
Project Reliability
Engineering

Pro Skills for Next Level
Maker Projects
—
Eyal Shahar

www.allitebooks.com

http://www.allitebooks.org

Project Reliability
Engineering

Pro Skills for Next Level
Maker Projects

Eyal Shahar

www.allitebooks.com

http://www.allitebooks.org

Project Reliability Engineering: Pro Skills for Next Level Maker Projects

ISBN-13 (pbk): 978-1-4842-5018-1		 ISBN-13 (electronic): 978-1-4842-5019-8
https://doi.org/10.1007/978-1-4842-5019-8

Copyright © 2019 by Eyal Shahar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and
eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5018-1.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Eyal Shahar
San Francisco, CA, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5019-8
http://www.allitebooks.org

To Ada,

It’s not much of a children’s book,
but that’s what I have.

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Chapter 1: The Case for Object-Oriented Programming������������������������1

Object-Oriented Programming Basics��1

Polymorphism and Duck Typing���5

Inheritance���9

OOP in JavaScript��13

OOP in JavaScript ES6���17

Summary���19

Chapter 2: Our First Web Dashboard���21

Everything Is a Server��21

HTTP Requests���22

HTML in a Nutshell���25

Selectors and CSS��28

Template Rendering���30

Python and Flask��31

Coding Our First Dashboard���32

The Flask Web Server���37

About the Author��xiii

About the Technical Reviewer���xv

Acknowledgments���xvii

Introduction��xix

www.allitebooks.com

http://www.allitebooks.org

vi

Adding Browser Interactivity��38

Node.js and Express.js���45

A Little Help��47

jQuery���47

Bootstrap��49

Summary���49

Chapter 3: The Live Dashboard��51

HTTP Requests���51

The Case for HTML Classes���54

WebSockets���56

Introduction to WebSockets��56

WebSockets in Node.js���56

WebSockets in Python��59

WebSockets in the Browser���65

Honorary Mention: SocketIO���67

JSON��69

JSON Communication Design���69

JSON Message Structuring��72

JSON Message Parsing��76

Summary���79

Chapter 4: Dashboard Design��81

Strategizing��81

Beefing Up the Project���82

Serving Static Files��83

Creating a Template���84

Data Updates��86

Scrutinizing the Code���88

Table of ContentsTable of Contents

vii

Basic CSS���90

Tables���90

Text���91

Layout���93

Data-Driven CSS��98

Responsive Design���100

Media Queries��100

Element Sizing��103

Device Orientation��103

HTML Graphic Indicators��104

LEDs���104

Meters��105

Gradients��106

Google Charts���109

Line Graphs��110

Gauges��112

Real-World Examples���116

Tidal Memory��117

Wired Pier���119

Internet Speed Monitoring��120

Summary���121

Chapter 5: Project Configuration���123

Motivation��123

File Formats���125

XML��125

JSON���127

YAML���129

Code���131

Table of ContentsTable of Contents

viii

Interpreting the Configuration��133

The Constructor’s Argument���133

Dynamic Instantiation���134

Command-Line Arguments��136

Introduction��136

Parsing���138

Getting Help��142

Configuring an Arduino Project��144

The Arduino’s EEPROM���144

Storing on an SD Card��152

Handling Configuration Errors��154

Configuring with Hardware��155

Jumpers���155

DIP Switches��157

Summary���158

Chapter 6: Machine Setup���159

User Setup���159

Where Should the Code Live?��161

Network Configuration���162

The Settings���162

Applying Network Configuration���165

Accessing Remotely���167

Launching on Startup���170

Running as a cron Job��170

Table of ContentsTable of Contents

ix

Crash Recovery��175

Python��175

forever.js���176

pm2��176

Running As a System Service��177

Setup Documentation��180

Summary���182

Chapter 7: Logging��183

The Good Old Print���183

stdout and stderr��184

Where Do Logs Go?��186

Understanding Log Levels��188

DEBUG and INFO Messages��190

WARNING, ERROR, and CRITICAL Messages���190

Logging Libraries���191

Python’s logging���191

Logging in JavaScript���201

Roll Your Own���204

Log Rotation���204

Linux’s logrotate���205

File Watching��206

In-Program Log Rotation��207

Logging Configuration��208

What to Log��210

Exceptions��210

Callback with Error Arguments���211

Initialization Sequences���212

Table of ContentsTable of Contents

x

Entering and Leaving Functions���212

Parameters���213

Data��213

Reading Log Files���213

Summary���214

Chapter 8: Advanced Logging, Monitoring, and Alerting�������������������217

How Big Tech Companies Do It��218

Email Alerts by Log Handlers���219

Logging As a Microservice���222

The Service���223

The Client Library���225

Monitoring��226

A Simple Monitoring System��227

Alerts Throttling��231

Monitoring the Machine���232

The Playbook��235

Playbook Content��235

Playbook Hosting��236

SMS Alerts���237

Online SMS Services��237

SMS Alerts with Hardware��239

IFTTT��243

Summary���248

Table of ContentsTable of Contents

xi

Chapter 9: Best Practices��249

Fake Classes��249

Exceptions and Errors��255

The Basics��255

Operational vs. Programmer Error��256

Python��257

JavaScript���259

Software Recovery���264

Version Control and Rolling Back���265

Getting Started���267

The Development Cycle��269

Rolling Back��270

Git Best Practices���271

Hardware Reliability���271

Strain Relief��271

Custom Shields���273

Real-Life Recovery Planning��274

More Microservices���275

Microservices Revisited���275

A Case Study��276

Microservices Best Practices���278

It’s Best to Practice��279

Summary���280

Index��283

Table of ContentsTable of Contents

xiii

About the Author

Eyal Shahar currently lives in San Francisco with his wife, daughter, and

two cats. He works as an exhibit developer in the New Media Department

at the Exploratorium, a museum of art, science, and human perception.

Dreaming of building synthesizers, Eyal got a B.Sc. in electrical

engineering from the Tel Aviv University while working as a professional

musician, playing with some of Israel’s most prominent artists. In later

years, he filled various engineering positions in music and art related

startups in Tel Aviv, Paris, and San Francisco. Eyal also holds a Master’s

degree in Media, Arts and Sciences from the MIT Media Lab.

One day, he’ll get around to building that synthesizer.

xv

About the Technical Reviewer

Chaim Krause is a lover of computers, electronics, animals, and

electronic music. He’s tinkled pink when he can combine two or more

in some project. The vast majority of his knowledge is through self

learning. He jokes with everyone that the only difference between

what he does at home and what he does at work is the logon he uses.

As a lifelong learner he is often frustrated with technical errors in

documentation that waste valuable time and cause unnecessary

frustration. One of the reasons he works as the Technical Editor on

books is to help others avoid those same pitfalls.

xvii

Acknowledgments

One last thing before we get going: writing this book has been one of the

hardest and most time-consuming challenges I took on in my life. I can’t

testify myself to the quality of this work – you will be the judge of that – but

I can say that it does not rely solely on my own efforts. First, I owe a great

deal to many people – too many to name – who gave me a chance when it

wasn’t obvious that I deserved one. These people enabled the windy and

weird path that led me to where I am today, writing a book about software

for makers.

I’d like to extend my thanks to Natalie Pao and Jessika Vakili from

Apress for holding my hand in this long process, to the technical reviewer

Chaim Krause for his wise comments and warm words of encouragement,

to Kristina Yu and Joyce Ma from the Exploratorium for their trust and

mentorship and for letting me do some of the most interesting and

rewarding work I have ever done, and to Troy Trimble for his professional

advice and insight.

Last, I’d like to give special thanks to Julia Ma, whose presence is in

every page of this book. I am extremely lucky to have had her pretty much

come up with the idea for this book, proofread it and correct my awkward

phrasing, fix the code segments, and comment on her experience as an

on-call engineer – all that while providing all the emotional and logistical

support I could have asked for.

And being married to me.

And giving birth to our daughter, Ada, right as I started writing.

This has been one crazy ride.

xix

Introduction

�On Being a Professional Maker
In 2014, I took a job at the Exploratorium, the museum for science, art,

and human perception in San Francisco, California – a job that I am still

holding at the time of writing these lines. In my role as a New Media

Exhibit Developer, I am assigned to upcoming exhibitions1 and charged

with coming up with ideas for exhibits for them that use new media

elements. This means that these exhibits feature touchscreens, physical

computing components, projectors, and so forth. Some of the ideas I come

up with get tossed away immediately – they might be too hard to make,

too silly, out of the scope of the exhibition, or maybe they would just not

make good exhibits – but other ideas show potential. I take those ideas and

make prototypes. A prototype starts with something as simple as a diagram

or a paper simulation, and at some point (and usually pretty quickly) it

evolves into a computer program on an Arduino, Raspberry Pi, a desktop

computer, or a virtual machine. I am a sub-average fabricator, but if any

physical structure is needed at this point, I’ll hack something together

using my favorite tools – a table saw, a drill press, and a laser cutter.

A prototype is then evaluated by the project leadership and by our

Visitor Research and Evaluation Department, who take the prototype

to the museum floor and watch how visitors interact with it. Based on

the feedback, I modify the prototype, often getting support from other

1�While different museums use different terminologies, in Exploratorium lingo an
exhibit is a single item dealing with a specific phenomenon, an exhibition is a set
of exhibits that deal with various phenomena in a particular topic or field, and the
collection is the entire body of exhibits that the museum owns.

xx

departments such as the Graphics Department in designing the visual

elements and the Editorial Department in refining the text content of the

labels and the screens. After a few iterations of evaluation and adjustment,

the exhibit is ready for production. I stabilize or sometimes completely

rewrite the code, order and assemble all the parts, and ensure that the

electronic circuitry complies with our standards. At that point I might get

more support from our engineers and technicians in building cabinetry

and manufacturing circuitry. To conclude the process, I make sure

everything is documented and that the code is backed up on our servers

and in the cloud.

In summary, my job is to own and shepherd the exhibit from ideation

to deployment, which is what every maker does. Since this is my actual job,

I guess that makes me a professional maker. Over the years, I’ve learned

that professional makers work in many industries. They make prototypes

in design companies and corporate companies’ innovation teams; they

create rides for theme parks and practical effects for movies and theater;

they produce public art installations; and they build exhibits for science

museums.

In order to make the leap from being hobbyists to professional

makers, makers must add a few tools to their toolbox. Among these

are the ability to create robust and reliable products and to be able to

effectively monitor and control them. The exhibits that I make at the

Exploratorium are used by hundreds, sometimes thousands, of people

every day, and I need make sure that they work, that they overcome

power outages, and that they know how to deal with edge cases without

crashing. Also, the Exploratorium’s footprint is pretty big – just the

exhibit space is about 75,000 square feet and over 800 feet from end to

end. This means that I need to have a way to monitor the exhibits from

my desk rather than walk repeatedly to the various galleries and back to

my desk all day.

IntroductionIntroduction

xxi

Professional makers from various industries have similar needs, and

I hope this book will help them formalize their process when it comes to

reliability. For makers who aspire to become professionals, the primary

audience for this book, I hope this book will serve as a stepping stone as

they build their new career. Finally, I believe that even hobbyists who are

happy to keep creating projects just for fun will find this book valuable and

eye-opening.

�Origins: A Short History of Reliability
Engineering
�Traditional Software Development
Here is an over-simplified history of reliability engineering: in the

beginning, there were companies that made software. Development was

done in stages: first, the company would analyze the market and product

domain and decide on the software requirements; then the company

would enter a design stage, where the Software Development team

would decide upon structure and components of the software. Next, the

developers set to code the actual components of the software, building

and refining the product, adding features, and fixing bugs; the Quality

Assurance team (QA) would then test the product, and when all was said

and done, the Operations team would step in: the Operations team was

mostly in charge of hardware – both the company’s and its clients, network

hardware and configuration, data backups, and so on. It was their job to

deploy the product and maintain it.

This model, in which software development goes sequentially

between the phases of analysis, design, coding, testing, deployment, and

maintenance, is known as the Waterfall Model.

IntroductionIntroduction

xxii

�Agile Software Development
As time went by, the software development world changed. Programs

became bigger, physical products became more software heavy, the

number of companies making software products grew, and the lifespan

of products became longer, thus requiring more software updates, and

most importantly the market was changing faster. Releases and updates

had to happen more rapidly than before. In the Waterfall Model, it is

difficult to move backward in the process: by the time a company is in the

implementation phase, the market needs may change, making it necessary

to go back to analysis and design; if tests prove that the program is faulty, the

coders have to start over. Another major issue with the Waterfall Model is

that nobody gets to put their hands on any working product until the entire

process is done. The first time the company gets to see if their product is

something that people even may want to use is after all the work is finished.

In response to the Waterfall Model’s shortcomings, other

methodologies started to appear, with the hype around them culminating

in the mid-2000s. These approaches revered speed and simplicity; they

embraced change and used iterative processes, repeatedly going through

phases of design, development, and testing; and they valued having a

working version of the software at any given moment and as early as

possible. Today, these techniques are known collectively as Agile Software

Development.

Agile Software Development brought changes not only to the process

but also to organizations’ culture and structure. Companies favored face-

to-face conversations and short stand-up meetings instead of long email

threads, and they re-examined and restructured the way teams are built.

In many cases, teams were no longer composed of people from the same

discipline, but rather people who are responsible for a certain feature or

component, who work on it from different perspectives. In other cases,

teams that were traditionally separate were brought closer together or even

completely merged.

IntroductionIntroduction

xxiii

�The Birth of DevOps
That was the case when some companies specifically examined how

Development and Operations work together. The idea was to put an end

to some of the tensions that were manifesting between the two disciplines.

Developers wanted to deploy new features, while the Operations team

cared mostly about the integrity of the service the company was giving.

Because of that, Operations kept pushing back on requests put by

developers, an act that developers saw as slowing down the product’s

growth. To put an end to these frictions, companies formulated new

relationships between the two teams. Various principles were put into

place, such as giving each team more insight into what the other team was

doing by sharing the same codebase. Tools were built to give Operations

control over the configuration of the code, while developers were given

agency to configure hardware and access to dashboards that visualized

the systems integrity.2 Some companies created new teams whose entire

job was to bridge the gap between Development and Operations. A new

philosophy was born, and it was named DevOps.

�Site Reliability Engineering
One of the best known examples of this type of thinking happened at

Google, a few good years before the term “DevOps” was coined. Due to

the size of its server farms, Google was looking into automating processes

such as configuring and deploying virtual machines and recovering from

hardware failure. They came up with a paradigm called Site Reliability

2�A seminal talk called “10+ Deploys Per Day Dev and Ops Cooperation at Flickr,”
by John Allspaw, head of the Operations group, and Paul Hammond, head of the
Engineering group at Flickr, set the basis for DevOps and is available to watch on
YouTube: www.youtube.com/watch?v=LdOe18KhtT4

IntroductionIntroduction

http://www.youtube.com/watch?v=LdOe18KhtT4

xxiv

Engineering (SRE)3 and described it as “what happens when a software

engineer is tasked with what used to be called operations.”4 By that

philosophy, Site Reliability Engineers (SREs) spend about half of their

time doing regular operations work, and in the remaining half, they build

tools to automate and scale their work. Although SRE predates DevOps,

it is considered today a flavor of DevOps, or a specific way to implement

it. Others see DevOps and SRE as having slightly different functions, with

DevOps addressing needs for development and SRE ensuring the integrity

of the deployed product.

�Philosophy of Project Reliability
Engineering
Many maker projects are engineered just enough to get them to the point

that they are working, a moment often commemorated by the calling

“It’s working! Don’t touch anything!” Project Reliability Engineering aims

to make maker-scale projects resilient to heavy usage and unexpected

circumstances. To establish that, Project Reliability Engineering promotes

•	 Built-in mechanisms for logging, alerting, and

recovering from hardware, software, and infrastructure

malfunctions like power outages, network outages, and

defected hardware

3�Google literally wrote the book on SRE, called, naturally, “Site Reliability
Engineering: Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy.
2016. Site Reliability Engineering: How Google Runs Production Systems. O’Reilly
Media, Inc. It is also available to read online for free here: https://landing.
google.com/sre/book.html

4�As said by Ben Treynor, founder of the SRE team at Google.

IntroductionIntroduction

https://landing.google.com/sre/book.html
https://landing.google.com/sre/book.html

xxv

•	 Modular software designed and programmed in a way

that enables configurability for both development and

debugging purposes

•	 Ecosystem-aware design that takes into account the

maker, the user, and third parties such as clients who

own and care for the finalized project and machines

that interact with it

The big question is, why? Is it really worth the trouble? It depends what

the end goal is. If a project is built for the sole purpose of having fun, and

maybe being featured in a video posted online – a well worthy goal on

its own – then building it with reliability in mind is definitely an overkill,

but professional makers must consider the stability and reliability of their

projects. In this book, we look at SRE for inspiration and adapt some of its

underlying principles to the scale of maker projects. Although our goal is

similar – keeping our projects up and running – the environment in which

a maker works is very different than the one in which a corporate SRE

works, and therefore our interpretation will be based only loosely on the

classic SRE paradigm. Table 1 shows some DevOps principles, how they

are interpreted in SRE, and how they are reflected in Project Reliability

Engineering. This will give you an idea of what we are about to explore in

this book.

IntroductionIntroduction

xxvi

Table 1.  From DevOps, to SRE, to Project Reliability Engineering

DevOps SRE Project Reliability Engineering

Bridging between

Development and

Operations

Sharing tools and

responsibilities across

the organization

• �Understanding the host

platform on both software

and OS levels

• �Building in recovery

mechanisms

Accepting failure Embracing risk and

setting metrics for

acceptable failure

• �Building in mechanisms for

logging

• �Implementing alerting

mechanisms

Implementing

gradual changes

Reducing cost of failure

by gradual releases

• �Having a working version

constantly and from early on

• �Using interchangeable

components for production

and simulation

• �Making (almost) everything

configurable

Using tools and

automation

Automating work that

is manual, repetitive,

and/or unscalable

• �Using open source workflow

automation tools

• �Building custom tools and

libraries

• �Using version control for

code reuse

Measuring

everything

Define metrics and

treating Operations as

a software problem

• �Building in APIs and a

dashboard for monitoring

and troubleshooting

IntroductionIntroduction

xxvii

�About This Book
This book is mostly about thinking on systems and code rather than being

a set of tutorials. To foster that approach, I hope that as you read this book,

you will not feel as if you are being taught. Rather, I would like you to feel as

if you and I are having a conversation. For this reason, I transition between

code and text fairly rapidly. I often present code that is halfway there, discuss

it, and then go back and present amended code. Consider that as you are

reading – I advise you not to immediately copy code to your machine and

run it. If you do, know that it may not work or may not be optimal. In fact, it

might be a good idea not to use any of the code in this book as is. The best

way to use the code in this book would be to take whatever is relevant to

your own project and make the proper modifications.

I am a great believer in understanding how things work under the

hood; therefore, I usually try to start a discussion with vanilla code – code

that does not rely on libraries, but rather the built-in capabilities of the

language or framework in question, even if that results in code that is

somewhat awkward. At times, however, I point out some useful libraries

that are relevant to the topic.

�What Do You Know?
This is an intermediate level book; this presents a challenge: intermediate

level books assume that the reader approaches the book already having

a significant amount of prior knowledge and experience. Each reader,

however, knows different things, and the challenge the author faces

is to determine what to assume the reader already knows, what needs

some refreshing and fine-tuning, and what should be explained as if

encountered for the very first time. Makers are a particularly tricky bunch,

as they often come from very different disciplines, prefer breadth over

depth, and pick up skills as they go. I have to resort to doing something

that is a big no-no these days: make assumptions about you.

IntroductionIntroduction

xxviii

I’ll assume that you have worked with a Raspberry Pi, a BeagleBone, or

some other single-board computer (SBC) before. I will not cover how to set

up your SBC, find your way around the board and the file system, edit and

run code, or run basic bash commands.

You must have done some programming in Python and a little bit of

JavaScript in Node.js.5 Given that Python is more dominant in the maker

community, the level of the sections that discuss JavaScript is sometimes

more basic. If we use a library, I don’t explicitly state whether it should be

installed with pip, npm, or by directly downloading it. I often just point out

the library’s homepage in a footnote and expect you to figure it out.

As mentioned, we often add to or modify the code that we discuss

in previous paragraphs. Instead of presenting the entire code again, I

often present only the modified or added portions. This means that I

am counting on you to understand where the new code goes or which

lines are the ones that need to be modified. Of course, I provide help

with directions in the text and sometimes in the code itself by adding a

comment containing an ellipsis (# ... for Python, // ... for JavaScript,

and <!-- ... --> for HTML) signifying the previously discussed code.

Here’s an example in Python:

...

do_after_previously_discussed_code()

And here’s one in JavaScript:

runBeforePreviouslyDiscussedCode();

// ...

All the final code that we produce in this book is on the book’s GitHub

page,6 so refer to it if you feel disoriented. If you are unfamiliar with Git and

GitHub, you will find a short introduction to it in Chapter 9.

5�https://nodejs.org
6�https://github.com/Apress/project-reliability-engineering

IntroductionIntroduction

https://nodejs.org/
https://github.com/Apress/project-reliability-engineering

xxix

�Languages
The languages of choice in this book are Python and JavaScript. These are

the two languages that are most used by makers working with SBCs, they

have well-maintained libraries that support the hardware capabilities of

the popular SBCs, and most importantly they are not going anywhere in

the near future.

At the time of writing this book, both languages had gone through

fairly recent major shifts: in 2014, it was announced that support for

Python 2.7, the last version of Python 2, will discontinue in 2020 and that

programmers were encouraged to port their programs to Python 3.

Now, Python 3 has been around since 2008, but many programmers

were reluctant, or just lazy, to port their software due to lack of backward

compatibility: even a simple print command, which in Python 2 did

not require parenthesis for the argument, would not work in Python 3.

Unfortunately, this applies to some useful libraries as well, and some

of them are still not ready yet for Python 3. Regardless, it makes very

little sense to write code examples for a language version that has an

expiration date on it, so for us Python 3 it is. The code presented in the

book should work with versions 3.5.3 and up, as this is the version that is

included in Raspbian at the time of writing this book.

It’s a completely different story when it comes to JavaScript. In 2015,

JavaScript was updated to ECMAScript 20157 (also known was ES6). The

update introduced many new features, both syntactical and functional.

The new features were quickly embraced by the JavaScript community,

and although ES6 and subsequent versions are backward compatible,

the prevailing coding style has changed dramatically, taking advantage

of JavaScript’s newfangled features. In this book, we also make use of

7�ECMAScript is the specification of JavaScript, as determined by Ecma
International, a standards organization with members from the computer,
electronics, and telecommunication industries.

IntroductionIntroduction

xxx

the new features, but I do my best not to turn JavaScript sections into

ES6 tutorials, as tempting as it is – after all, the features introduced

in ES6 are still new and exciting. Having said that, I occasionally take

some time to discuss new features in JavaScript, mostly when this

serves to emphasize differences between JavaScript and Python or to

discuss more advanced topics.

Note  There is often confusion about the relationship between Node.js
and JavaScript. Node.js is a JavaScript runtime library. That means
that one never writes code in Node.js, but rather runs JavaScript code
in the Node.js framework. This is important to remember when we
present JavaScript code and specify that it should be run “server-side”
or “on the machine,” that is, in Node.js, rather than on a web browser.

�Code Style
I state with great confidence, although I have no way to prove it, that

every software organization, no matter how big or small, adopts a set of

code conventions (sometimes referred to as coding conventions or style

guide). A commercial program is read, used, and very often written by

multiple people who need to understand exactly what the code does. Of

course, adding comments to the code is one way to do that, but it is more

important that the code itself is easy to read. Therefore, having agreed-

upon ways to use indentation, capitalization, spacing, and variable and

function naming helps programmers clearly communicate their ideas to

each other, reducing development time and code complexity.

It is extremely valuable for an independent developer, even a hobbyist,

to develop or adopt code conventions for their own use. Corporate

software engineers are not the only ones whose code is being looked at and

changed by other people – you are too, and the person tinkering with your

IntroductionIntroduction

xxxi

code is your future self, who most likely will not remember what a variable

called "i", a file called "project_old", or a comment reading "OMG" meant

to your past self. A good way to start is to observe what other people do.

Many big software companies have their conventions available to the

public on the Web, and trust me, they went through endless meetings until

every item was decided upon.8 Python, by the way, has its own style guide

written by some of the developers of the language itself, so that is definitely

a good place to look for inspiration.9

The situation in this book is a little different. First, the code, as I

mentioned, is not brought as a single complete file. Second, a book’s page,

unlike a line in a file, has limited width, so some compromises must be

made in order to accommodate it. Third, I have my own preferences which

sometimes deviate from the common practices, and this is, after all, my

book. Last, at the end of the day we are using a small set of features of every

language, so obviously a full-blown style guide will not be necessary, but

I would like to specify a few conventions that are used. I focus on things

that are significantly different than the norm, things that are specific to this

book due to the printed format, and things that I think are good practice

but are not always included in other style guides.

�Formatting

I am using two-space indentation for both Python and JavaScript, mostly,

in order to keep things tight on the printed page. In the great battlefield of

JavaScript style, we’re just picking a side, since plenty of style guides are

out there with either two-space or four-space indentation. For Python,

however, we’re going against the mainstream, since the vast majority of

developers use the four-space indentation, so do keep that in mind.

8�Google’s Python style guide is an interesting example, as it lists the pros and cons
of every single convention (https://github.com/google/styleguide/blob/
gh-pages/pyguide.md).

9�www.python.org/dev/peps/pep-0008

IntroductionIntroduction

https://github.com/google/styleguide/blob/gh-pages/pyguide.md
https://github.com/google/styleguide/blob/gh-pages/pyguide.md
http://www.python.org/dev/peps/pep-0008

xxxii

ECMA 2015 lifted the requirement to end JavaScript statements with

a semicolon. This started a controversy in the developer community

whether or not semicolons should be used. In this book, statements end
with a semicolon. The main argument for this decision is that I often

break statements into multiple lines, so a semicolon helps to clearly see

where the statement actually ends. Also, some of my favorite online style

guides are on the pro-semicolon camp.

�Naming

Choosing names for functions and variables is one of the key aspects of

generating readable code. We are going to follow these rules:

•	 Variables names are nouns, for example, motor.

•	 The preferred way to name a list is not with a

plural verb, but rather by adding the postfix “list”

to a noun, for example, motor_list. When text

compactness becomes an issue, plural nouns such

as motors are used.

•	 Function names are verbs, for example,

set_motor_speed().

•	 The preferred way to name a loop index is by

adding the postfix “index” to a noun, for example,

motor_index. When the code is simple and easy to

understand, shorter names like i or idx are used.

•	 In Python, both function and variable names are in

snake_case (underscores separating between words),

for example, left_motor. Class names (see Chapter 1)

are an exception, using Camel case with a capitalized

first letter, for example, ServoMotor.

IntroductionIntroduction

xxxiii

•	 In JavaScript, both function and variable names are in

CamelCase (words are connected, and every first letter

of every word is uppercase), with the first letter of the

name in lowercase, for example, leftMotor. Again,

class names are an exception, using Camel case with a

capitalized first letter, for example, ServoMotor.

�Comments

Just as with any other aspect of programming, there are numerous

approaches when it comes to including comments in the code. The school

of thought I was brought up in asserts that if variables and functions are

named clearly, the code should be mostly self-explanatory, and therefore

comments should be used only when absolutely necessary. You may find

that in the code that is in this book I use comments even more scarcely

than that, not because it’s a good practice – it’s not – but rather because the

text that follows discusses the code in detail, and I try to avoid redundancy.

I stress again that code must be as easy to read as possible, and if that

means going through the tedious effort of including comments your code,

by all means do that.

�Browser Compatibility
In quite a few chapters in this book, we will build web pages. The code

has been tested mostly with Chrome, but not with every browser that

is out there. If you use a different browser, you may experience some

compatibility issues. Functionally, everything is supposed to work but may

look a little different. Should compatibility issues arise, please refer to the

book’s GitHub page for assistance.

IntroductionIntroduction

1© Eyal Shahar 2019
E. Shahar, Project Reliability Engineering, https://doi.org/10.1007/978-1-4842-5019-8_1

CHAPTER 1

The Case for
Object-Oriented
Programming
We will start by reviewing some of the foundations of object-oriented

programming (OOP), specifically from the point of view of a hardware-

centered, SBC-powered project. Whether you are familiar with OOP or

not, we will discuss some examples that demonstrate the usefulness

of inheritance when dealing with peripherals such as sensors. In later

chapters we will see how polymorphism helps create more elegant and

scalable tools for troubleshooting, logging, and monitoring.

�Object-Oriented Programming Basics
In object-oriented programming, as the name suggests, the programmer

constructs objects – entities that have properties and are able to do

perform certain tasks. This is very similar to how we, as humans, grasp the

world around us in real life, which is why OOP is so appealing.

A class defines the properties that objects of that class have and the

operations which they can carry out. The properties, usually referred to

as fields or data members, are variables that exist in the object’s scope and

2

are valid as long the object exists. The operations, often called methods

or member functions, are functions that have access to the fields and can

manipulate them.

If we were to design a sensor class, for example, it might have a

method that performs a measurement and a field in which the most recent

measurement is stored. Let’s make a class that represents a temperature

sensor, namely, Silicon Labs Si7021. Looking at the sensor’s data sheet,1

we see that it communicates via I2C and its address is fixed to 0x40.

The command 0xF3 tells the sensor to measure the temperature. About

a quarter of a second after the command is issued, two bytes can be

read from the sensor, and these express the last measured temperature,

following this equation

	
Temperature

byte byte°éë ùû =
× × +()

-C
175 72 256 0 1

65536
46 85

.
. �

with byte0 and byte1 being the first and the second bytes read, respectively.

Listing 1-1 shows how that can be implemented in Python code.

Listing 1-1.  Si7021Temp sensor class

import smbus

import time

class Si7021Temp:

 def __init__(self, name, bus_id):

 self.name = name

 self.units = 'Celsius'

 self.bus = smbus.SMBus(bus_id)

1�www.silabs.com/documents/public/data-sheets/Si7021-A20.pdf. Several
breakout boards exist for easier integration.

Chapter 1 The Case for Object-Oriented Programming

http://www.silabs.com/documents/public/data-sheets/Si7021-A20.pdf

3

 def measure(self):

 self.bus.write_byte(0x40, 0xF3)

 time.sleep(0.1)

 byte0 = self.bus.read_byte(0x40)

 byte1 = self.bus.read_byte(0x40)

 self.measurement =

 ((byte0 * 256 + byte1) *
 175.72 / 65536.0) - 46.85

 time.sleep(0.1)

This definition of a class, however, does not yet represent an actual object,

but rather it describes what an object of that type looks like. The methods

cannot yet be called and the fields cannot be accessed – we’ll need an actual

object of this class type for that. An actual object, one that can carry out its

methods and store data in its fields, is called an instance, and the process of

making one is called instantiation. Notice how methods, like measure, are

defined. The first argument in the definition must be self, which is used

to refer to the instance itself. Also note the special method __init__ that is

called when the instance is created. In Python, a field, rather than a local

variable, is any variable that is created in the self scope, like in the line

self.units = 'Celsius'

We can instantiate a temperature sensor like so:

temp_sensor1 = Si7021Temp('Temperature 1', 1)

This instantiates a sensor that is connected to the I2C1 bus. This

immediately exposes an advantage of OOP: the Si7021 has a fixed I2C

address, so we can only have one sensor connected to any I2C bus, but the

BeagleBone Black, for instance, has two I2C buses that are accessible on

the header pins. Now, if we wanted to connect another Si7021 sensor to the

I2C2 bus, all we’d have to do is instantiate that one as well:

temp_sensor2 = Si7021Temp('Temperature 2', 2)

Chapter 1 The Case for Object-Oriented Programming

4

Or better yet, instantiate them both directly in a list:

sensor_list = []

sensor_list.append(Si7021Temp('Temperature 1', 1))

sensor_list.append(Si7021Temp('Temperature 2', 2))

Now we can do cool things, like perform actions on both sensors in a

loop (see Listing 1-2).

Listing 1-2.  Iterating through a list of sensor objects

def measuring_loop():

 while True:

 for sensor in sensor_list:

 sensor.measure()

 print('{} measured {:.2f} {}'.format(

 sensor.name,

 sensor.measurement,

 sensor.units))

 time.sleep(5)

measuring_loop()

Note that even though we defined the method measure() with self

as an argument, we called it now with no arguments specified. The self

argument is always implicit when calling an object’s method. This is also

true if we want a method to take arguments when it’s called (see Listing 1-3).

Listing 1-3.  When invoking a method, self is implicit

class MyClass:

 def method(self, arg1, arg2):

 # do stuff

 return

my_instance = MyClass()

my_instance(val1, val2)

Chapter 1 The Case for Object-Oriented Programming

5

�Polymorphism and Duck Typing
Let’s look at that loop again: what other kinds of objects can we push into

the sensor_list without breaking our program? It seems like we can add

any object that has measure() as a method and name, measurement, and

units as fields. It doesn’t have to be an object of the class Si7021Temp

or a temperature sensor at all. We can define another class to utilize the

Si7021’s capability of measuring humidity, as shown in Listing 1-4.

Listing 1-4.  Si7021Humidity sensor class

class Si7021Humidity:

 def __init__(self, name, bus_id):

 self.name = name

 self.units = '%'

 self.bus = smbus.SMBus(bus_id)

 def measure(self):

 self.bus.write_byte(0x40, 0xF5)

 time.sleep(0.1)

 byte0 = self.bus.read_byte(0x40)

 byte1 = self.bus.read_byte(0x40)

 self.measurement = (

 (byte0 * 256 + byte1) *
 125 / 65536.0) - 6

 time.sleep(0.1))

Chapter 1 The Case for Object-Oriented Programming

6

Note that a different command (0xF5) is written to the I2C bus to

prompt the humidity reading rather than temperature. This demonstrates

that although we call the methods and access the fields in the same way,

the implementation can be very different. As a matter of fact, we can define

a third class which utilizes a different type of sensor altogether – one

that communicates with the SBC in a whole different way. The code in

Listing 1-5 defines a class for the MPL3115A2 air pressure sensor.

Listing 1-5.  MPL3115A2Pressure sensor class

class MPL3115A2Pressure:

 def __init__(self, name, bus_id):

 self.name = name

 self.units = 'kPa'

 self.bus = smbus.SMBus(bus_id)

 def measure(self):

 self.bus.write_byte_data(0x60, 0x26, 0x39)

 time.sleep(0.1)

 data = self.bus.read_i2c_block_data(

 0x60, 0x00, 4)

 self.measurement = (

 (data[1] * 65536) + (data[2] * 256) +

 (data[3] & 0xF0)) / 64000

If we want to use the new humidity and pressure sensors along with

the two temperature sensors that we’ve instantiated before, we just have to

push an instance of each of them into our sensor_list. For this example,

we’ll only measure humidity using the first Si7021, and we’ll assume the

MPL3115A2 is also connected to I2C1:

sensor_list.append(Si7021Humidity('humidity', 1))

sensor_list.append(MPL3115A2Pressure('pressure', 1))

Chapter 1 The Case for Object-Oriented Programming

7

In OOP terminology, we say that classes that have a set of identical

methods and fields implement the same interface; this allows a program

to treat objects of different classes in the same way, a concept that is

called polymorphism. In some languages, such as C++ and Java, there are

mechanisms that a developer needs to use in order to define an interface.

Then, when a class is defined, the definition specifies which interface the

class needs to implement. Listing 1-6 shows an example in Java.

Listing 1-6.  Interfaces in Java

public interface Sensor {

 public void measure();

 public void getReadAsString();

}

public class Si7021Temp implements Sensor {

 public void measure() {

 // implementation goes here

 }

 public void getReadAsString() {

 // implementation goes here

 }

}

Python and JavaScript, being the loosely typed languages that they

are, support what is known as duck typing: the interface of the duck does

not need to be explicitly defined, but if we define a class and give it all

the methods and fields we expect a duck to have, then as far as we’re

concerned, it describes a duck. All three classes that we have defined so far

in this chapter have a measure() method and a measurement field, which

is all that we expect from a class describing a sensor. This is what allows

us to execute the same operations on objects of all these classes, without

knowing at the time the operation which specific class an object belongs to.

Chapter 1 The Case for Object-Oriented Programming

8

At this point, it should be clear why we didn’t look for a library that

already implements communication with the sensor – libraries for different

sensors have different interfaces, so we would not be able to do all these cool

things we just did – and will do later on. However, implementing everything

from scratch is not always easy and requires some research. To get the best

of both worlds, we could implement our sensor class as a wrapper class.

Wrapper classes encapsulate other classes to simplify their interface, make

them more readable, and often make them compatible with existing code,

like in our case. After installing the Python library Si7021, we can rewrite the

class Si7021Temp, this time as a wrapper class (see Listing 1-7).

Listing 1-7.  Wrapper class for the Si7021 library

from si7021 import Si7021

class Si7021Temp:

 def __init__(self, name, bus_id):

 self.name = name

 self.units = 'Celsius'

 self.sensor = Si7021(smbus.SMBus(bus_id))

 def measure(self):

 result = sensor.read()

 # we got an tuple: (humidity, temperature)

 self.measurement = result[1]

Note  Using a library can be much easier; but in this particular case,
this approach comes with a price – when this library reads data from
the sensor, it reads both temperature and humidity, which takes a
little bit longer, while in our previous implementation, we treated the
measurement of temperature and humidity as two separate sensor
classes, which gave us more control.

Chapter 1 The Case for Object-Oriented Programming

9

From a reliability engineering standpoint, this satisfies our desire for

modularity and scalability. As we will see in later chapters, using these

techniques allows us to keep necessary code changes due to hardware

changes to a minimum, it simplifies the process of generating web-based

dashboards, and it allows for powerful troubleshooting techniques, like

creating fake objects.

�Inheritance
In the previous sections, we defined several different types of sensors and

used duck typing which allows us to treat them all as just general “sensors.”

We mentioned that in other languages, such as Java and C++, we would

first have to explicitly define an interface, a concept that is not supported

by Python or JavaScript. There is another mechanism though, and that

is inheritance. In inheritance, we first define a superclass (or base class),

which represents a general case of the entities in question, and then we

define subclasses (or derived classes), which are more specific cases of

those entities and define their unique functionalities. While this sounds a

lot like an interface, there are a few fundamental differences:

•	 Unlike a superclass, an interface cannot define data

members, only methods.

•	 It is considered bad practice (and in some languages,

impossible) for a class to inherit from more than one

superclass when it’s perfectly fine to implement more

than one interface.

•	 An interface cannot include an implementation of any

of its methods, while a superclass can.

Chapter 1 The Case for Object-Oriented Programming

10

Note T hese are gross generalizations and are brought here to
introduce the terminology, for which every language has its own
nuances. As we mentioned, some terms are not even relevant in
certain languages.

How can inheritance benefit our slowly growing weather station? We

noted earlier that a superclass can include implementation of methods. When

that happens, all subclasses inherit the methods of the superclass and can

invoke them. This is useful when all subclasses need to execute something in

the same way. For example, we might want all sensors to be able to provide

the last measurement as a string consisting of the value of measurement along

with the units string. Let us define the superclass (Listing 1-8).

Listing 1-8.  Defining the Sensor superclass

class Sensor:

 def get_read_as_string(self):

 return('{} {}'.format(

 self.measurement, self.units))

We will need to change the definition of our sensors, as we now want

them to be subclasses of Sensor (see Listing 1-9).

Listing 1-9.  Rewriting our sensor classes as subclasses of the Sensor

superclass

class Si7021Temp(Sensor):

#...

Si7021Humidity(Sensor):

#...

MPL3115A2Pressure(Sensor):

#...

Chapter 1 The Case for Object-Oriented Programming

11

CONCRETE THOUGHTS ABOUT ABSTRACT CLASSES

In other languages, such as C++ and Java, if some of the superclass’s

methods are not implemented, it is called an abstract class. If none of its

methods are implemented, it is called a pure abstract class, and in that case,

it is pretty much the same as an interface. Regardless, an abstract class can

never be instantiated, which is the point of its existence: to make sure only

subclasses of it are implemented. There are nuances between languages, one

of them being that JavaScript and Python don’t actually have abstract classes

built into the language, and if such behavior is needed, it is up to the developer

to avoid instantiating objects of the superclass in question.

Another good use of the superclass is when we want to set a default

value to a member of all subclasses. Note that in all the subclasses of

Sensor that we implemented, the value measurement is not set until the

first time a measurement is performed. This can cause problems if the

value of measurement is invoked before measure() is called. By giving

measurement a default value upon instantiation, we can make sure

that measurement already exists when invoked regardless of whether a

measurement was taken or not. Since all sensors will benefit from this,

instead of initializing the field in every subclass, we can do this just once in

the superclass. We will, however, have to make sure to call the superclass’s

constructor from every subclass’s constructor if there is one. If not, the

superclass’s constructor is used as default (Listing 1-10).

Listing 1-10.  Initializing a superclass’s data member

class Sensor:

 def __init__(self):

 self.measurement = -999

 #...

Chapter 1 The Case for Object-Oriented Programming

12

class Si7021Temp(Sensor):

 def __init__(self, name, bus_id):

 super().__init__()

 #...

Note T he value -999 is often used to represent an invalid sensor
reading in systems where the value must be a number. If you don’t
care about that too much, you can choose a string value such as
“N/A” or “NaN” or just set the value to None.

Similarly, we can also use the methods implemented in the superclass

as default behaviors, and then subclasses can, but don’t have to, override

them. While in some languages it is necessary to explicitly specify that a

method of a superclass needs to be overridden, in Python all that is needed

is to define the method again within the subclass. For example, let’s define

another sensor - one that just spits out the time. At first, this might be a

strange thing to do, but in fact, it’s pretty elegant: let’s say we wanted to

produce a file from our measurements. A simple choice for a format would

be a comma-separated values (CSV) file. As the name suggests, every line

in a CSV file consists of values separated by commas. In our case, each line

can contain the last readouts from all of our sensors, with the first value

being the time. If we implement the time readout as a sensor, producing

such a line would be just a matter of doing this:

','.join([str(s.measurement) for s in sensor_list])

We used list comprehension to generate a list that contains the values

of the measurement field of every sensor in sensor_list and then used the

join() function to generate a string that has all these values separated by

commas.

Chapter 1 The Case for Object-Oriented Programming

13

Tip  List comprehension is a very powerful feature available in
Python, which creates one list from another list. We will not dive
deeper than this in this book, but if you are not familiar with it, I urge
you to check it out.

�OOP in JavaScript
JavaScript doesn’t really have classes. Instead, it uses prototypes, which,

unlike classes, are actual objects. ES6, however, introduced new syntax that

allows programmers to dodge the awkward syntax and peculiar nuances of

prototypical inheritance and pretend like they are working with classes. Let’s

start with what really happens under the hood, and once we understand

how things work, toss it all out the window and use the fancy, simpler

syntax. The new class-like syntax will make our lives significantly easier.

A new object is created in JavaScript using a constructor function, as

shown in Listing 1-11. Now that we understand inheritance, let’s have our

base class’s constructor take the sensor’s name as an argument.

Listing 1-11.  Constructor function for the Sensor superclass

function Sensor(name) {

 this.name = name;

 this.measurement = -999;

}

let genericSensor = new Sensor('some_sensor');

What the new operator does is create a new object and run the

constructor function within its scope. JavaScript’s this is the same as in

most other languages, and like Python’s self, it is a pointer to the object

in which the execution is happening, so in our example, the constructor

Chapter 1 The Case for Object-Oriented Programming

14

declares and initializes a new property, measurement. In JavaScript,

functions are objects too, so the distinction between methods and fields is

conceptual; hence, they are all called properties.

We created the object genericSensor, but we said all objects inherit

from a prototype – what is the prototype of genericSensor? When we

defined the constructor function Sensor, the function created a property

for itself, which is the prototype, and all objects created by the constructor

point to it. When the property of an object is invoked, the JavaScript

interpreter looks for that property in the object itself. If it can’t find it, it

looks for it in the object’s prototype, and so forth.

A common mistake is to define methods of superclasses in the

constructor, as shown in Listing 1-12.

Listing 1-12.  A wasteful way to defining a method

function Sensor(name) {

 // ...

 this.getReadAsString = function() {

 // ...

 }

}

But because this points to the instance created, every instance of

Sensor will have its own copy of the function, which is wasteful. This is why

we normally define methods as properties of the prototype and not in the

constructor of the object itself. Listing 1-13 demonstrates how this is done.

Listing 1-13.  Defining a method for the Sensor superclass

Sensor.prototype.getReadAsString = function() {

 if ('units' in this) {

 return('${this.measurement} ${this.units}');

 } else {

Chapter 1 The Case for Object-Oriented Programming

15

 return(String(this.measurement));

 }

}

For data members, of course, we still want each instance to be able

to have a different value, so the constructor function is the right place to

create them.

So far, we have defined the base class Sensor. It’s time to define a

constructor function for a specific sensor that is derived from Sensor and

see prototype inheritance in action. Examine Listing 1-14.

Listing 1-14.  Constructor for the Si7021Temp subclass

const i2c = require('i2c-bus');

function Si7021Temp(name, busId) {

 Sensor.call(this, name);

 this.units = 'Celsius';

 this.busId = busId;

 this.i2cBus = i2c.openSync(busId);

}

Si7021Temp.prototype =

 Object.create(Sensor.prototype);

We start by defining the constructor function of the derived class.

Notice that just as in Python, we call the superclass’s constructor as well.

After the constructor is defined, we make Si7021Temp inherit from Sensor.

For that, the derived class needs to have the same properties that its base

class has. We use Object.create() that takes a prototype as an argument

and returns a new object of that prototype. It’s similar to what the new

operator does, but without running the constructor function. In the end,

what we have done here is to overwrite Si7021Temp’s prototype with the

prototype of its base class.

