
[1]

www.allitebooks.com

http://www.allitebooks.org

Puppet 4 Essentials
Second Edition

Acquire the skills to manage your IT infrastructure
effectively with Puppet

Felix Frank

Martin Alfke

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Puppet 4 Essentials
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2014

Second edition: December 2015

Production reference: 1071215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-110-7

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Felix Frank

Martin Alfke

Reviewer
Ger Apeldoorn

Acquisition Editor
Nadeem Bagban

Content Development Editor
Sumeet Sawant

Technical Editor
Menza Mathew

Copy Editors
Angad Singh

Alpha Singh

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Production Coordinator
Melwyn Dsa

Cover Work
Melwyn Dsa

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Felix Frank has used and programmed computers for most of his life. During
and after working on his computer science diploma, he gained experience on the
job as a systems administrator, server operator, and open source software developer.
He spent 6 years of his 11-year career as a Puppet power user. In parallel, he spent
about two years intensifying his studies through ongoing source code contributions
and active participation in several conferences.

For making this title possible in the first place, and for their ongoing
support, I'd like to thank my editors, Nadeem Bagban and Arwa
Manasawala. Also, this book would not be what it is without the
amazing feedback from my reviewers.

For their kind feedback and ongoing support, I'd also like to thank
a number of Puppet Labs employees: Michael Smith, Peter Huene,
Josh Cooper, Andrew Parker, Adrien Thebo, Dawn Foster, Kara
Sowles, Joshua Partlow, Henrik Lindberg, Charlie Sharpsteen, Nigel
Kersten, Kylo Ginsberg, Ethan Brown, Rob Reynolds, Jeff McCune,
and Eric Sorenson. Special thanks to Luke Kanies for creating Puppet
and dedicating so many resources to this amazing community.

Further thanks go to Waltraut Niepraschk and the whole datacenter
staff at DESY Zeuthen for getting me on track with the central
management of UNIX servers. Thanks also to mpex for giving me
the opportunity to learn a lot about Puppet, and ultimately, write
this very book.

www.allitebooks.com

http://www.allitebooks.org

Martin Alfke is co-founder and CEO of example42 GmbH. He is a Puppet and
automation enthusiast since 2007. In the past, he would have said he is a "system
administrator". Nowadays, he likes the term "infrastructure engineer". The big
difference is that system administrators sshs into systems to fix them, whereas
infrastructure engineers fix their automation.

Martin is serving as a Puppet Labs' training partner in Germany since 2011,
conducting official Puppet training. In his spare time, he likes reading books
and visiting interesting locations.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Ger Apeldoorn is a freelance Puppet consultant and teaches official Puppet Labs
courses in the Netherlands. He has helped many companies implement Puppet
(both Open Source and Enterprise), and has conducted talks at PuppetConf,
PuppetCamps, FOSDEM, and other conferences. You can go through his official
website at http://puppetspecialist.nl.

www.allitebooks.com

http://puppetspecialist.nl
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt atwww.PacktPub.com, you can use this to access
PacktLib today and view 9entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: Writing Your First Manifests 1

Getting started 2
Introducing resources and properties 4
Interpreting the output of the puppet apply command 5

Dry-testing your manifest 7
Adding control structures in manifests 7
Using variables 9

Variable types 9
Controlling the order of evaluation 10

Declaring dependencies 12
Error propagation 15
Avoiding circular dependencies 16

Implementing resource interaction 18
Examining the most notable resource types 20

The user and group types 22
The exec resource type 23
The cron resource type 25
The mount resource type 25

Summary 26
Chapter 2: The Master and Its Agents 27

The Puppet Master 27
Puppet Master and Puppet Server 28
Setting up the master machine 29
Creating the master manifest 30
Inspecting the configuration settings 32

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Setting up the Puppet Agent 32
The agent's life cycle 36
Renewing an agent's certificate 38
Running the agent from cron 39

Performance considerations 40
Tuning puppetserver 41

Using Phusion Passenger with Nginx 41
Comparing Passenger with puppetserver 43

Completing the stack with PuppetDB 44
Troubleshooting SSL issues 44
Summary 46

Chapter 3: A Peek under the Hood – Facts, Types,
and Providers 47

Summarizing systems with Facter 47
Accessing and using fact values 49
Extending Facter with custom facts 51

Simplifying things using external facts 54
Goals of Facter 56

Understanding the type system 56
The resource type's life cycle on the agent side 57

Substantiating the model with providers 59
Resource types with generic providers 60
Summarizing types and providers 60

Putting it all together 61
Summary 63

Chapter 4: Modularizing Manifests with Classes
and Defined Types 65

Introducing classes and defined types 66
Defining and declaring classes 66
Creating and using defined types 67
Understanding and leveraging the differences 70

Structured design patterns 71
Writing comprehensive classes 72
Writing component classes 73
Using defined types as resource wrappers 75
Using defined types as resource multiplexers 77
Using defined types as macros 78
Exploiting array values using defined types 79

Using iterator functions 81
Including classes from defined types 82

Table of Contents

[iii]

Establishing relationships among containers 82
Passing events between classes and defined types 83
Ordering containers 85
Limitations 86
The performance implications of container relationships 88
Mitigating the limitations 89

The anchor pattern 89
The contain function 90

Making classes more flexible through parameters 90
The caveats of parameterized classes 91
Preferring the include keyword 92

Summary 93
Chapter 5: Extending Your Puppet Infrastructure with Modules 95

An overview of Puppet's modules 96
Parts of a module 96
Module structure 97
Documentation in modules 98

Maintaining environments 99
Configuring environment locations 101
Obtaining and installing modules 101
Modules' best practices 102
Putting everything in modules 103
Avoiding generalization 103
Testing your modules 104

Safe testing with environments 105
Building a specific module 106

Naming your module 106
Making your module available to Puppet 106
Implementing basic module functionality 107
Creating utilities for derived manifests 110

Adding configuration items 111
Allowing customization 113
Removing unwanted configuration items 114
Dealing with complexity 115

Enhancing the agent through plugins 116
Replacing a defined type with a native type 118

Enhancing Puppet's system knowledge through facts 125
Refining the interface of your module through custom functions 126
Making your module portable across platforms 128

Finding helpful Forge modules 130
Identifying modules' characteristics 130

Summary 131

Table of Contents

[iv]

Chapter 6: Leveraging the Full Toolset of the Language 133
Templating dynamic configuration files 134

Learning the template syntax 134
Using templates in practice 135
Avoiding performance bottlenecks from templates 137

Creating virtual resources 137
Realizing resources more flexibly using collectors 141

Exporting resources to other agents 142
Exporting and importing resources 143
Configuring the master to store exported resources 144
Exporting SSH host keys 145
Managing hosts files locally 145
Automating custom configuration items 146
Simplifying the configuration of Nagios 147
Maintaining your central firewall 148
Removing obsolete exports 148

Overriding resource parameters 149
Saving redundancy using resource defaults 151

Avoiding antipatterns 153
Summary 155

Chapter 7: New Features from Puppet 4 157
Upgrading to Puppet 4 158

Using Puppet 3.8 and environment directories 159
The new Puppet 4 Master 159
Updating the Puppet Agent 161
Testing Puppet DSL code 161

Using the type system 162
Learning lambdas and functions 170
Creating Puppet 4 functions 174
Leveraging the new template engine 177
Handling multiline with HEREDOC 178
Breaking old practices 181

Converting node inheritance 181
Dealing with bool algebra on Strings 182
Using strict variable naming 183
Learning the new reference syntax 184
Cleaning hyphens in names 184
No Ruby DSL anymore 185

Table of Contents

[v]

Relative class name resolution 185
Dealing with different data types 186

Summary 187
Chapter 8: Separating Data from Code Using Hiera 189

Understanding the need for separate data storage 190
Consequences of defining data in the manifest 191

Structuring configuration data in a hierarchy 193
Configuring Hiera 195
Storing Hiera data 196
Choosing your backends 197

Retrieving and using Hiera values in manifests 198
Working with simple values 198
Binding class parameter values automatically 200
Handling hashes and arrays 202

Converting resources to data 205
Choosing between manifest and Hiera designs 208
A practical example 209

Debugging Hiera lookups 212
Implementing the Roles and Profiles pattern 212
Summary 214

Index 217

Preface

[vii]

Preface
The software industry is changing and so are the related fields. Old paradigms are
slowly giving way to new roles and shifting views on what the different professions
should bring to the table. The DevOps trend pervades more and more workflows.
Developers set up and maintain their own environments. Operations raise
automation to new levels and translate whole infrastructures to code.

A steady stream of new technologies allows for ever-evolving, more efficient
organizational principles. One of these is Puppet. Its fresh take on server configuration
management caused a rapid adoption and distribution throughout the industry.
In the few years of its existence, Puppet has managed to rally thousands of users
who employ it in numerous contexts to achieve manifold results. While it is not
the only configuration management system available, it is certainly the most
widespread by now.

From its specialized language, to the system that makes it work, Puppet has innovated
and rapidly conquered. Its extendible structure, paired with a large and helpful
community, has made Puppet a powerhouse of easy configuration. The more well
known a software is, the greater the chance that Puppet will deploy and configure it
out of the box.

Puppet's own learning curve is not sharp, and the available documentation is
not only extensive, but also of high quality. Nevertheless, even experienced
programmers and administrators can face difficulties at some point. Advanced
use may require the navigation of some intricacies that stem from Puppet's unique
modeling approach.

This book aims to impart all the knowledge required to tap into not only the basics
of Puppet, but also its core. The very ideas and principles of Puppet-based designs
are explored and explained. Sophisticated tooling is presented to enable efficient and
productive use. The reader is rapidly introduced to and familiarized with a whole
range of Puppet-centric technology.

Preface

[viii]

What this book covers
Chapter 1, Writing Your First Manifests, is an introduction to the core concepts of
Puppet, including a syntax tutorial. You will learn to write and use Puppet manifests
within a few pages.

Chapter 2, The Master and Its Agents, is a quick how-to guide to setting up all the
required components for a distributed Puppet infrastructure. In this chapter, you
will learn to create the master and an agent, and set up puppetserver.

Chapter 3, A Peek under the Hood Facts, Types, and Providers, covers a summary of
the core components that give Puppet its flexibility, as well as its ease of use and
extension. You will also be able to understand the principles of Puppet's function.

Chapter 4, Modularizing Manifests with Classes and Defined Types, helps you learn the
most important structural elements of Puppet manifests. Find out how to use them
for best results.

Chapter 5, Extending Your Puppet Infrastructure with Modules, takes you on a tour of
downloadable extensions, with a guide to making your own. Extend Puppet to your
specific needs.

Chapter 6, Leveraging the Full Toolset of the Language, teaches you to interpret and use
language features beyond the basics.

Chapter 7, New Features from Puppet 4 helps you learn about the new Type system and
data processing features. It also helps you to understand the deprecations and what
to change to make use of the new features.

Chapter 8, Separating Data from Code Using Hiera, gives you an introduction to the
powerful configuration data storage that comes with Puppet. In this chapter, you
will learn to model your infrastructure naturally in a hierarchy.

What you need for this book
To follow the examples, it is enough to use a computer with sufficient resources to
run two or more virtual machine instances. The virtualization guests should have a
connection to the internet and each other. The configuration examples are tailored to
the Debian GNU/Linux operating system in version 7, code name "Wheezy".

Preface

[ix]

Who this book is for
This book assumes that the reader possesses no prior Puppet knowledge. Readers
should have a sound technical background though. Experience with the GNU/Linux
command line is required. Existing programming skills are recommended.

This book is also suitable for beginner or intermediate level Puppet users who wish
to expand their knowledge of the software. It can serve as a guide for veteran users
who wish to learn about the new features in the Puppet 4.x series of releases.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"With all your Hiera data in place, you can now include the demo class from your
site.pp (or an equivalent) file indiscriminately."

A block of code is set as follows:

role-dbms.yaml
demo::atoms:
 self:
 address: localhost
 master:
 address: master.example.net
 port: 60119

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

role-dbms.yaml
demo::atoms:
 self:
 address: localhost
 master:
 address: master.example.net
 port: 60119

Preface

[x]

Any command-line input or output is written as follows:

root@puppetmaster # hiera -c /etc/puppetlabs/code/hiera.yaml demo::atoms

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "The
ability to enumerate classes for each node to include is what Puppet's External Node
Classifiers (ENCs) had originally been conceived for."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think
about this book—what you liked or disliked. Reader feedback is important
for us as it helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and
mention the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of
things to help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xi]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.allitebooks.com

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.allitebooks.org

[1]

Writing Your First Manifests
Over the last few years, configuration management has become increasingly
significant to the IT world. Server operations in particular is hardly even feasible
without a robust management infrastructure. Among the available tools, Puppet has
established itself as one of the most popular and widespread solutions. Originally
written by Luke Kanies, the tool is now distributed under the terms of Apache
License 2.0 and maintained by Luke's company, Puppet Labs. It boasts a large
and bustling community, rich APIs for plugins and supporting tools, outstanding
online documentation, and a great security model based on SSL authentication.

Like all configuration management systems, Puppet allows you to maintain a central
repository of infrastructure definitions, along with a toolchain to enforce the desired
state on the systems under management. The whole feature set is quite impressive.
This book will guide you through some steps to quickly grasp the most important
aspects and principles of Puppet.

In this chapter, we will cover the following topics:

• Getting started
• Introducing resources and properties
• Interpreting the output of the puppet apply command
• Adding control structures in manifests
• Using variables
• Controlling the order of evaluation
• Implementing resource interaction
• Examining the most notable resource types

Writing Your First Manifests

[2]

Getting started
Installing Puppet is easy. On large Linux distributions, you can just install the
Puppet package via apt-get or yum.

The installation of Puppet can be done in the following ways:

• From default Operating System repositories
• From Puppet Labs

The former way is generally simpler. Chapter 2, The Master and Its Agents, provides
simple instructions to install the Puppet Labs packages. A platform-independent
way to install Puppet is to get the puppet Ruby gem. This is fine for testing and
managing single systems, but is not recommended for production use.

After installing Puppet, you can use it to do something for you right away. Puppet
is driven by manifests, the equivalent of scripts or programs, written in Puppet's
domain-specific language (DSL). Let's start with the obligatory Hello, world! manifest:

hello_world.pp
notify { 'Hello, world!':
}

Downloading the example code
You can download the example code files for all the Packt
Publishing books you have purchased from your account at
http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support
and register yourself to have the files e-mailed directly to you.

To put the manifest to work, use the following command. (We avoided the term
"execute" on purpose—manifests cannot be executed. More details will follow
around the middle of this chapter.):

root@puppetmaster:~# puppet apply hello_world.pp

Notice: Compiled catalog for puppetmaster.example.net in environment
production in 0.45 seconds

Notice: Hello, world!

Notice: /Stage[main]/Main/Notify[Hello, world!]/message: defined
'message' as 'Hello, world!'

Notice: Applied catalog in 0.03 seconds

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 1

[3]

Before we take a look at the structure of the manifest and the output from the puppet
apply command, let's do something useful, just as an example. Puppet comes with
its own background service. Let's assume that you want to learn the basics before
letting it mess with your system. You can write a manifest to have Puppet make
sure that the service is not currently running and will not be started at system boot:

puppet_service.pp
service { 'puppet':
 ensure => 'stopped',
 enable => false,
}

To control system processes, boot options, and the like, Puppet needs to be run with
root privileges. This is the most common way to invoke the tool, because Puppet will
often manage OS-level facilities. Apply your new manifest with root access, either
through sudo, or from a root shell, as shown in the following transcript:

root@puppetmaster:~# puppet apply puppet_service.pp

Notice: Compiled catalog for puppetmaster.example.net in environment
production in 0.61 seconds

Notice: /Stage[main]/Main/Service[puppet]/ensure: ensure changed
'running' to 'stopped'

Notice: Applied catalog in 0.15 seconds

Now, Puppet has disabled the automatic startup of its background service for you.
Applying the same manifest again has no effect, because the necessary steps are
already complete:

root@puppetmaster:~# puppet apply puppet_service.pp

Notice: Compiled catalog for puppetmaster.example.net in environment
production in 0.62 seconds

Notice: Applied catalog in 0.07 seconds

This reflects a standard behavior in Puppet: Puppet resources are idempotent—which
means that every resource first compares the actual (system) with the desired (puppet)
state and only initiates actions in case there is a difference (configuration drift).

You will often get this output, as shown previously, from Puppet. It tells you that
everything is as it should be. As such, this is a desirable outcome, like the all clean
output from git status.

Writing Your First Manifests

[4]

Introducing resources and properties
Each of the manifests you wrote in the previous section declared one respective
resource. Resources are the elementary building blocks of manifests. Each has a type
(in this case, notify and service, respectively) and a name or title (Hello, world!
and puppet). Each resource is unique to a manifest, and can be referenced by the
combination of its type and name, such as Service["puppet"]. Finally, a resource
also comprises a list of zero or more attributes. An attribute is a key-value pair, such
as "enable => false".

Attribute names cannot be chosen arbitrarily. Each resource type supports a
specific set of attributes. Certain parameters are available for all resource types
(metaparameters), and some names are just very common, such as ensure. The
service type supports the ensure property, which represents the status of the
managed process. Its enabled property, on the other hand, relates to the system
boot configuration (with respect to the service in question).

Note that we have used the terms attribute, property, and parameter in a seemingly
interchangeable fashion. Don't be deceived—there are important distinctions.
Property and parameter are the two different kinds of attributes that Puppet
uses. You have already seen two properties in action. Let's look at a parameter:

service { 'puppet':
 ensure => 'stopped',
 enable => false,
 provider => 'upstart',
}

The provider parameter tells Puppet that it needs to interact with the upstart
subsystem to control its background service, as opposed to systemd or init. If you
don't specify this parameter, Puppet makes a well-educated guess. There is quite
a multitude of supported facilities to manage services on a system. You will learn
more about providers and their automatic choosing later on.

The difference between parameters and properties is that the parameter merely
indicates how Puppet should manage the resource, not what a desired state is.
Puppet will only take action on property values. In this example, these are
ensure => 'stopped' and enable => false. For each such property,
Puppet will perform the following tasks:

• Test whether the resource is already in sync with the target state
• If the resource is not in sync, it will trigger a sync action

Chapter 1

[5]

A property is considered to be in sync when the system entity that is managed by
the given resource (in this case, the upstart service configuration for Puppet) is in
the state that is described by the property value in the manifest. In this example, the
ensure property will be in sync only if the puppet service is not running. The enable
property is in sync if upstart is not configured to launch Puppet at system start.

As a mnemonic concerning parameters versus properties, just remember that
properties can be out of sync, whereas parameters cannot.

Puppet also allows you to read your existing system state by using the puppet
resource command:

root@puppetmaster:~# puppet resource user root

user { 'root':

 ensure => 'present',

 comment => 'root',

 gid => '0',

 home => '/root',

 password => '$6$17/7FtU/$TvYEDtFgGr0SaS7xOVloWXVTqQxxDUgH.
 eBKJ7bgHJ.hdoc03Xrvm2ru0HFKpu1QSpVW/7o.rLdk/9MZANEGt/',

 password_max_age => '99999',

 password_min_age => '0',

 shell => '/bin/bash',

 uid => '0',

}

Please note that some resource types will return read-only attributes (for example,
the file resource type will return mtime and ctime). Refer to the appropriate
type documentation.

Interpreting the output of the puppet
apply command
As you have already witnessed, the output presented by Puppet is rather verbose.
As you get more experienced with the tool, you will quickly learn to spot the crucial
pieces of information. Let's first take a look at the informational messages though.
Apply the service.pp manifest once more:

root@puppetmaster:~# puppet apply puppet_service.pp

Writing Your First Manifests

[6]

Notice: Compiled catalog for puppetmaster.example.net in environment
production in 0.48 seconds

Notice: Applied catalog in 0.05 seconds

Puppet took no particular action. You only get two timings: one, from the
compiling phase of the manifest, and the other, from the catalog application phase.
The catalog is a comprehensive representation of a compiled manifest. Puppet bases
all its efforts concerning the evaluation and syncing of resources on the content of its
current catalog.

Now, to quickly force Puppet to show you some more interesting output, pass it a
one-line manifest directly from the shell. Regular users of Ruby or Perl will recognize
the call syntax:

puppet apply -e'service { "puppet": enable => true, }'

Notice: Compiled catalog for puppetmaster.example.net in environment
production in 0.62 seconds

Notice: /Stage[main]/Main/Service[puppet]/enable: enable changed 'false'
to 'true'

Notice: Applied catalog in 0.12 seconds.

We prefer double quotes in manifests that get passed as command-line
arguments, because on the shell, the manifest should be enclosed in
single quotes as a whole.

You instructed Puppet to perform yet another change on the Puppet service. The
output reflects the exact change that was performed. Let's analyze this log message:

• The Notice: keyword at the beginning of the line represents the log level.
Other levels include Warning, Error, and Debug.

• The property that changed is referenced with a whole path, starting with
Stage[main]. Stages are beyond the scope of this book, so you will always
just see the default of main here.

• The next path element is Main, which is another default. It denotes the
class in which the resource was declared. You will learn about classes
in Chapter 4, Modularizing Manifests with Classes and Defined Types.

• Next, is the resource. You already learned that Service[puppet] is its
unique reference.

• Finally, enable is the name of the property in question. When several
properties are out of sync, there will usually be one line of output for
each property that gets synchronized.

Chapter 1

[7]

• The rest of the log line indicates the type of change that Puppet saw fit
to apply. The wording depends on the nature of the property. It can be
as simple as created, for a resource that is newly added to the managed
system, or a short phrase such as changed false to true.

Dry-testing your manifest
Another useful command-line switch for puppet apply is the --noop option.
It instructs Puppet to refrain from taking any action on unsynced resources.
Instead, you only get a log output that indicates what will change without the
switch. This is useful in determining whether a manifest would possibly break
anything on your system:

root@puppetmaster:~# puppet apply puppet_service.pp --noop

Notice: Compiled catalog for puppetmaster.example.net in environment
production in 0.63 seconds

Notice: /Stage[main]/Main/Service[puppet]/enable: current_value true,
should be false (noop)

Notice: Class[Main]: Would have triggered 'refresh' from 1 events

Notice: Stage[main]: Would have triggered 'refresh' from 1 events

Notice: Applied catalog in 0.06 seconds

Note that the output format is the same as before, with a (noop) marker trailing
the notice about the sync action. This log can be considered a preview of what
will happen when the manifest is applied without the --noop switch.

The additional notices about triggered refreshes will be described later and can be
ignored for the moment. You will have a better understanding of their significance
after finishing this chapter and Chapter 4, Modularizing Manifests with Classes and
Defined Types.

Adding control structures in manifests
You have written three simple manifests while following the instructions in this
chapter so far. Each comprised only one resource, and one of them was given on the
command line using the -e option. Of course, you would not want to write distinct
manifests for each possible circumstance. Instead, just as how Ruby or Perl scripts
branch out into different code paths, there are structures that make your Puppet
code flexible and reusable for different circumstances.

Writing Your First Manifests

[8]

The most common control element is the if/else block. It is quite similar to its
equivalents in many programming languages:

if 'mail_lda' in $needed_services {
 service { 'dovecot': enable => true }
} else {
 service { 'dovecot': enable => false }
}

The Puppet DSL also has a case statement, which is reminiscent of its counterparts
in other languages as well:

case $role {
 'imap_server': {
 package { 'dovecot': ensure => 'installed' }
 service { 'dovecot': ensure => 'running' }
 }
 /_webserver$/: {
 service { ['apache', 'ssh']: ensure => 'running' }
 }
 default: {
 service { 'ssh': ensure => running }
 }
}

A variation of the case statement is the selector. It's an expression, not a statement,
and can be used in a fashion similar to the ternary if/else operator found in
C-like languages:

package { 'dovecot':
 ensure => $role ? {
 'imap_server' => 'installed',
 /desktop$/ => 'purged',
 default => 'removed',
 },
}

It should be used with caution, because in more complex manifests, this syntax will
impede readability.

Chapter 1

[9]

Using variables
Variable assignment works just like in most scripting languages. Any variable name
is always prefixed with the $ sign:

$download_server = 'img2.example.net'

$url = "https://${download_server}/pkg/example_source.tar.gz"

Also, just like most scripting languages, Puppet performs variable value
substitution in strings that are in double quotes, but no interpolation at all
in single-quoted strings.

Variables are useful for making your manifest more concise and comprehensible.
They help you with the overall goal of keeping your source code free from
redundancy. An important distinction from variables in imperative programming
and scripting languages is the immutability of variables in Puppet manifests.
Once a value has been assigned, it cannot be overwritten.

Why is it called a variable at all if it is a constant? One should never look at Puppet as
a tool that manages a single system. For a single system, a Puppet variable might look
like a constant. But Puppet manages a multitude of systems with different operating
systems. Across all these systems, variables will be different and not constants.

Variable types
As of Puppet 3.x, there are only four variable types: Strings, Arrays, Hashes, and
Boolean. Puppet 4 introduces a rich type system. The new type system will be
explained in Chapter 7, New Features from Puppet 4. The basic variable types work
much like their respective counterparts in other languages. Depending on your
background, you might be familiar with using associative arrays or dictionaries
as semantic equivalents to Puppet's hash type:

$a_bool = true
$a_string = 'This is a string value'
$an_array = ['This', 'forms', 'an', 'array']
$a_hash = {
 'subject' => 'Hashes',
 'predicate' => 'are written',
 'object' => 'like this',
 'note' => 'not actual grammar!',
 'also note' => ['nesting is',
 { 'allowed' => ' of course' }],
}

www.allitebooks.com

http://www.allitebooks.org

Writing Your First Manifests

[10]

Accessing the values is equally simple. Note that the hash syntax is similar to that of
Ruby, not Perl's:

$x = $a_string
$y = $an_array[1]
$z = $a_hash['object']

Strings can be used as resource attribute values, but it's worth noting that a resource
title can also be a variable reference:

package { $apache_package:
 ensure => 'installed'
}

It's intuitively clear what a string value means in this context. But you can also pass
arrays here to declare a whole set of resources in one statement. The following manifest
manages three packages, making sure that they are all installed:

$packages = ['apache2',
 'libapache2-mod-php5',
 'libapache2-mod-passenger',]
package { $packages:
 ensure => 'installed'
}

You will learn how to make efficient use of hash values in later chapters.

The array does not need to be stored in a variable to be used, but it is a good practice
in some cases.

Controlling the order of evaluation
With what you've seen this far, you might have got the impression that Puppet's
DSL is a specialized scripting language. That is actually quite far from the truth—a
manifest is not a script or program. The language is a tool to model a system state
through a set of resources, including files, packages, and cron jobs, among others.

The whole paradigm is different from that of scripting languages. Ruby or Perl are
imperative languages that are based around statements that will be evaluated in a
strict order. The Puppet DSL is declarative, which means that the manifest declares a
set of resources that are expected to have certain properties. These resources are put
into a catalog, and Puppet then tries to build a path through all declared resources.
The compiler parses the manifests in order, but the configurer applies resources in a
very different way.

Chapter 1

[11]

In other words, the manifests should always describe what you expect to be the
end result. The specifics of what actions need to be taken to get there are decided
by Puppet.

To make this distinction more clear, let's look at an example:

package { 'haproxy':
 ensure => 'installed',
}
file {'/etc/haproxy/haproxy.cfg':
 ensure => file,
 owner => 'root',
 group => 'root',
 mode => '0644',
 source => 'puppet:///modules/haproxy/etc/haproxy/haproxy.cfg',
}
service { 'haproxy':
 ensure => 'running',
}

With this manifest, Puppet will make sure that the following state is reached:

1. The HAproxy package is installed.
2. The haproxy.cfg file has specific content, which has been prepared in a file

in /etc/puppet/modules/.
3. HAproxy is started.

To make this work, it is important that the necessary steps are performed in order.

1. A configuration file cannot usually be installed before the package, because
there is not yet a directory to contain it.

2. The service cannot start before installation either. If it becomes active
before the configuration is in place, it will use the default settings from
the package instead.

This point is being stressed because the preceding manifest does not, in fact, contain
cues for Puppet to indicate such a strict ordering. Without explicit dependencies,
Puppet is free to put the resources in any order it sees fit.

Writing Your First Manifests

[12]

The recent versions of Puppet allow a form of local manifest-based
ordering, so the presented example will actually work as is. The
manifest-based ordering can be configured in the puppet.conf
configuration file as follows:

ordering = manifest.

This setting is default for Puppet 4. It is still important to be aware
of the ordering principles, because the implicit order is difficult to
determine in more complex manifests, and as you will learn soon,
there are other factors that will influence the order.

Declaring dependencies
The easiest way to bring order to such a straightforward manifest is resource
chaining. The syntax for this is a simple ASCII arrow between two resources:

package { 'haproxy':
 ensure => 'installed',
}
->
file { '/etc/haproxy/haproxy.cfg':
 ensure => file,
 owner => 'root',
 group => 'root',
 mode => '0644',
 source => 'puppet:///modules/haproxy/etc/haproxy/haproxy.cfg',
}
->
service {'haproxy':
 ensure => 'running',
}

This is only viable if all the related resources can be written next to each other. In other
words, if the graphic representation of the dependencies does not form a straight
chain, but more of a tree, star, or any other shape, this syntax is not sufficient.

Internally, Puppet will construct an ordered graph of resources
and synchronize them during a traversal of that graph.

A more generic and flexible way to declare dependencies is through special
metaparameters—parameters that are eligible for use with any resource type.
There are different metaparameters, most of which have nothing to do with
ordering (you have seen provider in an earlier example).

Chapter 1

[13]

For resource ordering, puppet offers the metaparameters, require and before.
Both take one or more references to a declared resource as their value. Puppet
references have a special syntax, as was previously mentioned:

Type['title']

e.g.

Package['haproxy']

Please note that you can only build references to resources which are
declared in the catalog. You cannot build and use references to something
that is not managed by Puppet, even when it exists on the managed system.

Here is the HAproxy manifest, ordered using the require metaparameter:

package { 'haproxy':
 ensure => 'installed',
}
file {'/etc/haproxy/haproxy.cfg':
 ensure => file,
 owner => 'root',
 group => 'root',
 mode => '0644',
 source => 'puppet:///modules/haproxy/etc/haproxy/haproxy.cfg',
 require => Package['haproxy'],
}
service {'haproxy':
 ensure => 'running',
 require => File['/etc/haproxy/haproxy.cfg'],
}

The following manifest is semantically identical, but relies on the before
metaparameter rather than require:

package { 'haproxy':
 ensure => 'installed',
 before => File['/etc/haproxy/haproxy.cfg'],
}
file { '/etc/haproxy/haproxy.cfg':
 ensure => file,
 owner => 'root',
 group => 'root',
 mode => '0644',
 source => 'puppet:///modules/haproxy/etc/haproxy/haproxy.cfg',
 before => Service['haproxy'],

Writing Your First Manifests

[14]

}
service { 'haproxy':
 ensure => 'running',
}

The manifest can also mix both styles of notation, of course.
This is left as a reader exercise with no dedicated depiction.

The require metaparameter usually leads to more understandable code, because it
expresses the dependency of the annotated resource on another resource. The before
parameter, on the other hand, implies a dependency that a referenced resource forms
upon the current resource. This can be counter-intuitive, especially for frequent
users of packaging systems (which usually implement a require style dependency
declaration).

Sometimes, it might be difficult to decide whether to use require or before. In
simple cases, most people prefer require. In some cases, it is easier to use before.
Think of services that have multiple configuration files. Keeping information about
the configuration file and the requirement in a single place reduces errors caused by
forgetting to also adopt changes to the service, when adding or removing additional
configuration files. Take a look at the following example code:

file { '/etc/apache2/apache2.conf':
 ensure => file,
 before => Service['apache2'],
}
file { '/etc/apache2/httpd.conf':
 ensure => file,
 before => Service['apache2'],
}
service { 'apache2':
 ensure => running,
 enable => true,
}

In the example, all dependencies are declared within the file resource declarations.
If you use the require parameter instead, you will always need to touch at least two
resources in case of changes:

file { '/etc/apache2/apache2.conf':
 ensure => file,
}
file { '/etc/apache2/httpd.conf':
 ensure => file,

Chapter 1

[15]

}
service { 'apache2':
 ensure => running,
 enable => true,
 require => [
 File['/etc/apache2/apache2.conf'],
 File['/etc/apache2/httpd.conf'],
],
}

Will you remember to update the service resource declaration whenever you add
a new file to be managed by Puppet?

Consider another simpler example:

if $os_family == 'Debian' {
 file { '/etc/apt/preferences.d/example.net.prefs':
 content => '…',
 before => Package['apache2'],
 }
}
package { 'apache2':
 ensure => 'installed',
}

The file in the preferences.d directory only makes sense for Debian-like systems.
That's why the package cannot safely require it. If the manifest is applied on a
different OS, such as CentOS, the apt preferences file will not appear in the catalog
thanks to the if clause. If the package had it as a requirement regardless, the resulting
catalog would be inconsistent, and Puppet would not apply it. Specifying before in
the file resource is safe, and semantically equivalent.

The before metaparameter is outright necessary in situations like this one, and
can make the manifest code more elegant and straightforward in other scenarios.
Familiarity with both before and require is advisable.

Error propagation
Defining requirements serves another important purpose. References on declared
resources will only be validated as successful references if the depended upon
resource was finished successfully. This can be seen like a stop point inside Puppet
DSL code, when a required resource is not synchronized successfully.

Writing Your First Manifests

[16]

For example, a file resource will fail if the URL of the source file is broken:

file { '/etc/haproxy/haproxy.cfg':
 ensure => file,
 source => 'puppet:///modules/haproxy/etc/haproxy.cfg',
}

One path segment is missing here. Puppet will report that the file resource could not
be synchronized:

root@puppetmaster:~# puppet apply typo.pp

Notice: Compiled catalog for puppetmaster.example.net in environment
production in 0.62 seconds

Error: /Stage[main]/Main/File[/etc/haproxy/haproxy.cfg]: Could not
evaluate: Could not retrieve information from environment production
source(s) puppet:///modules/haproxy/etc/haproxy.cfg

Notice: /Stage[main]/Main/Service[haproxy]: Dependency File[/etc/haproxy/
haproxy.cfg] has failures: true

Warning: /Stage[main]/Main/Service[haproxy]: Skipping because of failed
dependencies

Notice: Applied catalog in 0.06 seconds

In this example, the Error line describes the error caused by the broken URL.
The error propagation is represented by the Notice and Warning lines below it.

Puppet failed to apply changes to the configuration file; it cannot compare the
current state to the nonexistent source. As the service depends on the configuration
file, Puppet will not even try to start it. This is for safety: if any dependencies cannot
be put into the defined state, Puppet must assume that the system is not fit for
application of the dependent resource.

This is another important reason to make consequent use of resource dependencies.
Remember that both the chaining arrow and the before metaparameter imply error
propagation as well.

Avoiding circular dependencies
Before you learn about another way in which resources can interrelate, there is
an issue that you should be aware of: dependencies must not form circles. Let's
visualize this in an example:

file { '/etc/haproxy':
 ensure => 'directory',
 owner => 'root',

Chapter 1

[17]

 group => 'root',
 mode => '0644',
}
file { '/etc/haproxy/haproxy.cfg':
 ensure => file',
 owner => 'root',
 group => 'root',
 mode => '0644',
 source => 'puppet:///modules/haproxy/etc/haproxy/haproxy.cfg',
}
service { 'haproxy':
 ensure => 'running',
 require => File['/etc/haproxy/haproxy.cfg'],
 before => File['/etc/haproxy'],
}

The dependency circle in this manifest is somewhat hidden (as will likely be the
case for many such circles that you will encounter during regular use of Puppet).
It is formed by the following relations:

• The File['/etc/haproxy/haproxy.cfg'] auto-requires the parent
directory, File['/etc/haproxy']. This is an implicit, built-in dependency.

• The parent directory, File['/etc/haproxy'], requires
Service['haproxy'] due to its before metaparameter.

• The Service['haproxy'] service requires the File['/etc/haproxy/
haproxy.cfg'] config.

Implicit dependencies exist for the following resource combinations,
among others:

• If a directory and a file inside the directory is declared,
Puppet will first create the directory and then the file

• If a user and his primary group is declared, Puppet will first
create the group and then the user

• If a file and the owner (user) is declared, Puppet will first
create the user and then the file

Granted, the preceding example is contrived—it will not make sense to manage the
service before the configuration directory. Nevertheless, even a manifest design that
is apparently sound can result in circular dependencies. This is how Puppet will
react to that:

root@puppetmaster:~# puppet apply circle.pp

Notice: Compiled catalog for puppetmaster.example.net in environment
production in 0.62 seconds

Writing Your First Manifests

[18]

Error: Failed to apply catalog: Found 1 dependency cycle:

(File[/etc/haproxy/haproxy.cfg] => Service[haproxy] => File[/etc/haproxy]
=> File[/etc/haproxy/haproxy.cfg])

Try the '--graph' option and opening the resulting '.dot' file in
OmniGraffle or GraphViz

The output helps you locate the offending relation(s). For very wide dependency
circles with lots of involved resources, the textual rendering is difficult to analyze.
Therefore, Puppet also gives you the opportunity to get a graphical representation
of the dependency graph through the --graph option.

If you do this, Puppet will include the full path to the newly created .dot file in its
output. Its content looks similar to Puppet's output:

digraph Resource_Cycles {

label = "Resource Cycles"

"File[/etc/haproxy/haproxy.cfg]" ->"Service[haproxy]" ->"File[/etc/
haproxy]" ->"File[/etc/haproxy/haproxy.cfg]"

}

This is not helpful by itself, but it can be fed directly into tools such as dotty to
produce an actual diagram.

To summarize, resource dependencies are helpful in keeping Puppet from acting
upon resources in unexpected or uncontrolled situations. They are also useful in
restricting the order of resource evaluation.

Implementing resource interaction
In addition to dependencies, resources can also enter a similar yet different mutual
relation. Remember the pieces of output that we skipped earlier. They are as follows:

root@puppetmaster:~# puppet apply puppet_service.pp --noop

Notice: Compiled catalog for puppetmaster.example.net in environment
production in 0.62 seconds

Notice: /Stage[main]/Main/Service[puppet]/ensure: current_value running,
should be stopped (noop)

Notice: Class[Main]: Would have triggered 'refresh' from 1 events

Notice: Stage[main]: Would have triggered 'refresh' from 1 events

Notice: Applied catalog in 0.05 seconds

Chapter 1

[19]

Puppet mentions that refreshes would have been triggered for the reason of an
event. Such events are emitted by resources whenever Puppet acts on the need
for a sync action. Without explicit code to receive and react to events, they just
get discarded.

The mechanism to set up such event receivers is named in an analogy of a generic
publish/subscribe queue—resources get configured to react to events using the
subscribe metaparameter. There is no publish keyword or parameter, since each
and every resource is technically a publisher of events (messages). Instead, the
counterpart of the subscribe metaparameter is called notify, and it explicitly
directs generated events at referenced resources.

One of the most common practical uses of the event system is to reload service
configurations. When a service resource consumes an event (usually from a change
in a config file), Puppet invokes the appropriate action to make the service restart.

If you instruct Puppet to do this, it can result in brief service interruptions
due to this restart operation. Note that if the new configuration causes an
error, the service might fail to start and stay offline.

The following code example shows the relationships between the haproxy package,
the corresponding haproxy configuration file, and the haproxy service:

file { '/etc/haproxy/haproxy.cfg':
 ensure => file,
 owner => 'root',
 group => 'root',
 mode => '0644',
 source => 'puppet:///modules/haproxy/etc/haproxy/haproxy.cfg',
 require => Package['haproxy'],
}
service { 'haproxy':
 ensure => 'running',
 subscribe => File['/etc/haproxy/haproxy.cfg'],
}

If the notify metaparameter is to be used instead, it must be specified for the
resource that emits the event:

file { '/etc/haproxy/haproxy.cfg':
 ensure => file,
 owner => 'root',
 group => 'root',
 mode => '0644',

Writing Your First Manifests

[20]

 source => 'puppet:///modules/haproxy/etc/haproxy/haproxy.cfg',
 require => Package['haproxy'],
 notify => Service['haproxy'],
}
service { 'haproxy':
 ensure => 'running',
}

This will likely feel reminiscent of the before and require metaparameters,
which offer symmetric ways of expressing an interrelation of a pair of resources
just as well. This is not a coincidence—these metaparameters are closely related
to each other:

• The resource that subscribes to another resource implicitly requires it
• The resource that notifies another is implicitly placed before the latter

one in the dependency graph

In other words, subscribe is the same as require, except for the dependent
resource receiving events from its peer. The same holds true for notify and before.

