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Preface
The best data is the data that we can see and understand. As developers and data scientists, 
we want to create and build the most comprehensive and understandable visualizations.  
It is not always simple; we need to find the data, read it, clean it, filter it, and then use the  
right tool to visualize it. This book explains the process of how to read, clean, and visualize  
the data into information with straight and simple (and sometimes not so simple) recipes.

How to read local data, remote data, CSV, JSON, and data from relational databases are all 
explained in this book.

Some simple plots can be plotted with one simple line in Python using matplotlib, but 
performing more advanced charting requires knowledge of more than just Python. We need 
to understand information theory and human perception aesthetics to produce the most 
appealing visualizations.

This book will explain some practices behind plotting with matplotlib in Python, statistics used, 
and usage examples for different charting features that we should use in an optimal way.

What this book covers
Chapter 1, Preparing Your Working Environment, covers a set of installation recipes and advice 
on how to install the required Python packages and libraries on your platform.

Chapter 2, Knowing Your Data, introduces you to common data formats and how to read and 
write them, be it CSV, JSON, XSL, or relational databases.

Chapter 3, Drawing Your First Plots and Customizing Them, starts with drawing simple plots 
and covers some customization.

Chapter 4, More Plots and Customizations, follows up from the previous chapter and covers 
more advanced charts and grid customization.

Chapter 5, Making 3D Visualizations, covers three-dimensional data visualizations such as  
3D bars, 3D histograms, and also matplotlib animations.
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Chapter 6, Plotting Charts with Images and Maps, deals with image processing, projecting 
data onto maps, and creating CAPTCHA test images.

Chapter 7, Using Right Plots to Understand Data, covers explanations and recipes on some 
more advanced plotting techniques such as spectrograms and correlations.

Chapter 8, More on matplotlib Gems, covers a set of charts such as Gantt charts, box plots, 
and whisker plots, and it also explains how to use LaTeX for rendering text in matplotlib.

Chapter 9, Visualizations on the Clouds with Plot.ly, introduces how to use Plot.ly to create  
and share your visualizations on its cloud environment.

What you need for this book
For this book, you will need Python 2.7.3 or a later version installed on your operating system.

Another software package used in this book is IPython, which is an interactive Python 
environment that is very powerful and flexible. This can be installed using package  
managers for Linux-based OSes or prepared installers for Windows and Mac OS X.

If you are new to Python installation and software installation in general, it is highly 
recommended to use prepackaged scientific Python distributions such as Anaconda, 
Enthought Python Distribution or Python(x, y).

Other required software mainly comprises Python packages that are all installed using the 
Python installation manager, pip, which itself is installed using Python's easy_install setup tool.

Who this book is for
Python Data Visualization Cookbook, Second Edition is for developers and data scientists who 
already use Python and want to learn how to create visualizations of their data in a practical 
way. If you have heard about data visualization but don't know where to start, this book will 
guide you from the start and help you understand data, data formats, data visualization, and 
how to use Python to visualize data.

You will need to know some general programming concepts, and any kind of programming 
experience will be helpful. However, the code in this book is explained almost line by line.  
You don't need math for this book; every concept that is introduced is thoroughly explained  
in plain English, and references are available for further interest in the topic.
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Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it, 
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or 
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader 
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of 
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, 
dummy URLs, user input, and Twitter handles are shown as follows: "We packed our little demo 
in the DemoPIL class, so that we can extend it easily, while sharing the common code around 
the demo function, run_fixed_filters_demo."
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A block of code is set as follows:

def my_function(x):
    return x*x

When we wish to draw your attention to a particular part of a code block, the relevant lines or 
items are set in bold:

for a in range(10):
    print a

Any command-line input or output is written as follows:

$ sudo python setup.py install

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or may have disliked. Reader feedback is important for us to develop 
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and 
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to 
get the most from your purchase.

www.packtpub.com/authors
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Downloading the example code
You can download the example code files for all Packt books you have purchased from your 
account at http://www.packtpub.com. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have the files e-mailed directly 
to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used 
in this book. The color images will help you better understand the changes in the output. 
You can download this file from: http://www.packtpub.com/sites/default/files/
downloads/PythonDataVisualizationCookbookSecondEdition_ColoredImages.
pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be 
grateful if you would report this to us. By doing so, you can save other readers from frustration 
and help us improve subsequent versions of this book. If you find any errata, please report them 
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on 
the errata submission form link, and entering the details of your errata. Once your errata are 
verified, your submission will be accepted and the errata will be uploaded on our website, or 
added to any list of existing errata, under the Errata section of that title. Any existing errata can 
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, 
we take the protection of our copyright and licenses very seriously. If you come across any 
illegal copies of our works, in any form, on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any 
aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/PythonDataVisualizationCookbookSecondEdition_ColoredImages.pdf
http://www.packtpub.com/sites/default/files/downloads/PythonDataVisualizationCookbookSecondEdition_ColoredImages.pdf
http://www.packtpub.com/sites/default/files/downloads/PythonDataVisualizationCookbookSecondEdition_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
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Preparing Your  

Working Environment
In this chapter, you will cover the following recipes:

 f Installing matplotlib, NumPy, and SciPy

 f Installing virtualenv and virtualenvwrapper

 f Installing matplotlib on Mac OS X

 f Installing matplotlib on Windows

 f Installing Python Imaging Library (PIL) for image processing

 f Installing a requests module

 f Customizing matplotlib's parameters in code

 f Customizing matplotlib's parameters per project

Introduction
This chapter introduces the reader to the essential tooling and their installation and 
configuration. This is necessary work and a common base for the rest of the book. If you have 
never used Python for data and image processing and visualization, it is advised not to skip 
this chapter. Even if you do skip it, you can always return to this chapter in case you need to 
install some supporting tools or verify what version you need to support the current solution.
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Installing matplotlib, NumPy, and SciPy
This chapter describes several ways of installing matplotlib and required dependencies  
under Linux.

Getting ready
We assume that you already have Linux (preferably Debian/Ubuntu or RedHat/SciLinux) 
installed and Python installed on it. Usually, Python is already installed on the mentioned 
Linux distributions and, if not, it is easily installable through standard means. We assume  
that Python 2.7+ Version is installed on your workstation.

Almost all code should work with Python 3.3+ Versions, but since most 
operating systems still deliver Python 2.7 (some even Python 2.6), 
we decided to write the Python 2.7 Version code. The differences are 
small, mainly in the version of packages and some code (xrange 
should be substituted with range in Python 3.3+).

We also assume that you know how to use your OS package manager in order to install 
software packages and know how to use a terminal.

The build requirements must be satisfied before matplotlib can be built.

matplotlib requires NumPy, libpng, and freetype as build dependencies. In order to be  
able to build matplotlib from source, we must have installed NumPy. Here's how to do it:

Install NumPy (1.5+ if you want to use it with Python 3) from http://www.numpy.org/

NumPy will provide us with data structures and mathematical functions for using it with large 
datasets. Python's default data structures such as tuples, lists, or dictionaries are great 
for insertions, deletions, and concatenation. NumPy's data structures support "vectorized" 
operations and are very efficient for use and for executions. They are implemented with big 
data in mind and rely on C implementations that allow efficient execution time.

SciPy, building on top of NumPy, is the de facto standard's scientific and 
numeric toolkit for Python comprising a great selection of special functions 
and algorithms, most of them actually implemented in C and Fortran, coming 
from the well-known Netlib repository (http://www.netlib.org).

Perform the following steps for installing NumPy:

1. Install the Python-NumPy package:
sudo apt-get install python-numpy

http://www.numpy.org/
http://www.netlib.org
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2. Check the installed version:
$ python -c 'import numpy; print numpy.__version__'

3. Install the required libraries:

 � libpng 1.2: PNG files support (requires zlib)

 � freetype 1.4+: True type font support

$ sudo apt-get build-dep python-matplotlib

If you are using RedHat or a variation of this distribution (Fedora, SciLinux, or CentOS), 
you can use yum to perform the same installation:
$ su -c 'yum-builddep python-matplotlib'

How to do it...
There are many ways one can install matplotlib and its dependencies: from source, 
precompiled binaries, OS package manager, and with prepackaged Python distributions  
with built-in matplotlib.

Most probably the easiest way is to use your distribution's package manager. For Ubuntu  
that should be:

# in your terminal, type:

$ sudo apt-get install python-numpy python-matplotlib python-scipy

If you want to be on the bleeding edge, the best option is to install from source. This path 
comprises a few steps: get the source code, build requirements, and configure, compile,  
and install.

Download the latest source from code host SourceForge by following these steps:

$ cd ~/Downloads/
$ wget https://downloads.sourceforge.net/project/matplotlib/matplotlib/
matplotlib-1.3.1/matplotlib-1.3.1.tar.gz
$ tar xzf matplotlib-1.4.3.tar.gz
$ cd matplotlib-1.4.3
$ python setup.py build
$ sudo python setup.py install

Downloading the example code
You can download the example code files for all the Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
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How it works...
We use standard Python Distribution Utilities, known as Distutils, to install matplotlib from 
the source code. This procedure requires us to previously install dependencies, as we already 
explained in the Getting ready section of this recipe. The dependencies are installed using the 
standard Linux packaging tools.

There's more...
There are more optional packages that you might want to install depending on what your data 
visualization projects are about.

No matter what project you are working on, we recommend installing IPython—an Interactive 
Python shell where you already have matplotlib and related packages, such as NumPy and 
SciPy, imported and ready to play with. Please refer to IPython's official site on how to install it 
and use it—it is, though, very straightforward.

Installing virtualenv and virtualenvwrapper
If you are working on many projects simultaneously, or even just switching between them 
frequently, you'll find that having everything installed system-wide is not the best option and 
can bring problems in future on different systems (production) where you want to run your 
software. This is not a good time to find out that you are missing a certain package or you're 
having versioning conflicts between packages that are already installed on production system; 
hence, virtualenv.

virtualenv is an open source project started by Ian Bicking that enables a developer to isolate 
working environments per project, for easier maintenance of different package versions.

For example, you inherited legacy Django website based on Django 1.1 and Python 2.3, but 
at the same time you are working on a new project that must be written in Python 2.6. This 
is my usual case—having more than one required Python version (and related packages)—
depending on the project I am working on.

virtualenv enables me to easily switch between different environments and have the same 
package easily reproduced if I need to switch to another machine or to deploy software to a 
production server (or to a client's workstation).
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Getting ready
To install virtualenv, you must have a workable installation of Python and pip. Pip is a tool  
for installing and managing Python packages, and it is a replacement for easy_install.  
We will use pip through most of this book for package management. Pip is easily installed,  
as root executes the following line in your terminal:

# easy_install pip

virtualenv by itself is really useful, but with the help of virtualenvwrapper, all this becomes 
easy to do and also easy to organize many virtual environments. See all the features at 
http://virtualenvwrapper.readthedocs.org/en/latest/#features.

How to do it...
By performing the following steps, you can install the virtualenv and virtualenvwrapper tools:

1. Install virtualenv and virtualenvwrapper:
$ sudo pip install virtualenv

$ sudo pip install virtualenvwrapper

# Create folder to hold all our virtual environments and export 
the path to it.

$ export VIRTENV=~/.virtualenvs

$ mkdir -p $VIRTENV

# We source (ie. execute) shell script to activate the wrappers

$ source /usr/local/bin/virtualenvwrapper.sh

# And create our first virtual environment

$ mkvirtualenv virt1

2. You can now install our favorite package inside virt1:
(virt1)user1:~$ pip install matplotlib

3. You will probably want to add the following line to your ~/.bashrc file:

source /usr/loca/bin/virtualenvwrapper.sh

A few useful and most frequently used commands are as follows:

 f mkvirtualenv ENV: This creates a virtual environment with the name ENV  
and activates it

 f workon ENV: This activates the previously created ENV

 f deactivate: This gets us out of the current virtual environment

http://virtualenvwrapper.readthedocs.org/en/latest/#features
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pip not only provides you with a practical way of installing packages, but it also is a good 
solution for keeping track of the python packages installed on your system, as well as their 
version. The command pip freeze will print all the installed packages on your current 
environment, followed by their version number:

$ pip freeze

matplotlib==1.4.3

mock==1.0.1

nose==1.3.6

numpy==1.9.2

pyparsing==2.0.3

python-dateutil==2.4.2

pytz==2015.2

six==1.9.0

wsgiref==0.1.2

In this case, we see that even though we simply installed matplotlib, many other packages 
are also installed. Apart from wsgiref, which is used by pip itself, these are required 
dependencies of matplotlib which have been automatically installed.

When transferring a project from an environment (possibly a virtual environment) to another, 
the receiving environment needs to have all the necessary packages installed (in the same 
version as in the original environment) in order to be sure that the code can be properly run. 
This can be problematic as two different environments might not contain the same packages, 
and, worse, might contain different versions of the same package. This can lead to conflicts  
or unexpected behaviors in the execution of the program.

In order to avoid this problem, pip freeze can be used to save a copy of the current 
environment configuration. The command will save the output of the command to the file 
requirements.txt:

$ pip freeze > requirements.txt

In a new environment, this file can be used to install all the required libraries. Simply run:

$ pip install -r requirements.txt

All the necessary packages will automatically be installed in their specified version. That way, 
we ensure that the environment where the code is used is always the same. This is a good 
practice to have a virtual environment and a requirements.txt file for every project you 
are developing. Therefore, before installing the required packages, it is advised that you first 
create a new virtual environment to avoid conflicts with other projects.
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The overall workflow from one machine to another is therefore:

 f On machine 1:
$ mkvirtualenv env1

(env1)$ pip install matplotlib

(env1)$ pip freeze > requirements.txt

 f On machine 2:
$ mkvirtualenv env2

(env2)$ pip install -r requirements.txt

Installing matplotlib on Mac OS X
The easiest way to get matplotlib on the Mac OS X is to use prepackaged python distributions 
such as Enthought Python Distribution (EPD). Just go to the EPD site, and download and 
install the latest stable version for your OS.

In case you are not satisfied with EPD or cannot use it for other reasons such as the versions 
distributed with it, there is a manual (read: harder) way of installing Python, matplotlib, and its 
dependencies.

Getting ready
We will use the Homebrew (you could also use MacPorts in the same way) project that eases 
the installation of all software that Apple did not install on your OS, including Python and 
matplotlib. Under the hood, Homebrew is a set of Ruby and Git that automate download and 
installation. Following these instructions should get the installation working. First, we will 
install Homebrew, and then Python, followed by tools such as virtualenv, then dependencies 
for matplotlib (NumPy and SciPy), and finally matplotlib. Hold on, here we go.

How to do it...
1. In your terminal, paste and execute the following command:

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/
install/master/install)"

After the command finishes, try running brew update or brew doctor to verify that the 
installation is working properly.
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2. Next, add the Homebrew directory to your system path, so the packages you install 
using Homebrew have greater priority than other versions. Open ~/.bash_profile 
(or /Users/[your-user-name]/.bash_profile) and add the following line to 
the end of file:
export PATH=/usr/local/bin:$PATH

3. You will need to restart the terminal so that it picks a new path. Installing Python is as 
easy as firing up another one liner:
brew install python --framework --universal

This will also install any prerequisites required by Python.

4. Now, you need to update your path (add to the same line):
export PATH=/usr/local/share/python:/usr/local/bin:$PATH

5. To verify that the installation has worked, type python --version in the command 
line, you should see 2.7.3 as the version number in the response.

6. You should have pip installed by now. In case it is not installed, use easy_install 
to add pip:
$ easy_install pip

7. Now, it's easy to install any required package; for example, virtualenv and 
virtualenvwrapper are useful:
pip install virtualenv

pip install virtualenvwrapper

8. The next step is what we really wanted to do all along—install matplotlib:
pip install numpy

brew install gfortran

pip install scipy

9. Verify that everything is working. Call Python and execute the following commands:
import numpy

print numpy.__version__

import scipy

print scipy.__version__

quit()

10. Install matplotlib:
pip install matplotlib
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Installing matplotlib on Windows
In this recipe, we will demonstrate how to install Python and start working with matplotlib 
installation. We assume Python was not previously installed.

Getting ready
There are two ways of installing matplotlib on Windows. The easiest way is by installing 
prepackaged Python environments, such as EPD, Anaconda, SageMath, and Python(x,y).  
This is the suggested way to install Python, especially for beginners.

The second way is to install everything using binaries of precompiled matplotlib and required 
dependencies. This is more difficult as you have to be careful about the versions of NumPy 
and SciPy you are installing, as not every version is compatible with the latest version of 
matplotlib binaries. The advantage in this is that you can even compile your particular 
versions of matplotlib or any library to have the latest features, even if they are not provided 
by authors.

How to do it...
The suggested way of installing free or commercial Python scientific distributions is as easy as 
following the steps provided on the project's website.

If you just want to start using matplotlib and don't want to be bothered with Python versions 
and dependencies, you may want to consider using the Enthought Python Distribution (EPD). 
EPD contains prepackaged libraries required to work with matplotlib and all the required 
dependencies (SciPy, NumPy, IPython, and more).

As usual, we download Windows installer (*.exe) that will install all the code we need to start 
using matplotlib and all recipes from this book.

There is also a free scientific project Python(x,y) (http://python-xy.github.io) for 
Windows 32-bit system that contains all dependencies resolved, and is an easy (and free!) 
way of installing matplotlib on Windows. Since Python(x,y) is compatible with Python modules 
installers, it can be easily extended with other Python libraries. No Python installation should 
be present on the system before installing Python(x,y).

http://python-xy.github.io
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Let me shortly explain how we would install matplotlib using precompiled Python, NumPy, 
SciPy, and matplotlib binaries:

1. First, we download and install standard Python using the official .msi installer for  
our platform (x86 or x86-64).

2. After that, download official binaries for NumPy and SciPy and install them first.

3. When you are sure that NumPy and SciPy are properly installed. Then, we download 
the latest stable release binary for matplotlib and install it by following the official 
instructions.

There's more...
Note that many examples are not included in the Windows installer. If you want to try the 
demos, download the matplotlib source and look in the examples subdirectory.

Installing Python Imaging Library (PIL) for 
image processing

Python Imaging Library (PIL) enables image processing using Python. It has an extensive file 
format support and is powerful enough for image processing.

Some popular features of PIL are fast access to data, point operations, filtering, image resizing, 
rotation, and arbitrary affine transforms. For example, the histogram method allows us to get 
statistics about the images.

PIL can also be used for other purposes, such as batch processing, image archiving, creating 
thumbnails, conversion between image formats, and printing images.

PIL reads a large number of formats, while write support is (intentionally) restricted to the 
most commonly used interchange and presentation formats.

How to do it...
The easiest and most recommended way is to use your platform's package managers. For 
Debian and Ubuntu use the following commands:

$ sudo apt-get build-dep python-imaging

$ sudo pip install http://effbot.org/downloads/Imaging-1.1.7.tar.gz
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How it works...
This way we are satisfying all build dependencies using the apt-get system but also installing  
the latest stable release of PIL. Some older versions of Ubuntu usually don't provide the  
latest releases.

On RedHat and SciLinux systems, run the following commands:

# yum install python-imaging

# yum install freetype-devel

# pip install PIL

There's more...
There is a good online handbook, specifically, for PIL. You can read it at http://www.
pythonware.com/library/pil/handbook/index.htm or download the PDF version 
from http://www.pythonware.com/media/data/pil-handbook.pdf.

There is also a PIL fork, Pillow, whose main aim is to fix installation issues. Pillow can be found 
at http://pypi.python.org/pypi/Pillow and it is easy to install (at the time of writing, 
Pillow is the only choice if you are using OS X).

On Windows, PIL can also be installed using a binary installation file. Install PIL in your Python 
site-packages by executing .exe from http://www.pythonware.com/products/pil/.

Now, if you want PIL used in a virtual environment, manually copy the PIL.pth file and the 
PIL directory at C:\Python27\Lib\site-packages to your virtualenv site-packages 
directory.

Installing a requests module
Most of the data that we need now is available over HTTP or similar protocol, so we need 
something to get it. Python library requests make the job easy.

Even though Python comes with the urllib2 module for work with remote resources and 
supporting HTTP capabilities, it requires a lot of work to get the basic tasks done.

A requests module brings a new API that makes the use of web services seamless and pain 
free. Lots of the HTTP 1.1 stuff is hidden away and exposed only if you need it to behave 
differently than default.

http://www.pythonware.com/library/pil/handbook/index.htm
http://www.pythonware.com/library/pil/handbook/index.htm
http://www.pythonware.com/media/data/pil-handbook.pdf
http://pypi.python.org/pypi/Pillow
http://www.pythonware.com/products/pil/
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How to do it...
Using pip is the best way to install requests. Use the following command for the same:

$ pip install requests

That's it. This can also be done inside your virtualenv, if you don't need requests for every 
project or want to support different requests versions for each project.

Just to get you ahead quickly, here's a small example on how to use requests:

import requests

r = requests.get('http://github.com/timeline.json')

print r.content

How it works...
We sent the GET HTTP request to a URI at www.github.com that returns a JSON-formatted 
timeline of activity on GitHub (you can see HTML version of that timeline at https://github.
com/timeline). After the response is successfully read, the r object contains content and 
other properties of the response (response code, cookies set, header metadata, and even the 
request we sent in order to get this response).

Customizing matplotlib's parameters in code
The library we will use the most throughout this book is matplotlib; it provides the plotting 
capabilities. Default values for most properties are already set inside the configuration file  
for matplotlib, called .rc file. This recipe describes how to modify matplotlib properties from 
our application code.

Getting ready
As we already said, matplotlib configuration is read from a configuration file. This file provides 
a place to set up permanent default values for certain matplotlib properties, well, for almost 
everything in matplotlib.

How to do it...
There are two ways to change parameters during code execution: using the dictionary of 
parameters (rcParams) or calling the matplotlib.rc() command. The former enables  
us to load an already existing dictionary into rcParams, while the latter enables a call to a 
function using a tuple of keyword arguments.

www.github.com
https://github.com/timeline
https://github.com/timeline
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If we want to restore the dynamically changed parameters, we can use  
matplotlib.rcdefaults() call to restore the standard matplotlib settings.

The following two code samples illustrate previously explained behaviors:

 f An example for matplotlib.rcParams:
import matplotlib as mpl

mpl.rcParams['lines.linewidth'] = 2

mpl.rcParams['lines.color'] = 'r'

 f An example for the matplotlib.rc() call:

import matplotlib as mpl

mpl.rc('lines', linewidth=2, color='r')

Both examples are semantically the same. In the second sample, we define that all 
subsequent plots will have lines with line width of 2 points. The last statement of the  
previous code defines that the color of every line following this statement will be red,  
unless we override it by local settings. See the following example:

import matplotlib.pyplot as plt

import numpy as np

t = np.arange(0.0, 1.0, 0.01)

s = np.sin(2 * np.pi * t)

# make line red

plt.rcParams['lines.color'] = 'r'

plt.plot(t,s)

c = np.cos(2 * np.pi * t)

# make line thick

plt.rcParams['lines.linewidth'] = '3'

plt.plot(t,c)

plt.show()
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How it works…
First, we import matplotlib.pyplot and NumPy to allow us to draw sine and cosine 
graphs. Before plotting the first graph, we explicitly set the line color to red using the  
plt.rcParams['lines.color'] = 'r' command.

Next, we go to the second graph (cosine function) and explicitly set the line width to three  
points using the plt.rcParams['lines.linewidth'] = '3' command.

If we want to reset specific settings, we should call matplotlib.rcdefaults().

In this recipe, we have seen how to customize the style of a matplotlib chart dynamically 
changing its configuration parameters. The matplotlib.rcParams object is the interface 
that we used to modify the parameters. It's global to the matplotlib packages and any change 
that we apply to it affects all the charts that we draw after.

Customizing matplotlib's parameters per 
project

This recipe explains where the various configuration files are that matplotlib uses and why we 
want to use one or the other. Also, we explain what is in these configuration files.

Getting ready
If you don't want to configure matplotlib as the first step in your code every time you use 
it (as we did in the previous recipe), this recipe will explain how to have different default 
configurations of matplotlib for different projects. This way your code will not be cluttered  
with configuration data and, moreover, you can easily share configuration templates with  
your co-workers or even among other projects.

How to do it...
If you have a working project that always uses the same settings for certain parameters  
in matplotlib, you probably don't want to set them every time you want to add a new graph 
code. Instead, what you want is a permanent file, outside of your code, which sets defaults  
for matplotlib parameters.

matplotlib supports this via its matplotlibrc configuration file that contains most of the 
changeable properties of matplotlib.
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How it works...
There are three different places where this file can reside and its location defines its usage. 
They are:

 f Current working directory: This is where your code runs from. This is the place to 
customize matplotlib just for your current directory that might contain your current 
project code. The file is named matplotlibrc.

 f Per user .matplotlib/matplotlibrc: This is usually in the user's $HOME directory 
(under Windows, this is your Documents and Settings directory). You can find 
out where your configuration directory is using the matplotlib.get_configdir() 
command. Check the next command.

 f Per installation configuration file: This is usually in your Python site-packages.  
This is a system-wide configuration, but it will get overwritten every time you reinstall 
matplotlib; so, it is better to use a per user configuration file for more persistent 
customizations. The best usage so far for me was to use this as a default template,  
if I mess up my user's configuration file or if I need fresh configuration to customize 
for a different project.

The following one liner will print the location of your configuration directory and can be run 
from shell:

$ python -c 'import matplotlib as mpl; print mpl.get_configdir()'

The configuration file contains settings for:

 f axes: This deals with face and edge color, tick sizes, and grid display.

 f backend: This sets the target output: TkAgg and GTKAgg.

 f figure: This deals with dpi, edge color, figure size, and subplot settings.

 f font: This looks at font families, font size, and style settings.

 f grid: This deals with grid color and line settings.

 f legend: This specifies how legends and text inside will be displayed.

 f lines: This checks for line (color, style, width, and so on) and markers settings.

 f patch: These patches are graphical objects that fill 2D space, such as polygons  
and circles; set linewidth, color, antialiasing, and so on.

 f savefig: There are separate settings for saved figures. For example, to make  
rendered files with a white background.

 f text: This looks for text color, how to interpret text (plain versus latex markup)  
and similar.
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 f verbose: This checks how much information matplotlib gives during runtime: silent, 
helpful, debug, and debug annoying.

 f xticks and yticks: These set the color, size, direction, and label size for major and 
minor ticks for the x and y axes.

There's more...
If you are interested in more details for every mentioned setting (and some that we did not 
mention here), the best place to go is the website of the matplotlib project where there is  
up-to-date API documentation. If it doesn't help, user and development lists are always  
good places to leave questions. See the back of this book for useful online resources.



2
Knowing Your Data

In this chapter, we'll cover the following topics:

 f Importing data from CSV

 f Importing data from Microsoft Excel files

 f Importing data from fixed-width data files

 f Importing data from tab-delimited files

 f Importing data from a JSON resource

 f Exporting data to JSON, CSV, and Excel

 f Importing and manipulating data with Pandas

 f Importing data from a database

 f Cleaning up data from outliers

 f Reading files in chunks

 f Reading streaming data sources

 f Importing image data into NumPy arrays

 f Generating controlled random datasets

 f Smoothing the noise in real-world data

Introduction
This chapter covers basics about importing and exporting data from various formats.  
We first introduce how to import data by just using only the capabilities of the Python  
standard library; then we introduce the powerful Pandas library which is becoming the  
de facto standard in data manipulation in Python. Also we've covered the ways of cleaning 
data such as normalizing values, adding missing data, live data inspection, and usage of 
some similar tricks to get data correctly prepared for visualization.
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Importing data from CSV
In this recipe, we'll work with the most common file format that you will encounter in the wild 
world of data—CSV. It stands for Comma Separated Values, which almost explains all the 
formatting there is. (There is also a header part of the file, but those values are also comma 
separated.)

Python has a module called csv that supports reading and writing CSV files in various 
dialects. Dialects are important because there is no standard CSV, and different applications 
implement CSV in slightly different ways. A file's dialect is almost always recognizable by the 
first look into the file.

Getting ready
What we need for this recipe is the CSV file itself. We'll use sample CSV data that you can 
download from ch02-data.csv.

We assume that sample data files are in the same folder as the code reading them.

How to do it...
The following code example demonstrates how to import data from a CSV file. We will perform 
the following steps for this:

1. Open the ch02-data.csv file for reading.

2. Read the header first.

3. Read the rest of the rows.

4. In case there is an error, raise an exception.

5. After reading everything, print the header and the rest of the rows.

This is shown in the following code:

import csv

filename = 'ch02-data.csv'

data = []
try:
    with open(filename) as f:
        reader = csv.reader(f)
        header = reader.next()
        data = [row for row in reader]
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except csv.Error as e:
    print "Error reading CSV file at line %s: %s" % (reader.line_num, 
e)
    sys.exit(-1)
if header:
    print header
    print '=================='

for datarow in data:
    print datarow

How it works...
First, we import the csv module in order to enable access to the required methods. Then,  
we open the file with data using the with compound statement and bind it to the object f. 
The context manager with statement releases us of care about the closing resource after we 
are finished manipulating those resources. It is a very handy way of working with resource-like 
files because it makes sure that the resource is freed (for example, that the file is closed) after 
the block of code is executed over it.

Then, we use the csv.reader() method that returns the reader object, which allows us  
to iterate over all rows of the read file. Every row is just a list of values and is printed inside  
the loop.

Reading the first row is somewhat different as it is the header of the file and describes the 
data in each column. This is not mandatory for CSV files and some files don't have headers, 
but they are a really nice way of providing minimal metadata about datasets. Sometimes 
though, you will find separate text or even CSV files that are just used as metadata describing 
the format and additional data about the data.

The only way to check what the first line looks like is to open the file and visually inspect it  
(for example, see the first few lines of the file)... This can be done efficiently on Linux using 
bash commands like head as shown here:

$ head some_file.csv

During iteration of data, we save the first row in header while we add every other row to the 
data list.

We can also check if the .csv file has a header or not using the method csv.has_header.

Should any errors occur during reading, csv.reader() will generate an error that we can 
catch and then print the helpful message to the user in order to help detection of errors.
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There's more...
If you want to read about the background and reasoning for the csv module, the PEP-defined 
document CSV File API is available at http://www.python.org/dev/peps/pep-0305/.

If you have larger files that you want to load, it's often better to use well-known libraries like 
NumPy's loadtxt() that cope better with large CSV files.

The basic usage is simple as shown in the following code snippet:

import numpy
data = numpy.loadtxt('ch02-data.csv', dtype='string', delimiter=',')

Note that we need to define a delimiter to instruct NumPy to separate our data as appropriate. 
The function numpy.loadtxt() is somewhat faster than the similar function numpy.
genfromtxt(), but the latter can cope better with missing data, and you are able to provide 
functions to express what is to be done during the processing of certain columns of loaded 
data files.

Currently, the csv module doesn't support Unicode, and so you 
must explicitly convert the read data into UTF-8 or ASCII printable. 
The official Python CSV documentation offers good examples on 
how to resolve data encoding issues.
In Python 3.3 and later versions, Unicode support is default and 
there are no such issues.

Importing data from Microsoft Excel files
Although Microsoft Excel supports some charting, sometimes you need more flexible and 
powerful visualization and need to export data from existing spreadsheets into Python for 
further use.

A common approach to importing data from Excel files is to export data from Excel into  
CSV-formatted files and use the tools described in the previous recipe to import data using 
Python from the CSV file. This is a fairly easy process if we have one or two files (and have 
Microsoft Excel or OpenOffice.org installed), but if we are automating a data pipe for many 
files (as part of an ongoing data processing effort), we are not in a position to manually 
convert every Excel file into CSV. So, we need a way to read any Excel file.

Python has decent support for reading and writing Excel files through the project  
www.python-excel.org. This support is available in the form of different modules  
for reading and writing and is platform-independent; in other words, we don't have to  
run it on Windows in order to read Excel files.

http://www.python.org/dev/peps/pep-0305/
www.python-excel.org
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The Microsoft Excel file format changed over time, and support for different versions is 
available in different Python libraries. The latest stable version of XLRD is 0.90 at the  
time of this writing and it has support for reading .xlsx files.

Getting ready
First, we need to install the required module. For this example, we will use the module xlrd. 
We will use pip in our virtual environment, as shown in the following code:

$ mkvirtualenv xlrdexample

(xlrdexample)$ pip install xlrd

After successful installation, use the sample file ch02-xlsxdata.xlsx.

How to do it...
The following code example demonstrates how to read a sample dataset from a known  
Excel file. We will do this as shown in the following steps:

1. Open the file workbook.

2. Find the sheet by name.

3. Read the cells using the number of rows (nrows) and columns (ncols).

4. For demonstration purposes, we only print the read dataset.

This is shown in the following code:

import xlrd

file = 'ch02-xlsxdata.xlsx'

wb = xlrd.open_workbook(filename=file)

ws = wb.sheet_by_name('Sheet1')

dataset = []

for r in xrange(ws.nrows):
    col = []
    for c in range(ws.ncols):
        col.append(ws.cell(r, c).value)
    dataset.append(col)

from pprint import pprint
pprint(dataset)
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How it works...
Let's try to explain the simple object model that xlrd uses. At the top level, we have a 
workbook (the Python class xlrd.book.Book) that consists of one or more worksheets 
(xlrd.sheet.Sheet), and every sheet has a cell (xlrd.sheet.Cell) from which we  
can then read the value.

We load a workbook from a file using open_workbook(), which returns the xlrd.book.
Book instance that contains all the information about a workbook like sheets. We access 
sheets using sheet_by_name(); if we need all sheets, we could use sheets(), which 
returns a list of the xlrd.sheet.Sheet instances. The xlrd.sheet.Sheet class has  
a number of columns and rows as attributes that we can use to infer ranges for our loop  
to access every particular cell inside a worksheet using the method cell(). There is an 
xrld.sheet.Cell class, though it is not something we want to use directly.

Note that the date is stored as a floating point number and not as a separate data type,  
but the xlrd module is able to inspect the value and try to infer if the data is in fact a date. 
So, we can inspect the cell type for the cell to get the Python date object. The module xlrd 
will return xlrd.XL_CELL_DATE as the cell type if the number format string looks like a date. 
Here is a snippet of code that demonstrates this:

from datetime import datetime
from xlrd import open_workbook, xldate_as_tuple
…
cell = sheet.cell(1, 0)
print cell
print cell.value
print cell.ctype
if cell.ctype == xlrd.XL_CELL_DATE:
    date_value = xldate_as_tuple(cell.value, book.datemode)
    print datetime(*date_value)

This field still has issues, so please refer to the official documentation and mailing list in case 
you require extensive work with dates.

There's more...
A neat feature of xlrd is its ability to load only parts of the file that are required in the 
memory. There is an on_demand parameter that can be passed as True value while  
calling open_workbook so that the worksheet will only be loaded when requested.  
See the following  example of code snippet for this:

book = open_workbook('large.xls', on_demand=True)
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We didn't mention writing Excel files in this section partly because there will be a separate 
recipe for that and partly because there is a different module for that—xlwt. You will read 
more about it in the Exporting data to JSON, CSV, and Excel recipe in this chapter.

If you need specific usage that was not covered with the module and examples explained 
earlier, here is a list of other Python modules on PyPi that might help you out with 
spreadsheets http://pypi.python.org/pypi?:action=browse&c=377.

Importing data from fixed-width data files
Log files from events and time series data files are common sources for data visualizations. 
Sometimes, we can read them using CSV dialect for tab-separated data, but sometimes they 
are not separated by any specific character. Instead, fields are of fixed widths and we can infer 
the format to match and extract data.

One way to approach this is to read a file line by line and then use string manipulation 
functions to split a string into separate parts. This approach seems straightforward,  
and if performance is not an issue, it should be tried first.

If performance is more important or the file to parse is large (hundreds of megabytes), using 
the Python module struct (http://docs.python.org/library/struct.html) can 
speed us up as the module is implemented in C rather than in Python.

Getting ready
As the module struct is part of the Python Standard Library, we don't need to install any 
additional software to implement this recipe.

How to do it...
We will use a pregenerated dataset with a million rows of fixed-width records. Here's what 
sample data looks like:

…
207152670 3984356804116 9532
427053180 1466959270421 5338
316700885 9726131532544 4920
138359697 3286515244210 7400
476953136 0921567802830 4214
213420370 6459362591178 0546
…

This dataset is generated using code that can be found in the repository for this chapter— 
ch02-generate_f_data.py.

http://pypi.python.org/pypi?:action=browse&c=377
http://docs.python.org/library/struct.html
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Now we can read the data. We can use the following code sample. We will carry out the 
following steps for this:

1. Define the data file to read.

2. Define the mask for how to read the data.

3. Read line by line using the mask to unpack each line into separate data fields.

4. Print each line as separate fields.

This is shown in the following code snippet:

import struct
import string

datafile = 'ch02-fixed-width-1M.data'

# this is where we define how to
# understand line of data from the file
mask='9s14s5s'

with open(datafile, 'r') as f:
    for line in f:
        fields = struct.Struct(mask).unpack_from(line)
        print 'fields: ', [field.strip() for field in fields]

How it works...
We define our format mask according to what we have previously seen in the datafile.  
To see the file, we could have used Linux shell commands such as head or more or 
something similar.

String formats are used to define the expected layout of the data to extract. We use format 
characters to define what type of data we expect. So if the mask is defined as 9s15s5s, we 
can read that as "a string of nine character width, followed by a string width of 15 characters 
and then again followed by a string of five characters."

In general, c defines the character (the char type in C) or a string of length 1, s defines 
a string (the char[] type in C), d defines a float (the double type in C), and so on. The 
complete table is available on the official Python website at http://docs.python.org/
library/struct.html#format-characters.

We then read the file line by line and extract (the unpack_from method) the line according 
to the specified format. Because we might have extraneous spaces before (or after) our fields, 
we use strip() to strip every extracted field.

http://docs.python.org/library/struct.html#format-characters
http://docs.python.org/library/struct.html#format-characters
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For unpacking, we used the object-oriented (OO) approach using the struct.Struct  
class, but we could have as well used the non-object approach where the line would be  
as shown here:

fields = struct.unpack_from(mask, line)

The only difference is the usage of pattern. If we are to perform more processing using  
the same formatting mask, the OO approach saves us from stating that format in every  
call. Moreover, it gives us the ability to inherit the struct.Struct class in future, thus 
extending or providing additional functionality for specific needs.

Importing data from tab-delimited files
Another very common format of flat datafile is the tab-delimited file. This can also come from 
an Excel export but can be the output of some custom software we must get our input from.

The good thing is that usually this format can be read in almost the same way as CSV files as the 
Python module csv supports the so-called dialects that enable us to use the same principles to 
read variations of similar file formats, one of them being the tab- delimited format.

Getting ready
Now you're already able to read CSV files. If not, please refer to the Importing data from CSV 
recipe first.

How to do it...
We will reuse the code from the Importing data from CSV recipe, where all we need to change 
is the dialect we are using as shown in the following code:

import csv

filename = 'ch02-data.tab'

data = []
try:
    with open(filename) as f:
        reader = csv.reader(f, dialect=csv.excel_tab)
       header = reader.next()
       data = [row for row in reader]
except csv.Error as e:
    print "Error reading CSV file at line %s: %s" % (reader.line_num, 
e)
    sys.exit(-1)
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if header:
    print header
    print '==================='
 
for datarow in data:
    print datarow

How it works...
The dialect-based approach is very similar to what we already did in the Importing data  
from CSV recipe, except for the line where we instantiate the csv reader object, giving it  
the parameter dialect and specifying the excel_tab dialect that we want.

There's more...
A CSV-based  approach will not work if the data is "dirty", that is, if there are certain lines not 
ending with just a new line character but have additional \t (Tab) markers. So we need to 
clean special lines separately before splitting them. The sample "dirty" tab-delimited file can 
be found in ch02-data-dirty.tab. The following code sample cleans data as it reads it:

datafile = 'ch02-data-dirty.tab'

with open(datafile, 'r') as f:
    for line in f:
        # remove next comment to see line before cleanup
        # print 'DIRTY: ', line.split('\t')

        # we remove any space in line start or end
        line = line.strip()

        # now we split the line by tab delimiter
        print line.split('\t')

We also see that there is another approach to do this—using the split('\t') function.

The advantage of using the csv module approach over split() is that we can reuse the 
same code for reading by just changing the dialect and detecting it with the file extension 
(.csv and .tab) or some other method (for example, using the csv.Sniffer class).
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Importing data from a JSON resource
This recipe will show us how we can read the JSON data format. Moreover, we'll be using a 
remote resource in this recipe. It will add a tiny level of complexity to the recipe, but it will  
also make it much more useful because in real life we will encounter more remote resources 
than local ones.

JavaScript Object Notation (JSON) is widely used as a platform-independent format to 
exchange data between systems or applications.

A resource, in this context, is anything we can read, be it a file or a URL endpoint (which can 
be the output of a remote process/program or just a remote static file). In short, we don't  
care who produced a resource and how they did it; we just need it to be in a known format  
like JSON.

Getting ready
In order to get started with this recipe, we need the requests module installed and 
importable (in PYTHONPATH) in our virtual environment. We have installed this module  
in Chapter 1, Preparing Your Working Environment.

We also need Internet connectivity as we'll be reading a remote resource.

How to do it...
The following code sample performs reading and parsing of the recent activities' timeline from 
the GitHub (http://github.com) site. We will perform the following steps for this:

1. Define the GitHub URL of a JSON file with the details of a GitHub profile.

2. Get the contents from the URL using the requests module.

3. Read the content as JSON.

Here is the code for this:

   import requests
   from pprint import pprint
    url = 'https://api.github.com/users/justglowing'
    r = requests.get(url)
    json_obj = r.json()pprint(json_obj)

http://github.com
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How it works...
First, we use the "requests" module to fetch a remote resource. This is very straightforward 
as the "requests" module offers a simple API to define HTTP verbs, so we just need to issue 
one get() method call. This method retrieves data and request metadata and wraps it in 
the "Response" object, so we can inspect it. For this recipe, we are only interested in the 
Response.json() method, which automatically reads content (available at Response.
content) and parses it as JSON and loads it into the JSON object.

Now that we have the JSON object, we can process the data. In order to do that, we need to 
understand what data looks like. We can achieve that understanding by opening the JSON 
resource using our favorite web browser or command-line tool such as wget or curl.