Chapter 1 The Case for Object-Oriented Programming

16

Now we can add to Si7021Temp’s prototype the nuances of the subclass.

In our case, that will be reading the sensor value (see Listing 1-15).

Listing 1-15.  Adding a method to Si7021Temp

Si7021Temp.prototype.measure = function() {

 this.i2cBus.writeByte(0x40, 0xF3, 0, (err) => {

 if(err) {

 this.measurement = -999;

 return;

 }

 setTimeout(() => {

 this.i2cBus.i2cRead(

 0x40,

 3,

 new Buffer(3),

 (err, bytesRead, data) => {

 if(err) {

 this.measurement = -999;

 return;

 }

 this.measurement = (

 ((((data[0] << 8) |

 data[1]) * 175.72) / 65536) - 46.85);

 });

 }, 100);

 });

}

Before we move on, let’s discuss this code. Notice the differences that

arise when writing asynchronous code: writeByte(), which we first use to

send the command to the sensor to read the temperature, has a callback

function that is executed once writing the byte to the I2C bus is completed.

Chapter 1 The Case for Object-Oriented Programming

17

The callback function takes an error object as an argument, or in other

words, when writeByte() finishes execution, it calls the callback function

with an argument representing an error, if such an error happened. In the

callback, we can check if err has a value and, if so, deal with the error – in

our case, we set measurement to a value representing missing data. If there

is no error, we can move on.2

If we look at the Python code we wrote earlier, we can see that we put a

0.1 second (or 100 milliseconds) delay between sending the command to

read the temperature and reading the bytes from the sensor. Here, we use

setTimeout() to create this delay and perform the reading in the callback,

which also starts by checking for an error.

�OOP in JavaScript ES6
To programmers like me, who started in class-based languages and only

later learned JavaScript, prototype inheritance can be very confusing. The

new class syntax does a good job shielding programmers from dealing

with prototypes and allows us to continue thinking in terms of classes.

Let’s rewrite everything, starting with Sensor (see Listing 1-16).

Listing 1-16.  Rewriting the Sensor superclass using the ES6 class

syntax

class Sensor {

 constructor(name) {

 this.name = name;

 this.measurement = -999;

 }

 getReadAsString() {

2�We will dive deeper into error handling, with this specific example in mind, in
Chapter 9.

Chapter 1 The Case for Object-Oriented Programming

18

 if ('units' in this) {

 return('${this.measurement} ${this.units}');

 } else {

 return(String(this.measurement));

 }

 }

}

So far, this is pretty clean and self-explanatory. Let’s move on to

Si7021Temp (see Listing 1-17).

Listing 1-17.  Subclassing Si7021Temp using the class syntax

class Si7021Temp extends Sensor {

 constructor(name, busId) {

 super(name);

 //...

 // Copy Si7021Temp construction function code

 measure() {

 //...

 // You get the drift. Copy the code from the

 // measure() function we wrote before.

 // ...

 }

}

Note that we called super(), which is the constructor of the base class.

When using the class syntax, we must call the base class constructor before

we can refer to this. In fact, as we’ve seen earlier, this is usually very useful

even when using the prototype syntax or when working with Python.

Remember that in our example, the superclass constructor initializes

measurement. This will happen in all of its subclasses, which is great.

Chapter 1 The Case for Object-Oriented Programming

19

It’s important to remind ourselves, once again, that this is just

syntactical magic. Under the hood, the class syntax still produces

prototype. It’s important to remind ourselves, once again, that this is

just syntactical magic. Under the hood, the class syntax still produces

prototype inheritance.

�Summary
We started by introducing OOP in Python, and we implemented several

classes using duck typing, which means brute-forcing different classes

into sharing the same interface. Then we moved to the more traditional,

structured way of doing things: proper class inheritance, as practiced

in other languages like C++ and Java, and we showed how that works

in Python. When we finished going through the basics, we moved to

JavaScript and its version of OOP – prototypes and prototype inheritance.

Finally, we reviewed the class syntax in JavaScript, which simplifies

inheritance and creates simpler code that looks more similar to classes in

other languages.

As we discussed OOP, we only hinted at the benefits we can get

from designing an object-oriented system. As we progress, we will show

pragmatic examples that demonstrate how object-oriented design helps

build monitoring, logging, and debugging systems that scale – when

we expand or modify the project itself, those systems require very little

and, sometimes, no adaptations to the changes we make. In the next

chapter, as we build our first dashboard, we will already see how interface

compatibility saves the day.

Chapter 1 The Case for Object-Oriented Programming

21© Eyal Shahar 2019
E. Shahar, Project Reliability Engineering, https://doi.org/10.1007/978-1-4842-5019-8_2

CHAPTER 2

Our First Web
Dashboard
In this chapter we will cover the basics of creating a web dashboard for a

project. A web dashboard is basically a web page that can be accessed from

any device with a web browser. From that page we are able to see what our

project is doing, or at least what the project thinks it’s doing, change its

configuration, and give it instructions.

As much as this seems like an obvious thing to do, it is a rather new

concept. To this day, many computer-based systems can only be controlled

with a mouse, a keyboard, and a monitor connected to the computer itself.

Even with the ubiquity of Wi-Fi and mobile devices, many applications and

IoT devices still heavily rely on mobile apps rather than web technologies.

As makers, we can appreciate web interfaces: unlike physical knobs and

buttons, connected monitors or mobile apps, web pages are fast to develop

and can be accessed from any computer or mobile device.

�Everything Is a Server
A server is a computer or a program that performs some sort of task at the

request of other computers or programs, to whom it refers to as clients. If

this sounds pretty general, it’s because it is, and when we think of servers,

we often imagine rows of racks in fluorescent-lit basements, stacked

with blade servers that mundanely process search queries from online

22

shoppers, while in reality servers come in all shape and sizes and can

have all kinds of exotic jobs – from running a multi-player online game to

coordinate the efforts of astronomy fans in search for extraterrestrial life. In

today’s climate, where practically every piece of technology is connected,

almost everything qualifies as a server. The argument that I am trying

to push here is that if something can be a server, then it should be one,

including maker projects.

Giving a project the capabilities of a web server offers several clear

advantages. It allows us to control a project remotely, whether it is in real

time or by adjusting its settings; it allows us to monitor its activity; and it

allows it to communicate autonomously with other machines.

We will start by serving a single web page, functioning as a dashboard.

Graphical user interfaces (GUI) for projects gain even more benefits from

being implemented as web pages: while creating a GUI in many languages

can often be a painful process, the web stack, consisting mostly of HTML,

CSS, and JavaScript, is extremely popular and easy to use and enjoys the

support of a huge community. It’s not going anywhere any time soon, so

even if the code of our project ever needs to be upgraded or even ported to

another language, the dashboard itself will not be affected.

To allow our project to do that, we will need to incorporate a web

framework in it. A web framework takes care of functionalities related to

web connectivity, such as listening to incoming requests and responding

with the desired data or web page. We will discuss Flask for Python and

Express.js for Node.js. But first, let’s discuss what HTTP requests are and

what happens when we pull up a web page in our browser.

�HTTP Requests
The Hypertext Transfer Protocol (HTTP) was developed primarily to

enable the transmission of web pages from a server to web browsers. HTTP

implements a request-response model, and what that means is that the

Chapter 2 Our First Web Dashboard

23

server sits there and waits for clients, web browsers, for example, to send

requests for resources, like pages, media, or data. Requests can also be made

to the server to perform an action, but no matter what the nature of the

request is, the server must always respond, whether it’s with the resource

the client asked for or just with an acknowledgment or an error message.

Because HTTP requests work this way, it means that all communication

is initiated by the client. For our purposes, it means a dashboard that

updates continuously must either periodically make requests from the server

for the most up-to-date data or use a different form of communication, such

as WebSockets, which we will explore in the next chapter.

An HTTP request can be one of several methods. The ones most often

used are GET and POST. GET is used to retrieve data or resources, while

POST is used to transfer data for the server to store. The request specifies

its method type and the resource it asks for in the form of a Uniform

Resource Identifier (URI), which, for every practical purpose, is the same

as a Uniform Resource Locator (URL). The request also has some header

fields, which tell the server things about the request itself, such as the type

of browser it came from and the language in which users are expecting to

see results. Finally, the request has a body, which can be used to transmit

data to the server.

The names of the methods may imply that they were meant to be

used with databases. This is reinforced by the names of some of the other

methods, like PUT and DELETE, but different methods can be used as the

programmer pleases. What matters are that the methods chosen make

sense to the programmer and to other users and that the differences

between methods are understood so that the method chosen has the right

features for the task at hand.

A GET request either asks for a specific file, like a web page or a

JavaScript file, or performs a query. In a query, the desired resource, or

query, is expressed in the URI. The URI takes the form of

/path/to/resource?param1=value1¶m2=value2...

Chapter 2 Our First Web Dashboard

24

There are two parts to the query, separated by a question mark, that

express to the server what the client wants – the path and the query

parameters. In the software world, that most often deals with databases,

the path is usually used to fetch a specific item, while the query parameters

are used when the client wants to filter the data in the database. Later in

this chapter we will use GET requests for controlling the hardware, and we

will need to consider how we want requests to be formatted.

We will not use POST requests in the book, but we should mention that

the main difference between them and GET requests is that the parameters

are specified in the body, which is usually left empty in GET requests – this

makes POST requests a little more secure. As mentioned, POST requests

are used to send data to the server, for example, when a user submits a

form or uploads a picture to a web site, and this is not really something we

are going to be dealing with.

After the server gets the request and processes it, it must send a

response. Like the request, the response has a body which this time contains

the data that the client requested and headers which contain meta-data

about transaction. It also contains a status line which specifies the protocol

used, for example, HTTP/1.1, a status code, and a reason phrase, which is a

super short description of the status code. Table 2-1 provides a short list of

some of the most common status codes and their respective reason phrases.

Table 2-1.  HTTP response status codes

Status Code Reason Phrase Explanation

200 OK Request processed successfully

400 Bad request The server believes the client made a

mistake, i.e, sent an ill-formatted query

404 Not found The client requested a specific resource

that the server could not find

500 Internal server error The server code failed

Chapter 2 Our First Web Dashboard

25

The codes are divided into groups, which makes it easier to remember

what they mean: the 100s are informational and the 300s deal with

redirection, and these two groups are rarely encountered when dealing

with systems in our scale. The 200s convey success, the 400s inform of a

problem on the client side, and the 500s are responses dealing with failure

on the server-side.

�HTML in a Nutshell
Now that we have a basic idea of how a server and a client, or a project

computer and a web browser, can communicate, we are ready to craft the

first thing our server is going to serve – a web page. For that, we will have to

dig into HTML.

HTML (Hypertext Markup Language) is the language in which

web pages are written. Learning HTML thoroughly is well beyond the

scope of this book, but instead of asking the reader to pause reading and

take a complete HTML course, we will quickly introduce HTML at this

point and address more aspects of the language as we need them while

moving forward.

HTML describes the content of the page and the hierarchy of

the different elements, and although the design of the page can be

embedded in the code, it is usually considered good practice to leave

that for accompanying CSS files. Examine the code in Listing 2-1 and

the resulting web page in Figure 2-1. You can refer to these as we explain

HTML in more detail.

Listing 2-1.  Basic HTML code example

<!DOCTYPE html>

<html>

 <head>

 </head>

Chapter 2 Our First Web Dashboard

26

 <body>

 <h1>Some basic HTML tags</h1>

 <p>This is a paragraph. It will be followed

 by an unordered list, that will have:</p>

 This item

 and this one

 and also this one

 <div id="div-example">

 <p>div elements help keep thing organized by

 defining sections, and help with styling,

 while <span style="font-family:

 monospace;">the span tag just helps

 with inline styling.</p>

 </div>

 </body>

</html>

Figure 2-1.  Output of the HTML code in Listing 2-1

Chapter 2 Our First Web Dashboard

27

An HTML file consists of elements, such as text paragraphs, tables,

and images. An element starts with a tag that states what kind of element

it is, that is, “p” for a paragraph or “img” for image. Refer to Table 2-2 for a

list of some common tags. A tag is surrounded by angled brackets, like so:

<input>. Some tags are empty, meaning that they directly represent the

content that goes into the page; however, most elements do have either

text or nested elements in them. Elements that are capable of having

nested elements have an opening tag and a closing tag, with the closing tag

preceded by a slash, like so:

<p>This is a paragraph.</p>

A tag, or an opening tag in the case of an opening-closing pair, can

have various attributes. These describe responses to user interactions,

allow JavaScript functions and CSS styling sheets to refer to the element,

and define other tag-specific properties. Attributes are followed by the

equal sign, followed by the attribute’s value surrounded in double quotes,

like so:

<p id="paragraph">This is a paragraph.</p>

Table 2-2.  Common HTML tags

Element Type Tag Empty Tag

Level 1 header h1 No

Paragraph p No

Image img Yes

Section div No

Span span No

Unordered list ul No

List item li No

Chapter 2 Our First Web Dashboard

28

We will work extensively with two attributes: the id attribute which

gives the tag a unique identifier and the class attribute which groups

multiple elements.

Note A tag can have only one id, and it must be the only tag with
that id. A tag, however, can have multiple classes, and multiple tags
can have the same class.

An HTML file should start with a Document Type Definition (DTD),

telling the browser what kind of document it’s handling. These days, as

the standard is HTML5, this should be <!DOCTYPE html>. What follows is

the <html> tag, containing two sections: the head and the body. The head

contains meta-data about the page itself, such as the page’s title, keywords

that are used to help search engine bots classify the page, definitions of

graphic styles used in the page in the form of CSS, JavaScript code, as well

as links to CSS and JavaScript files. The body contains what is actually

displayed on the page, in the form of nested HTML elements.

Sometimes, people talk about the elements in the HTML in terms of

the DOM (Document Object Model). These are not exactly the same thing.

HTML is a language that describes the layout and content of the page. The

DOM is how the browser represents the elements, grasps their relations to

one another, and provides the programmatic interface to manipulate them.

�Selectors and CSS
The point of having classes and id attributes has the ability to find them

effectively in order to perform actions on them, such as apply styles to

them, manipulate them within the page, and assign callbacks for user

interactions with them. This is done with selectors, often called “CSS

selectors” as this is their primary use. These are strings that use a specific

Chapter 2 Our First Web Dashboard

29

format to express which elements need to be found. Table 2-3 shows some

of the more common selector syntax rules.

We can instruct the browser how to style elements using CSS, which

stands for “Cascading Style Sheets.” It is a programming language that has

very simple syntax. Listing 2-2 provides an example.

Listing 2-2.  CSS syntax example

selector-string1 {

 property1: value1;

 property2: value2;

}

selector-string2 {

 property3: value3;

 property4: value4;

}

Table 2-3.  Examples for CSS selectors

Syntax Returned Elements

#element-id The element whose id is element-id

.class-name All elements that belong to the class class-name

button.class-name All buttons that belong to the class class-name

classname button All buttons that are nested inside elements of the class

classname

.class1, .class2 All elements of the class class1 and all elements of the

class class2

Chapter 2 Our First Web Dashboard

30

Styling with CSS can appear in three places:

	 1.	 In an external file, and then it is included in the

HTML file in a link tag, like so:

<link rel="stylesheet" type="text/css"

href="path/to/stylesheet.css">

	 2.	 In the HTML file, within a <style> element:

<style>

.my-class {

background-color: black;

}

</style>

	 3.	 In the HTML file, within a style attribute of an

element’s tag:

<div style="background-color: black; font-

size: 1.5em;>Content goes here</div>

�Template Rendering
Many web application frameworks, like the ones we will discuss soon, offer

a feature called template rendering. It allows a web page to be manipulated

prior to being served to the client, for example, presenting the most up-to-

date data. Obviously, this is useful to us when we set to serve a status page.

Different template engines exist, and each has its own flavor, but the

general gist is the same: the web page is written with placeholders for

the template engine to replace with actual content. These placeholders,

usually surrounded by special characters combination known as

delimiters, are written in something that looks very much like a

programming language, specific to the template engine used. This special

Chapter 2 Our First Web Dashboard

31

syntax can have various levels of complexity, from merely displaying a

variable’s value to evaluation of if-then conditional blocks and loop

iteration. Consider the HTML snippet in Listing 2-3.

Listing 2-3.  Mustache template example

<div id="sensors-measurements">

 <p>Temperature: {{temperature}}</p>

 <p>Wind speed: {{wind_speed}}</p>

</div>

“Mustache”, a popular templating engine for JavaScript, uses two pairs

of curly brackets as the delimiters. When rendering the template, it expects

to receive a dictionary containing keys by the same name, and it will fill the

placeholders with these keys’ values.

Some engines use slightly different syntax, while others, like

Pug (formally known as Jade), use a significantly different paradigm

altogether.

�Python and Flask
Flask1 is a microframework for Python. It is classified as a microframework

due to its minimalistic set of features. It does, however, know how to route

and handle HTTP requests, render templates, and serve web pages, which

is all that we need at this point.

As much as I would love to dive right into the code, we do have

to pause for a couple of paragraphs and talk about synchronous vs.

asynchronous code. Synchronous code is code that halts after each

command until it is fully executed. Reading from a file, for instance, can

take time, but in a synchronous program the following instruction will

1�http://flask.pocoo.org/

Chapter 2 Our First Web Dashboard

http://flask.pocoo.org/

32

only be executed after the file has been read. In asynchronous code, on

the other hand, after a function is called, the next instruction is called

immediately, even if the first function did not completely execute.

However, after the instruction has been executed, a callback function is

called, allowing the program to handle the completed task.

Although Python does have (since fairly recently) some mechanisms

that implement asynchronous programming, it is generally a synchronous

language, and due to that, once we instruct Flask to start listening

to incoming requests, we will block the rest of the program. It seems

inevitable to move something to a different thread.

�Coding Our First Dashboard
Let’s move the measuring loop to its own thread. We’ll delete the line that

calls measuring_loop and instead add the code in Listing 2-4.

Listing 2-4.  Moving the measuring loop to a separate thread

import threading

#...

t = threading.Thread(target=measuring_loop)

t.start()

DON’T LOSE THE THREAD

If you are not familiar with threads, it is sufficient at this point to know that a

program can run multiple independent threads in (what appears like) the same

time, so that time-dependent operations don’t block each other, and that this is

how you spawn them in Python. Although JavaScript does offer workers which

run on independent threads, they are not as needed as threads in Python, due

to the JavaScript’s asynchronous nature.

Chapter 2 Our First Web Dashboard

33

Now we can add the code from Listing 2-5 to our weather station from

the previous chapter.

Listing 2-5.  Adding a Flask server to the weather station

from flask import Flask, render_template

app = Flask(__name__)

@app.route('/dashboard/')

def show_dashboard():

 return render_template(

 'dashboard.html',

 temperature=sensor_list[0].measurement)

if __name__ == '__main__':

 app.run(host = '0.0.0.0')

What this code does, after importing Flask, is define the app object that

will be used to register all that Flask will need to know, like what functions

to run for each HTTP request that is made. Then, it registers the show_

dashboard() function to the /dashboard/ route. This means that if we

open a browser on the same computer and navigate to 127.0.0.1:5000/

dashboard (since 5000 is the default port for Flask), the show_dashboard()

function will execute and will be responsible for sending a response to the

client. The body of this function is simply one line that returns a template

file, dashboard.html, which is rendered with the variables that follow.

Chapter 2 Our First Web Dashboard

34

DECORATORS AND HOW FLASK USES THEM

That at sign (@) in Python is called a decorator. It’s a mechanism that allows

functions to be wrapped by other functions, hence modifying or extending their

functionality. The decorating function, whose name is prefixed by the at sign,

decorates the subsequent function by intercepting its input and its output. The

syntax allows us to decorate many functions with the same decorator, which

makes this such a power feature: imagine we wanted to write to a file the

output of some of our functions. All we would have to do is define the file-

writing feature as a decorator and then decorate all those other functions with it.

Flask, however, uses this syntax in a sneaky way: when you first decorate a

function, that function is passed to the decorator for wrapping. Flask takes this

opportunity to register that function with the request’s route, so that whenever

a client makes a request to this route, the correct function is called.

Listing 2-6 shows what the template we render might look like.

Listing 2-6.  A basic template for the dashboard

<!DOCTYPE html>

<html>

 <head>

 </head>

 <body>

 <p>Temperature: {{ temperature }}</p>

 </body>

</html>

Note  Flask looks for templates in a templates folder that is in the
project folder.

Chapter 2 Our First Web Dashboard

35

We passed the argument temperature to the template engine, and

marked in the template file, using the Flask’s templating syntax, where its

value should be placed. Note how Flask uses double brackets ({{ ... }})

as delimiters for expressions.

We had more than one sensor in the project from the previous chapter,

and although we could have had a single line in the HTML file for every

sensor, let us remember that we made sure all those sensors implement

the same interface and that they are all in one list. Flask’s template engine

allows us to iterate through lists, so all we need to pass to the template

engine is just that list and then let the template engine iterate on it. We’ll

start by rewriting the definition of the function dashboard() as shown in

Listing 2-7.

Listing 2-7.  Serving the sensor list

@app.route('/dashboard/')

def show_dashboard():

 return render_template(

 'dashboard.html', sensor_list=sensor_list)

And then we’ll change the template body accordingly as shown in

Listing 2-8.

Listing 2-8.  Using the template engine’s iteration feature to render

the sensor list

<body>

 {% for s in sensor_list %}

 {{s.name}}:

 {{s.measurement}} {{s.units}}

 {% endfor %}

</body>

Chapter 2 Our First Web Dashboard

36

The delimiters Flask used to indicate statements such as for-loops or

conditionals are {% ... %}. You might notice that within the template, we

treat the sensor_list object exactly the same way we do in Python – as a

list of instances of the Sensor class whose fields we wish to display, but the

notation here is JSON.2 When the template engine acts on the template, the

content of the for-loop is evaluated for each item in sensor_list, which

results in a element in the final HTML file. In every loop iteration,

s is a temporary variable representing the current item, so that its data

members can be accessed, evaluated, and rendered.

WHAT’S MY IP ADDRESS?

The address we mentioned, 127.0.0.1, is always the IP address that machines

use to refer to themselves. If we want to view the dashboard from another

device, like a laptop or a phone, we’ll need to know the IP address of the

project’s machine. As a first step, there are two simple techniques to find out

what it is:

	1.	U se a browser to open your router’s administration page.

Usually it’s on 192.168.1.1. Then find a page that is called

something like “Connected Devices.” This will display the IP

addresses of all the devices in your network. To help identify the

project’s machine, plug or unplug it from its power supply and

refresh the page.

	2.	 Connect a keyboard and a monitor to your machine, and in

the terminal window enter the command ifconfig. This will

print a list of all the network interfaces that your machine has.

Look for something that looks like eth0 for a LAN connection

or wlan0 for wireless connection. It should be followed by the

device’s address.

2�If you’re new to JSON, flip to Chapter 5 for an introduction.

Chapter 2 Our First Web Dashboard

37

This is the address that your router gave the machine. Once you have this

address, you can use it to find the dashboard from any machine on your local

network, and the router is very unlikely to change it. However, we will soon

see how we can set it manually so that it never changes and even view it from

outside the local network.

�The Flask Web Server
Flask is not designed to be run from the command line. When we do run

the program, by entering in the terminal

sudo python3 weatherstation.py

we will find the Flask is very opinionated about that and will show this

message before running the program:

WARNING: Do not use the development server in a production

environment.

Use a production WSGI server instead.

Let’s unpack that: a web server is a program that runs on a machine,

listens to requests that come from the Internet, and decides what to do with

them. These requests are probably intended to be handled by a program

on that machine, so the web server needs a way to communicate with that

program. This is where WSGI, the Web Server Gateway Interface, comes in.

It is a protocol through which the web server can launch Python programs

as a response to an incoming request. This means that every incoming

request spawns a new instance of the program. Usually, the program will

process the request, do whatever it’s meant to do, send a response, and exit.

This allows the web server to serve many requests concurrently.

While this is good for many types of programs, it’s not what we want.

We want only one instance of the program, and we definitely want the

weather station to work when nobody is looking at the dashboard. Our

Chapter 2 Our First Web Dashboard

38

solution is to run the program from the command line, which causes

Flask to launch its own web server, but complain while it’s at it. Why is it

complaining? Because Flask’s web server is not suitable for production

environments, since it doesn’t know how to deal with multiple,

simultaneous requests. Rather, it handles them one by one. We, however,

use Flask, at this point, for the sole purpose of serving the dashboard, so

that should be good enough for now.

There are other alternatives for including a web framework in a Python

project. One example is Tornado.3 Tornado can work as a web server, so if

it’s included in a project, it is the project itself that handles the requests –

no need to spawn programs anymore. Tornado is a heavier framework

than Flask, though, and has a steeper learning curve. For applications

where the web component is marginal, using Flask the way we are, with its

own web server, is perfectly acceptable.

�Adding Browser Interactivity
It can be useful to send commands from the dashboard back to the server.

We could do things like adjust preferences, enable and disable functionalities,

run tests, and request data. Let’s create a button that enables and disables

the measurement-taking loop of our weather station program. First, we’ll

make a small modification to the code in Listing 1-2 and add a parameter

that determines whether measuring is to take place or not. We can also stop

printing the results to the screen. This will result in the code in Listing 2-9.

3�www.tornadoweb.org

Chapter 2 Our First Web Dashboard

http://www.tornadoweb.org

39

Listing 2-9.  Rewriting the measuring loop to enable and disable

sensor reading

is_measuring = true

def measuring_loop():

 while True:

 if is_measuring:

 for sensor in sensor_list:

 sensor.measure()

 time.sleep(5)

We’ll add a button to our HTML file. That button will send an HTTP

request to the server, which in turn the value of is_measuring to either

True or False. We’ll start by considering what that request will be.

A GET request seems appropriate – POST requests are a little more

cumbersome and usually imply that something is stored in a database.

Now, you may recall that everything we want GET request to do is

expressed in the URI, so to be specific when telling the server what we

want, we have to decide what that URI is going to look like – this is called

an endpoint of a server. We could use unique paths for the two functions,

like /loop_on and /loop_off, but if we stop to think what that code is

going to look like, we can imagine some repetition that can be avoided.

We could use the dashboard’s path and make use of the query string, for

instance, /dashboard?loop=false, but then the server would have to

test for the existence of parameters in the URI to determine whether it

should serve the page, respond to a control command from the dashboard,

or execute some other functionality. These don’t feel like they belong

together in the same function. The healthy way to do this is probably some

combination of the two: for controlling the project, we can have a path that

is separate from the dashboard’s path, and the exact command we want to

execute can be expressed by parameters in the query string. Let’s choose

/control?loop=true to activate the loop and /control?loop=false to

turn it off and add the code in Listing 2-10 to the server.

Chapter 2 Our First Web Dashboard

40

Listing 2-10.  Adding a control endpoint to the server

from flask import jsonify, request

@app.route('/control')

def control():

 global is_measuring

 is_measuring = request.args.get('loop')

 res = {'is_measuring': is_measuring}

 return jsonify(res)

Notice the flow of data that leads to the change of the button’s text:

the button is pressed, the command is sent to the server, and the server

changes the state of the loop and returns the new state back to the client,

which in turn changes the text of the button based on the response it got

from the server. Why not change the text of the button at the same time

that the button is clicked and the request is sent to the server, instead of

having this long course for the data to go through? Well, the code works

this way to enforce an extremely important principal: data representation

must always be driven by the data itself and not by what we think the data

should be. If the text is changed in the click event handler, how do we know

that the instruction was received by the server correctly? More generally,

let’s say something does go wrong, and we turn to the dashboard to debug

it: we click the button, and an indicator tells us that the operation has

been performed. We are puzzled – we look at our hardware, and we don’t

see the change – but how can that be? The dashboard says it’s fine! Well,

if the indicator is driven by the button, it will tell us that the change has

happened whether it actually did or not. This is why indicators should be

driven by data, not by our actions.

Chapter 2 Our First Web Dashboard

41

Note  We gave the form of the endpoint controlling the measuring
loop some thought, but that was only a glimpse into a much larger
topic – designing an efficient software interface for a program.
You may have heard the term API (Application Program Interface).
Well, this is exactly it: an API is what allows people, but also other
machines and programs, to interact with a program, and designing
one that is consistent, simple for the clients to access, and easy
for the programmer to maintain is not an easy task and is rarely as
straightforward as the process we have just went through. There is
an abundance of literature4 and online resources if you’re interested
in digging deeper.

Let’s add that button to our dashboard. We can put the code shown in

Listing 2-11 right after the list of measurements.

Listing 2-11.  Adding controls to the dashboard

<!-- ... ->

 <!-- ... ->

<div>Measuring:

 <button data-initial="{{ is_measuring }}"

 id="toggle-loop">

 </button>

</div>

4�For example: Jin, Brenda, Saurabh Sahni, and Amir Shevat. Designing Web APIs:
Building APIs That Developers Love. Sebastopol, CA: OReilly Media, 2018.

Chapter 2 Our First Web Dashboard

42

And since this is the last DOM element, we’ll follow this with the

JavaScript code in Listing 2-12 to add the functionality. Adding the

JavaScript code at the very end of the DOM promises that by the time it

runs, any elements the code refers to have already been added to DOM.

Listing 2-12.  Giving functionality to the dashboard controls

 <script>

let loopButton =

 document.getElementById('toggle-loop');

let isMeasuring =

 loopButton.getAttribute('data-initial') == 'True';

function setLoopButtonText(state) {

 loopButton.innerHTML = state ? "stop" : "start";

}

setLoopButtonText(isMeasuring);

loopButton.addEventListener("click", () => {

 let url = new URL(

 'control', window.location.origin);

 let params = {loop: !isMeasuring };

 url.search = new URLSearchParams(params);

 fetch(url, {

 method: 'get'

 }).then(function(response) {

 return response.json();

 }).then(function(data) {

 isMeasuring = data.is_measuring;

 setLoopButtonText(isMeasuring);

 });

 });

 </script>

Chapter 2 Our First Web Dashboard

43

There’s a lot going on here. Let’s move through the code slowly. The

first interesting thing you may notice is the attribute data-initial that we

gave the button. This is not a standard attribute, and therefore the browser

ignores it, but we put it there so that we’d have a way render in the initial

value of is_measuring, and in the dashboard’s JavaScript code, we read

this value into the isMeasuring variable. We’ll need to add is_measuring

to the arguments used to render the dashboard, so the endpoint handler in

Listing 2-7 should now be modified to look like this (Listing 2-13).

Listing 2-13.  The modified dashboard endpoint handler also

renders the measuring loop’s state

@app.route('/dashboard/')

def show_dashboard():

 return render_template(

 'dashboard.html',

 sensor_list=sensor_list,

 is_measuring=is_measuring)

Are there other ways to do this? Sure there are. We could, for example,

render the value right into the JavaScript, when we first declare and

initialize isMeasuring

let isMeasuring = {{ is_measuring }};

This is an interesting solution, but not necessarily a healthy thing to

do. First of all, if the page is just a little more complicated, we’d probably

want to break the file into two: an HTML file and a JavaScript file, and

then we’d have to render those too, going through the server’s routing

instead of serving static files. Also, if for some reason there’s a problem

with the value we are trying to render, we will break code rather than

content, and that will almost always have more critical outcomes. We then

need to remember that the dashboard is not the project itself, but only

a means to debug and control it, and when the dashboard fails to load

Chapter 2 Our First Web Dashboard

44

it doesn’t necessarily mean that the project broke. If there is a problem

with is_measuring in the Python code, we want to be informed by the

dashboard and not have that break the dashboard, having us wasting time

debugging the dashboard. Having said that, I do want to show that using

the templating engine to render code is an option that exists, and although

we’ve just shown that it is probably a bad idea, I still find something

magical about code that is written partially by the machine itself.

Another way is to have the page, once it loads, query the server for

the value of the button. More generally, we can query the server for the

entire state of the project. Then we’d have to ask ourselves – what is the

point of rendering a template? We might as well write the web page without

templating, serve it as it is, then have it query for the project’s state, and

change the page’s content based on the data received. That is a perfectly

valid approach, and I recommend choosing one or the other, but avoid

using both querying and template rendering for the same thing. When the

same functionality is performed by very different pieces of code, it creates

confusion and makes it harder to maintain the code.

Let’s move on. We assigned the button’s DOM element to the variable

loopButton in order to avoid looking for it every time we need it. We

found it using document.getElementById(). There are two newer, more

powerful, but also somewhat slower ways to find element in the DOM:

document.querySelector(), which returns the first element it finds, and

document.querySelectorAll(), which returns a list of all the elements it

finds. What makes these more powerful is that they take a CSS selector as

an argument, making it easier to find elements based on their place in the

DOM hierarchy, which in turn can result in a much cleaner HTML file.

The button’s text changes based on the value isMeasuring – "Stop"

if the loop is running and "Start" if the loop is idle. That is taken care

of by the function setLoopButtonText(), and to make sure there is text

inside the button when the page loads, we execute it immediately. Then

we attach an event handler to the button – a function that will be executed

Chapter 2 Our First Web Dashboard

45

when the button is clicked. The event handler executes a fetch()5 – an

HTTP request. Fetch() returns a promise,6 which means that when the

server responds, the promise is resolved, and the function passed to

then() is executed, and in our case, the promise returns a Response object.

Calling response.json() returns another promise, which resolves with

the body of the response decoded as JSON. With that data we can update

isMeasuring by calling setLoopButtonText() once again.

�Node.js and Express.js
The most widespread web application framework for Node.js is Express.js.7

To set up Express.js in our program, we’ll start by adding these lines:

const express = require('express');

const app = express();

and start the server by adding this line:

app.listen(3000);

Unlike Flask that comes with Jinja as its own templating engine,

Express.js can work with a selection of quite a few templating engines

that are available on the Web. While many of them, like Handlebars and

EJS, work similarly to Jinja, Pug,8 one of the most popular ones, works in

a completely different way, by compiling and rendering Pug code into

5�The Fetch API replaces the somewhat awkward XMLHttpRequest object. If you
need help, start here: https://developer.mozilla.org/en-US/docs/Web/API/
Fetch_API

6�Promises are pretty cool and do more than just act as callbacks. However, starting
a comprehensive discussion here will distract us from the topic. You can get learn
more about them here: https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/Promise

7�https://expressjs.com/
8�https://pugjs.org/

Chapter 2 Our First Web Dashboard

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://expressjs.com/
https://pugjs.org/

46

HTML and JavaScript. Since we’ve already seen what Jinja looks like, we’ll

continue with Pug, as this will give us a wider perspective.

If we rewrite the template from the previous sections in Pug, we get the

code in Listing 2-14.

Listing 2-14.  The weather station dashboard rewritten in Pug

doctype html

html

 body

 ul

 each sensor in sensors

 li= sensor.name

 = ': '

 = sensor.measurement

 = sensor.units

Note P ug looks for templates in a views folder that is in the
project folder.

First, you might notice that in Pug, very much like Python, indentation

matters, as it expresses code hierarchy. Personally, I am not a huge fan of

indentation-based syntax, but nobody is asking me. Having said that, this

does eliminate the need for closing tags, a fact that results in much shorter

and cleaner code.

Next, you might notice the each loop. This operates just like a for-loop

in Jinja, where each iteration of the loop is evaluated and is being rendered

into the final HTML document.

The equal sign (=) tells the Pug compiler that the remainder of the

line is a JavaScript expression, whose result should be rendered to the

HTML page. The minus sign (-) is also available for running JavaScript

code within the Pug template, but this time the result is not rendered to

Chapter 2 Our First Web Dashboard

47

the page. I used multiple lines preceded with the equal sign simply for

running out on page space, but it is important to remember that using the

equal sign on consecutive lines does not mean that the JavaScript code

can extend beyond a single line. Rather, every line executes and renders a

self-contained expression.

We can tell our server to use Pug as its template engine and enable our

first endpoint by adding the code in Listing 2-15 to our Node.js code.

Listing 2-15.  Plugging in Pug

// ...

app.set('view engine', 'pug');

app.get('/dashboard', (request, response) => {

 response.render(

 'dashboard', { sensors: sensorList});

});

Notice the two arguments, request and response, that the handler for a

request is called with. As their names suggest, request contains information

about the source, nature, and content of the request, while response is a

means for the program to fill in the content sent out as a response.

�A Little Help
To speed up the development of our dashboard, we can use some libraries

that can save us some work, simplify our code and make it more readable,

and help us focus on the things that really matter to us – the project itself.

�jQuery
jQuery has been around forever. The library takes care of some of the more

annoying tasks a programmer has to deal with: DOM manipulation, that

is, locating, adding, and removing elements in the HTML document; event

Chapter 2 Our First Web Dashboard

48

handling, which basically means attaching callbacks to events such as

mouse movements and window interactions; AJAX, which can be simply

put as making HTTP requests; and animation of element properties.

When jQuery is loaded, its main identifier, jQuery, or its alias, the

dollar sign ($), makes all the library’s functionality available. To operate

on an array of DOM elements, the identifier takes as an argument a

CSS selector, just like document.querySelector(). The returned value,

however, is an array of jQuery object, and jQuery’s functions operate on

such arrays. So, let’s say we wanted to find all elements of the arbitrary

class name and change the text to Alice. Instead of doing this

for (let elem of document.querySelector('.name')) {

 elem.innerHTML = 'Alice';

});

we could just do this:

$('.name').html('Alice');

jQuery is a little hungry for computation force, and with the release of

CSS3 animation and the introduction of more modern, powerful, front-

end libraries, jQuery has lost some of its popularity. However, jQuery is far

from being dead. It saves a lot of typing and helps in crafting clean, concise

code, and when CSS3 animation gets too aggravating, jQuery can help

alleviate some of that frustration.

For making HTTP requests, jQuery also offers some straightforward

syntax. For example, to toggle the loop, as we did earlier, using jQuery will

result in the code in Listing 2-16.

Listing 2-16.  Simplified code using jQuery

$.get('control', {'loop': !isMeasuring })

 .done(function(data) {

 isMeasuring = JSON.parse(data).loop_state;

 });

Chapter 2 Our First Web Dashboard

49

�Bootstrap
Bootstrap9 is a front-end framework which helps create pretty web pages

with emphasis on mobile devices, by offering ready-to-use designs for

HTML components. By applying classes to the components, fonts, colors,

and animations are applied to them, creating a unified, mobile-friendly

look to the page. Premium and free themes, as well as online theme

builders, are available for a more personalized look and feel. Unlike the

other frameworks discussed here, Bootstrap doesn’t do much more, but

since it is built on top of jQuery, once Bootstrap is used in a page, jQuery is

also available for DOM manipulation.

�Summary
In this chapter we have learned how to make a status page – not quite

a fancy, updating-in-real-time, dashboard for a project, but still – a

simple way to create a web page that gives us an idea of what our project

is doing. For that purpose, we reviewed the basics of HTTP and HTML

and introduced two popular frameworks: Flask for Python and Express.js

for Node.js. We learned how to use template rendering to dynamically

generate a web page that displays data from the project and how to create

endpoints that let us control and query our project. We saw how an object-

oriented approach toward software design in the project itself promotes

simpler, cleaner, and more scalable code in our status page. In the next

chapter, we’ll expand our dashboard, mostly for the purpose of having it

communicate with the project in real time.

9�https://getbootstrap.com/

Chapter 2 Our First Web Dashboard

https://getbootstrap.com/

51© Eyal Shahar 2019
E. Shahar, Project Reliability Engineering, https://doi.org/10.1007/978-1-4842-5019-8_3

CHAPTER 3

The Live Dashboard
The dashboard that we created in the previous chapter, as simple as it is,

is already a great tool and could be very useful just the way it is. We simply

used template rendering and HTTP requests to convey the current state

of the project and send instruction to it from a web browser; this already

gives us insight about what the project is doing and allows us to control

it. In this chapter we will build on top of the skills we learned and add

real-time capabilities to our dashboard using both HTTP requests and

WebSockets.

�HTTP Requests
First, let us recall how we used a button to send a control message from the

dashboard to the server. In the response, we sent back to the dashboard a

JSON object describing the new state of the project. We can use a similar

mechanism to display near real-time status, by continuously sending GET

requests to the server, querying for the project’s current state. We can do

this by including a setInterval() in the dashboard code, as shown in

Listing 3-1.

52

Listing 3-1.  The dashboard periodically queries the server for the

project’s status

function queryStatus() {

 fetch('/status', {

 method: 'get'

 }).then((response) => {

 return response.json();

 }).then((data) => {

 updateDashboard(data);

 });

}

setInterval(queryStatus, 1000);

This makes a query to the /status endpoint every second and calls a

function, updateDashboard() (which we will implement soon), with the

response. The next step will be to define the /status endpoint. The code

in Listing 3-2 demonstrates what that might look like in our server-side

JavaScript implementation.

Listing 3-2.  The status endpoint, implemented in JavaScript

app.get('/status', (request, response) => {

 response.json({

 sensors: sensorList,

 measuring: isMeasuring

 });

});

Since we are sending back to the dashboard everything we have, we

should re-consider our use of template rendering. Perhaps we should

no longer use it for filling the page with data as we did before, since that

will result in two mechanisms that are basically doing the same thing.

Chapter 3 The Live Dashboard

53

We might as well either wait for the first update that happens when

queryStatus executes for the first time or add code to execute it right after

the page loads, for example:

window.onload = queryStatus;

And since we are not rendering a template, we need to use front-end

code to dynamically fill in the page’s content. Let’s start with a simple

implementation. Our HTML can simply look like Listing 3-3.

Listing 3-3.  Basic HTML to be filled by JavaScript

<body>

 <ul id="sensors-data">

</body>

And we’ll let our JavaScript code replace the content of the

element whenever data comes in. In Listing 3-1 we called the function

updateDashboard() when the server responded with data. Let’s implement

this function now (see Listing 3-4).

Listing 3-4.  Updating the dashboard with JavaScript

function updateDashboard(data) {

 let sensorListElement =

 document.getElementById("sensors-data");

 sensorListElement.innerHTML = ;

 for (let sensor of data.sensors) {

 let newItem = document.createElement('li');

 newItem.innerHTML = `${sensor.name}: \

 ${sensor.measurement} ${sensor.units}`;

 sensorListElement.appendChild(newItem);

 }

}

Chapter 3 The Live Dashboard

54

�The Case for HTML Classes
In Listing 3-4, the very first action we take is to clear the element

containing the sensor data, then we move to re-populate it. This strategy

works only when we can afford to do so – in the next chapter, we will use

graphical elements to visualize the data, a scenario in which completely

rewriting parts of the DOM would not be acceptable, since some of these

elements take time to load. We could, instead, change existing elements in

the dashboard, and if an HTML element for a sensor does not exist, we can

create one. The code in Listing 3-5 demonstrates this approach.

Listing 3-5.  Dynamically populating the dashboard

function updateDashboard(data) {

 let sensorListElement =

 document.getElementById('sensors-data');

 for (let sensor of data.sensors) {

 sensorElement =

 document.getElementById(sensor.name)

 if (!sensorElement) {

 sensorElement =

 updateDashboard.createElement('li');

 sensorElement

 .setAttribute('id', 'sensor.name');

 sensorElement.innerHTML

 = `${sensor.name}: \

 \

 ${sensor.units}`;

 sensorListElement.appendChild(sensorElement);

 }

Chapter 3 The Live Dashboard

55

 sensorElement

 .getElementsByClassName(measurement')[0]

 .innerHTML = sensor.measurement;

 }

}

We use a element that we can locate in the DOM and change it

programmatically, but notice how we locate that element: first, the desired

 element that contains that element is found by

its id – we generate that id programmatically based on the sensor’s name.

Once we’ve found the element, we proceed to find the

element within it by its class (the method getElementsByClassName()

returns an array, since an element may have several children of the same

class. We know we only have one, hence the [0]). An alternate way to this

would be to give the element an id, rather than a class, and use that

id to locate the element. However, consider a slightly more complicated

case – if we had to update not only the value of the measurement but also,

let’s say, the time in which it was taken. Now we would have to deal with

two DOM elements with different ids for every sensor. We’d have to come

up with some naming convention for that and recall what it is every time

the code needs to reference these elements. I find that limiting the use of ids

creates leaner and more readable code, both on the JavaScript and HTML

sides. Following that approach, we first find the parent DOM element

that handles a certain sensor by its id and then use classes to find a child

element within it that contains a particular type of data from this sensor.

At this point we’ve moved away from using template rendering

all together, but this is not to say that template rendering should be

abandoned for HTTP requests. First, not every project requires real-time

updates, and in that case, as we have shown in the previous chapter,

template rendering offers a perfectly valid solution. Second, template

rendering can still be used for other parts of the page, ones that we do not

include in the real-time updating mechanism. We’ll address that soon.

Chapter 3 The Live Dashboard

56

�WebSockets
�Introduction to WebSockets
The problem with getting information back and forth between the

project computer and the web dashboard using HTTP requests is that

any exchange has to be initiated by the client, that is, the dashboard.

This is why we had to make the dashboard constantly query the

server for all the information the server has. There is an alternative,

however: WebSockets. The WebSockets protocol allows for a continuous,

bidirectional connection to be formed between a client and a server. Once

the connection is established, both client and server can send information

to each other. This way, instead of having the dashboard constantly query

for the server’s state, the server can notify the dashboard only when

something worth notifying has happened. It’s a little bit like the difference

between driving with somebody in the back seat who is constantly asking

“are we there yet?” and having them wait quietly until you tell them “hey,

we’re there.” In the following sections, we will examine how we can embed

WebSockets into both our JavaScript and Python implementations of the

weather station.

�WebSockets in Node.js
There are quite a few libraries that implement WebSockets for Node.js.