The chaining syntax is also available for signaling. To establish a signaling relation
between neighboring resources, use an ASCII arrow with a tilde, ~>, instead of the
dash in ->:

file { '/etc/haproxy/haproxy.cfg': … }
~>
service { 'haproxy': … }

The service resource type is one of the two notable types that support refreshing
when resources get notified (the other will be discussed in the next section). There
are others, but they are not as ubiquitous.

Examining the most notable resource
types
To complete our tour of the basic elements of a manifest, let's take a closer look at the
resource types that you have already used, and some of the more important ones that
you have not yet encountered.

You probably already have a good feeling for the file type, which will ensure
the existence of files and directories, along with their permissions. Pulling a file
from a repository (usually, a Puppet module) is also a frequent use case, using
the source parameter.

Chapter 1

[21]

For very short files, it is more economic to include the desired content right in
the manifest:

file { '/etc/modules':
 ensure => file,
 content => "# Managed by Puppet!\n\ndrbd\n",
}

The double quotes allow expansion of escape sequences such as \n.

Another useful capability is managing symbolic links:

file { '/etc/apache2/sites-enabled/001-puppet-lore.org':
 ensure => 'link',
 target => '../sites-available/puppet-lore.org',
}

The next type that you already know is package, and its typical usage is quite
intuitive. Make sure that packages are either installed or removed. A notable use
case that you have not yet seen is to use the basic package manager instead of apt
or yum/zypper. This is useful if the package is not available from a repository:

package { 'haproxy':
 ensure => present,
 provider => 'dpkg',
 source => '/opt/packages/haproxy-1.5.1_amd64.dpkg',
}

Your mileage usually increases if you make the effort of setting up a simple
repository instead, so that the main package manager can be used after all.

Last but not least, there is a service type, the most important attributes of which
you already know. It's worth pointing out that it can serve as a simple shortcut in
cases where you don't wish to add a full-fledged init script or something similar.
With enough information, the base provider for the service type will manage
simple background processes for you:

service { 'count-logins':
 provider => 'base',
 ensure => 'running',
 binary => '/usr/local/bin/cnt-logins',
 start => '/usr/local/bin/cnt-logins --daemonize',

Writing Your First Manifests

[22]

 subscribe => File['/usr/local/bin/cnt-logins'],
}

Puppet will not only restart the script if it is not running for some reason, but will
also restart it whenever the content of the referenced configuration file changes.
This only works if Puppet manages the file content and all changes propagate
through Puppet only.

If Puppet changes any other property of the script file (for example,
the file mode), that too will lead to a restart of the process.

Let's take a look at some other types you will probably need.

The user and group types
Especially in the absence of central registries such as LDAP, it is useful to be able
to manage user accounts on each of your machines. There are providers for all
supported platforms, however, the available attributes vary. On Linux, the useradd
provider is the most common. It allows the management of all fields in /etc/passwd,
such as uid and shell, and also group memberships:

group { 'proxy-admins':
 ensure => present,
 gid => 4002,
}
user { 'john':
 ensure => present,
 uid => 2014,
 home => '/home/john'
 managehome => true, # <- adds -m to useradd
 gid => 1000,
 shell => '/bin/zsh',
 groups => ['proxy-admins'],
}

As with all resources, Puppet will not only make sure that the user and group exist,
but also fix any divergent properties, such as the home directory.

Even though the user depends on the group, (because they cannot be added before
the group exists) it need not be expressed in the manifest. The user automatically
requires all necessary groups, similar to a file auto requiring its parent directory.

Chapter 1

[23]

Note that Puppet will also happily manage your LDAP user accounts.

It was mentioned earlier that there are different attributes available, depending
on the Operating System. Linux (and the useradd provider) support setting a
password, whereas on HP-UX (using the hp-ux provider) the user password
cannot be set via Puppet.

In this case, Puppet will only show a warning saying that the user resource type
is making use of an unsupported attribute, and will continue managing all other
attributes. In other words, using an unsupported attribute in your Puppet DSL
code will not break your Puppet run.

The exec resource type
There is one oddball resource type in the Puppet core. Remember our earlier
assertion that Puppet is not a specialized scripting engine, but instead, a tool that
allows you to model part of your system state in a compelling DSL, and which is
capable of altering your system to meet the defined goal. This is why you declare
user and group, instead of invoking groupadd and useradd in order. You can do
this because Puppet comes with support to manage such entities. This is vastly
beneficial because Puppet also knows that on different platforms, other commands
are used for account management, and that the arguments can be subtly different
on some systems.

Of course, Puppet does not have knowledge of all the conceivable particulars of
any supported system. Say that you wish to manage an OpenAFS file server. There
are no specific resource types to aid you with this. The ideal solution is to exploit
Puppet's plugin system and to write your own types and providers so that your
manifests can just reflect the AFS-specific configuration. This is not simple though,
and also not worthwhile in cases where you only need Puppet to invoke some exotic
commands from very few places in your manifest.

For such cases, Puppet ships with the exec resource type, which allows the execution
of custom commands in lieu of an abstract sync action.

For example, it can be used to unpack a tarball in the absence of a proper package:

exec { 'tar cjf /opt/packages/homebrewn-3.2.tar.bz2':
 cwd => '/opt',
 path => '/bin:/usr/bin',
 creates => '/opt/homebrewn-3.2',
}

Writing Your First Manifests

[24]

The creates parameter is important for Puppet to tell whether the command
needs running—once the specified path exists, the resource counts as synchronized.
For commands that do not create a telltale file or directory, there are the alternative
parameters, onlyif and unless, to allow Puppet to query the sync state:

exec { 'perl -MCPAN -e "install YAML"':
 path => '/bin:/usr/bin',
 unless => 'cpan -l | grep -qP ^YAML\\b',
}

The query command's exit code determines the state. In the case of unless,
the exec command runs if the query fails. This is how the exec type maintains
idempotency. Puppet does this automatically for most resource types, but this is
not possible for exec, because synchronization is defined so arbitrarily. It becomes
your responsibility as the user to define the appropriate queries per resource.

Finally, the exec type resources are the second notable case of receivers for events
using notify and subscribe:

exec { 'apt-get update':
 path => '/bin:/usr/bin',
 subscribe => File['/etc/apt/sources.list.d/jenkins.list'],
 refreshonly => true,
}

You can even chain multiple exec resources in this fashion so that each invocation
triggers the next one. However, this is a bad practice and degrades Puppet to a
(rather flawed) scripting engine. The exec resources should be avoided in favor
of regular resources whenever possible. Some resource types that are not part of
the core are available as plugins from the Puppet Forge. You will learn more about
this topic in Chapter 5, Extending Your Puppet Infrastructure with Modules.

Since exec resources can be used to perform virtually any operation, they are
sometimes abused to stand in for more proper resource types. This is a typical
antipattern in Puppet manifests. It is safer to regard exec resources as the last
resort that is only to be used if all other alternatives have been exhausted.

Chapter 1

[25]

All Puppet installations have the type documentation built into
the code, which is printable on command line by using the puppet
describe command:
puppet describe <type> [-s]

In case you are unsure whether a type exists, you can tell Puppet
describe to return a full list of all available resource types:
puppet describe --list

Let's briefly discuss two more types that are supported out of the box. They allow the
management of cron jobs, mounted partitions, and shares respectively, which are all
frequent requirements in server operation.

The cron resource type
A cron job mainly consists of a command and the recurring time and date at which to
run the command. Puppet models the command and each date particle as a property
of a resource with the cron type:

cron { 'clean-files':
 ensure => present,
 user => 'root',
 command => '/usr/local/bin/clean-files',
 minute => '1',
 hour => '3',
 weekday => ['2', '6'],
 environment => 'MAILTO=felix@example.net',
}

The environment property allows you to specify one or more variable bindings for
cron to add to the job.

The mount resource type
Finally, Puppet will manage all aspects of mountable filesystems for you—including
their basic attributes such as the source device and mount point, the mount options,
and the current state. A line from the fstab file translates quite literally to a
Puppet manifest:

mount { '/media/gluster-data':
 ensure => 'mounted',
 device => 'gluster01:/data',
 fstype => 'glusterfs',

Writing Your First Manifests

[26]

 options => 'defaults,_netdev',
 dump => 0,
 pass => 0,
}

For this resource, Puppet will make sure that the filesystem is indeed mounted after
the run. Ensuring the unmounted state is also possible, of course; Puppet can also just
make sure the entry is present in the fstab file, or absent from the system altogether.

Summary
After installing Puppet on your system, you can use it by writing and applying
manifests. These manifests are written in Puppet's DSL and contain descriptions of
the desired state of your system. Even though they resemble scripts, they should not
be considered as such. For one thing, they consist of resources instead of commands.
These resources are generally not evaluated in the order in which they have been
written. An explicit ordering should be defined through the require and before
metaparameters instead.

Each resource has a number of attributes: parameters and properties. Each property is
evaluated in its own right; Puppet detects whether a change to the system is necessary
to get any property into the state that is defined in the manifest. It will also perform
such changes. This is referred to as synchronizing a resource or property.

The ordering parameters, require and before, are of further importance because
they establish dependency of one resource on one or more others. This allows
Puppet to skip parts of the catalog if an important resource cannot be synchronized.
Circular dependencies must be avoided.

Each resource in the manifest has a resource type that describes the nature of the
system entity that is being managed. Some of the types that are used most frequently
are file, package, and service. Puppet comes with many types for convenient system
management, and many plugins are available to add even more. Some tasks require
the use of exec resources, but this should be done sparingly.

In the next chapter, we will introduce the master/agent setup.

[27]

The Master and Its Agents
So far, you have dealt with some concise Puppet manifests that were built to model
some very specific goals. By means of the puppet apply command, you can use such
snippets on any machine in your infrastructure. This is not the most common way
of using Puppet though, and this chapter will introduce you to the popular master/
agent structure. It's worth noting, however, that applying standalone manifests can
always be useful, which are independent of your overall Puppet design.

Under the master/agent paradigm, you will typically install the Puppet agent
software on all nodes under your care and make them call the master, which is yet
another Puppet installation. The master will compile the appropriate manifests and
effectively remotely control the agents. Both the agent and the master authenticate
themselves using trusted SSL certificates.

This chapter covers the following topics:

• The Puppet master
• Setting up the Puppet Agent
• Performance considerations
• Using Passenger with Nginx
• SSL troubleshooting

The Puppet Master
Many Puppet-based workflows are centered on the master, which is the central
source of configuration data and authority. The master hands instructions to all
the computer systems in the infrastructure (where agents are installed). It serves
multiple purposes in the distributed system of Puppet components.

The Master and Its Agents

[28]

The master will perform the following tasks:

• Storing and compiling manifests
• Serving as the SSL certification authority
• Processing reports from the agent machines
• Gathering and storing information about the agents

As such, the security of your master machine is paramount. The requirements
for hardening are comparable to those of a Kerberos Key Distribution Center.

During its first initialization, the Puppet master generates the CA certificate. This
self-signed certificate will be distributed among and trusted by all the components
of your infrastructure. This is why its private key must be protected very carefully.
New agent machines request individual certificates, which are signed with the
CA certificate.

It's a good idea to include a copy of the CA certificate in your
OS-provisioning process so that the agent can establish the
authenticity of the master before requesting its individual
certificate.

Puppet Master and Puppet Server
The terminology around the master software might be a little confusing. That's
because both the terms, Puppet Master and Puppet Server, are floating around,
and they are closely related too. Let's consider some technological background
in order to give you a better understanding of what is what.

Puppet's master service mainly comprises a RESTful HTTP API. Agents initiate
the HTTPS transactions, with both sides identifying each other using trusted SSL
certificates. During the time when Puppet 3 and older versions were current, the
HTTPS layer was typically handled by Apache. Puppet's Ruby core was invoked
through the Passenger module. This approach offered good stability and scalability.

Puppet Labs has improved upon this standard solution with a specialized software
called puppetserver. The Ruby-based core of the master remains basically unchanged,
although it now runs on JRuby instead of Ruby's own MRI. The HTTPS layer is run by
Jetty, sharing the same Java Virtual Machine with the master.

By cutting out some middlemen, puppetserver is faster and more scalable than a
Passenger solution. It is also significantly easier to set up. Towards the end of this
chapter, the two approaches are recapped and visually compared.

Chapter 2

[29]

Setting up the master machine
Getting the puppetserver software onto a Linux machine is just as simple as the
agent package (which you did at the very beginning of Chapter 1, Writing Your
First Manifests). At the time of writing this, distribution packages were available on
Red Hat Enterprise Linux and its derivatives. For Debian and Ubuntu, it was still
necessary to rely on Puppet Labs' own repositories to get the software.

A great way to get Puppet Labs packages on any platform is the Puppet Collection.
Shortly after the release of Puppet 4, Puppet Labs created this new way of supplying
software. This can be considered as a distribution in its own right. Unlike Linux
distributions, it does not contain a Kernel, system tools, and libraries. Instead, it
comprises various software from the Puppet ecosystem. Software versions that are
available from the same Puppet Collection are guaranteed to work well together.

Use the following commands to install puppetserver from the first Puppet
Collection (PC1) on a Debian 7 machine. (The Collection for Debian 8 has not yet
received a puppetserver package at the time of writing this.)

root@puppetmaster# wget http://apt.puppetlabs.com/puppetlabs-release-pc1-
wheezy.deb

root@puppetmaster# dpkg -i puppetlabs-release-pc1-wheezy.deb

root@puppetmaster# apt-get update

root@puppetmaster# apt-get install puppetserver

The puppetserver package comprises only the Jetty server and the Clojure API,
but the all-in-one puppet-agent package is pulled in as a dependency.

The package name, puppet-agent, is misleading. This AIO
package contains all the parts of Puppet including the master
core, a vendored Ruby build, and the several pieces of additional
software.

Specifically, you can use the puppet command on the master node. You will soon
learn how this is useful. However, when using the packages from Puppet Labs,
everything gets installed under /opt/puppetlabs. It is advisable to make sure that
your PATH variable always includes the /opt/puppetlabs/bin directory so that the
puppet command is found here.

Regardless of this, once the puppetserver package is installed, you can start the
master service:

root@puppetmaster# service puppetserver start

www.allitebooks.com

http://www.allitebooks.org

The Master and Its Agents

[30]

Depending on the power of your machine, the startup can take a few minutes. Once
initialization completes, the server will operate very smoothly though. As soon as the
master port 8140 is open, your Puppet master is ready to serve requests.

If the service fails to start, there might be an issue with certificate
generation. (We observed such issues with some versions of
the software.) Check the log file at /var/log/puppetlabs/
puppetserver/puppetserver-daemon.log. If it indicates that there
are problems while looking up its certificate file, you can work around
the problem by temporarily running a standalone master as follows:
puppet master –-no-daemonize

After initialization, you can stop this process. The certificate is available
now, and puppetserver should now be able to start as well.

Creating the master manifest
When you used Puppet locally in Chapter 1, Writing Your First Manifests, you
specified a manifest file that puppet apply should compile. The master compiles
manifests for many machines, but the agent does not get to choose which source file
is to be used—this is completely at the master's discretion. The starting point for any
compilation by the master is always the site manifest, which can be found in /opt/
puppetlabs/code/environments/production/manifests/.

The significance of the environments/production part will
be investigated in Chapter 5, Extending Your Puppet Infrastructure
with Modules. In Puppet versions before 4.0, the site manifest is
at another location, /etc/puppet/manifests/site.pp,
and comprises just one file.

Each connecting agent will use all the manifests found here. Of course, you don't
want to manage only one identical set of resources on all your machines. To define
a piece of manifest exclusively for a specific agent, put it in a node block. This block's
contents will only be considered when the calling agent has a matching common
name in its SSL certificate. You can dedicate a piece of the manifest to a machine
with the name of agent, for example:

node 'agent' {
 $packages = ['apache2',
 'libapache2-mod-php5',
 'libapache2-mod-passenger',]
 package { $packages:

Chapter 2

[31]

 ensure => 'installed',
 before => Service['apache2'],
 }
 service { 'apache2':
 ensure => 'running',
 enable => true,
 }
}

Before you set up and connect your first agent to the master, step back and think
about how the master should be addressed. By default, agents will try to resolve
the unqualified puppet hostname in order to get the master's address. If you have
a default domain that is being searched by your machines, you can use this as a
default and add a record for puppet as a subdomain (such as puppet.example.net).
Otherwise, pick a domain name that seems fitting to you, such as master.example.
net or adm01.example.net. What's important is the following:

• All your agent machines can resolve the name to an address
• The master process is listening for connections on that address
• The master uses a certificate with the chosen name as CN or SAN

The mode of resolution depends on your circumstances—the hosts file on each
machine is one ubiquitous possibility. The Puppet server listens on all the available
addresses by default.

This leaves the task of creating a suitable certificate, which is simple. Configure the
master to use the appropriate certificate name and restart the service. If the certificate
does not exist yet, Puppet will take the necessary steps to create it. Put the following
setting into your /etc/puppetlabs/puppet/puppet.conf file on the master machine:

[master]
certname=master.example.net

In Puppet versions before 4.0, the default location for the
configuration file is /etc/puppet/puppet.conf.

Upon its next start, the master will use the appropriate certificate for all SSL
connections. The automatic proliferation of SSL data is not dangerous even in an
existing setup, except for the certification authority. If the master were to generate a
new CA certificate at any point in time, it would break the trust of all existing agents.

The Master and Its Agents

[32]

Make sure that the CA data is neither lost nor compromised. All
previously signed certificates become obsolete whenever Puppet
needs to create a new certification authority. The default storage
location is /etc/puppetlabs/puppet/ssl/ca for Puppet 4.0 and
higher, and /var/lib/puppet/ssl/ca for older versions.

Inspecting the configuration settings
All the customization of the master's parameters can be made in the puppet.conf
file. The operating system packages ship with some settings that are deemed sensible
by the respective maintainers. Apart from these explicit settings, Puppet relies on
defaults that are either built-in or derived from the environment (details on how this
works follow in the next chapter):

root@puppetmaster # puppet master --configprint manifest

/etc/puppetlabs/code/environments/production/manifests

Most users will want to rely on these defaults for as many settings as possible. This is
possible without any drawbacks because Puppet makes all settings fully transparent
using the --configprint parameter. For example, you can find out where the
master manifest files are located.

To get an overview of all available settings and their values, use the
following command:

root@puppetmaster# puppet master --configprint all | less

While this command is especially useful on the master side, the same introspection
is available for puppet apply and puppet agent.

Setting up the Puppet Agent
As was explained earlier, the master mainly serves instructions to agents in the form
of catalogs that are compiled from the manifest. You have also prepared a node block
for your first agent in the master manifest.

Installing the agent software is easy—you did this at the start of Chapter 1, Writing
Your First Manifests. The plain Puppet package that allows you to apply a local
manifest contains all the required parts in order to operate a proper agent.

If you are using Puppet Labs packages, use the instructions from earlier in this
chapter. On agent machines, you need not install the puppetserver package.
Just get puppet-agent instead.

Chapter 2

[33]

After a successful package installation, the following invocation is sufficient for an
initial test:

root@agent# puppet agent --test

Info: Creating a new SSL key for agent

Error: Could not request certificate: getaddrinfo: Name or service not
known

Exiting; failed to retrieve certificate and waitforcert is disabled

Puppet first created a new SSL certificate key for itself. For its own name, it picked
agent, which is the machine's hostname. That's fine for now. An error occurred
because the puppet name cannot be currently resolved to anything. Add this
to /etc/hosts so that Puppet can contact the master:

root@agent# puppet agent --test

Info: Caching certificate for ca

Info: csr_attributes file loading from /etc/puppetlabs/puppet/csr_
attributes.yaml

Info: Creating a new SSL certificate request for agent

Info: Certificate Request fingerprint (SHA256): 52:65:AE:24:5E:2A:C6:17:E
2:5D:0A:C9: 86:E3:52:44:A2:EC:55:AE:3D:40:A9:F6:E1:28:31:50:FC:8E:80:69

Error: Could not request certificate: Error 500 on SERVER: Internal
Server Error: java.io.FileNotFoundException: /etc/puppetlabs/puppet/ssl/
ca/requests/agent.pem (Permission denied)

Exiting; failed to retrieve certificate and waitforcert is disabled

Note how Puppet conveniently downloaded and cached the CA certificate.
The agent will establish trust based on this certificate from now on.

Puppet created a certificate request and sent it to the master. It then
immediately tried to download the signed certificate. This is expected
to fail—the master won't just sign a certificate for any request it
receives. This behavior is important for proper security.
There is a configuration setting that enables such automatic signing,
but users are generally discouraged from using this setting because
it allows the creation of arbitrary numbers of signed (and therefore,
trusted) certificates to any user who has network access to the master.

The Master and Its Agents

[34]

To authorize the agent, look for the CSR on the master using the puppet cert
command:

root@puppetmaster# puppet cert --list

"agent" (SHA256) 52:65:AE:24:5E:2A:C6:17:E2:5D:0A:C9:86:E3:52:44:A2:EC:55
:AE: 3D:40:A9:F6:E1:28:31:50:FC:8E:80:69

This looks alright, so now you can sign a new certificate for the agent:

root@puppetmaster# puppet cert --sign agent

Notice: Signed certificate request for agent

Notice: Removing file Puppet::SSL::CertificateRequest agent at '/etc/
puppetlabs/ puppet/ssl/ca/requests/agent.pem'

When choosing the action for puppet cert, the dashes in front of
the option name can be omitted—you can just use puppet cert
list and puppet cert sign.

Now the agent can receive its certificate for its catalog run as follows:

root@agent# puppet agent --test

Info: Caching certificate for agent

Info: Caching certificate_revocation_list for ca

Info: Caching certificate for agent

Info: Retrieving pluginfacts

Info: Retrieving plugin

Info: Caching catalog for agent

Info: Applying configuration version '1437065761'

Notice: Applied catalog in 0.11 seconds

The agent is now fully operational. It received a catalog and applied all resources
within. Before you read on to learn how the agent usually operates, there is a note
that is especially important for the users of Puppet 3.

Chapter 2

[35]

Remember that you configured the master to use the name master.example.net
for the master machine earlier in this chapter by setting the certname option in the
master's puppet.conf file. Since this is the common name in the master's certificate,
the preceding command will not even work with a Puppet 3.x master. It works with
puppetserver and Puppet 4 because the default puppet name is now included in
the certificate's Subject Alternative Names by default.

It is tidier to not rely on this alias name, though. After all, in production, you will
probably want to make sure that the master has a fully qualified name that can be
resolved, at least inside your network. You should therefore, add the following to
the main section of puppet.conf on each agent machine:

[main]
server=master.example.net

In the absence of DNS to resolve this name, your agent will need an appropriate
entry in its hosts file or a similar alternative way of address resolution.

These steps are necessary in a Puppet 3.x setup. If you have been following along
with a Puppet 4 agent, you might notice that after this change, it generates a new
Certificate Signing Request:

root@agent# puppet agent –test

Info: Creating a new SSL key for agent.example.net

Info: csr_attributes file loading from /etc/puppetlabs/puppet/csr_
attributes.yaml

Info: Creating a new SSL certificate request for agent.example.net

Info: Certificate Request fingerprint (SHA256): 85:AC:3E:D7:6E:16:62:BD:2
8:15:B6:18: 12:8E:5D:1C:4E:DE:DF:C3:4E:8F:3E:20:78:1B:79:47:AE:36:98:FD

Exiting; no certificate found and waitforcert is disabled

If this happens, you will have to use puppet cert sign on the master again.
The agent will then retrieve a new certificate.

The Master and Its Agents

[36]

The agent's life cycle
In a Puppet-centric workflow, you typically want all changes to the configuration
of servers (perhaps even workstations) to originate on the Puppet master and
propagate to the agents automatically. Each new machine gets integrated into the
Puppet infrastructure with the master at its center and gets removed during the
decommissioning, as shown in the following diagram:

The very first step—generating a key and a certificate signing request—is always
performed implicitly and automatically at the start of an agent run if no local SSL
data exists yet. Puppet creates the required data if no appropriate files are found.
There will be a short description on how to trigger this behavior manually later in
this section.

The next step is usually the signing of the agent's certificate, which is performed on
the master. It is a good practice to monitor the pending requests by listing them on
the console:

root@puppetmaster# puppet cert list

root@puppetmaster# puppet cert sign '<agent fqdn>'

From this point on, the agent will periodically check with the master to load updated
catalogs. The default interval for this is 30 minutes. The agent will perform a run of
a catalog each time and check the sync state of all the contained resources. The run
is performed for unchanged catalogs as well, because the sync states can change
between runs.

Chapter 2

[37]

Before you manage to sign the certificate, the agent process will query
the master in short intervals for a while. This can avoid a 30 minute
delay if the certificate is not ready, right when the agent starts up.

Launching this background process can be done manually through a simple
command:

root@agent# puppet agent

However, it is preferable to do this through the puppet system service.

When an agent machine is taken out of active service, its certificate should be
invalidated. As is customary with SSL, this is done through revocation. The master
adds the serial number of the certificate to its certificate revocation list. This list, too,
is shared with each agent machine. Revocation is initiated on the master through the
puppet cert command:

root@puppetmaster# puppet cert revoke agent

The updated CRL is not honored until the master service is restarted.
If security is a concern, this step must not be postponed.

The agent can then no longer use its old certificate:

root@agent# puppet agent --test

Warning: Unable to fetch my node definition, but the agent run will
continue:

Warning: SSL_connect SYSCALL returned=5 errno=0 state=unknown state

[...]

Error: Could not retrieve catalog from remote server: SSL_connect SYSCALL
returned=5 errno=0 state=unknown state

[...]

The Master and Its Agents

[38]

Renewing an agent's certificate
Sometimes, it is necessary during an agent machine's life cycle to regenerate its
certificate and related data—the reasons can include data loss, human error, or
certificate expiration, among others. Performing the regeneration is quite simple:
all relevant files are kept at /etc/puppetlabs/puppet/ssl (for Puppet 3.x, this
is /var/lib/puppet/ssl) on the agent machine. Once these files are removed
(or rather, the whole ssl/ directory tree), Puppet will renew everything on the
next agent run. Of course, a new certificate must be signed. This requires some
preparation—just initiating the request from the agent will fail:

root@agent# puppet agent –test

Info: Creating a new SSL key for agent

Info: Caching certificate for ca

Info: Caching certificate for agent.example.net

Error: Could not request certificate: The certificate retrieved from the
master does not match the agent's private key.

Certificate fingerprint: 6A:9F:12:C8:75:C0:B6:10:45:ED:C3:97:24:CC:98:F2:
B6:1A:B5: 4C:E3:98:96:4F:DA:CD:5B:59:E0:7F:F5:E6

The master still has the old certificate cached. This is a simple protection against
the impersonation of your agents by unauthorized entities. To fix this, remove the
certificate from both the master and the agent and then start a puppet run, which
will automatically regenerate a certificate.

On the master:

puppet cert clean agent.example.net

On the agent:

1. On most platforms:
find /etc/puppetlabs/puppet/ssl -name agent.example.net.pem
–delete

2. On Windows:
del "/etc/puppetlabs/puppet/ssl/agent.example.net.pem" /f

puppet agent –t

Exiting; failed to retrieve certificate and waitforcert is disabled

Once you perform the cleanup operation on the master, as advised in the preceding
output, and remove the indicated file from the agent machine, the agent will be able
to successfully place its new CSR:

root@puppetmaster# puppet cert clean agent

Chapter 2

[39]

Notice: Revoked certificate with serial 18

Notice: Removing file Puppet::SSL::Certificate agent at '/etc/puppetlabs/
puppet/ssl/ca/signed/agent.pem'

Notice: Removing file Puppet::SSL::Certificate agent at '/etc/puppetlabs/
puppet/ssl/certs/agent.pem'

The rest of the process is identical to the original certificate creation. The agent
uploads its CSR to the master, where the certificate is created through the puppet
cert sign command.

Running the agent from cron
There is an alternative way to operate the agent. We covered starting one long-running
puppet agent process that does its work in set intervals and then goes back to sleep.
However, it is also possible to have cron launch a discrete agent process in the same
interval. This agent will contact the master once, run the received catalog, and then
terminate. This has several advantages as follows:

• The agent operating system saves some resources
• The interval is precise and not subject to skew (when running the

background agent, deviations result from the time that elapses during
the catalog run), and distributed interval skew can lead to thundering
herd effects

• Any agent crash or an inadvertent termination is not fatal

Setting Puppet to run the agent from cron is also very easy to do—with Puppet!
You can use a manifest such as the following:

service { 'puppet': enable => false }
cron { 'puppet-agent-run':
 user => 'root',
 command =>
 'puppet agent --no-daemonize --onetime --logdest=syslog',
 minute => fqdn_rand(60),
 hour => absent,
}

The fqdn_rand function computes a distinct minute for each of your agents.
Setting the hour property to absent means that the job should run every hour.

The Master and Its Agents

[40]

Performance considerations
Operating a Puppet master gives you numerous benefits over just using puppet
apply on all your machines. This comes at a cost, of course. The master and agents
form a server/client relation, and as with most such constructs, the server can
become the bottleneck.

The good news is that the Puppet agent is a fat client. The major share of the work—
inspecting file contents, interfacing with the package-management subsystem,
services subsystem, and much more—is done by the agent. The master only has to
compile manifests and build catalogs from them. This becomes increasingly complex
as you hand over more control to Puppet.

There is one more task your master is responsible for. Many of your manifests will
contain file resources that rely on prepared content:

file { '/usr/local/etc/my_app.ini':
 ensure => file,
 owner => 'root',
 group => 'root',
 source => 'puppet:///modules/my_app/usr/local/etc/my_app.ini',
}

The source parameter with a URL value indicates that the file has been pregenerated
and placed in a module on the Puppet master (more on modules in Chapter 5,
Extending Your Puppet Infrastructure with Modules). The agent will compare the local
file with the master's copy (by checksum) and download the canonical version, if
required. The comparison is a frequent occurrence in most agent runs—you will
make Puppet manage a lot of files. The master does not need a lot of resources
to make this happen, but it will hinder fluent agent operation if the master gets
congested.

This can happen for any combination of these reasons:

• The total number of agents is too large
• The agents check in too frequently
• The manifests are too complex
• The Puppet server is not tuned adequately
• The master's hardware resources are insufficient

There are ways to scale your master operation via load balancing, but these are not
covered in this book.

Chapter 2

[41]

Puppet Labs have some documentation on a few advanced
approaches at https://docs.puppetlabs.com/guides/
scaling_multiple_masters.html.

Tuning puppetserver
puppetserver is a great way to run the master service. It is simple to set up and
maintain, and it also has great performance during operation. Starting up can
take a little while to initialize everything to that end.

There are only few customizable settings that can impact performance. Seeing as
puppetserver runs in the JVM, the most important tuning approach is to scale the
heap. A small heap will increase the overhead for garbage collection. Therefore,
you should use the -Xmx and -Xms Java options to allow the JVM to use large parts
of your available memory for the mentioned heap.

On Debian, these settings are found in /etc/default/puppetserver. It is sensible
to pass the same value to both. A dynamic heap has little benefit, because you cannot
safely use any saved memory.

For proper puppetserver functionality, it is
recommended to have 4 GB of RAM available.

Using Phusion Passenger with Nginx
Some operators don't like running important services in the Java Virtual Machine,
for various reasons, such as its memory requirements. As of Puppet 4, alternatives
to puppetserver are still available, so the requirement can be avoided.

The best way to run the master without the JVM is a web server with a support
for Passenger. In this context, the Puppet master runs as a Rack application. The
most common setup comprises the Apache web server and mod_passenger. Setting
this up is quite straightforward and documentation is plentiful. We will therefore,
concentrate on an attractive alternative.

Unfortunately, the Puppet 4 package cannot be made to work with Passenger easily.
The best way to achieve this was a manual Puppet installation from the source, at the
time of writing this. With Puppet 3.x, Passenger was the default for a long time, and
making it work with Nginx is quite simple with the following instructions.

https://docs.puppetlabs.com/guides/scaling_multiple_masters.html.
https://docs.puppetlabs.com/guides/scaling_multiple_masters.html.

The Master and Its Agents

[42]

Please note that in Puppet 4, the Rack support is already deprecated.
It will likely be removed in a future release. The same holds true for
the standalone master that is available through the puppet master
subcommand (this mode is not covered in this book).

Nginx is a lean and fast web server that is ever increasing in popularity. It can run
your Puppet master through Passenger just like Apache, so you don't need to install
and run the latter. Unfortunately, the stock version of Nginx cannot run Passenger
through a module. The Phusion project supplies packages for the more popular
Linux distributions. The following instructions are applicable to Debian:

1. Follow the instructions at https://www.phusionpassenger.com/
documentation/Users%20guide%20Nginx.html#install_on_debian_
ubuntu in order to install the appropriate Nginx packages.

2. In the /etc/nginx/nginx.conf file, uncomment or insert the passenger
specific statements:
passenger_root /usr/lib/ruby/vendor_ruby/phusion_passenger/
locations.ini;
passenger_ruby /usr/bin/ruby;

3. Prepare the Rails root:
root@puppetmaster# mkdir -p /etc/puppet/rack/{tmp,public}

root@puppetmaster# install -o puppet -g puppet /usr/share/puppet/
rack/config.ru /etc/puppet/rack

4. Create a vhost for Puppet at /etc/nginx/sites-available/puppetmaster.
Older versions of Passenger use passenger_set_cgi_param instead of
passenger_env_var:
server {
 listen 8140;
 server_name master.example.net;
 root /etc/puppet/rack/public;

 ssl on;
 ssl_certificate
 /var/lib/puppet/ssl/certs/master.example.net.pem;
 ssl_certificate_key
 /var/lib/puppet/ssl/private_keys/master.example.net.pem;
 ssl_crl /var/lib/puppet/ssl/ca/ca_crl.pem;
 ssl_client_certificate /var/lib/puppet/ssl/certs/ca.pem;
 ssl_verify_client optional;
 ssl_verify_depth 1;

https://www.phusionpassenger.com/documentation/Users%20guide%20Nginx.html#install_on_debian_ubuntu
https://www.phusionpassenger.com/documentation/Users%20guide%20Nginx.html#install_on_debian_ubuntu
https://www.phusionpassenger.com/documentation/Users%20guide%20Nginx.html#install_on_debian_ubuntu

Chapter 2

[43]

 passenger_enabled on;
 passenger_env_var HTTPS on;
 passenger_env_var SSL_CLIENT_S_DN $ssl_client_s_dn;
 passenger_env_var SSL_CLIENT_VERIFY $ssl_client_verify;
}

5. Enable the vhost and restart Nginx:
root@puppetmaster# ln -s ../sites-available/puppetmaster
/etc/nginx/sites-enabled/puppetmaster

root@puppetmaster# /etc/init.d/nginx restart

Nginx is now running the Puppet master service for you through Passenger.
The mentioned configuration is bare boned, and you might wish to extend
it for tuning and features.

Comparing Passenger with puppetserver
Both Passenger and puppetserver have their share of complexity. These are much
less visible to the user in the case of puppetserver, however. All that's needed is the
software package and a Java runtime. The internals are well hidden.

The following diagram highlights the differences:

Nginx or Apache

master host
(Passenger)

master host
(puppetserver)

Passenger

Puppet Ruby Codebase Puppet Ruby Codebase

Jetty

Agents Agents

RUby
worker RUby

worker

RUby
worker

JRuby

JRubyJRuby

JVM

The Master and Its Agents

[44]

With puppetserver, both the web service and the Ruby runtimes share a single JVM.
This allows a better overall performance, and is easier to set up. All new setups
should therefore, prefer puppetserver over Passenger.

Completing the stack with PuppetDB
Whether you choose to use puppetserver or prefer Passenger after all, there is yet
another piece of infrastructure that should be considered for each master host.
PuppetDB is a specialized database designed to interact with the Puppet master.
It mainly comprises a PostgreSQL backend with an API wrapper. The latter was
written in Clojure and runs in yet another JVM.

PuppetDB aids the master's secondary task of storing reports and other agent data.
It is also necessary for some specific manifest compiler functionality. This is covered
in Chapter 6, Leveraging the Full Toolset of the Language.

The best way to set up and configure PuppetDB is actually Puppet itself. Since the
necessary tools have not yet been introduced, we will postpone this step until Chapter
6, Leveraging the Full Toolset of the Language. This is not a problem, because PuppetDB
is not essential for basic master operation.

Nevertheless, after finishing this title, you should include PuppetDB
into any new master setup, because it allows advanced reporting and
introspection.

Troubleshooting SSL issues
Among the most frustrating issues, especially for new users, are problems with
the agent's SSL handshake. Such errors are especially troublesome because Puppet
cannot always offer very helpful analysis in its logs—the problems occur in the SSL
library functions, and the application cannot examine the circumstances.

The online documentation at Puppet Labs has a Troubleshooting
section that has some advice concerning SSL-related issues
as well at https://docs.puppetlabs.com/guides/
troubleshooting.html.

https://docs.puppetlabs.com/guides/troubleshooting.html
https://docs.puppetlabs.com/guides/troubleshooting.html

Chapter 2

[45]

Consider the following output for the --test command:

root@agent# puppet agent --test
Warning: Unable to fetch my node definition, but the agent run will
continue:

Warning: SSL_connect returned=1 errno=0 state=unknown state: certificate
verify failed: [CRL is not yet valid for /CN=Puppet CA: puppet.example.
net]

The agent opines that the CRL it receives from the master is not yet valid. Errors such
as these can happen whenever the agent's clock gets reset to a very early date. This
can also result from but a slight clock skew, when the CRL has recently been updated
through a revocation action on the master. If the system clock on the agent machine
returns a time far in the future, it will consider certificates to be expired.

These clock-related issues are best avoided by running an ntp service on all Puppet
agents and masters.

Errors will generally result if the data in the agent's $ssldir becomes inconsistent.
This can happen when the agent interacts with an alternate master (a testing
instance, for example). The first piece of advice you will most likely receive when
asking the community what to do about such problems is to create a new agent
certificate from scratch. This works as described in the The agent's life cycle section:

Before you start the recovery procedure, make sure that
you are logged in to the afflicted agent machine and not the
master. Losing the master's SSL data will make it necessary
to recreate your complete SSL infrastructure.

1. Remove all the SSL data from the agent machine.
2. Revoke and remove the certificate from the master using puppet cert

clean.
3. Request and sign a new certificate.

This approach will indeed remedy most issues. Be careful not to leave any old
files in the relevant location on the agent machine. If the problems persist, a more
involved solution is required. The openssl command-line tool is helpful to analyze
the certificates and related files. The details of such an analysis are beyond the scope
of this book, though.

The Master and Its Agents

[46]

Summary
You can now set up your own Puppet master, using the sophisticated puppetserver
solution. Alternately, you can run your Puppet 3.x master through Apache or Nginx
with Passenger. You have successfully signed the certificate for a Puppet agent and
can revoke certificates, if required. Using the node blocks in the master manifest, you
can describe individual manifests for each distinct agent. Finally, you learned about
some things that can go wrong with the SSL-based authentication.

In the next chapter, we will take a look at the inner workings of Puppet in order to
give you an understanding of how the Puppet agent adapts itself to its environment.
You will also learn how the agent provides feedback to the master, allowing you to
create flexible manifests that fit different needs.

[47]

A Peek under the Hood –
Facts, Types, and Providers

So far in this book, you have primarily done practical things—writing manifests,
setting up a master, assigning agents, signing certificates, and so forth. Before you
are introduced to the missing language concepts that you will need to use Puppet
effectively for bigger projects, there is some background that we should cover. Don't
worry, it won't be all dry theory—most of the important parts of Puppet are relevant
to your daily business.