Another way is to fetch data from IPython and inspect it interactively. We can achieve that  
by running our program from IPython (using %run program_name.py). After execution,  
we are left with all variables that the program produced. List them all using %who or %whos.

Whatever method we use, we gain knowledge about the structure of the JSON data and the 
ability to see what parts of that structure we are interested in.

The JSON object is basically just a Python dictionary (or if stated in a more complex manner, 
a dictionary of dictionaries) and we can access parts of it using a well-known, key-based 
notation. In our example, the .json file contains the details of a GitHub profile and we can 
access the location of the user referencing json_obj['location']. If we compare the 
structure of the dictionary json_obj with that of the .json file, we see that  each entry in 
the .json file corresponds to a key in the dictionary. This means that the entire content of  
the .json file is now into the dictionary (keep in mind that when you load a .json file, the 
order of the keys is not preserved!).

There's more...
The JSON format (specified by RFC 4627; refer to http://tools.ietf.org/html/
rfc4627.html) became very popular recently as it is more human readable than XML  
and is also less verbose. Hence, it's lighter in terms of the syntaxes required to transfer  
data. It is very popular in the web application domain as it is native to JavaScript, the 
language used for most of today's rich Internet applications.

The Python JSON module has more capabilities than we have displayed here; for example,  
we could specialize the basic JSONEncoder/JSONDecoder class to transform our Python 
data into JSON format. The classical example uses this approach to JSON-ify the Python  
built-in type for complex numbers.

For simple customization, we don't have to subclass the JSONDecoder/JSONEncoder  
class as some of the parameters can solve our problems.

http://tools.ietf.org/html/rfc4627.html
http://tools.ietf.org/html/rfc4627.html
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For example, json.loads() will parse a float as the Python type float, and most of the 
time it will be right. Sometimes, however, the float value in the .json file represents a price 
value, and this is better represented as a decimal. We can instruct the json parser to parse 
floats as decimal. For example, we have the following JSON string:

jstring = '{"name":"prod1","price":12.50}'

This is followed by these two lines of code:

from decimal import Decimal
json.loads(jstring, parse_float=Decimal)

The preceding two lines of code will generate this output:

{u'name': u'prod1', u'price': Decimal('12.50')}

Exporting data to JSON, CSV, and Excel
While as producers of data visualization, we are mostly using other people's data, importing 
and reading data are our major activities. We do need to write or export data that we 
produced or processed, whether it is for our or others' current or future use.

We will demonstrate how to use the previously mentioned Python modules to import, export, 
and write data to various formats such as JSON, CSV, and XLSX.

For demonstration purposes, we are using the pregenerated dataset from the Importing data 
from fixed-width data files recipe.

Getting ready
For the Excel writing part, we will need to install the xlwt module (inside our virtual 
environment) by executing the following command:

$ pip install xlwt

How to do it...
We will present one code sample that contains all the formats that we want to demonstrate: 
CSV, JSON, and XLSX. The main part of the program accepts the input and calls appropriate 
functions to transform data. We will walk through separate sections of code explaining its 
purpose, as shown here:

1. Import the required modules:
import os
import sys
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import argparse

try:
    import cStringIO as StringIO
except:
    import StringIO
import struct
import json
import csv

2. Then, define the appropriate functions for reading and writing data:
def import_data(import_file):
    '''
    Imports data from import_file.
    Expects to find fixed width row
    Sample row: 161322597 0386544351896 0042
    '''
    mask = '9s14s5s'
    data = []
    with open(import_file, 'r') as f:
        for line in f:
            # unpack line to tuple
            fields = struct.Struct(mask).unpack_from(line)
            # strip any whitespace for each field
            # pack everything in a list and add to full dataset
            data.append(list([f.strip() for f in fields]))
    return data

def write_data(data, export_format):
    '''Dispatches call to a specific transformer and returns data 
set.
    Exception is xlsx where we have to save data in a file.
    '''
    if export_format == 'csv':
        return write_csv(data)
    elif export_format == 'json':
        return write_json(data)
    elif export_format == 'xlsx':
        return write_xlsx(data)
    else:
        raise Exception("Illegal format defined")
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3. We separately specify separate implementation for each data format (CSV, JSON,  
and XLSX):
def write_csv(data):
    '''Transforms data into csv. Returns csv as string.
    '''
    # Using this to simulate file IO,
    # as csv can only write to files.
    f = StringIO.StringIO()
    writer = csv.writer(f)
    for row in data:
        writer.writerow(row)
    # Get the content of the file-like object
    return f.getvalue()

def write_json(data):
    '''Transforms data into json. Very straightforward.
    '''
    j = json.dumps(data)
    return j

def write_xlsx(data):
    '''Writes data into xlsx file.
    
    '''
    from xlwt import Workbook
    book = Workbook()
    sheet1 = book.add_sheet("Sheet 1")
    row = 0
    for line in data:
        col = 0
        for datum in line:
            print datum
            sheet1.write(row, col, datum)
            col += 1
        row += 1
        # We have hard limit here of 65535 rows
        # that we are able to save in spreadsheet.
        if row > 65535:
            print >> sys.stderr, "Hit limit of # of rows in one 
sheet (65535)."
            break
    # XLS is special case where we have to
    # save the file and just return 0
    f = StringIO.StringIO()
    book.save(f)
    return f.getvalue()
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4. Finally, we have the main code entry point, where we parse argument-like files from 
the command line to import data and export it to the required format:
if __name__ == '__main__':
    # parse input arguments
    parser = argparse.ArgumentParser()
    parser.add_argument("import_file", help="Path to a fixed-width 
data file.")
    parser.add_argument("export_format", help="Export format: 
json, csv, xlsx.")
    args = parser.parse_args()

    if args.import_file is None:
        print >> sys.stderr, "You must specify path to import 
from."
        sys.exit(1)

    if args.export_format not in ('csv','json','xlsx'):
        print >> sys.stderr, "You must provide valid export file 
format."
        sys.exit(1)

    # verify given path is accessible file
    if not os.path.isfile(args.import_file):
        print >> sys.stderr, "Given path is not a file: %s" % 
args.import_file
        sys.exit(1)

    # read from formatted fixed-width file
    data = import_data(args.import_file)

    # export data to specified format
    # to make this Unix-like pipe-able
    # we just print to stdout
    print write_data(data, args.export_format)

How it works...
In one broad sentence, we import the fixed-width dataset (as defined in the Importing data 
from fixed-width datafiles recipe) and then export that to stdout, so we can catch that in a 
file or as an input to another program.

We call out the programmer from the command line giving two mandatory arguments: the 
input filename and the export data format (JSON, CSV, and XLSX).
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If we successfully parse those arguments, we dispatch the input file reading to a function 
import_data(), which returns the Python data structure (list of lists) that we can easily 
manipulate to get to the appropriate export format.

We route our request inside the write_data() function, where we just forward a call to the 
appropriate function (for example, write_csv()).

For CSV, we obtain the csv.writer() instance that we use to write every line of data we 
iterate over.

We just return the given string as we will redirect this output from our program to another 
program (or just to copy in a file).

The JSON export is not required for this example as the json module provides us with the 
dump() method that happily reads our Python structure. Just as for CSV, we simply return  
and dump this output to stdout.

The Excel export requires more code as we need to create a more complex model of the 
Excel workbook and worksheet(s) that will hold the data. This activity is followed by a similar 
iterative approach. We have two loops— the outer one goes over every line in the source 
dataset iterated and the inner one iterates over every field in the given line.

After all this, we save the Book instance into a file-like stream that we can return to stdout 
and use it both in read files and the files consumed by the web service.

There's more...
This, of course, is just a small set of possible data formats that we could be exporting to.  
It is fairly easy to modify the behavior. Basically, two places need changes: the import and 
export functions. The function for import needs to change if we want to import a new kind  
of data source.

If we want to add a new export format, we need to first add functions that will return a  
stream of formatted data. Then, we need to update the write_data() function to add  
the new elif branch to have it call our new write_* function.

One thing we could also do is make this a Python package, so we can reuse it over more 
projects. In that case, we would like to make import more flexible and add some more 
configuration features for import.
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Importing and manipulating data with 
Pandas

Until now we have seen how to import and export data using mostly the tools provided in the 
Python standard library. Now, we'll see how to do some of the operations shown above in 
just few lines using the Pandas library. Pandas is an open source, BSD-licensed library that 
simplifies the process of data import and manipulation thus providing data structures and 
parsing functions.

We will demonstrate how to import, manipulate and export data using Pandas.

Getting ready
To be able to use the code in this section, we need to install Pandas.This can be done again 
using pip as shown here:

pip install pandas

How to do it...
Here, we will import again the data ch2-data.csv, add a new column to the original data 
and export the result in csv, as shown in the following code snippet:

data = pd.read_csv('ch02-data.csv')
data['amount_x_2'] = data['amount']*2
data.to_csv('ch02-data_more.csv)

How it works...
First, we import Pandas in our environment and then we use the function read_csv on 
the file that we want to read. This function automatically parses the csv format and nicely 
organizes the data in an indexed structure called DataFrame. Then, we take the columns 
amount, we multiply each of its element by two and store the result in a new columns called 
amount_x_2. Finally, we save the result into a new file named ch02-data_more.csv using 
the method to_csv. A DataFrame is a Pandas object which represents a table and we can 
access its columns as shown in the following section
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There's more...
DataFrames are very handy structures; they're designed to be fast and easy to access. Each 
column that they contain becomes an attribute of the object that represents the data frame. 
For example, we can print the values in the column amount of the object data defined earlier 
as shown here:

>>>print data.amount

>>>0 323 1 233 2 433 3 555 4 123 5 0 6 221 Name: amount, dtype: int64

We can also print the list of all the columns in a dataframe as shown in the following code:

>>>print data.columns

>>>Index([u'day', u'amount'], dtype='object')

Also, the function read_csv that we used to import the data has many parameters that we 
make use of to deal with messy files and parse particular data formats. For example, if the 
values of our files are delimited by spaces instead of commas, we can use the parameter 
delimiter to correctly parse the data. Here's an example of where we import data from a  
file, where the values are separated by a variable number of spaces and we specify our 
custom header:

pd.read_csv('ch02-data.tab', skiprows=1, 
  delimiter=' *', names=['day','amount'])

Importing data from a database
Very often, our work on data analysis and visualization is at the consumer end of the data 
pipeline. We most often use the already produced data rather than producing the data 
ourselves. A modern application, for example, holds different datasets inside relational 
databases (or other databases like MongoDB), and we use these databases to produce 
beautiful graphs.

This recipe will show you how to use SQL drivers from Python to access data.

We will demonstrate this recipe using a SQLite database because it requires the least effort 
to set up, but the interface is similar to most other SQL-based database engines (MySQL and 
PostgreSQL). There are, however, differences in the SQL dialect that those database engines 
support. This example uses simple SQL language and should be reproducible on most 
common SQL database engines.
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Getting ready
To be able to execute this recipe, we need to install the SQLite library as shown here:

$ sudo apt-get install sqlite3

Python support for SQLite is available by default, so we don't need to install anything  
Python-related. Just fire the following code snippet in IPython to verify that everything  
is present:

import sqlite3
sqlite3.version
sqlite3.sqlite_version

We get an output similar to this as shown here:

In [1]: import sqlite3

In [2]: sqlite3.version

Out[2]: '2.6.0'

In [3]: sqlite3.sqlite_version

Out[3]: '3.8.4.3'

Here, sqlite3.version gets us the version of the Python sqlite3 module, and sqlite_
version returns the system SQLite library version.

How to do it...
To be able to read from the database, we need to perform the following steps:

1. Connect to the database engine (or the file in the case of SQLite).

2. Run the query against the selected tables.

3. Read the result returned from the database engine.

I will not try to teach SQL here as there are many books on that particular topic. But just for 
the purpose  of clarity, we will explain the SQL query in this code sample:

SELECT ID, Name, Population FROM City ORDER BY Population DESC LIMIT 
1000

ID, Name, and Population are columns (fields) of the table City from which we select data. 
ORDER BY tells the database engine to sort our data by the Population column, and DESC 
means descending order. LIMIT allows us to get just the first 1,000 records found.
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For this example, we will use the world.sql example table, which holds the world's city 
names and populations. This table has more than 5,000 entries.

First, we need to import this SQL file into the SQLite database. Here's is the code on how  
to do it:

import sqlite3
import sys
 
if len(sys.argv) < 2:
    print "Error: You must supply at least SQL script."
    print "Usage: %s table.db ./sql-dump.sql" % (sys.argv[0])
    sys.exit(1)

script_path = sys.argv[1]

if len(sys.argv) == 3:
    db = sys.argv[2]
else:
    # if DB is not defined
    # create memory database
    db = ":memory:"

try:
    con = sqlite3.connect(db)
    with con:
        cur = con.cursor()
        with open(script_path,'rb') as f:
            cur.executescript(f.read())
except sqlite3.Error as err:
    print "Error occurred: %s" % err

This reads the SQL file and executes the SQL statements against the opened SQLite db file.  
If we don't specify the filename, SQLite creates the database in the memory. The statements 
are then executed line by line.

If we encounter any errors, we catch exceptions and print the error message to the user.

After we have imported data into the database, we are able to query the data and do some 
processing. Here is the code to read the data from the database file:

import sqlite3
import sys

if len(sys.argv) != 2:
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    print "Please specify database file."
    sys.exit(1)

db = sys.argv[1]

try:
    con = sqlite3.connect(db)
    with con:
        cur = con.cursor()
        query = 'SELECT ID, Name, Population FROM City ORDER BY 
Population DESC LIMIT 1000'
        con.text_factory = str
        cur.execute(query)

        resultset = cur.fetchall()

        # extract column names

        col_names = [cn[0] for cn in cur.description]
        print "%10s %30s %10s" % tuple(col_names)
        print "="*(10+1+30+1+10)

        for row in resultset:
            print "%10s %30s %10s" % row
except sqlite3.Error as err:
    print "[ERROR]:", err

Here's an example of how to use the two preceding scripts:

$ python ch02-sqlite-import.py world.sql world.db

$ python ch02-sqlite-read.py world.db 

        ID                           Name Population

====================================================

      1024                Mumbai (Bombay)   10500000

      2331                          Seoul    9981619

       206                      S?o Paulo    9968485

      1890                       Shanghai    9696300



Chapter 2

39

How it works...
First, we verify that the user has provided the database file path. This is just a quick check to 
ensure that we  can proceed with the rest of the code.

Then, we try to connect to the database; if that fails, we catch sqlite3.Error and print it  
to the user.

If the connection is successful, we obtain a cursor using con.cursor(). A cursor is an 
iterator-like structure that enables us to traverse records of the result set returned from  
a database.

We define a query that we execute over the connection and we fetch the result set using  
cur.fetchall(). Had we expected just one result, we would have used just fetchone().

List comprehension over cur.description allows us to obtain column names. description 
is a read-only attribute and returns more than we need for just column names, so we just 
fetch the first item from every column's 7-item tuple.

We then use simple string formatting to print the header of our table with column names. 
After that, we iterate over resultset and print every row in a similar manner.

There's more...
Databases are the most common sources of data today. We could not present everything in 
this short recipe, but we can suggest you where to look for more information.

The official Python documentation is the first place to look for an explanation about how to 
work with databases. The most common databases are open source databases, such as 
MySQL, PostgreSQL, and SQLite, and on the other end of the spectrum, there are enterprise 
database systems such as MS SQL, Oracle, and Sybase. Mostly Python has support for them 
and the interface is abstracted always, so you don't have to change your program if your 
underlying database changes, but some tweaks may be  required. It depends on whether 
you have used the specifics of a particular database system. For example, Oracle supports 
a specific language PL/SQL that is not standard SQL, and some things will not work if your 
database changes from Oracle to MS SQL. Similarly, SQLite does not support specifics from 
MySQL data types or database engine types (MyISAM and InnoDB). Those things can be 
annoying, but having your code rely on standard SQL (available at http://en.wikipedia.
org/wiki/SQL:2011) will make your code portable from one database system to another.

http://en.wikipedia.org/wiki/SQL:2011
http://en.wikipedia.org/wiki/SQL:2011
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Cleaning up data from outliers
This recipe describes how to deal with datasets coming from the real world and how to clean 
them before doing any visualization.

We will present a few techniques, which are different in essence but have the same goal,  to 
get the data cleaned.

Cleaning, however, should not be fully automatic. We need to understand the data as given 
and be able to understand what the outliers are and what the data points represent before  
we apply any of the robust modern algorithms made to clean the data. This is not something 
that can be defined in a recipe because it relies on vast areas such as statistics, knowledge  
of the domain, and a good eye (and then some luck).

Getting ready
We will use the standard Python modules we already know about, so no additional installation 
is required.

In this recipe, I will introduce a new. Median absolute deviation (MAD) in statistics represents 
a measure of the variability of a univariate (possessing one variable) sample of quantitative 
data. It is a measure of statistical dispersion. It falls into a group of robust statistics in a way 
that it is more resilient to outliers.

How to do it...
Here's one example that shows how to use MAD to detect outliers in our data. We will perform 
the following steps for this:

1. Generate normally distributed random data.

2. Add in a few outliers.

3. Use the function is_outlier() to detect the outliers.

4. Plot both the datasets (x and filtered) to see the difference.

Look at the following lines of code depicting this:

import numpy as np
import matplotlib.pyplot as plt

def is_outlier(points, threshold=3.5):
    """
   This returns a boolean array with "True" if points are outliers and 
"False"
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    otherwise.
    
   These are the data points with a modified z-score greater than 
this:
    # value will be classified as outliers.
    """
    # transform into vector
    if len(points.shape) == 1:
        points = points[:,None]

    # compute median value    
    median = np.median(points, axis=0)
    
    # compute diff sums along the axis
    diff = np.sum((points - median)**2, axis=-1)
    diff = np.sqrt(diff)
    # compute MAD
    med_abs_deviation = np.median(diff)
    
    # compute modified Z-score
    # http://www.itl.nist.gov/div898/handbook/eda/section4/eda43.
htm#Iglewicz
    modified_z_score = 0.6745 * diff / med_abs_deviation

    # return a mask for each outlier
    return modified_z_score > threshold

# Random data
x = np.random.random(100)

# histogram buckets
buckets = 50

# Add in a few outliers
x = np.r_[x, -49, 95, 100, -100]

# Keep valid data points
# Note here that
# "~" is logical NOT on boolean numpy arrays
filtered = x[~is_outlier(x)]
# plot histograms
plt.figure()
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plt.subplot(211)
plt.hist(x, buckets)
plt.xlabel('Raw')

plt.subplot(212)
plt.hist(filtered, buckets)
plt.xlabel('Cleaned')

plt.show()

Note that in NumPy, the ~ operator is overloaded to operate as a logical operator and not on 
Boolean arrays. 

The preceding code produces two distinct histograms. The first one, which has been drawn 
using all the data, contains one main box with height 100 centered in 0.5 and three other very 
small boxes. This means that most of the samples were grouped in the first box and the other 
boxes just contain outliers. Indeed, in the second histogram, which has been drawn without 
the outliers, we can observe the details of the distribution of the data in the interval 0-1.

Another way to identify outliers is to visually inspect your data. In order to do so, we could 
create scatter plots, where we could easily spot values that are out of the central swarm  
or create a box plot, which will display the median, quartiles above and below the median,  
and points that are distant even from the extremes of the distribution of the data.
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The box extends from the lower to the upper quartile values of the data, with a line at the 
median. The whiskers extend from the box to show the interquartile range. Flier points are 
those past the end of the whiskers.

Here's an example to demonstrate that:

from pylab import *

# fake up some data
spread= rand(50) * 100
center = ones(25) * 50

# generate some outliers high and low
flier_high = rand(10) * 100 + 100
flier_low = rand(10) * -100
 
# merge generated data set
data = concatenate((spread, center, flier_high, flier_low), 0)

subplot(311)
# basic plot
# 'gx' defining the outlier plotting properties
boxplot(data, 0, 'gx')

# compare this with similar scatter plot
subplot(312)
spread_1 = concatenate((spread, flier_high, flier_low), 0)
center_1 = ones(70) * 25
scatter(center_1, spread_1)
xlim([0, 50])

# and with another that is more appropriate for
# scatter plot
subplot(313)
center_2 = rand(70) * 50
scatter(center_2, spread_1)
xlim([0, 50])

show()
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We can then see x-shaped markers representing outliers, as shown in the following table:

We can also see that the second plot showing a similar dataset in the scatter plot is not very 
intuitive because the x axis has all the values at 25 and we don't really distinguish between 
inliers and outliers.

The third plot, where we generated values on the x axis to be spread across the range from  
0 to 50, gives us more visibility of the different values and we can see what values are outliers 
in terms of the y axis.

What if we have a dataset with missing values? We can use NumPy loaders to compensate 
for missing values, or we can write code to replace existing values with the ones we need for 
further use.

For example, we want to illustrate some dataset over the geographical map of USA and have 
values for state names that are not consistent in the dataset. For example, we have values 
OH, Ohio, OHIO, US-OH, and OH-USA all representing the state of Ohio in the USA. What we 
must do in this situation is that we need to inspect the dataset manually by loading it in a 
spreadsheet processor such as Microsoft Excel or OpenOffice.org Calc. Sometimes, it is easy 
enough to just print all the lines using Python. If the file is CSV or CSV-like, we can open it with 
any text editor and inspect the data directly.
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After we have concluded what is present in the data, we can write Python code to group those 
similar values and replace them with the one value that is going to make further processing 
consistent. The usual way of doing this is to read in lines of the file using readlines() and 
use standard Python string manipulation functions to perform manipulations.

There's more...
There are special products, both commercial and non-commercial (such as OpenRefine 
available at https://github.com/OpenRefine) that provide some automation around 
transformation on "dirty" live datasets.

Manual work is still involved, depending on how noisy the data is and how great our 
understanding of that data is.

If you want to find out more about cleaning outliers and cleaning of data in general, look for 
statistical models and the sampling theory.

Reading files in chunks
Python is very good at handling reading and writing files or file-like objects. For example, if you 
try to load big files, say a few hundred MB, assuming you have a modern machine with at least 
2 GB of RAM, Python will be able to handle it without any issue. It will not try to load everything 
at once, but play smart and load it as needed.

So even with decent file sizes, doing something as simple as the following code will work 
straight out of the box:

with open('/tmp/my_big_file', 'r') as bigfile:
    for line in bigfile:
        # line based operation, like 'print line'

But if we want to jump to a particular place in the file or do other nonsequential reading,  
we will need to use the handcrafted approach and use IO functions such as seek(), tell(), 
read(), and next() that allow enough flexibility for most users. Most of these functions are 
just bindings to C implementations (and are OS-specific), so they are fast, but their behavior 
can vary based on the OS we are running.

https://github.com/OpenRefine
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How to do it...
Depending on what our aim is, processing large files can sometimes be managed in chunks. 
For example, you could read 1,000 lines and process them using Python standard iterator-
based approaches, as shown here:

import sys

filename = sys.argv[1]  # must pass valid file name

with open(filename, 'rb') as hugefile:
    chunksize = 1000
    readable = ''
    # if you want to stop after certain number of blocks
    # put condition in the while
    while hugefile:  
        # if you want to start not from 1st byte
        # do a hugefile.seek(skipbytes) to skip
        # skipbytes of bytes from the file start
        start = hugefile.tell()
        print "starting at:", start
        file_block = ''  # holds chunk_size of lines
        for _ in xrange(start, start + chunksize):
            line = hugefile.next()
            file_block = file_block + line
            print 'file_block', type(file_block), file_block
        readable = readable + file_block
        # tell where are we in file
        # file IO is usually buffered so tell()
        # will not be precise for every read.
        stop = hugefile.tell()
        print 'readable', type(readable), readable
        print 'reading bytes from %s to %s' % (start, stop)
        print 'read bytes total:', len(readable)
        
        # if you want to pause read between chucks
        # uncomment following line
        #raw_input()

We call this code from the Python command-line interpreter, giving the filename path as the 
first parameter:

$ python ch02-chunk-read.py myhugefile.dat
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How it works...
We want to be able to read blocks of lines for processing without reading the whole file in  
the memory.

We open the file and read in lines in the inner for loop. The way we move through the file is 
by calling next() on the file object. This function reads the line from the file and moves the 
file pointer to the next line. We append lines in the file_block variable during the loop 
execution. In order to simplify the example code, we don't do any processing but just add 
file_block to complete the output variable readable.

We do some printing during execution just to illustrate the current state of certain variables.

The last comment line in the while loop raw_input() can be uncommented and we can 
pause the execution and read the printed lines above it.

There's more...
This recipe is, of course, just one of the possible approaches to reading large (huge) files. 
Other approaches could include specific Python or C libraries, but they all depend on what  
we aim to do with data and how we want to process it.

Parallel approaches like the MapReduce paradigm have become very popular recently as  
we get more processing power and memory for a low price.

Multiprocessing is also a feasible approach sometimes as Python has good library support 
for creating and managing threads with several libraries such as multiprocessing, 
threading, and thread.

If processing huge files is a repeated process for a project, we suggest building your data 
pipeline so that every time you need data ready in a specific format on the output end, you 
don't have to go to the source and do it manually.

Reading streaming data sources
What if the data that is coming from the source is continuous? What if we need to read 
continuous data? This recipe will demonstrate a simple solution that will work for many 
common real-life scenarios, but it is not universal and you will need to modify it if you hit  
a special case in your application.
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How to do it...
In this recipe, we will show you how to read an ever-changing file and print the output. We will 
use the common Python module to accomplish this as shown here:

import time
import os
import sys

if len(sys.argv) != 2:
    print >> sys.stderr, "Please specify filename to read"

filename = sys.argv[1]

if not os.path.isfile(filename):
    print >> sys.stderr, "Given file: \"%s\" is not a file" % filename

with open(filename,'r') as f:
    # Move to the end of file
    filesize = os.stat(filename)[6]
    f.seek(filesize)

    # endlessly loop
    while True:
        where = f.tell()
        # try reading a line
        line = f.readline()
        # if empty, go back
        if not line:
            time.sleep(1)
            f.seek(where)
        else:
            # , at the end prevents print to add newline, as 
readline()
            # already read that.
            print line,

How it works...
The core of the code is inside the while True: loop. This loop never stops (unless we interrupt 
it by pressing Ctrl + C on our keyboard). We first move to the end of the file we are reading and 
then we try to read a line. If there is no line, that means nothing was added to the file after we 
checked it using seek(). So, we sleep for one second and then try again.

If there is a non-empty line, we print that out and suppress the new line character.
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There's more...
We might want to read the last n lines. We could do that by going almost to the end of the file. 
We could go there by looking for the file, that is, with file.seek(filesize – N * avg_
line_len). Here, avg_line_len should be the approximation of average line length in that 
file (approximately 1,024). Then, we could use readlines() from that point to read line and 
then print just [-N] lines from that list.

The idea from this example can be used for various solutions. For example, the input has to 
be a file-like object or a remote HTTP-accessible resource. Thus, one can read the input from 
a remote service and continuously parse it and update live charts or update the intermediate 
queue, buffer, or database.

One particular module is very useful for stream handling—io. It is in Python from Version 2.6, 
is built as a replacement for the file module, and is a default interface in Python 3.x.

In some more complex data pipelines, we will need to enable some sort of message queues, 
where our incoming continuous data will have to be queued for some time before we are 
able to accept it. This enables us, as consumers of the data, to be able to pause processing 
if we are overloaded. Having data on the common message bus enables other clients on the 
project to consume the same data and not interfere with our software.

Importing image data into NumPy arrays
We are going to demonstrate how to do image processing using Python's libraries such as 
NumPy and SciPy.

In scientific computing, images are usually seen as n-dimensional arrays. They are usually  
two-dimensional arrays; in our examples, they are represented as a NumPy array data 
structure. Therefore, functions and operations performed on those structures are seen  
as matrix operations.

Images in this sense are not always two-dimensional. For medical or bio-sciences, images are 
data structures of higher dimensions such as 3D (having the z axis as depth or as the time 
axis) or 4D (having three spatial dimensions and a temporal one as the fourth dimension).  
We will not be using those in this recipe.

We can import images using various techniques; they all depend on what you want to do with 
image. Also, it depends on the larger ecosystem of tools you are using and the platform you 
are running your project on.

In this recipe, we will demonstrate several ways to use image processing in Python, mainly 
related to scientific processing and less on the artistic side of image manipulation.
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Getting ready
In some examples in this recipe, we use the SciPy library, which you have already installed 
if you have installed NumPy. If you haven't, it is easily installable using your OS's package 
manager by executing the following command:

$ sudo apt-get install python-scipy

For Windows users, we recommend using prepackaged Python environments like EPD,  
which we discussed in Chapter 1, Preparing Your Working Environment.

If you want to install these using official source distributions, make sure you have installed 
system dependencies, such as:

 f BLAS and LAPACK: libblas and liblapack

 f C and Fortran compilers: gcc and gfortran

How to do it...
Whoever has worked in the field of digital signal processing or even attended a university 
course on this or a related subject must have come across Lena's image, the de facto 
standard image used for demonstrating image processing algorithms.

SciPy contains this image already packed inside the misc. module, so it is really simple  
for us to reuse that image. This is how you can read and show this image:

import scipy.misc
import matplotlib.pyplot as plt

# load already prepared ndarray from scipy
lena = scipy.misc.lena()

# set the default colormap to gray
plt.gray()

plt.imshow(lena)
plt.colorbar()
plt.show()
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This should open a new window with a figure displaying Lena's image in gray tones and axes. 
The color bar shows a range of values in the figure; here it shows 0—black to 255—white.

Further, we could examine this object with the following code:

print lena.shape
print lena.max()
print lena.dtype

The output for the preceding code is shown here:

(512, 512)
245
dtype('int32')

We see the following features in the image 512 points wide and 512 points high

 f The max value in the whole array (that is, the image) is 245

 f Every point is represented as a little endian 32-bit long integer

We could also read in an image using Python Imaging Library (PIL), which we installed in 
Chapter 1, Preparing Your Working Environment.
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Here is the code to do that:

import numpy
import Image
import matplotlib.pyplot as plt

bug = Image.open('stinkbug.png')
arr = numpy.array(bug.getdata(), numpy.uint8).reshape(bug.size[1], 
bug.size[0], 3)

plt.gray()
plt.imshow(arr)
plt.colorbar()
plt.show()

We should see something similar to Lena's image as shown in the following table:

This is useful if we are already tapping into an existing system that uses PIL as their default 
image loader.
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How it works...
Other than just loading the images, what we really want to do is use Python to manipulate 
images and process them. For example, we want to be able to load a real image that consists 
of RGB channels, convert that into one channel ndarray, and later use array slicing to also 
zoom in to the part of the image. Here's the code to demonstrate how we are able to use 
NumPy and matplotlib to do that:

import matplotlib.pyplot as plt
import scipy
import numpy

bug = scipy.misc.imread('stinkbug1.png')

# if you want to inspect the shape of the loaded image
# uncomment following line
#print bug.shape

# the original image is RGB having values for all three
# channels separately. For simplicity, we convert that to greyscale 
image
# by picking up just one channel.

# convert to gray
bug = bug[:,:,0]

bug[:,:,0] is called array slicing. This NumPy feature allows us to select any part of the 
multidimensional array. For example, let's see a one-dimensional array:

>>> a = array(5, 1, 2, 3, 4)

>>> a[2:3]

array([2])

>>> a[:2]

array([5, 1])

>>> a[3:]

array([3, 4])

For multidimensional arrays, we separate each dimension with a comma (,) as shown here:

>>> b = array([[1,1,1],[2,2,2],[3,3,3]])  # matrix 3 x 3

>>> b[0,:]  # pick first row

array([1,1,1])

>>> b[:,0]   # we pick the first column

array([1,2,3])
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Have a look at the following code:

# show original image
plt.figure()
plt.gray()

plt.subplot(121)
plt.imshow(bug)

# show 'zoomed' region
zbug = bug[100:350,140:350]

Here we zoom into the particular portion of the whole image. Remember that the image is 
just a multidimensional array represented as a NumPy array. Zooming here means selecting 
a range of rows and columns from this matrix. So we select a partial matrix from rows 100 to 
250 and columns 140 to 350. Remember that indexing starts at 0, so the row at coordinate 
100 is the 101st row.

Take a look at the following code:

plt.subplot(122)
plt.imshow(zbug)

plt.show()

This will be displayed as shown here:
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There's more...
For large images, we recommend using numpy.memmap for memory mapping of images.  
This will speed up manipulating the image data. Have a look at the following code as an 
example of this:

import numpy
file_name  = 'stinkbug.png'
image = numpy.memmap(file_name, dtype=numpy.uint8, shape = (375, 500))

Here we load part of a large file into memory, accessing it as a NumPy array. This is very 
efficient and allows us to manipulate file data structures as standard NumPy arrays without 
loading everything into memory. The argument shape defines the shape of the array loaded 
from the file_name argument, which is a file-like object. Note that this is a concept similar 
to Python's mmap argument (available at http://docs.python.org/2/library/mmap.
html) but is different in a very important way. NumPy's memmap attribute returns an array-like 
object while Python's mmap returns a file-like object. So, the way we use them is very different 
yet very natural in each environment.

There are some specialized packages that just focus on image processing like scikit-image 
(available at http://scikit-image.org/); this is basically a free collection of algorithms 
for image processing built on top of NumPy/SciPy libraries. If you want to do edge detection, 
remove noise from an image, or find contours, scikit is the tool to use to look for algorithms. 
The best way to start is to look at the example gallery and find the example image and code 
(available at http://scikit-image.org/docs/dev/auto_examples/).

Generating controlled random datasets
In this recipe, we will show different ways of generating random number sequences and  
word sequences. Some of the examples use standard Python modules, and others use 
NumPy/SciPy functions.

We will go through some statistics terminology but will explain every term, so you don't  
have to have a statistical reference book with you while reading this recipe.

We generate artificial datasets using common Python modules. By doing so, we are able 
to understand distributions, variance, sampling, and similar statistical terminology. More 
importantly, we can use this fake data as a way to understand if our statistical method is 
capable of discovering models we want to discover. We can do that because we know the 
model in advance and verify our statistical method by applying it over our known data. In  
real life, we don't have that ability and there is always a percentage of uncertainty that we 
must assume, giving way to errors.

http://docs.python.org/2/library/mmap.html
http://docs.python.org/2/library/mmap.html
http://scikit-image.org/
http://scikit-image.org/docs/dev/auto_examples/
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Getting ready
We don't need anything new installed on the system in order to exercise these examples. 
Having some knowledge of statistics is useful, although not required.

To refresh our statistical knowledge, here's a little glossary we will use in this and the  
following chapters:

 f Distribution or probability distribution: This links the outcome of a statistical 
experiment with the probability of occurrence of that experiment.

 f Standard deviation: This is a numerical value that indicates how individuals vary in 
comparison to a group. If they vary more, the standard derivation will be big, and in 
the opposite condition—if all the individual experiments are more or less the same 
across the whole group, the standard derivation will be small.

 f Variance: This equals the square of standard derivation.

 f Population or statistical population: This is a total set of all the potentially observable 
cases. For example, all the grades of all the students in the world if we are interested in 
getting the student average of the world.

 f Sample: This is a subset of the population. We cannot obtain all the grades of all the 
students in the world, so we have to gather only a sample of data and model it.

How to do it...
We can generate a simple random sample using Python's module random. Here's an example 
of this:

import pylab
import random

SAMPLE_SIZE = 100

# seed random generator
# if no argument provided
# uses system current time
random.seed()

# store generated random values here
real_rand_vars = []

# pick some random values
real_rand_vars = [random.random() for val in xrange(SIZE)]
# create histogram from data in 10 buckets
pylab.hist(real_rand_vars, 10)
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# define x and y labels
pylab.xlabel("Number range")
pylab.ylabel("Count")

# show figure
pylab.show()

This is a uniformly distributed sample. When we run this example, we should see something 
similar to the following plot:

Try setting SAMPLE_SIZE to a big number (say 10000) and see how the histogram behaves.

If we want to have values that range not from 0 to 1, but say from 1 to 6 (by simulating single 
dice throws), we could use random.randint(min, max); here, min and max are the lower 
and upper inclusive bounds respectively. If what you want to generate are floats and not 
integers, there is a random.uniform(min, max) function to provide that.

In a similar fashion and using the same tools, we can generate a time series plot of fictional 
price growth data with some random noise, as shown here:

import pylab
import random
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# days to generate data for
duration = 100
# mean value
mean_inc = 0.2

# standard deviation
std_dev_inc = 1.2

# time series
x = range(duration)
y = []
price_today = 0

for i in x:
    next_delta = random.normalvariate(mean_inc, std_dev_inc)
    price_today += next_delta
    y.append(price_today)

pylab.plot(x,y)
pylab.xlabel("Time")
pylab.xlabel("Time")
pylab.ylabel("Value")
pylab.show()

This code defines a series of 100 data points (fictional days). For every next day, we pick 
a random value from the normal distribution (random.normalvariate()) ranging from 
mean_inc to std_dev_inc and add that value to yesterday's price value (price_today).

If we wanted more control, we could use different distributions. The following code illustrates 
and visualizes different distributions. We will comment separate code sections as we present 
them. We start by importing required modules and defining a number of histogram buckets. 
We also create a figure that will hold our histograms as shown in the following lines of code:

# coding: utf-8
import random
import matplotlib
import matplotlib.pyplot as plt

SAMPLE_SIZE = 1000
# histogram buckets
buckets = 100

plt.figure()

# we need to update font size just for this example
matplotlib.rcParams.update({'font.size': 7})
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To lay out all the required plots, we define a grid of six by two subplots for all the histograms. 
The first plot is a uniformly distributed random variable as seen in the following lines of code:

plt.subplot(621)
plt.xlabel("random.random")
# Return the next random floating point number in the range [0.0, 
1.0).
res = [random.random() for _ in xrange(1, SAMPLE_SIZE)]
plt.hist(res, buckets)

For the second plot, we plot a uniformly distributed random variable as shown here:

plt.subplot(622)
plt.xlabel("random.uniform")
# Return a random floating point number N such that a <= N <= b for a 
<= b and b <= N <= a for b < a.
# The end-point value b may or may not be included in the range 
depending on floating-point rounding in the equation a + (b-a) * 
random().
a = 1
b = SAMPLE_SIZE
res = [random.uniform(a, b) for _ in xrange(1, SAMPLE_SIZE)]
plt.hist(res, buckets)

Here is the third plot which is a triangular distribution:

plt.subplot(623)
plt.xlabel("random.triangular")

# Return a random floating point number N such that low <= N <= high 
and with the specified  # mode between those bounds. The low and high 
bounds default to zero and one. The mode 
# argument defaults to the midpoint between the bounds, giving a 
symmetric distribution.
low = 1
high = SAMPLE_SIZE
res = [random.triangular(low, high) for _ in xrange(1, SAMPLE_SIZE)]
plt.hist(res, buckets)

The fourth plot is a beta distribution. The condition on the parameters is that alpha and beta 
should be greater than zero. The returned values range between 0 and 1.

plt.subplot(624)
plt.xlabel("random.betavariate")
alpha = 1
beta = 10
res = [random.betavariate(alpha, beta) for _ in xrange(1, SAMPLE_
SIZE)]
plt.hist(res, buckets)
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The fifth plot visualizes an exponential distribution. lambd is 1.0 divided by the desired mean. 
It should be non-zero (the parameter would be called lambda, but that is a reserved word in 
Python). The returned values range from 0 to positive infinity if lambd is positive, and from 
negative infinity to 0 if lambd is negative, as shown here:

plt.subplot(625)
plt.xlabel("random.expovariate")
lambd = 1.0 / ((SAMPLE_SIZE + 1) / 2.)
res = [random.expovariate(lambd) for _ in xrange(1, SAMPLE_SIZE)]
plt.hist(res, buckets)

Our next plot is the gamma distribution, where the condition on the parameters is that alpha 
and beta are greater than 0. The probability distribution function is shown here:

Here's the code for the gamma distribution:

plt.subplot(626)
plt.xlabel("random.gammavariate")

alpha = 1
beta = 10
res = [random.gammavariate(alpha, beta) for _ in xrange(1, SAMPLE_
SIZE)]
plt.hist(res, buckets)

Log normal distribution is our next plot. If you take the natural logarithm of this distribution, 
you'll get a normal distribution with the mean mu and the standard deviation sigma. mu can 
have any value; moreover, sigma must be greater than zero as shown here:

plt.subplot(627)
plt.xlabel("random.lognormvariate")
mu = 1
sigma = 0.5
res = [random.lognormvariate(mu, sigma) for _ in xrange(1, SAMPLE_
SIZE)]
plt.hist(res, buckets)
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The next plot is normal distribution, where mu is the mean and sigma is the standard 
deviation as shown here:

plt.subplot(628)
plt.xlabel("random.normalvariate")
mu = 1
sigma = 0.5
res = [random.normalvariate(mu, sigma) for _ in xrange(1, SAMPLE_
SIZE)]
plt.hist(res, buckets)

Here is the last plot which is the Pareto distribution and alpha is the shape parameter:

plt.subplot(629)
plt.xlabel("random.paretovariate")
alpha = 1
res = [random.paretovariate(alpha) for _ in xrange(1, SAMPLE_SIZE)]
plt.hist(res, buckets)

plt.tight_layout()
plt.show()

This was a big code example, but basically we pick 1,000 random numbers according to 
various distributions. These are common distributions used in different statistical branches 
(economics, sociology, bio-sciences, and so on).

We should see differences in the histogram based on the distribution algorithm used. Take a 
moment to understand the following nine plots:
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Use seed() to initialize the pseudo-random generator, so random() produces the same 
expected random values. This is sometimes useful and it is better than pregenerating random 
data and saving it to a file. The latter technique is not always feasible as it requires saving 
(possibly huge amounts of) data on a filesystem.

If you want to prevent any repeatability of your randomly generated sequences, we recommend 
using random.SystemRandom, which uses os.urandom underneath; os.urandom provides 
access to more entropy sources. If using this random generator interface, seed() and 
setstate() have no effect; hence these samples are not reproducible.