We’ll use ws.1 It has good support and a wide user base, and it keeps things

simple.

Let’s start by adding a WebSockets server to our Node.js project.

Examine the code in Listing 3-6.

1�https://github.com/websockets/ws

Chapter 3 The Live Dashboard

https://github.com/websockets/ws

57

Listing 3-6.  Adding a WebSockets server to the Node.js project

const http = require('http');

const httpServer = http.createServer(app);

const WebSocket = require('ws');

const wsServer = new WebSocket.Server({httpServer});

wsServer.broadcast = function(data) {

 for (client of wsServer.clients) {

 client.send(data);

 }

};

wsServer.on('connection', function (socket) {

 socket.on('message', function (data) {

 // handle incoming data here

 });

});

// change this line:

// app.listen(3000);

// to:

httpServer.listen(3000, function () {

 console.log('ready!')

});

In the previous chapter we launched the server with app.listen(),

and that meant that we were using an HTTP server provided by Express.js.

Now, however, we need a server that can also handle the WebSockets

communication. To solve this, we create an HTTP server ourselves using

the http module and then tell that server to use the Express.js app to

handle incoming requests. Later, we tell the WebSockets server object to

reuse that HTTP server.

Chapter 3 The Live Dashboard

58

Next, we piggyback on the WebSockets server object that we created

and add our own new method to it, broadcast(), that will send data to all

of the clients. Even though the purpose of this entire endeavor is to have

a dashboard, of which we need only one instance in one browser tab, we

do want to make sure that multiple browser tabs that show the dashboard

can get the data: perhaps we accidentally left an open tab on a desktop

computer but still want to access the dashboard from our phone. This is one

reason why we always think in terms of “all of the clients.” Another reason

is that with WebSockets, in most cases, the person using a client is not the

programmer, but rather one of many users, and we might as well learn how

to deal with multiple connections while we’re at it. Furthermore, sometimes

the entity using the client is not a person, but another program, like a main

server or another project. This is another reason for wanting to make sure

many connections can be handled at the same time.

Notice that the code has a placeholder to show how the ws library

handles incoming messages from the client: once a connection with a

client is established, a callback for the connection event is executed with

the client’s WebSockets object as an argument. To this object we can now

attach a callback for the message event that is executed whenever data

comes in, but as you can see, we don’t actually need to process any data

coming from the dashboard to the server yet.

The next step will be to use broadcast() in the measuring loop, as

shown in Listing 3-7.

Listing 3-7.  Broadcasting results from the measuring loop

setInterval(() => {

 if (isMeasuring) {

 for (sensor of sensorList) {

 sensor.measure();

 wsServer.broadcast(

Chapter 3 The Live Dashboard

59

 JSON.stringify(s)

);

 }

 }

}, 5000);

The data being sent and received by WebSockets cannot be something

as complex as a JavaScript object. Generally speaking, it can transfer arrays

of binary data, like strings. What we can do, given that, is to stringify()

a JSON object in the transmitting side and parse() the string in the

receiving side. We will discuss soon how to structure the JSON response

that the server sends to the dashboard. For the time being, we’ll just send a

simplified version of the sensor object: JSON.stringify() will make a JSON

string from any object, ignoring any functions. That’s good enough for now.

�WebSockets in Python
Building a similar program in Python is significantly more difficult.

Python, in its nature, is synchronous, meaning that a program can’t just

stop whatever it’s doing to run a callback when data shows up at the

WebSockets server’s door. Any solution that we find must take that into

consideration. We will use the websockets2 library, which will give us an

opportunity to look at some asynchronous Python code, and asyncio,3

which is the built-in module for asynchronous programming.

�asyncio Primer

The key component to an asynchronous program is the event loop, which

is responsible for running callbacks, tasks, and coroutines. Coroutines are

functions that run within the event loop. At any point they can pause and

2�https://websockets.readthedocs.io/en/stable/
3�https://docs.python.org/3/library/asyncio.html

Chapter 3 The Live Dashboard

https://websockets.readthedocs.io/en/stable/
https://docs.python.org/3/library/asyncio.html

60

wait for something to happen, giving control back to the event loop, thus

allowing different operations to appear to work concurrently. Examine the

example in Listing 3-8. This program will print "1 second" after 1 second

and "2 seconds" one second afterward.

Listing 3-8.  asyncio example

import asyncio

async def print_later(time, text):

 await asyncio.sleep(time)

 print(text)

async def main():

 task1 = asyncio.ensure_future(

 print_later(2, '2 seconds'))

 task2 = asyncio.ensure_future(

 print_later(1, '1 seconds'))

 await task1

 await task2

loop = asyncio.get_event_loop()

loop.run_until_complete(main())

The first thing to notice is that coroutines are defined using the

keywords async def. Then we see that coroutines can be called using the

await keyword. In fact, simply doing this

print_later(2, '2 seconds')

doesn’t cause a coroutine execute. Rather, this creates an awaitable object

that can be run, as mentioned, by using the await keyword, or passed to the

event loop in some other form. In this program we see two examples of how

this can be done: the first is the creation of two tasks that can concurrently

run the print_later() coroutine using the asyncio.ensure_future()

Chapter 3 The Live Dashboard

61

function. The second example is the direct instruction to run the main()

coroutine using the run_until_complete() function.

Let’s go back to what actually ends up happening in this example: the

two tasks are created in the main function, and the event loop is asked to

execute them. The code will pause right after that, and the main function

will not proceed until both task1 and task2 are executed. In print_

later(), the function that both tasks execute, asyncio.sleep(), gives

control back to the event loop for the specified amount of time. This allows

for both tasks to start right about the same time, go to sleep, and be woken

up by the event loop at the right time, and all this regardless of which one

was called first.

�Using the websockets Library

But we’re not here to talk about asyncio. Our goal is to embed WebSockets

in our weather station. However, the websockets library relies on asyncio,

and since our code is synchronous, we have to be prepared. Now that

we’ve established the basic terms, there are a few constraints we need to

pay attention to:

•	 Sending data to a WebSockets client is an

asynchronous operation in the websockets library.

•	 The await keyword can only be used within a

coroutine.

•	 There can only be one event loop in a given thread.

We want to be able to send messages to clients whenever new

measurements are taken, an operation that happens in our measuring

loop, which is synchronous. We can’t just call asynchronous functions

from a synchronous function. How do we solve that? We could refactor

all of our code to be asynchronous and have everything run on the same

thread under the same event loop, and in the case of a simple weather

Chapter 3 The Live Dashboard

62

station, that would probably be a good idea. However, this solution is not

ideal for programs that need higher time precision, so for the sake of the

example, we will choose to leave the measuring loop as it is, running as

synchronous code. Therefore, we will have to spawn a new thread and

within that thread spawn an event loop. This will allow the thread to deal

with our WebSockets server. Let’s put that into code (Listing 3-9).

Listing 3-9.  Adding WebSockets to the Python server code

import websockets

import asyncio

client_set = set()

def websocket_thread():

 global ws_event_loop

 ws_event_loop = asyncio.new_event_loop()

 asyncio.set_event_loop(ws_event_loop)

 ws_server = websockets.serve(

 client_handler, host='0.0.0.0', port=3001)

 ws_event_loop.run_until_complete(ws_server)

 ws_event_loop.run_forever()

async def client_handler(client, data_handler):

 client_set.add(client)

 try:

 while True:

 message = await client.recv()

 if data_handler:

 data_handler(json.loads(message))

 finally:

 client_set.remove(client)

Chapter 3 The Live Dashboard

63

async def send_to_all(msg):

 if client_set:

 await asyncio.wait(

 [client.send(msg) for client in client_set])

Let’s look at the code more closely. The global set client_set contains

all the active connections that the server has. We will have to manage

this set ourselves so that we can broadcast messages to all connections.

We also define ws_event_loop globally in websocket_thread(), since

the measuring loop will need to execute stuff within the event loop as

measurements come in, as we will see soon.

Note T he global keyword in Python can be confusing – why did
we have to use it for ws_event_loop but not for client_set? The
answer lies in the assignment. As long as you don’t assign anything
to a variable name that exists in the global scope, the program knows
you’re referring to the global variable. However, if an assignment
happens within a class’s method, that will create a new variable
within the scope of the class.

Next, we spawn an event loop in the new thread and create a

WebSockets server awaitable that is then passed to the event loop to

run. Note that we had to run the WebSockets server on a different port.

Unfortunatly, the websockets library does not support the running

the server alongside an HTTP server on the same port, but that’s not

that terrible. Also note how websockets.serve() takes a handler as an

argument that is called whenever a new client makes a connection. We

define that handler, client_handler(), next.

There’s not a lot going on in client_handler(). The new connection is

added to the clients’ set when the connection is made and an infinite loop

listens to data coming in, passing it to a data_handler, if one was specified. The

Chapter 3 The Live Dashboard

64

loop exits (then it’s not really infinite then, is it?) when an exception is raised

due to the client disconnecting, and the client is removed from the clients’ set.

send_to_all() is a little more interesting to talk about. This function

will be used by the measuring loop to send data to all the clients. asyncio.

wait() takes a list of awaitables and executes them concurrently. It is itself

a coroutine and therefore needs the await keyword to execute. Notice how

we generated that list with list of awaitables using list comprehension.4

asyncio.wait() does not know how to deal with an empty list – this is why

we have to check the list before we execute this function.

We are now ready to modify the measuring loop and add the spawning

of the new thread to the main code (Listing 3-10).

Listing 3-10.  Spawning the WebSockets server thread

if __name__ == '__main__':

...

 ws_thread = threading.Thread(

 target=websocket_thread)

 ws_thread.start()

...

And finally, we can send data to clients when measurements are

performed in the measuring loop, which we might as well completely

rewrite (see Listing 3-11).

Listing 3-11.  The measuring loop rewritten with WebSockets support

def measuring_loop():

 global ws_event_loop

 while True:

4�List comprehension is a tool for creating lists, with many powerful subtleties that
are often overlooked. Learn more here: https://docs.python.org/3/tutorial/
datastructures.html#list-comprehensions

Chapter 3 The Live Dashboard

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions

65

 for sensor in sensor_list:

 sensor.measure()

 msg = json.dumps({

 'name': sensor.name,

 'measurement': sensor. measurement,

 'units': sensor.units

 })

 asyncio.run_coroutine_threadsafe(

 send_to_all(msg), loop=ws_event_loop)

 time.sleep(5)

Here’s that global ws_event_loop again. Now we can use it as an

argument for asyncio.run_coroutine_threadsafe(), which does exactly

what we needed – it executes an asynchronous function, send_to_all(),

on an event loop, but does all that from a different, synchronous thread in

a thread-safe manner. Another thing to notice here is how we construct

the message to send. Unlike JavaScript, Python’s json.dumps() knows only

how to deal with primitives, and our Si7021Temp class, for instance, has the

I2C bus it’s using as one of its fields. This means that we can’t just give the

sensor object as it is to json.dumps() to encode, and our current solution

is to be very verbose as we construct the JSON object. We’ll soon examine

what other options we have for constructing the JSON message that are a

little more elegant.

�WebSockets in the Browser
Since we are updating the dashboard now with WebSockets rather than

HTTP requests, we should rewrite our HTML file, and we might as well do

that from scratch. Examine the code in Listing 3-12.

Chapter 3 The Live Dashboard

66

Listing 3-12.  WebSockets version of the HTML dashboard file

<!DOCTYPE html>

<html>

<head>

</head>

<body>

 <ul id="sensor-list">

 <script>

var ws = new WebSocket(

 �ws://${location.hostname}:{location.port}` // hard-code port

number if needed

);

ws.onmessage = function (event) {

 let data = JSON.parse(event.data);

 if (!document.getElementById(data.name)) {

 let newLine = document.createElement('li');

 newLine.setAttribute('id', data.name);

 document.getElementById(

 'sensor-list').appendChild(newLine);

 }

 document.getElementById(data.name).innerHTML =

 `${data.name}: \

 ${data.measurement} ${data.units}`;

});

 </script>

</body>

</html>

Chapter 3 The Live Dashboard

67

All modern browsers (that I know of) offer built-in support for

WebSockets, so no libraries are needed here. Notice how we instantiate a

WebSockets object: the constructor function takes the host name of the

server as an argument – this can be the URL or the IP address. Instead

of putting the actual IP address of the machine, we are using location.

hostname, which will have the correct host name no matter how we access

the machine. Whether we change its IP address or go through the trouble

of making it accessible through a domain name, an option we’ll explore

later on, doing it this way would always work. {location.port} acts the

same way, but if we use different ports for HTTP and WebSockets, as we

did with the websockets Python library, then we should hard-code the

WebSockets port instead.

Next, we define the callback function that will be invoked whenever

data is received by the WebSocket. For simplicity, we assume at this point

that we know what the message is: a JSON object containing one sensor’s

name, last reading, and the units. We use the sensor’s name as an id for the

DOM element, so that we can update it as new data comes in or add a new

line for it if one does not exist yet.

�Honorary Mention: SocketIO
Now that we wrapped our heads around WebSockets while keeping

support from libraries to a minimum, it is important to remember that

there are other libraries out there that can make our lives easier. One of the

better known ones and a personal favorite of mine is SocketIO.5

SocketIO boasts some cool features like auto-reconnect upon

disconnection and logging. If one of the connecting parties is unable to use the

WebSockets protocol, SocketIO will use a fallback protocol, like HTTP requests,

to establish the same functionality. SocketIO is first and foremost a JavaScript

library, so it’s a good option to consider for projects written in Node.js.

5�https://socket.io/

Chapter 3 The Live Dashboard

https://socket.io/

68

For projects written in Python and use Flask, there’s Flask-SocketIO,6

a package that will not only bring SocketIO’s capabilities to the project but

will also determine on its own, based on the system’s configuration, what

is the best mechanism to use for asynchronous functionality. As another

bonus, it will figure out how to use the same port as the HTTP server on its

own. Flask-SocketIO can be set up as demonstrated in Listing 3-13.

Listing 3-13.  Setting up Flask-SocketIO

from flask import Flask

from flask_socketio import SocketIO

app = Flask(__name__)

socketio = SocketIO(app)

From this point, the most important thing to remember is that instead

of using time.sleep() for any time delay, socketio.sleep() should be

used. That is the key for letting SocketIO deal with the asynchronous stuff.

It’s important to remember that SocketIO is actually quite different than

WebSockets: first, as mentioned, it can use a different protocol if necessary;

second, unlike WebSockets, its API does support communication via actual

JSON objects and not just their text representation; third, events can be

named, allowing different callback functions to respond to different event

names. See Listing 3-14 for an example.

Listing 3-14.  Event names with SocketIO in a Node.js server

var app = require('express')();

var http = require('http').Server(app);

var io = require('socket.io')(http);

io.on('connection', function(socket){

6�https://flask-socketio.readthedocs.io/en/latest/

Chapter 3 The Live Dashboard

https://flask-socketio.readthedocs.io/en/latest/

69

 // send an event named "greet"

 socket.emit('greet', {text: "hey there"});

 // handler for events named "user_command"

 socket.on('user_command', function(data){

 // do something with the data

 handle(data);

 });

});

Personally, I find that event names can be handy if used mindfully and

more specifically if the event names themselves are chosen very carefully.

On the other hand, event names can also be confusing and can bring

unnecessary awkwardness to the code – remember that anything that can

be done with event names can also be achieved by systemic structuring

of the JSON objects that are communicated, as we will explore in the

following section.

�JSON
�JSON Communication Design
So far, the JSON objects that we sent back and forth were very

lightweight, and the programs we wrote assumed a very simple and frail

communication protocol. Designing an efficient protocol can make the

code handling it more compact, readable, and robust.

The key to successful communication is to make sure that the receiving

party, whether it’s the client or the server, knows what the content of

message describes. Until now, we had the server send the dashboard a

dictionary containing a name, the last readout, and the units, assuming

that the dashboard knows that every incoming JSON object describes a

sensor. In a more complex project, the dashboard would want to know the

type of thing that is being described. Is this a sensor, a motor, or a user? We

Chapter 3 The Live Dashboard

70

can solve that by treating all the sensor data as a value in a key-value pair

where the key is sensor, for example (see Listing 3-15).

Listing 3-15.  An example JSON object wrapped in a key-value pair

{"sensor":

 {

 "name": "sensor1",

 "last_read": 24,

 "units": "Celsius"

 }

}

Better yet, we can use a key such as sensors, with data of multiple

sensors, if we choose, just like we did when we were using HTTP requests

(see Listing 3-16).

Listing 3-16.  An example JSON object that describes multiple sensors

{"sensors": [

 {

 "name": "sensor1",

 ...

 },

 {

 "name": "sensor2",

 ...

 },

 ...

]}

And since we have this mechanism in place, we can let the JSON object

have data of objects of various types, as well as other information about

what the server is doing (Listing 3-17).

Chapter 3 The Live Dashboard

71

Listing 3-17.  JSON object describing components of different types

{

 "sensors": [

 ...

],

 "motors": [

 {

 "name": "motor1",

 "speed": 30

 },

 ...

],

 "measuring": true

}

This is a powerful way of communicating the machine’s state to the

dashboard. It allows for the same protocol to be used for a change in a

single component as well as the entire state of the machine. Dumping all

the data the machine has is specifically useful when the dashboard loads

and needs to be populated. Until now we had to either rely on template

rendering or wait for each sensor to report to the dashboard. The latter is

problematic in terms of reliability engineering: a sensor would not even

appear on our dashboard until a measurement is taken. However, if a

sensor failed and had stopped reporting, there would be nothing in the

dashboard to imply that, and we would be left to rely on our memory to

tell us that a particular sensor is missing from the dashboard. Therefore,

it is a good idea to give to the dashboard, as soon as it’s ready, all the data

regarding the machine and use that data to populate the DOM. We’ll add

that feature to our code in the following sections.

Chapter 3 The Live Dashboard

72

�JSON Message Structuring
How do we actually encode these JSON objects? So far, when we

constructed a JSON object to represent a sensor, we used the simplest

methods we could find. In JavaScript we used JSON.stringify() directly

on the object, which made a JSON object from all data members of the

object, ignoring any functions. The result of that was the inclusion of some

data members we were not interested in, such as the I2C bus object in our

Si7021Temp class. This is even worse in Python: json.dumps() doesn’t

know how to ignore functions and throws an exception, so we had to

laboriously build our own dictionary to pass to json.dumps().

There are ways to get around these problems: for JavaScript,

JSON.stringify() can take a replacer as argument. The replacer can be a

function that is being called for every key-value pair in the object and

determines how, if at all, it will be represented in the JSON object.

Alternatively, the replacer can be an array whose values represent the only

keys allowed in the JSON object. The code in Listing 3-18 shows both ways

the replacer argument can be used to create a JSON object that has only

the name, measurement, and units keys.

Listing 3-18.  Using the replacer argument with JSON.stringify()

function replacerFunction(key, value) {

 let allowedKeys = ['name", 'measurement", 'units'];

 if (allowedKeys.includes(key)) {

 return value;

 } else {

 returned undefined; // key will not be included

 }

}

var replacerArray = ['name", 'measurement', 'units'];

Chapter 3 The Live Dashboard

73

// both of these will work

JSON.stringify(someSensor, replacerFunction);

JSON.stringify(someSensor, replacerArray);

Yet another way includes only specific members of an object when

encoding it to JSON is to completely override the encoding process by

implementing a toJSON() method in that object. If we introduce such

a method to our Sensor superclass, all of its subclasses will render to

JSON the same way, and we will never have to remember to use replacer

argument (see Listing 3-19).

Listing 3-19.  Customizing JSON encoding with toJSON()

class Sensor {

 // ...

 toJSON() {

 return {

 name: this.name,

 measurement: this.measurement,

 units: this.units

 };

 }

 // ...

If we follow the guidelines that we set earlier for structuring JSON

messages, we should remember to change the way the measuring loop

sends out data to the dashboard. Let’s also add code to dump the state of

the machine to the dashboard once it’s ready. We’ll completely rewrite

the measuring loop and the connection event handler of the WebSockets

server (Listing 3-20).

Chapter 3 The Live Dashboard

74

Listing 3-20.  JavaScript measuring loop and connection event

handling rewritten

setInterval(() => {

 if (isMeasuring) {

 for (sensor of sensorList) {

 sensor.measure()

 wsServer.broadcast(

 JSON.stringify({sensors: [sensor]}));

 }

 }

}, 5000);

wsServer.on('connection', function connection(ws) {

 wsServer.broadcast(JSON.stringify({

 sensors: sensorList

 }));

 ws.on('message', function incoming(data) {

 // handle incoming data here

 });

});

Note that we’re sending the data about a sensor immediately after it

performs a measurement rather than waiting for the loop to finish and all

sensors to take their measurements. Doing the latter is just fine and might

be very suitable for an application where the data takes a very short amount

to read. For other applications, however, where different components of the

system generate data at less predictable times, it makes sense to send data

specifically for that new datapoint. The point is to remember to conform

to the protocol, which in this case is having the encoded sensor data as an

item in a list, and that list being the value of a key named "sensors".

For our Python code, we should find a better solution than the one

we have – constructing a dictionary from scratch every time we want to

Chapter 3 The Live Dashboard

75

send a message. One of the problems we were trying to solve was that the

object we were encoding had functions, which json.dumps() can’t handle.

In Python, to make sure json.dumps() doesn’t hit a function, an object’s

__dict__ field can be passed instead of the object itself, like so:

json.dumps(some_sensor.__dict__)

But this doesn’t solve the exclusion of unwanted members, such as

the I2C bus in our example. We can build a custom encoder, and unlike

JavaScript, we’ll have to remember to use it as an argument whenever we

want to encode our objects (see Listing 3-21).

Listing 3-21.  Custom JSON encoder for the Sensor class

class SensorEncoder(json.JSONEncoder):

 def default(self, obj):

 if isinstance(obj, Sensor):

 return {

 "name": obj.name,

 "measurement": obj.measurement,

 "units": obj.units

 }

 return json.JSONEncoder.default(self, obj)

Our custom encoder extends the json built-in module’s JSONEncoder. It

overrides its default() function, which decides how the object is encoded.

Note how the new function checks for the class of the object: as our

code evolves, this approach will allow us to add more tests and code that

specifies how to encode instances of other classes as well. If the object to be

encoded is not a Sensor (or any of the other classes we can check for), we

assume that the object can be encoded by the original default() function.

As we did with the JavaScript server code, let’s plug in the new encoder

into the measuring loop. While we’re at it, we’ll update the WebSockets

Chapter 3 The Live Dashboard

76

connection handler so that all the data is dumped to the dashboard upon

connection, as we did with the JavaScript implementation (Listing 3-22).

Listing 3-22.  Python measuring loop and connection event

handling rewritten

def measuring_loop():

 global ws_event_loop

 while True:

 for sensor in sensor_list:

 sensor.measure()

 msg = json.dumps(

 {'sensors' : [sensor]},

 cls=SensorEncoder)

 asyncio.run_coroutine_threadsafe(

 send_to_all(msg), loop=ws_event_loop)

 time.sleep(5)

async def client_handler(socket, data_handler):

 client_set.add(socket)

 await socket.send(json.dumps(

 {"sensors": sensor_list},

 cls=SensorEncoder))

...

�JSON Message Parsing
Examine Listing 3-23, which replaces the ws.onmessage() event handler in

the dashboard code from Listing 3-12. It demonstrates how JSON objects

can be decoded and handled in the dashboard’s JavaScript code.

Chapter 3 The Live Dashboard

77

Listing 3-23.  Decoding JSON messages

ws.onmessage = function (ev) {

 data = JSON.parse(ev.data);

 for (let key in data) {

 switch (key) {

 case 'sensors':

 for (let sensor of data.sensors) {

 if (!document

 .getElementById(sensor.name)) {

 let newLine =

 document.createElement('li');

 newLine.setAttribute('id', sensor.name);

 document.getElementById('sensor-list')

 .appendChild(newLine);

 }

 document.getElementById(sensor.name)

 .innerHTML =

 `${sensor.name}: \

 ${sensor.measurement} \

 ${sensor.units}`;

 }

 }

 }

}

Note T he switch block has only one case: this is to allow for other
cases to be implemented later, for example, motors or system stats.

Chapter 3 The Live Dashboard

78

We’ve created a handler that is able to use incoming data from the

server to both dynamically generate the DOM and update it in real time.

This implementation makes the template rendering unnecessary, which

reduces the number of ways the server and the dashboard communicate,

and thus eliminates some potential confusion. This comes with a price,

though: as can be seen from the code in Listing 3-23, the code that

generates DOM can get very verbose. Using template rendering to merely

create the DOM and then WebSockets to populate the data both on

loading and in real time is a good strategy to pursue, especially when the

dashboard’s layout is complex. This is a technique we’ll explore in the next

chapter.

WHAT’S IN AN OBJECT?

Now is an opportunity to address a very common bug when decoding JSON

messages: looping through the keys and using the switch statement on each

of them is one way to traverse the message and handle all the keys. Another

good way would have been to check for the existence of every key:

if ('sensors' in data) {

 //...

But in that case, note that we check the existence of a key with the in

operator and not like this:

if (data.sensors) {

 //...

What is the difference? Both tests will fail, as wanted, when the sensors

key is not present in the JSON message. However, the latter will also fail if

the value of data.sensors does exist but it is 0 or false. Sure, there is no

good reason for this to happen in our example, but if we conduct the same test

for fields that do have a good reason to have 0 as a value, such as the speed

of a motor or the position of a joystick, we risk ignoring the actual data and

Chapter 3 The Live Dashboard

79

assuming the key doesn’t exist. This is why it’s good practice to always use

the in operator to test the existence of a JSON key.

Note that the hasOwnProperty() method does pretty much the same

thing as the in operator in this case. There are differences in behavior when

performed on an inherited class instance, but for simple objects the brevity

and readability of the in operator has an advantage.

�Summary
In this chapter we looked into two methods of communicating back and

forth between the project’s main program and a web Dashboard: HTTP

requests and WebSockets. Using HTTP requests is simple and uses the

infrastructure that we already put in place to allow the program to serve

a web page. However, this technique requires the web page to constantly

request for updates, making the communication inefficient and not as timely

as it could be, as it is not driven by changes in the project’s state. WebSockets

address this exact problem, allowing updates to be triggered by the server

code, reducing data traffic to a minimum. WebSockets come with a price,

though: they require additional infrastructure and extra care for connectivity.

We discussed some best practices to use when working with

WebSockets. We saw the advantages of the server code sending new data

to the dashboard as the data is ready and also dumping all the information

to the dashboard as soon as a new client connects; we learned how

constructing an update message as a dictionary of arrays helps keep the

code compact and organized; we also showed how having the dashboard’s

DOM relies more heavily on classes rather than ids helps keeping the

HTML file cleaner and the accompanying client-side JavaScript coherent.

In the following chapter, we will focus on the dashboard itself. We will

see how to take advantage of our frequent updates in terms of the web

dashboard’s visual design. Also, as promised, we’ll learn how to effectively

combine the advantages of template rendering and WebSockets.

Chapter 3 The Live Dashboard

81© Eyal Shahar 2019
E. Shahar, Project Reliability Engineering, https://doi.org/10.1007/978-1-4842-5019-8_4

CHAPTER 4

Dashboard Design
So far, our dashboard was completely text based. Adding graphic design

elements to it will not only make it more pleasant to look at, but it will

also help us navigate the different sections of the dashboard, see the

data in context, and quickly identify issues that need to be addressed.

In this chapter we will go through some tools and techniques for data

visualization that will add both functionality and pizzazz to our dashboard.

For this purpose, we will examine the dashboard’s design both in terms of

software and appearance.

�Strategizing
The key to successfully programming any web page is keeping a separation

between the document’s structure, content, and design. When these

three elements are decoupled, it is easier to make changes to one of them

without having to change the others, or at least keeping the adaptations

needed to minimum. This also allows for large-scale changes to be made

with very minor modifications to the code and generally keeps the code

more organized.

In terms of structure and design, the separation is achieved by

restricting the design specification to a CSS file while leaving the HTML

to describe the structure and hierarchy of the different elements. We have

seen that the relation between structure, content, and design is established

by assigning classes and ids to DOM elements that JavaScript and CSS can

relate to.

82

In the previous chapter, we showed different strategies for using HTTP

requests and WebSockets. Moving forward, the strategy we will take is to

use a combination of the two. To generate the structure of the dashboard,

we will use template rendering. This will allow us to write very little code,

even if we are monitoring many components. Moreover, if the system has

good design, the template itself doesn’t need to be modified if components

are added, removed, or changed. For updating the dashboard, we will

continue to use WebSockets, but we will drastically change the way these

updates are presented in the dashboard by modifying the front-end code

and introducing some CSS rules.

�Beefing Up the Project
To make this exploration effective, we will add a little bit more meat to our

project. Let’s have two temperature sensors installed and add two fans that

will be controlled by two GPIO pins. Each fan will be paired with one of the

temperature sensors and will be turned on if the temperature measured

by that sensor crosses a given threshold. We will implement this project on

a Raspberry Pi and choose GPIO20 and GPIO21 for the pins that control

the fans. Sure, this is not a very exciting project, but it gets us enough

components to display on the dashboard. See Listing 4-1 for the code

that gets added to the main program: for simplicity, only the JavaScript

implementation is considered here.

Listing 4-1.  Adding fans to the weather station project

var gpio = require('rpi-gpio');

gpio.setMode(gpio.MODE_BCM);

class Fan {

 constructor(name, pin) {

 this.name = name;

Chapter 4 Dashboard Design

83

 this.pin = pin;

 gpio.setup(this.pin, gpio.DIR_OUT);

 }

 set(state) {

 this.state = state;

 gpio.write(this.pin, this.state);

 wsServer.broadcast(JSON.stringify({

 fans: [this]

 }));

 }

}

var threshold = 24; // arbitrary value, celsius

var fanList = [];

fanList.push(new Fan('left', 20));

fanList.push(new Fan('right', 21));

setInterval(() => {

 fanList[0]

 .set(sensorList[0].measurement > threshold);

 fanList[1]

 .set(sensorList[1].measurement > threshold);

}, 5000);

�Serving Static Files
As our dashboard is getting more complex, it might be a good idea to

remove JavaScript and CSS from the HTML file and put them in separate

files. We often refer to such files as static files, as they are not rendered by

the templating engine. Static files can be accessed directly by their route,

as long as we tell the Flask or Node what folder all static files are located.

Chapter 4 Dashboard Design

84

Traditionally, that will be a folder called “public” or “static” that is located

inside the project’s folder. For a Node.js project, we would use the command

app.use(express.static('static'));

Within the static folder, the convention is to have a “scripts” folder for

JavaScript files and a “styles” folder for CSS files. In the HTML file, we’ll

then link to a CSS file within the <head> tag, files like this:

<link rel="stylesheet" type="text/css"

 href="styles/style.css">

JavaScript files are included like this:

<script src="scripts/script.js"></script>

If a JavaScript file contains code that executes immediately after

loading and this code relies on DOM elements, the <script> tag

should come after these elements. Otherwise, the elements will not yet

be there for the code to refer to. Another way to do this, considered by

some as healthier, is to put the <script> tag inside the <head> tag, and

everything that should execute right after the page loads should be called

by window.onload() or document.onload().

In the simplest implementation, Flask looks for these files in a folder

called static by default. Using them from the HTML files is the same as

shown before; however, the path should be preceded by static/.

�Creating a Template
Since we are working with the JavaScript implementation of the project,

we will write a template for the Pug templating engine. A good way to

have all of the data nicely organized is to put each sensor in a row of a

table (Listing 4-2).

Chapter 4 Dashboard Design

85

Listing 4-2.  Using Pug to put each sensor in a table row

h1 weather station

div (id='dashboard-sections-container')

 div (id='sensors')

 table

 caption sensor data

 tr

 th name

 th time

 th measurement

 th units

 each sensor in sensors

 tr (class='sensor' id=sensor.name)

 td= sensor.name

 td (class='time')

 td (class='measurement')

 td= sensor.units

 div (id='fans')

 table

 caption fans

 tr

 th name

 th state

 each fan in fans

 tr (class='fan' id=fan.name)

 td= fan.name

 td (class='state')

A few words about tables: an HTML table starts with the <table> tag,

followed by an optional <caption> tag. A table consists of rows, indicated

by <tr> tags, and each row has either header cells, indicated by <th> tags,

or regular cells, indicated by <td> tags. It is possible to surround header

Chapter 4 Dashboard Design

86

and body rows with a <thead> and a <tbody> tag, respectively. This can

help browsers with scrolling through bigger tables, but we don’t need that

in our case.

�Data Updates
As you can see, some of the cells in each row get rendered along with the

page: the sensor’s name and the units of the measurements. The content

of these cells will not change as updates come in. The other cells – the

time of the last measurement and its value – are left empty, and they

rely on the live updates to fill them with content. We should modify the

JavaScript code we wrote in Listing 3-23 that handles incoming updates.

See Listing 4-3 for the updated code.

Listing 4-3.  The updating function modified to the new template-

rendered dashboard

function updateDashboard(data) {

 for (key in data) {

 switch(key) {

 case 'sensors':

 for (let sensor of data.sensors) {

 let sensorElement =

 document.getElementById(sensor.name);

 sensorElement

 .getElementsByClassName(

 'time')[0].innerHTML = sensor.time;

 sensorElement

 .getElementsByClassName(

 'measurement')[0].innerHTML =

 sensor.'measurement'.toFixed(3);

 break;

Chapter 4 Dashboard Design

87

 case 'fans':

 for (let fan of data.fans) {

 let fanElement =

 document.getElementById(fan.name);

 if ('state' in fan) {

 if (fan.state){

 fanElement.classList.add('on');

 fanElement.classList.remove('off');

 } else {

 fanElement.classList.add('off');

 fanElement.classList.remove('on');

 }

 }

 }

 break;

 }

 }

}

Looking at the lines of code that deal with the temperature sensor

updates, it’s obvious that this code now shrunk considerably. We no

longer need to build this part of the DOM with JavaScript code, as this is

taken care of by the template. Note how we follow the protocol that we

formulated in Chapter 3: we check for the existence of a sensors key in the

incoming data JSON object, and if it exists, we interpret it as an array of

sensors and process their data.

We also extended this function to deal with incoming updates for

the fan’s state. In response to each fan’s state, we set a class to the DOM

element that represents the fan to either on or off. In this case, this

element and entire <tr> table row, and not just the state cell. This is all we

need to do, as we will soon use some CSS to do the rest.

Chapter 4 Dashboard Design

88

�Scrutinizing the Code
There are a couple of things we should talk about in terms of

programming: first, before probing the state of the fan, we test to see

whether the state field is even present in the incoming JSON object.

We have talked about the importance of this before, but this is a good

opportunity to reiterate. We tested using the line

if ("state" in fan):

Consider the alternatives: evaluating the test if(fan.state) would

result in false both if state is actually false and also if the state field

is not even included, leading us to think that the fan is off regardless of

its state. We might be tempted to be more specific and try something

like if (fan.state == true), but that will actually throw an exception

if the state field is not present, preventing the function from resuming

execution. Making sure first that the field actually exists is the safest and

most reliable way to read data in a JSON object.

Then there’s the matter of toggling the on and off classes. The way it’s

presented in Listing 4-3 might seem a little verbose. One might prefer to

use the conditional operator, as shown in Listing 4-4.

Listing 4-4.  Using the conditional operator to add and remove classes

if ('state' in fan) {

 fanElement.classList.add(

 fan.state ? 'on' : 'off');

 fanElement.classList.remove(

 fan.state ? 'off' : 'on');

}

This compresses seven lines of code into two, but not without a price:

first, this is slightly less readable than the previous example, as using the

conditional operator often is; second, any type of conditional, be it an

Chapter 4 Dashboard Design

89

if-then, the conditional operator, or a loop termination condition, are

all computationally costly. By using the syntax shown in Listing 4-3, the

program uses two conditionals rather than one, so although the code is

shorter, it’s actually less efficient. In our program, these updates happen

relatively infrequently. If this function was invoked many times every

second, then efficiency would be a thing to worry about. In conclusion,

with readability and efficiency on one side of the ring, and brevity on the

other, the former wins.

As our web page gets more intricate, the mechanisms which we use

to locate DOM elements should also be re-evaluated: getElementById()

and getElementsByClassName() could be replaced by the newer

querySelector()1 and querySelectorAll()2 that take CSS selectors as an

argument, similarly to the jQuery library API. By using CSS selectors, one

query can be used to select a very specific element or a set of elements.

However, since a CSS selector needs to be formulated, the code for each

query can be slightly harder to read: in our example, we could end up with

something like

querySelector(`#${sensor.name} .time`) = //...

Also, querySelector() and querySelectorAll() are a little more

computationally expensive for the browser, although that is usually

insignificant. Just as in the case of toggling the on and off classes, I chose

code that is more verbose, but also more readable and more efficient.

Due to my own background in digital signal processing, I tend to pay

attention to efficiency, probably more than necessary. However, I do feel

that being mindful of these considerations even when it’s not critical helps

me write more efficient code at times when it is. At the end of the day, it is a

1�https://developer.mozilla.org/en-US/docs/Web/API/ParentNode/
querySelector

2�https://developer.mozilla.org/en-US/docs/Web/API/ParentNode/
querySelectorAll

Chapter 4 Dashboard Design

https://developer.mozilla.org/en-US/docs/Web/API/ParentNode/querySelector
https://developer.mozilla.org/en-US/docs/Web/API/ParentNode/querySelector
https://developer.mozilla.org/en-US/docs/Web/API/ParentNode/querySelectorAll
https://developer.mozilla.org/en-US/docs/Web/API/ParentNode/querySelectorAll

90

matter of coding style, and your preferences may differ. The main purpose

of this discussion is to shed light on the various courses of action and the

type of inner discussion a programmer should have when formulating any

piece of code.

�Basic CSS
Now that we have laid out our elements and gave them ids and classes,

we can use CSS to style the dashboard so that it is easy to navigate and

is aesthetically pleasing. When we’re done, our dashboard will look like

Figure 4-1.

�Tables
Putting borders on the tables makes it easier to differentiate between the

cells even when they’re in close proximity. It also helps in understanding

which value belongs to each line. Collapsing the borders means that

instead of each cell having its own borders, neighboring cells share a

border. This saves on space while keeping a cleaner design. Last, adding

background color to the header line cells, especially in a page with

multiple tables, helps to create separation between the tables and establish

hierarchy (see Listing 4-5).

Figure 4-1.  Our weather station’s dashboard after some styling

Chapter 4 Dashboard Design

91

Listing 4-5.  CSS file for general dashboard layout

table, th, td {

 border: 1px solid black;

 border-collapse: collapse;

}

th {

 background-color: lightblue;

}

Recall from Table 2-3 that the syntax table, th, td means that this CSS

style is applied to elements of these three tags.

�Text
The next sub-sections discuss a few guidelines that I find useful when

styling text elements.

�Capitalization

Instead of capitalizing text in the HTML file, it can be useful to enter the

text in lowercase in the file and specify the capitalizing style in the text-

transform CSS property. The capitalize and uppercase values are useful

options for this property, mostly for headers, and using CSS instead of

introducing capitalization to the text itself means that it’s easier to make

changes to the design. Another option for headers is to use the font-

variant property with the small-caps value. Figure 4-2 shows the effect of

these different settings.

Chapter 4 Dashboard Design

92

�Numerical Columns

For a table column that contains updating numerical values, it’s a good idea

to set the font to a monospace one. In monospace fonts all the characters

have the same width in pixels. Then, we can also set the text to be right-

justified and make sure that the column is wider than what we expect the

content to be. In our example, the CSS code will look like Listing 4-6.

Listing 4-6.  Styling a numerical table column

.sensor .measurement {

 font-family: monospace;

 text-align: right;

 width: 5em;

}

Recall from Table 2-3 that the CSS selector .sensor .measurement

means “all elements of the class measurement that are contained in an

Figure 4-2.  Text capitalization in CSS

Chapter 4 Dashboard Design

93

element of the class sensor”. Using em3 units, which are equal to the

effective font size, and setting the width to more ems than the number

of characters expected, makes sure that the content of the table cell will

always have room.

These settings, in conjunction with the toFixed() JavaScript function,

make sure that our real-time updating data does not cause the table size

to keep changing and also that all the numerical data is aligned in terms of

the decimal point, which are two features that increase readability.

�Fonts

Unless you are designing signs for a rustic style wedding in the San

Francisco Bay Area, I would recommend refraining from using too many

fonts in one document. A good rule of thumb is to stick to two fonts – one

Serif and one Sans Serif, with the addition of a monospace variant for

numerical data. A safe choice is to use the Serif font for more text-heavy

parts like headers and the Sans Serif font for the data. For a dashboard, try

not to go too exotic with your selection of fonts, and pick ones that relate

to one another and share a similar atmosphere. Obviously, fonts such as

Comic Sans and Fantasy should never ever be used. By anyone.

�Layout
Positioning HTML elements using CSS can be extremely frustrating,

and this is often due to confusion regarding what the participating CSS

properties, display and position, actually do.

3�To learn more ems and other CSS sizing units, see Mozilla’s guide: https://
developer.mozilla.org/en-US/docs/Learn/CSS/Introduction_to_CSS/
Values_and_units

Chapter 4 Dashboard Design

https://developer.mozilla.org/en-US/docs/Learn/CSS/Introduction_to_CSS/Values_and_units
https://developer.mozilla.org/en-US/docs/Learn/CSS/Introduction_to_CSS/Values_and_units
https://developer.mozilla.org/en-US/docs/Learn/CSS/Introduction_to_CSS/Values_and_units

94

�The display Property

The display property determines how an element behaves within the

context of its surrounding elements and how its children are placed. This

addresses, for instance, whether elements appear in the same line or one

below the other, how they are spaced, and how they are affected by width

and height properties that are assigned to them. Table 4-1 details a few of

the more common values that the display property can accept.

While inline, block, and inline-block are easier to grasp, the newer

grid and flex are more complex but are significantly more powerful,

especially if an element has multiple children that relate to each other in a

specific way. We are going to spend some time specifically on flex, since

it’s perfect for our use case: we need a clean design that works well for both

desktops and mobile devices, but we don’t want to spend too much time

on making it – the dashboard is not the project itself, but rather just a tool,

and it is only going to be used by us.

Table 4-1.  Some common display values

Value Description

inline Appears in the same line as the surrounding elements

block The element starts at a new line and takes the width of its parent

inline-

block

Appears in the same line as its surrounding elements, but its width and

height can be set

none The element is not displayed and does not affect the document’s layout

grid Appears as a container of a grid system for its children

flex Appears as a container for a row or column of child elements

Chapter 4 Dashboard Design

95

In our example, we have two <div> elements that are direct children of

the dashboard-sections-container <div> element. A <div> element, by

default, has its display property set to block. This means that unless we

change it, each of these sections will start on a new line and will be as wide

as its parent. On a desktop screen, this is inefficient, since we can squeeze

several of these sections side by side. A flexbox, which is a <div> element

that has its display property set to flex, does just that. We can set the style

of the container as shown in Listing 4-7.

Listing 4-7.  Using a flexbox for laying out the sections

#dashboard-sections-container {

 display: flex;

 flex-direction: row;

 flex-wrap: wrap;

 justify-content : space-evenly;

}

A flexbox has its children spread out in a row or in a column, as

determined by the flex-direction property. Setting the flex-wrap

property to wrap lets children of the container be placed in a new row if

they run out of space. Figure 4-3 shows a few flexbox properties and how

they affect the layout. It is definitely not a comprehensive guide to all the

flexbox properties and their available settings, but it’s a good starting point

and it does include some of the more useful features.4

Elaborate layouts can be achieved solely by using treating the

document as a tree of flexboxes with both row and column directions.

Figure 4-4 demonstrates how a dashboard might be structured this way.

4�A good interactive guide to the different properties of the flexbox can be found
here: https://yoksel.github.io/flex-cheatsheet/#justify-content

Chapter 4 Dashboard Design

https://yoksel.github.io/flex-cheatsheet/#justify-content

96

Figure 4-3.  A few examples of flexbox properties. The CSS code before
each example highlights only the featured properties for that example.
These are applied to the flexbox container, which is the gray box with
the dashed border. Find the code used to create these examples in the
book’s GitHub repository, /ch04/flex.html.

Chapter 4 Dashboard Design

97

�The position Property

The combination of the display properties for all elements in the

document creates what is often referred to as the flow of the document,

as each element finds its place in the flow. This is when the position

property comes into play: it determines how the element interprets its

place in the flow. Table 4-2 summarizes the functionality of the possible

values.

Figure 4-4.  A complex web page design can be relatively easily
achieved using flexboxes. The HTML and CSS that generated
this design can be found in the book’s GitHub repository, /ch04/
flexdesign.html.

Chapter 4 Dashboard Design

98

�Data-Driven CSS
The CSS we have used so far refers to the static layout of the HTML element

and the overall design of the document. CSS, however, can be also used

to convey information about the data and highlight elements that bear

importance. It could be used, for instance, to highlight text that require

attention, color an element in green or red to imply that certain things are

on or off, and gray out control elements that are not currently functional.

Let’s go back to the fan table in our dashboard. In Listing 4-2 we left a

column for every fan to indicate its state. To demonstrate some principle of

handling data with CSS, we can color the cells in this column green or red,

depending on whether the fan is on or off, respectively. We can also fill the

column with the actual words “on” or “off”.