The topics for this chapter have been hinted at earlier; Chapter 1, Writing Your First
Manifests, contained a brief description of the type and provider. This and some
adjacent topics will be thoroughly explored in the following sections:

• Summarizing systems with Facter
• Understanding the type system
• Substantiating the model with providers
• Putting it all together

Summarizing systems with Facter
Configuration management is quite a dynamic problem. In other words, the systems
that need configuration are mostly moving targets. In some situations, system
administrators or operators get lucky and work with large quantities of 100 percent
uniform hardware and software. In most cases, however, the landscape of servers
and other computing nodes is rather heterogeneous, at least in subtle ways. Even
in unified networks, there are likely multiple generations of machines or operating
systems, with small or larger differences required for their respective configurations.

A Peek under the Hood – Facts, Types, and Providers

[48]

For example, a common task for Puppet is to handle the configuration of system
monitoring. Your business logic will likely dictate warning thresholds for gauges
such as the system load value. However, those thresholds can rarely be static. On a
two-processor virtual machine, a system load of 10 represents a crippling overload,
while the same value can be absolutely acceptable for a busy DBMS server that has
cutting edge hardware of the largest dimensions.

Another important factor can be software platforms. Your infrastructure might span
multiple distributions of Linux or alternate operating systems such as BSD, Solaris,
or Windows, each with different ways of handling certain scenarios. Imagine, for
example, that you want Puppet to manage some content from the fstab file. On your
rare Solaris system, you would have to make sure that Puppet targets the /etc/vfstab
file instead of /etc/fstab.

It is usually not a good idea to interact directly with the fstab file
in your manifest. This example will be rounded off in the section
concerning providers.

Puppet strives to present you with a unified way of managing all your infrastructure.
It therefore needs a means to allow your manifests to adapt to different kinds of
circumstances on the agent machines. This includes their operating system, hardware
layout, and many other details. Keep in mind that, generally, the manifests have to
be compiled on the master machine.

There are several conceivable ways to implement a solution for this particular
problem. A direct approach would be to use a language construct that allows the
master to send a piece of shell script (or other code) to the agent and receive its
output in return.

The following is pseudocode, however, there are no back tick
expressions in the Puppet DSL:

if `grep -c ^processor /proc/cpuinfo` > 2 {

 $load_warning = 4

}

else {

 $load_warning = 2

}

Chapter 3

[49]

This solution would be powerful but expensive. The master would need to call back
to the agent whenever the compilation process encountered such an expression.
Writing manifests that were able to cope with such a command returning an error
code would be strenuous, and Puppet would likely end up resembling a quirky
scripting engine.

When using puppet apply instead of the master, such a feature
would pose less of a problem, and it is indeed available in the form
of the generate function, which works just like the back ticks in the
pseudocode mentioned previously. The commands are always run
on the compiling node though, so this is less useful with an agent/
master than apply.

Puppet uses a different approach. It relies on a secondary system called Facter, which
has the sole purpose of examining the machine on which it is run. It serves a list of
well-known variable names and values, all according to the system on which it runs.
For example, an actual Puppet manifest that needs to form a condition upon the
number of processors on the agent will use this expression:

if $::processorcount > 4 { … }

Facter's variables are called facts, and processorcount is such a fact. The fact values
are gathered by the agent and sent to the master who will use these facts to compile a
catalog. All fact names are available in the manifests as variables.

Facts are available to manifests that are used with puppet apply
too, of course. You can test this very simply:

puppet apply -e 'notify { "I am ${::fqdn} and have
${::processorcount} CPUs": }'

Accessing and using fact values
You have already seen the use of the processorcount fact in an example. In the
manifest, each fact value is available as a global variable value. That is why you can
just use the ::processorcount expression where you need it.

A Peek under the Hood – Facts, Types, and Providers

[50]

You will often see conventional uses such as $::processorcount
or $::ipaddress. Prefixing the fact name with double colons is
highly recommended. The official Style Guide at https://docs.
puppetlabs.com/guides/style_guide.html#namespacing-
variables recommends this. The prefix indicates that you are
referring to a variable delivered from Facter. Facter variables are put
into the puppet master's top scope.

Some helpful facts have already been mentioned. The processorcount fact might
play a role for your configuration. When configuring some services, you will want to
use the machine's ipaddress value in a configuration file or as an argument value:

file { '/etc/mysql/conf.d/bind-address':
 ensure => 'file',
 mode => '0644',
 content => "[mysqld]\nbind-address=${::ipaddress}\n",
}

Besides the hostname, your manifest can also make use of the fully qualified
domain name (FQDN) of the agent machine.

The agent will use the value of its fqdn fact as the name of its certificate
(clientcert) by default. The master receives both these values. Note
that the agent can override the fqdn value to any name, whereas the
clientcert value is tied to the signed certificate that the agent uses.
Sometimes, you will want the master to pass sensitive information
to individual nodes. The manifest must identify the agent by its
clientcert fact and never use fqdn or hostname instead, for the
reason mentioned. An example is shown in the following code:

file { '/etc/my-secret':
 ensure => 'file',
 mode => '0600',
 owner => 'root',
 source => "puppet:///modules/
 secrets/${::clientcert}/key",
}

https://docs.puppetlabs.com/guides/style_guide.html#namespacing-variables
https://docs.puppetlabs.com/guides/style_guide.html#namespacing-variables
https://docs.puppetlabs.com/guides/style_guide.html#namespacing-variables

Chapter 3

[51]

There is a whole group of facts to describe the operating system. Each fact is useful in
different situations. The operatingsystem fact takes values such as Debian or CentOS:

if $::operatingsystem != 'Ubuntu' {
 package { 'avahi-daemon':
 ensure => absent
 }
}

If your manifest will behave identically on RHEL, CentOS, and Fedora (but not on
Debian and Ubuntu), you should make use of the osfamily fact instead:

if $::osfamily == 'RedHat' {
 $kernel_package = 'kernel'
}

The operatingsystemrelease fact allows you to tailor your manifests to differences
between the versions of your OS:

if $::operatingsystem == 'Debian' {
 if versioncmp($::operatingsystemrelease, '7.0') >= 0 {
 $ssh_ecdsa_support = true
 }
}

Facts such as mac address, the different SSH host keys, fingerprints, and others make
it easy to use Puppet for keeping inventory of your hardware. There are a slew of
other useful facts. Of course, the collection will not suit every possible need of every
user out there. That is why Facter comes readily extendible.

Extending Facter with custom facts
Technically, nothing is stopping you from adding your own fact code right next to
the core facts, either by maintaining your own Facter package, or even by deploying
the Ruby code files to your agents directly through Puppet management. However,
Puppet offers a much more convenient alternative in the form of custom facts.

We have still not covered Puppet modules yet. They will be thoroughly introduced
in Chapter 5, Extending Your Puppet Infrastructure with Modules. For now, just create a
Ruby file at /etc/puppetlabs/code/environments/production/modules/hello_
world/lib/facter/hello.rb on the master machine. Puppet will recognize this as
a custom fact of the name, hello. (For Puppet 3 or older versions, the path should be
/etc/puppet/modules/hello_world/lib/facter/hello.rb.)

A Peek under the Hood – Facts, Types, and Providers

[52]

The inner workings of Facter are very straightforward and goal oriented. There is
one block of Ruby code for each fact, and the return value of the block becomes the
fact value. Many facts are self-sufficient, but others will rely on the values of one or
more basic facts. For example, the method to determine the IP address(es) of the local
machine is highly dependent upon the operating system.

The hello fact is very simple though:

Facter.add(:hello) do
 setcode { "Hello, world!" }
end

The return value of the setcode block is the string, Hello, world!, and you can use
this fact as $::hello in a Puppet manifest.

Before Facter Version 2.0, each fact had a string value. If a code
block returns another value, such as an array or hash, Facter 1.x
will convert it to a string. The result is not useful in many cases. For
this historic reason, there are facts such as ipaddress_eth0 and
ipaddress_lo, instead of (or in addition to) a proper hash structure
with interface names and addresses.

It is important for the pluginsync option to be enabled on the agent side. This has
been the default for a long time and should not require any customization. The
agent will synchronize all custom facts whenever checking in to the master. They
are permanently available on the agent machine after that. You can then retrieve the
hello fact from the command line using the following line:

puppet facts | grep hello

By just invoking the following command without an argument, you request a list of
all fact names and values.

puppet facts

There is also a facter command. It does roughly the same as puppet facts, but will
only show built in facts, not your custom facts.

In Puppet 3 and earlier, there was no puppet facts subcommand. You
have to rely on the facter CLI (from Facter version 2.x or older) and
call facter -p, to include custom facts. Facter 3.0 removed this
parameter, although it has been announced that newer versions will
support it again.

Chapter 3

[53]

Facter

Agent

(2) custom facts

(3) fact values

(1) request plugins

(4) request catalog

(5) compiled catalog

Master

Manifest

This book will not cover all aspects of Facter's API, but there is one facility that is
quite essential. Many of your custom facts will only be useful on Unix-like systems,
and others will only be useful on your Windows boxen. You can retrieve such values
using a construct like the following:

if Facter.value(:kernel) != "windows"
 nil
else
 # actual fact code here
end

This would be quite tedious and repetitive though. Instead, you can invoke the
confine method within the Facter.add(name) { … } block:

Facter.add(:msvs_version) do
 confine :kernel => :windows
 setcode do
 # …
 end
end

You can confine a fact to several alternative values as well:

confine :kernel => [:linux, :sunos]

A Peek under the Hood – Facts, Types, and Providers

[54]

Finally, if a fact does make sense in different circumstances, but requires drastically
different code in each respective case, you can add the same fact several times, each
with a different set of confine values. Core facts such as ipaddress use this often:

Facter.add(:ipaddress) do
 confine :kernel => :linux
 …
end
Facter.add(:ipaddress) do
 confine :kernel => %w{FreeBSD OpenBSD Darwin DragonFly}
 …
end
…

You can confine facts based on any combination of other facts, not just kernel.
It is a very popular choice though. The operatingsystem or osfamily facts can be
more appropriate in certain situations. Technically, you can even confine some of
your facts to certain processorcount values and so forth.

Simplifying things using external facts
If writing and maintaining Ruby code is not desirable in your team for any reason,
you might prefer to use an alternative that allows shell scripts, or really, any kind of
programming language, or even static data with no programming involved at all.
Facter allows this in the form of external facts.

Creating an external fact is similar to the process for regular custom facts, with the
following distinctions:

• Facts are produced by standalone executables or files with static data,
which the agent must find in /etc/puppetlabs/facter/facts.d/

• The data is not just a string value, but an arbitrary number of key=value
pairs instead

The data need not use the ini file notation style—the key/value pairs can also be in
the YAML or JSON format. The following external facts hold the same data:

site-facts.txt
workgroup=CT4Site2
domain_psk=nm56DxLp%

The facts can be written in the YAML format in the following way:

site-facts.yaml
workgroup: CT4Site2
domain_psk: nm56DxLp%

Chapter 3

[55]

In the JSON format, facts can be written as follows:

site-facts.json
{ 'workgroup': 'CT4Site2', 'domain_psk': 'nm56DxLp%' }

The deployment of the external facts works simply through file resources in your
Puppet manifest:

file { '/etc/puppetlabs/facter/facts.d/site-facts.yaml':
 ensure => 'file',
 source => 'puppet:///…',
}

With newer versions of Puppet and Facter, external facts will be
automatically synchronized, just like custom facts if they are found in
facts.d/* in any module (for example, /etc/puppetlabs/code/
environments/production/modules/hello_world/facts.d/
hello.sh). This is not only more convenient, but has a large benefit;
when Puppet must fetch an external fact through a file resource
instead, its fact value(s) are not available while the catalog is being
compiled. The pluginsync mechanism, on the other hand, makes sure
that all synced facts are available before manifest compilation starts.

When facts are not static and cannot be placed in a txt or YAML file, you can make
the file executable and add a shebang instead. It will usually be a shell script, but the
implementation is of no consequence; it is just important that properly formatted
data is written to the standard output. You can simplify the hello fact this way,
in /etc/puppetlabs/code/environments/production/modules/hello_world/
facts.d/hello.sh:

#!/bin/sh

echo hello=Hello, world\!

For executable facts, the ini styled key=value format is the only supported one.
YAML or JSON are not eligible in this context.

Facter 2 introduced structured facts. Structured facts return an array
or a hash. In older Puppet versions (prior to 3.4), structured facts have
to be enabled in puppet.conf by setting stringify_facts to
false. This setting is default for Puppet 4.0 and later versions.

A Peek under the Hood – Facts, Types, and Providers

[56]

Goals of Facter
The whole structure and philosophy of Facter serves the goal of allowing for
platform-agnostic usage and development. The same collection of facts (roughly) is
available on all supported platforms. This allows Puppet users to keep a coherent
development style through manifests for all those different systems.

Facter forms a layer of abstraction over the characteristics of both hardware and
software. It is an important piece of Puppet's platform-independent architecture.
Another piece that was mentioned before is the type and provider subsystem.
Types and providers are explored in greater detail in the following sections.

Understanding the type system
Being one of the cornerstones of the Puppet model, resources were introduced
quite early in Chapter 1, Writing Your First Manifests. Remember how each resource
represents a piece of state on the agent system. It has a resource type, a name (or
a title), and a list of attributes. An attribute can either be property or parameter.
Between the two of them, properties represent distinct pieces of state, and
parameters merely influence Puppet's actions upon the property values.

Let's examine resource types in more detail and understand their inner workings.
This is not only important when extending Puppet with resource types of your own
(which will be demonstrated in Chapter 5, Extending Your Puppet Infrastructure with
Modules). It also helps you anticipate the action that Puppet will take, given your
manifest, and get a better understanding of both the master and the agent.

First, we take a closer look at the operational structure of Puppet, with its pieces
and phases. The agent performs all its work in discreet transactions. A transaction
is started under any of the following circumstances:

• The background agent process activates and checks in to the master
• An agent process is started with the --onetime or --test options
• A local manifest is compiled using puppet apply

The transaction always passes several stages. They are as follows:

1. Gathering fact values to form the actual catalog request.
2. Receiving the compiled catalog from the master.
3. Prefetching of current resource states.
4. Validation of the catalog's content.
5. Synchronization of the system with the property values from the catalog.

Chapter 3

[57]

Facter was explained in the previous section. The resource types become important
during compilation and then throughout the rest of the agent transaction. The master
loads all resource types to perform some basic checking—it basically makes sure that
the types of resources it finds in the manifests do exist and that the attribute names
fit the respective type.

The resource type's life cycle on the agent side
Once the compilation has succeeded, the master hands out the catalog and the
agent enters the catalog validation phase. Each resource type can define some Ruby
methods that ensure that the passed values make sense. This happens on two levels
of granularity: each attribute can validate its input value, and then the resource as a
whole can be checked for consistency.

One example for attribute value validation can be found in the ssh_authorized_key
resource type. A resource of this type fails if its key value contains a whitespace
character, because SSH keys cannot comprise multiple strings.

Validation of whole resources happens with the cron type, for example. It makes
sure that the time fields make sense together. The following resource would not pass,
because special times, such as midgnight, cannot be combined with numeric fields:

cron { 'invalid-resource':
 command => 'apt-get update',
 special => 'midnight',
 weekday => ['2', '5'],
}

Another task during this phase is the transformation of input values to more suitable
internal representations. The resource type code refers to this as a munge action.
Typical examples of munging are the removal of leading and trailing whitespace
from string values, or the conversion of array values to an appropriate string
format—this can be a comma-separated list, but for search paths, the separator
should be a colon instead. Other kinds of values will use different representations.

Next up is the prefetching phase. Some resource types allow the agent to create an
internal list of resource instances that are present on the system. These types are
referred to as being enumerable types. For example, this is possible (and makes
sense) for installed packages—Puppet can just invoke the package manager to
produce the list. For other types, such as file, this would not be prudent. Creating
a list of all reachable paths in the whole filesystem can be arbitrarily expensive,
depending on the system on which the agent is running.

A Peek under the Hood – Facts, Types, and Providers

[58]

The prefetching can be simulated by running puppet resource
<resource type> <title> on the command line as follows:
puppet resource user root
user { 'root':

ensure => 'present',
comment => 'root',
gid => '0',
home => '/root',
password => '$6$17/7FtU/$TvYED
tFgGr0SaS7xOVloWXVTqQxxDUgH.eBKJ7bgHJ.
hdoc03Xrvm2ru0HFKpu1QSpVW/7o.rLdk/9MZANEGt/',
password_max_age => '99999',
password_min_age => '0',
shell => '/bin/bash',
uid => '0',

}

Finally, the agent starts walking its internal graph of interdependent resources.
Each resource is brought in sync, if necessary. This happens separately for each
individual property, for the most part.

The ensure property, for types that support it, is a notable exception.
It is expected to manage all other properties on its own—when a
resource is changed from absent to present through its ensure
property (in other words, the resource is getting newly created), this
action should bring all other properties in sync as well.

There are some notable aspects of the whole agent process. For one, attributes are
handled independently. Each can define its own methods for the different phases.
There are quite a number of hooks, which allow a resource type author to add a lot
of flexibility to the model.

For aspiring type authors, skimming through the core types can be
quite inspirational. You will be familiar with many attributes; using
them in your manifests and studying their hooks will offer quite
some insight.

It is also worth noting that the whole validation process is performed by the agent,
not the master. This is beneficial in terms of performance. The master saves a lot of
work, which gets distributed to the network of agents (which scales with your needs
automatically).

Chapter 3

[59]

Substantiating the model with providers
At the start of this chapter, you learned about Facter and how it works like a
layer of abstraction over the supported platforms. This unified information base
is one of Puppet's most important means to achieve its goal of operating system
independence. Another one is the DSL, of course. Finally, Puppet also needs a
method to transparently adapt its behavior to the respective platform on which
each agent runs.

In other words, depending on the characteristics of the computing environment, the
agent needs to switch between different implementations for its resources. This is not
unlike object-oriented programming—the type system provides a unified interface,
not unlike an abstract base class. The programmer need not worry what specific class
is being referenced, as long as it correctly implements all the required methods. In
this analogy, Puppet's providers are the concrete classes that implement the abstract
interface.

For a practical example, look at package management. Different flavors of UNIX-
like operating systems have their own implementation. The most prevalent Puppet
platforms use apt and yum, respectively, but can (and sometimes must) also manage
their packages through dpkg and rpm. Other platforms use tools such as emerge,
zypper, fink, and a slew of other things. There are even packages that exist apart from
the operating system software base, handled through gem, pip, and other language-
specific package management tools. For each of these management tools, there is a
provider for the package type.

Many of these tools allow the same set of operations—installing and uninstalling a
package, and updating a package to a specific version. The latter is not universally
possible though. For example, dpkg can only ever install the local package that is
specified on the command line, with no other version to choose.

There are also some distinct features that are unique to specific tools, or are
supported by only a few. Some management systems can hold packages at specific
versions. Some use different states for uninstalled versus purged packages. Some
have a notion of virtual packages. The list of examples can go on and on.

Because of this potential diversity (which is not limited to package management
systems), Puppet providers can opt for features. The set of features is resource-
type specific. All providers for a type can support one or more of the same group of
features. For the package type, there are features such as versionable, purgeable,
holdable, and so forth. You can set ensure => purged on any package resource
like so:

package { 'haproxy':
 ensure => 'purged'
}

A Peek under the Hood – Facts, Types, and Providers

[60]

However, if you are managing the HAproxy package through rpm, Puppet will fail
to make any sense of it because rpm has no notion of a purged state, and therefore,
the purgeable feature is missing from the rpm provider. Trying to use an
unsupported feature will usually produce an error message. Some attributes,
such as install_options, might just result in a warning by Puppet instead.

The official documentation on the Puppet Labs website holds a complete
list of the core resource types and all their built-in providers, along with
the respective feature matrices. It is very easy to find suitable providers
and their capabilities. The documentation can be found at https://
docs.puppetlabs.com/references/latest/type.html.

Resource types with generic providers
There are some resource types that use no providers, but they are rare among the
core types. Most of the interesting management tasks that Puppet makes easy just
work differently among operating systems, and providers enable this in a most
elegant fashion.

Even for straightforward tasks that are the same on all platforms, there might be a
provider. For example, there is a host type to manage entries in the /etc/hosts file.
Its syntax is universal, so the code can technically just be implemented in the type.
However, there are actual abstract base classes for certain kinds of providers in the
Puppet code base. One of them makes it very easy to build providers that edit files,
if those files consist of single-line records with ordered fields. Therefore, it makes
sense to implement a provider for the host type and base it on this provider class.

For the curious, this is what a host resource looks like:
host { 'puppet':

 ip => '10.144.12.100',

 host_aliases => ['puppet.example.net', 'master'],

}

Summarizing types and providers
Puppet's resource types and their providers work together to form a solid abstraction
layer over software configuration details. The type system is an extendable basis
for Puppet's powerful DSL. It forms an elaborate interface for the polymorphous
provider layer.

https://docs.puppetlabs.com/references/latest/type.html
https://docs.puppetlabs.com/references/latest/type.html

Chapter 3

[61]

The providers flexibly implement the actual management actions that Puppet is
supposed to perform. They map the necessary synchronization steps to commands
and system interactions. Many providers cannot satisfy every nuance that the
resource type models. The feature system takes care of these disparities in a
transparent fashion.

Putting it all together
Reading this far, you might have gotten the impression that this chapter is a rather
odd mix of topics. While types and providers do belong closely together, the whole
introduction to Facter might seem out of place in this context. This is deceptive,
however; facts do play a vital role in the type/provider structure. They are essential
for Puppet to make good choices among providers.

Let's look at an example from the Extending Facter with custom facts section once more.
It was about fstab entries and the difference of Solaris, which uses /etc/vfstab
instead of /etc/fstab. That section suggested a manifest that adapts according
to a fact value. As you have learned, Puppet has a resource type to manage fstab
content: the mount type. However, for the small deviation of a different file path,
there is no dedicated mount provider for Solaris. There is actually just one provider
for all platforms, but on Solaris, it behaves differently. It does this by resolving
Facter's osfamily value. The following code example was adapted from the actual
provider code:

case Facter.value(:osfamily)
when"Solaris"
 fstab = "/etc/vfstab"
else
 fstab = "/etc/fstab"
end

In other cases, Puppet should use thoroughly different providers on different
platforms, though. Package management is a classic example. On a Red Hat-like
platform, you will want Puppet to use the yum provider in virtually all cases. It can
be sensible to use rpm, and even apt might be available. However, if you tell Puppet
to make sure a package is installed, you expect it to install it using yum, if necessary.

This is obviously a common theme. Certain management tasks need to be performed
in different environments, with very different toolchains. In such cases, it is quite
clear which provider would be best suited. To make this happen, a provider can
declare itself the default if a condition is met. In the case of yum, it is the following:

defaultfor :operatingsystem => [:fedora, :centos, :redhat]

A Peek under the Hood – Facts, Types, and Providers

[62]

The conditions are based around fact values. If the operatingsystem value for a
given agent is among the listed, yum will consider itself the default package provider.

The operatingsystem and osfamily facts are the most popular choices
for such queries in providers, but any fact is eligible.

In addition to marking themselves as being default, there is more filtering of
providers that relies on fact values. Providers can also confine themselves to certain
combinations of values. For example, the yum alternative, zypper, confines itself to
SUSE Linux distributions:

confine :operatingsystem => [:suse, :sles, :sled, :opensuse]

This provider method works just like the confine method in Facter, which was
discussed earlier in this chapter. The provider will not even be seen as valid if the
respective facts on the agent machine have none of the white-listed values.

If you find yourself looking through code for some core providers,
you will notice confinement (and even declaring default providers)
on feature values, although there is no Facter fact of that name. These
features are not related to provider features either. They are from
another layer of introspection similar to Facter, but hardcoded into the
Puppet agent. These agent features are a number of flags that identify
some system properties that need not be made available to manifests
in the form of facts. For example, the posix provider for the exec type
becomes the default in the presence of the corresponding feature:
defaultfor :feature => :posix

You will find that some providers forgo the confine method altogether, as it is not
mandatory for correct agent operation. Puppet will also identify unsuitable providers
when looking for their necessary operating system commands. For example, the pw
provider for certain BSD flavors does not bother with a confine statement. It only
declares its one required command:

commands :pw => "pw"

Agents that find no pw binary in their search path will not try and use this provider
at all.

This concludes the little tour of the inner workings of types and providers with
the help of Facter. For a complete example of building a provider for a type, and
using the internal tools that you have now learned about, you can refer to Chapter 5,
Extending Your Puppet Infrastructure with Modules.

Chapter 3

[63]

Summary
Puppet gathers information about all agent systems using Facter. The information
base consists of a large number of independent bits, called facts. Manifests can
query the values of those facts to adapt to the respective agents that trigger their
compilation. Puppet also uses facts to choose among providers the work horses
that make the abstract resource types functional across the wide range of
supported platforms.

The resource types not only completely define the interface that Puppet exposes in
the DSL, they also take care of all the validation of input values, transformations that
must be performed before handing values to the providers, and other related tasks.

The providers encapsulate all knowledge of actual operating systems and their
respective toolchains. They implement the functionality that the resource types
describe. The Puppet model's configurations apply to platforms, which vary from
one another, so not every facet of every resource type can make sense for all agents.
By exposing only the supported features, a provider can express such limitations.

After this in-depth look at the internal details, let's tackle more practical concerns
again. The following chapters will cover the tools needed to build complex and
advanced manifests of all scales.

Chapter 4

[65]

Modularizing Manifests with
Classes and Defined Types

At this point, you have already performed some production-grade tasks with Puppet.
You learned how to write standalone manifests and then invoke puppet apply to put
them to use. While setting up your first Puppet master and agent, you created a simple
example for a node manifest on the master. In a node '<hostname>' block, you
created the equivalent of a manifest file. This way, the Puppet master used just
this manifest for the specified agent node.

While this is all useful, and of essential importance, it will obviously not suffice
for daily business. By working with node blocks that contain sets of resources, you
will end up performing lots of copy and paste operations for similar nodes, and the
whole construct will become unwieldy very quickly.

This is an unnatural approach to developing Puppet manifests. Despite the great
differences to many other languages that you might be familiar with, the Puppet
DSL is a programming language. Building manifests merely from node blocks and
resources would be like writing C with no functions except main, or Ruby without
any classes of your own.

The manifests that you can write with the means that are already at your disposal are
not flat—you learned about common control structures such as if and case. Your
manifests can use these to adapt to various circumstances on the agent, by querying
the values of Facter facts and branching in accordance with the results.

Modularizing Manifests with Classes and Defined Types

[66]

However, these constructs should be complemented by the language tools to create
reusable units of manifest code, similar to functions or methods in procedural
languages. This chapter introduces these concepts through the following topics:

• Introducing classes and defined types
• Structured design patterns
• Including classes from defined types
• Nesting definitions in classes
• Establishing relationships among containers
• Making classes more flexible through parameters

Introducing classes and defined types
Puppet's equivalents to methods or functions are twofold: there are classes on one
hand and defined types (also just referred to as defines) on the other.

You will find that the function analogy is a bit weak for classes, but fits
defined types quite well.

They are similar at first glance, in that they both hold a chunk of reusable manifest
code. There are big differences in the way each is used though. Let's take a look at
classes first.

Defining and declaring classes
A Puppet class can be considered to be a container for resources. It is defined once
and selected by all nodes that need to make use of the prepared functionality. Each
class represents a well-known subset of a system's configuration.

For example, a classic use case is a class that installs the Apache web server and
applies some basic settings. This class will look like the following:

class apache {
 package { 'apache2':
 ensure => 'installed',
 }
 file { '/etc/apache2/apache2.conf':
 ensure => 'file',
 source =>

Chapter 4

[67]

 'puppet:///modules/apache/etc/apache2/apache2.conf',
 require => Package['apache2'],
 }
 service { 'apache2':
 enable => true,
 subscribe => File['/etc/apache2/apache2.conf',
 }
}

All web server nodes will make use of this class. To this end, their manifests need to
contain a simple statement:

include apache

This is referred to as including a class, or declaring it. If your apache class is
powerful enough to do all that is needed, this line might fully comprise a node
block's content:

node 'webserver01' {
 include apache
}

In your own setup, you will likely not write your own Apache class. You
can use open source classes that are available through Puppet modules.
Chapter 5, Extending Your Puppet Infrastructure with Modules, will give you
all the details.

This already concludes our tour of classes in a nutshell. There is yet some more to
discuss, of course, but let's take a look at defined types before that.

Creating and using defined types
A defined type can be imagined like a blueprint for a piece of manifest. Like a class,
it mainly consists of a body of the manifest code. However, a defined type takes
arguments and makes their values available in its body as local variables.

Here is another typical example of a defined type, the Apache virtual host
configuration:

define virtual_host(
 String $content,
 String[3,3] $priority = '050'
) {

Modularizing Manifests with Classes and Defined Types

[68]

 file { "/etc/apache2/sites-available/${name}":

 ensure => 'file',

 owner => 'root',

 group => 'root',

 mode => '0644',

 content => $content

 }

 file { "/etc/apache2/sites-enabled/${priority}-${name}":

 ensure => 'link',

 target => "../sites-available/${name}";

 }

}

Data types such as String are available since Puppet 4. In Puppet 3
and earlier, you would have just skipped these; all variables used to be
untyped.

This code might still seem pretty cryptic. It will get clearer in the context of how it is
actually used from other places in your manifest; the following code shows you how:

virtual_host { 'example.net':

 content => file('apache/vhosts/example.net')

}

virtual_host{ 'fallback':

 priority => '999',

 content => file('apache/vhosts/fallback')

}

This is why the construct is called a defined type—you can now place what appear to
be resources in your manifest, but you really call your own manifest code construct.

Chapter 4

[69]

When declaring multiple resources of the same type, like in the preceding
code, you can do so in a single block and separate them with a semicolon:

virtual_host {
 'example.net':
 content => 'foo';
 'fallback':
 priority => '999',
 content => ...,
}

The official Style Guide forbids this syntax, but it can make manifests
more readable and maintainable in some cases.

The virtual_host type takes two arguments: the content argument is mandatory
and is used verbatim in the configuration file resource. Puppet will synchronize that
file's content to what is specified in the manifest. The priority argument is optional
and its value becomes the file name prefix. If omitted, the respective virtual host
definition uses the default priority of 050.

Both parameters of this example type are of the String type. For details about
Puppet's variable type system, see Chapter 7, New Features from Puppet 4. It suffices
to say that you can restrict parameters to certain value types. This is optional,
however. You can omit the type name, and Puppet will accept any value for the
parameter in question.

Also, each defined type can implicitly refer to the name (or title) by which it was
called. In other words, each instance of your define gets a name, and you can access
it through the $name or $title variable.

There are a few other magic variables that are available in the body
of a defined type. If a resource of the defined type is declared with a
metaparameter such as require => …, its value can be accessed through
the $require variable in the body. The variable value remains empty if
the metaparameter is not used. This works for all metaparameters, such
as before, notify, and all the others, but you will likely never need to
make use of this. The metaparameters automatically do the right thing.

www.allitebooks.com

http://www.allitebooks.org

Modularizing Manifests with Classes and Defined Types

[70]

Understanding and leveraging the differences
The respective purposes of Puppet's class and defined type are very specific and they
usually don't overlap.

The class declares resources and properties that are in some way centric to the system.
A class is a finalized description of one or sometimes more aspects of your system as
a whole. Whatever the class represents, it can only ever exist in one form; to Puppet,
each class is implicitly a singleton, a fixed set of information that either applies to your
system (the class is included), or not.

The typical resources you will encapsulate in a class for convenient inclusion in a
manifest are as follows:

• One or more packages that should be installed (or removed)
• A specific configuration file in /etc
• A common directory, needed to store scripts or configs for many subsystems
• Cron jobs that should be mostly identical on all applicable systems

The define is used for all things that exist in multiple instances. All aspects that
appear in varying quantities in your system can possibly be modeled using this
language construct. In this regard, the define is very similar to the full-fledged
resource it mimics with its declaration syntax. Some of the typical contents of
defined types are:

• Files in a conf.d style directory
• Entries in an easily parseable file such as /etc/hosts
• Apache virtual hosts
• Schemas in a database
• Rules in a firewall

The class's singleton nature is especially valuable because it prevents clashes in the
form of multiple resource declarations. Remember that each resource must be unique
to a catalog. For example, consider a second declaration of the Apache package:

package { 'apache2': }

This declaration can be anywhere in the manifest of one of your web servers
(say, right in the node block, next to include apache); this additional declaration
will prevent the successful compilation of a catalog.

Chapter 4

[71]

The reason for the prevention of a successful compilation is that Puppet
currently cannot make sure that both declarations represent the same
target state, or can be merged to form a composite state. It is likely that
multiple declarations of the same resource get in a conflict about the
desired value of some property (for example, one declaration might
want to ensure that a package is absent, while the other needs it to be
present).

The virtue of the class is that there can be an arbitrary number of include statements
for the same class strewn throughout the manifest. Puppet will commit the class's
contents to the catalog exactly once.

Note that the uniqueness constraint for resources applies to defined
types. No two instances of your own define can share the same name.
Using a name twice or more produces a compiler error:

virtual_host { 'wordpress':
 content => file(...),
 priority => '011',
}
virtual_host { 'wordpress':
 content => '# Dummy vhost',
 priority => '600',
}

Structured design patterns
Your knowledge of classes and defined types is still rather academic. You have
learned about their defining aspects and the syntax to use them, but we have yet to
give you a feeling of how these concepts come to bear in different real-life scenarios.

The following sections will present an overview of what you can do with these
language tools.

Modularizing Manifests with Classes and Defined Types

[72]

Writing comprehensive classes
Many classes are written to make Puppet perform momentous tasks on the agent
platform. Of these, the Apache class is probably one of the more modest examples.
You can conceive a class that can be included from any machine's manifest and make
sure that the following conditions are met:

• The firewalling software is installed and configured with a default ruleset
• The malware detection software is installed
• Cron jobs run the scanners in set intervals
• The mailing subsystem is configured to make sure the cron jobs can deliver

their output

There are two general ways you can go about the task of creating a class of this
magnitude. It can either become what one might call a monolithic implementation,
a class with a large body that comprises all resources that work together to form the
desired security baseline. On the other hand, you could aim for a composite design,
with few resources (or none at all) in the class body, and a number of include
statements for simpler classes instead. The functionality is compartmentalized, and
the central class acts as a collector.

We have not yet touched on the ability of classes to include other classes. That's
because it's quite simple. The body of a class can comprise almost any manifest,
and the include statement is no exception. Among the few things that cannot
appear in a class are node blocks.

Adding some life to the descriptions, this is how the respective classes will roughly
look like:

class monolithic_security {
 package { ['iptables', 'rkhunter', 'postfix']:
 ensure => 'installed';
 }
 cron { 'run-rkhunter':
 ...
 }
 file { '/etc/init.d/iptables-firewall':
 source => ...
 mode => 755
 }

Chapter 4

[73]

 file { '/etc/postfix/main.cf':
 ensure => 'file',
 content => ...
 }
 service { ['postfix', 'iptables-firewall']:
 ensure => 'running',
 enable => true
 }
}

class divided_security {
 include iptables_firewall
 include rkhunter
 include postfix
}

When developing your own functional classes, you should not try to pick either of
these extremes. Most classes will end up anywhere on the spectrum in between. The
choice can be largely based on your personal preference. The technical implications
are subtle, but these are the respective drawbacks:

• Consequently aiming for monolithic classes opens you up to resource clashes,
because you take almost no advantage of the singleton nature of classes

• Splitting up classes too much can make it difficult to impose order and
distribute refresh events—you can refer to the Establishing relationships among
containers section later in this chapter

Neither of these aspects is of critical importance at most times. The case-by-case
design choices will be based on each author's experience and preference. When in
doubt, lean towards composite designs at first.

Writing component classes
There is another common use case for classes. Instead of filling a class with lots of
aspects that work together to achieve a complex goal, you can also limit the class to
a very specific purpose. Some classes will contain but one resource. The class wraps
the resource, so to speak.

This is useful for resources that are needed in different contexts. By wrapping
them away in a class, you can make sure that those contexts do not create multiple
declarations of the same resource.

Modularizing Manifests with Classes and Defined Types

[74]

For example, the netcat package can be useful to firewall servers, but also to web
application servers. There is probably a firewall class and an appserver class.
Both declare the netcat package:

package { 'netcat':
 ensure => 'installed'
}

If any server ever has both roles (this might happen for budget reasons or in other
unforeseen circumstances), it is a problem; when both the firewall and appserver
classes are included, the resulting manifest declares the netcat package twice. This
is forbidden. To resolve this situation, the package resource can be wrapped in a
netcat class, which is included by both the firewall and appserver classes:

class netcat {
 package { 'netcat':
 ensure => 'installed'
 }
}

Let's consider another typical example for component classes that ensures the
presence of some common file path. Assume your IT policy requires all custom
scripts and applications to be installed in /opt/company/bin. Many classes, such
as firewall and appserver from the previous example, will need some relevant
content there. Each class needs to make sure that the directories exist before a script
can be deployed inside it. This will be implemented by including a component class
that wraps the file resources of the directory tree:

class scripts_directory {
 file { ['/opt/company/', '/opt/company/bin']:
 ensure => 'directory',
 owner => 'root',
 group => 'root',
 mode => '0644',
 }
}

The component class is a pretty precise concept. However, as you have seen in the
previous section about the more powerful classes, the whole range of possible class
designs forms a fine-grained scale between the presented examples. All manifests you
write will likely comprise more than a few classes. The best way to get a feeling for the
best practices is to just go ahead and use classes to build the manifests you need.

Chapter 4

[75]

The terms comprehensive class and component class are not official
Puppet language, and the community does not use them to communicate
design practices. We chose them arbitrarily to describe the ideas we laid
out in these sections. The same holds true for the descriptions of the use
cases for defined types, which will be seen in the next sections.

Next, let's look at some uses for defined types.

Using defined types as resource wrappers
For all their apparent similarity to classes, defined types are used in different ways.
For example, the component class was described as wrapping a resource. This is
accurate in a very specific context—the wrapped resource is a singleton, and it can
only appear in one form throughout the manifest.

When wrapping a resource in a defined type instead, you end up with a variation
on the respective resource type. The manifest can contain an arbitrary number of
instances of the defined type, and each will wrap a distinct resource.

For this to work, the name of the resource that is declared in the body
of the defined type must be dynamically created. It is almost always
the $name variable of the respective defined type instance, or a value
derived from it.

Here is yet another typical example from the many manifests out there: most users
who make use of Puppet's file serving capabilities will want to wrap the file type
at some point so that the respective URL need not be typed for each file:

define module_file(String $module) {
 file { $name:
 source => "puppet:///modules/${module}/${name}"
 }
}

This makes it easy to get Puppet to sync files from the master to the agent.
The master copy must be properly placed in the named modules on the master:

module_file { '/etc/ntpd.conf':
 module => 'ntp':
}

Modularizing Manifests with Classes and Defined Types

[76]

This resource will make Puppet retrieve the ntp.conf file from the ntp module. The
preceding declaration is more concise and less redundant than the fully written file
resource with the Puppet URL (especially for the large number of files you might
need to synchronize), which would resemble the following:

file { '/etc/ntpd.conf':
 source => 'puppet:///modules/ntp/etc/ntpd.conf':
}

For a wrapper such as module_file, which will likely be used very widely, you will
want to make sure that it supports all attributes of the wrapped resource type. In this
case, the module_file wrapper should accept all file attributes. For example, this is
how you add the mode attribute to the wrapper type:

define module_file(
 String $module,
 Optional[String] $mode = undef
) {
 if $mode != undef {
 File { mode => $mode }
 }
 file { $name:
 source => "puppet:///modules/${module}/${name}"
 }
}

The File { ... } block declares some default values for all file resource
attributes in the same scope. The undef value is similar to Ruby's nil, and is a
convenient parameter default value, because it is very unlikely that a user will
need to pass it as an actual value for the wrapped resource.

