
www.allitebooks.com

http://www.allitebooks.org

Python Geospatial
Analysis Cookbook

60 recipes to work with topology, overlays, indoor routing,
and web application analysis with Python

Michael Diener

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Python Geospatial Analysis Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: November 2015

Production reference: 1251115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-507-9

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Michael Diener

Reviewers
Jáchym Čepický

Richard Marsden

Commissioning Editor
Ashwin Nair

Acquisition Editor
Rebecca Youé

Content Development Editor
Athira Laji

Technical Editor
Chinmay S. Puranik

Copy Editor
Sonia Michelle Cheema

Project Coordinator
Bijal Patel

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Disha Haria

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Michael Diener graduated from Simon Fraser University, British Columbia, Canada,
in 2001 with a bachelor of science degree in geography. He began working in 1995 with
Environment Canada as a GIS (Geographic Information Systems) analyst and has continued to
work with GIS technologies ever since.

In 2008, he founded a company called GOMOGI that is focused on building web and mobile
GIS application with open source tools. In 2011, the focus changed to indoor wayfinding and
navigation solutions and building the indrz platform that Michael had envisioned.

From time to time, Michael also holds seminars for organizations wanting to explore or
discover the possibilities of how GIS can increase productivity and help better answer spatial
questions. He is also the creative head of new product development in his company. His
technical skills include working with Python to solve a wide range of spatial problems on
a daily basis. Through the years, he has developed many spatial applications with Python,
including indrz and golfgis, which are two of the products built by his company, GOMOGI.

He is also lecturer of GIS at the Alpen Adria University, Klagenfurt, where he enjoys teaching
students the wonderful powers of GIS and explaining how to solve spatial problems with open
source GIS and Python.

I would like to dedicate this book to my family, beginning with my loving wife,
Silvia, who encouraged and supported me through the writing of this book. I
must also thank my three boys, Noah, Levi, and Jasper, for sacrificing many
evenings and weekends of playtime for daddy’s book time. My parents, Birte
and Hartwig, also deserve a big thank you for always believing in me—thank
you for everything.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Jáchym Čepický is an open source GIS software consultant, developer, and user.

Richard Marsden has over 15 years of professional software development experience.
After starting in the fields of geophysics and oil exploration, he has spent the last 10 years
running the Winwaed Software Technology LLC independent software vendor. Winwaed
specializes in geospatial tools and applications, including web applications, and operates the
http://www.mapping-tools.com website for tools and add-ins for geospatial products
such as Caliper Maptitude and Microsoft MapPoint.

Richard has been a technical reviewer for Python Geospatial Development and Python
Geospatial Analysis Essentials both by Erik Westra, and Mastering Python Forensics by
Dr. Michael Spreitzenbarth and Dr. Johann Uhrmann all by Packt Publishing.

www.allitebooks.com

http://www.mapping-tools.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book
library. Here, you can search, access, and read Packt’s entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print, and bookmark content

 f On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

i

Table of Contents
Preface v
Chapter 1: Setting Up Your Geospatial Python Environment 1

Introduction 1
Installing virtualenv and virtualenvwrapper 2
Installing pyproj and NumPy 7
Installing shapely, matplotlib, and descartes 9
Installing pyshp, geojson, and pandas 12
Installing SciPy, PySAL, and IPython 13
Installing GDAL and OGR 15
Installing GeoDjango and PostgreSQL with PostGIS 19

Chapter 2: Working with Projections 23
Introduction 23
Discovering projection(s) of a Shapefile or GeoJSON dataset 25
Listing projection(s) from a WMS server 32
Creating a projection definition for a Shapefile if it does not exist 34
Batch setting the projection definition of a folder full of Shapefiles 36
Reprojecting a Shapefile from one projection to another 39

Chapter 3: Moving Spatial Data from One Format to Another 43
Introduction 43
Converting a Shapefile to a PostGIS table using ogr2ogr 44
Batch importing a folder of Shapefiles into PostGIS using ogr2ogr 49
Batch exporting a list of tables from PostGIS to Shapefiles 52
Converting an OpenStreetMap (OSM) XML to a Shapefile 54
Converting a Shapefile (vector) to a GeoTiff (raster) 57
Converting a raster (GeoTiff) to a vector (Shapefile) using GDAL 61
Creating a Shapefile from point data stored in Microsoft Excel 62
Converting an ESRI ASCII DEM to an image height map 65

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 4: Working with PostGIS 69
Introduction 69
Executing a PostGIS ST_Buffer analysis query and exporting it to GeoJSON 70
Finding out whether a point is inside a polygon 73
Splitting LineStrings at intersections using ST_Node 77
Checking the validity of LineStrings 82
Executing a spatial join and assigning point attributes to a polygon 83
Conducting a complex spatial analysis query using ST_Distance() 87

Chapter 5: Vector Analysis 93
Introduction 93
Clipping LineStrings to an area of interest 95
Splitting polygons with lines 101
Finding the location of a point on a line using linear referencing 105
Snapping a point to the nearest line 109
Calculating 3D ground distance and total elevation gain 114

Chapter 6: Overlay Analysis 121
Introduction 121
Punching holes in polygons with a symmetric difference operation 122
Union polygons without merging 128
Union polygons with merging (dissolving) 134
Performing an identity function (difference + intersection) 137

Chapter 7: Raster Analysis 143
Introduction 143
Loading a DEM USGS ACSII CDED into PostGIS 144
Creating an elevation profile 147
Creating a hillshade raster from your DEM with ogr 153
Generating slope and aspect images from your DEM 156
Merging rasters to generate a color relief map 159

Chapter 8: Network Routing Analysis 163
Introduction 163
Finding the Dijkstra shortest path with pgRouting 165
Finding the Dijkstra shortest path with NetworkX in pure Python 172
Generating evacuation polygons based on an indoor shortest path 176
Creating centerlines from polygons 182
Building an indoor routing system in 3D 189
Calculating indoor route walk time 198

www.allitebooks.com

http://www.allitebooks.org

iii

Table of Contents

Chapter 9: Topology Checking and Data Validation 201
Introduction 201
Creating a rule – only one point inside a polygon 203
A point must be on the starting and ending nodes of a line only 208
LineStrings must not overlap 212
A LineString must not have dangles 214
A polygon centroid must be within a specific distance of a line 217

Chapter 10: Visualizing Your Analysis 221
Introduction 221
Generating a leaflet web map with Folium 222
Setting up TileStache to serve tiles 224
Visualizing DEM data with Three.js 226
Draping an orthophoto over a DEM 231

Chapter 11: Web Analysis with GeoDjango 237
Introduction 237
Setting up a GeoDjango web application 238
Creating an indoor web routing service 242
Visualizing an indoor routing service 251
Creating an indoor route-type service 259
Creating an indoor route from room to room 267

Appendix A: Other Geospatial Python Libraries 281
Appendix B: Mapping Icon Libraries 283
Index 285

www.allitebooks.com

http://www.allitebooks.org

v

Preface
Geospatial analysis is not special; it is just different when compared to other types of analysis
such as financial market analysis. We work with geometry objects, such as lines, points, and
polygons, and connect these geometries to attributes such as business data. We ask "where"
question, such as "Where is the nearest pub?", "Where are all my customers located?", and
"Where is my competition located?". The other location questions include, "Will this new
building cast a shadow over the park?", "What is the shortest way to school?", "What is the
safest way to school for my kids?", "Will this building block my view of the mountains?", and
"Where is the optimal place to build my next store?". Identify the areas that fire trucks can
reach from their station in 5 min, 10 min, or 20 min, and so on.

One thing all these questions have in common is the fact that you need to know where certain
objects are located in order to answer them. Without the spatial component, you cannot
answer such questions and this is what geospatial analysis is all about.

Geospatial features are laid over each other and patterns or trends are easily identified. This
ability to see a pattern or trend is geospatial analysis in its simplest form.

Throughout this book, simple and complex code recipes are provided as small working models
that can easily be integrated or expanded into a larger project or model.

Analysis is the fun part of GIS, and involves visualizing relationships, identifying trends, and
seeing patterns that are not visible in a spreadsheet.

The Python programming language is clean, clear, and concise, making it great for beginners.
It also has advanced powers for professionals to help them quickly code solutions to complex
problems. Python makes visualization quick and easy for experts or beginners who work with
geospatial data. It's that simple.

Preface

vi

What this book covers
Chapter 1, Setting Up Your Geospatial Python Environment, explores setting up your computer
to handle all software requirements in one go, such as pyproj, NumPy, and Shapely. All your
development software needs to enable spatial analysis or geoprocessing on Windows and
Linux are met in this chapter.

Chapter 2, Working with Projections, explains how to deal with spatial data that's projected or
unprojected. You can learn and discover how to transform your data into a correct projection
to prepare for an analysis.

Chapter 3, Moving Spatial Data from One Format to Another, explains how geospatial data
comes in many different formats and also how messaging data from one format to another is a
daily chore. In this chapter, you will find out about the most common data management tasks.

Chapter 4, Working with PostGIS, shows you how most of our geospatial data is stored in
a spatial database and using, accessing, manipulating this data with Python is what this
chapter is about.

Chapter 5, Vector Analysis, introduces a very common geospatial data format, that is, the
vector data format. To execute analysis functions on vector data, we will explore patterns used
to create new data by snapping, clipping, cutting, and overlaying vector datasets followed by
determining the 3D ground distance and total elevation gain.

Chapter 6, Overlay Analysis, explains how to combine spatial data to create new data by using
the process of overlaying two sets of data over each other.

Chapter 7, Raster Analysis, shows you how to create an elevation profile and quick ways to
merge images to perform raster analysis functions on your data.

Chapter 8, Network Routing Analysis, shows you how finding the nearest anything is a common
geospatial analysis feature. This chapter will disclose how to go about solving an indoor network
type problem and demonstrate some common use cases for wayfinding inside buildings.

Chapter 9, Topology Checking and Data Validation, covers data quality and connections. In this
chapter, you will learn how to verify your data for errors using custom topological functions.

Chapter 10, Visualizing Your Analysis, explains how geospatial data is inherently visual and
you will learn about presenting your analysis on a web map and a 3D web.

Chapter 11, Web Analysis with GeoDjango, builds on Chapter 8, Network Routing Analysis,
where you will create an indoor routing web application. You will easily be able to route a
person from point A to point B within a building with real 3D network data. These key features
will be presented by bringing together all the parts of the recipes you have learned so far.

Preface

vii

Appendix A, Other Geospatial Python Libraries, explains how Python flourishes with geospatial
libraries, and you will also find a listing of many popular libraries that are used for data
analysis, regardless of whether they're spatial or not. This may trigger your interest.

Appendix B, Mapping Icon Libraries, quickly goes over the icon libraries out there that play a
special role in the python geospatial working environment.

What you need for this book
To work with this book, you should be familiar with the programming language Python and the
concepts involved in programming. This means that you should be able to install Python 2.7.x
on your machine (Windows, Linux, or OS X) if it's not already installed. The concepts related to
GIS (Geographic Information Systems) are definitely helpful but not necessary. A primer to this
book could be Learning Geospatial Analysis with Python, Joel Lawhead or Python Geospatial
Development, Eric Westra, both by Packt Publishing.

Who this book is for
If you are a student, teacher, programmer, geospatial or IT administrator, GIS analyst,
researcher, or scientist looking to learn about spatial analysis, then this book is for you. Anyone
trying to answer simple to complex spatial analysis questions will get a working demonstration of
the power of Python with the help of real-world data. Some of you may be beginners but most of
you will probably have a basic understanding of geospatial analysis and programming.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

Preface

viii

How it works…
This section usually consists of a detailed explanation of what happened in the
previous section.

There's more…
This section consists of additional information about the recipe in order to make the
reader more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "If workon for some reason does not start your
virtual environment, you can start it simply by executing source /home/mdiener/.venvs/
pygeoan_cb/bin/activate from the command line."

A block of code is set as follows:

#!/usr/bin/env python
-*- coding: utf-8 -*-

from osgeo import ogr
shp_driver = ogr.GetDriverByName('ESRI Shapefile')
shp_dataset = shp_driver.Open(r'../geodata/schools.shp')
shp_layer = shp_dataset.GetLayer()
shp_srs = shp_layer.GetSpatialRef()
print shp_srs

Any command-line input or output is written as follows:

$ sudo apt-get install python-setuptools python-pip

Preface

ix

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Select Route To: and enter 2
to see the second floor options."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output. You
can download this file from https://www.packtpub.com/sites/default/files/
downloads/5079OS_ColorImage.pdf.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/5079OS_ColorImage.pdf
https://www.packtpub.com/sites/default/files/downloads/5079OS_ColorImage.pdf

Preface

x

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com/support

1

1
Setting Up Your

Geospatial Python
Environment

In this chapter, we will cover the following topics:

 f Installing virtualenv and virtualenvwrapper

 f Installing pyproj and NumPy

 f Installing shapely, matplotlib, and descartes

 f Installing pyshp, geojson, and pandas

 f Installing SciPy, PySal, and IPython

 f Installing GDAL and OGR

 f Installing GeoDjango and PostgreSQL with PostGIS

Introduction
This chapter will get the grunt work done for you so that you can freely and actively complete
all the recipes in this book. We will start off by installing, each of the libraries you will be using,
one by one. Once each step is completed, we will test each library installation to make sure
it works. Since this book is directed toward those of you already working with spatial data,
you can skip this chapter if you have it installed already. If not, you will find the installation
instructions here useful as a reference.

The choice of Python libraries is based on industry-proven reliability and functionality. The
plethora of functions in Python libraries has led to a flourishing GIS support on many top
desktop GIS systems, such as QGIS and ESRI ArcGIS.

Setting Up Your Geospatial Python Environment

2

Also included in this book is an installer.sh bash file. The installer.sh file can
be used to install the Python libraries that are available for your virtual environment from
pip and other dependencies via the apt-get command. The installer.sh bash file
is executed from the command line and installs almost everything in one go, so please
take a look at it. For those of you who are starting with Python for the first time, follow the
instructions in this chapter and your machine will be set up to complete different recipes.

Installations can sometimes be tricky even for advanced users, so you will find some of the
most common pitfalls and hook-ups described in this chapter.

The development of these recipes was completed on a fresh Linux/Ubuntu 14.04 machine.
Therefore, the code examples, if not otherwise specified, are Linux/Ubuntu-specific with
Windows notes wherever necessary, unless otherwise specified.

Installing virtualenv and virtualenvwrapper
This recipe will enable you to manage different versions of different libraries for multiple
projects. We use virtualenv to create virtual Python environments to host collections of
project-specific libraries in an isolated directory. For example, you may have an old legacy
project using Django 1.4, whereas a new project requires you use Django version 1.8. With
virtualenv, you can have both versions of Django installed on the same machine, and each
project can access the appropriate version of Django without any conflicts or problems.

Without virtualenv, you are forced to either upgrade the old project or find a workaround
to implement the new features of the other version, therefore limiting or complicating the
new project.

The virtualenv allows you to simply switch between different Python virtual environments
for your individual projects. This has the added benefit that you can easily and quickly set up
a new machine for testing or help a new developer get their machine up and running as fast
as possible.

Getting ready
Before anything, we are going to assume that you already have a Linux/Ubuntu machine or a
virtualbox instance running Linux/Ubuntu so you can follow these instructions.

I also suggest trying out Vagrant (http://www.vagrantup.com),
which uses virtualbox to box and standardize your development
environment.

http://www.vagrantup.com

Chapter 1

3

Ubuntu 14.04 comes with Python 2.7.6 and Python 3.4 preinstalled; the other libraries are
your responsibility as explained in the following sections.

Windows users need to download and install Python 2.7.x from the Python home page at
https://www.python.org/downloads/windows/; please download the newest version
of the 2.7.x series since this book is written with 2.7.X in mind. The installer includes a
bundled version of pip, so make sure you install it!

Take a close look at the correct version to download, making sure that you get either the
32-bit or 64-bit download. You cannot mix and match the versions, so be careful and
remember to install the correct version.

A great site for other kinds of Windows binaries can be found at http://www.lfd.uci.
edu/~gohlke/pythonlibs/. Wheel files are the new norms of installations and can be
executed from the command line as follows:

python pip install libraryName.whl

On Windows, make sure that your Python interpreter is set up on
your system path. This way, you can simply call Python directly
from the command prompt using the C:\Users\Michael>
python filename.py command. If you need more help,
information can be found by following one of the online
instructions at https://pypi.python.org/pypi/pip.

As of Python 2.7.9 and later versions, pip is available on
installation.

Python 3 would be awesome to use, and for many Python GIS libraries, it is ready for
show time. Unfortunately, not all GIS libraries jive with Python 3 (pyproj) as one would
love to see at the time of writing this. If you want, feel free to go for Python 3.x and give it
a go. A great webpage to check the compatibility of a library can be found at https://
caniusepython3.com/.

To install virtualenv, you need to have a running installation of Python and pip. The
pip package manager manages and installs Python packages, making our lives easier.
Throughout this book, if we need to install a package, pip will be our tool of choice for this
job. The official installation instructions for pip can be found at https://pip.pypa.io/en/
latest/installing.html. To install pip from the command line, we first need to install
easy_install. Let's try it out from the Terminal:

$ sudo apt-get install python-setuptools python-pip

www.allitebooks.com

https://www.python.org/downloads/windows/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
https://pypi.python.org/pypi/pip
https://caniusepython3.com/
https://caniusepython3.com/
https://pip.pypa.io/en/latest/installing.html
https://pip.pypa.io/en/latest/installing.html
http://www.allitebooks.org

Setting Up Your Geospatial Python Environment

4

With this one line, you have both pip and easy_install installed.

What is sudo?
sudo is a program for Unix-like computer operating systems
that allows users to run programs with the security privileges
of another user (normally, the super user or root). Its name is
a concatenation of su (substitute user) and do (take action).
Take a look at http://en.wikipedia.org/wiki/Sudo
for more information on this.

The command sudo means to run an execution as a super user. If this fails, you will need
to get the ez_setup.py file, which is available at https://bootstrap.pypa.io/ez_
setup.py. After downloading the file, you can run it from the command line:

$ python ez_setup.py

Now pip should be up and running and you can execute commands to complete the
installations of virtualenv and virtualenvwrapper. The virtualenvwrapper creates shortcuts
that are faster ways to create or delete your virtual environments. You can test it as follows:

$ pip install virtualenv

How to do it...
The steps to install your Python virtualenv and virtualenvwrapper packages are
as follows:

1. Install virtualenv using the pip installer:
$ sudo pip install virtualenv

2. Install virtualenvwrapper using easy_install:
$ sudo easy_install virtualenvwrapper

We use easy_install instead of pip because with
Ubuntu 14.04, the virtualenvwrapper.sh file
is unfortunately not located at /usr/local/bin/
virtualenvwrapper.sh where it should be according
to the online documentation.

3. Assign the WORKON_HOME variable to your home directory with the folder name
venvs. Create a single folder where you want to store all your different Python virtual
environments; in my case, the folder is located at /home/mdiener/venvs:
$ export WORKON_HOME=~/venvs

$ mkdir $WORKON_HOME

http://en.wikipedia.org/wiki/Sudo
https://bootstrap.pypa.io/ez_setup.py
https://bootstrap.pypa.io/ez_setup.py

Chapter 1

5

4. Run the source command to execute the virtualenvrapper.sh bash file:
$ source /usr/local/bin/virtualenvwrapper.sh

5. Next, we create a new virtual environment called pygeoan_cb, and this is also the
name of the new folder where the virtual environment is installed:
$ mkvirtualenv pygeoan_cb

To use virtualenvwrapper the next time you start up your machine, we need to
set it up so that your bash terminal runs the virtualenvwrapper.sh script when
your computer starts.

6. First, put it in your ~/.bashrc file:
$ echo "export WORKON_HOME=$WORKON_HOME" >> ~/.bashrc

7. Next, we'll import the virtualenvwrapper function in our bash:
$ echo "source /usr/local/bin/virtualenvwrapper.sh" >> ~/.bashrc

8. Now we can execute our bash:
$ source ~/.bashrc

How it works...
Step one shows how pip installs the virtualenv package into your system-wide Python
installation. Step two shows how the virtualenvwrapper helper package is installed with
easy_install because the virtualenvwrapper.sh file is not created using the pip
installer. This will help us create, enter, and generally, work or switch between Python virtual
environments with ease. Step three assigns the WORKON_HOME variable to a directory where
we want to have all of our virtual environments. Then, we'll create a new directory to hold all
the virtual environments. In step four, the command source is used to execute the shell script
to set up the virtualenvwrapper package. In step five, we see how to actually create a
new virtualenv called pygeoan_cb in our /home/mdiener/venvs directory. This final
step automatically starts our virtualenv session.

Once the virtualenv session starts, we can now see the name of virtualenv in brackets
like this:

(pygeoan_cb)mdiener@mdiener-VirtualBox:~$

To exit virtualenv, simply type the following code:

$ deactivate

Now, your command line should be back to normal as shown here:

mdiener@mdiener-VirtualBox:~$

Setting Up Your Geospatial Python Environment

6

To reactivate virtualenv, simply type:

$ workon pygeoan_cb

The workon command has Tab completion. So, simply type
workon, and then the first letter of the name of the virtual
environment you want to enter, such as py. Hit Tab and it will
autocomplete the name.

Inside the /venvs folder, you will find specific individual virtual environments for each project
in the form of a subfolder. The virtualenvwrapper package will always create a new folder
for each new project you create. You can, therefore, easily delete a folder and it will remove
your virtual environment.

To quickly print a list all of the installed libraries to a file, we'll use the pip command:

$ pip freeze > requirements.txt

This will create a text file called requirements.txt in the current folder. The text file
contains a list of all the installed Python packages inside the Python virtual environment
currently running.

To create a new virtualenv from a requirements file, use the following command:

$ pip install -r /path/to/requirements.txt

There's more…
For those of you who are just starting out with geospatial Python development, it should be
noted that you should keep your project-specific code at another location outside your Python
virtual environment folder. For example, I always have each project-related code contained in a
separate folder called 01_projects, which is my main folder. The path to my projects folder is
/home/mdiener/01_projects, and the structure of two of my projects is as follows:

 f 01_projects/Name_project1

 f 01_projects/Name_project2

All virtual environments are located under /home/mdiener/venvs/. Usually, I give them the
same name as a project to keep things organized, as follows:

 f /home/mdiener/venvs/Name_project1

 f /home/mdiener/venvs/Name_project2

Chapter 1

7

Installing pyproj and NumPy
The pyproj is a wrapper around the PROJ.4 library that works with projections and performs
transformations (https://pypi.python.org/pypi/pyproj/) in Python. All your
geographic information should be projected into one of the many coordinate systems
supported by the European Petroleum Survey Group (EPSG). This information is necessary
for the systems to correctly place data at the appropriate location on Earth. The geographic
data can then be placed on top of each other as layers upon layers of data in order to create
maps or perform analysis. The data must be correctly positioned or we won't be able to add,
combine, or compare it to other data sources spatially.

Data comes from many sources and, often, a projection is not the same as a dataset. Even
worse, the data could be delivered with a description from a data provider stating it's in
projection UTM31 when, in reality, the data is in projection UTM34! This can lead to big
problems later on when trying to get your data to work together as programs will throw you
some ugly error messages.

NumPy is the scientific backbone of number crunching arrays and complex numbers that are
used to power several popular geospatial libraries including GDAL (geospatial abstraction
library). The power of NumPy lies is in its support for large matrices, arrays, and math
functions. The installation of NumPy is, therefore, necessary for the other libraries to function
smoothly, but is seldom used directly in our quest for spatial analysis.

Getting ready
Fire up your virtual environment, if it is not already running, using the following standard
start command:

$ workon pygeoan_cb

Your prompt should now look like this:

(pygeoan_cb)mdiener@mdiener-VirtualBox:~$

If workon for some reason does not start your virtual
environment, you can start it simply by executing source /
home/mdiener/venvs/pygeoan_cb/bin/activate
from the command line; try the steps listed in the Installing
virtualenv and virtualenvwrapper recipe again to get it going.

Now, we need to install some Python tools for development that allow us to install NumPy, so
run this command:

$ sudo apt-get install -y python-dev

You are now ready to move on and install pyproj and NumPy inside your running virtual
environment.

https://pypi.python.org/pypi/pyproj/

Setting Up Your Geospatial Python Environment

8

How to do it...
Simply fire up virtualenv and we will use the pip installer to do all the heavy lifting as follows:

1. Use pip to go ahead and install NumPy; this can take a couple of minutes as many
lines of installation verbosity are written on screen:
$ pip install numpy

Windows users can grab the .whl file for NumPy and execute it using following
command:

pip install numpy -1.9.2+mkl-cp27-none-win32.whl

2. Use pip one more time to install pyproj:
$ pip install pyproj

Windows users can use the following command to install pyproj:

pip install pyproj-1.9.4-cp27-none-win_amd64.whl

3. Wait a few minutes; NumPy should be now running along with pyproj. To test if it's
worked out, enter the following command in the Python console. The output should
look like this:
(pygeoan_cb)mdiener@mdiener-VirtualBox:~/venv$ python

Python 2.7.3 (default, Feb 27 2014, 19:58:35)

[GCC 4.6.3] on linux2

Type “help”, “copyright”, “credits”, or “license” for more
information.

>> import numpy

>> import pyproj

No errors, I hope. You have now successfully installed NumPy and pyproj.

All sorts of errors could show up, so please take a look at the
respective installation links to help you solve them:
For pyproj: https://pypi.python.org/pypi/pyproj/
For NumPy: http://www.numpy.org

https://pypi.python.org/pypi/pyproj/
http://www.numpy.org

Chapter 1

9

How it works...
This easy installation works using the standard pip installation method. No tricks or special
commands are needed. You need to simply execute the pip install <library_name>
command and you are off to the races.

Library names can be found by visiting the
https://pypi.python.org/pypi web page if
you are unsure of the exact name you want to install.

Installing shapely, matplotlib, and descartes
A large part of geospatial analysis and visualization is made possible using Shapely,
matplotlib, GDAL, OGR, and descartes, which are installed later. Most of the recipes here will
use these libraries extensively so setting them up is necessary to complete our exercises.

Shapely (http://toblerity.org/shapely) provides pure spatial analysis of geometries
using the Cartesian coordinate system as is used by AutoCAD, for those of you familiar
with CAD-like programs. The benefit of using a flat coordinate system is that all the rules of
Euclidean geometry and analytic geometry are applied. For a quick refresher in the coordinate
systems that we all learned in school, here is a little image to quickly jolt your memory.

Description: A Cartesian coordinate system demonstrating a flat
plane to plot and measure geometry.
Illustration 1: Source: http://en.wikipedia.org/wiki/
Cartesian_coordinate_system.

https://pypi.python.org/pypi
http://toblerity.org/shapely
http://en.wikipedia.org/wiki/Cartesian_coordinate_system
http://en.wikipedia.org/wiki/Cartesian_coordinate_system

Setting Up Your Geospatial Python Environment

10

The classic overlay analysis and other geometric computations is where Shapely shines using
the GEOS library as its workhorse in the background.

As for matplotlib (http://matplotlib.org/), it is the plotting engine that renders nice
graphs and data to your screen as an image or scalable vector graphic (svg). The uses of
matplotlib are only limited to your imagination. So, like the name partially implies, matplotlib
enables you to plot your data on a graph or even on a map. For those of you familiar with
MATLAB, you will find matplotlib quite similar in functionality.

The descartes library provides a nicer integration of Shapely geometry objects with Matplotlib.
Here, you will see that descartes opens the fill and patch of matplotlib plots to work with
the geometries from Shapely and saves you from typing them individually.

Getting ready
To prepare for installation, it is necessary to install some global packages, such as
libgeos_c, as these are required by Shapely. NumPy is also a requirement that we have
already met and is also used by Shapely.

Install the requirements of matplotlib from the command line like this:

$ sudo apt-get install freetype* libpng-dev libjpeg8-dev

These are the dependencies of matplotlib, which can be seen on a Ubuntu 14.04 machine.

How to do it...
Follow these instructions:

1. Run pip to install shapely:
$ pip install shapely

2. Run pip to install matplotlib:
$ pip install matplotlib

3. Finally, run pip to install descartes:
$ pip install descartes

http://matplotlib.org/

Chapter 1

11

Another test to see if all has gone well is to simply enter the Python console and try to import
the packages, and if no errors occur, your console should show an empty Python cursor. The
output should look like what is shown in the following code:

(pygeoan_cb)mdiener@mdiener-VirtualBox:~/venv$ python

Python 2.7.3 (default, Feb 27 2014, 19:58:35)

[GCC 4.6.3] on linux2

Type “help”, “copyright”, “credits”, or “license” for more information.

>>> import shapely

>>> import matplotlib

>>> import descartes

>>>

type exit() to return

>>> exit()

If any errors occur, Python usually provides some good clues as to where the problem
is located and there is always Stack Overflow. For example, have a look at http://
stackoverflow.com/questions/19742406/could-not-find-library-geos-c-
or-load-any-of-its-variants/23057508#2305750823057508.

How it works...
Here, the order in which you install the packages is very important. The descartes package
depends on matplotlib, and matplotlib depends on NumPy plus freetype and libpng. This
narrows you down to installing NumPy first, then matplotlib and its dependencies, and
finally, descartes.

The installation itself is simple with pip and should be quick and painless. The tricky
parts occur if libgeos_c is not installed properly, and you might need to install the
libgeos-dev library.

http://stackoverflow.com/questions/19742406/could-not-find-library-geos-c-or-load-any-of-its-variants/23057508#2305750823057508
http://stackoverflow.com/questions/19742406/could-not-find-library-geos-c-or-load-any-of-its-variants/23057508#2305750823057508
http://stackoverflow.com/questions/19742406/could-not-find-library-geos-c-or-load-any-of-its-variants/23057508#2305750823057508

Setting Up Your Geospatial Python Environment

12

Installing pyshp, geojson, and pandas
These specific libraries are for specific formats that make our life easier and simpler than
using GDAL for some projects. pyshp will work with shapefiles, geojson with GeoJSON, and
pandas with all other textual data types in a structured manner.

pyshp is pure Python and is used to import and export shapefiles; you can find the source
code for pyshp here at https://github.com/GeospatialPython/pyshp. The pyshp
library's sole purpose is to work with shapefiles. GDAL will be used to do most of our data's
in/out needs, but sometimes, a pure Python library is simpler when working with shapefiles.

geojson is the name of a Python library and also a format, making it a little confusing to
understand. The GeoJSON format (http://geojson.org) is becoming ever more popular
and to this extent, we use the Python geojson library to handle its creation. You will find it on
Python Package Index (PyPI) if you search for geojson. As you would expect, this will help us
create all the different geometry types supported in the GeoJSON specifications.

pandas (http://pandas.pydata.org) is a data analysis library that structures your data
in a spreadsheet-like manner for further computations. Since our geospatial data comes
from a broad set of sources and formats, such as CSV, pandas helps work with the data with
minimal effort.

Getting ready
Enter your virtual environment using the following command:

$ workon pygeoan_cb

Your prompt should now look like this:

(pygeoan_cb)mdiener@mdiener-VirtualBox:~$

How to do it...
The three installations are as follows:

1. Pyshp will first be installed by simply using pip as follows:
$ pip install pyshp

2. Next, the geojson library will be installed using pip:
$ pip install geojson

3. Finally, pip will install pandas:
$ pip install pandas

https://github.com/GeospatialPython/pyshp
http://geojson.org
http://pandas.pydata.org

Chapter 1

13

To test your installation of pyshp, use the import shapefile type. The output should look
like what is shown in the following output:

(pygeoan_cb)mdiener@mdiener-VirtualBox:~/venv$ python

Python 2.7.3 (default, Feb 27 2014, 19:58:35)

[GCC 4.6.3] on linux2

Type “help”, “copyright”, “credits”, or “license” for more information.

>> import shapefile

>> import geojson

>> import pandas

The import shapefile statement imports the pyshp library;
unlike the other libraries, the import name is not the same as the
installation name.

How it works...
As seen in the other modules, we've used the standard installation pip package to execute
installations. There are no other dependencies to worry about, making for fast progress.

Installing SciPy, PySAL, and IPython
SciPy is a collection of Python libraries, including SciPy library, matplotlib, pandas, SymPy, and
IPython. The SciPy library itself is used for many operations, but we are particularly interested in
the spatial module. This module can do many things including running a nearest neighbor query.

PySAL is a geospatial computing library that's used for spatial analysis. Creating models and
running simulations directly from Python code are some of the many library functions that
PySAL offers. PySAL is a library that, when put together with our visualization tools such as
matplotlib, gives us a great tool.

IPython is a Python interpreter for a console that replaces the normal Python console you may be
used to when running and testing Python code from your terminal. This is really just an advanced
interpreter with some cool features, such as Tab completion, which means that beginners can get
commands quickly by typing a letter and hitting Tab. The IPython notebooks help share code in
the form of a web page, including code, images, and more without any installation.

Getting ready
The dependency jungle we looked at earlier is back and we need three more universal
installations to our Ubuntu system using apt-get install as follows:

$ sudo apt-get install libblas-dev liblapack-dev gfortran

www.allitebooks.com

http://www.allitebooks.org

Setting Up Your Geospatial Python Environment

14

Windows and Mac users can use a full installer (http://
www.scipy.org/install.html), such as Anaconda
or Enthought Canopy, which will perform all the installation
dependencies for you in one go.

Three dependencies are used for the SciPy installation. PySAL depends on SciPy so make
sure to install SciPy first. Only IPython does not need any extra installations.

Start up your Python virtual environment with the following code:

mdiener@mdiener-VirtualBox:~$ workon pygeoan_cb

(pygeoan_cb)mdiener@mdiener-VirtualBox:~$

How to do it...
Let's look at these steps:

1. First, we'll install SciPy since PySAL depends on it. This will take a while to install; it
took my machine 5 minutes to go through so take a break:
$ pip install scipy

2. PySAL can be installed super quickly using pip:
$ pip install pysal

3. As usual, we'd like to see whether everything's working, so let's fire up the Python
shell as follows:
(pygeoan_cb)mdiener@mdiener-VirtualBox:~$python

>>> import scipy

>>> import pysal

>>>

4. IPython is to be installed globally or inside the virtual environment using pip
as follows:
$ pip install ipython

How it works...
SciPy and PySAL libraries are both geared to help accomplish various spatial analysis duties.
The choice of tool is based on the task at hand, so make sure that you check which library
offers what function at the command prompt as follows:

>>> from scipy import spatial

>>> help(spatial)

http://www.scipy.org/install.html
http://www.scipy.org/install.html

Chapter 1

15

The output should look like what is shown in the following screenshot:

Installing GDAL and OGR
Converting formats is boring, repetitive, and is one of the many, many responsibilities that the
GDAL library provides, not to mention format transformations. However, GDAL also shines with
regard to other geospatial functions, such as getting the current projections of a Shapefile or
generating contours from elevation data. So, to only say that GDAL is a transformation library
would be wrong; it really is so much more. The father of GDAL, Frank Warmerdam, deserves
credit for starting it all off, and the GDAL project is now part of the OSGEO (Open Source
Geospatial Foundation, refer to www.osgeo.org).

