can be a member of
the following groups:

 ➤ Limited

 ➤ Standard

 ➤ Full

The Limited access level allows user access similar to the legacy Work Item Only View feature. It
allows them to view work items and is perfect for those users who do not have a CAL for Team
Foundation Server. However, it does not provide them with the security rights necessary to perform
these activities, so be sure to also add these users to either the Contributors default security group
for projects or enable the “View work items in this node” and “Edit work items in this node” per-
missions. This access level also enables users to submit feedback using the new Feedback Client, as
you learned in Chapter 14.

The great thing about this Limited access level is that you can create a linked work item from a bug
submitted by an end user. The end user cannot see the linked work item and the discussion that hap-
pens for that linked bug. When the work is complete and the original bug is resolved, the end user
can see that his or her feedback was addressed.

The Standard access level is designed for those users who have an individual Team Foundation
Server CAL or for Visual Studio Professional with MSDN users. The members of this group will
additionally have the standard Web Access features as well as the Agile Task Boards, Backlog and
Sprint planning tools, and Chart viewing available to them. For upgraded or brand new instances of
Team Foundation Server 2013, this is the default group for all users, as shown in Figure 24-1.

690 ❘ CHAPTER 24 SECURITY AND PRIVILEGES

c24.indd 04/22/2014 Page 690

FIGURE 24-1: New feature access administration page.

The Full access level is designed for those users that have any of the higher editions of Visual Studio
such as the following:

 ➤ Visual Studio Test Professional 2013 with MSDN

 ➤ Visual Studio Premium 2013 with MSDN

 ➤ Visual Studio Ultimate 2013 with MSDN

The members of the Full access level receive all of the features in the Limited and Standard groups
but are also able to use the web-based Test Management features, Team rooms, and Agile Portfolio
Management tools, and will be able to create Charts for their teams.

Because the Standard access level is the default group, you will want to be sure to add any users
with a higher edition of the Visual Studio products to the Full group because they will not see the
advanced features of Team Web Access until that happens.

To assist organizations with ensuring license compliance, there is also an Export Audit Log feature
from this page that will allow you to generate an Excel workbook that contains all of the users and
their relevant licensing access to features.

Version Control Permissions
When we discuss Version Control Permissions here, we are talking about the centralized version
control system that has been part of the system since Team Foundation Server 2005. These permis-
sions haven’t changed signifi cantly since Team Foundation Server 2010, when the branching and
merging permissions were separated from the check-in permission. This can be seen in Table 24-9.
The Git (distributed version control) permissions will be discussed in the section “Managing Git
Repository Security.”

Permissions ❘ 691

c24.indd 04/22/2014 Page 691

TABLE 24-9: New and Interesting Version Control Permissions

PERMISSION

NAME

COMMAND-LINE

NAME

DESCRIPTION

Merge tf: Merge Users who have this permission for a given path can
merge changes into this path.

Manage branch tf: ManageBranch Users who have this permission for a given path can
convert any folder under that path into a branch. Users
with this permission can also take the following actions
on a branch: Edit its properties, re-parent it, and con-
vert it to a folder. Users who have this permission can
branch this only if they also have the Merge permission
for the target path. Users cannot create branches from
a branch for which they do not have the “Manage
branch” permission.

Check in other
users’ changes

tf: CheckinOther Users who have this permission can check in changes
that were made by other users. Pending changes will
be committed at check-in.

When your server is upgraded from the 2008 version to the 2010 or higher versions, folders that
were branches are detected and automatically converted to real branches. If you previously had
Read and CheckIn permissions on that folder, you are grandfathered in and given the Merge and
ManageBranch permissions.

CHECK-IN ON BEHALF OF ANOTHER USER

In some scenarios, you may want to check in some changes using one account but
record that another user actually made the changes. An example of this is a shared
workstation used for generating hotfi xes. Each user would log on to the machine
and access the server using a shared user name. Then, after the user makes the fi x,
he or she checks it in and specifi es that his or her user name is the actual author of
the change.

To do this, you must specify the /author fl ag on the TF.exe checkin
command line:

C:\Code\MyProject> tf checkin * /author:jsmith
Checking in add: MyFolder

Changeset #11 checked in.

If you want to see who checked in a changeset on behalf of another user, unfortu-
nately, you will have to use the command-line tools. To do this, specify the
/noprompt fl ag on the TF.exe changeset command:

C:\Code\MyProject> tf changeset 11 /noprompt
Changeset: 11
User: jsmith
Checked in by: Administrator

692 ❘ CHAPTER 24 SECURITY AND PRIVILEGES

c24.indd 04/22/2014 Page 692

Check-In Policies
The check-in policy settings for a team project are stored as a version control annotation.
Annotations aren’t part of the public API and, in Team Foundation Server 2013, are superseded by
the Properties API. Annotations are like properties in that they are extra metadata attached to a
particular path in version control.

Because the annotation is on the root version control folder for each team project, users will need at
least Read permissions on that folder. Without this permission, they will get an error message simi-
lar to “$/MyProject does not exist or you don’t have access to it.” This can be quite confusing when
the user is trying to check in to some other path that the user actually does have permission to.

Branching and Permissions
When you branch a folder, the permissions from the source folder are copied to the target. In most
cases, this is acceptable. However, there are other cases (such as when creating a maintenance or
release branch) that you don’t want to copy the permissions to. In these cases, you’ll have to lock
down the permissions after creating the branch. Then, as people need to check in patches, you can
grant them the PendChange and Checkin permissions.

The reverse is also true. For example, your Main branch might have very restrictive permissions to
prevent people from making changes directly. When you create a branch of Main, those restrictive
permissions will also be copied. In this case, you’ll have to add the extra permissions after creating
the branch.

HOW TO UNDO CHANGES FROM ANOTHER USER

A very common question on the support forums and e-mail lists concerns when
someone has a set of fi les checked out and locked, and the person goes on vacation
or is otherwise unavailable. Until these locks are removed, no one else can check in
these fi les.

Fortunately, it’s fairly simple for someone with the “Administer workspaces” per-
mission to undo changes for another user.

One option is to use the TF.exe command-line tool, as shown here:

tf undo "$/MyProject/VersionX/Utils/file.cs"
 /workspace:MyWorkspace;Domain\User
 /collection:http://server:8080/tfs/Collection
 /recursive

Another option is to use the Team Foundation Power Tools. Follow these steps:

 1. Open Source Control Explorer.

 2. Right-click the item on which check-out is to be undone (or a parent folder of
multiple fi les to be undone).

 3. Select Find in Source Control ➪ Status.

http://server:8080/tfs/Collection

Permissions ❘ 693

c24.indd 04/22/2014 Page 693

 4. In the Find in Source Control dialog box, leave the Status check box selected.

 5. Optionally, enter a value for the Wildcard text box.

 6. Optionally, enter a user name in the “Display fi les checked out to” text box
and select that radio button.

 7. Click Find. This will result in a list of fi les.

 8. Select the items to undo.

 9. Right-click and select Undo.

 10. Click Yes when prompted with “Undo all selected changes?”

Destroy
When you delete a fi le in version control, it is just a “soft” delete. The fi le contents and all the previ-
ous revisions still exist, and anyone with Read permissions can still retrieve the fi le or undelete it.

To permanently delete a fi le from version control and remove all previous versions of it, you can use
the TF.exe destroy command. Because this is a potentially very destructive operation, you must be
a member of the Team Foundation Administrators server group.

Once a fi le is destroyed, the only way to recover it is to restore a backup of your server to a previous
point in time. Each time a fi le is destroyed, a message is logged to the Application event log on the
application tier that the destroy command ran on.

Managing Git Repository Security
Team Foundation Server 2013 introduced the ability to use the Git distributed version control
repository instead of the standard centralized version control repository that has shipped with every
version of the product. Git does not defi ne any access control whatsoever but relies on third-party
add-ins or the underlying storage and transport mechanisms to enforce read-only or read-write
permissions.

The Visual Studio team has had a goal of providing an enterprise-grade Git solution. To support
that goal, the team has provided a permission set that is specifi c to Git repositories hosted in Team
Foundation Server.

The most notable permissions are around branch-level permissions. These give you the ability to
control who has the capability to push certain branches to the server. With this model, team mem-
bers still have full control over their local Git repositories while providing the Team Foundation
Server administrators with a level of control over the central server.

Table 24-10 lists the permissions available when using a Git version control repository with Team
Foundation Server.

694 ❘ CHAPTER 24 SECURITY AND PRIVILEGES

c24.indd 04/22/2014 Page 694

TABLE 24-10: Git Repository Permissions

PERMISSION NAME COMMAND-LINE

NAME

DESCRIPTION

Contribute to the
Git repository

CONTRIBUTE Enables users to push their changes to the repository

Allow force pushes
in the Git repository

FORCE Enables users to force an update, which can overwrite
or discard commits from any user. Deleting commits
changes the history. Without this permission, users
cannot discard their own changes. Allow Force is also
required to delete a branch

Administer the Git
repository

ADMINISTER Enables users to rename or delete the repository,
add additional repositories, and verify the database

Read the Git
Repository

READ Enables users to clone, fetch, pull, and explore the
contents of the repository, but cannot push any
changes they make to the repository

Branch Creation BRANCH Enables users to create branches in the repository

Note Management NOTE Enables users to append additional messages to
existing commits without changing the original com-
mit message or checksum

Tag Creation TAG Enables users to apply tags to points in the Git repos-
itory history

When you compare the permission set for a Git repository against the permission set for a standard,
centralized version control repository, you can see that the Visual Studio team wanted to provide
enough control over the “central” Git repository that enterprises need without impeding the usage
patterns that Git users have come to rely on.

NOTE Be aware that the Allow Force pushes in the Git repository permission
will allow users to change the history or remove a commit from history. Any
users given this permission will be able to delete a change and its history from
the server. They can also modify the commit history of the server repository.

Build Permissions
Teams are also able to provide for permissions at the build defi nition level. Some of the more inter-
esting permissions available are listed in Table 24-11.

Permissions ❘ 695

c24.indd 04/22/2014 Page 695

TABLE 24-11: New and Interesting Build Permissions

PERMISSION NAME COMMAND-LINE NAME DESCRIPTION

Retain indefi nitely RetainIndefi nitely Users who have this permission can
mark a build so that it will not be auto-
matically deleted by any applicable
retention policy.

Delete builds DeleteBuilds Users who have this permission can
delete a completed build.

Queue build QueueBuilds Users who have this permission can put
a build in the queue through the inter-
face for Team Foundation Build (Web
Access or Team Explorer) or at a com-
mand prompt. They can also stop the
builds that they have queued.

Edit build defi nition EditBuildDefi nition Users who have this permission can
create and modify specifi c build defi ni-
tions for this project.

Override check-in
validation by build

OverrideBuildCheckInValidation Users who have this permission can
commit a changeset that affects a
gated build defi nition without trigger-
ing the system to shelve and build their
changes fi rst.

Reporting
By default, users do not have access to query the relational warehouse database or the Analysis
Services cube. If you want to allow users to use the Excel reporting features of Team Foundation
Server, you must grant them access to at least the Analysis Services cube.

The Analysis Services cube contains aggregated and summarized data from all team projects in all
team project collections in an environment. There is no security fi ltering based on your permissions
within Team Foundation Server. If a user has Read access to the cube, then that user can query the
summarized data from all projects. If this is a concern for you, you may want to consider limiting
the users who have access to the cube and its data.

If you have a more relaxed security policy, and all users can see all work items, you should consider
giving all users access to the warehouse and cube. This will allow them to leverage the useful met-
rics that the data warehouse provides. To do this, you must add the users (or a security group) to the
roles shown in Table 24-12.

696 ❘ CHAPTER 24 SECURITY AND PRIVILEGES

c24.indd 04/22/2014 Page 696

TABLE 24-12: Team Foundation Server Reporting Roles

COMPONENT DATABASE NAME ROLE

Relational warehouse database Tfs_Warehouse TfsWarehouseDataReader

Analysis Services cube Tfs_Analysis TfsWarehouseDataReader

For more information, see the following articles on MSDN:

 ➤ “Grant Access to the Databases of the Data Warehouse for Visual Studio ALM” at http://
aka.ms/TFSGrantWarehouseAccess

 ➤ “Assigning Permissions to View and Manage Reports for Visual Studio ALM” at http://
aka.ms/TFSReportsPermissions

SECURITY MANAGEMENT

If you ever have to manage security and permissions in a Team Foundation Server environment,
you’ll want to follow a few general principles.

Deny, Allow, and Unset Permissions
A deny permission takes precedence over all other permission settings, including an allow permis-
sion. Consider the example where a user is a member of two groups. One group has a permission
set to deny, and the other group has the same permission set to allow. In this case, the user will be
denied that permission.

Because the deny permission takes precedence, a common practice is to not set any explicit permis-
sions. If permissions are neither set to allow nor deny, an implicit permission of deny is applied. This
setting is referred to as “unset.” This allows the user to gain that permission by inclusion in another
group that has an allow for that permission.

NOTE For more information, see “Team Foundation Server Permissions” at
http://aka.ms/TFSPermissions.

Use Active Directory Groups
Before Team Foundation Server is introduced into an organization, there is usually a process (whether
formal or informal) whereby people can be given access to different network resources. The easiest
way to manage this is by creating security groups in AD and applying the permissions to the group.

Some organizations have self-service tools with built-in approval processes that allow users to join
groups. One such example of a product that provides this service is Microsoft Forefront Identity
Manager.

http://aka.ms/TFSGrantWarehouseAccess
http://aka.ms/TFSGrantWarehouseAccess
http://aka.ms/TFSReportsPermissions
http://aka.ms/TFSReportsPermissions
http://aka.ms/TFSPermissions

Tools ❘ 697

c24.indd 04/22/2014 Page 697

Some organizations have Help Desk processes that allow people to join groups. The Help Desk staff
has training in the AD tools, and it can move users in and out of groups.

As discussed earlier, Team Foundation Server has its own concept of groups and tools for managing
those groups. A lot of organizations keep the Team Foundation Server groups very simple and put a
single AD group in each of them. This allows the existing group management processes to be used
without having to train people on how Team Foundation Server groups work.

Avoid Granting Individual User Permissions
To make permission and security management easier, you should avoid setting explicit user permis-
sions. Instead, identify the role of the user and create a group for that role. Then apply permissions
to the role.

With this process, it’s much easier to give other people the same permissions. For example, when
someone changes roles within the organization or gets a promotion, that person can easily be added
to the “Branch Admins” or “Build Masters” group to provide the required access for his or her new
responsibilities.

With that said, though, you want to avoid a proliferation of groups and nesting of groups. If you
want to fi nd out how a user has access to a fi le, you don’t want to be hunting through fi ve different
nested groups. Keep the nesting shallow.

Additionally, the teams you create in Team Foundation Server 2013 can also serve as team project
groups for granting and managing security access.

Use Inheritance
Where possible, you should set permissions at a high level, and enable inheritance for the sub-items.
This is especially true for version control because the fi les in every command must have their secu-
rity permissions checked.

If you have many individually set permissions throughout your version control tree, that means lots
of work for the application tier to validate them and trim the results. You will see increased CPU
load on your application tiers and sometimes poor response times. By setting permissions higher in
the tree, they can be cached and fi les can be transferred with very little overhead. You will see simi-
lar performance degradation each time you break the inheritance lower in the tree or when you use
deny grants.

TOOLS

People use a few tools to manage permissions in Team Foundation Server. Visual Studio Team
Explorer and the Team Foundation Server Administration Console are the most common. If you do
a lot of security management in Team Foundation Server, you will want to become familiar with the
command-line tools.

698 ❘ CHAPTER 24 SECURITY AND PRIVILEGES

c24.indd 04/22/2014 Page 698

TFSSecurity.exe is included with a Visual Studio Team Explorer installation. If you’re comfort-
able with the command line, you’ll fi nd it to be a very powerful tool that is much faster than clicking
through menus and dialog boxes in Visual Studio.

Perhaps the most useful application of this tool is the /imx command. Using this option, you can list
the expanded group memberships of any user or group within the system. This is great for working
out how a user is nested in a group.

To run the command, you must specify a server to run it against and a user or group to look up.

TFSSecurity.exe /collection:http://server:8080/tfs/Collection
 /imx n:DOMAIN\user

You can also use the tool with the /g+ command to add team project groups to server groups, which
is something that you cannot do through Visual Studio.

NOTE For more information, see “Changing Groups and Permissions with
TFSSecurity” at http://aka.ms/TFSSecurityTool.

TFSSecurity.exe is not the only tool. Table 24-13 shows some other included command-line tools.

TABLE 24-13: Other Command-Line Tools

TOOL NAME MORE INFORMATION

TF.exe Permission http://aka.ms/TFPermission

TFSLabConfi g.exe Permissions http://aka.ms/TFSLabConfigPermissions

SUMMARY

 This chapter started with an overview of the security model used in Visual Studio Online as well
as different types of users and groups that you’ll encounter when managing a Team Foundation
Server 2013 environment. Following this, you caught a glimpse into some of the new and interesting
permissions available in Team Foundation Server. Some ambiguous permissions purposes were also
clarifi ed.

After taking a look at the different parts that make up security, the rest of the chapter covered
some tips for managing security, along with some tools to make things easier, such as the Team
Foundation Server Administration Tool.

Chapter 25 covers all things related to monitoring the server health and reporting on the perfor-
mance of Team Foundation Server. The chapter will introduce you to the Best Practices Analyzer
and the System Center Operations Manager management pack. It will also cover some of the rich
activity logging details that the server collects over time.

http://server:8080/tfs/Collection
http://aka.ms/TFSSecurityTool
http://aka.ms/TFPermission
http://aka.ms/TFSLabConfigPermissions

c25.indd 04/22/2014 Page 699

Monitoring Server Health and
Performance

WHAT’S IN THIS CHAPTER?

 ➤ Understanding factors that affect Team Foundation Server health

 ➤ Monitoring SQL Server health

 ➤ Learning useful queries for investigating SQL Server performance

 ➤ Learning about data sources available for monitoring Team
Foundation Server

 ➤ New diagnostics and monitoring functionality in Team Foundation
Server 2013

 ➤ Using valuable tools and reports

The health of a Team Foundation Server can be broken down into three components:

 ➤ System health

 ➤ SQL Server health

 ➤ Team Foundation Server health

The health and performance of Team Foundation Server is largely dependent upon the health
and performance of the underlying components. For example, if the storage subsystem is not
performing well, then SQL Server performance will likely suffer and, in turn, affect the per-
formance of Team Foundation Server commands.

This chapter provides an overview of how you can monitor the health and performance of
Team Foundation Server.

25

700 ❘ CHAPTER 25 MONITORING SERVER HEALTH AND PERFORMANCE

c25.indd 04/22/2014 Page 700

NOTE While Team Foundation Server was being developed, the entire
Developer Division at Microsoft (approximately 3,000 users) started using the
server as its primary source control and bug-tracking system. This onboarding
process continued through the 2008 release, and the overall size and usage of the
server increased. As more teams were moved onto the server, performance issues
with the application were identifi ed and fi xed.

Because of this aggressive internal usage over an extended time period, the 2010
release was highly tuned based upon real-world usage, rather than synthetic load
tests. In the 2012 release cycle, the Visual Studio Online service was brought
online. Additional performance bottlenecks were identifi ed and fi xed through
its preview period. This level of tuning continued throughout the development
of the 2013 release and it means that, in most cases, the cause of a performance
problem in the server is likely to be a confi guration or hardware problem in the
underlying systems, rather than in Team Foundation Server itself.

SYSTEM HEALTH

Server health refers to the health of the operating system and the underlying hardware. The easiest
and most reliable way to monitor and measure server health is through the use of Windows perfor-
mance counters.

Performance counters are generally considered an accurate representation of system performance.
Performance counters are understood across different disciplines (development, testing, and opera-
tions) and across different groups (customers, vendors, and product teams). This makes them very
useful for understanding the performance of a system.

If you don’t already have a system (such as System Center Operations Manager) for collecting and
analyzing performance counters, it’s fairly easy to get started without one. You can confi gure a perfor-
mance counter log to capture a core set of counters, once a minute, to a circular log fi le on each server.
This will prove invaluable when you get the inevitable phone call asking, “Why is the server slow?”

NOTE To confi gure a performance counter log in Windows Server, see the
article “Create a Data Collector Set from a Template” at http://aka.ms/
DataCollectorSet.

The next thing to look at is storage health. In large applications and database applications, the most
common source of slow system performance or high application response times is the performance
of the storage system. To determine if you are having an issue with storage latency, you should use
the following performance counters:

 ➤ Object—Physical Disk or Logical Disk

 ➤ Counter—Avg. Disk Sec/Transfer

http://aka.ms

SQL Server ❘ 701

c25.indd 04/22/2014 Page 701

 ➤ Instance—Ideally, you should collect this for individual disks. However, you may also use
_Total to identify general issues. If _Total is high, then further collections can be taken to
isolate the specifi c disks affected.

 ➤ Collection interval—Ideally, you should collect at least every one minute (but no more than
every 15 seconds). The collection should be run for a signifi cant period of time to show it is an
ongoing issue, and not just a transient spike. The minimum suggested interval is 15 minutes.

When looking at the results, the following are the thresholds (in seconds) that you should consider:

 ➤ < 0.030—This is normal, and no storage latency issues are apparent.

 ➤ > 0.030 to 0.050—You may be somewhat concerned. Continue to collect and analyze data.
Try to correlate application performance issues to these spikes.

 ➤ > 0.050 to 0.100—You should be concerned, and you should escalate to your storage pro-
vider with your data and analysis. Correlate spikes to application performance concerns.

 ➤ > 0.100—You should be very concerned, and you should escalate to your storage provider.
Correlate spikes to application performance concerns.

With this data and these thresholds, you should be able to confi dently identify a storage issue and
work with either your server administrators or storage providers to get the issue resolved.

In large organizations, the storage will usually be provided by a Storage Area Network (SAN).
SAN administrators usually work with the SAN vendors to ensure optimal confi guration and
performance. The administrators have many knobs they can tweak, and quite often it’s just a
matter of allocating more bandwidth and processing power from the SAN controller to your
server. Sometimes, however, there just may not be enough disks available to meet the performance
demands. If this is the case, it will often require a redesign and data migration to new SAN drives.

SQL SERVER

The majority of the Team Foundation Server application logic is implemented in SQL Server as
stored procedures. The application tier itself is responsible for very little processing. For source con-
trol, the application tier performs caching and security checks. For work item tracking, the majority
of the requests are passed directly to SQL Server. Because of this, the health of Team Foundation
Server can largely be determined using the tools and functions provided by SQL Server.

Dynamic Management Views
Dynamic management views (DMVs) return server state information that can be used to monitor the
health of a server instance, diagnose problems, and tune performance. To use them, you must have the
VIEW SERVER STATE permission on the SQL server, or be a member of the sysadmins database role.

If DMVs are new to you, the easiest way to get started is to download the sample script from Jimmy
May’s blog at http://aka.ms/SQLDMVAllStars. Following are the fi ve examples included in this script:

 ➤ Expensive Queries (CPU, reads, frequency, and so on)

 ➤ Wait Stats

http://aka.ms/SQLDMVAllStars

702 ❘ CHAPTER 25 MONITORING SERVER HEALTH AND PERFORMANCE

c25.indd 04/22/2014 Page 702

 ➤ Virtual File Stats (including calculations for virtual fi le latency)

 ➤ Plan Cache

 ➤ Blocking (real time)

Each of these queries has a series of commented-out WHERE and ORDER BY clauses that can be
uncommented to surface different information.

NOTE For more information and examples, see “Dynamic Management Views
and Functions (Transact-SQL)” at http://aka.ms/SQL2012DMV.

Currently Running Processes
The query examined here is perhaps the single most useful query for identifying performance
problems within SQL Server. It uses a combination of the dm_exec_requests, dm_exec_sql_
text, and dm_exec_query_memory_grants DMVs to discover problems in real time. This query
is not specifi c to Team Foundation Server, and it can be used on any SQL server to see what
SQL is doing.

As shown here, the query will return interesting details (explained in Table 25-1) about all non-
system processes. It also excludes the process running the query, and it sorts all the processes with
the longest-running ones at the top.

SELECT
@@SERVERNAME as ServerName,
a.session_id,
datediff(ss, a.Start_Time, getdate()) as seconds,
a.wait_type,
a.wait_time,
m.requested_memory_kb / 1024 as requestedMB,
a.granted_query_memory,
m.dop,
a.command,
d.Name as DBName,
a.blocking_session_id as blockedby,
LTRIM(b.text) as sproc,
substring(b.text, a.statement_start_offset / 2,
CASE WHEN
 (a.statement_end_offset - a.statement_start_offset) / 2 > 0
 THEN
 (a.statement_end_offset - a.statement_start_offset) / 2
 ELSE 1
END) as stmt,
a.last_wait_type,
a.wait_resource,
a.reads,
a.writes,
a.logical_reads,
a.cpu_time

http://aka.ms/SQL2012DMV

SQL Server ❘ 703

c25.indd 04/22/2014 Page 703

FROM
 sys.dm_exec_requests a with (NOLOCK)
OUTER APPLY sys.dm_exec_sql_text(a.sql_handle) b
LEFT JOIN
 sys.dm_exec_query_memory_grants m (NOLOCK)
 on m.session_id = a.session_id
 and m.request_id = a.request_id
LEFT JOIN
 sys.databases d
 ON d.database_id = a.database_id
WHERE
 a.session_id > 50
 AND a.session_id <> @@spid
ORDER BY
 datediff(ss, a.Start_Time, getdate()) DESC

TABLE 25-1: Description of the Columns Returned by the Currently Running Processes Query

COLUMN DESCRIPTION

ServerName The name of the server that the query was executed on. When
using SQL Server Management Studio to connect to multiple serv-
ers, this column is useful to verify that the query was executed
against the correct server.

session_id The ID of the SQL process. This is commonly referred to as a SPID,
as in a SQL Process ID. It is unique while the process is running,
and it can be reused by another process later.

Seconds Total seconds since the query was started.

wait_type See the section “SQL Wait Types” later in this chapter.

requestedMB Memory requested by the query.

granted_query_memory Memory allocated to the query.

Dop The degree of parallelism (DOP). This indicates how many CPU
cores this process is using.

Command Command that the query is running (for example, SELECT,
INSERT, UPDATE, DELETE, or BACKUP DATABASE).

DBName Name of the database that the query is running on.

Blockedby The ID of the process that this process is blocked by or waiting
for.

Sproc The text of the currently running query.

Stmt The currently executing statement within the currently running
query.

continues

704 ❘ CHAPTER 25 MONITORING SERVER HEALTH AND PERFORMANCE

c25.indd 04/22/2014 Page 704

COLUMN DESCRIPTION

last_wait_type The wait type that the process was previously waiting for

wait_resource The resource that the process is currently blocked by or
waiting for

Reads Physical read operations of the process

Writes Physical write operations of the process

logical_reads Logical read operations of the process

cpu_time CPU time (in milliseconds) that is used by the process

The detailed information provided by this query can be used to identify many common SQL
Server issues.

Long-Running Processes
The seconds column will tell you how long a process has been running. Team Foundation Server
has a default SQL time-out setting of one hour (3,600 seconds). If there are processes running
against the Tfs_Configuration or the Tfs_Collection databases that are anywhere near 3,600
seconds, then you likely have a problem.

Once a Team Foundation Server process runs for 3,600 seconds in SQL, it will be cancelled on the
application tier, and clients will receive an error message. The exception to this is queries executed
by the Team Foundation Server Background Job Agent. These queries usually have a much longer
time-out.

NOTE There may be processes that did not originate from Team Foundation
Server that run for longer than one hour. An example is a SQL backup or other
database maintenance task.

High Memory Usage
The granted_query_memory column tells you how much memory SQL has allocated to a specifi c
process. Each process will require different amounts of memory to perform its work.

In general, the commonly executed Team Foundation Server commands use less than 4GB of
memory, and anything consistently higher is worth further investigation. If a process is using
large amounts of memory, it can mean that SQL has chosen an ineffi cient query plan. If the total
of the column is close to the total physical memory of the server, you may want to consider adding
more memory.

TABLE 25-1 (continued)

SQL Server ❘ 705

c25.indd 04/22/2014 Page 705

UPGRADES AND SQL QUERY PLANS

When SQL compiles a stored procedure, it uses the query optimizer engine to gen-
erate a query plan. Upon execution, the query plan is used to determine the most
effi cient way to run the query. Based upon index statistics, data histograms, and
other metrics, it determines things like whether it is more effi cient to use a scan
(iterate through all rows) or a seek (skip to a specifi c location based upon an index).
As a SQL developer, you can set query hints in your stored procedure that force the
query optimizer to choose a specifi c plan.

Although the SQL team strives to ensure that query plans remain stable, many
things can cause SQL to pick a new query plan. During the development of Team
Foundation Server 2010, there were a couple of events that caused query plan insta-
bility on the busy internal servers. The fi rst was a hardware and operating system
upgrade. The SQL server was moved from a 32-bit to a 64-bit machine with more
capable storage.

The second change was an upgrade from SQL Server 2005 to SQL Server 2008.
Changes in the query optimization engine caused SQL to overestimate memory for
some of the important commands. For example, Get commands started consum-
ing 10GB of memory each. Get was the most commonly executed command, and
there was only 64GB of memory available on the server. This meant that everything
ground to a halt until the ineffi cient query plan was identifi ed and a query hint was
added to force the old behavior.

Sometimes other changes such as index fragmentation and growing data sizes will
cause a query plan to be ineffi cient over time. Fortunately, most of these types
of issues have been fl ushed out through Microsoft’s own internal usage, and you
are unlikely to encounter them on your own server. In other cases, a restart of
SQL server or DBCC FREEPROCCACHE will cause the query plans to be fl ushed and
regenerated.

For much more detailed information on how SQL Server allocates memory for plan
caching, see the “Plan Caching in SQL Server 2008” white paper by Greg Low at
http://aka.ms/SQLPlanCache.

High Processor Usage
The dop column indicates the degree of parallelism for a query. A value of 0 indicates that the pro-
cess is running in parallel on all processors. SQL Server has a setting for the maximum degree of
parallelism (referred to as MAXDOP). This controls how many processors any individual process can
use. The default setting is zero, meaning all processors.

If a process is using all processors, it means that it is making the most of the CPU hardware avail-
able. This is great. However, it also reduces the concurrency of the system and will block other pro-
cesses from running until it is fi nished.

http://aka.ms/SQLPlanCache

706 ❘ CHAPTER 25 MONITORING SERVER HEALTH AND PERFORMANCE

c25.indd 04/22/2014 Page 706

On busy servers, you may want to reduce the MAXDOP setting to allow increased concurrency.
For example, do you want one large Merge command to block all the smaller commands while it
executes? Or, could you live with a slightly slower Merge command that doesn’t block all the other
smaller commands?

NOTE For more information, see the article “max degree of parallelism Option”
at http://aka.ms/MAXDOP.

Performance Problems in a Specifi c Collection Database
The DBName column indicates in which database the process is currently executing. If you are expe-
riencing a performance problem for a particular team project collection, this column will help you
identify what commands are currently running for that collection.

Blocking Processes
The blockedby column indicates the ID of the process for which this process is waiting. If one
process has a lock on a table or an index, and another process requires that same lock, it will be
blocked until the fi rst process releases the lock.

An example of this is a check-in lock. Because all check-ins are serialized, there must be a lock until
SQL has committed the changes. If a check-in is large and requires lots of processing, it can hold the
lock for a period of time. This can frustrate users who are just trying to check in a single fi le.

Another example is a lock in the tbl_LocalVersion table. If a user has a large workspace
with many fi les, a DeleteWorkspace command may cause blocking of other commands such
as a Get. This is because SQL Server does lock escalation. Team Foundation Server will request
row locks (which lock only the affected rows), but SQL may determine that a page lock
(which affects all rows on the same page) or a table lock (which affects all rows in the table)
 is more effi cient.

Locking (and, therefore, blocking) was a signifi cant problem during the internal usage of Team
Foundation Server 2008 and 2010. The 2010 release eliminated the most common causes of block-
ing (for example, undo, edit, and check-in commands), which results in a much improved user
experience.

Resource Contention
The wait_resource column is an identifi er for what resource the process is waiting for. If the
wait_type is PAGIOLATCH_*, this value will likely be a set of three colon-separated numbers such as
6:1:35162 in which:

 ➤ The fi rst number is the database ID.

 ➤ The second number is the physical fi le ID.

 ➤ The third number is the page number.

http://aka.ms/MAXDOP

SQL Server ❘ 707

c25.indd 04/22/2014 Page 707

You can look up the name of the database from the database ID by running the following query:

SELECT database_id, name FROM sys.databases

You can look up the physical fi le path by running the following query:

USE [Database_Name]
GO
SELECT file_id, type_desc, name, physical_name
FROM sys.database_files

WARNING For large operations, Team Foundation Server makes heavy use of
SQL’s TempDB. The database ID of TempDB is usually 2. If you see processes wait-
ing on TempDB as a resource, this may indicate that you have a storage through-
put problem. The general scalability recommendation for TempDB is that you
should have one equal-sized data fi le per CPU.

SQL Wait Types
A SQL process will be either running or waiting. When the process is waiting, SQL will record the wait
type and wait time. Specifi c wait types and times can indicate bottlenecks or hot spots within the server.

The wait_type column of the currently running requests query will indicate what each process is
waiting for (if anything). If you see many processes with the same value, this may indicate a system-
wide bottleneck.

If it’s not clear from the list of processes, you can also use the dm_os_wait_stats DMV, which col-
lects cumulative wait statistics since the server was last restarted (or the statistics were reset). The
following command will give you an output similar to Table 25-2:

-- What is SQL waiting for the most?
SELECT TOP 5 wait_type, wait_time_ms
FROM sys.dm_os_wait_stats
ORDER BY wait_time_ms DESC

TABLE 25-2: Sample Output from dm_os_wait_stats

WAIT_TYPE WAIT_TIME_MS

FT_IFTS_SCHEDULER_IDLE_WAIT 2669883

DISPATCHER_QUEUE_SEMAPHORE 2316915

BACKUPBUFFER 2029392

CXPACKET 1292475

XE_TIMER_EVENT 932119

You can also manually reset the wait statistics for a server by running the following command:

-- Clear wait stats for this instance
DBCC SQLPERF ('sys.dm_os_wait_stats', CLEAR)

708 ❘ CHAPTER 25 MONITORING SERVER HEALTH AND PERFORMANCE

c25.indd 04/22/2014 Page 708

By looking at the results of the dm_os_wait_stats DMV, you can determine the most likely bottle-
neck in the system. Table 25-3 describes the common wait types.

TABLE 25-3: Common Wait Types

WAIT TYPE DESCRIPTION

CXPACKET Indicates time spent waiting for multiple processors to synchronize
work. You may consider lowering the degree of parallelism or increas-
ing the number of processors if contention on this wait type becomes a
problem.

PAGEIOLATCH_* Indicates time spent waiting for storage operations to complete. You
may have a storage throughput problem if this is consistently high.

LOGBUFFER Indicates time spent waiting for the transaction log. Consistently
high values may indicate that the transaction log devices cannot
keep up with the amount of logging being generated by the server.
You will also see this wait type if your transaction log is full and has
triggered an auto-grow. In this case, you should check that your
transaction log backups are working and correctly truncating the
log fi les.

NOTE For more information and a description of each of the wait types, see
“sys.dm_os_wait_stats” at http://aka.ms/SQL2012WaitTypes.

Storage Health
SQL Server provides the dm_io_virtual_file_stats DMV for keeping track of various
storage metrics. The following query will list each of the physical database fi les in descending
latency order:

SELECT
 --virtual file latency
 vLatency
 = CASE WHEN (num_of_reads = 0 AND num_of_writes = 0)
 THEN 0 ELSE (io_stall/(num_of_reads + num_of_writes)) END
 , vReadLatency
 = CASE WHEN num_of_reads = 0
 THEN 0 ELSE (io_stall_read_ms/num_of_reads) END
 , vWriteLatency
 = CASE WHEN num_of_writes = 0
 THEN 0 ELSE (io_stall_write_ms/num_of_writes) END
 --avg bytes per IOP
 , BytesperRead
 = CASE WHEN num_of_reads = 0

http://aka.ms/SQL2012WaitTypes

SQL Server ❘ 709

c25.indd 04/22/2014 Page 709

 THEN 0 ELSE (num_of_bytes_read/num_of_reads) END
 , BytesperWrite
 = CASE WHEN num_of_writes = 0
 THEN 0 ELSE (num_of_bytes_written/num_of_writes) END
 , BytesperTransfer
 = CASE WHEN (num_of_reads = 0 AND num_of_writes = 0)
 THEN 0 ELSE (
 (num_of_bytes_read+num_of_bytes_written)/
 (num_of_reads + num_of_writes)) END

 , LEFT(mf.physical_name,2) as Drive
 , DB_NAME(vfs.database_id) as DB
 , vfs.*
 , mf.physical_name
 FROM sys.dm_io_virtual_file_stats(NULL,NULL) as vfs
 JOIN sys.master_files as mf
 ON vfs.database_id = mf.database_id AND vfs.file_id = mf.file_id
 ORDER BY vLatency DESC

In the results of this query, you should pay particular attention to the vLatency and physical_name
columns. The vLatency column indicates the combined average read and write latency for a fi le (in
milliseconds). The physical_name column indicates which database fi le the results are for.

Following are some general points to consider when looking at these results:

 ➤ A latency of more than 30 milliseconds is something worth investigating for large databases
with lots of activity.

 ➤ Latency in TempDB will affect overall server performance.

 ➤ High write latency (greater than 50 milliseconds) may be an indication that write caching is
disabled or not working correctly. If this is the case, you will need to work with either your
server administrators or storage providers to get the issue resolved.

Memory Contention
SQL Server (and, therefore, Team Foundation Server) performs best when the data pages that it
requires are in memory. SQL Server maintains a buffer pool of pages. You can see how much of
each database is available in the buffer pool by using the dm_os_buffer_descriptors DMV.
If your database is not in the buffer pool, or if it is lower than you expect, you may need to add
more memory to your SQL Server. As another option, you could move the database to a new
SQL Server.

The following query produces an output similar to Table 25-4:

-- How much of the databases are in memory?
SELECT
db_name(database_id) as dbName,
COUNT(*)*8/1024 as BufferPoolMB
FROM sys.dm_os_buffer_descriptors
GROUP BY db_name(database_id)
ORDER BY 2 DESC

710 ❘ CHAPTER 25 MONITORING SERVER HEALTH AND PERFORMANCE

c25.indd 04/22/2014 Page 710

TABLE 25-4: Example Output of dm_os_buffer_descriptors

DBNAME BUFFERPOOLMB

Tfs_Collection1 92251

Tfs_Collection2 15252

Tempdb 2914

Tfs_Warehouse 1175

Tfs_Confi guration 231

Tfs_Collection3 129

ReportServer 27

Master 2

ReportServerTempDB 2

Model 0

TEAM FOUNDATION SERVER

Ever since the very fi rst release of Team Foundation Server, the server has included rich command
logging and tracing functionality. This level of logging and tracing is invaluable in identifying and
measuring server performance.

With the release of the Visual Studio Online service, built on the Windows Azure platform, the
monitoring and diagnostics functionality of the product has been enhanced. Because the product
team members are responsible for the smooth operation of the service, it is in their best interest
for the product to be easy to monitor and diagnose. These new responsibilities lead to new tracing
infrastructures and enhancements to how the Windows Event Log is used in the on-premises ver-
sion as well.

Command Log
The application tier keeps track of who executed what command at what time. It logs information
such as the user name, IP address, user agent, execution time, and execution count for each request.
In Team Foundation Server 2013, the command log also shows activity performed using the Web
Access interface.

NOTE The command log data is also presented in Team Web Access through
the Operational Intelligence Hub. For more information see the Operational
Intelligence Hub section of Chapter 21.

Team Foundation Server ❘ 711

c25.indd 04/22/2014 Page 711

In the 2005 and 2008 versions, this data was recorded in the TfsActivityLogging database. In
Team Foundation Server 2010, the tables were moved into the Tfs_Configuration and Team
Project Collection databases. Following are the two tables used to record this data:

 ➤ tbl_Command

 ➤ tbl_Parameter

Approximately every 30 seconds, the application tier fl ushes recent requests to the command log
tables in the database, where they can be queried. There is also an internal job that trims the com-
mand log to the past 14 days of data.

To show all the commands run by a particular user in the past 24 hours, you can run the following query:

-- Recent commands from a particular user
USE [Tfs_DefaultCollection]
GO
SELECT *
FROM [dbo].[tbl_Command] WITH (NOLOCK)
WHERE StartTime > DATEADD(HOUR, -24, GETUTCDATE())
AND IdentityName = 'DOMAIN\Username'
ORDER BY StartTime DESC

For commands that run longer than 30 seconds, or commands that fail, the parameters are also
logged to tbl_Parameter. This is useful to identify if the user is trying to do something unreason-
able. One such example is a QueryHistory call of the root folder ($/) with the Recursive fl ag set.
To retrieve the parameters for the command, you must join or fi lter on the CommandId column, as
shown in the following example:

-- Parameters for a particular CommandId
USE [Tfs_DefaultCollection]
GO
SELECT *
FROM tbl_Parameter WITH (NOLOCK)
WHERE CommandId = 12345678
ORDER BY ParameterIndex

The data in the command log is useful for seeing how many users actively use the server. For exam-
ple, if you want to know how many distinct users have actively used the server in the past seven
days, you can run the following query:

-- Recent active users
USE [Tfs_DefaultCollection]
GO
SELECT
 COUNT(DISTINCT IdentityName) as DistinctUsers,
 SUM(ExecutionCount) as TotalExecutionCount
FROM [dbo].[tbl_Command] WITH (NOLOCK)
WHERE StartTime > DATEADD(DAY, -7, GETUTCDATE())
AND Command IN
 ('UpdateLocalVersion', 'PendChanges', 'Get', 'CheckIn', 'Update', 'GetWorkItem')

This will include any user who has refreshed his or her workspace, checked out a fi le, saved a work
item, or opened a work item. For measuring active users, it’s important to fi lter based upon the

712 ❘ CHAPTER 25 MONITORING SERVER HEALTH AND PERFORMANCE

c25.indd 04/22/2014 Page 712

command. Otherwise, if a user happens to select a collection in the “Connect to Team Foundation
Server” dialog box, he or she will be included in the count, even though that user is not actively
using that collection. This can lead to infl ated numbers.

NOTE With the introduction of the “Local Workspaces” feature in Team
Foundation Server 2012, it is no longer necessary for clients to contact the
server to update their workspace and check out fi les. As such, the activity log
may not accurately refl ect all the active users of the system. You can read more
about Local Workspaces in Chapter 6.

The command log is incredibly useful for identifying performance problems for particular com-
mands. For example, you can use the ExecutionTime and ExecutionCount columns to determine
the average response time for each command. So, if you want to know the top ten slowest com-
mands for the past seven days, you can run the following query:

-- Top 10 commands with the highest average response time
USE [Tfs_DefaultCollection]
GO
SELECT TOP 10
 Application,
 Command,
 ROUND(SUM(Cast(ExecutionTime AS float) / 1000000) / SUM(ExecutionCount),3)
 AS ResponseTimeSeconds
FROM [dbo].[tbl_Command] WITH (NOLOCK)
WHERE StartTime > DATEADD(DAY, -7, GETUTCDATE())
GROUP BY Application, Command
ORDER BY
 SUM(Cast(ExecutionTime AS Float) / 1000000) / SUM(ExecutionCount) DESC

Using the information within the command log, you can help determine whether user complaints of
slow performance are widespread on the client side or specifi c to a particular user.

NOTE The ExecutionTime in the command log starts when the server receives
the fi rst byte of the request. It fi nishes when the server starts transmitting the last
packet of the response to the client.

Because of this, it only shows the server’s view of the request, and there may be
additional time spent on the client to complete processing of a request. For a more
accurate view from a particular client, you can use client-side tracing. An example
of this behavior is the GetMetadataEx command. This command is called when
Team Explorer connects to a Team Project Collection for the fi rst time. When
connecting to a collection with a large number of Team Projects, the metadata
will be relatively large (sometimes hundreds of megabytes). Once the server has
processed the request and sent it to the client, the client will spend some time pro-
cessing the response. This processing time won’t be refl ected in the command log.

Team Foundation Server ❘ 713

c25.indd 04/22/2014 Page 713

Active Server Requests
Team Foundation Server provides a web service that lists the currently executing requests on an
application tier server. This web service can be used to see real-time blocking, as well as which users
are currently using the server. The Team Foundation Server URL for the web service is http://
localhost:8080/tfs/TeamFoundation/Administration/v3.0/AdministrationService.asmx.

WARNING If you have multiple application tiers in a network load-balancing
confi guration, you will need to query each server. The active requests are local to
each server and are not aggregated between servers.

No tools are provided with Team Foundation Server for calling this web service. You will need to
write your own, or use another method. The simplest (but not necessarily the prettiest) way to view
the requests is to use Windows PowerShell.