If we want to have some random words, the easiest way (on Linux) is probably to use  
/usr/share/dicts/words. We can see how that is done in the following example:

import random

with open('/usr/share/dict/words', 'rt') as f:
    words = f.readlines()
words = [w.rstrip() for w in words]

for w in random.sample(words, 5):
    print w

This solution is for Unix only and will not work on Windows (but, it will work on Mac OS).  
For Windows, you could use a file constructed from various free sources (Project Gutenberg, 
Wiktionary, British National Corpus, or http://norvig.com/big.txt by Dr Peter Norvig).

Smoothing the noise in real-world data
In this recipe, we introduce a few advanced algorithms to help with cleaning the data coming 
from real-world sources. These algorithms are well known in the signal processing world, and 
we will not go deep into mathematics but will just exemplify how and why they work and for 
what purposes they can be used.

Getting ready
Data that comes from different real-life sensors usually is not smooth and clean and contains 
some noise that we usually don't want to show on diagrams and plots. We want graphs and 
plots to be clear and to display information and cost viewers minimal efforts to interpret.

We don't need any new software installed because we are going to use some already familiar 
Python packages: NumPy, SciPy, and matplotlib.

http://norvig.com/big.txt
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How to do it...
The basic algorithm is based on using the rolling window (for example, convolution).  
This window rolls over the data and is used to compute the average over that window.

For our discrete  data, we use NumPy's convolve function; it returns a discrete linear 
convolution of two one-dimensional sequences. We also use NumPy's linspace function, 
which generates a sequence of evenly spaced numbers for a specified interval.

The function ones defines an array or matrix (for example, a multidimensional array) where 
every element has the value 1. This helps with generating Windows for use in averaging.

How it works...
One simple and naive technique to smooth the noise in data we are processing is to average 
over some window (sample) and plot just that average value for the given window instead of 
all the data points. This is the basis for more advanced algorithms as shown here:

from pylab import *
from numpy import *

def moving_average(interval, window_size):
    '''Compute convoluted window for given size
    '''
    window = ones(int(window_size)) / float(window_size)
    return convolve(interval, window, 'same')

t = linspace(-4, 4, 100)
y = sin(t) + randn(len(t))*0.1

plot(t, y, "k.")

# compute moving average
y_av = moving_average(y, 10)
plot(t, y_av,"r")
#xlim(0,1000)

xlabel("Time")
ylabel("Value")
grid(True)
show()
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Here, we show how the smoothed line looks compared to the original data points  
(plotted as dots):

Following on this idea, we can jump ahead to an even more advanced example and use the 
existing SciPy library to make this window smoothing work even better.

The method we are going to demonstrate is based on convolution (summation of functions)  
of a scaled window with the signal (that is, data points). This signal is prepared in a clever way, 
adding copies of the same signal on both ends but reflecting it, so we minimize the boundary 
effect. This code is based on SciPy Cookbook's example that can be found here at http://
scipy-cookbook.readthedocs.org/.

import numpy
from numpy import *
from pylab import *

# possible window type
WINDOWS = ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']
# if you want to see just two window type, comment previous line,
# and uncomment the following one
# WINDOWS = ['flat', 'hanning']

http://scipy-cookbook.readthedocs.org/
http://scipy-cookbook.readthedocs.org/
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def smooth(x, window_len=11, window='hanning'):
    """
    Smooth the data using a window with requested size.
    Returns smoothed signal.

    x -- input signal
    window_len -- length of smoothing window
    window -- type of window: 'flat', 'hanning', 'hamming',
                    'bartlett', 'blackman'
                  flat window will produce a moving average smoothing.
    """

    if x.ndim != 1:
        raise ValueError, "smooth only accepts 1 dimension arrays."

    if x.size < window_len:
        raise ValueError, "Input vector needs to be bigger than window 
size."

    if window_len < 3:
        return x

    if not window in WINDOWS:
        raise ValueError("Window is one of 'flat', 'hanning', 
'hamming', "
                          "'bartlett', 'blackman'")
    # adding reflected windows in front and at the end
    s=numpy.r_[x[window_len-1:0:-1], x, x[-1:-window_len:-1]]
    # pick windows type and do averaging
    if window == 'flat': #moving average
        w = numpy.ones(window_len, 'd')
    else:
        # call appropriate function in numpy
        w = eval('numpy.' + window + '(window_len)')

    # NOTE: length(output) != length(input), to correct this:
    # return y[(window_len/2-1):-(window_len/2)] instead of just y.
    y = numpy.convolve(w/w.sum(), s, mode='valid')
    return y

# Get some evenly spaced numbers over a specified interval.
t = linspace(-4, 4, 100)
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# Make some noisy sinusoidal
x = sin(t)
xn = x + randn(len(t))*0.1

# Smooth it
y = smooth(x)

# window size
ws = 31

subplot(211)
plot(ones(ws))

# draw on the same axes
hold(True)

# plot for every window
for w in WINDOWS[1:]:
    eval('plot('+w+'(ws) )')

# configure axis properties
axis([0, 30, 0, 1.1])

# add legend for every window
legend(WINDOWS)

title("Smoothing windows")

# add second plot
subplot(212)
# draw original signal
plot(x)

# and signal with added noise
plot(xn)

# smooth signal with noise for every possible windowing algorithm
for w in WINDOWS:
    plot(smooth(xn, 10, w))

# add legend for every graph
l=['original signal', 'signal with noise']
l.extend(WINDOWS)
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legend(l)

title("Smoothed signal")

show()

We should see the following two plots to see how the windowing algorithm influences the 
noise signal. The top plot represents possible windowing algorithms and the bottom one 
displays every possible result from the original signal to the noised up signal and even the 
smoothed signal for every windowing algorithm. Try commenting possible window types and 
leave just one or two to gain better understanding.

There's more...
Another very popular signal smoothing algorithm is Median Filter. The main idea of this filter 
is to run through the signal entry by entry, replacing each entry with the median of neighboring 
entries. This idea makes this filter fast and usable for one-dimensional datasets as well as for 
two-dimensional datasets (such as images).

In the following example, we use the implementation from the SciPy signal toolbox:

import numpy as np
import pylab as p
import scipy.signal as signal
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# get some linear data
x = np.linspace (0, 1, 101)

# add some noisy signal
x[3::10] = 1.5

p.plot(x)
p.plot(signal.medfilt(x,3))
p.plot(signal.medfilt(x,5))

p.legend(['original signal', 'length 3','length 5'])
p.show ()

We see in the following  plot that the bigger the window, the more our signal gets distorted as 
compared to the original but the smoother it looks:

There are many more ways to smooth data (signals) that you receive from external sources. 
It depends a lot on the area you are working in and the nature of the signal. Many algorithms 
are specialized for a particular signal, and there may not be a general solution for every case 
you encounter.

There is, however, one important question: "When should you not smooth a signal?" One 
common situation where you should not smooth signals is prior to statistical procedures, such 
as least-squares curve fitting because all smoothing algorithms are at least slightly lousy and 
they change the signal shape. Also, smoothed noise may be mistaken for an actual signal.



3
Drawing Your  

First Plots and 
Customizing Them

In this chapter, we will go into a lot more detail and present most of the possibilities of 
matplotlib. We will cover the following points:

 f Defining plot types – bar, line, and stacked charts

 f Drawing simple sine and cosine plots

 f Defining axis lengths and limits

 f Defining plot line styles, properties, and format strings

 f Setting ticks, labels, and grids

 f Adding legends and annotations

 f Moving spines to the center

 f Making histograms

 f Making bar charts with error bars

 f Making pie charts count

 f Plotting with filled areas

 f Making stacked plots

 f Drawing scatter plots with colored markers
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Introduction
Although we have already drawn our first plots using matplotlib, we didn't go into the details 
about how they work, how to set them up, or what the possibilities with using matplotlib are. 
We explore and exercise most common types of data visualizations: line graphs, bar charts, 
histograms, pies, and variations thereof.

matplotlib is a powerful toolbox that satisfies almost all our needs for 2D and some 3D 
plotting needs as well. The best way the authors intend for you to learn matplotlib is through 
examples. When we need to draw a plot, we look for a similar example and try to change it 
to fit our needs. In this way, we are also going to present you with some useful examples and 
believe that this example will help you find a plot most similar to what you need.

Defining plot types – bar, line, and stacked 
charts

In this recipe, we will present different basic plots and what are they used for. Most of the 
plots described here are used daily, and some of them present the basis for understanding 
more advanced concepts in data visualization.

Getting ready
We start with some common charts from the matplotlib.pyplot library with just sample 
datasets; we start with basic charting and lay down the foundations of the following recipes.

How to do it...
We start by creating a simple plot in IPython. IPython is great because it allows us to interactively 
change plots and see the results immediately. You need to follow these steps for that:

1. Start IPython by typing the following code at the command prompt:
$ ipython

2. Import the necessary functions:
In [1]: from matplotlib.pyplot import *

3. Then type the matplotlib plot code:
In [2]: plot([1,2,3,2,3,2,2,1])
Out[2]: [<matplotlib.lines.Line2D at 0x412fb50>]
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The plot should open in a new window displaying the default look of the plot and some 
supporting information as shown here:

The basic plot in matplotlib contains the following elements:

 f x and y axes: These are both horizontal and vertical axes.

 f x and y tickers: These are little tickers denoting the segments of axes.  
There can be major and minor tickers.

 f x and y tick labels: These represent values on particular axis.

 f Plotting area: This is where the actual plots are drawn.

You will notice that the values we provided to plot() as y axis values. plot()provides 
default values for the x axis; they are linear values from 0 to 7 (the number of y values -1).

Now, try adding values for the x axis; as first argument to the plot() function again in the 
same IPython session, type the following script:

In [2]: plot([4,3,2,1],[1,2,3,4])
Out[2]: [<matplotlib.lines.Line2D at 0x31444d0>]
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Note how IPython counts input and output lines (In [2] and Out [2]). This 
will help us remember where we are in the current session and enables 
more advanced features such as saving part of the session in a Python 
file. During data analysis, using IPython for prototyping is the fastest way 
to come to a satisfying solution and then save particular sessions into a 
file, to be executed later if you need to reproduce the same plot.

This will update the plot to look like this image:

We see here how matplotlib expands the y axis to accommodate the new value range and 
automatically changes color of the second plot line to enable us to distinguish the new plot.

Unless we turn off the hold property (by calling hold(False)), all subsequent plots will 
draw over the same axes. This is the default behavior in pylab mode in IPython, while in 
regular Python scripts, hold is off by default.
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Let us pack some more common plots and compare them over the same dataset. You can 
type this in IPython or run it from a separate Python script:

from matplotlib.pyplot import *

# some simple data
x = [1,2,3,4]
y = [5,4,3,2]
# create new figure
figure()

# divide subplots into 2 x 3 grid
# and select #1
subplot(231)
plot(x, y)

# select #2
subplot(232)
bar(x, y)

   # horizontal bar-charts
subplot(233)
barh(x, y)

# create stacked bar charts
subplot(234)
bar(x, y)

# we need more data for stacked bar charts
y1 = [7,8,5,3]
bar(x, y1, bottom=y, color = 'r')

# box plot
subplot(235)
boxplot(x)

# scatter plot
subplot(236)
scatter(x,y)

show()
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This is how it should turn out into graphs:

How it works...
With figure(), we create a new figure. If we supply a string argument such as sample 
charts, it will be the backend title of a window. If we call the figure() function with the 
same parameter (that can also be a number), we will make the corresponding figure active 
and all the following plotting will be performed on that figure.

Next, we divide the figure into a 2 x 3 grid using a subplot(231) call. We could call this 
using subplot(2, 3, 1), where the first parameter is the number of rows, the second  
is the number of columns, and the third represents the plot number.

We continue and create a common charting type using simple calls to create vertical bar 
charts (bar()) and horizontal bars (barh()). For stacked bar charts, we need to tie two  
bar chart calls together. We do that by connecting the second bar chart with the previous 
using the parameter bottom = y.

Box plots are created using the boxplot() call, where the box extends from lower to  
upper quartiles with the line at the median value. We will return to box plots shortly.
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We finally create a scatter plot to give you an idea of a point-based dataset. This is probably 
more appropriately used when we have thousands of data points in a dataset, but here we 
wanted to illustrate the difference in representations of the same dataset.

There's more...
We can return to box plots now as we need to explain the characteristics of this kind of plot.

A box plot presents, by default, the following elements:

 f Box: This is a rectangle that covers the interquartile range

 f Median: This is presented as a line inside each box

 f Whiskers: These are vertical lines extending to the most extreme values  
(excluding outliers)

 f Fliers: These are points beyond the whiskers, which are considered outliers

To illustrate this behavior, we will demonstrate plotting the same dataset in a box plot and a 
histogram as shown in the following code:

from pylab import *

dataset = [113, 115, 119, 121, 124,
           124, 125, 126, 126, 126,
           127, 127, 128, 129, 130,
           130, 131, 132, 133, 136]

subplot(121)
boxplot(dataset, vert=False)

subplot(122)
hist(dataset)

show()
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That will give us the following plots:

In the preceding comparison, we can observe a difference in representation of the same 
dataset in two different charts. The one on the left points toward the five mentioned statistical 
values, while the one on the right (the histogram) displays the grouping of the dataset in a 
given range.

Drawing simple sine and cosine plots
This recipe will go over basics of plotting mathematical functions and several things that are 
related to math graphs such as writing Greek symbols in labels and on curves.

Getting ready
The most common graph we will use is the line plot command, which draws the given (x,y) 
coordinates on a figure plot.
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How to do it...
We start with computing sine and cosine functions over the same linear interval—from Pi to Pi 
with 256 points in between and we plot the values for sin(x) and cos(x) over the same plot as 
shown here:

import matplotlib.pyplot as pl
import numpy as np

x = np.linspace(-np.pi, np.pi, 256, endpoint=True)

y = np.cos(x)
y1 = np.sin(x)

pl.plot(x,y)
pl.plot(x, y1)

pl.show()

That will give us the following graph:
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Following this simple plot, we can customize more to give more information and be more 
precise about axes and boundaries as shown here:

from pylab import *
import numpy as np

# generate uniformly distributed
# 256 points from -pi to pi, inclusive
x = np.linspace(-np.pi, np.pi, 256, endpoint=True)

# these are vectorised versions
# of math.cos, and math.sin in built-in Python maths
# compute cos for every x
y = np.cos(x)

# compute sin for every x
y1 = np.sin(x)

# plot cos
plot(x, y)

# plot sin
plot(x, y1)

# define plot title
title("Functions $\sin$ and $\cos$")

# set x limit
xlim(-3.0, 3.0)
# set y limit
ylim(-1.0, 1.0)

# format ticks at specific values
xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi],
          [r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$'])
yticks([-1, 0, +1],
          [r'$-1$', r'$0$', r'$+1$'])

show()
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That should give us a slightly nicer graph:

We see that we used expressions such as $\sin$ or $-\pi$ to write letters of the  
Greek alphabet in figures. This is LaTex syntax, which we will explore further in the following 
chapters. Here, we just illustrated how easy it is to make your math charts more readable for 
certain audiences.

Defining axis lengths and limits
This recipe will demonstrate a variety of useful axis properties around limits and lengths that 
we can configure in matplotlib.

Getting ready
For this recipe, we want to fire up IPython:

$ ipython

After this, we need to import the plotting functions right away:

from matplotlib.pylab import *
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How to do it...
Start experimenting with various properties of axes. Just calling an empty axis() function 
will return the default values for the axis:

In [1]: axis()

Out[1]: (0.0, 1.0, 0.0, 1.0)

Note that if you are in interactive mode and are using a windowing backend, a figure with an 
empty axis will be displayed.

Here the values represent xmin, xmax, ymin, and ymax respectively. Similarly, we can set 
values for the x and y axes:

In [2]: l = [-1, 1, -10, 10]

In [3]: axis(l)

Out[3]: [-1, 1, -10, 10]

Again, if you are in an interactive mode, this will update the same figure. Furthermore, we can 
also update any value separately using keyword arguments (**kwargs), setting just xmax to 
a certain value.

How it works...
If we don't use axis() or other settings, matplotlib will automatically use minimum values 
that allow us to see all data points on one plot. If we set axis() limits to be less than the 
maximum values in a dataset, matplotlib will do as told and we will not see all points on the 
figure. This can be a source of confusion or even error, where we think we see everything we 
drew. One way to avoid this is to call autoscale() (matplotlib.pyplot.autoscale()), 
which will compute the optimal size of the axes to fit the data to be displayed.

If we want to add new axes to the same figure, we can use matplotlib.pyplot.axes(). 
We usually want to add some properties to this default call; for example, rect—which can 
have the attributes left, bottom, width, and height in normalized units (0, 1)—and  
maybe axisbg, which specifies the background color of axes.

There are also other properties that we can set for added axes such as sharex/sharey, 
which accepts values for other instances of axes and share the current axis (x/y) with other 
axes. Or parameter polar that defines whether we want to use polar axes.

Adding new axes can be useful; for example, to combine multiple charts on one figure if there 
is a need to tightly couple different views on the same data to illustrate its properties.
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If we want to add just one line to the current figure, we can use matplotlib.pyplot.
axhline() or matplotlib.pyplot.axvline(). The functions axhilne() and 
axvline() will draw horizontal and vertical lines across axes for given x and y data values 
respectively. They share similar parameters, the most important ones being y position, xmin, 
and xmax for axhline() and x position, ymin, and ymax for axvline().

Let's see how it looks as a figure, continuing in the same IPython session:

In [3]: axhline()

Out[3]: <matplotlib.lines.Line2D at 0x414ecd0>

In [4]: axvline()

Out[4]: <matplotlib.lines.Line2D at 0x4152490>

In [5]: axhline(4)

Out[5]: <matplotlib.lines.Line2D at 0x4152850>

We should have a figure like the following plot:

Here we see that just calling these functions without parameters makes them take default 
values and draw a horizontal line for y=0 (axhline()) and a vertical line for x=0 (axvline()).
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Similar to these are two related functions that allow us to add a horizontal span (rectangle) 
across the axes. These are matplotlib.pyplot.axhspan() and matplotlib.pyplot.
axspan(). The function axhspan() has ymin and ymax as required parameters that define 
how wide the horizontal span is. Analogous to this, axvspan() has xmin and xmax to define 
the width of the vertical span.

There's more...
Having a grid in a figure is turned off by default, but it can easily be switched on and customized. 
A default call to matplotlib.pyplot.grid() will toggle the grid's visibility. Other parameters 
for control are as shown here:

 f which: This defines what grid tick type to draw (can be major, minor, or both)

 f axis: This defines which set of grid lines are drawn (can be both, x, or y)

Axes are usually controlled via matplotlib.pyplot.axis(). Internally, axes are 
represented by several Python classes, the parent one is matplotlib.axes.Axes, which 
contains most methods to manipulate axes. A single axis is represented by the matplotlib.
axis.Axis class, where the x axis uses matplotlib.axis.XAxis and the y axis uses the 
matplotlib.axis.YAxis class.

We don't need to use these to perform our recipe, but it is important to know where to look if 
more advanced axis control interests us and when we hit the limits of what is available via the 
matplotlib.pyplot namespace.

Defining plot line styles, properties, and 
format strings

This recipe shows how we can change various line properties such as styles, colors, or width. 
Having lines set up appropriately according to the information presented and distinct enough 
for target audiences (if the audience is a younger population, we may want to target them with 
more vivid colors; if they are older, we may want to use more contrasting colors) can make the 
difference between being barely noticeable and leaving a great impact on the viewer.

Getting ready
Although we stressed how important it is to aesthetically tune your presentation, we first must 
learn how to do it.

If you don't have a particular eye for color matching, there are free and commercial online 
tools that can generate color sets for you. One of the most well known is Colorbrewer2,  
which can be found at http://colorbrewer2.org/.

http://colorbrewer2.org/
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Some serious research has been conducted on the usage of color in data visualizations,  
but explaining that theory is out of the scope of this book. The material on the topic is a  
must read if you are working with more advanced visualizations daily.

How to do it...
Let's learn how to change line properties. We can change the lines in our plots using different 
methods and approaches.

The first and most common method is to define lines by passing keyword parameters to 
functions such as plot():

plot(x, y, linewidth=1.5)

Because a call to plot() returns the line instance (matplotlib.lines.Line2D), we can 
use a set of setter methods on that instance to set various properties:

line, = plot(x, y)
line.set_linewidth(1.5)

Those who used MATLABÒ will feel the need to use a third way of configuring line properties 
using the setp() function:

lines = plot(x, y)
setp(lines,  'linewidth', 1.5)

Another way to use setp() is this:

setp(lines, linewidth=1.5)

Whatever way you prefer to configure lines, choose one method and stay consistent for the 
whole project (or at least a file). This way, when you (or someone else in the future) come  
back to the code, it will be easier to make sense of it and change it.

How it works...
All the properties we can change for a line are contained in the matplotlib.lines.
Line2D class. We list some of them in the following table:

Property
Value type Description
alpha float Sets the alpha value used for 

blending; not supported on all 
backends.

color or c Any matplotlib color Sets the color of the line.
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dashes Sequence of on/off ink 
in points

Sets the dash sequence, the 
sequence of dashes with on/off ink 
in points. If seq is empty or if seq = 
(None, None), linestyle will be 
set to solid.

label Any string Sets the label to s for auto legend.
linestyle or ls [ '-' | '–' | 

'-.' | ':' | 
'steps' | ...]

Sets the linestyle of the line (also 
accepts drawstyles).

linewidth or lw float value in points Sets the line width in points.
marker [ 7 | 4 | 5 | 6 | 

'o' | 'D' | 'h' 
| 'H' | '_' | '' 
| 'None' | ' ' | 
None | '8' | 'p' 
| ',' | '+' | '.' 
| 's' | '*' | 'd' 
| 3 | 0 | 1 | 2 
| '1' | '3' | '4' 
| '2' | 'v' | '<' 
| '>' | '^' | '|' 
| 'x' | '$...$' | 
tuple | Nx2 array 
]

Sets the line marker.

markeredgecolor or 
mec

Any matplotlib color Sets the marker edge color.

markeredgewidth or 
mew

float value in points Sets the marker edge width in points.

markerfacecolor or 
mfc

Any matplotlib color Set the marker face color.

markersize or ms float Set the marker size in points.
solid_capstyle ['butt' | 'round' 

| 'projecting']
Set the cap style for solid line styles.

solid_joinstyle ['miter' | 
'round' | 
'bevel']

Set the join style for solid line styles.

visible [True | False] Set the artist's visibility.
xdata np.array Set the data np.array for x.
ydata np.array Set the data np.array for y.
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Zorder Any number Set the z axis order for the artist. 
Artists with lower Zorder values are 
drawn first. 

If x and y are axes going horizontal to 
the right and vertical to the top of the 
screen, the z axis is the one extending 
toward the viewer. So 0 value would 
be at the screen, 1, one layer above, 
and so on. 

The following table shows some linestyles:

Linestyle Description
'-' Solid
'--' Dashed
'-.' Dash_dot
':' Dotted
'None', ' ', '' Draw nothing

The following table shows line markers:

Marker Description
'o' Circle
'D' Diamond
'h' Hexagon1
'H' Hexagon2
'_' Horizontal line
'', 'None', ' ', None Nothing
'8' Octagon
'p' Pentagon
',' Pixel
'+' Plus
'.' Point
's' Square
'*' Star
'd' Thin_diamond
'v' Triangle_down
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Marker Description
'<' Triangle_left
'>' Triangle_right
'^' Triangle_up
'|' Vertical line
'x' X

Color
We can get all colors that matplotlib supports by calling matplotlib.pyplot.colors(); 
this will give the following results:

Alias Color
B Blue
G Green
R Red
C Cyan
M Magenta
Y Yellow
K Black
W White

These colors can be used in different matplotlib functions that take color arguments.

If these basic colors are not enough and as we progress, they will not be enough.We can  
use two other ways of defining a color value. We can use an HTML hexadecimal string as 
shown here:

color = '#eeefff'

We can also use legal HTML color names ('red', 'chartreuse'). We can also pass an  
RGB tuple normalized to [0, 1]:

color = (0.3, 0.3, 0.4)

The argument color is accepted by a range of functions such as title():

title('Title in a custom color', color='#123456')
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Background color
By providing axisbg to a function such as matplotlib.pyplot.axes() or matplotlib.
pyplot.subplot(), we can define the background color of an axis as shown here:

subplot(111, axisbg=(0.1843, 0.3098, 0.3098))

Setting ticks, labels, and grids
In this recipe, we will continue with setting axis and line properties and adding more data to 
our figure and charts.

Getting ready
Let's learn a bit about figures and subplots.

In matplotlib, figure() is used to explicitly create a figure, which represents a user interface 
window. Figures are created implicitly just by calling plot() or similar functions. This is fine 
for simple charts, but having the ability to explicitly create a figure and get a reference to its 
instance is very useful for more advanced use.

A figure contains one or more subplots. Subplots allow us to arrange plots in a regular grid. 
We already used subplot(), in which we specify the number of rows and columns and the 
number of the plot we are referring to.

If we want more control, we need to use axes instances from the matplotlib.axes.Axes 
class. They allow us to place plots at any location in the figure. An example of this would be to 
put a smaller plot inside a bigger one.

How to do it...
Ticks are part of figures. They consist of tick locators where ticks appear and tick formatters 
which show how ticks appear. There are major and minor ticks. Minor ticks are not visible by 
default. More importantly, major and minor ticks can be formatted and located independently 
of each other.

We can use matplotlib.pyplot.locator_params() to control the behavior of tick 
locators. Even though tick locations are usually determined automatically, we can control  
the number of ticks and use a tight view if we want to when plots are smaller:

from pylab import *

# get current axis
ax = gca()
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# set view to tight, and maximum number of tick intervals to 10
ax.locator_params(tight=True, nbins = 10)

# generate 100 normal distribution values
ax.plot(np.random.normal(10, .1, 100))

show()

This should give us the following graph:

We see how the x and y axes are divided and what values are shown. We could have achieved 
the same setup using locator classes. Here we are saying "set the major locator to be a 
multiple of 10":

ax.xaxis.set_major_locator(matplotlib.ticker.MultipleLocator(10))

Tick formatters can similarly be specified. Formatters specify how the values (usually 
numbers) are displayed. For example, matplotlib.ticker.FormatStrFormatter 
simply specifies '%2.1f' or '%1.1f cm' as the string to be used as the label for the ticker.
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Let's take a look at one example using dates.

matplotlib represents dates in floating point values as the time in days 
passed since 0001-01-01 UTC plus 1. So, 0001-01-01 UTC 06:00 is 1.25.

Then we can use helper functions such as matplotlib.dates.date2num(), matplotlib.
dates.num2date(), and matplotlib.dates.drange() to convert dates between 
different representations.

Let's see another example:

from pylab import *
import matplotlib as mpl
import datetime

fig = figure()

# get current axis
ax = gca()

# set some daterange
start = datetime.datetime(2013, 01, 01)
stop = datetime.datetime(2013, 12, 31)
delta = datetime.timedelta(days = 1)

# convert dates for matplotlib
dates = mpl.dates.drange(start, stop, delta)

# generate some random values
values = np.random.rand(len(dates))

ax = gca()

# create plot with dates
ax.plot_date(dates, values, linestyle='-', marker='')

# specify formater
date_format = mpl.dates.DateFormatter('%Y-%m-%d')

# apply formater
ax.xaxis.set_major_formatter(date_format)
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# autoformat date labels
# rotates labels by 30 degrees by default
# use rotate param to specify different rotation degree
# use bottom param to give more room to date labels
fig.autofmt_xdate()

show()

The preceding code will give us the following graph:

Adding legends and annotations
Legends and annotations explain data plots clearly and in context. By assigning each plot 
a short description about what data it represents, we are enabling an easier mental model 
in the reader's (viewer's) head. This recipe will show how to annotate specific points on our 
figures and how to create and position data legends.

Getting ready
How many times have you looked at a chart and wondered what the data represents?  
More often than not, newspapers and other daily and weekly publications create plots that 
don't contain appropriate legends, thus leaving the reader free to interpret the representation. 
This creates ambiguity for the readers and increases the possibility of error.
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How to do it...
Let's demonstrate how to add legends and annotations with the following example:

from matplotlib.pyplot import *

# generate different normal distributions
x1 =np.random.normal(30, 3, 100)
x2 = np.random.normal(20, 2, 100)
x3 = np.random.normal(10, 3, 100)

# plot them
plot(x1, label='plot')
plot(x2, label='2nd plot')
plot(x3, label='last plot')

# generate a legend box
legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
ncol=3, mode="expand", borderaxespad=0.)

# annotate an important value
annotate("Important value", (55,20), xycoords='data',
xytext=(5, 38),
arrowprops=dict(arrowstyle='->'))
show()

The preceding code will give us the following plot:
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What we do is assign a string label with every plot, so legend() will try and determine what 
to add in the legend box.

We set the location of a legend box by defining the loc parameter. This is optional, but we 
want to specify a location where it is least likely for the legend box to be drawn over plot lines. 
Setting the location value to 0 is very useful as it automatically detects the location of the 
figure where the legend can fit with a minimum overlapping with the plot.

How it works...
All location parameter strings are given in the following table:

String Number value
best 0
upper right 1

upper left 2

lower left 3

lower right 4

right 5

center left 6

center right 7

lower center 8

upper center 9

center 10

To not show the label in a legend, set the label to _nolegend_.

For the legend, we defined the number of columns with ncol = 3 and set the location 
with lower left. We specified a bounding box (bbox_to_anchor) to start from position 
(0., 1.02) and to have a width of 1 and a height of 0.102. These are normalized axis 
coordinates. Parameter mode is either None or expand to allow the legend box to expand 
horizontally filling the axis area. The parameter borderaxespad defines the padding 
between the axes and the legend border.

For annotations, we have defined a string to be drawn on a plot on a coordinate xy. The 
coordinate system is specified to be the same as the data one; therefore, coordinate system  
is xycoord = 'data'. The starting position for the text is defined by the value of xytext.

An arrow is drawn from xytext to xy coordinate and the arrowprops dictionary can define 
many properties for that arrow. For this example, we used arrowstyle to define arrow style.
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Moving spines to the center
This recipe will demonstrate how to move spines to the center.

Spines define data area boundaries; they connect the axis tick marks. There are four spines. 
We can place them wherever we want; by default, they are placed on the border of the axis, 
hence we see a box around our data plot.

How to do it...
To move the spines to the center of the plot, we need to remove two spines, making  
them hidden (set color to none). After that, we move two others to coordinate (0,0).  
The coordinates are specified in data space coordinates.

The following code shows how to do this:

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-np.pi, np.pi, 500, endpoint=True)
y = np.sin(x)

plt.plot(x, y)

ax = plt.gca()

# hide two spines
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')

# move bottom and left spine to 0,0
ax.spines['bottom'].set_position(('data',0))
ax.spines['left'].set_position(('data',0))

# move ticks positions
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')

plt.show()



Drawing Your First Plots and Customizing Them

94

This is what the plot will look like:

How it works...
This code is dependent on the plot that is drawn because we are moving spines to the 
location (0, 0) and are plotting a sine function on the interval where (0, 0) is in the middle  
of the plot.

Nevertheless, this demonstrated how to move spines to a particular location and how to get 
rid of spines we don't want to show.

There's more...
Furthermore, spines can be limited to end where the data ends (for example, using a set_
smart_bounds(True) call). In this case, matplotlib tries to set bounds in a sophisticated 
way (for example, to handle inverted limits or to clip line to view if data extends past view).
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Making histograms
Histograms are simple; yet it's important to get the right data into them. We will cover 
histograms in 2D for now.

Histograms are used to visualize estimations of distribution of data. Generally, we use a few 
terms when speaking of histograms. Vertical rectangles represent frequencies of data points 
within a particular interval called a bin. Bins are created at fixed intervals, so the total area of 
a histogram sums to the number of data points.

Instead of using absolute values of data, histograms can display relative frequencies of data. 
When this is the case, the total area equals 1.

Histograms are often used in image manipulation software as a way to visualize image 
properties such as distribution of light in a particular color channel. Further, these image 
histograms can be used in computer vision algorithms to detect peaks aiding in edge 
detections, image segmentation, and so on.

In Chapter 5, Making 3D Visualizations, we have recipes that deal with 3D histograms.

Getting ready
The number of bins is the value we want to get right, but it is hard to get them right as there 
are no strict rules on what is the optimal number of bins. There are different theories on 
how to calculate the number of bins, the simplest being the one based on a ceiling function, 
where the number of bins (k) is equal to the ceiling (max(x) – min(x))/h,where x is the dataset 
plotted and h is the desired bin width. This is just one option as the number of bins required 
to display data properly is dependent on real data distribution.

How to do it...
We create a histogram calling matplotlib.pyplot.hist() with a set of parameters.  
Here are some of the most useful ones:

 f bins: This is either an integer number of bins or a sequence giving the bins.  
The default is 10.

 f range: This is the range of bins and is not used if bins are given as a sequence. 
Outliers are ignored and the default is None.

 f normed: If the value for this is True, histogram values are normalized and form 
probability density. The default is False.
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 f histtype: This parameter allows us to specify the type of histogram that we want. 
The default value is 'bar' and the other options are shown here:

 � barstacked: This gives stacked-view histograms for multiple data

 � step: This creates a line plot that is left unfilled

 � stepfilled: This creates line plot that is filled by default

 f align: This centers bars between bin edges. The default is mid. Other values are 
left and right.

 f color: This specifies the color of the histogram. It may be a single value or have  
a sequence of colors. If multiple datasets are specified, the color sequence will be 
used in the same order. If not specified, a default line color sequence is used.

 f orientation: This allows the creation of histograms that are horizontal by setting 
orientation to horizontal. The default is vertical.

The following code demonstrates how hist() is used:

import numpy as np
import matplotlib.pyplot as plt

mu = 100
sigma = 15
x = np.random.normal(mu, sigma, 10000)

ax = plt.gca()

# the histogram of the data
ax.hist(x, bins=35, color='r')

ax.set_xlabel('Values')
ax.set_ylabel('Frequency')

ax.set_title(r'$\mathrm{Histogram:}\ \mu=%d,\ \sigma=%d$' % (mu, 
sigma))

plt.show()
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This creates a neat, red-colored histogram for our data sample:

How it works...
We start by generating some normally distributed data. The histogram is plotted with  
the specified number of bins—35—and it is normalized by setting normed to True (or 1);  
we set the color to red (r).

After that, we set labels and a title for the plot. Here we used the ability to write LaTeX 
expressions to write math symbols and mixed that with Python format strings.

Making bar charts with error bars
In this recipe, we will show how to create bar charts and how to draw error bars.

Getting ready
To visualize uncertainty of measurement in our dataset or to indicate the error, we can use 
error bars. Error bars can easily give an idea of how error free the dataset is. They can show 
one standard deviation, one standard error, or 95 percent confidence interval. There is no 
standard here, so always explicitly state what values (errors) error bars display. Most papers  
in the experimental sciences should contain error bars to present accuracy of the data.
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How to do it...
Even though just two parameters are mandatory—left and height— we often want to use 
more than that. Here are some parameters we can use:

 f width: This gives the width of the bars. The default value is 0.8.

 f bottom: If bottom is specified, the value is added to the height. The default is None.

 f edgecolor: This gives the color of the bar edges.

 f ecolor: This specifies the color of any error bar.

 f linewidth: This gives width of bar edges; special values are None (use defaults) 
and 0 (when bar edges are not displayed).

 f orientation: This has two values vertical and horizontal.

 f xerr and yerr: These are used to generate error bars on the bar chart.

Some optional arguments (color, edgecolor, linewidth, xerr, and yerr) can be single 
values or sequences with the same length as the number of bars.

How it works...
Let's illustrate this using an example:

import numpy as np
import matplotlib.pyplot as plt

# generate number of measurements
x = np.arange(0, 10, 1)

# values computed from "measured"
y = np.log(x)

# add some error samples from standard normal distribution
xe = 0.1 * np.abs(np.random.randn(len(y)))

# draw and show errorbar
plt.bar(x, y, yerr=xe, width=0.4, align='center', ecolor='r', 
color='cyan', label='experiment #1');

# give some explanations
plt.xlabel('# measurement')
plt.ylabel('Measured values')
plt.title('Measurements')
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plt.legend(loc='upper left')

plt.show()

The preceding code will plot the following diagram:

To be able to plot an error bar, we needed to have some measures (x); for every measure 
computed (y), we introduced errors (xe).

We used NumPy to generate and compute values; standard distributions are good enough 
for demonstration purposes, but if you happen to know your data distribution in advance, you 
can always make some prototype visualizations and try out different layouts to find the best 
options to present information.

Another interesting option to use if we are preparing visualizations for a black-and-white 
medium is hatch; it can have the following values:

Hatch value Description
/ Diagonal hatching
\ Back diagonal
| Vertical hatching
- Horizontal
+ Crossed
x Crossed diagonal
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Hatch value Description
o Small circle
0 Large circle
. Dot pattern
* Star pattern

There's more...
What we have just used are error bars known as symmetrical error bars. If the nature of  
our dataset is such that errors are not the same in both directions (negative and positive),  
we can also specify them separately using asymmetrical error bars.

All we have to do differently is to specify xerr or yerr using a two-element list (such as  
a 2D array), where the first list contains values for negative errors and the second one for 
positive errors.

Making pie charts count
Pie charts are special in many ways, the most important being that the dataset they display 
must sum up to 100 percent or they are just not valid.

Getting ready
Pie charts represent numerical proportions, where the arc length of each segment is 
proportional to the quantity it represents.

They are compact and can look very aesthetically pleasing, but they have been criticized as 
they can be hard to compare. Another property of pie charts that does not work in their best 
interest is that pie charts are presented in a specific angle (perspective) and segments use 
certain colors that can skew our perception and influence our conclusion about information 
presented.

What we will show here is different ways to use pie charts to present data.
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How to do it...
Here, we create a so-called exploded pie chart:

from pylab import *

# make a square figure and axes
figure(1, figsize=(6,6))
ax = axes([0.1, 0.1, 0.8, 0.8])

# the slices will be ordered
# and plotted counter-clockwise.
labels = 'Spring', 'Summer', 'Autumn', 'Winter'

# fractions are either x/sum(x) or x if sum(x) <= 1
x = [15, 30, 45, 10]

# explode must be len(x) sequence or None
explode=(0.1, 0.1, 0.1, 0.1)

pie(x, explode=explode, labels=labels,
autopct='%1.1f%%', startangle=67)

title('Rainy days by season')

show()

Pie charts look best if they are inside a square figure and have square axes.

Fractions of the whole sum of the pie chart are defined as x/sum(x) or x if sum(x) <= 1. 
We get the explode effect by defining an explode sequence where each item represents the 
fraction of radius with which to offset each arc. We use the autopct parameter to format the 
labels that will be drawn inside the arcs; they can be a format string or a callable (function).

We can also use a Boolean shadow parameter to add a shadow effect to a pie chart.

If we don't specify startangle, the fractions will be ordered starting counterclockwise from 
the x axis (angle 0). If we specify 90 as the value of startangle, that will start the pie chart 
from the y axis.
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This is the resulting pie chart:

Plotting with filled areas
In this recipe, we will show you how to fill the area under a curve or in between two  
different curves.

Getting ready
Library matplotlib allows us to fill areas in between and under the curves with color so that 
we can display the value of that area to the spectator. Sometimes, it is necessary for readers 
(viewers) to comprehend the given specialization.
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How to do it...
Here's one example of how to fill areas between two contours:

from matplotlib.pyplot import figure, show, gca
import numpy as np

x = np.arange(0.0, 2, 0.01)

# two different signals are measured
y1 = np.sin(2*np.pi*x)
y2 = 1.2*np.sin(4*np.pi*x)

fig = figure()
ax = gca()

# plot and
# fill between y1 and y2 where a logical condition is met
ax.plot(x, y1, x, y2, color='black')

ax.fill_between(x, y1, y2, where=y2>=y1, facecolor='darkblue', 
interpolate=True)
ax.fill_between(x, y1, y2, where=y2<=y1, facecolor='deeppink', 
interpolate=True)

ax.set_title('filled between')

show()

How it works...
After we have generated random signals for a predefined interval, we plot these two signals 
using a regular plot(). Then we call fill_between() with properties that are required 
and mandatory.

The function fill_between() is using x as the location from where to pick y values (y1, 
y2) and will then plot the polygon in certain defined colors.
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We specify a condition to fill the curve with the where parameter, which accepts Boolean 
values (can be expressions) so that the fill happens only when the where condition is met.

There's more...
Similar to other functions for plotting, this function also accepts many more parameters  
like hatch (to specify patterns to fill with instead of color) and line options (linewidth  
and linestyle).

There is also fill_betweenx(), which enables similar fill features, but it does so between 
horizontal curves.

The more general function fill() provides the ability to fill any polygon with a color or  
a hatch.

Making stacked plots
In this recipe, we will show you how to produce a stacked plot. Stacked plots are used when 
plotting a quantity which can be represented as the sum of several contributions. A stacked 
plot will allow us to represent not only the overall trend but also the trend of each individual 
components contributing to the total quantity.
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Getting ready
We will consider the world's energy production as our total quantity and will represent the 
detailed break down in different energy sourced. We will represent the evolution of energy 
production type from 1973 to 2014. This data is contained in the file  ch03-energy-
production.csv. The data has been taken from http://www.eia.gov/totalenergy/
data/monthly/ and reshaped for the need of the recipe.