The GDAL installation includes OGR; there is no extra
installation required.

Currently, GDAL covers working with raster data, and OGR covers working with vector data.
With GDAL 2.x now here, the two sides, raster and vector, are merged under one hat. GDAL
and OGR are the so-called Swiss Army knives of geospatial data transformations, covering
over 200 different spatial data formats.

www.osgeo.org

Setting Up Your Geospatial Python Environment

16

Getting ready
GDAL isn't known to be the friendliest beast to install on Windows, Linux, or OSX. There are
many dependencies and even more ways to install them. The descriptions are not all very
straightforward. Keep in mind that this description is just one way of doing things and will not
always work on all machines, so please refer to the online instructions for the latest and best
ways to get your system up and running.

To start with, we will install some dependencies globally on our machine. After the
dependencies have been installed, we will go into the global installation of GDAL for
Python in our global site packages.

How to do it...
To globally install GDAL into our Python site packages, we will proceed with the following steps:

1. The following command is used when installing build and XML tools:
$ sudo apt-get install -y build-essentiallibxml2-dev libxslt1-dev

2. Install the GDAL development files using the following command:
$ sudo apt-get install libgdal-dev # install is 125MB

3. This following command will install GDAL package in the main Python package. This
means that GDAL will be installed globally. The global installation of GDAL is usually
not a bad thing since, as far as I am aware, there are no backward incompatible
versions, which is very rare these days. The installation of GDAL directly and only in
virtualenv is painful, to say the least, and if you are interested in attempting it, I've
mentioned some links for you to try out.
$ sudo apt-get install python-gdal

If you would like to attempt the installation inside your virtual
environment, please take a look at this Stack Overflow
question at http://gis.stackexchange.com/
questions/28966/python-gdal-package-missing-
header-file-when-installing-via-pip.

4. To get GDAL in the Python virtual environment, we only need to run a simple
virtualevnwrapper command:
toggleglobalsitepackages

Make sure you have your virtual environment activated as follows:
mdiener@mdiener-VirtualBox:~$ workon pygeoan_cb

(pygeoan_cb)mdiener@mdiener-VirtualBox:~$

http://gis.stackexchange.com/questions/28966/python-gdal-package-missing-header-file-when-installing-via-pip
http://gis.stackexchange.com/questions/28966/python-gdal-package-missing-header-file-when-installing-via-pip
http://gis.stackexchange.com/questions/28966/python-gdal-package-missing-header-file-when-installing-via-pip

Chapter 1

17

5. Now, activate the global Python site packages in your current virtual environment:
(pygeoan_cb)mdiener@mdiener-VirtualBox:~$ toggleglobalsitepackages

enable global site-packages

6. The final check is to see if GDAL is available as follows:
$ python

>>> import gdal

>>>

7. No errors have been found and GDAL is ready for action.

Windows 7 plus users should use the OSGeo4W windows installer (https://trac.osgeo.
org/osgeo4w/).Find the following section on the web page and download your Windows
version in 32-bit or 64-bit. Follow the graphical installer instructions and the GDAL installation
will then be complete.

Windows users can also directly get binaries if all fails at
http://www.gisinternals.com/sdk/. This installer
should help avoid any other Windows specific problems that can
arise and this site can help get you going in the right direction.

How it works...
The GDAL installation encompasses both the raster (GDAL) and vector (OGR) tools in one.
Within the GDAL install are five modules that can be separately imported into your project
depending on your needs:

>>> from osgeo import gdal

>>> from osgeo import ogr

>>> from osgeo import osr

>>> from osgeo import gdal_array

>>> from osgeo import gdalconst

>>> python

>>> import osgeo

>>> help(osgeo)

https://trac.osgeo.org/osgeo4w/
https://trac.osgeo.org/osgeo4w/
http://www.gisinternals.com/sdk/

Setting Up Your Geospatial Python Environment

18

To see what packages are included with your Python GDAL installation, we use the Python
built-in help function to list what the OSGeo module has to offer. This is what you should see:

NAME

 osgeo - # __init__ for osgeo package.

FILE

 /usr/lib/python2.7/dist-packages/osgeo/__init__.py

MODULE DOCS

 http://docs.python.org/library/osgeo

PACKAGE CONTENTS

 _gdal

 _gdal_array

 _gdalconst

 _ogr

 _osr

 gdal

 gdal_array

 gdalconst

 gdalnumeric

 ogr

 osr

DATA

 __version__ = '1.10.0'

 version_info = sys.version_info(major=2, minor=7, micro=3,
releaseleve...

VERSION

 1.10.0

(END)

At the time of writing this, the GDAL version is now bumped up to 2.0, and in developer land,
this is old even before it gets printed. Beware that the GDAL 2.0 has compatibility issues and
for this book, version 1.x.x is recommended.

See also
The http://www.gdal.org homepage is always the best place for reference regarding any
information about it. The OSGEO includes GDAL as a supported project, and you can find more
information on it at http://www.osgeo.org.

http://www.gdal.org
http://www.osgeo.org

Chapter 1

19

Installing GeoDjango and PostgreSQL
with PostGIS

This is our final installation recipe and if you have followed along so far, you are ready for
a simple, straightforward start to Django. Django is a web framework for professionals
with deadlines, according to the Django homepage. The spatial part of it can be found
in GeoDjango. GeoDjango is a contrib module installed with every Django installation
therefore, you only need to install Django to get GeoDjango running. Of course, "geo" has its
dependencies that were met in the previous sections. For reference purposes, take a look at
this great documentation on the Django homepage at

https://docs.djangoproject.com/en/dev/ref/contrib/gis/install/#ref-
gis-install.

We will use PostgreSQL and PostGIS since they are the open source industry go-to spatial
databases. The installations are not 100% necessary, but without them there is no real point
because you then limit your operations, and they're definitely needed if you plan to store your
spatial data in a spatial database. The combination of PostgreSQL and PostGIS is the most
common spatial database setup for GeoDjango. This installation is definitely more involved
and can lead to some hook-ups depending on your system.

Getting ready
To use GeoDjango, we will need to have a spatial database installed, and in our case, we
will be using PostgreSQL with the PostGIS extension. GeoDjango also supports Oracle,
Spatialite, and MySQL. The dependencies of PostGIS include GDAL, GEOS, PROJ.4, LibXML2,
and JSON-C.

Start up your Python virtual environment as follows:

mdiener@mdiener-VirtualBox:~$ workon pygeoan_cb

(pygeoan_cb)mdiener@mdiener-VirtualBox:~$

Downloading the example code

You can download the example code files for all Packt
books you have purchased from your account at
http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

https://docs.djangoproject.com/en/dev/ref/contrib/gis/install/#ref-gis-install
https://docs.djangoproject.com/en/dev/ref/contrib/gis/install/#ref-gis-install

Setting Up Your Geospatial Python Environment

20

How to do it...
Follow these steps. These are taken from the PostgreSQL homepage for Ubuntu Linux:

1. Create a new file called pgdg.list using the standard gedit text editor. This stores
the command to fire up your Ubuntu installer package:
$ sudo gedit /etc/apt/sources.list.d/pgdg.list

2. Add this line to the file, save, and then close it:
$ deb http://apt.postgresql.org/pub/repos/apt/ precise-pgdg main

3. Now, run the wget command for add the key:
$ wget --quiet -O - https://www.postgresql.org/media/keys/
ACCC4CF8.asc | \ sudo apt-key add -

4. Run the update command to actualize your installer packages:
$ sudo apt-get update

5. Run the install command to actually install PostgreSQL 9.3:
$ sudo apt-get install postgresql-9.3

6. To install PostGIS 2.1, we will have one unmet dependency, libgdal1, so go ahead
and install it:
$ sudo apt-get install libgdal1

7. Now we can install PostGIS 2.1 for PostgreSQL 9.3 on our machine:
$ sudo apt-get install postgresql-9.3-postgis-2.1

8. Install the PostgreSQL header files:
$ sudo apt-get install libpq-dev

9. Finally, install the contrib module with contributions:
$ sudo apt-get install postgresql-contrib

10. Install the Python database adapter, psycopg2, to connect to your PostgreSQL
database from Python:
$ sudo apt-get install python-psycopg2

11. Now we can create a standard PostgreSQL database as follows:
(pygeoan_cb)mdiener@mdiener-VirtualBox:~$ createdb
[NewDatabaseName]

Chapter 1

21

12. Using the psql command-line tool, we can create a PostGIS extension to our newly
created database to give it all the PostGIS functions as follows:
(pygeoan_cb)mdiener@mdiener-VirtualBox:~$ psql -d
[NewDatabaseName] -c "CREATE EXTENSION postgis;"

13. Moving on, we can finally install Django in one line directly in our activated
virtual environment:
$ pip install django

14. Test out your install of Django and GDAL and, as always, try to import them as follows:
>>> from django.contrib.gis import gdal

>>> gdal.HAS_GDAL

True

Windows users should be directed to the PostgreSQL Windows (http://www.postgresql.
org/download/windows/) binaries provided by EnterpriseDB (http://www.
enterprisedb.com/products-services-training/pgdownload#windows). Download
the correct version and follow the installer instructions. PostGIS is also included in the list of
extensions that you can directly install using the installer.

How it works...
Installations using the apt-get Ubuntu installer and the Windows installers are simple enough
in order to have PostgreSQL, PostGIS, and Django up and running. However, the inner
workings of the installers are beyond the scope of this book.

There's more...
To summarize all the installed libraries, take a look at this table:

Library name Description Reason to install
NumPy This adds support for large

multidimensional arrays and matrices
It is a requirement for many other
libraries

pyproj This handles projections It transforms projections
shapely This handles geospatial operations It performs fast geometry

manipulations and operations
matplotlib This plots libraries It provides a quick visualization

of results
descartes This uses Shapely or GeoJSON objects

as matplotlib paths and patches
It speedily plots geo-data

pandas This provides high-performance data
structures and data analysis

It performs data manipulation, CSV
creation, and data manipulation

http://www.postgresql.org/download/windows/
http://www.postgresql.org/download/windows/
http://www.enterprisedb.com/products-services-training/pgdownload#windows
http://www.enterprisedb.com/products-services-training/pgdownload#windows

Setting Up Your Geospatial Python Environment

22

Library name Description Reason to install
SciPy This provides a collection of Python

libraries for scientific computing
It has the best collection of
necessary tools

PySAL This contains a geospatial analysis
library

It performs a plethora of spatial
operations (optional)

IPython This provides interactive Python
computing

It is a helpful notebook to store and
save your scripts (optional)

Django This contains a web application
framework

It is used for our demo web
application in Chapter 11, Web
Analysis with GeoDjango

pyshp This provides pure Python shapefile
manipulation and generation

It helps input and output shapefiles

GeoJSON This contains the JSON format for
spatial data

It facilitates the exchange and
publication of this format

PostgreSQL This is a relational database It helps store spatial data
PostGIS This is the spatial extension to

PostgreSQL
It stores and performs spatial
operations on geographic data in
PostgreSQL

23

2
Working with

Projections

In this chapter, we will cover the following topics:

 f Discovering projection(s) of a Shapefile or GeoJSON dataset

 f Listing projection(s) from a WMS server

 f Creating a projection definition for a Shapefile if it does not exist

 f Batch setting the projection definition of a folder full of Shapefiles

 f Reprojecting a Shapefile from one projection to another

Introduction
Working with projections, in my opinion, is not too exciting but they're very important, and your
ability to deal with them in any application is crucial.

The goal of this chapter is to provide some common predata screening or transformation
steps to get your data in shape or, better yet, in position for geospatial analysis. We cannot
always perform analysis on multiple datasets that are in different coordinate systems without
the risk of achieving inconsistent results, such as data positional inaccuracies. Therefore, it
is a best practice to work on data in the same coordinate system, such as EPSG:4326, when
working on a global scale, or use a local coordinate system for your region that will provide you
the most accurate results.

www.allitebooks.com

http://www.allitebooks.org

Working with Projections

24

European Petroleum Survey Group or EPSG codes have decided to give all coordinate systems
a number code to simplify finding and sharing projection information. Coordinate systems are
described by their definitions, which are stored in text files of various formats. These text files
are designed to be computer-readable formats, specifically for individual GIS desktop software
packages, such as QGIS or ESRI ArcMap or for your web/scripting applications.

The EPSG code 4326 represents World Geographic System 1984 (WGS 84) and is a
geographic coordinate system with longitude and latitude (x, y) units (refer to the following
image). The geographic coordinate system represents the Earth as a sphere, as in this image,
and the unit of measurement is degrees.

Illustration 1: Geographic Coordinate System
(http://kartoweb.itc.nl/geometrics/coordinate%20systems/coordsys.html)

Chapter 2

25

The second type of coordinate system is a projected coordinate system, which is a two-
dimensional flat plane with constant areas, lengths, or angles that are measured on an x
and y grid. EPSG:3857 Pseudo-Mercator is such a projected coordinate system where the
units are in meters with correct lengths but the angles and areas are distorted. In any given
projected coordinate system, only two of the three properties, area, distance, or angles,
can be correctly represented on a single map. The Universal Transverse Mercator (UTM)
coordinate reference system divides the world into 60 zones (refer to the following image):

Illustration 2: Projected Coordinate System UTM (http://en.wikipedia.org/wiki/Universal_Transverse_Mercator_
coordinate_system#mediaviewer/File:Utm-zones.jpg)

Note that you have to enter your Python virtual
environment using the workon pygeoan_cb command.

Discovering projection(s) of a Shapefile or
GeoJSON dataset

Remember that all data is stored in a coordinate system, no matter what the data source is.
It is your job to figure this out using a simple approach outlined in this section. We will take a
look at two different data storage types: a Shapefile and a GeoJSON file. These two formats
contain geometries, such as points, lines, or polygons, and their associated attributes. For
example, a tree would be stored as a point geometry with attributes, such as height, age, and
species, Each of these data types store their projection data differently and, therefore, require
different methods to discover their projection information.

Working with Projections

26

Now a quick introduction to what a Shapefile is: a Shapefile is not a single file but a minimum
of three files, such as .shp, .shx, and, .dbf, all of which have the same name. For example,
world_borders.shp, world_borders.shx and world_borders.dbf make up one file.
The .shp file stores geometry, .dbf stores a table of attribute values, and .shx is the index
table that connects geometry to an attribute value as a lookup table.

A Shapefile should come with a very important fourth text file called world_borders.
prj. The .prj stands for projection information and contains the projection definition of the
Shapefile in a plain text format. As crazy as it sounds, you can still find and download tons
of data being delivered today without this .prj file. You can do this simply by opening this
.prj file in a text editor, such as Sublime Text or Notepad++, where you can read about the
projection definition in order to determine the files coordinate system.

The .prj file is a plain text file that can easily be generated
for the wrong coordinate system if you are not careful. The
wrong projection definition can cause problems with your
analysis and transformations. We will see how to correctly
assess a Shapefile's projection information.

GeoJSON is a single file stored in plain text. The GeoJSON standard (http://www.
geojson.org) is based on the JSON standard. The coordinate reference information is, in
my experience, often not included and the default is WGS 84 and EPSG:4326, where the
coordinates are stored in the x, y, z format and in this exact order.

Mixing x and y for y, x can happen and when it does, your data will most
likely end up in the ocean, so always remember that order matters:

x = longitude
y = latitude
z = height

The following is how the GeoJSON CRS information looks if it is presented in
FeatureCollection:

{
"type": "FeatureCollection",
"crs": { "type": "name", "properties": { "name":
 "urn:ogc:def:crs:OGC:1.3:CRS84" } },
…

http://www.geojson.org
http://www.geojson.org

Chapter 2

27

Getting ready
The first thing is to head over to https://github.com/mdiener21/python-
geospatial-analysis-cookbook and download the entire source code and geodata
in one go. The download icon is located on the bottom right-hand side and is labeled as
Download ZIP. If you are a GitHub user, you can, of course, clone the repository. Beware that
it is a download that's a little over 150 MB. Inside the repository, you will find each chapter
with the following three folders: /geodata/ to store data, /code/ to store code scripts that
have been completed, and an empty folder called /working/ for you to create your self-
written code scripts. The structure looks like this:

/ch01/
–------/code
–------/geodata
–------/working
/ch02/
–------/code
–------/geodata
–------/working
...

The source of the data used in this recipe comes from the City of Vancouver, BC, Canada,
which is located at http://data.vancouver.ca/datacatalogue/index.htm
(Vancouver schools).

When downloading data from an Internet source, always
look around for metadata descriptions about the projection
information so that you know a little about your data's history
and its source before you begin working with it. Most data today
is publicly available in EPSG:4326 WGS 84 or EPSG:3857 Web
Pseudo-Mercator. Data stemming from a government resource is
most likely stored in local coordinate systems.

How to do it...
We are going to start with our Shapefile and identify the coordinate system it is stored in using
the GDAL library that imports the OGR module:

Note that we have assumed that your Shapefile has a .prj file.
If not, this process will not work.

https://github.com/mdiener21/python-geospatial-analysis-cookbook
https://github.com/mdiener21/python-geospatial-analysis-cookbook
http://data.vancouver.ca/datacatalogue/index.htm

Working with Projections

28

1. Create a new Python file named as ch02_01_show_shp_srs.py in your /ch02/
working/ directory, and add the following code:
#!/usr/bin/env python
-*- coding: utf-8 -*-

from osgeo import ogr
shp_driver = ogr.GetDriverByName('ESRI Shapefile')
shp_dataset = shp_driver.Open(r'../geodata/schools.shp')
shp_layer = shp_dataset.GetLayer()
shp_srs = shp_layer.GetSpatialRef()
print shp_srs

2. Now save the file and run the ch02_01_show_shp_srs.py script from the
command line:
$ python ch02-01-show_shp_srs.py

PROJCS["NAD_1983_UTM_Zone_10N",

 GEOGCS["GCS_North_American_1983",

 DATUM["North_American_Datum_1983",

 SPHEROID["GRS_1980",6378137,298.257222101]],

 PRIMEM["Greenwich",0],

 UNIT["Degree",0.017453292519943295]],

 PROJECTION["Transverse_Mercator"],

 PARAMETER["latitude_of_origin",0],

 PARAMETER["central_meridian",-123],

 PARAMETER["scale_factor",0.9996],

 PARAMETER["false_easting",500000],

 PARAMETER["false_northing",0],

 UNIT["Meter",1]]

You should see the preceding text print out on your screen, showing information on
the .prj projection.

Note that we could also simply open the .prj file with a text
editor and view this information as well.

Now, we will take a look at a GeoJSON file to see the projection information if it's
available.

Chapter 2

29

3. Determining the coordinate system of a GeoJSON file is a little harder since we
must make one of two assumptions where the first case is the standard case
and most common:

1. No CRS is explicitly defined inside the GeoJSON, so we assume EPSG:4326
WGS 84 is the coordinate system.

2. CRS is defined explicitly and is correct.

4. Create a new Python file named ch02_02_show_geojson_srs.py in your /ch02/
working/ directory, and add the following code:
#!/usr/bin/env python
-*- coding: utf-8 -*-

import json

geojson_yes_crs = '../geodata/schools.geojson'
geojson_no_crs = '../geodata/golfcourses_bc.geojson'

with open(geojson_no_crs) as my_geojson:
 data = json.load(my_geojson)

check if crs is in the data python dictionary data
if yes print the crs to screen
else print NO to screen and print geojson data type
if 'crs' in data:
 print "the crs is : " + data['crs']['properties']['name']
else:
 print "++++++ no crs tag in file+++++"
 print "++++++ assume EPSG:4326 ++++++"
 if "type" in data:
 print "current GeoJSON data type is :" +
data['type']

5. The script is set up to run on the geojson_no_crs variable set in the GeoJSON
golfcourses_bc.geojson file. The source of this data is OpenStreetMap, which
is exported using the Overpass API that's located at http://overpass-turbo.
eu/. Now, run the ch02_02_show_geojson_srs.py script and you should see this
output for our first file:
$ python ch02_02_show_geojson_crs.py

++++++ no crs tag in file+++++

 ++++++ assume EPSG:4326 ++++++

current GeoJSON data type is :FeatureCollection

http://overpass-turbo.eu/
http://overpass-turbo.eu/

Working with Projections

30

If no CRS is inside our GeoJSON file, we'll assume it has a
projection of EPSG:4326. To check this, you will need to look
at the coordinates listed inside the file and see if they fall
within bounds, such as -180.0000, -90.0000, 180.0000,
and 90.0000. If so, we'll assume that the dataset is truly
EPSG:4326 and open the data in QGIS to check this.

6. Now, go into the code and edit line 10, change the variable from geojson_no_crs
to geojson_yes_crs, and rerun the ch02_02_show_geojson_srs.py code file:
$ python ch02_02_show_geojson_crs.py

the crs is : urn:ogc:def:crs:EPSG::26910

You should now see the preceding output printed on screen.

How it works...
Beginning with the Shapefile, we've used the OGR library to help us quickly discover the EPSG
code information of our Shapefile as follows:

1. Begin with importing the OGR module as follows:
from osgeo import ogr

2. Activate the OGR Shapefile driver:
shp_driver = ogr.GetDriverByName('ESRI Shapefile')

3. Open the Shapefile with OGR:
shp_dataset = shp_driver.Open(r'../geodata/schools.shp')

4. Access the layer information with GetLayer():
shp_layer = shp_dataset.GetLayer()

5. Now we can get the coordinate information using the GetSpatialRef() function:
shp_srs = shp_layer.GetSpatialRef()

6. Finally, print the spatial reference system on screen:
print shp_srs

The GeoJSON file was a little harder to tackle when we used the Python JSON module to look
for the crs key and print out its value on the screen, if it existed.

Chapter 2

31

We could have simply replaced the first example code with the
GeoJSON driver and we would get the same result. However, not
all GeoJSON files include projection information. The OGR driver
will always output WGS 84 as the coordinate system by default
which, in our no_geojson_crs.geojson example file, is
wrong. This can lead to confusion for new users. The important
thing to note is to check your data, have a look at the coordinate
values, and see if they fit in a defined coordinate range of
values. To explore codes, or if you enter a code that you have
and want to see the area it covers on a live web map, refer to
http://epsg.io.

First, we'll import the standard Python JSON module, and then set two variables to store both
our GeoJSON files. Next, we'll open one file, the golfcourses_bc.geojson file, and load
the GeoJSON file into a Python object. Then, all we need to do is check to see whether the crs
key is in the GeoJSON; if it is, we'll print out its value. If not, we'll simply print to screen that
crs is not available and the GeoJSON data type.

The GeoJSON default CRS is WGS 84 EPSG:4326, which means that we are dealing with
latitude and longitude values. The values must fall within the bounds of -180.0000,
-90.0000, 180.0000, and 90.0000 to qualify.

There's more...
Here are some projection definition examples for your reference:

1. The code for the ESRI Well-Known Text (stored with Shapefile as ShapefileName.
prj) is as follows:
GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_198
4",6378137,298.257223563]],PRIMEM["Greenwich",0],UNIT["Degr
ee",0.017453292519943295]]

2. The code for the OGC Well-Known Text of the same coordinate system as EPSG:4326
is as follows:
GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS
84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPS
G","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["d
egree",0.01745329251994328,AUTHORITY["EPSG","9122"]],AUTHORITY["EP
SG","4326"]]

3. The code for the Proj4 format, which also shows EPSG:4326, is as follows:
+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs

http://epsg.io

Working with Projections

32

See also
The web page at http://www.spatialreference.org is a great place to get coordinates
for any projection you desire by simply selecting the destination coordinate system that you
like, zooming in on the map, and then copying and pasting the coordinates. Later on, we will
use the http://spatialreference.org/ API to get the EPSG definition to create our own
.prj file for a Shapefile.

Listing projection(s) from a WMS server
The Web Mapping Service (WMS), which can be found at https://en.wikipedia.
org/wiki/Web_Map_Service, is fun since most service providers provide data in several
coordinate systems and you can then specify which one you would like. However, you can't
reproject or transform the WMS into some other system that the service provider does not
provide, which means that you can only use the coordinate system that is provided. The
following is an example of a WMS getCapabilities request (http://gis.ktn.gv.at/
arcgis/services/INSPIRE/INSPIRE/MapServer/WmsServer?service=wms&vers
ion=1.3.0&request=getcapabilities), showing a list of the five available coordinate
systems from a WMS service:

http://www.spatialreference.org
http://spatialreference.org/
https://en.wikipedia.org/wiki/Web_Map_Service
https://en.wikipedia.org/wiki/Web_Map_Service
http://gis.ktn.gv.at/arcgis/services/INSPIRE/INSPIRE/MapServer/WmsServer?service=wms&version=1.3.0&request=getcapabilities
http://gis.ktn.gv.at/arcgis/services/INSPIRE/INSPIRE/MapServer/WmsServer?service=wms&version=1.3.0&request=getcapabilities
http://gis.ktn.gv.at/arcgis/services/INSPIRE/INSPIRE/MapServer/WmsServer?service=wms&version=1.3.0&request=getcapabilities

Chapter 2

33

Getting ready
The WMS service URL that we will use is http://ogc.bgs.ac.uk/cgi-bin/BGS_1GE_
Geology/wms?service=WMS&version=1.3.0&request=GetCapabilities. This is
from the British Geological Survey, titled OneGeology Europe geology.

For a list of WMS servers that are available worldwide, refer
to Skylab Mobile Systems at http://www.skylab-
mobilesystems.com/en/wms_serverlist.html.
Also, take a look at http://geopole.org/.

We will use a library called OWSLib. This library is a great package for working with OGC web
services such as WMS, as follows:

Pip install owslib

How to do it...
Let's go through these steps to retrieve the projections that a WMS server provides and print
the available EPSG codes to screen:

1. Create a new Python file named ch02_03_show_wms_srs.py in your /ch02/
code/working/ directory, and add the following code:
#!/usr/bin/env python
-*- coding: utf-8 -*-

from owslib.wms import WebMapService

url = "http://ogc.bgs.ac.uk/cgi-bin/BGS_1GE_Geology/wms"

get_wms_url = WebMapService(url)

crs_list = get_wms_url.contents['GBR_Kilmarnock_BGS_50K_
CompressibleGround'].crsOptions

print crs_list

2. Now, run the ch02_03_show_wms_srs.py script and you should see the following
screen output:
$ python ch02_03_show_wms_srs.py

['EPSG:3857', 'EPSG:3034', 'EPSG:4326', 'EPSG:3031', 'EPSG:27700',
'EPSG:900913', 'EPSG:3413', 'CRS:84', 'EPSG:4258']

www.allitebooks.com

http://ogc.bgs.ac.uk/cgi-bin/BGS_1GE_Geology/wms?service=WMS&version=1.3.0&request=GetCapabilities
http://ogc.bgs.ac.uk/cgi-bin/BGS_1GE_Geology/wms?service=WMS&version=1.3.0&request=GetCapabilities
http://www.skylab-mobilesystems.com/en/wms_serverlist.html
http://www.skylab-mobilesystems.com/en/wms_serverlist.html
http://geopole.org/
http://www.allitebooks.org

Working with Projections

34

How it works...
Determining information on the WMS projection involves using the OWSLib library. This is quite
a powerful way to get all kinds of OGC web service information from your client. The code simply
takes in the WMS URL to retrieve the WMS information. The content of the response is called,
and we are able to access the crsOptions attribute to list out all the available EPSG codes.

Creating a projection definition for a
Shapefile if it does not exist

You recently downloaded a Shapefile from an Internet resource and saw that the .prj file
was not included. You do know, however, that the data is stored in the EPSG:4326 coordinate
system as stated on the website from where you downloaded the data. Now the following code
will create a new .prj file.

Getting ready
Start up your Python virtual environment with the workon pygeo_analysis_cookbook
command:

How to do it...
In the following steps, we will take you through creating a new .prj file to accompany our
Shapefile. The .prj extension is necessary for many spatial operations performed by a
desktop GIS, web service, or script:

1. Create a new Python file named ch02_04_write_prj_file.py in your /ch02/
code/working/ directory and add the following code:
#!/usr/bin/env python
-*- coding: utf-8 -*-

import urllib
import os

def get_epsg_code(epsg):
 """
 Get the ESRI formatted .prj definition
 usage get_epsg_code(4326)

 We use the http://spatialreference.org/ref/epsg/4326/esriwkt/
 """

Chapter 2

35

 f=urllib.urlopen("http://spatialreference.org/ref/epsg/{0}/
esriwkt/".format(epsg))
 return (f.read())

Shapefile filename must equal the new .prj filename
shp_filename = "../geodata/UTM_Zone_Boundaries"

Here we write out a new .prj file with the same name
as our Shapefile named "schools" in this example

with open("../geodata/{0}.prj".format(shp_filename), "w")
as prj:
 epsg_code = get_epsg_code(4326)
 prj.write(epsg_code)
 print "done writing projection definition to EPSG: " +
epsg_code

2. Now, run the ch02_04_write_prj_file.py script:
$ python ch02_04_write_prj_file.py

3. You should see the following screen output:
done writing projection definition UTM_Zone_Boundaries.prj to
EPSG:4326

4. Inside your folder, you should see a new .prj file created with the same name
as the Shapefile.

How it works...
We first wrote a function to fetch our projection definition text using the http://
spatialreference.org/ API by passing the EPSG code value. The function returns
a textual description of the EPSG code information using the esriwkt formatting style,
indicating ESRI Well-Known Text, which is the format that the ESRI software uses to store
the .prj file information.

Then we need to input the Shapefile name because the filename of .prj must be equal to
the Shapefile name.

In the last step, we'll create the .prj file using shp_filename that is specified, and call the
function that we wrote to get the text definition of the coordinate reference system.

http://spatialreference.org/
http://spatialreference.org/

Working with Projections

36

Batch setting the projection definition of a
folder full of Shapefiles

Working with one Shapefile is fine but working with tens or hundreds of files is something else.
In such a scenario, we'll need automation to get a job done fast.

We have a folder that contains several Shapefiles that are all in the same coordinate system
but do not have a .prj file. We want to create a .prj file for each Shapefile in the
current directory.

This script is a modified version of the previous code example that could write a .prj file for a
single Shapefile into a batch process that can run over several Shapefiles.

How to do it...
We have a folder with many Shapefiles and we would like to create a new .prj file for each
Shapefile in this folder, so let's get started:

1. Create a new Python file named ch02_05_batch_shp_prj.py in your /ch02/
code/working/ directory and add the following code:
#!/usr/bin/env python
-*- coding: utf-8 -*-

import urllib
import os
from osgeo import osr

def create_epsg_wkt_esri(epsg):
 """
 Get the ESRI formatted .prj definition
 usage create_epsg_wkt(4326)

 We use the
http://spatialreference.org/ref/epsg/4326/esriwkt/

 """
 spatial_ref = osr.SpatialReference()
 spatial_ref.ImportFromEPSG(epsg)

 # transform projection format to ESRI .prj style
 spatial_ref.MorphToESRI()

Chapter 2

37

 # export to WKT
 wkt_epsg = spatial_ref.ExportToWkt()

 return wkt_epsg

Optional method to get EPGS as wkt from a web service
def get_epsg_code(epsg):
 """
 Get the ESRI formatted .prj definition
 usage get_epsg_code(4326)

 We use the http://spatialreference.org/ref/epsg/4326/esriwkt/

 """
 web_url = "http://spatialreference.org/ref/epsg/{0}/esriwkt/"
.format(epsg)
 f = urllib.urlopen(web_url)
 return f.read()

Here we write out a new .prj file with the same name
as our Shapefile named "schools" in this example
def write_prj_file(folder_name, shp_filename, epsg):
 """
 input the name of a Shapefile without the .shp
 input the EPSG code number as an integer

 usage write_prj_file(<ShapefileName>,<EPSG CODE>)

 """

 in_shp_name = "/{0}.prj".format(shp_filename)
 full_path_name = folder_name + in_shp_name

 with open(full_path_name, "w") as prj:
 epsg_code = create_epsg_wkt_esri(epsg)
 prj.write(epsg_code)
 print ("done writing projection definition : " +
epsg_code)

def run_batch_define_prj(folder_location, epsg):
 """

Working with Projections

38

 input path to the folder location containing
 all of your Shapefiles

 usage run_batch_define_prj("../geodata/no_prj")

 """

 # variable to hold our list of shapefiles
 shapefile_list = []

 # loop through the directory and find shapefiles
 # for each found shapefile write it to a list
 # remove the .shp ending so we do not end up with
 # file names such as .shp.prj
 for shp_file in os.listdir(folder_location):
 if shp_file.endswith('.shp'):
 filename_no_ext = os.path.splitext(shp_file)[0]
 shapefile_list.append(filename_no_ext)

 # loop through the list of shapefiles and write
 # the new .prj for each shapefile
 for shp in shapefile_list:
 write_prj_file(folder_location, shp, epsg)

Windows users please use the full path
Linux users can also use full path
run_batch_define_prj("c:/02_DEV/01_projects/04_packt/
ch02/geodata/no_prj/", 4326)

How it works...
Using the standard urllib Python module, we can access an EPSG code via the Web and
write this definition to a .prj file. We need to create a list of Shapefiles that we want to define
.prj for and then create a .prj file for each Shapefile in this list.

The get_epsg_code(epsg) function returns the ESPG code text definition that we need.
The write_prj_file(shp_filename, epsg) function takes two parameters, the
Shapefile name and the EPSG code, writing out the .prj file to disk.

Next, we'll create an empty list to store the list of Shapefiles, switch to the directory where the
Shapefiles are stored, and then list all the Shapefiles that currently in this directory.

Our for loop then populates the Shapefile list with the filenames without the .shp extension.
Finally, the last for loop takes us through each Shapefile and calls our function to write each
.prj file for each Shapefile in the list.