Unlike the values for the temperature sensor, when we receive fan

data from the server, our client-side JavaScript code (Listing 4-3) does

not change the properties of the cell that we want to eventually reflect the

update, that is, the cell in the “state” column. Instead, the code changes

Table 4-2.  The position property’s values

Value Description

static Leaves the element in its natural place in the flow

relative Uses the top, bottom, left, and right properties to

offset the element from its natural position in the flow

absolute The top, bottom, left, and right properties set the

element’s position in relation to its parent

fixed The element ignores the flow, and the top, bottom,

left, and right values are used to determine the

element’s position relative to the viewport

sticky Acts like relative, unless scrolled out of view – then

acts like fixed

Chapter 4 Dashboard Design

99

the class of the entire row. The motivation behind this is that generally

speaking, it’s best if the JavaScript code knows as little as possible about

the structure of the HTML documents. As we mentioned before, this

compartmentalizes the various aspects of the program – layout and

functionality – and makes it easier to debug and make changes. While

we need to know to which table cell we insert the temperature value, we

don’t need that level of specificity in order to change the color of the status

column. Examine the code in Listing 4-8.

Listing 4-8.  Using color to convey the fan’s state

.fan .state {

 color: white;

}

.fan.on .state {

 background-color: green;

}

.fan.off .state {

 background-color: red;

}

The selector .fan.on .state means “elements of class ‘state’ that

are contained in an element that is of both classes ‘fan’ and ‘on’”. This is

the kind of logic we were building up to: while the JavaScript code only

tells the HTML document “whatever you have going for this fan, just

make sure you display in a way that conveys that it’s on,” it is the CSS that

picks the exact child element and styles it. Furthermore, the CSS code is

almost written in spoken English: “a fan that is on, its ‘state’ column’s

background color is green.” This also allows us to use the class name

“state” for other elements in the document, and either have common

styles for all of them by using the simple CSS selector .state or have

individual styles depending on the type of components by using more

complex selectors, like we have just shown.

Chapter 4 Dashboard Design

100

Let’s wrap up this section with a cool trick: we can even use CSS to fill

in the text inside the state column. Check out Listing 4-9.

Listing 4-9.  Using the content CSS property to fill in text

.fan.on .state::before {

 content: "on";

}

.fan.off .state::before {

 content: "off";

}

This will put the actual “on” or “off” text inside the status table cells.

Had there been already content in these cells, the text would have been

added before it. However, since otherwise the cells are empty, it makes

no difference whether we use the ::before or ::after selector. This trick

is especially useful if different classes share this behavior, as it can all be

handled with these two CSS rules rather than with JavaScript for every

single class. This technique saves some lines of code and makes changes

easier to make.

�Responsive Design
The term “responsive design” refers to web pages designed in a way that

displays well on both computers and mobile devices, through the use of

HTML and CSS. The primary technique for achieving this is by applying

different CSS rules depending on the device showing the page.

�Media Queries
Obviously, the first step is to get a sense of what kind of device is displaying

the content. This is most often done by examining the width of the screen.

Chapter 4 Dashboard Design

101

In a CSS file, we can apply different rules based on the screen’s width, as

shown in Listing 4-10.

Listing 4-10.  Selecting a CSS rule based on screen width

@media screen and (max-width: 767px) {

 body {

 font-size: 15px;

 }

}

@media screen and (min-width: 767px) {

 body {

 font-size: 20px;

 }

}

CSS rules that start with the @ sign are called at-rules, and unlike other

rules that apply to elements of specific tag, class, or id, at-rules define more

general behavior. @media, also known as a media query, applies the rules it

encompasses only for medias that match the query. In our case, the media

has to be a screen – other options apply to printers and text-to-speech

devices – and its width needs to comply with the minimum or maximum

width requirement.

Note S ince competing CSS rules override each other, with those
appearing later in the code winning, the code in Listing 4-10 would
work the same even if the rules inside the first media query – the
max-width one – had not been inside a media query. In that case,
it would act as the default, and if the browser would decide to apply
the min-width rules, these rules would override any other CSS rules
that came before them.

Chapter 4 Dashboard Design

102

Another way to do this is in the HTML files, selectively importing

different CSS files based on the screen’s width, as demonstrated in

Listing 4-11.

Listing 4-11.  Selecting a CSS stylesheet in an HTML file, based on

screen width

<link rel="stylesheet"

 media="screen and (max-width: 767px)"

 href="mobile.css">

<link rel="stylesheet"

 media="screen and (min-width: 768px)"

 href="desktop.css">

We can have many different designs that accommodate different

devices in different orientations. Table 4-3 shows a fairly economical

system for classification of devices, and searching the Web would yield

others, some being significantly more detailed. Personally, I tend to stick

to the two shown earlier when it comes to designing a dashboard. After

all, dashboards are only for the eyes of the people who operate the project

and not the general public. If you are the only one who is going to see

the dashboard and you do not own a tablet, adding a stylesheet for that

specific form factor is probably an overkill.

Table 4-3.  Device classificaton based on display width

Device Type Minimum Width Maximum Width

Desktops 992 px -

Tablets in landscape 768 px 991 px

Tablets in portrait, phones in landscape 480 px 767 px

Phones in portrait – 479 px

Chapter 4 Dashboard Design

103

�Element Sizing
When sizing elements in CSS, three sizing options are available that are

preferable to px units when considering responsive design:

•	 Ephemeral units (em) are relative to the font size that

is in effect for the element. If the font size is 10px, then

1em=10px.

•	 rem (root em) does the same, but is always relative to the

font size of the root element.

•	 Percentages (%) allow elements to be sized in

proportion to the size of their parents.

Using these units and avoiding px is considered good practice in web

design, as it keeps the design and the code more uniform between devices

and also keeps the number of rules that are chosen by media queries to a

minimum.

�Device Orientation
Most mobile devices scale the web page based on the device’s orientation,

an outcome that developers actually prefer to avoid. The solution to this

problem is universal: almost all web pages include this line in their <head>

section:

<meta name="viewport"

 content="width=device-width, initial-scale=1.0">

<meta> tags contain information about the document, and they are

mostly used by search engines, but sometimes by the browser that is

showing the document. For example, a <meta name="viewport"> tag gives

the browser information about the page’s size and scaling. The content

attribute here tells the browser to set the page’s width to the width of the

device and also instructs it not to scale the content.

Chapter 4 Dashboard Design

104

It’s worth mentioning that we can use media queries to detect the

orientation of the device, as shown in Listing 4-12.

Listing 4-12.  Media queries for device orientation

@media (orientation: landscape) {

 /* some rules here */

}

@media (orientation: portrait) {

 /* other rules here */

}

This is useful when a single design for mobile devices just doesn’t work

for both orientations.

�HTML Graphic Indicators
Before shopping around for libraries to help us create a more visually

compelling dashboard, it’s a good idea to see what options exist within the

realm of plain HTML and CSS.

�LEDs
In addition to plain text and colorizing the elements’ backgrounds, LED-

like indicators are yet another way to indicate status. Since these don’t

exist natively in HTML, a circle can be easily created by styling a <div>

using CSS, as shown in Listing 4-13.

Listing 4-13.  CSS code for LED-like indicators

.led-indicator {

 display: inline-block;

 height: 20px;

Chapter 4 Dashboard Design

105

 width: 20px;

 border: 1px solid black;

 border-radius: 50%;

 background-color: lightgray;

}

.led-indicator.go {

 background-color: green;

}

.led-indicator.stop {

 background-color: red;

}

The trick lies in the border-radius property that curves the perimeter

of the <div> element into a circle. Then, as we did with the table cells, we

can apply different classes to the element using JavaScript to “light” the

LED in different colors.5

�Meters
The <meter> tag, which was introduced in HTML5, is a good way to

visualize numerical values such as sensors, motor speeds, and system

resources. The fact that meters are standard to the HTML specification is

nice, although some older browsers do not support it, and each modern

browser renders them differently with its own flavor. We’ll focus on the

behavior that is common to most modern browsers.

A meter element is controlled by its attributes. min and max determine

the range of the meter, and value specifies the current value to be

5�There are plenty of more elaborate techniques that colorize the LED in ways that
really make it look like an electrical light, but that is beyond the scope of this
book. See these links: www.hongkiat.com/blog/css3-on-off-button/
https://codepen.io/fskirschbaum/pen/MYJNaj

Chapter 4 Dashboard Design

https://www.hongkiat.com/blog/css3-on-off-button/
https://codepen.io/fskirschbaum/pen/MYJNaj

106

displayed. If these are the only attributes that are specified, the color of the

meter will be green. Adding the attributes low and high causes the meter

to show in yellow if value is outside of the low to high range.

By adding the optimum attribute and having its value set at either one

of the side ranges, that is, between min and low or between high and max,

the behavior changes: the meter is shown green if value is in the same

range as optimum, yellow if it is in the middle range, and red if value is in

the opposite range of optimum. Figure 4-5 offers a demonstration that is

probably much easier to grasp than this explanation.

�Gradients
In addition to applying solid background colors to elements, it’s possible

to create color gradients with CSS. While gradient colors can be used

to add depth and other design features, they can be also useful in data

visualization. For example, in a project dashboard, a color gradient can

visualize the state of a long LED strip. We’ll explore exactly this example,

Figure 4-5.  The behavior of a meter element when the optimum
attribute is used. The code that generated this figure can be found in
the book’s GitHub repository, /ch04/meter.html.

Chapter 4 Dashboard Design

107

and while there are several variants to the syntax that describes a gradient,

we’ll focus on syntax that serves this purpose best.

The classic way to do this is by having an empty <div> – we will give

ours the id #led-strip – and using the color gradient as the background.

The CSS syntax for such a color gradient would look something like this:

#led-strip {

 background: linear-gradient(direction, color1, color2, ...,);

);

direction can be a string defining the direction of the gradient, such

as to left or to top, or an angle, that is, 90deg. Color can be specified

either by name, hex values, or, as we shall do in this example, RGB values.

Since we want to set the gradient programmatically, we can’t rely on a

CSS file, but rather we must change the style attribute of the #led-strip

element. To represent the state of the LED strip, let’s say that the server

sends out a list where each item is one LED, represented as a list of the red,

green, and blue values. It should look something like Listing 4-14.

Listing 4-14.  An object that represents the state of an LED strip

[

 [0, 0, 127],

 [50, 50, 20],

 //...

}

Then the code in Listing 4-15 can be used to apply the corresponding

color gradient to the #led-strip element.

Chapter 4 Dashboard Design

108

Listing 4-15.  Code for visualizing data as a color gradient

function rgbListToString(channelList) {

 return `rgb(${channelList.join(',')})`;

}

function dataToGradient(ledList) {

 let rgbStringList = ledList.map(rgbListToString);

 return `linear-gradient(to right,

 ${rgbStringList.join(',')})`;

};

// when data comes in from the

// server, this can be called:

document.getElementById("led-strip").style

 .background = dataToGradient(data.ledData);

rgbListToString() takes one color in the form of an [r,g, b] list and

converts it into a string of the form "rgb(r, g, b)". The join() function

is very useful for incidences where lists of data need to be converted to

strings of values separated by commas, like when writing CSV files. We’ll

do that more later.

dataToGradient() puts it all together. First it takes the function’s

argument ledList and uses the map() function to create a new list from

ledList’s items, with every item going through rgbListToString(). Now,

instead of a list of [r, g, b] colors, we have a list of "rgb(r, g, b)"

strings. Isn’t map() just awesome?

Finally, we use join() again to put all these together in one big string

and plop it into a template. See Figure 4-6 for a comparison between an

actual LED strip and its dashboard representation.

Chapter 4 Dashboard Design

109

�Google Charts
There is a large number of libraries out there that can help create fancy

graphs and visualizations. D3.js6 is probably the first name that pops to

most programmers’ mind. It’s versatile and powerful but it has a steep

learning curve, and it takes a considerable amount of code to even get a

simple line graph off the ground. Plotly7 offers some abstraction over D3.js

which simplifies the process of adding graphs to web page but offers only

a limited number of graph types. Other libraries may cost money, offer

limited features, or just don’t look that great.

Personally, I’m a sucker for Google Charts.8 The graphs are pretty, the

API is relatively simple, and it’s free! The gallery offers graph types that are

super useful for web dashboards, from line charts for showing data history,

through maps that display connected users’ location, to gauges that can

display current sensor data and system resources usage. If you have ever

6�https://d3js.org/
7�https://plot.ly/javascript/
8�https://developers.google.com/chart/

Figure 4-6.  Top, an LED strip. Bottom, the LED strip’s representation
in a dashboard using a color gradient.

Chapter 4 Dashboard Design

https://d3js.org/
https://plot.ly/javascript/
https://developers.google.com/chart/

110

worked with any of Google’s dashboards, such as YouTube’s Creator Studio

or Google Analytics, then you have already seen what Google Charts is

like. Google Charts has a pretty extensive API that supports animation,

event handling for user interaction, and even an SQL-like language built

into it that supports data queries. This section will merely be a superficial

introduction to Google Charts, and we will use it as a test case to show

what it’s like to build a dashboard with the help of a library. We’ll only

touch a couple of chart types that are actually useful for maker project.

�Line Graphs
Let’s start by looking at a line graph. These can be especially useful in

plotting a history of measurements. In the following example (Listing 4-16),

we’ll assume that when the page fetches data from the endpoint sensor_

data, the JSON object received will be a list of measurements, each of them

will be a list of two items: a timestamp and the measurement’s value.

Listing 4-16.  Drawing a line chart with Google Charts

<!DOCTYPE html>

<html>

<head>

 <script type="text/javascript"

 src="https://www.gstatic.com/charts/loader.js">

 </script>

 <script>

google.charts.load('current',

 {'packages':['corechart']});

google.charts.setOnLoadCallback(drawChart);

function drawChart() {

 let chart = new google.visualization.LineChart(

 document.getElementById('sensor-chart'));

Chapter 4 Dashboard Design

111

 fetch('sensor_data')

 .then(function(response) {

 return response.json();

 })

 .then(function(jsonData) {

 let dataset = json.parse(jsonData);

 let data =

 new google.visualization.DataTable();

 data.addColumn('date', 'Date');

 data.addColumn('number', 'Value');

 data.addRows(dataset);

 chart.draw(data);

 });

}

 </head>

 <body>

 <div id="sensor-chart"></div>

 </body>

</html>

Let’s slowly unpack this. That script we include in the very beginning

imports the library loader. This already brings to the discussion this

library’s main drawback: it lives in the cloud and cannot be downloaded to

the project’s machine. This means that the project must have access to the

Internet in order to use the dashboard. However, this is less and less of a

problem these days, and since we will most likely use this dashboard from

a remote device, assuming that the project’s machine has access to the

Internet is only fair.

The loader’s job is to load the required packages, which are the specific

parts of the library that provide the features we want to use. google.

charts.load() takes as arguments the version – using current will give us

the latest stable one – and the names of the packages we are interested in.

Chapter 4 Dashboard Design

112

corechart is the package that handles the most basic graphs, such as

histograms, pie charts, and of course line graphs.

Next, we define a callback function to be executed when the library is

loaded. In the callback function, after we create a LineChart object in the

sensor-chart element, we fetch() the data. Google Charts works with

two closely related data structures: DataTable objects are used to construct

the main body of data that the chart works with. They are two-dimensional

arrays, with columns and rows. Columns can have various data types, such

as string, number, or datetime. In a line chart, the first column is the x

axis, and the remaining columns are data series. The other type of objects

that charts can display is DataView, which is created from a DataTable

object and is used to display subsets of the data.

In our code, once the data comes in, we create a new DataTable

object, define the two columns, and since the data is already in the correct

format – a two-dimensional array – we can just plop it into the DataTable

object. All that is left is to tell the API to draw the chart.

�Gauges
Gauges are a great means for visualization of real-time data, and Google

Charts gauges are slick and easy to work with – as long as you understand

the limitations. In our weather station example, they could be used to

visualize the values of the sensors.

First, it is important to understand that the gauge chart can actually

be a series of gauges: the gauge chart, like any other Google Charts, takes

a DataTable object as an argument. The DataTable can have one of two

formats: it can have two columns, and in that case every row is a gauge,

with the first column being the gauge label and the second column being

the value, or multiple columns and multiple rows. This case is a little

weirder, since every column becomes a set of gauges, the first row is a label

they all share and the next rows each of their values. We’ll stick with the

first case, where each row is one gauge.

Chapter 4 Dashboard Design

113

Just like in the line chart, we draw the chart using the draw() function.

This function takes a second optional options argument, which is a

dictionary whose keys are specific to the chart type. For gauges, the options

include min and max for the range of the gauge. This is where we encounter

a limitation we need to consider: the values of min and max are common

to all gauges within the chart. In our weather station, we explored both

weather and pressure sensors, which use completely different ranges.

We could be creative. We could group the sensors into categories and

create one chart for every type of sensors – one chart for all temperature

sensors and another one for all pressure sensors. That would take care of

the problem of the different ranges, for starters. Instead of using template

rendering, we can send all the information we have on all the sensors

immediately after the page loads via WebSockets, a technique we’ve

explored earlier. Of course, if we went that route, there would need to be

some information about how the sensors are grouped already on the server’s

side – either the JSON structure would need to have the sensors grouped by

categories, or each sensor would need to have a data field identifying its type.

We are going to take a different approach. We are simply going to

create one chart for every gauge, which means different options for each

gauge. As a consequence, each chart will live in its own <div> container, so

the <div> tag itself is the perfect place for the template rendering engine

to plant information about the chart that it is going to contain. Of course,

each sensor object on the server will have to have data members specifying

its range.

So how can we store data in the <div> tag? When browsers interpret

HTML into actual graphics, they ignore attributes that are irrelevant to

that element. Programmers and libraries often take advantage of this little

storage option to stash data specific to that element. By convention, these

attributes start with the prefix "data-". For us, this means each gauge’s <div>

will need to include a data-label, a data-min, and a data-max attribute.

When the library loads, we can invoke these data attributes and use them to

generate the charts. A Pug snippet would look something like Listing 4-17.

Chapter 4 Dashboard Design

114

Listing 4-17.  An example of how a Pug template can be used to

prepare containers for gauges

script(

 src='https://www.gstatic.com/charts/loader.js')

div(id='gauges')

each sensor in sensors

 div(

 id=sensor.name

 class='gauge-container'

 data-label=sensor.name

 data-min=sensor.min

 data-max=sensor.max)

data attributes can then be accessed by JavaScript code using the

element’s dataset property, as demonstrated in Listing 4-18.

Listing 4-18.  Drawing gauges in their containers

var gaugeChartDict = {};

google.charts.load('current',

 {'packages':['gauge']});

google.charts.setOnLoadCallback(drawGauges);

function drawGauges () {

 let gaugeContainerList =

 document

 .getElementsByClassName('gauge-container');

 for (let gaugeContainer of gaugeContainerList) {

 let chart =

 new google.visualization.Gauge(gaugeContainer);

 let options = {

Chapter 4 Dashboard Design

115

 min: gaugeContainer.dataset.min,

 max: gaugeContainer.dataset.max

 };

 let data =

 google.visualization.arrayToDataTable([

 ['Label', 'Value'],

 [gaugeContainer.dataset.label, 0]

]);

 gaugeChartDict[gaugeContainer.dataset.label] = {

 chart: chart,

 options: options,

 data: data

 };

 chart.draw(data, options);

 }

}

function updateGauge(gaugeId, value) {

 let gauge = gaugeChartDict[gaugeId];

 if (gauge) {

 gauge.data.setValue(0, 1, value);

 gauge.chart.draw(gauge.data, gauge.options);

 }

}

There are three objects that we need to be able to access whenever

we draw or refresh a chart: the chart object itself, the options object, and

the data. Since we want to keep updating the charts as data comes in to

the dashboard, we need a way to keep these objects and hold references

to them. This is the purpose of gaugeChartDict. We create a dictionary

with these three objects and use this dictionary as the value in key-value

pair that we store in gaugeChartDict. The keys, of course, are the ids of

the sensors. This way, when updates come in, we can call updateGauge();

Chapter 4 Dashboard Design

116

pull up the chart object, options, and data objects; update the data object

with the new value; and finally draw the chart.

Note how the data table is constructed: the first row is a header, and

its cells are strings. This is how the chart knows each consecutive row is a

gauge, in contrast to the alternative format we described previously. In fact,

the actual strings in this case have no effect apart from that. Since we have

only one gauge per chart, there’s only one more row in data. However, when

we update gauge’s value in updateGauge(), we actually refer to row 0, since

the header line is not actually a part of the table itself. As for the columns,

the first column is the gauge’s label, and the second is a value. Since indexes

start at 0, we end up setting value of the cell in (0, 1) with the updated value.

The result can look something like Figure 4-7. Note that we skipped

some modifications that should be made to the code responsible for getting

the data updates through the WebSocket. The complete code for the weather

station is in the book’s code repository under the /ch04/weather-station

folder, and it has separate endpoint for the gauge-centered dashboard.

�Real-World Examples
Here are a few examples of dashboards I made for various projects. In fact,

it is this type of work that drove me to write this book.

Figure 4-7.  A gauge version of the weather station’s dashboard

Chapter 4 Dashboard Design

117

�Tidal Memory
Tidal Memory9 (Figure 4-8) is an Exploratorium exhibit developed by

Charles Sowers10 in 2013. Twenty-four clear tubes, each corresponding

to 1 hour of the day, get filled with water at the same level as the current

tide at that hour. It’s a beautiful, yet technically complex exhibit, and

therefore when it fails, the point of failure is not always immediately clear:

the computer running the exhibit may fail to boot or the program may

crash when the exhibit powers up in the morning; the data stream that

the exhibit uses is provided by the National Oceanic and Atmospheric

Administration (NOAA), and their machine could be down; the exhibit

itself uses one air pressure sensor, one pump, a manifold, and a series of

relays to constantly cycle over the tubes, sense the air pressure in a tank at

the bottom of each tube, deduce the water level, and pump air to push the

water and adjust the level. The pump, sensor, and relays are all possible

points of failure – a potential each one of these components has fulfilled at

one point or another.

9�www.exploratorium.edu/exhibits/tidal-memory
10�http://charlessowers.com

Figure 4-8.  Tidal Memory in the Exploratorium’s Living Systems
gallery

Chapter 4 Dashboard Design

http://www.exploratorium.edu/exhibits/tidal-memory
http://charlessowers.com

118

The dashboard we integrated into the exhibit (see Figure 4-9) was built

to help us detect the source of problems if and when they happen. We

used a Google Column Chart to visualize the state of the exhibit – for each

tube in the exhibit there are three bars – one for the tide data it is supposed

to present, one for the water level inside the tube as calculated from the

measured air pressure, and one for the state of an LED at the top of each

tube. If there’s a problem at the data flow, it is immediately apparent in

this graph, as all tide data columns will be flat. If there’s a problem that is

specific to one of the tubes, such as a failed relay or a leak, that is reflected

in the graph as well.

We also use a Google Charts gauge to visualize the water level in the

tube that is currently being evaluated by the sensor and adjusted by the

pump. The gauge, along with the column chart, is getting updated in real

time. This is not only visually compelling but also very informative. If the

pump is having issues getting the water to the right level, watching the

gauge can give some hints as to what is going on. Finally, there’s a table

that shows all the data, including the reason that the relay array switched

from one tube and moved to the next one: it could be due to the water

reaching the correct level, the tube already being at the right level, or

failing to reach the desired level after a preset time window.

Figure 4-9.  Tidal Memory’s web dashboard

Chapter 4 Dashboard Design

119

�Wired Pier
The Exploratorium is home to an array of instruments measuring the

conditions of the atmosphere and water around its campus in piers 15 and

17 on the San Francisco Embarcadero. Wired Pier is the amalgamation of

these instruments, along with a group of exhibits that visualize the data

they produce, a public facing web site,11 and the infrastructure that makes

all of that work. Needless to say, every now and again things don’t work,

and examining the dashboard we made for the Wired Pier network (see

Figure 4-10) has become an essential step in figuring out why.

11�www.exploratorium.edu/environmental-field-station

Figure 4-10.  The Wired Pier network dashboard. In the network
integrity section, the IP addresses of the machines have been blurred
for security.

Chapter 4 Dashboard Design

http://www.exploratorium.edu/environmental-field-station

120

Although this dashboard is fairly busy, it doesn’t do much: each table

shows the last measurement taken by one of the instruments, but that’s

not the useful part. The LED indicator that precedes the name of each

instrument gives a quick indication to the time that has passed since

this instrument last took a measurement. For most of these, if the last

measurement was taken more than a few minutes ago, that would indicate

a problem. For others, 1 or even 2 days is reasonable. The black indicators

are used for instruments that are no longer active.

If an indicator shows that the last measurement is over a week old, that

means that it’s time to write some emails and run some tests. However,

if an exhibit that depends on one of these instruments is failing but the

dashboard indicates that the data is up to date, that would focus the

debugging efforts on the exhibit. These are the times when the dashboard

shows its strength.

Also note the “Network integrity” table on the right-hand side of

the dashboard. It serves as a directory for all the machines that are on

the network – data loggers, the network-attached storage (NAS), and so

on – and provides links to whatever dashboard each of these machines

offers itself. More importantly, the background of each line turns red if

the corresponding machine doesn’t respond to a ping. This helped us

numerous times in identifying a crashed server, a power failure at one of

the loggers, or a faulty script.

�Internet Speed Monitoring
This last example is a dashboard I built to monitor the Internet connection

speed at my house (see Figure 4-11). I built this to make sure I had solid

and continuous data while I was working with my ISP to fix my slow

connection. This dashboard features a Google Line Chart, and it proved

itself as instrumental evidence every time I had to call the ISP and stress

that the problem has not been fully fixed. The chart clearly shows their

first failed attempt at fixing the problem on August 13, which made the

Chapter 4 Dashboard Design

121

situation worse; a second attempt that made things better, but then

something failing again on August 30; and their last fix on September 7

which finally resolved the issue.

�Summary
Dashboards shine when projects fail. A well-designed dashboard can

turn a painful process of debugging into a matter of a few seconds. What

makes a dashboard one that is visually well-designed is clean and clear

layout, logical visualization of data, and easy accessibility from devices

with various screen sizes. In terms of software, a good design is one that

decouples layout, style, and functionality as much as possible.

Web dashboards are useful not just for debugging and controlling

projects as we’ve shown here – they can be used as the actual interface

for projects as well. The advantage in doing so is that the project and its

interface become decoupled. The user interface is written in a suite of

Figure 4-11.  A dashboard for monitoring Internet speed

Chapter 4 Dashboard Design

122

languages designed for the job – HTML, CSS, and JavaScript – while the

project is written in whatever language that does the job best. Finally, this

decoupling allows the project to be interacted with from any device, which

is great for SBCs that are configured for headless projects.12

Dashboards are a significant part of Project Reliability Engineering,

so we gave them plenty of attention in the last few chapters. At this point

we are steering the discussion away from them to other aspects of project

reliability, and we’ll start with the machine that the project is running on

and its configuration.

12�A machine is considered “headless” when it is configured to run without the use
of a keyboard, a mouse, and a monitor.

Chapter 4 Dashboard Design

123© Eyal Shahar 2019
E. Shahar, Project Reliability Engineering, https://doi.org/10.1007/978-1-4842-5019-8_5

CHAPTER 5

Project Configuration
In previous chapters, we emphasized the importance of separating

functionality, structure, and style. Another important separation that we

haven’t touched upon is the separation of code and configuration. Once

the project’s configuration becomes a separate component, new questions

start to arise, such as what file format to use, what should be treated as

configuration vs. what should be hard-coded, how to temporarily override

the configuration, and more.

Being mindful about how the project’s configuration is handled is

an essential step toward making the project robust, resilient to changes,

scalable, and easy to debug.

�Motivation
In all the code examples we have been discussing, we have violated

a pillar of good software design: we have been using magic numbers.

Magic numbers are numbers that are hard-coded in the program, and

it is considered bad practice to use them. Instead, it is always better

that constants, or if they are not supported by the language – variables,

are used.1

1�Python, for example, does not have constants. By convention, variables that are
supposed to act as constants have all caps names.

124

There are good reasons for magic numbers to be considered an

abomination. First, they are detrimental to the readability of the code.

If you read a piece of code and encounter a line that raises pin 4 high,

unless there is a comment that says what pin 4 is connected to, it will take

some guesswork for you to figure out what the purpose of that line is. The

same goes for delay times, array sizes, and so forth. The second reason is

that when such a value appears multiple times in the code, writing and

modifying the code becomes significantly harder if the value is hard-coded

in each and every occurrence. Last, constant numerical values can appear

anywhere in the code, so when the need arises to change a value, finding it

can take some time.

Now that it is clear why magic numbers are a bad idea, the same notion

can be extended to strings, IP address, and even entire objects: we have

shown previously that by using interfaces and inheritance we can make it

easier to swap one implementation of a class with another, for instance,

various types of temperature sensors. But when we actually need to do

the swap, is this something we’d want to do by changing the hard-coded

program, or would we prefer having the type of temperature sensor to be

used specified in the project’s configuration?

In addition, there is the issue of debugging. There are a number

of things we might want the project to do differently when we develop

or debug it than when it’s up and running: we might want to use more

rigorous logging, use simulated components rather than the actual

physical ones, or completely ignore, bypass, or disable some of the

program’s functionality. Again, hard-coding these decisions in the program

makes the process of turning them on and off laborious and error-prone.

Using a configuration file, or multiple configuration files, is a good way

to keep all of the settings in one place and out of the code. In the following

sections, we will discuss different options for file formats, practices for

formulating configuration files, what can be considered as configuration

data, and more.

Chapter 5 Project Configuration

125

�File Formats
A configuration file can be saved in various formats, and while it’s possible

for programmers to choose any format available or even design their own,

we will explore three common formats: XML, JSON, and YAML. It is highly

recommended that you get yourself acquainted with them and use the one

that is best suited for the task at hand.2

�XML
XML3 (Extensible Markup Language) is the most veteran of these three. It

is a close relative of HTML and has a very similar format: data is arranged

in elements, indicated by an opening tag and a closing tag. An element

can have attributes, included in the opening tag, and content, which is

placed between the opening and the closing tag. The content can be either

a value or child element. If an element does not have content, it can be

represented by one, self-closing tag.

Consider the two fans from our weather station, and see Listing 5-1 for

three options for including their configuration in an XML configuration file.

Listing 5-1.  Configuration XML file, using attributes and child

elements

<!-- Example 1: using attributes -->

<fans>

 <fan name="fan1" pin="20" />

 <fan name="fan2" pin="21" />

</fans>

2�Other formats that are not reviewed here but are worth mentioning are TOML,
CSON, and .ini files.

3�www.w3.org/XML/

Chapter 5 Project Configuration

http://www.w3.org/XML/

126

<!-- Example 2: using child elements -->

<fans>

 <fan>

 <name>fan1</name>

 <pin>20</pin>

 </fan>

 <fan>

 <name>fan2</name>

 <pin>21</pin>

 </fan>

</fans>

<!—Example 3: using both -->

<fans>

 <fan name="fan1">

 <pin>20</pin>

 </fan>

 <fan name="fan2">

 <pin>21</pin>

 </fan>

</fans>

There are no real rules regarding when a property of an element

should be an attribute or a child element. Sometimes it is obvious that

child elements should be used, for example, if there are several properties

of the same type. In Listing 5-1, <fans> has two <fan> elements in it. This

can only be implemented with child elements, as there cannot be more

than one attribute with the same name in an element. Also, each <fan> has

its own properties, and attributes can only have a simple value, such as a

number or a string, but not multiple values, for instance, both a name and

a GPIO pin, as we have in our example.

Chapter 5 Project Configuration

127

Otherwise, attributes are more economical than child elements in

terms of the number of lines, but they are slightly harder to read. Once

again, it ends up being a matter of personal preference.

XML is used more often to transfer data between machines over the

Internet than to store configuration data, and even in that arena it has been

losing popularity to JSON. It is more verbose than the other two formats

reviewed here with its closing tags and its child elements vs. attributes

dilemmas, but it’s far from being dead. It’s still very much present and can

be found in many places such as SVG files, podcast streams definition, and

Google Earth data. Furthermore, its similarity to the familiar HTML syntax

still makes a compelling argument for programmers to use it not only for

transmitting data online but also for storing configuration data.

�JSON
JSON4 (JavaScript Object Notation) is a popular choice for storing

configuration data for two main reasons: first, the format is ubiquitous. It

is used, like XML, to transmit data between machines over the Internet,

it is based on the way objects are represented in JavaScript, and JSON

objects are very similar to Python objects. Second, it is compact and

highly readable, especially when compared to XML. The format is mature,

and stable libraries for it that are well maintained exist for most popular

programming languages.

There are three types of entities in JSON: at the lowest level, there are

literals. These are numbers, strings, boolean values (true and false), and

null. Then there are dictionaries, made of key-value pairs, and lists, which

are ordered collections of values. When we say “value” in the context of

dictionaries, these can be literals, or they can be nested dictionaries and

lists themselves.

Our fans’ configuration might look in JSON something like Listing 5-2.

4�www.json.org/

Chapter 5 Project Configuration

http://www.json.org/

128

Listing 5-2.  Example of a configuration JSON file

{

 "fans": [

 {

 "name": "fan1",

 "pin": 20

 },

 {

 "name": "fan2",

 "pin": 21

 }

]

}

For JavaScript, decoding JSON does not require using any additional

libraries. Projects that are written in other languages that involve some sort

of network communication will most likely already make use of a library

that can decode JSON. There are, however, some drawbacks for using

JSON for configuration files. The biggest one is that JSON does not allow

for comments, which means that you can’t include documentation in the

file to explain what the different settings are. Some might hack their way

around it, like including “pseudo-properties,” as in Listing 5-3.

Listing 5-3.  Using pseudo-properties for JSON documentation.

Note that the comment at the end denotes the rest of the code, and

not an actual comment, as these are not allowed in JSON

{

 "_fans": "Documentation for fan list goes here",

 "fans":[// ...

Chapter 5 Project Configuration

129

But obviously, this solution is suboptimal. Also, JSON requires a lot of

punctuation, and a well-formatted file will include many newlines – both

of these contribute to files that are not always easy to read.

�YAML
YAML5 (recursive acronym for “YAML Ain’t Markup Language”, and

originally “Yet Another Markup Language”) was designed specifically for

the purpose of data serialization – capturing the state of objects in a way

that can be stored or transmitted and then reconstructed from that data. It

puts great emphasis on human readability, as it supports comments and

makes little use of punctuation, relying on indentation for determining

hierarchy within the data. YAML has quite a range for how complex it could

be, and the same data can be represented in several ways. We are going to

cover only the most basic form of it. Once again, we’ll start by looking at

what our fan’s configuration might look like in YAML (Listing 5-4).

Listing 5-4.  Example of a configuration YAML file

Fan configuration

fans:

- name: fan1

 pin: 20

- name: fan2

 pin: 21

Just like JSON, YAML has three types of nodes: scalars, which are

strings or numbers; sequences, which are similar to JSON’s lists and are

ordered lists of nodes; and mappings, which are key-value pairs, just like

JSON’s dictionaries.

5�https://yaml.org/

Chapter 5 Project Configuration

https://yaml.org/

130

Nodes in a sequence are denoted by a prefix of a hyphen and a white

space preceding them. These prefixes must have the same indentation

for all nodes in the sequence. In our example, each fan is represented by

a mapping, which is denoted by the format key: value, and once again,

all pairs in the mapping share the same indentation. Comments, like in

Python, start with the number sign (#).

As you can see, YAML’s main advantages are its compactness, high

readability, and support of comments. The main drawback in YAML is that

it relies on indentation and other fragile syntax rules.

Parsing a YAML file can be done using the PyYAML6 library for

Python. Listing 5-5 demonstrated how the configuration described

earlier can be read.

Listing 5-5.  Reading a YAML configuration file

import yaml

with open('config.yaml', 'r') as f:

 config = yaml.full_load(f)

for fan in config['fans']:

 print('{} uses pin {}'

 .format(fan['name'], fan['pin']))

The output of this program should be:

fan1 uses pin 20

fan2 uses pin 21

For Javascript, js-yaml7 will produce similar results.

6�https://pyyaml.org/
7�www.npmjs.com/package/js-yaml

Chapter 5 Project Configuration

https://pyyaml.org/
http://www.npmjs.com/package/js-yaml

131

�Code
Finally, the configuration can be described simply by code that is separate

from the program’s code. In Python, for example, we can write a file called

config.py, which will contain the configuration data (see Listing 5-6).

Listing 5-6.  config.py, configuration in code

cfg = {'fans': [

 {

 'name': 'fan1',

 'pin': 21

 },

 {

 'name': 'fan2',

 'pin': 20

 }

]}

And then the project’s main code can import cfg from this file

(Listing 5-7).

Listing 5-7.  Using config.py in the main code

from config import cfg

for fan_cfg in cfg['fans']:

 print('{} uses pin {}').format(

 fan_cfg['name'], fan_cfg[pin])

output:

fan1 uses pin 20

fan2 uses pin 21

To do the same in JavaScript, we can start by writing the configuration

file (Listing 5-8).

Chapter 5 Project Configuration

132

Listing 5-8.  Using config.js in the main code

const cfg = {

 fans: [{

 name: 'fan1',

 pin: 20

 },

 {

 name: 'fan2',

 pin: 21

 }

]};

module.exports = {

 cfg: cfg

};

And import the configuration as shown in Listing 5-9.

Listing 5-9.  Using config.js in the main code

const cfg = require('./config').cfg;

for (let fan of cfg.fans) {

 console.log(`${fan.name} uses pin ${fan.pin}`);

}

// output:

// fan1 uses pin 20

// fan2 uses pin 21

Chapter 5 Project Configuration

133

�Interpreting the Configuration
�The Constructor’s Argument
The next step is to interpret the configuration file as the program starts up.

The original constructor for our Fan class (Listing 4-1) took two arguments:

the fan’s name and the GPIO pin number. We should consider changing

the constructor so that it takes a configuration dictionary, so that the

constructor can accept an item from the configuration file’s fans list. See

Listing 5-10 for the modified constructor.

Listing 5-10.  Modifying the Fan constructor to accept a

configuration dictionary

class Fan {

 constructor(fanConfig) {

 Object.assign(this, fanConfig)

 gpio.setup(this.pinNumber, gpio.DIR_OUT);

 }

// ...

This one argument replaces the list of arguments that we previously

had for the constructor. This does not only simplify the process of passing

the parameters from the configuration file to the new object, it also makes

it easier to make changes to the object if the development process requires

that. If later on we would like to add an argument to the constructor, we

would just need to make sure to include it in the configuration file and

have the constructor do whatever it needs with that field, but the definition

of the constructor and the way it is called would stay the same. This comes

with a price: it is no longer evident from the constructor’s signature – its

argument list – what kind of data it needs in order to initialize.

Chapter 5 Project Configuration

134

Note the Object.assign() function: it copies all the properties of the

object that is the second argument to the object that is the first argument.

In our case, this copies all the properties of the configuration object to the

Fan object.

�Dynamic Instantiation
When dealing with the Fan classes, the configuration was pretty

straightforward, since we only instantiated objects of a single type of

class. It’s not uncommon for a project to be able to generate objects of

different classes to carry a certain task. Our temperature sensors are a

good example: in the previous chapter, we had two of them filling similar

roles and adhering to the same interface. Because of that, the two types of

sensors are interchangeable, and their arrangement can also be defined

in the configuration file: we can include information in the configuration

file that will help the program determine which class it should instantiate

for each role. Listing 5-11 shows what a portion of a YAML configuring the

temperature sensors might look like.

Listing 5-11.  Configuration file segment for the temperature

sensors

Sensors configuration

sensors:

- name: temperature_east

 type: Si7021Temp

 i2cBusId: 1

 units: "deg C"

- name: temperature_west

 type: MPL3115A2Temp

 i2cBusId: 1

 units: "deg C"

Chapter 5 Project Configuration

135

Now, when we instantiate those sensor objects, a JavaScript code may

look like Listing 5-12.

Listing 5-12.  Instantiating classes based on a configuration file

const fs = require('fs');

const path = require('path');

const yaml = require('js-yaml');

const fileName =

 path.join(__dirname, 'config.yaml');

var fileContent =

 fs.readFileSync(fileName, 'utf8');

var config = yaml.load(fileContent);

var sensorList = [];

for (let sensorCfg of config.sensors) {

 switch (sensorCfg.type) {

 case 'Si7021Temp':

 sensorList.push(

 new Si7021Temp(sensorCfg));

 break;

 case 'MPL3115A2Temp':

 sensorList.push(

 new MPL3115A2Temp(sensorCfg));

 break;

 }

}

The loop iterates through the list of sensors, and it checks for its type

field for each sensor. The program then instantiates an object, based on

the value of the type field, and pushes it into sensorList.

Chapter 5 Project Configuration

136

�Command-Line Arguments
�Introduction
Another way to affect the project’s configuration is through the command-

line arguments. These are the additional text fields that are entered after

the program’s name in the command line. For example, copying a file

using the terminal can be done by the command

cp filename.src filename.dst

The names of the source and destination file names are command-line

arguments. There are several types of command-line arguments, and while

the terminology has several variations, we will stick with the following:

•	 Positional arguments are mandatory, and their role is

determined by their position in the command. In the

command

cp filename.src filename.dst

the two arguments are positional arguments.

•	 Subcommands, as the name suggests, instruct the

program to perform a specific task. In the command

npm install express

the argument install is a subcommand, and

express is an argument for that subcommand.

•	 Options affect the behavior of the command.

Sometimes they take their own arguments. When they

don’t, they are known as flags. In the command

python -v -m SimpleHTTPServer

-m is an option, SimpleHTTPServer is its argument,

and -v is a flag.

Chapter 5 Project Configuration

137

In the Linux convention, command-line options are denoted by either

a dash followed by a letter or two dashes followed by a word. Sometimes

there are both a letter and a word version of the same option. For example,

typing either node -v or node --version will cause node to print its

version number.

There are many useful things we can tell the program to do through

the command line: we can instruct it to run in “verbose” mode, where the

program meticulously prints to the screen everything it does; we can run

it in “simulation” mode, where perhaps physical sensors and actuators

are replaced by software-simulated one; we could instruct the program

to initialize with a different configuration file than the one it usually uses;

and so on.

In Python, the command-line arguments can be read with the argv

property of the sys module. It is an array of all the strings in the command,

as shown in Listing 5-13.

Listing 5-13.  Reading the command-line arguments using the sys

module

import sys

print('There are {} arguments:', len(sys.argv))

for arg in sys.argv:

 print(arg)

for the command:

> python project.py -–conf-file alt-cfg.yaml

the output will be:

> There are 4 arguments:

> python

> project.py

> -–conf-file

> alt-cfg.yaml

Chapter 5 Project Configuration

138

It might already be evident that making sense of the command-line

arguments is not a trivial task. We need to distinguish between positional

arguments, subcommands, options, and the arguments that belong to

those options.

�Parsing
Fortunately, Python has a built-in module called argparse8 that helps

significantly with this task. Not only does it store all the arguments and

options in a nicely organized structure, it also helps with setting defaults

for the options, managing optional vs. required options, and providing

special case options, most notable is the help option. argparse, being

a powerful, built-in module, is the most common way to deal with

command-line arguments in Python. It has been ported to JavaScript,9 but

it’s worth mentioning that there are quite a few modules for JavaScript that

are more popular, such as yargs,10 commander,11 and minimist.12

To get started with argparse, we need to import it into the program

and create an instance of an ArgumentParser (Listing 5-14).

Listing 5-14.  Instantiating an ArgumentParser object

import argparse

parser = argparse.ArgumentParser(

 description="Weather station project")

8�https://docs.python.org/3/library/argparse.html
9�https://github.com/nodeca/argparse
10�https://github.com/yargs/yargs
11�https://github.com/tj/commander.js
12�https://github.com/substack/minimist

Chapter 5 Project Configuration

https://docs.python.org/3/library/argparse.html
https://github.com/nodeca/argparse
https://github.com/yargs/yargs
https://github.com/tj/commander.js
https://github.com/substack/minimist

139

Then it’s a matter of adding the various command-line options to the

parser and finally parsing the command line. For example (Listing 5-15):

Listing 5-15.  Adding arguments to the argument parser

#...

parser.add_argument('--interval', type=int,

 dest='loop_interval')

parser.add_argument('--conf-file',

 default=['config.yaml'],

 nargs=1)

parser.add_argument('--fan-pin',

 nargs=2,

 type=int,

 action='append')

parser.add_argument('-v', '--verbose',

 action='store_true')

args = parser.parse_args()

Let’s start from the end: the last line is the one actually performing

the parsing, storing the various options in an argparse.Namespace object.

This type of object doesn’t do much other than store the arguments as

its properties. For example, to know whether it should run in verbose

mode, the program would need to invoke the value of args.verbose. The

name of the property can be automatically determined by argparse or

manually set by adding a dest parameter to the add_argument() function

as demonstrated for the --interval option.

The examples in Listing 5-15 are loosely based on our weather station

project. The first option we added sets the measuring interval, and as a

default, options take one argument.

By default, argparse treats option arguments as strings. That can

be changed using the type parameter that tells argparse what type this

argument is, which in this case is int.

Chapter 5 Project Configuration

140

If the default interval is stored in a variable called INTERVAL, we could

change the measuring loop we wrote in Listing 1-2 so that the interval

could be overridden by the interval option, if the option is specified in

the command (Listing 5-16).

Listing 5-16.  Getting an integer from the command-line options

INTERVAL = 5

def measuring_loop():

 while True:

 #...

 time.sleep(args.loop_interval or INTERVAL)

The second option we added, --conf-file, is the same as we

described in Listing 5-13: it tells the program to load an alternate

configuration file. It is not unusual for options to have names that consist

of two words, and by convention, these are separated by a hyphen.

However, argparse converts hyphens in option names to underscores, so

in this case the value will be stored in args.conf_file.

The narg parameter tells argparse how many additional arguments an

option consumes – in this case it’s 1, the file name. If nargs is not specified,

the option will consume one argument if provided, which is stored as a

value in the Namespace object. However, if nargs is specified, the option’s

arguments will be stored as a list rather than as a value, even if nargs=1.