How to do it...
Here is the code to produce the stacked plot displayed further:

import pandas as pd
import matplotlib.pyplot as plt

# We load the data with pandas.
df = pd.read_csv('ch03-energy-production.csv')

# We give names for the columns that we want to load. Different types 
of energy have been ordered by total production values).
columns = ['Coal', 'Natural Gas (Dry)', 'Crude Oil', 'Nuclear Electric 
Power',
 'Biomass Energy', 'Hydroelectric Power', 'Natural Gas Plant Liquids',
 'Wind Energy', 'Geothermal Energy', 'Solar/PV Energy']

# We define some specific colors to plot each type of energy produced.
colors = ['darkslategray', 'powderblue', 'darkmagenta', 'lightgreen', 
'sienna',
'royalblue', 'mistyrose', 'lavender', 'tomato', 'gold']

# Let's create the figure.
plt.figure(figsize = (12,8))
polys = plt.stackplot(df['Year'], df[columns].values.T, colors = 
colors)

# The legend is not yet supported with stackplot. We will add it 
manually.
rectangles= []
for poly in polys:
rectangles.append(plt.Rectangle((0, 0), 1, 1, fc=poly.get_facecolor()
[0]))
legend = plt.legend(rectangles, columns, loc = 3)
frame = legend.get_frame()

http://www.eia.gov/totalenergy/data/monthly/
http://www.eia.gov/totalenergy/data/monthly/
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frame.set_color('white')

# We add some information to the plot.
plt.title('Primary Energy Production by Source', fontsize = 16)
plt.xlabel('Year', fontsize = 16)
plt.ylabel('Production (Quad BTU)', fontsize = 16)
plt.xticks(fontsize = 16)
plt.yticks(fontsize = 16)
plt.xlim(1973,2014)

# Finally we show the figure.
plt.show()

Here is the plot we obtain:

At a glance, we can see that the world's energy production is constantly increasing and has 
entered a faster growing phase since 2005. We can also analyze the evolution of each type 
of energy. Coal production is slowly decreasing while natural gas and crude oil productions 
are increasing. Nuclear production has also started to decrease. At the top of the stacked 
plot (which is more visible by zooming), we can see that renewable energies are still forming 
a negligible part of the global world's production. The stacked plot was the perfect tool to 
represent this dataset.
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How it works...
The command stackplot() works just like the plot() command but can accept a 
multidimensional array as a second input. This array's first dimension is the number of filled 
areas to plot while the second dimension is the same as the first input array. In our case, the 
shape of df['Year'] is (42,), while the shape of df[columns].values.T is (10,42). 
Note that we use the transpose operator T in order to have the second array in the right 
format. stackplot() creates a list of polygons that we store in the variable polys.

The legend is not yet supported with stacked plots. We therefore use the commands plt.
Rectangle() to create the legend's rectangles. Each rectangle's colors is specified using 
poly.get_facecolor()[0], where poly is an element of the list of polygons created by  
the stackplot() command.

Plotting the legend is then done simply using the command legend() with the rectangles 
as first arguments and the names of each corresponding type of energy source as second 
arguments. The third argument is used to specify the location of the legend. We set the 
background of the legend to white by first using the method get_frame() of the object 
legend, and then setting it's color to white with the frame's set_color() method.

Drawing scatter plots with colored markers
If you have two variables and want to spot the correlation between those, a scatter plot may 
be the solution to spot patterns.

This type of plot is also very usable as a start for more advanced visualization of 
multidimensional data (for example, to plot a scatter plot matrix).

Getting ready
Scatter plots display values for two sets of data. The data visualization is done as a collection 
of points not connected by lines. Each of them has its coordinates determined by the value 
of the variables. One variable is controlled (independent variable), while the other variable is 
measured (dependent variable) and is often plotted on the y axis.
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How to do it...
Here's a code sample that plots two plots: one with uncorrelated data and the other with 
strong positive correlation:

import matplotlib.pyplot as plt
import numpy as np

# generate x values
x = np.random.randn(1000)

# random measurements, no correlation
y1 = np.random.randn(len(x))

# strong correlation
y2 = 1.2 + np.exp(x)

ax1 = plt.subplot(121)
plt.scatter(x, y1, color='indigo', alpha=0.3, edgecolors='white', 
label='no correl')
plt.xlabel('no correlation')
plt.grid(True)
plt.legend()

ax2 = plt.subplot(122, sharey=ax1, sharex=ax1)
plt.scatter(x, y2, color='green', alpha=0.3, edgecolors='grey', 
label='correl')
plt.xlabel('strong correlation')
plt.grid(True)
plt.legend()

plt.show()

Here, we also use more parameters such as color for setting the color of the plot, marker for 
using as a point marker (the default is circle), alpha (alpha transparency), edgecolors 
(color of the marker edge), and label (for legend box).
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These are the plots we get:

How it works...
A scatter plot is often used to identify potential association between two variables, and it's 
often drawn before working on a fitting regression function. It gives a good visual picture of 
the correlation, particularly for nonlinear relationships. matplotlib provides the scatter() 
function to plot x versus y—unidimensional array of the same length as a scatter plot.





4
More Plots and 
Customizations

In this chapter we will learn about:

 f Setting the transparency and size of axis labels

 f Adding a shadow to the chart line

 f Adding a data table to the figure

 f Using subplots

 f Customizing grids

 f Creating contour plots

 f Filling an under-plot area

 f Drawing polar plots

 f Visualizing the filesystem tree using a polar bar

 f Customizing matplotlib with style

Introduction
In this chapter, we will explore more advanced properties of the matplotlib library. We are going 
to introduce more options and will look at how to achieve certain visually pleasing results.

During this chapter, we will seek the solutions to some non-trivial problems with representing 
data when simple charts are not enough. We will try to use more than one type of graph or 
create hybrid graphs to cover advanced data structures and the representation required.
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Setting the transparency and size of  
axis labels

The Axes label describes what the data in the figure represents and is quite important for the 
viewer's understanding of the figure itself. By providing labels to the axes background, we help 
the viewer comprehend the information in an appropriate way.

Getting ready
Before we dive into the code, it is important to understand how matplotlib organizes our figures.

At the top level, there is a Figure instance containing all that we see and some more (that 
we don't see). The figure contains, among other things, instances of the Axes class as a 
Figure.axes field. The Axes instances contain almost everything we care about: all the 
lines, points, ticks, and labels. So, when we call plot(), we are adding a line (matplotlib.
lines.Line2D) to the Axes.lines list. If we plot a histogram (hist()), we are adding 
rectangles to the list of Axes.patches ("patches" is the term inherited from MATLAB®,  
and it represents the "patch of color" concept).

An instance of Axes also holds references to the XAxis and YAxis instances, which in turn 
refer to the x axis and y axis, respectively. The XAxis and YAxis instances manage the drawing 
of the axis, labels, ticks, tick labels, locators, and formatters. We can reference these through 
Axes.xaxis and Axes.yaxis, respectively. We don't have to go all the way down to XAxis 
or YAxis instances to get to the labels as matplotlib gives us a helper method (practically 
a shortcut) that enables iterations via these labels: matplotlib.pyplot.xlabel() and 
matplotlib.pyplot.ylabel().

How to do it...
We will now create a new figure, in which we will:

1. Create a plot with some random generated data.

2. Add the title and axes labels.

3. Add alpha settings.

4. Add shadow effects to the title and axes labels.
import matplotlib.pyplot as plt
from matplotlib import patheffects
import numpy as np
data = np.random.randn(70)
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fontsize = 18
plt.plot(data)

title = "This is figure title"
x_label = "This is x axis label"
y_label = "This is y axis label"

title_text_obj = plt.title(title, fontsize=fontsize, 
verticalalignment='bottom')

title_text_obj.set_path_effects([patheffects.
withSimplePatchShadow()])

# offset_xy -- set the 'angle' of the shadow
# shadow_rgbFace -- set the color of the shadow
# patch_alpha -- setup the transparency of the shadow

offset_xy = (1, -1)
rgbRed = (1.0,0.0,0.0)
alpha = 0.8

# customize shadow properties
pe = patheffects.withSimplePatchShadow(offset_xy = offset_xy,
shadow_rgbFace = rgbRed,
patch_alpha = alpha)
# apply them to the xaxis and yaxis labels
xlabel_obj = plt.xlabel(x_label, fontsize=fontsize, alpha=0.5)
xlabel_obj.set_path_effects([pe])

ylabel_obj = plt.ylabel(y_label, fontsize=fontsize, alpha=0.5)
ylabel_obj.set_path_effects([pe])

plt.show()

How it works...
We already know all the familiar imports, parts that generate data, and basic plotting 
techniques, so we will skip those. If you are not able to decipher the first few lines of the 
example, please refer to Chapter 2, Knowing Your Data, and Chapter 3, Drawing Your  
First Plots and Customizing Them, where these concepts are already explained.

After we have plotted the dataset, we are ready to add titles and labels, and to customize  
their appearance.



More Plots and Customizations

114

First, we add the title. Then, we define the font size and vertical alignment of the title 
text to be bottom aligned. The default shadow effect is added to the title if we are using 
matplotlib.patheffects.withSimplePatchShadow() with no parameters. The 
default values for the parameters are: offset_xy=(2,-2), shadow_rgbFace=None, and 
patch_alpha=0.7. The other values are center, top, and baseline, but we choose 
bottom as the text will have some shadowing. In the next line, we add the shadow effect. The 
path effects are part of the matplotlib module matplotlib.patheffects that supports 
matplotlib.text.Text and matplotlib.patches.Patch.

We now want to add different settings of the shadow to both the x and y axes. First, we 
customize the position (offset) of the shadow to the parent object, and then we set the color 
of the shadow. The color is here represented in triples (3-tuple) of float values between 0.0 
and 1.0, for each of the RGB channels. For example, our red color is represented as (1.0, 
0.0, 0.0) (all red, no green and no blue).

The transparency (or alpha) is set up as a normalized value, and we also want to set this up 
here to be different from the default.

With all the settings present, we instantiate matplotlib.patheffects.
withSimplePatchShadow and hold the reference to it in the variable pe to reuse it few 
lines later.

To be able to apply the shadow effect, we need to get to the label object. This is simple 
enough because matplotlib.pyplot.xlabel() returns a reference to the object 
(matplotlib.text.Text) that we then use to call set_path_effects([pe]).

We finally show the plot and can feel proud of our work.

There's more...
If you are not satisfied with the effects that matplotlib.patheffects currently offers, 
you can inherit the matplotlib.patheffects._Base class and override the draw_path 
method. Take a look at the code and comments on how to do this here:

https://github.com/matplotlib/matplotlib/blob/master/lib/matplotlib/
patheffects.py#L47

Adding a shadow to the chart line
To be able to distinguish one particular plot line in the figure or just to fit in the overall style 
of the output our figure is in, we sometimes need to add a shadow effect to the chart line (or 
histogram, for that matter). In this recipe, you will be learning how to add a shadow effect to 
the plot's chart lines.

https://github.com/matplotlib/matplotlib/blob/master/lib/matplotlib/patheffects.py#L47
https://github.com/matplotlib/matplotlib/blob/master/lib/matplotlib/patheffects.py#L47
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Getting ready
To add shadows to the lines or rectangles in our charts, we need to use the transformation 
framework built in matplotlib and located in matplotlib.transforms.

To understand how it all works, we need to explain what transformations are available in 
matplotlib and how they work.

Transformations know how to convert the given coordinates from their coordinate system 
into display. They also know how to convert them from display coordinates into their own 
coordinate system.

The following table summarizes the existing coordinate systems and what they represent:

Coordinate system Transformation object Description
Data Axes.transData Represents the user's data coordinate 

system.
Axes Axes.transAxes Represents the Axes coordinate system, 

where (0,0) represents the bottom-left 
end of the axes and (1,1) represents the 
upper-right end of the axes.

Figure Figure.transFigure This is the Figure coordinate system, 
where (0,0) represents the bottom-left 
end of the figure and (1,1) represents the 
upper-right end of the figure.

Display None Represents the pixel coordinate 
system of the user display, where (0,0) 
represents the bottom-left of the display, 
and tuple (width, height) represents the 
upper-right of the display, where width 
and height are in pixels.

Note how the display does not have a value in the column. This is because the default 
coordinate system is Display, so coordinates are always in pixels relative to your display 
coordinate systems. This is not very useful, and most often we want them normalized into 
Figure or Axes or a Data coordinate system.

This framework enables us to transform the current object into an offset object, that is, to 
place that object shifted a certain distance from the original object.

We will use this framework to create our desired effect on the plotted sine wave.
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How to do it...
Here is the code recipe to add shadowing to the plotted chart. The code is explained in the 
section that follows.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.transforms as transforms

def setup(layout=None):
    assert layout is not None

    fig = plt.figure()
    ax = fig.add_subplot(layout)
    return fig, ax

def get_signal():
    t = np.arange(0., 2.5, 0.01)
    s = np.sin(5 * np.pi * t)
    return t, s

def plot_signal(t, s):
    line, = axes.plot(t, s, linewidth=5, color='magenta')
    return line

def make_shadow(fig, axes, line, t, s):
    delta = 2 / 72.  # how many points to move the shadow
    offset = transforms.ScaledTranslation(delta, -delta, fig.dpi_
scale_trans)
    offset_transform = axes.transData + offset

    # We plot the same data, but now using offset transform
    # zorder -- to render it below the line
    axes.plot(t, s, linewidth=5, color='gray',
              transform=offset_transform,
              zorder=0.5 * line.get_zorder())

if __name__ == "__main__":
    fig, axes = setup(111)
    t, s = get_signal()
    line = plot_signal(t, s)

    make_shadow(fig, axes, line, t, s)

    axes.set_title('Shadow effect using an offset transform')
    plt.show()
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How it works...
We start reading the code from the bottom, after the if __name__ check. First, we create 
the figure and axes in setup(); after that, we obtain a signal (or generate data—sine wave). 
We plot the basic signal in plot_signal(). Then, we make the shadow transformation and 
plot the shadow in make_shadow().

We use the offset effect to create an offset object underneath and just a few points away from 
the original object.

The original object is a simple sine wave that we plot using the standard function plot().

To add to this offset transformation, matplotlib contains helper transformation—
matplotlib.transforms.ScaledTranslation.

The values for dx and dy are defined in points, and as the point is 1/72 inches, we move the 
offset object 2 pt right and 2pt down.

If you want to learn more about how we converted the point 
to 1/72 inches, read more in this Wikipedia article: http://
en.wikipedia.org/wiki/Point_%28typography%29.

We can use matplotlib.transforms.ScaledTransformation(xtr, ytr, 
scaletr); here, xtr and ytr are translation offsets and scaletr is a transformation 
callable to scale xtr and ytr at transformation time and before display. The most common 
use case for this is transforming from points to display space—for example—to DPI so that the 
offset always stays at the same place no matter what the actual output—be it the monitor or 
printed material. The callable we use for this is already built in, and is available at Figure.
dpi_scale_trans.

We then plot the same data with the applied transformation.

There's more...
Using transforms to add shadows is just one and not the most popular use case of this 
framework. To be able to do more with the transformation framework, you will need to learn 
the details of how the transformation pipeline works and what the extension points are (what 
classes to inherit and how). This easy enough because matplotlib is open source, and even if 
some code is not well documented, there is a source you can read from and use or change, 
thus contributing to the overall quality and usefulness of matplotlib.

http://en.wikipedia.org/wiki/Point_%28typography%29
http://en.wikipedia.org/wiki/Point_%28typography%29
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Adding a data table to the figure
Although matplotlib is mainly a plotting library, it helps us with small errands when we are 
creating a chart, such as having a neat data table beside our beautiful chart. In this recipe, 
you will be learning how to display a data table alongside the plots in the figure.

Getting ready
It is important to understand why we are adding a table to a chart. The main intention of plotting 
data visually is to explain the otherwise not understandable (or hardly understandable) data 
values. Now, we want to add that data back. It is not wise just to cram a big table with values 
underneath the chart.

But, carefully picked, maybe the summed or highlighted values from the whole, a charted 
dataset can identify important parts of the chart or emphasize the important values for those 
places where the exact value (for example, yearly sales in USD) is important (or even required).

How to do it...
Here's the code to add a sample table to our figure:

import matplotlib.pyplot as plt
import numpy as np

plt.figure()
ax = plt.gca()
y = np.random.randn(9)

col_labels = ['col1','col2','col3']
row_labels = ['row1','row2','row3']
table_vals = [[11, 12, 13], [21, 22, 23], [28, 29, 30]]
row_colors = ['red', 'gold', 'green']
my_table = plt.table(cellText=table_vals,
colWidths=[0.1] * 3,
rowLabels=row_labels,
colLabels=col_labels,
rowColours=row_colors,
loc='upper right')

plt.plot(y)
plt.show()
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The previous code snippet gives a plot such as the following:

How it works...
Using plt.table(), we create a table of cells and add it to the current axes. The table can 
have (optional) row and column headers. Each table cell contains either patch or text. The 
column widths and row heights for the table can be specified. The return value is a sequence 
of objects (text, line, and patch instances) that the table is made of.

The basic function signature is:

table(cellText=None, cellColours=None,
cellLoc='right', colWidths=None,
rowLabels=None, rowColours=None, rowLoc='left',
colLabels=None, colColours=None, colLoc='center',
loc='bottom', bbox=None)

The function instantiates and returns the matplotlib.table.Table instance. This is 
usually the case with matplotlib; there's just one way to add the table to the figure. The  
object-oriented interface can be directly accessed. We can use the matplotlib.table.
Table class directly to fine-tune our table before we add it onto our axes instance with  
add_table().
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There's more...
You can have more control if you directly create an instance of matplotlib.table.Table 
and configure it before you add it to the axes instance. You can add the table instance 
to axes using Axes.add_table(table), where table is an instance of matplotlib.
table.Table.

Using subplots
If you are reading this book from the beginning, you are probably familiar with the subplot 
class, a descendant of axes that lives on the regular grid of subplot instances. We are 
going to explain and demonstrate how to use subplots in advanced ways.

In this recipe, you will be learning how to create custom subplot configurations on our plots.

Getting ready
The base class for subplots is matplotlib.axes.SubplotBase. These subplots are 
matplotlib.axes.Axes instances, but provide helper methods for generating and 
manipulating a set of Axes within a figure.

There is a class matplotlib.figure.SubplotParams, which holds all the parameters for 
subplot. The dimensions are normalized to the width or height of the figure. As we already 
know, if we don't specify any custom values, they will be read from the rc parameters.

The scripting layer (matplotlib.pyplot) holds a few helper methods to manipulate 
subplots.

matplotlib.pyplot.subplots is used for the easy creation of common layouts of 
subplots. We can specify the size of the grid—the number of rows and columns of the  
subplot grid.

We can create subplots that share the X or Y axes. This is achieved using sharex or the 
sharey keyword argument. The sharex argument can have the True value, in which case 
the X axis is shared among all the subplots. The tick labels will be invisible on all but the last 
row of plots. They can also be defined as String, with enumerated values of row, col, all, or 
none. The all value is the same as True, and the value none is the same as False. If the 
value row is specified, each subplot row shares the X axis. If the value col is specified, each 
subplot column shares the X axis. This helper returns tuple fig, ax, where ax is either an 
axis instance or, if more than one subplot is created, an array of axis instances.



Chapter 4

121

matplotlib.pyplot.subplots_adjust is used to tune the subplot layout. The  
keyword arguments specify the coordinates of the subplots inside the figure (left,  
right, bottom, and top) normalized to figure size. White space can be specified to  
be left between the subplots using the wspace and hspace arguments for width and  
height amounts, respectively.

How to do it...
1. We will show you an example of using yet another helper function in the matplotlib 

toolkit—subplot2grid. We define the grid's geometry and the subplot location. Note 
that this location is 0-based not 1-based as we are used to in plot.subplot(). We 
can also use colspan and rowspan to allow the subplot to span multiple columns 
and rows in a given grid. For example, we will create a figure, add various subplot 
layouts using subplot2grid, and reconfigure the tick label size.

2. Show the plot:
import matplotlib.pyplot as plt

plt.figure(0)
axes1 = plt.subplot2grid((3, 3), (0, 0), colspan=3)
axes2 = plt.subplot2grid((3, 3), (1, 0), colspan=2)
axes3 = plt.subplot2grid((3, 3), (1, 2))
axes4 = plt.subplot2grid((3, 3), (2, 0))
axes5 = plt.subplot2grid((3, 3), (2, 1), colspan=2)

# tidy up tick labels size
all_axes = plt.gcf().axes
for ax in all_axes:
forticklabel in ax.get_xticklabels() + ax.get_yticklabels():
ticklabel.set_fontsize(10)

plt.suptitle("Demo of subplot2grid")
plt.show()
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When we execute the previous code, the following plot is created:

How it works...
We provide subplot2grid with a shape, location (loc), and optionally, rowspan and 
colspan. The important difference here is that the location is indexed from 0, and not  
from 1, as in figure.add_subplot.
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There's more...
To give an example of another way, you can customize the current axes or subplot:

axes = fig.add_subplot(111)
rectangle = axes.patch
rectangle.set_facecolor('blue')

Here we see that every axes instance contains a field patch referencing the rectangle 
instance, thus representing the background of the current axes instance. This instance has 
properties that we can update, hence updating the current axes background. We can change 
its color, but we can also load an image to add a watermark protection, for example.

It is also possible to create a patch first and then just add it to the axes background:

fig = plt.figure()
axes = fig.add_subplot(111)
rect = matplotlib.patches.Rectangle((1,1), width=6, height=12)
axes.add_patch(rect)
# we have to manually force a figure draw
axes.figure.canvas.draw()

Customizing grids
A grid is usually handy to have under lines and charts as it helps the human eye spot 
differences in patterns and compare plots visually in the figure. To be able to set up how  
visibly, how frequently, and in what style the grid is displayed—or whether it is displayed  
at all—we should use matplotlib.pyplot.grid.

In this recipe, you will be learning how to turn the grid on and off and how to change the  
major and minor ticks on a grid.
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Getting ready
The most frequent grid customization is reachable in the matplotlib.pyplot.grid  
helper function.

To see the interactive effect of this, you should run the following under ipython. The basic 
call to plt.grid() will toggle the grid visibility in the current interactive session started by 
the last IPythonPyLab environment:

In [1]: plt.plot([1,2,3,3.5,4,4.3,3])
Out[1]: [<matplotlib.lines.Line2D at 0x3dcc810>]

Now, we can toggle the grid on the same figure:

In [2]: plt.grid()
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We turn the grid back on, as shown in the following plot:

We then turn it off again:

In [3]: plt.grid()
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Apart from just turning it on and off, we can further customize the grid's appearance.

We can manipulate the grid with just major ticks, or just minor ticks, or both; hence, the value 
of function argument which can be 'major', 'minor', or 'both'. Similarly, we can control 
the horizontal and vertical ticks separately using the argument axis that can have values 
'x', 'y', or 'both'.

All the other properties are passed via kwargs and represent a standard set of properties 
that a matplotlib.lines.Line2D instance can accept, such as color, linestyle, and 
linewidth; here is an example:

ax.grid(color='g', linestyle='--', linewidth=1)

How to do it...
This is nice, but we want to be able to customize more. In order to do that, we need to reach 
deeper into matplotlib and into mpl_toolkits and find the AxesGrid module that allows 
us to make grids of axes in an easy and manageable way:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
from matplotlib.cbook import get_sample_data

def get_demo_image():
    f = get_sample_data("axes_grid/bivariate_normal.npy", 
asfileobj=False)
    # z is a numpy array of 15x15
    Z = np.load(f)
    return Z, (-3, 4, -4, 3)

def get_grid(fig=None, layout=None, nrows_ncols=None):
    assert fig is not None
    assert layout is not None
    assert nrows_ncols is not None

    grid = ImageGrid(fig, layout, nrows_ncols=nrows_ncols,
                    axes_pad=0.05, add_all=True, label_mode="L")
    return grid

def load_images_to_grid(grid, Z, *images):
    min, max = Z.min(), Z.max()
    for i, image in enumerate(images):
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        axes = grid[i]
        axes.imshow(image, origin="lower", vmin=min, vmax=max,
                  interpolation="nearest")

if __name__ == "__main__":
    fig = plt.figure(1, (8, 6))
    grid = get_grid(fig, 111, (1, 3))
    Z, extent = get_demo_image()

    # Slice image
    image1 = Z
    image2 = Z[:, :10]
    image3 = Z[:, 10:]

    load_images_to_grid(grid, Z, image1, image2, image3)

    plt.draw()
    plt.show()

The given code will render the following plot:
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How it works...
In the get_demo_image function, we loaded data from the sample data directory that comes 
with matplotlib.

The list grid holds our axes grid (in this case, ImageGrid).

The variables image1, image2, and image3 hold sliced data from Z that we have split over 
multiple axes in the list grid.

Looping over all the grids, we are plotting data from im1, im2, and im3 using the standard 
imshow() call, while matplotlib takes care that everything is neatly rendered and aligned.

Creating contour plots
A contour plot displays the isolines of a matrix. Isolines are curves where a function of two 
variables has the same value.

In this recipe, you will learn how to create contour plots.

Getting ready
Contours are represented as contour plots of the matrix Z, where Z is interpreted as height  
with respect to the XY plane. Z is of minimum size 2 and must contain at least two  
different values.

The problem with contour plots is that if they are coded without labeling the isolines,  
they are rendered pretty useless as we cannot decode the high points from the low points or 
find local minimas.

Here, we need to label the contour as well. The labeling of isolines can be done by using 
either labels (clabel()) or colormaps. If your output medium permits the use of color, 
colormaps are preferred because viewers will be able to decode data more easily.

The other risk with contour plots is in choosing the number of isolines to plot. If we choose 
too many, the plot becomes too dense to decode, and if we go with too few isolines, we lose 
information and can perceive data differently.

The contour() function will automatically guess how many isolines to plot, but we also have 
the ability to specify our own number.

In matplotlib, we draw contour plots using matplotlib.pyplot.contour.

There are two similar functions: contour() draws contour lines, and contourf() draws 
filled contours. We are going to demonstrate only contour(), but almost everything is 
applicable to contourf(). They understand almost the same arguments as well.
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The contour() function can have different call signatures, depending on what data we have 
and/or what the properties that we want to visualize are.

Call signature Description
contour(Z) Plots the contour of Z (array). The level values are chosen 

automatically.
contour(X,Y,Z) Plots the contour of X, Y, and Z. The arrays X and Y are (x, y) 

surface coordinates.
contour(Z,N)

contour(X,Y,Z,N)

Plots the contour of Z, where the number of levels is defined 
by N. The level values are automatically chosen.

contour(Z,V) 
contour(X,Y,Z,V)

Plots the contour lines with levels at the values specified in V.

contourf(..., V) Fills the len(V)-1 regions between the level values in 
sequence V.

contour(Z, **kwargs) Uses keyword arguments to control common line properties 
(colors, line width, origin, color map, and so on).

There exist certain constraints on the dimensionality and shape of X, Y, and Z. For example, 
X and Y can be of two dimensions and of the same shape as Z. If they are of one dimension, 
such that the length of X is equal to the number of columns in Z, then the length of Y will be 
equal to the number of rows in Z.

How to do it...
In the following code example, we will:

1. Implement a function to act as a mock signal processor.

2. Generate some linear signal data.

3. Transform the data into suitable matrices for use in matrix operations.

4. Plot contour lines.

5. Add contour line labels.

6. Show the plot.
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
defprocess_signals(x,y):
return (1 – (x ** 2 + y ** 2)) * np.exp(-y ** 3 / 3)
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x = np.arange(-1.5, 1.5, 0.1)
y = np.arange(-1.5, 1.5, 0.1)

# Make grids of points
X,Y = np.meshgrid(x, y)

Z = process_signals(X, Y)

# Number of isolines
N = np.arange(-1, 1.5, 0.3)

# adding the Contour lines with labels
CS = plt.contour(Z, N, linewidths=2, cmap=mpl.cm.jet)
plt.clabel(CS, inline=True, fmt='%1.1f', fontsize=10)
plt.colorbar(CS)

plt.title('My function: $z=(1-x^2+y^2) e^{-(y^3)/3}$')
plt.show()

This will give us the following chart:
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How it works...
We reached for little helpers from numpy to create our ranges and matrices.

After we evaluated my_function into Z, we simply called contour, providing Z and the 
number of levels for isolines.

At this point, try experimenting with the third parameter in the N arange() call. For example, 
instead of N = np.arange(-1, 1.5, 0.3), try changing 0.3 to 0.1 or 1 to experience how 
the same data is seen differently, depending on how we encode the data in a contour plot.

We also added a color map by simply giving it CS (a matplotlib.contour.
QuadContourSet instance).

Filling an under-plot area
The basic way to draw a filled polygon in matplotlib is to use matplotlib.pyplot.fill.  
This function accepts similar arguments as matplotlib.pyplot.plot—multiple x and y 
pairs and other Line2D properties. This function returns the list of patch instances that  
were added.

In this recipe, you will learn how to shade certain areas of plot intersections.

Getting ready
matplotlib provides several functions to help us plot filled figures, apart from plotting functions 
that are inherently plotting closed filled polygons, such as histogram (), of course.

We already mentioned one—matplotlib.pyplot.fill—but there are the matplotlib.
pyplot.fill_between() and matplotlib.pyplot.fill_betweenx() functions too. 
These functions fill the polygons between two curves. The main difference between fill_
between() and fill_betweenx() is that the latter fills between the x axis values, whereas 
the former fills between the y axis values.

The fill_between function accepts argument x—an x axis array of data—and y1 and y2—
the y axis arrays of the data. Using arguments, we can specify conditions under which the 
area will be filled. This condition is the Boolean condition, usually specifying the y axis value 
ranges. The default value is None—meaning, to fill everywhere.
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How to do it...
To start off with a simple example, we will fill the area under a simple function:

import numpy as np
import matplotlib.pyplot as plt
from math import sqrt

t = range(1000)
y = [sqrt(i) for i in t]
plt.plot(t, y, color='red', lw=2)
plt.fill_between(t, y, color='silver')
plt.show()

The preceding code gives us the following plot:

This is fairly straightforward and gives an idea of how fill_between() works. Note how we 
needed to plot the actual function line (using plot(), of course), where fill_between() 
just draws a polygonal area filled with color ("silver").

We will demonstrate another recipe here. It will involve more conditioning for the fill function. 
The following is the code for the example:

import matplotlib.pyplot as plt
import numpy as np
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x = np.arange(0.0, 2, 0.01)
y1 = np.sin(np.pi*x)
y2 = 1.7*np.sin(4*np.pi*x)

fig = plt.figure()
axes1 = fig.add_subplot(211)
axes1.plot(x, y1, x, y2, color='grey')
axes1.fill_between(x, y1, y2, where=y2<=y1, facecolor='blue', 
interpolate=True)
axes1.fill_between(x, y1, y2, where=y2>=y1, facecolor='gold', 
interpolate=True)
axes1.set_title('Blue where y2<= y1. Gold-color where y2>= y1.')
axes1.set_ylim(-2,2)

# Mask values in y2 with value greater than 1.0
y2 = np.ma.masked_greater(y2, 1.0)
axes2 = fig.add_subplot(212, sharex=axes1)
axes2.plot(x, y1, x, y2, color='black')
axes2.fill_between(x, y1, y2, where=y2<=y1, facecolor='blue', 
interpolate=True)
axes2.fill_between(x, y1, y2, where=y2>=y1, facecolor='gold', 
interpolate=True)
axes2.set_title('Same as above, but mask')
axes2.set_ylim(-2,2)
axes2.grid('on')

plt.show()

The preceding code will render the following plot:
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How it works...
For this example, we first created two sinusoidal functions that overlap at certain points.

We also created two subplots to compare the two variations that render filled regions.

In both cases, we used fill_between() with an argument, where, that accepts an 
N-length Boolean array and will fill regions where the value equals True.

The bottom subplot illustrates mask_greater, which masks an array at values greater than 
a given value. This is a function from the numpy.ma package to handle missing or invalid 
values. We turned the grid on the bottom axes to make it easier to spot this.

Drawing polar plots
If the data is already represented using polar coordinates, we can also display it using polar 
figures. Even if the data is not in polar coordinates, we should consider converting it to polar 
form and draw on polar plots.

To decide whether we want to do this, we need to understand what the data represents and 
what we are hoping to display to the end user. Imagining what the user will read and decode 
from our figures usually leads us to the best visualizations.

Polar plots are commonly used to display information that is radial in nature. For example, in 
sun path diagrams—we see the sky in radial projection and the radiation maps of antennas 
radiate differently at different angles. You can learn more about this at http://www.
astronwireless.com/topic-archives-antenna-radiation-patterns.asp.

In this recipe, you will learn how to change the coordinate system used in the plot and to use 
the polar coordinate system instead.

Getting ready
To display data in polar coordinates, we must have appropriate data values. In the polar 
coordinate system, a point is described with radius distance (usually denoted by r) and angle 
(usually theta). The angle can be in radians or degrees, but matplotlib uses degrees.

Similarly enough to the function plot(), to draw polar plots, we will use the polar() 
function, which accepts two same-length arrays of parameters, theta and r, for the angle 
array and radius array, respectively. The function also accepts other formatting arguments,  
the same as those used by plot() one does.

We also need to tell matplotlib that we want axes in the polar coordinate system. This is done 
by providing the polar=True argument to the add_axes or add_subplot functions.

http://www.astronwireless.com/topic-archives-antenna-radiation-patterns.asp
http://www.astronwireless.com/topic-archives-antenna-radiation-patterns.asp
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Additionally, to set other properties on the figure, such as grids on radii or angles, we need 
to use matplotlib.pyplot.rgrids() to toggle radial grid visibility or to set up labels. 
Similarly, we use matplotlib.pyplot.thetagrid() to configure angle ticks and labels.

How to do it...
Here is one recipe that demonstrates how to plot polar bars:

import numpy as np
import matplotlib.cm as cm
import matplotlib.pyplot as plt

figsize = 7
colormap = lambda r: cm.Set2(r / 20.)
N = 18 # number of bars

fig = plt.figure(figsize=(figsize,figsize))
ax = fig.add_axes([0.2, 0.2, 0.7, 0.7], polar=True)

theta = np.arange(0.0, 2*np.pi, 2*np.pi/N)
radii = 20*np.random.rand(N)
width = np.pi/4*np.random.rand(N)
bars = ax.bar(theta, radii, width=width, bottom=0.0)
for r, bar in zip(radii, bars):
bar.set_facecolor(colormap(r))
bar.set_alpha(0.6)

plt.show()

The preceding code snippet will give us the following plot:
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How it works...
First, we create a square figure and add the polar axes to it. The figure does not have to be 
square, but then our polar plot will be ellipsoidal.

We then generate random values for a set of angles (theta) and a set of polar distances 
(radii). Since we have drawn bars, we also need a set of widths for each bar, so we also 
generate a set of widths. matplotlib.axes.bar accepts an array of values (as almost all 
the drawing functions in matplotlib do), so we don't have to loop over this generated dataset; 
we just need to call the bar once with all the arguments passed to it.

In order to make every bar easily distinguishable, we have to loop over each bar added to ax 
(Axes) and customize its appearance (face-color and transparency).

Visualizing the filesystem tree using a  
polar bar

We want to show in this recipe how to solve a "real-world" task—how to use matplotlib to 
visualize our directory occupancy.

In this recipe, you will learn how to visualize a filesystem tree with relative sizes.

Getting ready
We all have big hard drives that sometimes contain stuff that we usually forget about. It would 
be nice to see what is inside such a directory, and what the biggest file inside it is.

Although there are many more sophisticated and elaborate software products for this job,  
we want to demonstrate how this is achievable using Python and matplotlib.

How to do it...
Let's perform the following steps:

1. Implement a few helper functions to deal with folder discovery and internal  
data structures.

2. Implement the main function, draw(), that does the plotting.

3. Implement the main program body that verifies the user input arguments:
import os
import sys
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import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np

def build_folders(start_path):
    folders = []

    for each in get_directories(start_path):
        size = get_size(each)
        if size >= 25 * 1024 * 1024:
            folders.append({'size' : size, 'path' : each})

    for each in folders:
        print "Path: " + os.path.basename(each['path'])
        print "Size: " + str(each['size'] / 1024 / 1024) + " MB"
    return folders

def get_size(path):
    assert path is not None

    total_size = 0
    for dirpath, dirnames, filenames in os.walk(path):
        for f in filenames:
            fp = os.path.join(dirpath, f)
            try:
                size = os.path.getsize(fp)
                total_size += size
                #print "Size of '{0}' is {1}".format(fp, size)
            except OSError as err:
                print str(err)
                pass
    return total_size

def get_directories(path):
    dirs = set()
    for dirpath, dirnames, filenames in os.walk(path):
        dirs = set([os.path.join(dirpath, x) for x in dirnames])
        break # we just want the first one
    return dirs

def draw(folders):
    """ Draw folder size for given folder"""
    figsize = (8, 8)  # keep the figure square



More Plots and Customizations

138

    ldo, rup = 0.1, 0.8  # leftdown and right up normalized
    fig = plt.figure(figsize=figsize)
    ax = fig.add_axes([ldo, ldo, rup, rup], polar=True)

    # transform data
    x = [os.path.basename(x['path']) for x in folders]
    y = [y['size'] / 1024 / 1024 for y in folders]
    theta = np.arange(0.0, 2 * np.pi, 2 * np.pi / len(x))
    radii = y

    bars = ax.bar(theta, radii)
    middle = 90/len(x)
    theta_ticks = [t*(180/np.pi)+middle for t in theta]
    lines, labels = plt.thetagrids(theta_ticks, labels=x, frac=0.5)
    for step, each in enumerate(labels):
        each.set_rotation(theta[step]*(180/np.pi)+ middle)
        each.set_fontsize(8)

    # configure bars
    colormap = lambda r:cm.Set2(r / len(x))
    for r, each in zip(radii, bars):
        each.set_facecolor(colormap(r))
        each.set_alpha(0.5)

    plt.show()

4. Next, we will implement the main program body where we verify the input arguments 
given by the user when the program is called from the command line:
if __name__ == '__main__':
    if len(sys.argv) is not 2:
        print "ERROR: Please supply path to folder."
        sys.exit(-1)

    start_path = sys.argv[1]

    if not os.path.exists(start_path):
        print "ERROR: Path must exits."
        sys.exit(-1)

    folders = build_folders(start_path)

    if len(folders) < 1:
        print "ERROR: Path does not contain any folders."
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        sys.exit(-1)

    draw(folders)

5. You need to run the following from the command line:
$ pythonch04_rec11_filesystem.py /usr/

6. It will produce a plot similar to this one:

How it works...
We will start from the bottom of the code, after if __name__ == '__main__' because 
this is the place where our program starts.

Using the module sys, we pick up the command-line arguments; they represent the path to 
the directory we want to visualize.

The function build_folders builds the list of dictionaries, each containing the size and 
path that it found inside the given start_path. This function calls get_directories, 
which returns a list of all the subdirectories in start_path. Later, for each directory found, 
we calculated the sizes in bytes using the get_size function.

For debugging purposes, we print our dictionary so that we are able to compare the figure 
against what our data looks like.
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After we have built the folders as a list of dictionaries, we pass them to a function, draw,  
that performs all the work of transforming the data to the right dimensions (here, we are  
using the polar coordinate system), constructing the polar figure, and drawing all the bars, 
ticks, and labels.

Strictly speaking, we should divide this job into smaller functions, especially if this code is to 
be further developed.

Customizing matplotlib with style
The default style configuration of matplotlib is made to satisfy the requirements of a wide 
audience, but this means that we always have to spend some time customizing the details 
that we care about. In this recipe, we want to show how to create custom and reusable styles 
for matplotlib so that we make our changes only once.

Getting ready
All the styles that matplotlib can use are stored in a directory called stylelib, under the 
configuration directory of matplotlib. To check the path of this directory, we can use the  
get_configdir() method:

In [1]: import matplotlib

In [2]: matplotlib.get_configdir()
Out[2]: u'~/.matplotlib'

In this directory we will store the files that specify our custom styles.

How to do it...
First, we will create the file that contains all the specifications of our style:

axes.titlesize : 12
lines.linewidth : 2
xtick.labelsize : 8
ytick.labelsize : 8
figure.facecolor: white
figure.edgecolor: 555555
xtick.color: 555555

axes.color_cycle: E54A22, 3A89BE
                   # E24A33 : red
                   # 348ABD : blue

axes.facecolor: EEEEEE
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This style must be saved in the matplotlib config directory under the stylelib directory 
with the name mystyle.mplstyle. Right after creating this file we can use the style:

import matplotlib.pyplot as plt
import matplotlib
import numpy as np

plt.style.use('mystyle')

x = np.linspace(-2*np.pi, 2*np.pi, 100)
plt.title('sin(x)')
plt.xlabel('x')
plt.ylabel('y')
plt.plot(x, np.sin(x))
plt.plot(x, np.cos(x))
plt.show()

The result is as follows:
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How it works...
Each line in the file mystyle.mplstyle modifies one of the elements of the matplotlib  
style. In the first line, we set the size of the font of the title of the figure to 12, in the second 
one we set the width of the lines to 2, and so on. The style is activated by passing a string  
with the name of the style to be used to the matplotlib.style.use()method, the name 
of the style is specified by the filename, and we can check all the styles available by printing 
plt.style.string.available.
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5
Making 3D 

Visualizations

You will learn the following recipes in this chapter:

 f Creating 3D bars

 f Creating 3D histograms

 f Animating in matplotlib

 f Animating with OpenGL

Introduction
Visualization in 3D is sometimes effective and sometimes inevitable. Here, we present some 
examples that will satisfy most frequent requirements.

The content of this chapter will introduce and explain some topics on 3D visualizations.

Creating 3D bars
Although matplotlib is mainly focused on plotting and mainly in two dimensions, there are 
different extensions that enable us to plot over geographical maps, to integrate more with 
Excel, and plot in 3D. These extensions are called toolkits in the matplotlib world. A toolkit is a 
collection of specific functions focused on one topic, such as plotting in 3D. 

Popular toolkits are Basemap, GTK Tools, Excel Tools, Natgrid, AxesGrid, and mplot3d.
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We will explore more about mplot3d in this recipe. Toolkit mpl_toolkits.mplot3d provides 
some basic 3D plotting. Plots supported are scatter, surf, line, and mesh plots. Although this 
is not the best 3D plotting library, it comes with matplotlib, and we are already familiar with 
the interface.

Getting ready
Basically, we still need to create a figure and add the desired axes to it. The difference is that 
we are now specifying a 3D projection for the figure and the axes we are adding are Axes3D.

Now, we can use almost the same functions for plotting. Of course, the difference is the 
argument, for we now have three axes, which we need to provide data for.

For example, the mpl_toolkits.mplot3d.Axes3D.plot function specifies the xs, ys, 
zs,and zdir arguments. All others are transferred directly to matplotlib.axes.Axes.
plot. We will explain these specific arguments:

 f xs, ys: These are the coordinates for the X and Y axes.

 f zs: This is the value(s) for the Z axis. There can be one value for all the points, or one 
for each point.

 f zdir: This chooses what the Z-axis dimension (usually this is zs, but can also be xs 
or ys) will be.