You can employ the override syntax instead of the default syntax as well:
File[$name] { mode => $mode }

This makes the intent of the code slightly more obvious, but is not
necessary in the presence of just one file resource. Chapter 6, Leveraging
the Full Toolset of the Language, holds more information about overrides
and defaults.

Chapter 4

[77]

Using defined types as resource multiplexers
Wrapping single resources with a defined type is useful, but sometimes you will
want to add functionality beyond the resource type you are wrapping. At other
times, you might wish for your defined type to unify a lot of functionality, just like
the comprehensive classes from the beginning of the section.

For both scenarios, what you want to have is multiple resources in the body of your
defined type. There is a classic example for this as well:

define user_with_key(
 String $key,
 Optional[String] $uid = undef,
 String $group = 'users'
) {
 user { $title:
 ensure => present
 gid => $group,
 managehome => true,
 } ->
 ssh_authorized_key { "key for ${title}":
 ensure => present,
 user => $title,
 type => 'rsa',
 key => $key,
 }
}

This code allows you to create user accounts with authorized SSH keys in one
resource declaration. This code sample has some notable aspects:

• Since you are essentially wrapping multiple resource types, the titles of
all inner resources are derived from the instance title (or name) of the
current defined type instance; actually, this is a required practice for all
defined types

• You can hardcode parts of your business logic; in this example, we
dispensed with the support for non-RSA SSH keys and defined users as
the default group

• Resources inside defined types can and should manage ordering among
themselves (using the chaining arrow -> in this case)

Modularizing Manifests with Classes and Defined Types

[78]

Using defined types as macros
Some source code requires many repetitive tasks. Assume that your site uses a
subsystem that relies on symbolic links at a certain location to enable configuration
files, just like init does with the symlinks in rc2.d/ and its siblings, which point
back to ../init.d/<service>.

A manifest that enables a large number of configuration snippets might look like this:

file { '/etc/example_app/conf.d.enabled/england':
 ensure => 'link',
 target => '../conf.d.available/england'
}
file { '/etc/example_app/conf.d.enabled/ireland':
 ensure => 'link',
 target => '../conf.d.available/ireland'
}
file { '/etc/example_app/conf.d.enabled/germany':
 ensure => 'link',
 target => '../conf.d.available/germany'
 ...
}

This is tiring to read and somewhat painful to maintain. In a C program, one would
use a preprocessor macro that just takes the base name of both link and target and
expands to the three lines of each resource description. Puppet does not use a
preprocessor, but you can use defined types to achieve a similar result:

define example_app_config {
 file { "/etc/example_app/conf.d.enabled/${name}":
 ensure => 'link',
 target => "../conf.d.available/${name}",
 }
}

The defined type actually acts more like a simple function call than
an actual macro.

Chapter 4

[79]

The define requires no arguments—it can rely solely on its resource name, so the
preceding code can now be simplified to the following:

example_app_config {'england': }
example_app_config {'ireland': }
example_app_config {'germany': }
...

Alternatively, the following code is even more terse:

example_app_config { ['england', 'ireland', 'germany', ...]:
}

This array notation leads us to another use of defined types.

Exploiting array values using defined types
One of the more common scenarios in programming is the requirement to accept
an array value from some source and perform some task on each value. Puppet
manifests are not exempt from this.

Let's assume that the symbolic links from the previous example actually led to
directories, and that each such directory would contain a subdirectory to hold
optional links to regions. Puppet should manage those links as well.

Of course, after learning about the macro aspect of defined types, you would not
want to add each of those regions as distinct resources to your manifest. However,
you will need to devise a way to map region names to countries. Seeing as there is
already a defined resource type for countries, there is a very direct approach to this:
make the list of regions an attribute (or rather, a parameter) of the defined type:

define example_app_config (
 Array $regions = []
) {
 file { "/etc/example_app/conf.d.enabled/${name}":
 ensure => link,
 target => "../conf.d.available/${name}",
 }
 # to do: add functionality for $regions
}

Modularizing Manifests with Classes and Defined Types

[80]

Using the parameter is straightforward:

example_app_config { 'england':
 regions => ['South East', 'London'],
}
example_app_config { 'ireland':
 regions => ['Connacht', 'Ulster'],
}
example_app_config { 'germany':
 regions => ['Berlin', 'Bayern', 'Hamburg'],
}
...

The actual challenge is putting these values to use. A naïve approach is to add the
following to the definition of example_app_config:

file { $regions:
 path => "/etc/example_app/conf.d.enabled/${title}/
 regions/${name}",
 ensure => 'link',
 target => "../../regions.available/${name}";
}

However, this will not work. The $name variable does not refer to the title of the
file resource that is being declared. It actually refers, just like $title, to the name
of the enclosing class or defined type (in this case, the country name). Still, the actual
construct will seem quite familiar to you. The only missing piece here is yet another
defined type:

define example_app_region(String $country) {
 file { "/etc/example_app/conf.d.enabled/${country}/regions/${name}":
 ensure => 'link',
 target => "../../regions.available/${name}",
 }
}

The complete definition of the example_app_config defined type should look like
this then:

define example_app_config(Array $regions = []) {
 file { "/etc/example_app/conf.d.enabled/${name}":
 ensure => 'link',
 target => "../conf.d.available/${name}",
 }
 example_app_region { $regions:
 country => $name,
 }
}

Chapter 4

[81]

The outer defined type adapts the behavior of the example_app_region type to its
respective needs by passing its own resource name as a parameter value.

Using iterator functions
With Puppet 4 and later versions, you probably would not write code like the one
in the previous section. Thanks to new language features, using defined types as
iterators is no longer necessary. We will outline the alternative using the following
examples, with a more thorough exploration in Chapter 7, New Features from Puppet 4.

The plain country links can now be declared from an Array using the each function:

['england', 'ireland', 'germany'].each |$country| {
 file { "/etc/example_app/conf.d.enabled/${country}":
 ensure => 'link',
 target => "../conf.d.available/${country}",
 }
}

The regions can be declared from structured data. A hash suffices for this use case:

$region_data = {
 'england' => ['South East', 'London'],
 'ireland' => ['Connacht', 'Ulster'],
 'germany' => ['Berlin', 'Bayern', 'Hamburg'],
}
$region_data.each |$country, $region_array| {
 $region_array.each |$region| {
 file { "/etc/example_app/conf.d.enabled/${country}/
 regions/${region}":
 ensure => link,
 target => "../../regions.available/${region}",
 }
 }
}

In new manifests, you should prefer iteration using the each and map functions
over using defined types for this purpose. You will find examples of the former in
older manifest code, however. See Chapter 7, New Features from Puppet 4, for more
information on the topic.

Modularizing Manifests with Classes and Defined Types

[82]

Including classes from defined types
The example_app_config type that was defined in the previous example is
supposed to serve a very specific purpose. Therefore, it assumes that the base
directory, /etc/example_app, and its subdirectories were managed independently,
outside the defined type. This was a sound design, but many defined types are
meant to be used from lots of independent classes or other defined types. Such
defines need to be self-contained.

In our example, the defined type needs to make sure that the following resources
are part of the manifest:

file { ['/etc/example_app', '/etc/example_app/config.d.enabled']:
 ensure => 'directory',
}

Just putting this declaration into the body of the define will lead to duplicate
resource errors. Each instance of example_app_config will try to declare the
directories by itself. However, we already discussed a pattern to avoid just that
issue—we called it the component class.

To make sure that any instance of the example_app_config type is self-contained
and works on its own, wrap the preceding declaration in a class (for example, class
example_app_config_directories) and make sure to include this class right in the
body of the define:

define example_app_config(Array $regions = []) {
 include example_app_config_directories
...
}

You can refer to the examples that come with your copy of this book
for the definition of the class.

Establishing relationships among
containers
Puppet's classes bear little or no similarity to classes that you find in object-oriented
programming languages such as Java or Ruby. There are no methods or attributes.
There are no distinct instances of any class. You cannot create interfaces or abstract
base classes.

Chapter 4

[83]

One of the few shared characteristics is the encapsulation aspect. Just as classes from
OOP, Puppet's classes hide implementation details. To get Puppet to start managing
a subsystem, you just need to include the appropriate class.

Passing events between classes and defined
types
By sorting all resources into classes, you make it unnecessary (for your co-workers or
other collaborators) to know about each single resource. This is beneficial. You can
think of the collection of classes and defined types as your interface. You would not
want to read all manifests that anyone on your project ever wrote.

However, the encapsulation is inconvenient for passing resource events. Say you
have some daemon that creates live statistics from your Apache logfiles. It should
subscribe to Apache's configuration files so that it can restart if there are any changes
(which might be of consequence to this daemon's operation). In another scenario,
you might have Puppet manage some external data for a self-compiled Apache
module. If Puppet updates such data, you will want to trigger a restart of the Apache
service to reload everything.

Armed with the knowledge that there is a service, Service['apache2'], defined
somewhere in the apache class, you can just go ahead and have your module
data files notify that resource. It would work—Puppet does not apply any sort of
protection to resources that are declared in foreign classes. However, it would pose a
minor maintainability issue.

The reference to the resource is located far from the resource itself. When maintaining
the manifest later, you or a coworker might wish to look at the resource when
encountering the reference. In the case of Apache, it's not difficult to figure out where
to look, but in other scenarios, the location of the reference target can be less obvious.

Looking up a targeted resource is usually not necessary, but it can be
important to find out what that resource actually does. It gets especially
important during debugging, if after a change to the manifest, the
referenced resource is no longer found.

Besides, this approach will not work for the other scenario, in which your daemon
needs to subscribe to configuration changes. You could blindly subscribe the central
apache2.conf file, of course. However, this would not yield the desired results if
the responsible class opted to do most of the configuration work inside snippets
in /etc/apache2/conf.d.

Modularizing Manifests with Classes and Defined Types

[84]

Both scenarios can be addressed cleanly and elegantly by directing the notify or
subscribe parameters at the whole class that is managing the entity in question:

file { '/var/lib/apache2/sample-module/data01.bin':
 source => '...',
 notify => Class['apache'],
}
service { 'apache-logwatch':
 enable => true,
 subscribe => Class['apache'],
}

Of course, the signals are now sent (or received) indiscriminately—the file not only
notifies Service['apache2'], but also every other resource in the apache class.
This is usually acceptable, because most resources ignore events.

As for the logwatch daemon, it might refresh itself needlessly if some resource in
the apache class needs a sync action. The odds for this occurrence depend on the
implementation of the class. For ideal results, it might be sensible to relocate the
configuration file resources into their own class so that the daemon can subscribe
to that instead.

With your defined types, you can apply the same rules: subscribe to and notify
them as required. Doing so feels quite natural, because they are declared like
native resources anyway. This is how you subscribe several instances of the
defined type, symlink:

$active_countries = ['England', 'Ireland', 'Germany']
service { 'example-app':
 enable => true,
 subscribe => Symlink[$active_countries],
}

Granted, this very example is a bit awkward, because it requires all symlink
resource titles to be available in an array variable. In this case, it would be more
natural to make the defined type instances notify the service instead:

symlink { ['England', 'Ireland', 'Germany']:
 notify => Service['example-app'],
}

This notation passes a metaparameter to a defined type. The result is that this
parameter value is applied to all resources declared inside the define.

Chapter 4

[85]

If a defined type wraps or contains a service or exec type resource, it can also be
desirable to notify an instance of that define to refresh the contained resource. The
following example assumes that the service type is wrapped by a defined type
called protected_service:

file { '/etc/example_app/main.conf':
 source => '...',
 notify => Protected_service['example-app'],
}

Ordering containers
The notify and subscribe metaparameters are not the only ones that you can direct
at classes and instances of defined types—the same holds true for their siblings,
before and require. These allow you to define an order for your resources relative
to classes, order instances of your defined types, and even order classes among
themselves.

The latter works by virtue of the chaining operator:

include firewall
include loadbalancing
Class['firewall'] -> Class['loadbalancing']

The effect of this code is that all resources from the firewall class will be
synchronized before any resource from the loadbalancing class, and failure of
any resource in the former class will prevent all resources in the latter from being
synchronized.

Note that the chaining arrow cannot just be placed in between the
include statements. It works only between resources or references.

Because of these ordering semantics, it is actually quite wholesome to require a
whole class. You effectively mark the resource in question as being dependent on
the class. As a result, it will only be synchronized if the entire subsystem that the
class models is successfully synchronized first.

Modularizing Manifests with Classes and Defined Types

[86]

Limitations
Sadly, there is a rather substantial issue with both the ordering of containers and
the distribution of refresh events: both will not transcend the include statements
of further classes. Consider the following example:

class apache {
 include apache::service
 include apache::package
 include apache::config
}
file { '/etc/apache2/conf.d/passwords.conf':
 source => '...',
 require => Class['apache'],
}

I often mentioned how the comprehensive apache class models everything about
the Apache server subsystem, and in the previous section, I went on to explain
that directing a require parameter at such a class will make sure that Puppet only
touches the dependent resource if the subsystem has been successfully configured.

This is mostly true, but due to the limitation concerning class boundaries, it
doesn't achieve the desired effect in this scenario. The dependent configuration
file should actually require the Package['apache'] package, declared in class
apache::package. However, the relationship does not span multiple class
inclusions, so this particular dependency will not be part of the resulting catalog
at all.

Similarly, any refresh events sent to the apache class will have no effect—they are
distributed to resources declared in the class's body (of which there are none), but
are not passed on to included classes. Subscribing to the class will make no sense
either, because any resource events generated inside the included classes will not be
forwarded by the apache class.

The bottom line is that relationships to classes cannot be built in utter ignorance of
their implementation. If in doubt, you need to make sure that the resources that are
of interest are actually declared directly inside the class you are targeting.

The discussion revolved around the example of the include
statements in classes, but since it is common to use them in defined
types as well, the same limitation applies in this case too.

Chapter 4

[87]

There is a bright side to this as well. A more correct implementation of the Apache
configuration file from the example explained would depend on the package, but
would also synchronize itself before the service, and perhaps even notify it (so that
Apache restarts if necessary). When all resources are part of the apache class and
you want to adhere to the pattern of interacting with the container only, it would
lead to the following declaration:

file { '/etc/apache2/conf.d/passwords.conf':
 source => '...',
 require => Class['apache'],
 notify => Class['apache'],
}

This forms an instant dependency circle: the file resource requires all parts of
the apache class to be synchronized before it gets processed, but to notify them,
they must all be put after the file resource in the order graph. This cannot work.
With the knowledge of the inner structure of the apache class, the user can pick
metaparameter values that actually work:

file { '/etc/apache2/conf.d/passwords.conf':
 source => '...',
 require => Class['apache::package'],
 notify => Class['apache::service'],
}

For the curious the preceding code shows what the inner classes look like, roughly.

The other good news is that invoking defined types does not pose the same kind of
issue that an include statement of a class does. Events are passed to resources inside
defined types just fine, transcending an arbitrary number of stacked invocations.
Ordering also works just as expected. Let's keep the example brief:

class apache {
 virtual_host { 'example.net': ... }
 ...
}

This apache class also creates a virtual host using the defined type, virtual_host.
A resource that requires this class will implicitly require all resources from within
this virtual_host instance. A subscriber to the class will receive events from
those resources, and events directed at the class will reach the resources of this
virtual_host.

Modularizing Manifests with Classes and Defined Types

[88]

There is actually a good reason to make the include statements behave
differently in this regard. As classes can be included very generously
(thanks to their singleton aspect), it is common for classes to build a vast
network of includes. By adding a single include statement to a manifest,
you might unknowingly pull hundreds of classes into this manifest.
Assume, for a moment, that relationships and events transcend this whole
network. All manners of unintended effects will be the consequence.
Dependency circles will be nearly inevitable. The whole construct will
become utterly unmanageable. The cost of such relationships will also
grow exponentially. Refer to the next section.

The performance implications of container
relationships
There is another aspect that you should keep in mind whenever you are
referencing a container type to build a relationship to it. The Puppet agent will
have to build a dependency graph from this. This graph contains all resources
as nodes and all relationships as edges. Classes and defined types get expanded
to all their declared resources. All relationships to the container are expanded to
relationships to each resource.

This is mostly harmless, if the other end of the relationship is a native resource.
A file that requires a class with five declared resources leads to five dependencies.
That does not hurt. It gets more interesting if the same class is required by an
instance of a defined type that comprises three resources. Each of these builds
a relationship to each of the class's resources, so you end up with 15 edges in
the graph.

It gets even more expensive when a container invokes complex defined types,
perhaps even recursively.

A more complex graph means more work for the Puppet agent, and its runs will
take longer. This is especially annoying when running agents interactively during
the debugging or development of your manifest. To avoid the unnecessary effort,
consider your relationship declarations carefully, and use them only when they are
really appropriate.

Chapter 4

[89]

Mitigating the limitations
The architects of the Puppet language have devised two alternative approaches to
solve the ordering issues. We will consider both, because you might encounter them
in existing manifests. In new setups, you should always choose the latter variant.

The anchor pattern
The anchor pattern is the classic workaround for the problem with ordering and
signaling in the context of recursive class include statements. It can be illustrated by
the following example class:

class example_app {
 anchor { 'example_app::begin':
 notify => Class['example_app_config'],
 }
 include example_app_config
 anchor { 'example_app::end':
 require => Class['example_app_config'],
 }
}

Consider a resource that is placed before => Class['example_app']. It ends up in
the chain before each anchor, and therefore, also before any resource in example_
app_config, despite the include limitation. This is because the Anchor['example_
app::begin'] pseudo-resource notifies the included class and is therefore ordered
before all of its resources. A similar effect works for objects that require the class, by
virtue of the example::end anchor.

The anchor resource type was created for this express purpose. It is not part of
the Puppet core, but has been made available through the stdlib module instead
(the next chapter will familiarize you with modules). Since it also forwards refresh
events, it is even possible to notify and subscribe this anchored class, and events will
propagate into and out of the included example_app_config class.

The stdlib module is available in the Puppet Forge, but more about this in the next
chapter. There is a descriptive document for the anchor pattern to be found online
as well, in Puppet Labs' Redmine issue tracker (now obsolete) at http://projects.
puppetlabs.com/projects/puppet/wiki/Anchor_Pattern. It is somewhat dated,
seeing as the anchor pattern has been supplanted as well by Puppet's ability to
contain a class in a container.

http://projects.puppetlabs.com/projects/puppet/wiki/Anchor_Pattern
http://projects.puppetlabs.com/projects/puppet/wiki/Anchor_Pattern

Modularizing Manifests with Classes and Defined Types

[90]

The contain function
To make composite classes directly work around the limitations of the include
statement, you can take advantage of the contain function found in Puppet version
3.4.x or newer.

If the earlier apache example had been written like the following one, there would
have been no issues concerning ordering and refresh events:

class apache {
 contain apache::service
 contain apache::package
 contain apache::config
}

The official documentation describes the behavior as follows:

"A contained class will not be applied before the containing class is begun, and will
be finished before the containing class is finished."

This might read like we're now discussing the panacea for the presented class ordering
issues here. Should you just be using contain in place of include from here on out
and never worry about class ordering again? Of course not, this would introduce lots
of unnecessary ordering constraints and lead you into unfixable dependency circles
very quickly. Do contain classes, but make sure that it makes sense. The contained
class should really form a vital part of what the containing class is modeling.

The quoted documentation refers to classes only, but classes
can be contained in defined types just as well. The effect of
containment is not limited to ordering aspects either. Refresh
events are also correctly propagated.

Making classes more flexible through
parameters
Up until this point, classes and defines were presented as direct opposites with
respect to flexibility; defined types are inherently adaptable through different
parameter values, whereas classes model just one static piece of state. As the section
title suggests, this is not entirely true. Classes too can have parameters. Their
definition and declaration become rather similar to those of defined types in this case:

class apache::config(Integer $max_clients=100) {
 file { '/etc/apache2/conf.d/max_clients.conf':

Chapter 4

[91]

 content => "MaxClients ${max_clients}\n",
 }
}

With a definition like the preceding one, the class can be declared with a
parameter value:

class { 'apache::config':
 max_clients => 120,
}

This enables some very elegant designs, but introduces some drawbacks as well.

The caveats of parameterized classes
The consequence of allowing class parameters is almost obvious: you lose the
singleton characteristic. Well, that's not entirely true either, but your freedom in
declaring the class gets limited drastically.

Classes that define default values for all parameters can still be declared with
the include statement. This can still be done an arbitrary number of times in the
same manifest.

However, the resource-like declaration of class { 'name': } cannot appear more
than once for any given class in the same manifest. This is in keeping with the rules
for resources and should not be very surprising—after all, it would be very awkward
to try and bind different values to a class's parameters in different locations
throughout the manifest.

Things become very confusing when mixing include with the alternative syntax
though. It is valid to include a class an arbitrary number of times after it has been
declared using the resource-like notation. However, you cannot use the resource
style declaration after a class has been declared using include. That's because the
parameters are then determined to assume their default values, and a class {
'name': } declaration clashes with that.

In a nutshell, the following code works:

class { 'apache::config': }
include apache::config

However, the following code does not work:

include apache::config
class { 'apache::config': }

Modularizing Manifests with Classes and Defined Types

[92]

As a consequence, you effectively cannot add parameters to component classes,
because the include statement is no longer safe to use in large quantities. Therefore,
parameters are essentially only useful for comprehensive classes, which usually
don't get included from different parts of the manifest.

In Chapter 5, Extending Your Puppet Infrastructure with Modules, we will
discuss some alternate patterns, some of which exploit class parameters.
Also note that Chapter 8, Separating Data from Code Using Hiera, presents a
solution that gives you more flexibility with parameterized classes. Using
this, you can be more liberal with your class interfaces.

Preferring the include keyword
Ever since class parameters have been available, some Puppet users have felt
compelled to write (example) code that would make it a point to forgo the include
keyword in favor of resource-like class declarations, such as this:

class apache {
 class { 'apache::service': }
 class { 'apache::package': }
 class { 'apache::config': }
}

Doing this is a very bad idea. We cannot stress this enough: one of the most powerful
concepts about Puppet's classes is their singleton aspect—the ability to include a
class in a manifest arbitrarily and without worrying about clashes with other code.
The mentioned declaration syntax deprives you of this power, even when the classes
in question don't support parameters.

The safest route is to use include whenever possible, and to avoid the alternate
syntax whenever you can. In fact, Chapter 8, Separating Data from Code Using Hiera,
introduces the ability to use class parameters without the resource-like class
declaration. This way, you can rely solely on include, even when parameters are in
play. These are the safest recommended practices to keep you out of trouble from
incompatible class declarations.

Chapter 4

[93]

Summary
Classes and defined types are the essential tools to create reusable Puppet code.
While classes hold resources that must not be repeated in a manifest, the define is
capable of managing a distinct set of adapted resources upon every invocation. It
does that by leveraging the parameter values it receives. While classes do support
parameters as well, there are some caveats to bear in mind.

To use defined types in your manifest, you declare instances just like resources of
native types. Classes are mainly used through the include statement, although there
are alternatives such as the class { } syntax or the contain function.

There are also some ordering issues with classes that the contain function can
help mitigate.

In theory, classes and defines suffice to build almost all the manifests that you will
ever need. In practice, you will want to organize your code into larger structures.
The next chapter will show you how to do exactly that, and introduce you to a whole
range of useful functionality beyond it.

Chapter 5

[95]

Extending Your Puppet
Infrastructure with Modules

In the previous chapter, you learned about the tools that create modularized and
reusable Puppet code in the form of classes and defined types. We discussed that
almost all the Puppet resources should be separated into appropriate classes, except
if they logically need to be part of a defined type. This is almost enough syntax to
build manifests for an entire fleet of agent nodes - each selecting the appropriate
composite classes, which in turn include further required classes, with all the classes
recursively instantiating the defined types.

What has not been discussed up until now is the organization of the manifests in the
filesystem. It is obviously undesirable to stuff all of your code into one large site.pp
file. The answer to this problem is provided by modules and will be explained in
this chapter.

Besides organizing classes and defines, modules are also a way to share common
code. They are software libraries for Puppet manifests and plugins. They also offer
a convenient place to locate the interface descriptions that were hinted at in the
previous chapter. Puppet Labs runs a dedicated service for hosting open source
modules, called the Puppet Forge.

The existence and general location of the modules were mentioned briefly in Chapter
3, A Peek under the Hood – Facts, Types, and Providers. It is now time to explore these
and other aspects in greater detail. We'll cover the following topics in this chapter:

• An overview of Puppet's modules
• Maintaining environments
• Following modules' best practices
• Building a specific module
• Finding helpful Forge modules

Extending Your Puppet Infrastructure with Modules

[96]

An overview of Puppet's modules
A module can be seen as a higher-order organizational unit. It bundles up classes and
defined types that contribute to a common management goal (specific system aspects
or a piece of software, for example). These manifests are not all that is organized
through modules; most modules also bundle files and file templates. There can also be
several kinds of Puppet plugins in a module. This section will explain these different
parts of a module and show you where they are located. You will also learn about the
means of module documentation and how to obtain existing modules for your
own use.

Parts of a module
For most modules, manifests form the most important part - the core functionality.
The manifests consist of classes and defined types, which all share a namespace,
rooted at the module name. For example, an ntp module will contain only classes
and defines whose names start with the ntp:: prefix.

Many modules contain files that can be synced to the agent's filesystem. This is
often used for configuration files or snippets. You have seen examples of this, but
let's repeat them. A frequent occurrence in many manifests is file resources such
as the following:

file { '/etc/ntp.conf':
 source => 'puppet:///modules/ntp/ntp.conf',
}

The above resource references a file that ships with a hypothetical ntp module. It has
been prepared to provide generally suitable configuration data. However, there is
often a need to tweak some parameters inside such a file, so that the node manifests
can declare customized config settings for the respective agent. The tool of choice for
this is templates, which will be discussed in the next chapter.

Another possible component of a module that you have already read about is
Custom Facts—code that gets synchronized to the agent and runs before a catalog is
requested, so that the output becomes available as facts about the agent system.

These facts are not the only Puppet plugins that can be shipped with modules. There
are also parser functions (also called custom functions), for one. These are actual
functions that you can use in your manifests. In many situations, they are the most
convenient way, if not the only way, to build some specific implementations.

The final plugin type that has also been hinted at in an earlier chapter is the custom
native types and providers, which are conveniently placed in modules as well.

Chapter 5

[97]

Module structure
All the mentioned components need to be located in specific filesystem locations for
the master to pick them up. Each module forms a directory tree. Its root is named after
the module itself. For example, the ntp module is stored in a directory called ntp/.

All manifests are stored in a subdirectory called manifests/. Each class and
defined type has its own respective file. The ntp::package class will be found in
manifests/package.pp, and the defined type called ntp::monitoring::nagios
will be found in manifests/monitoring/nagios.pp. The first particle of the
container name (ntp) is always the module name, and the rest describes the location
under manifests/. You can refer to the module tree in the following paragraphs for
more examples.

The manifests/init.pp file is special. It can be thought of as a default manifest
location, because it is looked up for any definition from the module in question.
Both the examples that were just mentioned can be put into init.pp and will still
work. Doing this makes it harder to locate the definitions, though.

In practice, init.pp should only hold one class, which is named after the module
(such as the ntp class), if your module implements such a class. This is a common
practice, as it allows the manifests to use a simple statement to tap the core
functionality of the module:

include ntp

You can refer to the Modules' best practices section for some more notes on this subject.

The files and templates that a module serves to the agents are not this strictly sorted
into specific locations. It is only important that they be placed in the files/ and
templates/ subdirectories, respectively. The contents of these subtrees can be
structured to the module author's liking, and the manifest must reference them
correctly. Static files should always be addressed through URLs, such as these:

puppet:///modules/ntp/ntp.conf
puppet:///modules/my_app/opt/scripts/find_my_app.sh

These files are found in the corresponding subdirectories of files/:

.../modules/ntp/files/ntp.conf

.../modules/my_app/files/opt/scripts/find_my_app.sh

The modules prefix in the URI is mandatory and is always followed by the module
name. The rest of the path translates directly to the contents of the files/ directory.
There are similar rules for templates. You can refer to Chapter 6, Leveraging the Full
Toolset of the Language, for the details.

Extending Your Puppet Infrastructure with Modules

[98]

Finally, all plugins are located in the lib/ subtree. Custom facts are Ruby files in
lib/facter/. Parser functions are stored in lib/puppet/parser/functions/,
and for custom resource types and providers, there is lib/puppet/type/ and lib/
puppet/provider/, respectively. This is not a coincidence; these Ruby libraries
are looked up by the master and the agent in the according namespaces. There are
examples for all these components later in this chapter.

In short, following are the contents of a possible module in a tree view:

/opt/puppetlabs/code/environments/production/modules/my_app
 templates # templates are covered in the next chapter
 files
 subdir1 # puppet:///modules/my_app/subdir1/<filename>
 subdir2 # puppet:///modules/my_app/subdir2/<filename>
 subsubdir # puppet:///modules/my_app/subdir2/subsubdir/...
 manifests
 init.pp # class my_app is defined here
 params.pp # class my_app::params is defined here
 config
 detail.pp # my_app::config::detail is defined here
 basics.pp # my_app::config::basics is defined here
 lib
 facter # contains .rb files with custom facts
 puppet
 functions # contains .rb files with Puppet 4 functions
 parser
 functions # contains .rb files with parser functions
 type # contains .rb files with custom types
 provider # contains .rb files with custom providers

Documentation in modules
A module can and should include documentation. The Puppet master does not
process any module documentation by itself. As such, it is largely up to the authors
to decide how to structure the documentation of the modules that are created for
their specific site only. That being said, there are some common practices and it's a
good idea to adhere to them. Besides, if a module should end up being published on
the Forge, appropriate documentation should be considered mandatory.

The process of publishing modules is beyond the scope of this book.
You can find a guide at https://docs.puppetlabs.com/puppet/
latest/reference/modules_publishing.html.

https://docs.puppetlabs.com/puppet/latest/reference/modules_publishing.html
https://docs.puppetlabs.com/puppet/latest/reference/modules_publishing.html

Chapter 5

[99]

For many modules, the main focus of the documentation is centered on the README
file, which is located right in the module's root directory. It is customarily formatted
in Markdown as README.md or README.markdown. The README file should contain
explanations, and often, there is a reference documentation as well.

Puppet DSL interfaces can also be documented right in the manifest, in the rdoc
and YARD format. This applies to classes and defined types:

Class: my_app::firewall
#
This class adds firewall rules to allow access to my_app.
#
Parameters: none
class my_app::firewall {
 # class code here
}

You can generate HTML documentation (including navigation) for all your modules
using the puppet doc subcommand. This practice is somewhat obscure, so it won't
be discussed here in great detail. However, if this option is attractive to you, we
encourage you to peruse the documentation.

The following command is a good starting point:

puppet help doc

Another useful resource is the puppetlabs-strings module (https://forge.
puppetlabs.com/puppetlabs/strings), which will eventually supersede puppet
doc.

Plugins are documented right in their Ruby code. There are examples for this in the
following sections.

Maintaining environments
Puppet doesn't organize things in modules exclusively. There is a higher-level unit
called environment that groups and contains the modules. An environment mainly
consists of:

• One or more site manifest files
• A modules directory
• An optional environment.conf configuration file

https://forge.puppetlabs.com/puppetlabs/strings
https://forge.puppetlabs.com/puppetlabs/strings

Extending Your Puppet Infrastructure with Modules

[100]

When the master compiles the manifest for a node, it uses exactly one environment
for this task. As described in Chapter 2, The Master and Its Agents, it always starts in
manifests/*.pp, which form the environment's site manifest. Before we take a look
at how this works in practice, let's see an example environment directory:

/opt/puppetlabs/code/environments
 production
 environment.conf
 manifests
 site.pp
 nodes.pp
 modules
 my_app
 ntp

The environment.conf file can customize the environment. Normally, Puppet uses
site.pp and the other files in the manifests directory. To make Puppet read all the
pp files in another directory, set the manifest option in environment.conf:

/opt/puppetlabs/code/environments/production/environment.conf
manifest = puppet_manifests

In most circumstances, the manifest option need not be changed.

The site.pp file will include classes and instantiate defines from the modules.
Puppet looks for modules in the modules subdirectory of the active environment.
You can define additional subdirectories that hold the modules by setting the
modulepath option in environment.conf:

/opt/puppetlabs/code/environments/production/environment.conf
modulepath = modules:site-modules

The directory structure can be made more distinctive:

/opt/puppetlabs/code/environments/
 production
 manifests
 modules
 ntp
 site-modules
 my_app

Chapter 5

[101]

Configuring environment locations
Puppet uses the production environment by default. This and the other environments
are expected to be located in /opt/puppetlabs/code/environments. You can
override this default by setting the environmentpath option in puppet.conf:

[main]
environmentpath = /etc/local/puppet/environments

With Puppet 3, you are required to set this option, as it is not yet the default. It is
available from version 3.5. The earlier versions needed to configure the environments
right in puppet.conf with their respective manifest and modulepath settings.
These work just like the settings from environment.conf:

in puppet.conf (obsolete since 4.0)
[testing]
manifest = /etc/puppet/environments/testing/manifests
modulepath = /etc/puppet/environments/testing/modules

For the special production environment, these Puppet setups use the manifest
and modulepath settings from the [main] or [master] section. The old default
configuration had the production environment look for the manifests and the
modules right in /etc/puppet:

Obsolete! Works only with Puppet 3.x!
[main]
manifest = /etc/puppet/site.pp
modulepath = /etc/puppet/modules

The sites that operate like this today should be migrated to the aforementioned
directory environments in /opt/puppetlabs/code/environments or similar
locations.

Obtaining and installing modules
Downloading existing modules is very common. Puppet Labs hosts a dedicated
site for sharing and obtaining the modules - the Puppet Forge. It works just like
RubyGems or CPAN and makes it simple for the user to retrieve a given module
through a command-line interface. In the Forge, the modules are fully named by
prefixing the actual module name with the author's name, such as puppetlabs-
stdlib or ffrank-constraints.

Extending Your Puppet Infrastructure with Modules

[102]

The puppet module install command installs a module in the active environment:

root@puppetmaster# puppet module install puppetlabs-stdlib

The Testing your modules section has information on using
different environments.

The current release of the stdlib module (authored by the user puppetlabs) is
downloaded from the Forge and installed in the standard modules' location. This
is the first location in the current environment's modulepath, which is usually the
modules subdirectory. Specifically, the modules will most likely end up in the
environments/production/modules directory.

The stdlib module in particular should be considered mandatory;
it adds a large number of useful functions to the Puppet language.
Examples include the keys, values, and has_key functions, which
are essential for implementing the proper handling of hash structures,
to name only a few. The functions are available to your manifests as
soon as the module is installed - there is no need to include any class
or other explicit loading. If you write your own modules that add
functions, these are loaded automatically in the same way.

Modules' best practices
With all the current versions of Puppet, you should make it a habit to put all the
manifest code into modules, with only the following few exceptions:

• The node blocks
• The include statements for very select classes that should be omnipresent

(the most common design pattern does this in the so-called base role,
however; see Chapter 8, Separating Data from Code Using Hiera, for the Roles
and Profiles pattern)

• Declarations of helpful variables that should have the same availability
as the Facter facts in your manifests

This section provides details on how to organize your manifests accordingly.
It also advises some design practices and strategies in order to test the changes
to the modules.

Chapter 5

[103]

Putting everything in modules
You might find some manifests in very old installations that gather lots of manifest
files in one or more directories and use the import statements in the site.pp file,
such as:

import '/etc/puppet/manifests/custom/*.pp'

All classes and defined types in these files are then available globally.

This whole approach had scalability issues and has long been deprecated.
The import keyword is missing from Puppet 4 and the newer versions.

It is far more efficient to give meaningful names to the classes and defined types so
that Puppet can look them up in the collection of modules. The scheme has been
discussed in an earlier section already, so let's just look at another example where the
Puppet compiler encounters a class name, such as:

include ntp::server::component::watchdog

Puppet will go ahead and locate the ntp module in all the configured module
locations of the active environment (path names in the modulepath setting). It will
then try and read the ntp/manifests/server/component/watchdog.pp file in
order to find the class definition. Failing this, it will try ntp/manifests/init.pp.

This makes compilation very efficient. Puppet dynamically identifies the required
manifest files and includes only those for parsing. It also aids code inspection and
development, as it is abundantly clear where you should look for specific definitions.

Technically, it is possible to stuff all of a module's manifests into its
init.pp file, but you lose the advantages that a structured tree of
module manifests offers.

Avoiding generalization
Each module should ideally serve a specific purpose. On a site that relies on
Puppet to manage a diverse server infrastructure, there are likely modules for each
respective service, such as apache, ssh, nagios, nginx, and so forth. There can also
be site-specific modules such as users or shell_settings if the operations require
this kind of fine-grained control. Such customized modules are sometimes just
named after the group or the company that owns them.

Extending Your Puppet Infrastructure with Modules

[104]

The ideal granularity depends on the individual requirements of your setup.
What you generally want to avoid are modules with names such as utilities or
helpers, which serve as a melting pot for ideas that don't fit in any of the existing
modules. Such a lack of organization can be detrimental to discipline and can lead
to chaotic modules that include definitions that should have become their own
respective modules instead.

Adding more modules is cheap. A module generally incurs no cost for the Puppet
master operation, and your user experience will usually become more efficient with
more modules, not less so. Of course, this balance can tip if your site imposes special
documentation or other handling prerequisites on each module. Such rulings must
then be weighed into the decisions about module organization.

Testing your modules
Depending on the size of your agent network, some or many of your modules can
be used by a large variety of nodes. Despite these commonalities, these nodes can
be quite different from one another. A change to a central module, such as ssh or
ntp, which are likely used by a large number of agents, can have quite extensive
consequences.

The first and the most important tool for testing your work is the --noop option
for Puppet. It works for puppet agent, as well as puppet apply. If it is given on
the command line, Puppet will not perform any necessary sync actions, and merely
present the respective line of output to you instead. There is an example of this in
Chapter 1, Writing Your First Manifests.

When using a master instead of working locally with puppet apply, a new problem
arises, though. The master is queried by all your agents. Unless all the agents are
disabled while you are testing a new manifest, it is very likely that one will check in
and accidentally run the untested code.

In fact, even your test agent can trigger its regular run while you
are logged in, transparently in the background.

It is very important to guard against such uncontrolled manifest applications.
A small mistake can damage a number of agent machines in a short time period.
The best way to go about this is to define multiple environments on the master.

Chapter 5

[105]

Safe testing with environments
Besides the production environment, you should create at least one testing
environment. You can call it testing or whatever you like. When using the
directory environments, just create its directory in environmentpath.

Such an additional environment is very useful for testing changes. The test
environment or environments should be copies of the production data. Prepare all
the manifest changes in testing first. You can make your agents test this change
before you copy it to production:

root@agent# puppet agent --test --noop --env testing

You can even omit the noop flag on some or all of your agents so that the change is
actually deployed. Some subtle mistakes in the manifests cannot be detected from
an inspection of the noop output, so it is usually a good idea to run the code at least
once before releasing it.

Environments are even more effective when used in conjunction
with source control, especially distributed systems such as git
or mercurial. Versioning your Puppet code is a good idea
independently of environments and testing—this is one of the
greatest advantages that Puppet has to offer you through its
Infrastructure as Code paradigm.

Using environments and the noop mode form a pragmatic approach to testing that
can serve in most scenarios. The safety against erroneous Puppet behavior is limited,
of course. There are more formal ways of testing the modules:

• The rspec-puppet tool allows the module authors to implement unit tests
based on rspec. You can find more details at http://rspec-puppet.com/.

• Acceptance testing can be performed through beaker. You can refer
to https://github.com/puppetlabs/beaker/wiki/How-To-Beaker
for details.

Explaining these tools in detail is beyond the scope of this book.

http://rspec-puppet.com/
https://github.com/puppetlabs/beaker/wiki/How-To-Beaker

Extending Your Puppet Infrastructure with Modules

[106]

Building a specific module
This chapter has discussed many theoretical and operational aspects of modules, but
you are yet to gain an insight into the process of writing modules. For this purpose,
the rest of this chapter will have you create an example module step by step.