Note that we specified here a default value – this ensures that args.

conf_file exists and has a valid value, even if not specified in the command

line. This a more graceful way to specify default value than the way we did it

for the measuring loop interval. As we mentioned, if this option is included

in the command, its argument will be stored in a list. This is why we set

the default value to also be a list. We can then load the configuration file,

whether it was specified in the command line or not, by calling

with open(args.conf_file[0], 'r') as f:

 config = yaml.full_load(f)

Chapter 5 Project Configuration

141

The next argument is the option --fan-pin. This option changes the

GPIO pin that controls one of the fans. Therefore, this option will require

two arguments: the fan index and the GPIO pin number. However, note

that we used action='append' this time. This means that the option can

appear multiple times in the command, and each occurrence is added to a

list. Using both the append action and defining nargs results in a list of lists.

If this last paragraph was a little confusing, the following example will help

clarify. Let’s say we execute the command

python project.py --fan-pin 0 19 --fan-pin 1 17

If we added print(args) to the end of the Python code, the output

would be

Namespace(conf_file='config.yaml', fan_pin=[['0', '19'],

['1', '17']], loop_interval=None, verbose=False)

To apply this option, we can start by loading the configuration file, then

overriding fan configurations with whatever is specified in the command-

line option, and finally instantiating the fans. Listing 5-17 demonstrates

how this can be done.

Listing 5-17.  Creating Fan objects using the configuration from the

command line

#...

if args.fan_pin:

 for fan_option in args.fan_pin:

 fan_index = fan_option[0]

 new_fan_pin = fan_option[1]

 config['fans'][fan_index]['pin'] = new_fan_pin

fan_list = (Fan(f) for f in config['fans'])

Chapter 5 Project Configuration

142

The last line uses list comprehension to generate a list of Fan objects.

It’s equivalent to this:

fan_list = []

for f in config['fans']:

 fan_list.append(Fan(f))

The last option added in Listing 5-15 tells the program to run in

verbose mode. Notice that here we specified two ways to enable this

option: -v and --verbose. Also, this option doesn’t expect any additional

arguments, but using the store_true action, we instruct argparse to give

the verbose option the value True if the flag is present and False if it is not.

Of course, the action store_false also exists, and naturally, it does the

exact opposite.

�Getting Help
By default, argparse creates option flags, -h and --help, that cause the

program to show a help message rather than run normally. Running

python project.py -h

will produce the output in Listing 5-18.

Listing 5-18.  Default help message produced by argparse

usage: project.py [-h] [--interval INTERVAL]

 [--fan-pin FAN_PIN FAN_PIN]

 [--conf-file CONF_FILE] [-v]

Weather station project

optional arguments:

 -h, --help show this help message and exit

 --interval INTERVAL

 --fan-pin FAN_PIN FAN_PIN

Chapter 5 Project Configuration

143

 --conf-file CONF_FILE

 -v, --verbose

This is really not that bad for a start, but this help message can use

some of our own help. We can add some parameters to the options to

make the help message more legible. Consider the --fan-pin option:

argparse gave both arguments it consumes the names FAN_PIN. To clarify

what each argument does, we can use the metavar parameter. It can be a

string for options that consume one argument or a tuple of strings if there

are more. We can also add the help parameter to add text after each option

that describes exactly what it does. If we add these parameters to the

options, as shown in Listing 5-19.

Listing 5-19.  Revised command-line option parameters supporting

the help message produced by argparse

parser.add_argument(

 '--interval', type=int,

 help='set measuring loop interval',

 metavar='time_sec')

parser.add_argument(

 '--fan-pin', nargs=2, type=int, action="append",

 help='override fan GPIO pin number',

 metavar=('idx', 'pin'))

parser.add_argument(

 '--conf-file', nargs=1, type=str,

 default=['config.yaml'], metavar='filename',

 help='set configuration file')

parser.add_argument(

 '-v', '--verbose', help='verbose',

 action="store_true", default=False)

Chapter 5 Project Configuration

144

The help message will be as shown in Listing 5-20.

Listing 5-20.  Help message after adding help-related parameters to

the command-line options

usage: project.py [-h] [--interval time_sec]

 [--fan-pin idx pin]

 [--conf-file filename] [-v]

Weather station project

optional arguments:

 -h, --help show this help message and exit

 --interval time_sec set measuring loop interval

 --fan-pin idx pin override fan GPIO pin number

 --conf-file filename set configuration file

 -v, --verbose verbose

This is significantly clearer and more helpful.

�Configuring an Arduino Project
We’ve been discussing the configuration of programs through

configuration files and command-line arguments, suggesting that we have

easy access to these, as is the case with SBCs. When using microcontroller

boards, such as Arduinos, the situation is very different. Most often,

Arduino projects are configured either through one or more .h files or in

the code itself. There is a better option, though.

�The Arduino’s EEPROM
The Arduino Uno, one of the most popular boards around, features the

ATmega328P. This microcontroller has EEPROM (Electrically Erasable

Programmable Read-Only Memory). This memory acts like ROM

Chapter 5 Project Configuration

145

(Read-Only Memory) in the sense that it is non-volatile, meaning that

the data stored on it persists when power is turned off. Also, EEPROM

is not meant to be constantly read and written like RAM (Random-

Access Memory) – it’s much slower and has a more limited lifespan. It is,

however, perfect for storing configuration data.

First, we need a way to get the configuration into the EEPROM in

the first place, and the whole point is to design this in a way that frees us

from having reprogram the Arduino every time we want to change the

configuration. One way to do this is through the serial port, and if we re-

examine the formats we discussed earlier, we can see that JSON is a good

candidate: it is fairly compact, and it doesn’t rely on indentation.

With respect to storing the configuration on the EEPROM, there are

two strategies we can take: we can either store a JSON encoding of the

configuration or store the configuration in an object, and let the EEPROM

library encode that object for storing.

In the following example, we’ll have two things that need to be

configured: the measuring interval and the pins to which fans are

connected. The program will expect to get a string that looks like this:

{"interval":6,"fans":[2,6]}

so that the number of fans will also be determined by the length of

the array.

�Storing Configuration as JSON

Let’s start with writing a JSON string. First, we need to do some setting up

and get the data from the serial port (Listing 5-21).

Listing 5-21.  Arduino code for reading and writing JSON

configuration on the EEPROM

#include <EEPROM.h>

#include <ArduinoJson.h>

Chapter 5 Project Configuration

146

enum ParseResult {

 PARSE_SUCCESS,

 PARSE_ERROR

};

const int configAddress = 0;

char incomingMsg[256];

char charBuff[256];

StaticJsonDocument<256> jsonDoc;

int msgIndex = 0;

int * fanPins = 0;

int numFans = 0;

int interval = 20; // default value

void setup() {

 Serial.begin(9600);

 msgIndex = 0;

 loadConfig();

}

void loop() {

 while (Serial.available()) {

 char c = Serial.read();

 if (c == '\r' || c == '\n') {

 charBuff[msgIndex++] = '\n';

 charBuff[msgIndex++] = '\0';

 if (PARSE_SUCCESS == parseJson(charBuff)) {

 dumpConfig();

 printConfig();

 }

 msgIndex = 0;

 }

Chapter 5 Project Configuration

147

 else {

 charBuff[msgIndex++] = c;

 }

 }

 // Attend to the rest of the project

}

There are a few interesting points here that we should unpack. Notice

how we read from the serial port: we don’t wait for data to be available,

and when it is, we don’t wait until the data is ready at the serial port or

until it’s all there, so that the Arduino can continue running its stuff.

Instead, if serial data is available, we add it to a char[] buffer. When

a newline character ('\n') or a carriage return ('\r') comes in, that

represents the end of the JSON string. I discovered that ArduinoJson is

buggy if the string that it’s parsing doesn’t end with a newline, so we add

that at the end of the string and mark the end of the string in the buffer

with a null character ('\0'). Then the buffer is passed for parsing with

parseJSON(), and if the parsing works, the new configuration is written

to the EEPROM with dumpConfig(). We will write these functions next,

starting with parseJson() (Listing 5-22).

Listing 5-22.  Using JSON-encoded data for configuration

ParseResult parseJson(const char *s) {

 DeserializationError error =

 deserializeJson(jsonDoc, s);

 if (error) {

 Serial.println("parsing failed");

 Serial.println(error.c_str());

 return PARSE_ERROR;

 }

Chapter 5 Project Configuration

148

 JsonArray fansConfig = jsonDoc["fans"];

 if (!fansConfig.isNull())

 {

 if (fanPins) {

 delete[] fanPins;

 }

 numFans = fansConfig.size();

 fanPins = new int[numFans];

 for (int i = 0; i < numFans; ++i) {

 fanPins[i] = fansConfig[i];

 }

 }

 if (jsonDoc.containsKey("interval"))

 {

 interval = jsonDoc["interval"];

 }

 return PARSE_SUCCESS;

}

First, notice how the function returns PARSE_ERROR or PARSE_SUCCESS,

values of the ParseResult enum that we declared earlier. It’s much easier

and readable this way than returning a numerical value. Otherwise,

everything else should look familiar, besides the lines that allocate memory

for the fan’s array. This is not necessarily the best way to do this on an

Arduino – Arduinos are not great for dynamic data structures. Another way

would be to set a fixed size array, with its size being the maximum possible

number of fans. Then, we could keep a variable that says what the actual

number of fans is and use only that number of array cells.

Also notice the two different ways to check for a key in the

JSON object: for the fans array, since it’s not translated directly to a

configuration variable, we read the key without knowing if it exists.

Chapter 5 Project Configuration

149

To verify, we call the result’s isNull() method and decide how to

proceed. For the interval, we check for the key existence first using

the containsKey() method. If the key exists, we can read directly into

the variable. Next, the dumpConfig() function, which encodes the

configuration to JSON and writes it to the EEPROM (Listing 5-23).

Listing 5-23.  dumpConfig() encodes the configuration to JSON and

writes it to the EEPROM

void dumpConfig() {

 JsonObject root = jsonDoc.to<JsonObject>();

 root["interval"] = interval;

 JsonArray fanConfig = root.createNestedArray("fans");

 for (int i = 0; i < numFans; ++i) {

 fanConfig.add(fanPins[i]);

 }

 serializeJson(jsonDoc, charBuff);

 EEPROM.put(configAddress, charBuff);

}

Notice that receiving the incoming configuration JSON strings,

parsing them, and encoding the data to JSON for storage are completely

decoupled. This guarantees that the entire configuration will stay intact

even if incoming configuration strings include only partial information.

For example, if only the interval time is specified in the string, the fan

information will not be changed – not in the running project and not on

the EEPROM. Also, this allows us to use parseJSON() to parse the data

from the EEPROM on startup. We have called loadConfig() in setup()

but have not yet implemented it. Now is the time (Listing 5-24).

Chapter 5 Project Configuration

150

Listing 5-24.  Implementing loadConfig()

void loadConfig() {

 char s[256];

 EEPROM.get(configAddress, s);

 parseJson(s);

}

�Configuration Object Serialization

The EEPROM.put() method can take any object, not just char[] arrays,

and serialize it. Serializing an object means encoding it in a way that

can be stored or transmitted and then reconstructed back from that

representation. We’ve been doing similar things when transmitting

data back and forth between the project’s program and the dashboard,

but I chose not to use the term “serialization,” since we never really

reconstructed objects from their representation. This case is different: if we

incorporate all configuration parameters in one struct and read and write

that struct to the EEPROM, that would be considered “serialization.” This

will be our configuration object (Listing 5-25).

Listing 5-25.  The configuration struct

struct Configuration {

 int interval = 20; // default value

 int fanPins[MAX_NUM_FANS];

 int numFans = 0;

} cfg;

We can’t dynamically allocate the fanPins array in this case. If we did,

the thing that would actually be written when serializing this object would

be the address of the memory block allocated for the array, but the values

in that array would not be serialized. The solution is for the configuration

Chapter 5 Project Configuration

151

struct to have an array that can hold MAX_NUM_FANS fans and specify with

numFans how many of the items in the array are used.

We will need to modify parseJSON() to store data from incoming

messages in the configuration struct (see Listing 5-26).

Listing 5-26.  Modified parseJSON() that uses the configuration

object

ParseResult parseJSON(const char* s) {

 // ...

 JsonArray fansConfig = jsonDoc["fans"];

 if (!fansConfig.isNull()) {

 cfg.numFans = fansConfig.size();

 for (int i = 0; i < cfg.numFans; ++i) {

 cfg.fanPins[i] = fansConfig[i];

 }

 }

 if (jsonDoc.containsKey("interval")) {

 cfg.interval = jsonDoc["interval"];

 }

 return PARSE_SUCCESS;

}

Then, the matter of writing and reading from the EEPROM becomes

really simple, as shown in Listing 5-27.

Listing 5-27.  Modified loadConfig() and dumpConfig() that use

the configuration object

void loadConfig() {

 EEPROM.get(configAddress, cfg);

}

Chapter 5 Project Configuration

152

void dumpConfig() {

 EEPROM.put(configAddress, cfg);

}

�Storing on an SD Card
Another way to store the project’s configuration is on an SD card. The SD

library doesn’t offer a way to serialize complex objects like EEPROM.put()

does, so we have two options: either stick to storing the data as a JSON

string or write our own serialization system, which will probably more

compact. While SD cards can hold more data than the EEPROM, that is

not necessarily an advantage we should rely on, since if we read a JSON

string from the SD card, we still load the whole thing into the Arduino’s

RAM. Having said that, the main advantage of working with an SD card

is that we can remove them from the project setup, stick them into a

computer, and edit the configuration file manually, where working with

JSON (or some other human-readable format, or that matter) is necessary.

If the JSON configuration file becomes too big for the Arduino to load, it

can always be broken into several files, each responsible for configuring a

different aspect of the project.

In our example, one file is enough. The only changes that need

to be made to the code presented in the previous section are in the

loadConfig(), dumpConfig(), and setup() functions. See Listing 5-28 for

the modified code.

Listing 5-28.  Modified code to read and write configuration from an

SD card

#include <SD.h>

const int sdChipSelect = 4;

// ...

Chapter 5 Project Configuration

153

void setup() {

 SD.begin(sdChipSelect);

 // ...

}

void loadConfig() {

 File configFile = SD.open("config.jsn");

 char s[512];

 configFile.read(s, 512);

 configFile.close();

 parseJson(s);

}

void dumpConfig() {

 // ...

 SD.remove("config.jsn");

 File configFile = SD.open(

 "config.jsn", FILE_WRITE);

 configFile.println(s);

 configFile.close();

}

We named the file “config.jsn” instead of using a .json extension.

The SD library expects files to have file names with no more than eight

characters and extensions with no more than three characters. Note that

before writing the file, we remove it. Otherwise, writing to an existing file

using the SD library appends data to the file. We need to remove the file

first if we want to rewrite it.

It’s also important to note that there are two points of possible failure

that we are not managing: the SD card may not be present when we call

SD.begin(), and the file may not be missing or corrupt when we call SD.

open(). We will discuss that next.

Chapter 5 Project Configuration

154

�Handling Configuration Errors
Introducing configuration files to a project needs to happen with care. The

program needs to be able to decide how to proceed if the configuration

file is missing or if it’s ill-formatted; it has to have a plan in case some of

the values are missing; and as mentioned, if the configuration file is on

external hardware, an SD card, for instance, it needs to know what to do if

the media can’t be mounted.

There is really no single course of action here, but the first thing to

decide upon is whether the program should proceed or not. If we choose to

proceed with execution, we should make sure that the program has another

set of values it can use for its configuration. If we recall Listing 5-21,

we’ll see that the configuration values numFans, fanPins, and interval

were declared with default values. All we need to do is to make sure these

are not touched if the configuration file is missing or the SD card cannot be

accessed. Here (Listing 5-29) is a modified loadConfig() function.

Listing 5-29.  Modified loadConfig() deals with a missing

configuration file

void loadConfig() {

 File configFile = SD.open("config.jsn");

 if (!File) {

 return;

 }

 /...

}

Even in projects that are built for public places, running the program

at all cost is not always the right decision, and when debugging a project

having it gracefully recover ill-formatted can actually be detrimental to

the debugging efforts: in a project I worked on, one computer, let’s call

it Machine A, was supposed to send data to Machine B. When I made a

Chapter 5 Project Configuration

155

change to Machine A’s program configuration file, Machine B’s program

stopped responding. Now, that was odd, because the change I made had

nothing to do with the communication, and both programs seemed to

be running. It turned out that I accidentally entered another character

somewhere else in that file, which was a JSON file. That caused the

program to treat the file as ill-formatted and resort to defaults. The default

IP address to which the program sent data was, of course, 127.0.0.1, which

always means “this machine.” This meant that Machine A was sending

messages to itself, and not Machine B.

The point, once again, is to be mindful and make strategic decisions:

whether the program should continue or not, how default values are

applied and which values make sense, and what additional steps should

be taken.

�Configuring with Hardware
Sometimes it makes sense to change a project’s configuration using

hardware. This can be the case when dealing with projects that are not

connected to a network, Arduino projects, and projects that don’t have a

lot of parameters to expose. The inputs on most SBCs are strictly digital

and not plentiful, so we should be very mindful of what parameters we

expose and how.

�Jumpers
Jumpers simply connect one point in the circuit to another. Jumper caps

(Figure 5-1) do exactly that, connecting two adjacent header pins on

circuit. A jumper cap’s presence or absence acts as a switch that can be

used to change a program’s configuration (Figure 5-2).

Chapter 5 Project Configuration

156

In the circuit depicted in Figure 5-2, the configuration appears as a

switch. If the switch is closed, that is, the jumper is present, the voltage on

the pin is pulled to ground. The resistor, called a pull-up resistor, makes

sure that when the switch is open, a known voltage (VCC) is applied to the

pin, so that the state is known. Many SBCs, the Raspberry Pi included, have

pull-up and/or pull-down resistor that can be engaged using software.

Due to the binary nature of the jumper, the way it affects the project

must also be binary. Perhaps it selects between two values, or between

the content of a configuration file and program defaults. Perhaps it just

selects between two possible values, as shown in Listing 5-30 (we’ll stay in

Arduino land for this).

VCC

5K
CFG PIN

Figure 5-2.  A configuration jumper can be treated as a switch and
should be used with a pull-up (or pull-down) resistor

Figure 5-1.  Jumper caps are simple way to change the configuration
of a project

Chapter 5 Project Configuration

157

Listing 5-30.  Changing configuration using a jumper

#define INTERVAL_PIN

int interval;

void setup() {

 pinMode(INTERVAL_PIN, INPUT_PULLUP);

 interval = digitalRead(INTERVAL_PIN) ? 1000 : 5000;

)

�DIP Switches
DIP switches usually come as eight tiny switches bundled together in a

through-hole packaging (Figure 5-3).

Having multiple switches doesn’t mean that every switch has to control

a different parameter. Using two switches for one parameter gives us four

options rather than two, as demonstrated in Listing 5-31.

Listing 5-31.  Using multiple pins to configure one parameter

#define INTERVAL_PIN_0 5

#define INTERVAL_PIN_1 6

Figure 5-3.  DIP switches

Chapter 5 Project Configuration

158

int interval;

void setup() {

 int intervalOptions[] = {30, 60, 90, 120};

 pinMode(INTERVAL_PIN_0, INPUT_PULLUP);

 pinMode(INTERVAL_PIN_1, INPUT_PULLUP);

 int intervalConfig =

 digitalRead(INTERVAL_PIN_0) +

 digitalRead(INTERVAL_PIN_1) << 1;

 interval = intervalOptions[intervalConfig];

)

We are treating the switches as digits in a binary number, which is why

we bit-shift the result of digitalRead(INTERVAL_PIN_1) to the left. This

two-digit binary number has four possible values, which we then use as an

index in an array of options.

�Summary
We have reviewed various aspects of configuration in this chapter: reading

files of different formats, getting instructions from the command line,

recovery from missing configuration information, configuring an Arduino

project, and configuration using hardware.

There’s a significant amount of effort that goes into setting up a well-

organized configuration setup, and it’s very tempting to just throw magic

numbers into the code. But it’s worth it, and that is apparent the second

serious debugging needs to be done or when changes need to be made on

the spot, which is why it’s good to incorporate a configuration setup early

on before the code gets too complex and hard to control.

Chapter 5 Project Configuration

159© Eyal Shahar 2019
E. Shahar, Project Reliability Engineering, https://doi.org/10.1007/978-1-4842-5019-8_6

CHAPTER 6

Machine Setup
For a project to run smoothly, it needs the right environment. In this

chapter we’ll discuss how to configure the machine on which the project

is running. For the sake of simplicity, we’ll assume the machine is a

Raspberry Pi with Raspbian Stretch Lite as the operating system, but most

of the topics and examples that we’ll discuss in this chapter translate

readily to other single-board computers with different flavors of Linux.

�User Setup
In a Linux system, every process runs under a user: the user may run

the process by entering a command in the terminal, or it may run

automatically by the system at times set by the programmer in advance.

This means two things: First, the user must have permission1 to execute

the program. Second, the user must have the permissions to access the

hardware required by the program, such as the GPIO pins or the I2C buses.

Notice that I referred to the user as “it” – a user account doesn’t have to

be tied to a person. Very often users are tied to a certain role the machine

has to play. The root user is a good example for this. Other examples are

the mysql user on machines that run MySQL, or www-data on machines

running Apache.

1�Learn more about permissions and the Linux file system here:Molloy, Derek.
Exploring Raspberry Pi: Interfacing to the Real World with Embedded Linux.
Indianapolis, IN: John Wiley & Sons, 2016. pp 70–78.

160

To run our weather station, we need to access the I2C bus and the

GPIO pins. As we have established, root has permissions to do whatever it

wants, and pi, another user that your Pi came with, also has permissions

to access all of the Raspberry Pi’s peripherals. The reason pi can do this is

because it is a part of all the Pi’s hardware groups. Being a part of the i2c

group allows a user to use the I2C bus, and groups like gpio and spi have

similar roles.

This purpose of introduction was to lead to the main question of this

section: under which user should our program be running? It seems like

we have a few options.

We can run it under root, but that is considered bad practice. The

power that root possesses can cause serious damage to the system, since

there is nothing to stop it if a piece of code accidently tries to do something

that is bad for the system. Moreover, if the program is intended to be run by

root, tending to the program often has to be done by the programmer as

root, and while it’s fine to log in as root every now and again, doing it too

often can lead to disasters. It takes just that one time when you delete your

entire machine or block yourself out of it to acknowledge that.

We can run it as pi. That’s a perfectly valid option, though not my

personal favorite. Although it’s much harder for pi to cause actual damage,

it still has way more power than needed to run most projects. Since it’s

so common in Raspberry Pi machines, it’s a common target for online

attacks, and last, it lacks personality. I’m not just being cute, although this

is a part of my argument.

We can run it under our own user. Since we’ll still need the

permissions for that, we can sudo the command. That works just fine from

the command line, but since we are about to automate the execution of our

program and sudoing will require an explicit inclusion of our password in

the configuration file, that doesn’t sound like a good idea. Actually, having

Chapter 6 Machine Setup

161

your personal password in a file is never a good idea. The proper thing to

do would be to just give us the right permissions by adding our user to the

relevant groups.

But that’s still not giving personality to the user – the weather station

is not us. It is a program that has its own agenda, doing its own thing.

Moreover, if we choose to run other programs on the same computer, it

may be a good idea to separate them, so each one of them has its own

permissions and its own files.

Let’s review the process of adding the new user. We’ll name the user

weatheruser. We start with the useradd command

sudo adduser weatheruser

This also creates a folder for the user in the /home folder. In our case,

the folder /home/weatheruser is created. We’ll be asked for a password,

which we should enter, and some information about the user, such as

the user’s name and phone number – we can leave these blank by hitting

enter. Next, we need to add the user to the groups it needs to be in in order

to run the project. Again, we use the adduser command, but since the user

already exists, adduser knows it’s being used to add the user to a group. To

add weatheruser to the gpio, we enter the following command:

sudo adduser weatheruser gpio

�Where Should the Code Live?
The Linux file system can be a little confusing, and it doesn’t help that

maker-type projects don’t usually fall under a well-established convention.

To avoid the file system’s clutter and for keeping things simple, I prefer

having the code for a project reside in the project’s user home folder.

In the weather station’s case, I’d make the folder /home/weatheruser/

weatherstation/ where the code for the project will be saved.

Chapter 6 Machine Setup

162

�Network Configuration
When most machines are connected to the network, by default, they are

configured to get their network settings from the router using a protocol

called DHCP (Dynamic Host Configuration Protocol). This includes

assigning IP addresses to the various machines on the network. While

most of the time a router will remember the various machines that it

worked with and will assign the same IP address to a machine if it came

off and on the network, there is no guarantee to that. To be sure we can

always log into a machine, access its dashboard, and include it in projects

that incorporate more than one machine, it is crucial that the IP address is

set manually. This requires us to configure all the network settings. Sadly,

there are too many ways to set the network configuration, and they work

differently on the various Linux distributions and machines. We’ll first

review what the different settings mean and what we should set them to

and then discuss some common methods.

�The Settings
�Default Gateway

The default gateway is the machine that is used to send and receive

data from external networks. In most cases, this is a router, and in home

networks, its address is almost always 192.168.1.1.2 If you don’t know the

IP address of your router, you’re in trouble, because this means that you’ve

probably never changed the password for your network, and the Admin

password to your router, which leaves you extremely exposed to threats.

Find the manual for your router, make sure to change both the Wi-Fi and

Admin passwords, and familiarize yourself with the Admin interface. We’ll

need it to proceed.

2�192.168.0.1 is also a very common address, but we’ll proceed with 192.168.1.1.

Chapter 6 Machine Setup

163

�IP Address

We need to give the machine an address we know is not taken by any

other device, and never will be. First, it’s a good idea to limit the range

of addresses that the router can assign to devices using DHCP, like your

laptop, phone, and your family and friend’s devices. This can be done in

the router’s Admin dashboard – here’s a screenshot of mine (Figure 6-1).

Most people don’t use advanced settings such as this, so it’s not

uncommon for them to be buried in submenus. My router is set so that

addresses between 192.168.1.128 and 192.168.1.254 are free for dynamic

assignment with DHCP. When I manually assign an IP address to a device,

it’s between 192.168.1.2 and 192.168.1.127.

It’s also a good idea to check that the address we’re about to use is

free. We can ping the address we choose, but not all machine responds

to pings. The safest way to know that an address is free is to look in the

router’s Admin dashboard. There’s usually an “Attached Devices” screen,

Figure 6-1.  Section of a router’s Admin dashboard for setting DHCP
address range

Chapter 6 Machine Setup

164

or something similar. Now that we know which addresses are free, we can

choose one and make a note.

Personally, I have a system. Since I don’t have more than 12 machines

at a time that need static IP addresses, I use addresses in increments of

10. For example, my main server uses 192.168.1.10, and the Raspberry Pi

that I use for writing the code in this book is on 192.168.1.60. If a machine

uses Wi-Fi, that interface has an address that is an increment of 1, so my

Raspberry Pi’s Wi-Fi interface is on 192.168.1.61. I keep a spreadsheet with

every machine’s name (all my machines are named after fabric patterns,

like “plaid” and “argyle,” just because), IP addresses, what projects run it,

and what ports are being used. I also put a label on the machine’s Ethernet

port with the machine’s name and IP addresses. This is extremely useful,

especially if you have multiple SBCs lying around.

�Subnet Mask

A subnet mask determines which IP address belongs to your network

and which are on an external network. For example, if the subnet mask

is 255.255.255.0, all IP addresses that have the same first three octets

(usually 192.168.1) are on the local network, and all other IP addresses are

to be found on external networks. Networks that have more than 255 hosts

will need a different subnet mask, but that’s beyond the scope of this book.

For our purposes, 255.255.255.0 is what we need.

�Broadcast

Sometimes, your machine needs to send data to all other machines in your

network, for example, to know which other machines are out there. The

broadcast address determines which address range should be covered

when this happens. This address should be just calculated from your

network: in our case, the network is 192.168.1.x. To create the broadcast

address, just fill that x with binary 1s, which gives a broadcast address of

192.168.1.255.

Chapter 6 Machine Setup

165

�DNS Servers

The DNS (Domain Name System) servers, also called name servers, are

machines that hold databases that map URLs to IP addresses. If they can’t

find the URL in their databases, they will query another name server and

return the result. The name servers that your network is using are probably

maintained by your ISP provider. Most machines will be configured to

know the addresses of two name servers: a primary and a secondary that is

used as a backup. When a machine is configured through DHCP, the router

is responsible for providing these addresses to your machine. However,

since we are configuring the network settings manually, we need to know

what these addresses are. There are a few ways to obtain them:

•	 While the machine is still using DHCP, type in the

command line

cat /etc/resolv.conf

•	 Look for it in the router’s Admin dashboard.

•	 Check with your ISP provider.

•	 You can use alternative, public DNS servers, such as

Google’s 8.8.8.8 and 8.8.4.4. However, unless you feel

there’s something wrong with the performance you’re

getting, I recommend using your ISP’s servers.

•	 Some routers appear to couple as a name server. If

they do, you can use their address, which is probably

192.168.1.1. Behind the scenes, they get the name servers’

addresses from your ISP and forward requests to them.

�Applying Network Configuration
Once we know what our settings should be, we can apply them to

the machine. Before we get started though, we need to know how the

Chapter 6 Machine Setup

166

operating system identifies the networking interface. If we are using an

Ethernet cable, the interface’s name is probably eth0. If it’s wireless, it’s

probably wlan0. To make sure, check the output of ifconfig.

�Ubuntu

In Ubuntu, the network configuration is set by the file /etc/network/

interfaces. Find the part that configures the interface of interest and

change it to match Listing 6-1.

Listing 6-1.  Network settings for a static IP address

auto wlan0

iface wlan0 inet static

 address 192.168.1.60

 netmask 255.255.255.0

 gateway 192.168.1.1

 dns-nameservers 192.168.1.1 8.8.8.8

 wpa-ssid NetworkName

 wpa-psk NetworkPassword

The auto keyword tells the operating system to try to start the

connection on that interface when the machine turns on. Naturally,

if a wired interface is being configured and not a wireless one, the

two last lines can be omitted. Otherwise, replace NetworkName and

NetworkPassword with your network’s SSID and password.

�Raspbian

Although it is possible to configure the network connection by editing

the interfaces file, the recommended method for Raspbian is to edit a

different file, /etc/dhcpcd.conf. Listing 6-2 shows the lines that we need

to add to this file in order to give the machine a static IP address.

Chapter 6 Machine Setup

167

Listing 6-2.  Setting a static IP address in /etc/dhcpcd.conf

interface wlan0

static ip_address=192.168.1.60/24

static routers=192.168.1.1

static domain_name_servers=192.168.1.1

Instead of specifying the subnet mask, the IP address is given in CIDR

(Classless Inter-Domain Routing) notation. The number after that slash

indicates the number of 1s in the binary representation of the subnet

mask. Our subnet mask is 255.255.255.0, which in binary is 1111111111111

1111111111100000000, or 24 1s and 8 0s.

If we want the machine to connect to a wireless network, we need to

specify which network we want to connect to and provide the password.

Instead of specifying the network SSID and password in a file, the easiest

way to do this is by entering sudo raspi-config in the command and

follow the menus “Network Options” and then “Wi-Fi,” where the user is

asked to enter the SSID and password.

�Accessing Remotely
�Static IP address

At this point, our machine is only visible to other devices within the local

network – the one governed by our router. If we try to use a mobile phone’s

browser to navigate to 192.168.1.60 from anywhere outside the local

network in which the machine lives – a friend’s house, a coffee shop, or

on the street using the cellular network – we will either get connected to a

different device that has that address in that network or, more likely, get an

error message stating that no device on the network has that address.

To be able to connect to the project from outside the network it’s in,

you first need to know what the public IP address of your router is. While

for devices on the local network its address is 192.168.1.1 (or one of the

other variants mentioned earlier), it has a different, unique address for

Chapter 6 Machine Setup

168

the rest of the world. That address is given to the router by your ISP, and

unfortunately, it is not guaranteed to be permanent. Call your ISP and

ask – some ISPs will give you a static IP address for a monthly fee. Some

might just give you a static address for free.

This address, however, is not the address of the machine running

the project, but rather the address of the router. In order to actually

communicate with the machine from outside the network, we need to

set up port forwarding (sometimes called port mapping) in the router.

Figure 6-2 shows a screenshot of my router’s interface that is used to add a

new port forwarding service.

This causes any communication addressed to my router at port 80 to be

forwarded to my Raspberry Pi that has the address 192.168.1.60, at port 3000.

Port 80 is the default HTTP port, and whenever you don’t include a port when

you navigate your browser to a web site, it actually addresses port 80. Routers

will usually let you set as many services as you want. You could, for instance,

use different ports as a way to address different machines. You can also map

incoming communication on port 22 to your machine’s port 22: that’s the

default port for SSH, and adding this mapping will allow you to SSH remotely.

Figure 6-2.  Section of a router’s Admin dashboard for setting port
mapping

Chapter 6 Machine Setup

169

�Using a Domain Name

If you just have a static IP address, you need to remember it whenever you

want to access the project remotely. Moreover, if the project serves a page

that should be visible to the public, giving people just an IP address can

be a little awkward. At that point, you’d probably want to own a domain

name to point to the project. Once you have bought a domain, your

domain registrar will provide you with an online management dashboard.

In that dashboard you can set the DNS resource records. The type of

resource record we care about is called an A record, which is the record

that determines the IP address associated with your domain. Figure 6-3

shows a screenshot of the dashboard Google provides for their domain

registration service.3

�Dynamic DNS

There is an alternative to the static IP address route: Dynamic DNS

(DDNS). There are several companies offering DDNS services, most of

them work on a freemium model, so you can definitely get started with a

3�https://domains.google.com

Figure 6-3.  Section of the Google Domains dashboard for setting
DNS resource records

Chapter 6 Machine Setup

https://domains.google.com

170

pretty good service for free.4 These services will provide you with a software

that you would install on your machine. This software will constantly

monitor your public IP address that is given to you by your ISP. If it

changes, it will notify the service, which in turn will update the DNS

resource records. The main advantage of using DDNS is that the entire

setup can be done for free, if you’re comfortable with the selection of free

domain names these services offer. The main disadvantage is that changes

to the DNS resource record take time to propagate through the entire

Domain Name System – sometimes minutes, sometimes hours. If that can

be a problem to your project, perhaps DDNS is not the route for you.

Note  Some routers have the software for popular DDNS services
installed on them, eliminating the need to install any software on your
machine.

�Launching on Startup
When deploying a project, we want to make sure that the program starts

automatically after reboot. We also want the program to restart if it crashes

for some reason. In this section we’ll explore a few strategies to achieve

these goals.

�Running as a cron Job
cron is a Linux utility that is used for scheduling tasks. Some common uses

for cron are making backups, cleaning up log files, checking the machine’s

resources, and generating reports. For the purposes discussed in this

chapter, we can use cron to launch our project on boot. Every user on the

4�I recommend starting with No-IP, one of the key players in the field: www.noip.com

Chapter 6 Machine Setup

http://www.noip.com

171

machine has its own crontab file, which tells cron what jobs should be

executed in the name of the user and when it should execute them.

To edit the crontab file, type crontab -e in the terminal. The file

contains some comments explaining, very superficially, how to add tasks,

but we’ll try to do a better job here.

Every line in the file describes a task and the schedule in which it

should execute. The line starts with the schedule, represented by five

space-separated fields: minute, hour, day of the month, month, and day

of the week. After these numbers comes the task itself, which is simply

written as a shell command.

The schedule fields follow these rules:

•	 A plain number indicates a specific value. For example,

if the hour field has the value of 14, it implies 2PM. A

value of 2 in the “day of the week” field means the job

will execute on Tuesday (0 being Sunday).

•	 An asterisk (*) means “any.” For example, if the minute

field is 0 and the hour field is ∗, the job will execute

every hour on the hour.

•	 The format */x means “in steps of x” or “every x.” To

run a task every half an hour, the minute field should be

/30, and all the other fields should have an asterisk ().

So, for example, the line

0 8 */15 * * /usr/bin/python3 ~/script.py

will cause the command /usr/bin/python3 ~/script.py to execute

on 8 o’clock in the morning on the 1st and 16th of every month.

Chapter 6 Machine Setup

172

�Launching on Boot

cron can also execute commands on boot. This can be done by substituting

the schedule fields with @reboot, like this:

@reboot /usr/bin/python3 ~/project/main.py

Notice the command itself: we can’t just call Python like we do from

the command line, but rather we have to specify Python’s full path. When

as user logs into a terminal session, Linux loads the user’s environment

variables. These determine various aspects of the session, such as the

user’s home directory and the colors to be used during the session. One of

these variables is PATH, which is a list of locations where the system looks

for executable commands. This is how the operating system knows where

to find the Python interpreter when we type python3 in the command line,

for example. However, cron doesn’t run under a terminal session and has a

different, fairly minimal, set of environment variables.

Note T o see the difference between the two environments, try this:
type printenv in the command line to see the terminal session’s
environment variables. Then, add this to the crontab file:

*/1 * * * * printenv > ~/env.log.

This will output the cron’s session environment variables into a file, env.
log, in the user’s home folder, every minute. Wait 1 minute and examine
the file’s contents by typing cat ~/env.log. Remember to remove the
added line from crontab when you’re done with this experiment.

Long story short, we must include the full path when we run a program,

whether it’s Node, Python, or a shell script. Alternatively, we can change

the PATH variable as soon as cron starts, as shown in Listing 6-3. This is

especially useful if cron has to run several programs from the same location.

Chapter 6 Machine Setup

173

Listing 6-3.  Adding node’s path to cron’s environment variables

PATH=/usr/bin/

@reboot python3 ~/project/main.py

Note  python3 is usually in /usr/bin/, and node is usually
in /usr/local/bin/. To make sure, type whereis python3 or
whereis node in the command line.

One more thing to consider is the working directory upon execution.

cron’s working directory is the user’s home folder. If the program looks

for a file with a relative path, it will be relative to the user’s home folder

and not the folder where the main program is in, and this can often lead

to errors. We can make sure that the program itself never relies on the

working directory: in Python, for example, we can use the __file__

constant to determine the location of the main file, and in Node.js we can

use the __dirname constant. However, it’s also fine to assume that the

program’s working directory is the one in which the main file is located,

as long as we change the working directory before running. cron can run

multiple commands in one line, so we can cd into the file’s location and

only then execute the command

@reboot cd ~/project; python3 main.py

Note T he semicolon (;) will cause the second command to execute
after the first one, regardless of the success of the first command.
Another option is the && operator: if used, the second command will
execute only if the first one returned an exit status of zero, implying
successful execution.

Chapter 6 Machine Setup

174

Sometimes it might be preferable to leave prep work, such as changing

the working directory, to a shell script that is located in the same folder as

the main program. Such a script can also make sure the program restarts if

it crashes. Consider the script in Listing 6-4.

Listing 6-4.  Shell script executing the main program

#!/bin/bash

cd $(dirname $0)

while true

do

 python3 main.py

done

The first line is called a shebang. It is used in executable files to tell the

operating system what interpreter to use for the program. The default is the

shell interpreter, so it can be omitted for shell scripts.

The second line changes the working directory to the one that the script

is located in. The dollar sign ($) is used for several kinds of expansions, and

in this line, we see two of them: parameter expansion expands a parameter

into its value. When a command is executed, the command-line arguments

are stored in numbered parameters, and as we’ve learned in the previous

chapter, the one that will be stored in parameter 0 is the command itself,

which is probably something like ~/project/project.sh.

dirname is a command that takes in a string representing a path to a

file or a folder and returns the folder in which it is located – in our case, this

would be ~/project/. However, we need to actually generate this string or,

in other words, evaluate the expression dirname $0 before we hand it over

to the cd command. This is where that other dollar sign kicks in. In this

case, it acts an expansion called command substitution, which executes the

command and replaces it with its output. In our case, what ends up being

executed after both expansions take place is just cd ~/project/, which is

exactly what we need.

Chapter 6 Machine Setup

175

Of course, we could have just wrote that, literally, in the shell script,

but there are two main advantages of doing it the way we did: first, if we

ever move the project or rename the folder it’s in, this command will still

cd into the correct directory; second, this tiny script can be reused for

other projects.

�Crash Recovery
cron schedules only the execution of program; it doesn’t care, however,

what happens when they terminate. If we use cron, it is up to us to make

sure that the program relaunches if it crashes.

�Python
For programs written in Python, one technique is to wrap the entire main

code in a try-except block and wrap that block in an infinite loop. If the

main code crashes, an exception is thrown, the except block can then take

some post-crash measures, such as send an alert or log the exception, and

then the loop just starts all over again (see Listing 6-5).

Listing 6-5.  Restarting a Python program after crash. The main code

is wrapped in a try-except block that is wrapped in an infinite loop.

if __name__ == "__main__":

while True:

 try:

 # main code goes here

 except:

 # take post-crash actions

Chapter 6 Machine Setup

176

�forever.js
Node.js programs, on the other hand, often don’t have a main loop, but

rather wait for events. Fortunately, there are some libraries that can come

to our assistance and actually simplify the whole process. We’ll mention

two: forever.js and pm2. forever.js5 is a lightweight library that is primarily

aimed at Node.js projects. forever.js needs to be installed globally (npm

install forever –g), and then, to run a program forever, one should cd

into the project’s directory and run forever start app.js.

In fact, forever.js is not limited to running Node.js projects: using the

–c (command) option, it can run anything runnable, including Python

programs:

forever start -c python3 app.py

If we use this line in the crontab file, we’d be all set with both

launching on reboot, and relaunching in case of a failure. We must, as you

may recall, use full paths in crontab:

PATH=/usr/local/bin/;/usr/share/

@reboot forever start -c python3 main.py

�pm2
Another popular library is pm2.6 It can be used in a similar way to forever.js:

cd into the project folder and run pm2 start app.js. It knows to use the

system’s default Python interpreter if the file’s extension is .py. Most SBCs

today have Python 2.7 as their default interpreter, so to use Python3 we can

specify the interpreter with the command

pm2 start app.py --interpreter=python3

5�https://github.com/foreverjs
6�http://pm2.keymetrics.io/

Chapter 6 Machine Setup

https://github.com/foreverjs
http://pm2.keymetrics.io/

177

pm2 can also automatically launch the program on boot. Entering

pm2 startup in the command line will cause pm2 to detect the operating

system and how services are run in it. Then, it will respond with its

recommendation of how the startup script should actually be initialized.

It’s usually a good idea to just copy and paste the recommendation – this

is what I got:

sudo env PATH=$PATH:/usr/local/bin /usr/local/lib/node_modules/

pm2/bin/pm2 startup systemd -u weatheruser --hp /home/weatheruser

The env command at the beginning will cause the next command,

modules/pm2/bin/pm2 startup (startup being the subcommand) to run

in a temporary, alternative environment to the one we’re currently in. This

means, for example, that the changes made to PATH will not persist once

the command finishes executing. The -u option sets the user, and the --hp

option specifies the user’s home folder.

Next, we can make sure that all the programs we want to run during

startup are running. Last, we need to tell pm2 that the current running

processes are the ones it should run on startup by entering pm2 save.

pm2 is fancier than forever.js as it has more features. For instance,

you can use pm2 monit to launch a dashboard that monitors all processes

currently running under pm2.

�Running As a System Service
Another option for launching a project is running it as a system service.

Services are programs that run in the background, either waiting to

handle various events or carrying all sorts of important tasks. cron itself,

for example, is a service, and so are SSH, databases like MySQL and

MongoDB, and web servers like Apache. There are some nice perks that

come with running a program as service, such as restarting after failure

and setting the working directory.

Chapter 6 Machine Setup

178

systemd is the program that manages the services running in the

system, and it uses files called unit files that define the various services

available. These are located in /etc/systemd/system/ and have a

.service extension. If we want to run our program as a system service, we

must create one of those files. Listing 6-6 shows what a unit configuration

file for our weather station might look like.

Listing 6-6.  Unit configuration file for running the weather station

project as a service

[Unit]

Description=Weather station project

After=network.target

[Service]

ExecStart=/usr/bin/python3 weatherstation.py

WorkingDirectory=/home/weatheruser/weatherstation/

User=weatheruser

Restart=always

RestartSec=1

ExecStopPost=/bin/bash /home/weatheruser/weatherstation/fail.sh

[Install]

WantedBy=multi-user.target

There are quite a few parameters that can be set when configuring a

service, and each of them has many options. We’ll discuss only the ones

that are useful to us.

Before we dive into the various settings, it’s important to mention that

services are only one type of units. Other types are sockets, timers, and

mounting points, to name a few. Unit files resemble .ini files in their

format: they have sections that are denoted by their bracket-enclosed

titles, and each section consists of key-value pairs. Service unit files have

Chapter 6 Machine Setup

179

three sections: [Unit], [Service], and [Install]. The [Unit] section

describes the unit itself and its dependency on other units. We used the

Description field, which gives the service a human-readable description.

Entering the command systemctl in the command line, for instance,

prints out a list of all services available for systemd, along with their

description. The second parameter we set is After, which helps systemd

determine the order in which units are started if started together. A target

unit groups together several other units, or indicates a synchronization

point – network.target, for example, is a unit managed by the system that

indicates that the network is ready. It’s a good idea to run services that

have network capabilities after this target.7

The [Service] section contains parameters that are only applicable

to services. ExecStart is the actual command to be executed. Notice, as

in the crontab file, that full paths must be used. WorkingDirectory sets,

obviously, the working directory. This is easier than the cron scenario

where we had to change the directory before executing the command.

User determines which user the job would run under.