There is a method rotate_axes in the mpl_toolkits.mplot3d.art3d 
module that contains 3D artist code and functions to convert 2D artists into 
3D, which can be added to Axes3D to reorder coordinates so that the axes are 
rotated with zdir along. The default value is z. Prepending the axis with a '-' 
does the inverse transform, so zdir can be x, -x, y, -y, z, or –z.

How to do it...
This is the code to demonstrate the concept explained here:

import random

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.dates as mdates

from mpl_toolkits.mplot3d import Axes3D

mpl.rcParams['font.size'] = 10

fig = plt.figure()
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ax = fig.add_subplot(111, projection='3d')

for z in [2011, 2012, 2013, 2014]:
    xs = xrange(1,13)
    ys = 1000 * np.random.rand(12)
    
    color = plt.cm.Set2(random.choice(xrange(plt.cm.Set2.N)))
    ax.bar(xs, ys, zs=z, zdir='y', color=color, alpha=0.8)

ax.xaxis.set_major_locator(mpl.ticker.FixedLocator(xs))
ax.yaxis.set_major_locator(mpl.ticker.FixedLocator(ys))

ax.set_xlabel('Month')
ax.set_ylabel('Year')
ax.set_zlabel('Sales Net [usd]')

plt.show()

This code produces the following figure:
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How it works...
We had to do the same prep work as in the 2D world. The difference here is that we needed to 
specify what "kind of backend". Then we generate random data for supposedly 4 years of sale 
(2011-2014).

We needed to specify Z values to be the same for the 3D axis.

We picked the color randomly from the color-map set, and then we associated each Z-order 
collection of xs, ys pairs that would be used to render the bar series.

There's more...
The other plot from 2D matplotlib is available here—for example, scatter()—which has a 
similar interface to plot(), but with increased size of the point marker. We are also familiar 
with contour, contourf, and bar.

New types that are available only in 3D are wireframe, surface, and tri-surface plots.

For example, this code example plots a tri-surface plot of popular Pringle functions or, more 
mathematically, a hyperbolic paraboloid:

from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np

n_angles = 36
n_radii = 8

# An array of radii
# Does not include radius r=0, this is to eliminate duplicate points
radii = np.linspace(0.125, 1.0, n_radii)

# An array of angles
angles = np.linspace(0, 2*np.pi, n_angles, endpoint=False)

# Repeat all angles for each radius
angles = np.repeat(angles[...,np.newaxis], n_radii, axis=1)

# Convert polar (radii, angles) coords to cartesian (x, y) coords
# (0, 0) is added here. There are no duplicate points in the (x, y) 
plane
x = np.append(0, (radii*np.cos(angles)).flatten())
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y = np.append(0, (radii*np.sin(angles)).flatten())

# Pringle surface
z = np.sin(-x*y)

fig = plt.figure()
ax = fig.gca(projection='3d')

ax.plot_trisurf(x, y, z, cmap=cm.jet, linewidth=0.2)

plt.show()

The code will give the following output:

Creating 3D histograms
Similarly to 3D bars, we might want to create 3D histograms. These are useful for easily 
spotting correlation between three independent variables. They can be used to extract 
information from images in which the third dimension could be the intensity of a channel in 
the x, y space of the image under analysis.

In this recipe, you will learn how to create 3D histograms.
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Getting ready
To recall, a histogram represents the number of occurrences of some value in a particular 
column—usually called bin. A 3D histogram, then, represents the number of occurrences in a 
grid. This grid is rectangular, over two variables represented by the data in the two columns.

How to do it...
For this computation we will:

1. Use NumPy's help, as it has a function for computing the histogram of two variables.

2. Generate x and y from normal distributions, but with different parameters, to be able 
to distinguish the correlation in the resulting histogram.

3. Plot the scatter plot of the same dataset, to demonstrate how different the display of 
the scatter plot is to the 3D histogram.

Here is the code sample to implement the described steps:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl

from mpl_toolkits.mplot3d import Axes3D

mpl.rcParams['font.size'] = 10

samples = 25

x = np.random.normal(5, 1, samples)
y = np.random.normal(3, .5, samples)

fig = plt.figure()
ax1 = fig.add_subplot(211, projection='3d')

# compute two-dimensional histogram
hist, xedges, yedges = np.histogram2d(x, y, bins=10)

# compute location of the x,y bar positions
elements = (len(xedges) - 1) * (len(yedges) - 1)
xpos, ypos = np.meshgrid(xedges[:-1]+.25, yedges[:-1]+.25)

xpos = xpos.flatten()
ypos = ypos.flatten()
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zpos = np.zeros(elements)

# make every bar the same width in base
dx = .1 * np.ones_like(zpos)
dy = dx.copy()

# this defines the height of the bar
dz = hist.flatten()

ax1.bar3d(xpos, ypos, zpos, dx, dy, dz, color='b', alpha=0.4)
ax1.set_xlabel('X Axis')
ax1.set_ylabel('Y Axis')
ax1.set_zlabel('Z Axis')

# plot the same x,y correlation in scatter plot 
# for comparison
ax2 = fig.add_subplot(212)
ax2.scatter(x, y)
ax2.set_xlabel('X Axis')
ax2.set_ylabel('Y Axis')

plt.show()

This code will give the following output:
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How it works...
We prepare a computer histogram using np.histogram2d, which returns our histogram 
(hist) and x and y bin edges. 

Because for the bard3d function we need coordinates in x, y space, we need to compute 
the common matrix coordinates, and for that we use np.meshgrid that combines x and y 
positional vectors into a 2D space grid (matrix). This we can use to plot bars in the XY  
plane locations.

Variables dx and dy represent the width of the base of each bar, and as we want to make this 
constant, we give it a 0.1 point value for every position in the xy plane.

The value in the Z-axis (dz) is actually our computer histogram (in the variable hist) that 
represents the count of common x and y samples at a particular bin.

The scatter plot displays the 2D axes that also visualize the correlation between two similar 
distributions, but with a different set of starting parameters.

Sometimes, 3D gives us more information and better explains what the data is showing. More 
often, however, 3D visualizations are more confusing than 2D, and it is advisable to think 
twice before choosing them over 2D.

Animating in matplotlib
In this recipe, we will explore how to animate our figures. Sometimes it is more descriptive 
to have pictures moving in animations to explain what happens if we change the values of 
variables. Our main library has limited but usually sufficient animation capabilities and we  
will explain how to use them.

Getting ready
The framework for animation is added to standard matplotlib from version 1.1 and its 
main class is matplotlib.animation.Animation. This class is the base class, which 
is to be subclassed for specific behavior, as is the case with the classes already provided: 
TimedAnimation, ArtistAnimation, and FuncAnimation.

Class name (parent class) Description
Animation (object) This class wraps the creation of an animation 

using matplotlib. It is only a base class which 
should be subclassed to provide the required 
behavior.
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Class name (parent class) Description
TimedAnimation (Animation) The Animation subclass supports time-

based animation, drawing a new frame every 
*interval* milliseconds.

ArtistAnimation (TimedAnimation) Before calling this function, all plotting should 
have taken place and the relevant artists saved.

FuncAnimation (TimedAnimation) Makes an animation by repeatedly calling a 
function, passing in (optional) arguments.

In order to be able to save animations in a video file, we must have the ffmpeg or mencoder 
installer. Installation of these packages varies depending on the OS used, and changes by 
different releases, so we must leave it to the dear reader to Google the valid information.

How to do it...
Here is the code listing to demonstrate some matplotlib animations:

import numpy as np
from matplotlib import pyplot as plt
from matplotlib import animation

fig = plt.figure()
ax = plt.axes(xlim=(0, 2), ylim=(-2, 2))
line, = ax.plot([], [], lw=2)

def init():
    """Clears current frame."""
    line.set_data([], [])
    return line,

def animate(i):
    """Draw figure.
    @param i: Frame counter
    @type i: int
    """
    x = np.linspace(0, 2, 1000)
    y = np.sin(2 * np.pi * (x - 0.01 * i)) * np.cos(22 * np.pi * (x - 
0.01 * i))
    line.set_data(x, y)
    return line,

# This call puts the work in motion
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# connecting init and animate functions and figure we want to draw
animator = animation.FuncAnimation(fig, animate, init_func=init,
                               frames=200, interval=20, blit=True)# 
set blit to False if you're under OS X!

# This call creates the video file.
# Temporary, every frame is saved as PNG file
# and later processed by ffmpeg encoder into MPEG4 file
# we can pass various arguments to ffmpeg via extra_args
animator.save('basic_animation.mp4', fps=30,
               extra_args=['-vcodec', 'libx264'],
               writer='ffmpeg_file')
plt.show()

This will create the basic_animation.mp4 file in the folder you started this file from, and 
also displays a figure window with the running animation. The video file can be opened with 
most modern video players that support the MPEG-4 format. The figure (frame) should look 
like this:
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How it works...
Most important are the init(), animate(), and save() functions. We first construct 
FuncAnimate by passing two callback functions to it, init and animate. Then, we call the 
save method  to save our video file. More details on each function are in the following table:

Function name Usage
init Passed to matplotlib.animation.FuncAnimation 

constructor via parameter init_func to clear the frame 
before the next frame is drawn.

animate Passed to matplotlib.animation.FuncAnimation 
constructor via func parameter.

The figure we want to animate is passed via fig argument, 
which is passed under the hood to the matplotlib.
animation.Animation constructor to connect 
animation events with the figure we want to draw. This 
function gets (optional) parameters from frames—usually 
iterable, representing the number of frames.

matplotlib.animation.
Animation.save

Saves a movie file by drawing every frame. It creates 
temporary image files before processing them through the 
encoder (ffmpeg or mencoder) to create a video file. This 
function also accepts various parameters that configure 
video output, including metadata (author...), codec to use, 
and resolution/size. One of the parameters is – which 
defines what video encoder to use. Currently supported are 
ffmpeg, ffmpeg_file, and mencoder.

There's more...
The usage of matplotlib.animation.ArtistAnimation differs from FuncAnimation 
in that we must draw each artist beforehand and then instantiate the ArtistAnimation 
class with all the different frames of the artist. ArtistAnimation is a kind of a wrapper 
of the matplotlib.animation.TimedAnimation class that draws frames every N 
milliseconds, thus supporting time-based animation.

For Mac OS X users, animation framework can unfortunately be troublesome 
on this platform, and sometimes simply does not work. This will improve with 
future releases of matplotlib.
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Animating with OpenGL
The motivation to use OpenGL stems from limitations of CPU processing power when we are 
faced with the task of visualizing millions of data points and doing it fast (sometimes even in 
real time).

Modern computers have powerful GPUs that are made for fast visualization-related 
computations (such as games), and there is no reason why they can't be used for science-
related visualizations.

Actually, there is at least one drawback of writing hardware-accelerated software that is 
hardware dependent. Modern graphics cards require proprietary drivers which are sometimes 
not available on the target platform/machine (the user's laptop, for example). Even when 
available, sometimes installing the required dependencies on-site is not what you want to 
spend your time on, while all you want is to present your findings and demonstrate your 
research results. This is not a showstopper but you should bear this in mind, and measure the 
benefits and costs of introducing this complexity in your project.

With the caveats explained, we can say yes to hardware-accelerated visualizations and to 
OpenGL, which is the industry standard for accelerated graphics.

We will be using OpenGL as it is cross-platform, so the examples should work as presented on 
Linux, Mac, or Windows, provided you have the required hardware and OS-level drivers installed.

Getting ready
If you have never used OpenGL, we will now try to give a quick introduction, although to really 
understand OpenGL, at least one complete book needs to be read. OpenGL is a specification, 
not an implementation, so OpenGL itself doesn't have any code, while the implementations 
are libraries developed according to this specification. These are shipped with your operating 
system or by vendors of graphics cards such as NVidia or AMD/ATI.

Moreover, OpenGL is concerned only with graphics rendering and not animation, timing, or 
other "complex" things that are left for additional libraries to pick up.

Basics of animating with OpenGL
Since OpenGL is a rendering library, it does not know what objects we draw 
on a screen. It doesn't care if we draw a cat, a ball, a line, or all of these 
objects. So, to move a rendered object, we need to clear and draw the 
whole image again. To animate something, we need a loop that draws and 
redraws everything very quickly and displays it to a user, so that the user 
thinks he/she sees an animation.
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Installing OpenGL on a machine is a platform-dependent process. On the Mac OS X, OpenGL 
implementation is part of the OS upgrade, but development libraries (so called headers) are 
part of the Xcode development package.

On Windows, the best way would be to install the vendor's latest graphics drivers for your 
graphic card. OpenGL may work without them, but you will probably be left without the latest 
features with stock drivers.

On Linux, if you are not against installing closed source software, there are vendor-specific 
drivers downloadable either from the distro's own software manager or from the vendor site 
as an installable binary. Standard implementations are almost always Mesa3D—the best 
known OpenGL implementation, which uses Xorg to provide support for OpenGL for Linux, 
FreeBSD, and similar operating systems.

On Debian/Ubuntu, you should install the following packages and their dependencies:

$ sudo apt-get install libgl1-mesa-dev libgl-mesa-dri

After this, you should be ready to use some development libraries and/or frameworks to 
actually write OpenGL-backed applications.

We are focused here on Python, so we will overview some of the Python's most used libraries 
and frameworks that are built on top of OpenGL. We will mention matplotlib and its current 
and future support for OpenGL:

 f Mayavi: This is a library specialized for 3D

 f Pyglet: This is a pure Python library for graphics

 f Glumpy: This is a fast rendering library built on top of NumPy

How to do it...
Specialized project Mayavi is a full-featured 3D graphics library, which is mainly used for 
advanced 3D rendering. It comes with already mentioned Python packages like EPD (though 
not with a free license), which is a recommended way of installing it on Windows and Mac OS 
X. On Linux, it can also be easily installed using pip:

$ pip install mayavi

Mayavi can be used as a development library/framework or as an application. The Mayavi 
application comprises a visual editor for easy data exploration and somewhat interactive 
visualization.
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As a library, it can be used in a similar way to matplotlib—either from the  script interface 
or as a full object-oriented library. Most of that interface is inside the mlab module, to be able 
to use that interface. For example, simple animation with Mayavi can be done as follows:

import numpy
from mayavi.mlab import * 

# Produce some nice data. 
n_mer, n_long = 6, 11 
pi = numpy.pi 
dphi = pi/1000.0 
phi = numpy.arange(0.0, 2*pi + 0.5*dphi, dphi, 'd') 
mu = phi*n_mer 
x = numpy.cos(mu)*(1+numpy.cos(n_long*mu/n_mer)*0.5) 
y = numpy.sin(mu)*(1+numpy.cos(n_long*mu/n_mer)*0.5) 
z = numpy.sin(n_long*mu/n_mer)*0.5 

# View it. 
l = plot3d(x, y, z, numpy.sin(mu), tube_radius=0.025, 
colormap='Spectral') 

# Now animate the data. 
ms = l.mlab_source 
for i in range(100): 
    x = numpy.cos(mu)*(1+numpy.cos(n_long*mu/n_mer + 
                                      numpy.pi*(i+1)/5.)*0.5) 
    scalars = numpy.sin(mu + numpy.pi*(i+1)/5) 
    ms.set(x=x, scalars=scalars)

This code will produce the following window with rotating figure:
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How it works...
We generate a dataset and create set of functions for x, y, and z to be used in the plot3d 
function for start position of the figure.

We then import the mlab_source object that enables us to manipulate our plot on the level 
of points and scalars. We then use this feature to set particular points and scalars in for loop 
to create a rotation animation with 100 frames.

There's more...
If you want to experiment more, the easiest way to do so is to load IPython, import mayavi.
mlab, and run some test_* functions.

To see what is going on, you can use IPython's ability to inspect and explore Python source,  
as follows:

In [1]: import mayavi.mlab 

In [2]: mayavi.mlab.test_simple_surf?? 
Type:       function 
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String Form:<function test_simple_surf at 0x641b410> 
File:       /usr/lib/python2.7/dist-packages/mayavi/tools/helper_
functions.py 
Definition: mayavi.mlab.test_simple_surf() 
Source: 
def test_simple_surf(): 
    """Test Surf with a simple collection of points.""" 
    x, y = numpy.mgrid[0:3:1,0:3:1] 
    return surf(x, y, numpy.asarray(x, 'd')) 

We can see here how, by adding two question marks after the function name ("??"), IPython 
found the source of the function and showed it to us. This is true exploratory computing, and 
is often used within the visualization community, because it is a fast way to get to know your 
data and code.
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6
Plotting Charts with 

Images and Maps

This chapter contains recipes that will cover:

 f Processing images with PIL

 f Plotting with images

 f Displaying images with other plots in the figure

 f Plotting data on a map using Basemap

 f Plotting data on a map using the Google Map API

 f Generating CAPTCHA images

Introduction
This chapter explores how to work with images and maps. Python has some well-known image 
libraries that allow us to process images in both aesthetic and scientific ways.

First, we will introduce the capabilities of PIL (and its friendly fork Pillow), by demonstrating 
how to process images by applying filters and resizing them.

Furthermore, we will show you how to use image files as annotation for our matplotlib charts.

To deal with data visualization of geospatial datasets, we will cover the functionality 
of Python's available libraries and public APIs that we can use with map-based visual 
representations.

The final recipe shows how Python can create CAPTCHA test images.
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Processing images with PIL
Why use Python for image processing if we can use WIMP (http://en.wikipedia.org/
wiki/WIMP_(computing)) or WYSIWYG (http://en.wikipedia.org/wiki/WYSIWYG) 
to achieve the same goal? Python is used because we want to create an automated system to 
process images in real time without human support, thus optimizing the image pipeline.

Getting ready
Note that the PIL coordinate system assumes that the (0,0) coordinate is in the upper-left corner.

The Image module has a useful class and instance method for performing basic operations 
over a loaded image object (im):

 f im = Image.open(filename): This opens a file and loads the image into the  
im object.

 f im.crop(box): This crops the image inside the coordinates defined by box. box 
defines the left, upper, right, and lower pixel coordinates (for example, box = (0, 
100, 100,100)).

 f im.filter(filter): This applies a filter on the image and returns a filtered image.

 f im.histogram(): This returns a histogram list for this image, where each item 
represents the number of pixels. The number of items in the list is 256 for single 
channel images, but if the image is not a single channel image, there can be more 
items in the list. For an RGB image, the list contains 768 items (one set of 256  
values for each channel).

 f im.resize(size, filter): This resizes the image and uses a filter for 
resampling. The possible filters are NEAREST, BILINEAR, BICUBIC, and 
ANTIALIAS. The default is NEAREST.

 f im.rotate(angle, filter): This rotates an image in the counter clockwise 
direction.

 f im.split(): This splits the bands of an image and returns a tuple of individual 
bands. Useful for splitting an RGB image into three single band images.

 f im.transform(size, method, data, filter): This applies transformation 
on a given image using data and a filter. Transformation can be AFFINE, 
EXTENT, QUAD, and MESH. You can read more about transformation in the official 
documentation. Data defines the box in the original image where the transformation 
will be applied.

The ImageDraw module allows us to draw over the image, where we can use functions such 
as arc, ellipse, line, pieslice, point, and polygon to modify the pixels of the loaded 
image.

http://en.wikipedia.org/wiki/WIMP_(computing)
http://en.wikipedia.org/wiki/WIMP_(computing)
http://en.wikipedia.org/wiki/WYSIWYG
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The ImageChops module contains a number of image channel operations (hence the 
name Chops) that can be used for image composition, painting, special effects, and other 
processing operations. Channel operations are allowed only for 8-bit images. Here are some 
interesting channel operations:

 f ImageChops.duplicate(image): This copies the current image into a new image 
object

 f ImageChops.invert(image): This inverts an image and returns a copy

 f ImageChops.difference(image1, image2): This is useful for verification that 
images are the same without visual inspection

The ImageFilter module contains the implementation of the kernel class that allows the 
creation of custom convolution kernels. This module also contains a set of healthy common 
filters that allows the application of well-known filters (BLUR and MedianFilter) to our image.

There are two types of filters provided by the ImageFilter module: fixed image 
enhancement filters and image filters that require certain arguments to be defined, for 
example, the size of kernel to be used.

We can easily get the list of all fixed filter names in IPython:

In [1]: import ImageFilter
In [2]: [ f for f in dir(ImageFilter) if f.isupper()]
Out[2]: 
['BLUR',
 'CONTOUR',
 'DETAIL',
 'EDGE_ENHANCE',
 'EDGE_ENHANCE_MORE',
 'EMBOSS',
 'FIND_EDGES',
 'SHARPEN',
 'SMOOTH',
 'SMOOTH_MORE']

The next example shows how we can apply all currently supported fixed filters on any 
supported image:

import os
import sys
from PIL import Image, ImageChops, ImageFilter

class DemoPIL(object):
    def __init__(self, image_file=None):
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        self.fixed_filters = [ff for ff in dir(ImageFilter) if 
ff.isupper()]

        assert image_file is not None
        assert os.path.isfile(image_file) is True
        self.image_file = image_file
        self.image = Image.open(self.image_file)

    def _make_temp_dir(self):
        from tempfile import mkdtemp
        self.ff_tempdir = mkdtemp(prefix="ff_demo")

    def _get_temp_name(self, filter_name):
        name, ext = os.path.splitext(os.path.basename(self.image_
file))
        newimage_file = name + "-" + filter_name + ext
        path = os.path.join(self.ff_tempdir, newimage_file)
        return path

    def _get_filter(self, filter_name):
        # note the use Python's eval() builtin here to return function 
object
        real_filter = eval("ImageFilter." + filter_name)
        return real_filter

    def apply_filter(self, filter_name):
        print "Applying filter: " + filter_name
        filter_callable = self._get_filter(filter_name)
        # prevent calling non-fixed filters for now
        if filter_name in self.fixed_filters:
            temp_img = self.image.filter(filter_callable)
        else:
            print "Can't apply non-fixed filter now."
        return temp_img

    def run_fixed_filters_demo(self):
        self._make_temp_dir()
        for ffilter in self.fixed_filters:
            temp_img = self.apply_filter(ffilter)
            temp_img.save(self._get_temp_name(ffilter))
        print "Images are in: {0}".format((self.ff_tempdir),)

if __name__ == "__main__":
    assert len(sys.argv) == 2
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    demo_image = sys.argv[1]
    demo = DemoPIL(demo_image)
    # will create set of images in temporary folder
    demo.run_fixed_filters_demo()

We can run this easily from the command prompt:

$ pythonch06_rec01_01_pil_demo.py image.jpeg

We packed our little demo in the DemoPIL class, so we can extend it easily while sharing 
the common code around the run_fixed_filters_demo demo function. Common code 
here includes opening the image file, testing if the file is really a file, creating a temporary 
directory to hold our filtered images, building the filtered image filename, and printing useful 
information to the user. This way the code is organized in a better manner, and we can easily 
focus on our demo function, without touching other parts of the code.

This demo will open our image file and apply every fixed filter available in ImageFilter to it 
and save that new filtered image in a unique temporary directory. At the end of the process, 
the script prints the path of the temporary directory used so that we can check the output of 
the filters.

As an optional exercise, try extending this demo class to perform other filters available in 
ImageFilter on the given image.

How to do it...
The example in this section shows how we can process all the images in a certain folder. 
We specify a target path, and the program that reads all the image files in that target path 
(images folder) resizes them to a specified ratio (0.1 in this example), and saves each one  
in a target folder called thumbnail_folder:

import os
import sys
from PIL import Image

class Thumbnailer(object):
    def __init__(self, src_folder=None):
        self.src_folder = src_folder
        self.ratio = .3
        self.thumbnail_folder = "thumbnails"

    def _create_thumbnails_folder(self):
        thumb_path = os.path.join(self.src_folder, self.thumbnail_
folder)
        if not os.path.isdir(thumb_path):
            os.makedirs(thumb_path)
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    def _build_thumb_path(self, image_path):
        root = os.path.dirname(image_path)
        name, ext = os.path.splitext(os.path.basename(image_path))
        suffix = ".thumbnail"
        return os.path.join(root, self.thumbnail_folder, name + suffix 
+ ext)

    def _load_files(self):
        files = set()
        for each in os.listdir(self.src_folder):
            each = os.path.abspath(self.src_folder + '/' + each)
            if os.path.isfile(each):
                files.add(each)
    return files

    def _thumb_size(self, size):
        return (int(size[0] * self.ratio), int(size[1] * self.ratio))

    def create_thumbnails(self):
        self._create_thumbnails_folder()
        files = self._load_files()

        for each in files:
            print "Processing: " + each
            try:
                img = Image.open(each)
                thumb_size = self._thumb_size(img.size)
                resized = img.resize(thumb_size, Image.ANTIALIAS)
                savepath = self._build_thumb_path(each)
                resized.save(savepath)
            except IOError as ex:
                print "Error: " + str(ex)

if __name__ == "__main__":
    # Usage:
    # ch06_rec01_02_pil_thumbnails.py my_images
    assert len(sys.argv) == 2
    src_folder = sys.argv[1]

    if not os.path.isdir(src_folder):
        print "Error: Path '{0}' does not exits.".format((src_folder))
        sys.exit(-1)
    thumbs = Thumbnailer(src_folder)
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    # optionally set the name of each thumbnail folder relative to 
*src_folder*.
    thumbs.thumbnail_folder = "THUMBS"

    # define ratio to resize image to
    # 0.1 means the original image will be resized to 10% of its size
    thumbs.ratio = 0.1 
    
    # will create set of images in temporary folder
    thumbs.create_thumbnails()

How it works...
For the given folder src_folder, we load all the files in this folder and try to load each file 
using Image.open(); this is the logic of the create_thumbnails() function. If the file 
we try to load is not an image, IOError will be thrown, and it will print this error and skip to the 
next file in the sequence.

If we want to have more control over which files we load, we should change the  
_load_files() function to only include files with a certain extension (file type):

for each in os.listdir(self.src_folder):
    if os.path.isfile(each) and os.path.splitext(each) is in 
('.jpg','.png'):
        self._files.add(each)

This is not foolproof as the file extension does not define the file type, it just helps the 
operating system to attach a default program to the file. But it works in the majority of cases 
and is simpler than reading a file header to determine the file content (which still does not 
guarantee that the file really is the first couple of bytes it says is).

There's more...
With PIL, although not used very often, we can easily convert images from one format to 
another. This is achievable with two simple operations: first, open an image in a source format 
using open(), and then save that image in another format using save(). The format is 
defined either implicitly via the filename extension (.png or .jpeg) or explicitly via the format 
of the argument passed to the save() function.
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Plotting with images
Images can be used to highlight the strengths of your visualization in addition to pure data 
values. Many examples have proven that by using symbolic images, we map deeper into the 
viewer's mental model, thereby helping the viewer to remember the visualizations better and 
for a longer time. One way to do this is to place images where your data is, to map the values 
to what they represent. The matplotlib library is capable of delivering this functionality, and 
here we demonstrate how to do it. 

Getting ready
We will use the fictional example from the story The Gospel of the Flying Spaghetti Monster, 
by Bobby Henderson, where the author correlates the number of pirates with the sea-surface 
temperature. To highlight this correlation, we will display the size of the pirate ship proportional 
to the value representing the number of pirates in the year the sea-surface temperature  
is measured.

We will use Python matplotlib library's ability to annotate using images and text with advanced 
location settings, as well as arrow capabilities.

All the files required in the following recipe are available in the source code repository in the 
Chapter06 folder.

How to do it...
The following example shows how to add an annotation to a chart using images and text:

import matplotlib.pyplot as plt
from matplotlib._png import read_png
from matplotlib.offsetbox import TextArea, OffsetImage, \
     AnnotationBbox

def load_data():
    import csv
    with open('pirates_temperature.csv', 'r') as f:
        reader = csv.reader(f)
        header = reader.next()
        datarows = []
        for row in reader:
            datarows.append(row)
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    return header, datarows

def format_data(datarows):
    years, temps, pirates = [], [], []
    for each in datarows:
        years.append(each[0])
        temps.append(each[1])
        pirates.append(each[2])
    return years, temps, pirates

After we have defined helper functions, we can approach the construction of the figure object 
and add subplots. We will annotate these for every year in the collection of years using the 
image of the ship, scaling the image to the appropriate size:

if __name__ == "__main__":
    fig = plt.figure(figsize=(16,8))
    ax = plt.subplot(111)  # add sub-plot

    header, datarows = load_data()
    xlabel, ylabel = header[0], header[1]
    years, temperature, pirates = format_data(datarows)
    title = "Global Average Temperature vs. Number of Pirates"

    plt.plot(years, temperature, lw=2)
    plt.xlabel(xlabel)
    plt.ylabel(ylabel)    
    
    # for every data point annotate with image and number
    for x in xrange(len(years)):
        
        # current data coordinate
        xy = years[x], temperature[x]
        
        # add image
        ax.plot(xy[0], xy[1], "ok")
        
        # load pirate image 
        pirate = read_png('tall-ship.png')
        
        # zoom coefficient (move image with size) 
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        zoomc = int(pirates[x]) * (1 / 90000.)
        
        # create OffsetImage 
        imagebox = OffsetImage(pirate, zoom=zoomc)
        
        # create anotation bbox with image and setup properties
        ab = AnnotationBbox(imagebox, xy,
                        xybox=(-200.*zoomc, 200.*zoomc),
                        xycoords='data',
                        boxcoords="offset points",
                        pad=0.1,
                        arrowprops=dict(arrowstyle="->",
                            connectionstyle="angle,angleA=0,angleB=-
30,rad=3")
                        )
        ax.add_artist(ab)

        # add text
        no_pirates = TextArea(pirates[x], minimumdescent=False)
        ab = AnnotationBbox(no_pirates, xy,
                        xybox=(50., -25.),
                        xycoords='data',
                        boxcoords="offset points",
                        pad=0.3,
                        arrowprops=dict(arrowstyle="->",
                            connectionstyle="angle,angleA=0,angleB=-
30,rad=3")
                        )
        ax.add_artist(ab)

    plt.grid(1)
    plt.xlim(1800, 2020)
    plt.ylim(14, 16)
    plt.title(title)

    plt.show()
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The preceding code should give the following plot:

How it works...
We start by creating a figure of a decent size, that is, 16 x 8. We need this size to fit the 
images we want to display. Now, we load our data from the file, using the csv module. 
Instantiating the csv reader object, we can iterate over the data from the file row by row.  
Note that the first row is special, it is the header describing our columns. As we have  
plotted years on the x axis and temperature on the y axis, we read that:

xlabel, ylabel, _ = header

And use the following lines:

plt.xlabel(xlabel)
plt.ylabel(ylabel)

We used a neat Python convention here to unpack the header into three 
variables, where using _ for variable name, we indicate that we are not 
interested in the value of that variable.

We return the header and datarows lists from the load_data function to the main caller.

Using the format_data() function, we read every item in the list and add each separate 
entity (year, temperature, and number of pirates) into the relevant ID list for that entity.



Plotting Charts with Images and Maps

170

Year is displayed along the x axis, while temperature is on the y axis. The number of pirates is 
displayed as an image of a pirate ship, and also to add precision the value is displayed.

We plot year/temperature values using the standard plot() function, not adding anything 
more, apart from making the line a bit wider (2 pt).

We proceed then to add one image for every measurement and to illustrate the 
number of pirates for a given year. For this, we loop over the range of values of length 
(range(len(years))), plotting one black point on each year/temperature coordinate:

ax.plot(xy[0], xy[1], "ok")

The image of the ship is loaded from the file into a suitable array format using the read_png 
helper function:

pirate = read_png('tall-ship.png')

We then compute the zoom coefficient (zoomc) to enable us to scale the size of the image in 
proportion to the number of pirates for the current (pirates[x]) measurement. We also use 
the same coefficient to position the image along the plot.

The actual image is then instantiated inside OffsetImage—the image container with relative 
position to its parent (AnnotationBbox).

AnnotationBbox is an annotation-like class, but instead of displaying just text as with the 
Axes.annotate function, it can display other OffsetBox instances. This allows us to load 
an image or text object in an annotation and locate it at a particular distance from the data 
point, as well as allowing us to use the arrowing capabilities (arrowprops) to precisely point 
to an annotated data point.

We supply the AnnotateBbox constructor with certain arguments:

 f Imagebox: This must be an instance of OffsetBox (for example, OffsetImage); it 
is the content of the annotation box

 f xy: This is the data point coordinate that the annotation relates to

 f xybox: This defines the location of the annotation box

 f xycoords: This defines what coordinating system is used by xy (for example, data 
coordinates)

 f boxcoords: This defines what coordinating system is used by xybox (for example, 
offset from the xy location)

 f pad: This specifies the amount of padding

 f arrowprops: This is the dictionary of properties for drawing an arrow connection 
from an annotation-bounding box to a data point
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We add text annotation to this plot, using the same data items from the pirates list with a 
slightly different relative position. Most of the arguments of the second AnnotationBbox are 
the same—we adjust xybox and pad to locate the text to the opposite side of the line. The text 
is inside the TextArea class instance. This is similar to what we do with the image, but with 
text time.TextArea and OffsetImage inherit from the same OffsetBox parent class.

We set the text in this TextArea instance to no_pirates and put it in our 
AnnotationBbox.

Displaying images with other plots in the 
figure

This recipe will show how we can make simple yet effective usage of Python matplotlib library 
to process image channels and display the per-channel histogram of an external image.

Getting ready
We have provided some sample images, but the code is ready to load any image file, provided 
it is supported by matplotlib's imread function.

In this recipe, you will learn how to combine different matplotlib plots to achieve functionality 
of a simple image viewer that displays an image histogram for red, green, and blue channels.

How to do it...
To show how to build an image histogram viewer, we are going to implement a simple class 
named ImageViewer, and that class will contain helper methods to:

1. Load image.

2. Separate RGB channels from image matrix.

3. Configure figure and axes (subplots).

4. Plot channel histograms.

5. Plot the image.

The following code shows how to build an image histogram viewer:

import matplotlib.pyplot as plt
import matplotlib.image as mplimage
import matplotlib as mpl
import os

class ImageViewer(object):
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    def __init__(self, imfile):
        self._load_image(imfile)
        self._configure()

        self.figure = plt.gcf()
        t = "Image: {0}".format(os.path.basename(imfile))
        self.figure.suptitle(t, fontsize=20)

        self.shape = (3, 2)

    def _configure(self):
        mpl.rcParams['font.size'] = 10
        mpl.rcParams['figure.autolayout'] = False
        mpl.rcParams['figure.figsize'] = (9, 6)
        mpl.rcParams['figure.subplot.top'] = .9

    def _load_image(self, imfile):
        self.im = mplimage.imread(imfile)

    @staticmethod
    def _get_chno(ch):
        chmap = {'R': 0, 'G': 1, 'B': 2}
        return chmap.get(ch, -1)
    def show_channel(self, ch):
        bins = 256
        ec = 'none'
        chno = self._get_chno(ch)
        loc = (chno, 1)
        ax = plt.subplot2grid(self.shape, loc)
        ax.hist(self.im[:, :, chno].flatten(), bins, color=ch, ec=ec,\
                label=ch, alpha=.7)
        ax.set_xlim(0, 255)
        plt.setp(ax.get_xticklabels(), visible=True)
        plt.setp(ax.get_yticklabels(), visible=False)
        plt.setp(ax.get_xticklines(), visible=True)
        plt.setp(ax.get_yticklines(), visible=False)
        plt.legend()
        plt.grid(True, axis='y')
        return ax

    def show(self):
        loc = (0, 0)
        axim = plt.subplot2grid(self.shape, loc, rowspan=3)
        axim.imshow(self.im)
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        plt.setp(axim.get_xticklabels(), visible=False)
        plt.setp(axim.get_yticklabels(), visible=False)
        plt.setp(axim.get_xticklines(), visible=False)
        plt.setp(axim.get_yticklines(), visible=False)
        axr = self.show_channel('R')
        axg = self.show_channel('G')
        axb = self.show_channel('B')
        plt.show()

if __name__ == '__main__':
    im = 'images/yellow_flowers.jpg'
    try: 
        iv = ImageViewer(im)
        iv.show()
    except Exception as ex:
        print ex

How it works...
Reading from the end of the code, we see hard-coded filenames. These can be swapped by 
loading the argument from the command line and parsing the given argument into the im 
variable using the sys.argv sequence.

We instantiate the ImageViewer class with the provided path to an image file. During object 
instantiation, we try to load an image file into an array, configure the figure via the rcParams 
dictionary, set the figure size and title, and define the object fields (self.shape) to be used 
inside the object's methods.

The main method here is show(), which creates a layout for the figure and loads the image 
arrays into the main (left column) subplot. We hide any ticks and tick labels as this is the 
actual image, where we don't have to use the ticks.

We then call the private show_channel() method for each of the red, green, and blue 
channels. This method also creates new subplot axes, this time in the right-hand side column, 
with each one in a separate row. We plot the histogram for each channel in a separate subplot.

We also set up a little plot to remove unnecessary x ticks, and add a legend in case we 
want to print this figure in a non-color environment, in which case we can discern channel 
representation even in those environments.
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After we run this code, we will get the following screenshot:

There's more...
The use of the histogram plot type is just a choice for this image viewer example. We could 
have used any of the matplotlib supported plot types. Another real-world example would be to 
plot an EEG or similar medical records where we would want to display slice as an image, the 
time series of the EEG recorded as a line plot, and also additional meta information about the 
data shown, that would probably go into matplotlib.text.Text artists.

Having the ability to interact with the user GUI event, matplotlib's figure allows us also to 
implement interaction where we would want to zoom into all plots if we manually zoom on  
one plot only. That would be another usage where we want to display an image and zoom  
into it while also zooming into other displayed plots in the currently active figure. An idea 
would be to use motion_notify_event to call a function that will update x and y limits  
for all axes (subplots) in the current figure.

Plotting data on a map using Basemap
Probably the best geospatial visualizations are done by overlaying the data over the map. 
Whether the whole globe, a continent, a state, or even the sky, it is one of the easiest ways for a 
viewer to comprehend the relationship between the data and the geography it has displayed.
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In this recipe, you will learn how to project data on a map using matplotlib's Basemap toolkit.

Getting ready
As we are already familiar with matplotlib as our plotting engine, we can extend that to 
matplotlib's capability to use other toolkits, one such example being the Basemap  
mapping toolkit.

Basemap itself doesn't do any plotting. It just transforms given geospatial coordinates to map 
projection and gives that data to matplotlib for plotting.

First, we need to install the Basemap toolkit. If you are using EPD, Basemap is already 
installed. If you are on Linux, it is best to use native package managers to install the package 
containing Basemap. On Ubuntu, for example, the package is called python-mpltoolkits.
basemap and can be installed using standard package manager:

$ sudo apt-get install python-mpltoolkits.basemap

On Mac OS X, it is recommended to use EPD, although installation using popular package 
managers such as Homebrew, Fink, and pip is also possible.

How to do it...
Here is an example of how to use the Basemap toolkit to plot simple Mercator projection 
within a specific region, specified by longitude, latitude coordinate pairs:

1. We instantiate Basemap defining the projection to be used (merc for Mercator).

2. We define (in the same Basemap constructor) longitude and latitude for the lower-left 
and upper-right corners of a map.

3. We set up the Basemap instance map, to draw coastlines and countries.

4. We set up the Basemap instance map to fill continents and draw the map boundary.

5. We instruct the Basemap instance map to draw meridians and parallels.

The following code shows how to use Basemap toolkit to plot a simple Mercator projection:

from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
import numpy as np

map = Basemap(projection='merc', 
              resolution = 'h', 
              area_thresh = 0.1,
    llcrnrlon=-126.619875, llcrnrlat=31.354158,
    urcrnrlon=-59.647219, urcrnrlat=47.517613)
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map.drawcoastlines()
map.drawcountries()
map.fillcontinents(color='coral', lake_color='aqua')
map.drawmapboundary(fill_color='aqua')

map.drawmeridians(np.arange(0, 360, 30))
map.drawparallels(np.arange(-90, 90, 30))

plt.show()

This will give a recognizable portion of our globe:

Now that we know how to plot a map, we need to know how to plot data on top of this map. 
If we recall that Basemap is a big transcoder of longitude and latitude pairs into current map 
projections, we will recognize that all we need is a dataset that contains longitude and latitude 
that we can pass to Basemap for projecting, before plotting over with matplotlib. We use the 
cities.shp and cities.shx files to load the coordinates of US cities and project them 
onto the map.

The file is provided in the Chapter06 folder of the code repository. Here's the example of how 
to achieve this:

from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
import numpy as np

map = Basemap(projection='merc', 
              resolution = 'h', 
              area_thresh = 100,
    llcrnrlon=-126.619875, llcrnrlat=25,
    urcrnrlon=-59.647219, urcrnrlat=55)
 
shapeinfo = map.readshapefile('cities','cities')
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x, y = zip(*map.cities)

# build a list of US cities
city_names = []
for each in map.cities_info:
    if each['COUNTRY'] != 'US':
        city_names.append("")
    else:
        city_names.append(each['NAME'])

map.drawcoastlines()
map.drawcountries()
map.fillcontinents(color='coral', lake_color='aqua')
map.drawmapboundary(fill_color='aqua')
map.drawmeridians(np.arange(0, 360, 30))
map.drawparallels(np.arange(-90, 90, 30))

# draw city markers
map.scatter(x,y,25, marker='o',zorder=10)

# plot labels at City coords.
for city_label, city_x, city_y in zip(city_names, x, y):
    plt.text(city_x, city_y, city_label)

plt.title('Cities in USA') 

plt.show()

How it works...
The basics of Basemap usage consists of importing the main module and instantiating a 
Basemap class with desired properties. What we must specify during instantiations are the 
projections to be used and the portion of the globe that we want to work with.

Additional configuration can be applied before drawing the map and displaying the figure 
window with matplotlib.pyplot.show().

More than a dozen (or 32, to be precise) different projections are supported in Basemap. 
Most of them are very narrow-usage oriented, but some are more general and apply to most 
common map visualizations.