Chapter 2

39

Reprojecting a Shapefile from one
projection to another

Working with spatial data from multiple sources leads to data that's most likely from multiple
regions on Earth with multiple coordinate systems. To perform consistent spatial analysis, we
should transform all our input data into the same coordinate system. This means reprojecting
your Shapefile into your chosen working coordinate system.

In this recipe, we will reproject a single Shapefile from ESPG:4326 into a web mercator system
EPSG:3857 for use in a web application.

How to do it...
Our goal is to reproject a given Shapefile from one coordinate system to another; the steps to
do this are as follows:

1. Create a new Python file named ch02_06_re_project_shp.py in your /ch02/
code/working/ directory and add the following code:
#!/usr/bin/env python
-*- coding: utf-8 -*-

import ogr
import osr
import os

shp_driver = ogr.GetDriverByName('ESRI Shapefile')

input SpatialReference
input_srs = osr.SpatialReference()
input_srs.ImportFromEPSG(4326)

output SpatialReference
output_srs = osr.SpatialReference()
output_srs.ImportFromEPSG(3857)

create the CoordinateTransformation
coord_trans = osr.CoordinateTransformation(input_srs, output_srs)

get the input layer
input_shp = shp_driver.Open(r'../geodata/UTM_Zone_Boundaries.shp')
in_shp_layer = input_shp.GetLayer()

create the output layer

Working with Projections

40

output_shp_file =
r'../geodata/UTM_Zone_Boundaries_3857.shp'
check if output file exists if yes delete it
if os.path.exists(output_shp_file):
 shp_driver.DeleteDataSource(output_shp_file)

create a new Shapefile object
output_shp_dataset =
shp_driver.CreateDataSource(output_shp_file)

create a new layer in output Shapefile and define its geometry
type
output_shp_layer =
output_shp_dataset.CreateLayer("basemap_3857",
geom_type=ogr.wkbMultiPolygon)

add fields to the new output Shapefile
get list of attribute fields
create new fields for output
in_layer_def = in_shp_layer.GetLayerDefn()
for i in range(0, in_layer_def.GetFieldCount()):
 field_def = in_layer_def.GetFieldDefn(i)
 output_shp_layer.CreateField(field_def)

get the output layer's feature definition
output_layer_def = output_shp_layer.GetLayerDefn()

loop through the input features
in_feature = in_shp_layer.GetNextFeature()
while in_feature:
 # get the input geometry
 geom = in_feature.GetGeometryRef()
 # reproject the geometry
 geom.Transform(coord_trans)
 # create a new feature
 output_feature = ogr.Feature(output_layer_def)
 # set the geometry and attribute
 output_feature.SetGeometry(geom)
 for i in range(0, output_layer_def.GetFieldCount()):
 output_feature.SetField(output_layer_def.GetFieldDefn(i)
.GetNameRef(), in_feature.GetField(i))
 # add the feature to the shapefile
 output_shp_layer.CreateFeature(output_feature)
 # destroy the features and get the next input feature
 output_feature.Destroy()

Chapter 2

41

 in_feature.Destroy()
 in_feature = in_shp_layer.GetNextFeature()

close the shapefiles
input_shp.Destroy()
output_shp_dataset.Destroy()

spatialRef = osr.SpatialReference()
spatialRef.ImportFromEPSG(3857)

spatialRef.MorphToESRI()
prj_file = open('UTM_Zone_Boundaries.prj', 'w')
prj_file.write(spatialRef.ExportToWkt())
prj_file.close()

2. Now we can run our code from the command line as follows:
$ python ch02_06_re_project_shp.py

3. We now have a new Shapefile called UTM_Zone_Boundaries_3857.shp that is in
the EPSG:3857 coordinate system and is ready for further use.

How it works...
The osgeo, ogr, and osr modules do the heavy lifting and the code required to reproject
a Shapefile is quite verbose. It works by going through each geometry and transforming it
individually into the new coordinate system.

Starting with the driver for the ESRI Shapefile, we'll work at setting our input and output
Spatial Reference System (SRS) so that we can transform the two.

We need to copy each feature's geometry and its attributes from the old Shapefile into the
new one as we transform each geometry. Finally, we'll close the input and output Shapefile
with the Destroy() function.

See also
Using code is not always the best or fastest way to reproject a Shapefile. Another method that
you could use is the ogr2ogr command-line tool that will simply reproject a Shapefile in one
line. You could pipe this one-liner into a Python script and batch reproject many Shapefiles:

ogr2ogr -t_srs EPSG:4326 outputwith4236.shp input.shp

The GDAL library comes with several other very useful and helpful command-line functions
that are worth checking out.

43

3
Moving Spatial Data

from One Format
to Another

In this chapter, we will cover the following topics:

 f Converting a Shapefile to a PostGIS table using ogr2ogr

 f Batch importing a folder of Shapefiles into PostGIS using ogr2ogr

 f Batch exporting a list of tables from PostGIS to Shapefiles

 f Converting an OpenStreetMap (OSM) XML to a Shapefile

 f Converting a Shapefile (vector) to a GeoTiff (raster)

 f Converting a raster (GeoTiff) to a vector (Shapefile) using GDAL

 f Creating a Shapefile from point data stored in Microsoft Excel

 f Converting an ESRI ASCII DEM to an image height map

Introduction
Geospatial data comes in hundreds of formats and massaging this data from one format to
another is a simple task. The ability to convert between data types, such as rasters or vectors,
belongs to data wrangling tasks and can be used for better geospatial analysis. Here is an
example of a raster and vector dataset so that you can take a look at what I am talking about:

www.allitebooks.com

http://www.allitebooks.org

Moving Spatial Data from One Format to Another

44

The best practice methodology is to run analysis functions or models over data stored in a
common format, such as a PostgreSQL PostGIS database, or a set of Shapefiles in a common
coordinate system. For example, running an analysis on input data stored in multiple formats
is also possible, but you can expect to find the devil in the detail if something goes wrong or
your results are not as you expected them to be.

This chapter looks at some common data formats and demonstrates how to move these from
one format to another with the help of the most common tools.

Converting a Shapefile to a PostGIS table
using ogr2ogr

The simplest way to transform data from one format to another is to directly use the ogr2ogr
tool that comes with the installation of GDAL. This powerful tool can convert over 200
geospatial formats. In this solution, we will execute the ogr2ogr utility from within a Python
script to perform generic vector data conversions. The Python code is, therefore, used to
execute this command-line tool and pass around variables so that you can create your own
scripts for data imports or exports.

Using this tool is also recommended if you are not really interested in coding too much and
simply want to get the job done to move your data. A pure Python solution is, of course,
possible, but it's definitely more orientated to the needs of developers (or a Python purist).
Since this book is aimed at developers, analysts, or researchers, this kind of a recipe is simple
and yet extensible.

Chapter 3

45

Getting ready
To run this script, you will need the GDAL utilities application installed on your system.
Windows users can visit OSGeo4W (http://trac.osgeo.org/osgeo4w) and download
the 32-bit or 64-bit Windows installer. Simply double-click on the installer to start the script
as follows:

1. Navigate to the bottom option, Advanced Installation | Next.

2. Click on Next to download the GDAL utilities from the Internet (first default option).

3. Click on Next to accept the default location of the path or change it to your liking.

4. Click on Next to accept the location of local saved downloads (default).

5. Click on Next to accept a direct connection (default).

6. Click on Next to select the default download site.

7. Now, you can finally see the menu. Click on + to open the Commandline_Utilities
tab, and you should see what is shown in this screenshot:

8. Now, select gdal: The GDAL/OGR library and commandline tools to install it.

9. Click on Next to start downloading and install.

Ubuntu/Linux users can use the following steps to install the GDAL utilities:

1. Execute this simple one-line command:
$ sudo apt-get install gdal-bin

This will get you up and running so that you can execute ogr2ogr directly from
your terminal.

The Shapefile to be imported is located in your /ch02/geodata/ folder if you've
downloaded the entire source and code from GitHub at https://github.com/
mdiener21/python-geospatial-analysis-cookbook/. The Vancouver open
geodata portal (http://data.vancouver.ca/datacatalogue/index.htm) is
our source that provides a dataset of local bikeways.

http://trac.osgeo.org/osgeo4w
https://github.com/mdiener21/python-geospatial-analysis-cookbook/
https://github.com/mdiener21/python-geospatial-analysis-cookbook/
http://data.vancouver.ca/datacatalogue/index.htm

Moving Spatial Data from One Format to Another

46

2. Next, let's set up our PostgreSQL database with the PostGIS extension. To do this,
we'll first create a new user to manage our new database and tables as follows:
Sudo su createuser –U postgres –P pluto

3. Enter a password for the new role.

4. Enter the password again for the new role.

5. Enter a password for the postgres user as you will create the user using this
postgres user.

6. The –P option prompts you to give the new user, called pluto, a password. For the
following examples, our password is stars; I would recommend a much more secure
password for your production database.

Windows users can navigate to the c:\Program Files\
PostgreSQL\9.3\bin\ folder and execute the following
command, and follow the on-screen instructions as you did earlier:
Createuser.exe –U postgres –P pluto

7. To create the database, we will use the same command-line createdb command
as the postgres user to create a database named py_geoan_cb, and assign the
pluto user to be the database owner. Here is the command to do this:
$ sudo su createdb –O pluto –U postgres py_geoan_cb

Windows users can visit c:\Program Files\PostgreSQL\9.3\
bin\ and execute the createdb.exe command as follows:
createdb.exe –O pluto –U postgres py_geoan_cb

Next, we'll create the PostGIS extension for our newly created
database:
psql –U postgres -d py_geoan_cb -c "CREATE EXTENSION
postgis;"

Windows users can also execute psql from within the c:\Program
Files\PostgreSQL\9.3\bin\ folder as follows:
psql.exe –U postgres –d py_geoan_cb –c "CREATE
EXTENSION
postgis;"

8. Lastly, we'll create a schema called geodata to store our new spatial table. It is
common to store spatial data in another schema outside the default public schema
of PostgreSQL.
$ sudo -u postgres psql -d py_geoan_cb -c "CREATE SCHEMA
geodata AUTHORIZATION pluto;"

Chapter 3

47

Windows users can use the following command to do this:
psql.exe –U postgres –d py_geoan_cb –c "CREATE SCHEMA
geodata AUTHORIZATION pluto;"

How to do it...
1. Now, let's get into the actual importing of our Shapefile into a PostGIS database that

will automatically create a new table from our Shapefile:
#!/usr/bin/env python
-*- coding: utf-8 -*-

import subprocess

database options
db_schema = "SCHEMA=geodata"
overwrite_option = "OVERWRITE=YES"
geom_type = "MULTILINESTRING"
output_format = "PostgreSQL"

database connection string
db_connection = """PG:host=localhost port=5432
 user=pluto dbname=py_test password=stars"""

input shapefile
input_shp = "../geodata/bikeways.shp"

call ogr2ogr from python
subprocess.call(["ogr2ogr","-lco", db_schema, "-lco",
overwrite_option,
 "-nlt", geom_type, "-f", output_format, db_connection,
input_shp])

2. Next, we'll call our script from the command line:
$ python ch03-01_shp2pg.py

How it works...
We begin with importing the standard Python subprocess module that will call the ogr2ogr
command-line tool. Next, we'll set up a range of variables that are used as input arguments
and provide various options for ogr2ogr to execute.

Moving Spatial Data from One Format to Another

48

Starting with the PostgreSQL SCHEMA=geodata database, we set a nondefault database
schema for the destination of our new table. It is a best practice to store your spatial data
tables in a separate schema outside the public schema, which is the default. This practice will
make backups and restores much easier and keeps your database better organized.

Next, we create a overwrite_option variable set to yes so that we can overwrite any table
with the same name when it's created. This is helpful when you want to completely replace
the table with new data; otherwise, it is recommended to use the -append option. We also
specify the geometry type because, sometimes, ogr2ogr does not always guess the correct
geometry type of our Shapefile so setting this value spares you that worry.

Now, we'll set our output_format variable with the PostgreSQL key word, telling
ogr2ogr that we want to output data into a PostgreSQL database. This is then followed by
the db_connection variable that specifies our database connection information. We must
not forget that the database must already exist along with the geodata schema; otherwise,
we will get an error.

The last input_shp variable is the full path to our Shapefile including the .shp file ending.
We'll call the subprocess module and it will call the ogr2ogr command-line tool and pass along
the variable options required to run the tool. We pass this function an array of arguments,
starting with the first object in the array being the ogr2ogr command-line tool name. Following
the name, we pass one option after another in the array to complete the call.

Subprocess can be used to call any command-line tool directly.
Subprocess takes a list of parameters separated by spaces. This
passing of parameters is quite fussy, so make sure you follow
along closely and don't add any extra spaces or commas.

Last but not least, we need to execute our script from the command line to actually import
our Shapefile by calling the Python interpreter and passing the script. Now head over to
the PgAdmin PostgreSQL database viewer and see if it's worked. Or, even better, open up
Quantum GIS (www.qgis.org) and take a look at the newly created tables.

See also
If you would like to see the full list of options available with the ogr2ogr command, simply
enter the following in the command line:

$ ogr2ogr –help

You will see the full list of options available. Also, visit http://gdal.org/ogr2ogr.html
to read the available documentation.

www.qgis.org
http://gdal.org/ogr2ogr.html

Chapter 3

49

For those of you who are curious to see how this call would run without
using Python, the call directly to ogr2ogr will be as follows:
ogr2ogr -lco SCHEMA=geodata -nlt MULTILINE -f
"Postgresql" PG:"host=localhost port=5432 user=postgres
dbname=py_geoan_cb password=secret"
/home/mdiener/ch03/geodata/bikeways.shp

Batch importing a folder of Shapefiles into
PostGIS using ogr2ogr

We would like to extend our last script to loop over a folder full of Shapefiles and import them
into PostGIS. Most importing tasks involve more than one file to import, so this makes it a very
practical task.

How to do it...
Our script will reuse the previous code in the form of a function so that we can batch process
a list of Shapefiles to import into the PostgreSQL PostGIS database.

1. We will create our list of Shapefiles from a single folder for the sake of simplicity:
#!/usr/bin/env python
-*- coding: utf-8 -*-

import subprocess
import os
import ogr

def discover_geom_name(ogr_type):
 """

 :param ogr_type: ogr GetGeomType()
 :return: string geometry type name
 """
 return {ogr.wkbUnknown : "UNKNOWN",
 ogr.wkbPoint : "POINT",
 ogr.wkbLineString : "LINESTRING",
 ogr.wkbPolygon : "POLYGON",
 ogr.wkbMultiPoint : "MULTIPOINT",
 ogr.wkbMultiLineString : "MULTILINESTRING",
 ogr.wkbMultiPolygon : "MULTIPOLYGON",

Moving Spatial Data from One Format to Another

50

 ogr.wkbGeometryCollection : "GEOMETRYCOLLECTION",
 ogr.wkbNone : "NONE",
 ogr.wkbLinearRing :
"LINEARRING"}.get(ogr_type)

def run_shp2pg(input_shp):
 """
 input_shp is full path to shapefile including file
ending
 usage: run_shp2pg('/home/geodata/myshape.shp')
 """

 db_schema = "SCHEMA=geodata"
 db_connection = """PG:host=localhost port=5432
 user=pluto dbname=py_geoan_cb
password=stars"""
 output_format = "PostgreSQL"
 overwrite_option = "OVERWRITE=YES"
 shp_dataset = shp_driver.Open(input_shp)
 layer = shp_dataset.GetLayer(0)
 geometry_type = layer.GetLayerDefn().GetGeomType()
 geometry_name = discover_geom_name(geometry_type)
 print (geometry_name)

 subprocess.call(["ogr2ogr", "-lco", db_schema, "-lco",
overwrite_option,
 "-nlt", geometry_name, "
-skipfailures",
 "-f", output_format, db_connection,
input_shp])

directory full of shapefiles
shapefile_dir = os.path.realpath('../geodata')

define the ogr spatial driver type
shp_driver = ogr.GetDriverByName('ESRI Shapefile')

empty list to hold names of all shapefils in directory
shapefile_list = []

for shp_file in os.listdir(shapefile_dir):
 if shp_file.endswith(".shp"):
 # apped join path to file name to outpout
"../geodata/myshape.shp"

Chapter 3

51

 full_shapefile_path = os.path.join(shapefile_dir,
shp_file)
 shapefile_list.append(full_shapefile_path)

loop over list of Shapefiles running our import function
for each_shapefile in shapefile_list:
 run_shp2pg(each_shapefile)
 print ("importing Shapefile: " + each_shapefile)

2. Now, we can simply run our new script from the command line once again as follows:
$ python ch03-02_batch_shp2pg.py

How it works...
Here, we are reusing our code from the previous script but have converted it into a Python
function called run_shp2pg (input_shp) that takes exactly one argument and the
complete path to the Shapefile that we want to import. The input argument must include the
Shapefile ending, .shp.

We have a helper function that will get the geometry type as a string by reading in the Shapefile
feature layer and outputting the geometry type so that the ogr commands know what to
expect. This does not always work and some errors can occur. The –skipfailures option will
plow over any errors that are thrown during insertion and will still populate our tables.

To begin with, we need to define the folder that contains all our Shapefiles to be imported.
Next up, we can create an empty list object called shapefile_list that will hold the list of
all our Shapefiles that we want to import.

The first for loop is used to get a list of all the Shapefiles in the directory specified using the
standard Python os.listdir() function. We do not want all the files in this folder. We only
want files with the file ending .shp; hence, the if statement that will evaluate to True if
the file ends with .shp. Once the .shp file is found, we need to append the file path to the
filename to create a single string that holds the path plus the Shapefile name and the full_
shapefile_path variable. In the final part, we add each new file with its attached path to
our shapefile_list list object so that we have our final list to loop through.

Now, it is time to loop through each Shapefile in our new list and run our run_
shp2pg(input_shp) function for each Shapefile in the list, importing it into our PostgreSQL
PostGIS database.

There's more…
If you have a lot of Shapefiles (and I mean a lot, as in 100 or more Shapefiles), performance
will be one consideration and will, therefore, require a lot of machines with free resources.

Moving Spatial Data from One Format to Another

52

Batch exporting a list of tables from PostGIS
to Shapefiles

We will now change direction and take a look at how we can batch export a list of tables from
our PostGIS database into a folder of Shapefiles. We'll again use the ogr2ogr command-line
tool from within a Python script so that you can include it in your application programming
work flow. Near the end, you can also see how all this works in one single command line.

How to do it...
1. The following script will fire the ogr2ogr command and loop over a list of tables to

export the Shapefile format into an existing folder. So, let's take a look at how to do
this as follows:
#!/usr/bin/env python
-*- coding: utf-8 -*-
#
import subprocess
import os

folder to hold output Shapefiles
destination_dir = os.path.realpath('../geodata/temp')

list of postGIS tables
postgis_tables_list = ["bikeways", "highest_mountains"]

database connection parameters
db_connection = """PG:host=localhost port=5432 user=pluto
 dbname=py_geoan_cb password=stars active_schema=geodata"""

output_format = "ESRI Shapefile"

check if destination directory exists
if not os.path.isdir(destination_dir):
 os.mkdir(destination_dir)
 for table in postgis_tables_list:
 subprocess.call(["ogr2ogr", "-f", output_format,
destination_dir,
 db_connection, table])
 print("running ogr2ogr on table: " + table)
else:
 print("oh no your destination directory " +
destination_dir +

Chapter 3

53

 " already exist please remove it then run again")

commandline call without using python will look like this
ogr2ogr -f "ESRI Shapefile" mydatadump \
PG:"host=myhost user=myloginname dbname=mydbname
password=mypassword" neighborhood parcels

2. Now, we'll call our script from the command line as follows:
$ python ch03-03_batch_postgis2shp.py

How it works...
Beginning with the simple import of our subprocess and os modules, we immediately
define our destination directory where we want to store the exported Shapefiles. This variable
is followed by the list of table names that we want to export. This list can only include files
located in the same PostgreSQL schema. The schema is defined as the active_schema so
that ogr2ogr knows where to find tables to export.

Once again, we define the output format as ESRI Shapefile. Now, we'll check whether the
destination folder exists. If it does, we'll continue and call our loop. Then, we'll loop through
the list of tables stored in our postgis_tables_list variable. If the destination folder does
not exist, you will see an error printed on the screen.

There's more...
Programming an application and then executing the ogr2ogr command from inside your
script is definitely quick and easy. On the other hand, for a one-off job, simply executing the
command-line tool is what you want to do when exporting your list of Shapefiles. To do this in
a one-liner, take a look at this information box.

A one-line example of calling the ogr2ogr batch PostGIS table to
Shapefiles is shown here if you simply want to execute this once and
not in a scripting environment:
ogr2ogr -f "ESRI Shapefile" /home/ch03/geodata/temp
PG:"host=localhost user=pluto dbname=py_geoan_cb
password=stars" bikeways highest_mountains

The list of tables you want to export is located at the end as a list
separated by spaces. The destination location of the exported
Shapefiles is ../geodata/temp. Note that this /temp directory
must exist.

www.allitebooks.com

http://www.allitebooks.org

Moving Spatial Data from One Format to Another

54

Converting an OpenStreetMap (OSM) XML
to a Shapefile

OpenStreetMap (OSM) has a wealth of free data, but to use it with most other applications, we
need to convert it to other formats, such as Shapefile or PostgreSQL PostGIS databases. This
recipe will use the ogr2ogr tool to perform the conversion for us within a Python script. The
benefit of this is, again, simplicity.

Getting ready
To get started, you will need to download the OSM data at http://www.openstreetmap.
org/export#map=17/37.80721/-122.47305 and save the file (.osm) to your /ch03/
geodata directory. The download button is located on the left-hand side bar and, when
pressed, it should immediately start the download (refer to the following screenshot). The area
we are testing is in San Francisco, just before the Golden Gate Bridge.

http://www.openstreetmap.org/export#map=17/37.80721/-122.47305
http://www.openstreetmap.org/export#map=17/37.80721/-122.47305

Chapter 3

55

If you choose to download another area from OSM, feel free but make sure you take a small
area similar to my example. If you select a larger area, the OSM web tool will give you a
warning and disable the download button. The reason for this is simple: if the dataset is very
large, it is most likely better suited for another tool, such as osm2pgsql, (http://wiki.
openstreetmap.org/wiki/Osm2pgsql) for your conversion. If you need to get OSM data
for a large area and want to export it to Shapefile, it would be advisable to use another tool,
such as osm2pgsql, which will first import your data into a PostgreSQL database. Then, export
the data from the PostGIS database to Shapefile using the pgsql2shp tool.

A Python tool called imposm can be used to import the
OSM data into a PostGIS database and is available at
http://imposm.org/. Version 2 of it is written in
Python and version 3 is written in the go programming
language, if you want to give this a try as well.

How to do it...
Use the following steps to convert an OpenStreetMap (OSM) XML into a Shapefile:

1. Using the subprocess module, we will execute ogr2ogr to convert our OSM data that
we downloaded into a new Shapefile:
#!/usr/bin/env python
-*- coding: utf-8 -*-

convert / import osm xml .osm file into a Shapefile
import subprocess
import os
import shutil

specify output format
output_format = "ESRI Shapefile"

complete path to input OSM xml file .osm
input_osm = '../geodata/OSM_san_francisco_westbluff.osm'

Windows users can uncomment these two lines if needed
ogr2ogr = r"c:/OSGeo4W/bin/ogr2ogr.exe"
ogr_info = r"c:/OSGeo4W/bin/ogrinfo.exe"

view what geometry types are available in our OSM file
subprocess.call([ogr_info, input_osm])

destination_dir = os.path.realpath('../geodata/temp')

http://wiki.openstreetmap.org/wiki/Osm2pgsql
http://wiki.openstreetmap.org/wiki/Osm2pgsql
http://imposm.org/

Moving Spatial Data from One Format to Another

56

if os.path.isdir(destination_dir):
 # remove output folder if it exists
 shutil.rmtree(destination_dir)
 print("removing existing directory : " + destination_dir)
 # create new output folder
 os.mkdir(destination_dir)
 print("creating new directory : " + destination_dir)

 # list of geometry types to convert to Shapefile
 geom_types = ["lines", "points", "multilinestrings",
"multipolygons"]

 # create a new Shapefile for each geometry type
 for g_type in geom_types:

 subprocess.call([ogr2ogr,
 "-skipfailures", "-f", output_format,
 destination_dir, input_osm,
 "layer", g_type,
 "--config","OSM_USE_CUSTOM_INDEXING",
"NO"])
 print("done creating " + g_type)

if you like to export to SPATIALITE from .osm
subprocess.call([ogr2ogr, "-skipfailures", "-f",
"SQLITE", "-dsco", "SPATIALITE=YES",
"my2.sqlite", input_osm])

2. Now we can call our script from the command line:
$ python ch03-04_osm2shp.py

Go and have a look in your ../geodata folder to see the newly created Shapefiles and try to
open them up in Quantum GIS, which is a free GIS software (www.qgis.org).

How it works...
This script should be clear as we are using the subprocess module call to fire our ogr2ogr
command-line tool. We'll specify our OSM dataset as an input file, including the full path to
the file. The Shapefile name is not supplied as ogr2ogr will output a set of Shapefiles, one for
each geometry shape according to the geometry types it finds inside the OSM file. We only
need to specify the name of the folder where we want ogr2ogr to export the Shapefiles to,
automatically creating the folder if it does not exist.

www.qgis.org

Chapter 3

57

Windows users: If you do not have your ogr2ogr tool mapped
to your environment variables, you can simply uncomment the
code at lines 16 and 17 and replace the path shown with the
path on your machine to the Windows executables.

The first subprocess call prints out to the screen the geometry types found inside our OSM file.
This is helpful in most cases to help identify what is available. Shapefiles can only support one
geometry type per file, and this is why ogr2ogr outputs a folder full of Shapefiles, each one
representing a separate geometry type.

Lastly, we call subprocess to execute ogr2ogr, passing in the output file type called ESRI
Shapefile, the output folder, and the name of the OSM dataset.

Converting a Shapefile (vector) to
a GeoTiff (raster)

Moving data from format to format also includes moving it from vector to raster or the other
way round. In this recipe, we move data from a vector (Shapefile) to a raster (GeoTiff) with the
Python gdal and ogr modules.

Getting ready
We need to be inside our virtual environment again, so fire it up so that we can access the
gdal and ogr Python modules that we installed in Chapter 1, Setting Up Your Geospatial
Python Environment.

As usual, enter your Python virtual environment with the workon pygeoan_cb command or
this command:

$ source venvs/pygeoan_cb/bin/activate

A Shapefile is also needed, so be sure to download the source and access the /ch03/
geodata folder (https://github.com/mdiener21/python-geospatial-analysis-
cookbook/archive/master.zip).

How to do it...
Let's dive in and convert our golf course polygon Shapefile into a GeoTif; here comes the code:

1. Import the libraries ogr and gdal, and then define our output pixel size along with a
value to assign to null:
#!/usr/bin/env python
-*- coding: utf-8 -*-

https://github.com/mdiener21/python-geospatial-analysis-cookbook/archive/master.zip
https://github.com/mdiener21/python-geospatial-analysis-cookbook/archive/master.zip

Moving Spatial Data from One Format to Another

58

from osgeo import ogr
from osgeo import gdal

set pixel size
pixel_size = 1
no_data_value = -9999

2. Set up the input Shapefile we want to convert alongside the new GeoTiff raster that
will be created when the script is executed:
Shapefile input name
input projection must be in Cartesian system in meters
input wgs 84 or EPSG: 4326 will NOT work!!!
input_shp = r'../geodata/ply_golfcourse-strasslach3857.shp'

TIF Raster file to be created
output_raster = r'../geodata/ply_golfcourse-strasslach.tif'

3. Now we need to create the input Shapefile object, get the layer information, and
finally set the extent values:
Open the data source get the layer object
assign extent coordinates
open_shp = ogr.Open(input_shp)
shp_layer = open_shp.GetLayer()
x_min, x_max, y_min, y_max = shp_layer.GetExtent()

4. Here, we need to calculate the resolution distance to pixel value:
calculate raster resolution
x_res = int((x_max - x_min) / pixel_size)
y_res = int((y_max - y_min) / pixel_size)

5. Our new raster type is a GeoTiff, so we must explicitly tell GDAL to get this driver.
The driver is then able to create a new GeoTiff by passing in the filename or the
new raster that we want to create, called the x direction resolution, followed by the y
direction resolution, and then the number of bands; in this case, it is 1. Lastly, we set
a new type of GDT_Byte raster:
set the image type for export
image_type = 'GTiff'
driver = gdal.GetDriverByName(image_type)

new_raster = driver.Create(output_raster, x_res, y_res, 1,
gdal.GDT_Byte)
new_raster.SetGeoTransform((x_min, pixel_size, 0, y_max, 0,
-pixel_size))

Chapter 3

59

6. Now we can access the new raster band and assign the no data values and the inner
data values for the new raster. All the inner values will receive a value of 255 similar
to what we set in the burn_values variable:
get the raster band we want to export too
raster_band = new_raster.GetRasterBand(1)

assign the no data value to empty cells
raster_band.SetNoDataValue(no_data_value)

run vector to raster on new raster with input Shapefile
gdal.RasterizeLayer(new_raster, [1], shp_layer,
burn_values=[255])

7. Here we go; let's run this script to see what our new raster looks like:
$ python ch03-05_shp2raster.py

Our resulting raster should look like what is shown in the following screenshot if you open it
using QGIS (http://www.qgis.org):

How it works...
There are several steps involved in this code so follow along as some points could lead to
trouble if you are not sure what values to input. We start with the import of the gdal and ogr
modules, respectively, since they will do the work for us by inputting a Shapefile (vector) and
outputting a GeoTiff (raster).

http://www.qgis.org

Moving Spatial Data from One Format to Another

60

The pixel_size variable is very important since it will determine the size of the new raster
that we will create. In this example, we only have two polygons, so we set pixel_size = 1
to keep a fine border between them. If you have many polygons stretching across the globe in
one Shapefile, it is wiser to set this value to 25 or more. Otherwise, you could end up with a
10 GB raster and your machine will run all night long! The no_data_value is needed to tell
GDAL what values to set in the empty space around our input polygons and we set it to -9999
for easy identification.

Next, we simply set the input Shapefile stored in EPSG:3857 Web Mercator and output
GeoTiff. Check to make sure that you change the filenames accordingly if you want to use
some other dataset. We start by working with the OGR module to open the Shapefile and
retrieve its layer information and the extent information. The extent is important because it is
used to calculate the size of the output raster width and height values that must be integers
represented by the x_res and y_res variables.

Note that the projection of your Shapefile must be in meters and
not degrees. This is very important since this will NOT work in
EPSG:4326, WGS 84, for example. The reason for this is that the
coordinate units are LAT/LON. This means that WGS84 is not a
flat plane projection and cannot be drawn as is. Our x_res and
y_res values would evaluate to 0 since we cannot get a real
ratio using degrees. This is a result of us not being able to simply
subtract coordinate x from coordinate y because the units are in
degrees and not in a flat plane meters projection.

Now, moving on to the raster setup, we define the type of raster we want to export as a Gtiff.
Then, we'll get the correct GDAL driver by the raster type. Once the raster type is set, we can
create a new empty raster dataset, passing in a raster filename, the width, the height of the
raster in pixels, the number of raster bands, and finally, the type of rasters in GDAL terms,
such as gdal.GDT_Byte. These five parameters are mandatory to create a new raster.

Next, we call SetGeoTransform that handles transforming between pixel/line raster space
and projection coordinate space. We'll want to activate band 1 as it is the only band we have
in our raster. Then, we'll assign the no data value to all our empty space around a polygon.

The final step is to call the gdal.RasterizeLayer() function and pass in our new raster,
band, Shapefile, and the value to assign to the inside of our raster. All the pixels inside the
polygon will be assigned a value of 255.

See also
If you are interested, you can visit the gdal_rasterize command-line tool at
http://www.gdal.org/gdal_rasterize.html. You can run this straight
from the command line.

http://www.gdal.org/gdal_rasterize.html

Chapter 3

61

Converting a raster (GeoTiff) to a vector
(Shapefile) using GDAL

We have now looked at how we can go from a vector to a raster, so it is now time to go from
a raster to a vector. This method is much more common because most of our vector data
is derived from remotely sensed data, such as satellite images, orthophotos, or some other
remote sensing dataset, such as lidar.

Getting ready
As usual, enter the workon pygeoan_cb command in your Python virtual environment:

$ source venvs/pygeoan_cb/bin/activate

How to do it...
This recipe only requires four steps utilizing OGR and GDAL so please open up a new file for
your code:

1. Import the ogr and gdal modules and go straight ahead and open the raster we
want to convert by passing it the filename on disk and getting a raster band:
#!/usr/bin/env python
-*- coding: utf-8 -*-

from osgeo import ogr
from osgeo import gdal

get raster data source
open_image = gdal.Open("../geodata/cadaster_borders-2tone-
black-white.png")
input_band = open_image.GetRasterBand(3)

2. Set up the output vector file as a Shapefile with output_shp, and then get a Shapefile
driver. Now, we can create the output from our driver and create a layer as follows:
create output data source
output_shp = "../geodata/cadaster_raster"
shp_driver = ogr.GetDriverByName("ESRI Shapefile")

create output file name
output_shapefile = shp_driver.CreateDataSource(output_shp
+ ".shp")
new_shapefile = output_shapefile.CreateLayer(output_shp,
srs = None)

Moving Spatial Data from One Format to Another

62

3. The final step is to run the gdal.Polygonize function that does the heavy lifting by
converting our raster to a vector as follows:
gdal.Polygonize(input_band, None, new_shapefile, -1, [],
callback=None)
new_shapefile.SyncToDisk()

4. Execute the new script as follows:
$ python ch03-06_raster2shp.py

How it works...
Working with ogr and gdal is similar in all our recipes; we must define the inputs and get an
appropriate file driver to open the files. The GDAL library is very powerful and in only one line
of code we can convert a raster to a vector with the help of the gdal.Polygonize function.
The preceding code is simply setup code to define which format we want to work with and
then set up an appropriate driver to input and output our new file.

Creating a Shapefile from point data stored
in Microsoft Excel

Excel files are so common these days that often an analyst or developer receives an Excel file
that needs to be mapped out. Sure, we could save these to a .csv file and then use the great
Python standard csv module but this involves an extra manual step. We will take a look at how
to read a very simple Excel file that contains a list of Europe's highest mountains. This data
set is derived from http://www.geonames.org.