It is the following few parameters that make the use of service

extremely compelling: ExecStopPost specifies a command to execute

when the service exits, Restart tells systemd to relaunch the service if it

exits, and RestartSec determines how long systemd should wait before

relaunching it. This allows for a seamless restart in case of a failure while

giving the opportunity to take actions such as cleanup, logging the restart,

and notifying the people maintaining the system. Notice that although the

command is a shell script, we still had to tell systemd that it must use bash

to interpret it.

Last, the [Install] section determines how units that are being

started at boot should be enabled. Setting WantedBy to multi-user.target

tells the operating systemd to start the service when a multi-user system

7�To learn about other targets managed by the system, type man systemd.special
in the command line.

Chapter 6 Machine Setup

180

is ready. This target loads a bunch of other services, so it is common for

services that are manually installed, such as ours, to be loaded at this stage.

Once the unit file is ready and saved in the /etc/systemd/system/

folder – let’s say under the name weatherstation.service – we need to

tell systemd to rescan the folder. systemctl is the command that controls

system, and rescanning is done by using the daemon-reload subcommand

sudo systemctl daemon-reload

Then we need to tell systemd to include the service in the boot

sequence by using the enable subcommand

sudo systemctl enable weatherstation

The service will start upon reboot. It can also be started, stopped, and

restarted manually by using the start, stop, and restart subcommands.

�Setup Documentation
Just as the software and hardware of the project are important to

document, so is the machine’s setup. It’s not unlikely that coming back

to a machine after a while you will not remember what its IP address is,

what the project that it’s running is called, under which username it’s

running, and how it is managed. We’ve mentioned putting a sticker on

machines and keeping a spreadsheet. I also recommend leaving setup

documentation on the machine itself.

In addition to the project’s username, I have my own user set on all my

SBCs. This way, no matter which SBC I pick up (assuming that it’s mine,

of course), I know I can log into it. There, in my home folder, I can keep a

README.txt file with all the information about this machine. In projects

where multiple people have access to the machine, I use a fancier trick:

the file /etc/motd (motd stands for “message of the day”) is a text file

containing the message users see when they log in. That’s a perfect place

to put a message such as the one in Listing 6-7.

Chapter 6 Machine Setup

181

Listing 6-7.  Content of /etc/motd for a machine running the

weather station project. This is presented to users when logging in.

Project: Weather Station

This project runs under the username "weatheruser".

The code is in /home/weatheruser/weatherstation/

The project runs as a service managed by systemd.

When I feel even more adventurous, I use the /etc/update-motd.d/

folder. It contains executable files whose names start with double-digit

numbers. When a user logs in, they are executed in the order of these

numbers. This means that dynamic information can be presented to the

user. For example, to display the machine’s IP address, the script /etc/

update-motd.d/20-ipaddress can be created (Listing 6-8).

Listing 6-8.  Content of /etc/update-motd.d/20-ipaddress

showing the IP address of the machine upon logging in

#!/bin/sh

echo "This machine's IP address is $(hostname -I)"

The hostname command can show and set the machine’s host

name. The –I option causes the command to display the IP addresses

of the device, excluding the local host address (127.0.0.1). Notice how,

again, command substitution is used inside the string that echo is

supposed to print.

The files in /etc/update-motd.d/ don’t have to be shell scripts –

they can be any executable file. Just make sure they have a valid

shebang and that they have execution permissions. Adding execution

permissions to a file can be achieved with the chmod command. In our

example, that would be

sudo chmod +x /etc/update-motd.d/20-ipaddress

Chapter 6 Machine Setup

182

�Summary
Setting up the environment in which the project lives plays an important

part in the project’s stability. For some, including myself, setting up the

machine is far from being the favorite part of the working on a project: it

can feel mundane and removed from the original, exciting reasons that

gave birth to the project in the first place. Remember that tiny script that

changed the working directory to the once the script is in? That’s the kind

of code many makers will find on the Internet, copy and paste it without

understanding why it works the way it does, and move on to more fun

things. I hope that in this chapter we managed to make the machine setup

part somewhat more interesting and transparent.

Making sure that the project keeps running after crashes may solve

one problem – the project being down – but it actually creates a new

problem: not only something went wrong with the project, but unless we

actively do something, we may never know what the issue was. In the next

chapter, we will explore logging, a key tool that can help us investigate the

circumstances that lead to projects failing.

Chapter 6 Machine Setup

183© Eyal Shahar 2019
E. Shahar, Project Reliability Engineering, https://doi.org/10.1007/978-1-4842-5019-8_7

CHAPTER 7

Logging
In previous chapters we put a lot of emphasis on dashboards. Looking

at the system in real time as it reacts to commands or internal changes is

extremely beneficial, but it’s only one way to observe a system. Often, the

things that we want to observe either happen when we’re not looking or

just happen too fast. This is why logging – keeping a record of what the

system did or tried to do but failed – is just as important.

In this chapter we’ll discuss some key aspects of logging: we’ll discuss

what can be done with log messages, how to prevent log files from clogging

the hard drive, and how to configure the loggers in code, in configuration

files, and through the command line. Logging can be as simple or as

sophisticated as the programmer wishes, and this chapter (along with the

following chapter) does not take the easy route. As with any other chapter

in this book, I encourage you to pick and choose from the techniques

reviewed here based on your comfort level and project needs. We will

explore these concepts by focusing on Python’s built-in logging module,

but the same concepts appear in the many logging libraries that are

available for JavaScript and other languages.

�The Good Old Print
Printing information to the console is the quickest and simplest way of

logging. Using console.log() in JavaScript or print() in Python requires no

additional setup and, in many cases, can help quickly solve crippling bugs.

184

When using console printing to solve a bug, it’s really important to

remove the console-printing code as soon as the bug is resolved and

definitely to clean up all unnecessary console printing before the program

is finished and deployed. First, printing to the console is a surprisingly

heavy operation in terms of computational power, so leaving unnecessary

printing commands can severely slow down the execution of the program.

Second, once those prints stay in the code and others get added, clutter is

inevitable, and debugging becomes more difficult.

�stdout and stderr
For every process that runs under Linux, the operating system holds a table

of file descriptors. These are non-negative integers that are used to index

all files referenced by that process. Of course, every process needs different

files, but every process’s file descriptor table is automatically populated

with these three: file descriptor 0 refers to the standard input stream, called

stdin. In a shell session, this stream takes its input from the keyboard; file

descriptor 1 refers to the standard output stream, called stdout, which in a

shell session has its output printed to the screen. When a Python program

executes a print() command, the output doesn’t go straight to the screen:

it actually goes to stdout, and by default, that leads to the output being

presented on the screen. Same goes for console.log() in JavaScript; file

descriptor 2 is the standard error stream, called stderr. Like stdout, its

output is presented on the screen by default. However, things that end up

going through the stderr are different. First, there are errors generated

by the operating system. Then there are error messages generated by the

interpreter, be it Node.js or Python, in response to errors that occur during

execution of the code. Last, there are messages generated by the code

itself. In Node.js, console.error() sends its output to stderr. In Python,

in order to print to stderr, one must be more explicit:

import sys

print("error message", file=sys.stderr)

Chapter 7 Logging

185

We can generate log files by simply redirecting the output and error

streams to files. Redirecting stdout and stderr to files can be done using

the shell’s redirection operators. It’s possible to create a file every time

the process started and redirecting the output of stdout to it using the “>”

operator:

node app.js > out.log

However, this will override the file every time this command is

executed. If something is causing our program to crash and we set a

mechanism to restart the program, we are bound to lose any helpful log

messages that the program generated as it approached the crash. A second

option is to use the “>>” operator, which opens a new file if one doesn’t

exist, but appends to an existing file:

node app.js >> out.log

Both of these are actually shorthand. The second option, for instance,

is shorthand for this:

node app.js 1>>out.log

which means that the output of stdout, or file descriptor 1, is redirected to

the file log.out. Consequently, output to stderr will not be written to the

file. We can, however, explicitly send the output of stderr to a different file:

node app.js >> out.log 2>>err.log

This tells the operating system to redirect the standard output of

app.js to out.log, and the output of its file descriptor 2 to err.log.

Alternatively, if we just prefer using the same file for both streams, we can

redirect the output of stderr to stdout:

node app.js >> out.log 2>&1

The ampersand (&) is there to make sure that the "1" is not interpreted

as a file name, but rather as the file descriptor for stdout.

Chapter 7 Logging

186

If we chose to launch the program with a line in crontab or a shell script,

we can use redirection there. In crontab, for example, we can write this line:

@reboot /usr/bin/python3 ~/project/main.py >> /tmp/out.log 2>&1

In the previous chapter, we mentioned two libraries, forever.js and

pm2, that can be used to launch projects and restart them when they

crash. When forever.js is used to launch a program, instead of printing

output to the console, forever.js writes printed messages to files. By default,

every time the program restarts, a new file with a random name is opened

in the folder ~/.forever, and all messages are written to it. It’s possible,

instead, to specify the name and path of three log files to which messages

are written, using command-line options. The -l option specifies the

files to which messages produced by forever.js itself, while the -o and

-e options specify the files for the stdout and stderr, respectively. For

example, the command

forever app.js -l /tmp/out.log -o /tmp/out.log -e /tmp/err.log

will cause forever.js log messages to be written out.log, output messages

to out.log as well, and error messages to err.log, all in the /tmp/ folder.

pm2 operates in a similar way, however the default behavior is slightly

different: for every process, two files are used under ~/.pm2/logs/, one

being the standard output log file and the other the error log file. They are

named as the name of the process, with –out and –err suffixes and have a

.log extension. For example, for a program called app.py, we can expect to

find the ~/.pm2/logs/app-out.log log files. To use a different set of files, it

is possible, just as in forever.js, to use the -o and -e command-line options.

�Where Do Logs Go?
Log files can be written anywhere on the hard drive that makes sense to

the programmer. However, there are a few places that make more sense

than others.

Chapter 7 Logging

187

One popular choice is just to create a logs directory inside the project’s

folder. This keeps the log files close to the project itself and out of the way

of system files. It’s good to remember, in that case, to make the proper

accommodations for this folder and not to treat it as part of the code. For

example, if the code is under Git version control, the line

logs/

should probably be added to the .gitignore file to prevent from

committing the log files to the repository1.

A second option is to write log files to the /tmp/ folder. This folder gets

deleted every time the machine reboots, so machines that are supposed

to be rebooted daily can benefit from such a setup: instead of putting

mechanisms in place to clean up the logs, they get deleted on every reboot.

However, if a machine shuts down or reboots unpredictably, the logs are

deleted and will not be able to provide insights into what went wrong. This

method is generally not recommended and should be used only when the

circumstances are right.

Last, there’s the /var/log/ folder. The purpose of the /var/ folder itself

is to hold variable files – files which are created, modified, and deleted as

programs across the system do their business. /var/log/ is specifically

designated for log files, but usually the writing permissions for that folder

are restricted to the system. Of course, permissions can be changed, but

usually it is advised not to add write permissions to folders where only the

system has them. What can be done, however, is to open a project-specific

log folder under /var/log/ and give that folder adequate permissions: the

owner and group could be the project’s user. The owner, group, and others

should all have reading permissions as well as execution (which for folders

just means the ability to open the folder). Only the owner, and perhaps

the group (it doesn’t really matter in this case), should have writing

permissions for this folder.

1�We’ll talk more about Git and the .gitignore files in Chapter 9.

Chapter 7 Logging

188

�Understanding Log Levels
Many programs and logging libraries support the concept of log levels.

When log levels are implemented, every log message is assigned a severity

level. Lower severity levels are usually used for debugging and record

keeping, imply normal program operation, require no immediate human

intervention, and tend to occur more frequently. On the other hand, when

log messages with higher levels of severity are produced, that means

something is very wrong. These messages require a response – perhaps a

bug fixed or even the machine rebooted. The higher the severity, the less

we expect to see these messages in our logs.

This system has two compelling features. First, it eliminates the clutter

that comes with detailed logging: we can set, at the program level, what is

the minimal level that we wish to record in our logs without changing the

code. Once the log files are there, we can get over the clutter by filtering for

the messages of the severity level that we care about. We can even direct

different levels of severity to different files.

The second compelling feature of this system is the possibility to

automate the type of action the system takes based on the severity level:

for lower levels, perhaps nothing should be done. For higher levels, maybe

somebody should be notified via email. For the highest levels, perhaps the

sprinklers should be turned on...

There is no one standard system for the naming and ordering of

severity levels. Some systems may have as few as two levels, some may

have ten different ones. Having said that, most systems use similar terms.

In the next section, we will discuss Python’s logging library, which has a

very typical naming system, as described in Table 7-1.

Chapter 7 Logging

189

Assigning numerical values to the different levels makes it possible to

programmatically put various thresholds, for example, to what actually

gets logged. This specific threshold is usually called the logging level.

Different logging levels are adequate for different scenarios. A WARNING

logging level is usually desired for normal program operation, while a

DEBUG logging level is more useful during development and, as the name

suggests, debugging.

We can split these levels into two groups: on the lower end of severity,

DEBUG and INFO messages imply normal program operation. If the logger

is using the standard streams for its output, these messages get directed

to STDOUT. On the higher end of severity, WARNING, ERROR, and CRITICAL

messages imply that something is wrong and needs attention. Usually,

loggers direct these messages to STDERR.

Table 7-1.  Log levels in Python’s logging module

Level Uses and Implications Value

DEBUG Verbose information that is useful for debugging the program.

This can be anything from a variable’s value to announcing the

invocation of a function

10

INFO Important information about the normal operation of the

program. Some examples are initialization of components,

connection to services or clients, and task completion

20

WARNING An event has occurred that could potentially lead to an error

or indicate that something is wrong. For example, a missing

configuration file or a bad reading from a sensor

30

ERROR An error has occurred. The program may continue running,

but functionality may be limited or not as expected. Inability to

connect or loss of connection to are some examples

40

CRITICAL A serious error has occurred which forces the program to shut

down. Human intervention is required immediately

50

Chapter 7 Logging

190

�DEBUG and INFO Messages
The lifespan of lines of code issuing a DEBUG message, as a general rule,

should be kept to minimum. They should be written in order to help

diagnose a bug and removed once the problem is solved. Because of their

usage, DEBUG logs tend to pile up otherwise, often to a point where the log

files become unintelligible. A second reason to keep these lines temporary

is due to the program’s efficiency: writing to the console or to the screen

takes time and computational power, and even if the logging level is

above the DEBUG level, there is some computational power that goes into

comparing the level of the message to that logging level to decide whether

the message should be recorded on file or not.

On the other hand, lines that use the INFO level for logging are

expected to be a part of the finished code. They are usually used for logging

normal, yet important events that happened during the execution of the

program, such as steps in an initialization sequence, or connections made

to online servers.

�WARNING, ERROR, and CRITICAL Messages
WARNING messages don’t necessarily imply that the program is broken. You

may have seen warnings generated by an interpreter or a library when

using a deprecated feature: everything is still working, but these WARNING

messages should be addressed at some point.

The distinction between ERROR messages and CRITICAL2 is also

subject to interpretation, and this is the place to reiterate: it is up to the

programmer to decide how to rank each log message. Some programmers

and organizations assert that a CRITICAL message should imply that an

error has occurred of which the system cannot recover on its own. Others

couple the severity with the urgency of the action that should be taken.

2�Some naming systems use FATAL instead of CRITICAL.

Chapter 7 Logging

191

In the weird space of maker projects, severity of events may not align

with what is common in the more traditional software industry. A server

going down due to a power outage, for example, is something big software

companies never really have to deal with: their servers are often “in the

cloud,” meaning that there are many servers in multiple locations, always

ready to cover for any servers that are unable to fulfill their tasks. If a

company’s service is rendered completely unavailable, that is definitely a

situation that falls under the CRITICAL category.

But in the context of maker projects, the situation may be different: is

a power outage of a maker project really a critical situation? If an exhibit in

a museum freezes, should the programmer immediately come back from

a vacation? At the Exploratorium, for example, if an exhibit needs to be

power cycled a couple of times a week, we consider that good enough.

�Logging Libraries
�Python’s logging
Python comes with its own logging module, called, conveniently, logging.

Once the logging module is imported, its most basic logging functions can

be called, and their output will be printed to the console through stderr

(see Listing 7-1).

Listing 7-1.  Logging to the screen with basic usage of the logging

module

import logging

logging.debug('Debug message')

logging.info('Info message')

logging.warning('Warning message')

logging.error('Error message')

logging.critical('Critical message')

Chapter 7 Logging

192

The different methods shown in Listing 7-1 are all equivariant to

logging.log(level, msg), with the level argument being one of the

constants logging.DEBUG, logging.INFO, logging.WARNING, logging.

ERROR, and logging.CRITICAL. These constants have the numerical

values described in Table 7-1. The msg argument is the message that

needs to be logged.

By default, the logging level for the logging module is WARNING. This

means that DEBUG and INFO messages will not yield output. Therefore, for

the program in Listing 7-1, we can expect the following output (Listing 7-2).

Listing 7-2.  Output for Listing 7-1

WARNING:root:Warning message

ERROR:root:Info message

CRITICAL:root:Critical message

This is the default behavior of the library’s default logger. The output

format includes the level of the message, the logger’s name which is root,

and the message itself. Also, as mentioned earlier, the default destination

of the log messages is stderr. However, we can change this behavior. We

can also have more loggers.

�Logger Configuration

To change the behavior of the default logger, we can use the logging.

basicConfig() function, with any of the optional keyword arguments

shown in Table 7-2.3

3�As with any other library this book explores, the list of arguments presented here
only covers some of the options. For more advanced features and options we have
not covered, the reader is advised to consult the library’s online documentation:
https://docs.python.org/3/library/logging.html

Chapter 7 Logging

https://docs.python.org/3/library/logging.html

193

The format argument lets you programmatically embed data in the log

message. As we saw earlier, the default format includes the logger’s name

(root) and the message’s severity. Table 7-3 lists some of the more useful

fields that can be used.

Table 7-2.  Partial list of optional keyword arguments for the

basicConfig() method

Argument Description

filename The name of the file to which log messages are written. If not

specified, messages are sent to stderr

filemode Mode of opening the file. ‘w’ for write, ‘a’ for append (default)

format String format to be used (see Table 7-3)

style Style of formatting, if format is specified:'%': printf-style formatting

(default)'{': str.format() style formatting'$': string.

Template style formatting

datefmt If date/time is included, use this format (see Table 7-4)

level Sets the logger level

Table 7-3.  Partial list of log message attributes that can be used for

message formatting

Attribute Type Description

asctime String Time when the message was generated, in human-readable

format

filename String Name of the file that generated the message

funcName String Name of the function that generated the message

levelName String Message severity, in text

message String The message to be logged

(continued)

Chapter 7 Logging

194

The default formatting style for log messages is the printf style. In

this style, attributes which are strings, for instance, asctime, are denoted

like this: %(asctime)s, where the s stands for “string.” Attributes that are

numbers are denoted like so: %(lineno)d. The newer str.format() is

a little cleaner and more consistent with the way we have been treating

strings so far. In this style, all that needs to be done is to surround the

attribute with curly brackets, like so: {asctime}. To use this format, make

sure to set the style keyword argument to '{' when using logging.

basicConfig().

Based on the complexity of the project and what it is that you

are trying to achieve with logging, you may want different attributes

included in the log. I find that including the time is extremely useful.

First, when debugging a project, I often run it again and again with minor

modifications. In these cases, the logging output is often repetitive, and

seeing the timestamp is useful to know that the program indeed executed,

and the output really hasn’t changed.

Including the severity level’s name can help filter or search the log

for specific levels. The most useful use case for this is finding the first

occurrence of an ERROR or a CRITICAL message and tracing the log back

from that point in an attempt to track down the chain of events that led to

that message.

Table 7-3.  (continued)

Attribute Type Description

lineno Number Number of the line that generated the message in the source

code

module String The name of the module that generated the message

name String The name of the logger that was used to generate the message

msecs Number Millisecond portion of the timestamp for the generated message

Chapter 7 Logging

195

Including the file name (or module name) along with the function

name and line number can prove to be very efficient when debugging

and when the log gets cluttered. With these attributes included in the log,

finding the piece of source code that generated a log file line becomes a

significantly faster task.

This is a good point to pause for a quick example that demonstrates

a pretty detailed log format as well as the use of logging.basicConfig()

(Listing 7-3).

Listing 7-3.  Logging format and logging.basicConfig() example

import logging

FORMAT = '[{asctime}] {levelname}: {message} \

 ({filename}:{funcName}:{lineno})'

logging.basicConfig(

 filename='app.log',

 filemode='w',

 level=logging.INFO,

 style='{',

 format=FORMAT)

def test_logging():

 logging.info('Info message')

test_logging()

After running this program, the contents of the file app.log should look

something like this:

[2019-03-17 22:51:00,432] INFO: Info message (formatting.

py:test_logging:14)

Chapter 7 Logging

196

Notice that in this example, we surround the time with square

brackets and the location of the logging code (file, function, and code line

number) in parenthesis: in my personal experience, using these symbols

contributes to the log’s readability.

The format of the date and time can be changed by setting the datefmt

argument when using logging.basicConfig(). Formatting is done in the

same way as when using the function time.strftime(): providing a string

that includes directives. These are then replaced by the data based on the

current time. A list of the available directives is given in Table 7-4.

There are quite a few directives that we did not include in Table 7-4,

and this is because they are useless to us. We want to avoid any text

representations, such as names of months and weekdays, since we want

to make it easy for both us and a machine to be able to quickly compare,

navigate, and sort the timestamps. This is also why we move left to right,

from largest scale fields to the smallest: the year field is first, and the

seconds is last. We use only directives that maintain a constant number of

Table 7-4.  Selected directives for formatting date/time with datefmt

Directive Description

%Y Year with century as a decimal number (e.g., 2019)

%m Month as a decimal number, between 01 and 12

%d Day of the month, between 01 and 31

%H Hour, between 00 and 23

%M Minute, between 00 and 59

%S Second, between 00 and 614

4�Yes, 61. Every few years a leap second is introduced to synchronize the clock to
the Earth’s rotation. However, this explains only the value of 60. The 61 value is
supported for historical reasons.

Chapter 7 Logging

197

characters. As a result, comparing to timestamps as strings is the same as

comparing their actual date and time values. Again, this doesn’t mean that

we actually need to sort the log files – but this does make the log file easier

to search and navigate, both manually and programmatically.

You may notice that there is no directive for higher time resolution,

namely, microseconds. There is, however, the msecs attribute we can

use in the format string. To manually reconstruct the output by using the

default date and time formatting, we can revise the code with the lines in

Listing 7-4.

Listing 7-4.  Manually formatting the log message’s timestamp

FORMAT = '[{asctime},{msecs:0>3.0f}] {levelname}: \

 {message} ({filename}:{funcName}:{lineno})'

DATEFMT = '%Y-%m-%d %H:%M:%S'

logging.basicConfig(

 filename='app.log',

 filemode='w',

 level=logging.INFO,

 style='{',

 format=FORMAT,

 datefmt=DATEFMT)

msecs return the millisecond portion of the timestamp with precision

of 13 decimal places. We’re probably good with just the integer part of that

value. We also want to make sure that this value produces exactly three

characters and is zero-padded if needed. For example, if msecs returns

13.3039583485845, what we actually want to see is 013. This is what the

{msecs:0>3.0f} means. It reads, from left to right, that msecs should be

zero-padded, be aligned to the right, and have three digits for the integer

part and no decimal places.

Chapter 7 Logging

198

�Adding Loggers

As mentioned, we can add more Logger objects. These have the advantage

of forming a hierarchy between log messages based on their origins and

also provide different ways for handing messages.

A new Logger object can be created either by calling logging.

getLogger() for a top-level logger or by getting a child object of an existing

logger using the .getChild() method. Both of these functions are called

with the desired logger name as an argument. For example:

app_logger = logging.getLogger('app')

In our weather station project, we might want a child logger to handle

specifically with the operation of the fans:

fans_logger = app_logger.getChild('fans')

The name of a child logger gets its parent’s name as a prefix, separated

by a dot. In the preceding example, the fans’ logger will be called app.

fans. The nice thing about the Python logger library is that if you call

getLogger() with the same logger name from multiple modules, you get

the same logger object. So, for instance, if we had our fans controlled by a

different module and would still like their logger to be a child of the app

logger, all we’d have to do is

fans_logger =

 logging.getLogger('app').getChild('fans')

We never instantiate a logger ourselves – we always tell the library to get

the logger object for us. If it exists, the library will return the correct object.

If it doesn’t, the library will first instantiate it for us. In computer science,

this is known as the singleton design pattern.5 By doing this, the library

5�Design patterns are common techniques, or recipes, that are used to solve common
programming problems. This is a classic book on the topic:Gamma, Erich, Richard
Helm, Ralph E. Johnson, and John Vlissides. Design Patterns: Elements of Reusable
Object-oriented Software. New Delhi: Pearson Education, 2015.

Chapter 7 Logging

199

makes sure there’s no more than one logger with the same name, that many

modules can use the same logger, and that using the logger is thread-safe.

Just like the default logger, Logger objects also have the .debug(),

.info(), .warning(), .error(), and .critical() methods, as well as the

.log() method.

Logger objects don’t have one method that sets everything up like the

default logger’s basicConfig(), and everything needs to be meticulosity

configured. To set the logging level of the logger, the .setLevel() method

should be used. By default, child loggers propagate the messages they log

to their parent, who logs them as well. To prevent this behavior, the Logger

object’s .propagate property can be set to False. If this is done, however,

the log messages don’t actually go anywhere. To determine the way a

Logger object handles its messages, we need to add to it some handlers,

which deserve their own section.

�Using Handlers

We’ve discussed logging to a stream and logging to a file. For a Logger

object, the destination of the log messages is determined with handlers:

StreamHandler objects send messages to streams such as stdout and

stderr, while FileHandler objects send messages to a file. There are

many more types of handlers that send the messages over email, as an

HTTP request, over a TCP socket, and more. We will discuss a few of

these more exotic handlers later, but for the purpose of demonstrating the

basic concept of handlers, we’ll stick with a simple FileHandler object.

Consider the example in Listing 7-5.

Listing 7-5.  Adding a handler to a Logger object

formatter = logging.Formatter(

 fmt='[{asctime}] {levelname}: {message}',

 style='{'

)

Chapter 7 Logging

200

handler = logging.FileHandler('fans.log')

handler.setFormatter(formatter)

logger = logging.getLogger('app').getChild('fans')

logger.addHandler(handler)

First, we instantiate a Formatter object. We need one if we want to

change the default formatting, and we probably do: for a Handler object, the

default formatting is just the message itself. As you can see, the Formatter

object takes the format as the fmt argument, which is the same as the format

argument for logging.basicConfig(). It also takes the formatting style

and date format with the style and datefmt arguments, just as logging.

basicConfig() (datefmt is not used in Listing 7-5). Once the formatter is

ready, we can create a FileHandler object, set its formatter to the formatter

we created, then create a logger, and add the handler we just created.

Note A s an aside, note how we created the logger as a child of
another logger: if this code was in a module that we import to the
main program and the app logger was an object defined in the
main program, this module would not have had direct access to
the app logger object. However, since we let the logging module
manage our Logger objects, and these are singletons, logging.
getLogger('app') returns the correct object.

Usually, when we see an object’s methods that start with the word “set”

and take another object as an argument, it means that the first object holds

only one object that fills the function of the argument object. Instead of

reading this sentence again, just consider this: a Handler object can have

(and only needs) one formatter, and the method .setFormatter() is a

hint to that. Conversely, methods that start with the word “add” imply that

the object can have many objects that fill that function. The name of the

method .addHandler() implies that a logger can have many handlers, each

Chapter 7 Logging

201

writing the messages to a different place and having a different logging

level. This can be useful for many applications, specifically for setting up

some sort of an alerting mechanism – but more on that in the next chapter.

�Logging in JavaScript
�The Console Object

We have mentioned briefly using console.log() and console.error() as

the JavaScript equivalent to Python Print(). However, the Console object

is quite complex and is packed with interesting features. In addition to

.log() and .error(), there are also .debug() and .info() that write to

stdout, and .warn() that, along with .error(), write to stderr. Just using

this set of methods, along with stream redirection, can be considered a

decent logging system.

Some other cool methods of console include .assert(), which takes a

condition as a first argument and outputs the second argument, preceded

by the text “Assertion failed,” as an error if the condition fails. So, the line

console.assert(a==1, "a is not 1")

is equivalent to

if (!(a==1)) {

 console.error("Assertion failed: a is not 1");

}

You can set named counters. Calling console.count("hits") will create

a counter named “hits” if one does not yet exist and set to 1. If it does exist,

it will increment the counter by 1. Then, it will write the result to stdout.

Executing console.countReset("hits") will reset the counter to zero.

Console even has timers. console.time("lap") will reset a timer

called “lap”, and console.timeEnd("lap") will write to stdout the time

that has elapsed.

Chapter 7 Logging

202

Testing for conditions, counting events, and timing the execution of a

block of code are often things programmers log, so it’s nice that console

has these features built in. console has some other cool features, but

we will not touch on them as they are directed more toward debugging

programs that run in the browser.

�Winston

Of the many JavaScript logging libraries, Winston6 is probably the most

prevalent and comprehensive one at the time of writing this book. It

is packed with features and is extremely customizable. Since we went

through many general principles of logging in the previous sections, I just

want to show the general gist of what working with Winston looks like.

Examine the code in Listing 7-6.

Listing 7-6.  Example of using Winston logging library for JavaScript

const winston = require('winston');

const logger = winston.createLogger({

 format: winston.format.combine(

 winston.format.timestamp(),

 winston.format.printf((info) => {

 return `[${info.timestamp}]` +

 `${info.level.toUpperCase()}:` +

 `${info.message}`;

 })

),

 transports: [

 new winston.transports.File(

 {filename: 'error.log', level: 'error'}

6�https://github.com/winstonjs/winston

Chapter 7 Logging

https://github.com/winstonjs/winston

203

),

 new winston.transports.Console({level: 'info'})

]

});

logger.info("This is an info message");

logger.warn("This is a warning");

logger.error("This is an error message");

Among the parameters that a logger can be initialized with are format

and transports. Transports are Winston’s equivalent to Python logger

handlers: they describe a destination for the log messages. In the preceding

example, we included two transports: one that writes messages to a file

and one that prints them to the screen. Notice that each transport has its

own logging level, just like with the Python logging module. However, in

Winston, all transports that belong to a logger use the same formatter.

When the logger formats the message, it passes an info object to a

formatter, and in the preceding example, we use a combination of two

formatters: timestamp and printf. An info object has at least two fields,

level and message; both are fairly self-explanatory. Some formatters

access these fields to create a final message. Other formatters can

actually change the info object. Also, as we see here, formatters can

work together on a message to create one big formatter using winston.

format.combine(). In the preceding example, we combine the timestamp

formatter that adds the timestamp to the info object with the printf

formatter. The printf formatter passes the info object to a function that

can manipulate that object as it wishes. We’ve created a pretty generic

format here, with the timestamp (which was added by the timestamp

formatter) in brackets, and we also converted the level to uppercase.

Winston’s core transports and the ones contributed by the community

span HTTP requests, MongoDB, email, and rotating log files (more on

that later in this chapter), and the list goes on and on. You can even use

Chapter 7 Logging

204

Winston for things such as profiling7 and exception handling and write

your own transports and formatters. It’s a powerful beast, but there are

some simpler ones out there, such as debug8 and log4js.9 We are not going

to dive deeper into these libraries or Winston’s more advanced features –

all we needed is to get a feel of what logging in JavaScript looks like.

�Roll Your Own
As with many other features your software requires, you might find that

writing your own logging library might be a better solution than using an

off-the-shelf one. At this point, you should know what the common features

of a logger are. For simple projects, logging can be as simple as redirecting

the output of print commands to files, as we’ve seen earlier in the chapter, or

slightly more involved, like writing directly to a file. In a more complicated

setup, you’d create a logger class of which you’d need to get an instance. This

is where things can get more delicate, especially when different modules

and thread want access to the same logger. As we mentioned before, logging

libraries take care of this by making sure that a logger object is a singleton,

so if two calls are made to instantiate the same logger, only one object is

actually created, and both calls return a reference to that same object. If you

do make your own logging library, this will probably be the trickiest pitfall.

�Log Rotation
All these messages being logged can pose a serious danger of the hard

drive to becoming clogged.10 This can be a problem in any type of

7�Profiling refers to dynamic analysis of a program. During profiling, measurements
are taken for the amount of time that the program spends in various functions,
how often functions are called, how much memory is used, and so on.

8�https://github.com/visionmedia/debug
9�https://log4js-node.github.io/log4js-node/
10�Unfortunately, the word “clog” is not an abbreviation of “congesting log.”

Chapter 7 Logging

https://github.com/visionmedia/debug
https://log4js-node.github.io/log4js-node/

205

machine, but it definitely poses a more immediate threat to SBCs, where

hard drive space is significantly scarcer.

The most common technique for keeping the log files under a

manageable size is log rotation. In this method, a log file’s lifespan can be

viewed as having three stages: first, the file serves as the active log file to

which log messages are being written. Next, after a certain amount of time

or after the file reaches a pre-determined size, a rotation happens: the file

gets renamed – usually it gets a .1 postfix – and is put away for archiving,

while a new file is created in its place and becomes the active log file. The

file that previously had the .1 postfix also gets renamed, and its postfix gets

changed to .2, and so forth. Only a limited number of archived log files

are kept on the hard drive, and if that number is reached, the last file in the

rotation moves to its last phase, which is to be deleted from the hard drive.

�Linux’s logrotate
For its own system logs, Linux uses a program called logrotate to

handle log rotation. logrotate looks at the /etc/logrotate.conf file

and the files under /etc/logrotate.d/ to determine what files should

be rotated and how.

A logrotate configuration file consists of several blocks. Each block

starts with a list of files that share the same rotation configuration. Next is a

list of directives which determine how these files are rotated. For example,

Listing 7-7 could be the block that handles two log files for the weather

station example.

Listing 7-7.  Example of a logrotate configuration block

/home/weatheruser/weatherapp/fans.log

/home/weatheruser/weatherapp/app.log {

 daily

 rotate 7

Chapter 7 Logging

206

 compress

 create 644 weatheruser weatheruser

}

The first directive we see is daily that tells logrotate that the rotation

should happen, well, daily. Other options are weekly and monthly. The

option hourly is also available, but by default, logrotate is activated once

a day by cron.daily, so it would run once a day anyway. To run logrotate

hourly, one needs to use the hourly directive and move logrotate from

cron.daily to cron.hourly.

The next directive we see is rotate. This directive determines how

many rotations a file goes through before it is deleted from the hard drive.

Alternatively, logs can rotate only once they reach a certain size using the

size directive, for example, size 50k.

The compress directive tells logrotate to compress the log file on its

first rotation using gzip. Other directives add features to the compression

of logs, such as compresscmd, with which it’s possible to specify a different

program for the compression.

The create directive is slightly more involved. It states how the new

log files are created: under which user, group, and permissions. Obviously,

the program writing the log file must have writing permissions for the

file. In our example, we enabled that by having log files created with

weatheruser as the owner and the weatheruser group as the file group.

As for permissions, we let anybody read the file, but only weatheruser can

write to it.

�File Watching
Let’s say that the project’s program is running, a log file is open, and the

program is writing log messages into it, and at some moment it is time for

logrotate to do its thing. logrotate will rename the active log file and

create a new one in its place, but the project will not write to the new log

Chapter 7 Logging

207

file – rather, it will still write to the old file, even though it was renamed.

This is because once a program opens a file, the handle it keeps for it

has no longer anything to do with its name, but rather, it holds the file

descriptor, and that doesn’t change when a file is renamed.

The solution to this is to keep an eye on the log file, and before writing

to it, make sure that its name has not changed. If it has, the file should be

closed and the new one should be opened for writing. The Python logging

module has this feature built in: instead of using a regular FileHandler, we

can simply use a WatchedFileHandler.

Note T he three basic handlers, StreamHandler, FileHandler,
and NullHandler (that does nothing), are located in logging. All
other handlers are in logging.handlers.

�In-Program Log Rotation
It’s possible to perform log rotation from within the program, instead of

relying on logrotate. Some libraries provide that feature, and again, we

turn to Python’s logging module for an example.

Python’s logging module has two handlers that can be used

instead of the basic FileHandler in order to enable log rotation:

RotatingFileHandler rotates the log once it reaches a certain size, and

TimedRotatingFileHandler rotates the log after a certain amount of

time. Their initializer functions take as arguments the desired file name

and several optional keyword arguments. Table 7-5 describes a few of

those arguments.

Chapter 7 Logging

208

For example, a handler that rotates the log file once it reaches 1kb and

keeps seven log files in the rotation can be initialized this way:

handler = logging.handlers.RotatingFileHandler(

 'out.log', backupCount=7, maxBytes=1024)

And a handler that rotates the logs once a day at midnight can be

initialized like this:

handler = logging.handlers.TimedRotatingFileHandler(

 'out.log', backupCount=7, when='midnight')

�Logging Configuration
In Chapter 5 we discussed the importance of keeping the configuration

of a project out of the code, and the logging configuration – the logging

level, location of the log files, and whether the messages appear on the

Table 7-5.  Keyword arguments for RotatingFileHandler and

TimedRotatingFileHandler’s initialization

Argument Description

backupCount Number of backups saved

For RotatingFileHandler:

maxBytes Maximum file size, in bytes

For TimedRotatingFileHandler:

when Units for rotation intervals:'S': Seconds'M': Minutes'H': Hours'D':

Days'W0'-'W6': Weekday (0 is Monday)'midnight': At midnight

interval Number of units between rotations

Chapter 7 Logging

209

screen – is no exception. I highly recommend adding a logging section in the

configuration file that specifies the logging level and the path of the log files.

Many Linux programs can run in “verbose” mode, often by applying

the -v command-line option. This usually does two things: it forces debug

messages to stdout, and it overrides the logging level to be the lowest

available. In some programs, this would be the default behavior if no

argument is provided to the -v option, but an optional argument can set

the logging level. See how this can be implemented in Listing 7-8.

Listing 7-8.  Overriding debug configuration with a command-line

argument

import argparse

import logging

import sys

import yaml

parser = argparse.ArgumentParser()

parser.add_argument(

 '-v', dest='verbose', nargs='?', const='DEBUG')

args = parser.parse_args()

with open("config.yaml", 'r') as stream:

 config = yaml.load(stream, Loader=yaml.Loader)

logger = logging.getLogger('app')

file_handler = logging.handlers.WatchedFileHandler(

 config['logging']['file'])

logger.addHandler(file_handler)

if args.verbose:

 config['logging']['level'] = args.verbose

 verbose_handler = logging.StreamHandler(sys.stdout)

 logger.addHandler(verbose_handler)

logger.setLevel(config['logging']['level'])

Chapter 7 Logging

210

There are a few things worth unpacking here: first, let’s see how

argparse parses the -v option. If the -v option is not used, then the

option’s destination variable, args.verbose, will be None. This will

effectively leave the logging level as specified by the configuration file.

If the -v option is used, the destination variable will have a valid value,

but what is it? nargs is ‘?’, which means that there might be an additional

argument. If there is one, that will be used as the value. If not, the value will

be as specified by the const argument, which is DEBUG.

The way we designed it in this example is that if the -v option is used,

regardless of the specified logging level, we add another handler that

outputs the messages to the console. Both handlers, the file handler and

the new stream handler, use the same logging level – the one specified

in the command-line argument. Therefore, if the -v option is used, we

override the config structure with this logging level setting and set the

logging level of the logger, but not the handlers. Since the levels of the

handlers have not been set, they will both use the level of the logger.

Remember that these are all design decisions that are pretty arbitrary, and

they are just as good as any other setup.

�What to Log
We’ve been talking all this time about how to log, but not really about what
to log. For the most part, you probably know best what log messages matter

to you. However, here are a few guidelines I believe are worth highlighting.

�Exceptions
Many Python functions throw exceptions if they fail, for instance, opening

a file that does not exist. The advantage of exceptions is that if caught,

the program doesn’t have to crash, but turn to alternative code that can

mitigate the problem. Regardless of how we deal with the exception, it’s

usually a good idea to log that it happened (see Listing 7-9).

Chapter 7 Logging

211

Listing 7-9.  Logging Python exceptions

try:

 with open('data.json') as data_file:

 data_file = data_file.read()

except:

 logger.error('data.json not found')

 # mitigate exception

�Callback with Error Arguments
There are a couple of mechanisms in JavaScript that operate in a similar

way: callbacks with error arguments and promises rejection. Recall

Listing 1-15, where we implemented temperature reading from a Si7021

sensor. The method for reading a byte from the I2C bus had a callback with

an error argument. When the error argument wasn’t null, we had that

reflected by the value of the measurement, but this is something we’d also

want to log (Listing 7-10).

Listing 7-10.  Logging a JavaScript callback with an error

//...

this.i2cBus.i2cRead(0x40, 3, new Buffer(2),

 (err, bytesRead, data) => {

 if(err) {

 logger.error(

 'Could not read data from Si7021: ' +

 JSON.stringify(err);

);

 this.lastRead = -999;

 return;

 }

 //...

Chapter 7 Logging

212

�Initialization Sequences
Many programs start with some sort of an initialization sequence, which

is often failure-prone, since most of the program’s dependencies are

accessed there. Reading configuration files, importing libraries, initializing

hardware, and establishing network connections are some examples of

processes that happen during startup and have the potential to fail. It can

be beneficial to log before attempting each of these phases, perhaps at

the INFO level, a message such as “Initializing temperature sensor.” If the

program fails during the initialization process, it’s extremely helpful to

know which phase the culprit is.

�Entering and Leaving Functions
It’s a very common debugging practice to add log messages when entering

and leaving a function, mostly to make sure that the function is not

responsible for crashing or hanging or to observe the sequence in which

functions are being called. This, however, can contribute to messy code

and clogged logs. It’s very tempting to add a log message saying “here!” just

to make sure that the function is being called. Before you know it, however,

there are ten more types of log messages conveying similarly obscure

messages such as “made it!” or “function called.” Here are some guidelines

that I find useful:

•	 Be specific. Logs like “entering function” are not

helpful. Make sure the logging command can be easily

found when it’s time for it to be removed.

•	 If the logging library offers an option to include the file

name, line number, and function name, make use of it.

•	 Assign a DEBUG level to these log messages.

•	 Remove these logging lines as soon as it has been

confirmed that the function is running correctly.

Chapter 7 Logging

213

�Parameters
Sometimes it’s helpful to see that a parameter was initialized correctly, or

to make sure that its value was not inadvertently changed by another part

of the code. Once again, when logging parameter values, it’s important to

state what part of the code or what was the event that triggered the logging

message (“Joystick activated, left motor now at 37%”) and it’s a good idea

to keep the message at the DEBUG level.

�Data
Continuous data is also useful to log – a robot’s motor control and

proximity measures, our weather station’s sensor readings and fan’s

settings – these can shed light on the project’s behavior and possible

malfunctions. However, such data streams are usually better logged in

dedicated numerical data files, for instance, CSV (comma-separated

values) files, and not in a regular, text-based log file. CSV files can be read

by any spreadsheet software or data visualization software and can be

easily parsed by an automatic monitoring script to detect any trends or

anomalies, as we will discuss in the next chapter.

�Reading Log Files
We spent the entire chapter talking about how to write log files, but we

should say a few words about reading them before we conclude. Log files

are often very long – too long to be read by a code editor. There are two

tools that I recommend using that are built into the Linux system and that

for most cases are quite sufficient.

grep is a command for searching strings in files. The command

grep critical out.log

Chapter 7 Logging

214

will cause all lines in the file out.log that contain the word “critical” to

the screen.

The command less is an interactive tool for viewing files, as it allows

for navigation within the document. Searching is done by hitting slash

(/) and entering the search string. Hitting n will move forward to the

next match, and N will take you back to the previous match. You can also

apply a filter to view only lines that contain a certain string by hitting the

ampersand sign (&) and the desired string.

�Summary
In this chapter we covered some of fundamental principles and

methodologies concerning logging: logging levels, a system to quantify

the severity of log messages; output streams and how to redirect them to

log files; handlers and formatters and how to use them under the Python

logging library; log rotation, a common technique to keep log files’ sizes

under control; and logging configuration through a configuration file or a

command-line argument; and we discussed how to make use of logging

inside the program.

Some bugs are easy to find. Mismatched indentation in a Python file, a

misspelled variable –these will crash the program exactly at the line where

they appear. Other bugs are sneaky. They are lines of code that act as if

everything is fine, but in fact create a problem for another piece of code

somewhere else in the project; they are memory leaks, those incessant

allocations of memory without releasing it; they are variables used to index

an array that gets trampled somehow with a negative value – the list goes

on and on. These sneaky bugs will start a chain of events that will crash

your code in places you least expect them.

If I may be poetic about this, I’d say that these bugs have a story to tell,

and in order to remove such a bug, its story must be first heard. Log files

are the programmer’s way of letting these bugs tell their story. It’s like the

Chapter 7 Logging

215

movie The Ring (spoiler alert ahead), with the bugs being the creepy dead

girl and log files acting as the video tapes.

This is why good logging practices are important. Healthy log files

allow us to go back to the point where the program misbehaved and walk

back from there until we find the event that set the unwanted chain of

events in motion. But that’s not all that logging is good for. When logging

is done right, it’s not only readable by humans, it’s also readable by the

machine itself. In the next chapter, we’ll look at alerting, the various ways

in which a system can let its operators know it needs attention. These

occasions can happen not only when something critical, such as a crash,

takes place but also when the system recognized concerning trends by

monitoring its own logs.