We can easily see what projections are available by asking the Basemap module itself:

import mpl_toolkits.basemap
print mpl_toolkits.basemap.supported_projections
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mbtfpq          McBryde-Thomas Flat-Polar Quartic
aeqd             Azimuthal Equidistant
sinu             Sinusoidal
poly             Polyconic
omerc            Oblique Mercator
gnom             Gnomonic
moll             Mollweide
lcc              Lambert Conformal
tmerc           Transverse Mercator
nplaea           North-Polar Lambert Azimuthal
gall            Gall Stereographic Cylindrical
npaeqd           North-Polar Azimuthal Equidistant
mill             Miller Cylindrical
merc             Mercator
stere            Stereographic
eqdc             Equidistant Conic
cyl              Cylindrical Equidistant
npstere        North-Polar Stereographic
spstere        South-Polar Stereographic
hammer          Hammer
geos             Geostationary
nsper         Near-Sided Perspective
eck4            Eckert IV
aea              Albers Equal Area
kav7             Kavrayskiy VII
spaeqd           South-Polar Azimuthal Equidistant
ortho            Orthographic
cass             Cassini-Soldner
vandg            van der Grinten
laea             Lambert Azimuthal Equal Area
splaea           South-Polar Lambert Azimuthal
robin            Robinson

Usually, we plot the whole projection, if nothing is specified, and some reasonable defaults  
are used.
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To zoom in on a specific region of the map, we specify the latitude and longitude of the lower-
left and upper-right corners of the region you want to show. For this example, we will use the 
Mercator projection.

Here we see how the arguments' names are shortened descriptions:

llcrnrlon: This is lower-left corner longitude

llcrnrlat: This is lower-left corner latitude

urcrnrlon: This is upper-right corner longitude

urcrnrlat: This is upper-right corner latitude

There's more...
We have just scratched the surface of the capabilities of Basemap toolkit. More examples can 
be found in the official documentation at http://matplotlib.org/basemap/users/
examples.html.

Most of the data used in the examples in the official Basemap documentation is located on 
remote servers and in a specific format. To efficiently fetch this data, NetCDF data format is 
used. NetCDF is a common data format designed with network efficiency in mind. It allows a 
program to fetch as much data as is needed, even when the whole dataset is very large, which 
makes using this format very practical. We don't have to download and store large datasets 
locally every time we want to use them and every time they change.

Plotting data on a map using the Google 
Map API

In this recipe, we will diverge from the desktop environment and show how we can output for 
the Web. Although the main language for the web frontend is not Python but HTML, CSS, and 
JavaScript, we can still use Python for heavy lifting: fetch data, process it, perform intensive 
computations, and render data in a format(s) suitable for web output, that is, create HTML 
pages with the required JavaScript version to render our visualization(s).

Getting ready
We will use Google Data Visualization Library for Python to help us prepare data for the 
frontend interface, where we will use another Google Visualization API to render data in the 
desired visualization, that is, a map and a table.

http://matplotlib.org/basemap/users/examples.html
http://matplotlib.org/basemap/users/examples.html
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Before we start, we need to install the google-visualization-python module. 
Download the latest stable version from Github and install the module. The following actions 
demonstrate how to do this:

$ git clone https://github.com/google/google-visualization-python.git

$ cd google-visualization-python/

$ sudo python setup.py install

Note that we have to become a super user (that is, gain administrator privileges) to install this 
module on our system.

A better option, if you don't want to pollute your OS packages, is to create a virtualenv 
environment to install the packages just for this recipe. We explained how to deal with 
virutalenv environments in Chapter 1, Preparing Your Working Environment.

For the frontend library we don't have to install anything, as that library will be loaded from the 
web page directly from the Google servers.

We need active access to the Internet for this recipe, because the output of it will be a web 
page that will, when opened in a web browser, pull the JavaScript libraries directly from 
remote servers.

In this recipe, you will learn how to use Google Data Visualization Library for Python and 
JavaScript to combine them for creating web visualization.

How to do it...
The following example shows how to visualize Disposable Median Monthly Salary per 
Country on the world map projection using Google Geochart and Table Visualization, loading 
the data from a .csv file using Python and the gdata_viz module. We will:

1. Implement a function to act as a template generator.

2. Use the csv module to load the data from the local .csv file.

3. Use DataTable to describe the data and LoadData to load the data from the 
Python dictionary.

4. Render the output to a web page.

This can be achieved with the following code:

import csv
import gviz_api

def get_page_template():
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    page_template = """
    <html>
      <script src="https://www.google.com/jsapi" type="text/
javascript"></script>
      <script>
        google.load('visualization', '1', {packages:['geochart', 
'table']});

        google.setOnLoadCallback(drawMap);
        function drawMap() {
            var json_data = new google.visualization.DataTable(%s, 
0.6);
            
            var options = {colorAxis: {colors: ['#eee', 'green']}};
            var mymap = new google.visualization.GeoChart(
                                document.getElementById('map_div'));
            mymap.draw(json_data, options);
            
            var mytable = new google.visualization.Table(
                                document.getElementById('table_div'));
            mytable.draw(json_data, {showRowNumber: true})
        }
      </script>
      <body>
        <H1>Median Monthly Disposable Salary World Countries</H1>

        <div id="map_div"></div>
        <hr />
        <div id="table_div"></div>

        <div id="source">
        <hr />
        <small>
        Source: 
        <a href="http://www.numbeo.com/cost-of-living/prices_by_
country.jsp?displayCurrency=EUR&itemId=105">
        http://www.numbeo.com/cost-of-living/prices_by_country.jsp?dis
playCurrency=EUR&itemId=105
        </a>
        </small>
        </div>
      </body>
    </html>
    """
    return page_template
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def main():
    # Load data from CVS file
    afile = "median-dpi-countries.csv"
    datarows = []
    with open(afile, 'r') as f:
        reader = csv.reader(f)
        reader.next()  # skip header
        for row in reader:
            datarows.append(row)

    # Describe data
    description = {"country": ("string", "Country"),
                       "dpi": ("number", "EUR"), }

    # Build list of dictionaries from loaded data
    data = []
    for each in datarows:
        data.append({"country": each[0],
                     "dpi": (float(each[1]), each[1])})

    # Instantiate DataTable with structure defined in 'description'
    data_table = gviz_api.DataTable(description)

    # Load it into gviz_api.DataTable
    data_table.LoadData(data)

    # Creating a JSon string
    json = data_table.ToJSon(columns_order=("country", "dpi"),
                             order_by="country", )
    
    # Put JSON string into the template
    # and save to output.html
    with open('output.html', 'w') as out:
        out.write(get_page_template() % (json,))

if __name__ == '__main__':
    main()
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This will produce the output.html file, which we can open in our favorite web browser.  
The page should look like the following screenshot:

How it works...
The main entry point here is our main() function. First, we use the csv module to load our 
data. This data is obtained from the public website www.numbeo.com, and the data is put in 
the .csv format. The final file is available in the repository for this chapter in the Chapter06 
folder. To be able to use Google Data Visualization Library, we need to describe the data to it. 
We describe data using the Python dictionaries, where we define the ID of the columns, their 
data type, and an optional label. In the following example, the data is defined in this constraint:

{"name": ("data_type", "Label")}:
description = {"country": ("string", "Country"),
                       "dpi": ("number", "EUR"), }

www.numbeo.com
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Then we need to fit our loaded .csv rows in this format. We will build a list of dictionaries in 
the data variable.

Now we have everything to instantiate our data_table with gviz_data.DataTable with 
the described structure. We then load the data into it and output in the JSON format to our 
page_template.

The get_page_template() function contains the other part of this equation. It contains 
a client (frontend) code to produce an HTML web page and a JavaScript code to load Google 
Data Visualization Library from Google servers. The line that loads the Google JavaScript  
API is:

<script src="https://www.google.com/jsapi"  
  type="text/javascript"></script>

After this follows another pair of <script>...</script> tags that contains an additional 
setup. First, we load Google Data Visualization Library and the required package—geochart 
and table:

google.load('visualization', '1', {packages:['geochart',  
  'table']});

Then we set up a function that will be called when the pages are loaded. This event in the web 
world is registered as onLoad, so callback is set up via setOnLoadCallback function:

google.setOnLoadCallback(drawMap);

This defines that when a page is loaded, the Google instance will call the custom function 
drawMap() that we defined. The drawMap function loads a JSON string into the JavaScript 
version of the DataTable instance:

var json_data = new google.visualization.DataTable(%s, 0.6);

Following that, we create a geochart instance in an HTML element with the ID map_div:

var mymap = new google.visualization.GeoChart(
document.getElementById('map_div'));

Draw the map using json_data and provided custom options:

mymap.draw(json_data, options);

Similarly, Google's JavaScript table is rendered below the map:

var mytable = new google.visualization.Table(
document.getElementById('table_div'));
mytable.draw(json_data, {showRowNumber: true})
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We save this output as an HTML file that we can open in a browser. This is not so useful for 
the dynamic rendering of a web service. There is a better option for this—to output the HTTP 
response directly from Python, and thus build a background service responding to client web 
requests with JSON that a client can load and render.

If you want to understand more on reading HTTP responses, please 
read more on HTTP Protocol and Response messages at http://
en.wikipedia.org/wiki/Hypertext_Transfer_
Protocol#Response_message.

We do this by replacing the ToJson() call with the ToJSonResponse() with the same 
signature. This call will respond with a proper HTTP response containing the payload—our 
JSON-ified data_table ready to be consumed by our JavaScript client.

There's more...
This, of course, is just one example of how we can combine Python as a backend language, 
sitting on our server, doing the data fetch and processing, while the frontend is left to the 
universal HTML/JavaScript/CSS set of languages. This enables us to provide interactive and 
dynamic interfaces with visualizations to a wide audience without requiring them to install 
anything (well, apart from a web browser, but that is usually installed on a computer or 
smartphone). Saying that, we must note that the quality of these outputs is not as high  
as that of matplotlib; the strength of matplotlib lies in its high-quality output.

To work more with the web (and Python), you would have to learn more about the web 
technologies and languages used. This book does not cover such topics but does give an 
insight into how to achieve one possible solution using well-known third-party libraries that 
produce pleasing web outputs, with as little web coding as possible.

More documentation is available on the Google Developer portal at 
https://developers.google.com/chart/interactive/docs/
dev/gviz_api_lib.

Generating CAPTCHA images
Although this is not strictly data visualization in usual terms, the ability to generate images 
using Python comes in handy in many cases, and this is one of them.

In this recipe, we will be covering the generation of random images to tell humans and 
computers apart—CAPTCHA image.

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Response_message
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Response_message
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Response_message
https://developers.google.com/chart/interactive/docs/dev/gviz_api_lib
https://developers.google.com/chart/interactive/docs/dev/gviz_api_lib
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Getting ready
CAPTCHA stands for Completely Automated Public Turing test to tell Computers and 
Humans Apart, and is trademarked by Carnegie Mellon University. This test is used to 
challenge computer programs (usually referred to as bots) that automatically fill various 
web forms that are primarily targeted at humans and that should not be automated. Usual 
examples are sign-up forms, login forms, surveys, and similar.

CAPTCHA itself can take various forms, but the most common form consists of a challenge 
where a human should read an image with distorted characters and numbers and type in the 
result in the related response field.

In this recipe, you will learn how to harness Python's Imaging Library to generate images, 
render lines and points, and also render text.

How to do it...
We will show you what is involved in creating a personal and simple CAPTCHA generator by 
performing the following steps:

1. Define size, text, font size, background color, and CAPTCHA length.

2. Pick random characters from the English alphabet.

3. Draw those on the image using defined font and colors.

4. Add some noise in the form of lines and arcs.

5. Return the image object to the caller together with the CAPTCHA challenge.

6. Show the generated image to the user.

The following code shows how to create a personal and simple CAPTCHA generator:

from PIL import Image, ImageDraw, ImageFont
import random
import string

class SimpleCaptchaException(Exception):
    pass

class SimpleCaptcha(object):
    def __init__(self, length=5, size=(200, 100), fontsize=36,
                 random_text=None, random_bgcolor=None):
        self.size = size
        self.text = "CAPTCHA"
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        self.fontsize = fontsize
        self.bgcolor = 255
        self.length = length

        self.image = None  # current captcha image

        if random_text:
            self.text = self._random_text()

        if not self.text:
            raise SimpleCaptchaException("Field text must not be 
empty.")

        if not self.size:
            raise SimpleCaptchaException("Size must not be empty.")

        if not self.fontsize:
            raise SimpleCaptchaException("Font size must be defined.")

        if random_bgcolor:
            self.bgcolor = self._random_color()

    def _center_coords(self, draw, font):
        width, height = draw.textsize(self.text, font)
        xy = (self.size[0] - width) / 2., (self.size[1] - height) / 2.
        return xy

    def _add_noise_dots(self, draw):
        size = self.image.size
        for _ in range(int(size[0] * size[1] * 0.1)):
            draw.point((random.randint(0, size[0]),
                        random.randint(0, size[1])),
                        fill="white")
        return draw

    def _add_noise_lines(self, draw):
        size = self.image.size
        for _ in range(8):
            width = random.randint(1, 2)
            start = (0, random.randint(0, size[1] - 1))
            end = (size[0], random.randint(0,size[1]-1))
            draw.line([start, end], fill="white", width=width)            
        for _ in range(8):
            start = (-50, -50)
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            end = (size[0] + 10, random.randint(0, size[1]+10))
            draw.arc(start + end, 0, 360, fill="white")
        return draw

    def get_captcha(self, size=None, text=None, bgcolor=None):
        if text is not None:
            self.text = text
        if size is not None:
            self.size = size
        if bgcolor is not None:
            self.bgcolor = bgcolor

        self.image = Image.new('RGB', self.size, self.bgcolor)
        # Note that the font file must be present
        # or point to your OS's system font 
        # Ex. on Mac the path should be '/Library/Fonts/Tahoma.ttf'
        font = ImageFont.truetype('fonts/Vera.ttf', self.fontsize)
        draw = ImageDraw.Draw(self.image)
        xy = self._center_coords(draw, font)
        draw.text(xy=xy, text=self.text, font=font)
        
        # Add some dot noise
        draw = self._add_noise_dots(draw)
        
        # Add some random lines
        draw = self._add_noise_lines(draw)

        self.image.show()
        return self.image, self.text

    def _random_text(self):
        letters = string.ascii_lowercase + string.ascii_uppercase
        random_text = ""
        for _ in range(self.length):
            random_text += random.choice(letters)
        return random_text

    def _random_color(self):
        r = random.randint(0, 255)
        g = random.randint(0, 255)
        b = random.randint(0, 255)
        return (r, g, b)
if __name__ == "__main__":
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    sc = SimpleCaptcha(length=7, fontsize=36, random_text=True, 
random_bgcolor=True)
    sc.get_captcha()

This produces an image similar to the following:

How it works...
This example shows a process for using Python's imaging library to generate predefined 
images, to create a simple, yet effective, CAPTCHA generator.

We wrapped the functionality into one class SimpleCaptcha, because it gives us a safe 
space for future development. We also created a custom SimpleCaptchaException to 
accommodate future exception hierarchies.

If you are writing anything more than simple and quick scripts, it is always 
good to start writing and designing custom exception hierarchies for your 
domain, rather than using generic Python's standard exceptions. You will 
gain a lot in the readability and maintenance of the software.

Start reading from the main section. At the end of the code listing, we instantiate class giving 
settings of our future image as arguments to the constructor. Following that, we call the 
get_captcha method on the sc object. For this recipe's purposes, get_captcha shows 
the image object as a result, but we also return the image object to the potential caller of this 
method so it could make use of the result. The usage can vary; the caller could either save 
the image on the file, or if this was a web application, return the image stream and written 
challenge to the client requesting this CAPTCHA.

The important thing to note is that in order to finish the challenge-response process of the 
CAPTCHA test, we must return the CAPTCHA string generated on the image as text so that the 
caller can compare the user's response with the expected values.

The get_captcha method first verifies the input arguments, in order to override the class 
defaults if the user provides custom values. After that, a new image object is instantiated by 
Image.new. This object is saved in self.image, where we use it to draw and write text. 
Having written the text to the image, we add the noise of randomly placed points and lines,  
as well as some arc segments.
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These tasks are carried out by the _add_noise_points and _add_noise_lines 
methods. The first one loops a few times and adds a point to a random location on the image, 
not too close to the edges of the image, and the latter one draws lines from the left-hand side 
of the image to the right-hand side of the image.

There's more...
We constructed this class using some assumptions about its use. We assumed that the user 
will just want to accept our default settings (that is, a random seven characters on a random 
background color) and receive the result from it. That is the reasoning behind placing helper 
functions in the constructor to set random text and random background color. If the most 
frequent and effective usage is to always override configuration, then we want to remove 
these operations from the constructor and place them in separate calls.

For example, maybe a user wants to always use English words as the CAPTCHA challenge.  
If this is the case, we want to be able to just call a method to provide us with results like that. 
This method could be get_english_captcha and with the random logic of this constructor, 
we would then construct that method to pick random words from the provided English 
dictionary. On a Unix system, there is a common English dictionary inside /usr/share/
dict/words that we could use for this:

def get_english_captcha(self):
    words = '/usr/share/dict/words'
    with open(words, 'r') as wf:
        words = wf.readlines()
        aword = random.choice(words)
        aword = aword.strip()  # remove newline and spaces
    return self.get_captcha(text=aword)

Overall, the example of the CAPTCHA generation is not production quality and should not be 
used without adding more protection and randomness, such as letter rotation.

If you need to protect your web forms from bots, there are already third-party Python modules 
and libraries that you could use. There are even specialized modules built for the existing web 
frameworks.

There are event web services such as reCAPTCHA (http://www.google.com/recaptcha) 
with an already proven Python module recaptcha-client (https://pypi.python.org/
pypi/recaptcha-client) that you can sign up and use. It does not require any imaging 
libraries because the image is pulled directly from the reCAPTCHA web service, but it has 
other dependencies such as pycrypto. Using this web service and library, you are also helping 
books scanned using Optical Character Recognition (OCR) from the Google Books project or 
old editions of The New York Times. Read more on the reCAPTCHA website.

http://www.google.com/recaptcha
https://pypi.python.org/pypi/recaptcha-client
https://pypi.python.org/pypi/recaptcha-client
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Using the Right Plots  

to Understand Data
In this chapter, you will cover the following recipes:

 f Understanding logarithmic plots

 f Understanding spectrograms

 f Creating stem plot

 f Drawing streamlines of vector flow

 f Using colormaps

 f Using scatter plots and histograms

 f Plotting the cross correlation between two variables

 f Importance of autocorrelation

Introduction
In this chapter, we will focus more on understanding what we want to say with the data that 
we are presenting, and how to say it effectively. We will present some new techniques and 
plots, but all will be underlined by understanding of the information we want to convey to the 
user. Let's ask the questions. Why do we want to present information in this state? This is the 
most important question that should be asked during the data exploration phase. If we miss 
the opportunity to understand the data and present it in a certain way, the viewer, then, is not 
going to understand the data correctly, for sure.
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Understanding logarithmic plots
More often than not, while reading daily newspapers and similar articles, one can find charts 
that are used by media organizations to misrepresent the facts. One usual example is using 
linear scales to create, so called, panic charts where constantly growing value is followed 
for long period of time (years) and starting values are smaller from latest one by several 
magnitudes. These values when visualized correctly, would (and usually should), produce 
linear or almost linear charts. This takes some panic out of the articles they illustrate.

Getting ready
With the logarithmic scale, the ratio of consecutive values is constant. This is important when 
we are trying to read log plots. With linear (arithmetic) scales, the constant is the distance 
between consecutive values. In other words, logarithmic plots have constant distance in 
orders of magnitude. We will see this illustrated on the following plots. The code used to 
produce this figure is explained here.

As a general rule of thumb, logarithmic scales should be used when the data presented has 
the following:

 f values that span several orders of magnitude

 f skewness toward large values (some points are much larger than the rest of the data)

 f you want to show the rate of change (growth rate) and not value of change

Don't blindly follow these rules, they are more like hints than rules. Always use your own 
judgment about the data in hand and requirements presented to you by the project or customer.

Depending on the data range, different log bases should be used. The standard base for the 
log is 10, but if the range of the data is smaller, a base of 2 can prove to be more useful as it 
will show more "resolution" within the smaller range.

If we have the range of data suitable for display on logarithmic scales, we will note that the 
values previously being too close to judge any difference are now well apart. This allows us to 
read the chart much easily than if we would present the data in linear scale.

The growth rate charts, where long-range time series data is collected, are where we want to 
see, not the absolute value measured at time point, but the growth in time. We will still get the 
absolute value information, but that information is of lower priority.

Also, if the data distribution has positive skew (for example, salaries), taking the logarithm of 
the value (salary) will help us fit the data into the model, as the logarithm transformation will 
give us more normal data distribution.
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How to do it...
We will exemplify this with a sample code that shows the same two dataset (one linear and 
one logarithmic in nature) on two different plots (in the same figure) using different scales 
(linear and logarithmic).

We will be performing the following steps with the help of the code mentioned after the steps:

1. Generate two simple datasets, y—exponential/logarithmic in nature, and z—linear  
in nature.

2. Create figure containing grid of four subplots.

3. Create two subplots containing the y dataset one in logarithmic scale and one in 
linear scale.

4. Create another two subplots containing z dataset, again, one logarithmic and the 
other linear.

Here is the code:

from matplotlib import pyplot as plt
import numpy as np

x = np.linspace(1, 10)
y = [10 ** el for el in x]
z = [2 * el for el in x]

fig = plt.figure(figsize=(10, 8))

ax1 = fig.add_subplot(2, 2, 1)
ax1.plot(x, y, color='blue')
ax1.set_yscale('log')
ax1.set_title(r'Logarithmic plot of $ {10}^{x} $ ')
ax1.set_ylabel(r'$ {y} = {10}^{x} $')
plt.grid(b=True, which='both', axis='both')

ax2 = fig.add_subplot(2, 2, 2)
ax2.plot(x, y, color='red')
ax2.set_yscale('linear')
ax2.set_title(r'Linear plot of $ {10}^{x} $ ')
ax2.set_ylabel(r'$ {y} = {10}^{x} $')
plt.grid(b=True, which='both', axis='both')
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ax3 = fig.add_subplot(2, 2, 3)
ax3.plot(x, z, color='green')
ax3.set_yscale('log')
ax3.set_title(r'Logarithmic plot of $ {2}*{x} $ ')
ax3.set_ylabel(r'$ {y} = {2}*{x} $')
plt.grid(b=True, which='both', axis='both')

ax4 = fig.add_subplot(2, 2, 4)
ax4.plot(x, z, color='magenta')
ax4.set_yscale('linear')
ax4.set_title(r'Linear plot of $ {2}*{x} $ ')
ax4.set_ylabel(r'$ {y} = {2}*{x} $')
plt.grid(b=True, which='both', axis='both')

plt.show()

This code will produce the following figure:

How it works...
We generate some sample data and two dependent variables—y and z. Variable y is expressed 
as exponential function of data (x), and variable z is simple linear function of x. This helps us 
illustrate different looks of linear and exponential charts.
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We then create grid of four subplots, where the top row subplots are of data (x, y) and bottom 
row are of data (x, z) pairs.

Looking from left-hand side, columns charts have logarithmic scales on the y-axis, while  
right-hand side columns are in linear scale. We set this using set_yscale('log') for  
each axis separately.

For every subplot, we set a title and label, where label also describes the function plotted.

With plt.grid(b=True, which='both', axis='both'), we turn the grid on for both 
axis and both the major and minor ticks.

We observe how linear functions are straight lines on linear plots, while logarithmic functions 
are straight lines on logarithmic plots.

Understanding spectrograms
A spectrogram is a time-varying spectral representation that shows how the spectral density 
of a signal varies with time.

It represents a spectrum of frequencies of the sound or other signal in a visual manner.  
It is used in various science fields, from sound fingerprinting like voice recognition to radar 
engineering and seismology.

Usually spectrogram layout is as following: x-axis represents time, y-axis represents frequency, 
and the third dimension is amplitude of a frequency-time pair, which is color coded. This is  
three-dimensional data, therefore, we can also create 3D plot where the intensity is represented 
as height on the z-axis. The problem with 3D charts is that humans are bad at understanding 
and comparing them. Also, they tend to take more space than 2D charts.

Getting ready
For serious signal processing, we would go into low level details to be able to detect patterns 
and auto fingerprint certain specific, but for this data visualization recipe we, will leverage a 
couple of well-known Python libraries to read in audio file, sample it, and spot a spectrogram.

In order to read .wav files to visualize sound, we need to do some prep work. We need to 
install the libsndfile1 system library for reading/writing audio files. This is done via the 
favorite package manager. For Ubuntu, you can use:

$ sudo apt-get install libsndfile1-dev.

It is important to install the dev package, which contains header files so pip can build the 
scikits.audiolab module.
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We can also install libasound, ALSA (Advanced Linux Sound Architecture) headers to 
avoid the runtime warning. This is optional, as we are not going to use features provided  
by the ALSA library. For Ubuntu, Linux issue the following command:

$ sudo apt-get install libasound2-dev

To install scikits.audiolab, which we will use to read .wav files, we will use pip:

$ pip install scikits.audiolab

Always remember to enter the virtual environment for your 
current project, as you don't want to dirty system libraries.

How to do it...
For this recipe, we will use prerecorded sound file test.wav that can be found in the file 
repository with this book. But we could also generate a sample, which we will try later.

In this following example, we perform the following steps in this order:

1. Read the .wav file that contains recorded sound sample

2. Define the length of the window used for Fourier transform—NFFT

3. Define the overlapping data points while sampling—noverlap

NFFT defines the number of data points used for computing the Discrete 
Fourier Transform in each block. The most efficient computation is then 
the NFFT is the power of two. The windows can overlap and the number 
of data points that are overlapped (that is, repeated) is defined by the 
noverlap argument.

import os
from math import floor, log

from scikits.audiolab import Sndfile
import numpy as np
from matplotlib import pyplot as plt
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# Load the sound file in Sndfile instance
soundfile = Sndfile("test.wav")

# define start/stop seconds and compute start/stop frames
start_sec = 0
stop_sec  = 5
start_frame = start_sec * soundfile.samplerate
stop_frame  = stop_sec * soundfile.samplerate

# go to the start frame of the sound object
soundfile.seek(start_frame)

# read number of frames from start to stop
delta_frames = stop_frame - start_frame
sample = soundfile.read_frames(delta_frames)

map = 'CMRmap'

fig = plt.figure(figsize=(10, 6), )
ax = fig.add_subplot(111)
# define number of data points for FT
NFFT = 128
# define number of data points to overlap for each block
noverlap = 65

pxx,  freq, t, cax = ax.specgram(sample, Fs=soundfile.samplerate,
                                 NFFT=NFFT, noverlap=noverlap,
                                 cmap=plt.get_cmap(map))
plt.colorbar(cax)
plt.xlabel("Times [sec]")
plt.ylabel("Frequency [Hz]")

plt.show()
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This generates the following spectrogram, with visible "white-like" traces for separate notes.

How it works...
We need to load a sound file first. To do this, we use the scikits.audiolab.SndFile 
method and provide it with a filename. This will instantiate sound object, which we can then 
query for data and call function on.

To read data needed for spectrogram, we need to read the desired frames of data from our 
sound object. This is done by read_frames(), which accepts the start and end frame. We 
calculate the frame number by multiplying sample rate with the time points (start, end) we 
want to visualize.

There's more...
If you can't find audio (wave), you can easily generate one. Here's how to generate it:

import numpy

def _get_mask(t, t1, t2, lvl_pos, lvl_neg):
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    if t1 >= t2:
        raise ValueError("t1 must be less than t2")

    return numpy.where(numpy.logical_and(t > t1, t < t2), lvl_pos, 
lvl_neg)

def generate_signal(t):
    sin1 = numpy.sin(2 * numpy.pi * 100 * t)
    sin2 = 2 * numpy.sin(2 * numpy.pi * 200 * t)

    # add interval of high pitched signal
    sin2 = sin2 * _get_mask(t, 2, 5, 1.0, 0.0)

    noise = 0.02 * numpy.random.randn(len(t))
    final_signal = sin1 + sin2 + noise
    return final_signal

if __name__ == '__main__':
    step = 0.001
    sampling_freq=1000
    t = numpy.arange(0.0, 20.0, step)
    y = generate_signal(t)

    # we can visualize this now
    # in time 
    ax1 = plt.subplot(211)
    plt.plot(t, y)
    # and in frequency
    plt.subplot(212)
    plt.specgram(y, NFFT=1024, noverlap=900, 
        Fs=sampling_freq, cmap=plt.cm.gist_heat)

    plt.show()
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Will give you the following signal where the top subplot represent the signal we generated. 
Here, the X axis is time and Y axis is the signal's amplitude. The bottom subplot is the same 
signal in the frequency domain. Here, while x-axis is the same time as in the top subplot (we 
matched the time by selecting the sampling rate), the y-axis is the frequency of the signal.

Creating stem plot
A two-dimensional stem plot displays data as lines extending from a baseline along the  
x-axis. A circle (the default) or the other marker's y-position represents the data value  
that terminates each stem.

In this recipe, we will be discussing about how to create a stem plot.

Do not confuse stem with stem and leaf plots, which is a method of representing data by 
separating the last important digit of values as leaves and higher order values as stems.
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Getting ready
For this kind of plot, we need to use a sequence of discrete data, where ordinary an line plots 
wouldn't make sense anyway.

Plot discrete sequences as stems, where data values are represented as markers at the end 
of each stem. Stems extend from baseline (usually at y=0) to the data point value.

How to do it...
We will use matplotlib to plot stem plots using the stem() function. This function can use just 
a series of y values when x values are generated as a simple sequence from 0 to len(y)—1. 
If we provide the stem function with both x and y sequences, they will be used for both axes.

What we want to configure with stem plot is several formatters: 

 f linefmt: This is the line formatter for stem line

 f markerfmt: The stems at the end of the line is formatted using this argument

 f basefmt: This formats the look of the base line

 f label: This defines label for legend for stem plot

 f hold: This holds the current graphs on current axis

 f bottom: This sets up the location of baseline position on y axis, default value is 0

The hold argument is used as a usual feature for plots. If it is on (True), all the following 
plotting is added to the current axes. Otherwise, every plot will create a new figure and axes.

To create a stem plot, perform the following steps:

1. Generate random noise data

2. Configure stem options

3. Plot the stem
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Here is the code to do it:

import matplotlib.pyplot as plt
import numpy as np

# time domain in which we sample
x = np.linspace(0, 20, 50)

# random function to simulate sampled signal
y = np.sin(x + 1) + np.cos(x ** 2)

# here we can setup baseline position
bottom = -0.1

# True  -- hold current axes for further plotting
# False -- opposite. clear and use new figure/plot 
hold = False

# set label for legend.
label = "delta"

markerline, stemlines, baseline = plt.stem(x, y, bottom=bottom, 
                                           label=label, hold=hold)

# we use setp() here to setup 
# multiple properties of lines generated by stem()
plt.setp(markerline, color='red', marker='o')
plt.setp(stemlines, color='blue', linestyle=':')
plt.setp(baseline, color='grey', linewidth=2, linestyle='-')

# draw a legend
plt.legend()

plt.show()
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This code produces the following plots:

How it works...
First, we need some data. For this recipe, the generated sampled pseudo-signal will suffice. In 
real world, any discrete sequential data can be properly visualized using stem plot. We generate 
this signal using Numpy's numpy.linspace, numpy.cos, and numpy.sin functions.

We then set up label for stem plot and position of baseline, which defaults to 0.

If we want to draw multiple stem plots, we will set hold to True, and the following plotting calls 
will be rendered over the same set of axes.

Call to a matplotlib.stem returns three objects. First is markerline, instance of 
Line2D. This holds the reference to a line representing stems themselves, rendering only 
markers and not the line connecting the markers. This line can be made visible by the editing 
property of the Line2D instance, which we will explain soon. The last one is also a Line2D 
instance—baseline, holding a reference to a horizontal line that represents the source of all 
stemlines. Second object returned—stemlines—collection (Python list at the moment) of 
Line2D instances representing stem-lines, of course.
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We use these objects returned to manipulate the visual appeal of the stem plot, using 
the setp function to apply properties to all lines (Line2D instances) in those objects or 
collections of objects.

Experiment with the desired settings until you understand how setp changes your plot's style.

Drawing streamlines of vector flow
Stream plots are used to visualize flow in vector fields. Examples from science and nature 
include fields of magnetic and gravitational forces or movement of liquid materials.

Vector field can be visualized in such a way, where we assign a line and one or more arrows 
to every point. The intensity can be represented by the line length, and direction by arrow 
pointing in particular direction.

Usually, the intensity of the force is visualized with the length of a particular streamline, but 
density can also be used for the same purpose.

Getting ready
To visualize vector fields, we will use matplotlib's matplotlib.pyplot.streamplot 
function. This function creates plots from streamlines of a flow uniformly filling the domain. 
The velocities field is interpolated and streamlines are integrated. The original source for this 
function is to visualize wind patterns or liquid flow, hence we don't need strict vector lines but 
uniform representation of the vector field.

Most important arguments for this function are x, y evenly spaced grid of one-dimensional 
NumPy array, and u, v matching two-dimensional NumPy arrays of x, y velocities. Matrices  
u and v must be of such dimensions that the number of rows must be of equal length of y, 
and the number of columns must match the length of x.

Line width of stream plot can be controlled per line, if the linewidth argument is given a 
two-dimensional array matching the shape of u and v velocities, or it, simply can be just one 
integer value that all lines will accept.

Color, can not only be just one value for all stream line, but also a matrix shaped like the 
linewidth argument.

Arrows (the FancyArrowPatch class) are used to indicate vector direction, and we can 
control them using two params: arrowsize—size of the arrow, and arrowstyle—format of 
the arrow (for example, "simple", "->").
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How to do it...
We will start with a simple example, just to get the sense of what's going on here. Perform the 
following steps:

1. Create data vectors

2. Print intermediate values

3. Plot the stream-plot

4. Show the figure with streamlines visualizing our vectors

Here is the code sample:

import matplotlib.pyplot as plt
import numpy as np

Y, X = np.mgrid[0:5:100j, 0:5:100j]

U = X
V = Y

from pprint import pprint
print "X"
pprint(X)

print "Y"
pprint(Y)

plt.streamplot(X, Y, U, V)

plt.show()

This will give the following textual output:

X
array([[ 0.        ,  0.05050505,  0.1010101 , ...,  4.8989899 ,
         4.94949495,  5.        ],
       [ 0.        ,  0.05050505,  0.1010101 , ...,  4.8989899 ,
         4.94949495,  5.        ],
       [ 0.        ,  0.05050505,  0.1010101 , ...,  4.8989899 ,
         4.94949495,  5.        ],
       ..., 
       [ 0.        ,  0.05050505,  0.1010101 , ...,  4.8989899 ,
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         4.94949495,  5.        ],
       [ 0.        ,  0.05050505,  0.1010101 , ...,  4.8989899 ,
         4.94949495,  5.        ],
       [ 0.        ,  0.05050505,  0.1010101 , ...,  4.8989899 ,
         4.94949495,  5.        ]])
Y
array([[ 0.        ,  0.        ,  0.        , ...,  0.        ,
         0.        ,  0.        ],
       [ 0.05050505,  0.05050505,  0.05050505, ...,  0.05050505,
         0.05050505,  0.05050505],
       [ 0.1010101 ,  0.1010101 ,  0.1010101 , ...,  0.1010101 ,
         0.1010101 ,  0.1010101 ],
       ..., 
       [ 4.8989899 ,  4.8989899 ,  4.8989899 , ...,  4.8989899 ,
         4.8989899 ,  4.8989899 ],
       [ 4.94949495,  4.94949495,  4.94949495, ...,  4.94949495,
         4.94949495,  4.94949495],
       [ 5.        ,  5.        ,  5.        , ...,  5.        ,
5.        ,  5.        ]])

This generates the following streamline flow figure:
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How it works...
We create a vector field of X and Y by indexing the two-dimensional mesh grid, using NumPy's 
mgrid instance. We specify the range of the grid, as start and stop (-2 and 2, respectively). 
The third index represents a step length. The step length is the number of points to include 
between start and stop. If you want to include the stop value, use complex numbers for step 
length, where magnitude is used for the number of points required between start and stop, 
stop being inclusive.

Mesh grid, fleshed out like this, is then used to compute vector velocities. Here, for the sake  
of example, we just use the same meshgrid as vector velocities.

This generates a plot that clearly shows plain linear dependency and flow of represented 
vector field.

Play with the values of U and V to get a sense of how values of U and V influence stream plot. 
For example, make U = np.sin(X) or V = np.sin(Y). Following that, try to change the 
start and stop values. The following figure shows U = np.sin(X):

Bare in mind that the plot we plotted is generated by a set of lines and arrow patches;  
hence, there is no way (currently, at least) to update the existing figure. Lines and arrows  
know nothing about vectors and fields. Future implementations might bring about this change, 
but at the moment, this is a known limitation in the current version of matplotlib.
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There's more...
Of course this example gives you an opportunity to get to know and understand matplotlib's 
stream plot features and capabilities. 

Real power comes when you have the real data at hand to play with. After understanding this 
recipe, you will be able to recognize the tools you have. So when you are given the data and 
you know the domain of it, you will be able to pick the best tool for the job.

Using colormaps
Color coding the data can have great impact on how your visualizations are perceived by the 
viewer, as they come with assumptions about color and what that color represents.

Being explicit if the color is used to add additional information to the data is always good.  
To know when and how to use color in your visualizations is even better.

Getting ready
If your data is not naturally color coded (such as earth/terrain altitudes or object temperature), 
it's better not to make any artificial mappings to natural coloring. We want to understand the 
data appropriately and make a choice of color to help the reader decode data easily. We don't 
want readers constantly trying to suppress learned mapping of color for temperatures, if we are 
representing financial data that has no connection with Kelvins or Celsius.

If possible, avoid the usual red/green associations, if there are no strong correlations in the 
data to associate them with those colors.

To help you pick the right color mapping, we will explain some colormaps available in the 
matplotlib package that can save a lot of time and help us, if we know what they are used  
for and how to find them.

Colormaps, in general, can be categorized as follows:

 f Sequential: Monochromatic colormaps of two color tones from low to high saturation 
of the same color. For example, from white to bright blue. Ideal for most cases,  
as they clearly show the change from low to high values.

 f Diverging: The central point here is the median value (some light color usually), but 
then, ranges go from there to two different color tones in direction for high and for  
low values. This can be ideal for data with significant median value. For example, 
when the median is at 0, it clearly shows the difference between negative and 
positive values.
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 f Qualitative: For cases where data has no inherent ordering, and all you want is to 
make sure different categories are easily discernible from each other.

 f Cyclic: It is used where data can wrap around endpoint values, such as representing 
time of the day, wind direction, phase angle, or similar.

Matplotlib comes with a lot of predefined maps, and we are able to divide them into several 
categories. We will suggest when to use some of these colormaps.

The most common and base colormaps are autumn, bone, cool, copper, flag, gray, hot, 
hsv, jet, pink, prism, sprint, summer, winter, and spectral.

We have another set of colormaps coming from the "Yorick scientific visualization package". 
This is evolution from GIST package, so all colormaps in this collection have gist_ as prefix  
in their name.

The Yorick is a visualization package and also an interpreted language, 
written in C, not quite active lately. You can find more information on an 
official website – http://yorick.sourceforge.net/index.php

These colormap set contain following maps: gist_earth, gist_heat, gist_ncar, 
gist_rainbow,and gist_stern.

Then, we have the following colormaps based on Color Brewer (http://colorbrewer.org), 
where we can categorize them into: Diverging, where luminance is highest at the midpoint and 
decreases towards different endpoints; Sequential, where luminance decreases monotonically; 
Qualitative, where different sets of colors are used to differentiate data categories.

Also, some miscellaneous colormaps are also available:

Colormap Description
brg This is blue-red-green
bwr Diverging blue-white-red
coolwarm Useful for 3D shading, color blindness, and ordering of colors
rainbow Spectral purple-blue-green-yellow-orange-red colormap with diverging 

luminance
seismic Diverging blue-white-red
terrain Mapmaker's colors, blue-green-yellow-brown-white, originally from IGOR 

Pro software

Most of the maps presented here can be reversed by putting _r postfix after a name of the 
colormap, for example, hot_r is an inverse cycle colormap of hot.

http://yorick.sourceforge.net/index.php
http://colorbrewer.org
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How to do it...
We can set colormap on many items in matplotlib. For example, colormap can be set 
on image, pcolor, and scatter. This is accomplished usually via argument to a function 
called cmap. This argument is an expected instance of colors.Colormap.

We can also use matplotlib.pyplot.set_cmap to set cmap for latest object plotted on 
the axes.

You can get all available colormaps easily with matplotlib.pyplot.colormaps. Fire up 
IPython and type in the following:

In [1]: import matplotlib.pyplot as plt

In [2]: plt.colormaps()
Out[2]: 
['Accent',
 'Accent_r',
 'Blues',
 'Blues_r',
... 
 'winter',
 'winter_r'] 

Note that we have shortened the preceding list because it contains around 140 items and 
would span across several pages here.

This will import the pyplot function interface and allow us to call the colormaps function, 
which returns a list of all registered colormaps.

Finally, we want to show you how to make a nice looking colormap. In the following example, 
we need to:

1. Use the Color Brewer website to get divergent colormap color values in the hex format

2. Generate a random sample of x and y, where y is cumulative sum of value (simulate 
stock price variations)

3. Apply customization to scatter plot functions of matplotlib

4. Tweak scatter marker line color and width to make the plot more readable and 
pleasant for viewers.
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
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# Red Yellow Green divergent colormap
red_yellow_green = ['#d73027', '#f46d43', '#fdae61',
                    '#fee08b', '#ffffbf', '#d9ef8b',
                    '#a6d96a', '#66bd63', '#1a9850']

sample_size = 1000
fig, ax = plt.subplots(1)

for i in range(9):
    y = np.random.normal(size=sample_size).cumsum()
    x = np.arange(sample_size)
    ax.scatter(x, y, label=str(i), linewidth=0.1, 
edgecolors='grey', 
               facecolor=red_yellow_green[i])

ax.legend()
plt.show()

This will render a nice looking figure:
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How it works...
We used the ColorBrewer website to find out colors in red, yellow, and green divergent 
colormap from Colorbrew. Then, we listed those colors in our code and applied them to  
our scatter plot.

Colorbrew is a web tool, built by Cynthia Brewer, Mark Harrower, and The 
Pennsylvania State University as a tool to explore color maps. It is a very 
handy tool to pick up color maps of different ranges and see them applied 
on a map using slight variations so that you immediately sense what will they 
look like on a chart. This particular map is at http://colorbrewer2.or
g/?type=diverging&scheme=RdYlGn&n=9.