Getting ready
We are going to need one new Python library to read a Microsoft Excel file and this library is
xlrd (http://www.python-excel.org).

This library can only READ an Excel file; if you are looking to
write out to an Excel file, download and install xlwt.

First, fire up you virtual environment from your workon pygeoan_cb Linux machine, run pip
install xlrd, and you are off to the races.

To write out to a new Shapefile, we will use the pyshp library we installed in Chapter 1, Setting
Up Your Geospatial Python environment, so that there is no need to do anything.

The data is located in your downloads in /ch03/geodata and the output Shapefile will also
be written to this location after you go through this recipe.

http://www.geonames.org
http://www.python-excel.org

Chapter 3

63

How to do it...
So let's get started with some code:

1. Start with the import of xlrd and the pyshp module; note that the import name is
shapefile and not pyshp as the module name would imply:
#!/usr/bin/env python
-*- coding: utf-8 -*-

import xlrd
import shapefile

2. Open the Excel file using the xlrd module and create a variable to hold the Excel
sheet. We reference the first sheet in the Excel file by an index number, always
starting with (0) in the first sheet:
excel_file = xlrd.open_workbook("../geodata/
highest-mountains-europe.xlsx")

get the first sheet
sh = excel_file.sheet_by_index(0)

3. Create the Shapefile object as follows:
w = shapefile.Writer(shapefile.POINT)

4. Define the new Shapefile fields and their data types. F stands for float and C is for
character:
w.field('GeoNameId','F')
w.field('Name', 'C')
w.field('Country', 'C')
w.field('Latitude', 'F')
w.field('Longitude', 'F')
w.field('Altitude', 'F')

5. Loop through each row in the Excel file and create the geometry values along
with attributes:
for row_number in range(sh.nrows):
 # skips over the first row since it is the header row
 if row_number == 0:
 continue
 else:
 x_coord = sh.cell_value(rowx=row_number, colx=4)
 y_coord = sh.cell_value(rowx=row_number, colx=3)
 w.point(x_coord, y_coord)

www.allitebooks.com

http://www.allitebooks.org

Moving Spatial Data from One Format to Another

64

 w.record(GeoNameId=sh.cell_value(rowx=row_number,
colx=0), Name=sh.cell_value(rowx=row_number, colx=1),
 Country=sh.cell_value(rowx=row_number,
colx=2), Latitude=sh.cell_value(rowx=row_number, colx=3),
 Longitude=sh.cell_value(rowx=row_number,
colx=4),Altitude=sh.cell_value(rowx=row_number, colx=5))
 print "Adding row: " + str(row_number) + " creating
mount: " + sh.cell_value(rowx=row_number, colx=1)

6. Lastly, we'll create the new Shapefile in the /ch03/geodata folder as follows:
w.save('../geodata/highest-mountains')

7. Go ahead and execute our new ch03-07_excel2shp.py script from the command
line as follows:
$ python ch03-07_excel2shp.py

How it works...
The Python code reads similar to making a description of how code works and is almost all
too easy to explain. We start with importing our new xlrd module along with the Shapefile
module needed to write out to a Shapefile. Taking a look at our Excel file, we see which fields
are available and locate where the X coordinate (longitude) and Y coordinate (latitude) are
positioned. This position index number remembers the starting point by counting from 0 for
the first column.

Our Excel file also has a header row and this is, of course, not to be included in the new data
attributes; this is why we check to see whether row numbers are equal to 0—that is, the first
row—and then continue. The continue statements allow the code to continue without an error
and enter the else statement where we define the index positions of our columns. Each
column is referenced using the pyshp syntax, referencing the columns by name to make the
code even easier to read.

We call the w.point pyshp function to create the point geometry passing in our x and y
coordinates as floats. The xlrd module converts the values for us automatically into floats,
which is nice. All we need to do in the end is use the pyshp save function to write out to our
/ch03/geodata folder. There is no need to add the .shp extension; pyshp handles this for
us and outputs .shp, .dbf, and .shx.

Chapter 3

65

Note that a .prj projection file is not automatically output. If you
would like to have the projection information exported as well, you will
need to manually create it like this:

create the PRJ file
filename = 'highest-mountains'
prj = open("%s.prj" % filename, "w")
epsg = 'GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID[
"WGS 84",6378137,298.257223563]],PRIMEM["Greenwich
",0],UNIT["degree",0.0174532925199433]]'
prj.write(epsg)
prj.close()

Converting an ESRI ASCII DEM to an image
height map

To end this chapter with a bang, here is the most complicated conversion we have seen
so far and the most fun as well. Input is an elevation dataset that's stored in ASCII format,
more specifically, Arc/Info ASCII Grid, for short with the AAIGrid with the (.asc) file ending.
Our output is a heightmap image (http://en.wikipedia.org/wiki/Heightmap). A
heightmap image is an image that stores height elevation as a pixel value. A heightmap is
also simply known as a digital elevation model (DEM). The benefit of using an image to store
elevation data is that it is web compatible and we can use this in a 3D visualization with
threejs, for example, as shown in Chapter 10, Visualizing Your Analysis.

We need to be careful with regard to the output image format because simply storing an
8-bit image limits us to only storing 0 to 255 height values, which is typically not enough. The
output image should store a minimum of 16-bits, giving us a range from -32,767 to 32,767. If
I am correct, the tallest mountain on earth is Mt. Everest at a height of 8,848 m, so a 16-bit
image should be more than enough to hold our elevation data.

Getting ready
A DEM is needed to run this exercise so please make sure you have downloaded the code
and geodata included at https://github.com/mdiener21/python-geospatial-
analysis-cookbook/archive/master.zip and download the sample DEM needed to
process. You do not need to run your script from within your virtual environment because this
script will be executing standard Python modules and several GDAL built-in tools installed with
GDAL. This simply means that you need to make sure your GDAL utilities are properly installed
and running on your machine. (Refer to Chapter 2, Working with Projections, for the reference
installation.)

http://en.wikipedia.org/wiki/Heightmap
https://github.com/mdiener21/python-geospatial-analysis-cookbook/archive/master.zip
https://github.com/mdiener21/python-geospatial-analysis-cookbook/archive/master.zip

Moving Spatial Data from One Format to Another

66

How to do it...
We will execute this script by calling several GDAL utility scripts installed by gdal from our
Python script:

1. We'll start by importing the subprocess standard module; this will be used to execute
our GDAL utility functions. Then, we'll set the base path to where we will store our
geodata for input files, temporary files, and output files:
#!/usr/bin/env python
-*- coding: utf-8 -*-
import subprocess
from osgeo import gdal

path_base = "../geodata/"

2. Windows users who have installed GDAL using the great OSGeo4w installer might
want to specify the path directly to the GDAL utilities if it is not available in the
Windows Environment variables as follows:
gdal_translate converts raster data between different
formats

command_gdal_translate =
"c:/OSGeo4W/bin/gdal_translate.exe"
command_gdalinfo = "c:/OSGeo4W/bin/gdalinfo.exe"

3. Linux users can use these variables:
command_gdal_translate = "gdal_translate"
command_gdalinfo = "gdalinfo"
command_gdaldem = "gdaldem"

4. We'll create a set of variables to hold our input DEM, output files, temporary files, and
our final output file. The variables concatenate the base path folder to the filename
as follows:
orig_dem_asc = path_base + "original_dem.asc"

temp_tiff = path_base + "temp_image.tif"

output_envi = path_base + "final_envi.bin"

5. Then, we'll call the gdal_translate command to create our new temporary GeoTiff
as follows:
transform dem to tiff
dem2tiff = command_gdal_translate + " " + orig_dem_asc + "
" + temp_tiff
print ("now executing this command: " + dem2tiff)
subprocess.call(dem2tiff.split(), shell=False)

Chapter 3

67

6. Next, we'll open the temp GeoTiff and read the information about the tiff to find
out the minimum and maximum height values stored in our data. This is not needed
to complete the script but is very useful to identify your maximum and minimum
height values:
ds = gdal.Open(temp_tiff, gdal.GA_ReadOnly)
band = ds.GetRasterBand(1)
print 'Band Type=', gdal.GetDataTypeName(band.DataType)
min = band.GetMinimum()
max = band.GetMaximum()
if min is None or max is None:
 (min, max) = band.ComputeRasterMinMax(1)
print 'Min=%.3f, Max=%.3f' % (min, max)
min_elevation = str(int(round(min)))
max_elevation = str(int(round(max)))

7. Then, call the gdal_translate utility with the following parameters, setting the scale
range from its original min/max values to a new scale ranging from the 0 to 65,535
values. Specify the -ot output type to be in the vENVI format using our temporary
GeoTiff as the input:
tif_2_envi = command_gdal_translate + " -scale -ot UInt16
-outsize 500 500 -of ENVI " \
 + temp_tiff + " " + output_envi

8. Let's run our new ch03-08_dem2heightmap.py script from the command line:
subprocess.call(tif_2_envi.split(),shell=False)

9. Let's run our new ch03-08_dem2heightmap.py script from the command line:
python ch03-08_dem2heightmap.py

The result is that you have a new .bin file located in your /ch03/geodata/ folder that stores
your new ENVI 16-bit image including all your elevation data. The image height map can now
be used in your 3D software, such as Blender (www.blender.org), Unity (www.unity3d.
com), or in an even cooler web application using a JavaScript library such as threejs.

How it works...
Let's start with the imports, and then we'll specify the base path to where our inputs and
outputs will be stored. After this, we'll see the actual commands we used to execute the
gdal_translate transformation. The commands for Windows and Linux are for you to
decide whether to use or not and this depends on how you have set up up your machine.
We then set our variable to define the input DEM, temporary GeoTiff, and the output ENVI
height map image.

www.blender.org
www.unity3d.com
www.unity3d.com

Moving Spatial Data from One Format to Another

68

At last, we can call the first transformation that converts our DEM ASCII file into a GeoTiff with
the gdal_translate utility. Now to get a little information about our data, we print out the
min and max height values to the screen. Sometimes, this is very useful when transforming,
allowing you to check whether the output data actually contains the input height values and
that nothing went astray during conversion.

In the end, we simply call the gdal_translate utility once again to convert our GeoTiff into
an ENVI heightmap image. The -scale with no parameters automatically fills our 16-bit image
with values ranging from 0 to 65,535. Our next parameter is -ot, which specifies the output
type as 16-bit followed by -outsize 500 500, setting the output image size to 500 x 500
pixels. Lastly, -of ENVI is our output format followed by the name of the input GeoTiff and
the name of the output height map.

A typical work flow when working with DEM's is as follows:

1. Download a DEM that is usually a very large file and covers a large geographic region.

2. Clip the DEM to a smaller region of interest.

3. Convert the clipped region to another format.

4. Export the DEM as a heightmap image.

We introduce .split() that will return a Python list of words,
separated by a character. In our case, the separator character is
a single space character but you could split based on any other
character or a combination of characters (refer to the Python
documentation at https://docs.python.org/2/library/
string.html#string.split) This helps us reduce the
amount of concatenating that we need to do in our code.

https://docs.python.org/2/library/string.html#string.split
https://docs.python.org/2/library/string.html#string.split

69

4
Working with PostGIS

In this chapter we will cover the following topics:

 f Executing a PostGIS ST_Buffer analysis query and exporting it to GeoJSON

 f Finding out whether a point is inside a polygon

 f Splitting LineStrings at intersections using ST_Node

 f Checking the validity of LineStrings

 f Executing a spatial join and assigning point attributes to a polygon

 f Conducting a complex spatial analysis query using ST_Distance()

Introduction
A spatial database is nothing but a standard database that can store geometry and execute
spatial queries in their simplest forms. We will explore how to run spatial analysis queries,
handle connections, and more, all from our Python code. Your ability to answer spatial
questions such as "I want to locate all the hotels that are within 2 km of a golf course and
less than 5 km from a park" is where PostGIS comes into play. This chaining of requests into a
model is where the powers of spatial analysis shine.

We will work with the most popular and powerful open source spatial database called
PostgreSQL, along with the PostGIS extension, including over 150 functions. Basically, we'll
get a full-blown GIS with complex spatial analysis functions for both vectors and rasters,
spatial data types, and diverse methods to move spatial data around.

If you are looking for more information on PostGIS and a good read, please check out PostGIS
Cookbook by Paolo Corti (available at https://www.packtpub.com/big-data-and-
business-intelligence/postgis-cookbook). This book explores the wider use of
PostGIS and includes a full chapter on PostGIS Programming using Python.

https://www.packtpub.com/big-data-and-business-intelligence/postgis-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/postgis-cookbook

Working with PostGIS

70

Executing a PostGIS ST_Buffer analysis
query and exporting it to GeoJSON

Let's start by executing our first spatial analysis query from Python against our already running
PostgreSQL and PostGIS database. The goal is to generate a 100 m buffer around all schools
and export the new buffer polygon to GeoJSON, including the name of a school. The end
result will be shown on this map, available (https://github.com/mdiener21/python-
geospatial-analysis-cookbook/blob/master/ch04/geodata/out_buff_100m.
geojson) on GitHub.

Quick visualizations of GeoJSON data using GitHub is a fast and
simple way to create a web map without coding a single line. Note
that the data is then free for everyone else to download if you are
using a public and free GitHub account. Private GitHub accounts
mean the data, that is, GeoJSON, will also remain private if data
privacy or sensitivity is an issue.

Getting ready
To get started, we'll use our data in the PostGIS database. We will begin by accessing our
schools table that we uploaded to PostGIS in the Batch importing a folder of Shapefiles into
PostGIS using ogr2ogr recipe of Chapter 3, Moving Spatial Data from One Format to Another.

https://github.com/mdiener21/python-geospatial-analysis-cookbook/blob/master/ch04/geodata/out_buff_100m.geojson
https://github.com/mdiener21/python-geospatial-analysis-cookbook/blob/master/ch04/geodata/out_buff_100m.geojson
https://github.com/mdiener21/python-geospatial-analysis-cookbook/blob/master/ch04/geodata/out_buff_100m.geojson

Chapter 4

71

Connecting to a PostgreSQL and PostGIS database is accomplished with Psycopg, which is
a Python DB API (http://initd.org/psycopg/) implementation. We've already installed
this in Chapter 1, Setting Up Your Geospatial Python Environment along with PostgreSQL,
Django, and PostGIS.

For all the following recipes, enter your virtual environment, pygeoan_cb, so that you have
access to your libraries using this command:

workon pygeoan_cb

How to do it...
1. The long road is not so long after all, so follow along:

#!/usr/bin/env python
-*- coding: utf-8 -*-

import psycopg2
import json
from geojson import loads, Feature, FeatureCollection

NOTE change the password and username
Database Connection Info
db_host = "localhost"
db_user = "pluto"
db_passwd = "stars"
db_database = "py_geoan_cb"
db_port = "5432"

connect to DB
conn = psycopg2.connect(host=db_host, user=db_user,
 port=db_port, password=db_passwd,
database=db_database)

create a cursor
cur = conn.cursor()

the PostGIS buffer query
buffer_query = """SELECT ST_AsGeoJSON(ST_Transform(
 ST_Buffer(wkb_geometry, 100,'quad_segs=8'),4326))
 AS geom, name
 FROM geodata.schools"""

execute the query
cur.execute(buffer_query)

http://initd.org/psycopg/

Working with PostGIS

72

return all the rows, we expect more than one
dbRows = cur.fetchall()

an empty list to hold each feature of our feature collection
new_geom_collection = []

loop through each row in result query set and add to my feature
collection
assign name field to the GeoJSON properties
for each_poly in dbRows:
 geom = each_poly[0]
 name = each_poly[1]
 geoj_geom = loads(geom)
 myfeat = Feature(geometry=geoj_geom,
properties={'name': name})
 new_geom_collection.append(myfeat)

use the geojson module to create the final Feature
Collection of features created from for loop above
my_geojson = FeatureCollection(new_geom_collection)

define the output folder and GeoJSon file name
output_geojson_buf = "../geodata/out_buff_100m.geojson"

save geojson to a file in our geodata folder
def write_geojson():
 fo = open(output_geojson_buf, "w")
 fo.write(json.dumps(my_geojson))
 fo.close()

run the write function to actually create the GeoJSON
file
write_geojson()

close cursor
cur.close()

close connection
conn.close()

Chapter 4

73

How it works...
The database connection is using the pyscopg2 module, so we import the libraries at the
start alongside geojson and the standard json modules to handle our GeoJSON export.

Our connection is created and then followed immediately with our SQL Buffer query string.
The query uses three PostGIS functions. Working your way from the inside out, you will see the
ST_Buffer function taking in the geometry of the school points followed by the 100 m buffer
distance and the number of circle segments that we would like to generate. ST_Transform
then takes the newly created buffer geometry and transforms it into the WGS84 coordinate
system (EPSG: 4326) so that we can display it on GitHub, which only displays WGS84 and the
projected GeoJSON. Lastly, we'll use the ST_asGeoJSON function to export our geometry as
the GeoJSON geometry.

PostGIS does not export the complete GeoJSON syntax, only
the geometry in the form of the GeoJSON geometry. This is
the reason that we need to complete our GeoJSON using the
Python geojson module.

All of this means that we not only perform analysis on the query, but we also specify the
output format and coordinate system all in one go.

Next, we will execute the query and fetch all the returned objects using cur.fetchall() so
that we can later loop through each returned buffer polygon. Our new_geom_collection
list will store each of the new geometries and the feature names. Next, in the for loop
function, we'll use the geojson module function, loads(geom), to input our geometry into
a GeoJSON geometry object. This is followed by the Feature()function that actually creates
our GeoJSON feature. This is then used as the input for the FeatureCollection function
where the final, completed GeoJSON is created.

Lastly, we'll need to write this new GeoJSON file to disk and save it. Hence, we'll use the
new file object where we use the standard Python json.dumps module to export our
FeatureCollection.

We'll do a little clean up to close the cursor object and connection. Bingo! We are now done
and can visualize our final results.

Finding out whether a point is inside a
polygon

A point inside a polygon analysis query is a very common spatial operation. This query can
identify objects located within an area such as a polygon. The area of interest in this example
is a 100 m buffer polygon around bike paths and we would like to locate all schools that are
inside this polygon.

www.allitebooks.com

http://www.allitebooks.org

Working with PostGIS

74

Getting ready
In the previous section, we used the schools table to create a buffer. This time around,
we will use this table as our input points table. The bikeways table that we imported in
Chapter 3, Moving Spatial Data from One Format to Another, will be used as our input lines
to generate a new 100 m buffer polygon. Be sure, however, that you have the two datasets in
your local PostgreSQL database.

How to do it...
1. Now, let's dive into some more code to find schools located within 100 m of the

bikeways in order to find points inside a polygon:
#!/usr/bin/env python
-*- coding: utf-8 -*-

import json
import psycopg2
from geojson import loads, Feature, FeatureCollection

Database Connection Info
db_host = "localhost"
db_user = "pluto"
db_passwd = "stars"
db_database = "py_geoan_cb"
db_port = "5432"

connect to DB
conn = psycopg2.connect(host=db_host, user=db_user,
port=db_port, password=db_passwd, database=db_database)

create a cursor
cur = conn.cursor()

uncomment if needed
cur.execute("Drop table if exists geodata.bikepath_100m_buff;")

query to create a new polygon 100m around the bikepath
new_bike_buff_100m = """ CREATE TABLE
geodata.bikepath_100m_buff
 AS SELECT name,
 ST_Buffer(wkb_geometry, 100) AS geom
 FROM geodata.bikeways; """

Chapter 4

75

run the query
cur.execute(new_bike_buff_100m)

commit query to database
conn.commit()

query to select schools inside the polygon and output
geojson
is_inside_query = """ SELECT s.name AS name,
 ST_AsGeoJSON(ST_Transform(s.wkb_geometry,4326)) AS geom
 FROM geodata.schools AS s,
 geodata.bikepath_100m_buff AS bp
 WHERE ST_WITHIN(s.wkb_geometry, bp.geom); """

execute the query
cur.execute(is_inside_query)

return all the rows, we expect more than one
db_rows = cur.fetchall()

an empty list to hold each feature of our feature
collection
new_geom_collection = []

def export2geojson(query_result):
 """
 loop through each row in result query set and add to my
feature collection
 assign name field to the GeoJSON properties
 :param query_result: pg query set of geometries
 :return: new geojson file
 """

 for row in db_rows:
 name = row[0]
 geom = row[1]
 geoj_geom = loads(geom)
 myfeat = Feature(geometry=geoj_geom,
 properties={'name': name})
 new_geom_collection.append(myfeat)

 # use the geojson module to create the final Feature
 # Collection of features created from for loop above
 my_geojson = FeatureCollection(new_geom_collection)

Working with PostGIS

76

 # define the output folder and GeoJSon file name
 output_geojson_buf =
"../geodata/out_schools_in_100m.geojson"

 # save geojson to a file in our geodata folder
 def write_geojson():
 fo = open(output_geojson_buf, "w")
 fo.write(json.dumps(my_geojson))
 fo.close()

 # run the write function to actually create the GeoJSON
file
 write_geojson()

export2geojson(db_rows)

You can now view your newly created GeoJSON file on a great little site created by Mapbox
at http://www.geojson.io. Simply drag and drop your GeoJSON file from Windows
Explorer in Windows or Nautilus in Ubuntu onto the http://www.geojson.io web page
and, Bob's your uncle, you should see 50 or so schools that are located within 100 m of a
bikeway in Vancouver.

http://www.geojson.io
http://www.geojson.io

Chapter 4

77

How it works...
We will reuse code to make our database connection, so this should be familiar to you at this
point. The new_bike_buff_100m query string contains our query to generate a new 100 m
buffer polygon around all the bikeways. We need to execute this query and commit it to the
database so that we can access this new set of polygons as input to our actual query that will
find schools (points) located inside this new buffer polygon.

The is_inside_query string actually does the hard work for us by selecting selecting the
values from the field name and the geometry from the geom field. The geometry is wrapped up in
two other PostGIS functions to allow us to export our data as GeoJSON in the WGS 84 coordinate
system. This will be the input geometry needed to generate our final new GeoJSON file.

The WHERE clause uses the ST_Within function to see whether a point is inside the polygon
and returns True if the point is within the buffer polygon.

Now, we've created a new function that simply wraps up our export to the GeoJSON code that
was used in the previous, Executing a PostGIS ST_Buffer analysis query and exporting it to
GeoJSON, recipe. This new export2geojson function simply takes one input of our PostGIS
query and outputs a GeoJSON file. To set the name and location of the new output file, simply
replace the path and name within the function.

Finally, all we need to do is call the new function to export the GeoJSON file using the db_rows
variable that contains our list of schools as points located within the 100 m buffer polygon.

There's more...
This example to find all schools located within 100 m of the bike paths could be completed
using another PostGIS function called ST_Dwithin.

The SQL to select all the schools located within 100 m of the bikepaths would look like this:

SELECT * FROM geodata.bikeways as b, geodata.schools as s where ST_
DWithin(b.wkb_geometry, s.wkb_geometry, 100)

Splitting LineStrings at intersections using
ST_Node

Working with road data is usually a tricky business because the validity of the data and data
structure plays a very important role. If you want to do anything useful with your road data,
such as building a routing network, you will need to prepare the data first. The first task
is usually to segmentize your lines, which means splitting all lines at intersections where
LineStrings cross each other, creating a base network road dataset.

Working with PostGIS

78

Be aware that this recipe will split all lines on all intersections
regardless of whether, for example, there is a road-bridge
overpass where no intersection should be created.

Getting ready
Before we get into the details of how to do this, we will use a small section of the OpenStreetMap
(OSM) road data for our example. The OSM data is available in your /ch04/geodata/
folder called vancouver-osm-data.osm. This data was simply downloaded from the www.
openstreetmap.org home page using the Export button located at the top of the page:

The OSM data contains not only roads but all the other points and polygons located within
the extent that I have chosen. The region of interest is again the Burrard Street bridge
in Vancouver.

We are going to need to extract all the roads and import them into our PostGIS table. This
time, let's try using the ogr2ogr command line directly from the console to upload the OSM
streets to our PostGIS database:

ogr2ogr -lco SCHEMA=geodata -nlt LINESTRING -f "PostgreSQL"
PG:"host=localhost port=5432 user=pluto dbname=py_geoan_cb
password=stars" ../geodata/vancouver-osm-data.osm lines -t_srs EPSG:3857

This assumes that your OSM data is in the /ch04/geodata folder and the command is run
while you are located in the /ch04/code folder.

www.openstreetmap.org
www.openstreetmap.org

Chapter 4

79

Now this really long thing means that we connect to our PostGIS database as our output and
input the vancouver-osm-data.osm file. Create a new table called lines and transform
the input OSM projection to EPSG:3857. All data exported from OSM is in EPSG:4326. You
can, of course, leave it in this system and simply remove the -t_srs EPSG:3857 part of the
command line option.

We are now ready to rock and roll with the splitting at intersections. If you like, go ahead and
open the data in QGIS (Quantum GIS). In QGIS, you will see that the road data is not split at
all road intersections as shown in this screenshot:

Here, you can see that McNicoll Avenue is a single LineString crossing over Cypress Street. After
we've completed the recipe, we will see that McNicoll Avenue will be split at this intersection.

How to do it...
1. Running through the Python code is quite straightforward since the hard work is done

in one SQL query. So follow along:
#!/usr/bin/env python
-*- coding: utf-8 -*-

import psycopg2
import json
from geojson import loads, Feature, FeatureCollection

Working with PostGIS

80

Database Connection Info
db_host = "localhost"
db_user = "pluto"
db_passwd = "stars"
db_database = "py_geoan_cb"
db_port = "5432"

connect to DB
conn = psycopg2.connect(host=db_host, user=db_user,
 port=db_port, password=db_passwd, database=db_database)

create a cursor
cur = conn.cursor()

drop table if exists
cur.execute("DROP TABLE IF EXISTS geodata.split_roads;")

split lines at intersections query
split_lines_query = """
 CREATE TABLE geodata.split_roads
 (ST_Node(ST_Collect(wkb_geometry)))).geom AS geom
 FROM geodata.lines;"""

cur.execute(split_lines_query)
conn.commit()

cur.execute("ALTER TABLE geodata.split_roads ADD COLUMN id
serial;")
cur.execute("ALTER TABLE geodata.split_roads ADD CONSTRAINT split_
roads_pkey PRIMARY KEY (id);")

close cursor
cur.close()

close connection
conn.close()

Chapter 4

81

Well, this was quite simple and we can now see that McNicoll Avenue is split at the
intersection with Cypress Street.

How it works...
Looking at the code, we can see that the database connection remains the same and the
only new thing is the query itself that creates the intersection. Here three separate PostGIS
functions are used to obtain our results:

 f The first function, when working our way inside-out in the query, starts with
ST_Collect(wkb_geometry). This simply takes our original geometry column
as input. The simple combining of the geometries is all that is going on here.

 f Next up is the actual splitting of the lines using the ST_Node(geometry),
inputting the new geometry collection and nodding, which splits our LineStrings
at intersections.

 f Finally, we'll use ST_Dump() as a set returning function. This means that it basically
explodes all the LineString geometry collections into individual LineStrings. The end
of the query with .geom specifies that we only want to export the geometry and not
the returned array numbers of the split geometry.

Now, we'll execute and commit the query to the database. The commit is an important part
because, otherwise, the query will be run but it will not actually create the new table that we
are looking to generate. Last but not least, we can close down our cursor and connection.
That is that; we now have split LineStrings.

Working with PostGIS

82

Be aware that the new split LineStrings do NOT contain the street
names and other attributes. To export the names, we would need to do
a join on our data. Such a query to include the attributes on the newly
created LineStrings could look like this:
CREATE TABLE geodata.split_roads_attributes AS SELECT
 r.geom,
 li.name,
 li.highway
FROM
 geodata.lines li,
 geodata.split_roads r
WHERE
 ST_CoveredBy(r.geom, li.wkb_geometry)

Checking the validity of LineStrings
Working with road data has many areas to watch out for and one of these is invalid geometry.
Our source data is OSM and is, therefore, collected by a community of users that are not
trained by GIS professionals, resulting in errors. To execute spatial queries, the data must be
valid or we will have results with errors or no results at all.

PostGIS includes the ST_isValid() function that returns True/False on the basis of
whether a geometry is valid or not. There is also the ST_isValidReason() function that will
output a text description of the geometry error. Finally, the ST_isValidDetail() function
will return if the geometry is valid along with the reason and location of the geometry error.
These three functions all accomplish similar tasks and selecting one depends on what you
want to accomplish.

How to do it...
1. Now, to determine if geodata.lines are valid, we will run another query that will

list all invalid geometries if there are any:
#!/usr/bin/env python
-*- coding: utf-8 -*-

import psycopg2

Database Connection Info
db_host = "localhost"
db_user = "pluto"
db_passwd = "stars"
db_database = "py_geoan_cb"
db_port = "5432"

Chapter 4

83

connect to DB
conn = psycopg2.connect(host=db_host, user=db_user,
 port=db_port, password=db_passwd, database=db_database)

create a cursor
cur = conn.cursor()

the PostGIS buffer query
valid_query = """SELECT
 ogc_fid,
 ST_IsValidDetail(wkb_geometry)
 FROM
 geodata.lines
 WHERE NOT
 ST_IsValid(wkb_geometry);
 """

execute the query
cur.execute(valid_query)

return all the rows, we expect more than one
validity_results = cur.fetchall()

print validity_results

close cursor
cur.close()

close connection
conn.close();

This query should return an empty Python list, which means that we have no invalid
geometries. If there are objects in your list, then you'll know that you have some manual
work to do to correct those geometries. Your best bet is to fire up QGIS and get started with
digitizing tools to clean things up.

Executing a spatial join and assigning point
attributes to a polygon

We'll now get back to some more golf action where we would like to execute a spatial attribute
join. We're given a situation where we have a set of polygons, in this case, these are in the
form of golf greens without any hole number. Our hole number is stored in a point dataset
that is located spatially within the green of each hole. We would like to assign each green its
appropriate hole number based on its location within the polygon.

Working with PostGIS

84

The OSM data from the Pebble Beach Golf Course located in Monterey California is our source
data. This golf course is one the great golf courses on the PGA tour and is well mapped in OSM.

If you are interested in getting golf course data yourself from
OSM, it is recommended that you use the great Overpass API at
http://overpass-turbo.eu/. This site enables you to export
the OSM data as GeoJSON or KML, for example.
To download all the golf-specific OSM data, you will need to correct tags.
To do this, simply copy and paste the following Overpass API query into the
query window located on the left hand side, then click on Download:
/*

This query looks for nodes, ways, and relations
using the given key/value combination.
Choose your region and hit the Run button above!
*/
[out:json][timeout:25];
// gather results
(
 // query part for: "leisure=golf_course"
node["leisure"="golf_course"]({{bbox}});
way["leisure"="golf_course"]({{bbox}});
relation["leisure"="golf_course"]({{bbox}});

node["golf"="pin"]({{bbox}});
way["golf"="green"]({{bbox}});
way["golf"="fairway"]({{bbox}});
way["golf"="tee"]({{bbox}});
way["golf"="fairway"]({{bbox}});
way["golf"="bunker"]({{bbox}});
way["golf"="rough"]({{bbox}});
way["golf"="water_hazard"]({{bbox}});
way["golf"="lateral_water_hazard"]({{bbox}});
way["golf"="out_of_bounds"]({{bbox}});
way["golf"="clubhouse"]({{bbox}});
way["golf"="ground_under_repair"]({{bbox}});

);
// print results
out body;
>;
out skel qt;

http://overpass-turbo.eu/

Chapter 4

85

Getting ready
Importing our data into PostGIS will be the first step to execute our spatial query. This time
around, we will use the shp2pgsql tool to import our data to change things a little since
there are so many ways to get data into PostGIS. The shp2pgsql tool is definitely the most
well-tested and common way to import Shapefiles into PostGIS. Let's get going and perform
this import once again, executing this tool directly from the command line.

For Windows users, this should work, but check that the paths are correct or that
shp2pgsql.exe is in your system path variable. By doing this, you save having to type the
full path to execute.

I assume that you are running the following command when you are
in the /ch04/code folder:
shp2pgsql -s 4326 ..\geodata\shp\pebble-beach-ply-
greens.shp geodata.pebble_beach_greens | psql -h
localhost -d py_geoan_cb -p 5432 -U pluto

On a Linux machine your command is basically the same without the long path, assuming
that your system links were all set up when you installed PostGIS in Chapter 1, Setting Up
Your Geospatial Python Environment.

Next up, we need to import our points with the attributes, so let's get to it as follows:

shp2pgsql -s 4326 ..\geodata\shp\pebble-beach-pts-hole-num-green.shp
geodata.pebble_beach_hole_num | psql -h localhost -d py_geoan_cb -p 5432
-U postgres

That's that! We now have our points and polygons available in the PostGIS Schema geodata
setting, which sets the stage for our spatial join.

How to do it...
1. The core work is done once again inside our PostGIS query string, assigning the

attributes to the polygons, so follow along:
#!/usr/bin/env python
-*- coding: utf-8 -*-

import psycopg2

Database Connection Info
db_host = "localhost"
db_user = "pluto"
db_passwd = "stars"
db_database = "py_geoan_cb"

Working with PostGIS

86

db_port = "5432"

connect to DB
conn = psycopg2.connect(host=db_host, user=db_user, port=db_port,
password=db_passwd, database=db_database)

create a cursor
cur = conn.cursor()

assign polygon attributes from points
spatial_join = """ UPDATE geodata.pebble_beach_greens AS g
 SET
 name = h.name
 FROM
 geodata.pebble_beach_hole_num AS h
 WHERE
 ST_Contains(g.geom, h.geom);
 """
cur.execute(spatial_join)
conn.commit()

close cursor
cur.close()

close connection
conn.close()

How it works...
The query is straightforward enough; we'll use the UPDATE standard SQL command to update
the values in the name field of our table, geodata.pebble_beach_greens, with the hole
numbers located in the pebble_beach_hole_num table.

We follow up by setting the name value from our geodata.pebble_beach_hole_num
table, where the field name also exists and holds our needed attribute values.

Our WHERE clause uses the PostGIS query, ST_Contains, to return True if the point lies
inside our greens, and if so, it will update our values.

This was easy and demonstrates the great power of spatial relationships.