Chapter 7 Logging

217© Eyal Shahar 2019
E. Shahar, Project Reliability Engineering, https://doi.org/10.1007/978-1-4842-5019-8_8

CHAPTER 8

Advanced Logging,
Monitoring, and
Alerting
We’ve made dashboards we can use to observe the machine’s behavior

in real time, and we created logs that we can review retroactively and

trace the origin of issues, if they arise. However, both of these tools

require us to be proactive in order to know whether the machine needs

our attention. Eventually, we don’t want to babysit the project and wait

for it to fail – instead, we want the machine itself to let us know that our

attention is needed. Alerting is what happens when the machine lets you

know it needs your intervention. For big companies, that’s a huge topic,

that covers questions such as what infrastructure should be built to decide

when to send out alerts, what is the medium through which the alerts are

sent, who to alert, what conditions should trigger an alert, and more. We’ll

start by talking more about how these companies approach some of these

questions and then, as we’ve done so far, try to distill some of these ideas

and bring them into the world of maker projects.

218

�How Big Tech Companies Do It
Before I move on to talk about how the big tech companies deal

with monitoring, I should establish what exactly I mean by “big tech

companies”: I obviously don’t mean all big tech companies. I am talking

about companies that give real-time, around-the-clock services to a very

large number of customers. These services don’t run on one machine, but

rather they run on many machines, deployed on multiple “server farms,”

and these machines may be maintained by the company itself or some

third-party service provider (such as Amazon’s AWS, Microsoft’s Azure, or

Google Cloud). Think of Google, Facebook, Twitter, Uber, and Etsy. They

can’t afford their service ever being down. When it is, you read about it in

the news.

To understand how these big tech services deal with alerts, we need

to talk about how they deal with logging and monitoring, and that starts

with a company’s state of mind. Because big services have many machines

and program redundancy, they have to think in a way that is scalable –

this means that the amount of human work put into the reliability of their

service does not increase linearly as they serve more people or deploy

more machines. For this reason, everything that can be automated is

done by bots. Scalability also means that anecdotal failures don’t really

matter as long as machines and programs can recover automatically from

failure. When such a failure does happen, this is an incident that should

be documented in the log files, but no immediate human intervention

needs to happen. However, if a process keeps restarting, a condition called

flapping, then that’s something the engineers want to know about.

So how this is done? For these services, the act of logging rarely

means that code issuing the log message also writes the message to a hard

drive. Rather, a logging service runs on its own machine, and the various

processes send log messages to it. Then, other services do the monitoring –

periodically reading the logs, extracting metrics, identifying trends, and, if

necessary, triggering alerts. The engineers behind every process or feature

Chapter 8 Advanced Logging, Monitoring, and Alerting

219

have the ability to set these metrics and the threshold that trigger the

alerts. Once an alert is set off, the on-call gets paged.

Who is this “on-call”? Typically, the alerts generated due to problems

with mature features page the company’s reliability team, while features

that have been deployed more recently are monitored by the engineering

team that develops them. Regardless, somebody from that team is always

on-call, and they are the person that gets paged and are responsible for

mitigating the issue.

Paging itself can happen in multiple ways – by a phone call, a text

message, an email, or a push notification to an app on the on-call’s mobile

device, where some companies have their own app, and some use a third-

party one. The alerts usually include information such as text explaining

what happened, which is determined by the engineer who set the alerts,

and a link to a playbook entry, which is a document that describes what are

the first steps to take when dealing with such an alert, for example, where

to find the relevant dashboards, what to look for in the log files, and what

pieces of code are involved.

It’s important to remember that the description I brought here is

extremely general and is based only on what I personally know, not even

from firsthand experience. I’m sure any engineer that has had on-call duties

in a major tech company will have some reservations with my description

based on their own personal experience. However, as I said, the importance

of this description is to examine concepts from the world of SRE so that we

can discuss how they can be translated to the world of SBC projects.

�Email Alerts by Log Handlers
In the previous chapter, we looked at various types of log handlers (or

transports, as they are called in Winston), and we mentioned that some

handlers can send the log messages over email. SMTP (Simple Mail

Transfer Protocol), as the name suggests, is the protocol used to send

Chapter 8 Advanced Logging, Monitoring, and Alerting

220

and receive email over the Internet, and in Python’s logging module,

SMTPHander is the handler used to send log messages directly to a desired

mail address. There are two protocols used for encryption when sending

email: SSL (Secure Sockets Layer) and TLS (Transport Layer Security). SSL

is now considered deprecated, and probably for this reason SMTPHandler

doesn’t really support SSL, and if it does, I couldn’t find any documented

success, so moving forward we’ll only discuss a setup that uses TLS.

The first thing we need is an email address to send the email from.

While you could very well have the machine send email from your

personal email account, I strongly recommend against it, for two reasons:

first, it’s much easier to accidentally ignore an email from yourself –

some spam emails look like they were sent from your own address, and

in different views of your mailbox, like the “sent emails” view, an alert

can easily be missed in all the emails you sent to other people. Second,

the password for the email account needs reside in the code (or in a

configuration file). Putting your personal email’s password in a piece of

code is a serious security vulnerability, especially for maker projects that

get deployed in art festivals and other public spaces. One solution is to

open a dedicated email account for the project, or for multiple projects, as

long as it’s a different account from your own.

Once we have an email account for the project, we can set up the

handler with it (see Listing 8-1).

Listing 8-1.  Using the logging module’s SMTP handler

mailhost = ('smtp.gmail.com', 587)

sender = PROJECT_EMAIL # replace or read from file

password = PROJECT_PWD # replace or read from file

receiver = YOUR_EMAIL # replace or read from file

subject = 'Alert: your project needs your attention!'

credentials = (sender, password)

Chapter 8 Advanced Logging, Monitoring, and Alerting

221

mail_handler = logging.handlers.SMTPHandler(

 mailhost, sender, receiver, subject,

 credentials=credentials, secure=(),

 timeout=1.0

)

mail_handler.setLevel(logging.CRITICAL)

logger.addHandler(mail_handler)

The handler is a little cumbersome to set up. For readability purposes,

I am setting all the arguments first as variables and then using them to set

up the handler. This way, the initializer’s signature is still apparent in the

code. Let’s walk through these arguments one by one.

The first argument is the mail host. This refers to the server owned by

the entity that gave you the email account that is responsible for sending

the email alerts. This argument takes a tuple, made of the address of the

server and the port it is using. It might take a little bit of digging around

the Internet to figure out what these are. In our example, our account

is a Gmail account. Gmail supports both SSL and TLS, but since we’re

using TLS, we’ll work with port 587, which is the standard port for TLS

encryption.

The next three arguments are self-explanatory: these are the address of

the sender, which is the email address of the account we gave the project;

the receiver, which when you work on your project should probably be

your personal email address; and the subject, which is really up to you.

Next come a few keyword arguments. credentials is a tuple

representing the account’s credentials. This is a tuple whose items are the

account’s address and password. Up next is secure, which is a tuple with

the names of a keyfile and a certificate file. Gmail does not require client

authentication, so the tuple is empty. However, we must set this keyword

argument to a tuple in order to enable TLS encryption. It’s just the way it

is. Last, the timeout keyword argument is also self-explanatory – it sets a

Chapter 8 Advanced Logging, Monitoring, and Alerting

222

timeout, in seconds, for the communication with the SMTP server, which

means that if communication is not established within that period of time,

an exception will be raised.

�Logging As a Microservice
Microservices are a software architecture philosophy, in which

applications are composed of a collection of independent programs that

run independently, not even on the same machines, and communicate

with each other over the network. This type of architecture is really hyped

over recent years as it contributes to greater modularity and stability.

Components can be restarted and even swapped without ever stopping

the application, and when a component crashes, none of the other

components are immediately affected. One of my favorite advantages is

that since the application is made of several independent programs, each

program can be written in a different language, allowing the programmer

to choose the best fitting language for each component of the application.

Microservices need to interact with one another, and one approach is

called RPCs (Remote Procedure Calls). Although there are some libraries

that try to help formulate some sort of a protocol, RPCs, in general, are

agnostic when it comes to format, protocols, and pretty much anything else.

In a maker project, implementing the logger as a microservice can be

helpful especially if the project has multiple machines or processes that

work closely together. One of these machines, or a dedicated one, can

run a logging service, while all the other processes make RPCs to use this

service for logging. This way, the programmer doesn’t have to configure

the logging mechanism for each and every machine and program. Also,

the programmer can choose to consolidate the log messages from all the

processes into one log file.

We are going to implement a logging microservice. This needs to

happen in two stages: we need to implement the service itself, and we

Chapter 8 Advanced Logging, Monitoring, and Alerting

223

need to build a library such that each process that wants to use the

logging service can use it. When a project consists of programs in several

languages, there should be an implementation of the library in every

language. In the name of brevity, we will keep everything written in Python.

�The Service
Before we write anything, we need to decide how other programs will

communicate with the server. One very popular route is through HTTP

requests, but this is not my personal favorite. For small-scale projects, I

prefer sending JSON messages over UDP.

UDP (User Datagram Protocol) is a network protocol that, in contrast

with TCP (which HTTP uses), is not designed to be a reliable data transfer,

so there is no error detection, packet numbering, acknowledgment upon

receiving, and other features that ensure that the data sent is received

correctly. It is, however, much faster and easier to use. For projects where

the data transactions happen within a local network or in one computer,

data errors are almost never a problem, which can make UDP a preferable

method.1 Since any sequence of bytes can be transferred over UDP, we

can just format our log messages as JSON strings and send those to the

logging service.

We will write the service in Python and base it on Python’s logging

library. This will allow us to focus only on the API part of the server.

The server will expect to receive a JSON object with two fields: the log

message’s text and the severity level as a number. This will keep the

server simple and will put the responsibility of formatting most of the

message on the libraries used by the clients. See Listing 8-2 for the logging

microservice’s code.

1�UDP is actually pretty popular with the creative coding community due to it being
used as the underlying protocol for the OSC (Open Sound Control) protocol.

Chapter 8 Advanced Logging, Monitoring, and Alerting

224

Listing 8-2.  A Python logging service

import socket

import logging

import json

UDP_IP_ADDRESS = '0.0.0.0'

UDP_PORT_NO = 3003

FORMAT='[{asctime}] {levelname}: {message}'

socket = socket.socket(

 socket.AF_INET, socket.SOCK_DGRAM)

socket.bind((UDP_IP_ADDRESS, UDP_PORT_NO))

formatter = logging.Formatter(FORMAT, style='{')

handler = logging.FileHandler('out.log')

handler.setFormatter(formatter)

logger = logging.getLogger('project-logger')

logger.addHandler(handler)

logger.setLevel(logging.DEBUG)

while True:

 data, client_addr = socket.recvfrom(4096)

 msg = json.loads(data.decode('utf-8'))

 logger.log(msg['levelno'], msg['text'])

As you can see, the formatter only adds the time and level to the

original message. Also note that since all this code is doing is listening to

the port and writing to file any log message that comes in, there is no need

for multithreading. When writing other microservices that listen to ports

for commands but do other things in the meantime, multithreading is

necessary, as we saw when we incorporated dashboards in projects earlier

in this book.

Chapter 8 Advanced Logging, Monitoring, and Alerting

225

�The Client Library
Python’s logging module does have a DatagramHandler, which is designed

to send log messages over UDP. However, the handler sends a pickled

(Python’s way of serializing and reserializing objects) version of the entire

log record object. If this service is supposed to serve clients that are not

written in Python, this can be a problem, since logging modules in other

languages may have different fields for their log record object, and also

pickling in a language that is not Python can be awkward. Instead we will

have to write our own handler for clients to use. Listing 8-3 shows

loglib.py, our logging service’s Python client library.

Listing 8-3.  loglib.py, a Python library for using the logging service

import json

import socket

import logging

from io import StringIO

FORMAT='{message} (at {filename}:{lineno})'

DEFAULT_ADDRESS=('127.0.0.1', 3003)

class UDPHandler(logging.StreamHandler):

 def __init__(self, server_address=DEFAULT_ADDRESS):

 super(UDPHandler, self).__init__()

 self.server = server_address

 self.socket = socket.socket(

 socket.AF_INET, socket.SOCK_DGRAM)

 def emit(self, record):

 msg = {

 'text': self.format(record),

 'levelno': record.levelno

 }

Chapter 8 Advanced Logging, Monitoring, and Alerting

226

 print(msg)

 self.socket.sendto(

 json.dumps(msg).encode('utf-8'), self.server)

def getLogger():

 formatter = logging.Formatter(FORMAT, style='{')

 handler = UDPHandler()

 handler.setFormatter(formatter)

 logger = logging.getLogger('service')

 logger.addHandler(handler)

 logger.setLevel(logging.DEBUG)

 return logger

We’re basing our handler off the simplest handler available,

StreamHandler, and we’re overriding __init__() in order to store the

server’s address and port, and emit(), the method used to actually do

something with the log message. emit() gets a record object that has all

the fields describing the log message. Our emit() uses these fields to create

our standard JSON object and send it over the UDP socket to the server.

Now all that is left is to use this library in an actual client, as demonstrated

in Listing 8-4.

Listing 8-4.  Using the logging service’s library in a Python client

import loglib

logger = loglib.getLogger()

logger.info('Log message goes here')

�Monitoring
As mentioned before, for big tech services, monitoring usually means

setting up processes that either periodically or continuously look at and

log files and determine whether there are trends or recurring errors that

Chapter 8 Advanced Logging, Monitoring, and Alerting

227

require alerting an on-call engineer. Alerts are triggered not just for errors

but also for various metrics being out of their normal range, such as the

number of users that complete an interaction or the revenue from a certain

feature, as this can also imply that something is wrong with the code.

For a maker project, it may be excessive to build a monitoring system.

It may be enough to just take the path described earlier, in which the

logging system is also responsible for sending alerts. Alerts will be sent for

log messages with CRITICAL severity level, and that will dictate which log

messages are classified as CRITICAL: those that require sending an alert.

This approach, however, addresses individual events and not the rate at

which events happen. It also doesn’t take into account things that happen

at the level above the running program, such as flapping: the program

doesn’t know how many times it had to be restarted in the past hour –

that’s where a monitoring mechanism can be useful.

�A Simple Monitoring System
We can design a monitoring system in many ways. It can be, for instance, a

cron job that runs every so often, scraping log files and CSV files, a server

that listens to logging requests from other programs, or even embedded in

the operating system’s logging service.

This next example tries to stay simple, undertake both individual

and recurring events, and stay out of both the main program and the

logging system. We’ll look at the last lines of log files, going back a certain

time interval from the present, and count occurrences of strings, such as

“ERROR” or “reboot.” To each of those strings we’ll assign a threshold of

occurrences – once that threshold is passed, an alert will be triggered. We’ll

use a YAML file, such as the one in Listing 8-5, to configure the various alerts.

Listing 8-5.  YAML configuration file for a monitoring system

Check messages from the last x minutes

interval: 60

Chapter 8 Advanced Logging, Monitoring, and Alerting

228

Alert throttling, in minutes

throttle: 120

Alerts types

alerts:

- string: ERROR

 threshold: 20

 message: Error rate

 playbook: https://tinyurl.com/pre-playbook01

- string: CRITICAL

 threshold: 1

 message: Critical errors rate

 playbook: https://tinyurl.com/pre-playbook02

- string: reboot

 threshold: 2

 message: Machine rebooted

 playbook: https://tinyurl.com/pre-playbook03

In this example, the interval is 60 minutes. The configuration states

that we allow up to 20 occurrences of the string “ERROR”, only 1 occurrence

of the string “CRITICAL” and 2 occurrences of “reboot”. The message

field can be used for a descriptive text about the alert, and the playbook

field can be used for including steps that should be taken to resolve the

issue – more on that later. For now, check out Listing 8-6 for a Python

implementation of the monitoring system.

Listing 8-6.  A Python implementation of a simple monitoring system

from datetime import datetime, timedelta

import sys

import yaml

TIME_FORMAT = '[%Y-%m-%d %H:%M:%S.%f]'

TIME_SUBSTRING_LENGTH = 25

Chapter 8 Advanced Logging, Monitoring, and Alerting

229

Read configuration

with open('config.yaml', 'r') as f:

 config = yaml.load(f)

alerts = config['alerts']

Add a counter field to each alert

for alert in alerts:

 alert['count'] = 0

Messages before this time will be ignored

start_time = (datetime.now() -

 timedelta(minutes=config['time']))

Count occurances

for line in sys.stdin:

 logtime_substring = line[0:TIME_SUBSTRING_LENGTH]

 logtime = datetime.strptime(

 logtime_str, TIME_FORMAT)

 if (logtime < start_time):

 continue

 for alert in alerts:

 if (line.find(alert['string']) > -1):

 alert['count'] += 1

Check thresholds

for alert in alerts:

 if alert['count'] >= alert['threshold']:

 send_alert(alert)

def send_alert(alert):

 # Implement alerting here

Once we loaded the configuration, we have a list of all the different

types of alerts we want. We can utilize this list for counting occurrences –

we just need to add to each alert a count field and set it to zero.

Chapter 8 Advanced Logging, Monitoring, and Alerting

230

Note that we are reading lines from stdin and not a file. This allows us

to pipe log files into the monitoring script rather than reading the file from

within the script. The advantage of that is we can do things like this:

tail -n 1000 out.log | python3 monitor.py

tail outputs the last n lines of a file – 1000 in our example. The pipe

sign (‘|’) will take that output and make monitor.py use it as its input.

With long log files, this can save the monitoring script a lot of work. We

should make sure, however, that the number of lines we ask from tail to

produce is big enough to capture all the log messages that occur within

the desired time interval. The reading loop, as you can see, still discards

any lines that are older than that. To do that, the script assumes every line

starts with the timestamp, inside brackets, as expressed with TIME_FORMAT.

It should look something like this:

[2019-05-02 23:45:14.687] ERROR: ...

The length of such a string is 25 characters, which is the length of

the substring that we give datetime.strptime() to parse into an actual

datetime object. After the counting is done, a comparison is done between

the counted occurrences and the thresholds allowed, and alerts are sent

accordingly.

We have another loop going through the different alerts, searching for

the alert’s string. When nesting loops this way there’s always the question

of efficiency and scalability – what if we go not through 1000 lines, but

through 100,000 lines? What if we don’t have just three types of alerts,

but hundreds? For big tech services, this is a real concern. However, for

our needs and the scale we’re working in, nesting these two loops is fine.

Once all the occurrences of the strings of interest have been counted, we

compare them to the alert’s threshold and issue an alert if necessary. I have

omitted the code for actually sending the alert, as we have shown how this

is done earlier in this chapter.

Chapter 8 Advanced Logging, Monitoring, and Alerting

231

�Alerts Throttling
We’d probably want run this script over and over, in some time interval

using crontab. Note that this interval does not have to be the same as the

interval, or time window, in which we inspect log messages. The time

interval for running the script determines two things – how fast we would

receive an alert from the moment a problem expresses itself in the log files

and how often we would be alerted (or nagged) about it. On-call engineers

in tech companies can acknowledge (or “ack”) an alert: if the alert is sent

via an app, then the app has a button for that. If the alert is sent by an

automated phone call, the engineer can press a number to acknowledge

the alert. The engineer can also reject the alert, in which case usually a

secondary on-call engineer will receive the alert.

The point is including these features is probably excessive for a maker

project, but we can take simple measures to reduce the number of actual

alerts that get sent to us without reducing the rate in which we run the

monitoring script, like employing some sort of a throttling mechanism.

Examine Listing 8-7.

Listing 8-7.  An alert throttling mechanism using a file

import os

TIME_FILE = '/tmp/lastalert'

MIN_ALERT_INTERVAL = 15 # or read from config file

def trigger_throttled_alert(alert):

 try:

 last_time = os.path.getctime(TIME_FILE)

 last_time = datetime.fromtimestamp(last_time)

 now = datetime.now()

 diff_minutes = (now - last_time).seconds / 60

 except:

 diff_minutes = MIN_ALERT_INTERVAL + 1

Chapter 8 Advanced Logging, Monitoring, and Alerting

232

 if (diff_minutes) > config['throttle']:

 with open(TIME_FILE, 'w'):

 pass

 send_alert(alert)

We’d also need to change the threshold-testing loop in Listing 8-6 to

Listing 8-8.

Listing 8-8.  Revised threshold-testing loop

Check thresholds

for alert in alerts:

 if alert['count'] >= alert['threshold']:

 trigger_throttled_alert(alert)

In this example, we are using a file, /tmp/lastalert, just as means

for timekeeping: we are looking at the time in which the file was created

(getctime()), and if it was more than MIN_ALERT_INTERVAL minutes ago,

we can send another alert. When we do that, we also open the file for

writing and immediately close it. This basically re-creates the file, updating

our timekeeping. Also note how we deal with the file being missing: we’re

just setting diff_minutes to a value larger than MIN_ALERT_INTERVAL,

forcing the alert to be sent and the timekeeping file to be created. This

would happen the first time the script has been activated since the

machine was rebooted – you may recall that everything in /tmp/ gets

deleted at startup.

�Monitoring the Machine
We’ve talked about monitoring the program’s log files, but it can be useful

to monitor metrics of the machine itself. Primarily, it’s a good idea to

monitor the CPU utilization, the memory usage, and the available hard

drive space. psutil is a Python library that makes it easy to access these

Chapter 8 Advanced Logging, Monitoring, and Alerting

233

metrics, and it was also ported to JavaScript.2 Again, there’s a wide range

of things we can do with these metrics: for instance, we can log them

periodically and trigger alerts if we detect a trend, like the CPU usage

being high for a prolonged period of time. This can be implemented in

a way similar to the monitoring system from the previous section. In the

following example, however, we’ll keep it simpler: we’ll create a script

that writes the metrics to a CSV and trigger an alert if a metric exceeds a

given threshold. This script will be designed to be called by crontab and

the resulting CSV handled by logrotate. For this reason, we’ll check for

the existence of the CSV file, and if it does not exist, perhaps because it

was rotated, we’ll write the header line first. We’ll start, of course, with a

configuration file (Listing 8-9).

Listing 8-9.  YAML configuration file for system metrics monitoring

sysmonitor.yaml

metrics:

- name: cpu

 threshold: 90

- name: mem

 threshold: 90

- name: hdd

 threshold: 75

We’ll use this configuration file for both determining the order of metrics

in the final CSV file and determining the thresholds for triggering alerts. As

with our project monitoring system, we can add to this file fields such as

the text to be included in the alerts. The code in Listing 8-10 demonstrates

how to use the psutil library and also how to use the built-in CSV module

for writing the file. Remember that the metrics shown here represent only a

small portion of what is made available by the psutil library.

2�https://github.com/christkv/node-psutil

Chapter 8 Advanced Logging, Monitoring, and Alerting

https://github.com/christkv/node-psutil

234

Listing 8-10.  Python code for a system metrics monitoring

import csv

from datetime import datetime

import os.path

import psutil

import yaml

with open('sysmonitor.yaml', 'r') as f:

 config = yaml.load(f)

 metrics = config['metrics']

headers = ['time']

stats = [datetime.now().isoformat()]

for m in metrics:

 if m['name'] == 'cpu':

 data = psutil.cpu_percent(interval=1)

 elif m['name'] == 'mem':

 data = psutil.virtual_memory().percent

 elif m['name'] == 'hdd':

 data = psutil.disk_usage('/').percent

 if data > m['threshold']:

 print('Trigger alert for {}'.format(m['name']))

 headers.append(m['name'])

 stats.append(data)

if os.path.exists('sysmetrics.log'):

 with open('sysmetrics.log', 'a') as f:

 writer = csv.writer(f)

 writer.writerow(stats)

else:

 with open('sysmetrics.log', 'w') as f:

Chapter 8 Advanced Logging, Monitoring, and Alerting

235

 writer = csv.writer(f)

 writer.writerow(headers)

 writer.writerow(stats)

Note that the alerts are triggered when metrics instantaneously surpass

a threshold. Of course, alerts can be triggered by looking at a time interval

instead, calculating averages and trends or triggering an alert if metrics are

consistently high, as we demonstrated in the simple monitoring we built in

Listing 8-6.

�The Playbook
A playbook is basically a troubleshooting guide. It is a collection of

documents describing what actions should be taken when various

problems manifest. A single document in this collection of documents

is often called a playbook entry. The granularity of a single entry is really

a function of the complexity of the project. At the Exploratorium, we use

an internal wiki for all our documentation, and this includes our “Exhibit

Pages.” Typically, there’s one page per exhibit, and besides information

such as the identity of the developers, fabrication details, and periodic

maintenance procedures, the page includes some troubleshooting

information. For us, having one page per exhibit with all the known types

of failures is usually enough. Tech services usually have a single playbook

entry for every type of alert.

�Playbook Content
Not everybody in our maintenance staff feels comfortable logging into a

Linux machine, but often there are simple actions anybody can take to

resolve, or at least help diagnose, the problem: tracing the power cables to

make sure everything is powered, power cycling (turning off and on), using

a browser to access a web dashboard, locating a projector’s remote control

Chapter 8 Advanced Logging, Monitoring, and Alerting

236

to set the video input source, and looking at LED indicators on the project’s

circuit board, these are some examples of actions that we include in our

exhibits’ wiki pages for whomever is currently on maintenance duty.3 The

point is that sometimes projects are looked after by people who were not

directly involved in the process of creating the project and have different

skillsets than the ones the creators have – this can also be the case when

projects are deployed as public art or as prototypes for products. In such

cases, it’s important that the playbook entry is written with these people’s

skillsets and knowledge of the insides of the project in mind.

�Playbook Hosting
If your project already has a web dashboard with a static IP address, it

can host the playbook as well. However, that’s not necessarily a good

idea. First, it’s still a more involved process than some other solutions,

and second, you need to be able to access the playbook when there are

problems with your project, and a problem with your project can cause

the playbook to not be accessible. This is why I strongly recommend on

hosting the playbook on cloud services such as Google Docs or Dropbox:

create the file, get a shareable link, use a service such as TinyURL4 or Bitly5

to create a shorter link, and include that link in the email or text message

being sent.

If you’re using GitHub, which we’ll discuss in the next chapter, for

version control, that can be an excellent place to host the playbook as well.

You can author the entries as .md files and use the Markdown format and

3�Fun fact: the Exploratorium does not have a dedicated maintenance team
like other museums do. Rather, almost every staff member who works in the
Exploratorium’s shop is on maintenance duty rotation. The person on duty is
called “the bucket person,” as back in the days, a bucket was used to carry tools
and spare parts around the museum.

4�https://tinyurl.com/
5�https://bitly.com/

Chapter 8 Advanced Logging, Monitoring, and Alerting

https://tinyurl.com/
https://bitly.com/

237

then cite the link to that file on GitHub.6 Markdown format is easy to learn,

and it looks nice when viewed on GitHub. Alternatively, use HTML. To

view HTML files on GitHub in the browser, add https://htmlpreview.

github.io/? before their URL. In the example in Listing 8-5, I have used

TinyURL to create short links for HTML playbook entries examples in the

book’s GitHub repository.7

�SMS Alerts
�Online SMS Services
There are services that specialize in SMS messages and phone calls, such

as Twilio, Plivo, Nexmo, and Sinch. The market for these services is usually

companies that use automated text messaging and phone calls in large

volumes, for example, ride sharing apps and food delivery apps. Using

these services cost money, but for the uses and scale that are relevant to

our discussion, the costs are really insignificant – usually less than a cent

per text message.

These services often offer a variety of products and various types of

dashboards for their clients to configure the service and tailor it to their

needs. What we need, however, is to simply make an HTTP request that

will send us a text message. When it comes down to that, most services

operate in a similar way: once you sign up, you get an ID and a token.

These are used to verify your identity, so that nobody else will be able to

send text messages on your behalf and on your dime. Then you will need

to provide the number from which messages will be sent. The services will

often either offer you to purchase a number from them or recommend

another provider. Finally, you will need to install a helper library that

6�See example here in the book’s code repository: ch08/playbook/playbook0.md
7�This is the full link: https://htmlpreview.github.io/?https://github.com/
apress/project-reliability-engineering/blob/master/ch08/playbook/
playbook3.html

Chapter 8 Advanced Logging, Monitoring, and Alerting

https://htmlpreview.github.io/?
https://htmlpreview.github.io/?
https://htmlpreview.github.io/?https://github.com/apress/project-reliability-engineering/blob/master/ch08/playbook/playbook3.html
https://htmlpreview.github.io/?https://github.com/apress/project-reliability-engineering/blob/master/ch08/playbook/playbook3.html
https://htmlpreview.github.io/?https://github.com/apress/project-reliability-engineering/blob/master/ch08/playbook/playbook3.html

238

simplifies the way in which your code talks to the service’s API. Listing 8-11

demonstrates what that might look like with Plivo.8

Listing 8-11.  Sending text messages with Plivo

import plivo

Replace with your ID

AUTH_ID = 'XXXXXXXXXXXXXXXXXXXX'

Replace with your token

AUTH_TOKEN ='XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'

Phone number you bought goes here.

For the North America, don't forget

the '1' at the beginning!

PROJECT_NUMBER = '15550000000'

Your phone number goes here

ALERT_NUMBER = '15551111111'

client = plivo.RestClient(

 auth_id=AUTH_ID, auth_token=AUTH_TOKEN)

response = client.messages.create(

 src=PROJECT_NUMBER,

 dst=ALERT_NUMBER,

 text='Your project needs you!')

Services often recommend that the ID and token are not included in

the code, but rather set as system variables. This is for security reasons, for

instance, to prevent you from committing your credentials to GitHub. If

you follow that recommendation, then instantiating the client simply looks

like this:

client = plivo.RestClient()

8�The library, along with its documentation, is here: https://github.com/plivo/
plivo-python

Chapter 8 Advanced Logging, Monitoring, and Alerting

https://github.com/plivo/plivo-python
https://github.com/plivo/plivo-python

239

You will need to consult with the specific service’s API to figure out what

those variables should be named. For Plivo, they are called PLIVO_AUTH_ID

and PLIVO_AUTH_TOKEN. Remember that if the program is started on boot

by the operating system, for example, with crontab, the environment

variables are different than they are on a terminal session. In that case, the

environment variables should be set at the top of the crontab file, like so:

PLIVO_AUTH_ID='XXXXXXXXXXXXXXXXXXXX'

PLIVO_AUTH_TOKEN='XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'

Getting started with one of these services can be a little frustrating.

It’s important to remember that makers are not the primary audience for

them, so finding your way in their web sites and their documentation can

feel a little alienating. However, the cost is really insignificant, and in return

you not only get reliable alerts from your project, but you also open up a

whole new channel for communicating with your project – text messages

and voice calls.

�SMS Alerts with Hardware
For an engineer being on an on-call duty for big tech service, getting an

alert over a text message is usually just another route to ensure that the

alert gets received: perhaps the engineer is in an area with no Wi-Fi and

the cellular reception is limited to calls and SMS. For many maker projects,

on the other hand, the challenge can be to get the alert sent in the first

place. Projects are not always installed in the range of a Wi-Fi network. For

projects that do rely on Wi-Fi, a stable network may the cause for issue in

the first place. For that reason, sending alerts as text messages directly to

the cellular network is a useful technique.

Many SBC projects incorporate an Arduino, or a similar

microcontroller board, to handle more time-sensitive tasks, like interfacing

with an ultrasonic range sensor or driving a motor. In this case, it may

make sense to get a board that supports cellular communications and use

Chapter 8 Advanced Logging, Monitoring, and Alerting

240

it to also send the alerts. At the time of writing this book, the Arduino MKR

GSM 14009 and Adafruit Feather 32u4 FONA10 stand out as good overall

solutions. They are also designed to be powered by a LiPo battery, which

brings to mind another scenario where using them can be beneficial: to

send an alert during a power outage, or when the main computer shuts

down completely.

The code in Listing 8-12 shows how to configure the Arduino and send

a text message.

Listing 8-12.  Arduino code for sending SMS alerts

#include <MKRGSM.h>

const char PINNUMBER[] = "0000"; // Your SIM PIN

const char MYNUMBER[] = "15550000000"; // No. to text

GSM gsmAccess(true);

GSM_SMS sms;

void setup() {

 bool connected = false;

 while (!connected) {

 if (gsmAccess.begin(PINNUMBER) == GSM_READY) {

 // Connected

 connected = true;

 } else {

 // Not connected yet. Try again

 delay(1000);

 }

 }

}

9�www.arduino.cc/en/Guide/MKRGSM1400
10�www.adafruit.com/product/3027

Chapter 8 Advanced Logging, Monitoring, and Alerting

http://www.arduino.cc/en/Guide/MKRGSM1400
http://www.adafruit.com/product/3027

241

void sendAlert() {

 sms.beginSMS(MYNUMBER);

 sms.print("Alert!\n");

 sms.print("Your project needs your attention\n");

 sms.endSMS();

}

The mechanism that triggers the alert, however, is not implemented in

this example. This can be done in several ways based on the application.

Here are a few options to consider.

An output GPIO pin on the SBC could be connected to an input GPIO

pin on the Arduino (Figure 8-1). The SBC can set a GPIO pin high to let the

Arduino know it should send an alert. The Arduino can test the pin either

by polling or by setting up an interrupt. This method can be used to send

an alert when the Wi-Fi is down.

If the project is not connected to the Wi-Fi in the first place, then all

alerts would need to be sent by the Arduino. Therefore, we’d need a way

to send a variety of messages. To accomplish that, it may be better to

connect the Arduino to the SBC with a USB cable and transfer messages

over serial communication. This way, we can send a more detailed

SBC output pin Arduino input pin

10k

GND

Figure 8-1.  Connecting an SBC to an Arduino for sending text alerts.
Notice the pull-down resistor that is used to make sure the input
voltage is always defined. This resistor can be omitted if the Arduino’s
internal pull-down resistor is used.

Chapter 8 Advanced Logging, Monitoring, and Alerting

242

message to the Arduino. It can be the actual text we want to send, or just

an error code, and then the Arduino would hold the various texts and a

mapping to their error codes.

To detect a power outage, the Arduino can be normally powered through

its USB port, but also connected to a battery – in fact, it’s recommended to

have the Arduino connected to a battery when using the GSM module in

order to handle the large current consumption. Instead of sensing a GPIO

on the SBC, the Arduino can sense either its own 5V pin or one of the SBC’s

power pins. When the voltage on that pin drops, it means that a power

outage has happened, and the Arduino should send out an alert.

Note  Both the Arduino MKR GSM 1400 and Adafruit Feather 32u4
FONA use 3.3V logic, so when sensing a 5V pin, some level shifting
must be used, such as the voltage divider depicted in Figure 8-2.

Last, the SBC can send out a heartbeat signal in the form of a level

shift in an output GPIO pin or a signal over the serial connection. Then,

the Arduino can be programmed to send the alert if the heartbeat signal

has not been received. The amount of time that passes that should trigger

the alert should be larger than the heartbeat interval: this is to avoid

alerts being sent due to a small accidental delay in the heartbeat signal.

5V

10k

20k

GND

3.3V input pin

Figure 8-2.  Level shifter for sensing a 5V supply with a 3.3V input pin

Chapter 8 Advanced Logging, Monitoring, and Alerting

243

It’s a good idea to just tell the Arduino to wait double the interval of the

heartbeat signal, so if the heartbeat interval is 1 second, the Arduino can

send an alert if 2 seconds have passed without a heartbeat signal being

received. This technique is good for power outages as well as the situations

where the SBC freezes or dies: for a Raspberry Pi, for instance, freezing due

to a corrupted SD card is not unheard of.

�IFTTT
Paging apps for mobile devices are a primary channel for alerting on-

call engineers in tech companies. We will not cover these in this book for

several reasons: to use these techniques, one must either use a third-party

service, which cost a significant amount of money and are designed for a

much bigger scale, or one can program their own app. This book is broad

enough without getting into mobile app development, so we’ll just skip

this method. Moreover, for our purposes, the techniques we’ve covered in

this chapter should be sufficient already.

However, this is an alternative. IFTTT11 (If This Then That) is an

extremely powerful service. It knows how to connect and talk to a large

number of services, from Twitter, through Amazon Alexa, to online

weather services like Weather Underground. With IFTTT, one can create

applets that trigger an action in one service based on an event that

happened in another service. One of the examples that is given in the

IFTTT web site is sending an email if according to Weather Underground

it’s supposed to rain the next day.

Two features of IFTTT can be combined to create something that

looks fairly close to a paging app. The first one is called Webhooks. It’s

an API maintained by IFTTT that can send and respond to GET and

POST requests. The second one is the IFTTT mobile app that can display

11�https://ifttt.com/

Chapter 8 Advanced Logging, Monitoring, and Alerting

https://ifttt.com/

244

notifications triggered by push notifications. With these two services, we

can set up an applet that sends a notification that is then displayed on our

mobile device in response to an HTTP request coming from the project’s

program.

Note T his section is a little bit tutorial-like, something I am
generally trying to avoid in this book. However, I found that setting up
an IFTTT applet with Webhooks can be somewhat confusing. Let me
save you some time by walking you through it.

To set this up, we need to start a new applet. For the “this” part, which

is the event that triggers the applet, we choose “Webhooks.” The API needs

a name for the event. This, as we will see later, is expressed in the endpoint

to which the request is sent. We will name our event “alert” (Figure 8-3).

For the “that” part, which is the action performed in response to

the trigger, we choose “Notifications”. We can choose either a simple

notification, which is just plain text, or a rich notification, which can

include a link. When the notification is received, clicking it opens a

browser pointing to that link. For our use case, it makes perfect sense to

make that link the relevant playbook entry. Therefore, a rich notification

seems like a better choice.

In Figure 8-3, you can see that for the message itself, we chose some

pretty generic text, but we also pressed the “Add ingredient” button to add

the field “Value1”. We did the same for the “Link URL” box and added the

field “Value2”. The value of the fields, as we will soon see, can be set by the

HTTP request – we will make Value1 a free-form text that describes the

issue and Value2 will be the link to the playbook entry.

Chapter 8 Advanced Logging, Monitoring, and Alerting

245

Once we have finished creating the applet, we will need to retrieve

our key. This can be found by going to the Webhooks page (https://

ifttt.com/maker_webhooks) and clicking the “Documentation” button.

This takes us to a page that displays our key, shows the API’s endpoint

and examples of how to use it, and lets us test the triggers directly from

Figure 8-3.  Screenshots for setting up the IFTTT alerting applet. On
the left is step 2, in which the trigger, an http request, is configured.
On the right is step 5, in which the action, a rich notification, is
configured.

Chapter 8 Advanced Logging, Monitoring, and Alerting

https://ifttt.com/maker_webhooks
https://ifttt.com/maker_webhooks

246

that page. Now that we have an endpoint to work with, we can write code

in our program that triggers the alert. Let’s use Python for this example

(Listing 8-13).

Listing 8-13.  Python code that triggers an IFTTT applet using

Webhooks

import urllib.request

import urllib.parse

MY_KEY = 'xxxxxx' # your key here

ALERT_EVENT = 'page'

ERROR_TEXT = 'project lost power'

PLAYBOOK_URL = 'https://tinyurl.com/pre-playbook01'

params = urllib.parse.urlencode({

 'value1': ERROR_TEXT,

 'value2': PLAYBOOK_URL

 })

data = params.encode('ascii')

url ='https://maker.ifttt.com/trigger/{}/with/key/{}'

url = url.format(ALERT_EVENT, MY_KEY)

with urllib.request.urlopen(url, data) as f:

 print(f.read().decode('utf-8'))

To make sure this example is consistent with the ones in the Webhooks

documentation page, we set both the key and the event name as variables.

Then we move on to encoding the parameters. A Webhooks request can

include three parameters: value1, value2, and value3. These need to be in

the request’s body, which imply that requests with parameters need to be

POST requests, while requests without parameters can be either GET or POST

Chapter 8 Advanced Logging, Monitoring, and Alerting

247

requests.12 As we mentioned, we’re going to set value1 to a text describing

the reason for the alert.

The parameters go into a dictionary. This dictionary needs to be

URL-encoded, since some characters, like white spaces, are not allowed

in a URL or in a request’s body. URL encoding replaces these characters

usually by a sequence of three characters: ‘%’ and two more characters

representing the replaced character’s ASCII value in Hex. This string is

then encoded in ASCII, as expected by the HTTP protocol. This will be the

request’s body.

Next, we set up the URL by plugging our event’s name and our key

into the Webhooks URL template and make the request using urlopen().

Notice that the arguments are the URL and the body that contains the

alert’s text. Having the body as an argument tells urlopen() that this is

a POST rather than a GET request. The request returns a text that says

“Congratulations! You've fired the alert event”. This text doesn’t necessarily

mean that the action was performed. It just means that the request came

through.

IFTTT can be used to deliver alerts in other ways as well, and the

options seem endless. It can use third-party services to send you a text

message or call your phone. It can notify you through social media. It can

even notify you by changing the temperature of your smart water heater,

if you own one. Having said that, I would stick to the more conventional

communication channels.

12�That’s actually not accurate – GET requests can have a body, but it’s generally
considered bad practice. As a rule of thumb, GET requests’ parameters appear
in the URL of the request, while the parameters of a POST request appear in the
request’s body.

Chapter 8 Advanced Logging, Monitoring, and Alerting

248

�Summary
In these last two chapters, we really treated our project the way Site

Reliability Engineers in dot-com companies treat their systems. We

covered three key aspects of the SRE discipline: logging, keeping records

of the program’s operation; monitoring, reviewing the machine and the

programs’ operation over time; and alerting, reaching the right person

when intervention is needed. However, making sure that these processes

are in place and running correctly is somebody’s or, more often than not,

multiple people’s job. We simplified and scaled down these systems to

work with a maker project, but for many maker projects and for some

makers themselves, these techniques may still be over the top. I do

encourage you to think about the scale of your project and what the needs

are in terms of reliability, then consider the techniques we have discussed

in this chapter, and scale them up or down to fit the needs of the project.

This concludes our journey in examining how the principles of SRE

can be translated to the SBC maker project world. In the next chapter,

we will look at some best practices for bringing our new tools together,

reliability issues that apply specifically to the maker project world and are

not derived from SRE, and some other useful tips.

Chapter 8 Advanced Logging, Monitoring, and Alerting

249© Eyal Shahar 2019
E. Shahar, Project Reliability Engineering, https://doi.org/10.1007/978-1-4842-5019-8_9

CHAPTER 9

Best Practices
This last chapter is a collection of techniques and practices that I found

useful in my work. These are various methods for making robust projects,

and they are applicable at different stages of the project’s life cycle,

whether it’s the project’s design, development, debugging, or deployment.

Almost each of the topics discussed here could probably fill its own book;

however, this book would not be complete if we had not at least touched

upon them.

�Fake Classes
In Chapter 1, we discussed the advantages of using object-oriented

programming. We showed how objects that belong to different classes

but implement the same interface (duck typing) or derive from the same

superclass (inheritance) can be treated by the program as if they were of

the same class. This allows us, for example, to put objects of different types

in an array and perform the same operations on all the objects or to readily

swap one object for another.

This allows us to create a great tool for debugging: fake objects. A fake

class has the same interface as the class that is supposed to be present in

the fully functional project, but operates internally in the simplest way

possible, producing either a pre-defined or a configurable output. This is

useful for testing, debugging, or when the real object simply cannot operate.

250

Note  In software engineering jargon, the terms “fake” (or “faux”),
“stub,” and “mock” have similar, yet slightly different meanings. What
we refer here is closest in meaning to fake objects, so we’ll stick to
that term, disregarding any subtleties.

As an example, let’s go back to our weather station. As you recall, we

turned on a fan whenever the temperature was above a certain threshold.

How can we test this logic without coming up with a way to actually

change the temperature around the sensor? This is where a fake object can

be useful. We can create a fake temperature sensor class that doesn’t get

its reading from a physical temperature, but rather gives a known value as

its output. This output can be either a constant, a value that changes over

time, or a value that can be changed using a dashboard. You will notice

how techniques from almost every chapter in this book come into play

as using the JavaScript implementation of the weather station project to

demonstrate this. We’ll start with the implementation of the fake sensor

class itself (Listing 9-1).

Listing 9-1.  Implementation of the fake temperature sensor class

class FakeTemp extends Sensor {

 constructor(cfg) {

 super(cfg);

 this.isFake = true;

 this.setTemp(cfg.temp);

 }

 measure() {

 }

Chapter 9 Best Practices

251

 setTemp(t) {

 this.lastRead = t;

 this.time = new Date();

 }

}

In the constructor, we add a data member to this subclass, isFake. It

will help us down the road to identify which objects are real and which are

fake. We also assume that the input configuration object contains a temp

field that we use to set the sensor to the desired test temperature. Then we

implement a measure() method that doesn’t do anything: recall that in our

measuring loop (last visited in Listing 3-20), every subclass of the Sensor

superclass is expected to have a measure() method, so for the code to not

fail, FakeTemp must implement this method as well. Last, we implement a

setTemp() method that the constructor uses to set the temperature value

and, later on, will allow us to control this fake class during runtime. Now,

we need to revisit our dynamic instantiation code (Listing 5-12) and add

the FakeTemp class (Listing 9-2).

Listing 9-2.  Adding FakeTemp to the dynamic instantiation code

// ...

var sensorList = [];

for (let sensorCfg of config.sensors) {

 switch (sensorCfg.type) {

 // ...

 case 'FakeTemp':

 sensorList.push(new FakeTemp(sensorCfg));

 break;

 }

}

Chapter 9 Best Practices

252

And now, if we actually want to use a FakeTemp class, all we need to do

is swap the type of sensor in our configuration YAML file and include the

desired temperature (Listing 9-3).

Listing 9-3.  Changing the project’s configuration file to include a

fake sensor object

Sensors configuration

sensors:

- name: temperature_east

 type: FakeTemp

 units: "deg C"

 temp: 25

...

This is already enough: we can set different temperatures in the

configuration file, run the project, and see if the result matches our expectations.