The following script will dynamically generate a web service proxy object, execute the request,
retrieve the results, and print them out (as shown in Figure 25-1).

$tfsadmin = New-WebServiceProxy -UseDefaultCredential
 -URI http://tfsserver:8080/tfs/TeamFoundation/administration
 /v3.0/AdministrationService.asmx?WSDL
$tfsadmin.QueryActiveRequests($null, "False") | %{ $_.ActiveRequests } |
 sort StartTime | ft StartTime,UserName,MethodName,RemoteComputer

FIGURE 25-1: Example output from PowerShell script

If you are not a member of the Team Foundation Server Administrators security group, you will see
only your own requests. Otherwise, you will see the requests for all users in all collections.

Health Monitoring Events
Querying the active requests list periodically is a very effective way to identify blocking and other
problems in real time. In Team Foundation Server 2013, an internal task exists that identifi es long-
running requests. By default, it runs every 30 seconds and looks for the following:

 ➤ Requests that have been queued for longer than 15 seconds

 ➤ When there are more than 10 requests in the queue

 ➤ Requests that have been executing for longer than 60 seconds

http://localhost:8080/tfs/TeamFoundation/Administration/v3.0/AdministrationService.asmx
http://localhost:8080/tfs/TeamFoundation/Administration/v3.0/AdministrationService.asmx
http://tfsserver:8080/tfs/TeamFoundation/administration

714 ❘ CHAPTER 25 MONITORING SERVER HEALTH AND PERFORMANCE

c25.indd 04/22/2014 Page 714

If any of these conditions are met, a warning event with ID 7005 is logged to the Windows
Application Event log indicating the condition. This then allows monitoring systems (such as System
Center) to alert on the fact. The event text will look something like this:

Detailed Message: A request for service host DefaultCollection
 has been executing for 34 seconds, exceeding the warning
 threshold of 30.
 Request details: Request Context Details
 Url: /tfs/DefaultCollection/VersionControl/v1.0/repository.asmx
 Method: QueryHistory
 Parameters: itemSpec = $/ (Full)
versionItem = T
maxCount = 256
includeFiles = False
slotMode = True
generateDownloadUrls = False
sortAscending = False
 User Name: VSALM\Administrator
 User Agent: Team Foundation (TF.exe, 11.0.50727.1, Other, SKU:9)
 Unique Id: af139ed8-3526-422a-a9ee-16fa084ba5c6

One of the problems often encountered with monitoring systems is that alerts fi re too often, are
never closed, and eventually are deemed too noisy and disabled. In Team Foundation Server 2013,
once the condition has passed, an additional event is logged with ID 7006. This allows the monitor-
ing system to be intelligent and auto-resolve the alert. The event text will look something like this:

Detailed Message: There are no active requests for service host DefaultCollection
that exceed the warning threshold of 30.

The default thresholds are designed to be reasonable for most environments. However, in some
environments, it might be perfectly reasonable for many commands to run longer than 60 seconds.
These thresholds can be overridden under the path /Configuration/ServiceHostMonitor/ in the
following Team Foundation Server registry keys:

 ➤ QueuedRequestElapsedThreshold = 15

 ➤ QueuedRequestThreshold = 10

 ➤ TotalExecutionElapsedThreshold = 60

Performance Counters
All versions of Team Foundation Server have included performance counters that allow administrators
to monitor various aspects of the system. The release of Visual Studio Online forced the product team
to add additional performance counters so that they can monitor the behavior of the system. Unlike
an on-premises server, it is not possible to view the SQL performance counters with SQL Azure. This
necessitated the addition of the following performance counters in the \TFS Services category:

 ➤ Average SQL Connect Time

 ➤ Current SQL Connection Failures/Sec

 ➤ Current SQL Connection Retries/Sec

Team Foundation Server ❘ 715

c25.indd 04/22/2014 Page 715

 ➤ Current SQL Execution Retries/Sec

 ➤ Current SQL Executions/Sec

 ➤ Current SQL Notification Queries/Sec

These counters can be used to diagnose connectivity and transient errors with the SQL Server envi-
ronment being used by Team Foundation Server.

Server Tracing
Team Foundation Server also includes low-level tracing for diagnosing complex server problems.
Typically, this is used only by Microsoft support personnel when investigating a bug or strange behavior.

With the introduction of Visual Studio Online, the product team required a more detailed and fl ex-
ible tracing mechanism. Because the service shares the same codebase, this tracing infrastructure is
available in the on-premises product as well. However, because it requires an intimate knowledge of
how the product works, it should be used only under the direction of Microsoft support personnel.

TRACING AT INTERNET SCALE

To move an application from an on-premises product to an Internet-scale service
often requires design changes. One such example of this is the server tracing in
Team Foundation Server.

For Team Foundation Server 2010 and prior versions, tracing was pretty much
an “all or nothing” approach. You could turn it on for a subsystem (for example,
Work Item Tracking), but then everything within that subsystem produced reams
of tracing data. Additionally, the tracing was scoped to a single application tier in a
load-balanced environment.

For Visual Studio Online, the team needed more fl exibility and much fi ner grained
central control. Some of the scenarios that were considered were:

 ➤ A single user is having problems checking in a fi le to his or her project.

 ➤ Many users are having problems with a particular part of the system.

 ➤ One of the jobs is not completing successfully but doesn’t log enough informa-
tion in the job result message.

 ➤ A very small number of executions of a particular command over a period of
time are failing and it’s not known why.

 ➤ Some users of a particular version of a particular client are experiencing a per-
formance problem.

With these scenarios, the team came up with a fl exible solution driven by the prc_
CreateTrace and prc_QueryTraces stored procedures in the Tfs_Configuration
database. Additionally, thousands of trace messages are spread throughout the
code, each with unique TracePoint identifi ers. They all remain dormant until
enabled in the central database confi guration.

continues

716 ❘ CHAPTER 25 MONITORING SERVER HEALTH AND PERFORMANCE

c25.indd 04/22/2014 Page 716

This solution allows support personnel to enable tracing for specifi c code
TracePoints within a method, whole methods, individual users, and specifi c user
agents. It is also possible to enable tracing for whole layers of the system, such as
BusinessLogic and with areas, such as CheckIn and CreateWorkspace.

The output of this tracing infrastructure is logged to an Event Tracing for Windows
(ETW) session. By default, an Event Log trace listener is available in the Windows
Event Viewer under \Applications and Services Logs\
Microsoft-Team Foundation Server\Debug.

Client Performance Tracing
Similar to server tracing, tracing is also available in the client object model.

NOTE For more information on enabling client-side tracing, see the
“Team Foundation Server Client Tracing” blog post at http://aka.ms/
TfsClientTracing.

If you want a convenient way to see the web service calls your Team Foundation Server clients are
making to the server, you can enable the PerfTraceListener trace listener on your client. This is
done by adding the following confi guration in the appropriate app.config fi le:

<configuration>
 <appSettings>
 <add key="TFTrace.Writer" value="true" />
 <add key="TFTrace.DirectoryName" value="C:\Temp" />
 <add key="VersionControl.EnableSoapTracing" value="true" />
 </appSettings>
 <system.diagnostics>
 <switches>
 <add name="TeamFoundationSoapProxy" value="4" />
 <add name="VersionControl" value="4" />
 <add name="Download" value="2" />
 <add name="LocalWorkspaces" value="4" />
 </switches>
 <trace autoflush="true" indentsize="3">
 <listeners>
 <add name="perfListener"
type="Microsoft.TeamFoundation.Client.PerfTraceListener,
Microsoft.TeamFoundation.Client,
Version=11.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a"
 />
 </listeners>
 </trace>
 </system.diagnostics>
<configuration>

continued

http://aka.ms

Team Foundation Server ❘ 717

c25.indd 04/22/2014 Page 717

Once the trace listener is enabled and the application is started, a dialog box will appear, as shown
in Figure 25-2. In the dialog box, you’ll see how long each call takes (in milliseconds), the number of
calls made, and the average time for each call.

FIGURE 25-2: Example of the performance trace listener dialog box

The top section of the dialog box shows the aggregated information. The bottom section shows the list
of web service methods in the order in which they were called, the elapsed time in milliseconds, and
the time of day when the method completed execution. If the method has not completed, it will display
Running for the completion time. If you move the mouse over the entries in the bottom section, a tooltip
will show you the stack trace, so you can see what part of the application made the call.

NOTE For more information on how to interpret the results of the dialog box,
see Buck Hodges’s blog post, “How to see the TFS server calls made by the cli-
ent,” at http://aka.ms/TfsPerfListener.

Job History
Team Foundation Server 2013 includes a background job agent, just as the previous versions did. Jobs are
defi ned in the confi guration and in each collection database. The history for each of these jobs is stored in
the confi guration database. The supported way of accessing this history is through the object model.

http://aka.ms/TfsPerfListener

718 ❘ CHAPTER 25 MONITORING SERVER HEALTH AND PERFORMANCE

c25.indd 04/22/2014 Page 718

NOTE The background job data is also presented in Team Web Access through
the Operational Intelligence Hub. For more information, see the Job Monitoring
topic in the Operational Intelligence Hub section of Chapter 21.

To list the currently defi ned jobs for a server, you can use the following PowerShell script. The out-
put will be similar to that shown in Figure 25-3:

$ErrorActionPreference = "Stop";
[void][Reflection.Assembly]::Load("Microsoft.TeamFoundation.Client,
 Version=11.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a");

Modify the collection URL as necessary.
$tpc = new-object Microsoft.TeamFoundation.Client.TfsTeamProjectCollection
 "http://localhost:8080/tfs/DefaultCollection"

$jobService = $tpc.GetService([Microsoft.TeamFoundation
 .Framework.Client.ITeamFoundationJobService])

List all the jobs and their JobIds
$jobService.QueryJobs() | sort Name | select JobId, Name | ft -a

FIGURE 25-3: PowerShell example of currently defi ned jobs

To get the recent execution history of a job, as shown in Figure 25-4, you can use the following
PowerShell command after running the previous one:

http://localhost:8080/tfs/DefaultCollection

Team Foundation Server ❘ 719

c25.indd 04/22/2014 Page 719

Get the 20 latest execution results for a particular JobId
$jobService.QueryJobHistory([Guid[]] @('a4804dcf-4bb6-4109-b61c-e59c2e8a9ff7'))
 | select -last 20 | ft ExecutionStartTime,Result,ResultMessage

FIGURE 25-4: PowerShell example of recent job history

NOTE For more information, see Chris Sidi’s blog post, “TFS 2010:
Introducing the TFS Background Job Agent and Service,” at http://aka.ms/
TfsJobAgent.

Storage Usage
With a system like Team Foundation Server, it’s not uncommon for the storage usage to grow
rapidly as people discover the value of the system and start using it for more things. As a Team
Foundation administrator, you may want to know what is causing your databases to grow. Because
all Team Foundation Server data is stored in SQL Server, you can use the SQL sp_spaceused stored
procedure to identify where the data growth is occurring.

The following script will list the total database size and the top 10 largest tables. You will need to
run it for each collection database.

-- Database total space used
EXEC sp_spaceused

-- Table rows and data sizes
CREATE TABLE #t (
 [name] NVARCHAR(128),
 [rows] CHAR(11),
 reserved VARCHAR(18),
 data VARCHAR(18),

http://aka.ms

720 ❘ CHAPTER 25 MONITORING SERVER HEALTH AND PERFORMANCE

c25.indd 04/22/2014 Page 720

 index_size VARCHAR(18),
 unused VARCHAR(18)
)
INSERT #t
EXEC [sys].[sp_MSforeachtable] 'EXEC sp_spaceused ''?'''
SELECT TOP 10
 name as TableName,
 Rows,
 ROUND(CAST(REPLACE(reserved, ' KB', '') as float) / 1024,2) as ReservedMB,
 ROUND(CAST(REPLACE(data, ' KB', '') as float) / 1024,2) as DataMB,
 ROUND(CAST(REPLACE(index_size, ' KB', '') as float) / 1024,2) as IndexMB,
 ROUND(CAST(REPLACE(unused, ' KB', '') as float) / 1024,2) as UnusedMB
FROM #t
ORDER BY CAST(REPLACE(reserved, ' KB', '') as float) DESC

DROP TABLE #t

You can then use the information in Table 25-5 to match table names to their purposes, and imple-
ment strategies to reduce the storage used and control the growth.

TABLE 25-5: Largest Tables within a Collection Database

TABLE NAME USED FOR HOW TO REDUCE

tbl_Content All blob content, including:
version control fi les, test
attachments, and work item
tracking attachments

Destroy version control content,
delete team projects, or run the Test
Attachment Cleanup tool.

tbl_LocalVersion Version control workspaces Switch users to Local Workspaces;
delete workspaces or reduce the
number of folders for which they
have mappings; upgrade to a SQL
Server edition that supports data
compression.

tbl_PropertyValue Version control code churn
metrics

Upgrade to a SQL Server edition
that supports data compression.

WorkItemsWere Work item tracking historical
revisions

Destroy work items.

WorkItemLongTexts Work item tracking long text
fi eld data

Destroy work items.

WorkItemsLatest Work item tracking latest
revisions

Destroy work items.

WorkItemsAre Work item tracking latest
revisions

Destroy work items.

tbl_tmpLobParameter Temporary storage for large
in-progress check-ins

N/A

Tools ❘ 721

c25.indd 04/22/2014 Page 721

NOTE In Team Foundation Server 2013, the Work Item Tracking Attachments
and Test Attachments are contained in the tbl_Content table that Version
Control also uses.

Data Warehouse
One of the key components of Team Foundation Server is the data warehouse. In general, people
don’t have a problem with the performance or operation of the data warehouse. However, there are
two classes of problems that you’re more likely to run into as your servers grow larger:

 ➤ Processing time—As the number of reportable fi elds increases, the number of dimensions that
Analysis Services must process also increases. This increases the time it takes to process the
cube and, therefore, the latency of the data is higher.

 ➤ Schema confl icts—In the simple case, when there are two fi elds in different collections (for
example, Priority) with the same name, but a different type (for example, String versus
Integer), this results in a schema confl ict. That project collection is then blocked from pro-
cessing warehouse updates, and the data in the relational warehouse and cube become stale.

You can use two reports (“Cube Status” and “Blocked Fields”) to monitor the health and perfor-
mance of the Team Foundation Server data warehouse. They display the following information:

 ➤ Recent processing times

 ➤ Current status (whether the cube is processing now and, if not, when it is scheduled to
 process next)

 ➤ Schema confl icts

 ➤ Most recent time that each warehouse adapter successfully ran

NOTE For more information on how to download, install, and interpret the
reports, see “Administrative Report Pack for Team Foundation Server 2010 and
2012” at http://aka.ms/TfsWarehouseReports and “Monitoring the TFS Data
Warehouse—FAQ” at http://aka.ms/WarehouseReportsFAQ. The same reports
continue to work for Team Foundation Server 2013 without modifi cations.

TOOLS

A few tools are useful for monitoring server health and performance. Some are specifi c to Team
Foundation Server, and some are not.

Performance Analysis of Logs Tool
The Performance Analysis of Logs (PAL) tool knows how to analyze a performance counter log
fi le, look for threshold violations, and produce a server health report. It is not specifi c to Team
Foundation Server, and it can identify SQL Server issues.

http://aka.ms/TfsWarehouseReports
http://aka.ms/WarehouseReportsFAQ

722 ❘ CHAPTER 25 MONITORING SERVER HEALTH AND PERFORMANCE

c25.indd 04/22/2014 Page 722

The tool encapsulates the collective wisdom of Microsoft engineers and other experts to identify
possible problems with your servers. Figure 25-5 shows an example of a CPU utilization threshold
violation. You can use this report to identify potential problems that might need to be looked at on
the server or deeper in SQL Server and Team Foundation Server.

FIGURE 25-5: Example PAL report

NOTE For more information and to download the tool, see the PAL project site
on CodePlex at http://pal.codeplex.com/.

Team Foundation Server Best Practices Analyzer
The Team Foundation Server Best Practices Analyzer (BPA) is a tool used by Microsoft support
personnel to help diagnose customer issues. When executed, the BPA tool will connect to your
Team Foundation Server, download the event logs and command logs, and run queries against the
database. With each Power Tool release, the tool is updated to include rules that detect the causes of
common support requests.

http://pal.codeplex.com

Tools ❘ 723

c25.indd 04/22/2014 Page 723

For the most complete results, you should run the tool as an administrator on one of your applica-
tion tier servers. It can also be run remotely if you are an administrator and remote administration
is enabled for Windows and SQL Server.

NOTE To run the BPA tool, you must download and install the latest Team
Foundation Server Power Tools from http://aka.ms/TFS2013PowerTools.

Once it has fi nished collecting the data, it will parse it and run a series of rules that look for known
problems. It displays a report similar to Figure 25-6. Each of the rules has an expected result and a
help topic that describes how to rectify an unexpected result.

FIGURE 25-6: Best Practices Analyzer scan report

Team Foundation Server Management Pack for System Center
Operations Manager

System Center Operations Manager (SCOM) is an enterprise-level monitoring product from
Microsoft. A management pack defi nes monitors and rules for monitoring specifi c applications.

http://aka.ms/TFS2013PowerTools

724 ❘ CHAPTER 25 MONITORING SERVER HEALTH AND PERFORMANCE

c25.indd 04/22/2014 Page 724

The Team Foundation Server 2012 management pack provides both proactive and reactive monitor-
ing of Team Foundation Server 2012. It monitors application tier servers, team project collections,
build servers, and proxy servers.

You can download the management pack from http://aka.ms/TFS2013SCOM. Once you have
downloaded the management pack, you should review the MPGuide_TFS2013.docx document. This
document includes important information on how to set up and use the management pack.

NOTE You will need to create a Run As Profile and an associated
Run As Account that has administrative access within Team Foundation Server
to be able to use the management pack. Refer to the installation guide.

If everything is confi gured correctly, the management pack will automatically discover Team
Foundation Server instances and start monitoring them. It has a series of rules and monitors that
look for problems in the event log and check the health of the system.

When the Best Practices Analyzer tool is installed, you can also initiate a BPA scan from the
Operator Console.

SUMMARY

 In this chapter, you learned about the factors that infl uence the health of Team Foundation Server.
You learned that Windows performance counters are a useful way to record system health, and
you learned how to use the built-in SQL Server Dynamic Management Views to understand many
aspects of SQL Server Performance. You also learned about the different data sources available
within Team Foundation Server, along with some useful queries and reports for determining the
health of the system. Additionally, you looked at the tracing and Windows Events available in Team
Foundation Server 2013. Finally, this chapter covered three useful tools for monitoring server health
and performance.

Chapter 26 takes a look at the new Testing and Lab Management features, and how they can be
used to build high-quality software.

http://aka.ms/TFS2013SCOM

c26.indd 04/22/2014 Page 725

Testing and Lab Management
WHAT’S IN THIS CHAPTER?

 ➤ Learning about the testing capabilities of Visual Studio 2013

 ➤ Understanding the architecture of the software testing components
of Visual Studio 2013

 ➤ Planning for and administering your Team Foundation Server
deployment when used for software testing

Across the Visual Studio 2013 family of products, Microsoft has made signifi cant investments
to better support software testing activities. This is arguably the single biggest investment
Microsoft made for application lifecycle management since the Visual Studio 2010 release,
and many software development and testing organizations have already shown great results by
embracing these capabilities.

While many of these enhancements include tooling features outside the scope of a book about
Team Foundation Server, there are several testing technologies and workfl ows that, in one way
or another, involve Team Foundation Server. In this chapter, you will become more familiar
with the testing capabilities of the Visual Studio product line and the impact that adopting
these technologies will have as you plan, implement, and manage your Team Foundation
Server deployment.

As you will see in this chapter, there is a high potential for complexity as you begin embrac-
ing Visual Studio as your software testing solution. Many factors will infl uence the com-
plexity of your specifi c environment, such as which capabilities you want to use, how much
you wish to automate, and your organization’s network topology. For this reason, every
effort has been made in this chapter to provide you with a broad overview of the topics you
will need to consider, with links to supporting documentation and blog posts that provide
detailed guidance.

26

726 ❘ CHAPTER 26 TESTING AND LAB MANAGEMENT

c26.indd 04/22/2014 Page 726

WHAT’S NEW IN SOFTWARE TESTING?

The Team Foundation Server 2013 and Visual Studio Online releases have introduced a number of
advancements in the software testing area, including a load testing service hosted in Windows Azure
which allows for quick test ramp-up and near infi nite scaling of your load. They have also intro-
duced improvements to the Test Case Management features in Web Access.

New Cloud-Based Load Testing Service
With the release of Visual Studio Online and Visual Studio 2013, Microsoft unveiled Cloud-based
Load Testing as an additional service. With this service, you can create a relatively infi nite scale
load by taking existing load tests created with Visual Studio 2010 or later and running them on the
service. You no longer have to worry about acquiring hardware or virtual machines, setting up test
controllers or agents, deploying your tests or running your tests. You simply need to connect Visual
Studio 2013 to a Visual Studio Online account, open the .testsettings fi le in your solution, and
select the new Run tests using the Visual Studio Team Foundation Service option for the Test run
location on the General tab, as shown in Figure 26-1.

FIGURE 26-1: Test Settings fi le in Visual Studio

For more information on Microsoft’s Cloud-based Load Testing, please see the Getting Started page
at Visual Studio Online, which can be found at http://aka.ms/CloudLoadTesting.

http://aka.ms/CloudLoadTesting

Software Testing ❘ 727

c26.indd 04/22/2014 Page 727

Web-Based Test Case Management
Team Foundation Server 2013 and Visual Studio Online have also added the capability to manage
existing Test Plans from within the Web Access user interface. From the new Web Test Manager,
you can create edit, delete, move, and rename Test Suites as well as create, edit, delete, and run Test
Cases all without the need to install any software locally. We will discuss the features of Web Test
Manager later in this chapter.

SOFTWARE TESTING

NOTE For more information about how to use the specifi c testing technologies
included across the Visual Studio 2013 family of products, see the companion
book Professional Application Lifecycle Management with Visual Studio 2013
by Mickey Gousset, Martin Hinshelwood, Brian A. Randell, Brian Keller, and
Martin Woodward (Wiley 2014). Part VI of that book is dedicated to detail-
ing the different testing tools and technologies that can be found throughout
the Visual Studio 2013 product line. The book is available at http://aka.ms/
ALM2013Book.

It should go without saying that the role of software testing in any development process is to ensure
a high level of quality for any software by the time it is released to end users. Numerous studies
suggest that software defects discovered in production are exponentially more expensive to identify
and correct than if those same defects had been discovered and fi xed during the development or
testing phases of a project, before release. Hence, it stands to reason that most investments in
software testing will more than pay for themselves in the long run.

NOTE Steve McConnell’s Code Complete, Second Edition (Microsoft Press,
2004) cites data from several interesting studies that exhibit the high cost of
quality issues once they are discovered downstream. See Chapter 3, “Measure
Twice, Cut Once: Upstream Prerequisites,” for examples. You can fi nd this book
at http://aka.ms/CodeCompleteBook.

Many approaches to software testing have been developed over the years to address the variety of
defects that can be found in software. The fi eld of software testing can be divided into areas such
as functional testing, regression testing, scalability testing, acceptance testing, security testing, and
so on. But, in your role as a Team Foundation Server administrator, there are generally two major
 categorizations of software testing you should be familiar with:

 ➤ Manual testing is by far the most common type of testing employed across the software
testing fi eld. As the name implies, manual testing involves human labor testers interacting
with software, usually in the same way as the end user is expected to, with the purpose of
validating functionality and fi ling bugs for any defects they discover. This can be either with
planned test cases or through new Agile techniques and tools such as exploratory testing.

http://aka.ms
http://aka.ms/CodeCompleteBook

728 ❘ CHAPTER 26 TESTING AND LAB MANAGEMENT

c26.indd 04/22/2014 Page 728

 ➤ Automated testing involves writing and running software, which, in turn, inspects the soft-
ware you are testing. The obvious advantage of automated tests is that they can run quickly,
frequently, and involve little or no human interaction. But an investment is usually required
to author and maintain automated tests.

It may seem counterintuitive that the software industry—which has a reputation for automating
everything from banking to automobile assembly—would rely so heavily on manual testing. But the
reality is that early on, as a software project is evolving and undergoing a heavy degree of churn,
manual testing provides the fl exibility required to adapt to rapid changes. Keeping automated tests
up to date under these conditions may be cost-prohibitive.

Manual and exploratory testing also provides the added insurance policy of a set of human eyes
analyzing an application and spotting defects that an automated test may not be programmed to
look for. Investment in automated tests usually becomes attractive only after an application or set of
functionality has matured and stabilized.

Later in this chapter, you will learn more about how the Visual Studio 2013 family of products
addresses both manual and automated testing.

Test Case Management
Test case management is a discipline of software engineering much like requirements management,
project management, or change management. Effective test case management ensures that the right
sets of tests are designed and executed in order to validate that an application behaves as it should.
This is based on the explicit set of requirements that have been defi ned by, or on behalf of, its users.
Test case management should also account for implicit requirements—those requirements that may
not have been stated up front by a user, but are understood to be important (such as making sure
that the user interface is easy to read, text is spelled properly, and the application doesn’t crash when
Daylight Savings Time goes into effect).

Test case management was a new feature introduced in Team Foundation Server 2010, expanded in
Team Foundation Server 2012, and extended to the browser in Team Foundation 2013 and Visual
Studio Online. Test plans and their associated artifacts (which you will learn about later in this
chapter) can be stored in Team Foundation Server or Visual Studio Online and linked to other arti-
facts, such as requirements and builds. By centralizing all of these artifacts, Team Foundation Server
allows you to track your test plans alongside your implementation.

For any given feature, you can already ask, “How long before this feature is done being coded?”
With the addition of test case management to Team Foundation Server, you can now ask questions
such as, “How many tests have we written? For last night’s build, how many tests have been run?
Did those tests pass or fail? For the tests that failed, what types of bugs did we generate?”

Visual Studio 2010 introduced a new product family member—Microsoft Test Manager—which
can be used by testers and test leads to manage and execute test plans. You learn more about
Microsoft Test Manager later in this chapter.

Team Foundation Server 2013 and Visual Studio Online introduce Web Test Management in Team
Web Access. This is a new interface that provides the main set of testing tools from Microsoft Test
Manager (MTM) through a web interface.

Testing Architecture ❘ 729

c26.indd 04/22/2014 Page 729

Lab Management
Gone are the days when the typical installation procedure for an application was to “xcopy deploy”
it to the system and launch an executable. Nowadays, most applications require an increasingly
complex installation procedure that could involve deploying software packages across multiple
machines and requires a long list of prerequisite software.

Conversely, removing a piece of software from a machine isn’t always straightforward, and com-
monly leaves behind unwanted artifacts, making it diffi cult to clean a test machine for subsequent
deployments. This complicates the process of effectively testing your software, especially when
this deployment procedure must be repeated to accommodate daily (or even hourly) changes being
checked in by your development team.

Advances to virtualization technology have helped to alleviate this problem. Virtualization provides
an easy mechanism for staging test environments, creating snapshots of them at some known state
(such as when the latest updates and prerequisites have been applied), and restoring them to that
known state to prepare to deploy a new build. Although virtualization solves some of these prob-
lems today, orchestrating an automated workfl ow for building, deploying, and testing your software
across these virtual environments often requires a great deal of manual effort or expensive automa-
tion investment.

Lab Management is designed to address this problem. Lab Management was another new capa-
bility introduced in Team Foundation Server 2010 that you will learn about in this chapter. Lab
Management provides an out-of-the-box solution for automating a build-deploy-test workfl ow for
your software project with your existing environments or with virtualized environments created
during the development and testing life cycle.

Imagine having your software automatically built and deployed to one or more virtual environments,
each environment consisting of one or more virtual machines. The deployment could include not only
confi guring your application, but also deploying the latest database schema and a clean baseline data
set used by your manual and automated tests. Each virtual environment might represent a different
confi guration under which your software needs to be tested. Automated tests are run, defects are
noted, and environments are readied for use by manual testers to complete the test pass and scour for
additional defects. As bugs are found, snapshots of a virtual environment can be created again so that
developers can instantly see a bug for themselves without having to re-create it in their own environ-
ments. Testers and developers can even create dedicated temporary environments designed to be used
individually and then shut down and deleted when they are no longer needed. The Lab Management
capabilities of Visual Studio and Team Foundation Server make all of this possible.

TESTING ARCHITECTURE

In Part I of this book, you learned about the possible confi gurations for installing and confi guring
Team Foundation Server. In Part IV, you learned about how build controllers and build agents can
be used to provide build automation capabilities to Team Foundation Server. If you intend to use the
software testing capabilities covered in this chapter, there are a few other components you should
begin to familiarize yourself with. Figure 26-2 shows an example of a topology that uses all of the
software testing capabilities covered in this chapter.

730 ❘ CHAPTER 26 TESTING AND LAB MANAGEMENT

c26.indd 04/22/2014 Page 730

Test Controller

System Center Virtual
Machine Manager (SCVMM)

SCVMM Library of VMs & Templates

SCVMM Agent
SCVMM Agent

Hyper-V Hosts

Virtual Environment

Web
Server

Database
Server

Test Agent Test Agent

Web
Server

Database
Server

Test Agent Test AgentVMs

VM Templates

Managed SCVMM Environments Standard Environment

Team Foundation Server

FIGURE 26-2: Testing architecture in TFS

The fi rst thing to notice is that (not surprisingly) Team Foundation Server is at the heart of this
solution. Team Foundation Server is ultimately responsible for orchestrating such activities as test
automation, lab deployments, and test result collection, although it does get some help from other
servers and services that facilitate these tasks.

The remaining components in the test architecture are as follows:

 ➤ A test controller is responsible for orchestrating one or more test agents in order to execute
automated tests. A test controller also collects test result data from test agents after a test run
has fi nished. This data can then be stored in Team Foundation Server for reporting and diag-
nosis purposes.

 ➤ System Center Virtual Machine Manager (SCVMM) is required to orchestrate virtual machine
(VM) operations (such as deployment, provisioning, snapshots, and state management) across
one or more physical Hyper-V host machines. An SCVMM server is required in order to con-
fi gure SCVMM virtual environments with Lab Management in Team Foundation Server.

 ➤ An SCVMM library server is used by SCVMM to store VMs and virtual machine templates
(VM templates). Once a VM or VM template is available in a VM library, it can be deployed
as a running instance to a physical Hyper-V host. You will learn more about VMs and VM
templates later in this chapter.

Microsoft Test Manager ❘ 731

c26.indd 04/22/2014 Page 731

 ➤ An SCVMM virtual environment is a collection of one or more deployed VMs. Lab
Management treats a managed environment as a single entity that can be deployed, snapshot-
ted, or rolled back together as a single collection of machines. An SCVMM environment can
be used to simulate a real environment, which might contain a web server, a database server,
and a client machine with a web browser. SCVMM environments are deployed to physical
Hyper-V host servers, which are, in turn, managed and monitored by SCVMM. An SCVMM
agent is automatically installed on the Hyper-V hosts, enabling that physical machine to act
as a VM host and to communicate with the SCVMM server.

 ➤ A standard environment can also play an important role in your testing architecture, espe-
cially when virtualization or Hyper-V is not an option (such as to support tests that require
special hardware not accessible from a virtual machine). You can create standard environ-
ments using the existing machines in your current environments that you are using today.
Although standard environments are the quickest way to get started with Lab Management
in Team Foundation Server 2013, you will learn more about the capabilities and limitations
of standard environments as compared to SCVMM virtual environments later in this chapter.

One important limitation to be aware of in this architecture is that a test controller can be bound to just
one team project collection. If your Team Foundation Server deployment includes multiple team project
collections that need test controllers, you must install those test controllers on separate servers.

If you are familiar with the test architecture from Team Foundation Server 2010, you will notice
there are several simplifi cations in the architecture for Team Foundation Server 2012. For exam-
ple, build controllers and build agents are no longer needed for the deployment functionality.
Deployment is now handled through the test controller and test agents. In Team Foundation Server
2013, Test Agent deployment was simplifi ed. When you create a Standard or SCVMM environment
using Test Manager, any machines running Windows Vista or higher will automatically have Test
Agents installed and confi gured.

Also, there is no longer a separate lab agent needed if you choose to use the network isolation fea-
ture with SCVMM virtual environments. Network isolation allows you to establish virtual environ-
ments with their own private virtual network, without fear of machine name confl icts or IP address
collisions. Each machine in a network-isolated environment is accessible through a special and unique
DNS name and is still able to access network resources outside of the environment. This network iso-
lation functionality that used to be in the lab agent has now merged into the consolidated test agent.

NOTE Detailed instructions for installing and confi guring test controllers and test
agents can be found at http://aka.ms/ConfiguringTestControllerAndAgents.

MICROSOFT TEST MANAGER

Microsoft Test Manager (MTM) was fi rst introduced in the Visual Studio 2010 release. It was built
from the ground up to provide software testers and test leads with a dedicated tool for managing
and executing test plans. These test plans and associated artifacts are stored in Team Foundation
Server. Figure 26-3 shows Microsoft Test Manager, which is included with Visual Studio Premium
2013, Visual Studio Ultimate 2013, and Visual Studio Test Professional 2013 editions.

http://aka.ms/ConfiguringTestControllerAndAgents

732 ❘ CHAPTER 26 TESTING AND LAB MANAGEMENT

c26.indd 04/22/2014 Page 732

FIGURE 26-3: Microsoft Test Manager

NOTE If you are confused about the differences between the Visual Studio Test
Professional product and Microsoft Test Manager, you are not alone. There are
more details about the differences available at this blog post: http://aka.ms/
MTMvsVSTestPro.

Team Foundation Server 2013 and Visual Studio Online have extended the Web Access portal to
include some of the functionality found in MTM, as shown in Figure 26-4. These new testing
features are gathered under the Web Test Management umbrella and will be discussed throughout
this chapter.

This section provides a brief overview of the terminology and artifacts used by Microsoft Test
Manager and Web Test Management, along with a few key settings that you should be aware of as
a Team Foundation Server administrator. The term “Test Manager” will be used to refer to both
Microsoft Test Manager and Web Test Manager features. If there is a difference in functionality
between the tools, it will be noted.

NOTE You can learn much more about Microsoft Test Manager and Web
Test Manager from Part VI of Professional Application Lifecycle Management
with Visual Studio 2013 (John Wiley & Sons, 2014), available at http://
aka.ms/ALM2013Book and from the MSDN Library at http://aka.ms/
VisualStudioTesting.

http://aka.ms
http://aka.ms/ALM2013Book
http://aka.ms/ALM2013Book
http://aka.ms

Microsoft Test Manager ❘ 733

c26.indd 04/22/2014 Page 733

FIGURE 26-4: Web Test Manager

Test Plans
A test plan is used by Test Manager to defi ne and track everything being tested for a given software
release. A testing team will usually create a test plan that corresponds to each development iteration
or release. This is so that the tests they are designing and running ensure that the features the devel-
opment team is implementing work as expected.

Test plans can be created and managed in both Microsoft Test Manager and Web Test Manager.

Test Suites
Test suites are used to organize your test cases. There are three types of test suites in Test Manager:

 ➤ Requirements-based test suite—This includes any test cases linked to requirement work items
via a “Tests” relationship. For any given iteration of an application’s development, you will
usually want to start by adding to your test plan all of the requirements being implemented
in that iteration. By linking test cases with requirements, you can later report against an
individual requirement to determine whether it is working as expected.

 ➤ Query-based test suite—This allows you to specify a dynamic work item query for selecting
test cases. For example, you might want to include all test cases with a priority of 1, even
if they are for requirements that were implemented and already tested in earlier iterations.

734 ❘ CHAPTER 26 TESTING AND LAB MANAGEMENT

c26.indd 04/22/2014 Page 734

This can help ensure that critical functionality that was working doesn’t break (or regress) as
development progresses.

 ➤ Static test suite—This is a list of test cases that can be added manually to the suite. A static
test suite can also be used as a container for other test suites, giving you an option to hierar-
chically organize your tests. It is the only test suite type that can contain other test suites and
can be used to organize a test suite hierarchy in the test plan.

Test Cases
A test case is used to describe a set of actions a tester should perform to validate that an application
is working as expected. For example, a simple test case might confi rm that a user can visit a web
page and create a new user account using a strong password. Likewise, another test case may
validate that, if a user tries to create a new account with a weak password, the application prevents
the user from doing so. Figure 26-5 shows an example test case in Microsoft Test Manager. For
comparison, Figure 26-6 shows the same test case in Web Test Manager.

FIGURE 26-5: Test case work item in Microsoft Test Manager

Microsoft Test Manager ❘ 735

c26.indd 04/22/2014 Page 735

FIGURE 26-6: Test case work item in Web Test Manager

The structure of a test case should look familiar to you. A test case is stored as a work item in Team
Foundation Server. It contains all of the core work item fi elds (Title, Iteration, Area, Assigned To,
and so on). But a test case also has a Steps tab that contains the individual test steps testers should
perform when they exercise this test case. A major advantage of a test case being represented as
a work item within Team Foundation Server is that it can be linked to other work items (such as
the relationship with requirements described earlier) and reported on. The downside to using the
work item engine to store test cases is that you do not have the ability to branch a test case when
your code branches. In this case you will need to create a copy of the test case if you need to have
both the old and new versions of the test case available to support the old and new versions of your
application.

A shared step is another work item type that can be used to consolidate a series of test steps that
may be shared across multiple test cases. Shared steps allow you to centrally manage changes to
commonly used parts of your application (such as user sign-in, account creation, and so on).

Test Runs
Test Manager provides testers with the ability to run test cases from a test plan using the local Test
Runner or Web Test Runner. It will guide testers, step by step, through test case execution, alerting
them about what they should expect to see in order to validate an application’s intended behavior.
Testers can even fi le bugs directly from this interface. Figure 26-7 shows a test case being run in Test
Runner, and Figure 26-8 shows the same test in Web Test Runner.

736 ❘ CHAPTER 26 TESTING AND LAB MANAGEMENT

c26.indd 04/22/2014 Page 736

FIGURE 26-7: Test case execution in Test Runner

FIGURE 26-8: Test case execution in Web Test Runner

Exploratory Testing
Agile teams perform a type of testing, called exploratory testing, and do not typically start out with
formal manual test cases. The exploratory testing tools, fi rst available in Microsoft Test Manager
2012, allow you to start an exploratory testing session without having test cases defi ned. Testers are
able to track what they are doing and provide comments as they perform ad hoc testing.

The nice thing is that the tester can also create formal test cases during the exploratory testing
session because the test runner has recorded the actions that were taken. Additionally, if a bug is
found, the tester is able to fi le rich actionable bugs from the exploratory test runner using those
recorded action steps. You will fi nd out more about fi ling rich actionable bugs using the test runner
in the next section.

Exploratory testing features are only available in Microsoft Test Manager.

Microsoft Test Manager ❘ 737

c26.indd 04/22/2014 Page 737

Actionable Bugs
Many software projects fall prey to an all-too-common scenario in which the tester fi nds and
documents a defect, but the developer is unable to reproduce it. This is known as the “No Repro”
scenario, and it is the source of the adage, “It works on my machine.” To address this problem,
Microsoft’s test architecture is capable of capturing rich data about a test run from each of the
machines in the environment being tested, including the local machine. This happens automatically,
without any additional work required by testers. When testers fi le a bug, Microsoft Test Manager
can automatically include rich details such as system information (operating system, service pack
level, total memory, available memory, and so on), action logs, event logs, and even a video record-
ing that shows exactly what testers did as they ran a test case.

Even if a developer can’t reproduce the same problem on his or her machine, the developer can at
least get proof that a defect exists, along with a set of data used to look for clues about why the
problem occurred in the tester’s environment. The set of data that is collected during a test run is
confi gured by test settings.

The collectors that are used to capture this rich data must be installed on the client machine where
the tests are running. As such, this rich data is unavailable when using the Web Test Runner.

Test Settings
Test settings can be confi gured per test plan to describe what information should be collected while
a tester is running a test. Collecting the right set of information can be invaluable for developers as
they analyze bugs to determine why a problem occurred.

However, as a Team Foundation Server administrator, you should also be aware that test settings
have the potential to occupy a lot of disk space. Figure 26-9 shows the test settings confi guration
dialog box from within Microsoft Test Manager, along with a list of diagnostic data adapters that
can be enabled and confi gured to collect a variety of details from a test run.

You can specify the types of diagnostic data adapters to run for each machine in your environment.
Some diagnostic data adapters make more sense than others for different machine roles. For exam-
ple, collecting a video recording on your database server may lead to a pretty boring video.

There is a temptation to want to collect everything, all of the time, from every test run, to avoid
missing key pieces of information if a bug is discovered. However, this can impact test run perfor-
mance, and it could quickly consume all of the available disk space on your Team Foundation Server
instance.

Therefore, it’s important for test leads and development leads to work together to construct test set-
tings that thoughtfully capture the right information. You can also have multiple test settings, such
as one called “Full Diagnostics” and another called “Lightweight Diagnostics.” Testers can run with
the Lightweight Diagnostics test settings for the majority of their work, and, if they encounter a
bug, they can re-run a test with the Full Diagnostics and add the additional details to the same bug.

The exact amount of disk space required per test setting will vary based on the length of your test
runs, the complexity of the application being tested, and the number of machines in a test environment
from which you are gathering information. But, generally speaking, from a resource perspective, the
two diagnostic data adapters to pay special attention to are IntelliTrace and Video Recorder.

738 ❘ CHAPTER 26 TESTING AND LAB MANAGEMENT

c26.indd 04/22/2014 Page 738

FIGURE 26-9: Test settings

IntelliTrace can provide extremely rich, historical debugging data about .NET applications, which
can help developers understand exactly what was happening during the execution of an application.
Developers can analyze IntelliTrace fi les using Visual Studio 2013 Ultimate edition, but testers run-
ning Microsoft Test Manager can capture IntelliTrace fi les during test execution.

NOTE You can read more about using IntelliTrace at http://aka.ms/
IntelliTrace2013.

Left unchecked, the IntelliTrace fi les themselves can quickly consume tens or even hundreds of
megabytes of disk space. The good news is that the maximum size of an IntelliTrace fi le can be lim-
ited by confi guring that particular diagnostic data adapter; and for successful test runs (where a test
case passes), IntelliTrace fi les will be discarded. But, from a resource perspective, this is the most
important diagnostic data adapter to pay attention to.

http://aka.ms

Microsoft Test Manager ❘ 739

c26.indd 04/22/2014 Page 739

Video recordings can also consume about a megabyte of disk space per minute of test execution. If
enabled, video recordings will always be attached to test results if a test case fails. You can option-
ally confi gure video recordings to be saved even if a test case passes. This can be useful for auditing
third-party testing organizations, to ensure that they are running test cases properly. It can also be
useful for capturing ad hoc video “documentation” of your application, which can easily be shared
with business stakeholders to show them the progress of your development.

Test settings confi guration is only available within Microsoft Test Manager.

NOTE You can learn more about confi guring test settings at http://aka.ms/
Configuring2013TestSettings.

Test Attachments Cleaner
If you are making effective use of the diagnostic data adapters to collect rich, actionable informa-
tion about your test runs, eventually you will probably want to clean up old test run data in order
to reclaim disk space. Microsoft has created the Test Attachments Cleaner to aid with this process.
This is a command-line tool that you can confi gure to clean up test attachments based on age, size,
attachment type (such as IntelliTrace fi les or video fi les), and so on.

Team Foundation Server administrators can work with their development and test teams to fi gure
out the appropriate retention, and then create a scheduled task to run the test attachment cleaner on
a regular basis.

Be careful and realize that, if you do remove a test attachment, any bugs that were created that link
to those attachments will no longer have access to the original attachment. For example, if you decide
that IntelliTrace and video recordings older than 180 days should be removed, then someone opening
a bug after it has been removed using the cleaner will no longer have access to those attachments.

NOTE The Test Attachments Cleaner is included with the Team Foundation
Server Power Tools available at http://aka.ms/TFS2013PowerTools.

Assigning a Build to a Test Plan
Another challenging aspect of any test team’s job is determining which builds they should test. A
development team will likely produce several builds during the course of a week, and perhaps even
multiple builds during a given day, especially if it is embracing continuous integration. It is usually
impractical to expect that a test team will install and test every build. Microsoft Test Manager can
help test teams with this process.

Because Team Foundation Server already contains rich information about builds and the work items
that have been incorporated into each build (such as which bugs are fi xed or which requirements are
implemented), this information can be used by a test team to determine which builds are worth test-
ing. Figure 26-10 shows the Assign Build dialog box within Microsoft Test Manager.

http://aka.ms
http://aka.ms/TFS2013PowerTools

740 ❘ CHAPTER 26 TESTING AND LAB MANAGEMENT

c26.indd 04/22/2014 Page 740

FIGURE 26-10: Assigning a build to a test plan

Assigning the build can be done from the Test Plan properties window and is typically done by a
test lead to indicate to the team which build should be used to test. It is used as the default when
testers start a new manual or automated test run but can be overridden for an individual test run
as well.