Chapter 4

87

Conducting a complex spatial analysis query
using ST_Distance()

Now let's check for a more complex query in PostGIS to get our spatial juices flowing. We
want to locate all the golf courses that are either inside or within 5 km of a national park or
protected area. Plus, the golf course must be within 2 km of a city. The city data is derived
from the tags in OSM where the tag place = city.

The national parks and protected areas for this query belong to the Government of Canada.
Our golf courses and datasets of cities are derived from an OSM located in British Columbia
and Alberta.

Getting ready
We need the data of all the national parks and protected areas in Canada, so go and make
sure they're located in the /ch04/geodata/ folder.

The original data is located at http://ftp2.cits.rncan.gc.ca/pub/geott/
frameworkdata/protected_areas/1M_PROTECTED_AREAS.shp.zip for download if
you do not already have the /geodata folder downloaded from GitHub.

The other datasets needed are the cities and golf courses that can be obtained from OSM.
These two files are the GeoJSON files located in the /ch04/geodata/ folder and are called
osm-golf-courses-bc-alberta.geojson and osm-place-city-bc-alberta.
geojson.

We will now import the downloaded data into our database:

Ensure that you are currently in the /ch04/code folder when
you run the following commands; otherwise, adjust the paths
as necessary.

1. Starting with the OSM golf courses from British Columbia and Alberta, run this
command-line call to ogr2ogr. Windows users need to note that they can either
switch the slashes to backslashes or include the full path to GeoJSON:
ogr2ogr -f PostgreSQL PG:"host=localhost user=postgres port=5432
dbname=py_geoan_cb password=air" ../geodata/geojson/osm-golf-
courses-bc-alberta.geojson -nln geodata.golf_courses_bc_alberta

2. Now, we'll run the same command again to import the cities:
ogr2ogr -f PostgreSQL PG:"host=localhost user=postgres port=5432
dbname=py_geoan_cb password=air" ../geodata/geojson/osm-place-
city-bc-alberta.geojson -nln geodata.cities_bc_alberta

http://ftp2.cits.rncan.gc.ca/pub/geott/frameworkdata/protected_areas/1M_PROTECTED_AREAS.shp.zip
http://ftp2.cits.rncan.gc.ca/pub/geott/frameworkdata/protected_areas/1M_PROTECTED_AREAS.shp.zip

Working with PostGIS

88

3. Last but not least, we'll need to import the protected areas and national parks of
Canada using the shp2pgsql command line. Here, note that we need to use the
-W latin1 option to specify the required encoding. The data you acquire is for all of
Canada and not just BC and Alberta:
shp2pgsql -s 4326 -W latin1 ../geodata/shp/protarea.shp geodata.
parks_pa_canada | psql -h localhost -d py_geoan_cb -p 5432 -U
pluto

Now we have all three tables in our database and we can execute our analysis script.

How to do it...
1. Let's see what the code looks like:

#!/usr/bin/env python
-*- coding: utf-8 -*-

import psycopg2
import json
import pprint
from geojson import loads, Feature, FeatureCollection

Database Connection Info
db_host = "localhost"
db_user = "pluto"
db_passwd = "stars"
db_database = "py_geoan_cb"
db_port = "5432"

connect to DB
conn = psycopg2.connect(host=db_host, user=db_user, port=db_port,
password=db_passwd, database=db_database)

create a cursor
cur = conn.cursor()

complex_query = """
 SELECT
 ST_AsGeoJSON(st_centroid(g.wkb_geometry)) as geom,
c.name AS city, g.name AS golfclub, p.name_en AS park,
 ST_Distance(geography(c.wkb_geometry),
geography(g.wkb_geometry)) AS distance,
 ST_Distance(geography(p.geom),
geography(g.wkb_geometry)) AS distance
 FROM

Chapter 4

89

 geodata.parks_pa_canada AS p,
 geodata.cities_bc_alberta AS c
 JOIN
 geodata.golf_courses_bc_alberta AS g
 ON
 ST_DWithin(geography(c.wkb_geometry),
geography(g.wkb_geometry),4000)
 WHERE
 ST_DWithin(geography(p.geom),
geography(g.wkb_geometry),5000)
 """
WHERE c.population is not null and e.name is not null
execute the query
cur.execute(complex_query)

return all the rows, we expect more than one
validity_results = cur.fetchall()

an empty list to hold each feature of our feature collection
new_geom_collection = []

loop through each row in result query set and add to my
feature collection
assign name field to the GeoJSON properties
for each_result in validity_results:
 geom = each_result[0]
 city_name = each_result[1]
 course_name = each_result[2]
 park_name = each_result[3]
 dist_city_to_golf = each_result[4]
 dist_park_to_golf = each_result[5]
 geoj_geom = loads(geom)
 myfeat = Feature(geometry=geoj_geom,
properties={'city': city_name, 'golf_course': course_name,
 'park_name': park_name, 'dist_to
city': dist_city_to_golf,
 'dist_to_park':
dist_park_to_golf})
 new_geom_collection.append(myfeat) # use the geojson
module to create the final Feature Collection of features
created from for loop above

my_geojson = FeatureCollection(new_geom_collection)

Working with PostGIS

90

pprint.pprint(my_geojson)

define the output folder and GeoJSon file name
output_geojson_buf =
"../geodata/golfcourses_analysis.geojson"

save geojson to a file in our geodata folder
def write_geojson():
 fo = open(output_geojson_buf, "w")
 fo.write(json.dumps(my_geojson))
 fo.close()

run the write function to actually create the GeoJSON
file
write_geojson()

close cursor
cur.close()

close connection
conn.close()

How it works...
Let's go step by step through the SQL query:

 f We'll start with defining what columns we want our query to return and from which
tables. Here, we'll define that we want the golf club geometry as a point, city name,
golf club name, park name, distance between a city and golf club, and finally,
distance between a park and golf club. The geometry that we return is of the golf
course as a point, hence ST_Centroid, which returns the middle point of the golf
course and then outputs this as the GeoJSON geometry.

 f The FROM clause sets our parks and tables of cities and assigns them an alias
name with SQL AS. We then JOIN the golf courses based on the distance using
ST_DWithin() so that we can locate distances that are less than 4 km between a
city and golf course.

 f The WHERE clause, ST_DWithin(), enforces the last requirement that the distance
between a park and golf course cannot be more than 5 km.

Chapter 4

91

The SQL does all of our heavy lifting to return the correct spatial analysis results. The next step
is to use Python to output our results as valid GeoJSON in order to view our newly found golf
courses. Each attribute property is then identified by its array location in the query and assigned
a name for the GeoJSON output. In the end, we'll output a .geojson file that you can visualize
directly in GitHub at https://github.com/mdiener21/python-geospatial-analysis-
cookbook/blob/master/ch04/geodata/golfcourses_analysis.geojson.

https://github.com/mdiener21/python-geospatial-analysis-cookbook/blob/master/ch04/geodata/golfcourses_analysis.geojson
https://github.com/mdiener21/python-geospatial-analysis-cookbook/blob/master/ch04/geodata/golfcourses_analysis.geojson

93

5
Vector Analysis

In this chapter, we will cover the following topics:

 f Clipping LineStrings to an area of interest

 f Splitting polygons with lines

 f Finding the location of a point on a line using linear referencing

 f Snapping a point to the nearest line

 f Calculating 3D ground distance and total elevation gain

Introduction
Vector data analysis is used in many, many application areas, starting from measuring the
distance from point A to point B all the way through to complex routing algorithms. The first
GIS systems were built on vector data and vector analysis, and then later expanded into the
raster domain. In this chapter, we will start with simple vector operations, then work our way
into a more complex model, chaining the various vector methods together to deliver new data
that answers our spatial questions.

Vector Analysis

94

This process of data analysis is broken down into a couple of steps starting with an input
dataset, performing a spatial operation on the data such as a buffer analysis, and, finally,
we'll have some output in the form of a new dataset. The following diagram shows the flow of
analysis in the simplest model form:

Converting simple questions into spatial operation methods and models takes experience and
is not a simple task. For example, you may come across a simple task such as, "Identify and
locate how many residential land parcels were affected by the flood." This would translate into
the following:

 f Firstly, an input dataset in the form of a flood polygon that defines the affected
floods areas

 f Secondly, the input dataset represents cadaster polygons

 f Our spatial operation is an intersection function

 f All of this results in a new polygon dataset

This would result in a spatial model that could look like this:

To tackle more complex questions, spatial modeling simply starts chaining more inputs along
with more operations that output new data feeding into other new operations. This then leads
us to a final set or sets of data.

Chapter 5

95

Clipping LineStrings to an area of interest
A project involving spatial data is typically geographically limited to within a specified boundary
area, the so-called project area. The input data can come from multiple sources and usually
extends outside the project area. Removing this excess data is sometimes critical to speed up
spatial processes, and at the same time, it reduces data volume. Reductions in data volumes
can also result in secondary speed-ups, for example, less time to transfer or copy the data.

In this recipe, we will take a boundary polygon represented by a circle Shapefile, and then
remove all excess LineStrings that are outside this circle.

This process of clipping will remove all lines outside the clip area—that is, our project area
of interest.

A standard function called clip performs an intersection
spatial operation. This is slightly different from a normal
intersection function. The clip will NOT or should not retain the
attributes attached to the clip area. Clipping involves two input
datasets; the first defines the boundary that we want to clip our
data to, and the second defines the data that will be clipped.
Both sets contain attributes and these attributes of the clipping
boundary are usually not included in a clip operation.
The new clipped data will only have the attributes from the
original input dataset, excluding all the attributes from the
clip polygon.
An intersection function will find geometries that overlap
and output only lines within a circle. To demonstrate this
concept better, the following graphical representation shows
what we are going to achieve.

Vector Analysis

96

To demonstrate a simple clip operation, we will take a single LineString and polygon defining a
clip boundary and perform a quick intersect. The result will look like what's represented in the
following screenshot and can be viewed as a live web map in your browser. Refer to the HTML
file located at /code/html/ch05-01-clipping.html to check out the result.

When running the simple intersection function, the line is cut into two new LineStrings as
in the preceding screenshot.

Our second result will use two Shapefiles that represent our inputs. Our real data from
OpenStreetMapconverted is converted to a Shapefile format for our input and output.
The circle defines our polygon area of interest, while the road LineStrings are what we want to
clip. Our result will be in the form of a new Shapefile that only shows the roads that are inside
the circle.

Chapter 5

97

Getting ready
This recipe is in two parts. The first part is a simple clip demonstration using two GeoJSON
files consisting of a single LineString and polygon. The second part uses data from OSM and
can be found in your /ch05/geodata folder containing the circle polygon that represents
our area of interest named clip_area_3857.shp. The roads_london_3857.shp file
represents our input Shapefile of lines that we will clip to the circle polygon.

To visualize the first part, we use the leaflet JavaScript library in a very basic HTML page.
Our second resulting Shapefile can then be opened with QGIS to see the resulting clipped
set of roads.

How to do it...
We have two sets of code examples ahead of us. The first is a simple self-made set of
GeoJSON inputs that are clipped and outputted as a GeoJSON representation. This is then
visualized using a web page with the help of Leaflet JS.

The second code example takes in two Shapefiles and returns a clipped Shapefile that you
can view using QGIS. Both examples use the same method and demonstrate how a clipping
function works.

1. Now, let's take a look at the first code example:
#!/usr/bin/env python
-*- coding: utf-8 -*-

import os
import json
from shapely.geometry import asShape

define output GeoJSON file
res_line_intersect = os.path.realpath("../geodata/
ch05-01-geojson.js")

input GeoJSON features
simple_line = {"type":"FeatureCollection","features":[{"type":"Fea
ture","
properties":{"name":"line to
clip"},"geometry":{"type":"LineString","coordinates":
[[5.767822265625,50.14874640066278],[11.901806640625,
50.13466432216696],[4.493408203125,48.821332549646634]]}}]}

Vector Analysis

98

clip_boundary =
{"type":"FeatureCollection","features":[{"type":"Feature",
"properties":{"name":"Clipping boundary circle"},
"geometry":{"type":"Polygon","coordinates":
[[[6.943359374999999,50.45750402042058],[7.734374999999999,
51.12421275782688],[8.96484375,51.316880504045876],
[10.1513671875,51.34433866059924],[10.8544921875,
51.04139389812637],[11.25,50.56928286558243],
[11.25,49.89463439573421],[10.810546875,
49.296471602658094],[9.6240234375,49.03786794532644],
[8.1298828125,49.06666839558117],[7.5146484375,
49.38237278700955],[6.8994140625,49.95121990866206],
[6.943359374999999,50.45750402042058]]]}}]}

create shapely geometry from FeatureCollection
access only the geomety part of GeoJSON
shape_line =
asShape(simple_line['features'][0]['geometry'])
shape_circle =
asShape(clip_boundary['features'][0]['geometry'])

run the intersection
shape_intersect = shape_line.intersection(shape_circle)

define output GeoJSON dictionary
out_geojson = dict(type='FeatureCollection', features=[])

generate GeoJSON features
for (index_num, line) in enumerate(shape_intersect):
 feature = dict(type='Feature',
properties=dict(id=index_num))
 feature['geometry'] = line.__geo_interface__
 out_geojson['features'].append(feature)

write out GeoJSON to JavaScript file
this file is read in our HTML and
displayed as GeoJSON on the leaflet map
called /html/ch05-01-clipping.html
with open(res_line_intersect, 'w') as js_file:
 js_file.write('var big_circle = {0}'.format(json.dumps(clip_
boundary)))
 js_file.write("\n")
 js_file.write('var big_linestring =
{0}'.format(json.dumps(simple_line)))
 js_file.write("\n")
 js_file.write('var simple_intersect =
{0}'.format(json.dumps(out_geojson)))

Chapter 5

99

This ends our first code demonstration using a simple self-made GeoJSON LineString
that's clipped to a simple polygon. This quick recipe is found in the /code/ch05-
01-1_clipping_simple.py file. After you run this file, you can go ahead and
open the /code/html/ch05-01-clipping.html file in your local web browser
to see the results.

It works by defining an output JavaScript file that is used to visualize our clipped
results. This is followed by our input clipping areas and the LineString to be clipped as
GeoJSON. We'll convert our GeoJSON to shapely geometry objects with the ashape()
function so that we can run the intersection. The resulting intersection geometry is
then converted from a shapely geometry into a GeoJSON file that is written to our
output JavaScript file, which is used inside the .html file for visualization with Leaflet.

2. To begin our second code example located in the /code/ch05-01-2_clipping.
py file, we will input two Shapefiles, create a new set of roads that are clipped to our
circle polygon, and export them as Shapefiles:
#!/usr/bin/env python
-*- coding: utf-8 -*-

import shapefile
import geojson
import os
used to import dictionary data to shapely
from shapely.geometry import asShape
from shapely.geometry import mapping

open roads Shapefile that we want to clip with pyshp
roads_london =
shapefile.Reader(r"../geodata/roads_london_3857.shp")

open circle polygon with pyshp
clip_area =
shapefile.Reader(r"../geodata/clip_area_3857.shp")

access the geometry of the clip area circle
clip_feature = clip_area.shape()

convert pyshp object to shapely
clip_shply = asShape(clip_feature)

create a list of all roads features and attributes
roads_features = roads_london.shapeRecords()

variables to hold new geometry
roads_clip_list = []

Vector Analysis

100

roads_shply = []

run through each geometry, convert to shapely geom and
intersect
for feature in roads_features:
 roads_london_shply =
asShape(feature.shape.__geo_interface__)
 roads_shply.append(roads_london_shply)
 roads_intersect = roads_london_shply.intersection(clip_shply)

 # only export linestrings, shapely also created points
 if roads_intersect.geom_type == "LineString":
 roads_clip_list.append(roads_intersect)

open writer to write our new shapefile too
pyshp_writer = shapefile.Writer()

create new field
pyshp_writer.field("name")

convert our shapely geometry back to pyshp, record for
record
for feature in roads_clip_list:
 geojson = mapping(feature)

 # create empty pyshp shape
 record = shapefile._Shape()

 # shapeType 3 is linestring
 record.shapeType = 3
 record.points = geojson["coordinates"]
 record.parts = [0]

 pyshp_writer._shapes.append(record)
 # add a list of attributes to go along with the shape
 pyshp_writer.record(["empty record"])

save to disk
pyshp_writer.save(r"../geodata/roads_clipped2.shp")

Chapter 5

101

How it works...
For this recipe, we'll use Shapely for our spatial operation and pyshp to read in and out of
our Shapefiles.

We'll begin with the import of the road LineStrings and our circle polygon for the demo project
area. We'll use the pyshp module to handle the Shapefile input/output. Pyshp allows us to
access the Shapefile bounds, feature geometry, feature attributes, and more.

Our first task is to convert the pyshp geometry object into something that Shapely can
understand. We'll use the shape() function to get the pyshp geometry followed by the
Shapely asShape() function. Next, we'll want all the records of roads so that we can use
shapeRecords() to return these records for us.

Now, we'll get ourselves ready to perform the actual clipping by setting up two list variables to
store our new data. The for loop runs over each record, that is, each line in the road dataset,
converts it to a shapely geometry object using geo_interface, and is built in the pyshp
function. This is then followed by the actual intersection shapely function that only returns
geometry that intersects our circle. Finally, we'll check to see if the intersection geometry is a
LineString. If it is, we'll append it to our output list.

During an intersection operation, Shapely will return points and
LineStrings in a geometry collection. The reason for this is that,
if two LineStrings touch at the ends, for example, or overlap
each other, it will generate a point intersection location plus any
overlapping segments.

At last, we can write out our new dataset to a new Shapefile. Using the pyshp writer()
function, we create a new object and give it one single field called name. Looping through
each feature, we can create a GeoJSON object using the shapely mapping function and an
empty pyhsp record that we will add to it in a moment. We want to add the point coordinates
from our GeoJSON and append them together.

Exiting the loop, we'll save our new Shapefile roads_clipped.shp to disk.

Splitting polygons with lines
Typically, in GIS, we work with data that influences other data in some form due to their inherit
spatial relationship. This means that we need to work with one dataset to edit, update, and
even delete another dataset. A typical example of this is an administrative boundary, which is
a polygon that you cannot see on a physical surface but that influences feature information it
crosses such as a lake. If we have a lake polygon and an administrative boundary, we might
want to know how many square meters of lake belongs to each administrative boundary.

Vector Analysis

102

Another example could be a forest polygon that contains one species of trees that crosses a
river. We might want to know the area on either side of the river. In the first scenario, we need
to transform our administrative boundaries into LineStrings and then perform the cut.

To see what this looks like, take a look at this spoiler on how the results will look up front since
we all like a good visual.

Getting ready
For this recipe, we will once again use our GeoJSON LineString and polygon from the previous
recipe. These homemade geometries will cut up our polygon into three new polygons. Be sure
to fire up your virtual environment with the workon pygeoan_cb command.

How to do it...
1. This code example is located at /code/ch05-02_split_poly_with_line.py

as follows:
#!/usr/bin/env python
-*- coding: utf-8 -*-
from shapely.geometry import asShape
from shapely.ops import polygonize
import json

Chapter 5

103

import os

define output GeoJSON file
output_result = os.path.realpath("../geodata/ch05-02-geojson.js")

input GeoJSON features
line_geojs =
{"type":"FeatureCollection","features":[{"type":"Feature",
"properties":{"name":"line to clip"},
"geometry":{"type":"LineString","coordinates":
[[5.767822265625,50.14874640066278],
[11.901806640625,50.13466432216696],
[4.493408203125,48.821332549646634]]}}]}
poly_geojs =
{"type":"FeatureCollection","features":
[{"type":"Feature","properties":{"name":"Clipping boundary
circle"},"geometry":{"type":"Polygon","coordinates":[[[6.94
3359374999999,50.45750402042058],[7.734374999999999,
51.12421275782688],[8.96484375,51.316880504045876],
[10.1513671875,51.34433866059924],[10.8544921875,
51.04139389812637],[11.25,50.56928286558243],
[11.25,49.89463439573421],[10.810546875,
49.296471602658094],[9.6240234375,49.03786794532644],
[8.1298828125,49.06666839558117],[7.5146484375,
49.38237278700955],[6.8994140625,49.95121990866206],
[6.943359374999999,50.45750402042058]]]}}]}

create shapely geometry from FeatureCollection
access only the geomety part of GeoJSON
cutting_line = asShape(line_geojs['features'][0]['geometry'])
poly_to_split = asShape(poly_geojs['features'][0]['geometry'])

convert circle polygon to linestring of circle boundary
bndry_as_line = poly_to_split.boundary

combine new boundary lines with the input set of lines
result_union_lines = bndry_as_line.union(cutting_line)

re-create polygons from unioned lines
new_polygons = polygonize(result_union_lines)

stores the final split up polygons
new_cut_ply = []

identify which new polygon we want to keep

Vector Analysis

104

for poly in new_polygons:
 # check if new poly is inside original otherwise ignore
 it
 if poly.centroid.within(poly_to_split):
 print ("creating polgon")
 # add only polygons that overlap original for
 export
 new_cut_ply.append(poly)
 else:
 print ("This polygon is outside of the input
features")

define output GeoJSON dictionary
out_geojson = dict(type='FeatureCollection', features=[])

generate GeoJSON features
for (index_num, geom) in enumerate(new_cut_ply):
 feature = dict(type='Feature',
properties=dict(id=index_num))
 feature['geometry'] = geom.__geo_interface__
 out_geojson['features'].append(feature)

write out GeoJSON to JavaScript file
this file is read in our HTML and
displayed as GeoJSON on the leaflet map
called /html/ch05-02.html
with open(output_result, 'w') as js_file:
 js_file.write('var cut_poly_result =
{0}'.format(json.dumps(out_geojson)))

How it works...
Now the actual splitting of the polygons takes place in our /ch05/code/ch05-02_split_
poly_with_line.py script.

The basic methodology to split a polygon based on a LineString follows this simple algorithm.
First, we'll take our input polygon and convert the boundaries of this polygon into a new
LineString dataset. Next up, we'll combine the LineString we want to use to cut the newly
generated polygon LineStrings of boundaries. Finally, we use the polygonize method to
rebuild polygons based on the new union set of LineStrings.

This rebuilding of polygons results in extra polygons that are created outside the original
polygon. To identify these polygons, we'll use a simple trick. We can simply generate a
centroid point inside each newly created polygon and then check to see if this point is inside
the original polygon using the within predicate. If the point is not inside the original polygon,
the predicate returns False and we do not need to include this polygon in our output.

Chapter 5

105

Finding the location of a point on a line
using linear referencing

The use of linear referencing is widespread, ranging from storing bus routes to oil and gas
pipelines. Our ability to locate any position along a line based on a distance value from the
start of the line is done using the interpolation methodology. We want to interpolate a point
location at any position along a line. To determine the position, we'll use simple mathematics
to calculate the position along a line based on the distance from the starting coordinate.

For our calculation, we'll measure the length of the line and find a coordinate located at a
specified length from the start of the line. However, the question of where the start of the line
is will soon arise. The starting point of the line is the first coordinate in the LineString's array of
vertexes that make up the LineString because a LineString is nothing more than a collection
of points chained together.

This will lead nicely to our next recipe, which is a little more complex.

How to do it...
1. This is our shortest code snippet; check it out:

#!/usr/bin/env python
-*- coding: utf-8 -*-
from shapely.geometry import asShape
import json
import os
from pyproj import Proj, transform

define the pyproj CRS
our output CRS
wgs84 = Proj("+init=EPSG:4326")
output CRS
pseudo_mercator = Proj("+init=EPSG:3857")

def transform_point(in_point, in_crs, out_crs):
 """
 export a Shapely geom to GeoJSON and
 transform to a new coordinate system with pyproj
 :param in_point: shapely geometry as point
 :param in_crs: pyproj crs definition
 :param out_crs: pyproj output crs definition
 :return: GeoJSON transformed to out_crs
 """

Vector Analysis

106

 geojs_geom = in_point.__geo_interface__

 x1 = geojs_geom['coordinates'][0]
 y1 = geojs_geom['coordinates'][1]

 # transform the coordinate
 x, y = transform(in_crs, out_crs, x1, y1)

 # create output new point
 new_point = dict(type='Feature', properties=dict(id=1))
 new_point['geometry'] = geojs_geom
 new_coord = (x, y)
 # add newly transformed coordinate
 new_point['geometry']['coordinates'] = new_coord

 return new_point

def transform_linestring(orig_geojs, in_crs, out_crs):
 """
 transform a GeoJSON linestring to
 a new coordinate system
 :param orig_geojs: input GeoJSON
 :param in_crs: original input crs
 :param out_crs: destination crs
 :return: a new GeoJSON
 """
 line_wgs84 = orig_geojs
 wgs84_coords = []
 # transfrom each coordinate
 for x, y in orig_geojs['geometry']['coordinates']:
 x1, y1 = transform(in_crs, out_crs, x, y)
 line_wgs84['geometry']['coordinates'] = x1, y1
 wgs84_coords.append([x1, y1])

 # create new GeoJSON
 new_wgs_geojs = dict(type='Feature', properties={})
 new_wgs_geojs['geometry'] = dict(type='LineString')
 new_wgs_geojs['geometry']['coordinates'] = wgs84_coords

 return new_wgs_geojs

define output GeoJSON file

Chapter 5

107

output_result = os.path.realpath("../geodata/
ch05-03-geojson.js")

line_geojs = {"type": "Feature", "properties": {},
"geometry": {"type": "LineString", "coordinates":
[[-13643703.800790818,5694252.85913249],
[-13717083.34794459,6325316.964654908]]}}

create shapely geometry from FeatureCollection
shply_line = asShape(line_geojs['geometry'])

get the coordinates of each vertex in our line
line_original = list(shply_line.coords)
print line_original

showing how to reverse a linestring
line_reversed = list(shply_line.coords)[::-1]
print line_reversed

example of the same reversing function on a string for
example
hello = 'hello world'
reverse_hello = hello[::-1]
print reverse_hello

locating the point on a line based on distance from line
start
input in meters = to 360 Km from line start
point_on_line = shply_line.interpolate(360000)

transform input linestring and new point
to wgs84 for visualization on web map
wgs_line = transform_linestring(line_geojs,
pseudo_mercator, wgs84)
wgs_point = transform_point(point_on_line, pseudo_mercator,
wgs84)

write to disk the results
with open(output_result, 'w') as js_file:
 js_file.write('var point_on_line =
{0}'.format(json.dumps(wgs_point)))
 js_file.write('\n')
 js_file.write('var in_linestring =
{0}'.format(json.dumps(wgs_line)))

Vector Analysis

108

After executing the /code/ch05-03_point_on_line.py file, you should see the
following screenshot when you open the /code/html/ch05-03.html file in your
web browser:

If you would like to reverse the LineString starting and ending points, you can use the
list(shply_line.coords)[::-1] code to reverse the coordinate order as shown
in the preceding code.

How it works...
It all boils down to executing one single line of code to locate a point on a line specified at a
certain distance. The shapely interpolate function does this for us. All you need is the shapely
LineString geometry and a distance value. The distance value is the distance from the 0,0
start coordinate of the LineString.

Be careful in case the LineString direction is not the correct form in which you want to measure
it. This would mean that you need to switch the LineString direction. Take a look at the line_
reversed variable that holds the original LineString with a reversed order. To do the reverse,
we'll use a simple python string operation, [::-1], to reverse our LineString list.

You can see this in action with our print statement reversing the LineString order on screen
as follows:

[(-13643703.800790818, 5694252.85913249), (-13717083.34794459,
6325316.964654908)]

[(-13717083.34794459, 6325316.964654908), (-13643703.800790818,
5694252.85913249)]

Chapter 5

109

See also
If you are interested in more information regarding linear referencing, ESRI has a great
reference of use cases and examples at http://resources.arcgis.com/en/help/ma
in/10.1/0039/003900000001000000.htm and http://en.wikipedia.org/wiki/
Linear_referencin.

Snapping a point to the nearest line
Building on our newly gained wisdom from the last recipe, we will now attack another common
spatial problem. This super common spatial task is for all the GPS junkies who want their GPS
coordinates to snap to an existing road. Imagine that you have some GPS tracks and you want
to have these coordinates snap to your base road dataset. To accomplish such a task, we
need to snap a point (GPS coordinates) to a line (roads).

The geos library is what Shapely is built on and can handle this problem with ease. We will
combine the use of the shapely.interpolate and shapely.project functions to snap
our point to the true nearest point on the line using linear referencing.

As you can see in the following diagram, our input point is located on the sun icon. The green
line is what we want to snap our point to at the nearest location. The gray icon with a point on
it is our result that represents the nearest point on the line from our original x position.

http://resources.arcgis.com/en/help/main/10.1/0039/003900000001000000.htm
http://resources.arcgis.com/en/help/main/10.1/0039/003900000001000000.htm
http://en.wikipedia.org/wiki/Linear_referencin
http://en.wikipedia.org/wiki/Linear_referencin

Vector Analysis

110

How to do it...
1. Shapely is well suited for snapping a point to the nearest line, so let's get started:

#!/usr/bin/env python
-*- coding: utf-8 -*-

from shapely.geometry import asShape
import json
import os
from pyproj import Proj, transform

define the pyproj CRS
our output CRS
wgs84 = Proj("+init=EPSG:4326")
output CRS
pseudo_mercator = Proj("+init=EPSG:3857")

def transform_point(in_point, in_crs, out_crs):
 """
 export a Shapely geom to GeoJSON Feature and
 transform to a new coordinate system with pyproj
 :param in_point: shapely geometry as point
 :param in_crs: pyproj crs definition
 :param out_crs: pyproj output crs definition
 :return: GeoJSON transformed to out_crs
 """
 geojs_geom = in_point.__geo_interface__

 x1 = geojs_geom['coordinates'][0]
 y1 = geojs_geom['coordinates'][1]

 # transform the coordinate
 x, y = transform(in_crs, out_crs, x1, y1)

 # create output new point
 out_pt = dict(type='Feature', properties=dict(id=1))
 out_pt['geometry'] = geojs_geom
 new_coord = (x, y)
 # add newly transformed coordinate
 out_pt['geometry']['coordinates'] = new_coord

 return out_pt

Chapter 5

111

def transform_geom(orig_geojs, in_crs, out_crs):
 """
 transform a GeoJSON linestring or Point to
 a new coordinate system
 :param orig_geojs: input GeoJSON
 :param in_crs: original input crs
 :param out_crs: destination crs
 :return: a new GeoJSON
 """

 wgs84_coords = []
 # transfrom each coordinate
 if orig_geojs['geometry']['type'] == "LineString":
 for x, y in orig_geojs['geometry']['coordinates']:
 x1, y1 = transform(in_crs, out_crs, x, y)
 orig_geojs['geometry']['coordinates'] = x1, y1
 wgs84_coords.append([x1, y1])
 # create new GeoJSON
 new_wgs_geojs = dict(type='Feature', properties={})
 new_wgs_geojs['geometry'] = dict(type='LineString')
 new_wgs_geojs['geometry']['coordinates'] =
wgs84_coords

 return new_wgs_geojs

 elif orig_geojs['geometry']['type'] == "Point":

 x = orig_geojs['geometry']['coordinates'][0]
 y = orig_geojs['geometry']['coordinates'][1]
 x1, y1 = transform(in_crs, out_crs, x, y)
 orig_geojs['geometry']['coordinates'] = x1, y1
 coord = x1, y1
 wgs84_coords.append(coord)

 new_wgs_geojs = dict(type='Feature', properties={})
 new_wgs_geojs['geometry'] = dict(type='Point')
 new_wgs_geojs['geometry']['coordinates'] =
wgs84_coords

 return new_wgs_geojs
 else:
 print("sorry this geometry type is not supported")

Vector Analysis

112

define output GeoJSON file
output_result = os.path.realpath("../geodata/ch05-04-
geojson.js")

line =
{"type":"Feature","properties":{},"geometry":{"type":
"LineString","coordinates":
[[-49.21875,19.145168196205297],
[-38.49609375,32.24997445586331],
[-27.0703125,22.105998799750576]]}}
point =
{"type":"Feature","properties":{},"geometry":{"type":
"Point","coordinates":[-33.57421875,32.54681317351514]}}

new_line = transform_geom(line, wgs84, pseudo_mercator)
new_point = transform_geom(point, wgs84, pseudo_mercator)

shply_line = asShape(new_line['geometry'])
shply_point = asShape(new_point['geometry'])

perform interpolation and project point to line
pt_interpolate = shply_line.interpolate(shply_line.project(shply_
point))

print coordinates and distance to console
print ("origin point coordinate")
print (point)

print ("interpolted point location")
print (pt_interpolate)

print "distance from origin to interploate point"
print (shply_point.distance(pt_interpolate))

convert new point to wgs84 GeoJSON
snapped_pt = transform_point(pt_interpolate,
pseudo_mercator, wgs84)

our original line and point are transformed
so here they are again in original coords
to plot on our map

Chapter 5

113

line_orig =
{"type":"Feature","properties":{},"geometry":{"type":
"LineString","coordinates":
[[-49.21875,19.145168196205297],
[-38.49609375,32.24997445586331],[-
27.0703125,22.105998799750576]]}}
point_orig =
{"type":"Feature","properties":{},"geometry":{"type":
"Point","coordinates":[-33.57421875,32.54681317351514]}}

write to disk the results
with open(output_result, 'w') as js_file:
 js_file.write('var input_pt =
{0}'.format(json.dumps(snapped_pt)))
 js_file.write('\n')
 js_file.write('var orig_pt =
{0}'.format(json.dumps(point_orig)))
 js_file.write('\n')
 js_file.write('var line =
{0}'.format(json.dumps(line_orig)))

How it works...
We'll use a tried and tested methodology called linear referencing to do the work. Let's kick it
off with the imports needed to do this, including shapely.geometry asShape, json, and
pyproj' Pyproj is used to quickly transform our coordinates to and from EPSG: 4326 and EPSG
3857. Shapely works on planar coordinates and cannot work directly with lat/lon values.

Extending our functions from the last recipe, we have the transform_point() function
alongside the transform_geom() function. The transform_point() function
converts a Shapely geometry to GeoJSON and transforms the point coordinate, while the
transform_geom() function takes GeoJSON in and transforms it to the new coordinate
system. Both functions use pyproj to execute the transformations.

Next, we'll define our output GeoJSON file and the input line and point features. Then, we'll
execute our two new transform functions followed closely with the conversion into a Shapely
geometry object. This new Shapely geometry is then run through the interpolate function.

Interpolate alone does not answer our question. We need to combine its usage with the
Shapely project function that takes in the original point and projects it onto the line.