It should be stressed again that for the most part, you will want to find general
purpose modules from the Forge. The number of available modules is ever growing,
so the odds are good that there is something already there to help you with what you
need to do.

Assume that you want to add Cacti to your network, an RRD tool-based trend
monitor and graphing server, including a web interface. If you would check the
Forge first, you would indeed find some modules. However, let's further assume that
none of them speak to you, because either the feature set or the implementation is
not to your liking. If even the respective interfaces don't meet your requirements, it
doesn't make much sense to base your own module on an existing one (in the form of
a fork on GitHub) either. You will then need to write your own module from scratch.

Naming your module
Module names should be concise and to the point. If you manage a specific piece
of software, name your module after it - apache, java, mysql, and so forth. Avoid
verbs such as install_cacti or manage_cacti. If your module name does need to
consist of several words (because the target subsystem has a long name), they should
be divided by underscore characters. Spaces, dashes, and other non-alphanumeric
characters are not allowed.

In our example, the module should just be named cacti.

Making your module available to Puppet
To use your own module, you don't need to make it available for installation through
puppet module. For that, you will need to upload the module to the Forge first,
which will require quite some additional effort. Luckily, a module will work just fine
without all this preparation, if you just put the source code in the proper location on
your master.

To create your own cacti module, create the basic directories:

root@puppetmaster# mkdir -p /opt/puppetlabs/code/environments/testing/
cacti/{manifests,files}

Don't forget to synchronize all the changes to production once the agents use them.

Chapter 5

[107]

Implementing basic module functionality
Most modules perform all of their work through their manifests.

There are notable exceptions, such as the stdlib module. It mainly adds
the parser functions and a few general-purpose resource types.

When planning the classes for your module, it is most straightforward to think about
how you would like to use the finished module. There is a wide range of possible
interface designs. The de facto standard stipulates that the managed subsystem is
initialized on the agent system by including the module's main class - the class that
bears the same name as the module and is implemented in the module's init.pp file.

For our Cacti module, the user should use the following:

include cacti

As a result, Puppet would take all the required steps in order to install the software
and if necessary, perform any additional initialization.

Start by creating the cacti class and implementing the setup in the way you would
from the command line, replacing the commands with appropriate Puppet resources.
On a Debian system, installing the cacti package is enough. Other required software
is brought in through the dependencies (completing the LAMP stack), and after the
package installation, the interface becomes available through the web URI /cacti/ on
the server machine:

…/modules/cacti/manifests/init.pp
class cacti {
 package { 'cacti':
 ensure => installed,
 }
}

Your module is now ready for testing. Invoke it from your agent's manifest in
site.pp or nodes.pp of the testing environment:

node 'agent' {
 include cacti
}

Apply it on your agent directly:

root@agent# puppet agent --test --environment testing

Extending Your Puppet Infrastructure with Modules

[108]

This will work on Debian, and Cacti is reachable via http://<address>/cacti/.

Some sites use an External Node Classifier (ENC), such as The Foreman.
Among other helpful things, it can centrally assign environments to the
nodes. In this scenario, the --environment switch will not work.

It's unfortunate that the Cacti web interface will not come up when the home page is
requested through the / URI. To enable this, give the module the ability to configure
an appropriate redirection. Prepare an Apache configuration snippet in the module
in /opt/puppetlabs/code/environments/testing/cacti/files/etc/apache2/
conf.d/cacti-redirect.conf:

Do not edit this file – it is managed by Puppet!
RedirectMatch permanent ^/$ /cacti/

The warning notice is helpful, especially when multiple administrators
have access to the Cacti server.

It makes sense to add a dedicated class that will sync this file to the agent machine:

…/modules/cacti/manifests/redirect.pp
class cacti::redirect {
 file { '/etc/apache2/conf.d/cacti-redirect.conf':
 ensure => file,
 source => 'puppet:///modules/cacti/etc/apache2/conf.d/
 cacti-redirect.conf',
 require => Package['cacti'];
 }
}

A short file like this can also be managed through the file type's
content property instead of source:

$puppet_warning = '# Do not edit – managed by Puppet!'
$line = 'RedirectMatch permanent ^/$ /cacti/'
file { '/etc/apache2/conf.d/cacti-redirect.conf':
 ensure => file,
 content => "${puppet_warning}\n${line}\n",
}

This is more efficient, because the content is part of the catalog and so the
agent does not need to retrieve the checksum through another request to
the master.

Chapter 5

[109]

The module now allows the user to include cacti::redirect in order to get this
functionality. This is not a bad interface as such, but this kind of modification is
actually well-suited to become a parameter of the cacti class:

class cacti($redirect = true) {
 if $redirect {
 contain cacti::redirect
 }
 package { 'cacti':
 ensure => installed,
 }
}

The redirect is now installed by default when a manifest uses include cacti.
If the web server has other virtual hosts that serve things that are not Cacti, this
might be undesirable. In such cases, the manifest will declare the class with this
following parameter:

class { 'cacti': redirect => false }

Speaking of best practices, most modules will also separate the installation routine
into a class of its own. In our case, this is hardly helpful, because the installation
status is ensured through a single resource, but let's do it anyway:

class cacti($redirect = true) {
 contain cacti::install
 if $redirect {
 contain cacti::redirect
 }
}

It's sensible to use contain here in order to make the Cacti management a solid unit.
The cacti::install class is put into a separate install.pp manifest file:

…/modules/cacti/manifests/install.pp
class cacti::install {
 package { 'cacti':
 ensure => 'installed'
 }
}

On Debian, the installation process of the cacti package copies another Apache
configuration file to /etc/apache2/conf.d. Since Puppet performs a normal apt
installation, this result will be achieved. However, Puppet does not make sure that
the configuration stays in this desired state.

Extending Your Puppet Infrastructure with Modules

[110]

There is an actual risk that the configuration might get broken. If the
puppetlabs-apache module is in use for a given node, it will usually
purge any unmanaged configuration files from the /etc/apache2/ tree.
Be very careful when you enable this module for an existing server. Test it
in the noop mode. If required, amend the manifest to include the existing
configuration.

It is prudent to add a file resource to the manifest that keeps the configuration
snippet in its post-installation state. Usually with Puppet, this will require you to
copy the config file contents to the module, just like the redirect configuration is in
a file on the master. However, since the Debian package for Cacti includes a copy of
the snippet in /usr/share/doc/cacti/cacti.apache.conf, you can instruct the
agent to sync the actual configuration with that. Perform this in yet another de facto
standard for modules - the config class:

…/modules/cacti/manifests/config.pp
class cacti::config {
 file { '/etc/apache2/conf.d/cacti.conf':
 mode => '0644',
 source => '/usr/share/doc/cacti/cacti.apache.conf'
 }
}

This class should be contained by the cacti class as well. Running the agent again
will now have no effect, because the configuration is already in place.

Creating utilities for derived manifests
You have now created several classes that compartmentalize the basic installation
and configuration work for your module. Classes lend themselves very well to
implement global settings that are relevant for the managed software as a whole.

However, just installing Cacti and making its web interface available is not an
especially powerful capability - after all, the module does little beyond what a user
can achieve by installing Cacti through the package manager. The much greater pain
point with Cacti is that it usually requires configuration via its web interface; adding
servers as well as choosing and configuring graphs for each server can be an arduous
task and require dozens of clicks per server, depending on the complexity of your
graphing needs.

This is where Puppet can be the most helpful. A textual representation of the desired
states allows for quick copy-and-paste repetition and name substitution through
regular expressions. Better yet, once there is a Puppet interface, the users can devise
their own defined types in order to save themselves from the copy and paste work.

Chapter 5

[111]

Speaking of defined types, they are what is required for your module to allow this
kind of configuration. Each machine in Cacti's configuration should be an instance
of a defined type. The graphs can have their own type as well.

As with the implementation of the classes, the first thing you always need to ask
yourself is how this task would be done from the command line.

Actually, the better question can be what API you should use for this,
preferably from Ruby. However, this is only important if you intend
to write Puppet plugins - resource types and providers. We will look
into this later in this very chapter.

Cacti comes with a set of CLI scripts. The Debian package makes these available
in /usr/share/cacti/cli. Let's discover these while we step through the
implementation of the Puppet interface. The goals are defined types that will
effectively wrap the command-line tools so that Puppet can always maintain the
defined configuration state through appropriate queries and update commands.

Adding configuration items
While designing more capabilities for the Cacti module, first comes the ability
to register a machine for monitoring - or rather, a device, as Cacti itself calls it
(network infrastructure such as switches and routers are frequently monitored as
well, and not only computers). The name for the first defined type should, therefore,
be cacti::device.

The same warnings from the Naming your module subsection apply - don't
give in to the temptation of giving names such as create_device or
define_domain to your type, unless you have very good reasons, such
as the removal being impossible. Even then, it's probably better to skip
the verb.

The CLI script used to register a device is named add_device.php. Its help output
readily indicates that it requires two parameters, which are description and ip.
A custom description of an entity is often a good use for the respective Puppet
resource's title. The type almost writes itself now:

…/modules/cacti/manifests/device.pp
define cacti::device ($ip) {
 $cli = '/usr/share/cacti/cli'
 $options = "--description='${name}' --ip='${ip}'"
 exec { "add-cacti-device-${name}":
 command => "${cli}/add_device.php ${options}",
 require => Class['cacti'],
}

Extending Your Puppet Infrastructure with Modules

[112]

In practice, it is often unnecessary to use so many variables, but it serves
readability with the limited horizontal space of the page.

This exec resource gives Puppet the ability to use the CLI to create a new device in
the Cacti configuration. Since PHP is among the Cacti package's requirements, it's
sufficient to make the exec resource require the cacti class. Note the use of $name,
not only for the --description parameter but in the resource name for the exec
resource as well. This ensures that each cacti::device instance declares a unique
exec resource in order to create itself.

However, this still lacks an important aspect. Written as in the preceding example,
this exec resource will make the Puppet agent run the CLI script always, under any
circumstances. This is incorrect though - it should only run if the device has not yet
been added.

Every exec resource should have one of the creates, onlyif, or unless parameters.
It defines a query for Puppet to determine the current sync state. The add_device
call must be made unless the device exists already. The query for the existing devices
must be made through the add_graphs.php script (counterintuitively). When called
with the --list-hosts option, it prints one header line and a table of devices, with
the description in the fourth column. The following unless query will find the
resource in question:

$search = "sed 1d | cut -f4- | grep -q '^${name}\$'"
exec { "add-cacti-device-${name}":
 command => "${cli}/add_device.php ${options}",
 path => '/bin:/usr/bin',
 unless => "${cli}/add_graphs.php --list-hosts | ${search}",
 require => Class[cacti],
}

The path parameter is useful as it allows for calling the core utilities without the
respective full path.

It is a good idea to generally set a standard list of search paths, because
some tools will not work with an empty PATH environment variable.

The unless command will return 0 if the exact resource title is found among the
list of devices. The final $ sign is escaped so that Puppet includes it in the $search
command string literally.

Chapter 5

[113]

You can now test your new define by adding the following resource to the agent
machine's manifest:

in manifests/nodes.pp
node 'agent' {
 include cacti
 cacti::device { 'Puppet test agent (Debian 7)':
 ip => $ipaddress,
 }
}

On the next puppet agent --test run, you will be notified that the command for
adding the device has been run. Repeat the run, and Puppet will determine that
everything is now already synchronized with the catalog.

Allowing customization
The add_device.php script has a range of optional parameters that allow the
user to customize the device. The Puppet module should expose these dials as well.
Let's pick one and implement it in the cacti::device type. Each Cacti device has a
ping_method that defaults to tcp. With the module, we can even superimpose our
own defaults over those of the software:

define cacti::device(
 $ip,
 $ping_method='icmp')
{
 $cli = '/usr/share/cacti/cli'
 $base_opt = "--description='${name}' --ip='${ip}'"
 $ping_opt = "--ping_method=${ping_method}"
 $options = "${base_opt} ${ping_opt}"
 $search = "sed 1d | cut -f4- | grep -q '^${name}\$'"
 exec { "add-cacti-device-${name}":
 command => "${cli}/add_device.php ${options}",
 path => '/bin:/usr/bin',
 unless => "${cli}/add_graphs.php --list-hosts | ${search}",
 require => Class[cacti],
 }
}

Extending Your Puppet Infrastructure with Modules

[114]

The module uses a default of icmp instead of tcp. The value is always passed
to the CLI script, whether it was passed to the cacti::device instance or not.
The parameter default is used in the latter case.

If you plan to publish your module, it is more sensible to try and use the
same defaults as the managed software whenever possible.

Once you incorporate all the available CLI switches, you would have successfully
created a Puppet API in order to add devices to your Cacti configuration, giving
the user the benefits of easy reproduction, sharing, implicit documentation, simple
versioning, and more.

Removing unwanted configuration items
There is still one remaining wrinkle. It is atypical for Puppet types to be unable to
remove the entities that they create. As it stands, this is a technical limitation of the
CLI that powers your module, because it does not implement a remove_device
function yet. Such scripts have been made available on the Internet, but are not
properly a part of Cacti at the time of writing this.

To give the module more functionality, it would make sense to incorporate
additional CLI scripts among the module's files. Put the appropriate file into the
right directory under modules/cacti/files/ and add another file resource to
the cacti::install class:

file { '/usr/share/cacti/cli/remove_device.php':
 mode => 755,
 source =>
 'puppet:///modules/cacti/usr/share/cacti/cli/
 remove_device.php',
 require => Package['cacti'],
}

You can then add an ensure attribute to the cacti::device type:

define cacti::device(
 $ensure='present',
 $ip,
 $ping_method='icmp')
{
 $cli = '/usr/share/cacti/cli'
 $search = "sed 1d | cut -f4- | grep -q '^${name}\$'"
 case $ensure {
 'present': {
 # existing cacti::device code goes here

Chapter 5

[115]

 }
 'absent': {
 $remove = "${cli}/remove_device.php"
 $get_id = "${remove} --list-devices | awk -F'\\t'
 '\$4==\"${name}\" { print \$1 }'"
 exec { "remove-cacti-device-${name}":
 command => "${remove} --device-id=\$(${get_id})",
 path => '/bin:/usr/bin',
 onlyif => "${cli}/add_graphs.php --list-hosts |
 ${search}",
 require => Class[cacti],
 }
 }
 }
}

Note that we took some liberties with the indentation here so as to not break too
many lines. This new exec resource is quite a mouthful, because the remove_
device.php script requires the numeric ID of the device to be removed. This is
retrieved with a --list-devices call that is piped to awk. To impair readability
even more, some things such as double quotes, $ signs, and backslashes must be
escaped so that Puppet includes a valid awk script in the catalog.

Also note that the query for the sync state of this exec resource is identical to the one
for the add resource, except that now it is used with the onlyif parameter: only take
action if the device in question is still found in the configuration.

Dealing with complexity
The commands we implemented for the cacti::device define are quite convoluted.
At this level of complexity, shell one-liners become unwieldy for powering Puppet's
resources. It gets even worse when handling the Cacti graphs; the add_graphs.
php CLI script requires numeric IDs of not only the devices, but of the graphs as
well. At this point, it makes sense to move the complexity out of the manifest and
write wrapper scripts for the actual CLI. I will just sketch the implementation. The
wrapper script will follow this general pattern.

#!/bin/bash
DEVICE_DESCR=$1
GRAPH_DESCR=$2
DEVICE_ID=` #scriptlet to retrieve numeric device ID`
GRAPH_ID=` #scriptlet to retrieve numeric graph ID`
GRAPH_TYPE=`#scriptlet to determine the graph type`
/usr/share/cacti/cli/add_graphs.php \
 --graph-type=$GRAPH_TYPE \
 --graph-template-id=$GRAPH_ID \
 --host-id=$DEVICE_ID

Extending Your Puppet Infrastructure with Modules

[116]

With this, you can add a straightforward graph type:

define cacti::graph($device,$graph=$name) {
 $add = '/usr/local/bin/cacti-add-graph'
 $find = '/usr/local/bin/cacti-find-graph'
 exec { "add-graph-${name}-to-${device}":
 command => "${add} '${device}' '${graph}'",
 path => '/bin:/usr/bin',
 unless => "${find} '${device}' '${graph}'",
 }
}

This also requires an additional cacti-find-graph script. Adding this poses an
additional challenge as the current CLI has no capabilities for listing configured
graphs. There are many more functionalities that can be added to a cacti module,
such as the management of Cacti's data sources and the ability to change options of
the devices and, possibly, other objects that already exist in the configuration.

Such commodities are beyond the essentials and won't be detailed here. Let's look at
some other parts for your exemplary cacti module instead.

Enhancing the agent through plugins
The reusable classes and defines give manifests that use your module much more
expressive power. Installing and configuring Cacti now works concisely, and the
manifest to do this becomes very readable and maintainable.

It's time to tap into the even more powerful aspect of modules - Puppet plugins.
The different types of plugins are custom facts (which were discussed in Chapter 3,
A Peek under the Hood – Facts, Types, and Providers), parser functions, resource types,
and providers. All these plugins are stored in the modules on the master and get
synchronized to all the agents. The agent will not use the parser functions (they
are available to the users of puppet apply on the agent machine once they are
synchronized, however); instead the facts and resource types do most of their work
on the agent. Let's concentrate on the types and providers for now - the other plugins
will be discussed in dedicated sections later.

This section can be considered optional. Many users will never touch
the code for any resource type or provider—the manifests give you all
the flexibility you will ever need. If you don't care for plugins, do skip
ahead to the final sections about finding the Forge modules. On the
other hand, if you are confident about your Ruby skills and would like
to take advantage of them in your Puppet installations, read on to find
the ways in which custom types and providers can help you.

Chapter 5

[117]

While the custom resource types are functional on both the master and the agent,
the provider will do all its work on the agent side. Although the resource types
also perform mainly through the agent, they have one effect on the master: they
enable manifests to declare resources of the type. The code not only describes
what properties and parameters exist, but it can also include the validation and
transformation code for the respective values. This part is invoked by the agent.
Some resource types even do the synchronization and queries themselves, although
there is usually at least one provider that takes care of this.

In the previous section, you implemented a defined type that did all its
synchronization by wrapping some exec resources. By installing binaries and
scripts through Puppet, you can implement almost any kind of functionality this
way and extend Puppet without ever writing one plugin. This does have some
disadvantages, however:

• The output is cryptic in the ideal case and overwhelming in the case of errors
• Puppet shells out to at least one external process per resource; and in many

cases, multiple forks are required

In short, you pay a price, both in terms of usability and performance. Consider
the cacti::device type. For each declared resource, Puppet will have to run an
exec resource's unless query on each run (or onlyif when ensure => absent is
specified). This consists of one call to a PHP script (which can be expensive) as well
as several core utilities that have to parse the output. On a Cacti server with dozens
or hundreds of managed devices, these calls add up and make the agent spend a lot
of time forking off and waiting for these child processes.

Consider a provider, on the other hand. It can implement an instances hook, which
will create an internal list of configured Cacti devices once during initialization. This
requires only one PHP call in total, and all the processing of the output can be done
in the Ruby code directly inside the agent process. These savings alone will make
each run much less expensive: resources that are already synchronized will incur no
penalty, because no additional external commands need to be run.

Let's take a quick look at the agent output before we go ahead and implement a
simple type/provider pair. Following is the output of the cacti::device type when
it creates a device:

Notice: /Stage[main]/Main/Node[agent]/Cacti::Device[Agent_VM_Debian_7]/
Exec[add-cacti-device-Agent_VM_Debian_7]/returns: executed successfully

Extending Your Puppet Infrastructure with Modules

[118]

The native types express such actions in a much cleaner manner, such as the output
from a file resource:

Notice: /Stage[main]/Main/File[/usr/local/bin/cacti-search-graph]/ensure:
created

Replacing a defined type with a native type
The process of creating a custom resource type with a matching provider
(or several providers) is not easy. Let's go through the steps involved:

1. Naming your type.
2. Creating the resource type's interface.
3. Designing sensible parameter hooks.
4. Using resource names.
5. Adding a provider.
6. Declaring management commands.
7. Implementing the basic functionality.
8. Allowing the provider to prefetch existing resources.
9. Making the type robust during the provisioning.

Naming your type
The first important difference between the native and defined types is the naming.
There is no module namespacing for the custom types like you get with the defined
types, which are manifest-based. Native types from all the installed modules mingle
freely, if you will. They use plain names. It would, therefore, be unwise to call the
native implementation of cacti::device just device - this will easily clash with
whatever notion of devices another module might have. The obvious choice for
naming your first resource type is cacti_device.

The type must be completely implemented in cacti/lib/puppet/type/
cacti_device.rb. All hooks and calls will be enclosed in a Type.newtype block:

Puppet::Type.newtype(:cacti_device) do
 @doc = <<-EOD
 Manages Cacti devices.
 EOD
end

Chapter 5

[119]

The documentation string in @doc should be considered mandatory, and it should be
a bit more substantial than this example. Consider including one or more example
resource declarations. Put all the further code pieces between the EOD terminator and
the final end.

Creating the resource type interface
First of all, the type should have the ensure property. Puppet's resource types have
a handy helper method that generates all the necessary type code for it through a
simple invocation:

ensurable

With this method call in the body of the type, you add the typical ensure property,
including all the necessary hooks. This line is all that is needed in the type code
(actual implementation will follow in the provider). Most properties and parameters
require more code, just like the ip parameter:

require 'ipaddr'
newparam(:ip) do
 desc "The IP address of the device."
 isrequired
 validate do |value|
 begin
 IPAddr.new(value)
 rescue ArgumentError
 fail "'#{value}' is not a valid IP address"
 end
 end
 munge do |value|
 value.downcase
 end
end

This should usually be an ip property instead, but the provider will
rely on the Cacti CLI, which has no capability for changing the already
configured devices. If the IP address was a property, such changes would
be required in order to perform property-value synchronization.

As you can see, the IP address parameter code consists mostly of validation.
Add the require 'ipaddr' line near the top of the file rather than inside the
Type.newtype block.

Extending Your Puppet Infrastructure with Modules

[120]

The parameter is now available for the cacti_device resources, and the agent will
even refuse to add devices whose IP addresses are not valid. This is helpful for the
users, because obvious typos in the addresses will be detected early. Let's implement
the next parameter before we look at the munge hook more closely.

Designing sensible parameter hooks
Moving right along to the ping_method parameter, it accepts values only from a
limited set, so validation is easy:

newparam(:ping_method) do
 desc "How the device's reachability is determined.
 One of `tcp` (default), `udp` or `icmp`."
 validate do |value|
 [:tcp, :udp, :icmp].include?(value.downcase.to_sym)
 end
 munge do |value|
 value.downcase.to_sym
 end
 defaultto :tcp
end

Looking at the munge blocks carefully, you will notice that they aim at unifying the
input values. This is much less critical for the parameters than the properties, but if
either of these parameters is changed to a property in a future release of your Cacti
module, it will not try to sync a ping_method of tcp to TCP. The latter might appear
if the users prefer uppercase in their manifest. Both values just become :tcp through
munging. For the IP address, invoking downcase has an effect only for IPv6.

Beyond the scope of Puppet itself, the munging of a parameter's value is
important as well. It allows Puppet to accept more convenient values than
the subsystem being managed. For example, Cacti might not accept TCP
as a value, but Puppet will, and it will do the right thing with it.

Using resource names
You need to take care of one final requirement: each Puppet resource type must
declare a name variable or namevar, for short. This parameter will use the resource
title from the manifest as its value, if the parameter itself is not specified for the
resource. For example, the exec type has the command parameter for its namevar.
You can either put the executable command into the resource title or explicitly
declare the parameter:

exec { '/bin/true': }
same effect:
exec { 'some custom name': command => '/bin/true' }

Chapter 5

[121]

To mark one of the existing parameters as the name variable, call the isnamevar
method in that parameter's body. If a type has a parameter called :name, it
automatically becomes the name variable. This is a safe default.

newparam(:name) do
 desc "The name of the device."
 #isnamevar # → commented because automatically assumed
end

Adding a provider
The resource type itself is ready for action, but it lacks a provider to do the actual
work of inspecting the system and performing the synchronization. Let's build it
step by step, just like the type. The name of the provider need not reflect the resource
type it's for. Instead, it should contain a reference to the management approach it
implements. Since your provider will rely on the Cacti CLI, name it cli. It's fine for
multiple providers to share a name if they provide functionality to different types.

Create the skeleton structure in cacti/lib/puppet/provider/cacti_device/cli.rb:

Puppet::Type.type(:cacti_device).provide(
 :cli,
 :parent => Puppet::Provider
) do
end

Specifying :parent => Puppet::Provider is not necessary, actually.
Puppet::Provider is the default base class for the providers. If you write a couple
of similar providers for a subsystem (each catering to a different resource type), all of
which rely on the same toolchain, you might want to implement a base provider that
becomes the parent for all the sibling providers.

For now, let's concentrate on putting together a self-sufficient cli provider for the
cacti_device type. First of all, declare the commands that you are going to need.

Declaring management commands
Providers use the commands method to conveniently bind executables to
Ruby identifiers:

commands :php => 'php'
commands :add_device => '/usr/share/cacti/cli/add_device.php'
commands :add_graphs => '/usr/share/cacti/cli/add_graphs.php'
commands :rm_device => '/usr/share/cacti/cli/remove_device.php'

Extending Your Puppet Infrastructure with Modules

[122]

You won't be invoking php directly. It's included here because declaring commands
serves two purposes:

• You can conveniently call the commands through a generated method
• The provider will mark itself as valid only if all the commands are found

So, if the php CLI command is not found in Puppet's search path, Puppet will
consider the provider to be dysfunctional. The user can determine this error
condition quite quickly through Puppet's debug output.

Implementing the basic functionality
The basic functions of the provider can now be implemented in three instance
methods. The names of these methods are not magic as such, but these are the
methods that the default ensure property expects to be available (remember that
you used the ensurable shortcut in the type code).

The first is the method that creates a resource if it does not exist yet. It must gather all
the resource parameter's values and build an appropriate call to add_device.php:

def create
 args = []
 args << "--description=#{resource[:name]}"
 args << "--ip=#{resource[:ip]}"
 args << "--ping_method=#{resource[:ping_method]}"
 add_device(*args)
end

Don't quote the parameter values as you would quote them on the
command line. Puppet takes care of this for you. It also escapes any
quotes that are in the arguments, so in this case, Cacti will receive
any quotes for inclusion in the configuration. For example, this will
lead to a wrong title:

args << "--description='#{resource[:name]}'"

The provider must also be able to remove or destroy an entity:

def destroy
 rm_device("--device-id=#{@property_hash[:id]}")
end

The property_hash variable is an instance member of the provider. Each resource
gets its specific provider instance. Read on to learn how it gets initialized to include
the device's ID number.

Chapter 5

[123]

Before we get to that, let's add the final provider method in order to implement the
ensure property. This is a query method that the agent uses to determine whether a
resource is already present:

def exists?
 self.class.instances.find do |provider|
 provider.name == resource[:name]
 end
end

The ensure property relies on the provider class method instances in order to get
a list of providers for all the entities on the system. It compares each of them with
the resource attribute, which is the resource type instance for which this current
provider instance is performing the work. If this is rather confusing, please refer to
the diagram in the next section.

Allowing the provider to prefetch existing resources
The instances method is truly special - it implements the prefetching of the system
resources during the provider initialization. You have to add it to the provider
yourself. Some subsystems are not suitable for the mass-fetching of all the existing
resources (such as the file type). These providers don't have an instances method.
Enumerating the Cacti devices, on the other hand, is quite possible:

def self.instances
 return @instances ||= add_graphs("--list-hosts").
 split("\n").
 drop(1).
 collect do |line|
 fields = line.split(/\t/, 4)
 Puppet.debug "prefetching cacti_device #{fields[3]} " +
 "with ID #{fields[0]}"
 new(:ensure => :present,
 :name => fields[3],
 :id => fields[0])
 end
end

The ensure value of the provider instance reflects the current state. The method
creates instances for the resources that are found on the system, so for these, the
value is always present. Also note that the result of the method is cached in the
@instances class member variable. This is important, because the exists? method
calls instances, which can happen a lot.

Extending Your Puppet Infrastructure with Modules

[124]

Puppet requires another method to perform proper prefetching. The mass-fetching
you implemented through instances supplies the agent with a list of provider
instances that represent the entities found on the system. From the master, the agent
received a list of the resource type instances. However, Puppet has not yet built a
relation between the resources (type instances) and providers. You need to add a
prefetch method to the provider class in order to make this happen:

def self.prefetch(resources)
 instances.each do |provider|
 if res = resources[provider.name]
 res.provider = provider
 end
 end
end

The agent passes the cacti_device resources as a hash, with the resource title as the
respective key. This makes lookups very simple (and quick).

This completes the cli provider for the cacti_device type. You can now replace
your cacti::device resources with the cacti_device instances to enjoy improved
performance and cleaner agent output:

node 'agent' {
 include cacti
 cacti_device { 'Puppet test agent (Debian 7)':
 ensure => present,
 ip => $ipaddress,
 }
}

Note that unlike your defined type cacti::device, a native type will not assume a
default value of present for its ensure property. Therefore, you have to specify it
for any cacti_device resource. Otherwise, Puppet will only manage the properties
of the resources that already exist and not care about whether the entity exists or not.
In the particular case of cacti_device, this will never do anything, because there are
no other properties (only parameters).

You can refer to Chapter 6, Leveraging the Full Toolset of the Language,
on how to use resource defaults to save you from the repetition of the
ensure => present specification.

Chapter 5

[125]

Making the type robust during provisioning
There is yet another small issue with the cacti module. It is self-sufficient and
handles both the installation and configuration of Cacti. However, this means that
during Puppet's first run, the cacti package and its CLI will not be available, and
the agent will correctly determine that the cli provider is not yet suitable. Since
it is the only provider for the cacti_device type, any resource of this type that is
synchronized before the cacti package will fail.

In the case of the defined type cacti::device, you just added the require
metaparameters to the inner resources. To achieve the same end for the native type
instances, you can work with the autorequire feature. Just as the files automatically
depend on their containing directory, the Cacti resources should depend on the
successful synchronization of the cacti package. Add the following block to the
cacti_device type:

autorequire :package do
 catalog.resource(:package, 'cacti')
end

Enhancing Puppet's system knowledge
through facts
When facts were introduced in Chapter 3, A Peek under the Hood – Facts, Types, and
Providers, you got a small tour of the process of creating your own custom facts.
We hinted at modules at that point, and now, we can take a closer look at how the
fact code is deployed, using the example of the Cacti module. Let's focus on native
Ruby facts - they are more portable than the external facts. As the latter are easy to
create, there is no need to discuss them in depth here.

For details on external facts, you can refer to the online documentation on
custom facts on the Puppet Labs site at http://docs.puppetlabs.
com/facter/latest/custom_facts.html#external-facts.

Facts are part of the Puppet plugins that a module can contain, just like the types and
providers from the previous sections. They belong in the lib/facter/ subtree. For
the users of the cacti module, it might be helpful to learn which graph templates
are available on a given Cacti server (once the graph management is implemented,
that is). The complete list can be passed through a fact. The following code in cacti/
lib/facter/cacti_graph_templates.rb will do just this job:

Facter.add(:cacti_graph_templates) do
 setcode do
 cmd = '/usr/share/cacti/cli/add_graphs.php'

http://docs.puppetlabs.com/facter/latest/custom_facts.html#external-facts
http://docs.puppetlabs.com/facter/latest/custom_facts.html#external-facts

Extending Your Puppet Infrastructure with Modules

[126]

 Facter::Core::Execution.exec("#{cmd} --list-graph-templates").
 split("\n").
 drop(1).
 collect do |line|
 line.split(/\t/)[1]
 end
 end
end

The code will call the CLI script, skip its first line of output, and join the values from
the second column of each remaining line in a list. Manifests can access this list
through the global $cacti_graph_templates variable, just like any other fact.

Refining the interface of your module through
custom functions
Functions can be of great help in keeping your manifest clean and maintainable,
and some tasks cannot even be implemented without resorting to a Ruby function.

A frequent use of the custom functions (especially in Puppet 3) is input validation.
You can do this in the manifest itself, but it can be a frustrating exercise because of
the limitations of the language. The resulting Puppet DSL code can be hard to read
and maintain. The stdlib module comes with the validate_X functions for many
basic data types, such as validate_bool. Typed parameters in Puppet 4 and later
versions make this more convenient and natural, because for the supported variable
types, no validation function is needed anymore.

As with all the plugins, the functions need not be specific to the module's domain,
and they instantly become available for all the manifests. Point in case is the cacti
module that can use the validation functions for the cacti::device parameters.
Checking whether a string contains a valid IP address is not at all specific to Cacti.
On the other hand, checking whether ping_method is one of those that Cacti
recognizes is not that generic.

To see how it works, let's just implement a function that does the job of the validate
and munge hooks from the custom cacti_device type for the IP address parameter
of cacti::device. This should fail the compilation if the address is invalid;
otherwise, it should return the unified address value:

module Puppet::Parser::Functions
 require 'ipaddr'
 newfunction(:cacti_canonical_ip, :type => :rvalue) do |args|
 ip = args[0]

Chapter 5

[127]

 begin
 IPAddr.new(ip)
 rescue ArgumentError
 raise "#{@resource.ref}: invalid IP address '#{ip}'"
 end
 ip.downcase
 end
end

In the exception message, @resource.ref is expanded to the textual reference of the
offending resource type instance, such as Cacti::Device[Edge Switch 03].

The following example illustrates the use of the function in the simple version of
cacti::device without the ensure parameter:

define cacti::device($ip) {
 $cli = '/usr/share/cacti/cli'
 $c_ip = cacti_canonical_ip(${ip})
 $options = "--description='${name}' --ip='${c_ip}'"
 exec { "add-cacti-device-${name}":
 command => "${cli}/add_device.php ${options}",
 require => Class[cacti],
 }
}

The manifest will then fail to compile if an IP address has (conveniently)
transposed digits:

ip => '912.168.12.13'

IPv6 addresses will be converted to all lowercase letters.

Puppet 4 introduced a more powerful API for defining the
custom functions. Refer to Chapter 7, New Features from Puppet
4, to learn about its advantages.

Extending Your Puppet Infrastructure with Modules

[128]

Making your module portable across
platforms
Sadly, our Cacti module is very specific to the Debian package. It expects to find
the CLI at a certain place and the Apache configuration snippet at another. These
locations are most likely specific to the Debian package. It will be useful for the
module to work on the Red Hat derivatives as well.

The first step is to get an overview of the differences by performing a manual
installation. I chose to test this with a virtual machine running Fedora 18. The basic
installation is identical to Debian, except using yum instead of apt-get, of course.
Puppet will automatically do the right thing here. The puppet::install class also
contains a CLI file, though. The Red Hat package installs the CLI in /var/lib/
cacti/cli rather than /usr/share/cacti/cli.

If the module is supposed to support both platforms, the target location for the
remove_device.php script is no longer fixed. Therefore, it's best to deploy the script
from a central location in the module, while the target location on the agent system
becomes a module parameter, if you will. Such values are customarily gathered in a
params class:

…/cacti/manifests/params.pp
class cacti::params {
 case $osfamily {
 'Debian': {
 $cli_path = '/usr/share/cacti/cli'
 }
 'RedHat': {
 $cli_path = '/var/lib/cacti/cli'
 }
 default: {
 fail "the cacti module does not yet support the ${osfamily}
 platform"
 }
 }
}

It is best to fail the compilation for unsupported agent platforms. The users will
have to remove the declaration of the cacti class from their module rather than
have Puppet try untested installation steps that most likely will not work (this might
concern Gentoo or a BSD variant).

Chapter 5

[129]

Classes that need to access the variable value must include the params class:

class cacti::install {
 include cacti::params
 file { 'remove_device.php':
 ensure => file,
 path => "${cacti::params::cli_path}/remove_device.php',
 source => 'puppet:///modules/cacti/cli/remove_device.php',
 mode => '0755',
 }
}

Similar transformations will be required for the cacti::redirect class and the
cacti::config class. Just add more variables to the params class. This is not limited
to the manifests, either; the facts and providers must behave in accordance with the
agent platform as well.

You will often see that the params class is inherited rather than included:

class cacti($redirect = ${cacti::params::redirect})
 inherits cacti::params{
 # ...
}

This is done because an include statement in the class body won't allow the use of
variable values from the params class as the class parameter's default values, such as
the $redirect parameter in this example.

The portability practices are often not required for your own custom modules. In the
ideal case, you won't use them on more than one platform. The practice should be
considered mandatory if you intend to share them on the Forge, though. For most
of your Puppet needs, you will not want to write modules anyways, but download
existing solutions from the Forge instead.

In Puppet 4 and the later versions, the params class pattern will no
longer be necessary to ship the default parameter values. There is a new
data binding mechanism instead. At the time of writing this, that feature
was not yet quite functional, so it is not covered in detail.

www.allitebooks.com

http://www.allitebooks.org

Extending Your Puppet Infrastructure with Modules

[130]

Finding helpful Forge modules
Using the web interface at http://forge.puppetlabs.com is very straightforward.
By filling the search form with the name of the software, system, or service you
need to manage, you will usually get a list of very fitting modules - often with just
your search term as their name. In fact, for common terms, the number of available
modules can be overwhelming.

You can get immediate feedback about the maturity and popularity of each module.
A module is being actively used and maintained if:

• It has a score close to 5
• It has a version number that indicates releases past 1.0.0 (or even 0.1.0)
• Its most recent release was not too long ago, perhaps less than half a year
• It has a significant number of downloads

The latter three numbers can vary a lot, though, depending on the number of
features that the module implements and how widespread its subject is. Even more
importantly, just because a particular module gets much attention and regular
contributions, it does not have to mean that it is the best choice for your situation.

You are encouraged to evaluate less trafficked modules as well - you can unearth
some hidden gems this way. The next section details some deeper indicators of
quality for you to take into consideration.

If you cannot or don't want to spend too much time digging for the best module, you
can also just refer to the sidebar with the Puppet Supported and Puppet Approved
modules. All modules that are featured in these categories have got a seal of quality
from Puppet Labs.

Identifying modules' characteristics
When navigating to a module's details in the Forge, you are presented with its
README file. An empty or very sparse documentation speaks of little care taken by the
module author. A sample manifest in the README file is often a good starting point in
order to put a module to work quickly.

If you are looking for a module that will enhance your agents through additional
resource types and providers, look for the Types tab on the module details page. It
can also be enlightening to click on the Project URL link near the top of the module
description. This usually leads to GitHub. Here, you can conveniently browse
not only the plugins in the lib/ subtree, but also get a feel of how the module's
manifests are structured.

http://forge.puppetlabs.com

Chapter 5

[131]

Another sign of a carefully maintained module are unit tests. These are found in
the spec/ subtree. This tree does exist for most of the Forge modules. It tends to be
devoid of actual tests, though. There can be test code files for all the classes and the
defined types that are part of the module's manifest - these are typically in the spec/
classes/ and spec/defines/ subdirectories, respectively. For plugins, there will
ideally be unit tests in spec/unit/ and spec/functions/.

Some README files of the modules contain a small greenish tag saying Build passing.
This can turn red on occasions, stating Build failing. These modules use the Travis
CI through GitHub, so they are likely to have at least a few unit tests.

Summary
All the development in Puppet should be done in modules, and each such module
should serve as specific a purpose as possible. Most modules comprise only
manifests. This suffices to provide very effective and readable node manifests that
clearly and concisely express their intent by including aptly named classes and
instantiating defined types.

Modules can also contain Puppet plugins in the form of resource types and
providers, parser functions, or facts. All of these are usually Ruby code. External
facts can be written in any language, though. Writing your own types and providers
is not required, but it can boost your performance and management flexibility.

It is not necessary to write all your modules yourself. On the contrary, it's advisable
to rely on the open source modules from the Puppet Forge as much as possible.
The Puppet Forge is an ever-growing collection of helpful code for virtually all the
systems and software that Puppet can manage. In particular, the modules that are
curated by Puppet Labs are usually of very high quality. As with any open source
software, you are more than welcome to add any missing requirements to the
modules yourself.