The build currently in use can be compared with newer builds to determine what has changed in a
given build and to help determine whether a newer build is worth adopting. For example, maybe a
bug has been resolved by a developer but must be validated by a tester. Or, maybe a requirement has
been coded and is ready for testing.

NOTE The cadence of your builds is something you should think about when
confi guring your test plans. For example, you probably don’t want every single
continuous integration build to show up in the list of available builds. Instead,
you might consider creating a dedicated build defi nition that produces nightly
or rolling builds, and choose that build defi nition as the fi lter for your test plan.
If the test team needs a new build before the next scheduled build, it is able to
manually queue a new build for that build defi nition as well. Having a consoli-
dated number of builds on a predictable cadence will also make your build qual-
ity reports easier to read.

Microsoft Test Manager ❘ 741

c26.indd 04/22/2014 Page 741

Analyzing Impacted Tests
Test impact analysis is a powerful feature that can help improve the productivity of testers by allow-
ing them to quickly identify tests to re-run based on changes to code. Test impact analysis can be
enabled to run in the background while tests are being executed. This feature records which meth-
ods of code are executed while each test is run. These can be automated tests (for example, unit
tests, load tests, or coded UI tests), as well as manual tests, but the code you are analyzing must be
managed code (that is, based on .NET Framework 2.0 and above).

Microsoft Test Manager can provide testers with a list of impacted tests whenever they select a new
build. In order to support this capability, you must be running tests with Microsoft Test Manager’s
Test Runner, using the Test Impact diagnostic data adapter during your test runs (as confi gured by
your test settings), and your build defi nition must be confi gured with test impact analysis enabled
as described in Part IV of this book. Test impact analysis data is not captured when testing from the
Web Test Runner.

Build Retention
In Part IV of this book, you learned how to defi ne build defi nitions, trigger a build, delete builds,
and set build retention policy. Most of the time, accidentally deleting a build (or inadvertently losing
a build because of an aggressive retention policy) does not create much of a problem for a software
development team because you can just re-create a build based on an older changeset. But if you are
conducting manual testing with Test Manager, improperly deleting a build can cause you to lose the
test results run against that build.

When test runs are stored in Team Foundation Server, they are stored along with the associated
build they were run against. This can include artifacts such as video recordings, IntelliTrace fi les,
or action recordings (which can be used to partially or fully automate test execution). If a developer
needs any of this information to diagnose a problem, and the build was deleted along with the test
results, he or she may lose valuable information to help reproduce and debug a problem. Likewise,
if testers are using action recordings to fast-forward test execution (a feature of Microsoft Test
Manager), deleting test results will destroy the action recordings required for fast-forwarding. These
same action recordings can be used to create fully automated, coded UI regression tests as well.

To avoid this problem, be very careful when deleting builds that may have been used by your test
team. This is another good reason to follow the build cadence described earlier for the builds you
will test with.

You can periodically clean up your irregular continuous integration builds without jeopardizing the
test results from the builds that your testing team may have used. You should then disable the reten-
tion policy from deleting builds from your testing build defi nition, or at least confi gure the retention
policy to preserve test results when builds are deleted.

If disk space becomes scarce, you can then use the Test Attachments Cleaner to selectively delete old
testing artifacts (such as video recordings and IntelliTrace fi les) without jeopardizing important test
results that may still be useful. Keep in mind that action recordings may be useful long after a fea-
ture is considered “done” because a test team may occasionally re-test older features to ensure that
nothing has regressed in a recent build.

742 ❘ CHAPTER 26 TESTING AND LAB MANAGEMENT

c26.indd 04/22/2014 Page 742

Custom Work Item Types
You have seen how Microsoft Test Manager uses requirements, test cases, shared steps, and bugs,
all of which are stored in Team Foundation Server as work items. But if you want to customize your
process template, or use a third-party process template, how does Test Manager know which work
item type is the equivalent of a “requirement” or a “bug” and so on? The answer is to use categories
to defi ne the roles for each of your work item types in Team Foundation Server.

NOTE More information on using categories to defi ne work item roles can be
found at http://aka.ms/MTMWITCategories. More information on customizing
your process template can be found in Chapter 13.

TEST AUTOMATION

This chapter has mostly dealt with manual testing, but Visual Studio and Microsoft Test Manager
also provide support for automated tests. As mentioned previously, automated tests are benefi cial
because they have the ability to run quickly and repeatedly, without human interaction, in order to
surface regressions that indicate to a development team that (for example) the last change they made
to the code broke a feature that was working in last night’s build.

Table 26-1 shows several types of automated test types supported by Visual Studio 2013.

TABLE 26-1: Automated Test Types

TEST DESCRIPTION

Coded UI This test provides the ability to author tests that automatically interact
with the user interface of an application and verify some expected result,
and fi le bugs if an error is encountered. Coded UI tests typically evolve
from test cases that were previously run manually, once the application’s
user interface (UI) has mostly stabilized. You can even use action
recordings from manual test runs as the basis for creating new coded
UI tests.

Unit These low-level tests verify that target application code functions as the
developer expects.

Web performance This test is used primarily to test performance of a web application.
For example, you may create a web performance test capturing the
web requests that occur when a user shops for items on your website.
This web performance test could be one of a suite of web performance
tests that you run periodically to verify that your website is performing
as expected.

http://aka.ms/MTMWITCategories

Test Automation ❘ 743

c26.indd 04/22/2014 Page 743

Load These tests verify that a target application will perform and scale as necessary.
A target system is stressed by repeatedly executing a variety of tests. Visual
Studio records details of the target system’s performance and automatically
generates reports from the data. Load tests are frequently based on sets of
web performance tests. However, even non-web applications can be tested
by defi ning a set of unit tests or database unit tests to execute.

Generic These tests enable calling of alternative external testing systems, such as
an existing suite of tests leveraging a third-party testing package. Results
of those tests can be automatically parsed to determine success. This
could range from something as simple as the result code from a console
application to parsing the XML document exported from an external
testing package.

Ordered Essentially containers of other tests, these establish a specifi c order in
which tests are executed, and they enable the same test to be included
more than once.

Each of these test types is described in detail in Parts V and VI of the companion book Professional
Application Lifecycle Management with Visual Studio 2013 (John Wiley & Sons, 2014). As a Team
Foundation Server administrator, you should familiarize yourself with how automated tests can be run
as part of a build defi nition, which was described in Part IV of this book. You should also familiarize
yourself with test controllers and agents, introduced earlier in this chapter (see the section, “Testing
Architecture”). When confi guring test agents, some test types (such as coded UI tests) will require you
to confi gure the test agent to run as an interactive process so that it has access to the desktop.

Automated tests can also be run as part of an automated test run or a build-deploy-test workfl ow in
a Lab Management environment. You will learn about Lab Management in the next section.

If you would like to run an automated test through Microsoft Test Manager or in a Lab
Management environment, then you need to make sure that the test case work items that represent
those automated tests understand which test is the automation for them. Associating the automation
with the test case work item is the key step, and you can fi nd out more on how to do this here at
http://aka.ms/TestCaseAssociatedAutomation2013.

NOTE If you want to run large numbers of tests, such as unit tests, and would
like to automate the process of creating and updating the associated automation
for a lot of tests, you can use the tcm.exe testcase import command-line
utility. Running this command will create test cases and automatically associate
unit tests or other coded tests with those test cases. Subsequent runs of this
command-line utility will update existing test cases and create new test cases
based on any new tests that are found. More information about this functional-
ity is available here at http://aka.ms/ImportTestCasesFromTestAssembly.

http://aka.ms/TestCaseAssociatedAutomation2013
http://aka.ms/ImportTestCasesFromTestAssembly

744 ❘ CHAPTER 26 TESTING AND LAB MANAGEMENT

c26.indd 04/22/2014 Page 744

VISUAL STUDIO LAB MANAGEMENT

Visual Studio Lab Management is a powerful capability of Team Foundation Server that allows you
to orchestrate physical and virtual test labs, empower developers and testers to self-provision needed
environments, automate build-deploy-test workfl ows, and enhance developer-tester collaboration.
Some Lab Management features are not to users of Visual Studio Online. This section provides
an overview of the components required to enable Lab Management, along with their associated
capabilities.

This section also provides you with a starting point as you plan your adoption of Lab Management,
considerations for maintaining your testing environment, and troubleshooting tips. Several URLs
have been provided throughout this section, as well as links to supporting documentation, all of
which dive deeper into these topics.

CHALLENGES OF CONFIGURING LAB MANAGEMENT

It should be stated up-front that confi guring the virtual lab aspect of Visual Studio
Lab Management (especially for the fi rst time) can be overwhelming and even frus-
trating at times. While the Lab Management technology is capable of doing a lot
of heavy lifting for you, there are always going to be areas that you must customize
for your own environment, to suit your individual process, and to meet the require-
ments of your existing IT infrastructure. Stick with it because the benefi ts of Lab
Management often far outweigh the initial investment. You can read about some
teams that have already adopted Lab Management and their results at http://
aka.ms/LabManagementCaseStudies.

Confi guring Lab Management also requires a mixture of disciplines across develop-
ment, build engineering, testing, and IT. So be prepared to immerse yourself in the
documentation, and then buy some doughnuts and assemble a virtual team with
the right level of expertise.

What’s New for Lab Management in Team Foundation
Server 2013?

There are several improvements in Lab Management since its introduction in Team Foundation
Server 2010. This section begins by helping you get acquainted with what’s new.

Standard Environments
Standard environments were introduced in Team Foundation Server 2012 to replace the concept of
“physical environments” that existed in Team Foundation Server 2010. Standard environments, as
opposed to SCVMM environments, allow you to use any machine (whether it is virtual or physical)
as an environment in Visual Studio, Team Foundation Server, and Microsoft Test Manager. You are
able to take advantage of manual testing and collecting data with the standard environment as well.

http://aka.ms/LabManagementCaseStudies
http://aka.ms/LabManagementCaseStudies

Visual Studio Lab Management ❘ 745

c26.indd 04/22/2014 Page 745

Standard environments do have certain drawbacks though—because they are not managed by
SCVMM, you are not able to provision machines with Microsoft Test Manager and rollback/
snapshot, or perform operations like start and stop with standard environments.

However, creating standard environments out of your current environments are by far the easi-
est way to get started immediately with Lab Management. You only need to set up a test control-
ler before creating your fi rst standard environment and you are ready to go. This is a great fi rst
step for those looking to immediately gain benefi ts from what is provided in Lab Management.
Standard environments are available from Team Foundation Server and Visual Studio Online.
You can fi nd out more about how to create a standard environment by visiting http://aka.ms/
CreatingStandardEnvironments2013.

System Center Virtual Machine Manager 2012
In addition to support for System Center Virtual Machine Manager 2008 R2, Team Foundation
Server 2013 also supports System Center Virtual Machine Manager 2012. There are quite a few
improvements included in SCVMM 2012 that are out of scope for this book, but Lab Management
will now support clustered host groups, highly available virtual machines in environments, and the
new .VHDx hard drive fi le format. One item to note is that even though Lab Management supports
clustered host groups, network-isolated environments must still reside on a single Hyper-V host.

Consolidation of Agents
One of the simplifi cations that has been made is the need for only one agent: a test agent. Previously,
three agents were required for Lab Management: build agent, test agent, and lab agent. All of the
functionality from the previous agents have now been consolidated into the single agent install.

Auto-Installation of Agents
Another improvement introduced in Lab Management for Team Foundation Server 2013 was that you
no longer need to worry about installing and confi guring the test agent on the individual machines that
make up an environment. Whenever you create a new standard environment or an SCVMM environ-
ment, Lab Management will automatically handle the installation and confi guration for you. When new
updates are released for the agents, Lab Management will also handle uninstalling and installing the
new version of the agents for you. This can dramatically reduce the amount of maintenance required
for using Lab Management. For the auto-update of agents, you will want to make sure that your test
controller(s) are updated as each new periodic update is released for Visual Studio.

Repairing Environments
Environments and machines can end up in states where they are unreachable or have issues at times.
Lab Management now includes several troubleshooting wizards as well as “repair” tools, which
attempt to resolve the most common problems that end up occurring.

Installing and Confi guring Lab Management
Earlier in this chapter (in the section, “Testing Architecture”), you learned about the components
that make up a testing environment that uses standard and SCVMM virtual environments. A solid
understanding of these components and how they integrate with one another is important for
confi guring and administering Lab Management.

http://aka.ms

746 ❘ CHAPTER 26 TESTING AND LAB MANAGEMENT

c26.indd 04/22/2014 Page 746

When you are ready to move toward enabling SCVMM virtual environments for your own Team
Foundation Server setup, you should start with the MSDN Library documentation at http://aka
.ms/ConfiguringLabManagement2013. This help topic provides step-by-step instructions for con-
fi guring your environment for the fi rst time. Read the documentation end to end before getting
started, and be prepared for this to take several hours.

When you are fi nished, you will have added the Lab Management capability to Team Foundation
Server and have confi gured an SCVMM server, along with a VM library share and one or more VM
hosts. You are then ready to begin preparing virtual machines, defi ning virtual environments, and
confi guring build defi nitions to support build-deploy-test workfl ows.

The remainder of this section covers additional considerations you may need to account for in your
environment as well as optimizations and best practices to be aware of, which can save you time and
enhance the quality of your Lab Management deployment.

Ports and Protocols
Unless you are the system administrator for your organization’s IT department, you may need
to request that certain ports and protocols be enabled to support your testing architecture. This
becomes especially important if your solution will span multiple networks, such as if your existing
test lab infrastructure is separate from your Team Foundation Server instance.

NOTE A detailed description of the ports and protocols required to support the
testing architecture described in this chapter can be found at http://aka.ms/
TFSPorts2013.

Capacity Planning
Many factors will affect the hardware requirements in order for your team to use Lab Management
capabilities. These factors include variables such as the following:

 ➤ At any given time, how many testers will need access to their own individual virtual environ-
ments to run tests?

 ➤ At any given time, how many developers will need access to virtual environments (for analyz-
ing bugs reported by testers or initial testing and debugging of new builds)?

 ➤ How many VMs are required in each virtual environment? In other words, can the tiers in
your software run on a single server, or will your tests involve multiple servers?

 ➤ What are the system requirements of each VM in your virtual environments (disk space,
memory usage, processing power)?

 ➤ How often will you run your build-deploy-test workfl ow, and how long will you need to
retain historical snapshots containing older builds?

 ➤ How many VMs and VM templates do you need to store in your VM library, and what is the
size of those fi les?

 ➤ Do you need multiple testing environments in order to support geographically distributed teams?

http://aka
http://aka.ms

Visual Studio Lab Management ❘ 747

c26.indd 04/22/2014 Page 747

The answers to these questions will begin to form the hardware requirements of your testing
environment. This will allow you to calculate the answers to questions such as the following:

 ➤ How many VM physical host servers do I need?

 ➤ What kinds of servers should I buy?

 ➤ How much storage capacity do I need?

NOTE The Lab Management product team has compiled guidelines to help
you answer these questions. You can access these guidelines at http://aka
.ms/LabManagementCapacityPlanning. The Visual Studio ALM Rangers also
have included a capacity planning workbook in their Lab Management guidance
available on CodePlex: http://aka.ms/ALMRangersLabManagementGuidance.

Managing Host Groups and Library Shares
The basic infrastructure of any Lab Management deployment will consist of an SCVMM server, one
or more library shares, and one or more physical host servers running Hyper-V (which are organized
along with other VM hosts into host groups). The SCVMM server coordinates the deployment of
VMs from a library share to a Hyper-V host by examining the available resources on each Hyper-V
host within a host group to determine to which host server a VM should be deployed.

There are several techniques you can use to optimize the performance of your Lab Management
deployment. For example, ensuring that your library share is on the same network switch as your
VM hosts can substantially reduce the amount of time required to deploy VMs to hosts. Another
technique is to allow unencrypted fi le transfers between your library share and the VM hosts.

NOTE The Lab Management team has compiled guidelines to help you bet-
ter understand the way SCVMM host groups and libraries interact with Team
Foundation Server’s Lab Management capability. These guidelines also provide
best practices for optimizing your host groups and library shares. You can fi nd
the guidelines at http://aka.ms/LabManagementHostsAndLibraries.

Creating VMs and VM Templates
Creating VMs and VM templates for your SCVMM library can be a time-consuming (but impor-
tant) step in building out your Lab Management environment. Depending on the requirements of
the software you are testing, you may need to create multiple VM templates that correspond to
different operating system editions, languages, browser versions, and so on. You no longer need
to pre-install the test agent into the VM template, but it can save on provisioning time when the
environments are created using that VM template. Be sure to keep the template up to date with the
most recent version of the test agent (and any periodic Visual Studio updates that are released from
Microsoft) if you do decide to pre-install the agents. Otherwise, as mentioned earlier in the chapter,
Lab Management will now automatically install and confi gure the agents when an environment
is created.

http://aka
http://aka.ms/ALMRangersLabManagementGuidance
http://aka.ms/LabManagementHostsAndLibraries

748 ❘ CHAPTER 26 TESTING AND LAB MANAGEMENT

c26.indd 04/22/2014 Page 748

CHOOSING BETWEEN A VM AND VM TEMPLATE

You may be wondering what the difference is between a VM and a VM template,
and when you should use each.

A VM can be stored in an SCVMM library by starting with a running VM, shutting
it down, saving it to the SCVMM library share, and registering it with the SCVMM
server. When it is later deployed from the library to a VM host, it will have the same
machine name and other confi guration properties as it did when it was originally
saved to the library. The obvious downside with this approach is that if you deploy
this VM more than once, you may experience machine name confl icts on your Lab
Management network. The solution to this is to use VM templates.

A VM template has gone through a sysprep step to essentially remove its machine
name, domain memberships, and other uniquely identifying properties. When a VM
template is later deployed from the library to a VM host, you can specify its machine
name (or use a randomly chosen GUID), domain memberships, and so on. This pro-
vides you with protection from machine name collisions, and even allows you to use
the same VM template more than once in a given virtual environment.

Generally speaking, you should use VM templates whenever you can. The major
exception to this rule is if your test environments require software that is not sup-
ported with sysprep. For example, SQL Server 2008 did not support sysprepping.
SQL Server 2008 R2 supports sysprepping of some features and SQL Server 2012
supports sysprepping of all features. If you are forced to use VMs, be sure to create
virtual environments that use network isolation in Lab Management. This won’t pre-
vent machine name collisions within a virtual environment (you will have problems
if you have two VMs with the same name in the same virtual environment), but it
will provide isolation between different SCVMM virtual environments.

A very good walkthrough is kept up to date on MSDN with information on how
to create a virtual machine template for Lab Management and making it available
for your developers and testers to use in their environments available here: http://
aka.ms/CreatingVirtualMachineTemplates2013.

Working with Virtual Environments
After you have populated your SCVMM library with VMs and/or VM templates, you can use
Microsoft Test Manager to defi ne an SCVMM virtual environment. An SCVMM environment con-
sists of one or more VMs or VM templates, and you can use the same VM template twice within a
given SCVMM environment. (This will customize the VM template twice, creating two instances
of running VMs from the same template.) After you have defi ned your SCVMM environments, you
can then deploy those to SCVMM host groups.

NOTE For more information on creating Lab environments, see http://aka
.ms/CreatingLabEnvironments.

http://aka.ms/CreatingVirtualMachineTemplates2013
http://aka.ms/CreatingVirtualMachineTemplates2013
http://aka

Visual Studio Lab Management ❘ 749

c26.indd 04/22/2014 Page 749

DETERMINING VIRTUAL MACHINE RAM

When you are confi guring and deploying virtual environments, you can decide how
much RAM to assign to each VM within each virtual environment. Remember that
the more RAM you assign to each VM, the more RAM will be required by your
VM host groups.

If you multiply the number of VMs in each virtual environment by the number of
simultaneous virtual environments you need to support, you may discover that
trimming even a few hundred megabytes of RAM off of each VM can represent
a substantial resource savings for your environment. Therefore, it’s important to
understand what the minimum RAM requirements can be for the VMs in your test
environments without sacrifi cing the performance or accuracy of your testing efforts.

If you are using machines based on Windows 7 SP1, Windows Server 2008 R2 SP1,
Windows 8, and Windows Server 2012, be sure to take advantage of the Hyper-V
feature called dynamic memory to support more virtual machines in your virtual
lab. Dynamic memory allows you to specify a minimum and maximum amount of
memory available for a VM and will provide the VM with more memory as it needs
it instead of keeping it static. It can greatly increase your VM density ratio for your
Hyper-V host servers.

Defi ning a Build-Deploy-Test Workfl ow
Although you can choose to use Lab Management purely for managing a lab of VMs to conduct
manual testing, the real power of Lab Management is unlocked when you begin to take advantage
of the automation support for building your software, deploying it to an environment, and running
your automated tests in that environment. This is known as a build-deploy-test workfl ow.

Imagine the benefi ts of this workfl ow by considering the following hypothetical scenario. The software
you create consists of a website, powered by a database, which needs to be accessed by people running
multiple supported web browsers. Your web application needs to work with Internet Information Services
(IIS) 7 and IIS 8, and you support both SQL Server and Oracle for the database tier.

Just deploying the dozens of machines required to support each of these confi gurations alone can
be time-consuming. After the machines are ready, you must deploy the software, and then run your
tests. Now, consider repeating this process every night in order to support the daily changes coming
from the development team.

Of course, some organizations have already invested heavily in scripts to automate some or all of
this workfl ow, but the cost of doing so can be quite high. Development and testing teams should not
be in the business of maintaining this type of infrastructure—they should be spending their time
building and testing great software.

Once you have installed and confi gured your Lab Management infrastructure, you can easily create
a new build defi nition using Team Build, which allows you to establish a build-deploy-test work-
fl ow. You can create multiple defi nitions to support multiple environments. (For example, you might
create one workfl ow to test a SQL Server deployment with IIS 7 and a separate workfl ow to test an

750 ❘ CHAPTER 26 TESTING AND LAB MANAGEMENT

c26.indd 04/22/2014 Page 750

Oracle deployment with IIS 8.) Imagine arriving to work in the morning and being able to instantly
discover that last night’s build caused a failure in the account authorization logic, which only occurs
with SQL Server 2008 R2 SP2.

This is the type of rapid, iterative feedback that can allow teams to identify and fi x bugs well before
a release is ever distributed to customers. Figure 26-11 shows an example of a typical build-deploy-
test workfl ow enabled by Lab Management. This workfl ow can be customized and extended to suit
your specifi c requirements.

(1) Get source (2) Compile projects

Team Foundation Server

Test Controller

(7) Send test
results

VMM Agent

Virtual Environment

Team Build

VM Host
Web Server

(VM)

Test Agent

Build Agent

Lab Agent

Test Agent

Build Agent

Lab Agent

Database
Server (VM)(6) Execute

automated tests

(3) Copy build to running
environment

(8) Publish results to
Team Foundation Server

(4) Run deployment scripts
for each machine

(5) Create environment
snapshot

FIGURE 26-11: Build-deploy-test workfl ow

NOTE To get step-by-step instructions for confi guring a build-deploy-test
workfl ow with Team Build and Lab Management, visit http://aka.ms/
BuildDeployTestWorkflow2013.

Note that, in order to run automated tests as part of a build-deploy-test workfl ow, you must create
automated tests (such as coded UI tests or unit tests), store these tests in Team Foundation Server
Version Control, include them in your application’s automated build, and associate these tests with
test case work items. These test case work items must, in turn, be part of a test plan. Admittedly
this will require a bit of up-front work to create these associations, but the end result is that you will
get rich reporting data that links your builds with your test plans, test cases, and, ultimately, the
requirements being tested.

http://aka.ms

Visual Studio Lab Management ❘ 751

c26.indd 04/22/2014 Page 751

NOTE To learn how to associate automated tests with test cases, visit http://
aka.ms/TestCaseAssociatedAutomation2013.

Remember also that the build-deploy-test workfl ow build process template can help you with man-
ual testing scenarios where you want to deploy out only a new chosen build. Testers or developers
can always queue a new build manually and perform only the build and deployment portion of the
workfl ow, which gets their environment ready with a fresh deployment of their chosen build.

Lab Management Permissions
There are several permissions to be aware of when you are confi guring Lab Management. You may
want to consider using these permissions to govern, for example, who has the ability to modify virtual
environment defi nitions. Because your build-deploy-test workfl ow will depend on these defi nitions, it
is important that users change them only if they understand the implications of their changes.

NOTE To learn about the granular permissions you can assign related to Lab
Management activities, visit http://aka.ms/LabManagementPermissions2013.

Geographically Distributed Teams
You may have geographically distributed teams that need to work with Lab Management. But the size
of Lab Management artifacts such as VMs can put a heavy strain on wide area networks (WANs).

You should consider co-locating VM hosts and corresponding library shares with the testing teams
who need them. If you have multiple teams that need access, consider naming virtual environments
appropriately to indicate to users which ones they should be using. (For example, you might prepend
your Chicago-based virtual environments with “CHI,” New York-based virtual environments with
“NYC,” and so on.) You can even regulate this more tightly by using permissions.

The best way to handle this situation is to create multiple host groups in SCVMM for each location.
You can then place the Hyper-V host servers in that location into the SCVMM host group that cor-
responds with it. You can then expose each of the host groups in Lab Management, and developers
and testers are able to choose the location’s host group they want to provision their environment in.

You may also want to create additional library servers that exist in each location for use by the host
groups. This helps by not copying large fi les (like VM templates) across the WAN and allows them
to be available in each location for the corresponding host group.

VMware
VMware is a popular virtualization technology, and a common query centers on whether the Lab
Management infrastructure supports VMware images. The answer is, “It depends on what you
want it to do.”

Out of the box, Lab Management capabilities for SCVMM environments will work only with
Microsoft’s Hyper-V virtualization technology. However, you can create a standard environment

http://aka.ms/TestCaseAssociatedAutomation2013
http://aka.ms/TestCaseAssociatedAutomation2013
http://aka.ms/LabManagementPermissions2013

752 ❘ CHAPTER 26 TESTING AND LAB MANAGEMENT

c26.indd 04/22/2014 Page 752

out of the machines hosted by VMware, which will let you take advantage of the automated
 build-deploy-test workfl ow and use the environment with manual test runs.

However, despite VMware being a virtualization technology, the Lab Management standard envi-
ronment does not provide any workfl ow activities for accessing VMware snapshotting capabilities.
It is possible to author these activities and integrate them with Team Build’s build-deploy-test work-
fl ow; but, as of this writing, there are no community projects to support this so you would be faced
with writing these activities yourself. Alternatively, there are several free tools available that can be
used to help you convert existing VMware images that you might be using into Hyper-V images.

NOTE Microsoft has provided more details about the level of support
for standard environments with Lab Management at http://aka.ms/
CreatingStandardEnvironments.

Advanced Topologies
Your existing IT infrastructure requirements (such as whether you have multiple domains), your
Team Foundation Server topology (such as whether you have a single AT/DT server, or a scale-out
infrastructure), and other factors can have an impact on how you confi gure your Lab Management
infrastructure. If you believe that your implementation might be nonstandard, you should read
about the advanced topologies with which Lab Management has been tested and documented. This
is available as a four-part blog series at the following locations:

 ➤ http://aka.ms/LabTopology1

 ➤ http://aka.ms/LabTopology2

 ➤ http://aka.ms/LabTopology3

 ➤ http://aka.ms/LabTopology4

Maintaining a Healthy Test Lab
An effective Lab Management infrastructure can be a powerful tool for development and testing
teams alike to automate the delivery of their iterative software changes into environments that can
be tested and, if defects are discovered, debugged. But this environment will require some level of
administration to ensure that it remains healthy and that resources are used effectively. This section
highlights a few things to consider as your test lab starts to light up with activity.

Instilling Good Citizenship
Lab Management allows testers to easily deploy multiple virtual environments, often consisting of
multiple VMs, across numerous physical VM hosts, with just a few clicks of their mouse. But Lab
Management does not have a mechanism to enforce that testers shut down environments they are no
longer using. Left unchecked, you may fi nd that your VM hosts are running out of disk space, pro-
cessing power, or (most likely) RAM. There is no substitute for educating testers about the resource
constraints of the environment and instructing them to power down environments that they aren’t
actively using. If an environment is obsolete, it should be deleted.

http://aka.ms
http://aka.ms/LabTopology1
http://aka.ms/LabTopology2
http://aka.ms/LabTopology3
http://aka.ms/LabTopology4

Visual Studio Lab Management ❘ 753

c26.indd 04/22/2014 Page 753

Lab Management allows you to pause an environment, which will prevent that environment from
consuming any CPU cycles on its VM hosts. But this will not free allocated RAM. If testers wish
to retain the state of VMs that they aren’t actively using, a better approach is to create a snapshot
of the environment. After a snapshot is taken, the environment can be powered off completely.
When testers are once again ready to resume working with that SCVMM virtual environment, they
can restore it to the previous snapshot, and it will be restored to the state it was in before being
powered off.

Finally, Lab Management allows testers to mark an environment as “In Use” to signal that they are
actively working with it, or planning on working with it soon. This indicates to other testers that
they should not try to connect to that environment. Administrators will then know that running
environments not marked “In Use” can probably be powered off if they need to reclaim VM host
resources. Of course, testers should also be instructed to unmark environments that they are no
longer using. If you notice that a tester has an unusually high number of environments in use, then
this may indicate that he or she is claiming more resources than should be necessary.

Managing Snapshots
Snapshots are a great benefi t of virtualization that allow you to easily store the state of a VM at
any point in time and easily restore that state in the future. Snapshots have several uses in a Lab
Management environment.

You can use snapshots to capture the baseline system state of an SCVMM environment before
deploying your builds. You can again use snapshots to capture the state of the SCVMM environ-
ment after the build has been deployed, but before any of your tests have been run. Finally, if you
fi nd a defect, a tester can create a snapshot of an entire SCVMM environment and share a pointer to
that snapshot when he or she creates a bug. This way, a developer can easily restore an environment
back to the state it was in when the tester found the bug.

NOTE You can learn more about using snapshots within Microsoft Test
Manager at http://aka.ms/LabManagementSnapshots.

But snapshots also have the capability of consuming hefty amounts of disk space on your Hyper-V
host servers. Additionally, Lab Management does not have a built-in retention policy to prune older
snapshots—this will need to be done manually. Even if you set a retention policy in your build defi -
nition using Team Build, the process of deleting a build from here will not modify any SCVMM
environments. Obsolete snapshots will need to be managed by the testers using the environments or
by a lab administrator.

NOTE Another reason to prune your snapshots is that Hyper-V has a built-
in limitation of 50 snapshots per VM. Depending on how you use Lab
Management, this limitation could be something to watch for, especially if you
build and deploy multiple times per day to the same environment.

http://aka.ms/LabManagementSnapshots

754 ❘ CHAPTER 26 TESTING AND LAB MANAGEMENT

c26.indd 04/22/2014 Page 754

While it is possible to manage snapshots via the SCVMM Administration Console, this is not
recommended. SCVMM is aware of only individual VMs. It doesn’t understand the composition
of VMs in entire SCVMM environments because this level of organization is maintained by Lab
Management. Therefore, it is best to manage snapshots using Lab Management via the Microsoft
Test Manager interface.

Another important consideration regarding snapshots is that of password expiration. Because
snapshots can date back many months, password expiration policies can cause authentication to
fail if appropriate precautions are not taken to prevent this from happening. The documentation at
http://aka.ms/LabManagementSnapshots provides a detailed explanation of this process, along
with preventative measures to keep it from impacting your SCVMM environments.

Workfl ow Customizations
The default build-deploy-test workfl ow provided with Lab Management is a powerful workfl ow,
but there may be times when you want to customize this to add new activities, or change exist-
ing ones. Because the Lab Management workfl ows are built on Team Build, and Team Build in this
release uses Windows Workfl ow, there are endless possibilities for extending and customizing the
built-in workfl ows.

NOTE To read more about customizing the built-in Lab Management workfl ow,
see http://aka.ms/CustomizingLabManagementWorkflow2013. This article
also details the Lab Management activities provided out of the box and can eas-
ily be added to existing workfl ows with very little additional work. Also, a blog
post at http://aka.ms/LabManagementBDTSnapshot details how to use the Lab
Management activities to automatically create a snapshot to reference from a
bug if part of a build-deploy-test workfl ow fails.

Patching of VMs and VM Templates
Many of the snapshots you create as part of your experience using Lab Management will be short-
lived. Snapshots are commonly created when a new build is deployed or when a bug is discovered.
But a week or two later, older snapshots may be cleaned up in favor of newer builds and as bugs are
resolved. However, some VM artifacts—such as the VMs and VM templates in your VM library, or
the baseline snapshots of SCVMM virtual environments that you use as part of your build-deploy-test
workfl ows—may last for months, or even years. Usually, you will want to keep these artifacts up to
date with the latest security updates and other patches from Windows Update, but manually main-
taining all of the VMs in your environment may prove to be very painstaking.

The recommended solution to this is to use the Virtual Machine Servicing Tool available at
http://aka.ms/VMServicingTool. This tool can be scheduled to automatically patch your
VMs and VM templates with the latest updates from Windows Update. The use of this tool will
require that you host and maintain Windows Server Update Services (WSUS) locally. This is a free
download from Microsoft that allows you to specify which patches you wish to incorporate into
your environments.

http://aka.ms/LabManagementSnapshots
http://aka.ms/CustomizingLabManagementWorkflow2013
http://aka.ms/LabManagementBDTSnapshot
http://aka.ms/VMServicingTool

Summary ❘ 755

c26.indd 04/22/2014 Page 755

Windows Activation
One of the other Windows technologies you may need to become familiar with is Windows
Activation. If your developers and testers each have MSDN subscriptions, then you are probably
familiar with the benefi ts of being able to use software included in the MSDN subscription for
development and test use, which includes the operating system software. (See http://aka.ms/
VisualStudioLicensing). It’s a great benefi t of MSDN and is important for development and test-
ing environments like those used in Lab Management. However, you will still need to deal with
Windows Activation even though each of the MSDN subscribers is licensed for usage.

A couple of decision points are recommended. If you are using virtual machine templates, after the
machines are created from those templates the trial period will begin all over. Therefore, if you are
using an environment for less than the operating system evaluation period (180 days for some), we
recommend that you not activate the machines in an environment and leverage the trial function-
ality. In this case, you will want to use the Key Management Server (KMS) Client product keys
available at http://aka.ms/KMSClientKeys. These special product keys will put Windows in a
trial state and force Windows to look for a KMS server if one is available, which will be discussed
shortly.

If you need to use environments longer than the operating system evaluation period, then you
will want to activate the software. If you happen to be a volume license customer, then you can
set up a special kind of activation server within your company, called a Key Management Server
(KMS), for use by Lab Management environments. You will need special product keys for the
KMS server that are available from the Volume Licensing Service Center at http://aka.ms/
VolumeLicensingServiceCenter. To learn more about setting up an internal KMS server, you can
read more at http://aka.ms/UnderstandingKMS.

Troubleshooting
As you have seen in this chapter, using the software testing capabilities of Visual Studio and Team
Foundation Server 2013 can involve many moving parts, long-running workfl ows, complex topolo-
gies, and many stakeholders from across your development and testing teams. The Lab Management
product team diligently manages a list of evolving troubleshooting techniques, along with an active
forum, on MSDN at http://aka.ms/TroubleshootingLabManagement.

SUMMARY

 In this chapter, you learned about the testing capabilities of Visual Studio 2013 and Visual Studio
Online as well as the impact that adopting these tools can have on your Team Foundation Server
planning and administration. We covered the new Cloud-based Load Testing Service in Visual Studio
Online. You also learned about the architecture of Team Foundation Server when confi gured in con-
cert with test controllers and agents, SCVMM, Hyper-V host servers, VM libraries, and both standard
and SCVMM environments. Finally, you learned some key areas to consider as you build and scale
out your Lab Management environment, as well as some tips to maintain this environment over time.

In Chapter 27, you will learn about upgrading from earlier editions of Team Foundation Server to
Team Foundation Server 2013.

http://aka.ms
http://aka.ms/KMSClientKeys
http://aka.ms
http://aka.ms/UnderstandingKMS
http://aka.ms/TroubleshootingLabManagement

c26.indd 04/22/2014 Page 756

c27.indd 04/22/2014 Page 757

Upgrading Team
Foundation Server

WHAT’S IN THIS CHAPTER?

 ➤ Understanding upgrade types

 ➤ Differences between in-place and hardware migration–based
upgrades

 ➤ Upgrading software prerequisites

 ➤ Using the upgrade wizard

 ➤ Upgrading legacy team projects

 ➤ Enabling Team Foundation Server 2013 features in legacy team
projects

Instead of installing a brand-new Team Foundation Server 2013 instance, you may have an
earlier version of Team Foundation Server internally and want to upgrade to Team Foundation
Server 2013. Thankfully, Microsoft has provided the means to upgrade an existing server to
the latest version. However, as a Team Foundation Server administrator, you will actually
have several additional tasks to complete to ensure that end users are able to leverage the new
features.

The upgrade wizard in Team Foundation Server 2013 allows a full-fi delity data upgrade from
the following legacy versions:

 ➤ Team Foundation Server 2010

 ➤ Team Foundation Server 2010 with Service Pack 1

 ➤ Team Foundation Server 2012 Beta or Release Candidate

27

758 ❘ CHAPTER 27 UPGRADING TEAM FOUNDATION SERVER

c27.indd 04/22/2014 Page 758

 ➤ Team Foundation Server 2012

 ➤ Team Foundation Server 2012 with Updates 1, 2, or 3

 ➤ Team Foundation Server 2013 Preview or Release Candidate

You may notice that Team Foundation Server 2005 and 2008 are not listed. If you still have a Team
Foundation Server 2005 instance, then you will want to upgrade fi rst to Team Foundation Server
2010 with Service Pack 1, and then you can perform the upgrade to Team Foundation Server 2013.
If you still have a Team Foundation Server 2008 instance, you will want to upgrade fi rst to Team
Foundation Server 2012, and then upgrade to Team Foundation Server 2013.

In this chapter, you learn about the different approaches to take for upgrading from an earlier
version of Team Foundation Server, as well as what is involved with performing an upgrade for
each part.

OVERVIEW

Upgrading the software and database schema from earlier versions to Team Foundation Server 2013
could not be easier. However, you will discover that the upgraded Team Foundation Server
2013 environment containing legacy team projects will essentially work as though it were a Team
Foundation Server 2010 or 2012 instance running in Team Foundation Server 2013. This is so that
the upgrade itself will limit the impact on how teams have been working to continue to be produc-
tive immediately after the upgrade. It will be your job to enable, at a schedule convenient for the
teams in your organization, any new features that you desire for the legacy team projects that exist
before upgrade.

There are several aspects of an upgrade to take into consideration. In this section, you learn about
some of those aspects to ensure that your team can go through a smooth upgrade experience.

In-Place Upgrades versus Migrating to New Hardware
The fi rst major decision is whether you want to perform an in-place upgrade on the current hard-
ware where Team Foundation Server is installed or move to new hardware (including any environ-
ment topology changes, such as splitting to a dual-tier confi guration).

The upgrade wizard in the confi guration utility enables you to connect to a set of Team Foundation
Server 2010 or 2012 databases and upgrade the schema and data appropriately.

During an in-place upgrade, the former versions of the software are uninstalled, and then Team
Foundation Server 2013 is installed in addition to the latest updates. You will be able to then use the
upgrade wizard and input the connection information for the existing database server, and the data-
base schema is upgraded in place.

For a hardware migration-based upgrade, the legacy databases are fully backed up and then
restored to the new hardware environment. The upgrade wizard is then pointed to the new data-
base server instance with a copy of the latest database backups restored. It will discover the legacy
version of those databases and appropriately upgrade the database schema to Team Foundation
Server 2013.

Overview ❘ 759

c27.indd 04/22/2014 Page 759

DIFFERENCE BETWEEN MIGRATIONS AND UPGRADES

Moving to new hardware is considered a hardware migration-based upgrade, which
should not be confused with another option that some may describe as “ migrating
to Team Foundation Server 2013.” Note that despite having a similar name, a
migration-based upgrade is not a migration.

The approach that others have described (not recommended) would involve setting
up a brand-new Team Foundation Server 2013 environment with new databases,
creating new team projects, and then migrating the source code and work items
using a tool such as the Team Foundation Server Integration platform.

That approach will lead to many side effects. It is considered a low-fi delity data
transfer because the data has changed (such as changeset, dates, and work item
ID numbers), and because this approach doesn’t move over other data, such as
 reporting, security privileges, and build information. By taking the actual upgrade
route (described in this chapter), the confi guration wizard will upgrade the data-
base schema and keep all of the data as it existed from the earlier Team Foundation
Server environment. For that reason, this is considered a high-fi delity upgrade.

For more about these differences, you can read Matt Mitrik’s articles about this
topic at the following sites:

 ➤ http://aka.ms/TFSMigrationDefinition

 ➤ http://aka.ms/TFSUpgradeDefinition

There are several advantages and disadvantages to both an in-place upgrade and a hardware
migration-based upgrade. The main disadvantage to performing a hardware migration is that you
will need to acquire new hardware (whether physical or virtual machines). The nice thing, though, is
that, after the upgrade is completed and verifi ed, you will be able to retire the legacy hardware and
repurpose it for some other use or completely discard any virtual machines previously used. After
personally being involved with a very large number of upgrades over several years, we would over-
whelmingly recommend the hardware migration-based upgrade.

Following are the advantages of performing a hardware migration-based upgrade:

 ➤ Testing the upgrade—Having a separate Team Foundation Server environment allows you to
perform the upgrade steps while the production environment is still running. This allows you
to perform the upgrade to test it before going through with the fi nal upgrade run.

 ➤ Having a rollback plan—One of the main advantages of performing a hardware migration-
based upgrade is that you have a rollback plan already in place in case the upgrade is not
 successful, or in case it cannot be verifi ed. By keeping up the legacy hardware environment,
you can have users continue to connect to the old environment (if needed) while researching
any upgrade issues in the new hardware environment.

 ➤ Taking advantage of new operating system versions—If the legacy environment is using
Windows Server 2008 R2 with SP1, you can take advantage of newer operating system

http://aka.ms/TFSMigrationDefinition
http://aka.ms/TFSUpgradeDefinition

760 ❘ CHAPTER 27 UPGRADING TEAM FOUNDATION SERVER

c27.indd 04/22/2014 Page 760

versions (such as Windows Server 2012) by ensuring that the new hardware has the latest
versions installed. Otherwise, the fi nal upgrade plan would require you to upgrade the
 operating system as well, which can affect your rollback plan.

 ➤ Taking advantage of a 64-bit application tier—Earlier versions of the Team Foundation
Server application tier software supported installation only on 32-bit operating systems. If
you are planning to use a Windows Server operating system, then Team Foundation Server
2013 supports only 64-bit versions.

 ➤ Installing new copies of prerequisite software—As discussed later in this chapter, you will
end up needing to ensure that SQL Server and SharePoint are upgraded to newer versions for
Team Foundation Server 2013. Acquiring new hardware allows you to install each prerequi-
site software fresh, instead of worrying about having to upgrade the software during the fi nal
upgrade.

 ➤ New built-in backup and restore functionality—You do not even have to worry about per-
forming the database backup and restoration in a separate tool. To make the process easier
for moving to new hardware during the upgrade, Team Foundation Server 2013 introduces
two new utilities to help ease with the process: TFSBackup.exe and TFSRestore.exe.

Planning Upgrades
There are additional considerations to account for with the upgrade process that are different from a
fresh Team Foundation Server 2013 installation. Let’s take a look at a few of those.

Connection URL
Let’s hope that the person setting up the earlier version of Team Foundation Server used fully
qualifi ed, friendly DNS names for each of the subsystems of Team Foundation Server, as described
in Chapter 2. After the upgrade is complete, you should ensure that the friendly DNS entries are
changed to point to the new hardware environment. When users start connecting to the Team
Foundation Server environment using the friendly DNS entries, they will automatically be pointing
to the new environment fully upgraded without having to make any additional changes. The Visual
Studio and other clients will continue to work without any additional changes.

If friendly DNS names were not used in the previous setup, then we recommend that you use the con-
cepts described in Chapter 2 to allow for smoother upgrades in the future. Future Team Foundation
Server administrators and your team members will thank you for it. A blog post about using friendly
DNS names in a Team Foundation Server environment is available at http://aka.ms/FriendlyDNSTFS.

Also, remember that some legacy versions of Visual Studio clients and other tools that connect to
Team Foundation Server 2013 may need to include the Project Collection name and the virtual
directory in the connection URL. Chapters 4 and 21 provide more information about these changes.

Other Servers in the Team Foundation Server Environment
Remember that there might be other servers that should be upgraded before they can be fully used.
For example, all of the build servers will need to be upgraded to the latest version, as well as proxy
servers, test controllers, and test agents.

http://aka.ms/FriendlyDNSTFS

Upgrading Prerequisites ❘ 761

c27.indd 04/22/2014 Page 761

Update 2 of Team Foundation Server 2012 added support for Team Foundation Server 2010 build
servers, and that support has carried over to Team Foundation Server 2013. You can safely connect
Team Foundation Server 2010 and 2012 build servers to Team Foundation Server 2013.