Vector Analysis

114

We then print out our results to screen and create a new JavaScript file called /geodata/
ch05-04-geojson.js, used in our /code/html/ch05-04.html for viewing. Go ahead
and open the HTML file in your browser to see the results.

Take a look at your console to see the print to console statements that show us the point
coordinates and distances from the original as follows:

>>> python python-geospatial-analysis-cookbook/ch05/code/ch05-04_snap_
point2line.py

Calculating 3D ground distance and total
elevation gain

We've finished finding points on lines and returning points on a line, so now, it is time to
calculate the true ground 3D distance that we actually ran or biked along a real 3D road.
It is also possible to calculate the elevation profile and we will see this in the Chapter 7,
Raster Analysis.

Calculating the ground distance sounds easy, but 3D calculations are more complicated
to calculate than 2D. Our 3D LineString has a z-coordinate for each vertex that makes up
our LineString. Therefore, we need to calculate the 3D distance between each set of
coordinates, —that is, from vertex to vertex in our input LineString.

The mathematics to calculate the distance between two 3D Cartesian coordinates is relatively
simple and uses the 3D form of the Pythagoras formula:

3d_distance = square root √ ((x2 – x1) 2 + (y2 – y1) 2 + (z2 -z1)2)

Here it is in Python:

import math

3d_dist = math.sqrt((x2 – x1)**2 + (y2 – y1)**2 + (z2 – z1)**2)

Getting ready
First up, we will get our hands on some 3D data to play with and what better to analyze
than the Stage 16 Carcassonne/Bagnères-de-Luchon of the Tour de France 2014 mountain
stage, a real killer. Here are some stats from www.letour.com, including the 237.5 km
length, Michael Rogers' winning time of 6:07:10, the average speed of 38.811 km/h, and the
highest point of 1753 m. You will find the data in your folder at /ch05/geodata/velowire_
stage_16_27563_utf8.geojson.

 www.letour.com

Chapter 5

115

The original KML was generously provided by Thomas Vergouwen (www.velowire.com)
and it is free for us to use with his permission; thanks, Thomas. The original data is located
at /ch05/geodata/velowire_stage_16-Carcassonne-Bagneres-de-Luchon.kml.
The conversion to GeoJSON and the transformation to EPSG:27563 was done using the QGIS
save as function.

Now, according to the LA Times web page (http://www.latimes.com/la-sp-g-tour-
de-france-stage-elevation-profile-20140722-htmlstory.html), they've quoted
a 3895 m elevation gain. As compared to team Strava (http://blog.strava.com/tour-
de-france-2014/) where they've stated a 4715 m elevation gain. Now, who is correct and is
this 237.5 km ground distance in 3D? Let's find out!

This is the official profile of Stage 16 for your visual pleasure:

www.velowire.com
http://www.latimes.com/la-sp-g-tour-de-france-stage-elevation-profile-20140722-htmlstory.html
http://www.latimes.com/la-sp-g-tour-de-france-stage-elevation-profile-20140722-htmlstory.html
http://blog.strava.com/tour-de-france-2014/
http://blog.strava.com/tour-de-france-2014/

Vector Analysis

116

To give you an idea of what accurate and simplified data looks like, take a look at this
comparison of the velowire's site's (www.velowire.com) KML marked in purple (accurate)
and the bikemap site's progression highlighted by yellow line (simplified). If you sum up the
differences, the length and elevation are both significantly different for both. For a race that's
237.5 km long, every meter counts when you're planning and attacking on the course. In the
following screenshot, you can see the comparison of the velowire site's KML marked in purple
and the bikemap site's progression highlighted by the yellow line:

Data source: http://www.mapcycle.com.au/LeTour2014/#

How to do it...
We'll start with looping through each vertex and calculating the 3D distance from one vertex
to another in our LineString. Each vertex is nothing more than a point with x, y, and z (3D
Cartesian) values.

1. Here is the code to calculate each vertex:
#!/usr/bin/env python
-*- coding: utf-8 -*-
import math
import os
from shapely.geometry import shape, Point
import json

def pairs(lst):
 """

www.velowire.com

Chapter 5

117

 yield iterator of two coordinates of linestring
 :param lst: list object
 :return: yield iterator of two coordinates
 """
 for i in range(1, len(lst)):
 yield lst[i - 1], lst[i]

def calc_3d_distance_2pts(x1, y1, z1, x2, y2, z2):
 """
 :input two point coordinates (x1,y1,z1),(x2,y2,2)
 :param x1: x coordinate first segment
 :param y1: y coordiante first segment
 :param z1: z height value first coordinate
 :param x2: x coordinate second segment
 :param y2: y coordinate second segment
 :param z2: z height value second coordinate
 :return: 3D distance between two input 3D coordinates
 """
 d = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2 + (z2 -
z1) ** 2)
 return d

def readin_json(jsonfile):
 """
 input: geojson or json file
 """
 with open(jsonfile) as json_data:
 d = json.load(json_data)
 return d

geoj_27563_file = os.path.realpath("../geodata/velowire_
stage_16_27563_utf8.geojson")
print (geoj_27563_file)
create python dict type from geojson file object
json_load = readin_json(geoj_27563_file)

set start lengths
length_3d = 0.0
length_2d = 0.0

go through each geometry in our linestring
for f in json_load['features']:
 # create shapely shape from geojson

Vector Analysis

118

 s = shape(f['geometry'])

 # calculate 2D total length
 length_2d = s.length

 # set start elevation
 elevation_gain = 0

 # go through each coordinate pair
 for vert_start, vert_end in pairs(s.coords):
 line_start = Point(vert_start)
 line_end = Point(vert_end)

 # create input coordinates
 x1 = line_start.coords[0][0]
 y1 = line_start.coords[0][1]
 z1 = line_start.coords[0][2]
 x2 = line_end.coords[0][0]
 y2 = line_end.coords[0][1]
 z2 = line_end.coords[0][2]

 # calculate 3d distance
 distance = calc_3d_distance_2pts(x1, y1, z1, x2,
y2, z2)

 # sum distances from vertex to vertex
 length_3d += distance

 # calculate total elevation gain
 if z1 > z2:
 elevation_gain = ((z1 - z2) + elevation_gain)
 z2 = z1
 else:
 elevation_gain = elevation_gain # no height
change
 z2 = z1

print ("total elevation gain is: {gain} meters".
format(gain=str(elevation_gain)))

print coord_pair
distance_3d = str(length_3d / 1000)
distance_2d = str(length_2d / 1000)
dist_diff = str(length_3d - length_2d)

Chapter 5

119

print ("3D line distance is: {dist3d}
meters".format(dist3d=distance_3d))
print ("2D line distance is: {dist2d}
meters".format(dist2d=distance_2d))
print ("3D-2D length difference: {diff}
meters".format(diff=dist_diff))

How it works...
We need to transform our original KML file stored in EPSG: 4326 to a planar coordinate
system to facilitate our calculations (refer to the upcoming table). So, we'll begin by
transforming the KML into EPSG: 27563 NTF Paris / Lambert Sud France. For further
information on this, refer to http://epsg.io/27563.

To begin with, we'll define three functions for our calculations starting with the pairs()
function that takes a list and then uses the Python yield generator function to yield two sets
of values. The first set of values is the starting x, y, and z coordinates, and the second set
includes the ending x, y, and z coordinates of the coordinate pairs that we want to measure.

The calc_3d_distancte_2pts() function takes the two coordinate pairs, including the
important z value, and calculates the distance between two points in 3D space using the
Pythagorean theorem.

Our readin_json() function inputs a path to a file, and in this case, we can point it to our
GeoJSON file stored in the /ch05/geodata folder. This will return a Python dictionary object
for us to work with within the next few steps.

Now, let's define the variables to hold our GeoJSON file, load this file, and set the starting
3D/2D lengths to zero for initialization.

Next up, let's iterate through the GeoJSON LineString features and convert them into a
Shapely object so that we can use Shapely to tell us the inherent 2D length as used by our
length_2d variable and read the coordinates. This is followed by our for loop where all the
action occurs.

Looping over our new list created by our pairs() function, we can loop over each vertex of a
LineString. We define the line_start and line_end variables to identify the start of each
new line segment that we need to access with a single LineString feature. We'll follow up by
then defining our input parameters to do the 3D distance calculations by parsing our list object
with standard Python positional slicing. At last, we'll call the calc_3d_distance_2pts()
function to give us our distance in 3D.

We need to iteratively sum the distances together from one segment to the next. We can
do this by adding the distance to our length_3d with += operator. Now, our length_3d
variable is updated for each segment in the loop, giving us our desired 3D length.

http://epsg.io/27563

Vector Analysis

120

The remaining part of the loop calculates our elevation gain. Our z1 and z2 elevation values
need to be constantly compared to additively add the total elevation gain only if the next value
is greater than the last. If not, set them to equal each other and continue to the next z value.
The elevation_gain variable is then constantly updated to itself if there's no change;
otherwise not, the difference between the two elevations is added.

At last, we'll print out our results to the screen; they should look like this:

total elevation gain is: 4322.0 meters

3D line distance is: 244.119162551

2D line distance is: 243.55802081

3D-2D length difference: 561.141741137 meters

With our data transformed and converted to GeoJSON, the 2D length according to our script
is 243.558 km from the velowire KML as compared to 237.5 km from the official race page,
which is a difference of 6.058 km. The original KML in EPSG:4326 was 302.805 km long, a
difference of over 65 km, hence the necessary transformation. For a better comparison, take
a look at this table:

Source + EPSG 2D length 3D length Difference
Velowire EPSG:4326 302.805 km This is not calculated

Velowire EPSG:27563 243.558 km 244.12 561.14 m
Mapcycle EPSG:4326 293.473 km This data is not available

Mapcylce EPSG:27563 236.216 km This data is not available

Letour official 237.500 km
(approximate)

237.500 km (approximate)

The elevation gain is also very different between different sources.

Source Elevation gain
Strava (http://blog.strava.com/) 4715 m
Los Angeles Times 3895 m
TrainingPeaks (www.trainingpeaks.com) 3243 m
The Velowire KML data analysis 4322 m

There's more...
The accuracy of all these calculations is based on the original KML data source. Each data source
is/was derived by different people and, possibly, different methods. The more you know about
your data source, the more you know about its accuracy. In this case, I assume that the Velowire
data source was digitized by hand using Google Earth. Thus, the accuracy is only as accurate as
that of the underlying Google Earth imagery and coordinate system, which is EPSG:3857.

http://blog.strava.com/
www.trainingpeaks.com

121

6
Overlay Analysis

In this chapter, we will cover the following topics:

 f Punching holes in polygons with a symmetric difference operation

 f Union polygons without merging

 f Union polygons with merging (dissolving)

 f Performing an identity function (difference + intersection)

Introduction
Discovering how two datasets spatially relate to each other when they are placed over
one another is called overlay analysis. An overlay can be compared to a sheet of tracing
paper. For example, you could overlay the tracing paper on top of your base map and see what
areas overlap each other. This process is and was a game changer in spatial analysis and
modeling. Computer-aided GIS computations can therefor automatically identify where two
geometry sets spatially touch for example.

Overlay Analysis

122

The goal of this chapter is to give you a feel for the most common overlay analysis
functions, such as unions, intersects, and symmetrical differences. These are based on the
Dimensionally Extended nine intersection model (DE-9IM), which can be found at http://
en.wikipedia.org/wiki/DE-9IM, and describes our list of possible overlays. All processes
that we use or name here are derived using a combination of these nine predicates.

We will explore these topology rules in depth in Chapter 9, Topology Checking and
Data Validation.

Punching holes in polygons with a
symmetric difference operation

Why, oh why would we want to punch holes in polygons and create a donut? Well, this is
done for several reasons, for example, you may want to remove a lake polygon from a forest
polygon that it overlaps since it sits in the middle of the forest and is, therefore, included in
your area calculations.

Another example is where we have a set of polygons representing a golf course's fairways and
a second set of polygons representing the greens that overlap these fairways. Our task is to
calculate the correct number of square meters of fairways. The greens will create our donuts
in a fairway's polygons.

http://en.wikipedia.org/wiki/DE-9IM
http://en.wikipedia.org/wiki/DE-9IM

Chapter 6

123

This is translated into spatial operation terminology and means that we need to perform a
symmetric difference operation or, in ESRI terminology, an "erase" operation.

Getting ready
In this example, we will create two sets of visualizations to see our results. Our output will
generate Well Known Text (WKT) that is displayed in your browser using the Openlayers 3
web mapping client.

For this example, make sure you have all your code downloaded in your /ch06 folder provided
at GitHub and have this folder structure containing these files:

code
¦ ch06-01_sym_diff.py
¦ foldertree.txt
¦ utils.py
¦
+---ol3
 +---build
 ¦ ol-debug.js
 ¦ ol-deps.js
 ¦ ol.js
 ¦
 +---css
 ¦ layout.css
 ¦ ol.css
 ¦
 +---data
 ¦ my_polys.js
 ¦
 +---html
 ¦ ch06-01_sym_diff.html
 ¦
 +---js

Overlay Analysis

124

 ¦ map_sym_diff.js
 ¦
 +---resources
 ¦ jquery.min.js
 ¦ logo-32x32-optimized.png
 ¦ logo-32x32.png
 ¦ logo.png
 ¦ textured_paper.jpeg
 ¦
 +---bootstrap
 +---css
 ¦ bootstrap-responsive.css
 ¦ bootstrap-responsive.min.css
 ¦ bootstrap.css
 ¦ bootstrap.min.css
 ¦
 +---img
 ¦ glyphicons-halflings-white.png
 ¦ glyphicons-halflings.png
 ¦
 +---js
 bootstrap.js
 bootstrap.min.js

geodata
 pebble-beach-fairways-3857.geojson
 pebble-beach-greens-3857.geojson
 results_sym_diff.js

With the folder structure in place, when you run the code, all inputs and outputs will find their
correct home.

How to do it...
We want to run this code from the command line as usual, which runs in your virtual
environment:

1. Execute the following statement from your /ch06/code folder:
>> python Ch06-01_sym_diff.py

2. The following code is where interesting operations take place with Shapely:

#!/usr/bin/env python
-*- coding: utf-8 -*-

Chapter 6

125

import json
from os.path import realpath
from shapely.geometry import MultiPolygon
from shapely.geometry import asShape
from shapely.wkt import dumps

define our files input and output locations
input_fairways = realpath("../geodata/
pebble-beach-fairways-3857.geojson")
input_greens = realpath("../geodata/
pebble-beach-greens-3857.geojson")
output_wkt_sym_diff =
realpath("ol3/data/results_sym_diff.js")

open and load our geojson files as python dictionary
with open(input_fairways) as fairways:
 fairways_data = json.load(fairways)

with open(input_greens) as greens:
 greens_data = json.load(greens)

create storage list for our new shapely objects
fairways_multiply = []
green_multply = []

create shapely geometry objects for fairways
for feature in fairways_data['features']:
 shape = asShape(feature['geometry'])
 fairways_multiply.append(shape)

create shapely geometry objects for greens
for green in greens_data['features']:
 green_shape = asShape(green['geometry'])
 green_multply.append(green_shape)

create shapely MultiPolygon objects for input analysis
fairway_plys = MultiPolygon(fairways_multiply)
greens_plys = MultiPolygon(green_multply)

run the symmetric difference function creating a new
Multipolygon
result = fairway_plys.symmetric_difference(greens_plys)

Overlay Analysis

126

write the results out to well known text (wkt) with
shapely dump
def write_wkt(filepath, features):
 with open(filepath, "w") as f:
 # create a js variable called ply_data used in html
 # Shapely dumps geometry out to WKT
 f.write("var ply_data = '" + dumps(features) + "'")

write to our output js file the new polygon as wkt
write_wkt(output_wkt_sym_diff, result)

Your output will be available in the /ch06/code/ol3/html/ folder with the
ch06-01_sym_diff.html filename. Simply open this file in your local web browser,
such as Chrome, Firefox, or Safari. Our output web map was created by modifying the
Openlayers 3 example code pages according to our needs. The resulting web map
should display the following map in your local web browser:

You can now clearly see a hole inside our fairway.

Chapter 6

127

How it works...
To begin with, we use two GeoJSON datasets as our input, both with EPSG: 3857 and
stemming from the OSM EPSG: 4326. The transformation process is not covered here; take a
look at Chapter 2, Working with Projections, for further information on how to transform data
between two coordinate systems.

Our first task is to read in both the GeoJSON files into Python dictionaries objects using the
standard Python json module. Next, we set up some empty lists that will store the Shapely
geometry objects as a list used for our input to generate the needed MultiPolygons for our
analysis. We use the Shapely built-in asShape() function to create the Shapely geometry
objects so that we can perform the spatial operations. This is accomplished by accessing
the dictionaries' ['geometry'] element. We then append each geometry to our empty
list. This list is then inputted into the Shapely MultiPolygon() function that will create a
MultiPolygon for us and is used as our inputs.

The actual process of running our symmetric_difference happens when we input the
fairways_plys MultiPolygon as input and the parameter passed is the greens_ply
MultiPolygon. The output is stored in the result variable, which itself is also a MultiPolygon.
Not to forget, a MultiPolygon is just a list of polygons that we can iterate over.

Next up, we'll take a look at a function called write_wkt(filepath, features). This
outputs our resulting MultiPolygon Shapely geometry to the Well Known Text (WKT)
format. We do not simply output this WKT but instead, create a new JavaScript file, ol3/
data/ch06-01_results_sym_diff.js, containing our WKT output. The code outputs a
string that creates a JavaScript variable called ply_data. This ply_data variable is then
used in our HTML file located at /ch06/code/ol3/html/sym_diff.html to draw our WKT
vector layer using Openlayers 3. We then call our function and it executes the write to the WKT
JavaScript file.

This example is the first that visualizes our results as a web map. In Chapter 11, Web Analysis
with GeoDjango, we will explore a fully functional web mapping application; for those of
you who cannot wait, you may want to jump ahead. Further examples will continue to use
Openlayers 3 as our data viewer, moving away from using Matplotlib.

In the end, our simple one-line symmetric difference execution needed a lot of helper code to
deal with importing GeoJSON data and exporting the results in a format that could display a
web map with Openlayers 3.

Overlay Analysis

128

Union polygons without merging
To demonstrate what merging is all about, we will take an example from the National Oceanic
and Atmospheric Administration (NOAA) weather data. It provides an awesome minute-by-
minute update of Shapefiles for your desire to download data. We will look at a one-week
collection of weather warnings, and combine these with state boundaries to see where exactly
warnings occurred within a state boundary.

The preceding screenshot shows us the polygons before the union operation in QGIS.

Getting ready
Make sure your virtual environment is, as always, fired up and run the following command:

$ source venvs/pygeo_analysis_cookbook/bin/activate

Next, switch to your /ch06/code/ folder to find finished code examples or create your empty
file in the /ch06/working folder and follow along with the code.

How to do it...
The pyshp and shapely libraries are our two workhorses for this exercise:

1. You can simply run this file in the command prompt to see the results as follows:
>> python ch06-02_union.py

Chapter 6

129

Results can then be opened in the /ch06/code/ol3/html/ch06-02_union.
html folder with a double-click to start them in your local web browser. You should
see the following web map if everything's gone smoothly:

2. Now let's take a look at the code that makes it all happen:
#!/usr/bin/env python
-*- coding: utf-8 -*-
import json
from os.path import realpath
import shapefile # pyshp
from geojson import Feature, FeatureCollection
from shapely.geometry import asShape, MultiPolygon
from shapely.ops import polygonize
from shapely.wkt import dumps

def create_shapes(shapefile_path):
 """
 Convert Shapefile Geometry to Shapely MultiPolygon
 :param shapefile_path: path to a shapefile on disk
 :return: shapely MultiPolygon

Overlay Analysis

130

 """
 in_ply = shapefile.Reader(shapefile_path)

 # using pyshp reading geometry
 ply_shp = in_ply.shapes()
 ply_records = in_ply.records()
 ply_fields = in_ply.fields
 print ply_records
 print ply_fields

 if len(ply_shp) > 1:
 # using python list comprehension syntax
 # shapely asShape to convert to shapely geom
 ply_list = [asShape(feature) for feature in
ply_shp]

 # create new shapely multipolygon
 out_multi_ply = MultiPolygon(ply_list)

 # # equivalent to the 2 lines above without using
list comprehension
 # new_feature_list = []
 # for feature in features:
 # temp = asShape(feature)
 # new_feature_list.append(temp)
 # out_multi_ply = MultiPolygon(new_feature_list)

 print "converting to MultiPolygon: " +
str(out_multi_ply)
 else:
 print "one or no features found"
 shply_ply = asShape(ply_shp)
 out_multi_ply = MultiPolygon(shply_ply)

 return out_multi_ply

def create_union(in_ply1, in_ply2, result_geojson):
 """
 Create union polygon
 :param in_ply1: first input shapely polygon
 :param in_ply2: second input shapely polygon
 :param result_geojson: output geojson file including
full file path
 :return: shapely MultiPolygon
 """
 # union the polygon outer linestrings together

Chapter 6

131

 outer_bndry = in_ply1.boundary.union(in_ply2.boundary)

 # rebuild linestrings into polygons
 output_poly_list = polygonize(outer_bndry)

 out_geojson = dict(type='FeatureCollection', features=[])

 # generate geojson file output
 for (index_num, ply) in enumerate(output_poly_list):
 feature = dict(type='Feature',
properties=dict(id=index_num))
 feature['geometry'] = ply.__geo_interface__
 out_geojson['features'].append(feature)

 # create geojson file on disk
 json.dump(out_geojson, open(result_geojson, 'w'))

 # create shapely MultiPolygon
 ply_list = []
 for fp in polygonize(outer_bndry):
 ply_list.append(fp)

 out_multi_ply = MultiPolygon(ply_list)

 return out_multi_ply

def write_wkt(filepath, features):
 """

 :param filepath: output path for new JavaScript file
 :param features: shapely geometry features
 :return:
 """
 with open(filepath, "w") as f:
 # create a JavaScript variable called ply_data used in
html
 # Shapely dumps geometry out to WKT
 f.write("var ply_data = '" + dumps(features) + "'")

def output_geojson_fc(shply_features, outpath):
 """
 Create valid GeoJSON python dictionary
 :param shply_features: shapely geometries
 :param outpath:
 :return: GeoJSON FeatureCollection File

Overlay Analysis

132

 """

 new_geojson = []
 for feature in shply_features:
 feature_geom_geojson = feature.__geo_interface__
 myfeat = Feature(geometry=feature_geom_geojson,
 properties={'name': "mojo"})
 new_geojson.append(myfeat)

 out_feat_collect = FeatureCollection(new_geojson)

 with open(outpath, "w") as f:
 f.write(json.dumps(out_feat_collect))

if __name__ == "__main__":

 # define our inputs
 shp1 = realpath("../geodata/temp1-ply.shp")
 shp2 = realpath("../geodata/temp2-ply.shp")

 # define outputs
 out_geojson_file =
realpath("../geodata/res_union.geojson")
 output_union = realpath("../geodata/output_union.geojson")
 out_wkt_js = realpath("ol3/data/results_union.js")

 # create our shapely multipolygons for geoprocessing
 in_ply_1_shape = create_shapes(shp1)
 in_ply_2_shape = create_shapes(shp2)

 # run generate union function
 result_union = create_union(in_ply_1_shape,
in_ply_2_shape, out_geojson_file)

 # write to our output js file the new polygon as wkt
 write_wkt(out_wkt_js, result_union)

 # write the results out to well known text (wkt) with
shapely dump
 geojson_fc = output_geojson_fc(result_union,
output_union)

Chapter 6

133

How it works...
A quick high-level run-through of what is going on here at the beginning should help clear the
air. We have four functions and nine variables within our Python code to split the load of input
and output data. The running of our code takes place in the if __name__ == "main": call
that is found at the end of the code. We start defining two variables to deal with our inputs
that we are going to union together. These two are our input Shapefiles and the other three
outputs are GeoJSON and JavaScript files.

The create_shapes()function converts our Shapefile into Shapely MultiPolygon
geometry objects. Inside the Python class, the list comprehension is used to generate a
new list of polygon objects, which are the input list of polygons used to create our output
MultiPolygon. Next, we'll simply run this function passing in our input Shapefiles.

Our create_union() function is up next where we do the real union work. We begin by
unioning the two geometry boundaries together that produces a union set of LineStrings and
represents the outer bounds of our input polygons. The reason for this is that we do not want
to lose the geometries of both polygons, which will, by default, dissolve into one big polygon
when simply passed into the Shapely union function. Therefore, we need to rebuild the
polygons with the polygonize() Shapely function.

The polygonize function creates a Python generator object, not a simple geometry. This is
an iterator that's similar to a list that we need to loop over to get at the individual polygons it's
created for us.

We do exactly this in the next code segment using the enumerate() Python function that
automatically creates an ID for us for each feature that we use as the id field in the attribute
results. After our loop, we use the standard Python json.dump() method to export our newly
created GeoJSON file and write it to disk using the Python open() method in the write mode.

Lastly, in our create_union() function, we prepare to output our resulting union polygon
as a Shapely MultiPolygon object. This is accomplished simply by looping through the
polygonize() iterator and outputting a list that feeds into the Shapely MultiPolygon()
function. Finally, we execute the union function, passing in our two input geometries and
specifying the output GeoJSON file.

So, we can view our results in our web map as we did in the previous exercise using a small
function called write_wkt(). This little function takes the file path to the output JavaScript
file that we want to create and the MultiPolygon result's geometry. Shapely then dumps the
geometry into the Well Known Text format as we write it out to the JavaScript file.

In the end, a small function called output_geojson_fc() is used to output another
GeoJSON file, this time using the Python geojson library. This simply shows you another way
to recreate a GeoJSON file. Since GeoJSON is a plain text file, it is possible to create it in many
unique ways depending on your personal programming preference.

Overlay Analysis

134

Union polygons with merging (dissolving)
To demonstrate what merging is all about, we will take an example out of the NOAA weather
data. It provides an awesome minute-by-minute update of Shapefiles to satisfy your desire
to download data. We will look at a week's collection of weather warnings and union these
warnings together, giving us the total warning area issued in this week.

A conceptual visualization of our desired results is shown here:

Most of the data is located around Florida, but has some polygons near Hawaii and California.
To see the original data or find new data, check out these links:

 f http://www.nws.noaa.gov/geodata/catalog/wsom/html/pubzone.htm

 f http://nws.noaa.gov/regsci/gis/week.html

 f http://www.nws.noaa.gov/geodata/index.html

If you want to see the state boundaries, you can find them at https://www.census.gov/
geo/maps-data/data/cbf/cbf_state.html.

Here is what a sample of the data looks like around Florida before the union, which is
visualized with QGIS:

http://www.nws.noaa.gov/geodata/catalog/wsom/html/pubzone.htm
http://nws.noaa.gov/regsci/gis/week.html
http://www.nws.noaa.gov/geodata/index.html
https://www.census.gov/geo/maps-data/data/cbf/cbf_state.html
https://www.census.gov/geo/maps-data/data/cbf/cbf_state.html

Chapter 6

135

Getting ready
The usual order of business is needed to get going with this code. Fire up your virtual
environment and check whether your data is all downloaded and located in your /ch06/
geodata/ folder. If all is ready, jump right in and start typing some code.

How to do it...
Our data is a little messy to say the least, so please follow our steps outlining a solution to
allow us to process and run the analysis function, union:

#!/usr/bin/env python
-*- coding: utf-8 -*-
from shapely.geometry import MultiPolygon
from shapely.ops import cascaded_union
from os.path import realpath
from utils import create_shapes
from utils import out_geoj
from utils import write_wkt

def check_geom(in_geom):
 """
 :param in_geom: input valid Shapely geometry objects
 :return: Shapely MultiPolygon cleaned
 """
 plys = []
 for g in in_geom:
 # if geometry is NOT valid
 if not g.is_valid:
 print "Oh no invalid geometry"
 # clean polygon with buffer 0 distance trick
 new_ply = g.buffer(0)
 print "now lets make it valid"
 # add new geometry to list
 plys.append(new_ply)
 else:
 # add valid geometry to list
 plys.append(g)
 # convert new polygons into a new MultiPolygon
 out_new_valid_multi = MultiPolygon(plys)
 return out_new_valid_multi

if __name__ == "__main__":

Overlay Analysis

136

 # input NOAA Shapefile
 shp = realpath("../geodata/temp-all-warn-week.shp")

 # output union_dissolve results as GeoJSON
 out_geojson_file = realpath("../geodata/
ch06-03_union_dissolve.geojson")

 out_wkt_js = realpath("ol3/data/
ch06-03_results_union.js")

 # input Shapefile and convert to Shapely geometries
 shply_geom = create_shapes(shp)

 # Check the Shapely geometries if they are valid if not
fix them
 new_valid_geom = check_geom(shply_geom)

 # run our union with dissolve
 dissolve_result = cascaded_union(new_valid_geom)

 # output the resulting union dissolved polygons to GeoJSON
file
 out_geoj(dissolve_result, out_geojson_file)

 write_wkt(out_wkt_js, dissolve_result)

Your resulting web map will look like this:

Chapter 6

137

How it works...
We are starting to increasingly reuse more code that is now tucked away in our /ch06/code/
utils.py module. As you see in the imports, we use three functions for the standard input
and output of data. The main application starts with defining our NOAA input Shapefile and
defining the output GeoJSON file. Then, if we run the code, it will crash due to data validity
issues. So, we create a new function to check our input data for invalid geometries. This new
function will catch these invalid geometries and convert them to valid polygons.

Shapely has a geometry property called is_valid, which accesses the GEOS engine to
check for geometry validity based on the simple features in the OGC specification.

If you are looking for all the possible invalid data possibilities, you
can find more information on the Open Geospatial Consortium
website. Check out the Simple Features Standard on page 28; you
will find the examples of invalid polygons at http://portal.
opengeospatial.org/files/?artifact_id=25355.

The reason for these anomalies is that when data is overlaid and processed, geometries
become combined or cut at angles that are not always optimal.

At last, we have clean data to work with, making the rest of our journey very simple by running
the Shapely cascaded_union() function, which will dissolve all our overlapping polygons.
Our resulting MultiPolygons are pushed further into our out_geoj() function, which finally
writes the new geometries to disk in our /ch06/geodata folder.

Performing an identity function
(difference + intersection)

In ESRI geoprocessing terminology, there is an overlay function called identity. This is a
very useful function to call when you want to keep all the original geometry boundaries of
ONLY the input features combined with an intersection of input features.

http://portal.opengeospatial.org/files/?artifact_id=25355
http://portal.opengeospatial.org/files/?artifact_id=25355

Overlay Analysis

138

This boils down to a formula that calls for both difference and intersect. We first find
the difference (input feature - intersection), then add the intersection to create our
results as follows:

 (input feature – intersection) + intersection = result

How to do it...
1. For all you curious folks who want to learn how to do this, type out the following code;

it will help your muscle memory:
##!/usr/bin/env python
-*- coding: utf-8 -*-
from shapely.geometry import asShape, MultiPolygon
from utils import shp2_geojson_obj, out_geoj, write_wkt
from os.path import realpath

def create_polys(shp_data):
 """
 :param shp_data: input GeoJSON
 :return: MultiPolygon Shapely geometry
 """
 plys = []
 for feature in shp_data['features']:
 shape = asShape(feature['geometry'])
 plys.append(shape)

 new_multi = MultiPolygon(plys)
 return new_multi

def create_out(res1, res2):
 """

 :param res1: input feature
 :param res2: identity feature
 :return: MultiPolygon identity results
 """
 identity_geoms = []

 for g1 in res1:
 identity_geoms.append(g1)
 for g2 in res2:
 identity_geoms.append(g2)

Chapter 6

139

 out_identity = MultiPolygon(identity_geoms)
 return out_identity

if __name__ == "__main__":
 # out two input test Shapefiles
 shp1 = realpath("../geodata/temp1-ply.shp")
 shp2 = realpath("../geodata/temp2-ply.shp")

 # output resulting GeoJSON file
 out_geojson_file = realpath("../geodata/result_identity.
geojson")

 output_wkt_identity = realpath("ol3/data/
ch06-04_results_identity.js")

 # convert our Shapefiles to GeoJSON
 # then to python dictionaries
 shp1_data = shp2_geojson_obj(shp1)
 shp2_data = shp2_geojson_obj(shp2)

 # transform our GeoJSON data into Shapely geom objects
 shp1_polys = create_polys(shp1_data)
 shp2_polys = create_polys(shp2_data)

 # run the difference and intersection
 res_difference = shp1_polys.difference(shp2_polys)
 res_intersection = shp1_polys.intersection(shp2_polys)

 # combine the difference and intersection polygons into
results
 result_identity = create_out(res_difference,
res_intersection)

 # export identity results to a GeoJSON
 out_geoj(result_identity, out_geojson_file)

 # write out new JavaScript variable with wkt geometry
 write_wkt(output_wkt_identity, result_identity)

Overlay Analysis

140

The resulting polygons can now be visualized in your browser. Now simply open the
/ch06/code/ol3/html/ch06-04_identity.html file and you will see this map:

How it works...
We have hidden away a couple of gems in our util.py utilities file called shp2_geojson_obj
and out_geoj. The first one takes in our Shapefile and returns a Python dictionary object. Our
function actually creates a valid GeoJSON in the form of a Python dictionary that could very
easily be converted to a JSON string using the standard json.dumps()Python module.

With this overhead out of the way, we can jump into creating Shapely geometries that can
be used for our analysis. The create_polys()function does exactly this: it takes in our
geometries, returning a MultiPolygon. This MultiPolygon is used to calculate our
difference and intersection.

So, at last, we can do the analysis calculation starting with the Shapely difference function
using our temp1-ply.shp as our input feature and temp2-poly.shp as our identity
feature. The difference function only returns the geometries of the input features that do not
intersect the other feature. Next up, we execute the intersection function that only returns
geometries that overlap between our two inputs.

Chapter 6

141

Our recipe is almost completed; we only need to combine these two new results to produce
our new identity result's MultiPolygon. The create_out()function takes two arguments, the
first being our input features and the second is our resulting intersection features. The order
is very important; otherwise your results will be reversed. So make sure that you enter the
correct order of input.

We run through each of the geometries and combine them into a fancy new MultiPolygon
called result_identity. This is then pumped into our out_geoj() function, which writes
out a new GeoJSON file to your /ch06/geodata/ folder.