After this broad view on Puppet's larger building blocks, the next chapter narrows
the scope a little. Now that you have the tools to structure and compose a manifest
code base, you will learn some refined techniques in order to elegantly solve some
distinct problems with Puppet.

[133]

Leveraging the Full Toolset of
the Language

After our in-depth discussions on both, the manifest structure elements (class and
define) and encompassing structure (modules), you are in a great position to write
manifests for all of your agents. Make sure that you get Forge modules that will
do your work for you. Then, go ahead and add site-specific modules that supply
composite classes for the node blocks to be used, or rather, included.

These concepts are quite a bit to take in. It's now time to decelerate a bit, lean back,
and tackle simpler code structures and ideas. You are about to learn some techniques
that you are not going to need every day. They can make difficult scenarios much
easier, though. So, it might be a good idea to come back to this chapter again after
you have spent some time in the field. You might find that some of your designs can
be simplified with these tools.

Specifically, these are the techniques that will be presented:

• Templating dynamic configuration files
• Creating virtual resources
• Exporting resources to other agents
• Overriding resource parameters
• Saving redundancy using resource defaults
• Avoiding antipatterns

Leveraging the Full Toolset of the Language

[134]

Templating dynamic configuration files
In the introduction, I stated that the techniques that you are now learning are not
frequently required. That was true, except for this one topic. Templates are actually
a cornerstone of configuration management with Puppet.

Templates are an alternative way to manage configuration files or any files, really.
You have synchronized files from the master to an agent that handled some Apache
configuration settings. These are not templates, technically. They are merely static
files that have been prepared and are ready for carbon copying.

These static files suffice in many situations, but sometimes, you will want the master
to manage very specific configuration values for each agent. These values can be quite
individual. For example, an Apache server usually requires a MaxClients setting.
Appropriate values depend on many aspects, including hardware specifications and
characteristics of the web application that is being run. It would be impractical to
prepare all possible choices as distinct files in the module.

Learning the template syntax
Templates make short work of such scenarios. If you are familiar with ERB templates
already, you can safely skip to the next section. If you know your way around PHP
or JSP, you will quickly get the hang of ERB—it's basically the same but with Ruby
inside the code tags. The following template will produce Hello,world! three times:

<% (1 .. 3).each do %>
Hello, world!
<% end %>

This template will also produce lots of empty lines, because the text between
the <% and %> tags gets removed from the output but the final line breaks do not.
To make the ERB engine do just that, change the closing tag to -%>:

<% (1 .. 3).each do -%>
Hello, world!
<% end -%>

This example is not very helpful for configuration files, of course. To include
dynamic values in the output, enclose Ruby expressions in a <%=tag pair:

<% (1 .. 3).each do |index| -%>
Hello, world #<%= index %> !
<% end -%>

Chapter 6

[135]

Now, the iterator value is part of each line of the output. You can also use member
variables that are prefixed with @.

These variables are populated with the values from the Puppet manifest variables:

<IfModule mpm_worker_module>
ServerLimit <%= @apache_server_limit %>
StartServers <%= @apache_start_servers %>
MaxClients <%= @apache_max_clients %>
</IfModule>
<% @apache_ports.each do |port| -%>
Listen <%= port %>
NameVirtualHost *:<%= port %>
<% end -%>

Variables that are used in a template must be defined in the same scope or scopes
from which the template is used. The next section explains how this works.

In Puppet 3.x, variable values are mostly strings, arrays, or hashes. To write efficient
templates, it is helpful to occasionally glance at the methods available for the
respective Ruby classes. In Puppet 4, variables have more diverse values.

There are several ways to use Puppet variables in templates:

• Prefixing the variable with the @ sign: This means that the variable is global,
or it was defined in the same class where the template is used. This works
with Puppet 2.7, Puppet 3, and Puppet 4.

• Using the scope.lookupvar('variablewithscopename') function: This
allows you to refer to any variable in any class of the module. Please do not
look up variables in other modules; it will build an invisible dependency on
the other module. The syntax works with Puppet 2, Puppet 3, and Puppet 4.

• Using scope['variablewithscope']: In Puppet 3, the scope hash can be
used directly. The behavior is similar to scope.lookupvar. This will work
with Puppet 3 and Puppet 4.

Using templates in practice
Templates have their own place in modules. You can place them freely in the
templates/ subtree of the module. The template function locates them using
a simple descriptor:

template('cacti/apache/cacti.conf.erb')

Leveraging the Full Toolset of the Language

[136]

This expression evaluates the content of the template found in modules/cacti/
templates/apache/cacti.conf.erb. The first path element (without a leading
slash) is the module name. The rest of the path gets translated to the templates/
tree in the module. The function is commonly used to generate the value of a file
resource's content property:

file { '/etc/apache2/conf.d/cacti.conf':
 content => template('cacti/apache/cacti.conf.erb'),
}

Many templates expect some variables to be defined in their scope. The easiest
way to make sure that this happens is to wrap the respective file resource in a
parameterized container. Files that are singletons with a well-known name, such
as /etc/ssh/sshd_config, should be managed through a parameterized class.
Configuration items that can inhabit multiple files, such as /etc/logrotate.d/*
or /etc/apache2/conf.d/*, are well suited to be wrapped in defined types:

define logrotate::conf(
 String $pattern,
 Integer $max_days=7,
 Array $options=[]
) {
 file { "/etc/logrotate.d/$name":
 mode => '0644',
 content => template('logrotate/config-snippet.erb')
 }
}

In the preceding example, the template uses the parameters as @pattern, @max_days,
and @options, respectively.

For a quick and dirty string transformation of your data, you can also use the
inline_template function in your manifest. This is often found on the right-hand
side of a variable assignment:

$comma_seperated_list = inline_template('<%= @my_array * "," %>')

This example assumes that the $my_array Puppet variable holds an array value.

Chapter 6

[137]

Avoiding performance bottlenecks from
templates
When using templates, both through the template and inline_template functions,
be aware that each invocation implies a performance penalty for your Puppet master.
During the compilation of the catalog, Puppet must initialize the ERB engine for any
template it encounters. The ERB evaluation happens in an individual environment
that is derived from the respective scope of the template function invocation.

It is, therefore, not even important how complex your templates are. If your manifest
requires frequent expansion of a very short template, it generates an enormous
overhead for each initialization. Especially in the case of an easy inline_template
function, such as the one mentioned previously, it can be worthwhile to invest some
more effort in creating a parser function instead, as seen in Chapter 5, Extending
Your Puppet Infrastructure with Modules. A function can perform variable value
transformation without incurring the cumulative penalty.

On the bright side, using templates is quite economic for the agent, who receives
the whole textual file content right inside the catalog. There is no need to make an
additional call to the master and retrieve file metadata. On a high-latency network,
this can be a noticeable saving.

There is no silver bullet here. Don't let the performance implications deter you from
turning specific configuration files into templates. Template-based solutions will
often make your module more maintainable, which will usually offset performance
implications—hardware is constantly getting cheaper, after all. Just don't be wasteful
with frequent (and simple) expansions.

Creating virtual resources
The next technique that we are going to discuss helps you solve conflicts in your
manifests and build some elegant solutions in special situations.

Remember the uniqueness constraint that was introduced in Chapter 1, Writing Your
First Manifests; any resource must be declared at most once in a manifest. There cannot
be two classes or defined type instances that declare the same file, package, or any
other type of resource. Each resource must have a unique type/name combination.
This applies to instances of defined types as well as native resources.

Leveraging the Full Toolset of the Language

[138]

This can pose issues when multiple modules need a common resource, such as an
installed package, or perhaps even independent settings in the same configuration
file. A component class for such resources, as introduced in Chapter 4, Modularizing
Manifests with Classes and Defined Types, will resolve basic conflicts of this kind. It can
be included an arbitrary number of times in the same manifest.

This can be impractical when the number of shared resources is fairly large. Imagine
that you find yourself in a situation where a large number of different Puppet
nodes require software from a significant set of yum repositories. Puppet will
happily manage the repository configuration on the agents through its yumrepo
type. However, you don't actually want all these repositories configured on every
last machine—they do incur maintenance overhead after all. It would, instead, be
desirable for each node to automatically receive the configuration for all repositories
it requires for its packages but not more.

When solving this using component classes, you would wrap each repository in a
distinct class. The class names should closely resemble (and most likely contain) the
name of the respective repositories:

class yumrepos::team_ninja_stable {
 yumrepo { 'team_ninja_stable':
 ensure => present,
 ...
 }
}

Package resources that rely on one or more such repositories will need to be
accompanied by appropriate include statements:

include yumrepos::team_ninja_stable
include yumrepos::team_wizard_experimental
package { 'doombunnies':
 ensure => installed,
 require => Class[
 'yumrepos::team_ninja_stable',
 'yumrepos::team_wizard_experimental'
],

Chapter 6

[139]

This is possible, but it is less than ideal. Puppet does offer an alternative way to
avoid duplicate resource declarations in the form of virtual resources. It allows you
to add a resource declaration to your manifest without adding the resource to the
actual catalog. The virtual resource must be realized or collected for this purpose.
Just like class inclusion, this realization of virtual resources can happen arbitrarily in
the same manifest.

Our previous example can, therefore, use a simpler structure with just one class to
declare all the yum repositories as virtual resources:

class yumrepos::all {
 @yumrepo { 'tem_ninja_stable':
 ensure => present,
 }
 @yumrepo { 'team_wizard_experimantel':
 ensure => present,
 }
}

The @ prefix marks the yumrepo resources as virtual. This class can be safely included
by all nodes. It will not affect the catalog until the resources are realized:

realize(Yumrepo['team_ninja_stable'])
realize(Yumrepo['team_wizard_experimental'])
package { 'doombunnies':
 ensure => installed,
 require => [
 Yumrepo['team_ninja_stable'],
 Yumrepo['team_wizard_experimental']
],
}

The realize function converts the referenced virtual resources to real ones, which
get added to the catalog. Granted, this is not much better than the previous code that
relied on the component classes. The virtual resources do make the intent clearer, at
least. Realizing them is less ambiguous than some include statements—a class can
contain many resources and even more include statements.

Leveraging the Full Toolset of the Language

[140]

To really improve the situation, you can introduce a defined type that can realize the
repositories directly:

define curated::package($ensure,$repositories=[]) {
 if $repositories != [] and $ensure != 'absent' {
 realize(Yumrepo[$repositories])
 }
 package { $name: ensure => $ensure }
}

You can then just pass the names of yumrepo resources for realization:

curated::package { 'doombunnies':
 ensure =>'installed',
 repositories => [
 'team_ninja_stable',
 'team_wizard_experimental',
],
}

Better yet, you can most likely prepare a hash, globally or in the scope of
curated::package, to create the most common resolutions:

$default_repos = {
 'doombunnies' => [
 'team_ninja_stable',
 'team_wizard_experimental',
],
 ...
}

The curated::package can then look packages up if no explicit repository names
are passed. Use the has_key function from the puppetlabs-stdlib module to make
the lookup safer:

if $repositories != [] {
 realize(Yumrepo[$repositories])
}
elsif has_key($default_repos,$name) {
 $repolist = $default_repos[$name]
 realize(Yumrepo[$repolist])
}

Chapter 6

[141]

This define structure is actually possible with component classes
as well. The class names can be passed as a parameter or from a
central data structure. The include function will accept variable
values for class names.

Realizing resources more flexibly using
collectors
Instead of invoking the realize function, you can also rely on a different syntactic
construct, which is the collector:

Yumrepo<| title == 'team_ninja_stable' |>

This is more flexible than the function call at the cost of a slight performance penalty.
It can be used as a reference to the realized resource(s) in certain contexts. For
example, you can add ordering constraints with the chaining operator:

Yumrepo<| title == 'team_ninja_stable' |> -> Class['...']

It is even possible to change values of resource attributes during collection. There is a
whole section dedicated to such overrides later in this chapter.

As the collector is based on an expression, you can conveniently realize a whole
range of resources. This can be quite dynamic—sometimes, you will create virtual
resources that are already being realized by a rather indiscriminate collector. Let's
look at a common example:

User<| |>

With no expression, the collection encompasses all virtual resources of the given
type. This allows you to collect them all, without worrying about their concrete titles
or attributes. This might seem redundant, because then it makes no sense to declare
the resources as virtual in the first place. However, keep in mind that the collector
might appear in some select manifests only, while the virtual resources can be safely
added to all your nodes.

To be a little more selective, it can be useful to group virtual resources based on their
tags. We haven't discussed tags yet. Each resource is tagged with several identifiers.
Each tag is just a simple string. You can tag a resource manually by defining the tag
metaparameter:

file { '/etc/sysctl.conf': tag => 'security' }

Leveraging the Full Toolset of the Language

[142]

The named tag is then added to the resource. Puppet implicitly tags all resources
with the name of the declaring class, the containing module, and a range of other
useful meta information. For example, if your user module divides the user
resources in classes such as administrators, developers, qa, and other roles, you
can make certain nodes or classes select all users of a given role with a collection
based on the class name tag:

User<| tag == 'developers' |>

Note that the tags actually form an array. The == comparison will look for the
presence of the developers element in the tag array in this context. Have a look
at another example to make this more clear:

@user { 'felix':
 ensure => present,
 groups => ['power', 'sys'],
}
User<| groups == 'sys' |>

This way, you can collect all users who are members of the sys group.

If you prefer function calls over the more cryptic collector syntax, you can keep using
the realize function alongside collectors. This works without issues. Remember that
each resource can be realized multiple times, even in both ways, simultaneously.

If you are wondering, the manifest for a given agent can only realize virtual
resources that are declared inside this same agent's manifest. Virtual resources do
not leak into other manifests. Consequently, there can be no deliberate transfer of
resources from one manifest to another, either. However, there is yet another concept
that allows such an exchange; this is described in the next section.

Exporting resources to other agents
Puppet is commonly used to configure whole clusters of servers or HPC workers.
Any configuration management system makes this task very efficient in comparison
to manual care. Manifests can be shared between similar nodes. Configuration items
that require individual customization per node are modeled individually. The whole
process is very natural and direct.

Chapter 6

[143]

On the other hand, there are certain configuration tasks that do not lend themselves
well to the paradigm of the central definition of all state. For example, a cluster setup
might include the sharing of a generated key or registering IP addresses of peer
nodes as they become available. An automatic setup should include an exchange of
such shared information. Puppet can help out with this as well.

This is a very good fit. It saves a metalayer, because you don't need to implement
the setup of an information exchange system in Puppet. The sharing is secure,
relying on Puppet's authentication and encryption infrastructure. There is logging
and central control over the deployment of the shared configuration. Puppet retains
its role as the central source for all system details; it serves as a hub for a secure
exchange of information.

Exporting and importing resources
Puppet approaches the problem of sharing configuration information among
multiple agent nodes by way of exported resources. The concept is simple. The
manifest of node A can contain one or more resources that are purely virtual and
not for realization in the manifest of this node A. Other nodes, such as B and C, can
import some or all of these resources. Then, the resources become part of the catalogs
of these remote nodes.

Master / Compiler

Manifest

export

export

Catalog
A

Catalog
B

Catalog
C

Agent A Agent C

Agent B

import

File[x]

Cron[z]

Database

Package[y]

Leveraging the Full Toolset of the Language

[144]

The syntax to import and export resources is very similar to that of virtual
resources. An exported resource is declared by prepending the resource type
name with two @ characters:

@@file { 'my-app-psk':
 ensure => file,
 path => '/etc/my-app/psk',
 content => 'nwNFgzsn9n3sDfnFANfoinaAEF',
 tag => 'cluster02',
}

The importing manifests collect these resources using an expression, which is
again similar to the collection of virtual resources but with double-angled
brackets, < and >:

File<<| tag == 'cluster02' |>>

Tags are a very common way to take fine-grained control over the distribution
of such exported resources.

Configuring the master to store exported
resources
The only recommendable way to enable support for exported resources is PuppetDB.
It is a domain-specific database implementation that stores different kinds of
data that the Puppet master deals with during regular operation. This includes
catalog requests from agents (including their valuable facts), reports from catalog
applications, and exported resources.

Chapter 2, The Master and Its Agents, detailed a manual installation of the master.
Let's add the PuppetDB with more style—through Puppet! On the Forge, you will
find a convenient module that will make this easy:

puppet module install puppetlabs-puppetdb

On the master node, the setup now becomes a one-line invocation:
puppet apply -e 'include puppetdb, puppetdb::master::config'

As our test master uses a nonstandard SSL certificate that is named master.
example.net (instead of its FQDN), it must be configured for puppetdb as well:

include puppetdb
class {
 'puppetdb::master::config':
 puppetdb_server => 'master.example.net'
}

Chapter 6

[145]

The ensuing catalog run is quite impressive. Puppet installs the PostgreSQL backend,
the Jetty server, and the actual PuppetDB package, and it configures everything and
starts the services up—all in one go. After applying this short manifest, you have
added a complex piece of infrastructure to your Puppet setup. You can now use
exported resources for a variety of helpful tasks.

Exporting SSH host keys
For homegrown interactions between clustered machines, SSH can be an
invaluable tool. File transfer and remote execution of arbitrary commands is
easily possible thanks to the ubiquitous sshd service. For security reasons, each
host generates a unique key in order to identify itself. Of course, such public key
authentication systems can only really work with a trust network, or the presharing
of the public keys.

Puppet can do the latter quite nicely:

@@sshkey { $::fqdn:
 host_aliases => $::hostname,
 key => $::sshecdsakey,
 tag => 'san-nyc'
}

Interested nodes collect keys with the known pattern:

Sshkey<<| tag == 'san-nyc' |>>

Now, SSH servers can be authenticated through the respective keys that Puppet
safely stores in its database. As always, the Puppet master is the fulcrum of security.

As a matter of fact, some ssh modules from the Puppet Forge will
use this kind of construct to do this work for you.

Managing hosts files locally
Many sites can rely on a local DNS infrastructure. Resolving names to local IP
addresses is easy with such setups. However, small networks or sites that consist
of many independent clusters with little shared infrastructure will have to rely on
names in /etc/hosts instead.

Leveraging the Full Toolset of the Language

[146]

You can maintain a central hosts file per network cell, or you can make
Puppet maintain each entry in each hosts file separately. The latter approach
has some advantages:

• Changes are automatically distributed through the Puppet agent network
• Puppet copes with unmanaged lines in the hosts files

A manually maintained registry is prone to become outdated every once in a while.
It will also obliterate local additions in any hosts files on the agent machines.

The manifest implementation of the superior approach with exported resources is
very similar to the sshkey example from the previous section:

@@host { $::fqdn:
 ip => $::ipaddress,
 host_aliases => [$::hostname],
 tag => 'nyc-site',
}

This is the same principle, only now, each node exports its $ipaddress fact value
alongside its name and not a public key. The import also works the same way:

Host<<| tag == 'nyc-site' |>>

Automating custom configuration items
Do you remember the Cacti module that you created during the previous chapter?
It makes it very simple to configure all monitored devices in the manifest of the
Cacti server. However, as this is possible, wouldn't it be even better if each node in
your network was registered automatically with Cacti? It's simple: make the devices
export their respective cacti_device resources for the server to collect:

@@cacti_device { $::fqdn:
 ensure => present,
 ip => $::ipaddress,
 tag => 'nyc-site',
}

The Cacti server, apart from including the cacti class, just needs to collect the
devices now:

Cacti_device<<| tag == 'nyc-site' |>>

If one Cacti server handles all your machines, you can just omit the tag comparison:

Cacti_device<<| |>>

Chapter 6

[147]

Once the module supports other Cacti resources, you can handle them in the same
way. Let's look at an example from another popular monitoring solution.

Simplifying the configuration of Nagios
Puppet comes with support to manage the complete configuration of Nagios (and
compatible versions of Icinga). Each configuration section can be represented by a
distinct Puppet resource with types such as nagios_host or nagios_service.

There is an endeavor to remove this support from core Puppet.
This does not mean that support will be discontinued, however.
It will just move to yet another excellent Puppet module.

Each of your machines can export their individual nagios_host resources alongside
their host and cacti_device resources. However, thanks to the diverse Nagios
support, you can do even better.

Assuming that you have a module or class to wrap SSH handling (you are using a
Forge module for the actual management, of course), you can handle monitoring
from inside your own SSH server class. By adding the export to this class, you make
sure that nodes that include the class (and only these nodes) will also get monitoring:

class site::ssh {
 # ...actual SSH management...
 @@nagios_service { "${::fqdn}-ssh":
 use => 'ssh_template',
 host_name => $::fqdn,
 }
}

You probably know the drill by now, but let's repeat the mantra once more:

Nagios_service<<| |>>

With this collection, the Nagios host configures itself with all services that the agent
manifests create.

For large Nagios configurations, you might want to consider
reimplementing the Nagios types yourself, using simple defines that
build the configuration from templates. The native types can be slower
than the file resources in this case, because they have to parse the
whole Nagios configuration on each run. The file resources can be
much cheaper, as they rely on content-agnostic checksums.

Leveraging the Full Toolset of the Language

[148]

Maintaining your central firewall
Speaking of useful features that are not part of the core of Puppet, you can manage
the rules of your iptables firewall, of course. You need the puppetlabs-firewall
module to make the appropriate types available. Then, each machine can (among
other useful things) export its own required port forwarding to the firewall
machines:

@@firewall { "150 forward port 443 to ${::hostname}":
 proto => 'tcp',
 dport => '443',
 destination => $public_ip_address,
 jump => 'DNAT',
 todest => $::ipaddress,
 tag => 'segment03',
}

The $public_ip_address value is not a Facter fact, of course. Your
node will have to be configured with the appropriate information. You
can refer to the next chapter for a good way to do this.

The title of a firewall rule resource conventionally begins with a three-digit index for
ordering purposes. The firewall machines collect all these rules naturally:

Firewall<<| tag == 'segment03' |>>

As you can see, the possibilities for modeling distributed systems through exported
Puppet resources are manifold. The simple pattern that we've iterated for several
resource types suffices for a wide range of use cases. Combined with defined
resource types, it allows you to flexibly enable your manifests to work together in
order to form complex cluster setups with relatively little effort. The larger your
clusters, the more work Puppet lifts from you through exports and collections.

Removing obsolete exports
When a node manifest stops exporting any resource, that resource's record is removed
from PuppetDB once the node's catalog is compiled. This usually happens when the
agent checks in with the master.

Chapter 6

[149]

However, if you take an agent out of commission permanently, this will never
happen. That's why you will need to remove those exports from the DB manually.
Otherwise, other nodes will keep importing the old resources.

To clean such records from PuppetDB, use the puppet node deactivate command
on the master server:

puppet node deactivate vax793.example.net

Overriding resource parameters
Both exported and virtual resources are declared once, and are then collected in
different contexts. The syntax is very similar, as are the concepts.

Sometimes, a central definition of a resource cannot be safely realized on all of your
nodes, though; for example, consider the set of all your user resources. You will
most likely wish to manage the user ID that is assigned to each account in order to
make them consistent across your networks.

This is often solved through LDAP or similar directories, but that
is not possible for some sites.

Even if all accounts on almost all machines will be able to use their designated
ID, there are likely to be some exceptions. On a few older machines, some IDs are
probably being used for other purposes already, which cannot be changed easily.
On such machines, creating users with these IDs will fail.

The accounts can be created if duplicate IDs are allowed, but that is
not a solution to this problem—duplicates are usually not desirable.

Fortunately, Puppet has a convenient way to express such exceptions. To give the
nonstandard UID, 2066, to the user, felix, realize the resource with an attribute
value specification:

User<| title == 'felix' |> {
 uid => '2066'
}

Leveraging the Full Toolset of the Language

[150]

You can pass any property, parameter, or metaparameter that applies to the
resource type in question. A value that you specify this way is final and cannot
be overridden again.

This language feature is more powerful than the preceding example lets on.
This is because the override is not limited to virtual and exported resources.
You can override any resource from anywhere in your manifest. This allows
for some remarkable constructs and shortcuts.

Consider, for example, the Cacti module that you created during the previous chapter.
It declares a package resource in order to make sure that the software is installed. To
that end, it specifies ensure => installed. If any user of your module needs Puppet
to keep their packages up to date, this is not adequate though. The clean solution for
this case is to add some parameters to the module's classes, which allow the user to
choose the ensure property value for the package and other resources. However, this
is not really practical. Complex modules can manage hundreds of properties, and
exposing them all through parameters would form a horribly confusing interface.

The override syntax can provide a simple and elegant workaround here.
The manifest that achieves the desired result is very straightforward:

include cacti
Package<| title == 'cacti' |> { ensure => 'latest' }

For all its simplicity, this manifest will be hard to decipher for collaborators who are
not familiar with the collector/override syntax. This is not the only problem with
overrides. You cannot override the same attribute multiple times. This is actually a
good thing, because any rules that resolve such conflicting overrides make it extremely
difficult to predict the actual semantics of a manifest that contains multiple overrides
of this kind.

Relying on this override syntax too much will make your manifests prone to
conflicts. Combining the wrong classes will make the compiler stop creating the
catalog. Even if you manage to avoid all conflicts, the manifests will become rather
chaotic. It can be difficult to locate all active overrides for a given node. The resulting
behavior of any class or define becomes hard to predict.

All things considered, it's safest to use overrides very sparingly.

Chapter 6

[151]

Please note that collectors are especially dangerous when used without a
selector expression:

Package<| |> { before => Exec['send-software-list'] }

Not only will it realize all virtual resources of the given type. It will also
force surprising attribute values on both virtual and regular resources of
the same type.

Saving redundancy using resource defaults
The final language construct that this chapter introduces can save you quite
some typing, or rather, it saves you from copying and pasting. Writing a long,
repetitive manifest is not what costs you lots of time, of course. However, a briefer
manifest is often more readable, and hence, more maintainable. You achieve this by
defining resource defaults—attribute values that are used for resources that don't
choose their own:

Mysql_grant { options => ['GRANT'],
 privileges => ['ALL'],
 tables => '*.*',
}
mysql_grant { 'root':
 ensure => 'present',
 user => 'root@localhost',
}
mysql_grant { 'apache':
 ensure => 'present',
 user => 'apache@10.0.1.%',
 tables => 'application.*',
}
mysql_grant { 'wordpress':
 ensure => 'present',
 user => 'wordpress@10.0.5.1',
 tables => 'wordpress.*',
}
mysql_grant { 'backup':
 ensure => 'present',
 user => 'backup@localhost',
 privileges => ['SELECT', 'LOCK TABLE'],
}

Leveraging the Full Toolset of the Language

[152]

By default, each grant should apply to all databases and comprise all privileges.
This allows you to define each actual mysql_grant resource quite sparsely. Otherwise,
you will have to specify the privileges property for all resources. The options
attribute will be especially repetitive, because they are identical for all grants in
this example.

Note that the ensure property is repetitive as well, but it was not included. It is
considered good practice to exempt this attribute from resource defaults.

The mysql_grant resource type is not available in core Puppet.
It's part of the puppetlabs-mysql module on the Forge.

Despite the convenience that this approach offers, it should not be used at each
apparent opportunity. It has some downsides that you should keep in mind:

• The defaults can be surprising if they apply to resources that are declared at
a lexical distance from the defaults' definition (such as several screens further
down the manifest file)

• The defaults transcend the inclusion of classes and instantiation of defines

These two aspects form a dangerous combination. Defaults from a composite class
can affect very distant parts of a manifest:

class webserver {
 File { owner => 'www-data' }
 include apache, nginx, firewall, logging_client
 file {
 ...
 }
}

Files declared in the webserver class should belong to a default user. However, this
default takes effect recursively in the included classes as well. The owner attribute
is a property: a resource that defines no value for it just ignores its current state. A
value that is specified in the manifest will be enforced by the agent. Often, you do
not care about the owner of a managed file:

file { '/etc/motd': content => '...' }

Chapter 6

[153]

However, because of the default owner attribute, Puppet will now mandate that
this file belongs to www-data. To avoid this, you will have to unset the default by
overwriting it with undef, which is Puppet's analog to the nil value:

File { owner => undef }

This can also be done in individual resources:
file { '/etc/motd': content => '...', owner => undef }

However, doing this constantly is hardly feasible. The latter option is especially
unattractive, because it leads to more complexity in the manifest code instead of
simplifying it. After all, not defining a default owner attribute will be the cleaner
way here.

The semantics that make defaults take effect in so many manifest
areas is known as dynamic scoping. It used to apply to variable
values as well and is generally considered harmful. One of the most
decisive changes in Puppet 3.0 was the removal of dynamic variable
scoping, in fact. Resource defaults still use it, but it is expected that
this will change in a future release as well.

Resource defaults should be used with consideration and care. For some properties
such as file mode, owner, and group, they should usually be avoided.

Avoiding antipatterns
Speaking of things to avoid, there is a language feature that we will only address
in order to advise great caution. Puppet comes with a function called defined,
which allows you to query the compiler about resources that have been declared in
the manifest:

if defined(File['/etc/motd']) {
 notify { 'This machine has a MotD': }
}

The problem with the concept is that it cannot ever be reliable. Even if the resource
appears in the manifest, the compiler might encounter it later than the if condition.
This is potentially very problematic, because some modules will try to make
themselves portable through this construct:

if ! defined(Package['apache2']) {
 package { 'apache2':
 ensure => 'installed'
 }
}

Leveraging the Full Toolset of the Language

[154]

The module author supposes that this resource definition will be skipped if
the manifest declares Package['apache2'] somewhere else. As explained, this
method will only be effective if the block is evaluated late enough during the
compiler run. The conflict can still occur if the compiler encounters the other
declaration after this one.

The manifest's behavior becomes outright unpredictable if a manifest contains
multiple occurrences of the same query:

class cacti {
 if !defined(Package['apache2']) {
 package { 'apache2': ensure => 'present' }
 }
}
class postfixadmin {
 if !defined(Package['apache2'] {
 package { 'apache2': ensure => 'latest' }
 }
}

The first block that is seen wins. This can even shift if unrelated parts of the
manifest are restructured. You cannot predict whether a given manifest will use
ensure=>latest for the apache2 package or just use installed. The results
become even more bizarre if such a block wants a resource removed through
ensure=>absent, while the other does not.

The defined function has long been considered harmful, but there is no adequate
alternative yet. The ensure_resource function from the stdlib module tries to
make the scenario less problematic:

ensure_resource('package', 'apache2', { ensure => 'installed' })

By relying on this function instead of the preceding antipattern based around
the defined function, you will avoid the unpredictable behavior of conflicting
declarations. Instead, this will cause the compiler to fail when the declarations
are passed to ensure_resource. This is still not a clean practice, though. Failed
compilation is not a desirable alternative either.

Both functions should be avoided in favor of clean class structures with
nonambiguous resource declarations.

Chapter 6

[155]

Summary
A template is a frequent occurrence and is one of the best ways for Puppet to manage
dynamic file content. Evaluating each template requires extra effort from the compiler,
but the gain in flexibility is usually worth it. Variables in templates have to be declared
using any of the three available scope lookup notations.

The concept of virtual resources is much less ubiquitous. Virtual resources allow you
to flexibly add certain entities to a node's catalog. The collector syntax that is used
for this can also be used to override attribute values, which works for non-virtual
resources as well.

Once PuppetDB is installed and configured, you can also export resources so that
other node manifests can receive their configuration information. This allows you to
model distributed systems quite elegantly.

The resource defaults are just a syntactic shortcut that help keep your manifest concise.
They have to be used with care, though. Some language features such as the defined
function (and its module-based successor, which is the ensure_resource function)
should be avoided if possible.

The next chapter gives you an overview and introduction to some of the new and
enhanced features in the milestone Puppet 4 release.

[157]

New Features from Puppet 4
Now that we have a complete overview on the Puppet DSL and its concepts, it is time
to look at the newest Puppet features that were introduced with Puppet version 4.
The parser, which compiles the catalog, was basically rewritten from scratch for
better performance. The milestone release also added some missing functionality
and coding principles.

Puppet 4 does not only offer new functionality, but breaks with old practices and
removes some functionality that is not considered a best practice anymore. This
necessitates that any existing manifest code needs proper testing and potentially
lots of changes to be compatible with Puppet 4.

Within this chapter, the following topics will be covered:

• Upgrading to Puppet 4
• Using the Puppet Type System
• Learning Lambdas and Functions
• Creating Puppet 4 Functions
• Leveraging the new template engine
• Handling multiline with HEREDOC
• Breaking old practices

New Features from Puppet 4

[158]

Upgrading to Puppet 4
Let's first look at how users of the older Puppet 3 series can approach the update.

Instead of upgrading your Puppet Master machine, consider
setting up a new server in parallel and migrating the service
carefully. This has some advantages. For example, rolling back in
case of problems is quite easy.

The new Puppet 4 version can be installed in several ways:

1. Using the Puppet Labs repositories, which will remove older Puppet packages:
This method means a hard cut without testing in advance, which is not
recommended. The update to Puppet 4 should only take place after in-depth
testing of your Puppet manifest code.

2. Installing as the Ruby gem extension or from tarball
This approach requires a separate Ruby 2.1 installation, which is not
available on most modern Linux distributions.

3. Update to Puppet 3.8, enable and migrate to the environment path settings,
and enable the future parser only on a special testing environment:
The latter solution is the smartest and most backward compatible one.

With Puppet 4 and the All-in-One (AIO) packaging from Puppet
Labs, paths to Puppet configuration, modules, environments, and SSL
certificates will change.

• Puppet 4 stores its configuration (puppet.conf) in /etc/
puppetlabs/puppet.

• Hiera config will be located in /etc/puppetlabs/hiera/
hiera.yaml.

• Puppet 4 CA and certificates can be found at /etc/
puppetlabs/puppet/ssl.

• Puppet Code (environments and modules) are looked up
in /etc/puppetlabs/code.

Chapter 7

[159]

Using Puppet 3.8 and environment directories
The new parser was introduced in Puppet 3.5 alongside the old parser. To make use
of the new language features, a special configuration item needed to be set explicitly.
This allowed early adopters and people interested in the new technology to test the
parser and check for code incompatibilities in an early stage.

On Puppet 3.x, the new parser was subject to change without further notice.
Therefore it is recommended to upgrade to the latest 3.x release.

With directory environments, it is possible to specify environment specific settings
within an environment.conf configuration file:

/etc/puppet/environments/puppet_update/environment.conf
environment config file for special puppet_update environment
parser = future

Next, all your puppet code needs to be put into the newly created environment path,
including node classification.

On each of the different node types, it is now possible to manually run:

puppet agent --test --environment=puppet_update --noop

Check both Master and Agent output and logfiles for any errors or unwanted
changes and adapt your Puppet code if necessary.

The new Puppet 4 Master

Make sure that your agents are prepared for operations with a Puppet
4 Master. See the notes about agents in the following section.

Spinning up a new Puppet Master is another approach. The following process
assumes that the Puppet CA has been created using the DNS alt names setting in the
puppet.conf file. In case no DNS alt names have been configured, it is required to
completely recreate the Puppet CA.

Puppet CA needs to know about the CN (common name) of the Puppet Master fqdn.
It is possible to provide DNS alternative names, for which the CA will also be valid.

Normally, Puppet uses the Master fqdn for the common name. But if you provide
the configuration attribute dns_alt_names prior to generating the CA, this
configuration option will be added to the CA.

New Features from Puppet 4

[160]

It is highly recommended to configure dns_alt_names. Having this enabled allows
you to scale up to multiple compile masters and add an additional Puppet Master for
the migration process.

To find out whether DNS alt names have been added, you can use the puppet cert
command:

puppet cert list –all

This command will print all certificates. Check for the certificate of your Puppet
Master.

For example, consider the following:

puppet cert list --all

+ "puppetmaster.example.net" (SHA256) 7D:11:33:00:94:B3:C4:48:D2:10:B3:C7
:B0:38:71:28:C5:75:2C:61:3B:3E:63:C6:95:7C:C9:DF:59:F7:C5:BE (alt names:
"DNS:puppet", "DNS:puppet.example.net", "DNS:puppetmaster.example.net")

The following steps will guide you through the Puppet 4 setup. On a Debian 7 based
system add the PC1 Puppet Labs repository:

curl -O http://apt.puppetlabs.com/puppetlabs-release-pc1-wheezy.deb

dpkg -i puppetlabs-release-pc1-wheezy.deb

apt-get update

apt-get install puppetserver puppet-agent

Do not start the Puppet server process yet! It is required to run the new Puppet 4
Master as CA Master, which needs the CA and certificates from the Puppet 3 Master
copied over to the new Puppet 4 Master.

As of this writing, the Puppet 4 Java-based Master process is not
yet available for Debian 8.

Within the next step, all Puppet agents need a change on the puppet.conf file.
You will need to provide different settings for ca_server and server:

ini_setting { 'puppet_ca_server':
 path => '/etc/puppet/puppet.conf',
 section => 'agent',
 setting => 'ca_server',
 value => 'puppet4.example.net'
}

Chapter 7

[161]

The ini_setting resource type is available through the
puppetlabs-inifile module from the Forge.

Now place all your Puppet code onto the new Puppet 4 Master into an environment
(/etc/puppetlabs/code/environments/development/{manifests,modules}).

Test your code for Puppet 4 errors by running the following command on each of
your nodes:

puppet agent --test --noop --server puppet4.example.net --environment
development

Change your Puppet code to fix potential errors. Once no errors and no unwanted
configuration changes occur on the Puppet 4 Master and agents, your code is Puppet
4 compatible.

Updating the Puppet agent
It is important to make sure that your existing agents are prepared to operate
with a master that is already at version 4. Check the following aspects:

• All agents should use the latest version of Puppet 3
• The agent configuration should specify stringify_facts = false

The latter step prepares you for the agent update, because Puppet 4 will always
behave like that and refrain from converting all fact values to the string type.

Do make sure that you update to Puppet Server 2.1 or later. Passenger-based masters
and Puppet Server 2.0 are not compatible with Puppet 3 agents.

The Puppet online documentation contains many helpful details
about this update path: http://docs.puppetlabs.com/
puppetserver/latest/compatibility_with_puppet_
agent.html.

Testing Puppet DSL code
Another approach for verifying whether the existing Puppet code will work on
Puppet 4 is unit and integration testing using rspec-puppet and beaker. This
procedure is not within the scope of this book.

http://docs.puppetlabs.com/puppetserver/latest/compatibility_with_puppet_agent.html
http://docs.puppetlabs.com/puppetserver/latest/compatibility_with_puppet_agent.html
http://docs.puppetlabs.com/puppetserver/latest/compatibility_with_puppet_agent.html

New Features from Puppet 4

[162]

Whether you started fresh with Puppet 4, or used one of the preceding procedures
to migrate your Puppet 3 infrastructure, it is now time to discover the benefits of the
new version.

Using the type system
Older Puppet versions supported a small set of data types only: Bool, String,
Array, and Hash. The Puppet DSL had almost no functionality to check for consistent
variable types. Consider the following scenario.

A parameterized class enables other users of your code base to change the behavior
and output of the class:

class ssh (
 $server = true,
){
 if $server {
 include ssh::server
 }
}

This class definition checks whether the server parameter has been set to true.
However, in this example, the class was not protected from wrong data usage:

class { 'ssh':
 server => 'false',
}

In this class declaration, the server parameter has been given a string instead of a
bool value. Since the false string is not empty, the if $server condition actually
passes. This is not what the user will expect.

Within Puppet 3, it was recommended to add parameter validation using several
functions from the stdlib module:

class ssh (
 $server = true,
){
 validate_bool($server)
 if $server {
 include ssh::server
 }
}

Chapter 7

[163]

With one parameter only, this seems to be a good way. But what if you have many
parameters? How do we deal with complex data types like hashes?

This is where the type system comes into play. The type system knows about many
generic data types and follows patterns that are also used in many other modern
programming languages.

Puppet differentiates between core data types and abstract data types. Core data
types are the "real" data types, the ones which are mostly used in Puppet Code:

• String
• Integer, Float, and Numeric
• Boolean
• Array
• Hash
• Regexp
• Undef
• Default

In the given example, the server parameter should be checked to always contain
a bool value. The code can be simplified to the following pattern:

class ssh (
 Boolean $server = true,
){
 if $server {
 include ssh::server
 }
}

If the parameter is not given a Boolean value, Puppet will throw an error, explaining
which parameter has a non-matching data type:

class { 'ssh':
 server = 'false',
}

The error displayed is as follows:

root@puppetmaster# puppet apply ssh.pp

Error: Expected parameter 'server' of 'Class[Ssh]' to have type Boolean,
got String at ssh.pp:2 on node puppetmaster.example.net

New Features from Puppet 4

[164]

The Numeric, Float, and Integer data types have some more interesting aspects
when it comes to variables and their type.