Sometimes, we will have to make our customization on matplotlib.rcParams, which is the 
first thing we want to do before we create figure or any of the axes.

For example, matplotlib.rcParams['axes.cycle_color'] is the configuration setting 
we want to change in order to set up default colormap for most of the matplotlib functions.

There's more...
Using matplotlib.pyplot.register_cmap, we can register a new colormap to matplotlib, 
so it can be found using the get_cmap function. We can use it in two different ways. Here are 
both signatures:

 f register_cmap(name='swirly', cmap=swirly_cmap)

 f register_cmap(name='choppy', data=choppydata, lut=128)

The first signature allows us to specify colormap as an instance of colors.Colormap and 
register it via the name argument. The name argument can be omitted in which case it will be 
inherited from the name attribute of the cmap instance provided.

The latter one, we are passing three arguments to the linear segmented colormap constructor, 
and registering that colormap afterwards. 

Using maplotlib.pyplot.get_cmap, we can get the colors.Colormap instance using 
name argument.

Here's how to make your own map using matplotlib.colors.
LinearSegmentedColormap:

from pylab import *
cdict = {'red': ((0.0, 0.0, 0.0),
                 (0.5, 1.0, 0.7),

http://colorbrewer2.org/index.php?type=diverging&scheme=RdYlGn&n=9
http://colorbrewer2.org/index.php?type=diverging&scheme=RdYlGn&n=9
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                 (1.0, 1.0, 1.0)),
         'green': ((0.0, 0.0, 0.0),
                   (0.5, 1.0, 0.0),
                   (1.0, 1.0, 1.0)),
         'blue': ((0.0, 0.0, 0.0),
                  (0.5, 1.0, 0.0),
                  (1.0, 0.5, 1.0))}
my_cmap = matplotlib.colors.LinearSegmentedColormap('my_
colormap',cdict,256)
pcolor(rand(10,10),cmap=my_cmap)
colorbar()

This is the simplest part, while the hardest part is to actually come with a combination of 
colors that are informative, do not take away from the data we want to visualize, and that  
are pleasant for the eyes of the viewer.

For the base map list (colormaps listed in the preceding table), we can use the pylab shortcut 
to set colormap. For example, the following code would set colormap of the image X to 
cmap='hot':

imshow(X)
hot()

Using scatter plots and histograms
Scatter plots are very often encountered around, as they are the most common plot to 
visualize the relation between two variables. If we want to take a quick look at the data  
and see if there is any relation between those (that is, correlation), we would draw a quick 
scatter plot. For a scatter plot to exist, we must have one variable that can be systematically 
changed by, for example, experimenter, so we can inspect the possibilities of influencing 
another variable.

That's why, in this recipe, you will learn how to understand the scatter plots.

Getting ready
We want to see, for example, how two events are affected by each other or if they are affected 
at all. This visualization is especially useful on large sets of data, where we cannot make any 
conclusions by looking at the data in the native form—when it is just numbers.

Correlation between values, if there is any, can be positive and negative. Positive correlation 
is when, for increasing X values, the Y values are increasing too. In negative correlation, for 
increasing X values, Y values are decreasing. In an ideal case, positive correlation is a line 
starting from bottom-left corner of axes to top-right corner. Negative ideal correlation is a line 
starting from top-left corner to the bottom-right corner of axes.
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Ideal positive correlation between two data points is given the value of 1 and ideal negative 
is given the value of -1. Everything inside this interval represents weaker correlation between 
two values. Usually, everything inside -0.5 to 0.5 is not considered valuable from a perspective 
of two variables being in real connection.

Example of positive correlation would be the amount of money put in a charity jar being directly 
positively correlated to number of people seeing the jar. Negative correlation is between the time 
required to reach place B from place A, depending on the distance between A and B locations. 
The greater the distance, more time we need to complete the travel.

For example, what we have presented here is a positive correlation, but this is not perfect, 
as different people might put different amounts of money per visit. But, in general, we can 
assume that the more people see that jar, more money will be left inside.

Keep in mind, though, that even if the scatter plot displays correlation between two variables, 
that correlation might not be a direct one. There might be a third variable that influences  
both plotted variables, so the correlation is just a case that plotted values are correlated  
with that third variable. In the end, the correlation might be just apparent and no real relation 
exists behind.

How to do it...
With the following code sample, we will demonstrate how scatter plot can explain the relation 
between variables.

The data we use is obtained using the Google Trends web portal, where one can download the 
CSV file containing normalized values of relative search volumes for given parameters.

We will store our data in the ch07_search_data.py Python module, so we can import it in 
subsequent code recipes.

Here's the content of it:

# ch07_search_data

# daily search trend for keyword 'flowers' for a year

DATA = [
 1.04, 1.04, 1.16, 1.22, 1.46, 2.34, 1.16, 1.12, 1.24, 1.30, 1.44, 
1.22, 1.26,
 1.34, 1.26, 1.40, 1.52, 2.56, 1.36, 1.30, 1.20, 1.12, 1.12, 1.12, 
1.06, 1.06,
 1.00, 1.02, 1.04, 1.02, 1.06, 1.02, 1.04, 0.98, 0.98, 0.98, 1.00, 
1.02, 1.02,
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 1.00, 1.02, 0.96, 0.94, 0.94, 0.94, 0.96, 0.86, 0.92, 0.98, 1.08, 
1.04, 0.74,
 0.98, 1.02, 1.02, 1.12, 1.34, 2.02, 1.68, 1.12, 1.38, 1.14, 1.16, 
1.22, 1.10,
 1.14, 1.16, 1.28, 1.44, 2.58, 1.30, 1.20, 1.16, 1.06, 1.06, 1.08, 
1.00, 1.00,
 0.92, 1.00, 1.02, 1.00, 1.06, 1.10, 1.14, 1.08, 1.00, 1.04, 1.10, 
1.06, 1.06,
 1.06, 1.02, 1.04, 0.96, 0.96, 0.96, 0.92, 0.84, 0.88, 0.90, 1.00, 
1.08, 0.80,
 0.90, 0.98, 1.00, 1.10, 1.24, 1.66, 1.94, 1.02, 1.06, 1.08, 1.10, 
1.30, 1.10,
 1.12, 1.20, 1.16, 1.26, 1.42, 2.18, 1.26, 1.06, 1.00, 1.04, 1.00, 
0.98, 0.94,
 0.88, 0.98, 0.96, 0.92, 0.94, 0.96, 0.96, 0.94, 0.90, 0.92, 0.96, 
0.96, 0.96,
 0.98, 0.90, 0.90, 0.88, 0.88, 0.88, 0.90, 0.78, 0.84, 0.86, 0.92, 
1.00, 0.68,
 0.82, 0.90, 0.88, 0.98, 1.08, 1.36, 2.04, 0.98, 0.96, 1.02, 1.20, 
0.98, 1.00,
 1.08, 0.98, 1.02, 1.14, 1.28, 2.04, 1.16, 1.04, 0.96, 0.98, 0.92, 
0.86, 0.88,
 0.82, 0.92, 0.90, 0.86, 0.84, 0.86, 0.90, 0.84, 0.82, 0.82, 0.86, 
0.86, 0.84,
 0.84, 0.82, 0.80, 0.78, 0.78, 0.76, 0.74, 0.68, 0.74, 0.80, 0.80, 
0.90, 0.60,
 0.72, 0.80, 0.82, 0.86, 0.94, 1.24, 1.92, 0.92, 1.12, 0.90, 0.90, 
0.94, 0.90,
 0.90, 0.94, 0.98, 1.08, 1.24, 2.04, 1.04, 0.94, 0.86, 0.86, 0.86, 
0.82, 0.84,
 0.76, 0.80, 0.80, 0.80, 0.78, 0.80, 0.82, 0.76, 0.76, 0.76, 0.76, 
0.78, 0.78,
 0.76, 0.76, 0.72, 0.74, 0.70, 0.68, 0.72, 0.70, 0.64, 0.70, 0.72, 
0.74, 0.64,
 0.62, 0.74, 0.80, 0.82, 0.88, 1.02, 1.66, 0.94, 0.94, 0.96, 1.00, 
1.16, 1.02,
 1.04, 1.06, 1.02, 1.10, 1.22, 1.94, 1.18, 1.12, 1.06, 1.06, 1.04, 
1.02, 0.94,
 0.94, 0.98, 0.96, 0.96, 0.98, 1.00, 0.96, 0.92, 0.90, 0.86, 0.82, 
0.90, 0.84,
 0.84, 0.82, 0.80, 0.80, 0.76, 0.80, 0.82, 0.80, 0.72, 0.72, 0.76, 
0.80, 0.76,
 0.70, 0.74, 0.82, 0.84, 0.88, 0.98, 1.44, 0.96, 0.88, 0.92, 1.08, 
0.90, 0.92,
 0.96, 0.94, 1.04, 1.08, 1.14, 1.66, 1.08, 0.96, 0.90, 0.86, 0.84, 
0.86, 0.82,
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 0.84, 0.82, 0.84, 0.84, 0.84, 0.84, 0.82, 0.86, 0.82, 0.82, 0.86, 
0.90, 0.84,
 0.82, 0.78, 0.80, 0.78, 0.74, 0.78, 0.76, 0.76, 0.70, 0.72, 0.76, 
0.72, 0.70,
 0.64]

We need to perform the following steps:

1. Use a cleaned dataset of Google Trend search volume for 1 year for keyword 
'flowers'. We will import this dataset into variable d.

2. Use a random normal distribution of the same length (365 data points) as our  
Google Trend dataset. This will be dataset d1.

3. Create a figure containing four subplots.

4. In the first subplot, plot scatter-plot of d and d1.

5. In the second subplot, plot scatter-plot of d1 with d1.

6. In the third subplot, render scatter-plot of of d1 with inverted d1.

7. In the fourth subplot, render scatter-plot of d1 with similar dataset constructed  
of (d1+d).

This code will illustrate the relation as we explained them earlier in this recipe:

import matplotlib.pyplot as plt
import numpy as np

# import the data

from ch07_search_data import DATA

d = DATA

# Now let's generate random data for the same period
d1 = np.random.random(365)
assert len(d) == len(d1)

fig = plt.figure()

ax1 = fig.add_subplot(221)
ax1.scatter(d, d1, alpha=0.5)
ax1.set_title('No correlation')
ax1.grid(True)

ax2 = fig.add_subplot(222)
ax2.scatter(d1, d1, alpha=0.5)
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ax2.set_title('Ideal positive correlation')

ax2.grid(True)

ax3 = fig.add_subplot(223)
ax3.scatter(d1, d1*-1, alpha=0.5)
ax3.set_title('Ideal negative correlation')
ax3.grid(True)

ax4 = fig.add_subplot(224)
ax4.scatter(d1, d1+d, alpha=0.5)
ax4.set_title('Non ideal positive correlation')
ax4.grid(True)

plt.tight_layout()

plt.show()

This is the figure we should get when the preceding code is executed:
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How it works...
The preceding sample we see, clearly displays if there is any correlation between different 
datasets. While the second (top right) subplot shows ideal or perfect, positive correlation of 
dataset d1 with d1 itself (obviously). We can see that the fourth subplot (bottom right) hints 
that there is a positive correlation, although not ideal. We constructed this dataset from d1 
and d (random) to simulate two similar signals (events), where the second one (d + d1) has 
certain randomness (or noise) in it, but still can be comparable with the original (d) signal.

There's more...
We can also add histograms to scatter plots in such a way that they can tell us more about 
the data plotted. We can add horizontal and vertical histograms to show frequencies of data 
points on the X and Y axes. Using this, we can, at the same time, see the summary of the 
whole dataset (histogram) and individual data points (scatter-plot).

Here is the example of the code to generate a scatter-histogram combination, using the  
same two datasets we introduced in this recipe. The meat of the code is the scatterhist()
function that is given here to be reusable to different datasets, trying to set some of the 
variables based on the dataset provided (number of bins in histogram, limits for axes and 
similar).

We start with the usual imports:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable

This is the definition of our function to generate scatter histograms given x,y dataset and, 
optionally, a figsize parameter:

def scatterhist(x, y, figsize=(8,8)):
    """
    Create simple scatter & histograms of data x, y inside given plot

    @param figsize: Figure size to create figure
    @type figsize: Tuple of two floats representing size in inches

    @param x: X axis data set
    @type x: np.array

    @param y: Y axis data set
    @type y: np.array
    """
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_, scatter_axes = plt.subplots(figsize=figsize)

    # the scatter plot:
    scatter_axes.scatter(x, y, alpha=0.5)
    scatter_axes.set_aspect(1.)

    divider = make_axes_locatable(scatter_axes)
    axes_hist_x = divider.append_axes(position="top", sharex=scatter_
axes,
                                      size=1, pad=0.1)
    axes_hist_y = divider.append_axes(position="right", 
sharey=scatter_axes,
                                      size=1, pad=0.1)

    # compute bins accordingly
    binwidth = 0.25

    # global max value in both data sets
    xymax = np.max([np.max(np.fabs(x)), np.max(np.fabs(y))])
    # number of bins
    bincap = int(xymax / binwidth) * binwidth

    bins = np.arange(-bincap, bincap, binwidth)
    nx, binsx, _ = axes_hist_x.hist(x, bins=bins, 
histtype='stepfilled',
                     orientation='vertical')
    ny, binsy, _ = axes_hist_y.hist(y, bins=bins, 
histtype='stepfilled',
                     orientation='horizontal')

    tickstep = 50
    ticksmax = np.max([np.max(nx), np.max(ny)])
    xyticks = np.arange(0, ticksmax + tickstep, tickstep)

    # hide x and y ticklabels on histograms
    for tl in axes_hist_x.get_xticklabels():
        tl.set_visible(False)
    axes_hist_x.set_yticks(xyticks)

    for tl in axes_hist_y.get_yticklabels():
        tl.set_visible(False)
    axes_hist_y.set_xticks(xyticks)

    plt.show()
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Now, we proceed with loading of the data and function call to generate and render the  
desired chart:

if __name__ == '__main__':    # import the data
    from ch07_search_data import DATA as d

    # Now let's generate random data for the same period
    d1 = np.random.random(365)
    assert len(d) == len(d1)

    # try with the random data
#     d = np.random.randn(1000)
#     d1 = np.random.randn(1000)

    scatterhist(d, d1)

This should generate the following figure:
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Plotting the cross correlation between  
two variables

If we have two different datasets from two different observations, we want to know if those 
two event sets are correlated. We want to cross correlate them and see if they match in  
any way. We are looking for a pattern of a smaller data sample in a larger data sample.  
The pattern does not have to be an obvious or simple pattern.

Getting ready
We can use the matplotlib's function from pyplot lab—matplotlib.pyplot.xcorr. 
These functions can plot correlation between two datasets in such a way that we can see if 
there is any significant pattern between the plotted values. It is assumed that x and y are of 
the same length.

If we pass the normed argument as True, we can normalize by cross correlation at 0-th lag 
(that is, when there is no time delay or time lag).

Behind the scenes, correlation is done using NumPy's numpy.correlate function.

Using the usevlines argument (setting it to True), we can instruct matplotlib to use 
vlines() instead of plot() to draw lines of the correlation plot. The main difference is,  
if we are using plot(), we can style the lines using standard Line2D properties passed  
in the **kwargs argument to the matplotlib.pyplot.xcorr function.

How to do it...
In this following example, we need to:

1. Import the matplotlib.pyplot module.

2. Import the numpy package.

3. Use cleaned dataset of Google search volume trend for a year for the  
keyword 'flowers'.

4. Plot the datasets (real one and artificial one) and cross correlation diagram.

5. Tighten the layout in order to have better overview of labels and ticks.

6. Add appropriate labels and grids for easier understanding of the plot.
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This is the code that will perform the previously mentioned steps:

import matplotlib.pyplot as plt
import numpy as np

# import the data

from ch07_search_data import DATA as d

total = sum(d)
av = total / len(d)
z = [i - av for i in d]

# Now let's generate random data for the same period
d1 = np.random.random(365)
assert len(d) == len(d1)

total1 = sum(d1)
av1 = total1 / len(d1)
z1 = [i - av1 for i in d1]

fig = plt.figure()

# Search trend volume
ax1 = fig.add_subplot(311)
ax1.plot(d)
ax1.set_xlabel('Google Trends data for "flowers"')

# Random: "search trend volume"
ax2 = fig.add_subplot(312)
ax2.plot(d1)
ax2.set_xlabel('Random data')

# Is there a pattern in search trend for this keyword?
ax3 = fig.add_subplot(313)
ax3.set_xlabel('Cross correlation of random data')
ax3.xcorr(z, z1, usevlines=True, maxlags=None, normed=True, lw=2)
ax3.grid(True)
plt.ylim(-1, 1)

plt.tight_layout()

plt.show()
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This code will render the following figure:

How it works...
We used real data set with a recognizable pattern in it (two peaks repeating in similar manner 
across the dataset—see the preceding figure). The other dataset is just a random normal 
distributed data of the same length as real accrued data from public service Google Trends.

We plotted both datasets over the top half of the figure to visualize the data.

Using matplotlib's xcorr, which in turn uses NumPy's correlate() function, we computed 
cross correlation and plotted it on the bottom half.

Cross-correlation computation in NumPy returns correlation coefficients array that represent 
degree of similarity of two datasets (or signals, as usually referred to if used in signal 
processing field).

The cross-correlation diagram—correlogram—tells us that these two signals are not correlated, 
which is represented by the height of correlation values (vertical lines at certain time lags).  
We see that there is no one vertical line (correlation coefficient at time lag n) that is the 
preceding 0.5 value.

If, for example, two datasets would have correlation at time lag 100 (for example, 100 
seconds shift between same object observed by two different sensors), we would see  
vertical line (representing correlation coefficient) at x = 100 in this preceding figure.
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Importance of autocorrelation
Autocorrelation represents the degree of similarity between a given time series and a lagged 
(that is, delayed in time) version of itself over successive time intervals. It occurs in time 
series studies when the errors associated with a given time period carry over into future time 
periods. For example, if we are predicting the growth of stock dividends, an overestimate in  
1 year is likely to lead to overestimates in the succeeding years.

The time series analysis data arise in lots of different scientific applications and in lots 
of financial processes. Some of the examples include: generated reports of financial 
performance, prices over time, computing volatility, and others.

If we are analyzing unknown data, autocorrelation can help us detect if the data is random or 
not. For that, we can use a correlogram. It can help provide answers to questions such as: is 
the data random, is this time series data a white noise, is it sinusoidal, is it autoregressive, 
what is the model of this time series data?

Getting ready
We will use matplotlib to compare two sets of data. One is Google day trend of search volume 
for a certain keyword for 1 year (365 days). The other set is 365 random measurements 
(generated with random data) with normal distribution.

We will autocorrelate both datasets and compare how the correlograms visualize patterns  
in data.

How to do it...
In this section, we will perform the following steps:

1. Import the matplotlib.pyplot module

2. Import the numpy package

3. Use a cleaned dataset of Google search volume for a year

4. Plot the data set and plot its autocorrelation diagram

5. Generate the same-length random dataset using NumPy

6. Plot the random dataset on the same figure and plot its autocorrelation diagram

7. Add appropriate labels and grids for easier understanding of the plot
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This is the code:

import matplotlib.pyplot as plt
import numpy as np

# import the data

from ch07_search_data import DATA as d

total = sum(d)
av = total / len(d)
z = [i - av for i in d]

fig = plt.figure()
# plt.title('Comparing autocorrelations')

# Search trend volume
ax1 = fig.add_subplot(221)
ax1.plot(d)
ax1.set_xlabel('Google Trends data for "flowers"')

# Is there a pattern in search trend for this keyword?
ax2 = fig.add_subplot(222)
ax2.acorr(z, usevlines=True, maxlags=None, normed=True, lw=2)
ax2.grid(True)
ax2.set_xlabel('Autocorrelation')

# Now let's generate random data for the same period
d1 = np.random.random(365)
assert len(d) == len(d1)

total = sum(d1)
av = total / len(d1)
z = [i - av for i in d1]

# Random: "search trend volume"
ax3 = fig.add_subplot(223)
ax3.plot(d1)
ax3.set_xlabel('Random data')

# Is there a pattern in search trend for this keyword?
ax4 = fig.add_subplot(224)
ax4.set_xlabel('Autocorrelation of random data')
ax4.acorr( z, usevlines=True, maxlags=None, normed=True, lw=2)
ax4.grid(True)

plt.show()
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This code will render following figure:

How it works...
Looking at the left-hand side plots it is easy to spot patterns in search volume data, where 
bottom left plot is normally distributed random data—where patterns are not obvious, but still 
might exist.

Computing and plotting autocorrelation over the random data, we see that there is a high 
correlation at 0—which is expected, data is correlated with itself in no time lag. But going 
before or after no time lag, the signal is almost 0, so we can safely conclude that there is  
no correlation between the signal in original time and any time lags examined.

Looking at the real data—Google search volume trend—we can see the same behavior at  
0 time lag, still something we can expect for any autocorrelated signal. But, we have strong 
signals at around 30, 60, and 110 days after 0 time lag. This indicates that there is a pattern 
with this particular search term and a way people search for it on the Google search engine.

Explaining why is this is a very different story, and we will leave this exercise to the reader. 
Remember that correlation and causation are two very different things.
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There's more...
Autocorrelation is used very often when we want to identify model for unknown data, and try 
to fit data into a model. How data correlates to itself is sometimes a first step to identifying  
an appropriate model for a dataset we are presented with. This requires more than Python;  
it requires knowledge of mathematical modeling. Various statistical tests (Ljung-Box test,  
Box-Pierce test, and so on) will help us answer these questions.
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8
More on matplotlib 

Gems

In this chapter, we will cover:

 f Drawing barbs

 f Making a box-and-whisker plot

 f Making Gantt charts

 f Making error bars

 f Making use of text and font properties

 f Rendering text with LaTeX

 f Understanding the difference between pyplot and OO API

Introduction
In this chapter, we will explore some less frequently used features of the matplotlib package. 
Some of these examples stretch the matplotlib original target, but they show what can be 
done with a little creativity, and prove that matplolib is full featured and generically oriented.

Drawing barbs
A barb is a representation of the speed and direction of wind, and is mainly deployed by 
meteorology scientists. In theory, they can be used to visualize any type of two-dimensional 
vector quantities. They are similar to arrows (quivers), but the difference is that arrows 
represent vector magnitude by the length of the arrow, while barbs give more information 
about the vector's magnitude by employing lines or triangles as increments of magnitude.
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We will explain what barbs are, how to read them, and how to visualize them using Python and 
matplotlib. Here's a typical set of barbs:

In the preceding diagram, the triangle, also known as flag, represents the largest increment. 

A full line or barb represents a smaller increment; a half line is the smallest increment.

The increments are in the order of 5, 10, and 65 for a half-line, line, and triangle, respectively. 
The values here represent, for meteorologists at least, wind speed in nautical miles per hour 
(knots).

We ordered the barbs from left to right to represent the following magnitudes: 0, 5, 10, 15, 
30, 40, 50, 60, and 100 knots. The direction here is the same for each barb and is from north 
to south, because the east-west speed component is 0 for each barb.

Getting ready
A barb can be created using a matplotlib function from matplotlib.pyplot.barbs.

The barbs function accepts various arguments, but we can also only specify X and Y 
coordinates, representing locations of observed data points. The second pair of arguments—U, 
V—represents the magnitude of the vector in north-south and east-west directions in knots.

Other arguments that can be useful are pivots, sizes, and various coloring arguments.

A pivot argument (pivot) represents the part of the arrow represented on the grid point. We 
get a pivot argument when the arrow rotates around this point. The arrow can rotate around 
the tip or middle, which are valid values for the pivot argument.

Because barbs consist of several parts, we can set up the coloring of any of those parts. So, 
we have a few color-related arguments that we can set up:

 f barbcolor: This defines the color of all the parts for a barb, except for flags

 f flagcolor This defines the color of any flag on the barb

 f facecolor: This argument is used if none of the preceding color arguments are 
specified (or the default value is read from rcParams)

If any of the preceding color-related arguments are specified, the argument facecolor is 
overridden. The facecolor argument is the one used in coloring polygons.
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The size argument (sizes) specifies the ration of a feature to the length of the barb. This is a 
collection of coefficients that can be specified using any or all of the following keys:

 f spacing: This defines the space among features of the flag/barb

 f height: This defines the distance from the shaft to the top of a flag or barb

 f width: This defines the width of a flag

 f emptybarb: This defines the circle radius used for low magnitudes

How to do it...
Let's demonstrate how to use a barb function by performing the following steps:

1. Generate a grid of coordinates to simulate observations.

2. Simulate observational values for wind speed.

3. Plot barb diagrams.

4. Plot quivers to demonstrate different appearances.

The following code will generate the figure:

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-20, 20, 8) 
y = np.linspace(  0, 20, 8) 

# make2D coordinates 
X, Y = np.meshgrid(x, y) 

U, V = X+25, Y-35 

# plot the barbs 
plt.subplot(1,2,1) 
plt.barbs(X, Y, U, V, flagcolor='green', alpha=0.75) 
plt.grid(True, color='gray') 

# compare that with quiver / arrows 
plt.subplot(1,2,2) 
plt.quiver(X, Y, U, V, facecolor='red', alpha=0.75) 

# misc settings 
plt.grid(True, color='grey') 
plt.show()
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The preceding code renders two subplots as shown in the following figure:

How it works...
To illustrate how the same data can bring different information to light, we used barbs and 
quiver plots from matplotlib to visualize simulated observed wind data.

First, we used NumPy to generate samples of variations for x and y arrays. Then we used 
NumPy's meshgrid() function to create a 2D grid of coordinates where our observed data 
is sampled at certain coordinates. Finally, U and V are wind speed values in NS (north-south) 
and EW (east-west) directions in knots (nautical miles per hours). For the purpose of the 
recipe, we adjusted some values from the already available X and Y matrices.

We then divided the figure into two subplots, plotting barbs in the leftmost plot and arrow-
patches in the rightmost plot. We adjusted the color and transparency of both the subplots 
slightly, as well as turned the grid on both the subplots.

There's more...
This is all fine on the northern hemisphere where the wind rotates in a counter-clockwise 
direction and the feathers (triangles, full lines, and half lines of the barb) point in the direction 
of lower pressure. On the southern hemisphere, this is inverted so our wind barb graph would 
not represent the data we are visualizing correctly.

We have to invert this direction of feathers. Luckily, the barbs function has the argument 
flip_barb. This argument can be of one single Boolean value (True or False) or a sequence 
of Boolean values such as the shape of other data arrays, when each item in the sequence 
specifies a flip decision for each barb.
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Making a box-and-whisker plot
Do you want to visualize a series of data measurement (or observations) to show several 
properties of the data series (such as the median value, the spread of the data, and the 
distribution of the data) in one plot? And would you want to do that in a way where you can 
visually compare several similar data series? How would you visualize them? Welcome to  
the box-and-whisker plot! Probably the best plot type for comparing distributions, if you  
are talking to people used to information density.

The box-and-whisker plot usage examples range from comparing test scores between schools 
to comparing process parameters before and after changes (optimization).

Getting ready
What are the elements of box-and-whisker plots? As we see in the following diagram, we 
have several important elements that carry information in the box-and-whisker plot. The first 
component is the box that carries information about the interquartile range going from lower 
to upper quartile values. The median value of the data is represented by a line across the box.

The whiskers extend from the box on both sides going from the first quartile (25 percentile) 
to the last quartile (75 percentile) of the data. In other words, the whiskers extend 1.5 times 
from the base of the inter-quartile range. In the case of a normal distribution, whiskers will 
cover 99.3% of the total data range.

If there are values outside the whiskers range, they will be displayed as fliers. Otherwise, the 
whiskers will cover the total range of the data.

Optionally, the box can also carry information about confidence intervals around the median. 
This is represented by a notch in the box. This information can be used to indicate whether 
the data in the two series is of the similar distribution. However, this is not rigorous and is  
just an indication that can be visually inspected.
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How to do it...
In the following recipe, you will learn how to create a box-and-whisker plot using matplotlib. 

We will perform the following steps:

1. Sample some comparative process data, where a single integer number represents 
the occurrence of an error during the observed period of the running process.

2. Read data from the PROCESSES dictionary into DATA.

3. Read labels from the PROCESSES dictionary into LABELS.

4. Render the box-and-whisker plot using matplotlib.pyplot.boxplot.

5. Remove some chart junk from the figure.

6. Add axes labels.

7. Show the figure.

The following code implements these steps:

import matplotlib.pyplot as plt
# define data 
PROCESSES = { 
    "A": [12, 15, 23, 24, 30, 31, 33, 36, 50, 73], 
    "B": [6, 22, 26, 33, 35, 47, 54, 55, 62, 63], 
    "C": [2, 3, 6, 8, 13, 14, 19, 23, 60, 69], 
    "D": [1, 22, 36, 37, 45, 47, 48, 51, 52, 69], 
    } 

DATA = PROCESSES.values()
LABELS = PROCESSES.keys()

plt.boxplot(DATA, notch=False, widths=0.3) 

# set ticklabel to process name 
plt.gca().xaxis.set_ticklabels(LABELS) 

# some clean up(removing chartjunk) 
# turn the spine off
for spine in plt.gca().spines.values(): 
spine.set_visible(False) 

# turn all ticks for x-axis off 
plt.gca().xaxis.set_ticks_position('none')
# leave left ticks for y-axis on
plt.gca().yaxis.set_ticks_position('left')
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# set axes labels 
plt.ylabel("Errors observed over defined period.") 
plt.xlabel("Process observed over defined period.") 

plt.show()

The preceding code generates the following figure:

How it works...
The box-and-whisker plot is rendered by first computing quartiles for the given data in DATA.

These quartile values are used to compute lines to draw boxes and whiskers.

We adjusted the plot removing all the unnecessary lines (referring to superfluous lines such as 
chart junk, as mentioned in the famous book, The Visual Display of Quantitative Information, 
by Edward R. Tufte). Those lines do not carry information and just put more pressure on the 
mental models in a viewer's brain to decode all the lines before discovering real valuable 
information.
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Making Gantt charts
One form of very widely used visualization of time-based data is a Gantt chart. Named after 
the mechanical engineer Henry Gantt who invented it in 1910s, it is almost exclusively used to 
visualize work breakdown structures in project management. This chart is loved by managers 
for its descriptive value and not so loved by employees, especially when the project deadline  
is near.

This kind of chart is very straightforward, almost every one can understand and read it, even if 
it is overloaded with additional (related and unrelated) information.

A basic Gantt chart has a time series on the X axis and a set of labels that represent tasks or 
subtasks on the Y axis. Task duration is usually visualized either as a line or as a bar chart, 
extending from the start to end time of a given task.

If subtasks are present, one or many subtasks have a parent task, in which the case total 
time of a task is aggregated from subtasks in such a way that overlapping and gap time is 
accounted for. 

So, in this recipe, we will be covering the creation of the Gantt chart using Python.

Getting ready
There are many full-fledged software applications and services that allow you to make very 
flexible and complicated Gantt charts. We will try to demonstrate how you could do it in pure 
Python, not relying on external applications, yet achieving neat looking and informative  
Gantt charts.

The Gantt chart shown in the example does not support nested tasks, but it is sufficient for 
simple work breakdown structures.

How to do it...
The following code example will allow us to demonstrate how Python can be used together 
with matplotlib to render the Gantt chart. We will perform the following steps:

1. Load TEST_DATA that contains a set of tasks and instantiate the Gantt class with 
TEST_DATA.

2. Each task contains a label and the start and end time.

3. Process all tasks by plotting horizontal bars on the axes.

4. Format the x and y axes for the data we are rendering.

5. Tighten the layout.

6. Show the Gantt chart.
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The following is a sample code:

from datetime import datetime
import sys

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.font_manager as font_manager
import matplotlib.dates as mdates

import logging

class Gantt(object):
    '''
Simple Gantt renderer.
    Uses *matplotlib* rendering capabilities.
    '''

    # Red Yellow Green diverging colormap
    # from http://colorbrewer2.org/
RdYlGr = ['#d73027', '#f46d43', '#fdae61',
              '#fee08b', '#ffffbf', '#d9ef8b',
              '#a6d96a', '#66bd63', '#1a9850']

POS_START = 1.0
POS_STEP = 0.5

def __init__(self, tasks):
self._fig = plt.figure()
self._ax = self._fig.add_axes([0.1, 0.1, .75, .5])

self.tasks = tasks[::-1]

def _format_date(self, date_string):
        '''
        Formats string representation of *date_string* into 
*matplotlib.dates*
instance.
        '''
try:
date = datetime.strptime(date_string, '%Y-%m-%d %H:%M:%S')
exceptValueError as err:
logging.error("String '{0}' can not be converted to datetime object: 
{1}"



More on matplotlib Gems

238

                  .format(date_string, err))
sys.exit(-1)
mpl_date = mdates.date2num(date)
returnmpl_date

def _plot_bars(self):
        '''
        Processes each task and adds *barh* to the current *self._ax* 
(*axes*).
        '''
        i = 0
for task in self.tasks:
start = self._format_date(task['start'])
end = self._format_date(task['end'])
bottom = (i * Gantt.POS_STEP) + Gantt.POS_START
width = end - start
            self._ax.barh(bottom, width, left=start, height=0.3,
align='center', label=task['label'],
color = Gantt.RdYlGr[i])
            i += 1

def _configure_yaxis(self):
        '''y axis'''
task_labels = [t['label'] for t in self.tasks]
pos = self._positions(len(task_labels))
ylocs = self._ax.set_yticks(pos)
ylabels = self._ax.set_yticklabels(task_labels)
plt.setp(ylabels, size='medium')

def _configure_xaxis(self):
        ''''x axis'''
        # make x axis date axis
        self._ax.xaxis_date()

        # format date to ticks on every 7 days
rule = mdates.rrulewrapper(mdates.DAILY, interval=7)
loc = mdates.RRuleLocator(rule)
formatter = mdates.DateFormatter("%d %b")

self._ax.xaxis.set_major_locator(loc)
        self._ax.xaxis.set_major_formatter(formatter)
xlabels = self._ax.get_xticklabels()
plt.setp(xlabels, rotation=30, fontsize=9)
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def _configure_figure(self):
        self._configure_xaxis()
      self._configure_yaxis()

        self._ax.grid(True, color='gray')
        self._set_legend()
        self._fig.autofmt_xdate()

def _set_legend(self):
        '''
        Tweak font to be small and place *legend*
in the upper right corner of the figure
        '''
font = font_manager.FontProperties(size='small')
        self._ax.legend(loc='upper right', prop=font)

def _positions(self, count):
        '''
        For given *count* number of positions, get array for the 
positions.
        '''
end = count * Gantt.POS_STEP + Gantt.POS_START
pos = np.arange(Gantt.POS_START, end, Gantt.POS_STEP)
return pos

The main function that drives the Gantt chart generation is defined in the following code. 
In this function, we load the data into an instance, plot bars accordingly, set up the date 
formatter for the time axis (x axis), and set values for the y axis (the project's tasks).

def show(self):
        self._plot_bars()
        self._configure_figure()
plt.show()

if __name__ == '__main__':
TEST_DATA = (
{ 'label': 'Research',       'start':'2013-10-01 12:00:00', 'end': 
'2013-10-02 18:00:00'},  # @IgnorePep8
{ 'label': 'Compilation',    'start':'2013-10-02 09:00:00', 'end': 
'2013-10-02 12:00:00'},  # @IgnorePep8
{ 'label': 'Meeting #1',     'start':'2013-10-03 12:00:00', 'end': 
'2013-10-03 18:00:00'},  # @IgnorePep8
{ 'label': 'Design',         'start':'2013-10-04 09:00:00', 'end': 
'2013-10-10 13:00:00'},  # @IgnorePep8
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{ 'label': 'Meeting #2',     'start':'2013-10-11 09:00:00', 'end': 
'2013-10-11 13:00:00'},  # @IgnorePep8
{ 'label': 'Implementation', 'start':'2013-10-12 09:00:00', 'end': 
'2013-10-22 13:00:00'},  # @IgnorePep8
{ 'label': 'Demo',           'start':'2013-10-23 09:00:00', 'end': 
'2013-10-23 13:00:00'},  # @IgnorePep8
                )

gantt = Gantt(TEST_DATA)
gantt.show()

This code will render a simple, neat looking Gantt chart like the following one:

How it works...
We can start reading the preceding code from the bottom after the condition that checks if we 
are in "__main__".

After we instantiate the Gantt class giving it TEST_DATA, we set up the necessary fields of our 
instance. We save TASK_DATA in the self.tasks field, and we create our figure and axes to 
hold the charts we create in future.

Then, we call show() on the instance that walks us through the steps required to render the 
Gantt chart:

def show(self):
        self._plot_bars()
        self._configure_figure()
plt.show()

Plotting bars requires iteration where we apply the data about the name and duration of each 
task to the matplotlib.pyplot.barh function, adding it to the axes at self._ax. We 
place each task in a separate channel by giving it a different (incremental) bottom argument 
value.
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Also, to make it easy to map tasks to their names, we cycle over the divergent color maps that 
we generated using the colorbrewer2.org tool.

The next step is to configure the figure, which means that we set up the format date on 
the x axis and tickers' positions and labels on the y axis to match the tasks plotted by 
matplotlib.pyplot.barh.

Finally, we add a grid and a legend.

At the end, we call plt.show() to show the figure.

Making error bars
Error bars are useful to display the dispersion of data on a plot. They are relatively simple as 
a form of visualization; however, they are also a bit problematic because what is shown as an 
error varies across different sciences and publications. This does not lessen the usefulness of 
error bars, it just imposes the need to always be careful and explicitly state the nature of the 
error visualized as an error bar.

Getting ready
To be able to plot an error bar in the raw observed data, we need to compute the mean and 
the error we want to display.

The error we compute represents the 95% confidence interval that the mean we get from 
our observation is stable, which means our observations are good estimates of the whole 
population.

Matplotlib supports these type of plots via matplotlib.pyplot.errorbar function.

It offers several kinds of error bars. They can be vertical (yerr) or horizontal (xerr) and 
symmetrical or asymmetrical.

How to do it...
In the following code we will:

1. Use some sample data that consists of four sets of observations.

2. For each set of observations, compute the mean value.

3. For each set of observations, compute the 95% confidence interval.

4. Render bars with vertical symmetrical error bars.
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Here is the code for this:

import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as sc

TEST_DATA = np.array([[1,2,3,2,1,2,3,4,2,3,2,1,2,3,4,4,3,2,3,2,3,2,1],
                      [5,6,5,4,5,6,7,7,6,7,7,2,8,7,6,5,5,6,7,7,7,6,5],
                      [9,8,7,8,8,7,4,6,6,5,4,3,2,2,2,3,3,4,5,5,5,6,1],
                      [3,2,3,2,2,2,2,3,3,3,3,4,4,4,4,5,6,6,7,8,9,8,5],
                      ])

# find mean for each of our observations
y = np.mean(TEST_DATA, axis=1, dtype=np.float64)
# and the 95% confidence interval
ci95 = np.abs(y - 1.96 * sc.sem(TEST_DATA, axis=1))

# each set is one try
tries = np.arange(0, len(y), 1.0)

# tweak grid and setup labels, limits
plt.grid(True, alpha=0.5)
plt.gca().set_xlabel('Observation #')
plt.gca().set_ylabel('Mean (+- 95% CI)')
plt.title("Observations with corresponding 95% CI as error bar.")
plt.bar(tries, y, align='center', alpha=0.2)
plt.errorbar(tries, y, yerr=ci95, fmt=None)

plt.show()

The preceding code will render a plot with error bars that display 95% confidence intervals 
as whiskers extending along the y axis. Remember, the wider the whiskers, the lesser are the 
probability that the observed mean is true. The following graph is the output for the  
preceding code:
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How it works...
In order to avoid iterating over each set of observations, we use NumPy's vectorized methods 
to compute means and standard errors, which we use for plotting and computing error values.

Using NumPy's vectorized implementations, which are written in C language (and called from 
Python), allows us to speed up computations by several magnitudes.

This is not very important for a few data points but, for millions of data points, it can either 
make or break our efforts to create responsive applications.

Also, you may note that we explicitly specified dtype=np.float 64 in the np.mean function 
call. According to the official NumPy documentation reference (http://docs.scipy.org/
doc/numpy/reference/generated/numpy.mean.html),np.mean can be inaccurate if 
used in single precision; it's better to compute it with np.float32, or if performance is not 
an issue, use np.float 64.

http://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html
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There's more...
There is an ongoing issue with what to show on error bars. Some advise on using SD, 2SD, SE, 
or 95%CI. We must understand what the difference between all these values and what they 
are used for, in order to be able to give reasoning on what to use and when.

Standard Deviation informs us about the distribution of individual data points around the 
mean value. If we assume normal distribution, then we know that 68.2% (~2/3) of data 
values will fall between ±SD, and 95.4% of values will be between ±2*SD.

Standard Error is calculated as SD divided by the square root of N (SD/√N), where N is the 
number of data points. Standard Error (SE) informs us about variability of mean values, if 
we are able to perform the same sampling more than once (like performing the same study 
hundreds of times).

The confidence interval is calculated from SE, similar to how the range of values is calculated 
from Standard Deviation. To calculate 95% confidence interval, we must add/subtract 1.96 * 
SE to/from our mean value or use proper notation: 95% CI = M ± (1.96 * SE). The wider the 
confidence interval, the lesser we would be sure that we are right.

We see that in order to be sure that our estimation is correct and that we are giving its proof 
to our reader, we should display the confidence interval, which in turn carries the standard 
error; this, if small, proves that our means are stable.

Making use of text and font properties
You already learned how to annotate the plot by adding legends, but sometimes we want 
more with text. This recipe will explain and demonstrate more features of text manipulation in 
matplotlib, giving a powerful toolkit for even advanced typesetting needs.

We will not cover LaTeX support in this recipe, as there is a recipe named Rendering text with 
LaTeX in this chapter.

Getting ready
We start with listing of the most useful set of functions that matplotlib offers. Most of the 
functions are available via pyplot module's interface, but we map their origin function here 
to allow you to explore more if a particular text feature is not covered in this recipe.