After testing the upgrade in a separate environment, you will want to establish downtime for the
Team Foundation Server environment to be unavailable to end users while the upgrade wizard is
upgrading the schema for the databases. The amount of time necessary depends on the amount of
data currently stored in the legacy databases as well as the version of the database schema in the
legacy databases. For example, if you are upgrading from Team Foundation Server 2010, then the
upgrade process will take more time because there are more schema upgrade steps necessary. The
amount of time is also extremely variable and dependent on hardware, disk speed, available memory,
and so on. This is also another great reason for doing a hardware migration-based upgrade.

When the predetermined cutoff time for your team arrives, make sure that users are no longer using
the environment and take a full backup of the database. Any changes made to the legacy environ-
ment after the full backup occurs will not be available on the upgraded server.

After the upgrade has been successfully completed, a different set of databases will be used by the
Team Foundation Server 2013 environment, if you were upgrading from Team Foundation Server
2010. Legacy SQL Server backup plans may be looking for the legacy database names, so you will
want to ensure that any relevant backup plans are reviewed and modifi ed accordingly.

NOTE Chapter 23 provides more information about disaster recovery with
Team Foundation Server.

UPGRADING PREREQUISITES

Team Foundation Server 2013 drops support for several pieces of prerequisite software formerly
supported with earlier versions of Team Foundation Server. Before running the upgrade wizard,
you will want to ensure that all prerequisite software has been upgraded to the supported versions
because the upgrade wizard will block you from continuing if those conditions have not been met.

Like Team Foundation Server 2012, Team Foundation Server 2013 does not support 32-bit
Windows Server operating systems. The following Windows Server operating system versions are
supported with Team Foundation Server 2013:

 ➤ 64-bit version of Windows Server 2008 R2 with SP1 (Standard, Enterprise, or Datacenter
editions)

 ➤ Windows Small Business Server 2011 with SP1 (Standard, Essentials, or Premium Add-on
editions)

 ➤ 64-bit versions of Windows Server 2012 (Essentials, Standard, or Datacenter editions)

 ➤ 64-bit versions of Windows Server 2012 R2 (Essentials, Standard, or Datacenter editions)

Additionally, Team Foundation Server 2013 supports installing Windows client operating systems,
although the reporting and SharePoint integration features will be disabled if you install on any of

762 ❘ CHAPTER 27 UPGRADING TEAM FOUNDATION SERVER

c27.indd 04/22/2014 Page 762

the supported client operating systems. You will also be unable to run a TFS proxy if you are using
a client operating system. The following versions of the Windows client operating systems are sup-
ported with Team Foundation Server 2013:

 ➤ 64-bit or 32-bit versions of Windows 7 with SP1 (Home Premium, Professional, Enterprise,
or Ultimate editions)

 ➤ 64-bit or 32-bit versions of Windows 8 (Basic, Pro, or Enterprise editions)

 ➤ 64-bit or 32-bit versions of Windows 8.1 (Basic, Pro, or Enterprise editions)

SQL Server
Several changes were made in this release for the requirements for SQL Server. The following
 versions of SQL Server are supported with Team Foundation Server 2013:

 ➤ SQL Server 2012 with SP1 (Express, Standard, or Enterprise editions)

 ➤ SQL Server 2014 (Express, Standard or Enterprise editions)

You will notice that SQL Server 2008 is no longer supported with Team Foundation Server 2012.
You will also notice that Microsoft has confi rmed support for the next version of SQL Server. This
is unusual, but is helpful to know for teams who always want to be using the latest and greatest
 versions of software.

Team Foundation Server 2013 supports using the Express version of SQL Server 2012, if you would
like to take advantage of a lighter-weight version of SQL. The Reporting Services and Analysis
Services features are not available if you use SQL Express. This confi guration is common if you
choose to use the Basic confi guration wizard or use Team Foundation Server Express. However, if
you are upgrading a server, you will be using the Upgrade confi guration wizard.

WARNING Despite offering only a single (current) option for SQL Server sup-
port, there are some caveats and warnings to be aware of. These include choos-
ing the correct collation settings, installing updates in certain cases, and being
aware of feature availability for different editions.

We recommend that you familiarize yourself with these details to ensure
your upgrade succeeds. You can fi nd these details at http://tinyurl.com/
SQLTFS2013.

WARNING Virtualization of the server that has SQL Server installed is not
recommended without the proper hardware and disk performance outputs
because it can lead to data loss and severe performance problems. If you choose
to use virtualization of the SQL Server machine, be sure to confi gure the virtual
machine for top performance when working with Team Foundation Server. See
the discussion about virtualization in Chapters 2 and 21 for more information.

http://tinyurl.com

Using the Confi guration Utility ❘ 763

c27.indd 04/22/2014 Page 763

SharePoint
Team Foundation Server 2008 supported Windows SharePoint Services 2.0 for the team project
 portal sites. Unfortunately, if you are still using Windows SharePoint Services 2.0, you must upgrade
to one of the following versions of SharePoint products and technologies supported by Team
Foundation Server 2013:

 ➤ Windows SharePoint Services 3.0 (no licensing cost)

 ➤ Microsoft Offi ce SharePoint Server 2007

 ➤ SharePoint 2010 Foundation (no licensing cost)

 ➤ Offi ce SharePoint 2010 Server

 ➤ Offi ce SharePoint 2013 Server

NOTE For more information about upgrading the SharePoint products and
technologies for a Team Foundation Server 2010 environment, see the related
information and step-by-step instructions available on MSDN at http://aka
.ms/TFSUpgradingSharePoint.

Project Server
If you integrated with a Project Server instance in Team Foundation Server 2010, then you will not need
to worry about upgrading the Project Server software before upgrading your Team Foundation Server
instance. The following versions of Project Server are supported with Team Foundation Server 2013:

 ➤ Project Server 2010 with SP1

 ➤ Project Server 2013

System Center
If you have set up the Lab Management functionality in Team Foundation Server 2010 with System
Center Virtual Machine Manager, then you do not need to make any changes to your System Center
2008 R2 instance. That version is still supported in Team Foundation Server 2013. You can later
upgrade that instance to use System Center Virtual Machine Manager 2012 with SP1, but that does
not need to occur during the upgrade. If you are going to install System Center 2012, be sure to also
install Service Pack 1 which adds support for Windows 8 and Windows Server 2012.

USING THE CONFIGURATION UTILITY

The latest version of the Team Foundation Server 2012 Installation Guide and the MSDN Library
have step-by-step lists of instructions and checklists that detail how to upgrade using either upgrade
approach (in-place upgrade or hardware migration-based upgrade). You will want to make sure that
you follow each part of the checklist to ensure the smoothest upgrade possible. The latest version of
the step-by-step walkthroughs and checklists are always available on the MSDN library at http://
aka.ms/UpgradeTFS.

http://aka
http://aka.ms/UpgradeTFS
http://aka.ms/UpgradeTFS

764 ❘ CHAPTER 27 UPGRADING TEAM FOUNDATION SERVER

c27.indd 04/22/2014 Page 764

If you are following the hardware migration-based upgrade approach, you will essentially back up
the databases on the old database server instance and then restore them on the new database server
instance. Once you have upgraded all of the prerequisite software and restored a full backup of all
of the Team Foundation Server databases as listed in the Installation Guide, you are ready to go
through the Team Foundation Server upgrade wizard.

As mentioned in Chapter 3, the setup confi guration process is split into two parts. There is an
installation phase that puts all of the necessary software on the application tier server. You will also
want to make sure that you have installed the latest Team Foundation Server 2013 update released
from Microsoft before moving forward.

Once the software and updates are installed, you confi gure them with a separate confi guration
utility. This segmented approach resolves the legacy issue introduced in earlier versions of Team
Foundation Server (an installation that was successful but whose confi guration failed). In those
cases, all of the software was removed from the server, even though it was correctly placed.
Now you are able to get everything installed, and a rich user interface (UI) can let you know
if there are any problems during the confi guration phase, instead of it occurring inside of an
installer.

Interestingly, another benefi t of this two-phase approach is that Microsoft can release service packs
and updates that will easily fi x problems with the confi guration utility. This became particularly
important starting with Team Foundation Server 2012 because Microsoft has committed to
 providing more frequent updates that include new features along with performance and bug fi xes.
The faster release cadence means you can expect three or four major updates every year for Team
Foundation Server.

Upgrade Wizard
Instead of installing a new server as described in Chapter 3, you will need to run the upgrade wizard
once to get the database schema upgraded to the version used by Team Foundation Server 2013. The
Upgrade wizard option is available in the confi guration utility, as shown in Figure 27-1.

If you will be including multiple application tier servers in a Team Foundation Server application tier
farm, you must run the Upgrade wizard only once for the fi rst application tier server. You can then
use the Application-Tier Only wizard for each additional application tier server to connect them to
the already upgraded databases.

NOTE Chapter 22 provides more information about scalability options for
Team Foundation Server using network load balancing to create a Team
Foundation Server application tier farm.

Follow each of the upgrade wizard pages at this point and enter the information requested. The
latest version of the Installation Guide, or the MSDN Library upgrade articles mentioned earlier,
has step-by-step directions and information about each option displayed within the upgrade
wizard.

Using the Confi guration Utility ❘ 765

c27.indd 04/22/2014 Page 765

Before the upgrade process begins, all of the options and information that you input will be validated to
ensure that there are no issues. If you see any errors listed, you must resolve them before continuing. For
several errors that may occur, you are able to restart the verifi cation process without leaving the wizard.

FIGURE 27-1: Upgrade wizard option

Once you are ready, you can begin the upgrade process. This will kick off several upgrade jobs that
will run through the upgrade steps necessary for each subsystem of Team Foundation Server. The
upgrade wizard will show you the progress of each set of upgrade jobs, the confi guration instance,
and each of the project collections.

Verifi cation of Upgrade
After all of the upgrade jobs have completed for project collections, you will get a confi rmation. If
there were any issues, you can restart the job using the Team Foundation Server Administration utility.
If you did receive a successful confi rmation that the upgrade has completed, you can try out any or all
of the following verifi cation items to ensure everything is working properly:

 ➤ Check to ensure that any existing version control workspaces still exist and are confi gured
the same as before the upgrade.

 ➤ Open the version control repository and check to make sure shelvesets and pending changes
for your workspace still exist.

 ➤ Check the maximum changeset in the version control repository and ensure that it is the
 latest expected changeset that occurred before the cutoff time and the full backup.

766 ❘ CHAPTER 27 UPGRADING TEAM FOUNDATION SERVER

c27.indd 04/22/2014 Page 766

 ➤ Open and create work items.

 ➤ Run work item queries to check that all of the expected work items are returned.

 ➤ View existing builds and queue new builds with legacy build defi nitions.

 ➤ Navigate and open SQL Reporting Services reports. (It may take several hours before the new
warehouse has been populated with data.)

 ➤ Ensure that you can navigate to the SharePoint team portal sites and that the Documents
node shows all document libraries from the associated team portal sites.

 ➤ Navigate to the Team Web Access site to verify that it loads successfully and displays the
 correct information.

 ➤ Ensure that test plans and test cases can be accessed through Microsoft Test Manager.

 ➤ Check to make sure that environments created using Lab Management are listed in the Lab
Center of Microsoft Test Manager.

Additionally, to ensure that the entire environment is healthy, you should run the Best Practices
Analyzer for Team Foundation Server 2013 (as introduced in Chapter 21), available in the latest
 version of the Team Foundation Server 2013 Power Tools. This will run a full set of rules to check
the entire environment to make sure everything is working as expected. You can also start monitor-
ing the environment using the techniques you learned in Chapter 25.

UPGRADING LEGACY TEAM PROJECTS

Now that you have a working Team Foundation Server 2013 instance based on the upgraded legacy
version of the databases, you will notice that the legacy team projects will be working exactly the
way they did in the earlier versions of Team Foundation Server. This means that several of the new
features introduced in Team Foundation Server 2013 will not be available for team members. This
will also be the case for some features introduced in Team Foundation Server 2012, if you were
upgrading from Team Foundation Server 2010.

One way that you can start using the new features is to create new team projects that use the lat-
est version of the process templates included with Team Foundation Server 2013, then to perform a
 version control move operation into the new team project.

However, existing build defi nitions and work item tracking do not have standard tools available
for moving to the new team project. For work item tracking, you could potentially use the Team
Foundation Server Integration Platform tools; but, again, this would be a low-fi delity data transfer,
as previously discussed.

The upcoming sections primarily focus on the steps necessary to enable Team Foundation Server
2013 features for team projects created using the standard process templates available in Team
Foundation Server 2010 or Team Foundation Server 2012.

Feature Enablement
One of the exciting improvements that was introduced in Team Foundation Server 2012 was the
new Confi gure Features Wizard. The Confi gure Features Wizard helps you enable the new features

Upgrading Legacy Team Projects ❘ 767

c27.indd 04/22/2014 Page 767

available in Team Foundation Server for team projects created using one of the standard process
templates available in earlier versions.

To clarify, the Confi gure Features Wizard will not change the process template or upgrade those
team projects to new versions of the corresponding process templates, but it will help by enabling
some of the new Team Foundation Server 2012 and 2013 features. This is primarily to save you time
that would normally be needed to perform manual steps. The features that can be enabled by the
Confi gure Features Wizard are:

 ➤ Portfolio backlogs (including Feature work item type and Category)

 ➤ Code Reviews

 ➤ Stakeholder Feedback

 ➤ My Work

 ➤ Planning tools (product backlog, Iteration planning, and task boards)

 ➤ Storyboard integration

 ➤ Hidden Types work item category

The fi rst time that you navigate to the Team Project administration section in Team Web Access,
you will see a message indicating that features are available for that team project, but they must be
confi gured before they can be used, as shown in Figure 27-2.

FIGURE 27-2: New features available for notifi cation from the administration section of Team Web Access

768 ❘ CHAPTER 27 UPGRADING TEAM FOUNDATION SERVER

c27.indd 04/22/2014 Page 768

By clicking on the link in that message, you can start the Confi gure Features Wizard for this team
project, as shown in Figure 27-3.

FIGURE 27-3: Confi gure Features Wizard

The Confi gure Features Wizard will attempt to inspect the process template currently being used
by that team project and see if it can detect a newer version that can be partially applied. If it is not
able to detect the appropriate process template, it may allow you to manually choose a new Team
Foundation Server 2013–based process template registered with the server.

If you are satisfi ed with the choice, you can click Confi gure and the wizard will enable as many
 features as possible. A confi rmation page that lists any additional steps that you need to take will
appear. If the process does not complete successfully, you must either manually update the team project
or attempt to run the Confi gure Features Wizard again after updating a registered process template.

You can fi nd out more about the Confi gure Features Wizard, as well as other manual methods for
enabling the features introduced in Team Foundation Server 2013, by visiting this MSDN article:
http://tinyurl.com/EnableTFS2013Features.

If you have a team project created from a heavily customized process template, manual instructions
that you can follow to enable the features introduced in Team Foundation Server 2013 are avail-
able at http://aka.ms/UpdateCustomTFSProcess. One of the options for those with customized
process templates is the ability to manually add the necessary functionality to your custom process
template and upload and register the compatible process template. You can then run the Confi gure
Features Wizard and use your updated custom process template. This can be extremely benefi cial if
you have several team projects to update.

http://tinyurl.com/EnableTFS2013Features
http://aka.ms/UpdateCustomTFSProcess

Upgrading Legacy Team Projects ❘ 769

c27.indd 04/22/2014 Page 769

CONFIGURING FEATURES FOR MANY TEAM PROJECTS

If you need to confi gure features for several team projects at once, running through the
wizard for all of your projects one at a time can be very time consuming. With Team
Foundation Server 2013, you have the ability to programmatically confi gure features.

Ewald Hofman has a great blog post that walks readers through the process of
automating this confi guration. The post relates to Team Foundation Server 2012,
but with some minor changes it will work with Team Foundation Server 2013. You
can fi nd it at http://tinyurl.com/MultipleTFS2013Features.

Allowing Access to Premium Features
As previously discussed in Chapter 24, Team Foundation Server 2013 includes premium features
in Team Web Access that should be available to use only by team members with certain editions of
Visual Studio licensed to them. Those Visual Studio editions are as follows:

 ➤ Visual Studio 2013 Premium with MSDN

 ➤ Visual Studio 2013 Ultimate with MSDN

 ➤ Visual Studio 2013 Test Professional with MSDN

You control this access by setting the licenses for users in the Team Web Access Administration
pages. Three types of license groups are available for Team Foundation Server 2013, which enable
certain features:

 ➤ Limited—Can include all users in your organization who need the ability to create work
items. Does not require a Team Foundation Server CAL.

 ➤ Standard—Includes all users that have a Team Foundation Server CAL or Visual Studio
Professional with MSDN.

 ➤ Full—Includes all users with one of the Visual Studio editions mentioned previously that have
access to all of the features in Team Web Access.

LICENSING GROUPS AND PERMISSIONS

Adding a user or security group to one of the Licensing groups mentioned in this
section does not give those users the permissions required. Those users still need
to be granted the appropriate permissions necessary to use the features that are
enabled for each team project. More information about security and permissions
can be found in Chapter 24.

After you upgrade to Team Foundation Server 2013, the default licensing group is set to Standard,
which would include administrative users such as your account. When navigating to a team site in
Team Web Access, you will see a notifi cation similar to Figure 27-4 that indicates that some features
are not visible to you.

http://tinyurl.com/MultipleTFS2013Features

770 ❘ CHAPTER 27 UPGRADING TEAM FOUNDATION SERVER

c27.indd 04/22/2014 Page 770

FIGURE 27-4: Features Not Visible notifi cation from Team Web Access

To enable the full set of features for users that have a license to access them, you should go to the
Team Web Access Administration site for managing the license groups, as shown in Figure 27-5.
You can fi nd that site by opening an Internet browser and navigating to the URL for your Team
Web Access site in the format of http://yourtfsservername:8080/tfs/_admin/_licenses and
replacing it with the appropriate settings for your Team Foundation Server instance.

Add the appropriate users or security groups to the Full licensing group, or if you know that all
users who will be accessing this Team Foundation Server instance will be licensed appropriately, you
can set the Full licensing group as the default web access licensing group for all users.

Automated Builds
Build defi nitions that existed in Team Foundation Server 2010 before upgrading that used the
default workfl ow-based build process template will continue to work after the upgrade. If you have
an opportunity, especially if you do not have any build process template customizations, you can
switch your build defi nitions over to using the new default build process template that was added to
each of the team projects during the upgrade process. This will ensure that you are using all of the
latest updates included in the latest version.

If you had any custom build process templates that included custom build workfl ow activities, you
will need to take an additional step: Update the references to the latest version before recompiling
your customer workfl ow activities and making them available for deployment to the build controller
and agents, as explained in Chapter 19.

http://yourtfsservername:8080/tfs/_admin/_licenses

Upgrading Legacy Team Projects ❘ 771

c27.indd 04/22/2014 Page 771

FIGURE 27-5: Managing the licensing groups

We highly recommend taking the new default build process template from Team Foundation Server
2013 and applying all of your customizations appropriately so that you can take advantage of all of
the new features included in the new version of the build process template. You can then use that
newly customized build process template going forward.

NOTE Chapter 19 includes more information about how to customize the build
process and create custom build workfl ow activities.

Enable Local Workspaces
Local Workspaces, which you learned about in Chapter 6, are one of the features that make developers
more productive. For new Team Foundation Server 2013 installs, Local Workspaces (as opposed to
server workspaces) are enabled by default for any new workspaces that are created. However, for back-
wards compatibility reasons and because it is a new paradigm shift for those that might have worked
with Visual SourceSafe or earlier versions of Team Foundation Server in the past, the default remains
set to server workspaces whenever you upgrade from an earlier version of Team Foundation Server.

We highly recommend that after your server is upgraded you change the default to Local Workspaces.
The next time one of your developers connects to the server, she will even get an option to “upgrade”

772 ❘ CHAPTER 27 UPGRADING TEAM FOUNDATION SERVER

c27.indd 04/22/2014 Page 772

her legacy workspace into a Local Workspace. That notifi cation to the developer is only shown if the
default is changed in the server settings. A step-by-step walkthrough is available for how to update
the default at http://aka.ms/SetTFSWorkspacesDefault.

Deploying New Reports
The data warehouse schema for Team Foundation Server 2013 has been updated and no longer
works with the reports included in Team Foundation Server 2008 or earlier. If your migration
involved an upgrade from Team Foundation Server 2008 (via either Team Foundation Server 2010
or 2012), you can deploy a new set of reports using the new process templates (assuming you have
performed all of the “morphing” steps to get your team project up to the latest process template
 version) by using a tool available from the latest version of Team Foundation Server Power Tools. It
is available from the command line by using the following:

tfpt.exe addprojectreports /collection:http://tfs:8080/tfs/
 DefaultCollection /teamproject:LegacyTeamProject /
 processtemplate:"MSF for Agile Software Development 2013" /force

This command will download the specifi ed process template and deploy all of the reports included in
the process template appropriately to the reporting site associated with the specifi ed team project. The
/force option allows you to overwrite what already exists if there is a report with the same name.
You can modify the reports, upload the updated process template, and repeat this process as necessary.

Deploying New SharePoint Team Portal Site
Team portal sites that exist in legacy team projects do not take advantage of all of the SharePoint
dashboard features as described in Chapter 15. This is one of the toughest options because there is
no way to convert an existing site and enable the dashboards on a portal site template.

In this case, the best option would be to archive the document library content from the legacy team
portal site, create a new team portal site using the latest process template, and then add the archived
document library content. There may be other types of features that were used that may not be able
to migrate over successfully. You will have to weigh the options appropriately.

The latest version of the Team Foundation Server Power Tools also includes a command-line tool for
creating a new team portal site and associating it with a team project. The following example com-
mand could be used to perform this step:

tfpt.exe addprojectportal /collection:http://tfs:8080/tfs/
 DefaultCollection /teamproject:LegacyTeamProject /
 processtemplate:"MSF for Agile Software Development 2013"

You can specify additional options if you want the team portal site to be created in a different loca-
tion from the default location specifi ed for the team project collection.

Upgrading Lab Management Environments
You need to make sure that you upgrade any test controllers that you have confi gured for your Team
Foundation Server instance to the Visual Studio 2013 version of the test controller software. Be sure to
also install any of the relevant updates that might be available for the Visual Studio 2013 test controllers.

http://aka.ms/SetTFSWorkspacesDefault
http://tfs:8080/tfs
http://tfs:8080/tfs

Summary ❘ 773

c27.indd 04/22/2014 Page 773

After upgrading from Team Foundation Server 2010, all of the environments created using Lab
Management (available from the Lab Center in Microsoft Test Manager) will be marked as need-
ing to be upgraded before they can be used again. The Visual Studio agents installed in each of the
machines in the environment need to be updated.

Thankfully, you can leverage the agent auto-install and auto-confi gure features in Team Foundation
Server 2013. These will automatically uninstall the old agents and install and confi gure the new
test agent software for you. Be sure that you have installed any of the latest updates for the Test
Controllers so that the most up-to-date version of the Visual Studio 2013 Agents is installed.

If you do decide to also upgrade to System Center
Virtual Machine Manager 2012, be sure to also
upgrade the System Center Virtual Machine
Manager 2012 Administration Console software on
each of the application tier servers. You will also
likely be prompted with an informational message
that indicates that Team Foundation Server has
detected a newer version of System Center, similar
to Figure 27-6.

You will want to perform the step indicated in that
informational message, which is running this one-
time command on any of the Team Foundation Server
2013 application tier servers:

TFSConfig.exe Lab /UpgradeSCVMM

SUMMARY

 As you learned in this chapter, the upgrade wizard will allow you to move all of your data from a
legacy version of Team Foundation Server to Team Foundation Server 2013, using a high-fi delity
upgrade method. In this chapter, you learned about the two types of upgrades—an in-place upgrade
and a hardware migrated-based upgrade.

Additionally, you learned about the preparation steps necessary for a successful upgrade, including
taking care of any prerequisite software. Finally, you learned about the features not available on
legacy team projects until they are enabled in Team Foundation Server 2013.

Chapter 28 introduces the issues that come up whenever you have geographically separated teams
that need to use the Team Foundation Server environment. The chapter explores the different
options available to resolve those issues, and it provides methods for ensuring a smoothly operating
worldwide environment for all of the geographically separated teams.

FIGURE 27-6: New System Center version
detected

c27.indd 04/22/2014 Page 774

c28.indd 04/22/2014 Page 775

Working with Geographically
Distributed Teams

WHAT’S IN THIS CHAPTER?

 ➤ Understanding the diffi culties of a distributed development
environment

 ➤ Getting to know Team Foundation Server Proxy

 ➤ Learning techniques for working with remote teams

 ➤ Dealing with build servers in a distributed environment

 ➤ Introducing Team Foundation Server Integration Tools

 ➤ Understanding how to be effective when the server is not available

The development of software by distributed teams is a growing trend. People are working in
a global economy with greater competition and choice. There are many reasons you may be
working with a distributed team, including the following:

 ➤ Your company has grown and expanded, and it has several fi eld offi ces.

 ➤ Your company contracts out portions of development to third parties.

 ➤ Your company merged with another company and both companies must work interac-
tively over great distances.

Even if you don’t work in a distributed team, you may work in an environment whereby your
server infrastructure is located at a different physical location. Following are a few examples:

 ➤ Your IT infrastructure is outsourced to another company—for example, using the
Visual Studio Online hosted by Microsoft.

 ➤ Your development team is located in a different city from the main offi ce to take
advantage of skilled workers in that area.

 ➤ You have a mobile workforce that moves between offi ces and has no main offi ce.

28

776 ❘ CHAPTER 28 WORKING WITH GEOGRAPHICALLY DISTRIBUTED TEAMS

c28.indd 04/22/2014 Page 776

When you work with Team Foundation Server 2013 in this environment, there are a number of
challenges that you will face and specifi c issues you are more likely to encounter as a result of
having physically separated teams. This chapter explores those challenges and ways that you can
overcome them.

Team Foundation Server 2013 was built with these geographical challenges in mind. In this chap-
ter, you’ll learn about the capabilities of Team Foundation Server that allow you to overcome these
boundaries and collaborate as a cohesive team, whether separated by feet or by oceans.

IDENTIFYING THE CHALLENGES

You face a number of challenges when working with geographically distributed teams. This chapter
walks you through the challenges most relevant to your Team Foundation Server environment.

Latency over the Wide Area Network
Perhaps the biggest technical challenge that distributed teams will face is the network connection
that separates them and the server. Network connectivity can be affected by many different factors.
However, the biggest factor is latency.

Latency is the time that it takes for packets of data to travel between two points. Think of when you
connect a garden hose to a tap and then turn it on. There is a delay between when you turn on the tap
and when water starts pouring out the other end. This delay is called latency. Latency in a networking
context can be “one-way” or “round-trip.” Round-trip latency is the time it takes data to travel from the
client to the server and back again. It is usually measured by running the ping command against a server.

On a local area network (LAN), typical round-trip latency is less than fi ve milliseconds. Between
two computers within the same continent, typical round-trip latency is less than 100 milliseconds.

What’s important to realize is that regardless of the speed of your Internet connection, your latency can
never beat the speed of light. The speed of light in fi ber-optic cable is roughly 35 percent slower than in
a vacuum. As an example, the shortest distance between Sydney, Australia, and Seattle, Washington, is
about 8,000 miles, or 12,000 kilometers. Therefore, the absolute minimum one-way latency is 60 milli-
seconds, and the round-trip latency is 120 milliseconds. In reality, though, the cables don’t run directly
between two points, so the latency is higher because of this and intermediate network equipment.

Another aspect of latency is that it isn’t always symmetric. Latency could be greater in one direc-
tion compared to the other. This can be seen when using a one-way satellite Internet connection.
The upstream data is sent using a landline, and the downstream data is received via a satellite dish.
Because the data must travel from the Internet to a base station, to the satellite, and then back down
to the receiving dish, typical round-trip latency is 300 milliseconds.

Microsoft recommends that a server running Team Foundation Server should have a reliable network
connection with a minimum bandwidth of 1 Mbps and a maximum latency of 350 milliseconds.

Sources of Network Traffi c
Many different sources of network traffi c exist within the components of a Team Foundation
Server environment. Table 28-1 details the contribution of each component, which will vary in
each environment. In most environments, version control and work item tracking are typically the
biggest contributors. Depending on your confi guration, virtual machine deployments from Lab
Management can be a large contributor.

Identifying the Challenges ❘ 777

c28.indd 04/22/2014 Page 777

TABLE 28-1: Network Traffi c Associated with Each Component

COMPONENT TRAFFIC

Version control Source fi les and operations

Work item tracking Work items, operations, metadata cache, and attachments

Web access Web pages, images, scripts, style sheets, attachments, and
source fi les

Reporting Reports, database queries, and Analysis Services queries

SharePoint products (including
dashboards)

Web pages, documents, work items, and reports

Team Foundation Build Build logs and build outputs

Lab Management Commands, System Center Virtual Machine Manager
(SCVMM) traffi c, lab environments, and templates

Version Control
Version control in a Team Foundation Server environment will almost always be the largest
 contributor to network traffi c. There are two sources of traffi c:

 ➤ User commands

 ➤ File content downloads

Whenever a client performs a Get (if using Team Foundation Version Control) or a Pull (if using
Git), the server will send the entire contents of any fi le that has changed to the client. The more
clients you have, the more traffi c there is. The amount of traffi c is also proportional to the number,
frequency, and size of fi les that change in the repository.

Work Item Tracking
Work item tracking has three main sources of traffi c:

 ➤ User commands (queries, opens, saves, and bulk updates)

 ➤ Metadata Cache downloads

 ➤ Attachment downloads and uploads

The biggest contributor of these three is usually the Metadata Cache.

Every team project has a set of metadata that includes work item rules, global lists, form layouts,
and other project settings. The more team projects that you have and that people have access to, the
more metadata that needs to be potentially sent to each of the clients. There is a linear relationship
in the metadata size increase and the number of team projects even if each of the team projects uses
the same process template.

Whenever a client communicates with the server to perform a work item–related query, it tells the
server what version of the metadata it is using. The server then sends back all the metadata that

778 ❘ CHAPTER 28 WORKING WITH GEOGRAPHICALLY DISTRIBUTED TEAMS

c28.indd 04/22/2014 Page 778

it doesn’t know about yet, along with the data the client was actually asking for. This is called a
Metadata Refresh. There are two types of Metadata Refreshes: incremental and full.

In Team Foundation Server 2008, certain administrative operations such as deleting a fi eld caused
the Metadata Cache to be invalidated. All clients would then download the full Metadata Cache the
next time they performed a query.

In Team Foundation Server 2010, 2012, and 2013, almost all operations that invalidate the cache
will use an incremental update. This means that not only the load on the server (in the form of
memory pressure and metadata requests) is greatly reduced, but also the overall network traffi c to
the client is reduced.

NOTE To measure the work item tracking Metadata Cache size, on any cli-
ent computer, locate the C:\Users\<user>\AppData\Local\Microsoft\Team
Foundation\5.0\Cache folder. Right-click a subdirectory that has a GUID as the
name, select Properties, and read the size in the Properties dialog box. Remember
that the Metadata Cache is likely to be compressed when it travels over the net-
work, so you might have to use a network traffi c sniffer such as NetMon to see the
actual network transfer size, rather than looking at the folder size.

PROBLEMS WITH METADATA CACHE REFRESHES AT MICROSOFT

Because of the level of process template customization by various teams at
Microsoft, there were a lot of unique fi elds, rules, and work items on the internal
servers. In an effort to clean up some of the fi elds and consolidate them, the project
administrators started to delete the unused fi elds.

This fi eld deletion caused the Metadata Cache to be invalidated and forced all
clients to perform a full Metadata Cache refresh. The combination of a large
Metadata Cache and a large number of clients effectively took the server offl ine by
consuming all the memory available, and all available connections, while the clients
refreshed their caches.

As a brute-force work-around before metadata fi ltering was available, the team
renamed the stored procedure that invalidated the cache to prevent the problem
from happening during business hours. Then, if there was a need to delete the fi elds
and invalidate the cache, the team would rename it back and run the command on
a weekend. The cache refreshes would then be staggered as people arrived at work
on Monday and connected to the server.

Visual Studio 2010, 2012, and 2013 clients perform an incremental update if a fi eld
is deleted on the server, so this is no longer a problem.

Solutions ❘ 779

c28.indd 04/22/2014 Page 779

SOLUTIONS

You have a number of different ways to overcome the challenges of working with geographically
distributed teams. Each of these solutions can be used by itself or combined with others to fi t your
needs.

Using Visual Studio Online Geographically Distributed
Using the Microsoft-hosted Visual Studio Online is the easiest way to offl oad a large portion of the
infrastructure required by Team Foundation Server. A scalable cloud infrastructure greatly simpli-
fi es deployment and is a great way to avoid worrying about increased server load when your team
grows.

There are drawbacks for some distributed teams, however. Because the service is hosted in the cloud,
all communication happens via the Internet. This can result in signifi cantly greater latency than you
would fi nd with a server deployed on a local network. If most of your team is in one offi ce and only
a few users need access from another geographic location, this solution may not be appropriate.

In some organizations, it is not acceptable for any intellectual property to be hosted on third-party
infrastructure. This is especially true in highly regulated environments such as governmental,
defense, and fi nancial industries. In this case, a hosted solution such as Visual Studio Online may be
immediately ruled out.

The benefi ts of using hosted server infrastructure can be substantial for teams that are distributed
across the globe. It is certainly the simplest solution for providing access to anyone in any location,
but it may come with increased latency for some or all of your users.

Central Server with Remote Proxy Servers
The Team Foundation Server Proxy is a server that is capable of caching downloads of fi les from
version control and test result attachments. It is discussed later in this chapter. This is the recom-
mended and simplest environment to confi gure and maintain. It is the best choice when your users
are working from branch offi ces that can host remote proxy servers.

However, the drawback is that if your users are evenly spread around the world, then there is no
central place to locate the server, and latency will be a problem for everybody. You will want to
place proxy servers in each of the remote locations.

Multiple Distributed Servers
If your distributed teams are working on different products that can be developed in isolation of
each other, then running multiple servers may be an option. This has the benefi t of allowing people
to work with a local server on their projects. The drawback, of course, is that there are now multiple
servers to maintain, along with codebases in different repositories. Additionally, reporting and man-
aging software releases and resources across multiple Team Foundation Server instances becomes
quite challenging.

780 ❘ CHAPTER 28 WORKING WITH GEOGRAPHICALLY DISTRIBUTED TEAMS

c28.indd 04/22/2014 Page 780

The remote team could host its own Team Foundation Server and maintain a dedicated team project
collection. Then, when it comes time to hand off the product to the in-house maintenance team, the
collection can be detached from the remote server, backed up, and then attached to the local server.

NOTE For more information on this procedure, see the “Move a Team Project
Collection” page on MSDN at http://aka.ms/TFSMoveTPC.

Mirroring
If your development cannot be partitioned between the different remote sites, then one option is to
use the Team Foundation Server Integration Tools to mirror source code and work items between
the different Team Foundation Server environments. This may sound like the silver bullet that can
solve all of your problems, but it is not without a large cost.

Every mirror that you set up has overhead associated with it. When people are depending upon
the mirror, its operation and maintenance must be taken just as seriously as running the Team
Foundation Server environments themselves. This topic will be looked at in more detail later in this
chapter.

Remote Desktops
As mentioned earlier, in some environments, it is not acceptable to have intellectual property stored
on remote machines outside the IT department’s control.

One solution for these environments is to maintain a central Team Foundation Server along
with Remote Desktop Services (RDS) or other Virtual Desktop Infrastructure (VDI) for clients.
Essentially, a remote user will connect to a virtual desktop on the same network as the central
server. The only traffi c that must travel across the network is the keyboard and mouse input and the
video output. However, depending on your usage of Team Foundation Server, this may require more
bandwidth than not using Remote Desktops.

Internet-Connected “Extranet” Server
Virtual Private Networks (VPNs) and other remote access technologies can become a bottleneck
compared to accessing servers directly over the Internet. If you have teams clustered at remote sites,
the site(s) will often have a dedicated VPN that has less overall overhead and usually a better net-
work connection. However, if you have mobile workers spread around the world, they will often
be able to get a better Internet connection from their local ISP than connecting to the corporate
network.

By exposing your server directly on the Internet, you allow people to connect directly to it without
having the overhead of encapsulating their traffi c in a VPN tunnel. If you decide to connect your
Team Foundation Server to the Internet, you should consider enabling and requiring the HTTP
over SSL (HTTPS) protocol to encrypt the traffi c to and from the server. The hosted Visual Studio
Online by Microsoft uses this approach.

http://aka.ms/TFSMoveTPC

Build Servers ❘ 781

c28.indd 04/22/2014 Page 781

Metadata Filtering
As mentioned earlier in this chapter, the Metadata Cache has the potential to become a huge source
of network traffi c. When metadata fi ltering is enabled, the server will send the minimum amount of
metadata required for the project that you are connecting to. This can reduce the network traffi c if
people generally connect to only one team project.

The downside is that the Metadata Cache is invalidated each time you connect to a new server. This
can especially be a hindrance if people connect to more than one team project on the server. In this
case, the server will be sending some of the same metadata each time they connect. It would be more
effi cient to download the full metadata for all team projects just once.

NOTE More information on how metadata fi ltering works and how to
enable it can be found on Martin Woodward’s blog at http://aka.ms/
TFSMetadataFiltering.

BUILD SERVERS

When you work in a geographically distributed team, the availability of nightly builds to your
testers can be an important decision point. You have a few different options available, and each has
different benefi ts and trade-offs.

Local Build Server Farm
This is the most common scenario for small to midsized teams, where the build server farm is in the
same location as the Team Foundation Server environment itself. In this scenario, the speed of the
build isn’t affected by the speed of the WAN. If you are using the hosted Visual Studio Online, a
hosted build controller is available to you.

The downside of this approach is that it will take time and use WAN bandwidth for remote teams to
get the build outputs. Additionally, unless you use some other caching technology, or set up a script to
copy build outputs to remote sites, then everyone at the remote sites will be transferring the same fi les
over the WAN multiple times. This is slow and can be expensive if you are charged for WAN traffi c.

Alternately, useful features are available in Windows Server 2008 R2 and Windows Server 2012 for
hosting a fi le share that can be cached or distributed appropriately for this scenario. For example,
you could use Distributed File System (DFS) or BranchCache to expose the same UNC path but have
Active Directory locate the closest fi le server with the actual fi le content. If you do take this approach,
be sure to use the UNC path in the build defi nition that has DFS or BranchCache enabled instead
of a UNC path that contains a hard-coded server name in it. Friendly DNS names as described in
Chapter 2 would be a perfect choice for both the Build Drops and Symbol Server fi le shares.

Remote Build Server Farm
In this scenario, you would situate build servers at your remote locations. Combining this with
a Team Foundation Server Proxy at each remote site, you get a good solution. The build servers

http://aka.ms

782 ❘ CHAPTER 28 WORKING WITH GEOGRAPHICALLY DISTRIBUTED TEAMS

c28.indd 04/22/2014 Page 782

have access to a local cache as facilitated by the proxy server, and the developers have access to
local build outputs. However, if multiple teams need the ability to access the same build drops
and Symbol Server store, then you may want to consider the options for caching/synchronizing fi le
shares as mentioned in the previous section.

NOTE Team Foundation Server Builds are discussed in detail in Part IV
of this book.

TEAM FOUNDATION SERVER PROXY

The Team Foundation Server Proxy is a server capable of caching downloads of fi les from version
control. Additionally, the Team Foundation Server Proxy for the 2012 release has introduced the
ability to also cache test result attachments, which can be quite large. Types of test result attach-
ments are those that come from the different diagnostic data adapters that are run during test runs
such as IntelliTrace, video recorder, code coverage, and so on. Even if you don’t have a geographi-
cally distributed team, there are features that will be useful to all teams that use version control,
including for local build server farms and local teams.

How the Team Foundation Server Proxy Works
The Team Foundation Server Proxy server is used purely for Team Foundation Version Control
downloads and caching test result attachments. It is not yet used for work item tracking attachments
or other functions in Team Foundation Server. Typically, the proxy server is used at remote offi ces
to improve the performance of version control downloads and test result attachments. However, it
can (and should) be a part of any reasonably busy Team Foundation Server environment topology.

NOTE For more detailed information on how the Team Foundation Server
Proxy works, refer to http://tinyurl.com/HowTFSProxyWorks. This article
was written for the Team Foundation Server 2008 product but still applies for
version control downloads.

Compatibility
The 2008, 2010, 2012, and 2013 proxy servers can act as proxies for Team Foundation Server
2008, 2010, 2012, and 2013. Each of those versions can proxy for multiple Team Foundation Server
instances and team project collections. When a 2010, 2012, or 2013 proxy server is confi gured and
given access to a Team Foundation Server 2010, 2012, or 2013 server instance, it automatically
proxies requests for all team project collections on that instance. This is useful when you add new
collections to a server, because you don’t need to do anything special to set up the proxy to be avail-
able for those collections.

http://tinyurl.com/HowTFSProxyWorks

Team Foundation Server Proxy ❘ 783

c28.indd 04/22/2014 Page 783

It is important to note that only Team Foundation Server 2012 and 2013 proxy servers have the abil-
ity to cache test result attachments from a Team Foundation Server 2012 or 2013 environment. This
is true with the different clients available such as Visual Studio 2013 and Microsoft Test Manager
2013. The earlier versions of the clients and proxy servers will not have the necessary functionality to
cache test result attachments since it was newly introduced in the 2012 release.

Confi guring Proxies
A proxy server doesn’t necessarily have to be registered with the Team Foundation Server to be used.
The only requirement is that the service account under which the proxy server runs must have the
“View collection-level information” permission for each project collection.

The easiest way to set this up is to add the proxy service account to the built-in server-level group:

[TEAM FOUNDATION]\Team Foundation Proxy Service Accounts

Each team project collection has its own group that the server-level group is a member of:

[DefaultCollection]\Project Collection Proxy Service Accounts

If you are setting up a proxy server for use by all users at a particular remote location, you’ll want
to do these three things:

 ➤ Run the proxy as the built-in Network Service account so that you don’t have to update
the service account password every time it changes.

 ➤ Add the proxy service account to the server-level group on each server that you want it to
proxy for.

 ➤ Register the proxy server with the server, and set it as the default for the Active Directory
site(s) that the proxy server is located in or should serve as the proxy server for other loca-
tions. There are additional details on how to accomplish this later in this chapter.

NOTE To register a proxy server, substitute your own Active Directory site and
TFS environment friendly DNS names when you use the following command
from any client with appropriate permissions:

tf proxy
 /add http://ProxyFriendlyDNS:8081/VersionControlProxy
 /site:US-WA-REDMOND /default:site
 /collection:http://ServerFriendlyDNS:8080/tfs/DefaultCollection

Proxy Cleanup Settings
A proxy server will perform best when it has a copy of the fi les that people most often request.
In reality, that’s easier said than done because it’s diffi cult to predict which version of which fi les
people are going to want before they actually request them. To deal with this, the proxy will keep
a copy in its cache of every version of every fi le that is requested. Without any cleanup, the cache
directory will eventually fi ll to capacity.

The proxy has a built-in cleanup job designed to delete older fi les and make space available for more
recently requested fi les. You can express the cache limit in many ways, including as a percentage

http://ProxyFriendlyDNS:8081/VersionControlProxy
http://ServerFriendlyDNS:8080/tfs/DefaultCollection

784 ❘ CHAPTER 28 WORKING WITH GEOGRAPHICALLY DISTRIBUTED TEAMS

c28.indd 04/22/2014 Page 784

of disk space. For example, the proxy cache with the following confi guration can take up only
75 percent of your hard drive space.

<PercentageBasedPolicy>75</PercentageBasedPolicy>

You can also express your cache limit as a fi xed number of megabytes, as shown here:

<FixedSizeBasedPolicy>1000</FixedSizeBasedPolicy>

The cleanup will trigger when the cache size exceeds the threshold.

NOTE For more information on these cache settings and how to change them,
see “How to: Change Cache Settings for Team Foundation Server Proxy” at
http://aka.ms/TFSProxyCacheSettings.

Automatically Detecting the Proxy Settings
A feature in Team Foundation Server, introduced in Team Foundation Server 2010, allows a proxy
server to be registered with the collection. This means that users don’t have to know which proxy
server they should be using. In addition to the tf proxy /configure command, the Visual Studio
IDE will automatically query and set a default proxy server if one is registered on the server. This is
achieved through the GetBestProxies method in the version control object model.

Active Directory Sites
The physical structure of a Windows network is defi ned in Active Directory as a site. A site contains
one or more subnet objects. Typically, a remote offi ce will have its own subnet and will be defi ned as
a separate site.