Our out_geoj() function is located in the utils.py file and might need a quick
explanation. The input is a list of geometries and the file path of the output GeoJSON
file location on disk. We simply create a new dictionary, and then loop through each
geometry, exporting the Shapely geometry to a GeoJSON file using the built-in Shapely
__geo_interface__.

If you want to read up on the __geo_interface__, do so for
yourself and find out what it is and why it's so cool at
https://gist.github.com/sgillies/2217756.

For those of you looking for the two utility functions, here they are for your reading pleasure:

def shp2_geojson_obj(shapefile_path):
 # open shapefile
 in_ply = shapefile.Reader(shapefile_path)
 # get a list of geometry and records
 shp_records = in_ply.shapeRecords()
 # get list of fields excluding first list object
 fc_fields = in_ply.fields[1:]

 # using list comprehension to create list of field names
 field_names = [field_name[0] for field_name in fc_fields]
 my_fc_list = []
 # run through each shape geometry and attribute
 for x in shp_records:
 field_attributes = dict(zip(field_names, x.record))
 geom_j = x.shape.__geo_interface__
 my_fc_list.append(dict(type='Feature', geometry=geom_j,
 properties=field_attributes))

 geoj_json_obj = {'type': 'FeatureCollection',
 'features': my_fc_list}

 return geoj_json_obj

https://gist.github.com/sgillies/2217756

Overlay Analysis

142

def out_geoj(list_geom, out_geoj_file):
 out_geojson = dict(type='FeatureCollection', features=[])

 # generate geojson file output
 for (index_num, ply) in enumerate(list_geom):
 feature = dict(type='Feature',
properties=dict(id=index_num))
 feature['geometry'] = ply.__geo_interface__
 out_geojson['features'].append(feature)

 # create geojson file on disk
 json.dump(out_geojson, open(out_geoj_file, 'w'))

143

7
Raster Analysis

In this chapter, we will cover the following topics:

 f Loading a DEM USGS ACSII CDED into PostGIS

 f Creating an elevation profile

 f Creating a hillshade raster from your DEM with ogr

 f Generating slope and aspect images from your DEM

 f Merging rasters to generate a color relief map

Introduction
Raster analysis works similar to vector analysis but the spatial relation is determined by the
position of the raster cell. Most of our raster data is collected through diverse remote sensing
techniques. In this chapter, the goals are quite simple and focused on working with and
around a digital elevation model (DEM). The DEM we are using is from Whistler, BC, Canada,
home to the 2010 Winter Olympics. Our DEM is in the form of the USGS ASCII CDED (.dem)
format. The DEM is our source data that is used to derive several new raster datasets. As
with other chapters, we will leverage Python as our glue to run scripts to enable a processing
pipeline for raster data. The visualization of our data will play out with matplotlib along with
the QGIS desktop GIS.

Raster Analysis

144

Loading a DEM USGS ACSII CDED into
PostGIS

Importing and working with a DEM in PostGIS is what this recipe is all about. We begin
our journey with a text file that's full of points and is stored in the USGS ASCII CDED format
(to read more about the details of this format, feel free to look at the documentation page
at http://www.gdal.org/frmt_usgsdem.html). The ASCII format is well known and
accepted by many desktop GIS applications as a direct data source. Feel free to simply
open up your ASCII file with QGIS to view the files and see the resulting raster representation
that it creates for you. Our task at hand is to import this DEM file into a PostGIS database,
creating a new PostGIS raster dataset within PostGIS We perform this task by using a
command-line tool called raster2pgsql, which is installed along with your PostGIS
installation. The raster2pgsql tool is located on Windows under C:\Program Files\
PostgreSQL\9.3\bin\ if you are running PostgreSQL 9.

Getting ready
Your data is available in the ch07/geodata/dem_3857.dem folder. Feel free to get the
original DEM from GeoGratis Canada, the area around Whistler Mountain, British Columbia,
at http://ftp2.cits.rncan.gc.ca/pub/geobase/official/cded/50k_
dem/092/092j02.zip.

If you have not already created your Postgresql database in Chapter 1, Setting Up Your
Geospatial Python Environment, do so now and then continue with starting your virtual
environment to run this script.

Also, make sure that the raster2pgsql command is available in your command prompt. If
not, set up your environment variables on Windows or a sym link on your Linux machine.

How to do it...
Let's move on to the fun part that can be found in your /ch07/code/ch07-01_
dem2postgis.py file:

1. The code found in the /ch07/code/ch07-01_dem2postgis.py file is as follows:

#!/usr/bin/env python
-*- coding: utf-8 -*-
import subprocess
import psycopg2

http://www.gdal.org/frmt_usgsdem.html
http://ftp2.cits.rncan.gc.ca/pub/geobase/official/cded/50k_dem/092/092j02.zip
http://ftp2.cits.rncan.gc.ca/pub/geobase/official/cded/50k_dem/092/092j02.zip

Chapter 7

145

db_host = "localhost"
db_user = "pluto"
db_passwd = "secret"
db_database = "py_geoan_cb"
db_port = "5432"

connect to DB
conn = psycopg2.connect(host=db_host, user=db_user,
 port=db_port, password=db_passwd,
 database=db_database)

create a cursor
cur = conn.cursor()

input USGS ASCII DEM (and CDED)
input_dem = "../geodata/dem_3857.dem"

create an sql file for loading into the PostGIS database
raster
command line with options
-c create new table
-I option will create a spatial GiST index on the raster
column
-C will apply raster constraints
-M vacuum analyse the raster table

command = 'raster2pgsql -c -C -I -M ' + input_dem + '
geodata.dem_3857'

write the output to a file

temp_sql_file = "temp_sql.sql"

open, create new file to write sql statements into
with open(temp_sql_file, 'wb') as f:
 try:
 result = subprocess.call(command, stdout=f,
shell=True)
 if result != 0:
 raise Exception('error code %d' % result)

Raster Analysis

146

 except Exception as e:
 print e

open the file full of insert statements created by
raster2pgsql
with open(temp_sql_file, 'r') as r:
 # run through and execute each line inside the temp sql
file
 for sql_insert in r:
 cur.execute(sql_insert)

print "please open QGIS >= 2.8.x and view your loaded DEM
data"

How it works...
Python, once again, is our glue that leverages the power of a command-line tool to do the dirty
work. This time around, we use the Python subprocess module to call raster2pgsql the
command-line tool. The psycopg2 module then executes our insert statements.

Starting from the top and working our way down, we see the database connection settings for
psycopg2. The input path to our DEM is set as the input_dem variable. Then, we pack our
command-line arguments into a single string called command. This is then run by subprocess.
The individual command-line arguments are described in the code comments and further
information and options can be found directly at http://postgis.refractions.net/
docs/using_raster.xml.html#RT_Raster_Loader.

Now that the command is ready, we need to create a temporary file to store the generated
SQL insert and create statements that the raster2pgsql command creates. Using
the with open() syntax, we create our temporary file and then call the command using
subprocess. We use stdout to specify where to write out this file. The shell=True
argument comes with a big warning.

The following is the mention warning taken from the Python documentation:
Warning Executing shell commands that incorporate
unsanitized input from an untrusted source makes a
program vulnerable to shell injection, a serious
security flaw which can result in arbitrary command
execution. For this reason, the use of shell=True is
strongly discouraged in cases where the command string
is constructed from external input:

If all goes well, no exceptions should pop up, but if they do, we catch them using the standard
Python try statement.

http://postgis.refractions.net/docs/using_raster.xml.html#RT_Raster_Loader
http://postgis.refractions.net/docs/using_raster.xml.html#RT_Raster_Loader

Chapter 7

147

The last step is to open the newly created SQL file that's full of inserts and execute each
line in the file using psycopg2. This populates our new table that has the name of the input
DEM file.

Go ahead and open up QGIS | 2.8.x and have a look at the raster you've just loaded into
PostGIS.

To open the raster in QGIS, I've found that you need to open the
Database Manager application that comes with QGIS and connect to
your Postgresql-PostGIS database and schema. Then, you will see the
new raster, and you will need to right-click on it to add it to the canvas.
This will finally add the raster to your QGIS project.

Creating an elevation profile
Creating an elevation profile is very helpful when trying to visualize a 3D terrain cross-section
or simply to see the elevation gain of a bike tour. In this example, we will define our own
LineString geometry and extract the elevation values from the DEMs that are located every
20 m along our line. The analysis will generate a new CSV file that we can open in Libre Office
Calc or Microsoft Excel to visualize the new data as a line chart.

The 2D view of our line plotted on top of the elevation model as seen inside QGIS looks
like this:

Raster Analysis

148

Getting ready
This recipe calls for GDAL and Shapely. Make sure that you have them installed and are
running them inside your python virtual environment that you set up earlier. To visualize your
final CSV file, you must also install Libre Office Calc or some other charting software. The code
to execute this is located at /ch07/code/ch07-02_elev_profile.py.

How to do it...
Running the script directly from your command line will generate your CSV, so read the
code comments to see all the little details of what is going on in order to generate our new
file as follows:

#!/usr/bin/env python
-*- coding: utf-8 -*-
import sys, gdal, os
from gdalconst import GA_ReadOnly
from os.path import realpath
from shapely.geometry import LineString

def get_elevation(x_coord, y_coord, raster, bands, gt):
 """
 get the elevation value of each pixel under
 location x, y
 :param x_coord: x coordinate
 :param y_coord: y coordinate
 :param raster: gdal raster open object
 :param bands: number of bands in image
 :param gt: raster limits
 :return: elevation value of raster at point x,y
 """
 elevation = []
 xOrigin = gt[0]
 yOrigin = gt[3]
 pixelWidth = gt[1]
 pixelHeight = gt[5]
 px = int((x_coord - xOrigin) / pixelWidth)
 py = int((y_coord - yOrigin) / pixelHeight)
 for j in range(bands):
 band = raster.GetRasterBand(j + 1)

Chapter 7

149

 data = band.ReadAsArray(px, py, 1, 1)
 elevation.append(data[0][0])
 return elevation

def write_to_csv(csv_out,result_profile_x_z):
 # check if output file exists on disk if yes delete it
 if os.path.isfile(csv_out):
 os.remove(csv_out)

 # create new CSV file containing X (distance) and Z
value pairs
 with open(csv_out, 'a') as outfile:
 # write first row column names into CSV
 outfile.write("distance,elevation" + "\n")
 # loop through each pair and write to CSV
 for x, z in result_profile_x_z:
 outfile.write(str(round(x, 2)) + ',' +
str(round(z, 2)) + '\n')

if __name__ == '__main__':
 # set directory
 in_dem = realpath("../geodata/dem_3857.dem")

 # open the image
 ds = gdal.Open(in_dem, GA_ReadOnly)

 if ds is None:
 print 'Could not open image'
 sys.exit(1)

 # get raster bands
 bands = ds.RasterCount

 # get georeference info
 transform = ds.GetGeoTransform()

 # line defining the the profile
 line = LineString([(-13659328.8483806, 6450545.73152317),
(-13651422.7820022, 6466228.25663444)])
 # length in meters of profile line

Raster Analysis

150

 length_m = line.length

 # lists of coords and elevations
 x = []
 y = []
 z = []
 # distance of the topographic profile
 distance = []
 for currentdistance in range(0, int(length_m), 20):
 # creation of the point on the line
 point = line.interpolate(currentdistance)
 xp, yp = point.x, point.y
 x.append(xp)
 y.append(yp)
 # extraction of the elevation value from the MNT
 z.append(get_elevation(xp, yp, ds, bands,
transform)[0])
 distance.append(currentdistance)

 print (x)
 print (y)
 print (z)
 print (distance)

 # combine distance and elevation vales as pairs
 profile_x_z = zip(distance,z)

 csv_file = os.path.realpath('../geodata/output_profile.csv')
 # output final csv data
 write_to_csv(csv_file, profile_x_z)

How it works...
There are two functions that are used to create our elevation profile. The first
get_elevation()function returns a single elevation value per pixel for each band in a
raster. This means that our input raster can contain multiple bands of data. Our second
function will write our results to a CSV file.

Chapter 7

151

The get_elevation() function creates a list of elevation values; to achieve this, we need
to extract some details from our input elevation raster. The x and y origin coordinates are
used in combination with the raster pixel width and height to help find pixels in our raster.
This information is then processed with our input x and y coordinates where we want the
elevation value to be extracted.

Next up, we loop through all the available bands in our raster and find the elevation value per
band that's located at coordinates x and y from our input. The ReadAsArray GDAL function
finds this location, and then all we need to do is get the first object of the second nested list
array. This value is then appended to a new list of elevation values.

To process our data, we define the input paths of our raster with the os.path.realpath()
Python function that returns the full path to our input. GDAL is used to open our DEM raster
and return the number of bands plus the x origin, y origin, pixel width, and pixel height
information from our raster. This is located in the transform variable that's passed into our
get_elevation() function.

Working our way further, we define our input LineString. This LineString defines where the
cross-section profile is going to be extracted. To process our data, we want to extract elevation
values every 20 m along our input LineString. This is done in the for loop as we specify the
range based on the LineString length and our input of 20 m. Using the Shapely Interpolate
linear referencing function, we then create a point object every 20 m. These values are then
stored in separate x, y, and z lists, which are then updated. The z list contains our list of new
elevation points. Individual elevations are collected by specifying the first object in the list
that's returned by our get_elevation() function.

To put all this together in a CSV file, we use the Python zip function to combine the distance
values with the elevation values. This creates the final two columns of data, showing us the
distance from the starting point of our LineString on the x-axis and the elevation value on
the y-axis.

Raster Analysis

152

Visualizing the results is then easy in Libre Office Calc or Microsoft Excel. Go ahead and open
up the output CSV file located in your /ch07/geodata/output_profile.csv folder and
create a simple line chart:

Your resulting chart should look similar to what is shown in the preceding screenshot.

To plot the graph using Libre Office Calc, see the following plotting options:

Chapter 7

153

Creating a hillshade raster from your DEM
with ogr

Our DEM can be the basis for many types of derived raster datasets. One of these derivatives
is the so called hillshade raster dataset. A hillshade raster represents a 2D view of 3D
elevation data, assigning gray raster shades and giving them a 3D effect by enabling you to
see the highs and lows of your terrain. The hillshade is a pure visualization helper to create a
nice looking map and show relief on a 2D map.

The pure Python solution to creating a hillshade is written by Roger Veciana i Rovira and you
can find it at http://geoexamples.blogspot.co.at/2014/03/shaded-relief-
images-using-gdal-python.html. There is also a nice solution by Joel Lawhead in
Chapter 7, Python and Elevation Data of Learning Geospatial Analysis with Python. For those
of you looking for a detailed description of the hillshade from ESRI, check this page out at
http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=How%20
Hillshade%20works. The gdaldem hillshade command-line tool will be used to generate
the image to disk.

http://geoexamples.blogspot.co.at/2014/03/shaded-relief-images-using-gdal-python.html
http://geoexamples.blogspot.co.at/2014/03/shaded-relief-images-using-gdal-python.html
http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=How%20Hillshade%20works
http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=How%20Hillshade%20works

Raster Analysis

154

Getting ready
The prerequisites for this example require the gdal (osgeo), numpy, and matplotlib
python libraries. Plus, you need to have downloaded the data folder for this book and have
the /ch07/geodata folder available for read/write access. We are directly accessing our
USGS ASCII CDED DEM .dem file on disk to render our hillshade, so be sure that you have this
folder. The code execution will take place as usual from your /ch07/code/ folder that runs
the ch07-03_shaded_relief.py python file. So, for the impatient coders go ahead and
give it a try at the command line as follows:

>> python ch07-03_shaded_relief.py

How to do it...
Our Python script will run through a few mathematical operations and call the gdaldem
command-line tool to generate our output using the following steps:

1. The code contains some math that is not always easy to follow; the calculation of the
greyscale values is determined by the elevation and its surrounding pixels, so read along:
#!/usr/bin/env python
-*- coding: utf-8 -*-
from osgeo import gdal
from numpy import gradient
from numpy import pi
from numpy import arctan
from numpy import arctan2
from numpy import sin
from numpy import cos
from numpy import sqrt
import matplotlib.pyplot as plt
import subprocess

def hillshade(array, azimuth, angle_altitude):
 """
 :param array: input USGS ASCII DEM / CDED .dem
 :param azimuth: sun position
 :param angle_altitude: sun angle
 :return: numpy array
 """

 x, y = gradient(array)
 slope = pi/2. - arctan(sqrt(x*x + y*y))
 aspect = arctan2(-x, y)
 azimuthrad = azimuth * pi / 180.

Chapter 7

155

 altituderad = angle_altitude * pi / 180.

 shaded = sin(altituderad) * sin(slope)\
 + cos(altituderad) * cos(slope)\
 * cos(azimuthrad - aspect)
 return 255*(shaded + 1)/2

ds = gdal.Open('../geodata/092j02_0200_demw.dem')
arr = ds.ReadAsArray()

hs_array = hillshade(arr, 90, 45)
plt.imshow(hs_array,cmap='Greys')
plt.savefig('../geodata/hillshade_whistler.png')
plt.show()

gdal command line tool called gdaldem
link http://www.gdal.org/gdaldem.html
usage:
gdaldem hillshade input_dem output_hillshade
[-z ZFactor (default=1)] [-s scale* (default=1)]"
[-az Azimuth (default=315)] [-alt Altitude (default=45)]
[-alg ZevenbergenThorne] [-combined]
[-compute_edges] [-b Band (default=1)] [-of format] [-co
"NAME=VALUE"]* [-q]

create_hillshade = '''gdaldem hillshade -az 315 -alt 45 ../
geodata/092j02_0200_demw.dem ../geodata/hillshade_3857.tif'''

subprocess.call(create_hillshade)

How it works...
The hillshade function calculates slope and aspect values for each cell as the input to
calculate the shaded gray value. The azimuth variable defines the direction of light in
degrees that hits our DEM. Inverting and playing with azimuth can lead to some effects,
such as valleys looking like hills and hills looking like valleys. Our shaded variable holds the
shade values as an array that we can plot with matplotlib.

Raster Analysis

156

Using the gdaldem command-line tool is definitely more robust and faster than the pure
Python solution. With gdaldem, we create a new hillshade TIF file on disk that can open either
with a local image viewer or can be drag-and-dropped into QGIS. QGIS will automatically stretch
the gray values for you so that you will be able to see a nice representation of your hillshade.

Generating slope and aspect images from
your DEM

Slope maps are very useful, for example, to help biologists identify habitat zones. Certain
species only live in areas that are very steep—mountain goats, for instance. The slope raster
can then quick identify potential habitat areas. To visualize this, we use QGIS to display our
slope map, which will look similar to the following image. The area in white indicates the
steeper area and the darker the color, the flatter the terrain:

Chapter 7

157

Our aspect map displays the direction that the surface faces towards—such as north, east,
south, and west—and this is expressed in degrees. In the screenshot, the orange area
represents warm south-facing areas. The north-facing sides are cooler and are indicated in
different hues of blues from our color spectrum. To achieve the colors, the QGIS singleband
pseudocolor was classified into five continuous classes as shown in the following screenshot:

Getting ready
Ensure that your /ch07/geodata folder is downloaded and the DEM 092j02_0200_demw.
dem file from Whistler, BC, Canada, is available.

Raster Analysis

158

How to do it...
1. We utilize the gdaldem command-line tool to create our slope raster. You can tweak

this recipe to batch generate slope images from several DEM rasters.
#!/usr/bin/env python
-*- coding: utf-8 -*-
import subprocess

SLOPE
- To generate a slope map from any GDAL-supported
elevation raster :
gdaldem slope input_dem output_slope_map"
[-p use percent slope (default=degrees)]
[-s scale* (default=1)]
[-alg ZevenbergenThorne]
[-compute_edges] [-b Band (default=1)] [-of format]
[-co "NAME=VALUE"]* [-q]

create_slope = '''gdaldem slope ../geodata/092j02_0200_demw.dem
../geodata/
slope_w-degrees.tif '''

subprocess.call(create_slope)

ASPECT
- To generate an aspect map from any GDAL-supported
elevation raster
Outputs a 32-bit float raster with pixel values from
0-360 indicating azimuth :
gdaldem aspect input_dem output_aspect_map"
[-trigonometric] [-zero_for_flat]
[-alg ZevenbergenThorne]
[-compute_edges] [-b Band (default=1)] [-of format]
[-co "NAME=VALUE"]* [-q]

create_aspect = '''gdaldem aspect ../geodata/092j02_0200_demw.dem
../geodata/aspect_w.tif '''

subprocess.call(create_aspect)

Chapter 7

159

How it works...
The gdaldem command-line tool is our workhorse once again and all we need to do is pass
along our DEM and specify an output file. Inside the code, you'll see the arguments passed
include -co compress=lzw, which reduces the size of the image dramatically. Our -p
option states that we want the results in a percentage slope followed by the input DEM and
our output file.

As for our gdaldem aspect raster, the same compression applies this time and no other
arguments are needed to generate the aspect raster. To visualize the aspect raster, open it
inside QGIS and assign it a color as described earlier in the introduction.

Merging rasters to generate a color relief
map

Generating a color relief raster is a one-liner with the gdaldem color-relief command
line. If you want something that's a little more visually appealing, we will perform a
combination of a slope, hillshade, and some color relief. Our end result is a single new raster
representing a merge of layers to give a nice visual effect of elevation relief. The results are
going to look similar to the following image:

Raster Analysis

160

Getting ready
For this exercise, you need to have the GDAL libraries installed that include the gdaldem
command-line tool.

How to do it...
1. Let's begin by extracting some key information out of our DEM using the gdalinfo

\ch07\code>gdalinfo ../geodata/092j02_0200_demw.dem command-line
tool as follows:
Driver: USGSDEM/USGS Optional ASCII DEM (and CDED)
Files: ../geodata/092j02_0200_demw.dem
 ../geodata/092j02_0200_demw.dem.aux.xml
Size is 1201, 1201
Coordinate System is:
GEOGCS["NAD83",
 DATUM["North_American_Datum_1983",
 SPHEROID["GRS 1980",6378137,298.257222101,
 AUTHORITY["EPSG","7019"]],
 TOWGS84[0,0,0,0,0,0,0],
 AUTHORITY["EPSG","6269"]],
 PRIMEM["Greenwich",0,
 AUTHORITY["EPSG","8901"]],
 UNIT["degree",0.0174532925199433,
 AUTHORITY["EPSG","9108"]],
 AUTHORITY["EPSG","4269"]]
Origin = (-123.000104166666630,50.250104166666667)
Pixel Size = (0.000208333333333,-0.000208333333333)
Metadata:
 AREA_OR_POINT=Point
Corner Coordinates:
Upper Left (-123.0001042, 50.2501042) (123d 0' 0.37"W,
50d15' 0.38"N)
Lower Left (-123.0001042, 49.9998958) (123d 0' 0.37"W,
49d59'59.63"N)
Upper Right (-122.7498958, 50.2501042) (122d44'59.62"W,
50d15' 0.38"N)
Lower Right (-122.7498958, 49.9998958) (122d44'59.62"W,
49d59'59.63"N)
Center (-122.8750000, 50.1250000) (122d52'30.00"W,
50d 7'30.00"N)

Chapter 7

161

Band 1 Block=1201x1201 Type=Int16, ColorInterp=Undefined
 Min=348.000 Max=2885.000
 Minimum=348.000, Maximum=2885.000, Mean=1481.196, StdDev=564.262
 NoData Value=-32767
 Unit Type: m
 Metadata:
 STATISTICS_MAXIMUM=2885
 STATISTICS_MEAN=1481.1960280116
 STATISTICS_MINIMUM=348
 STATISTICS_STDDEV=564.26229690401

2. This key information is then used to create our color ramp.txt file. Start off by
creating a new text file called ramp.txt and type in the following color codes:
-32767 255 255 255
0 46 154 88
360 251 255 128
750 96 108 31
1100 148 130 55
2900 255 255 255

3. The -32767 value defines our NODATA values in the white (255 255 255) RGB
color. Now, save the ramp.txt file in the same folder as the following code that will
generate the new raster color relief:

#!/usr/bin/env python
-*- coding: utf-8 -*-
import subprocess

dem_file = '../geodata/092j02_0200_demw.dem'
hillshade_relief = '../geodata/hillshade.tif'
relief = '../geodata/relief.tif'
final_color_relief = '../geodata/final_color_relief.tif'

create_hillshade = 'gdaldem hillshade -co compress=lzw
-compute_edges ' + dem_file + ' ' + hillshade_relief
subprocess.call(create_hillshade, shell=True)
print create_hillshade

cr = 'gdaldem color-relief -co compress=lzw ' + dem_file +
' ramp.txt ' + relief
subprocess.call(cr)
print cr

Raster Analysis

162

merge = 'python hsv_merge.py ' + relief + ' ' +
hillshade_relief + ' ' + final_color_relief
subprocess.call(merge)
print merge

create_slope = '''gdaldem slope -co compress=lzw
../geodata/092j02_0200_demw.dem ../geodata/slope_w-degrees.tif '''

subprocess.call(create_slope)

How it works...
We need to chain together some commands and variables to get the desired results to look
good. To begin our journey, we'll extract some key information from our DEM to enable us to
create a color ramp that defines what colors are assigned to the elevation values. This new
ramp.txt file stores our color ramp values that are then used by the gdaldem color-
relief command.

The code then begins by defining the input and output needed as variables throughout this
script. In the preceding code we have defined the input DEM and three output .tif files.

The first call will execute the gdaldem hillshade command to generate our hillshade. This
is closely followed by the gdaldem color-relief command, creating our nice color raster
that's based on the ramp.txt file we've defined. The ramp.txt file contains the NODATA
value and sets it as the white RGB color. The five categories are based on the DEM data itself.

The final merge takes place using the Frank Warmerdam hsv_merge.py script that
combines our relief output with the generated hillshade raster, leaving us with our final raster.
Our result is a nice looking combination of a color-relief map and a hillshade.

163

8
Network Routing

Analysis

In this chapter, we will cover the following topics:

 f Finding the Dijkstra shortest path with pgRouting

 f Finding the Dijkstra shortest path with NetworkX in pure Python

 f Generating evacuation polygons based on an indoor shortest path

 f Creating centerlines from polygons

 f Building an indoor routing system in 3D

 f Calculating indoor route walk time

Introduction
Routing has become commonplace on navigation devices for road networks across the
world. If you want to know how to drive from point A to point B, simply enter the start address
and end address into your navigation software and it will calculate the shortest route for you
in seconds.

Here's a scenario you may come across: Route me to Prof. Dr. Smith's office in the Geography
Department for my meeting at any university anywhere. Hmm, sorry, there's no routing
network available on my navigation software. This is a reminder for you to not to forget to ask
for directions on campus for your meeting location.

Network Routing Analysis

164

This chapter is all about routing and, specifically, routing inside large building complexes from
office A33, first floor in building E01 to office B55, sixth floor in building P7.

We will explore the powerful routing capabilities of pgRouting, an extension of PostgreSQL.
With pgRouting, we can calculate the shortest path using either the Dijkstra, A*, and/or K
shortest path algorithms. Alongside pgRouting, we will use a pure Python solution with the
NetworkX library to generate a route from the same source data.

BIG IMPORTANT NOTE. Pay attention to the input network
dataset used and make sure that it is in the EPSG: 3857
coordinate system, a geometric Cartesian meter system. Routing
calculations using world coordinates in EPSG: 4326 must be
converted if used by such a system. Also, note that the GeoJSON
coordinate system is interpreted by QGIS as EPSG:4326 even
though the coordinates are stored in EPSG:3857!

Chapter 8

165

Finding the Dijkstra shortest path with
pgRouting

There are a few Python libraries out there, such as networkX and scikit-image, that can find
the shortest path over a raster or NumPy array. We want to focus on routing over a vector
source and returning a vector dataset; therefore, pgRouting is a natural choice for us. Custom
Python Dijkstra or the A Star (A*) shortest path algorithms exist but one that performs well on
large networks is hard to find. The pgRouting extension of PostgreSQL is used by OSM and
many other projects and is well tested.

Our example will have us load a Shapefile of an indoor network from one floor for simplicity's
sake. An indoor network is comprised of network lines that go along the hallways and open
walkable spaces within a building, leading to a door in most cases.

Getting ready
For this recipe, we are going to need to set up our PostGIS database with the pgRouting
extension. On a Windows machine, you can install pgRouting by downloading a ZIP file
for Postgresql 9.3 at http://winnie.postgis.net/download/windows/pg93/
buildbot/. Then, extract the zip file into C:\Program Files\PostgreSQL\9.3\.

For Ubuntu Linux users, the pgRouting website explains the details at http://docs.
pgrouting.org/2.0/en/doc/src/installation/index.html#ubuntu-debian.

To enable this extension, you have a couple of options. First off, you can run the command-
line psql tool to activate the extension as follows if you have your PostgreSQL running as
explained in Chapter 1, Setting Up Your Geospatial Python Environment:

> psql py_geoan_cb -c "create extension pgrouting"

You can use the pgAdmin user tool by simply opening up the py_geoan_cb database, right-
clicking on Extensions, selecting New Extension..., and in the Name field, scrolling down to
find the pgRouting entry and selecting it.

Now we need some data to do our routing calculations. The data used is a Shapefile located in
your /ch08/geodata/shp/e01_network_lines_3857.shp folder. Take a look at Chapter
3, Moving Spatial Data from One Format to Another, on how to import the Shapefile or use
shp2pgsql. Here is the command-line one-liner using ogr2ogr to import the Shapefile:

>ogr2ogr -a_srs EPSG:3857 -lco "SCHEMA=geodata" -lco "COLUMN_
TYPES=type=varchar,type_id=integer" -nlt MULTILINESTRING -nln ch08_
e01_networklines -f PostgreSQL "PG:host=localhost port=5432 user=pluto
dbname=py_geoan_cb password=secret" geodata/shp/e01_network_lines_3857.
shp

http://winnie.postgis.net/download/windows/pg93/buildbot/
http://winnie.postgis.net/download/windows/pg93/buildbot/

Network Routing Analysis

166

Note that you either use the same username and password from Chapter 1, Setting Up Your
Geospatial Python Environment, or your own defined username and password.

For Windows users, you might need to insert the full path of your Shapefile, something that
could look like c:\somepath\geodata\shp\e01_network_lines.shp. We explicitly set
the input of the EPSG:3857 Web Mercator because, sometimes, ogr2ogr guesses the wrong
projection and in this way, it ensures that it is correct on upload. Another thing to note is that
we also explicitly define the output table column types because ogr2ogr uses numeric fields
for our integers and this does not go well with pgRouting, so we explicitly pass the comma-
separated list of field names and field types.

For a detailed description of how ogr2ogr works, visit
http://gdal.org/ogr2ogr.html.

Our new table includes two fields, one called type and the other, type_id. The type_id
variable will store an integer used to identify what kind of network segment we are on, such as
stairs, an indoor way, or elevator. The remaining fields are necessary for pgRouting, which is
installed as shown in the following code, and include columns called source, target, and
cost. The source and target columns both need to be integers, while the cost field is of a
double precision type. These types are the requirements of the pgRouting functions.

Let's go ahead and add these fields now to our ch08_e01_networklines table with the
help of some SQL queries:

ALTER TABLE geodata.ch08_e01_networklines ADD COLUMN source INTEGER;

ALTER TABLE geodata.ch08_e01_networklines ADD COLUMN target INTEGER;

ALTER TABLE geodata.ch08_e01_networklines ADD COLUMN cost DOUBLE
PRECISION;

ALTER TABLE geodata.ch08_e01_networklines ADD COLUMN length DOUBLE
PRECISION;

UPDATE geodata.ch08_e01_networklines set length = ST_Length(wkb_
geometry);

Once the network dataset has its new columns, we need to run the create topology
pgr_createTopology()function. This function takes the name of our network dataset, a
tolerance value, geometry field name, and a primary key field name. The function will create a
new table of points on the LineString intersections, that is, nodes on a network that are in the
same schema:

SELECT public.pgr_createTopology('geodata.ch08_e01_networklines',

 0.0001, 'wkb_geometry', 'ogc_fid');

http://gdal.org/ogr2ogr.html

Chapter 8

167

The pgr_createTopology function parameters include the name of the networklines
LineStrings containing our cost and type fields. The second parameter is the distance
tolerance in meters followed by the name of the geometry column and our primary key unique
id called ogc_fid.

Now that our tables and environment are set up, this allows us to actually create the shortest
path called the Dijkstra route.

To run the Python code, make sure you have the psycopg2 and geojson modules installed
as described in Chapter 1, Setting Up Your Geospatial Python Environment.

How to do it...
1. Check out this code and follow along:

#!/usr/bin/env python
-*- coding: utf-8 -*-

import psycopg2
import json
from geojson import loads, Feature, FeatureCollection

db_host = "localhost"
db_user = "pluto"
db_passwd = "secret"
db_database = "py_geoan_cb"
db_port = "5432"

connect to DB
conn = psycopg2.connect(host=db_host, user=db_user,
port=db_port,
 password=db_passwd,
database=db_database)

create a cursor
cur = conn.cursor()

start_x = 1587927.204
start_y = 5879726.142
end_x = 1587947.304
end_y = 5879611.257

find the start node id within 1 meter of the given
coordinate
used as input in routing query start point
start_node_query = """

Network Routing Analysis

168

 SELECT id FROM geodata.ch08_e01_networklines_vertices_pgr AS p
 WHERE ST_DWithin(the_geom, ST_GeomFromText('POINT(
%s %s)',3857), 1);"""

locate the end node id within 1 meter of the given
coordinate
end_node_query = """
 SELECT id FROM
geodata.ch08_e01_networklines_vertices_pgr AS p
 WHERE ST_DWithin(the_geom, ST_GeomFromText('POINT(
%s %s)',3857), 1);
 """

get the start node id as an integer
cur.execute(start_node_query, (start_x, start_y))
sn = int(cur.fetchone()[0])

get the end node id as an integer
cur.execute(end_node_query, (end_x, end_y))
en = int(cur.fetchone()[0])

pgRouting query to return our list of segments
representing
our shortest path Dijkstra results as GeoJSON
query returns the shortest path between our start and end
nodes above
using the python .format string syntax to insert a
variable in the query
routing_query = '''
 SELECT seq, id1 AS node, id2 AS edge,
ST_Length(wkb_geometry) AS cost,
 ST_AsGeoJSON(wkb_geometry) AS geoj
 FROM pgr_dijkstra(
 'SELECT ogc_fid as id, source, target,
st_length(wkb_geometry) as cost
 FROM geodata.ch08_e01_networklines',
 {start_node},{end_node}, FALSE, FALSE
) AS dij_route
 JOIN geodata.ch08_e01_networklines AS input_network
 ON dij_route.id2 = input_network.ogc_fid ;
 '''.format(start_node=sn, end_node=en)

run our shortest path query

Chapter 8

169

cur.execute(routing_query)

get entire query results to work with
route_segments = cur.fetchall()

empty list to hold each segment for our GeoJSON output
route_result = []

loop over each segment in the result route segments
create the list for our new GeoJSON
for segment in route_segments:
 geojs = segment[4]
 geojs_geom = loads(geojs)
 geojs_feat = Feature(geometry=geojs_geom,
properties={'nice': 'route'})
 route_result.append(geojs_feat)

using the geojson module to create our GeoJSON Feature
Collection
geojs_fc = FeatureCollection(route_result)

define the output folder and GeoJSON file name
output_geojson_route =
"../geodata/ch08_shortest_path_pgrouting.geojson"

save geojson to a file in our geodata folder
def write_geojson():
 with open(output_geojson_route, "w") as geojs_out:
 geojs_out.write(json.dumps(geojs_fc))

run the write function to actually create the GeoJSON
file
write_geojson()

clean up and close database curson and connection
cur.close()
conn.close()

Network Routing Analysis

170

2. The resulting query, if you ran it inside pgAdmin, for example, would return
the following:

A route needs to be visualized on a map and not as a table. Go ahead and drag and
drop your newly created /ch08/geodata/ch08_shortest_path_pgrouting.
geojson file into QGIS. If all goes well, you should see this pretty little line, excluding
the red arrows and text:

Chapter 8

171

How it works...
Our code journey starts with setting up our database connection so that we can execute some
queries against our uploaded data.