However, we will take this a little bit further and add real-time control over

the fake class from the dashboard. To our Pug template (Listing 4-2), we will add

another section dedicated to fake sensors (Listing 9-4).

Listing 9-4.  Adding a fake objects section to the dashboard’s Pug

template

// ...

 div(id="sensors")

 // ...

 div(id="fans")

 // ...

 div(id="fakes")

 h2 fake

 each sensor in sensors

 if sensor.isFake

Chapter 9 Best Practices

253

 label(for=sensor.name)= sensor.name

 input(

 type="range"

 name=sensor.name

 min="0"

 max="50"

 oninput="setFakeTemp(this)"

)

For every sensor that has the isFake field (and the isFake field is not

false, by weird chance), an input of type range is added, better known as

a slider. input elements have a name attribute, on which we will piggyback

to map the element to the sensor. Any change to the slider will trigger

a setFakeTemp(this) command to execute, with this being the slider

element itself. The next step is to implement this setFakeTemp() function

in the dashboard’s JavaScript’s file (Listing 9-5).

Listing 9-5.  Implementing JavaScript code in the dashboard to send

fake data to the server

function setFakeTemp(element) {

 ws.send(JSON.stringify({

 fake: {

 sensor: element.name,

 value: parseInt(element.value)

 }

 }));

}

Using WebSockets, we will send the server an object containing the

name of the sensor, which we extract from the name attribute, and the

desired value. We wrap this object in a dictionary under a key we named

fake to help the server understand what we’re trying to do. All that

remains is to update the server code that handles incoming WebSockets

Chapter 9 Best Practices

254

messages from the dashboard (recall Listing 3-20) and add the capability

to handle messages that set fake values (see Listing 9-6).

Listing 9-6.  Server-side code that handles WebSockets messages to

set fake values

wsServer.on('connection', function connection(ws) {

 wsServer.broadcast(JSON.stringify({sensors: sensorList}));

 ws.on('message', function incoming(data) {

 msg = JSON.parse(data);

 if ('fake' in msg) {

 console.log(msg);

 for (sensor of sensorList) {

 console.log(msg.fake.sensor, sensor)

 if (msg.fake.sensor == sensor.name) {

 sensor.setTemp(msg.fake.value);

 }

 }

 }

 // ...

 });

});

And voila! We have a fake sensor that we can control in real time

and see if the rest of the project is doing what it’s supposed to do. Fake

objects can be used during development, for example, when hardware

components are still not in the developer’s possession, but I find that using

them is an extremely powerful technique during the debugging stage,

especially for projects that involve hardware.

By the way, if, while reading this book, you were asking yourself what

reliability engineering has to do with inheritance (Chapter 1), dashboards

and WebSockets (Chapters 2 to 4), and configuration files (Chapter 5), now

you know.

Chapter 9 Best Practices

255

�Exceptions and Errors
�The Basics
Different programming languages and different schools of thought assign

different meanings to the terms “exception” and “error,” and this book is

no exception.1 An error, in my book,2 is the thing that went wrong. It’s a

missing file, a failed HTTP request, an array that is invoked with an out-of-

range index, or division by zero. An exception is the mechanism that allows

errors to be intercepted, handled, and recovered from.

This mechanism operates in a similar manner in many languages – the

try-catch-finally block. In this mechanism, code that has potential to

fail is wrapped in a try clause. If it does fail, an exception is thrown (or

raised, in Python). A catch clause (or except, in Python) is executed if an

exception is thrown. This is the program’s chance to handle the error and

find a way to recover from it. It can also rethrow the exception to whatever

code called the current function. A finally clause executes regardless

of whether the try clause passed with or without exceptions. Even if an

exception is raised and rethrown or a return is encountered, the finally

clause is still guaranteed to execute.

While this may make the use of try-catch-finally blocks sound

compelling, they should not be used liberally for three reasons: first, they

are actually pretty computationally heavy; second, overuse of try-catch

blocks tends to make the code less readable and more confusing (“why

would this fail?”); and third, some exceptions, as explained in the next

section, are better not caught.

1�Pun totally intended.
2�Yes, one more pun.

Chapter 9 Best Practices

256

�Operational vs. Programmer Error
When it comes to errors, we need to distinguish between programmer

errors and operational errors. Programmer errors are simply bugs. Perhaps

you misspelled a variable’s name or messed up the indentation in your

Python code. Those are errors you could, in theory, catch and recover

from. Consider the JavaScript code in Listing 9-7.

Listing 9-7.  Recovering from a JavaScript programmer error

b = {};

try {

 b.do(); // b doesn't have a method do()

} catch (err) {

 console.log('Error:', err)

 // Recovered. Program keeps running

}

But do you want to recover from this error? These errors are, in fact,

problems with the program, and the first step to fixing those is to recognize

their existence, whereas recovering from them will only achieve the

opposite. Consider a more complicated case: using a dictionary as input

to a function. We used this technique in Chapter 5 when we initialized

objects with a configuration object as the constructor’s input. Suppose

that the configuration had a misspelled or a missing key, what would we

want to happen? We could check that the input of a function is exactly as

the function expects it, but what does an ill-formatted input argument

actually means? It means that there’s a mistake in the code that calls that

function. Therefore, that piece of code should be fixed instead of adding

more mechanisms to recover from such an error that would only hide

the actual problem. If stderr is redirected to a log file and the program is

configured to restart as we have discussed in Chapter 6, it’s a good idea to

Chapter 9 Best Practices

257

let the program just crash and restart, and the log file would capture the

information that will help you fix the error.

Note  In strongly typed languages, such as Java and C++, the
programmer would need to work extra hard to call a function with an
object of the wrong class as input. For this reason, testing for other
potential errors, for example, a function’s input argument being null,
is more common and actually considered good practice. In loosely
typed languages, like JavaScript and Python, it’s possible – but much
harder – to make sure that every input argument is of the right type.

Operational errors, on the other hand, should be considered as a

normal part of the program’s operation. Perhaps the program is trying to

open a file that is missing or access an online service that is down. A classic

example is right here in our weather station: if a temperature sensor gets

disconnected or breaks and its wrapper object is unable to communicate

with it, that is an operational error. Operational errors should be handled

and recovered from, and the way to do that depends on the way the

error presents itself, and these are, of course, different in Python and in

JavaScript.

�Python
All Python exceptions, from division by zero to a failed HTTP request,

inherit from the Exception object. A Python try-except block can be as

general as catching all exceptions of the Exception superclass, or specific,

where various subclasses of the Exception class are indicated, and

different recovery code is applied to each of them. The code in Listing 9-8

demonstrates how to catch different kinds of exceptions in Python.

Chapter 9 Best Practices

258

Listing 9-8.  Catching and handling different types of exceptions

in Python

import json

import urllib.request

import urllib.error

URL = 'some.url'

try:

 # May throw urllib.error.URLError

 response = urllib.request.urlopen(URL)

 # May throw json.decoder.JSONDecodeError

 data = json.loads(response.read().decode("utf-8"))

 # May throw KeyError

 table = data['table']

 # May throw IndexError

 a = table[50]

except urllib.error.URLError as e:

 print(('GET request error. Reason: {}')

 .format(e.reason))

except (KeyError, IndexError):

 print('JSON structure is not as expected.')

except Exception as e:

 print('Exception of type {} has occurred.'

 .format(type(e)))

Notice that some potential exceptions are not caught specifically,

namely, json.decoder.JSONDecodeError, but they will be caught at the

last except clause that catches all previously unspecified exceptions.

Remember that this clause must be last. Otherwise, some exceptions will

be caught and handled by this clause and not by a clause that appears later

but handles those specific exceptions.

Chapter 9 Best Practices

259

It’s not always easy to figure out just by reading the documentation

what type of exception a certain function can throw. Note how the

type of the exception is extracted in the last except clause. Instead of

guessing, you can force the program to fail during development and use

this mechanism to identify the exception type and refine the program

accordingly.

�JavaScript
You can get away with quite a lot without getting an error in JavaScript. For

instance, you can access a list with an index that is out of range:

a = [];

console.log(a[1]); // -> undefined

a[3] = 3.14; // Out of range? not a problem

console.log(a); // -> [<3 empty items>, 3.14]

You can even divide by zero – that’s not an error either:

b = 5 / 0;

console.log(b); // -> Infinity

This puts extra responsibility on the programmer to make sure that this

kind of code doesn’t produce unwanted results.

However, when errors do occur, intercepting them is a little more

involved in JavaScript than it is in Python. There are several different ways

JavaScript functions express an operational error that we will discuss in

the next sections. To make sure that the error doesn’t crash your program,

it’s important to familiarize yourself with the command that poses the

potential risk and identify the error reporting mechanism it uses.

Chapter 9 Best Practices

260

�Thrown Exceptions

Often, synchronous functions simply throw an exception when they fail,

for instance, fs.readFileSync(), which we used in our weather station to

read configuration data (recall Listing 5-12). The way to recover from this

type of failure is using a try-catch block, as shown in Listing 9-9.

Listing 9-9.  Recovering from a thrown exception

const fileName = path.join(__dirname, 'config.yaml');

var fileContent;

try {

 fileContent = fs.readFileSync(fileName, 'utf8');

} catch (err) {

 console.error(err);

 // recovery code goes here

}

If the exception happens within a function but we would prefer

handling the error in the code that called it, we could rethrow the

exception using throw err, with err being the error object. Then the caller

would also call the function within a try-catch block (see Listing 9-10).

Listing 9-10.  Rethrowing an exception in JavaScript

function callee() {

 try {

 fileContent = fs.readFileSync('test', 'utf8');

 } catch (err) {

 console.log('Let caller handle it. Rethrowing.');

 throw err;

 }

}

Chapter 9 Best Practices

261

function caller() {

 try {

 callee();

 } catch(err) {

 console.log('Handling exception.');

 }

}

caller();

�error Events

Some libraries are event-based, for instance, ws, which we used for

real-time updates from the project to the web dashboard (recall

Listing 3-6). In this paradigm, objects register to an error event with an

event handler function, and when the event is triggered, the event handler

is called. We can demonstrate this by modifying the code in Listing 3-6 and

adding an error event handler (Listing 9-11).

Listing 9-11.  Adding an error event handler to a WebSockets object

wsServer.on('connection', function (socket) {

 //...

 socket.on('error', function (err) {

 console.error(err);

 // handle error here

 });

});

Adding an error event handler is something that is easy to forget to do,

but it’s extremely important. Without it, the program would crash if there’s

an error.

Chapter 9 Best Practices

262

�Callback with an Error Argument

In this paradigm, an asynchronous function takes a callback function as

an argument that is called once the execution is complete. Usually, the

callback function is called with an argument that represents the error, if

one occurred. We’ve seen an example of this in our weather station, when

a sensor class was attempting to read from (i2cRead()) or write data to

(writeByte()) the physical sensor over the I2C bus (recall Listing 1-15).

Here’s the relevant excerpt from that example (Listing 9-12).

Listing 9-12.  Error handling while reading sensor data

class Si7021Temp extends Sensor {

 measure() {

 this.i2cBus.writeByte(0x40, 0xF3, 0, (err) => {

 if(err) {

 console.error(err);

 this.lastRead = -999;

 return;

 }

 setTimeout(() => {

 this.i2cBus.i2cRead(0x40, 3, new Buffer(3),

 (err, bytesRead, data) => {

 if(err) {

 this.lastRead = -999;

 return;

 }

Unlike functions that register to an error event, failing to provide

a callback to a function or to check the error argument does not

automatically mean that the program will crash if there’s an error.

However, if an error did happen and the error argument was not checked,

Chapter 9 Best Practices

263

normal execution is very likely to face some difficulties, since the failure is

bound to have some implications, like the data argument might be empty,

causing the program to crash down the road.

�Promise Rejection

Some APIs focus on promises. When a promise is rejected, its callback

function, specified by the catch() method, is called. Fetch() is a good

example for an API that uses promises. Examine Listing 9-13.

Listing 9-13.  Handling promise rejection

fetch(url)

 .then(function(response) {

 return response.json();

 }).then(function(data) {

 // process data here

 }).catch(function(err) {

 console.error(err);

 // recover from rejection here

 });

At the time of writing this book, rejected promises that are not

handled simply cause an error message to be displayed. However, this is

being deprecated, and in the future, an unhandled promise rejection will

cause the program to terminate. This means that just as with error event

handling, handling promise rejection is critical.

Chapter 9 Best Practices

264

�Software Recovery
Now that the exception is caught, what do you do? We vaguely said that the

project should run some sort of “recovery code” without explaining what

that means. In practice, it really depends on the project and what would be

a sufficient solution. Here are some common recovery methods:

•	 When the machine cannot communicate with a sensor,

a fake class can be instantiated and used instead.

•	 If the project relies on data from an online service and

the request fails, the program can retry making the

request at some later time.

•	 The program can also get the data from a backup

source, such as an alternative online service, or local

“canned” data stored in a file.

•	 If a configuration file is used, it is a good idea to also

have an untouched default configuration file, in case

an error is introduced to the configuration file while

editing it.

•	 Some projects can disguise their intended functionality

and upon failure do something completely different.

Screen-based projects, for example, can switch to

canned video, and art projects with interactive LEDs

can switch to pre-programmed lighting patterns.

•	 Sometimes it just doesn’t make sense to run the project

at all. If a robot can’t communicate with its motors, not

much can be done. These are the cases where some

physical error indicator, a blinking LED, for instance, is

essential.

Chapter 9 Best Practices

265

�Version Control and Rolling Back
When on-call engineers get paged, it means there’s a problem with their

service that needs to be resolved as quickly as possible. Usually, these are

no times for major code changes. Most often, they have three options:

introduce minor code changes, edit configuration files, or roll back.

Rolling back means going back in time, undoing a specific change that

was done in the code. This is possible through version control – systems

that store the codebase and track the changes in it through time. In such

systems, the code is stored in a remote repository. Developers work on local

copies of the repository, pushing their code changes back to the remote

repository, and pulling changes that their peers made to the code into their

own local copy.

These days, the prevailing version control system is Git.3 You are

probably familiar with GitHub,4 which is popular with the open source

community. However, it’s easy to forget that other platforms that use Git

exist, both online and for local hosting.

Git shines when multiple programmers work on the same project. For

example, a developer can create branches for new features of the program

that they are working on and merge them into the master branch when

they are ready. For the purposes of this discussion, however, we will deal

with the most basic scenario: a sole programmer, using Git to keep a

history and backup of their project. Figure 9-1 illustrates this workflow that

we will describe in detail in the next few sections.

3�https://git-scm.com/
4�https://github.com/

Chapter 9 Best Practices

https://git-scm.com/
https://github.com/

266

Figure 9-1.  The simplest Git workflow

Chapter 9 Best Practices

267

�Getting Started
When we decide to use Git for a project, we first create a repository (or

repo, for short) on the host – usually an online one like GitHub. Once we

do that, we can get the repository’s URL.

�Starting with Existing Code

If code was already written, then the project’s folder needs to be identified

as a Git working copy with the terminal command

git init

Next, we point the working copy to the remote repository

git remote add origin <url>

origin refers to the original repository. When working on open source

projects, it’s common to work with multiple remotes, but that’s rarely the

case for maker projects.

We usually don’t want all the files in the folder to be included in the

repository. In Python code, we don’t want *.pyc files, which are the files

compiled by the Python interpreter. For Node.js projects, we don’t want

the folder node_modules where libraries are installed. The way to tell Git

which files we don’t want it to track is by listing them in a .gitignore file,5

as shown in Listing 9-14.

5�GitHub keeps a collection of useful .gitignore templates for many languages
and frameworks: https://github.com/github/gitignore

Chapter 9 Best Practices

https://github.com/github/gitignore

268

Listing 9-14.  An example of a .gitignore file

.gitignore file. Comments are OK!

If using a macOS computer for development:

.DS_Store

For Python projects:

*.pyc

For Node.js projects:

node_modules

Now we can add everything else to the repository

git add .

and commit the changes. When committing, all changes are saved in the

working copy. An ID is given to the list of changes, so that the point in time

when the commit happened can be later referred to.

git commit -am <comment>

The -a flag tells Git to automatically stage, which simply means save,

all changes that happened since the last commit, including the deletion

of any files. The -m flag denotes a comment, and every commit must have

one. Committing a change only acts on the local working copy. To make

the changes take place in the remote repository, we need to push them

using the command

git push -u origin master

The first time we push to the remote repository, we need to specify

which remote we’ll be pushing to and to which branch using the -u (or

--set-upstream) option. We’ve already established that we’ll be working

solely with origin as our remote. Using branches is outside the scope of

this book. For this reason, when working on a personal maker project that

makes basic usage of Git, the command git push -u origin master is

usually what we would use.

Chapter 9 Best Practices

269

�Starting Fresh

If we decide to use Git before a single line of code was written, we can clone

the empty repository we’ve created to the machine:

git clone <url>

This will create a folder on the machine. Had there been any code in

the remote repository, that code would be copied to the local repository

as well. Adding the remote and setting the upstream, as we did in the

previous case, is done automatically with the clone command.

�The Development Cycle
From this point a cycle starts where features are developed locally, and

when the code is ready to be pushed to the remote repository, any new

files are added with the command

git add <new_files>

The code changes are staged with the command

git commit -am <comment>

and finally pushed to the remote repository – it’s not necessary to specify

the remote and the branch again:

git push

Note T he workflow described here does not cover collaboration
between multiple developers or even a development by a single
developer on multiple machines – if these are things you care about,
I recommend that you take the time to dive deeper into Git.6

Chapter 9 Best Practices

270

�Rolling Back
This brings us to a point where we can roll back – undo any changes that

have caused our project to be unstable. We can undo all changes we made

since the last commit with the commands

git reset HEAD –-hard

git clean -fd

The reset command is used to point the local repository to a specific

commit in the repository’s history, and HEAD is shorthand for the very last

commit. The --hard option tells Git to actually change the files in the local

repository so that they match that commit.

We can also tell Git to try to undo a specific commit without touching

changes that were done after it. This is done by first identifying the

commit’s ID. We can either find it in the commit history page on the host’s

web site or by typing

git log

This will print the commit history on the screen. If we were good about

commenting coherently with every commit, we can identify the offensive

commit by the comment we made and take note of its ID. Then, to undo

that commit, we can use the command

git revert <commit_ID>

6�Chacon, Scott, and Ben Straub. Pro Git. Berkeley, CA: Apress, 2014. Also available
online at https://git-scm.com/book

Chapter 9 Best Practices

https://git-scm.com/book

271

If this is successful, the offensive code will be removed, and a new

commit will be created. If not, either Git will protest, or we will have to get

into the code and try to clean up the mess that happened during the failed

attempt.

�Git Best Practices
The best way to avoid having to roll back in the first place and to make sure

rollbacks, when they are absolutely necessary, are done safely is to follow

some of Git’s best practices:

•	 Commit often.

•	 Preferably, commit stable code.

•	 Push stable code only.

•	 Comment clearly.

•	 Use comments to note stable code.

�Hardware Reliability
�Strain Relief
Cable connectors and the ports to which they connect create some of

the most vulnerable areas in a system. When not treated correctly, they

become physically strained from holding the hardware’s own weight.

Strain relief prevents any excessive forces from being applied to the

connectors and instead absorbs these forces into the cable itself and the

strain relief hardware. P-clamps and zip-ties (Figure 9-2) should be used

liberally for this purpose. Zip-tie clamps are my personal favorites: they

are screwed to the box or cabinetry that contains the hardware, and they

secure the zip-tie to a fixed place. Good technique involves using strain

Chapter 9 Best Practices

272

relief hardware in a way that cables are prevented from forming a straight

line between the connector and the potential source of strain, as shown in

Figure 9-3.

Figure 9-3.  Strain relief with P-clamps done wrong (left) and right
(right). The cable on the left creates a straight line between the
connector and the potential strain source. This is not as reliable as the
cable on the right, where that line is broken.

Figure 9-2.  Strain relief hardware: zip-ties with mounts and P-clamps

Chapter 9 Best Practices

273

Remember that the electrical infrastructure should be decoupled from

the structural infrastructure: never rely on electrical cables to keep parts of

the system in their place.

�Custom Shields
Projects often have components that must be separate from the computer.

In such cases, it’s usually best to avoid sticking jumper cables in the SBC’s

headers. Building a custom shield (or hat, or cape, or whatever it’s called

for your SBC of choice) is usually a more sustainable solution. A custom

shield gives you an opportunity to

•	 Use terminal blocks for connecting wires from external

components rather than soldering them to the board.

•	 Use headers to attach pre-assembled breakout boards.

•	 Use sockets for ICs.

•	 Add LEDs as status indicators.

•	 Add jumper headers and DIP switches for

configuration.

Most of these features can be seen in Figure 9-4. It is a custom cape

for the BeagleBone Black that I made for an Exploratorium exhibit called

“Ship Chatter.” This exhibit shows how the computers on ships’ navigation

systems communicate with each other.

Chapter 9 Best Practices

274

�Real-Life Recovery Planning
Recovery also includes actions taken by you, or whoever maintains your

project, in case of a hardware malfunction. Devote some time to think

about spare parts: the number of units of each part you buy should be a

function of its likelihood of breaking, a unit’s cost, the budget allocated to

the project’s maintenance, and the hassle involved in ordering new units.

•	 Think about where the spare parts should be stored.

•	 Document which parts were used and where they can

be purchased.

•	 Consider making a physical documentation sheet

describing troubleshooting steps and how to replace

parts and keep that sheet in the same place as the spare

parts.

Figure 9-4.  Custom BeagleBone Black cape, featuring (from right
to left) terminal blocks for connecting two LCD screens, two LED
indicators, a level-shifting breakout board mounted on headers, and
an IC mounted on a socket.

Chapter 9 Best Practices

275

�More Microservices
�Microservices Revisited
We mentioned the concept of microservices in Chapter 8 when we built a

logging microservice. We will not build more microservices in this section,

since we covered the basics in Chapter 8, but I would like to discuss them a

little further.

To recap, in a microservice architecture, different components of the

project run as independent programs, potentially on different machines,

and communicate with each other over the network. This can be useful in

many situations, for example, when

•	 A centralized logging system is desired.

•	 Different parts of the project lend themselves better to

different languages.

•	 The project has parts that are physically distributed

and it’s easier to control each of them with multiple

machines.

•	 You want to separate the project’s dashboard from the

main program.

•	 Parts of the systems, like machines or users on their

mobile devices, come in and out of the system.

Chapter 9 Best Practices

276

�A Case Study
The Exploratorium’s Microscope Imaging Stations7 (Figure 9-5) rely heavily

on microservices. These are kiosks that let visitors control a scientific grade

microscope while getting context-sensitive content that is driven by image

processing algorithms. The kiosk application was developed with Electron,8

a Node.js framework that allows developers to create desktop applications

in JavaScript and program the user interface with HTML and CSS. Electron

is a fantastic tool, especially in an environment where a prototype needs to

roll out quickly and changes to the layout and content are done frequently.

7�Denise King, Joyce Ma, Angela Armendariz, and Kristina Yu, Developing
Interactive Exhibits with Scientists: Three Example Collaborations from the Life
Sciences Collection at the Exploratorium, Integrative and Comparative Biology,
Volume 58, Issue 1, July 2018, Pages 94–102.

8�https://electronjs.org/. Another similar tool is NW.js: https://nwjs.io/

Figure 9-5.  A microscope imaging station at the Exploratorium

Chapter 9 Best Practices

https://electronjs.org/
https://nwjs.io/

277

The microscope itself, however, is behind a glass window, and the

library that controls it is for Java programs. That meant that we had

to bridge both the physical gap and the language gap between the

microscope and the kiosk. To do that, we wrote a Java microservice that

received messages over UDP from the kiosk and in turn sent commands to

the microscope using the Java library.

Then we had to change the joystick that visitors use to control the

microscope. The new joystick had to be connected to an Arduino that sent

serial commands to the kiosk’s computer. During development, running

the serial JavaScript library in Electron on a Windows computer presented

some challenges, which is a gentler way of saying that I couldn’t get it to

work. Writing the joystick adapter as a Python microservice not only saved

me time but also opened more options: I created another microservice

that also sent movement commands to the exhibit, but this one served a

little web site, so I could now control the microscope with my phone. This

did not interfere with the system as long as I didn’t use my phone while a

visitor was trying to use the joystick. I could also turn off my phone while

the system was running without affecting it. I could even shut down or

launch the phone-serving microservice while the exhibit was operating.

The system did not care. This microservice is somewhat parallel to the fake

objects we discussed earlier, but unlike those, the project’s configuration

files do not need to be changed, and the main program does not need to be

restarted.

We also added image processing capabilities to the exhibit,9 so that

the machine could have an idea of what the visitor is looking at and

provide relevant on-screen content. The algorithms were also written

9�Joyce Ma, Eyal Shahar, Kevin Eliceiri, Guneet Mehta, and Kristina Yu, Shedding
Light: Integrating Bioimaging Technologies into the Design of an Interactive
Museum Exhibit, Proceedings of the 2019 Conference on Designing Interactive
Systems (DIS ‘19). ACM, New York, NY, USA.

Chapter 9 Best Practices

278

in Java using the ImageJ10 and OpenCV11 libraries, so they had to be

incorporated into yet another microservice. That meant that the image

processing microservice could run on a dedicated machine, improving the

performance of the entire system.

�Microservices Best Practices
There are some libraries out there, like gRPC,12 that help standardize

microservices and how RPCs (Remote Procedure Calls) are made, but I

have never used them. I just push JSON objects around over UDP or HTTP

requests, as we’ve done many times throughout this book.

If you decide to use microservices, I suggest that you

•	 Think carefully whether the communication should be

over UDP or HTTP requests. UDP is fast, but packets

may get lost, which makes it a better choice when

the microservices run on the same machine. HTTP

requests are slower, but more reliable. Also, HTTP

requests are the way to go if the microservice serves a

web dashboard.

•	 Be careful with Python. You’ll have to use concurrency

so that incoming communication doesn’t block the rest

of the program. Either threads and queues or asyncio

are there to help you.

•	 Think carefully about the structuring of the JSON

objects. Refer to Chapter 3 for inspiration.

10�https://imagej.nih.gov/ij
11�https://opencv.org/
12�https://grpc.io/

Chapter 9 Best Practices

https://imagej.nih.gov/ij
https://opencv.org/
https://grpc.io/

279

•	 Use microservices conservatively and wisely. Turning

every little component into a microservice will result

in many programs and that can result in unnecessary

confusion and overhead.

•	 If using version control, have all the code in one

repository, with each microservice in its own folder.

True, when working with multiple machines, that will

result in unused code on some of them, but this is way

more organized. You will need to git pull between

committing and pushing to bring in changes you have

done on other machines.

�It’s Best to Practice
Mechanisms for error logging and alerting and fault recovery only have

value if they work, and the best way to verify that they actually do is by

putting them to the test:

•	 Turn off your router to see if the project can deal with

the network outage.

•	 Simulate a power outage by abruptly disconnecting the

SBC from its power supply.

•	 Deliberately misspell URLs of online resources that the

project uses to retrieve data to simulate an outage of

external services.

•	 Disconnect both sensors and actuators while the

project is running and on power up.

•	 If the project relies on external commands through the

network or keyboard, try ill-formatted commands.

•	 Introduce errors to configuration files.

Chapter 9 Best Practices

280

Did the project respond as you planned? Did your recovery

mechanisms react as you intended?

And then there’s always the scenario where human intervention

is required. Practice these situations as well, and make sure there’s a

procedure that works. Make sure you have physical access to the project.

Projects in public spaces often end up behind a lock: make sure you have

the keys, or the contact information of the people who have them. Know

where your spare parts are stored and ensure that you have access to them.

Figure out where the power breakers and network equipment are.

If you can’t attend to the project, can somebody else do that for you?

Do they know what to do? For some projects, it can be crucial that you

have someone you can trust to handle the situation when you’re away,

and these can be as high profile as an art project deployed in city hall

or as personal as a cat feeder. In both examples, if you’re travelling and

the project fails, you really need somebody you trust to be there, have

everything they need to access the project, and know how to respond.

Practice various scenarios with them, even just to make sure they know

how to manually feed your cats. Having said that, remember that many

maker projects don’t need this level of readiness, and in many cases, your

project can just wait until you return from your travels.

�Summary
This chapter brings our journey to a conclusion. We’ve covered some key

concepts from the world of Site Reliability Engineering and explored ways

to translate them into maker-scale projects, mostly on SBCs with focus on

the Raspberry Pi.

Designing a project’s software as an object-oriented architecture

supports code readability, maintainability, and configurability by paralleling

the software world and the hardware world. Since object-oriented

programming can be more similar to the way humans think about the

Chapter 9 Best Practices

281

world, an object-oriented project lends itself more easily to be visualized on

a dashboard for human use.

A web dashboard can provide insight into the machine’s state in at any

given moment. When something is wrong, viewing a dashboard is usually

the very first step toward understanding what the source of the problem

is, and a well-designed dashboard has the potential of pointing out the

problem within the very first seconds of looking at it.

Configuring the project with a dedicated configuration file creates

stronger code that does not require it to be changed if the hardware needs

to be adjusted or replaced. It also facilitates easier debugging by enabling

switching real element with fake ones. In conjunction to the program, a

machine that is configured properly supports the project’s software with a

healthy environment for the project to run and providing mechanisms for

recovering from power outages.

Logging, monitoring, and alerting can be tedious to set up, but they

are crucial for notifying the developer that something is wrong with the

project. They provide a timely connection between the project and those

who care for it and also a way to travel back in time and identify problems

and their sources.

No project is completely resilient to failure. Online services set a

realistic goal for their service’s availability that is usually expressed with

“nines” – the number of nines that appear in the percentage of desired

availability. For example, if a service is available 99.999% of the time, its

availability is said to be “five nines.” The company then uses the metrics

it collects to see if the availability goal is met. If the availability goal is not

met, improvements to the service need to be made, but if the availability

is better than the goal, then no additional changes need to be done. This

helps the company decide what reliability features are worthwhile working

on. In our scope, developing and utilizing the features we discussed also

take considerable amount of effort, but it’s hard to find a way to quantify

just how well the project is working and how well it should be working, so

it’s harder to determine whether investing time in developing reliability

Chapter 9 Best Practices

282

features is worthwhile. It’s up to you to find that balance, and that usually

boils down to your intuition at the design stage, how you decide to

overcome failures as you develop and test the project, and what you have

learned from your experiences with previous projects.

Regardless of what you end up using for your projects, I hope you’ve

learned some new things and changed the way you think about your work.

If you are a professional maker, or an aspiring one, I believe that employing

the techniques and thought processes that we have explored here will have

a positive effect that will also propagate to other elements of your practice.

You might even find that building reliability systems around your project

can be interesting and fun just for the sake of it. This field is still young,

and libraries and tools that address smaller-scale projects will probably

develop in time, but making your own tools always has the extra value of

learning while making, ending up with a product that is designed precisely

for your own needs, and having the satisfaction of making the thing

yourself – and isn’t that what being a maker is all about?

Chapter 9 Best Practices

283© Eyal Shahar 2019
E. Shahar, Project Reliability Engineering, https://doi.org/10.1007/978-1-4842-5019-8

Index

A
Abstract class, 11
Alerting, 201, 215, 217, 227, 245, 279
Application Program

Interface (API), 41
Arduino, 144–153

EEPROM, 144–152
SD card, 152–153

Asynchronous code
(See Synchronous vs.
asynchronous code)

asyncio, 59–60

B
Bootstrap, 49
Broadcast (networking), 164
Broadcast (WebSockets), 57

C
Cascading Style Sheet (CSS), 90–98

border-radius property, 105
content property, 100
data-driven, 98–100
display property, 94, 95
flexbox, 95–97
position property, 97–98

selectors, 28–30
tables, 90–91
Text

capitalization, 91–92
fonts, 93

catch() method (See Exceptions)
Color gradients, 106–109
Command line arguments, 136,

144, 209–210
default help message, 142–144
options, 136
parsing, 138–142
terminology, 136
verbose mode, 137

Command substitution, 174, 181
Comma-Separated Values (CSV)

file, 12, 213
Conditional operator, 88, 89
console

cosnole.log(), 183
Object, 201–202

Constructor argument, 133–134
Coroutines, 59–61, 63
Crash recovery

forever.js, 176
pm2, 176–177
Python, 175

cron, 170–171, 173–175, 179

https://doi.org/10.1007/978-1-4842-5019-8

284

crontab, 171, 172, 179, 231
Custom shield, 273–274

D
D3.js, 109
Dashboard (See Web dashboard)
DatagramHandler, 225
Data serialization, 129
Data visualization, 81, 106,

108, 213
datefmt argument, 196

directives, 197
Decorators, 34
Default gateway, 162
Dictionary, 31, 69, 71, 78, 115, 127,

253, 256
DIP switches, 157–158, 273
DNS servers, 165
Document Object

Model (DOM), 28
elements, 89

Document Type
Definition (DTD), 28

Domain name, 169, 170
Domain Name System (DNS), 165

DDNS, 169–170
resource records, 169
servers, 165

Duck typing, 5–9
Dynamic Host Configuration

Protocol (DHCP), 162, 163
Dynamic instantiation,

134–135, 251

E
Electrically Erasable Programmable

Read-Only Memory
(EEPROM), 144–145

JSON, 145–150
object serialization, 150–152
put() method, 150

Endpoint, 39–41, 43, 47, 49, 52,
116, 244–246

Environment variables, 172, 173, 239
Errors

callback with an error
argument, 262–263

error events, 261
operational vs. programmer,

256–257
promise rejection, 263

Exceptions
catch clause, 255
thrown exceptions, 260–261
try-catch-finally block,

JavaScript, 255
try-except block,

Python, 257
Express.js, 45–47
Extensible Markup Language

(XML), 125–127

F
Fake classes, 249–254
Fetch(), 45, 112, 263
File descriptors, 184, 207

INDEX

285

Flapping, 218, 227
Flask, 31–38, 83

for-loops/conditionals, 36
Jinja, 45
template rendering, 34, 35
web server, 37–38

G
Gauges, 112–116
Git (See Version control)
Google Charts, 109–116

API, 110
dataset property, 114
DataTable object, 112
draw() function, 113
gauges, 112–116
library loader, 111
line graphs, 110–112

GPIO pin, 82, 126, 133, 141, 241
Graphical User

Interfaces (GUI), 22
Graphic indicators, 104

color gradients, 106–109
gauges, 112
LEDs, 104–105
meters, 105–106

grep (command), 213

H
Hardware reliability

custom shields, 273–274
strain relief, 271–273

Hypertext Markup Language (HTML)
classes, 54–55
DOM (See Document Object

Model)
DTD (See Document Type

Definition)
tags, 27

Hypertext Transfer Protocol
(HTTP), 22–24

GET request, 23, 39
POST request, 23
requests, 22–24, 51–53
response status codes, 24, 25

I
I2C, 2, 3, 65, 71

openSync(), 15
writeByte(), 16, 17

If This Then That (IFTTT), 243
alerting applet, setup, 245
GET/POST request, 247
HTTP protocol, 247
Python code, 246
Webhooks, 243

Inheritance
abstract class, 11
subclasses, 9
superclass, 9
superclass’s data member, 11–12

Interfaces, 7
Internet speed monitor, 120–121
IP address, 36–37, 163–164

static, 167–168

Index

286

J
Jade (See Pug)
JavaScript

asynchronous code, 16
console object, 201–202
constructor function, 13–15
ES6, 17–19
Logging

console object, 201–202
Winston library, 202–204

Object.assign(), 134
Object.create(), 15
properties, 14
prototypes, 13
setTimeout(), 17
toFixed() function, 93
toJSON() method, 72, 73

JavaScript Object Notation (JSON)
communication

design, 69–71
configuration, 128
object, 69–71
entities, 127
message parsing, 76–77
pseudo-properties, 128–129

Jinja, 45
join() function, 12
JSONEncoder, 74–75

default() function, 75
JSON.stringify()

function, 71, 72
jQuery, 47–48
Jumpers, 155–157

K
Key-value pair, 69

L
Level shifter, 242
Light Emitting Diodes (LEDs), 104
Line graphs, 110–112
List comprehension, 12, 13, 63, 142
Literal, 127
Logger objects, 198–199
Logging

callback, error arguments, 211
configuration, 208–210
data, 213
email alerts, 219–222
exceptions, 210–211
initialization sequence, 212
microservice (See

Microservices)
parameters, 213
stdout/stderr, 184–186

Log handlers, email alerts
credentials, 221
SMTP handler, 220–221

Log levels, 188–189
critical messages, 190–191
debug and info messages,

189, 190
error messages, 190
Python’s logging module, 189
severity, 188
warning messages, 189, 190

INDEX

287

Log rotation, 204
configuration block, 205–206
RotatingFileHandler/

TimedRotatingFile
Handler's initialization,
207–208

stages, 205
WatchedFileHandler, 207

M
Magic numbers, 123–124
Media queries, 100–102
Microframework, 31
Microscope imaging station, 276
Microservices, 222

best practices, 278–279
case study, 276–278
logging client library, 225–226
logging service, 222–223
UDP (See User Datagram

Protocol)
Monitoring, 226

alerts throttling, 231–232
simple monitoring system,

227–230
system metrics, 232–235
logrotate, 233

Mustache, 31

N
Name servers (See DNS servers)
Network-Attached Storage (NAS), 120

Network configuration, 162–170
accessing remotely, 167–170

Node.js, 45–47

O
Object-Oriented

Programming (OOP)
class, 1
data members, 1
inheritance, 9–13
interface, 7
instantiation, 3
JavaScript, 13–17
JavaScript ES6, 17–19
member functions, 2
methods, 2
polymorphism, 5

On-call, 219, 239
Operational errors, 256, 257, 259

P
Playbook, 219, 235–237

content, 235–236
hosting, 236–237

Port forwarding, 168
Positional arguments, 136, 138
Programmer errors, 256–257
Project configuration

Arduino (See Arduino)
command line arguments (See

Command line arguments)
DIP switches, 157–158

Index

288

file formats, 125–132
handling errors, 154–155
jumpers, 156–157
magic numbers, 123–124

Promises, 42, 45, 263
rejection, 263

Pull-down resistor, 156, 241
Pug, 31, 45–47, 113–114, 252–253
Pure abstract class, 11
Python

asyncio, 59–60
coroutines, 59
event loop, 61
exceptions, 257–259
threads, 64
websockets library, 61–65

Python modules
argparse module

add_argument() function, 139
ArgumentParser object, 138

logging module
basicConfig() method,

193–196
date/time directive, 196
formatting style, 193–194
handlers, 199–201
log message attributes,

193–194
Logger objects, 198–199
msecs attribute, 197
timestamp, 197

sys module, 137

Q
querySelector(), 44, 48, 89
querySelectorAll(), 44

R
Random-Access

Memory (RAM), 145
Raspbian, 159, 166, 167
Read-Only Memory (ROM), 145
Real-life recovery planning, 274
Remote access, 167–170
Remote Procedure Calls (RPCs), 222
Remote repository, 265, 268, 269
Resource record, 169, 170
Responsive design, 100, 103

device orientation, 103–104
media queries, 100–102
sizing elements, 103

Rolling back (See Version
control)

run_until_complete() function, 60

S
Scalability, 9, 218, 230
Secure Sockets Layer (SSL), 220
self method, 4
Server, 21–22
Setup documentation, 180–182
Shebang, 174, 182
Ship Chatter, 273–274
Signature, 133

Project configuration (cont.)

INDEX

289

Simple Mail Transfer Protocol
(SMTP), 219

Single Board Computer (SBC),
xxviii, 1, 6, 122, 144, 155,
156, 159, 164, 219, 241, 273

Singleton design pattern, 198
SMS alerts, 237

online SMS services, 237–239
SocketIO, 67–68
Software recovery, 264
Startup

command substitution, 174
__dirname constant, 173
environment variables, 172, 173
__file__ constant, 173
parameter expansion, 174
PATH variable, 172
shell script, 174
cron job, 171

Static files, 43, 83–84
Strain relief, 271–273
Subnet mask, 164, 167
Synchronous vs. asynchronous

code, 31
systemd, 178

target unit groups, 179
unit files, 178

System service, 177–180
boot sequence, 180
ExecStart, 179
ExecStopPost, 178
RestartSec, 179

T
Template rendering, 30–31, 44, 51,

55, 71, 77, 82, 113
Thrown exception, 260–261
Tidal Memory, 117–118
Tornado, 38
Transport Layer Security (TLS), 220
try-catch-finally blocks, 255

U
Uniform Resource

Identifier (URI), 23
Uniform Resource

Locator (URL), 23
Unit configuration file, 178
urlopen(), 247
useradd command, 161
User Datagram

Protocol (UDP), 223
User setup

pi, 160
root user, 159, 160
sudo, 160

V
Version control

clone command, 269
development cycle, 269
.gitignore file, 268
Git workflow, 266

Index

290

W, X
Web dashboard, 21

graphic indicators, 104
Internet speed monitor, 120–121
structure, 81, 82

Web framework, 22
Web Server Gateway Interface

(WSGI), 37
WebSockets, 56

browser, 65–66
Node.js, 56–58

Python, 61–65
socketIO, 67–68

Winston, 202–204, 219
Wired Pier, 119–120
Wrapper class, 8

Y, Z
Yet Another Markup Language

(YAML), 125, 129–130, 134,
227–228, 233

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: The Case for Object-Oriented Programming
	Object-Oriented Programming Basics
	Polymorphism and Duck Typing
	Inheritance
	OOP in JavaScript
	OOP in JavaScript ES6
	Summary

	Chapter 2: Our First Web Dashboard
	Everything Is a Server
	HTTP Requests
	HTML in a Nutshell
	Selectors and CSS
	Template Rendering
	Python and Flask
	Coding Our First Dashboard
	The Flask Web Server

	Adding Browser Interactivity
	Node.js and Express.js
	A Little Help
	jQuery
	Bootstrap

	Summary

	Chapter 3: The Live Dashboard
	HTTP Requests
	The Case for HTML Classes
	WebSockets
	Introduction to WebSockets
	WebSockets in Node.js
	WebSockets in Python
	asyncio Primer
	Using the websockets Library

	WebSockets in the Browser
	Honorary Mention: SocketIO

	JSON
	JSON Communication Design
	JSON Message Structuring
	JSON Message Parsing

	Summary

	Chapter 4: Dashboard Design
	Strategizing
	Beefing Up the Project
	Serving Static Files
	Creating a Template
	Data Updates
	Scrutinizing the Code

	Basic CSS
	Tables
	Text
	Capitalization
	Numerical Columns
	Fonts

	Layout
	The display Property
	The position Property

	Data-Driven CSS
	Responsive Design
	Media Queries
	Element Sizing
	Device Orientation

	HTML Graphic Indicators
	LEDs
	Meters
	Gradients

	Google Charts
	Line Graphs
	Gauges

	Real-World Examples
	Tidal Memory
	Wired Pier
	Internet Speed Monitoring

	Summary

	Chapter 5: Project Configuration
	Motivation
	File Formats
	XML
	JSON
	YAML
	Code

	Interpreting the Configuration
	The Constructor’s Argument
	Dynamic Instantiation

	Command-Line Arguments
	Introduction
	Parsing
	Getting Help

	Configuring an Arduino Project
	The Arduino’s EEPROM
	Storing Configuration as JSON
	Configuration Object Serialization

	Storing on an SD Card

	Handling Configuration Errors
	Configuring with Hardware
	Jumpers
	DIP Switches

	Summary

	Chapter 6: Machine Setup
	User Setup
	Where Should the Code Live?
	Network Configuration
	The Settings
	Default Gateway
	IP Address
	Subnet Mask
	Broadcast
	DNS Servers

	Applying Network Configuration
	Ubuntu
	Raspbian

	Accessing Remotely
	Static IP address
	Using a Domain Name
	Dynamic DNS

	Launching on Startup
	Running as a cron Job
	Launching on Boot

	Crash Recovery
	Python
	forever.js
	pm2

	Running As a System Service
	Setup Documentation
	Summary

	Chapter 7: Logging
	The Good Old Print
	stdout and stderr

	Where Do Logs Go?
	Understanding Log Levels
	DEBUG and INFO Messages
	WARNING, ERROR, and CRITICAL Messages

	Logging Libraries
	Python’s logging
	Logger Configuration
	Adding Loggers
	Using Handlers

	Logging in JavaScript
	The Console Object
	Winston

	Roll Your Own

	Log Rotation
	Linux’s logrotate
	File Watching
	In-Program Log Rotation

	Logging Configuration
	What to Log
	Exceptions
	Callback with Error Arguments
	Initialization Sequences
	Entering and Leaving Functions
	Parameters
	Data

	Reading Log Files
	Summary

	Chapter 8: Advanced Logging, Monitoring, and Alerting
	How Big Tech Companies Do It
	Email Alerts by Log Handlers
	Logging As a Microservice
	The Service
	The Client Library

	Monitoring
	A Simple Monitoring System
	Alerts Throttling
	Monitoring the Machine

	The Playbook
	Playbook Content
	Playbook Hosting

	SMS Alerts
	Online SMS Services
	SMS Alerts with Hardware

	IFTTT
	Summary

	Chapter 9: Best Practices
	Fake Classes
	Exceptions and Errors
	The Basics
	Operational vs. Programmer Error
	Python
	JavaScript
	Thrown Exceptions
	error Events
	Callback with an Error Argument
	Promise Rejection

	Software Recovery
	Version Control and Rolling Back
	Getting Started
	Starting with Existing Code
	Starting Fresh

	The Development Cycle
	Rolling Back
	Git Best Practices

	Hardware Reliability
	Strain Relief
	Custom Shields

	Real-Life Recovery Planning
	More Microservices
	Microservices Revisited
	A Case Study
	Microservices Best Practices

	It’s Best to Practice
	Summary

	Index