Team Foundation Server leverages this infrastructure and allows you to defi ne a default proxy server
for each site in Active Directory. As an example, the Team Foundation Server and Visual Studio
ALM product teams are split between Raleigh, North Carolina; Hyderabad, India; and Redmond,
Washington. The corporate network has the Raleigh and Hyderabad offi ces confi gured as a
separate Active Directory site to the Redmond offi ce.
When a developer travels from one offi ce to the other, and
 connects to the offi ce network, the Visual Studio client
automatically detects the new site and reconfi gures itself
to use the default proxy for that site.

You will likely need to work with your Active Directory
administrators in the IT department to work out which
sites should be used. You can see what is confi gured
for your network as well if you have the Remote Server
Administration Tools for Windows features installed on
your local Windows machine. Open the Active Directory
Sites and Services utility from the Start ➪ Administration
Tools folder and you will see each of the sites defi ned in
Active Directory for your Windows network. A sample set
of Active Directory sites is shown in Figure 28-1.

FIGURE 28-1: Active Directory sites and
services

http://aka.ms/TFSProxyCacheSettings

Team Foundation Server Proxy ❘ 785

c28.indd 04/22/2014 Page 785

Setting a Proxy
The version control proxy settings are a per-user and per-machine setting. To force your client to
confi gure the default proxy for the site, you can run the following commands:

tf.exe proxy /configure
tf.exe proxy /enabled:true

You can query registry keys to see if you have a proxy confi gured by running the following
commands:

reg.exe query HKEY_CURRENT_USER\Software\Microsoft\VisualStudio\12.0\
 TeamFoundation\SourceControl\Proxy /v Enabled
reg.exe query HKEY_CURRENT_USER\Software\Microsoft\VisualStudio\12.0\
 TeamFoundation\SourceControl\Proxy /v Url

You can also set registry keys to enable a proxy server without using tf.exe by running the
 following commands (replacing the proxy server name with your own):

reg.exe add HKEY_CURRENT_USER\Software\Microsoft\VisualStudio\12.0\
 TeamFoundation\SourceControl\Proxy /v Enabled /d True /f
reg.exe reg add HKEY_CURRENT_USER\Software\Microsoft\VisualStudio\12.0\
 TeamFoundation\SourceControl\Proxy
 /v Url /d http://redmond.proxy.tfs.contoso.local:8081 /f

Although it’s not documented or offi cially supported, you can also set the TFSPROXY environment
variable, and any client that uses the version control object model will use the proxy.

set TFSPROXY=http://redmond.proxy.tfs.contoso.local:8081

Seeding Proxies
As mentioned earlier in this chapter, the proxy server will cache a copy of a fi le only if someone
requests it. Because of this, you may want to implement a process that will seed the proxy with the
most commonly used fi les in an off-peak period, or after a period of high churn.

As an example, for the Team Foundation Server product team at Microsoft, the main servers are
located in Washington on the West Coast. The other half of the team is in North Carolina on the
East Coast. The nightly build checks in some of the build outputs to source control. These binary
fi les can be quite large, and the bandwidth at the remote site is often strained during the day.

The team implemented a scheduled task at the remote site that requests the latest versions from the
main server after the build has completed. Because the proxy server doesn’t have these versions, it
then downloads them and caches a copy. This means that the fi rst person who needs those fi les the
following day doesn’t have to wait for the lengthy download, and that person gets sent the cached
copy from the proxy server.

Using scheduled tasks is one approach to this problem. Another approach is to set up a build server at
the remote site. The fi rst part of a build is generally to create a workspace and get the latest version of
the source code. If this build is set up to run nightly, or build every check-in (in other words, a continu-
ous integration build), then it will keep the contents of the proxy fresh for other users of that code.

Personal Proxies
A personal proxy server is useful if you do not have a remote offi ce with a proxy server near you. By
setting up your own personal proxy server, you will have to download a fi le’s contents only once.

http://redmond.proxy.tfs.contoso.local:8081
http://redmond.proxy.tfs.contoso.local:8081

786 ❘ CHAPTER 28 WORKING WITH GEOGRAPHICALLY DISTRIBUTED TEAMS

c28.indd 04/22/2014 Page 786

One of the changes, introduced in the 2010 release, in the Team Foundation Server license agree-
ment, is that each MSDN subscription provides a license to deploy one instance of Team Foundation
Server into production on one device. Since Team Foundation Server Proxy is just a different confi g-
uration of the product, this means that each user with an MSDN subscription could run a personal
proxy server or use the production license for a remote offi ce proxy server.

NOTE For the full details, see the “Visual Studio Licensing” whitepaper
at http://aka.ms/VisualStudioLicensing and your applicable licensing
agreements.

MIRRORING WITH THE TEAM FOUNDATION SERVER
INTEGRATION TOOLS

In the past, there was a download available on CodePlex called the “TFS Migration Synchronization
Toolkit.” The intention of the toolkit was to allow people to build custom tools that enabled migration
and synchronization with other version control and work-tracking systems. The original release of the
toolkit received a lot of negative feedback, and not many people were able to successfully use it.

In 2008, the product team made a decision to invest in an effort to address the feedback from the
previous version and build a solid platform that enabled synchronization with other systems. The
result of this effort is Team Foundation Server Integration Tools, which was released in the Visual
Studio Gallery at http://aka.ms/TFSIntegrationPlatform. The Integration Tools are fully sup-
ported by Microsoft Support, and they are the same tools that Microsoft uses internally to keep
data synchronized between different Team Foundation Server instances.

The platform uses adapter architecture, and it ships with a Software Development Kit (SDK) that
allows others to implement the interfaces and leverage all the capabilities of the platform. The fi rst
adapters written were the work item tracking and version control adapters for Team Foundation
Server 2008 and 2010. The selfi sh reason the product group invested in the platform was that they
had a desire to start using early builds of Team Foundation Server 2010 for day-to-day usage. The
problem with this was that the server code was not yet stable enough to risk upgrading the entire
developer division’s main Team Foundation Server environment. This prompted the team to set up a
second server and run a two-way synchronization of work items and source code between them.

This not only allowed the team to be confi dent in the quality of Team Foundation Server 2010
before shipping it, but it also allowed the Integration Tools team to test drive their solution to drive
features and improvements into the product. The end result is a proven and versatile tool for migra-
tion and synchronization of other systems with Team Foundation Server.

WARNING If you choose to use the Team Foundation Integration Tools, be
aware that it is not often an easy path to take. Microsoft uses the tools internally
with the latest versions of Team Foundation Server, so you can be relatively
confi dent the tool will work in most cases, but there is likely to be a lot of hand-
holding to ensure mirroring happens smoothly.

Unless absolutely required, we advise you avoid mirroring entirely.

http://aka.ms/VisualStudioLicensing
http://aka.ms/TFSIntegrationPlatform

Mirroring with the Team Foundation Server Integration Tools ❘ 787

c28.indd 04/22/2014 Page 787

Capabilities
In the fi rst release, the built-in Team Foundation Server 2008 and 2010 adapters had the following
capabilities:

 ➤ Synchronization—This included unidirectional or bidirectional synchronization.

 ➤ Version control—This included the migration of all fi les and folders and support for pre-
serving changeset contents. The following change types are currently supported: add, edit,
rename, delete, branch, merge, and type.

 ➤ Work item tracking—This included the migration of all work item revisions, fi elds, attach-
ments, areas and iterations, and links (including links to changesets).

 ➤ Context synchronization—The tool can synchronize work item types, group memberships,
and global lists.

Field Maps, Value Maps, and User Maps
When synchronizing two different systems, you are almost guaranteed that the confi guration will
be different between the two endpoints. This is where mappings are useful. As an example, you
might have a Priority fi eld with values 1, 2, and 3 on one side and values A, B, and C on the other.
By defi ning a fi eld map and associating it with a value map, the tool can seamlessly translate values
back and forth when updates occur.

Another powerful capability is user maps. As an example, this is useful when you are synchronizing
Team Foundation Server (which uses Active Directory for authentication) with a system that uses its
own store of built-in user names. The user-mapping functionality allows you to map one system to
the other.

Intelligent Confl ict Resolution
In any type of synchronization, there will always be problems that you can’t anticipate and
 automatically handle. Following are some examples:

 ➤ Someone changes the same fi eld on both sides at the same time (an “edit/edit confl ict”).

 ➤ One endpoint encounters an error and the update can’t be saved.

 ➤ Permissions are insuffi cient for making an update.

 ➤ An attachment from one side is larger than the limit on the other side.

 ➤ A fi eld can’t be renamed because the new name already exists.

In all of these cases, the tool will raise a confl ict that requires manual intervention. Depending on
the type of confl ict, the tool may stop processing more changes, or if the changes don’t depend on
each other, it will continue processing others.

The confl ict-resolution process allows you to resolve confl icts and give the resolution a “scope.” For
example, you can say, “Whenever an edit/edit confl ict occurs, always choose the changes from the
left endpoint.” Over time, the system is given rules, and the number of new confl icts to resolve is
reduced.

788 ❘ CHAPTER 28 WORKING WITH GEOGRAPHICALLY DISTRIBUTED TEAMS

c28.indd 04/22/2014 Page 788

Health Monitoring
When you install the Team Foundation Server Integration Tools, two reports get copied to your
machine. To make use of these reports, you can follow the included instructions on how to set up
the data sources and upload the reports. Once they are running, they will show you two things:

 ➤ Latency

 ➤ Confl icts

If people depend on synchronization for their day-to-day work, then you will want to make the
reports available to users. You can also set up a data-driven subscription to e-mail you the report
when latency exceeds a specifi c threshold. For example, at Microsoft, each of the synchronizations
has a data-driven subscription that checks every 30 minutes to see if any endpoint is more than
30 minutes out of date. When one of them is, then it e-mails that report to the synchronization
owner to alert him or her of the situation.

Following are the three most common reasons that an endpoint will be out of date:

 ➤ Someone has made a bulk update to hundreds of work items, and the mirror is still synchro-
nizing the backlog.

 ➤ In version control, a confl ict will block the processing of future changes, because it’s not valid
to skip mirroring a changeset and continue on.

 ➤ The mirror is not running for some reason. This can happen if the service stops, the machine
running the service loses connectivity, or the password changes.

Each of these conditions can be detected by a subscription to the latency report and the confl icts
report.

Examples
Team Foundation Server Integration Tools include a number of templates to get started, but the
following are some of the most common uses.

Version Control Two-Way Synchronization to a Second Server
Take a look at the following snippet from a version control session confi guration:

<FilterPair>
 <FilterItem MigrationSourceUniqueId="1f87ff05-2e09-49c8-9e9b-0ac6db9dd595"
 FilterString="$/Project1/Main"
 MergeScope="$/Project1/Main" />
 <FilterItem MigrationSourceUniqueId="8c85d8eb-f3b3-4f05-b8dc-c0ab823f1a44"
 FilterString="$/Project1/Main"
 MergeScope="$/Project1/Main" />
</FilterPair>

In this scenario, you confi gure a left and right migration source and provide two version control
paths that you want to keep synchronized. It is possible to provide multiple paths, as well as differ-
ent paths. The tool will translate the paths between the two endpoints.

Working Offl ine ❘ 789

c28.indd 04/22/2014 Page 789

You should always choose the smallest mapping possible because the more changes that must be
processed the more likely it is to fall behind and get out of sync. If people are working on the same
code in the two different locations, it’s often a good idea to mirror into a branch of the code. That
way, you can control when and how the changes from the remote server get merged into the main
branch on the other side.

Work Item Synchronization to a Different Process Template
An outsourced development team may use a different process template than the in-house develop-
ment team. This will cause a mismatch in the fi elds and values used to describe bugs, tasks, and
other work items. Both organizations may have very valid reasons for using their own templates,
and that’s fi ne.

To accommodate this mismatch, the Team Foundation Server Integration Tools can be confi gured to
map the different types to their closest equivalents. The following snippet from a session confi gura-
tion fi le shows how a fi eld can be mapped using a value map:

<WITSessionCustomSetting >
 <Settings />
 <WorkItemTypes>
 <WorkItemType LeftWorkItemTypeName="Bug"
 RightWorkItemTypeName="Defect"
 fieldMap="BugToDefectFieldMap" />
 </WorkItemTypes>
 <FieldMaps>
 <FieldMap name="BugToDefectFieldMap">
 <MappedFields>
 <MappedField MapFromSide="Left"
 LeftName="*"
 RightName="*" />
 <MappedField MapFromSide="Left"
 LeftName="Microsoft.VSTS.Common.Priority"
 RightName="Company.Priority"
 valueMap="PriorityValueMap" />
 </MappedFields>
 </FieldMap>
 </FieldMaps>
 <ValueMaps>
 <ValueMap name="PriorityValueMap">
 <Value LeftValue="1" RightValue="A" />
 <Value LeftValue="2" RightValue="B" />
 <Value LeftValue="3" RightValue="C" />
 </ValueMap>
 </ValueMaps>
</WITSessionCustomSetting>

WORKING OFFLINE

In a geographically distributed team, you sometimes need to work offl ine. There may be connectiv-
ity problems between your client and the server, or the server could just be offl ine for maintenance.
In any case, you can take measures to stay productive while you are working offl ine.

790 ❘ CHAPTER 28 WORKING WITH GEOGRAPHICALLY DISTRIBUTED TEAMS

c28.indd 04/22/2014 Page 790

Version Control
If your solution fi le is bound to Team Foundation Server using Team Foundation Version Control,
Visual Studio 2008, 2010, 2012, and 2013 will attempt to connect to the server when you attempt to
open the solution. If the server is unavailable for some reason, the solution will be opened in “offl ine
mode.” This allows you to continue working on your code while you are disconnected from the server.

Team Foundation Server 2012 introduced the concept of Local Workspaces, as discussed in
Chapter 6. This feature better supports working offl ine and disconnection from the server because
the items in your workspace are not marked with the read-only fl ag. You can continue to work with
most operations, even undo pending changes, without needing to be connected to the server. Once
the server is available, each of the pending changes is discovered automatically on the next fi le scan.

However, if you are using the legacy server workspaces or an earlier version of Visual Studio, a Visual
Studio solution will remain offl ine until it is explicitly taken online. Once the server is available again,
you can click Go Online in Solution Explorer and the connection with the server will be attempted
again. Alternatively, you can open the solution and, when the server is available, go online.

With server workspaces, when you go online again, Visual Studio will scan your workspace for writ-
able fi les, and then check out the fi les and pend the changes that you made while you were working
offl ine. If you don’t do this, and you perform a “Get Latest,” there is a chance you may overwrite
your offl ine work, because the server doesn’t know which changes you made while you were offl ine.

If you are planning to use this functionality in server workspaces, you must follow very specifi c
instructions:

 ➤ When in offl ine mode, remove the read-only fl ag on the fi les you want to edit. You will need
to do this from within Windows Explorer, not within Visual Studio. When you try to save a
fi le that you haven’t yet checked out, the fi le will be read-only, and Visual Studio will prompt
you to see if you want to overwrite the fi le. This will unset the read-only fl ag and overwrite
the contents.

 ➤ Don’t rename fi les while offl ine. Team Foundation Server will not know the difference
between a renamed fi le and a new fi le.

 ➤ When you are ready to connect to the server again, before doing anything else, run the online
tool and check in the pending changes that it generates. That way, there will be no confu-
sion between the new online work you will be doing and your offl ine work. If you don’t do
this, and you perform a “Get Latest,” there is a chance you may overwrite your offl ine work
because the server doesn’t know which changes you made.

For these reasons, we highly recommend that you consider using Local Workspaces instead of the tra-
ditional server workspaces, and that you use Visual Studio 2013 or Team Explorer Everywhere 2013.

Forcing Offl ine
If the connection to the server is slow or unreliable, it may be desirable to mark the Team
Foundation Server as offl ine and disable auto reconnect on startup, so that you don’t have to wait
for it to time out. To do this, you need to have the Team Foundation Server Power Tools installed.
Once you have them installed, you can follow these steps:

Other Considerations ❘ 791

c28.indd 04/22/2014 Page 791

 1. Open a Developer Command Prompt
for Visual Studio 2013.

 2. Type the following:

tfpt.exe connections

 3. Once the TFS Connections dialog
box is displayed, as shown in Figure
28-2, select your server, expand the
node, and select the collection.

 4. Click Edit.

 5. Clear the “Automatically reconnect
to last server on startup” check box.

 6. Select the Server Is Offl ine check box.

 7. Click OK.

 8. Close the dialog box.

Now, when you open your solution, it will be
marked offl ine until you click the Go Online
button and connect to Team Foundation
Server.

Work Items
The intended way to work offl ine with work items is to use the Microsoft Offi ce Excel and
Microsoft Offi ce Project integration installed with the Team Explorer client. With this integration,
work items can be exported into a worksheet and saved to your machine for working offl ine. When
you are ready to connect to the server again, the changes can be published back to the server. There
is a limitation while working offl ine that prevents you from creating links to work items and creat-
ing attachments.

Additionally, the third-party tool, TeamCompanion from Ekobit, provides an Outlook add-in that
also caches work item query results and allows for viewing and editing that data while offl ine.

NOTE For more information, see the “Work Offl ine and Reconnect to Team
Foundation Server” article on MSDN at http://aka.ms/TFSWorkOffline.

OTHER CONSIDERATIONS

Several other considerations can make the experience of working with geographically distributed
teams better.

FIGURE 28-2: TFS Connections dialog box

http://aka.ms/TFSWorkOffline

792 ❘ CHAPTER 28 WORKING WITH GEOGRAPHICALLY DISTRIBUTED TEAMS

c28.indd 04/22/2014 Page 792

Maintenance Windows and Time Zones
The default Team Foundation Server installation will schedule optimization and cleanup jobs to
start at 3 a.m. UTC time. This time means that these jobs run in the evening in North America,
early morning in Europe, and in the middle of the day in Asia.

One of the benefi ts of Team Foundation Server is that you typically don’t need the expertise of a
database administrator or any extra SQL maintenance plans (beyond backups) to keep it reason-
ably healthy. To see how some jobs are affected, and perhaps change their schedules accordingly, see
Table 28-2.

TABLE 28-2: Built-In Server and Collection-Level Jobs

JOB NAME DESCRIPTION FREQUENCY

Optimize Databases
(server-level job)

Operates on the relational warehouse database. It
reorganizes fragmented indexes and updates table
statistics.

Daily

Full Analysis Database
Sync

Triggers a full process of the Analysis Services Online
Analytical Processing (OLAP) cube

Daily

Incremental Analysis
Database Sync

Triggers an incremental process of the Analysis
Services OLAP cube

Every 2
hours

Job History Cleanup
Job

Removes the internal job history log records that are
older than 31 days

Daily

Team Foundation
Server Activity Logging
Administration

Removes command history older than 14 days Daily

Optimize Databases
(collection-level job)

Operates on the version control tables. It reorganizes
and rebuilds fragmented indexes and updates table
statistics.

Daily

Version Control
Administration

Removes content in the database that has been
previously destroyed. Also, it removes content that
gets staged to a temporary table as part of a large
check-in.

Daily

Work Item Tracking
Administration

Operates on the Work Item Tracking tables. It
reorganizes fragmented indexes and updates table
statistics. It also deletes work items and attach-
ments no longer used by the system. It will also
delete orphaned attachments because saving a
work item and uploading an attachment are two
separate transactions, and one can succeed without
the other.

Daily

Other Considerations ❘ 793

c28.indd 04/22/2014 Page 793

NOTE For a full list of jobs that run across the confi guration and collection data-
bases and their schedules, see Grant Holliday’s post at http://tinyurl.com/
TFSJobSchedule.

Online Index Operations with SQL Server Enterprise
When the Optimize Databases job is running for each collection, it may cause blocking and slow
performance for some version control commands. If you have users around the world, and you have
large indexes, there may be no ideal time for this job to run. In this case, you may want to consider
upgrading SQL Server to an edition that supports online index operations.

The full version of Team Foundation Server 2013 includes a restricted-use license for SQL Server
2013 Standard Edition. Team Foundation Server 2013 Express includes SQL 2012 Express. If
you license the Enterprise or Data Center edition separately for your data tier server, then Team
Foundation Server will automatically make use of the online index operations available in these edi-
tions, which will prevent the blocking and slow performance that is typical with indexing operations
that are not online.

Distributed Application Tiers
In Team Foundation Server 2008, it was possible to install Team System Web Access on a separate
server than your main application tier. In Team Foundation Server 2010, 2012, and 2013, this is no
longer possible because Web Access is now integrated into the server itself.

In the 2012 and 2013 versions, it is not supported and highly not recommended to have application
tiers distributed away from your data tier servers. They should be on the same server (for a single-
server installation) or in the same data center (for a multiple-server installation).

For version control operations, the architecture of the system is such that the application tier will
request all the data that the user specifi ed and then discard the results that it doesn’t need or that the
user doesn’t have access to. This is because permission evaluation is done on the application tier.

These are just some of the reasons why Team Foundation Server 2013 does not support having
application tiers distributed away from data tiers. It is very important to follow this advice because
customers have experienced major issues with non-supported confi gurations and topologies by not
following this guidance.

If your goal is for higher availability and spreading out the load across multiple application tiers,
you can refer to Chapter 22, which discusses scalability and high availability.

SQL Mirroring
SQL mirroring involves synchronizing the data on one server with a copy of that data on another
server. The limitation of mirroring is that it allows only one server (the principal) to be active at a
time. The mirrored server cannot be used until the mirror is failed over, and the application tiers are
confi gured to use the new principal server.

http://tinyurl.com

794 ❘ CHAPTER 28 WORKING WITH GEOGRAPHICALLY DISTRIBUTED TEAMS

c28.indd 04/22/2014 Page 794

Because of this limitation, mirroring and technologies such as SQL AlwaysOn are useful only in a
disaster-recovery or high-availability situation, rather than a geographically distributed team situation.

SUMMARY

 This chapter explored what it means to work with a geographically distributed team using Team
Foundation Server 2013. You learned about some challenges, and then explored some of the solutions
to overcome those challenges. You looked at Team Foundation Server Proxy in detail, and you learned
about the potential of mirroring between servers with the Team Foundation Server Integration Tools.
Finally, you looked at strategies for working offl ine while disconnected from the server.

Chapter 29 describes extensibility best practices, as well as all the different ways that Team
Foundation Server can be extended through custom plug-ins and tools.

c29.indd 04/22/2014 Page 795

Extending Team Foundation
Server

WHAT’S IN THIS CHAPTER?

 ➤ Getting started with the client object model

 ➤ Exploring the server object model

 ➤ Building server plug-ins

 ➤ Exploring other extension options

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/go/
proftfs2013 on the Download Code tab. The code is in the Chapter 29 download and
individually named according to the code fi lenames noted throughout this chapter.

From the very start, Team Foundation Server was built to be extended. Microsoft acknowl-
edged that it would never be able to build all the different features and functionality that cus-
tomers would want. The philosophy was that Microsoft’s own features should be built upon
the same API that customers and partners can use to build additional features.

This proved to be a very wise design choice and has led to a thriving ecosystem of products
and extensions. Following are some examples of this ecosystem:

 ➤ Microsoft partners have built products that provide rich integration with products such
as Outlook and Word.

 ➤ Competing and complementary Application Lifecycle Management (ALM) products
have been built to integrate with Team Foundation Server.

 ➤ Consultants have leveraged the APIs to fi ll gaps to meet their client’s very specifi c
requirements.

29

http://www.wrox.com/go

796 ❘ CHAPTER 29 EXTENDING TEAM FOUNDATION SERVER

c29.indd 04/22/2014 Page 796

 ➤ The community has built and shared useful tools and utilities for performing common tasks.

 ➤ The Visual Studio ALM Ranger community builds tools and solutions that address common
adoption blockers and pain points.

 ➤ Microsoft itself builds the Team Foundation Server Power Tools to address gaps within the
product outside the normal release cycle.

Perhaps the two most successful examples of the extensibility model (and people leveraging it) were
the products formerly known as TeamPlain and Teamprise:

 ➤ TeamPlain—was a product built on the client object model to provide web browser-based
access to Team Foundation Server. When it was fi rst released, it was a “must-have” exten-
sion for organizations adopting Team Foundation Server. It allowed non-technical users to
access the server and participate in the software development life cycle.

 ➤ Teamprise—was a fully featured, cross-platform client implemented in native Java. It allowed
Mac, Linux, and Java users to access Team Foundation Server from their native environments.

Ultimately, both of these products and their development teams were acquired by Microsoft, and the
products now ship as a standard part of Team Foundation Server. TeamPlain is now incorporated as
Web Access, and Teamprise is available as Team Explorer Everywhere. However, the fact that these
once-partner products were integrated so tightly into the shipping Team Foundation Server release
also gives you a clue to how the team develops the product. The same APIs, events, and protocols
available for different parts of the product to talk to each other are made public and are available as
extension points for you to integrate with Team Foundation Server.

EXTENSIBILITY POINTS

When people talk about Team Foundation Server extensibility, they are likely referring to building
something that leverages the client object model or the TFS SDK for Java. The client object model
assemblies are installed with Visual Studio Team Explorer. It is the main .NET API used by prod-
ucts, tools, and utilities that interact with Team Foundation Server. The TFS SDK for Java is a very
similar client API implemented entirely in Java and used by the Team Explorer Everywhere clients to
talk to Team Foundation Server. The TFS SDK for Java is also available as a standalone download
and can be redistributed with your applications.

All of the client interaction with the server is performed through web services. Although it is pos-
sible to invoke the web services directly, they are not documented, and their use is discouraged.
Microsoft reserves the right to change the web service interfaces in any future release, and it
maintains only backward compatibility via the client object model.

On the application tier, the web services then interact with services provided by the server object
model. The server object model then accesses the internal SQL tables and stored procedures.
Figure 29-1 shows how these different components interact.

Additionally, the server provides other extensibility points, such as the following:

 ➤ Simple Object Access Protocol (SOAP) event subscription notifi cations

 ➤ In-process server events

 ➤ Request fi lters

 ➤ Server jobs

.NET Client Object Model ❘ 797

c29.indd 04/22/2014 Page 797

Windows Computer

Non-Windows Computer

Client Object
Model Application Tier

Team Foundation
Web Services

Server Object
Model

Client
Application

Cross Platform
Client Application

Server Application

TFS SDK for Java

Build Machine

Build Service

Build Process

Client Object
Model

Data Tier

SQL

FIGURE 29-1: Team Foundation Server extensibility architecture

The functionality provided within Team Explorer and Excel clients also can be extended. As you
can see, just about everything Microsoft ships as part of Team Foundation Server can be extended
and built upon to suit your own needs and requirements.

NOTE Not all of the extensibility points are available to you if your Team
Foundation Server instance is hosted on Visual Studio Online. The Client
Object Model, SOAP Event Subscriptions, and Visual Studio extensibility
points are all available for both on-premises and Visual Studio Online instances.
However, due to the installation requirements, the Server Object Model is avail-
able to you only if you have an on-premises installation.

.NET CLIENT OBJECT MODEL

The client object model is the most commonly used way to programmatically interact with Team
Foundation Server. It is the same API that Team Explorer and all .NET-based client-side applica-
tions use to access the server.

NOTE This chapter only briefl y covers the client object model. For more
detailed instructions and plenty of examples on how to use the .NET client
object model, you should refer to the Team Foundation Server 2013 SDK at
http://aka.ms/TFS2013SDK.

http://aka.ms/TFS2013SDK

798 ❘ CHAPTER 29 EXTENDING TEAM FOUNDATION SERVER

c29.indd 04/22/2014 Page 798

Connecting to the Server
Depending on what you want to do, to get connected to the server, you must use one of the follow-
ing classes defi ned in the Microsoft.TeamFoundation.Client.dll assembly:

 ➤ TfsConnection

 ➤ TfsConfigurationServer

 ➤ TfsTeamProjectCollection

The following code will connect to the server and retrieve the latest changeset (code fi le:
ClientObjectModelSample.cs).

using System;
using Microsoft.TeamFoundation.Client;
using Microsoft.TeamFoundation.VersionControl.Client;

namespace ClientObjectModelSample
{
 class Program
 {
 static void Main(string[] args)
 {
 TfsTeamProjectCollection tfs =
 new TfsTeamProjectCollection(
 new Uri("http://localhost:8080/tfs/DefaultCollection"),
 new TfsClientCredentials());

 VersionControlServer vcs = tfs.GetService<VersionControlServer>();
 int latestChangesetId = vcs.GetLatestChangesetId();
 Console.WriteLine("Latest Changeset = {0}", latestChangesetId);
 }
 }
}

For this example to work, you will need to add a reference to both Microsoft.TeamFoundation
.Client.dll and Microsoft.TeamFoundation.VersionControl.Client.dll in the references
section of your project.

In this example, you create a connection to the collection using the collection URL. Then, you get
the VersionControlServer service using GetService<T>. You then use it to retrieve the ID of the
most recent changeset on the collection. It’s that simple!

TEAM FOUNDATION SERVER IMPERSONATION

Team Foundation Server Impersonation allows a privileged user to execute commands
as if the execution had been done by another user. In short, by using the constructor
overloads available on the TeamProjectCollection and TfsConfigurationServer
classes, you can pass in the identity of a user to impersonate.

For more information, see “Introducing TFS Impersonation” at http://tinyurl
.com/TFSImpersonation. Note that while the article is for Team Foundation
Server 2010, this part of the API has not changed.

For another example, see “Using TFS Impersonation with the Version Control
Client APIs” at http://tinyurl.com/TFSImpersonationVC.

http://localhost:8080/tfs/DefaultCollection
http://tinyurl
http://tinyurl.com/TFSImpersonationVC

.NET Client Object Model ❘ 799

c29.indd 04/22/2014 Page 799

Team Project Selection Dialog Box
Although you can enumerate the collections and team projects using the client object model, you can
also leverage the TeamProjectPicker dialog box. This is the same dialog box that Visual Studio
uses and is prepopulated with servers that the user has previously connected to.

The following snippet shows how to create a TeamProjectPicker that allows the user to select a
server, collection, and multiple projects (code fi le: ProjectPicker.cs):

using (TeamProjectPicker tpp = new
 TeamProjectPicker(TeamProjectPickerMode.MultiProject,
 false))
{
 DialogResult result = tpp.ShowDialog();
 if (result == DialogResult.OK)
 {
 // tpp.SelectedTeamProjectCollection.Uri
 foreach(ProjectInfo projectInfo in tpp.SelectedProjects)
 {
 // projectInfo.Name
 }
 }
}

NOTE For more information, see “Using the TeamProjectPicker API” at
http://tinyurl.com/TeamProjectPicker.

Handling Multiple API Versions
If you are building an extension using the client object model, you may want to ensure that it works
against different server versions. There is no single, defi nitive way to do this. You can infer the
server version by looking at the features and services provided by the server.

The following is an example that does this against the Version Control Service using a
PowerShell script that retrieves the VersionControlServer.WebServiceLevel. Then the
VersionControlServer.SupportedFeatures property that can be used to infer what the server
version is as follows (code fi le: MultipleApiVersions.ps1):

#
TFS2013 VersionControl has a WebServiceLevel that gives
an idea of the version of the server you are talking to

Tfs2012_1 Team Foundation Server 2012 Beta
Tfs2012_2 Team Foundation Server 2012 RC
Tfs2012_3 Team Foundation Server 2012 RTM
Tfs2012_QU1 Team Foundation Server 2012 Update 1
Tfs2012_QU1_1 Team Foundation Server 2012 Update 1 with Hotfix
Tfs2013 Team Foundation Server 2013

Prior to TFS 2012, VersionControlServer.SupportedFeatures
is an indicator of what server version you are talking to
#
7 Team Foundation Server 2008 RTM
31 Team Foundation Server 2008 SP1

http://tinyurl.com/TeamProjectPicker

800 ❘ CHAPTER 29 EXTENDING TEAM FOUNDATION SERVER

c29.indd 04/22/2014 Page 800

895 Team Foundation Server 2010 RTM
1919 Team Foundation Server 2010 SP1
#

Halt on errors
$ErrorActionPreference = "Stop"

$Uri = $args[0]

if ([String]::IsNullOrEmpty($Uri))
{
 $Uri = "http://localhost:8080/tfs/DefaultCollection"
}

Add-Type -LiteralPath "C:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\
IDE\ReferenceAssemblies\v2.0\Microsoft.TeamFoundation.Client.dll"
Add-Type -
LiteralPath "C:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\IDE\
ReferenceAssemblies\v2.0\Microsoft.TeamFoundation.Common.dll"
Add-Type -LiteralPath
 "C:\Program Files (x86)\Microsoft Visual Studio
12.0\Common7\IDE\ReferenceAssemblies\v2.0\Microsoft.TeamFoundation.VersionControl.
Client.dll"
Add-Type -LiteralPath "C:\Program Files (x86)\Microsoft Visual Studio
12.0\Common7\IDE\ReferenceAssemblies\v2.0\Microsoft.TeamFoundation.VersionControl.
Common.dll"

$Tpc = New-Object Microsoft.TeamFoundation.Client.TfsTeamProjectCollection -
ArgumentList $Uri
$vcs = $Tpc.GetService(
 [Microsoft.TeamFoundation.VersionControl.Client.VersionControlServer])

if ($vcs.WebServiceLevel -eq $WebServiceLevel.PreTfs2010)
{
 switch ($vcs.SupportedFeatures)
 {
 7 {"Tfs2008_RTM"}
 31 {"Tfs2008_SP1"}
 default {"Tfs2005"}
 }
}
elseif ($vcs.WebServiceLevel -eq $WebServiceLevel.Tfs2010)
{
 switch ($vcs.SupportedFeatures)
 {
 895 {"Tfs2010_RTM"}
 1919 {"Tfs2010_SP1"}
 default {"Tfs2010"}
 }
}
else
{
 $vcs.WebServiceLevel
}

http://localhost:8080/tfs/DefaultCollection

SOAP Event Subscriptions ❘ 801

c29.indd 04/22/2014 Page 801

NOTE This approach is necessary only to determine programmatically what
features a server you are talking to has from the client side. If you are an
administrator looking to see exactly what service level your Team Foundation
Server instance is running at, then you can easily see this from the Team
Foundation Server Administration Console from a Team Foundation Server
Application Tier machine.

Distributing the Client Object Model
Once you have built an application, you will probably want to make it available for others to use.
Your application will have a dependency on the client object model assemblies that you are not
allowed to redistribute with your application.

The general recommendation is that any client that requires the object model should have Visual
Studio Team Explorer installed already; however, there is a standalone installer for the TFS Object
Model available at http://aka.ms/TFS2013OM.

SOAP EVENT SUBSCRIPTIONS

All versions of Team Foundation Server include SOAP event subscriptions. You can subscribe to
work item changes, check-ins, and other events. In the subscription defi nition, you specify the event
type to subscribe to and the SOAP endpoint that should be called. When an event is triggered, Team
Foundation Server calls the Notify web method on your endpoint, and that code is executed.

A great example for the use of SOAP subscriptions came from the Team Foundation Server 2005
release. The product lacked continuous integration build functionality. The community responded
by building a service that subscribed to the CheckinEvent. Then, when someone checked in a fi le to
a particular path, the service would start a build on that path.

While there were signifi cant improvements to the way that e-mail alerts were managed in Team
Foundation Server 2012, SOAP event subscriptions have remained largely unchanged since the 2010
release. A few new events were added in the 2012 release, and a small number were added in the
2013 release as well. For SOAP event subscribers coming from a version of Team Foundation Server
before 2012, two important things should be considered:

 ➤ There can be a delay of up to two minutes for event delivery. SOAP event subscriptions are
delivered using a job agent job. The default schedule of this job is to run every two minutes.

 ➤ The protocol version is now SOAP 1.2. This means the content-type of the request is now
text/xml instead of application/soap+xml as in versions of Team Foundation Server
before 2010. If you’re using Windows Communication Foundation (WCF), you must change
your bindings from BasicHttpBinding to WSHttpBinding.

http://aka.ms/TFS2013OM

802 ❘ CHAPTER 29 EXTENDING TEAM FOUNDATION SERVER

c29.indd 04/22/2014 Page 802

There are two limitations of SOAP event subscriptions that you will want to consider before using
them:

 ➤ SOAP event subscriptions allow you to react only after the fact. You cannot prevent an event
from further execution. Team Foundation Server requests the endpoint asynchronously after
the event has happened. This means that they are not very well-suited to “enforcement”
activities. They can only send an alert or run further code to change the item back to its
previous values.

 ➤ Delivery of SOAP event subscriptions is not guaranteed. If your endpoint is unavailable, or if
it has a problem processing the event, that event can be missed. If missed events are a prob-
lem for you, you will need to periodically run a task that reconciles missed events.

WARNING For more information, see “Does TFS guarantee event subscription
delivery?” at http://tinyurl.com/TFSGuaranteedEvents.

Available Event Types
To retrieve a list of all the SOAP events available for subscription, you can use the IRegistration
service with the following PowerShell script (code fi le: AvailableEventTypes.ps1):

Halt on errors
$ErrorActionPreference = "Stop"

$Uri = $args[0]

if ([String]::IsNullOrEmpty($Uri))
{
 $Uri = "http://localhost:8080/tfs/DefaultCollection"
}

Add-Type -LiteralPath "C:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\
IDE\ReferenceAssemblies\v2.0\Microsoft.TeamFoundation.Client.dll"

$Tpc = New-Object Microsoft.TeamFoundation.Client.TfsTeamProjectCollection
 -ArgumentList $Uri
$reg = $Tpc.GetService([Microsoft.TeamFoundation.Server.IRegistration])

$reg.GetRegistrationEntries($null) | fl Type, EventType

This script calls the GetRegistrationEntries method and outputs the results. Table 29-1 lists the
event types available in Team Foundation Server 2013.

NOTE GitPushEvent is a new event in Team Foundation Server 2013. Its pur-
pose is fairly self-explanatory, but it serves to show that distributed source
control is fully integrated into the product.

http://tinyurl.com/TFSGuaranteedEvents
http://localhost:8080/tfs/DefaultCollection

SOAP Event Subscriptions ❘ 803

c29.indd 04/22/2014 Page 803

TABLE 29-1: Available SOAP Event Types

COMPONENT EVENT TYPE

Build BuildCompletionEvent

BuildCompletionEvent2

BuildCompletedEvent

BuildStatusChangeEvent

BuildDefi nitionChangedEvent

BuildDefi nitionUpgradeCompletionEvent

BuildResourceChangedEvent

Version Control CheckinEvent

ShelvesetEvent

vstfs BranchMovedEvent

DataChangedEvent

NodeCreatedEvent

NodePropertiesChangedEvent

NodeRenamedEvent

NodesDeletedEvent

ProjectCreatedEvent

ProjectDeletedEvent

Git GitPushEvent

Work Item Tracking WorkItemChangedEvent

WITAdapterSchemaConfl ictEvent

Test Management TestRunCompletedEvent

TestRunStartedEvent

Discussion CodeReviewChangeEvent

Building an Endpoint
The easiest way to host an endpoint is to build a Windows Service and use WCF with
WSHttpBinding bindings. Alternatively, you can deploy it as a website in IIS.

NOTE For more information on creating a SOAP event subscription handler,
see Ewald Hofman’s blog post, “How to use WCF to subscribe to the TFS Event
Service,” at http://tinyurl.com/TFSEventSubWCF. This post is targeted at Team
Foundation Server 2010 so you will need to change fi le paths where appropriate.

http://tinyurl.com/TFSEventSubWCF

804 ❘ CHAPTER 29 EXTENDING TEAM FOUNDATION SERVER

c29.indd 04/22/2014 Page 804

Adding the Subscription
Once you have a subscription handler, you must add the subscription to Team Foundation Server.
The usual way of doing this in a scriptable form is by running the BisSubscribe.exe tool from C:\
Program Files\Microsoft Team Foundation Server 12.0\Tools\ on any of your application
tier servers. You can also copy this program to a local machine if you don’t want to log on to the
server for adding new subscriptions.

In Team Foundation Server 2013, you can also create new Alerts from the same Alerts web pages
that you use to create e-mail alerts. Simply change the format of the message to be a SOAP message
and specify the web service endpoint in the Send To fi eld, as shown in Figure 29-2.

FIGURE 29-2: Creating a SOAP event subscription in the Alerts editor

WARNING Project Collection Administrator permissions are required to add
SOAP subscriptions.

Listing All Event Subscriptions
If you are a project collection administrator, you may want to see what subscriptions are confi gured
for your collection for all users. This is not possible through BisSubscribe.exe or Alerts Explorer.

Server Object Model ❘ 805

c29.indd 04/22/2014 Page 805

You can do this by using the following PowerShell script that calls the GetAllEventSubscriptions
method on the IEventService service (code fi le: ListEventSubscriptions.ps1):

Get all event subscriptions
#
Halt on errors
$ErrorActionPreference = "Stop"

$Uri = $args[0]

if ([String]::IsNullOrEmpty($Uri))
{
 $Uri = "http://localhost:8080/tfs/DefaultCollection"
}

Add-Type -LiteralPath "C:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\
IDE\ReferenceAssemblies\v2.0\Microsoft.TeamFoundation.Client.dll"

$Tpc = New-Object Microsoft.TeamFoundation.Client.TfsTeamProjectCollection
 -ArgumentList $Uri
$event = $Tpc.GetService([Microsoft.TeamFoundation.Framework.Client.IEventService])

$event.GetAllEventSubscriptions() | fl ID,EventType,ConditionString

If there are subscriptions that you’d like to remove, you can use BisSubscribe.exe /unsubscribe,
or use the following PowerShell line after running the previous script:

Unsubscribe an event
$event.UnsubscribeEvent(<id here>)

NOTE SOAP subscriptions can be a convenient way to respond to events with
Team Foundation Server, but SOAP is a fairly legacy technology. Additionally,
notifi cations are not guaranteed. If the event is important, you should consider
using a server plug-in.

SERVER OBJECT MODEL

With all the architectural changes in Team Foundation Server to support multiple collections, the
server object model is now more accessible.

NOTE For more information on the server object model, see “Extending Team
Foundation” on MSDN at http://aka.ms/TFS2013ServerOM.

http://localhost:8080/tfs/DefaultCollection
http://aka.ms/TFS2013ServerOM

806 ❘ CHAPTER 29 EXTENDING TEAM FOUNDATION SERVER

c29.indd 04/22/2014 Page 806

Server Extensibility Interfaces
Although many of the interfaces in the server object model are marked public, some are more suit-
able for customization and extending than others. Table 29-2 describes the interfaces and their suit-
ability according to the following guide:

 ➤ Suitable—This is intended for third-party extensions. This is used by Team Foundation
Server internally for extensibility.

 ➤ Limited—Some extension is expected by tool providers, though in a limited fashion.

 ➤ Not Suitable—This is dangerous or not really intended for third-party extensions.

TABLE 29-2: Server Extensibility Interfaces and Their Suitability

INTERFACE DESCRIPTION SUITABILITY

ISubscriber The in-process event system is described
later in this chapter.

Suitable

ITeamFoundationRequestFilter This is intended to allow the extension to
inspect and manage all incoming requests. It
is described later in this chapter.

Suitable

ISecurityChangedEventHandler A notifi cation useful for reacting to security
changes. The most common use would be
to write an auditor of security changes to tie
in to your needs. However, you would nor-
mally use an ISubscriber, because all security
changes are published through events.

Limited

ITeamFoundationHostStateValidator Used to prevent a collection from being
started. If a customer wants to imple-
ment custom online/offl ine semantics, this
would allow it.

Limited

ICatalogResourceTypeRuleSet If you are going to extend the catalog with
custom objects, and you want to imple-
ment some rules to enforce that your
catalog objects conform to a specifi c set
of rules, this is the interface you would
implement. This is not a real high-profi le
interface, and there should not be many
extensions in this area.

Limited

IStepPerformer This is the servicing engine’s API. Servicing
is a method for performing a set of actions
within the job agent scripted through an
XML document. This is very similar to a
workfl ow. You can add behaviors to a ser-
vicing job by writing IStepPerformers.

Limited

Server Object Model ❘ 807

c29.indd 04/22/2014 Page 807

IServicingStepGroupExecutionHandler These are hooks in the servicing engine
that allow you to alter the set of steps exe-
cuted, or change the state of the execu-
tion engine before and after a step group.

Limited

ISecurityNamespaceExtension This allows you to override behaviors
within an existing security namespace.
This one is particularly dangerous. If you
wanted to implement custom security
rules for a given dataset, this will allow you
to do it.

Not
Suitable

ILinkingConsumer, ILinkingProvider The linking interfaces are used to extend
the artifact system. This system is not cur-
rently used extensively throughout the
server, and isn’t a great place for third
parties to add extensions.

Not
Suitable

ISubscriptionPersistence This is used when eventing subscriptions
are read and written. This allows subscrip-
tions to be stored in a canonical form,
and then they are expanded at evaluation
time. There is very little value here for
third parties.

Not
Suitable

ITeamFoundationSystemHostStateValidator This interface is internal and not
intended for public use. See
ITeamFoundationHostStateValidator.