Puppet will automatically recognize Integers, consisting of numbers (either with
or without the minus sign) and not having a decimal point.

Floats are recognized by the decimal point. When doing arithmetic algebra on a
combination of an Integer and a Float, the result will always be a Float.

Floats between -1 and 1 must be written with a leading 0 digit prior to the decimal
point; otherwise, Puppet will throw an error.

Besides this, Puppet has support for the decimal, octal, and hexadecimal notation,
as known from C-like languages:

• A nonzero decimal must not start with a 0
• Octal values must start with a leading 0
• Hexadecimal values have 0x as the prefix

Puppet will automatically convert numbers into strings during the interpolation:
("Value of number: ${number}").

Puppet will not convert strings to numbers. To make this happen,
you can simply add 0 to a string to convert:

$ssh_port = '22'
$ssh_port_integer = 0 + $ssh_port

The Default data type is a little special. It does not directly refer to a data type,
but can be used in selectors and case statements:

$enable_real = $enable ? {
 Boolean => $enable,
 String => str2bool($enable),
 default => fail('Unsupported value for ensure. Expected either
 bool or string.'),
}

Abstract data types are constructs that are useful for a more sophisticated or
permissive Type checking:

• Scalar
• Collection

Chapter 7

[165]

• Variant
• Data
• Pattern
• Enum
• Tuple
• Struct
• Optional
• Catalogentry
• Type
• Any
• Callable

Assume that a parameter will only accept strings from a limited set. Only checking
for being of type String is not sufficient. In this scenario, the Enum type is useful,
for which a list of valid values are specified:

class ssh (
 Boolean $server = true,
 Enum['des','3des','blowfish'] $cipher = 'des',
){
 if $server {
 include ssh::server
 }
}

If the listen parameter is not set to one of the listed elements, Puppet will throw
an error:

class { 'ssh':
 ciper => 'foo',
}

The following error is displayed:

puppet apply ssh.pp

Error: Expected parameter 'ciper' of 'Class[Ssh]' to have type
Enum['des','3des','blowfish'] got String at ssh.pp:2 on node
puppetmaster.example.net

New Features from Puppet 4

[166]

Sometimes, it is difficult to use specific data types, because the parameter might be
set to an undef value. Think of a userlist parameter that might be empty (undef)
or set to an arbitrary array of strings.

This is what the Optional type is for:

class ssh (
 Boolean $server = true,
 Enum['des','3des','blowfish'] $cipher = 'des',
 Optional[Array[String]] $allowed_users = undef,
){
 if $server {
 include ssh::server
 }
}

Again, using a wrong data type will lead to a Puppet error:

class { 'ssh':
 allowed_users => 'foo',
}

The error displayed is as follows:

puppet apply ssh.pp

Error: Expected parameter 'userlist' of 'Class[Ssh]' to have type
Optional[Array[String]], got String at ssh.pp:2 on node puppetmaster.
example.net

In the previous example, we used a data type composition. This means that data
types can have more information for type checking.

Let's assume that we want to set the ssh service port in our class. Normally, ssh
should run on a privileged port between 1 and 1023. In this case, we can restrict the
Integer Data Type to only allow numbers between 1 and 1023 by passing additional
information:

class ssh (
 Boolean $server = true,
 Optional[Array[String]] $allowed_users = undef,
 Integer[1,1023] $sshd_port,
){
 if $server {
 include ssh::server
 }
}

Chapter 7

[167]

As always, providing a wrong parameter will lead to an error:

class { 'ssh':
 sshd_port => 'ssh',
}

The preceding line of code gives the following error:

puppet apply ssh.pp

Error: Expected parameter 'sshd_port' of 'Class[Ssh]' to have type
Integer[1, 1023], got String at ssh.pp:2 on node puppetmaster.example.net

Complex hashes that use multiple data types are very complicated to describe using
the new type system.

When using the Hash type, it is only possible to check for a hash in general, or for
a hash with keys of a specific type. You can optionally verify the minimum and
maximum number of elements in the hash.

The following example provides a working hash type check:

$hash_map = {
 'ben' => {
 'uid' => 2203,
 'home' => '/home/ben',
 },
 'jones' => {
 'uid' => 2204,
 'home' => 'home/jones',
 }
}

Notably, the home entry for user jones is missing the leading slash:

class users (
 Hash $users
){
 notify { 'Valid Hash': }
}
class { 'users':
 users => $hash_map,
}

New Features from Puppet 4

[168]

Running the preceding code, gives us the following output:

puppet apply hash.pp

Notice: Compiled catalog for puppetmaster.example.net in environment
production in 0.32 seconds

Notice: Valid hash

Notice: /Stage[main]/Users/Notify[Valid hash]/message: defined 'message'
as 'Valid hash'

Notice: Applied catalog in 0.03 seconds

With the preceding notation, the data type is valid. Yet there are errors inside
the Hash map.

Checking content of Arrays or Hashes requires the use of another abstract data type:
Tuple (used for Arrays) or Struct (used for Hashes).

However, the Struct data type will work only when the key names are from a
known limited set, which is not the case in the given example.

In this special case, we have two possibilities:

• Extend the hash data type to know about the hash internal structure
• Wrap the type data into a define, which makes use of all keys using the key

function (from stdlib)

The first solution is as follows:

class users (
 Hash[
 String,
 Struct[{ 'uid' => Integer,
 'home' => Pattern[/^\/.*/] }]
] $users
){
 notify { 'Valid hash': }
}

However, the error message is hard to understand when the data types are
not matching:

puppet apply hash.pp

Error: Expected parameter 'users' of 'Class[Users]' to have type
Hash[String, Struct[{'uid'=>Integer, 'home'=>Pattern[/^\/.*/]}]], got St
ruct[{'ben'=>Struct[{'uid'=>Integer, 'home'=>String}], 'jones'=>Struct[
{'uid'=>Integer, 'home'=>String}]}] at hash.pp:32 on node puppetmaster.
example.net

Chapter 7

[169]

The second solution gives a smarter hint on which data might be wrong:

define users::user (
 Integer $uid,
 Pattern[/^\/.*/] $home,
){
 notify { "User: ${title}, UID: ${uid}, HOME: ${home}": }
}

This defined type is then employed from within the users class:

class users (
 Hash[String, Hash] $users
){
 $keys = keys($users)
 each($keys) |String $username| {
 users::user{ $username:
 uid => $users[$username]['uid'],
 home => $users[$username]['home'],
 }
 }
}

With the wrong submitted data in the hash, you will receive the following
error message:

puppet apply hash.pp

Error: Expected parameter 'home' of 'Users::User[jones]' to have type
Pattern[/^\/.*/], got String at hash.pp:23 on node puppetmaster.example.
net

The error message is pointing to the home parameter of the user jones, which is
given in the hash.

The correct hash is as follows:

$hash_map = {
 'ben' => {
 'uid' => 2203,
 'home' => '/home/ben',
 },
 'jones' => {
 'uid' => 2204,
 'home' => '/home/jones',
 }
}

New Features from Puppet 4

[170]

The preceding code produces the expected result as follows:

puppet apply hash.pp

Notice: Compiled catalog for puppetmaster.example.net in environment
production in 0.33 seconds

Notice: User: ben, UID: 2203, HOME: /home/ben

Notice: /Stage[main]/Users/Users::User[ben]/Notify[User: ben, UID: 2203,
HOME: /home/ben]/message: defined 'message' as 'User: ben, UID: 2203,
HOME: /home/ben'

Notice: User: jones, UID: 2204, HOME: /home/jones

Notice: /Stage[main]/Users/Users::User[jones]/Notify[User: jones, UID:
2204, HOME: /home/jones]/message: defined 'message' as 'User: jones, UID:
2204, HOME: /home/jones'

Notice: Applied catalog in 0.03 seconds

The preceding manifest uses the each function, another part of the Puppet 4
language. The next section explores it in greater detail.

Learning lambdas and functions
Functions have long been an essential part of Puppet. Due to the new type system, a
complete new set of functions have been possible—functions with different behavior
based on parameter data types.

To understand functions, we first have to take a look at lambdas, which are
introduced in Puppet 4. Lambdas represent a snippet of Puppet code, which can be
used in functions. Syntactically, lambdas consist of an optional type and at least one
variable with optional defaults set, enclosed in pipe signs (|) followed by Puppet
code inside a block of curly braces:

$packages = ['htop', 'less', 'vim']
each($packages) |String $package| {
 package { $package:
 ensure => latest,
 }
}

Lambdas are typically used on functions. The preceding example uses the each
function on the $packages variable, iterating over its contents, setting the lambda
variable $package within each iteration to the values htop, less, and vim,
respectively. The Puppet code block afterwards uses the lambda variable inside a
resource type declaration.

Chapter 7

[171]

The Puppet code in curly braces has to ensure that no
duplicate resource declaration occurs.

Since Puppet now knows about data types, you can interact and work with variables,
and the data inside, in a far more elegant way.

Puppet 4 comes with a whole set of built in functions for arrays and hashes:

• each

• slice

• filter

• map

• reduce

• with

We already saw the each function in action. Prior to Puppet 4, one needed to wrap
the desired Puppet resource types into define and declare the define type using
an array:

class puppet_symlinks {
 $symlinks = [puppet', 'facter', 'hiera']
 puppet_symlinks::symlinks { $symlinks: }
}

define puppet_symlinks::symlinks {
 file { "/usr/local/bin/${title}":
 ensure => link,
 target => "/opt/puppetlabs/bin/${title}",
 }
}

With this concept, the action (create the symlink) was put into a define type and
was no longer directly visible in the manifest. The new iteration approach keeps
the action in the same location:

class puppet_symlinks {
 $symlinks = ['puppet', 'facter', 'hiera']
 $symlinks.each | String $symlink | {
 file { "/usr/local/bin/${symlink}":
 ensure => link,
 target => "/opt/puppetlabs/bin/${symlink}",
 }
 }
}

New Features from Puppet 4

[172]

Did you recognize that this time, we used another approach of using a function?
In the first example, we used the Puppet 3 style function calls:

function($variable)

Puppet 4 also supports the postfix notation, where the function is appended to its
parameter using a dot:

$variable.function

Puppet 4 supports both ways of using a function. This allows you to keep adhering
to your code style and make use of the new functionality.

Let's run though the other functions for arrays and hashes:

• The slice function allows you to split up and group an array or a hash.
It needs an additional parameter (integer), defining how many objects
should be grouped together:
$array = ['1', '2', '3', '4']
$array.slice(2) |$slice| {
 notify { "Slice: ${slice}": }
}

This code will produce the following output:
Notice: Slice: [1, 2]

Notice: Slice: [3, 4]

When using the slice functions on a hash, one receives the keys
(according to the amount of grouped keys) and accordingly,
the sub hash:
$hash = {
 'key 1' => {'value11' => '11', 'value12' => '12',},
 'key 2' => {'value21' => '21', 'value22' => '22',},
 'key 3' => {'value31' => '31', 'value32' => '32',},
 'key 4' => {'value41' => '41', 'value42' => '42',},
}

$hash.slice(2) |$hslice| {
 notify { "HSlice: ${hslice}": }
}

Chapter 7

[173]

This will return the following output:

Notice: HSlice: [[key1, {value11 => 11, value12 => 12}], [key2,
{value21 => 21, value22 => 22}]]

Notice: HSlice: [[key3, {value31 => 31, value32 => 32}], [key4,
{value41 => 41, value42 => 42}]]

• The filter function can be used to filter out specific entries inside an array
or hash.

When used on an array, all elements are passed to the code block and the
code block evaluates whether the entry does match. This is very useful if
you want to filter out items of an array (for example, packages which should
be installed:
$pkg_array = ['libjson', 'libjson-devel', 'libfoo', 'libfoo-
devel']
$dev_packages = $pkg_array.filter |$element| {
 $element =~ /devel/
}
notify { "Packages to install: ${dev_packages}": }

This will return the following output:
Notice: Packages to install: [libjson-devel, libfoo-devel]

The behavior on hashes is different. When using hashes, one has to provide
two lambda variables: key and value. You might want to only add users that
have a specific gid set:
$hash = {
 'jones' => {
 'gid' => 'admin',
 },
 'james' => {
 'gid' => 'devel',
 },
 'john' => {
 'gid' => 'admin',
 },
}

$user_hash = $hash.filter |$key, $value| {
 $value['gid'] =~ /admin/
}

New Features from Puppet 4

[174]

$user_list = keys($user_hash)
notify { "Users to create: ${user_list}": }

This will return only the users from the admin gid:

Notice: Users to create: [jones, john]

Creating Puppet 4 functions
The Puppet 3 functions API has some limitations and is missing features.
The new function API in Puppet 4 improves upon that substantially.

Some of the limitations of the old functions are as follows:

• The functions had no automatic type checking
• These functions had to have a unique name due to a flat namespace
• These functions were not private and hence could be used anywhere
• The documentation could not be retrieved without running the Ruby code

Running on Puppet 3 requires functions to be in a module in the lib/puppet/
parser/functions directory. Therefore, people referred to these functions as parser
functions. But this name is misleading. Functions are unrelated to the Puppet parser.

In Puppet 4, functions have to be put into a module in path lib/puppet/functions.

This is how you create a function that will return the hostname of the Puppet Master:

modules/utils/lib/puppet/functions/resolver.rb
require 'socket'
Puppet::Functions.create_function(:resolver) do
 def resolver()
 Socket.gethostname
 end
end

Using dispatch adds type checking for attributes. Depending on desired
functionality, one might have multiple dispatch blocks (checking for different
data types). Each dispatch can refer to another defined Ruby method inside the
function. This reference is possible by using the same names for dispatch and the
Ruby method.

Chapter 7

[175]

The following example code should get additional functionality; depending
on the type of argument, the function should either return the hostname of the
local system, or use DNS to get the hostname from an IPv4 address or the
ipaddress for a given hostname:

require 'resolv'
require 'socket'
Puppet::Functions.create_function(:resolver) do
 dispatch :ip_param do
 param 'Pattern[/^(?:[0-9]{1,3}\.){3}[0-9]{1,3}$/]', :ip
 end
 dispatch :fqdn_param do
 param 'Pattern[/^([a-z0-9\.].*$/]', :fdqn
 end
 dispatch :no_param do
 end

 def no_param
 Socket.gethostname
 end
 def ip_param(ip)
 Resolv.getname(ip)
 end
 def fqdn_param(fqdn)
 Resolv.getaddress(fqdn)
 end
end

At the beginning of the file, we have to load some Ruby modules to allow the DNS
name resolution and finding the local hostname.

The first two dispatch sections check for the data type of the parameter value and
set a unique symbol. The last dispatch section does not check for data types, which
matches when no parameter was given.

Each defined Ruby method uses the name of the according dispatch and executes
Ruby code depending on the parameter type.

Now the resolver function can be used from inside the Puppet manifest code in three
different ways:

class resolver {
 $localname = resolver()

New Features from Puppet 4

[176]

 notify { "Without argument resolver returns local hostname:
 ${localname}": }

 $remotename = resolver('puppetlabs.com')
 notify { "With argument puppetlabs.com: ${remotename}": }

 $remoteip = resolver('8.8.8.8')
 notify { "With argument 8.8.8.8: ${remoteip}": }
}

When declaring this class, the following output will show up:

puppet apply -e 'include resolver'

Notice: Compiled catalog for puppetmaster.example.net in environment
production in 0.35 seconds

...

Notice: Without argument resolver returns local hostname: puppetmaster

Notice: With argument puppetlabs.com: 52.10.10.141

Notice: With argument 8.8.8.8: google-public-dns-a.google.com

Notice: Applied catalog in 0.04 seconds

With Puppet 3 functions, it was impossible to have two functions of the same name.
One always had to check whether duplicate functions appeared when making use of
a new module.

The Puppet 4 functions now offer the possibility of using namespacing just
like classes.

Let's migrate our function into the class namespace:

modules/utils/lib/puppet/functions/resolver/resolve.rb
require 'resolv'
require 'socket'
Puppet::Functions.create_function(:'resolver::resolve') do
 # the rest of the function is identical to the example given
 # above
end

In the example, the code needs to be in resolver/lib/puppet/
functions/resolver/resolve.rb which corresponds to function name:
'resolver::resolve'.

Chapter 7

[177]

Functions with namespaces are invoked as usual:

class resolver {
 $localname = resolver::resolve()

 $remotename = resolver::resolve('puppetlabs.com')

 $remoteip = resolver::resolve('8.8.8.8')
}

Leveraging the new template engine
In Chapter 6, Leveraging the Full Toolset of the Language, we introduced templates and
the ERB template engine. In Puppet 4, an alternative was added: the EPP template
engine. The major differences between the template engines are as follows:

• In ERB templates, you cannot specify a variable in Puppet syntax
($variable_name)

• ERB templates will not accept parameters
• In EPP templates, you will use the Puppet DSL syntax instead of Ruby syntax

The EPP template engine requires scoped variables from modules:

motd file – managed by Puppet
This system is running on <%= $::operatingsystem %>

The manifest defines the following local variable: <%= $motd::local_variable %>.
The EPP templates also have a unique extension; they can take typed parameters.
To make use of this, a template has to start with a parameter declaration block:

<%- | String $local_variable,
 Array $local_array
| -%>

These parameters are not like variables from Puppet manifests. Instead, one must
pass parameters using the epp function:

epp('template/test.epp', {'local_variable' => 'value', 'local_array'
=> ['value1', 'value2'] })

A template without parameters should only be used when the template is used
exclusively by one module, so that it is safe to rely on the availability of Puppet
variables to customize the content.

New Features from Puppet 4

[178]

Using the EPP template function with parameters is recommended when a template
is used from several places. By declaring the parameters at the beginning, it is
especially clear what data the template requires.

There is a specific difference between the template engines when iterating over
arrays and hashes. The ERB syntax uses Ruby code with unscoped, local variables,
whereas the EPP syntax requires specifying Puppet DSL code:

ERB syntax
<% @array.each do |element| -%>
<%= element %>
<% end -%>

EPP syntax
<% $array.each |$element| { -%>
<%= $element %>
<% } -%>

The inline ERB function was also supplemented with inline EPP. Using the inline
EPP, one can specify a small snippet of EPP code to get evaluated:

file {'/etc/motd':
 ensure => file,
 content => inline_epp("Welcome to <%= $::fqdn %>\n")
}

Prior to Puppet 4, it was inconvenient to pass more than a small code snippet.
With Puppet 4 and the HEREDOC support, complex templates in combination
with inline_epp are easier and better readable.

Handling multiline with HEREDOC
Writing multiline file fragments in Puppet mostly resulted in code that was hard to
read, mostly due to indentation. With Puppet 4, the heredoc style was added. It is
now possible to specify a heredoc tag and marker:

$motd_content = @(EOF)
 This system is managed by Puppet
 local changes will be overwritten by next Puppet run.
EOF

Chapter 7

[179]

The heredoc tag starts with an @ sign followed by arbitrary string enclosed in
parenthesis. The heredoc marker is the string given in the tag.

If variables are required inside the heredoc document, the variable interpolation can
be enabled by putting the tag string in double quotes. Variables inside the heredoc
are written like Puppet DSL variables: a dollar sign followed by the scope and the
variable name:

$motd_content = @("EOF")
 Welcome to ${::fqdn}.
 This system is managed by Puppet version ${::puppetversion}.
 Local changes will be overwritten by the next Puppet run
EOF

Normally, heredoc does not handle escape sequences. Escape sequences need to
be enabled explicitly. As of Puppet 4.2, heredoc has the following escape sequences
available:

• \n Newline
• \r Carriage return
• \t Tab
• \s Space
• \$ Literal dollar sign (preventing interpolation)
• \u Unicode character
• \L Nothing (ignore line breaks in source code)

Enabled escape sequences have to be placed behind the string of the heredoc tag:

$modt_content = @("EOF"/tn)
Welcome to ${::fqdn}.\n\tThis system is managed by Puppet version
${::puppetversion}.\n\tLocal changes will be overwritten on next
Puppet run.
EOF

In the example, the text always starts in the first column, which makes it hard to read
and stands out from the code around it, which will usually be indented by some
amount of whitespace.

New Features from Puppet 4

[180]

It is possible to strip indentation by placing whitespaces and a pipe sign in front of
the heredoc marker. The pipe sign will indicate the first character of each line:

$motd_content = @("EOF")
 Welcome to ${::fqdn}.
 This system is managed by Puppet version ${::puppetversion}.
 Local changes will be overwritten on next Puppet run.
 | EOF

Now heredoc and inline_epp can be easily combined:

class my_motd (
 Optional[String] $additional_content = undef
){
 $motd_content = @(EOF)
 Welcome to <%= $::fqdn %>.
 This system is managed by Puppet version <%= $::puppetversion
 %>.
 Local changes will be overwritten on next Puppet run.
 <% if $additional_content != undef { -%>
 <%= $additional_content %>
 <% } -%>
 | EOF
 file { '/etc/motd':
 ensure => file,
 content => inline_epp($motd_content, { additional_content =>
 $additional_content }),
 }
}

Declaring this class will give the following result in the motd file:

puppet apply -e 'include my_motd'

Welcome to puppetmaster.example.net.

This system is managed by Puppet version 4.2.1.

Local changes will be overwritten on next Puppet run.

When using heredoc in combination with inline_epp, you want to
take care to not quote the heredoc start tag. Otherwise, the variable
substitution will take place prior to the inline_epp function call.

Chapter 7

[181]

Breaking old practices
When Puppet Labs decided to work on the parser and on the new features,
they also decided to remove some features that had already been deprecated
for a couple of releases.

Converting node inheritance
Node inheritance has been considered good practice during older Puppet releases.
To avoid too much code on the node level, a generic, nonexistent host was created
(basenode) and the real nodes inherited from basenode:

node basenode {
 include security
 include ldap
 include base
}
node 'www01.example.net' inherits 'basenode' {
 class { 'apache': }
 include apache::mod::php
 include webapplication
}

This node classification is no longer supported by Puppet 4.

As of 2012, the Roles and Profiles pattern became increasingly popular, bringing new
methods on how to allow smart node classification. From a technical point of view,
roles and profiles are Puppet classes. The profile module wraps technical modules
and adapts their usage to the existing infrastructure by providing data such as ntp
servers and ssh configuration options. The role module describes system business
use cases and makes use of the declared profiles:

class profile::base {
 include security
 include ldap
 include base
}
class profile::webserver {
 class { 'apache': }
 include apache_mod_php
}

New Features from Puppet 4

[182]

class role::webapplication {
 include profile::base
 include profile::webserver
 include profile::webapplication
}

node 'www01.example.net' {
 include role::webapplication
}

The final chapter will describe the Roles and Profiles pattern in
some more detail.

Dealing with bool algebra on Strings
A minor change with a huge impact is the change of empty string comparison.
Prior to Puppet 4, one could test for either an unset variable or a variable containing
an empty string by checking for the variable:

class ssh (
 $server = true,
){
 if $server {...}
}

The ssh class behaved similar ($server evaluates to true) when used within the
following different declarations:

include ssh
class { 'ssh': server => 'yes', }

Disabling the server section in the ssh class could be achieved by the following class
declarations:

class { 'ssh': server => false, }
class { 'ssh': server => '', }

Chapter 7

[183]

The behavior of the last example (empty string) changed in Puppet 4. The empty
string now equals a true value in Boolean context just as in Ruby. If your code makes
use of this way of variable checking, you need to add the check for empty string to
retain the same behavior with Puppet 4:

class ssh (
 $server = true,
){
 if $server and $server != '' {...}
}

Using strict variable naming
Variables sometimes look like constants and exhibit the following features:

• Variables cannot be declared again
• In the scope of one node, most variables are static (hostname, fqdn,

and so on)

Sometimes developers prefer to write the variables in capital letters due to the
previously mentioned items, to make them look like Ruby constants.

With Puppet 4, variable names must not start with a capital letter:

class variables
{
 $Local_var = 'capital variable'
 notify { "Local capital var: ${Local_var}": }
}

Declaring this class will now produce the following error message:

root@puppetmaster:/etc/puppetlabs/code/environments/production/modules#
puppet apply -e 'include variables'

Error: Illegal variable name, The given name 'Local_var' does not
conform to the naming rule /^((::)?[a-z]\w*)*((::)?[a-z_]\w*)$/ at /etc/
puppetlabs/code/environments/production/modules/variables/manifests/init.
pp:3:3 on node puppetmaster.example.net

New Features from Puppet 4

[184]

Learning the new reference syntax
Due to the type system and due to the reason that Puppet 4 now takes everything
as an expression, one has to name references on other declared resources properly.
References now have some strict regulations:

• No whitespace between reference type and opening bracket
• The reference title (used without quotes) must not be spelled with a capital

letter

The following will produce errors on Puppet 4:

User [Root]
User[Root]

Starting with Puppet 4, references have to be written in the following pattern:

Type['title']

Our example needs to be changed to:

User['root']

Cleaning hyphens in names
Many modules (even on the module Forge) have used the hyphen in the
module name. The hyphen is now no longer a string character, but a mathematical
operator (subtraction). In consequence, hyphens are now strictly forbidden in the
following descriptors:

• The module name
• Any class name
• Names of defined types

When using modules with hyphens, the hyphen needs to be removed or replaced
with a string character (for example, the underscore).

This is possible with older versions as follows:

class syslog-ng {...}

include syslog-ng

Chapter 7

[185]

Now, the new style is as follows:

class syslog_ng {
 ...
}

include syslog_ng

No Ruby DSL anymore
Some people used the possibility to put .rb files as manifests inside modules.
These .rb files contained Ruby code and were mostly needed for working with
data. Puppet 4 now has data types that make this obsolete.

The support for these Ruby manifests has been removed in Puppet 4.

Relative class name resolution
With Puppet 3 and older, it was required to specify absolute class names in case
that a local class name was identical to another module:

in module "mysql"
class mysql {
 ...
}
in module "application"
class application::mysql {
 include mysql
}

Within the scope of the application:: namespace, Puppet 3 would search this
namespace for a mysql class to be included. Effectively, the application::mysql
class would include itself. But this was not what we intended to do. We were looking
for the mysql module instead. As a workaround, everybody was encouraged to
specify the absolute path to the mysql module class:

class application::mysql {
 include ::mysql
}

This relative name resolution no longer applies in Puppet 4. The original example
works now.

New Features from Puppet 4

[186]

Dealing with different data types
Due to the reason that Puppet 3 was not aware of the different data types
(mostly everything was dealt with as being of type string) it was possible to
combine several different data types.

Puppet 4 now is very strict when it comes to combining different data types.
The easiest example is dealing with float and integer; when adding a float and an
integer, the result will be of type float.

Combining actions on different data types such as string and bool will now result in
an error.

The following code will work:

case $::operatingsystemmajrelease {
 '8': {
 include base::debian::jessie
 }
}

On the other hand, the following code will not work:

if $::operatingsystemmajrelease > 7 {
 include base::debian::jessie
}

You will receive the following error message:

Error: Evaluation Error: Comparison of: String > Integer, is not
possible. Caused by 'A String is not comparable to a non String'

Review comparison of different Facter variables carefully. Some Facter variables
such as operatingsystemmajrelease return data of the type string, whereas
processorcount returns an integer value.

Chapter 7

[187]

Summary
Upgrading to Puppet 3 should be done in a step-by-step procedure where your
existing code will be evaluated using Puppet 3.8 and the new parser.

Thanks to the type system, it is now possible to deal with data in a far more elegant
way directly in your Puppet DSL code. The new functions API allows you to
immediately recognize to which module a function belongs by using namespaces.
Similar functions can now be combined within a single file by making use of the
dispatch method and data types, allowing a form of function overloading.

The new EPP templates offer better understanding of variable source by using the
Puppet syntax for variable references. Passing parameters to templates will allow
you to make use of modules in a more flexible way.

Combining EPP templates and the HEREDOC syntax will allow you to keep
template code and data directly visible inside your classes.

In the upcoming final chapter, you will learn about Hiera and how it can help you
bring order to a scalable Puppet code base.

[189]

Separating Data from Code
Using Hiera

Working through the first seven chapters, you have used the basic structural
elements of Puppet in numerous examples and contexts. There has been a quick
demonstration of the more advanced language features, and you have a good idea of
what distinguishes the manifest writing process in Puppet 4 from the earlier releases.

For all their expressive power, manifests do have some limitations. A manifest that is
designed by the principles taught up to this point mixes logic with data. Logic is not
only evident in control structures such as if and else, but it also just emerges from
the network of classes and defines that include and instantiate one another.

However, you cannot configure a machine by just including some generic classes.
Many properties of a given system are individual and must be passed as parameters.
This can have maintenance implications for a manifest that must accommodate
a large number of nodes. This chapter will teach you how to bring order back to
such complex code bases. We will also explain how many larger sites structure the
codebase as a whole. These will be our final steps in this Puppet Essentials collection:

• Understanding the need for separate data storage
• Structuring configuration data in a hierarchy
• Retrieving and using Hiera values in manifests
• Converting resources to data
• A practical example
• Debugging Hiera lookups
• Implementing the Roles and Profiles Pattern

Separating Data from Code Using Hiera

[190]

Understanding the need for separate data
storage
Looking back at what you implemented during this book so far, you managed to
create some very versatile code that did very useful things in an automatic fashion.
Your nodes can distribute entries for /etc/hosts among themselves. They register
each other's public SSH key for authentication. A node can automatically register
itself to a central Cacti server.

Thanks to Facter, Puppet has the information that allows effortless handling of these
use cases. Many configuration items are unique to each node only because they
refer to a detail (such as an IP address or a generated key) that is already defined.
Sometimes, the required configuration data can be found on a remote machine only,
which Puppet handles through exported resources. Such manifest designs that can
rely on facts are very economical. The information has already been gathered, and a
single class can most likely behave correctly for many or all of your nodes, and can
manage a common task in a graceful manner.

However, some configuration tasks have to be performed individually for each node,
and these can incorporate settings that are rather arbitrary and not directly derived
from the node's existing properties:

• In a complex MySQL replication setup that spans multiple servers, each
participant requires a unique server ID. Duplicates must be prevented under
any circumstances, so randomly generating the ID numbers is not safe.

• Some of your networks might require regular maintenance jobs to be run
from cron. To prevent the overlapping of the runs on any two machines,
Puppet should define a starting time for each machine to ensure this.

• In server operations, you have to perform the monitoring of the disk space
usage on all systems. Most disks should generate early warnings so that there
is time to react. However, other disks will be expected to be almost full at
most times and should have a much higher warning threshold.

When custom-built systems and software are managed through Puppet, they are
also likely to require this type of micromanagement for each instance. The examples
here represent only a tiny slice of the things that Puppet must manage explicitly and
independently.

Chapter 8

[191]

Consequences of defining data in the
manifest
There are a number of ways in which a Puppet manifest can approach this problem
of micromanagement. The most direct way is to define whole sets of classes—one for
each individual node:

class site::mysql_server01 {
 class { 'mysql': server_id => '1', … }
}
class site::mysql_server02 {
 class { 'mysql': server_id => '2', … }
}
…
class site::mysql_aux01 {
 class { 'mysql': server_id => '101', … }
}
and so forth ...

This is a very high-maintenance solution for the following reasons:

• The individual classes can become quite elaborate, because all required
mysql class parameters have to be used in each one

• There is much redundancy among the parameters that are, in fact, identical
among all nodes

• The individually different values can be hard to spot and must be carefully
kept unique throughout the whole collection of classes

• This is only really feasible by keeping these classes close together, which
might conflict with other organizational principles of your code base

In short, this is the brute-force approach that introduces its own share of cost.
A more economic approach would be to pass the values that are different among
nodes (and only those!) to a wrapper class:

node 'xndp12-sql09.example.net' {
 class { 'site::mysql_server':
 mysql_server_id => '103',
 }
}

Separating Data from Code Using Hiera

[192]

This wrapper can declare the mysql class in a generic fashion, thanks to the individual
parameter value per node:

class site::mysql_server(
 String $mysql_server_id
) {
 class { 'mysql':
 server_id => $mysql_server_id,
 ...
 }
}

This is much better, because it eliminates the redundancy and its impact on
maintainability. The wrinkle is that the node blocks can become quite messy with
parameter assignments for many different subsystems. Explanatory comments
contribute to the wall of text that each node block can become.

You can take this a step further by defining lookup tables in hash variables,
outside of any node or class, on the global scope:

$mysql_config_table = {
 'xndp12-sql01.example.net' => {
 server_id => '1',
 buffer_pool => '12G',
 },
 …
}

This alleviates the need to declare any variables in node blocks. The classes look up
the values directly from the hash:

class site::mysql_server(
 $config = $mysql_config_table[$::certname]
) {
 class { 'mysql':
 server_id => $config['server_id'],
 ...
 }
}

Chapter 8

[193]

This is pretty sophisticated and is actually close to the even better way that you will
learn about in this chapter. Note that this approach still retains a leftover possibility
of redundancy. Some configuration values are likely to be identical among all nodes
that belong to one group, but are unique to each group (for example, preshared keys
of any variety).

This requires that all servers in the hypothetical xndp12 cluster contain some
key/value pairs that are identical for all members:

$crypt_key_xndp12 = 'xneFGl%23ndfAWLN34a0t9w30.zges4'
$config = {
'xndp12-stor01.example.net' => { $crypt_key =>
 $crypt_key_xndp12, … },
'xndp12-stor02.example.net' => { $crypt_key =>
 $crypt_key_xndp12, … },
'xndp12-sql01.example.net' => { $crypt_key =>
 $crypt_key_xndp12, … },
...
}

This is not ideal but let's stop here. There is no point in worrying about even more
elaborate ways to sort configuration data into recursive hash structures. Such solutions
will quickly grow very difficult to understand and maintain anyway. The silver bullet
is an external database that holds all individual and shared values. Before I go into the
details of using Hiera for just this purpose, let's discuss the general ideas of hierarchical
data storage.

Structuring configuration data in a
hierarchy
In the previous section, we reduced the data problem to a simple need for key/
value pairs that are specific to each node under Puppet management. Puppet and
its manifests then serve as the engine that generates actual configuration from these
minimalistic bits of information.

Separating Data from Code Using Hiera

[194]

A simplistic approach to this problem is an ini style configuration file that has a
section for each node that sets values for all configurable keys. Shared values will be
declared in one or more general sections:

[mysql]
buffer_pool=15G
log_file_size=500M
...
[xndp12-sql01.example.net]
psk=xneFGl%23ndfAWLN34a0t9w30.zges4
server_id=1

Rails applications customarily do something similar and store their configuration in
a YAML format. The user can define different environments, such as production,
staging, and testing. The values that are defined per environment override the
global setting values.

This is quite close to the type of hierarchical configuration that Puppet allows
through its Hiera binding. The hierarchies that the mentioned Rails applications and
ini files achieve through configuration environments are quite flat—there is a global
layer and an overlay for specialized configuration. With Hiera and Puppet, a single
configuration database will typically handle whole clusters of machines and entire
networks of such clusters. This implies the need for a more elaborate hierarchy.

Hiera allows you to define your own hierarchical layers. There are some typical,
proven examples, which are found in many configurations out there:

• The common layer holds default values for all agents
• A location layer can override some values in accordance with the data

center that houses each respective node
• Each agent machine typically fills a distinct role in your infrastructure,

such as wordpress_appserver or puppetdb_server
• Some configuration is specific to each single machine

For example, consider the configuration of a hypothetical reporting client. Your
common layer will hold lots of presets such as default verbosity settings, the transport
compression option, and other choices that should work for most machines. On
the location layer, you ensure that each machine checks in to the respective local
server—reporting should not use WAN resources.

Chapter 8

[195]

Settings per role are perhaps the most interesting part. They allow fine-grained
settings that are specific to a class of servers. Perhaps your application servers should
monitor their memory consumption in very close intervals. For the database servers,
you will want a closer view at hard drive operations and performance. For your
Puppet servers, there might be special plugins that gather specific data.

The machine layer is very useful in order to declare any exceptions from the rule.
There are always some machines that require special treatment for one reason or
another. With a top hierarchy layer that holds data for each single agent, you get
full control over all the data that an agent uses.

These ideas are still quite abstract, so let's finally look at the actual application
of Hiera.

Configuring Hiera
The support for retrieving data values from Hiera has been built into Puppet
since version 3. All you need in order to get started is a hiera.yaml file in the
configuration directory.

Of course, the location and name of the configuration is
customizable, as is almost everything that is related to
configuration. Look for the hiera_config setting.

As the filename extension suggests, the configuration is in the YAML format and
contains a hash with keys for the backends, the hierarchy, and backend-specific
settings. The keys are noted as Ruby symbols with a leading colon:

/etc/puppetlabs/code/hiera.yaml
:backends:
 - yaml
:hierarchy:
 - node/%{::clientcert}
 - role/%{::role}
 - location/%{::datacenter}
 - common
:yaml:
 :datadir: /etc/puppetlabs/code/environments/%{::environment
 }/hieradata

Separating Data from Code Using Hiera

[196]

Note that the value of :backends is actually a single element array. You can
pick multiple backends. The significance will be explained later. The :hierarchy
value contains a list of the actual layers that were described earlier. Each entry is the
name of a data source. When Hiera retrieves a value, it searches each data source in
turn. The %{} expression allows you to access the values of Puppet variables. Use
only facts or global scope variables here—anything else will make Hiera's behavior
quite confusing.

Finally, you will need to include configurations for each of your backends. The
configuration above uses the YAML backend only, so there is only a hash for :yaml
with the one supported :datadir key. This is where Hiera will expect to find YAML
files with data. For each data source, the datadir can contain one .yaml file. As the
names of the sources are dynamic, you will typically create more than four or five
data source files. Let's create some examples before we have a short discussion on the
combination of multiple backends.

Storing Hiera data
The backend of your Hiera setup determines how you have to store your configuration
values. For the YAML backend, you fill datadir with files that each holds a hash
of values. Let's put some elements of the reporting engine configuration into the
example hierarchy:

/etc/puppetlabs/code/environments/production/hieradata/common.yaml
reporting::server: stats01.example.net
reporting::server_port: 9033

The values in common.yaml are defaults that are used for all agents. They are at the
broad base of the hierarchy. Values that are specific to a location or role apply to
smaller groups of your agents. For example, the database servers of the postgres
role should run some special reporting plugins:

/etc/puppetlabs/code/environments/production/hieradata/role/
postgres.yaml
reporting::plugins:
 - iops
 - cpuload

Chapter 8

[197]

On such a higher layer, you can also override the values from the lower layers. For
example, a role-specific data source such as role/postgres.yaml can set a value
for reporting::server_port as well. The layers are searched from the most to
the least specific, and the first value is used. This is why it is a good idea to have a
node-specific data source at the top of the hierarchy. On this layer, you can override
any value for each agent. In this example, the reporting node can use the loopback
interface to reach itself:

#/etc/puppetlabs/.../hieradata/node/stats01.example.net.yaml
reporting::server: localhost

Each agent receives a patchwork of configuration values according to the concrete
YAML files that make up its specific hierarchy.

Don't worry if all this feels a bit overwhelming. There are more examples in this
chapter. Hiera also has the charming characteristic of seeming rather complicated
on paper, but it feels very natural and intuitive once you try using it yourself.

Choosing your backends
There are two built-in backends: YAML and JSON. This chapter will focus on YAML,
because it's a very convenient and efficient form of data notation. The JSON backend
is very similar to YAML. It looks for data in .json files instead of .yaml for each
data source; these files use a different data notation format.

The use of multiple backends should never be truly necessary. In most cases,
a well-thought-out hierarchy will suffice for your needs. With a second backend,
data lookup will traverse your hierarchy once per backend. This means that
the lowest level of your primary backend will rank higher than any layer from
additional backends.

In some cases, it might be worthwhile to add another backend just to get the ability
to define even more basic defaults in an alternative location—perhaps a distributed
filesystem or a source control repository with different commit privileges.