Basic text manipulations and their mapping in matplotlib OO API is presented in the  
following table:
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matplotlib.
pyplot

Matplotlib API Description

text matplotlib.axes.Axes.text Adds text to the axes at the 
location specified by (x, 
y). Argument fontdict 
allows us to override generic 
font properties, or we can 
use kwargs to override a 
specific property.

xlabel matplotlib.axes.Axes.set_xlabel Sets the label for the x 
axis. Specifies the spacing 
between the label and the 
x axis in accordance with 
labelpad.

ylabel matplotlib.axes.Axes.set_ylabel Similar to xlabel, but 
intended for the y axis.

title matplotlib.axes.Axes.set_title Sets the title for the axes. 
Accepts all the usual 
text properties such as 
fontdict and kwargs.

suptitle matplotlib.figure.Figure.
suptitle

Adds a centered title to the 
figure. Accepts all the usual 
text properties via kwargs. 
Uses figure coordinates.

figtext matplotlib.figure.Figure.text Puts text anywhere on 
the figure. The location 
is defined using (x,y), 
using figure's normalized 
coordinates. Override 
font properties using 
fontdict, but also 
support kwargs to override 
any text-related property.

The base class for text storing and drawing inside windows or data coordinates is the 
matplotlib.text.Text class. It supports the definition of the location of text objects as 
well as a range of properties that we can define, to tune how our strings are going to appear 
on a figure or a window.



More on matplotlib Gems

246

The font properties supported by the matplotlib.text.Text instances are:

Property Values Description
family 'serif', 

'sans-serif', 
'cursive', 
'fantasy', 
'monospace'

Specifies the font name or font family. If this is 
a list, then it is ordered by priority, so the first 
matched name will be used. 

size or fontsize 12, 10,... or 
'xx-small', 
'x-small', 
'small', 
'medium', 
'large',  
'x-large', 
'xx-large'

Specifies the size in relative or absolute points or 
specifies the relative size as a size string. 

style or 
fontstyle

'normal', 
'italic', 
'oblique'

Specifies the font style as a string.

variant 'normal', 
'small-caps'

Specifies the font variant. 

weight or 
fontweight

0-1000 or 
'ultralight', 
'light', 
'normal', 
'regular', 
'book', 
'medium', 
'roman', 
'semibold', 
'demibold', 
'demi', 
'bold', 
'heavy', 
'extra bold', 
'black'

Specifies the font weight or using a specific weight 
string. Font weight is defined as the thickness of 
character outline relative to its height.
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Property Values Description
stretch or 
fontstretch

0-1000 or 
'ultra-
condensed', 
'extra-
condensed', 
'condensed', 
'semi-
condensed', 
'normal', 
'semi-
expanded', 
'expanded', 
'extra-
expanded', 
'ultra-
expanded'

Specifies the stretch of the font. Stretch is defined 
as horizontal condensation or expansion. This 
property is not currently implemented.

fontproperties - Defaults to the matplotlib.font_manager.
FontProperties instance. This class stores 
and manages font properties as described in 
W3CCSSLevel1 specification at http://www.
w3.org/TR/1998/REC-CSS2-19980512/.

We can also specify the background box that will contain the text, and which can be further 
specified in color, borders, and transparency.

The basic text color is read from rcParams['text.color'], if not specified on the current 
instance, of course.

Specified text can also be aligned according to visual needs. There are the following alignment 
properties:

 f horizontalalignment or ha: This allows alignment of text horizontally to center, 
left, and right.

 f verticalalignment or va: The allowed values for this are center, top, bottom, 
and baseline.

 f multialignment: This allows alignment of text strings that span multilines. The 
allowed values are left, right, and center.

http://www.w3.org/TR/1998/REC-CSS2-19980512/
http://www.w3.org/TR/1998/REC-CSS2-19980512/
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How to do it...
So far all is good, but we have a hard time visualizing all these variations in the fonts we can 
create. So, this is going to illustrate what we can do. In the next code, we will perform the 
following steps:

1. List all the possible properties we want to vary on the font.

2. Iterate over the first set of variations: font family and size.

3. Iterate over the second set of variations: weight and style.

4. Render text samples for both the iterations and print the variation combination as  
a text on the plot.

5. Remove axes from the figure, as they serve no purpose.

The following is the code:

importmatplotlib.pyplot as plt
frommatplotlib.font_manager import FontProperties

# properties:
families = ['serif', 'sans-serif', 'cursive', 'fantasy', 'monospace']
sizes  = ['xx-small', 'x-small', 'small', 'medium', 'large',
         'x-large', 'xx-large']
styles  = ['normal', 'italic', 'oblique']
weights = ['light', 'normal', 'medium', 'semibold', 'bold', 'heavy', 
'black']
variants = ['normal', 'small-caps']

fig = plt.figure(figsize=(9,17))
ax = fig.add_subplot(111)
ax.set_xlim(0,9)
ax.set_ylim(0,17)



Chapter 8

249

   # VAR: FAMILY, SIZE
y = 0
size = sizes[0]
style = styles[0]
weight = weights[0]
variant = variants[0]

forfamily in families:
    x = 0
    y = y + .5
for size in sizes:
        y = y + .4
sample = family + " " + size
ax.text(x, y, sample, family=family, size=size,
style=style, weight=weight, variant=variant)
# VAR: STYLE, WEIGHT
y = 0
family = families[0] 
size = sizes[4]
variant = variants[0]

for weight in weights:
    x = 5
    y = y + .5
for style in styles:
        y = y + .4
sample = weight + " " + style
ax.text(x, y, sample, family=family, size=size,
style=style, weight=weight, variant=variant)

ax.set_axis_off()
plt.show()
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The preceding code will produce the following screenshot:
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How it works...
The code is really straightforward, as we just iterate twice over tuples of properties printing 
their values.

The only trick employed here is the positioning of text on the figure canvas, as that allows us 
to have a nice layout of text samples we can easily compare.

Keep in mind that the default font matplotlib will use is dependent on the operating system 
you are running, so the preceding screenshot might look slightly different. This screenshot 
was rendered using standard Ubuntu 13.04 installed fonts.

Rendering text with LaTeX
If we want to plot more scientific graphics and explain math as it should be using scientific 
notations and complex equations on the figures, we need support from the best.

Although matplotlib has support for math text rendering, the best support comes from the 
LaTeX community, proven in the task being used for many decades.

LaTeX is a high-quality typesetting system for the production of scientific and technical 
documentation, being a de facto standard for scientific typesetting or publication. It is a 
free software, available on majority of desktop platforms used today as prepackages binary 
installation; hence, it is easy to install.

The basic syntax of LaTeX is similar to markup languages; so to produce satisfactory content, 
one would write focusing more on the structure than on the look and style. For example:

\documentclass{article}
\title{This here is a title of my document}
\author{Peter J. S. Smith}
\date{September 2013}
\begin{document}
   \maketitle
   Hello world, from LaTeX!
\end{document}

We see how this is different from the usual word processor, where the WYSIWYG editor 
environment and the style is already applied to your text. Sometimes this is good but, for 
scientific publications, style is a secondary concern; the primary focus is having the right, 
correct, and valid content. Here, by content, we also mean mathematical notations (usually a 
lot of it), including graphs.

Apart from this, there are many more features such as automatic generation of bibliographies 
and indexes, which are important for medium to large publications. These are the main focus 
points of the LaTeX system.
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Since this is not a book about LaTeX, we will stop with the quick introduction here. A lot more 
documentation is available on the project's website at http://latex-project.org/.

Getting ready
Before we start demonstrating matplotlib's support for rendering text using LaTeX, we need to 
have the following packages installed on our system:

 f LaTeX system: The most common one is the TeX Live prepackaged distribution

 f DVI to PNG converter: This makes PNG graphics from DVI files as obtained from TeX, 
by producing anti-aliased screen-resolution images

 f Ghost script: This is required, unless already installed by TeX Live distribution

There are different prepackaged systems of the LaTeX environment for different operating 
systems. For Linux-based systems, TeX Live is a complete TeX system. For Mac OS, the 
recommended environment is the MacTeX distribution; for the Windows environment, the 
proTeX system is going to install all the TeX supports, including LaTeX.

Whichever package you install, make sure it comes with font libraries and programs for 
typesetting, previewing, and printing of TeX documents in many different languages.

We will install our package for Linux using the texlive and dvipng packages for Ubuntu. 
We can install this using the following command:

$  sudo apt-get install texlivedvipng

The next step is to tell our matplotlib to use LaTeX by setting text.usetex to True. We can 
do that either in our custom .matplotlibrc inside our home directory (/home/<user>/.
matplotlibrc on Unix-based systems, or C:\Documents and Settings\<user>\.
matplotlibrc) via rcParams['text'], or using the following code:

matplotlib.pyplot.rc('text', usetex=True)

The start of the code will tell matplotlib to go back to LaTeX for all text rendering. It is 
important to do this before we add any figure and axis.

Not all backends support LaTeX rendering. Only the Agg, PS, and PDF backends support text 
rendering via LaTeX.

How to do it...
What we want to do here is demonstrate the basic usage properties of LaTeX. We will perform 
the following steps:

1. Generate some sample data.

2. Set up matplotlib to use LaTeX for this plotting session.

http://latex-project.org/
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3. Set up the font and font properties to be used.

4. Write out the equation syntax.

5. Demonstrate the usage of Greek symbols' syntax.

6. Draw math notations of fractions and fractals.

7. Write some limits and exponential expressions.

8. Write possible range expressions.

9. Write expressions with text and formatted text in them.

10. Write some math expressions on x and y labels as figure titles.

The following code will perform these steps:

import numpy as np
import matplotlib.pyplot as plt

# Example data 
t = np.arange(0.0, 1.0 + 0.01, 0.01) 
s = np.cos(4 * np.pi * t) * np.sin(np.pi*t/4) + 2 

plt.rc('text', usetex=True) 
plt.rc('font',**{'family':'sans-serif','sans-serif':['Helvetica'], 
'size':16}) 

plt.plot(t, s, alpha=0.25) 

# first, the equation for 's' 
# note the usage of Python's raw strings
plt.annotate(r'$\cos(4 \times \pi \times {t}) \times \sin(\pi \times \
frac {t} 4) + 2$', xy=(.9,2.2), xytext=(.5, 2.6), color='red', arrowpr
ops={'arrowstyle':'->'}) 

# some math alphabet 
plt.text(.01, 2.7, r'$\alpha, \beta, \gamma, \Gamma, \pi, \Pi, \phi, \
varphi, \Phi$') 
# some equation 
plt.text(.01, 2.5, r'some equations $\frac{n!}{k!(n-k)!} = {n \choose 
k}$') 
# more equations 
plt.text(.01, 2.3, r'EQ1 $\lim_{x \to \infty} \exp(-x) = 0$') 
# some ranges... 
plt.text(.01, 2.1, r'Ranges: $( a ), [ b ], \{ c \}, | d |, \| e \|, \
langle f \rangle, \lfloor g \rfloor, \lceil h \rceil$') 
# you can multiply apples and oranges 
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plt.text(.01, 1.9, r'Text: $50 apples \times 100 oranges = lots of 
juice$') 
plt.text(.01, 1.7, r'More text formatting: $50 \textrm{ apples} \times 
100 \textbf{ apples} = \textit{lots of juice}$') 
plt.text(.01, 1.5, r'Some indexing: $\beta = (\beta_1,\beta_2,\dotsc,\
beta_n)$') 
# we can also write on labels 
plt.xlabel(r'\textbf{time} (s)') 
plt.ylabel(r'\textit{y values} (W)') 
# and write titles using LaTeX
plt.title(r"\TeX\ is Number "
          r"$\displaystyle\sum_{n=1}^\infty\frac{-e^{i\pi}}{2^n}$!", 
fontsize=16, color='gray') 
# Make room for the ridiculously large title.
plt.subplots_adjust(top=0.8) 

plt.savefig('tex_demo') 
plt.show()

The preceding code will render the following text-saturated figure that demonstrates  
LaTeX rendering:



Chapter 8

255

How it works...
After we set up the rendering engine and font properties, we basically used standard 
matplotlib calls for text rendering, such as matplotlib.pyplot.annotate, matplotlib.
pyplot.text, matplotlib.pyplot.xlabel, matplotlib.pyplot.ylabel, and 
matplotlib.pyplot.title.

The difference here is that all the strings are so-called raw strings, meaning that Python will 
not interpret them and no string substitution will occur; hence, the LaTeX engine is going to 
receive exactly the same strings as commands to act upon.

More examples of how to use TeX and how to integrate it in matplotlib can be found on the 
official matplotlib documentation at http://matplotlib.org/users/mathtext.
html#writing-mathematical-expressions.

Note that this URL is not on LaTeX but on matplotlib's own integrated TeX parser. This parser 
supports almost the same syntax, and it can even be sufficient for your needs.

There's more...
If you run into a problem while setting up this environment or have different problems with 
fonts that either look bad or are not able to produce the LaTeX rendering, make sure that you 
have installed all required packages, your $PATH environment variable (if on Windows) is set 
up to include all the required binaries, and matplotlib is set to use LaTeX for text rendering.

If all of the given instructions are followed and the results cannot be replicated, refer 
to the official matplotlib website at http://matplotlib.org/users/usetex.
html#possible-hangups and the LaTeX community on http://tex.stackexchange.
com/ for further assistance.

It is known that this setup is not as streamlined as it should be, and some quirks may occur 
for various reasons.

Understanding the difference between 
pyplot and OO API

This recipe will try to explain some of the programming interfaces in matplotlib and make 
a comparison of pyplot and object-oriented API (Application Programming Interface). 
Depending on the task at hand, this will allow us to decide why and when to use either of 
these interfaces.

http://matplotlib.org/users/mathtext.html#writing-mathematical-expressions
http://matplotlib.org/users/mathtext.html#writing-mathematical-expressions
http://matplotlib.org/users/usetex.html#possible-hangups
http://matplotlib.org/users/usetex.html#possible-hangups
http://tex.stackexchange.com/
http://tex.stackexchange.com/
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Getting ready
When the matplotlib library was introduced, it was similar to many open source projects—there 
was no proper (free) solution to the problem a person had, so he wrote one. The problem 
encountered with MATLAB® was with respect to performance for the task in hand (http://
www.aosabook.org/en/matplotlib.html), and the original author already had knowledge 
of both MATLAB® and Python, so he started writing matplotlib as a solution for his need for the 
current project.

This is the main reason matplotlib has a MATLAB®-like interface that allows one to quickly 
plot data without worrying about background details, such as which platform matplotlib is 
running on, what are the underlying rendering libraries (is it with GTK, Qt, Tk, or wxWidgets 
either on Linux or Windows), or are we running on Mac OS with the help of Cocoa toolkits. This 
is all hidden inside matplotlib under a nice procedural interface in the matplotlib.pyplot 
module, a stateful interface handling logic for creating figures and axes to connect them with 
the configured backend. It also keeps data structures for the current figure and axes, which 
are called upon with the plot commands.

This is the interface (matplotlib.pyplot) we have been using through most of this book 
as it is simple, straightforward, and good enough for most of the tasks we were trying to 
accomplish. The matplotlib library was designed with this philosophy in mind. We must be 
able to draw plots with as few commands as possible, even just one command (for example, 
plt.plot([1,2,3,4,5]); plt.show() works). For these tasks, we don't want to be 
forced into thinking about objects, instances, methods, properties, rendering backends, 
figures, canvases, lines, and other graphical primitives.

If you are reading this book from the start, you probably note that some classes started 
appearing in various examples, such as, FontProperties or AxesGrid, where we needed 
more than what is provided by the matplotlib.pyplot module.

This is the object-oriented programming interface that implements all the hidden hard stuff, 
such as rendering graphical elements, rendering those to the platform's graphical toolkit, and 
handling user inputs (mouse and keystrokes). There is nothing to stop us from using OO API, 
and that is what we are going to do.

So if we take a look at matplotlib as software, it consists of three parts:

 f matplotlib.pyplot interface: This is a set of functions for the user to create plots like 
in MATLAB®

 f matplotlib API (also called matplotlib frontend): This is a set of classes for the 
creation and management of figures, text, lines, plots, and so on

 f backends: These are drawing drivers. They transform front abstract representation 
into a file or a display device

http://www.aosabook.org/en/matplotlib.html
http://www.aosabook.org/en/matplotlib.html


Chapter 8

257

This backend layer contains concrete implementations of abstract interface classes. There 
are classes, such as FigureCanvas (a surface to draw onto paper), Renderer (a paintbrush 
that does the drawing on the canvas), and Event (a class that handles the user's keystrokes 
and mouse events).

The code is also separated. The base abstract classes are in matplotlib.backend_bases 
and every concrete implementation is in a separate module. For example, the GTK 3 backend 
is in matplotlib.backends.backend_gkt3agg.

In this stack, there is an Artist classes' hierarchy where most of the hard stuff is done. 
Artist knows about Renderer and how to use it to draw images on FigureCanvas. Most 
of the stuff, we are interested in (text, lines, ticks, tick labels, images, and so on) are Artist 
or subclasses of the Artist class (located in the matplotlib.artist module).

The matplotlib.artist.Artist class contains all the shared properties of its children: 
coordinates transformation, clip box, label, user event handlers, and visibility.

In this figure, Artist is the base for most of the other classes. There are two basic categories 
of classes that are inherited from Artist. The first category is of primitive artists that are visible 
objects such as Line2D, Rectangle, Circle, and Text. The second category is of composite 
artists that are collections of other Artists, such as Axis, Tick, Axes, and Figure. For example, 
Figure has the background of the primitive artist Rectangle, but also contains at least one 
composite artist, Axes.

Most of the plotting is happening on the Axes class (matplotlib.axes.Axes). The figure 
background elements such as ticks, axis lines, and the grid and color of the background patch 
is contained in Axes. Another important feature of Axes is that all the helper methods create 
other primitive artists and add them to the Axes instance; for example, plot, hist, and 
imshow.
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Axes.hist, for example, creates many matplotlib.patch.Rectangle instances and 
stores them in the Axes.patches collection.

Axes.plot creates one or more matplotlib.lines.Line2D and stores them in the 
Axes.lines collection.

How to do it...
As an illustration, we will:

1. Instantiate the matplotlib Path object for custom drawing.

2. Construct the vertices of our object.

3. Construct the path's command codes to connect those vertices.

4. Create a patch.

5. Add it to the Axes instance of figure.

The following code implements our intentions:

import matplotlib.pyplot as plt
from matplotlib.path import Path
import matplotlib.patches as patches

# add figure and axes
fig = plt.figure()
ax = fig.add_subplot(111)

coords = [
    (1., 0.),  # start position
    (0., 1.),
    (0., 2.),  # left side
    (1., 3.),
    (2., 3.),
    (3., 2.),  # top right corner
    (3.,1.),  # right side
    (2., 0.),
    (0., 0.),  # ignored
    ]

line_cmds = [Path.MOVETO,
Path.LINETO,
Path.LINETO,
Path.LINETO,
Path.LINETO,
Path.LINETO,
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Path.LINETO,
Path.LINETO,
Path.CLOSEPOLY,
         ]

# construct path
path = Path(coords, line_cmds)
# construct path patch 
patch = patches.PathPatch(path, lw=1,
facecolor='#A1D99B', edgecolor='#31A354')
# add it to *ax* axes
ax.add_patch(patch)

ax.text(1.1, 1.4, 'Python', fontsize=24)
ax.set_xlim(-1, 4)
ax.set_ylim(-1, 4)
plt.show()

The preceding code will generate the following:

How it works...
For this octagon, we used the base patch matplotlib.path.Path, which supports the 
basic set of primitives for drawing lines and curves (moveto and lineto). These can be used 
to draw simple and also more advanced polygons using Bezier curves.
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First, we specified a set of coordinates in the data coordinates that we match with a set 
of path commands to act upon those coordinates (or vertices, if you like). With that, we 
instantiate matplotlib.path.Path. We then construct the patch instance matplotlib.
patched.PathPatch with that path, which is a general polycurve path patch.

This patch can now be added to the figure's axes (the fig.axes collection), and we can 
render the figure to show the polygon.

What we didn't want to do in this example is use matplotlib.figure.Figure directly in 
place of the matplotlib.pyplot.figure() call. The reason for this is that the pyplot.
figure() call does a lot in the background, such as reading the rc parameters from the 
matplotlibrc file (to load default figsize, dpi, and figure color settings), setting up the 
figure manager class (Gcf), and so on. We could do all that, but until we really know what we 
are doing, this is the recommended way to create the figure.

As a general rule of thumb, unless we cannot achieve something via the pyplot interface,  
we should not reach for direct classes such as Figure, Axes, and Axis, because there is a 
lot of state managing going on in the background; unless we are developing matplotlib,  
we should avoid bothering about it.

There's more...
If you want interactivity and exploration, it would be the best to use matplotlib via the Python 
interactive shell. For this purpose, probably the most well known is IPython. This gives you all 
the matplotlib features in a powerful and introspective shell with rich set features such as 
history, inline plotting, and the possibility to share your work if you use the IPython Notebook.

The IPython Notebook is an interface to the IPython shell that can be accessed through the 
browser. Matplotlib has a strong integration with this interface, indeed the plots can be directly 
embedded in the browser interface.
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Visualizations on the 

Clouds with Plot.ly
In this chapter, you will cover the following recipes:

 f Creating line charts

 f Creating bar charts

 f Plotting a 3D trefoil knot

 f Visualizing maps and bubbles

Introduction
Plot.ly is an online data visualization tool. It makes it possible for us to create and share 
interactive charts. Plot.ly can be used in two ways: you can either login into the website, 
upload your data, and use the web interface to create a chart, or use their API. In this  
chapter, we will focus on how to use their API.

The difference with matplotlib is that our charts are now created online and not on our 
machine. This means that we will be able to access them from the Plot.ly website. With a  
free account, all the charts that you make are made public and anyone can access them.

To try the recipes that will be presented in this chapter, you need a Plot.ly account and an API 
key. You can create a Plot.ly account by going on https://plot.ly/ and clicking on Sign 
in. After the account is created, you can go in the Settings section and generate an API key.

After this, the API binding for Python can be installed using pip, as we saw in the first chapter:

$ pip install plotly

Now we're ready to go!

https://plot.ly/
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Creating line charts
In this recipe, we will see how to create a line chart. We have already introduced this kind  
of chart in Chapter 3, Drawing Your First Plots and Customizing Them, and we have seen  
how to make the plots with matplotlib. This time we'll focus on how to create and share  
them with Plot.ly.

Getting ready
Before starting, you need to set up your credentials for the Plot.ly platform in the  
programming environment:

$ python -c "import plotly; plotly.tools.set_credentials_
file(username='DemoAccount', api_key='mykey')"

Replace Demo Account and mykey with your Plotly username and API key.

How to do it...
The following code example demonstrates how to plot two curves. In particular, we will:

1. Generate the data to plot (a sine and a cosine wave).

2. Organize the data in the format required by Plot.ly.

3. Send a request to the server.

4. Receive a URL that points to our chart.

5. Run the following code:
import plotly.plotly as py
from plotly.graph_objs import Scatter
import numpy as np

x = np.linspace(-2*np.pi, 2*np.pi, 50)

trace0 = Scatter(x=x.tolist(),
    y=np.sin(x).tolist(),
    name='sin(x)'
)
trace1 = Scatter(
    x=x.tolist(),
    y=np.cos(x).tolist(),
    name='cos(x)'
)
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data = [trace0, trace1]

unique_url = py.plot(data, filename = 'sin-cos')

How it works...
Here, we used the Scatter object twice. The first instance of Scatter (trace0) represents 
the points of the sine curve, while the second instance (trace1) represents the cosine curve. 
The parameters x and y of the constructor of these objects are used to specify the data 
points to plot, while the parameter name is used for the legend of the chart.

After building the objects that represent the curves, we wrapped all the data in a list that was 
then passed to the py.plot method. This method invokes Plot.ly and creates the chart for 
us. Right after invoking this method, your default browser opens automatically on a page that 
shows the chart. Here's what I got:

Now, the chart (and also the data) is stored on the Plot.ly servers, and we can access it 
through the URL returned by the method plot. Every chart has a unique name specified 
through the parameter filename of the method plot (in this case, the name of the chart  
is sin–cos).
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The peculiarity of the Plot.ly interface is that the charts are interactive. If we hover the mouse 
pointer on the curves, we see a tooltip box that shows the information of the point we're on. 
We can also zoom out and zoom in using the scrolling wheel of the mouse.

There's more...
Following the link DATA, we also have the opportunity to inspect the data:

This feature enables us to share the chart and the data at the same time. If we go into the 
CODE section, we can also view the data in the JSON format:
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We even get a script (in Python, MATLAB, Javascript, R, or Julia) that recreates the chart.  
Here's the Python version:
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Also, going into the Edit graph section, we are able to modify many aspects of the chart, such 
as the theme and layout, and to add notes and so on without going back to the code:

This very handy because it allows us to sketch a chart with a very simple code snippet and 
then improve its appearance with a point-and-click interface.

Creating bar charts
In this recipe, we will focus on how to create a bar chart to compare the occurrences of different 
crimes in Germany, Italy, and Spain in the year 2012. In particular, we will create a bar chart 
where we have three bars for each country, one with the number of burglaries, another with the 
number of robberies, and a third with the number of motor vehicle thefts.

Getting ready
For this recipe, we need the crim_gen.tsv file which comes with this book. This file contains 
the number of crimes reported to the police by year and by country. This data has been 
downloaded from the Eurostat website (http://ec.europa.eu/eurostat).

We assume that this file is in the same directory as the code using it.

http://ec.europa.eu/eurostat
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How to do it...
The following code example demonstrates how to create a bar chart. We will:

1. Open a tsv (tab separated values) file.

2. Isolate and organize the data that we want to plot.

3. Invoke plotly to make the chart.
# bar charts
import pandas as pd
crimes = pd.read_csv('crim_gen.tsv', sep=',|\t', na_values=': ')
crimes = crimes[crimes.country.isin(['IT', 'ES', 'DE'])]

burglary = crimes.query('iccs == "burglary"')[['country', '2012 
']].sort(columns='country').values
robbery = crimes.query('iccs == "robbery"')[['country', '2012 ']].
sort(columns='country').values
motor_theft = crimes.query('iccs == "theft_motor_vehicle"')
[['country', '2012 ']].sort(columns='country').values

import plotly.plotly as py
from plotly.graph_objs import *

trace1 = Bar(
    x=burglary[:,0].tolist(),
    y=burglary[:,1].tolist(),
    name='burglary'
)

trace2 = Bar(
    x=motor_theft[:,0].tolist(),
    y=motor_theft[:,1].tolist(),
    name='motor_theft'
)

trace3 = Bar(
    x=robbery[:,0].tolist(),
    y=robbery[:,1].tolist(),
    name='robbery'
)

data = Data([trace1, trace2, trace3])
layout = Layout(
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    barmode='group'
)
fig = Figure(data=data, layout=layout)
plot_url = py.plot(fig, filename='bars-crimes')

How it works...
In this recipe, we have used pandas (which were introduced in the first chapters of this 
book) to import and query the data. First, we isolated the data by the countries that we were 
interested in using the isin method, and then by the types of crimes that we were interested 
in. In particular, we have the three matrices burglary, robbery, and motor_theft, where 
the first column is the country code and the second is the number of times that crime has 
been reported in the country. Here's what the matrix motor_theft looks like:

[['DE', 70511.0],
['ES', 55197.0],
['IT', 196589.0]]

For each of the matrices, we instantiated a bar object, just like we did for the scatter object,  
but this time the parameter x is the first column of the matrix and y is the second. The data  
was again organized in a list and passed to the method plot. The result should be as follows:

As we can see, we have three groups of bars, and each group contains three bars.
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There's more...
In this snippet, we also used a new object: layout. This object enables us to specify the layout 
properties of the chart. Setting the parameter of this object bar mode as group, we specified 
that the bars needed to be grouped. If we set this attribute to stack, we get something like 
this:

This means that now we also know how to stack the bars instead of just grouping them.

Plotting a 3D trefoil knot
In this recipe, we will see how to plot a 3D trefoil knot. A trefoil knot is a closed curve with 
three crossings. In this recipe, we will draw not just a curve, but a solid 3D curve. This is 
beyond the plotly capabilities, and we will implement this functionality using a trick.

How to do it...
In this recipe, we will:

1. Generate all the points of the knot using parametric equations.

2. Organize the data as required by plotly.

3. Define a clean layout.
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4. Invoke plotly to draw the chart:
import numpy as np
import plotly.plotly as py
from plotly.graph_objs import Scatter3d, Data, Layout
from plotly.graph_objs import Figure, Line, Margin, Marker

from numpy import linspace,pi,cos,sin
phi = linspace(0,2*pi,250)
x = sin(phi)+2*sin(2*phi)
y = cos(phi)-2*cos(2*phi)
z = -sin(3*phi)

traces = list()
colors = ['rgb(%d,50,210)' % c for c in np.abs(z / max(z)) * 255]
for i in linspace(-np.pi,np.pi,50):
    trace = Scatter3d(x=x+np.cos(i)*.5, y=y+np.sin(i)*.5, z=z,
                       mode='markers',
                       marker=Marker(color=colors, size=13))
    traces.append(trace)
    
data = Data(traces)

layout = Layout(showlegend=False, autosize=False,
                width=500, height=500,
                margin=Margin(l=0,r=0,b=0,t=65))

fig = Figure(data=data, layout=layout)
plot_url = py.plot(fig, filename='3d-trifoil')

How it works...
First, we generated all the points of our knot curve using the following parametric equations:

x = sin(phi)+2*sin(2*phi)
y = cos(phi)-2*cos(2*phi)
z = -sin(3*phi)

This means that x, y, and z are parallel vectors, and the point (x[i], y[i], z[i]) is a point  
of our curve in the 3D space. To generate a solid curve, we created a series of other curves 
around the main one. Indeed, we generated a set of Scatter3d objects (each one is a curve).

To give to the knot a 3D effect, we draw each point of each curve with a different color. The 
color is the function of the z coordinate, and it is blue when z is equal to 0 and gradually 
becomes purple when z moves away from 0.
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The colors were specified with a list of RGB triplets. Indeed, if we take a look at the values of 
the list colors, it will look like this:

['rgb(0,50,210)',
 'rgb(19,50,210)',
 'rgb(38,50,210)',
 'rgb(57,50,210)',
 'rgb(76,50,210)',
...

Each element is a string that contains the RGB value of one of the points of the curve.

The results are as follows:

Here, we can not only zoom in and out, but also rotate the figure.
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Visualizing maps and bubbles
In this recipe, we will see how to visualize a map and place a bubble on each country, in this 
case some European countries. The size of each bubble will be proportional to the number of 
total reported crimes in that country.

Getting ready
Here we will again use the crim_gen.tsv file, which comes with this book, assuming that 
this file is in the same directory as the code using it.

How to do it...
For the following recipe, we will proceed as follows:

1. Import and query the data.

2. Define the coordinates of each country.

3. Create an entry for each country.

4. Define the layout for the chart.

5. Invoke plotly.
import plotly.plotly as py
from plotly.graph_objs import *

import pandas as pd
crimes = pd.read_csv('crim_gen.tsv', sep=',|\t', na_values=': ')
crimes = crimes[crimes.country.isin(['IT','ES','DE','FR','NO','
FI'])]

total_crimes = crimes.query('iccs == "TOTAL"')[['country', '2012 
']].sort(columns='2012 ').values
coords = {'IT': (13.007813, 42.553080), 'ES': (-3.867188, 
39.909736), 'DE': (9.316406,50.736455),
          'FR': (2.636719, 46.195042), 'NO': (8.613281, 
61.100789), 'FI': (25.839844, 62.431074)}
scale = 300000
countries = []

for info in total_crimes:
    c = coords[info[0]]
    country = dict(
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        type = 'scattergeo',
        lon = [c[0]],
        lat = [c[1]],
        text = info[0]+':'+str(info[1]),
        sizemode = 'diameter',
        name= info[0],
        marker = dict( 
            size = info[1] / scale, 
            color = 'red',
            line = dict(width = 1,color = 'red')
        ))
    countries.append(country)

layout = dict(
        title = '2012 Reported crimes',
        showlegend = True,
        geo = dict(
            scope='europe'      
        ),  
    )
    
fig = dict( data=countries, layout=layout )
url = py.plot( fig, validate=False, filename='bubble-map-crimes' )

How it works...
Here, we have isolated the data for six countries: Spain, Italy, Germany, France, Norway, and 
Finland. For each of these countries, we defined the coordinate to place the bubble in the 
dictionary coords. Then, for each country, we created a dictionary with the details of the 
bubble to show the size, string in the tooltip, color, and geographical coordinates.

Then, we created the layout for the chart. What tells Plot.ly that this chart contains a map  
is the parameter geo. When Plot.ly finds this parameter in the specifications of the layout,  
it automatically assumes that it is a map. With this parameter, we specify the scope of the 
map, which in this case is Europe.
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The resulting figure should be as follows:
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arrows (quivers)  229
ArtistAnimation class  153
autocorrelation

about  224
using  226, 227

Axes.annotate function  170

axis labels
size, setting of  112, 113
transparency, setting of  112, 113

axis lengths
defining  79-82

axis limits 
 defining  79-82

B
background color

defining  87
barb

about  229, 230
drawing  230-232
emptybarb  231
height  231
spacing  231
using  231, 232
width  231

bar charts
creating  97-100, 266-269

bar charts, parameters
bottom  98
ecolor  98
edgecolor  98
linewidth  98
orientation  98
width  98
xerr  98
yerr  98

Basemap
used, for plotting data on map  174-179

basic plot, matplotlib
plotting area  71
x and y axes  71
x and y tickers  71
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x and y tick labels  71
box

creating  233-235
box plot

Box  75
Fliers  75
Median  75
Whiskers  75

bubbles
visualizing  272, 273

C
CAPTCHA images

about  186
generating  185-190

categories, colormaps
cyclic  209
diverging  208
qualitative  209
sequential  208

chart line
shadow, adding to  114-117

class and instance methods,  
Image module  160

Colorbrewer2
URL  82

colored markers
used, for drawing scatter plots  107-109

colormaps
about  208
brg  209
bwr  209
categories  208
coolwarm  209
rainbow  209
seismic  209
terrain  209
using  208-213

colors
obtaining  86

Comma Separated Values. See  CSV
Completely Automated Public Turing test  

to tell Computers and Humans Apart 
images. See  CAPTCHA images

configuration file, options
axes  15

backend  15
figure  15
font  15
grid  15
legend  15
lines  15
patch  15
savefig  15
text  15
verbose  16
xticks  16
yticks  16

contour plots
creating  128-131

controlled random datasets
generating  55-62

coordinate systems
Axes  115
Data  115
Display  115
Figure  115

correlogram  224
cross correlation, between two variables

plotting  221-223
CSV

data, exporting to  29-33
data, importing from  18-20

D
data

cleaning up, from outliers  40-45
exporting, to CSV  29-33
exporting, to Excel  29-33
exporting, to JSON  29-33
importing, form database  35, 36
importing, from CSV  18-20, 30
importing, from database  37-39
importing, from Excel files  20-23
importing, from fixed-width data files  23-25
importing, from JSON resource  27-29
importing, from tab-delimited files  25, 26
importing, with Pandas  34, 35
manipulating, with Pandas  34, 35
plotting, on map with Basemap  174-179
plotting, on map with Google  

Map API  179-185
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visualizations, types  70
database

data, importing  35-39
DataFrame  34, 35
data table

adding, to figure  118-120

E
Enthought Python Distribution (EPD)  9
error bars

about  241
creating  241-244
drawing  97-100

Excel
data, exporting to  29-33
data, importing  20-23

exploded pie chart
creating  101

F
FancyArrowPatch class  204
figure

data table, adding to  118-120
files

reading, in chunks  45-47
filesystem tree

visualizing, polar bar used  136-139
fixed-width data files

data, importing  23-25
font property

using  244-251
format_data() function  169
format strings

defining  82-84
formatters, stem plot

basefmt  201
bottom  201
hold  201
label  201
linefmt  201
markerfmt  201

freetype  2

G
Gantt charts

about  236
creating  236-241

get_captcha method  189
get_page_template() function  184
GitHub

URL  27
glumpy  155
Google Data Visualization Library,  

for Python  179
Google Developer

URL  185
Google Geochart  180
Google Map API

used, for plotting data on map  179-185
Google Visualization API  179
grids

customizing  123-128
setting  87-90

H
hatch values  99
histograms

about  95, 213
align  96
bins  95
color  96
creating  95-97
histtype  96
normed  95
orientation  96
range  95
using  213-220

Homebrew  7
HTTP Protocol and Response messages

URL  185

I
image data

importing, into NumPy arrays  49-55
ImageDraw module  160
ImageFilter module

about  161
fixed image enhancement filters  161
image filters  161

image histogram viewer
building  171
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image processing
PIL, installing for  10

images
displaying, with other plots in figure  171
processing, with PIL  160-165
used, for plotting  166-171

InnoDB  39
installing

matplotlib  2-4
matplotlib, on Mac OS X  7, 8
matplotlib, on Windows  9, 10
NumPy  2-4
PIL, for image processing  10
requests module  11
SciPy  2-4
virtualenv  5-7
virtualenvwrapper  5-7

Interactive Python  4
IPython

about  4, 70
plot, creating  70-76

isin method  268
isolines  128

J
JavaScript Object Notation (JSON)

data, exporting to  29-33
data, importing from  27-29
URL  28

L
labels

setting  87-90
LaTeX

about  251
URL  252, 255
used, for rendering text  251-255

legend
about  90
adding  91, 92

libpng  2
line charts

creating  262-266
two curves, plotting  262-264

line markers  85
linestyles  85

location parameter strings  92
logarithmic plots

about  192
using  192-194
working  194, 195

M
Mac OS X

matplotlib, installing on  7, 8
MacTeX  252
map

data plotting, URL  179
data plotting, with Basemap  174-179
data plotting, with Google Map API  179-185
visualizing  272, 273

matplotlib
about  2
animate function  153
animation  150-153
Animation (object) class  150
ArtistAnimation (TimedAnimation) class  151
backends  256
customizing, with style  140-142
FuncAnimation (TimedAnimation) class  151
init function  153
installing  2-4
installing, on Mac OS X  7, 8
installing, on Windows  9, 10
matplotlib.animation.Animation.save  

function  153
matplotlib API (matplotlib frontend)  256
matplotlib.pyplot interface  256
parameters, customizing in code  12-14
parameters, customizing per project  14-16
stream plot  208
TimedAnimation (Animation) class  151
URL  255, 256

matplotlib.pyplot
figtext  245
suptitle  245
text  245
title  245
xlabel  245
ylabel  245

Mayavi  155
Median absolute deviation (MAD)  40
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Median Filter  67
MyISAM  39

N
Netlib repository

URL  2
noise signal

smoothing  62-68
NUMBEO

URL  183
NumPy

about  2
documentation, URL  243
installing  2-4
URL  2

NumPy arrays
image data, importing into  49-55

numpy.correlate function  221

O
object-oriented (OO) approach  25
OO API

and pyplot, differentiating between  255-260
OpenGL

animation basics  154
used, for animation  154-158

OpenRefine
URL  45

Optical Character Recognition (OCR)  190
outliers

data, cleaning up  40-45

P
packages

DVI to PNG converter  252
ghost script  252
LaTeX system  252

Pandas
data, importing  34, 35
data, manipulating  34, 35

pie charts
about  100
used, for data presentation  100, 101

PIL
about  10

installing, for image processing  10
reference link  11
used, for processing images  160-165

Pillow
URL  11

pip  5
plot line styles

defining  82-84
Plot.ly

about  261
URL  261

plot types
bar  70-75
line  70-76
stacked charts  70-76

polar bar
used, for visualizing filesystem tree  136-139

polar plots
drawing  134-136

properties, matplotlib.lines.Line2D class
alpha  83
color (c)  83
dashes  84
label  84
linestyle (ls)  84
linewidth (lw)  84
marker  84
markeredgecolor (mec)  84
markeredgewidth (mew)  84
markerfacecolor (mfc)  84
markersize (ms)  84
solid_capstyle  84
solid_joinstyle  84
visible  84
xdata  84
ydata  84
Zorder  85

properties, matplotlib.text.Text
family  246
fontproperties  247
fontsize  246
fontstretch  247
fontstyle  246
fontweight  246
size  246
stretch  247
style  246
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variant  246
weight  246

proTeX  252
pycrypto  190
Pyglet  155
PyPi

URL  23
pyplot

and OO API, differentiating  
between  255-260

py.plot method  263
Python

format characters, URL  24
URL  20

Python Distribution Utilities (Distutils)  4
Python Imaging Library. See  PIL
Python Imaging Library (PIL)  51
Python matplotlib library

used, for processing image channels  171-174

R
real-world data

noise signal, smoothing  62-68
reCAPTCHA

URL  190
requests module

installing  11
rotate_axes method  144

S
SageMath  9
save method  153
scatterhist() function  218
scatter plots

about  213
drawing, with colored markers  107-109
using  213-220

scikit-image
auto examples, URL  55
URL  55

SciPy
about  2
installing  2-4

shadow
adding, to chart line  114-117

sine and cosine plot

drawing  76-79
spectrograms

about  195
using  196-198
working  198-200

spines
moving, to center  93, 94

stacked plots
creating  104-107

Standard Deviation
calculating  244

Standard Error
calculating  244

standard SQL
URL  39

stem() function  201
stem plot

about  200, 201
creating  201-204
formatters, configuring with  201

streaming data sources
reading  47-49

streamlines, vector flow
drawing  204-208

struct module
URL  23

style
matplotlib, customizing with  140-142

subplots
using  120-123

T
tab-delimited files

data, importing from  25, 26
Table Visualization  180
tab separated values (tsv)  267
TeX Live  252
text

properties, using  244-251
rendering, with LaTeX  251-255

ticks
setting  87-90

to_csv method  34
transforms

using  117
transparency
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setting, of axis labels  112, 113

U
under-plot area

filling  131-134

V
vector flow

streamlines, drawing  204-208
virtualenv

about  4
installing  5-7

virtualenvwrapper
about  5
installing  5-7
reference link  5

W
whisker plot

creating  233-235
Windows

matplotlib, installing on  9, 10
WYSIWYG

URL  160

Y
Yorick

URL  209
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