Not
Suitable

IIdentityProvider This interface is to support other Identity
types. Team Foundation Server has two
identity types built in, which are used in
on-premises installations: WindowsIdentity
and TeamFoundationIdentity. This inter-
face is what allows the overall support
of other Identity types such as ASP.NET
Membership, Live ID, custom, and so on.
However, some services (such as Work
Item Tracking) support only the built-in
types. This may be available in a future
release for extensions.

Not
Suitable

WARNING Extending many of these interfaces can have negative effects on
the performance and stability of your servers. The server will also disable any
plug-ins that throw exceptions. If you don’t want your plug-in disabled, you can
catch System.Exception and log it so that you can diagnose failure conditions.

808 ❘ CHAPTER 29 EXTENDING TEAM FOUNDATION SERVER

c29.indd 04/22/2014 Page 808

Server Plug-Ins
Team Foundation Server includes the concept of server plug-ins. These plug-ins are relatively
straightforward to write and very easy to deploy. Because they are deployed on the server, they don’t
require any client-side changes to be effective. These attributes make them a great candidate for
extending and controlling Team Foundation Server.

Two interfaces are suitable for extending:

 ➤ ISubscriber—Used to defi ne real-time, in-process event subscriptions.

 ➤ ITeamFoundationRequestFilter—Implementations can inspect all requests.

To use these interfaces, you must add a reference to the Microsoft.TeamFoundation.Framework
.Server.dll assembly from the \Application Tier\Web Services\bin directory of your appli-
cation tier. You will also need a reference to the assemblies that contain the events that you want to
subscribe to.

WARNING If you have multiple application tiers, your server plug-ins and job
extensions must be deployed to all of them. If the plug-in is not available on a
particular application tier, requests to that application tier will not trigger the
plug-in.

ISubscriber: In-Process Eventing
This is the most common place for third parties to use extensions. Team Foundation Server 2013
fi res events to all ISubscribers that sign up for events. Almost all major events on the server pub-
lish events.

There are two different types of events that you can subscribe to:

 ➤ DecisionPoint—You can prevent something from happening.

 ➤ Notification—You receive an event as soon as something happens.

In most (but not all) cases, a DecisionPoint and a Notification event will be fi red, as shown in
Table 29-3. This means that you must check the NotificationType in your event handler; other-
wise, your code may run twice when you were expecting it to run only once.

NOTE For the ISubscriber Interface defi nition, see http://aka.ms/
ISubscriber.

Decision Points
DecisionPoint events are triggered before the action is committed and can be used to prevent the
action from occurring. Most actions do not allow you to change the values, just accept or deny
the request.

http://aka.ms

Server Object Model ❘ 809

c29.indd 04/22/2014 Page 809

TABLE 29-3: Available Notifi cation Events

COMPONENT SERVER OBJECT

MODEL ASSEMBLY

EVENT NOTIFICATION

TYPE

Version
Control

Microsoft
.TeamFoundation
.VersionControl
.Server.dll

CheckinNotifi cation Decision,
Notifi cation

PendChangesNotifi cation Decision,
Notifi cation

UndoPendingChangesNotifi cation Decision,
Notifi cation

ShelvesetNotifi cation Decision,
Notifi cation

WorkspaceNotifi cation Decision,
Notifi cation

LabelNotifi cation Notifi cation

CodeChurnCompletedNotifi cation Notifi cation

Git Microsoft
.TeamFoundation
.Git.Server.dll

PushNotifi cation Notifi cation,
Decision

RefUpdateNotifi cation Notifi cation,
Decision

Build Microsoft
.TeamFoundation
.Build.Server.dll

BuildCompletionNotifi cationEvent Notifi cation

BuildQualityChangedNotifi cationEvent Notifi cation

Work Item
Tracking

Microsoft
.TeamFoundation
.WorkItemTracking
.Server
.DataAccessLayer
.dll

WorkItemChangedEvent Notifi cation

WorkItemMetadataChangedNotifi cation Notifi cation
(minimal)

WorkItemsDestroyedNotifi cation Notifi cation
(minimal)

Test
Management

Microosft
.TeamFoundation
.TestManagement
.Server.dll

TestSuiteChangedNotifi cation Notifi cation

TestRunChangedNotifi cation Notifi cation

TestPlanChangedNotifi cation Notifi cation

TestCaseResultChangedNotifi cation Notifi cation

TestPointChangedNotifi cation Notifi cation

TestRunCoverageUpdatedNotifi cation Notifi cation

BuildCoverageUpdatedNotifi cation Notifi cation

TestConfi gurationChangedNotifi cation Notifi cation

continues

810 ❘ CHAPTER 29 EXTENDING TEAM FOUNDATION SERVER

c29.indd 04/22/2014 Page 810

COMPONENT SERVER OBJECT

MODEL ASSEMBLY

EVENT NOTIFICATION

TYPE

Framework Microsoft
.TeamFoundation
.Server.dll

StructureChangedNotifi cation Notifi cation

AuthorizationChangedNotifi cation Notifi cation

Framework Microsoft
.TeamFoundation
.Framework
.Server.dll

IdentityChangedNotifi cation Notifi cation

SecurityChangedNotifi cation Decision,
Notifi cation

SendEmailNotifi cation Decision

HostReadyEvent Notifi cation

Chat Microsoft
.TeamFoundation
.Chat.Server

MessageSentEvent Notifi cation

MessageDeletedEvent Notifi cation

MessageUpdatedEvent Notifi cation

GetMessagesEvent Notifi cation

RoomCreatedEvent Notifi cation

RoomDeletedEvent Notifi cation

RoomUpdatedEvent Notifi cation

MemberEvent Notifi cation

MemberAddedEvent Notifi cation

MemberRemovedEvent Notifi cation

MemberEnteredEvent Notifi cation

MemberLeftEvent Notifi cation

ClientEvent Notifi cation

ClientCreatedEvent Notifi cation

ClientDeletedEvent Notifi cation

WARNING These are handled on the request processing thread and, therefore,
they should be lightweight and execute quickly. Otherwise, they will impact any
caller that triggers the event.

TABLE 29-3 (continued)

Server Object Model ❘ 811

c29.indd 04/22/2014 Page 811

For a DecisionPoint notifi cation, your ProcessEvent call will be called before the change occurs.
If you deny the request, you can set a message that will be shown to the user. The change will be
aborted, and the processing will not continue.

The following code sample shows a simple ISubscriber plug-in that subscribes to
the CheckinNotification event and DecisionPoint notifi cation type (code fi le:
DecisionPointSubscriber.cs):

using System;
using Microsoft.TeamFoundation.Common;
using Microsoft.TeamFoundation.Framework.Server;
using Microsoft.TeamFoundation.VersionControl.Server;

namespace DecisionPointSubscriber
{
 /// <summary>
 /// This plugin will reject any checkins that have comments
 /// containing the word 'foobar'
 /// </summary>
 public class DecisionPointSubscriber : ISubscriber
 {
 public string Name
 {
 get { return "Sample DecisionPoint Subscriber"; }
 }

 public SubscriberPriority Priority
 {
 get { return SubscriberPriority.Low; }
 }

 public Type[] SubscribedTypes()
 {
 return new Type[] {
 typeof(CheckinNotification)
 };
 }

 public EventNotificationStatus ProcessEvent(TeamFoundationRequestContext
 requestContext, NotificationType notificationType,
 object notificationEventArgs, out int statusCode,
 out string statusMessage, out ExceptionPropertyCollection
 properties)
 {
 statusCode = 0;
 properties = null;
 statusMessage = string.Empty;

 if (notificationType == NotificationType.DecisionPoint)
 {
 try
 {
 if (notificationEventArgs is CheckinNotification)

812 ❘ CHAPTER 29 EXTENDING TEAM FOUNDATION SERVER

c29.indd 04/22/2014 Page 812

 {
 CheckinNotification notification =
 notificationEventArgs as CheckinNotification;

 // Logic goes here
 if (notification.Comment.Contains("foobar"))
 {
 statusMessage = "Sorry, your checkin was rejected.
 The word 'foobar' cannot be used in
 checkin comments";
 return EventNotificationStatus.ActionDenied;
 }
 }
 }
 catch (Exception exception)
 {
 // Our plugin cannot throw any exception or it will
 // get disabled by TFS. Log it and eat it.
 TeamFoundationApplicationCore.LogException("DecisionPoint
 plugin encountered the following error
 while processing events", exception);
 }
 }
 return EventNotificationStatus.ActionPermitted;
 }
 }
}

Inside the ProcessEvent method, the plug-in checks whether the check-in comment contains the
string foobar. If it does, a custom error message is set, and the return value is ActionDenied.

The other possible return values are as follows:

 ➤ ActionDenied—Action denied; do not notify other subscribers.

 ➤ ActionPermitted—Action permitted; continue with subscriber notifi cation.

 ➤ ActionApproved—Similar to ActionPermitted, but do not notify other subscribers.

Notifi cations
For a Notification event, no return values are expected, and the publication serves as a notifi -
cation of the occurrence of an event. Notification events are performed asynchronously and,
therefore, do not have an impact on the caller. You should still take care to not consume too many
resources here.

The following code sample shows a simple ISubscriber plug-in that subscribes to the
LabelNotification event:

using System;
using System.Text;
using Microsoft.TeamFoundation.Common;
using Microsoft.TeamFoundation.Framework.Server;

Server Object Model ❘ 813

c29.indd 04/22/2014 Page 813

using Microsoft.TeamFoundation.VersionControl.Server;

namespace NotificationSubscriber
{
 /// <summary>
 /// This request filter will log an event to the Application
 /// event log whenever TFS labels are changed
 /// </summary>
 public class NotificationSubscriber : ISubscriber
 {
 public string Name
 {
 get { return "Sample Notification Subscriber"; }
 }

 public SubscriberPriority Priority
 {
 get { return SubscriberPriority.Low; }
 }

 public Type[] SubscribedTypes()
 {
 return new Type[] {
 typeof(LabelNotification)
 };
 }

 public EventNotificationStatus ProcessEvent(TeamFoundationRequestContext
 requestContext, NotificationType notificationType,
 object notificationEventArgs, out int statusCode,
 out string statusMessage, out ExceptionPropertyCollection properties)
 {
 statusCode = 0;
 properties = null;
 statusMessage = string.Empty;

 if (notificationType == NotificationType.Notification)
 {
 try
 {
 if (notificationEventArgs is LabelNotification)
 {
 LabelNotification notification = notificationEventArgs
 as LabelNotification;

 StringBuilder sb = new StringBuilder();
 sb.AppendLine(string.Format("Labels changed by {0}",
 notification.UserName));

 foreach (LabelResult label in notification.AffectedLabels)
 {
 sb.AppendLine(string.Format("{0}: {1}@{2}",
 label.Status, label.Label, label.Scope));
 }

 TeamFoundationApplicationCore.Log(sb.ToString(), 0,
 System.Diagnostics.EventLogEntryType.Information);

814 ❘ CHAPTER 29 EXTENDING TEAM FOUNDATION SERVER

c29.indd 04/22/2014 Page 814

 }
 }
 catch (Exception exception)
 {
 // Our plugin cannot throw any exception or it will get
 // disabled by TFS. Log it and eat it.
 TeamFoundationApplicationCore.LogException("Notification plugin
 encountered the following error while
 processing events", exception);
 }
 }
 return EventNotificationStatus.ActionPermitted;
 }
 }
}

Inside the ProcessEvent method, the plug-in extracts the user who changed the label, along with
the label details. It then uses TeamFoundationApplicationCore.Log to send the details to the
Application event log.

Log Name: Application
Source: TFS Services
Date: 1/1/2011 12:00:00 AM
Event ID: 0
Task Category: None
Level: Information
Keywords: Classic
User: N/A
Computer: WIN-GS9GMUJITS8
Description:

Labels changed by WIN-GS9GMUJITS8\Administrator
Created: MyLabel@$/TestAgile

Application Domain: /LM/W3SVC/8080/ROOT/tfs-2-129366296712694768

Rather than writing to the event log, this plug-in could be easily modifi ed to send an e-mail notifi ca-
tion or call another web service with the label change details.

ITeamFoundationRequestFilter: Inspecting Requests
This interface is intended to allow the plug-in to inspect and manage all incoming requests. Team
Foundation Server 2013 includes a number of built-in request fi lters. These fi lters perform tasks
such as logging, collecting performance metrics, controlling the number of requests that can run
concurrently, checking for disabled features, and checking the requests that are being made by
 compatible clients.

NOTE For the ITeamFoundationRequestFilter Interface defi nition, see http://
aka.ms/ITeamFoundationRequestFilter.

http://aka.ms/ITeamFoundationRequestFilter
http://aka.ms/ITeamFoundationRequestFilter

Server Object Model ❘ 815

c29.indd 04/22/2014 Page 815

Because request fi lters don’t rely on any particular events being implemented in the server, they
are a way to inspect any and all server requests. Table 29-4 describes each of the methods in
ITeamFoundationRequestFilter and when they are called in the request pipeline.

TABLE 29-4: ITeamFoundationRequestFilter Interface Methods

METHOD DESCRIPTION

BeginRequest BeginRequest is called after the server has determined which site
or host the request is targeting and verifi ed that it is processing
requests. A call to BeginRequest is not guaranteed for all requests. An
ITeamFoundationRequestFilter can throw a RequestFilterException in
BeginRequest to cause the request to be completed early and an error
message to be returned to the caller.

RequestReady RequestReady is called once the request has completed authentication
and is about to begin execution. At this point, the requestContext
.UserContext property will contain the authenticated user information.
An ITeamFoundationRequestFilter can throw a RequestFilterException in
RequestReady to cause the request to be completed early and an error
message to be returned to the caller.

EnterMethod EnterMethod is called once the method being executed on this request
is declared. At the time EnterMethod is called, the basic method informa-
tion will be available. This includes method name, type, and the list of input
parameters. This information will be available in requestContext.Method.
An ITeamFoundationRequestFilter can throw a RequestFilterException in
EnterMethod to cause the request to be completed early and an error
message to be returned to the caller.

LeaveMethod LeaveMethod is called once the method is complete. Once EnterMethod is
called, LeaveMethod should always be called as well. Exceptions are ignored
because the request is now complete.

EndRequest EndRequest is called once the request is complete. All requests with a
BeginRequest will have a matching EndRequest call. Exceptions are ignored
because the request is now complete.

The following code sample shows a simple ITeamFoundationRequestFilter plug-in that only
implements EnterMethod (code file: RequestFilter.cs):

using System;
using System.Diagnostics;
using System.Text;
using System.Text.RegularExpressions;
using Microsoft.TeamFoundation.Framework.Common;

816 ❘ CHAPTER 29 EXTENDING TEAM FOUNDATION SERVER

c29.indd 04/22/2014 Page 816

using Microsoft.TeamFoundation.Framework.Server;
using Microsoft.TeamFoundation.Server.Core;

namespace RequestFilter
{
 /// <summary>
 /// This request filter will log an event to the Application event log
 /// whenever TFS group memberships are changed
 /// </summary>
 public class RequestFilter : ITeamFoundationRequestFilter
 {
 public void EnterMethod(TeamFoundationRequestContext requestContext)
 {
 switch (requestContext.Method.Name)
 {
 case "AddMemberToApplicationGroup":
 case "RemoveMemberFromApplicationGroup":
 try
 {
 StringBuilder sb = new StringBuilder();
 sb.AppendLine(string.Format("TFS group memberships have
 been changed by {0}",
 requestContext.AuthenticatedUserName));
 sb.AppendLine(string.Format("{0}",
 requestContext.Method.Name));

 Regex regex = new Regex(@"^IdentityDescriptor
 \(IdentityType: (?<IdentityType>[\w\.]+);
 Identifier: (?<Identifier>[S\d\-]+)\)?",
 RegexOptions.Compiled);
 foreach (string parameterKey in
 requestContext.Method.Parameters.AllKeys)
 {
 string parameterValue =
 requestContext.Method.Parameters
 [parameterKey];

 if (regex.IsMatch(parameterValue))
 {
 // If the parameter is an identity descriptor,
 // resolve the SID to a display name using IMS
 string identityType =
 regex.Match(parameterValue).Groups
 ["IdentityType"].Value;
 string identifier =
 regex.Match(parameterValue).Groups
 ["Identifier"].Value;
 IdentityDescriptor identityDescriptor = new
 IdentityDescriptor(identityType,
 identifier);
 TeamFoundationIdentityService ims =
 requestContext.GetService
 <TeamFoundationIdentityService>();
 TeamFoundationIdentity identity =
 ims.ReadIdentity(requestContext,
 identityDescriptor, MembershipQuery.None,

Server Object Model ❘ 817

c29.indd 04/22/2014 Page 817

 ReadIdentityOptions.None);

 sb.AppendLine(string.Format("{0}: {1}",
 parameterKey, identity.DisplayName));
 }
 else
 {
 // Log other parameters, if any
 sb.AppendLine(string.Format("{0}: {1}",
 parameterKey, parameterValue));
 }
 }

 TeamFoundationApplicationCore.Log(sb.ToString(), 0,
 EventLogEntryType.Information);
 }
 catch (Exception exception)
 {
 // Our plugin cannot throw any exception or it will get
 // disabled by TFS. Log it and eat it.
 TeamFoundationApplicationCore.LogException("DecisionPoint
 plugin encountered the following error while
 processing events", exception);
 }

 break;
 }
 }

 public void BeginRequest(TeamFoundationRequestContext requestContext)
 {
 }

 public void EndRequest(TeamFoundationRequestContext requestContext)
 {
 }

 public void LeaveMethod(TeamFoundationRequestContext requestContext)
 {
 }

 public void RequestReady(TeamFoundationRequestContext requestContext)
 {
 }
 }
}

In this example, if the method name matches AddMemberToApplicationGroup or RemoveMember
FromApplicationGroup, the plug-in logs a message. It uses the IdentityManagementService from
the server object model to resolve the SID from the method parameters to a display name. It then
logs a message to the Application event log, indicating that the application group memberships have
been modifi ed.

818 ❘ CHAPTER 29 EXTENDING TEAM FOUNDATION SERVER

c29.indd 04/22/2014 Page 818

Job Extensions
All jobs in Team Foundation Server are plug-ins that implement the ITeamFoundationJobExtension
interface. This is an example of the product using its own extensibility interfaces.

NOTE For the ITeamFoundationJobExtension interface defi nition, see http://
aka.ms/ITeamFoundationJobExtension.

In addition to how they are invoked, the main difference between ISubscriber plug-ins and job
extensions is how they’re deployed:

 ➤ Jobs are deployed by copying the assembly into the \Application Tier\TFSJobAgent\
PlugIns directory, rather than the Web Services\bin\PlugIns directory.

 ➤ If a job plug-in is already loaded, and the job agent is currently running, you must stop the
job agent before you can replace the plug-in assembly. This releases the fi le handle.

 ➤ Along with having the assembly deployed, a job must be either scheduled to run or manually
queued using the job service API.

The following code sample shows a simple ITeamFoundationJobExtension plug-in that implements
the Run method (code fi le: JobExtension.cs):

using System;
using System.Diagnostics;
using Microsoft.TeamFoundation.Framework.Server;
using Microsoft.TeamFoundation.VersionControl.Server;

namespace JobExtension
{
 /// <summary>
 /// This job will log an event to the Application event log with the
 /// current number of workspaces that have not been accessed in 30 days
 /// </summary>
 public class JobExtension : ITeamFoundationJobExtension
 {
 public TeamFoundationJobExecutionResult Run(
 TeamFoundationRequestContext requestContext,
 TeamFoundationJobDefinition jobDefinition, DateTime queueTime,
 out string resultMessage)
 {
 resultMessage = null;
 int warningDays = 30;
 int oldWorkspaces = 0;

 try
 {
 // Get all workspaces in the collection
 foreach (Workspace workspace in
 requestContext.GetService

http://aka.ms/ITeamFoundationJobExtension
http://aka.ms/ITeamFoundationJobExtension

Server Object Model ❘ 819

c29.indd 04/22/2014 Page 819

 <TeamFoundationVersionControlService>
 ().QueryWorkspaces(requestContext, null, null, 0))
 {
 if (workspace.LastAccessDate <= DateTime.Now.Subtract(new
 TimeSpan(warningDays, 0, 0, 0)))
 {
 oldWorkspaces++;
 }
 }

 TeamFoundationApplicationCore.Log(string.Format("There are {0}
 workspaces that have not been accessed in the last {1}
 days", oldWorkspaces, warningDays), 0,
 EventLogEntryType.Information);
 return TeamFoundationJobExecutionResult.Succeeded;
 }
 catch (RequestCanceledException)
 {
 resultMessage = null;
 return TeamFoundationJobExecutionResult.Stopped;
 }
 catch (Exception exception)
 {
 resultMessage = exception.ToString();
 return TeamFoundationJobExecutionResult.Failed;
 }
 }
 }
}

When this job is executed, it uses TeamFoundationVersionControlService from the server object
model to enumerate all workspaces in the collection. It then checks whether the workspace has been
accessed in the past 30 days. If it has not been accessed, a counter is incremented.

Finally, the job logs a message to the Application event log, indicating how many workspaces are
stale and have not been accessed in the past month.

Job Deployment
The most diffi cult part of custom job extensions is deployment. It’s easy enough to defi ne a single
job for a single collection. However, if you want to have your job defi ned and scheduled for all new
collections, there’s not an easy way to do that.

NOTE The built-in jobs are scheduled using servicing steps that are part of the
built-in project collection creation scripts. Unfortunately, these servicing steps
are replaced with each patch of Team Foundation Server. So, if you customized
them, they would get overwritten the next time you upgraded. A creative solu-
tion would be to build an ISubscriber Notification plug-in that subscribes
to the HostReadyEvent. Each time the server starts, it could check if the job is
scheduled for all project collections, and schedule it if it isn’t.

820 ❘ CHAPTER 29 EXTENDING TEAM FOUNDATION SERVER

c29.indd 04/22/2014 Page 820

The following PowerShell script demonstrates how to use ITeamFoundationJobService
from the client object model to defi ne and schedule a job for a single collection (code fi le:
Install-JobExtension.ps1):

Install-JobExtension.ps1
Usage: Install-JobExtension <TfsCollectionUri>
Example: Install-JobExtension http://yourserver:8080/tfs/yourcollection
#
Before running this, you will need to copy the assembly containing the
class that implements ITeamFoundationJobExtension to the following directory
on all Application Tier servers:
C:\Program Files\Microsoft Team Foundation Server 12.0\Application
Tier\TFSJobAgent\plugins
#
This will use the TFS client object model to register and schedule the job
By default the job will be scheduled to run at 5 AM daily.

Halt on errors
$ErrorActionPreference = "Stop"

$Uri = $args[0]

if ([String]::IsNullOrEmpty($Uri))
{
 $Uri = "http://localhost:8080/tfs"
}

Define your own well-known GUIDs for your job
$JobDefinitionGuid = New-Object System.Guid -ArgumentList
 "E2B88C7A-7745-4E49-9442-5A6851190242"

Add-Type -LiteralPath "C:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\
IDE\ReferenceAssemblies\v2.0\Microsoft.TeamFoundation.Common.dll"
Add-Type -LiteralPath "C:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\
IDE\ReferenceAssemblies\v2.0\Microsoft.TeamFoundation.Client.dll"

Get the job service for the collection.
$Tpc = New-Object Microsoft.TeamFoundation.Client.TfsTeamProjectCollection
 -ArgumentList $Uri
$JobService = $Tpc.GetService([Microsoft.TeamFoundation.
 Framework.Client.ITeamFoundationJobService])

Define the job agent job
$JobDefinition = New-Object Microsoft.TeamFoundation.
 Framework.Client.TeamFoundationJobDefinition `
 -ArgumentList $JobDefinitionGuid, `
 "Sample Job Extension", `
 "JobExtension.JobExtension", `
 $null

Schedule the job to run at 5 AM every day, starting tomorrow.
$TomorrowFiveAM = [DateTime]::Today.AddDays(1).AddHours(5).ToUniversalTime()
$JobSchedule = New-Object Microsoft.TeamFoundation.
 Framework.Client.TeamFoundationJobSchedule `

http://yourserver:8080/tfs/yourcollection
http://localhost:8080/tfs

Visual Studio Extensibility ❘ 821

c29.indd 04/22/2014 Page 821

 -ArgumentList $TomorrowFiveAM, 86400

$JobDefinition.Schedule.Add($JobSchedule)

Save the job definition to the collection's job service.
$JobService.UpdateJob($JobDefinition)

This script connects to the specifi ed collection or the default collection if none is specifi ed. It
then creates a TeamFoundationJobDefinition object for the job extension and then creates a
TeamFoundationJobSchedule for the job that schedules it to be run every 24 hours (86400 seconds)
starting at 5 a.m. tomorrow, UTC time.

Once the job and its schedule are defi ned, it is saved to the server using ITeamFoundation
JobService.UpdateJob().

To invoke the job manually, and to see if your job extension works, you can run the following
PowerShell command:

Run the job now manually
$jobService.QueueJobNow($JobDefinition, $false)

VISUAL STUDIO EXTENSIBILITY

You can extend Visual Studio by using macros, add-ins, VSPackages, and Managed Extensibility
Framework (MEF) extensions, and you can deploy them in a number of ways, including VSIX and
custom extension galleries.

By leveraging Visual Studio extensibility, it’s also possible to automate and extend some of the Team
Foundation Server windows, dialog boxes, and events. Figure 29-3 shows a sample add-in that
interacts with Source Control Explorer. Be warned, however, that not all of the dialog boxes are
extensible without getting deep into refl ection, and if you do so, it is very likely that an update to
Visual Studio may break your integration.

FIGURE 29-3: A sample Visual Studio add-in that extends the Source Control Explorer

822 ❘ CHAPTER 29 EXTENDING TEAM FOUNDATION SERVER

c29.indd 04/22/2014 Page 822

NOTE For an example of extending Source Control Explorer, see http://
tinyurl.com/TFSExtendingSCE. For an example of extending the work item
tracking context menu, see http://tinyurl.com/TFSExtendingWITMenu.
For general information on Visual Studio extensibility, see “Customizing,
Automating, and Extending the Development Environment” at http://aka
.ms/VSExtensions.

One area of the Team Foundation Server UI that was designed for extensibility inside Visual Studio
is the Team Explorer view and all the controls that it hosts. For example, it is possible to extend the
pending changes page by adding new sections to it. Table 29-5 describes the possible Team Explorer
extensibility points.

TABLE 29-5: Team Explorer Extensibility

EXTENSIBILITY TYPE DESCRIPTION

Team Explorer Page Team Explorer consists of multiple pages (for example,
the Pending Changes view is a page). You can create your
own pages or add sections to existing ones.

Team Explorer Section A page is made up of sections.

Team Explorer Navigation Item Team Explorer allows shortcuts to pages to appear in the
drop-down menu at the top of Team Explorer. These are
defi ned at Navigation Items.

Team Explorer Navigation Link Sections can contain links that navigate to other pages in
Team Explorer.

The Team Explorer control is a WPF based-control that makes use of extensibility points defi ned in
the Microsoft.TeamFoundation.VersionControl.Extensibility namespace. The ALM Rangers
released a great article on extending the Team Explorer view in Visual Studio 2012, which you can
read at http://aka.ms/ExtendTE. The walkthrough is very comprehensive, but there have been
some changes in the Team Foundation Server 2013 release. Tarun Arora, a Microsoft MVP, has
an excellent blog post explaining how to upgrade a 2012 extension to work with Team Foundation
Server 2013 at http://aka.ms/UpgradingVISXExtensions.

OTHER RESOURCES

Team Foundation Server is very extensible, and, accordingly, a number of solutions and resources
are available to assist you. These resources can have useful samples for getting started. The partners
can also be engaged to build custom solutions for your needs.

Table 29-6 shows a breakdown of some available resources.

http://tinyurl.com/TFSExtendingSCE
http://tinyurl.com/TFSExtendingSCE
http://tinyurl.com/TFSExtendingWITMenu
http://aka
http://aka.ms/ExtendTE
http://aka.ms/UpgradingVISXExtensions

Other Resources ❘ 823

c29.indd 04/22/2014 Page 823

TABLE 29-6: Available Resources

RESOURCE DESCRIPTION NOTES

Visual Studio ALM
Rangers

This delivers out-of-band solu-
tions for missing features or for
guidance. Periodically, they take
nominations for new projects,
vote for them, develop them,
and then release them on
CodePlex.

For more information, refer to
the Visual Studio ALM Ranger
page on MSDN at http://aka
.ms/AlmRangers.

Visual Studio Industry
Partners (VSIP)

This provides technical resources,
business insight, and extensive
co-marketing to partners who
sell products that integrate with
and extend Visual Studio.

To learn about existing VSIP
partners, see http://aka.ms/
vsip.

Microsoft Partner
Program: ALM
Competency

The Application Lifecycle
Management (ALM) Competency
in the Microsoft Partner Program
enables partners to demonstrate
their expertise in providing
training and consultation for,
or deploying, Microsoft Visual
Studio tools.

To fi nd partners who have
achieved the ALM Competency,
see Microsoft Pinpoint at
http://aka.ms/AlmPartners.

CodePlex This is Microsoft’s Open Source
project hosting website. You can
download and use many projects
on CodePlex that extend Team
Foundation Server. You can also
use CodePlex to share your own
extensions with the world.

For Open Source projects that
extend Team Foundation Server,
see http://www.codeplex
.com/site/search?query=tfs.

Visual Studio Gallery This provides quick access to
tools, controls, and templates
to help you get the most out of
Visual Studio.

For a list of Visual Studio tools
and extensions, see http://
tinyurl.com/VSGalleryTFS.

MSDN Code Gallery This is a site where you may
download and share applica-
tions, code snippets, and other
resources with the developer
community.

For a list of code snippets,
see http://tinyurl.com/
MSDNGalleryTFS.

http://aka
http://aka.ms
http://aka.ms/AlmPartners
http://www.codeplex
http://tinyurl.com/VSGalleryTFS
http://tinyurl.com/VSGalleryTFS
http://tinyurl.com

824 ❘ CHAPTER 29 EXTENDING TEAM FOUNDATION SERVER

c29.indd 04/22/2014 Page 824

SUMMARY

This chapter began with an overview of the high-level architecture of the extensibility available
within Team Foundation Server. You learned how to get started with the client object model as well
as some useful tips for working with it. SOAP event subscriptions were then discussed, along with
the available event types that can be subscribed to.

The server object model was examined, and examples of server plug-ins were provided. This
included plug-ins that send real-time notifi cations and plug-ins that can change the fl ow of a
command. Finally, other resources were discussed that can help you leverage the extensibility
available in Team Foundation Server.

825

bindex.indd 04/23/2014 Page 825

Symbols

$/, changesets, 126, 127
/appSettings/, fi le download cache directory,

645
@ (at sign), Basic Authentication, 674
\ (backward slash), path separator, 123
= (equals sign), work item queries, 327
! (exclamation point), ignored fi les, 123
/ (forward slash)

CLC, 155
escape character, 77
path separator, 123

- (hyphen)
CLC, 155
Git repository commit, 196

() (parentheses), work item queries, 327
+ (plus sign)

Git repository commit, 196
Kanban, 387

~ (tilde), versionspec, 116
__ (underscore/double), Release Management,

569, 577, 582

A

AboutPage, 277–280
access control, 631
Access Control Entries (ACEs), 631–632
Access Control Service, 675
access levels, 689–690
Accounts, 613
ACEs. See Access Control Entries

acquisition options, 7–11
actionable bugs, 737
ActionApproved, 812
ActionDenied, 812
ActionPermitted, 812
Actions, Release Management, 568–569
Active Directory (AD), 39, 99, 565, 566–567,

654, 674
groups, security, 696–697
identity synchronization, 677
proxy server, 783

active server requests, 713–714
active team project collections, 29
active working folder mappings, 111
activity log, 616–617, 618, 642
AD. See Active Directory
adds, 126
ADMINISTER, 694
Administer, 114
AdministerProjectserver, 85
administration, 587–624

architecture, 589–591
BPA, 620–622
built-in tools, 591–615
CLC, 612–615
Operational Intelligence hub, 615–619
permissions, 622–623
Power Tools, 619–620
Team Foundation Sidekicks, 623–624

Administration Console, 58, 60, 587, 591–612
AT, 592, 593–597
Attach team project collection, 609–610
backup plan, 656
General tab, 602

INDEX

826

Administration Hub – artifacts

bindex.indd 04/23/2014 Page 826

licensing, 592–593
reporting, 611–612
SharePoint, 611
Status tab, 602–603
team project collection, 601
Visual SourceSafe Upgrade Wizard, 233

Administration Hub, 587
administrative roles, 588
administrative time, 435
Adobe FlexBuilder, 76
Advanced Wizard, 53
affi nity, 641–642
After, 456
AfterUpdateDatasource, 367
Agent Reservation Spec, 505
Agile Manifesto, 315, 373
Agile planning tools, 7, 373–400

backlogs, 379–383
CI, 451
customization, 359–362, 390–391
dashboards, 428
iteration planning, 383–385
MSF for Agile Software Development, 315
team rooms, 391–393
TWA, project management, 307

Agile Portfolio Management, 6, 7, 382–383
AIT Tools Suite, 331
alias mode, 678
allow, permissions, 696
ALLOWEDVALUES, 340, 358
ALLOWEXISTINGVALUE, 340, 358
ALM. See Application Lifecycle Management
ALM Ranger, 796, 822, 823
Alternate Credentials, 193, 205
AlwaysOn, SQL Server, 636, 656
Analysis Services cube, 408–409, 414–416, 420,

695
ANALYZE, 231
Analyze Test Impact, 515
annotated history, 189–190
Ant, 206, 453–454, 517–518
APIs. See Application Programming Interfaces
app.config, 579, 716
Application, 616

Application Insights, 5
Application Lifecycle Management (ALM), 4–5,

13–14, 315, 795
application pool, 594, 661–662, 669–670
Application Programming Interfaces (APIs)

extensibility, 795
migration, 228
multiple API versions, client object model,

799–801
.NET, 4
REST, 640
Team Foundation Server Integration Platform,

239
Application Request Routing (ARR), 640
application tier (AT), 4, 63, 64, 590, 626

Administration Console, 592, 593–597
backup plan, 659
backups, 651
extensibility points, 796
geographically distributed development, 793
scalability, 631–632, 639–647
SQL Server Reporting Services, 31
Team Foundation Build, 503
upgrades, 760
version control cache, 667
virtualization, 34

Application Tier server, 41
Application-Tier Only Wizard, 53
ApplyVersionToAssemblies.ps1, 523–529
architecture, 63–65

administration, 589–591
deployment planning, 30–32
extensibility, 796–797
scalability, 626–627
testing, 729–731
version control, 283

archive, 232
Area Path, 409
Area_Path, 424
areas, 309–313, 338, 687–688
Areas Path, 362
Arora, Tarun, 392
ARR. See Application Request Routing
artifacts, 25, 29

827

ASCII 10 – branches

bindex.indd 04/23/2014 Page 827

Scrum, 320
source code, 299–300
Team Foundation Proxy, 627
test case management, 728
version control, 295–300
VMs, 754

ASCII 10, 193
ASCII 13, 193
AsConfigured, 517
ASP.NET, 590, 632, 642
AssemblyInfo, 532
Assigned To, 411
Associated Automation, 345
AT. See application tier
Attach team project collection, 609–610
Attachments, 345
attributes, Analysis Services cube, 415
authentication, 57, 64, 223, 594, 674
Authentication, 613
Authentication Type, 617
automated builds, 18, 99, 770–771
automated compilation, 15
automated software testing, 728
automated tests, 283, 508–510
automerge, 184–185, 245–246
Available Software, TEE, 208–209
Avg. Disk Sec/Transfer, 700

B

Background Job Agent, 590
backlogs, 359–361

Agile planning tools, 379–383
Agile Portfolio Management, 382–383
Agile Product Management, 7
Kanban, 386–388
Standard access level, 689
Task Board, 389
TWA, 6

backup plan
application pool, 669–670
data warehouse, 668–669
disaster recovery, 656–671

job agent, 669–670
Restore Wizard, 663–665
Take Full Backup Now, 660
version control cache, 665–668

backup-and-restore wizard, 661
BACKUPBUFFER, 707
backups

CVCS, 94
databases, 652–654
disaster recovery, 650–656
upgrades, 760

base version, 245
baseless merge, 247, 269–272
Basic Authentication, 64, 674
Basic Confi guration Wizard, 54–57
Basic Wizard, 52
BasicHttpBinding, 801
Bazaar, 94
Before, 456
BeforeUpdateDatasource, 367
BeginRequest, 815
Best Practices Analyzer (BPA), 620–622, 722–723
BIDS. See Business Intelligence Development

Studio
binaries, 450, 545
Binaries, 505
bindings, 132
BitKeeper, 94
BizTalk Server, 515
blame history, 189
Blankenship, Ed, 230
Blockedby, 703
blockedby, 706
bootstrap setup utility, 46
BPA. See Best Practices Analyzer
BRANCH, 694
branch, 259
Branch from QA, 265
branch per feature. See feature branching
branch per release, 250–251
BranchCache, 41
branches, 129–130, 243–280

build defi nitions, 256
changesets, 260–272

828

buddy builds – burndown chart

bindex.indd 04/23/2014 Page 828

check-in, VSO, 285
confl ict resolution, 245–246
CVCS, 253–274
folder structure, 281–282
Git, 171–173, 183–187, 197–198, 274–280
hierarchical relationship, 246–247
internal shared libraries, 289–290
no branches, 248–249
permissions, 692
Source Control Explorer, 255
strategies, 247–289
version control repository, 266
visualization, team projects, 28
VSS, 96

buddy builds, 491–492
budgeting, 434
Bug Status Report, 363
bugs, 317, 330
Bugs Dashboard, 428
Build, 284
build administrators, 69
Build Administrators, 337
Build Agent Properties, 501–502
build agents, 35, 467, 476, 500–502, 505, 582
build assemblies, 297–298
build automation, 9, 447–464

Ant, 453–454, 517–518
makefi les, 452–453
Maven, 454, 517–518
MSBuild, 455–458
NAnt, 454–455
servers, 459–462
WF, 458–459

Build Controller Properties, 500–501
build controllers, 35, 466, 467, 500–502, 550–552
Build Dashboard, 428
Build Defaults section, Team Foundation Build,

484–485
Build Defi nition Editor, 526, 533–534
build defi nitions

branches, 256
build process template, 546–550
Java, 518
permissions, 694–695

QA, 259
Team Foundation Build, 467, 476–489
TWA, 78
working folder mapping, 256

Build Delete Options, 488
Build Details View, 498–499
Build Drops, 39
Build Explorer, 494–499
Build Number Format, 511–512
build numbers, 527–531, 545
build path minimization, 502
Build Platform, 408
build process

customization, 519–555
build controller, 550–552
Community TFS Build Extensions, 535–

536
extensibility points in default build

template, 520–521
PowerShell script, 523–525
scripts, 520–522
Source Control Explorer, 536
version number into assemblies, 522–529
workfl ows, 531–532

default build template, 533–535
build process template, 536–543

build defi nition, 546–550
Release Management, 582–583
work item synchronization, 789
Zip activity, 543–546

build quality, 500, 509
build report, 468
build retention, 741
build servers, 781–782
build service, 468
BuildChangesetView, 412
BuildCoverageView, 412
BuildDefinitionId, 502
build-deploy-test workfl ow, 749–751
BuildDetailsView, 412
BuildProjectView, 412
Builds, 74
Build.xml, 336
burndown chart, 390

829

bindex.indd 04/23/2014 Page 829

business continuity – client tracing

business continuity, 649–650
Business Intelligence Development Studio (BIDS),

427
BusinessLogic, 716
BypassRules, 689

C

cache, 423, 785
BranchCache, 41
fi le download cache directory, 645–646
GAC, 476
identity cache, confi guration database, 591
Metadata Cache, 778, 781
SQL query plan cache, 629–630
version control, backup plan, 665–668

cache directory, 667
CAL. See client access license
Can Trigger a Release, 582
CanCopy, 370
Capability Maturity Model Integration (CMMI),

24, 428
MSF for CMMI Process Improvement, 316–319,

390–391, 682
capacity planning, 27–28, 746–747
CAT. See Customer Advisory Team
catalog, confi guration database, 591
CatNetScan, 532
ccnet.config, 460
central server, 779
centralized version control systems (CVCS),

93–95, 245, 253–274
Certificates, 613
Change Service Account, Administration Console,

598
Change URLs, Administration Console, 599
Changefield, 356
ChangeServerID, 613
changeset, 115–116
changesets, 225

branches, 260–272
check-in, 126–128
code reviews, 142–143

DefaultTemplate, 506
Get Specifi c Version, 127
merges, 260–272
TFVC, 161
version control, 91
version control repository, 120

CheckCoverage, 532
CheckIn, 114, 691, 716
checkin, 259
check-in, 98

another user, 691
branches, VSO, 285
changesets, 126–128
CVCS, 93
DVCS, 95
locks, 118, 706
My Work, 141
Pending Changes, 104, 119–126,

152, 534
version control, 91, 687
VSS, 96, 162
work items, 120

check-in notes, 124
check-in policies, 124–126, 692
CheckinNotification, 811–812
check-out, 91, 114–115, 117–118, 711

TEE, 221
VSS, 162

Choose Source Control, 103
CI. See continuous integration
Classifi cation.xml, 336
CLC. See command-line client
Clean Workspace, 512–513
cleanup settings, proxy server, 783
Clear, 367
ClearCase, 106, 241
client access license (CAL), 7, 46, 70, 331, 443,

688
client object model, 796

extensibility, 797–801
multiple API versions, 799–801
Team Project Selection dialog box, 798–799

client tier, 589–590
client tracing, 716–717

830

bindex.indd 04/23/2014 Page 830

clients – consensus

clients. See also command-line client
backups, 651
software, installation, 49
work item, 365–366

ClientService.asmx, 689
ClipBoardStatusChanged, 370
cloaked working folder mappings, 111–112
Clone, 90, 193–194, 202–203
Closed By, 411
Cloud-based Load Testing, 726
clustering, 32, 37
CMMI. See Capability Maturity Model

Integration
code coverage, 510
Code Explorer, 106
code freeze, 249, 258
Code Review Request, 315
Code Review Response, 315
code reviews, 141–147
CodeChurnView, 412
Coded UI tests, 742
CodeIndex, 613
CodeMetric, 532
CodePlex, 531–532, 823
code-promotion branching, 251
Collection, 613
collectName, 66
Column, 343
column mappings, 349–351
Command, 616, 703
Command Identifier, 617
command log, 710–712
command-line client (CLC), 77–78, 441, 612–615

cross-platform, 221–226
Git, 191–200
TEE, 221
TFVC, 155

comments, 121
commit

cross-platform CLC, 225
CVCS, 93
Git, 98–99, 171, 180–183

feature branching, 280
repository, 195–196

version control, 91–92

Community TFS Build Extensions, 531–532,
535–536

Compare, 186
compensating records, 414
Complete Health Check, 620
Completed builds, Build Explorer, 495–496
Component, Release Management, 577–578
Concurrent Version Systems (CVS), 90, 114–115,

240
confi guration, 54–58

command-line client, 612–615
Community TFS Build Extensions, 535–536
CruiseControl, 460
DefaultTemplate, 506
features, 768–770
fi le download cache directory, 645–646
friendly DNS names, 61
Lab Management, 744, 745–752
Project Server, 440–443
proxy servers, 783–785
Release Management Rollback, 579
SQL Server, 54–55
Symbol Server, 514
Team Foundation Build, 470–475
Team Foundation Server administrator, 588
Visual Studio Release Management,

563–574
Configuration, 506
confi guration database, 591
confi guration utility, upgrades, 763–764
Confi guration Variables, 578–579, 582
Confi gure Extensions for SharePoint Products

Wizard, 53
Confi gure Features Wizard, 766–769
Confi gure Team Foundation Build Service Wizard,

53
Confi gure Team Foundation Server Proxy Wizard,

53
ConfigureMail, 613
Confi rmation, Import Wizard, 220
confl ict resolution, 245–246, 252, 787
Connect to Team Project, 72
connection strings, 591, 596
connection URL, 760
consensus, 20

831

bindex.indd 04/23/2014 Page 831

content-type – databases

content-type, 801
context synchronization, 787
continuous integration (CI), 451, 509, 513
Continuous Integration trigger, Source Control

Explorer, 480
CONTRIBUTE, 694
contributors, 69
Contributors, 337
Control, work item form, 343
COPY, 340
CPU, 705–706, 722
cpu_time, 704
Create Scheduled Backups, 657
Create team project collection, 605–607
Create Work item on Failure, 515
CreateWorkspace, 716
credentials, 64–65, 204–205
cross-collection support, 407
cross-platform, 77–78

CLC, 221–226
cross-project dependencies, 435
CruiseControl, 460
.csproj, 507
cube perspectives, SQL Server Enterprise Edition,

639
Cumulative Flow, 382
cumulative updates, 49
current reports, 421–422
Current Work Item, 408
currently running processes, 701–707
CurrentWorkItemView, 411, 412–413
Customer Advisory Team (CAT), 637
customization