Also, note that you can add custom backends to Hiera, so these might also be
sensible choices for secondary or even tertiary backends. A Hiera backend is written
in Ruby, like the Puppet plugins. The details of creating such a backend are beyond
the scope of this book.

Separating Data from Code Using Hiera

[198]

A particularly popular backend plugin is eyaml, available
through the hiera-eyaml Ruby gem. This backend allows you
to incorporate encrypted strings in your YAML data. Puppet
decrypts the data upon retrieval.

You have studied the theory of storing data in Hiera at length, so it's finally time to
see how to make use of this in Puppet.

Retrieving and using Hiera values in
manifests
Looking up a key value in Hiera is easy. Puppet comes with a very straightforward
function for this:

$plugins = hiera('reporting::plugins')

Whenever the compiler encounters such a call in the manifest of the current agent
node, it triggers a search in the hierarchy. The specific data sources are determined
by the hierarchy in your hiera.yaml file. It will almost always rely on fact values
provided by the agent to make flexible data source selections.

If the named key cannot be found in the agent's hierarchy, the master aborts the
catalog compilation with an error. To prevent this, it is often sensible to supply a
default value with the lookup:

$plugins = hiera('reporting::plugins', [])

In this case, Puppet uses an empty array if the hierarchy mentions no plugins.
On the other hand, you can purposefully omit the default value. Just like with
class and define parameters, this signals that the Hiera value is required.
If the user fails to supply it, Puppet will abort the manifest compilation.

Working with simple values
You have seen how to invoke the hiera function for value retrieval. There is
really not more to it than what you have seen in the previous section, except for an
optional parameter. It allows you to include an additional layer at the top of your
hierarchy. If the key is found in the named data source, it will override the result
from the regular hierarchy:

$plugins = hiera('reporting::plugins', [], 'global-overrides')

Chapter 8

[199]

If the reporting::plugins key is found in the global-overrides data source, the
value is taken from there. Otherwise, the normal hierarchy is searched.

Generally, assigning the retrieved value to a manifest variable is quite common.
However, you can also invoke the hiera function in other useful contexts, such as
the following:

@@cacti_device { $::fqdn:
 ip => hiera('snmp_address', $::ipaddress),
}

The lookup result can be handed to a resource directly as a parameter value. This is
an example of how to allow Hiera to define a specific IP address per machine that
should be used for a specific service. It acts as a simple way to manually override
Facter's assumptions.

It is generally safer to store Hiera lookup results in a variable first.
This allows you to check their data type. In Puppet 3, you need to
use an assert function from the stdlib module. Puppet 4 has
an operator for this purpose:

$max_threads = hiera('max_threads')
if $max_threads !~ Integer {
 fail "The max_threads value must be an integer
number"
}

Another frequent occurrence is a parameter default that is made dynamic through a
Hiera lookup:

define logrotate::config(
 Integer $rotations = hiera('logrotate::rotations', 7)
) {
 # regular define code here
}

For logrotate::config resources that are declared with an explicit parameter
value, the Hiera value is ignored:

logrotate::config { '/var/log/cacti.log': rotations => 12 }

Separating Data from Code Using Hiera

[200]

 This can be a little confusing. Still, the pattern adds some convenience. Most agents
can rely on the default. The hierarchy allows you to tune this default on multiple
levels of granularity.

Binding class parameter values automatically
The concept of parameterized classes might have gotten a somewhat tarnished
reputation, judging from our coverage of it so far. It allegedly makes it difficult
to include classes from multiple places in the manifest, or silently allows it under
shifting circumstances. While that is true, you can avoid these issues by relying on
Hiera for your class parameterization needs.

Since Puppet's Version 3.2, it has been possible to choose the values for any
class's parameters right in the Hiera data. Whenever you include a class that has
any parameters, Puppet will query Hiera to find a value for each of them. The keys
must be named after the class and parameter names, joined by a double colon.
Remember the cacti class from Chapter 5, Extending Your Puppet Infrastructure
with Modules? It had a $redirect parameter. To define its value in Hiera, add the
cacti::redirect key:

node/cacti01.example.net.yaml
cacti::redirect: false

Some classes have very elaborate interfaces—the apache class from the Puppet Labs
Apache module accepts 49 parameters at the time of writing this. If you need many
of those, you can put them into the target machine's dedicated YAML file as one
coherent block of keys with values. It will be quite readable, because the apache::
prefixes line up.

You don't save any lines compared to specifying the parameters right in the manifest,
but at least the wall of options will not get in your way while you're programming in
your manifests—you separated data from code.

The point that is perhaps the most redeeming for class parameterization is that each
key is independent in your hierarchy. Many parameters can most likely be defined
for many or all of your machines. Clusters of application servers can share some
settings (if your hierarchy includes a layer on which they are grouped together),
and you can override parameters for single machines as you see fit:

common.yaml
apache::default_ssl_cert: /etc/puppetlabs/puppet/ssl/
certs/%{::clientcert}.pem
apache::default_ssl_key: /etc/puppetlabs/puppet/ssl/private_
keys/%{::clientcert}.pem
apache::purge_configs: false

Chapter 8

[201]

The preceding example prepares your site to use the Puppet certificates for HTTPS.
This is a good choice for internal services, because trust to the Puppet CA can be
easily established, and the certificates are available on all agent machines. The third
parameter, purge_configs, prevents the module from obliterating any existing
Apache configuration that is not under Puppet's management.

Let's see an example of a more specific hierarchy layer which overrides this setting:

role/httpsec.yaml
apache::purge_configs: true
apache::server_tokens: Minimal
apache::server_signature: off
apache::trace_enable: off

On machines that have the httpsec role, the Apache configuration should be purged
so that it matches the managed configuration completely. The hierarchy of such
machines also defines some additional values that are not defined in the common
layer. The SSL settings from common remain untouched.

A specific machine's YAML can override keys from either layer if need be:

node/sec02-sxf12.yaml
apache::default_ssl_cert: /opt/ssl/custom.pem
apache::default_ssl_key: /opt/ssl/custom.key
apache::trace_enable: extended

All these settings require no additional work. They take effect automatically,
provided that the apache class from the puppetlabs-apache module is included.

For some users, this might be the only way in which Hiera is employed on their
master, which is perfectly valid. You can even design your manifests specifically
to expose all configurable items as class parameters. However, keep in mind that
another advantage of Hiera is that any value can be retrieved from many different
places in your manifest.

For example, if your firewalled servers are reachable through dedicated NAT ports,
you will want to add this port to each machine's Hiera data. The manifest can export
this value not only to the firewall server itself, but also to external servers that use it
in scripts and configurations to reach the exporting machine:

$nat_port = hiera('site::net::nat_port')
@@firewall { "650 forward port ${nat_port} to ${::fqdn}":
 proto => 'tcp',
 dport => $nat_port,
 destination => hiera('site::net::nat_ip'),

Separating Data from Code Using Hiera

[202]

 jump => 'DNAT',
 todest => $::ipaddress,
 tag => hiera('site::net::firewall_segment'),
}

The values will most likely be defined on different hierarchical layers. nat_port is
agent-specific and can only be defined in the %{::fqdn} (or %{::clientcert} for
better security) derived data source. nat_ip is probably identical for all servers in
the same cluster. They might share a server role. firewall_segment could well be
identical for all servers that share the same location:

stor03.example.net.yaml
site::net::nat_port: 12020
...
role/storage.yaml
site::net::nat_ip: 198.58.119.126
...
location/portland.yaml
site::net::firewall_segment: segment04
...

As previously mentioned, some of this data will be helpful in other contexts as well.
Assume that you deploy a script through a defined type. The script sends messages
to remote machines. The destination address and port are passed to the defined type
as parameters. Each node that should be targeted can export this script resource:

@@site::maintenance_script {"/usr/local/bin/maint-${::fqdn}":
 address => hiera('site::net::nat_ip'),
 port => hiera('site::net::nat_port'),
}

It would be impractical to do all this in one class that takes the port and address as
parameters. You would want to retrieve the same value from within different classes
or even modules, each taking care of the respective exports.

Handling hashes and arrays
Some examples in this chapter defined array values in Hiera. The good news is that
retrieving arrays and hashes from Hiera is not at all different from simple strings,
numbers, or Boolean values. The hiera function will return all these values, which
are ready for use in the manifest.

Chapter 8

[203]

There are two more functions that offer special handling for such values: the
hiera_array and hiera_hash functions.

The presence of these functions can be somewhat confusing. New
users might assume that these are required whenever retrieving
hashes or arrays from the hierarchy. When inheriting Puppet code,
it can be a good idea to double-check that these derived functions
are actually used correctly in a given context.

When the hiera_array function is invoked, it gathers all named values from the
whole hierarchy and merges them into one long array that comprises all elements
that were found. Take the distributed firewall configuration once more, for example.
Each node should be able to export a list of rules that open ports for public access.
The manifest for this would be completely driven by Hiera:

if hiera('site::net::nat_ip', false) {
 @@firewall { "200 NAT ports for ${::fqdn}":
 port => hiera_array('site::net::nat_ports'),
 proto => 'tcp',
 destination => hiera('site::net::nat_ip'),
 jump => 'DNAT',
 todest => $::ipaddress,
 }
}

Please note that the title "200 NAT ports" does not allude to the number of ports,
but just adheres to the naming conventions for firewall resources. The numeric
prefix makes it easy to maintain order. Also, note the seemingly nonsensical default
value of false for the site::net::nat_ip key in the if clause. This forms a useful
pattern, though—the resource should only be exported if public_ip is defined for
the respective node.

Care must be taken if false or the empty string is a conceivable value
for the key in question. In this case, the if clause will ignore that value.
In such cases, you should use a well-defined comparison instead:

if hiera('feature_flag_A', undef) != undef { … }

Separating Data from Code Using Hiera

[204]

The hierarchy can then hold ports on several layers:

common.yaml
nat_ports: 22

The SSH port should be available for all nodes that get a public address. Note that
this value is not an array itself. This is fine; Hiera will include scalar values in the
resulting list without any complaint.

role-webserver.yaml
nat_ports: [80, 443]

Standalone web application servers present their HTTP and HTTPS ports to
the public:

tbt-backend-test.example.net.yaml
nat_ports:
 - 5973
 - 5974
 - 5975
 - 6630

The testing instance for your new cloud service should expose a range of ports for
custom services. If it has the webserver role (somehow), it will lead to an export of
ports 22, 80, and 443 as well as its individually chosen list.

When designing such a construct, keep in mind that the array
merge is only ever-cumulative. There is no way to exclude
values that were added in lower layers from the final result.
In this example, you will have no opportunity to disable the
SSH port 22 for any given machine. You should take good
care when adding common values.

A similar alternative lookup function exists for hashes. The hiera_hash function
also traverses the whole hierarchy and constructs a hash by merging all hashes it
finds under the given Hiera key from all hierarchy layers. Hash keys in higher layers
overwrite those from lower layers. All values must be hashes. Strings, arrays, or
other data types are not allowed in this case:

common.yaml
haproxy_settings:
 log_socket: /dev/log
 log_level: info
 user: haproxy
 group: haproxy
 daemon: true

Chapter 8

[205]

These are the default settings for haproxy at the lowest hierarchy level. On web
servers, the daemon should run as the general web service user:

role/webserver.yaml
haproxy_settings:
 user: www-data
 group: www-data

When retrieved using hiera('haproxy_settings'), this will just evaluate to the
hash, {'user'=>'www-data','group'=>'www-data'}. The hash at the role-specific
layer completely overrides the default settings.

To get all values, create a merger using hiera_hash('haproxy_settings') instead.
The result is likely to be more useful:

{ 'log_socket' =>'/dev/log', 'log_level' => 'info',
'user' => 'www-data', 'group' => 'www-data', 'daemon' => true }

The limitations are similar to those of hiera_array. Keys from any hierarchy level
cannot be removed, they can only be overwritten with different values. The end
result is quite similar to what you would get from replacing the hash with a group
of keys:

role/webserver.yaml
haproxy::user: www-data
haproxy::group: www-data

If you opt to do this, the data can also be easily fit to a class that can bind these
values to parameters automatically. Preferring flat structures can, therefore, be
beneficial. Defining hashes in Hiera is still generally worthwhile, as the next
section explains.

Converting resources to data
You can now move configuration settings to Hiera and dedicate your manifest
to logic. This works very seamlessly as far as classes and their parameters are
concerned, because class parameters automatically retrieve their values from Hiera.
For configuration that requires you to instantiate resources, you still need to write
the full manifests and add manual lookup function calls.

For example, an Apache web server requires some global settings, but the interesting
parts of its configuration are typically performed in virtual host configuration
files. Puppet models them with defined resource types. If you want to configure
an iptables firewall, you have to declare lots of resources of the firewall type
(available through the puppetlabs-firewall module).

Separating Data from Code Using Hiera

[206]

Such elaborate resources can clutter up your manifest, yet they mostly represent
data. There is no inherent logic to many firewall rules (although a set of rules is
derived from one or several key values sometimes). Virtual hosts often stand for
themselves as well, with little or no relation to configuration details that are relevant
to other parts of the setup.

Puppet comes with yet another function that allows you to move whole sets of such
resources to Hiera data. The pattern is straightforward: a group of resources of the
same type are represented by a hash. The keys are resource titles, and the values are
yet another layer of hashes with key/value pairs for attributes:

services:
 apache2:
 enable: true
 ensure: running
 syslog-ng:
 enable: false

This YAML data represents two service resources. To make Puppet add them as
actual resources to the catalog, pass the hash to the create_resources function:

$resource_hash = hiera('services', {})
create_resources('service', $resource_hash)

The first argument is the name of the resource type, and the second must be the hash
of actual resources. There are some more aspects to this technique, but do note that
with Puppet 4, it is no longer necessary to rely on the create_resources function.

It's useful to be aware of the basics of it anyway. It is still in broad
use for existing manifests, and it is still the most compact way of
converting data into resources. To learn more, refer to the online
documentation at https://docs.puppetlabs.com/references/
latest/function.html#createresources

The iteration functions in the Puppet 4 language allow you to implement the
preceding transformation and more:

$resource_hash.each |$res_title,$attributes| {
 service { $res_title:
 ensure => $attributes['ensure'],
 enable => $attributes['enable'],
 }
}

https://docs.puppetlabs.com/references/latest/function.html#createresources
https://docs.puppetlabs.com/references/latest/function.html#createresources

Chapter 8

[207]

This has a couple of advantages over the create_resources approach:

• You can perform data transformations, such as adding a prefix to string
values, or deriving additional attribute values

• Each iteration can do more than just creating one resource per inner hash,
for example, including required classes

• You can devise a data structure that deviates from the strict expectancies of
create_resources

• The manifest is more clear and intuitive, especially to uninitiated readers

For creating many simple resources (such as the services in the above example), you
might wish to avoid create_resource in Puppet 4 manifests. Just keep in mind that
if you don't take advantage of doing so, you can keep the manifest more succinct by
sticking to create_resources after all.

Puppet 4 comes with a useful tool to generate YAML data that is
suitable for create_resources. With the following command,
you can make Puppet emit service type resources that represent
the set of available services on the local system, along with their
current property values:

puppet resource -y service

The -y switch selects YAML output instead of Puppet DSL.

In theory, these techniques allow you to move almost all your code to Hiera data.
(The next section discusses how desirable that really is.) There is one more feature
that goes one step further in this direction:

hiera_include('classes')

This call gathers values from all over the hierarchy, just like hiera_array.
The resulting array is interpreted as a list of class names. All these named classes
are included. This allows for some additional consolidation in your manifest:

common.yaml
classes:
 - ssh
 - syslog
...
role-webserver.yaml
classes:
 - apache
 - logrotate
 - syslog

Separating Data from Code Using Hiera

[208]

You can possibly even use hiera_include to declare these classes outside of any
node block. The data will then affect all nodes. Additionally, from some distinct
classes, you might also declare other classes via hiera_include, whose names are
stored under a different Hiera key.

The ability to enumerate classes for each node to include is what
Puppet's External Node Classifiers (ENCs) had originally been
conceived for. Hiera can serve as a basic ENC thanks to the hiera_
include function. This is most likely preferred over writing a
custom ENC. However, it should be noted that some open source
ENCs such as Foreman are quite powerful and can add much
convenience; Hiera has not supplanted the concept as a whole.

The combination of these tools opens some ways for you to shrink your manifests to
their essential parts and configure your machines gracefully through Hiera.

Choosing between manifest and Hiera
designs
You can now move most of the concrete configuration to the data storage.
Classes can be included from the manifest or through Hiera. Puppet looks up
parameter values in the hierarchy, and you can flexibly distribute the configuration
values there in order to achieve just the desired result for each node with minimal
effort and redundancy.

This does not mean that you don't write actual manifest code anymore. The manifest
is still the central pillar of your design. You will often need logic that uses the
configuration data as input. For example, there might be classes that should only be
included if a certain value is retrieved from Hiera:

if hiera('use_caching_proxy', false) {
 include nginx
}

If you try and rely on Hiera exclusively, you will have to add nginx to the classes
array at all places in the hierarchy that set the use_caching_proxy flag to true. This
is prone to mistakes. What's worse is that the flag can be overridden from true to
false at a more specific layer, but the nginx element cannot be removed from an
array that is retrieved by hiera_include.

Chapter 8

[209]

It is important to keep in mind that the manifest and data should complement each
other. Build manifests primarily and add lookup function calls at opportune places.
Defining flags and values in Hiera should allow you (or the user of your modules)
to alter the behavior of the manifest. The data should not be the driver of the catalog
composition, except for places in which you replace large numbers of static resources
with large data structures.

A practical example
To round things off, let's build a complete example of a module that is enhanced
with Hiera. Create a demo module in the environment of your choice. We will go
with production:

/etc/puppetlabs/code/environments/production/modules/demo/manifests/
init.pp
class demo(
 Boolean $auto = false,
 Boolean $syslog = true,
 String $user = 'nobody'
) {
 file { '/usr/local/bin/demo': … }
 if $auto {
 cron { 'auto-demo':
 user => $user,
 command => '/usr/local/bin/demo'
 ...
 }
 $atoms = hiera('demo::atoms', {})
 if $atoms !~ Hash[String, Hash] {
 fail "The demo::atoms value must be a hash of resource
 descriptions"
 }
 $atoms.each |$title, $attributes| {
 demo::atom { $title:
 address => $attributes['address'],
 port => $attributes['port'],
 }
 }
}

Separating Data from Code Using Hiera

[210]

This class implicitly looks up three Hiera keys for its parameters:

• demo::auto

• demo::syslog

• demo::user

There is also an explicit lookup of an optional demo::atoms hash that creates
configuration items for the module. The data is converted to resources of the
following defined type:

/etc/puppetlabs/code/.../modules/demo/manifests/atom.pp
define demo::atom(
 String $address,
 Integer[1,65535] $port=14193
) {
 file { "/etc/demo.d/${name}":
 ensure => 'file',
 content => "---\nhost: ${address}\nport: ${port}\n",
 mode => '0644',
 owner => 'root',
 group => 'root',
 }
}

The module uses a default of nobody for user. Let's assume that your site does not run
scripts with this account, so you set your preference in common.yaml. Furthermore,
assume that you also don't commonly use syslog:

demo::user: automation
demo::syslog: false

If this user account is restricted on your guest workstations, Hiera should set an
alternative value in role/public_desktop.yaml:

demo::user: maintenance

Now, let's assume that your cron jobs are usually managed in site modules, but not
for web servers. So, you should let the demo module itself take care of this on web
servers through the $auto parameter:

role/webserver.yaml
demo::auto: true

Chapter 8

[211]

Finally, the web server, int01-web01.example.net should be an exception. Perhaps
it's supposed to run no background jobs whatsoever:

int01-web01.example.net.yaml
demo::auto: false

Concerning configuration resources, this is how to make each machine add itself
as a peer:

common.yaml
demo::atoms:
 self:
 address: localhost

Let's assume that the Kerberos servers should not try this. Just make them override
the definition with an empty hash:

role/kerberos.yaml
demo::atoms: {}

Here is how to make the database servers also contact the custom server running on
the Puppet master machine on a nonstandard port:

role-dbms.yaml
demo::atoms:
 self:
 address: localhost
 master:
 address: master.example.net
 port: 60119

With all your Hiera data in place, you can now include the demo class from your
site.pp (or an equivalent) file indiscriminately. It is often a good idea to be able to
allow certain agent machines to opt out of this behavior in the future. Just add an
optional Hiera flag for this:

site.pp
if hiera('enable_demo', true) {
 include demo
}

Agents that must not include the module can be given a false value for the
enable_demo key in their data now.

Separating Data from Code Using Hiera

[212]

Debugging Hiera lookups
As you can see from the preceding example, the data that contributes to the complete
configuration of any module can be rather dispersed throughout the set of your data
sources. It can be challenging to determine where the respective values are retrieved
from for any given agent node. It can be frustrating to trace data sources to find out
why a change at some level will not take effect for some of your agents.

To help make the process more transparent, Hiera comes with a command-line tool
called hiera. Invoking it is simple:

root@puppetmaster # hiera -c /etc/puppetlabs/code/hiera.yaml demo::atoms

It retrieves a given key using the specified configuration from hiera.yaml. Make
sure that you use the same Hiera configuration as Puppet.

Of course, this can only work sensibly if Hiera selects the same data sources as the
compiler, which uses fact values to form a concrete hierarchy. These required facts
can be given right on the command line as the final parameters:

root@puppetmaster # hiera -c /etc/puppetlabs/code/hiera.yaml demo::atoms
::clientcert=int01-web01.example.net ::role=webserver ::location=ny

This prints the demo::atoms value of the specified server to the console.

The fact values can also be retrieved from a YAML file or other
alternative sources. Use hiera --help to get information about
the available scenarios.

Make sure that you add the -d (or --debug) flag in order to get helpful information
about the traversal of the hierarchy:

root@puppetmaster # hiera -d -c ...

Implementing the Roles and Profiles
pattern
Hiera is a great tool to take control of the behavior of modules for your different
agents. Most Puppet setups rely on many Forge modules to implement all the
required management solutions. It is a common challenge to find efficient ways
of structuring the local code.

Chapter 8

[213]

A very successful and widespread design pattern to this end was conceived
by Craig Dunn and is called the Roles and Profiles pattern. It defines two layers of
abstraction. The outer layer is made of roles, which are defined in a way that allows
for each server (or workstation) to choose exactly one role. There is no mixing—if
a node has aspects of two different roles, then this merger forms a new role itself.
Examples for roles can be internal_webserver, key_distribution_center, or
accounting_desktop.

Technically, a role is just a class. It is sensible to organize your roles in a
role module:

node 'falstaff.example.net' {
 include role::key_distribution_center
}

Do limit each node block to include just one role class. There should be no further
include statements and no resource declarations. Variable declarations will be
acceptable, but Hiera is almost universally preferred.

As for roles, they should comprise nothing but the inclusion of one or more profile
classes. Profiles quite distinctly represent aspects of a system. In the server realm,
typical profiles would be apache_server, nginx_proxy, postgres_server, or
ldap_master. Just like roles, profiles should be organized in a dedicated module:

class role::key_distribution_center {
 include profile::heimdal_server
 include profile::firewall_internal
}

Profiles themselves will ideally just include a selection of modules with data
from Hiera. In a profile class, it might also be acceptable to pass some module
parameters directly in the manifest. A profile can consistently configure some of its
required modules this way, without the need for possible redundancy in the Hiera
data of all the nodes that use this profile.

This is risky, though, because profiles can become incompatible or even impose
subtle evaluation-order dependencies. Having a Hiera layer is cleaner, as it selects
data sources through each node's role. At this layer, you can cleanly express
configuration that should be effective for all nodes that fill this role:

role/key_distribution_center.yaml
heimdal::default_realm: EXAMPLE.NET
heimdal::kdcs:
 - kdc01.example.net
 - kdc02.example.net
 - admin.example.net

Separating Data from Code Using Hiera

[214]

These heimdal module parameters are used indirectly through the heimdal_server
profile:

class profile::heimdal_server {
 include heimdal
 class { 'ssh': restricted => true }
}

The following diagram summarizes the pattern:

web01 web02 web11 kdc02

R
o
le

s
P
ro

fi
le

s

elastic java logstash kibana php apache ssh heimdal postgres

role::elk role::web role::kdcrole::web_db

profile::elasticsearch profile::kibana profile::apache profile::postgres

profile::logstash profile::php profile::heimdal

This is just a very rough sketch of the principles behind the Roles and
Profiles pattern. Craig has put up a comprehensive description on his blog at
http://www.craigdunn.org/2012/05/239/, and the design has since been
adopted by many users.

When setting up your first larger Puppet installation, it is a good idea to adhere to
the pattern from day one, because it will allow you to scale your manifests without
getting tangled up in complicated structures.

Summary
Hiera is a tool that stores and retrieves data in a hierarchical fashion. Each retrieval
uses a distinct data source from each hierarchy layer and traverses your hierarchy
from the most to the least specific. The hierarchy is defined by the user, as an array
in a YAML file.

Puppet has Hiera support built in, and you can use it to separate data from code.
From manifests, you will mainly perform lookups through the hiera function.
The respective entries will rely on fact values in most cases.

http://www.craigdunn.org/2012/05/239/

Chapter 8

[215]

Another common way to employ Hiera through Puppet is to name the Hiera
keys in the <class-name>::<parameter-name> format. When including a
parameterized class, Puppet will look for such keys in Hiera. If the manifest does not
supply a parameter value, Puppet automatically binds the value from Hiera to the
respective parameter.

Manifests that boast large numbers of static resources can be cleaned up by
converting the declarations to hashes and using the create_resources or each
function to declare resources from the data.

When building and maintaining Puppet code bases, it is a good idea to implement
the Roles and Profiles pattern. It makes you define roles to cover all of your machine
use cases. The roles mix and match profile classes, which are basically collectors of
classes from custom and open source modules that manage actual resources.

This concludes our tour of Puppet Essentials. We have covered quite some ground,
but as you can imagine, we barely scratched the surface of some of the topics, such
as provider development or exploiting PuppetDB. What you have learned will most
likely satisfy your immediate requirements. For information beyond these lessons,
don't hesitate to look up the excellent online documentation at https://docs.
puppetlabs.com/, or join the community and ask your questions in chat or on the
mailing list.

Thanks for reading, and have lots of fun with Puppet and its family of
management tools.

https://docs.puppetlabs.com/
https://docs.puppetlabs.com/

[217]

Index
A
agent

enhancing, through plugins 116, 117
resources, exporting to 142

All-in-One (AIO) packaging 158
anchor pattern 89
antipatterns

avoiding 153, 154
arrays

handling 202-204
array values

exploiting, defined types used 79-81

B
beaker

reference link 105
best practices, modules 102

C
central firewall

maintaining 148
circular dependencies

avoiding 16-18
classes

about 66
declaring 66, 67
defining 66, 67
events, passing between 83, 84
including, from defined types 82
making, flexible through

parameters 90, 91
versus defined types 70

class parameter values
binding, automatically 200-202

CN (common name) 159
collectors

used, for realizing resources 141, 142
component classes

writing 73, 74
composite design 72
comprehensive classes

about 75
writing 72, 73

configuration data
structuring, in hierarchy 193-195

contained class 90
container relationships

performance implications 88
containers

limitations 86, 87
ordering 85
relationships, establishing among 82

contain function 90
control structures

adding, in manifests 7, 8
core resource types

reference link 60
create_resources approach

advantages 207
cron

Puppet Agent, running from 39
cron resource type 25
custom configuration items

automating 146
custom facts

about 51
Facter, extending with 51-54

[218]

custom functions
about 96
module interface, refining through 126, 127

D
data

resources, converting to 205-208
data, defining in manifest

consequences 191-193
defined type, replacing with native type

about 118
basic functionality, implementing 122, 123
management commands, declaring 121
provider, adding 121
provider, allowing to prefetch existing

resources 123, 124
resource names, using 120
resource type interface, creating 119, 120
sensible parameter hooks, designing 120
type, naming 118
type robust, making during

provisioning 125
defined types

about 66
classes, including from 82
creating 67-69
events, passing between 83, 84
used, for exploiting array values 79, 80
using 67-69
using, as macros 78
using, as resource multiplexers 77
using, as resource wrappers 75, 76
versus classes 70

dependencies
declaring 12-15

documentation, in modules 98, 99
domain-specific language (DSL) 2
dynamic configuration files

templating 134
dynamic scoping 153

E
environment directories

using 159
environment locations

configuring 101

environments
maintaining 99, 100

events
passing, between classes 83, 84
passing, between defined types 83, 84

exec resource type 23, 24
external fact

reference link 125
using 54, 55

External Node Classifiers (ENCs) 208

F
Facter

extending, with custom facts 51-54
goals 56
systems, summarizing with 47-49

Facter 2 55
facts

system knowledge, enhancing through 125
fact values

accessing 49-51
using 49-51

features 59
Forge

URL 130
Forge modules

finding 130
fully qualified domain name (FQDN) 50
functions

learning 170-173

G
generalization

avoiding 103

H
hashes

handling 202-204
HEREDOC

Multiline, handling with 178-180
Hiera

configuring 195, 196
Hiera data

storing 196, 197

[219]

Hiera lookups
debugging 212

hierarchy
configuration data, structuring in 193-195

Hiera values
retrieving 198
using, in manifests 198

hosts files
managing, locally 145, 146

I
Icinga 147
immutability 9
include keyword

preferring 92
Infrastructure as Code paradigm 105
installation, Puppet 2, 3
iterator functions

using 81

L
lambdas

learning 170-173

M
macros

defined types, using as 78
manifest

dry testing 7
manifest, and Hiera designs

selecting between 208, 209
manifests

about 96
control structures, adding in 7, 8
Hiera values, using in 198

master
configuring, to store exported

resources 144, 145
metaparameters 12
model

substantiating, with providers 59, 60
module functionality

implementing 107-110

module interface
refining, through custom

functions 126, 127
modules

best practices 102
building 106
characteristics, identifying 130, 131
documentation 98, 99
implementing 103
installing 101, 102
making, available for Puppet 106
making, portable across platforms 128
naming 106
obtaining 101, 102
overview 96
parts 96
practical example 209-211
reference link 98
safe testing, with environments 105
structure 97, 98
testing 104

monolithic implementation 72
mount resource type 25

N
Nagios 147
Nagios configuration

simplifying 147
name variable 120
new Puppet 4 Master 159, 160
new template engine

leveraging 177, 178
Nginx

Phusion Passenger, using with 41-43
Nginx packages

reference link 42
notable resource types

cron resource type 25
examining 20, 21
exec resource type 23, 24
mount resource type 25
user and group types 22

[220]

O
obsolete exports

removing 148
old practices, breaking

about 181
dealing with bool algebra, on strings 182
dealing with different data types 186
hyphens, cleaning in names 184
new Reference syntax, learning 184
node inheritance, converting 181, 182
no Ruby DSL anymore 185
relative class name resolution 185
strict variable naming, using 183

order of evaluation, controlling
about 10, 11
circular dependencies, avoiding 16-18
dependencies, declaring 12-15
error propagation 15

P
parameterized classes

caveats 91, 92
parser functions 96, 174
Passenger

comparing, with puppetserver 43, 44
performance bottlenecks

avoiding, from templates 137
performance considerations 40
performance implications, of container

relationships 88
Phusion Passenger

using, with Nginx 41-43
plugins

agent, enhancing through 116, 117
Profiles pattern

implementing 212-214
properties 4, 5
providers

implementing 61, 62
model, substantiating with 59, 60
summarizing 60

Puppet
installing 2, 3
master machine, setting up 29, 30
master manifest, creating 30, 31

Puppet 3.8
using 159

Puppet 3 functions API
limitations 174

Puppet 4
upgrading to 158

Puppet 4 functions
creating 174-176

Puppet Agent
certificate, renewing 38
life cycle 36, 37
running, from cron 39
setting up 32-35
updating 161

puppet apply command
output, interpreting of 5, 6

PuppetDB
stack, completing with 44

Puppet DSL code
testing 161

Puppet Labs
URL, for documentation 41

puppetlabs-strings module
reference link 99

Puppet Master
about 27, 28
configuration settings, inspecting 32
tasks 28

Puppet modules 67
puppetserver

Passenger, comparing with 43, 44
tuning 41

Puppet Server 28

R
redundancy

saving, resource defaults 151, 152
relationships

establishing, among containers 82
resource defaults

used, for saving redundancy 151, 152
resource interaction

implementing 18-20
resource multiplexers

defined types, using as 77

[221]

resource parameters
overriding 149, 150

resources
about 4, 5
converting, to data 205-208
exporting 143
exporting, to agents 142
importing 143
realizing, collectors used 141, 142

resource types
implementing 61, 62
life cycle, on agent side 57, 58
summarizing 60
using, with generic providers 60

resource wrappers
defined types, using as 75, 76

Roles pattern
implementing 212-214

rspec-puppet tool
reference link 105

S
separate data storage

need for 190
simple values

working with 198, 199
singletons 136
site manifest 30
SSH host keys

exporting 145
SSL issues

troubleshooting 44, 45
stack

completing, with PuppetDB 44
stdlib module 102
structured design patterns 71
structured facts 55
system knowledge

enhancing, through facts 125
systems

summarizing, with Facter 47-49

T
templates

performance bottlenecks, avoiding
from 137

using, in practice 135, 136
variables, using in 135

transactions 56
type system

about 56
using 162-170

U
update path, Puppet Agent

reference link 161
user and group types 22
utilities, creating for derived manifests

about 110
configuration items, adding 111, 112
customization, allowing 113
dealing, with complexity 115, 116
unwanted configuration items,

removing 114, 115

V
variables

using 9
using, in templates 135

variable types 9, 10
virtual resources

creating 137, 139

Thank you for buying
Puppet 4 Essentials

Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Learning Puppet
ISBN: 978-1-78439-983-2 Paperback: 304 pages

Build intelligent software stacks with the Puppet
configuration management suite

1. Develop high-quality Puppet modules in an
isolated development environment.

2. Manage complex development environments
with industry-leading configuration
management tool.

3. A comprehensive guide to get you started with
Puppet development and deployment in virtual
environments.

Learning Puppet for Windows
Server
ISBN: 978-1-78528-187-7 Paperback: 234 pages

Organize your Windows environment using Puppet
tools to unload administrative burdens in a short time

1. Learn to install and implement a Puppet server
for Windows administration.

2. Script Puppet manifests, functions, templates,
and facts for Windows.

3. A step-by-step guide that helps you to make
your Windows environment more secure
with Puppet.

Please check www.PacktPub.com for information on our titles

Puppet 3 Beginner's Guide
ISBN: 978-1-78216-124-0 Paperback: 204 pages

Start from scratch with the Puppet configuration
management system, and learn how to fully utilize
Puppet through simple, practical examples

1. Shows you step-by-step how to install Puppet
and start managing your systems with simple
examples.

2. Every aspect of Puppet is explained in detail so
that you really understand what you're doing.

3. Gets you up and running immediately, from
installation to using Puppet for practical tasks
in a matter of minutes.

Mastering Puppet
ISBN: 978-1-78398-218-9 Paperback: 280 pages

Pull the strings of Puppet to configure enterprise-grade
environments for performance optimization

1. Implement puppet in a medium to large
installation.

2. Deal with issues found in larger deployments,
such as scaling, and improving performance.

3. Step by step tutorial to utilize Puppet
efficiently to have a fully functioning
Puppet infrastructure in an enterprise-level
environment.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Writing Your First Manifests
	Getting started
	Introducing resources and properties
	Interpreting the output of the puppet apply command
	Dry-testing your manifest

	Adding control structures in manifests
	Using variables
	Variable types

	Controlling the order of evaluation
	Declaring dependencies
	Error propagation
	Avoiding circular dependencies

	Implementing resource interaction
	Examining the most notable resource types
	The user and group types
	The exec resource type
	The cron resource type
	The mount resource type

	Summary

	Chapter 2: The Master and Its Agents
	The Puppet master
	Puppet master and Puppet server
	Setting up the master machine
	Creating the master manifest
	Inspecting the configuration settings

	Setting up the Puppet agent
	The agent's life cycle
	Renewing an agent's certificate
	Running the agent from cron

	Performance considerations
	Tuning puppetserver

	Using Phusion Passenger with Nginx
	Comparing Passenger with puppetserver

	Completing the stack with PuppetDB
	Troubleshooting SSL issues
	Summary

	Chapter 3: A Peek under the Hood – Facts, Types, and Providers
	Summarizing systems with Facter
	Accessing and using fact values
	Extending Facter with custom facts
	Simplifying things using external facts

	Goals of Facter

	Understanding the type system
	The resource type's life cycle on the agent side

	Substantiating the model with providers
	Resource types with generic providers
	Summarizing types and providers

	Putting it all together
	Summary

	Chapter 4: Modularizing Manifests with Classes and Defined Types
	Introducing classes and defined types
	Defining and declaring classes
	Creating and using defined types
	Understanding and leveraging the differences

	Structured design patterns
	Writing comprehensive classes
	Writing component classes
	Using defined types as resource wrappers
	Using defined types as resource multiplexers
	Using defined types as macros
	Exploiting array values using defined types
	Using iterator functions

	Including classes from defined types
	Establishing relationships among containers
	Passing events between classes and defined types
	Ordering containers
	Limitations
	The performance implications of container relationships
	Mitigating the limitations
	The anchor pattern
	The contain function

	Making classes more flexible through parameters
	The caveats of parameterized classes
	Preferring the include keyword

	Summary

	Chapter 5: Extending Your Puppet Infrastructure with Modules
	An overview of Puppet's modules
	Parts of a module
	Module structure
	Documentation in modules

	Maintaining environments
	Configuring environment locations
	Obtaining and installing modules
	Modules' best practices
	Putting everything in modules
	Avoiding generalization
	Testing your modules
	Safe testing with environments

	Building a specific module
	Naming your module
	Making your module available to Puppet
	Implementing basic module functionality
	Creating utilities for derived manifests
	Adding configuration items
	Allowing customization
	Removing unwanted configuration items
	Dealing with complexity

	Enhancing the agent through plugins
	Replacing a defined type with a native type

	Enhancing Puppet's system knowledge through facts
	Refining the interface of your module through custom functions
	Making your module portable across platforms

	Finding helpful Forge modules
	Identifying modules' characteristics

	Summary

	Chapter 6: Leveraging the Full Toolset of the Language
	Templating dynamic configuration files
	Learning the template syntax
	Using templates in practice
	Avoiding performance bottlenecks from templates

	Creating virtual resources
	Realizing resources more flexibly using collectors

	Exporting resources to other agents
	Exporting and importing resources
	Configuring the master to store exported resources
	Exporting SSH host keys
	Managing hosts files locally
	Automating custom configuration items
	Simplifying the configuration of Nagios
	Maintaining your central firewall
	Removing obsolete exports

	Overriding resource parameters
	Saving redundancy using resource defaults

	Avoiding antipatterns
	Summary

	Chapter 7: New Features from Puppet 4
	Upgrading to Puppet 4
	Using Puppet 3.8 and environment directories
	The new Puppet 4 Master
	Updating the Puppet agent
	Testing Puppet DSL code

	Using the type system
	Learning lambdas and functions
	Creating Puppet 4 functions
	Leveraging the new template engine
	Handling multiline with HEREDOC
	Breaking old practices
	Converting node inheritance
	Dealing with bool algebra on Strings
	Using strict variable naming
	Learning the new reference syntax
	Cleaning hyphens in names
	No Ruby DSL anymore
	Relative class name resolution
	Dealing with different data types

	Summary

	Chapter 8: Separating Data from Code Using Hiera
	Understanding the need for separate data storage
	Consequences of defining data in the manifest

	Structuring configuration data in a hierarchy
	Configuring Hiera
	Storing Hiera data
	Choosing your backends

	Retrieving and using Hiera values in manifests
	Working with simple values
	Binding class parameter values automatically
	Handling hashes and arrays

	Converting resources to data
	Choosing between manifest and Hiera designs
	A practical example

	Debugging Hiera lookups
	Implementing the Roles and Profiles pattern
	Summary

	Index