Agile planning tools, 359–362, 390–391
build assemblies, artifacts, 297–298
build process, 519–555

build controller, 550–552
Community TFS Build Extensions, 535–

536
extensibility points in default build

template, 520–521
PowerShell script, 523–525
scripts, 520–522
Source Control Explorer, 536

version number into assemblies,
522–529

workfl ows, 531–532
display names, 678
link types, 363–364
process templates, 321, 333–372
project portals, 430
reporting, 430–431
SharePoint dashboards, 429–430
software development, migration, 229
warehouse adapters, 430–431
work item controls, 365–372
work item types, 362–365

Customize Columns, 387–388
CVCS. See centralized version control systems
CVS. See Concurrent Version Systems
CXPACKET, 707, 708

D

dashboards, 28
SharePoint, 38, 352, 417, 418, 428–430
SharePoint Server, 306–307

data tier (DT), 590–591
backups, 650, 651
high-availability, 636–637
scalability, 629–631, 637–638
SQL Server, 4, 562
SQL Server Enterprise Edition, 638–639
virtualization, 655

Data Tier server, 41, 596
data warehouse, 410–416

backup plan, 668–669
deployment planning, 18
performance, 721
scalability, 632–633
upgrades, 772

Database Label, 596
databases. See also SQL

backups, 652–654
relational warehouse, 411–414
schema, 283–284
SQL Server, performance, 706

832

data-driven subscriptions – disaster recovery

bindex.indd 04/23/2014 Page 832

data-driven subscriptions, 423
SQL Reporting Services, 37

data.tfs.domain.local, 41
date, 115–116
Date Time, 344
DateAndTime, 532
DBCC FREEPROCCACHE, 705
db.DimWorkItem, 407
db.FactCurrentWorkItem, 411
DBName, 703
debugging, 293, 514
DecisionPoint, 808, 811–812
--decorate, 196
DEFAULT, 340
default build template, 520–521, 533–535

extensibility points, 520–521
DefaultCollection, 66
DefaultTemplate, 503, 504–517

automated tests, 508–510
Projects, 507–508

degree of parallelism (DOP), 703
DELETE, 86
Delete Build, Build Explorer, 496–498
Delete team project, Administration Console,

603–604
Delete team project collection, Administration

Console, 610–611
DeleteBuilds, 695
Deletefield, 356
DELETE_TEST_RESULTS, 86
DeleteWorkspace, 706
delta-fi cation, 89
deny, permissions, 696
dependencies

Ant, 453
link type customization, 364
Project Server, 435

Dependencies, 284–289, 292–294
Dependency, link types, 348
deployment planning, 13–43

adoption, 16–22
architecture, 30–32
environment preparation, 30–43
fi le share folders, 39
friendly DNS names, 40–41

hardware requirements, 33
pain points, 13–16
parallel development, 16
ports, 40
Release Management, 18
reporting, 18
scalability, 30–32
service accounts, 38–39
software requirements, 35–38
SQL Server, 36–37
team project collections, 24–30
team projects, 24–30
testing, 15–16
virtualization, 33–35
Visual Studio legacy versions, 42–43

Deployment Sequence, 575–576
Deployment Tools, 558
destroy, permissions, 693
destroygloballist, 356
destroywi, 356
destroywitd, 356
Detach team project collection,

607–609
Detect Local Changes, 135
Detected Changes, 109, 122
Developer Adoption, 634
Developer Division, 638, 643, 700
devenv, 455
DFS. See Distributed File System
Diagnose, 613
DIAGNOSTIC_TRACE, 85
Diff Editor, 180–181, 186, 187, 198
differential database backups, 653
dimension tables, 407
dimensions, 411, 415
DimToolArtifactDisplayUrl, 413
Direct Links query, 325
Directed Network, 347–348
Disable Tests, 515
disaster recovery, 649–671

backup plan, 656–671
backups, 650–656
business continuity, 649–650
infrastructure administrator, 588
SQL Server, 636

833

discussion – exportglobalist

bindex.indd 04/23/2014 Page 833

discussion, SOAP events, 803
Disk Management, 645
DISPATCHER_QUEUE_SEMAPHORE, 707
display name disambiguation, 677–678
Distributed File System (DFS), 41, 781
Distributed Version Control, Git, 16, 167–200
distributed version control system (DVCS), 89, 90,

94–95
distribution groups, 679
DMG, 450
dm_io_virtual_file_stats, 708
dm_os_buffer_descriptors, 709
dm_os_wait_stats, 707
DMVs. See dynamic management views
DNS. See Domain Name Server
document libraries, SharePoint, 352
domain, 674, 677
domain groups, 679
Domain Name Server (DNS), 66
DOP. See degree of parallelism
Dop, 703
dop, 705
Drop folder, 543
DT. See data tier
DVCS. See distributed version control system
dynamic management views (DMVs), 701–702
dynamic memory, 749

E

Eclipse, 126, 149–159, 218–221, 259
baseless merge, 247
changesets, 225
Detect Local Changes, 135
EGit plug-in, 221
heterogeneous team version control, 206–221
Java build defi nitions, 518
local workspaces, 109
plug-in, 75–76

TEE, 206–215
server workspaces, 109–110
Share Project Wizard, 216–217
sharing projects, 150–153

Source Control Explorer, 215–216
synchronization, 154–155
TEE, 148, 149
TFVC, 97, 147–157
workspaces, 106, 149

Edit Build Defi nition, 526
edit project-level information, 687
Edit Workspace, 109
EditBuildDefinition, 695
effort, 361
EGit plug-in, 221
Email, 532
e-mail alerts, 493, 595
E-mail From Address, 595
emoticons, 392
encryption key backup, 296, 651–652, 658
endpoints, 803
EndRequest, 815
End-User License Agreement (EULA), 7
EnterMethod, 815
enterprise projects, 440, 442–443
Enterprise TFS Management (ETM), 626
environment

deployment planning, 30–43
Java Runtime Environment, 222
physical, 744
Release Management, 570–572
standard, 744–745
virtual, 18, 748–749

ETM. See Enterprise TFS Management
ETW. See Event Tracing for Windows
EULA. See End-User License Agreement
Event Tracing for Windows (ETW), 716
Excel. See Microsoft Excel
Excel Services, 38, 417, 428
Excluded Changes, 121, 174, 179–180
Execution Count, 617
Execution Time, 617
ExecutionCount, 711
ExecutionTime, 711
ExpandLangs, 276
exploratory testing, 736
exportcategories, 356
exportglobalist, 356

834

exportglobalworkfl ow – geographically distributed development

bindex.indd 04/23/2014 Page 834

exportglobalworkflow, 357
exportlinktype, 356
exportprocessconfig, 357
exportwitd, 356
Express version, 9
extensibility, 4, 795–824

architecture, 796–797
client object model, 797–801
jobs, 818–819
server object model, 805–821
server plug-ins, 808–821
SOAP event subscriptions, 801–805
third-parties, 806
Visual Studio, 821–822

extensibility points, 520–521, 796–797
extranet server, 780
eXtreme Programming (XP), 314, 451

F

fact tables, 411, 414
Failure Cluster Instance (FCI), 636–637
fallback work item control, 366
fast-forwarding, 488
FCI. See Failure Cluster Instance
feature branching, 252–253, 277–280
Feature category, 306
feature packs, 50
FeatureInt, 272
features, confi guration, 768–770
feedback, 509
Feldman, Stuart, 452
fetch, 198
FI. See forward integration
fi eld mappings, 438–439, 787
fi elds, 308

global, 349
MSF for Agile Software Development, 315
rules, 340–341

process template updates, 358
work item control, 344
work item type defi nitions, 339–341

fi le download cache directory, 645–646

fi le modifi cation times, 115
fi le share folders, 39
fi rewall, 40, 466
Flat List query, 325
FlushToDatasource, 367
FORCE, 694
Force Get, 109–110, 135
Force Overwrite, 135
Forcing rollback, 689
forms, 308, 343–344
Formula, 339
Forward Compatibility Update, 42
forward integration (FI), 247
Fowler, Martin, 451
framework services, 590
friendly DNS names, 40–41, 61, 760, 781
FT_IFTS_SCHEDULER_IDLE_WAIT, 707
Ftp, 532
Full access level, 690
Full Analysis Database Sync, 792
Full Diagnostics, 737
full features, 769–770
full Metadata Refresh, 778
FULL recovery mode, 652–653
FullAccess, 683

G

/g+, 698
GAC. See Global Assembly Cache
Gated Check-in trigger, 481–482
Gateway IP, 571
General Distribution Release (GDR), 50
General section, Team Foundation Build, 477–478
General tab, Administration Console, 602
generic tests, 743
GENERIC_READ, 86, 683, 684
GENERIC_WRITE, 86, 683, 684
geographically distributed development, 775–794

AT, 793
Integration Tools, 786–789
maintenance windows, 792–793
metadata fi ltering, 781

835

Get – granted_query_memory

bindex.indd 04/23/2014 Page 835

multiple servers, 779–780
network traffi c sources, 776–778
remote proxy servers, 779
SQL mirroring, 793–794
Team Server Proxy, 782–786
time zones, 792–793
VSO, 779
working offl ine, 789–791

Get, 90, 505, 631, 777
cross-platform CLC, 224
idle timeout, 641
TFVC, 114–117

Get Latest, 109–110, 114, 115
Get Specifi c Version, 109–110, 115, 127, 135
Get Version, 516
GetEnvironmentVariable<String>, 544,

548–549
GetEnvironmentVariable<T>, 544
GetMetadataEx, 712
GetRegistrationEntries, 802
Git, 6, 98–99

automerge, 184–185
baseless merge, 247
Basic Authentication, 64
branches, 171–173, 183–187, 197–198, 274–280
CLC, 191–200
commit, 171, 180–183
Distributed Version Control, 16, 167–200
DVCS, 89, 90, 94
Excluded Changes, 174, 179–180
feature branching, 277–280
graphs, 170–171
HEAD, 173–174, 180–181
history, 188–190

graphs, 196–197
ignoring fi les, 180
Included Changes, 174, 179–182
index, 174
merges, 197–198
no branches, 274–277
Posh-Git, 199–200
Pull, 188, 198
Push, 190–191, 199
renames, 181–182

repository, 98, 169–170, 174
Clone, 193–194, 202–203
commit, 195–196
history, 247
making changes, 194–196
permissions, 693–694
TWA, 193–194, 202–203, 587
Visual Studio, 175–178
working directory, 179–182

SOAP events, 803
synchronization, 188–191, 198–199
TFVC, 244
topic branches, 172–173, 197–198
undoing changes, 180–181
Visual Studio, 175–191
work items, 182–183
working directory, 174
Xcode, 202–205

git add, 194, 196
Git Bash, 192
git branch, 199
git checkout, 200
git checkout master, 200
git commit, 196
Git for Windows, 192–193
git log, 196
git mv, 195
git pull, 198
git push, 199
git remote, 202
git rm, 196
git status, 194, 200
git tf checkin, 206
git tf clone, 206
.gitignore, 180
GitPushEvent, 802
Global Assembly Cache (GAC), 476
global fi elds, 349
global lists, WIT, 349
global workfl ows, 349, 440
Goals, Initiative work item, 306
good citizenship, Lab Management,

752–753
granted_query_memory, 703, 704

836

--graph – ILinkingProvider

bindex.indd 04/23/2014 Page 836

--graph, 196
graphs, GIt, 170–171
Group, work item form, 343
groups

AD, security, 696–697
distribution, 679
domain, 679
Lab Management, 747
licensing, 769, 771
local, 679
mail-enabled security, 679
project administrator, 588
Release Management, 565–567
security, 336–338, 678–682
server, 68, 679–680
team project collection, 69, 681–682
team projects, 69, 682

GroupsandPermissions.xml, 336

H

hardware
backup plan, 670
deployment planning, 33
Visual Studio Release Management, 558–560

hardware migration-based upgrade, 758–760
Harry, Brian, 8, 502, 634
HEAD, Git, 173–174, 180–181
health monitoring, Integration Tools, 788
health monitoring events, 713–714
Help Text, fi elds, 339
heterogeneous team version control, 201–226

cross-platform CLC, 221–226
Eclipse, 206–221
Xcode, 202–206

high-availability
DT, 636–637
load balancing, 640–642
scalability, 32, 625–647
SQL Server, 636
virtualization, 647

high-fi delity upgrade, 759
HighlightBackColor, 369
HighlightForeColor, 369
HintPath, 286, 287

history, 92, 229–230, 309
annotated, 189–190
blame, 189
changesets, 142–143
code reviews, 142–143
Git, 188–190

repository, 247
job, 591, 619, 717–719
Source Control Explorer, 132–133,

225, 262
SVN, 164
View History, 188, 262
VSS, 161–162

History Editor, Git, 188
history graphs, Git, 196–197
History Sidekick, 624
holidays, Project Server, 435
host groups, Lab Management, 747
Hosted Build Service, build automation, 448
hosting, 19
hotfi xes, 49
HTML Field, work item control, 344
HTTP, 65, 72, 176, 674
HTTP Keep-Alive, 641
HTTPS, 65, 72, 176, 572, 780
Hudson, 460–461
hybrid merge, 245
Hyper-V, 731, 745, 749

I

ICatalogResourceTypeRuleSet, 806
Id, 616
Identities, 614
identity cache, confi guration database, 591
Identity Name, 617
identity synchronization, security, 676–678
idle timeout, load balancing, 641
IfSummaryRefreshOnly, 351
IIdentityProvider, 807
IIS. See Internet Information Services
IIS7, 532
IISReset, 662
ILinkingConsumer, 807
ILinkingProvider, 807

837

immutability – iterations

bindex.indd 04/23/2014 Page 837

immutability, 128
impediments, 320
Impersonate, 683
impersonation, 798
Import, 614
Import Wizard, 218–219, 220
importcategories, 356
importgloballist, 356
importglobalworkflow, 357
importlinktype, 356
importprocessconfig, 357
importwitd, 356
/imx, 698
Included Changes, 121

Git, 174, 179–182
Incremental Analysis Database Sync, 792
incremental database backup, 653
incremental Metadata Refresh, 778
independent software vendors (ISVs), 25
index, 174, 793
index comparison, SQL Server Enterprise edition,

37
india.proxy.tfs.domain.local, 41
infrastructure administrator, 588
inheritance, 697
INI fi le, 568
initial work items, 349
Initiative work item, 306
in-place upgrades, 228
InRelease, 7
Install Details, 209
installation, 45–53

client software, 49
cumulative updates, 49
feature packs, 50
hotfi xes, 49
Lab Management, 745–752
operating system, 48
power tools, 50
Project Server, 441
Release Management Client, 562
Release Management Deployment Agent, 562–

563
Release Management Server, 561–562
service packs, 49–50

SharePoint, 49
SQL Server, 48
Team Foundation Build, 469
types, 51–53

Installation Guide, 47
Installed Updates, 600
integration debt, 252
Integration Platform, 23
Integration Tools, geographically distributed

development, 786–789
IntelliTrace, 514, 738
internal shared libraries

branches, 289–290
Dependencies, 292–294
version control, 289–295

Internet Information Services (IIS), 590, 640, 749
InvalidDatasource, 368
I/O, 19, 34
Ionic.Zip.dll, 550, 552
IP Address, 617
IP pass-through, 642
ISecurityChangedEventHandler, 806
ISecurityNamespaceExtension, 807
IServicingStepGroupExecutionHandler, 807
.iso, 46, 50
IStepPerformer, 806
ISubscriber, 806, 808–814, 818
ISubscriptionPersistence, 807
ISVs. See independent software vendors
ITaskItem, 456
ITeamFoundationHostStateValidator, 806
ITeamFoundationJobExtension, 590, 818–819
ITeamFoundationRequestFilter, 806, 814–

817
ITeamFoundationSystemHostStateValidator,

807
Item, 456
ItemGroup, 456
Iteration Path, 409
iterations, 309–313, 338, 363

Agile Manifesto, 373
Agile planning tools, 383–385
edit project-level information, 687
permissions, 688

iterations, 80

838

IWorkItemClipboard – License Agreement

bindex.indd 04/23/2014 Page 838

IWorkItemClipboard, 369–370
IWorkItemControl, 366–368
IWorkItemToolTip, 368
IWorkItemUserAction, 368–369

J

JAR, 450
Java, 148, 206, 454, 518
Java Development Kit (JDK), 222, 517
Java Runtime Environment, 222
JavaSWT, 344
JDK. See Java Development Kit
Jenkins, 460–461
job agent, 590, 661–662, 669–670, 676
job history, 591, 619, 717–719
Job History Cleanup Job, 792
Job Monitoring, 617–619
Job Queue, 619
Job Summary, 617–619
jobs

deployment, 819–821
extensibility, 818–819

Jobs, 614
joins, 414

K

Kanban, 382, 386–388
Keep Source, 186
Keller, Brian, 19
Kerberos authentication, 57, 64
Key Management Server (KMS), 755
keyword expansion, 162
KMS. See Key Management Server

L

Lab, 614
Lab Management, 729

AT, 590
backups, 651, 652

build-deploy-test workfl ow, 749–751
capacity planning, 746–747
confi guration, 744, 745–752
geographically distributed development, 777
good citizenship, 752–753
permissions, 751
phased deployment planning, 18
ports, 746
protocols, 746
RAM, 752–753
SCVMM, 57
snapshots, 753–754
Standard Single Server Wizard, 52
test agents, 745
testing, 744–755
topology, 752
upgrades, 772–773
virtual environments, 748–749
VMs, 747–748
VMware, 751–752
Windows Activation, 755
workfl ows, 749–751, 754

Lab Management Library, 39
LabDefaultTemplate, 503
Label, 345
label, 115–116
Label Sidekick, 624
Label Sources, 516
LabelNotification, 812
labels, 133–134, 161–162, 265
lab.tfs.domain.local, 41
ladder merge, 268–269
LAN. See local area network
last_wait_type, 704
latency, 708–709, 776, 788
latest, 115–116
_Layout.cshtml, 270
layouts, 344
LeaveMethod, 815
legacy team project upgrades, 766–773
legacy version control, migration from, 227–241
legacy versions, Visual Studio, 42–43
library shares, 747
License, 614
License Agreement, 212–213

839

licensing – Merge Editor

bindex.indd 04/23/2014 Page 839

licensing, 7, 10
Administration Console, 592–593
CAL, 7, 46, 70, 331, 443, 688
Microsoft Permissive License, 532
permissions, 688–690
SQL Server, 36–37
TEE, 210
Visual Studio Release Management, 558
VLSC, 46

licensing groups, 769, 771
Lightweight Diagnostics, 737
limited access level, 689
limited features, 769
limited server extensibility interface, 806
line ending conversion, 192–193
link types, 304–305, 346–348, 363–364
linked reports, 423, 427
Linked Work Item, 408
links, 309, 344
Links, 363
Linux, 77–78
Linux kernel, 169
Listfields, 356
Listlinktypes, 356
Listwitd, 356
load balancing, 640–642
load tests, 743
local area network (LAN), 776
local build server farm, 781
local fi le system, 127
local groups, 679
Local Path, 132
Local Service, 675
Local System, 675
local users, 676
local workspaces, 106, 108–109

ignoring fi les, 122–124
TFVC, 91
upgrades, 771–772

localhost, 59
locks, 117–119, 120, 692–693

check-in, 118, 706
check-out, 117–118
local workspaces, 109
release templates, 575

server workspaces, 109
SQL Server, 706

“Log on as a service” permission, 39
Logging Verbosity, 513
Logical Disk, 700
logical_reads, 704
long-running processes, 704
low-fi delity data transfer, 759

M

machine accounts, 675–676
Machine List, 596
Machine Name, 595
mail-enabled security groups, 679
Main, 250, 251, 263, 270

branches, 254, 258–259
feature branching, 252–253
ladder merge, 268–269
Source Control Explorer, 255

_MainLayout.cshtml, 270
maintenance windows, 792–793
Make, 454
makefi les, 452–453
ManageBranch, 691
ManageBuildResources, 684–685
Managed Extensibility Framework

(MEF), 821
MANAGE_TEST_CONFIGURATIONS, 86
MANAGE_TEST_CONTROLLERS, 85
MANAGE_TEST_ENVIRONMENTS, 86
manual software testing, 727
Manual trigger, 479
marked transactions, 654
Maven, 206, 454, 517–518
MAXDOP, 705
measures, Analysis Services cube, 415
MEF. See Managed Extensibility Framework
memory, SQL Server, 704
memory contention, SQL Server, 709–710
Mercurial, 6, 94
Merge, 643, 691
merge, 198
Merge Editor, 187

840

merges – Network

bindex.indd 04/23/2014 Page 840

merges, 243–280
changesets, 260–272
CVCS, 245
DVCS, 95
Git, 99, 184–185, 197–198
Main, 263
TFVC and Git, 244
version control, 92–93

merges, 272
merge.tool, 187
metadata, 129, 667, 712

fi ltering, 781
Metadata Cache, 778, 781
Metadata Refresh, 778
metastates, 359–361
Microsoft Accounts, 675
Microsoft Excel, 27, 79–81, 327–328

reporting, 352, 419–423
Microsoft Management Console (MMC), 591
Microsoft Partner Network, 11
Microsoft Permissive License, 532
Microsoft Project, 81–82, 329, 349–351
Microsoft Solutions Framework (MSF)

MSF for Agile Software Development, 314, 682
MSF for CMMI Process Improvement, 316–319,

390–391, 682
Microsoft Source Code Control Interface

(MSSCCI), 42, 75, 147, 158
Microsoft Test Manager (MTM), 83, 345, 728,

731–742
actionable bugs, 737
exploratory testing, 736
fast-forwarding, 488
standard environments, 745
Test Attachment Cleaner, 739
test cases, 734–735
test impact analysis, 741
test plans, 733
test runs, 735–736
test settings, 737–739
test suites, 733–734

migration
ClearCase, 241
CVS, 240
deployment planning, 22–23

history, 229–230
from legacy version control, 227–241
StarTeam, 240
SVN, 240
Team Foundation Server Integration Platform,

238–240
third-parties, 240–241
upgrades, 228–229, 758–760
VSS, 230–238

migration-based upgrade, 228
mirror fi elds, 439
mirroring, 780, 793–794
Mitrik, Matthew, 229
MMC. See Microsoft Management Console
modifi cation times, 115
MSBuild, 286, 455–458, 466, 539
MSBuild Arguments, 516
MSBuild Platform, 516
MSF. See Microsoft Solutions Framework
MSF for Agile Software Development, 314, 682
MSF for CMMI Process Improvement, 316–319,

390–391, 682
MSI, 450
MSSCCI. See Microsoft Source Code Control

Interface
MTM. See Microsoft Test Manager
multiple API versions, client object model, 799–801
multiple servers

geographically distributed development, 779–780
installation, 30–31
scalability, 635

multi-tenancy, 24
My Dashboard, 428
My Queries, 325, 420
My Work, 129, 136–141, 143
My Work, 74
MyEclipse, 76
mysgit, 192

N

name changes, synchronization, 364–365
NAnt, 454–455
NAT. See Network Address Translation
Network, link types, 347

841

bindex.indd 04/23/2014 Page 841

Network Address Translation – performance

Network Address Translation (NAT), 571
Network Backup Path, 657
network performance, 633
Network Service, 39
Network Service, 675–676
New Build Defi nition, 477, 533
New Chart Wizard, 424
New Project Wizard, 177
NMAKE, 453
no branches, 248–249, 274–277
non-people project resources, 435
not suitable server extensibility interface, 806
NOTE, 694
Notifi cation, 808–810, 812–814
notifi cation tool, Team Foundation Build, 492
Notifi cation URL, 594
Notify, 801

O

Object Model Installer, 238
object-oriented programming (OOP), 308
OLAP. See Online Analytical Processing
--oneline, 196
Online Analytical Processing (OLAP), 36, 590,

632, 650
online index operations, SQL Server Enterprise

Edition, 638
OOP. See object-oriented programming
Open Perspective, 210–211
operating system, 48, 759–760

backup plan, 657
Release Management, 568
Sysprep, 50
TEE, 206–207

Operational Intelligence hub, 710
Activity Log, 616–617, 618
administration, 615–619
Job Monitoring, 617–619

operational stores, 410–411
Optimize Databases, 792
ordered tests, 743
outDir, 544
Output location, 517
Overlay, 412

Override Warnings, 126
OverrideBuildCheckInValidation, 695

P

Package Explorer, 220–221
packaging, deployment planning, 15
page compression, 638–639
Page Viewer web parts, 428
PAGEIOLATCH_*, 706, 708
pain points, 13–16
PAL. See Performance Analysis of Logs
parallel development, 16, 88, 129, 244, 259–261
parameters, DefaultTemplate, 506–507
parent/child link type, 304, 325, 327, 347
passwords, 72–73, 234
PATH, 192, 206, 222
Path to Publish Symbols, 514
.pdb, 514
Pending Adds, Source Control Explorer, 219
Pending Changes, 74

check-in, 104, 119–126, 152, 534
code reviews, 142
Eclipse, 218
local workspaces, 109
shelving, 128
Source Control Explorer, 131
Team Explorer, 152–153, 534
undoing, 126
workspaces, 131

Perform Code Analysis, 513–514
performance

active server requests, 713–714
client tracing, 716–717
command log, 710–712
data warehouse, 721
infrastructure administrator, 588
job history, 717–719
server tracing, 715–716
server workspaces, 109
servers, 699–724
SQL Server, 701–710
storage usage, 719–721
Team Foundation Proxy, 633–634
Team Foundation Server administrator, 588

842

bindex.indd 04/23/2014 Page 842

Performance Analysis of Logs – Pre-test script path

team projects, 30
tools, 721–724
virtualization, 34

Performance Analysis of Logs (PAL), 721–722
performance counters, 700, 714–715
PerfTraceListener, 716
permission profi les, 113–114
Permission Sidekick, 624
permissions, 69, 683–695

AT, 631
ACE, 631–632
administration, 622–623
allow, 696
areas, 687–688
avoiding individual permissions, 697
backup plan, 668
data warehouse, 416
deny, 696
destroy, 693
edit project-level information, 687
inheritance, 697
iterations, 688
Lab Management, 751
licensing, 688–690
locks, 120, 692–693
process templates, 336–338
project administrator, 588
Project Server, 440–441
query folders, 688
Release Management, 566
servers, 683
SQL Server Reporting Services, 423
team project collections, 684–685
unset, 696
users, 769
version control, 158–159, 351, 690–693
view project-level information, 686
work item queries, 325

PerProject, 517
persistence, 641
personal proxy server, 785–786
perspectives

Analysis Services cube, 416
SQL Analysis Services, 37

phased approach, adoption, 17–19
Physical Disk, 700
physical environments, 744
physical_name, 709
pick lists, 567–568
pilot projects, adoption, 21–22
pinning, 161
Platform, 408
playback execution time, 229
plug-ins

AT, 590
Eclipse, 75–76, 206–215
process templates, 334–336
servers, extensibility, 808–821

PMOs. See project management offi ces
Polytron Version Control System (PVCS), 106
pom.xml. See Project Object Model
port, 66
portfolio management, 305–306, 434–435
ports, 40

AT, 595
Lab Management, 746

Posh-Git, 199–200
Post-build script argument, 516
Post-build script path, 516–517
Post-test script path, 517
Power Tools, 50, 796

administration, 619–620
Ant, 517–518
check-in policies, 126
Maven, 517–518
Process Template Editor, 353–357
TFVC, 157–158
Windows Explorer, 82

PowerShell, 199–200, 447, 523–525
prc_CreateTrace, 715
prc_Get, 631
prc_QueryTraces, 715
Pre-build script arguments, 516
Pre-build script path, 516–517
preferred work item control, 366
PrepareClone, 614
presentation layer, 36
Pre-test script path, 517

843

private builds – PUBLISH_TEST_RESULTS6

bindex.indd 04/23/2014 Page 843

private builds, 491–492, 505
Process, Build Defi nition Editor, 533–534
Process Editor, 619
Process section, Team Foundation Build, 485–486
Process Template Editor, 353–357
process templates, 333–372

Agile Portfolio Management, 7
areas, 338
artifacts, 297
deployment planning, 19
initial work items, 349
iterations, 338
Microsoft Excel reports, 352
Microsoft Project column mappings, 349–351
MSF for Agile Software Development, 314
MSF for CMMI Process Improvement, 316–319,

390–391
permissions, 336–338
plug-ins, 334–336
project management, 313–321
query folders, 349
Scrum, 320–321
security groups, 336–338
SharePoint dashboards, 352, 418
SharePoint document libraries, 352
SQL Reporting Services, 353
third-parties, 321
TWA, 6
updates, 357–359
version control permissions, 351
work item queries, 349
work item type defi nitions, 338–349

ProcessConfiguration.xml, 362
ProcessEvent, 811–812, 814
ProcessTemplate.xml, 354
Prod, 254, 264, 267, 270
Product Backlog, TWA, 78
Product Backlog Item, Scrum, 320
Progress Dashboard, 428
Project. See Microsoft Project
@Project, 326
project administrators, 69, 337, 588
Project Dashboard, 428
project management

portfolio management, 305–306
process templates, 313–321
reporting, 306
rich work item relationships, 304–305
SharePoint Server dashboards, 306–307
test case management, 305
TWA Agile planning tools, 307
WIT, 303–332

project management offi ces (PMOs), 433
Project Object Model (pom.xml), 454
project portals, 418, 430
Project Server, 82, 332, 433–443, 763

bidirectional synchronization, 435–440
CAL, 443
CLC, 441
confi guration, 440–443
fi eld mappings, 438–439
global workfl ows, 440
installation, 441
mirror fi elds, 439
permissions, 440–441
updates, 439

project teams, dashboards, 28
Project Web Access (PWA), 442
ProjectNodeGUID, 414
ProjectPath, 414
Projects, 507–508
Projects Selection, Import Wizard, 220
Promote Candidate Changes, 122
promotion-level branching. See code-promotion

branching
Properties, 367
Properties window, Visual Studio, 539
Proposed, 317
protocol, 66
protocols, Lab Management, 746
Proxy, 614
proxy servers

cache, 785
confi guration, 783–785

PSExec.exe, 592
public workspaces, 114
Publish, Microsoft Excel, 328
PUBLISH_TEST_RESULTS6, 86

844

Pull – Renamewitd

bindex.indd 04/23/2014 Page 844

Pull, 90, 188, 198, 247, 280, 777
Push, 92, 190–191, 199, 247, 277
PVCS. See Polytron Version Control System
PWA. See Project Web Access

Q

QA. See quality assurance
QA, 251, 254, 258, 259–260, 268–269
QFE. See Quick Fix Engineering
quality assurance (QA), 305
Quality Dashboard, 428
Query editor, 326
query folders, 349, 687, 688
query optimization, 37
query plans, 705
query variables, 326
query-based test suite, 733–734
QueueBuilds, 695
Queued builds, 494–495
queuing, 78, 489–492
Quick Fix Engineering (QFE), 49
quiesce, 662

R

RAM, 749, 752–753
Rational Application Developer, 76, 206
Rational ClearCase, 22
Rational ClearQuest, 22
READ, 694
Read, 113
read-ahead buffering, 639
Reader Account, 597
readers, 69
Readers, security group, 337
Readiness Checks, 659
READONLY, 340
ReadOnly, 367
Reads, 704
Reapply Service Account, Administration Console,

598–599
RebuildWarehouse, 614

recursive working folder mappings, 113
Reference Manager, 540–541
Reference Name, fi elds, 339
Refresh, Microsoft Excel, 328
RegisterDB, 614
registry, 591
re-indexing, 37
related link type, 305, 347
relational warehouse, 407–408, 411–414, 590
Release Explorer, 583
Release Management, 18, 565–569

Actions, 568–569
AD, 565, 566–567
build templates, 582–583
Component, 577–578
Confi guration Variables, 578–579, 582
Deployment Sequence, 575–576
environments, 570–572
groups, 565–567
permissions, 566
pick lists, 567–568
release paths, 572–574
release templates, 574–576
releasing application, 579–583
Rollback, 579
servers, 570–572
virtualization, 35
Visual Studio, 7, 557–584

Release Management Client, 558, 559–560, 562,
582

Release Management Deployment Agent, 558,
560, 562–563

Release Management Server, 558, 559, 561–562
release paths, Release Management, 572–574
release templates, Release Management, 574–576
RemapDBs, 614
remote build server farm, 781–782
remote desktops, geographically distributed

development, 780
remote proxy servers, geographically distributed

development, 779
renames

Git, 181–182
TEE, 221

Renamewitd, 356

845

Repair – sandbox

bindex.indd 04/23/2014 Page 845

Repair, 615
repair tools, Lab Management, 745
RepairCollection, 615
Reportable, 339
Reportable Name, 339
Reportable Reference Name, 339
reporting, 18. See also SQL Server Reporting

Services
Administration Console, 611–612
Analysis Services Cube, 408–409
cross-collection support, 407
customization, 430–431
data warehouse, 410–416
geographically distributed development, 777
Microsoft Excel, 352, 419–423
permissions, 695
phased deployment planning, 18
project management, 306
relational warehouse, 407–408
SharePoint, 417–432
SQL Server, 418–419
SQL Server Reporting Services, 423–427
team projects, 28
TWA, 306
upgrades, 772
Work Item Charting, 402–406

Reporting Services Manager URL, 597
Reporting Services Server URL, 597
Reports Folder tab, Administration Console, 605
ReportsTasks.xml, 336
repository

commit, 171
CVCS, 94
DVCS, 94
Git, 98, 169–170, 174

Clone, 193–194, 202–203
commit, 195–196
history, 247
making changes, 194–196
permissions, 693–694
TWA, 193–194, 202–203, 587
Visual Studio, 175–178
working directory, 179–182

“source of truth,” 99
TFVC, 170

version control, 88–89, 266, 281–282
VSS, 231, 232, 234

requestedMB, 703
RequestReady, 815
REQUIRED, 340
RequiredText, 369
requirements-based test suite, 733
Resolve Confl icts, Git branches, 186–187
resource contention, SQL Server,

706–707
resource governor, 642–644
REST API, 640
Restore Databases Wizard, 670, 671
Restore Wizard, 663–665
RetainIndefinitely, 695
Retention Policy section, Team Foundation Build,

485–488
reverse integration (RI), 247, 259, 272
Review Licenses, TEE, 210
RI. See reverse integration
rich link types, 346
rich relationships, 304–305
rm_Client.exe, 562
rm_Server.exe, 561
RoboCopy, 532
roles, 67–69
Rollback, Release Management, 579
Rollback Always, 579
rollback plan, upgrades, 759
Rolling Build trigger, Source Control Explorer,

480
round-trip latency, 776
round-tripping, 43
rules, 308

fi elds, 340–341
process template updates, 358

states, 342
transitions, 342

RunCoverageView, 412

S

SAN. See Storage Area Network
sandbox, 90

846

scalability – ServerName

bindex.indd 04/23/2014 Page 846

scalability, 29
AT, 631–632, 639–647
anticipating growth, 635
architecture, 626–627
ASP.NET worker threads, 632, 642
data warehouse, 632–633
deployment planning, 30–32
DT, 629–631, 637–638
fi le download cache directory, 645–646
Git, 99
high-availability, 32, 625–647
limitations, 627–634
load balancing, 640–642
Microsoft recommendations, 627–629
multiple servers, 635
OLAP, 632
resource governor, 642–644
SharePoint Services, 30
single points of failure, 635
SQL buffer cache, 630–631
SQL query plan cache, 629–630
SQL Server Reporting Services, 30, 37
storage performance, 629
Team Foundation Proxy, 633–634, 646–647
TFVC, 98
VSO, 626
VSS, 160–161
web access, 632, 639–647

Schedule trigger, Source Control Explorer, 482–
483

Scheduled Backup Wizard, 658–665
SCOM. See Server Center Operations Manager
scripts

Ant, 454
build automation, 451
build numbers, 527–531
customized build process, 520–522
PowerShell, 523–525

Scrum, 24, 314
Agile Portfolio Management, 382
backlogs, 381
process templates, 320–321
security groups, 337
Task Board, 386
work item categories, 345–346

Scrum Master, 320
SCVMM. See System Center Virtual Machine

Manager
SDK. See Software Development Kit
Seconds, 703
seconds, 704
security, 67–69, 673–698. See also permissions

AD groups, 696–697
Agile planning tools, 378
areas, 313
backups, 655
domain users, 674
Git, 99
groups, 678–682
identity synchronization, 676–678
infrastructure administrator, 588
iterations, 313
local users, 676
machine accounts, 675–676
management, 696–697
service accounts, 675
Team Explorer, 698
tools, 697–698
users, 674–678
version control, 158–159
VSO, 673–674

security groups, 336–338, 679
security ID (SID), 674
Select, Import Wizard, 218–219
Select Branches, 263
Select Version Control, 177
Server Center Operations Manager (SCOM),

723–724
Server Confi guration Wizard, 659
Server Drop Folders, 466
server drop location, Team Foundation

Build, 468
server groups, 68, 679–680
server object model, 796, 805–821
server tracing, 715–716
Server URL, 595
server workspaces, 91, 109–110
server-based build drops, 448
SERVERDEFAULT, 340
ServerName, 703

847

bindex.indd 04/23/2014 Page 847

serverName – source control

serverName, 66
servers. See also specifi c types

build automation, 459–462
Developer Division, 700
performance, 699–724
permissions, 683
plug-ins, extensibility, 808–821
project administrator, 588
Release Management, 570–572
upgrades, 760–761

service accounts, 38–39, 594, 668, 675
service packs, 49–50, 82
session_id, 703
SetSite, 368
Settings, 74, 615
Setup, 615
shadow accounts, 676
Share Project Wizard, 152, 216–217
shared engineering, 21
Shared Queries, 325, 420
shared resources tracking, 434
SharePoint

Administration Console, 611
Advanced Wizard, 53
backups, 651
Basic Wizard, 52
dashboards, 38, 352, 417, 418, 428–430
document libraries, 352
geographically distributed development, 777
Git, 99
installation, 49
reporting, 417–432
Standard Single Server Wizard, 52
upgrades, 763
virtualization, 34, 37–38

SharePoint Extensions, 417
SharePoint Server, 38, 306–307
SharePoint Services, 30, 32
SharePoint Site tab, Administration Console,

604–605
SharePoint team portal site, 772
SharePointDeployment, 532
Shelveset Sidekick, 624
shelvesets, 98, 128–129

shelving, 128
sibling branches, 246
SID. See security ID
Simple Mail Transfer Protocol (SMTP), 564

server, 40, 57, 595
Simple Object Access Protocol (SOAP), 796

event subscriptions, 801–805
SIMPLE recovery mode, 652–653
single points of failure, 635
single sign-on (SSO), 64–65, 98, 99
SingleFolder, 517
single-server installation, 30
.sln, 455
SMTP. See Simple Mail Transfer Protocol
snapshots, 423, 753–754
SOAP. See Simple Object Access Protocol
SoapException, 689
software

backups, 655
build agent, 476
client, installation, 49
deployment planning, 35–38
Project Server, 443
Team Foundation Server administrator, 588
testing, 727–729
upgrades, 760
Visual Studio Release Management,

558–560
software development, customization, migration,

229
Software Development Kit (SDK), 299, 786
software/source confi guration management

(SCM). See version control
Solution Explorer, 104–105, 177, 181–182, 540
source branches, 245
source code, 25, 104, 220, 299–300

automated tests, 283
build automation, 450
CVCS, 93
Microsoft Permissive License, 532
third-parties, version control, 284–289
version control, 88, 282–283
VSS, archive, 232

source control. See version control

848

Source Control Explorer – SSL/TLS encryption

bindex.indd 04/23/2014 Page 848

Source Control Explorer, 74, 78, 130–135, 219
branches, 255
customized build process, 536
Eclipse, 215–216
history, 132–133, 225, 262
Main, 255
TEE, 215–216
View History, 262
Visual Studio extensibility, 821–822

Source Control Merge Wizard, 260–261, 269
Source Control Wizard, 534
Source Location, 132
“source of truth” repository, 99
Source Server, 293–294
SPID. See SQL Process ID
Sprint Backlog, 78
Sproc, 703
sp_spaceused, 719
SQL

buffer cache, 630–631
mirroring, 793–794
Release Management, 568
transaction logs, 638

SQL Process ID (SPID), 703
SQL query plan cache, 629–630
SQL Server

Advanced Wizard, 53
AlwaysOn, 636, 656
Basic Wizard, 52
BIDS, 427
confi guration, 54–55
CPU, 705–706
currently running processes, 701–707
databases, performance, 706
deployment planning, 36–37
disaster recovery, 636
DMVs, 701–702
DT, 4, 562
Enterprise edition, 37
Git, 99
high-availability, 636
idle timeout, 641
installation, 48
licensing, 36–37
locks, 706

long-running processes, 704
marked transactions, 654
memory, 704
memory contention, 709–710
performance, 701–710
processor, 705–706
query plans, 705
Release Management Server, 562
reporting, 418–419
resource contention, 706–707
resource governor, 642–644
scalability, 30
Standard Single Server Wizard, 52
storage health, 708–709
storage usage, 719–721
SVN, 164
Team Foundation Proxy, 634
team projects, 29
TFVC, 98
upgrades, 762
virtualization, 655, 762
Visual SourceSafe Upgrade Wizard, 235
VSS, 160
wait types, 707–708

SQL Server Analysis Services, 30, 36, 37, 41
SQL Server Cluster IP, friendly DNS names, 41
SQL Server Data Tools (SSDT), 427
SQL Server Enterprise Edition, 638–639, 793
SQL Server Instance, 596
SQL Server Management Studio, 663
SQL Server Report Builder, 424–426
SQL Server Reporting Services, 36, 38,

423–427
AT, 31
Advanced Wizard, 53
data-driven subscriptions, 37
encryption key backup, 296, 651–652, 658
permissions, 423
process templates, 353
scalability, 30, 37

SqlExecute, 532
srcsafe.ini, 234
SSDT. See SQL Server Data Tools
SSH, 176, 532
SSL/TLS encryption, 64

849

bindex.indd 04/23/2014 Page 849

SSO. – tbl_tmpLobParameter

SSO. See single sign-on
stack rank, 361
standard access level, 689
standard environments, 744–745
standard features, 769
Standard Single Server Wizard, 52
Start Time, 617
Start Wizard, 54
StarTeam, 240
stateless, 640, 646
states, 309

metastates, 359–361
MSF for Agile Software Development, 315
MSF for CMMI Process Improvement, 317, 318
work item type customization, 362–363
work item type defi nitions, 341–342

static test suite, 734
Status, 617
Status on All Iterations, 363
Status Sidekick, 624
Status tab, Administration Console, 602–603
stickiness, 641
Stmt, 703
Storage Area Network (SAN), 701
storage health, 700–701, 708–709
storage performance, 629, 633–634, 646
storage usage, 719–721
Stories Overview Report, 363
String, 544
subfolders, 285–286
subscriptions

MSDN, 10
SOAP events, 801–805
SQL Reporting Services, 37
SQL Server Reporting Services, 423
TWA, 78
VSO, 9

Subversion (SVN), 90, 96–97, 102, 162–164
check-out, 114–115
CVCS, 93
migration, 240

successor/predecessor link type, 304–305, 329,
347

suitable extensibility server interface, 806

SVN. See Subversion
Symbol Server, 39, 293–294, 514

Team Foundation Build, 468
symbols.tfs.domain.local, 41
Sync Name Changes, 339
synchronization

backups, 654
context, 787
Eclipse, 154–155
Git, 188–191, 198–199
Integration Tools, 787
name changes, 364–365
Project Server, 435–440
work item, 789
workspaces, 139

Sysprep, 50
sysprepping, 748
System Center Virtual Machine Manager

(SCVMM), 41, 730, 731, 763
backups, 652
Lab Management, 57
standard environments, 745

system health, 700–701
System.LinkTypes.Dependency, 364

T

Tab Group, 343
Tab Page, 343
table and index partitioning, 639
TAG, 694
tags, TWA, 6
Take Full Backup Now, 660
Take Source, 186
target branches, 245
.targets, 456
Task Board, 74, 78, 315, 386, 388–390, 689
tbl_Command, 616, 711
tbl_Content, 720
tbl_LocalVersion, 720
tbl_Parameter, 616, 711
tbl_PropertyValue, 720
tbl_tmpLobParameter, 720

850

tcm.exe testcase import – Team Foundation Version Control

bindex.indd 04/23/2014 Page 850

tcm.exe testcase import, 743
tcmpt.exe, 619
TCP Keep-Alive, 641
Team Build, 206, 522, 582–583, 651
Team Explorer

Agile planning tools, 375
Ant, 518
CAL, 70
changesets, 128
check-in policies, 126
client object model, 801
client tier, 589
code reviews, 142
Edit Build Defi nition, 526
Forward Compatibility Update, 42
GetMetadataEx, 712
Git, 188

renames, 181–182
repository, 178

idle timeout, 641
Maven, 518
Microsoft Excel, 79–81, 327
Microsoft Project, 81–82
New Build Defi nition, 477, 533
Pending Changes, 152–153, 534
security, 698
TWA, 74
Visual Studio, 58–59, 69–78, 105
Visual Studio extensibility, 822
work item queries, 325
work items, 322

Team Explorer Everywhere (TEE), 69–70, 207–
212, 215–221

Add Team Foundation Server, 214
Available Software, 208–209
CAL, 70
client tier, 589
connecting, 212–215
Eclipse, 76, 148, 149, 206–215
Install Details, 209
Java, 148, 518
License Agreement, 212–213
licensing, 210
Linux, 77–78

local workspaces, 109
renames, 221
source code, 220
Source Control Explorer, 215–216
Team Project, 212–213, 214
UNIX, 77–78, 148
version control, 76

Team Explorer View, 74
Team Foundation Background, 676
Team Foundation Build, 18, 465–518, 469, 484–

485
application tier, 503
confi guration, 470–475
e-mail alerts, 493
General section, 477–478
geographically distributed development, 777
notifi cation tool, 492
Process section, 485–486
Retention Policy section, 485–488
TFVC, 503
Trigger section, 478–483
virtualization, 34
Workspace section, 483–484

Team Foundation Proxy, 633–634, 646–647
artifacts, 627
virtualization, 35

Team Foundation Server Activity Logging
Administration, 792

Team Foundation Server administrators,
588

Team Foundation Server Impersonation, 798
Team Foundation Server Integration Platform,

238–240
Team Foundation Server web parts, 428
Team Foundation Service, 5, 7, 8
Team Foundation Sidekicks, 623–624
Team Foundation Version Control (TFVC), 16,

90, 97–98, 101–165
branches, 93
changesets, 161
check-out, 117
CLC, 155
CVCS, 93
Eclipse, 97, 147–157

851

bindex.indd 04/23/2014 Page 851

team project collection groups – TEE

Get, 114–117
Git

branches, 244
merges, 244

history, 92
local workspace, 91
locks, 117–119
MSSCCI, 158
new features, 105–106
PATH, 206
Power Tools, 157–158
repository, 170
SVN, 102, 162–164
Team Foundation Build, 503
Team Server Proxy, 782
TEE, 215–221
third-party utilities, 157–158
Visual SourceSafe, 160–162
Visual Studio, 97
VSS, 102
working folder mapping, 110–114
workspaces, 106–110
Xcode, 206

team project collection groups, 69, 681–682
team project collections, 4

active, 29
Administration Console,

601
artifacts, 25
changesets, 126
connection strings, 591
deployment planning, 24–30
DT, 591
GetMetadataEx, 712
permissions, 684–685
test controller, 731
TWA, 79
work items, 27

team project groups, 69, 682
team project per application, 25
team project per release, 25–26
team project per team, 26
Team Project Selection dialog box, client object

model, 798–799

Team Project tab, Administration Console, 603–
604

team projects, 24–30, 72
artifacts, 25, 29
branch visualization, 28
creating fi rst, 58–61
enterprise projects, 440, 442–443
moving between team project collections, 28
performance, 30
permissions, 685–687
project administrator, 588
project portals, 418
source code, 104
TEE, 212–213, 214
work items, 27

team rooms, 6, 74, 78, 391–393
Team Server Proxy, geographically distributed

development, 782–786
Team System cube, 416
Team Web Access (TWA), 6, 78–79, 106, 728

Administration Hub, 587
Agile planning tools, 307, 375
Agile Portfolio Management, 382
backlogs, 381
CAL, 688
command log, 710
full features, 770
Git repository, 193–194, 202–203, 587
Operational Intelligence hub, 710
permissions, 688–690
portfolio management, 306
reporting, 306
Team Explorer, 74
team rooms, 392
Work Item Charting, 402–406
work item controls, 365–366
work items, 78, 329–331

TeamCompanion, 331
TeamFoundationApplication.Log, 814
TeamFoundationVersionControlService, 819
TeamPlain, 796
Teamprise, 796
TeamProjectPicker, 798–799
TEE. See Team Explorer Everywhere

852

TempDB – third-parties

bindex.indd 04/23/2014 Page 852

TempDB, 638, 707, 709
Test, 251
test agents, 745
Test Attachments Cleaner, 619, 627, 645, 739, 741
test case management, 728

phased deployment planning, 18
rich relationships, 305
TWA, 78

test cases, MTM, 734–735
test case/shared steps link type, 347
test controller, 35, 730, 731
Test Dashboard, 428
Test Hub, TWA, 6
test impact analysis, 741
test management, SOAP events, 803
test plans, 733, 739–740, 750
Test Results, 505
test runs, 735–736
test settings, 737–739
Test Steps, 345
test suites, 733–734
testing

architecture, 729–731
automation, 742–743
build automation, 450
Cloud-based Load Testing, 726
DefaultTemplate, 506
deployment planning, 15–16
Lab Management, 744–755
migration, 229
software, 727–729
upgrades, 759
Web Test Manager, 727

TestManagement.xml, 336
TestResultView, 412
.testsettings, 515
tests/tested by link type, 304, 347
tf, 155, 223
$tf, 108
tf: CheckinOther, 691
tf: Merge, 691
tf help, 156, 222
tf merge, 272
TF_BUILD, 521–522
tf.exe, 77

TF.exe destroy, 693
TF.exe Permission, 698
.tfIgnore, 122–124
tfpt addprojectportal, 418
tfpt addprojectreports, 418
tfpt bind, 132
tfpt help, 157
tfpt scorch, 158
TFS Migration Synchronization Toolkit, 786
TFS SDK for Java, 796
\TFS Services, 714
TfsActivityLogging, 711
Tfs_Analysis, 416, 590, 668, 696
TFS_APPTIER_SERVICE_WPG, 645
TfsBpaCmd.exe, 622
tfsbuild.exe, 482
TfsBuildExtensions.Activities.dll, 550,

552
TFSBuild.proj, 518
Tfs_Collection, 410, 704
TFSConfig.exe, 613–615
TfsConfig.exe, 587, 668
Tfs_Configuration, 590, 616, 636, 654, 704
TfsConfigurationServer, client object model,

797
TfsConnection, 797
tfs.domain.local, 41
TFSJobAgent.exe, 662
TFSLabConfig.exe Permissions, 698
TfsRedirect.aspx, 431
TFSSecurity.exe, 698
tfs_server.exe, 50
TFSServiceControl, 669
TFSServiceControl.exe, 615, 662
TfsTeamProjectCollection, 797
TFSVersion, 532
TfsVersionControl, 410
tfs_VssUpgrade.exe, 232
Tfs_Warehouse, 668, 696
TfsWarehouseDataReader, 416
TfsWorkItemTracking, 410
tf:Test, 431
TFVC. See Team Foundation Version Control
third-parties
Dependencies, 284–289

853

time off – upgrades

bindex.indd 04/23/2014 Page 853

extensibility, 806
integrations, 84
migration, 240–241
process templates, 321
purchase, migration, 229
source code, version control, 284–289
TFVC, 157–158
work items, 331

time off, Project Server, 435
time zones, 792–793
Timeline Tracking, 263–264
timesheets, 435
@Today, 326
ToolArtifactDisplayUrl, 413
topic branches, 172–173, 197–198
topology, Lab Management, 752
TortoiseSVN, 163
_Total, 701
TracePoint, 715–716
Track Changeset, 263, 268, 272–274
track merges, 28
transaction logs, 638, 654
Transact-SQL (TSQL), 411
transitions, 309

MSF for Agile Software Development, 315
MSF for CMMI Process Improvement, 317
rules, 342
work item type defi nitions, 341–342

transparency, 14–15
Tree, link types, 348
Tree of Work Items query, 325, 328
trend reports, 421–422
trial edition, 9–10, 47
Trigger section, Team Foundation Build, 478–483
trusts, 677
TSQL. See Transact-SQL
TWA. See Team Web Access

U

UI. See user interface
Unattend, 615
Unique Identifier, 617
unique keys, 414

unit tests, 742
UNIX, 77–78, 148
unquiesce, 669
unset, permissions, 696
Unspecifi ed, layout work item type defi nition, 344
Untracked Files, 180
Update Account Password, 597–598
Update work items with build number, 515
updates

local workspace, 711
process templates, 357–359
Project Server, 439
Team Foundation Service, 8
Visual Studio, 502

Updates, 615
Upgrade Report, 237
Upgrade Wizard, 53, 764–765
upgrades, 757–773

AT, 760
automated builds, 770–771
backups, 760
confi guration utility, 763–764
connection URL, 760
data warehouse, 772
Developer Division, 638
FCI, 637
friendly DNS names, 760
hosting, 19
Lab Management, 772–773
legacy team projects, 766–773
local workspaces, 771–772
migration, 758–760
migration versus, 228–229
operating system, 759–760
planning, 760–761
prerequisites, 761–762
Project Server, 763
reporting, 772
rollback plan, 759
SCVMM, 763
servers, 760–761
SharePoint, 763
SharePoint team portal site, 772
software, 760
SQL Server, 762

854

UpgradeTemplate – version control

bindex.indd 04/23/2014 Page 854

SQL Server Enterprise Edition, 639
testing, 759
verifi cation, 765–766

UpgradeTemplate, 503, 518
URLs, 65–67, 413
Use, 113
UseBuildResources, 684
User Agent, 617
user interface (UI), 106, 238
user maps, 787
User Names, 596
User Stories, 320
UserActionRequired, 369
UserActionRequiredChanged, 369
users, 68

AT, 596
domain, security, 674
licensing groups, 769
permissions, 769
Release Management, 565–567
security, 674–678

Users View Sidekick, 624

V

vacation, 435
VALIDUSER, 340
value maps, 787
VB6, 532
.vbproj, 456, 507
Veracity, 94
verifi cation, upgrades, 765–766
Version, AT, 595, 596
version control, 5–6, 87–100. See also Team

Foundation Version Control
AT, 590
access control, 631
ACEs, 631–632
Add, 90–91
Agile planning tools, 378
architecture, 283, 627
artifacts, 295–300
authentication, 223
bindings, 132

branches, 92–93
cache, backup plan, 665–668
changeset, 91
check-in, 91, 687
check-out, 91
Clone, 90
commit, 91–92
common products, 95–99
common scenarios, 281–300
CVCS, 93–95, 245, 253–274
database schema, 283–284
Dependencies, 284–289
Distributed Version Control, Git, 16,

167–200
DVCS, 89, 90, 94–95
Express version, 9
geographically distributed development, 777, 790
Get, 90
heterogeneous teams, 201–226
history, 92
ignoring fi les, 122–124
Integration Tools, 787
internal shared libraries, 289–295
legacy, 227–241
merges, 92–93
migration, 22–23
MSSCCI, 147
permissions, 158–159, 690–693

process templates, 351
phased deployment planning, 18
Pull, 90
Push, 92
PVCS, 106
removing fi les from local fi le system, 127
repository, 88–89, 120, 266, 281–282
security, 158–159
shelvespaces, 129
SOAP events, 803
Solution Explorer, 104–105
source code, 282–283
subfolders, 285–286
TEE, 76
third-party source code, 284–289
TWA, 78
UI, 106

855

bindex.indd 04/23/2014 Page 855

Version Control Administration – Visual Studio

Visual Studio, 105
working copy, 89
working folder mapping, 90

Version Control Administration, 792
VersionControlServer.SupportedFeatures,

799
VersionControlServer.WebServiceLevel,

799
VersionControl.xml, 336
versionspec, 115
VeryHigh, 643
VHD. See virtual hard disk
View Backlog, 379
View History, 188, 262
view project-level information, permissions, 686
ViewBuildResources, 684
VIEW_TEST_RESULTS, 86
Virtual Directory, 595
virtual environments, 18, 748–749
virtual hard disk (VHD), 19
Virtual Machine Serving Tool, 754
virtual machine templates, 730
virtual machines (VMs), 730. See also System

Center Virtual Machine Manager
Lab Management, 747–748
RAM, 749

Virtual Private Networks (VPNs), 780
virtualDirectory, 66
virtualization

backups, 655
deployment planning, 33–35
high-availability, 647
Lab Management, 729
SharePoint, 37–38
SQL Server, 762

Visual SourceSafe (VSS), 22, 91, 96
ANALYZE, VSS repository, 231
check-in, 162
check-out, 162
concurrent editing of fi les, 162
CVCS, 93
history, 161–162
keyword expansion, 162
labels, 161–162
migration from, 230–238

MSSCCI, 158
pinning, 161
repository

migration, 232
Visual SourceSafe Upgrade Wizard, 234
VSS ANALYZE, 231

sharing, 161
source code, archive, 232
Source Control Explorer, 132
TFVC, 102, 160–162

Visual SourceSafe Upgrade Wizard, 230–238
Visual Studio. See also Lab Management;

Microsoft Test Manager; Scrum
ALM, MSF for Agile Software Development, 315
ALM Ranger, 796, 823
backlogs, 381
baseless merge, 247
Branch from QA, 265
branches, 259
build agent, 476
build defi nitions, 477
build process template, 536–543
code reviews, 141–142
devenv, 455
Diff Editor, 187, 198
Eclipse, 154–155
extensibility, 821–822
Full access level, 690
Git, 175–191

repository, 175–178
HintPath, 286, 287
iterations, 311
legacy versions, deployment planning, 42–43
local workspaces, 108
merges, 272
My Work, 136–141
prior versions, 75
Properties window, 539
Release Management, 7, 557–584
round-tripping, 43
server workspaces, 109–110
Source Control Explorer, 131
Symbol Server, 514
Team Explorer, 58–59, 69–78, 105
TFVC, 97

856

bindex.indd 04/23/2014 Page 856

Visual Studio Gallery – WIQ.

updates, 502
version control, 105
work items, 322–327
XAML, 538–540

Visual Studio Gallery, 823
Visual Studio Industry Partners (VSIP), 823
Visual Studio Online (VSO), 5, 8–9

Alternate Credentials, 193, 205
Basic Authentication, 674
build automation, 447
check-in branches, 285
Cloud-based Load Testing, 726
geographically distributed development,

779
Hosted Build Service, 448
Microsoft Accounts, 675
performance counters, 714
Release Management, 564
scalability, 626
security, 673–674
server tracing, 715
subscription, 9
Team Foundation Build, 466–467
test case management, 728
testing, 726
Windows Azure, 710
Work Item Charting, 402

Visual Studio Release Management, 558–560,
563–574

vLatency, 709
VLSC. See Volume Licensing Service Center
VM patches, 754
VM template patches, 754
VM templates, 747–748
VMs. See virtual machines
VMware, 751–752
volume licensing, 10
Volume Licensing Service Center (VLSC), 46
VPNs. See Virtual Private Networks
VS Test runner, 506
vsalm, 70
VSIP. See Visual Studio Industry Partners
VSO. See Visual Studio Online
VSPackages, 821
VSS. See Visual SourceSafe
VSSConverter.exe, 230

VssUpgrade.exe, 230
vstfs, 803

W

wait types, 707–708
wait_resource, 704, 706
wait_type, 703, 706
WAN. See wide area network
warehouse adapters, 411, 430–431
warehouse.tfs.domain.local, 41
WCF. See Windows Communication Foundation
Web, layout work item type defi nition, 344
web access. See also Team Web Access

geographically distributed development, 777
REST API, 640
scalability, 632, 639–647
stateless, 640

Web Access URL, 595
web performance tests, 742
Web Portal, 74
Web Service Protocol, 64
Web Site, AT, 594
Web Test Manager, 727, 728
Web.config, 645
web.config, 482, 579
Webpage, work item control, 345
WF. See Windows Workfl ow Foundation
.wicc, 371
wide area network (WAN), 65, 96, 160, 751, 781
Windows Activation, 755
Windows Azure, 8, 447, 568, 675, 710
Windows Communication Foundation (WCF),

801
Windows Explorer, 82
Windows Integrated Authentication, 64
Windows security identifi er (WSI), 107
Windows Server Failover Clustering (WSFC), 636
Windows Server Update Services (WSUS), 754
Windows Shell Extensions, 157, 163
Windows Workfl ow Foundation (WF), 458–459,

466, 522
WinForms, 344
WIOV. See Work Item Only View
WIQ. See work item queries

857

bindex.indd 04/23/2014 Page 857

WIT. – WorkItemHistoryView

WIT. See work item tracking
witadmin.exe, 355–357
WITH ONLINE, 638
.wixproj, 507
Work Item, 409
work item, synchronization, 789
work item categories, 345–346
work item charts, 6, 402–406
Work Item Classifi cation, 345
work item clients, 365–366
work item controls, 344–345

customization, 365–372
interfaces, 366–370
TWA, 365–366
work item type defi nitions, 371–372

Work Item Count, 424
work item custom control deployment manifest,

371
Work Item History, 408
Work Item Log, 345
Work Item Only View (WIOV), 688, 689
work item queries (WIQ), 324–327, 349, 412–413,

419–423, 439
work item tracking (WIT), 4, 9, 23, 408, 627, 787

AT, 590
fi le download cache directory, 645
geographically distributed development, 777–

778
Git, 99
global lists, 349
Metadata Cache, 778
permissions, 687–690
phased deployment planning, 18
project management, 303–332
SOAP events, 803
SQL query plan cache, 630

Work Item Tracking Administration, 792
Work Item Tree, 408
work item type defi nitions

fi elds, 339–341
forms, 343–344
layouts, 344
process templates, 338–349
states, 341–342
transitions, 341–342
work item controls, 371–372

work item types, 308–309
changing, 324
customization, 362–365

MTM, 742
states, 362–363

MSF for CMMI Process Improvement, 316, 317,
318

Scrum, 320
Work Item.Area Path, 424
work items, 308–313

areas, 309–313
bulk edits, 328
check-in, 120
creating, 322–323
deleting, 323–324
geographically distributed development, 791
Git, 182–183
iterations, 309–313
link types, 346–348
managing, 321–331
Microsoft Excel, 327–328
Microsoft Project, 329
Project Server, 332
rich relationships, 304–305
Team Explorer, 322
team project collections, 27
team projects, 27
third-parties, 331
TWA, 78, 329–331
Visual Studio, 322–327

Work Items, 74, 420
worker threads, 632, 642
workfl ows

customization, Lab Management, 754
customized build process, 531–532
DVCS, 95
global, 349, 440
Lab Management, 749–751
WF, 458–459

workgroup mode, 676
working copy, 89, 95
working directory, 174, 179–182, 199
working folder mapping, 90, 110–114, 256, 484
WorkItemDatasource, 367
WorkItemFieldName, 367
WorkItemHistoryView, 411, 414

858

WorkItemLongTexts – Zip activity

bindex.indd 04/23/2014 Page 858

WorkItemLongTexts, 720
WORK_ITEM_READ, 687
WorkItemsAre, 720
WorkItemsLatest, 720
WorkItemsWere, 720
WorkItems.xml, 336
WorkItemTracking, 410, 532
WORK_ITEM_WRITE, 85, 687
workspace mapping, 224
Workspace section, Team Foundation Build,

483–484
Workspace Sidekick, 624
workspaceowner, 113
workspaces. See also local workspaces

changing computer name or owner, 107
DefaultTemplate, 505
deleting, 135
Eclipse, 149
Pending Changes, 131
permission profi les, 113–114
public, 114
server, 109–110
shelvespaces, 129
Source Control Explorer, 131
synchronization, 139
TFVC, 106–110

versionspec, 115–116
Writes, 704
WSFC. See Windows Server Failover Clustering
WSHttpBinding, 801
WSI. See Windows security identifi er
WssTasks.xml, 336
WSUS. See Windows Server Update Services

X

XAML, 538–540, 544
.XAML, 284
XAP, 450
Xcode, 202–206
XE_TIMER_EVENT, 707
X-Forward-For, 642
XML fi le editor, 355–357, 532
XP. See eXtreme Programming

Z

Zander, Jason, 5
Zip, 532
Zip activity, 543–546

Try Safari Books Online FREE
for 15 days and take 15% off

for up to 6 Months*
Gain unlimited subscription access to thousands of books and videos.

START YOUR FREE TRIAL TODAY!

Visit: www.safaribooksonline.com/wrox

With Safari Books Online, learn without limits
from thousands of technology, digital media and
professional development books and videos from
hundreds of leading publishers. With a monthly or
annual unlimited access subscription, you get:

• Anytime, anywhere mobile access with Safari
To Go apps for iPad, iPhone and Android

• Hundreds of expert-led instructional videos on
today’s hottest topics

• Sample code to help accelerate a wide variety
of software projects

• Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

• Rough Cuts pre-published manuscripts

*Discount applies to new Safari Library subscribers only

and is valid for the fi rst 6 consecutive monthly billing

cycles. Safari Library is not available in all countries.

http://www.safaribooksonline.com/wrox

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Part I Getting Started
	Chapter 1 Introducing Visual Studio Online and Team Foundation Server 2013
	What is Team Foundation Server?��������������������������������������
	What is Visual Studio Online?������������������������������������
	What’s New in Team Foundation Server 2013?���
	Version Control����������������������
	Team Collaboration�������������������������
	Web Access�����������������
	Agile Product Management�������������������������������
	Release Management�������������������������

	Acquisition Options��������������������������
	Visual Studio Online���������������������������
	Express��������������
	Trial������������
	Volume Licensing�����������������������
	MSDN Subscriptions�������������������������
	Microsoft Partner Network��������������������������������
	Retail�������������

	Summary��������������

	Chapter 2 Planning a Deployment
	Identifying and Addressing Software Engineering Pain���
	Transparency of the Release or Project���
	Collaboration across Different Teams and Roles���
	Automated Compilation, Testing, Packaging, and Deployment��
	Managing Test Plans��������������������������
	Parallel Development���������������������������

	Adopting Team Foundation Server��������������������������������������
	Adoption Timeline������������������������
	Phased Approach����������������������
	Hosting Team Foundation Server�������������������������������������
	Identifying Affected Teams���������������������������������
	Generating Consensus���������������������������
	Team Foundation Server Administrator���
	Pilot Projects���������������������

	Migration Strategies���������������������������
	Version Control����������������������
	Work Item Tracking�������������������������

	Structuring Team Project Collections and Team Projects���
	Considering Limitations in Team Foundation Server��
	Server Limitations�������������������������

	Preparation for a Team Foundation Server Environment���
	Understanding the Architecture and Scale-Out Options���
	Hardware Requirements����������������������������
	Virtualization���������������������
	Planning for Software Prerequisites��
	Service Accounts�����������������������
	File Share Folders�������������������������
	SMTP Server������������������
	Firewall Concerns and Ports Used���������������������������������������
	Friendly DNS Names�������������������������
	Legacy Visual Studio Versions������������������������������������

	Summary��������������

	Chapter 3 Installation and Configuration
	What You’ll Need�����������������������
	Team Foundation Server 2013����������������������������������
	Team Foundation Server 2013 Installation Guide���
	SQL Server 2012����������������������
	Operating System�����������������������
	SharePoint�����������������
	Client Software����������������������
	Service Packs and Other Updates��������������������������������������

	Installing Team Foundation Server��
	Installation Types�������������������������
	Configuring Team Foundation Server���
	Creating Your First Team Project���������������������������������������
	Configuring Friendly DNS Names�������������������������������������
	Summary��������������

	Chapter 4 Connecting to Team Foundation Server
	Team Foundation Server Architecture��
	Addressing Team Foundation Server��
	Introducing Team Foundation Server Security and Roles��
	Users������������
	Groups�������������
	Permissions������������������

	Team Explorer��������������������
	Understanding Team Explorer in Visual Studio���
	Connecting to Team Foundation Server from Eclipse and Cross-Platform���

	Alternate Ways to Connect to Team Foundation Server��
	Accessing Team Foundation Server through a Web Browser���
	Using Team Foundation Server in Microsoft Excel��
	Using Team Foundation Server in Microsoft Project��
	Windows Explorer Integration with Team Foundation Server���
	Connecting Microsoft Test Manager to Team Foundation Server��
	Access to Team Foundation Server via Third-Party Integrations��

	Summary��������������

	Part II Version Control
	Chapter 5 Overview of Version Control
	What Is Version Control?�������������������������������
	Repository�����������������
	Working Copy�������������������
	Working Folder Mappings������������������������������
	Get/Clone/Pull���������������������
	Add����������
	Check-Out����������������
	Changeset/Commits������������������������
	Check-in/Commit����������������������
	Push�����������
	History��������������
	Branching and Merging����������������������������

	Centralized Versus Decentralized Version Control���
	Centralized version Control����������������������������������
	Distributed Version Control Systems��
	Differences between Centralized and Distributed Version Control Systems��

	Common Version Control Products��������������������������������������
	Microsoft Visual SourceSafe����������������������������������
	Apache Subversion������������������������
	Team Foundation Version Control��������������������������������������
	Git in TFS�����������������

	Summary��������������

	Chapter 6 Using Centralized Team Foundation Version Control
	Getting Started with Team Foundation Server Version Control��
	Learning What’s New in Team Foundation Server 2013 Version Control���
	Team Foundation Server Version Control Concepts��
	Workspace����������������
	Working Folder Mappings������������������������������
	Get����������
	Check-Out����������������
	Locks������������
	Check-In of Pending Changes����������������������������������
	Undo Pending Changes���������������������������
	Changeset����������������
	Shelvesets�����������������
	Branches���������������

	Using Source Control Explorer������������������������������������
	Viewing History����������������������
	Labeling Files���������������������
	Recovering When Things Go Wrong��������������������������������������

	Keeping on Task with My Work�����������������������������������
	Managing Code Reviews����������������������������
	Requesting a Code Review�������������������������������
	Performing a Code Review�������������������������������
	Completing the Code Review���������������������������������

	Team Foundation Server Version Control in Eclipse��
	Installing the Team Foundation Server Plug-In for Eclipse��
	Sharing Eclipse Projects in Team Foundation Server���
	Importing Projects from Team Foundation Server���
	Differences between the Eclipse and Visual Studio Clients��
	Team Foundation Server Version Control from the Command Line���
	Getting Help�������������������
	Using the Command Line�����������������������������

	Team Foundation Version Control Power Tools and Third-Party Utilities��
	Microsoft Visual Studio Team Foundation Server Power Tools���
	Team Foundation Server MSSCCI Provider���

	Version Control Security and Permissions���
	Switching Version Control to Team Foundation Server��
	Working with Team Foundation Version Control for Visual SourceSafe Users���
	Using Team Foundation Version Control for Subversion Users���

	Summary��������������

	Chapter 7 Distributed Version Control with Git and Team Foundation Server
	Distributed Version Control Concepts���
	Git����������
	Repository�����������������
	Graph������������
	Commit�������������
	Branches���������������
	Topic Branches���������������������
	HEAD�����������
	Working Directory������������������������
	Index������������

	Microsoft Visual Studio Integration��
	Getting Started with a Repository��
	Making Changes in a Working Directory��
	Committing Changes�������������������������
	Branching and Merging����������������������������
	Synchronizing Changes with the Server��

	Using Git Command-Line Tools�����������������������������������
	Installing Git for Windows���������������������������������
	Cloning Git Repositories Hosted in Team Foundation Server��
	Making Changes in the Repository���������������������������������������
	Viewing History����������������������
	Branching and Merging����������������������������
	Synchronizing with the Server������������������������������������
	Using Posh-Git���������������������

	Summary��������������

	Chapter 8 Version Control in Heterogeneous Teams
	What Are Heterogeneous Teams?������������������������������������
	Working Together Seamlessly����������������������������������
	Xcode Development������������������������
	Using a Git-Based Team Project�������������������������������������
	Using a TFVC-Based Team Project��������������������������������������

	Eclipse Development��������������������������
	Installing Team Explorer Everywhere��
	Connecting Team Explorer Everywhere to Team Foundation Server��
	Using Team Foundation Version Control��
	Using Git����������������

	Working with the Cross-Platform Command-Line Client��
	Install and Connect��������������������������
	Creating a Workspace Mapping�����������������������������������
	Performing a Get from Team Foundation Server���
	Editing Files and Committing Changes���

	Summary��������������

	Chapter 9 Migration from Legacy Version Control Systems
	Migration Versus Upgrade�������������������������������
	Upgrade��������������
	Migration����������������

	Migrating History or Latest Version��
	Migrating from Visual SourceSafe���������������������������������������
	Preparing to Use the VSS Upgrade Wizard��
	Using the Visual SourceSafe Upgrade Wizard���

	Team Foundation Server Integration Platform��
	Popular Third-Party Migration Tools��
	Subversion, CVS, and StarTeam������������������������������������
	ClearCase����������������

	Summary��������������

	Chapter 10 Branching and Merging
	Differences Between TFVC and Git When Branching and Merging��
	Branching Demystified����������������������������
	Branch�������������
	Merge������������
	Conflict���������������
	Branch Relationships���������������������������
	Baseless Merge���������������������
	Forward/Reverse Integration����������������������������������
	Push/Pull����������������

	Common Branching Strategies����������������������������������
	No Branching�������������������
	Branch per Release�������������������������
	Code Promotion Branching�������������������������������
	Feature Branching������������������������

	Implementing Branching Strategies in Centralized Version Control���
	The Scenario�������������������
	The Plan���������������
	Implementation���������������������
	Dealing with Changesets������������������������������
	Tracking Change through Branches���������������������������������������

	Implementing Branching Strategies in Git���
	No Branching Strategy����������������������������
	Feature Branching Strategy���������������������������������

	Summary��������������

	Chapter 11 Common Version Control Scenarios
	Setting Up the Folder Structure for Your Branches��
	Application Source Code������������������������������
	Automated Tests Source Code����������������������������������
	Architecture Assets��������������������������
	Database Schema����������������������
	Installer Assets�����������������������
	Build and Deployment Assets����������������������������������

	Third-Party Source Code and Dependencies���
	Folder inside the Branch�������������������������������
	Folder at Team Project Level�����������������������������������

	Internal Shared Libraries��������������������������������
	Choosing a Location in Version Control���
	Storing Library Assemblies as Dependencies���
	Branching into Product Family Branches���

	Managing Artifacts Using Team Foundation Server��
	SQL Reporting Services Encryption Key Backup���
	Process Templates������������������������
	Custom Build Assemblies������������������������������
	Master Build Process Templates�������������������������������������
	Source Code for Custom Tools�����������������������������������

	Summary��������������

	Part III Project Management
	Chapter 12 Introducing Work Item Tracking
	Project Management Enhancements in Team Foundation Server 2013���
	Rich Work Item Relationships�����������������������������������
	Test Case Management���������������������������
	Agile Portfolio Management���������������������������������
	Enhanced Reporting�������������������������
	SharePoint Server Dashboards�����������������������������������
	Agile Planning Tools in Team Web Access��

	Work Items�����������������
	Work Item Types����������������������
	Areas and Iterations���������������������������

	Process Templates������������������������
	MSF for Agile Software Development���
	MSF for CMMI Process Improvement���������������������������������������
	Visual Studio Scrum��������������������������
	Third-Party Process Templates������������������������������������
	Custom Process Templates�������������������������������

	Managing Work Items��������������������������
	Using Visual Studio��������������������������
	Using Microsoft Excel����������������������������
	Using Microsoft Project������������������������������
	Using Team Web Access����������������������������
	Using Third-Party Tools������������������������������

	Project Server Integration���������������������������������
	Summary��������������

	Chapter 13 Customizing Process Templates
	Anatomy of a Process Template������������������������������������
	Plug-In Files��������������������
	Default Security Groups and Permissions��
	Initial Area and Iteration Nodes���������������������������������������
	Work Item Type Definitions���������������������������������
	Initial Work Items�������������������������
	Work Item Queries and Folders������������������������������������
	Microsoft Project Column Mappings��
	Version Control Permissions and Settings���
	SharePoint Project Team Portal Document Library Settings���
	SQL Reporting Services Report Definitions��

	Using the Process Template Editor��
	Installing the Process Template Editor���
	Working with a Process Template��������������������������������������
	Using an XML Editor and WITAdmin���������������������������������������

	Deploying Updates to Process Templates���
	Uploading Process Templates in Team Foundation Server��
	Editing Work Items on an Existing Team Project���

	Customizing Agile Tools������������������������������
	Metastates and Backlogs������������������������������
	Effort, Remaining Work, and Stack Rank���
	Defining the Team������������������������
	Other Process Configuration Customizations���

	Common Work Item Type Customizations���
	Adding New States������������������������
	Displaying Custom Link Types�����������������������������������
	Synchronizing Name Changes���������������������������������

	Introducing Custom Work Item Controls��
	Work Item Clients������������������������
	Work Item Control Interfaces�����������������������������������
	Deploying Custom Controls��������������������������������
	Work Item Custom Control Deployment Manifest���
	Using the Custom Control in the Work Item Type Definition��

	Summary��������������

	Chapter 14 Managing Teams and Agile Planning Tools
	Defining a Team����������������������
	Maintaining Product Backlogs�����������������������������������
	Managing the Backlog���������������������������
	Agile Portfolio Management���������������������������������

	Planning Iterations��������������������������
	Tracking Work��������������������
	Using the Kanban Board�����������������������������
	Using the Task Board���������������������������

	Customization Options����������������������������
	Team Rooms�����������������
	Stakeholder Feedback���������������������������
	Requesting Feedback��������������������������
	Providing Feedback�������������������������
	Voluntary Feedback�������������������������

	Summary��������������

	Chapter 15 Reporting and SharePoint Dashboards
	What’s New in Team Foundation Server 2013?���
	Work Item Charting in Web Access���������������������������������������
	Cross-Collection Reporting Support���
	Changes to the Relational Warehouse��
	Changes to the Analysis Services Cube��
	Optional and Richer SharePoint Integration���

	Team Foundation Server Data Warehouse��
	Operational Stores�������������������������
	Relational Warehouse Database and Warehouse Adapters���
	Querying the Relational Warehouse Database���
	Analysis Services Cube�����������������������������
	Data Warehouse Permissions���������������������������������

	SharePoint Integration�����������������������������
	SharePoint Extensions����������������������������
	Excel Services and Dashboard Compatibility���
	Adding a Project Portal and Reports to an Existing Team Project��

	Creating Reports�����������������������
	Tools������������
	Excel Reporting from a Work-Item Query���
	SQL Server Reporting Services Reports��
	SharePoint Dashboards����������������������������

	Advanced Customization�����������������������������
	Customizing Project Portals����������������������������������
	Customizing Warehouse Adapters�������������������������������������
	TfsRedirect.aspx�����������������������

	Summary��������������

	Chapter 16 Project Server Integration
	Overview���������������
	Project Server Essentials��������������������������������
	Bidirectional Synchronization������������������������������������
	Relationship between Team Projects and Enterprise Projects���

	Initial Configuration����������������������������
	Necessary Permissions����������������������������
	Command-Line Tool for Configuration��
	Project Server Installation Components���
	One-Time Integration Steps���������������������������������
	Mapping Enterprise Projects to Team Projects���
	Necessary Software for Project Managers��

	Summary��������������

	Part IV Team Foundation Build
	Chapter 17 Overview of Build Automation
	What’s New in Build Automation�������������������������������������
	Hosted Build Service���������������������������
	Server-Based Build Drops�������������������������������

	Let’s Build Something����������������������������
	What Is Build Automation?��������������������������������
	Scripting a Build������������������������
	Make�����������
	Apache Ant�����������������
	Apache Maven�������������������
	NAnt�����������
	MSBuild��������������
	Windows Workflow Foundation����������������������������������

	Using Build Automation Servers�������������������������������������
	CruiseControl��������������������
	CruiseControl.NET������������������������
	Hudson/Jenkins���������������������
	Team Foundation Server�����������������������������

	Adopting Build Automation��������������������������������
	Summary��������������

	Chapter 18 Using Team Foundation Build
	Introduction to Team Foundation Build��
	Team Foundation Build Architecture���
	Setting Up the Team Foundation Build Service���
	Installing Team Foundation Build���������������������������������������
	Configuring the Team Foundation Build Service��
	Additional Software Required on the Build Agent��

	Working with Builds��������������������������
	Creating a Build Definition����������������������������������
	Queuing a Build����������������������
	Build Notifications and Alerts�������������������������������������
	Managing Builds����������������������
	Managing Build Quality Descriptions��
	Managing Build Controllers and Build Agents��

	Understanding the Build Process��������������������������������������
	DefaultTemplate Process������������������������������
	Building Ant and Maven Projects with Team Foundation Server��

	Summary��������������

	Chapter 19 Customizing the Build Process
	Running Custom Build Scripts during Your Build���
	Extension Points in the Default Build Template���
	How to Access Build Information within Your Build Script���

	Customizing the Build Process to Stamp the Version Number into Your Assemblies���
	Creating the PowerShell Script�������������������������������������
	Configure the Build to Run the Script��
	Configure the Build Number to Work with the Script���

	Available Custom Build Workflow Activities���
	Integrating Custom Activities into the Build Process Template��
	Acquiring a Copy of the Default Template���
	Acquiring and Configuring the Community TFS Build Extensions Custom Build Activities���
	Creating a Visual Studio Project to Support Editing the Build Template���
	Adding the Zip Activity to the Build Template��
	Configure a Build Definition to Use the New Build Process Template���
	Configure the Build Controller to Automatically Deploy Your Custom Build Activities��
	Run Your Build and Check Your Work���

	Summary��������������

	Chapter 20 Release Management
	Getting Started with Release Management for Visual Studio 2013���
	Components�����������������
	Licensing����������������
	Hardware and Software Requirements���
	Installing Release Management Server���
	Installing Release Management Client���
	Installing Deployment Agents�����������������������������������

	Configuration��������������������
	System Settings����������������������
	Connecting to Team Foundation Server���
	Users and Groups�����������������������
	Pick Lists�����������������
	Actions and Tools������������������������
	Environments and Servers�������������������������������
	Release Paths��������������������

	Release Templates and Components���������������������������������������
	Deployment Sequence��������������������������
	Components�����������������
	Configuration Variables������������������������������
	Rollback Configuration�����������������������������

	Releasing Your Application���������������������������������
	Manually Creating a Release����������������������������������
	Releasing from Team Build��������������������������������
	Release Explorer�����������������������

	Summary��������������

	Chapter 21 Introduction to Team Foundation Server Administration
	Administrative Roles���������������������������
	Infrastructure Administrator�����������������������������������
	Team Foundation Server Administrator���
	Project Administrator����������������������������

	Logical Architecture���������������������������
	Client Tier������������������
	Application Tier�����������������������
	Data Tier����������������

	Built-In Administration Tools������������������������������������
	Team Foundation Administration Console���
	Command-Line Configuration Tools���������������������������������������

	Operational Intelligence Hub�����������������������������������
	Activity Log�������������������
	Job Monitoring���������������������

	Other Administration Tools���������������������������������
	Team Foundation Server Power Tools���
	Best Practices Analyzer������������������������������
	Team Foundation Server Administration Tool���
	Team Foundation Sidekicks��������������������������������

	Summary��������������

	Chapter 22 Scalability and High Availability
	An Evolving Architecture�������������������������������
	Limiting Factors�����������������������
	Microsoft Recommendations��������������������������������
	Data Tier����������������
	Application Tier�����������������������
	Web Access�����������������
	Warehouse����������������
	Team Foundation Proxy����������������������������

	Principles�����������������
	Scale Out to Multiple Servers������������������������������������
	Eliminate Single Points of Failure���
	Anticipate Growth������������������������
	Keep It Simple���������������������

	Solutions����������������
	Data Tier����������������
	Application Tier and Web Access��������������������������������������
	Virtualization���������������������

	Summary��������������

	Chapter 23 Disaster Recovery
	Business Continuity and Recovery Goals���
	Defining Responsibilities��������������������������������
	Backing Up Team Foundation Server��
	Components to Back Up����������������������������
	Types of Database Backups��������������������������������
	Important Considerations�������������������������������

	Creating a Backup Plan�����������������������������
	Team Foundation Server Backup Plan Details���
	Restoring a Backup to the Original Server��

	Summary��������������

	Chapter 24 Security and Privileges
	Security When Using Visual Studio Online���
	Basic Authentication for Visual Studio Online��

	Users������������
	Domain Users�������������������
	Local Users������������������
	Identity Synchronization�������������������������������

	Groups�������������
	Domain Groups��������������������
	Distribution Groups��������������������������
	Local Groups�������������������
	Team Foundation Server Groups������������������������������������

	Permissions������������������
	Server Permissions�������������������������
	Team Project Collection Permissions��
	Team Project Permissions�������������������������������
	Work Item Tracking�������������������������
	Version Control Permissions����������������������������������
	Managing Git Repository Security���������������������������������������
	Build Permissions������������������������
	Reporting����������������

	Security Management��������������������������
	Deny, Allow, and Unset Permissions���
	Use Active Directory Groups����������������������������������
	Avoid Granting Individual User Permissions���
	Use Inheritance����������������������

	Tools������������
	Summary��������������

	Chapter 25 Monitoring Server Health and Performance
	System Health��������������������
	SQL Server�����������������
	Dynamic Management Views�������������������������������
	Currently Running Processes����������������������������������
	SQL Wait Types���������������������
	Storage Health���������������������
	Memory Contention������������������������

	Team Foundation Server�����������������������������
	Command Log������������������
	Active Server Requests�����������������������������
	Performance Counters���������������������������
	Server Tracing���������������������
	Client Performance Tracing���������������������������������
	Job History������������������
	Storage Usage��������������������
	Data Warehouse���������������������

	Tools������������
	Performance Analysis of Logs Tool��
	Team Foundation Server Best Practices Analyzer���
	Team Foundation Server Management Pack for System Center Operations Manager��

	Summary��������������

	Chapter 26 Testing and Lab Management
	What’s New in Software Testing?��������������������������������������
	New Cloud-Based Load Testing Service���
	Web-Based Test Case Management�������������������������������������

	Software Testing�����������������������
	Test Case Management���������������������������
	Lab Management���������������������

	Testing Architecture���������������������������
	Microsoft Test Manager�����������������������������
	Test Plans�����������������
	Test Suites������������������
	Test Cases�����������������
	Test Runs����������������
	Exploratory Testing��������������������������
	Actionable Bugs����������������������
	Test Settings��������������������
	Test Attachments Cleaner�������������������������������
	Assigning a Build to a Test Plan���������������������������������������
	Analyzing Impacted Tests�������������������������������
	Build Retention����������������������
	Custom Work Item Types�����������������������������

	Test Automation����������������������
	Visual Studio Lab Management�����������������������������������
	What’s New for Lab Management in Team Foundation Server 2013?��
	Installing and Configuring Lab Management��
	Maintaining a Healthy Test Lab�������������������������������������
	Troubleshooting����������������������

	Summary��������������

	Chapter 27 Upgrading Team Foundation Server
	Overview���������������
	In-Place Upgrades versus Migrating to New Hardware���
	Planning Upgrades������������������������

	Upgrading Prerequisites������������������������������
	SQL Server�����������������
	SharePoint�����������������
	Project Server���������������������
	System Center��������������������

	Using the Configuration Utility��������������������������������������
	Upgrade Wizard���������������������
	Verification of Upgrade������������������������������

	Upgrading Legacy Team Projects�������������������������������������
	Feature Enablement�������������������������
	Allowing Access to Premium Features��
	Automated Builds�����������������������
	Enable Local Workspaces������������������������������
	Deploying New Reports����������������������������
	Deploying New SharePoint Team Portal Site��
	Upgrading Lab Management Environments��

	Summary��������������

	Chapter 28 Working with Geographically Distributed Teams
	Identifying the Challenges���������������������������������
	Latency over the Wide Area Network���
	Sources of Network Traffic���������������������������������

	Solutions����������������
	Using Visual Studio Online Geographically Distributed��
	Central Server with Remote Proxy Servers���
	Multiple Distributed Servers�����������������������������������
	Mirroring����������������
	Remote Desktops����������������������
	Internet-Connected “Extranet” Server���
	Metadata Filtering�������������������������

	Build Servers��������������������
	Local Build Server Farm������������������������������
	Remote Build Server Farm�������������������������������

	Team Foundation Server Proxy�����������������������������������
	How the Team Foundation Server Proxy Works���
	Compatibility��������������������
	Configuring Proxies��������������������������
	Seeding Proxies����������������������
	Personal Proxies�����������������������

	Mirroring with the Team Foundation Server Integration Tools��
	Capabilities�������������������
	Examples���������������

	Working Offline����������������������
	Version Control����������������������
	Forcing Offline����������������������
	Work Items�����������������

	Other Considerations���������������������������
	Maintenance Windows and Time Zones���
	Online Index Operations with SQL Server Enterprise���
	Distributed Application Tiers������������������������������������
	SQL Mirroring��������������������

	Summary��������������

	Chapter 29 Extending Team Foundation Server
	Extensibility Points���������������������������
	.NET Client Object Model�������������������������������
	Connecting to the Server�������������������������������
	Handling Multiple API Versions�������������������������������������
	Distributing the Client Object Model���

	SOAP Event Subscriptions�������������������������������
	Available Event Types����������������������������
	Building an Endpoint���������������������������
	Adding the Subscription������������������������������
	Listing All Event Subscriptions��������������������������������������

	Server Object Model��������������������������
	Server Extensibility Interfaces��������������������������������������
	Server Plug-Ins����������������������

	Visual Studio Extensibility����������������������������������
	Other Resources����������������������
	Summary��������������

	Index
	Advertisement