Now we are ready to run some routing, but wait, How do we set the start and end points that
we want to route to and from? The natural way to do this is to input and the x, y coordinate
pair for the start and end points. Unfortunately, the pgr_dijkstra() function takes only the
start and end node IDs. This means that we need to get these node IDs from the new table
called ch08_e01_networklines_vertices_pgr. To locate the nodes, we use a simple
PostGIS function, ST_Within(), to find the nearest node within one meter from the input
coordinate. Inside this query, our input geometry uses the ST_GeomFromText() function so
that you can clearly see where things go in our SQL. Now, we'll execute our query and convert
the response to an integer value as our node ID. This node ID is then ready for input in the
next and final query.

The routing query will return a sequence number, node, edge, cost, and geometry for each
segment along our final route. The geometry created is GeoJSON using the ST_AsGeoJSON()
PostGIS function that feeds the creation of our final GeoJSON output route.

The pgRouting pgr_dijkstra()function's input arguments include an SQL query, start node
ID, end node ID, directed value, and a has_rcost Boolean value. We set the directed and
has_rcost values to False, while passing in the start_node and end_node IDs. This
query performs a JOIN between the generated route IDs and input network IDs so that we
have some geometry output to visualize.

Our journey then ends with processing the results and creating our output GeoJSON file. The
routing query has returned a list of individual segments from start to end that aren't in the
form of a single LineString, but a set of many LineStrings. This is why we need to create a list
and append each route segment to a list by creating our GeoJSON FeatureCollection file.

Here, we use the write_geojson() function to output our final GeoJSON file called
ch08_shortest_path_pgrouting.geojson.

Note that this GeoJSON file is in the EPSG:3857 coordinate
system and is interpreted by QGIS as EPSG:4326, which
is incorrect. Geodata for routing, such as OSM data and
custom datasets, has lots of possible mistakes, errors, and
inconsistencies. Beware that the devil is hiding in the detail
of the data this time and not so much in the code.

Go ahead and drag and drop your GeoJSON file into QGIS to see how your final route looks.

Network Routing Analysis

172

Finding the Dijkstra shortest path with
NetworkX in pure Python

This recipe is a pure Python solution to calculate the shortest path on a network. NetworkX
is the library we will use with many algorithms to solve the shortest path problem, including
Dijkstra (http://networkx.github.io/). NetworkX relies on numpy and scipy to
perform some graph calculations and help with performance. In this recipe, we will only use
Python libraries to create our shortest path based on the same input Shapefile used in our
previous recipe.

Getting ready
Start with installing NetworkX on your machine with the pip installer as follows:

>> pip install networkx

For the network graph algorithms, NetworkX requires numpy and scipy, so take a look at
Chapter 1, Setting Up Your Geospatial Python Environment, for instructions on these. We also
use Shapely to generate our geometry outputs to create GeoJSON files, so check whether you
have installed Shapely. One hidden requirement is that GDAL/OGR is used in the back end
of NetworkX's import Shapefile function. As mentioned earlier, in Chapter 1, you will find
instructions on this subject.

The input data that represents our network is a Shapefile at /ch08/geodata/shp/e01_
network_lines_3857.shp, containing our network dataset that is already prepared for
routing, so make sure you download this chapter. Now you are ready to run the example.

How to do it...
1. You need to run this code from the command line to generate the resulting output

GeoJSON files that you can open in QGIS, so follow along:
#!/usr/bin/env python
-*- coding: utf-8 -*-
import networkx as nx
import numpy as np
import json
from shapely.geometry import asLineString, asMultiPoint

def get_path(n0, n1):
 """If n0 and n1 are connected nodes in the graph,
 this function will return an array of point
 coordinates along the line linking
 these two nodes."""

http://networkx.github.io/
/ch08/geodata/shp/e01_network_lines_3857.shp
/ch08/geodata/shp/e01_network_lines_3857.shp

Chapter 8

173

 return np.array(json.loads(nx_list_subgraph[n0][n1]['Json'])[
'coordinates'])

def get_full_path(path):
 """
 Create numpy array line result
 :param path: results of nx.shortest_path function
 :return: coordinate pairs along a path
 """
 p_list = []
 curp = None
 for i in range(len(path)-1):
 p = get_path(path[i], path[i+1])
 if curp is None:
 curp = p
 if np.sum((p[0]-curp)**2) > np.sum((p[-1]-
curp)**2):
 p = p[::-1, :]
 p_list.append(p)
 curp = p[-1]
 return np.vstack(p_list)

def write_geojson(outfilename, indata):
 """
 create GeoGJSOn file
 :param outfilename: name of output file
 :param indata: GeoJSON
 :return: a new GeoJSON file
 """

 with open(outfilename, "w") as file_out:
 file_out.write(json.dumps(indata))

if __name__ == '__main__':

 # use Networkx to load a Noded shapefile
 # returns a graph where each node is a coordinate pair
 # and the edge is the line connecting the two nodes

 nx_load_shp =
nx.read_shp("../geodata/shp/e01_network_lines_3857.shp")

 # A graph is not always connected, so we take the
largest connected subgraph

Network Routing Analysis

174

 # by using the connected_component_subgraphs function.
 nx_list_subgraph = list(nx.connected_component_subgraphs(
nx_load_shp.to_undirected()))[0]

 # get all the nodes in the network
 nx_nodes = np.array(nx_list_subgraph.nodes())

 # output the nodes to a GeoJSON file to view in QGIS
 network_nodes = asMultiPoint(nx_nodes)
 write_geojson("../geodata/ch08_final_netx_nodes.geojson",
 network_nodes.__geo_interface__)

 # this number represents the nodes position
 # in the array to identify the node
 start_node_pos = 30
 end_node_pos = 21

 # Compute the shortest path. Dijkstra's algorithm.
 nx_short_path = nx.shortest_path(nx_list_subgraph,

source=tuple(nx_nodes[start_node_pos]),

target=tuple(nx_nodes[end_node_pos]),
 weight='distance')

 # create numpy array of coordinates representing
result path
 nx_array_path = get_full_path(nx_short_path)

 # convert numpy array to Shapely Linestring
 out_shortest_path = asLineString(nx_array_path)

 write_geojson("../geodata/ch08_final_netx_sh_path.geojson",
 out_shortest_path.__geo_interface__)

How it works...
NetworkX has a nice function called read_shp that inputs a Shapefile directly. However, to
start doing this, we need to define the write_geojson function to output our results as
GeoJSON files. The input Shapefile is a completely connected network dataset. Sometimes,
you may find that your input is not connected and this function call to connected_
component_subgraphs finds nodes that are connected, only using these connected nodes.
The inner function sets our network to undirected.

Chapter 8

175

This function does not create a connected network dataset; this
job is left for you to perform in QGIS or some other desktop GIS
software. One solution is to execute this in PostgreSQL with the
tools provided with the pgRouting extension.

Now, we'll generate the nodes on our network and export them to GeoJSON. This is, of course,
not necessary, but it is nice to see where the nodes are on the map to debug your data. If any
problems do occur in generating routes, you can visually identify them quite quickly.

Next up, we set the array position of the start and end node to calculate our route. The
NetworkX shortest_path algorithm requires you to define the source and target nodes.

One thing to pay attention to is the fact that the source and
target are coordinate pairs within an array of points.

As nice as this array of points are, we need a path and, hence, the get_path and get_
full_path functions are discussed next. Our get_path function takes two input nodes, that
is, two pairs of coordinates, and returns a NumPy array of edge coordinates along the line.
This is followed closely by the get_full_path function that internally uses the get_path
function to output the complete list of all paths and coordinates along all paths.

All the edges and corresponding coordinates are then appended to a new list that needs to
be combined—hence, the NumPy vstack function. Inside our for loop, we go through each
path, getting the edges and coordinates to build our list that then gets concatenated together
as our final NumPy array output.

Shapely was built with NumPy compatibility and, therefore, has an asLineString()function
that can directly input a NumPy array of coordinates. Now we have the geometry of our final
LineString route and can export it to GeoJSON with our function.

Network Routing Analysis

176

Generating evacuation polygons based on
an indoor shortest path

Architects and transportation planners, for example, need to plan where and how many exits
a building will require based on various standards and safety policies. After a building is built,
a facility manager and security team usually do not have access to this information. Imagine
that there is an event to be planned and you want to see what areas can be evacuated within
a certain time, which are constrained by your list of exits in the building.

During this exercise, we want to create some polygons for a specific start point inside a major
building, showing which areas can be evacuated in 10, 20, 30, and 60 second intervals. We
assume that people will walk at 5 km/hr or 1.39 m/s, which is their normal walking speed. If
we panic and run, our normal run speed increases to 6.7 m/s or 24.12 km/hr.

Our results are going to generate a set of polygons representing our evacuation zones based on
the building hallways. We need to define the start position of where the evacuation begins. This
starting point of our calculation is equal to the starting point in our route that was discussed in
the previous recipe, Finding the Dijkstra shortest path with NetworkX in pure Python.

This image shows the resulting polygons and points that are generated using our script. The
results are styled and visualized using QGIS.

Chapter 8

177

Getting ready
This example uses the network data loaded by our previous recipe, so make sure that you
have loaded this data into your local PostgreSQL database. After you have loaded the data,
you will have two tables, geodata.ch08_e01_networklines_vertices_pgr and
geodata.ch08_e01_networklines. In combination with these tables, you need a single
new Shapefile for our input polygons located at /ch08/geodata/shp/e01_hallways_
union_3857.shp, representing the building hallways that are used to clip our resulting
distance polygons.

How to do it...
1. There are lots of comments in the code for clarity purposes, so read along:

#!/usr/bin/env python
-*- coding: utf-8 -*-

import psycopg2
import shapefile
import json
import shapely.geometry as geometry
from geojson import loads, Feature, FeatureCollection
from shapely.geometry import asShape

database connection
db_host = "localhost"
db_user = "pluto"
db_passwd = "secret"
db_database = "py_geoan_cb"
db_port = "5432"

connect to DB
conn = psycopg2.connect(host=db_host, user=db_user,
port=db_port,
 password=db_passwd,
database=db_database)
cur = conn.cursor()

def write_geojson(outfilename, indata):
 with open(outfilename, "w") as geojs_out:
 geojs_out.write(json.dumps(indata))

Network Routing Analysis

178

center point for creating our distance polygons
x_start_coord = 1587926.769
y_start_coord = 5879726.492

query including two variables for the x, y POINT
coordinate
start_node_query = """
 SELECT id
 FROM geodata.ch08_e01_networklines_vertices_pgr AS p
 WHERE ST_DWithin(the_geom,
 ST_GeomFromText('POINT({0} {1})',3857),1);
 """.format(x_start_coord, y_start_coord)

get the start node id as an integer
pass the variables
cur.execute(start_node_query)
start_node_id = int(cur.fetchone()[0])

combined_result = []

hallways = shapefile.Reader("../geodata/shp/
e01_hallways_union_3857.shp")
e01_hallway_features = hallways.shape()
e01_hallway_shply = asShape(e01_hallway_features)

time in seconds
evac_times = [10, 20, 30, 60]

def generate_evac_polys(start_node_id, evac_times):
 """

 :param start_node_id: network node id to start from
 :param evac_times: list of times in seconds
 :return: none, generates GeoJSON files
 """

 for evac_time in evac_times:

 distance_poly_query = """
 SELECT seq, id1 AS node, cost,
ST_AsGeoJSON(the_geom)
 FROM pgr_drivingDistance(

Chapter 8

179

 'SELECT ogc_fid AS id, source,
target,
 ST_Length(wkb_geometry)/
5000*60*60 AS cost
 FROM
geodata.ch08_e01_networklines',
 {0}, {1}, false, false
) as ev_dist
 JOIN
geodata.ch08_e01_networklines_vertices_pgr
 AS networklines
 ON ev_dist.id1 = networklines.id;
 """.format(start_node_id, evac_time)

 cur.execute(distance_poly_query)
 # get entire query results to work with
 distance_nodes = cur.fetchall()

 # empty list to hold each segment for our GeoJSON
output
 route_results = []

 # loop over each segment in the result route
segments
 # create the list of our new GeoJSON
 for dist_node in distance_nodes:
 sequence = dist_node[0] # sequence number
 node = dist_node[1] # node id
 cost = dist_node[2] # cost value
 geojs = dist_node[3] # geometry
 geojs_geom = loads(geojs) # create geojson geom
 geojs_feat = Feature(geometry=geojs_geom,
 properties={'sequence_num': sequence,
 'node':node, 'evac_time_sec':cost,
 'evac_code': evac_time})
 # add each point to total including all points
 combined_result.append(geojs_feat)
 # add each point for individual evacuation time
 route_results.append(geojs_geom)

 # geojson module creates GeoJSON Feature Collection
 geojs_fc = FeatureCollection(route_results)

 # create list of points for each evac time

Network Routing Analysis

180

 evac_time_pts = [asShape(route_segment) for
route_segment in route_results]

 # create MultiPoint from our list of points for
evac time
 point_collection =
geometry.MultiPoint(list(evac_time_pts))

 # create our convex hull polyon around evac time
points
 convex_hull_polygon = point_collection.convex_hull

 # intersect convex hull with hallways polygon (
ch = convex hull)
 cvex_hull_intersect =
e01_hallway_shply.intersection(convex_hull_polygon)

 # export convex hull intersection to geojson
 cvex_hull = cvex_hull_intersect.__geo_interface__

 # for each evac time we create a unique GeoJSON
polygon
 output_ply = "../geodata/ch08-03_dist_poly_" +
str(evac_time) + ".geojson"

 write_geojson(output_ply, cvex_hull)

 output_geojson_route = "../geodata/
ch08-03_dist_pts_" + str(evac_time) + ".geojson"

 # save GeoJSON to a file in our geodata folder
 write_geojson(output_geojson_route, geojs_fc)

create or set of evac GeoJSON polygons based
on location and list of times in seconds
generate_evac_polys(start_node_id, evac_times)

final result GeoJSON
final_res = FeatureCollection(combined_result)

write to disk
write_geojson("../geodata/ch08-03_final_dist_poly.geojson",
final_res)

clean up and close database cursor and connection
cur.close()
conn.close()

Chapter 8

181

How it works...
The code starts with database boiler plate code plus a function to export the GeoJSON result
files. To create an evacuation polygon, we require one input, which is the starting point for the
distance calculation polygon on our network. As seen in the previous section, we need to find
the node on the network closest to our starting coordinate. Therefore, we run a SQL select
to find this node that's within one meter of our coordinate.

Next up, we define the combined_result variable that will hold all the points reachable for
all specified evacuation times in our list. Hence, it stores the results of each evacuation time
in one single output.

The hallways Shapefile is then prepared as Shapely geometry because we will need it to clip
our output polygons to be inside the hallways. We are only interested in seeing which areas
can be evacuated within the specified time scales of 10, 20, 30, and 60 seconds. If the area is
outside the hallways, you are located outside the building and, well, better said, you are safe.

Now, we will loop through each of our time intervals to create individual evacuation polygons
for each time defined in our list. The pgRouting extension includes a function called pgr_
drivingDistance(), which returns a list of nodes that are reachable within a specified
cost. Parameters for this function include the SQL query that returns id, source, target,
and cost columns. Our final four parameters include the start node ID that's represented by
the %s variable and equals start_node_id. Then, the evacuation time in seconds stored
within the evac_time variable followed by two false values. These last two false values are
for the directed route or reverse cost calculation, which we are not using.

In our case, the cost is calculated as a time value in seconds
based on distance. We assume that you are walking at 5 km/
hr. The cost is then calculated as the segment length in meters
divided by 5000 m x 60 min x 60 sec to derive a cost value. Then,
we pass in the start node ID along with our specified evacuation
time in seconds. If you want to calculate in minutes, simply
remove one of the x 60 in the equation.

The geometry of each node is then derived through a SQL JOIN between the vertices table and
the result list of nodes with node IDs. Now that we have our set of geometry of points for each
node reachable within our evacuation time, it's time to parse this result. Parsing is required
to create our GeoJSON output, and it also feeds the points into our combined output, the
combined_result variable, and the individual evacuation time polygons that are created
with a convex hull algorithm from Shapely.

Network Routing Analysis

182

A better or more realistic polygon could be created using alpha
shapes. Alpha shapes form a polygon from a set of points, hugging
each point to retain a more realistic polygon that follow the shape
of the points. The convex hull simply ensures that all the points
are inside the resulting polygon. For a good read on alpha shapes,
check out this post by Sean Gillies at http://sgillies.
net/blog/1155/the-fading-shape-of-alpha/ and this
post at http://blog.thehumangeo.com/2014/05/12/
drawing-boundaries-in-python/.
What is included in the code is the alpha shapes module called
//ch08/code/alpha_shape.py that you can try out with the
input data points created, if you've followed along so far, to create
a more accurate polygon.

Our route_results variable stores the GeoJSON geometry used to create individual convex
hull polygons. This variable is then used to populate the list of points for each evacuation set
of points. It also provides the source of our GeoJSON export, creating FeatureCollection.

The final calculations include using Shapely to create the convex hull polygon, immediately
followed by intersecting this new convex hull polygon with our input Shapefile that represents
the building hallways. We are only interested in showing areas to evacuate, which boils down
to only areas inside the building, hence the intersection.

The remaining code exports our results to the GeoJSON files in your /ch08/geodata folder.
Go ahead and open this folder and drag and drop the GeoJSON files into QGIS to visualize
your new results. You will want to grab the following files:

 f ch08-03_dist_poly_10.geojson

 f ch08-03_dist_poly_20.geojson

 f ch08-03_dist_poly_30.geojson

 f ch08-03_dist_poly_60.geojson

 f ch08-03_final_dis_poly.geojson

Creating centerlines from polygons
For any routing algorithm to work, we need a set of network LineStrings to perform our
shortest path query on. Here, you, of course, have some options, ones that you can download
to the OSM data to clean up the roads. Secondly, you could digitize your own set of network
lines or, thirdly, you can try to autogenerate these lines.

http://sgillies.net/blog/1155/the-fading-shape-of-alpha/
http://sgillies.net/blog/1155/the-fading-shape-of-alpha/
http://blog.thehumangeo.com/2014/05/12/drawing-boundaries-in-python/
http://blog.thehumangeo.com/2014/05/12/drawing-boundaries-in-python/

Chapter 8

183

The generation of this network LineString is of utmost importance and determines the quality
and types of routes that we can generate. In an indoor environment, we have no roads and
street names; instead, we have hallways, rooms, lounges, elevators, ramps, and stairs. These
features are our roads, bridges, and highway metaphors where we want to create routes for
people to walk.

How we can create basic network LineStrings from polygons that represent hallways is what
we are going to show you in this recipe.

Getting ready
This exercise requires us to have a plan of some sort in digital form with polygons representing
hallways and other open spaces where people could walk. Our hallway polygon is courtesy
of the Alpen-Adria-Universität Klagenfurt in Austria. The polygons were simplified to keep the
rendering time low. The more complex your input geometry, the longer it will take to process.

We are using the scipy, shapely, and numpy libraries, so read Chapter 1, Setting Up Your
Geospatial Python Environment, if you have not done so already. Inside the /ch08/code/
folder, you'll find the centerline.py module containing the Centerline class. This
contains the actual code that generates centerlines and is imported by the ch08/code/
ch08-04_centerline.py module.

Network Routing Analysis

184

How to do it...
Let's dive into some code:

If you decide to run the following code straightaway, beware that
the creation of centerlines is a slow process and is not optimized
for performance. This code could run for 5 min on a slow
machine, so be patient and keep an eye on the console until it
displays FINISHED.

1. The first task is to create a function to create our centerlines. This is the modified
version of the Filip Todic orginal centerlines.py class:
#!/usr/bin/env python
-*- coding: utf-8 -*-
from shapely.geometry import LineString
from shapely.geometry import MultiLineString
from scipy.spatial import Voronoi
import numpy as np

class Centerline(object):
 def __init__(self, inputGEOM, dist=0.5):
 self.inputGEOM = inputGEOM
 self.dist = abs(dist)

 def create_centerline(self):
 """
 Calculates the centerline of a polygon.

 Densifies the border of a polygon which is then
represented
 by a Numpy array of points necessary for creating
the
 Voronoi diagram. Once the diagram is created, the
ridges
 located within the polygon are joined and returned.

 Returns:
 a MultiLinestring located within the polygon.
 """

 minx =
int(min(self.inputGEOM.envelope.exterior.xy[0]))

Chapter 8

185

 miny =
int(min(self.inputGEOM.envelope.exterior.xy[1]))

 border =
np.array(self.densify_border(self.inputGEOM, minx, miny))

 vor = Voronoi(border)
 vertex = vor.vertices

 lst_lines = []
 for j, ridge in enumerate(vor.ridge_vertices):
 if -1 not in ridge:
 line = LineString([
 (vertex[ridge[0]][0] + minx,
vertex[ridge[0]][1] + miny),
 (vertex[ridge[1]][0] + minx,
vertex[ridge[1]][1] + miny)])

 if line.within(self.inputGEOM) and
len(line.coords[0]) > 1:
 lst_lines.append(line)

 return MultiLineString(lst_lines)

 def densify_border(self, polygon, minx, miny):
 """
 Densifies the border of a polygon by a given factor
 (by default: 0.5).

 The function tests the complexity of the polygons
 geometry, i.e. does the polygon have holes or not.
 If the polygon doesn't have any holes, its exterior
 is extracted and densified by a given factor.
 If the polygon has holes, the boundary of each hole
 as well as its exterior is extracted and densified
 by a given factor.

 Returns:
 a list of points where each point is
 represented
 by a list of its
 reduced coordinates.

 Example:
 [[X1, Y1], [X2, Y2], ..., [Xn, Yn]

Network Routing Analysis

186

 """

 if len(polygon.interiors) == 0:
 exterior_line = LineString(polygon.exterior)
 points =
self.fixed_interpolation(exterior_line, minx, miny)

 else:
 exterior_line = LineString(polygon.exterior)
 points =
self.fixed_interpolation(exterior_line, minx, miny)

 for j in range(len(polygon.interiors)):
 interior_line =
LineString(polygon.interiors[j])
 points +=
self.fixed_interpolation(interior_line, minx, miny)

 return points

 def fixed_interpolation(self, line, minx, miny):
 """
 A helping function which is used in densifying
 the border of a polygon.

 It places points on the border at the specified
 distance. By default the distance is 0.5 (meters)
 which means that the first point will be placed
 0.5 m from the starting point, the second point
 will be placed at the distance of 1.0 m from the
 first point, etc. Naturally, the loop breaks when
 the summarized distance exceeds
 the length of the line.

 Returns:
 a list of points where each point is
 represented by
 a list of its reduced coordinates.

 Example:
 [[X1, Y1], [X2, Y2], ..., [Xn, Yn]
 """

 count = self.dist
 newline = []

Chapter 8

187

 startpoint = [line.xy[0][0] - minx,
line.xy[1][0] - miny]
 endpoint = [line.xy[0][-1] - minx,
line.xy[1][-1] - miny]
 newline.append(startpoint)

 while count < line.length:
 point = line.interpolate(count)
 newline.append([point.x - minx,
point.y - miny])
 count += self.dist

 newline.append(endpoint)

 return newline

2. Now that we have a function that creates centerlines, we need some code to import
a Shapefile polygon, run the centerlines script, and export our results to GeoJSON so
we that can see it in QGIS:
#!/usr/bin/env python
-*- coding: utf-8 -*-
import json
import shapefile
from shapely.geometry import asShape, mapping
from centerline import Centerline

def write_geojson(outfilename, indata):
 with open(outfilename, "w") as file_out:
 file_out.write(json.dumps(indata))

def create_shapes(shapefile_path):
 '''
 Create our Polygon
 :param shapefile_path: full path to shapefile
 :return: list of Shapely geometries
 '''
 in_ply = shapefile.Reader(shapefile_path)
 ply_shp = in_ply.shapes()

 out_multi_ply = [asShape(feature) for feature in
ply_shp]

Network Routing Analysis

188

 print "converting to MultiPolygon: "

 return out_multi_ply

def generate_centerlines(polygon_shps):
 '''
 Create centerlines
 :param polygon_shps: input polygons
 :return: dictionary of linestrings
 '''
 dct_centerlines = {}

 for i, geom in enumerate(polygon_shps):
 print " now running Centerline creation"
 center_obj = Centerline(geom, 0.5)
 center_line_shply_line = center_obj.create_centerline()
 dct_centerlines[i] = center_line_shply_line

 return dct_centerlines

def export_center(geojs_file, centerlines):
 '''
 Write output to GeoJSON file
 :param centerlines: input dictionary of linestrings
 :return: write to GeoJSON file
 '''
 with open(geojs_file, 'w') as out:

 for i, key in enumerate(centerlines):
 geom = centerlines[key]
 newline = {'id': key, 'geometry':
mapping(geom), 'properties': {'id': key}}

 out.write(json.dumps(newline))

if __name__ == '__main__':

 input_hallways =
"../geodata/shp/e01_hallways_small_3857.shp"
 # run our function to create Shapely geometries

Chapter 8

189

 shply_ply_halls = create_shapes(input_hallways)

 # create our centerlines
 res_centerlines = generate_centerlines(shply_ply_halls)
 print "now creating centerlines geojson"

 # define output file name and location
 outgeojs_file =
'../geodata/04_centerline_results_final.geojson'

 # write the output GeoJSON file to disk
 export_center(outgeojs_file, res_centerlines)

How it works...
Starting with centerlines.py that contains the Centerline class, there is a lot going on
inside the class. We use the Voronoi polygons and extract ridges as centerlines. To create these
Voronoi polygons, we need to convert our polygon into LineStrings representing inner and outer
polygon edges. These edges then need to be converted to points to feed the Voronoi algorithm.
The points are generated based on a densify algorithm that creates points every 0.5 m along
the edge of a polygon and all the way around it. This helps the Voronoi function create a more
accurate representation of the polygon, and hence provides a better centerline. On the negative
side, the higher this distance is set, the more computing power needed.

The ch08-04_centerline.py code then imports this new Centerline class and actually
runs it using our hallways polygon. The input polygons are read from a Shapefile using pyshp.
Our generated shapes are then pumped into the generate_centerlines function to
output a dictionary of LineStrings representing our centerlines.

That output dictionary is then exported to GeoJSON as we loop over the centerlines and use
the standard json.dumps function to export it to our file.

Building an indoor routing system in 3D
How to route through one or multiple buildings or floors is what this recipe is all about. This
is, of course, the most complex situation involving complex data collection, preparation, and
implementation processes. We cannot go into all the complex data details of collection and
transformation from ACAD to PostGIS, for example; instead, the finished data is provided.

Network Routing Analysis

190

To create an indoor routing application, you need an already digitized routing network set of
lines representing the areas where people can walk. Our data represents the first and second
floor of a university building. The resulting indoor route, shown in the following screenshot,
starts from the second floor and travels down the stairs to the first floor, all the way through the
building, heading up the stairs again to the second floor, and finally reaching our destination.

Getting ready
For this recipe, we will need to complete quite a few tasks to prepare for the indoor 3D routing.
Here's a quick list of requirements:

 f A Shapefile for the first floor (/ch08/geodata/shp/e01_network_lines_3857.
shp).

 f A Shapefile for the second floor (/ch08/geodata/shp/e02_network_
lines_3857.shp).

Chapter 8

191

 f PostgreSQL DB 9.1 + PostGIS 2.1 and pgRouting 2.0. These were all installed in
the Finding the Dijkstra shortest path with pgRouting recipe at the beginning
of this chapter.

 f Python modules, psycopg2 and geojson.

Here is the list of tasks that we need to carry out:

1. Import the Shapefile of the first floor networklines (skip this if you've completed the
earlier recipe that imported this Shapefile) as follows:
ogr2ogr -a_srs EPSG:3857 -lco "SCHEMA=geodata" -lco "COLUMN_
TYPES=type=varchar,type_id=integer" -nlt MULTILINESTRING -nln
ch08_e01_networklines -f PostgreSQL "PG:host=localhost port=5432
user=postgres dbname=py_geoan_cb password=air" geodata/shp/e01_
network_lines_3857.shp

2. Import the Shapefile of the second floor networklines as follows:
ogr2ogr -a_srs EPSG:3857 -lco "SCHEMA=geodata" -lco "COLUMN_
TYPES=type=varchar,type_id=integer" -nlt MULTILINESTRING -nln
ch08_e02_networklines -f PostgreSQL "PG:host=localhost port=5432
user=postgres dbname=py_geoan_cb password=air" geodata/shp/e02_
network_lines_3857.shp

3. Assign routing columns to the first floor networklines (skip this step if you've
completed it in the previous recipe):
ALTER TABLE geodata.ch08_e01_networklines ADD COLUMN source
INTEGER;

ALTER TABLE geodata.ch08_e01_networklines ADD COLUMN target
INTEGER;

ALTER TABLE geodata.ch08_e01_networklines ADD COLUMN cost DOUBLE
PRECISION;

ALTER TABLE geodata.ch08_e01_networklines ADD COLUMN length DOUBLE
PRECISION;

UPDATE geodata.ch08_e01_networklines set length = ST_Length(wkb_
geometry);

4. Assign routing columns to the second floor networklines as follows:
ALTER TABLE geodata.ch08_e02_networklines ADD COLUMN source
INTEGER;

ALTER TABLE geodata.ch08_e02_networklines ADD COLUMN target
INTEGER;

ALTER TABLE geodata.ch08_e02_networklines ADD COLUMN cost DOUBLE
PRECISION;

Network Routing Analysis

192

ALTER TABLE geodata.ch08_e02_networklines ADD COLUMN length DOUBLE
PRECISION;

UPDATE geodata.ch08_e02_networklines set length = ST_Length(wkb_
geometry);

5. Create pgRouting 3D functions that allow you to route over your 3D networklines.
These two PostgreSQL functions are critically important as they reflect the original
pgRouting 2D functions that have now been converted to allow 3D routing. The order
of installation is also very important, so make sure you install pgr_pointtoid3d.
sql first! Both SQL files are located in your /ch08/code/ folder:
psql -U username -d py_geoan_cb -a -f pgr_pointtoid3d.sql

6. Next, install pgr_createTopology3d.sql. This is a modified version of the
original that now uses our new pgr_pointtoid3d functions as follows:
psql -U username -d py_geoan_cb -a -f pgr_createTopology3d.sql

7. Now we need to merge our two floor network lines into a single 3D LineString table
that we will perform our 3D routing on. This set of SQL commands is stored for
you at:
psql -U username -d py_geoan_cb -a -f indrz_create_3d_
networklines.sql

The exact creation of the 3D routing table is very important to understand as it allows 3D
routing queries. Our code is, therefore, listed as follows with SQL comments describing what
we are doing at each step:

-- if not, go ahead and update

-- make sure tables dont exist

drop table if exists geodata.ch08_e01_networklines_routing;

drop table if exists geodata.ch08_e02_networklines_routing;

-- convert to 3d coordinates with EPSG:3857

SELECT ogc_fid, ST_Force_3d(ST_Transform(ST_Force_2D(st_geometryN(wkb_
geometry, 1)),3857)) AS wkb_geometry,

 type_id, cost, length, 0 AS source, 0 AS target

 INTO geodata.ch08_e01_networklines_routing

 FROM geodata.ch08_e01_networklines;

SELECT ogc_fid, ST_Force_3d(ST_Transform(ST_Force_2D(st_geometryN(wkb_
geometry, 1)),3857)) AS wkb_geometry,

 type_id, cost, length, 0 AS source, 0 AS target

Chapter 8

193

 INTO geodata.ch08_e02_networklines_routing

 FROM geodata.ch08_e02_networklines;

-- fill the 3rd coordinate according to their floor number

UPDATE geodata.ch08_e01_networklines_routing SET wkb_geometry=ST_
Translate(ST_Force_3Dz(wkb_geometry),0,0,1);

UPDATE geodata.ch08_e02_networklines_routing SET wkb_geometry=ST_
Translate(ST_Force_3Dz(wkb_geometry),0,0,2);

UPDATE geodata.ch08_e01_networklines_routing SET length =ST_Length(wkb_
geometry);

UPDATE geodata.ch08_e02_networklines_routing SET length =ST_Length(wkb_
geometry);

-- no cost should be 0 or NULL/empty

UPDATE geodata.ch08_e01_networklines_routing SET cost=1 WHERE cost=0 or
cost IS NULL;

UPDATE geodata.ch08_e02_networklines_routing SET cost=1 WHERE cost=0 or
cost IS NULL;

-- update unique ids ogc_fid accordingly

UPDATE geodata.ch08_e01_networklines_routing SET ogc_fid=ogc_fid+100000;

UPDATE geodata.ch08_e02_networklines_routing SET ogc_fid=ogc_fid+200000;

-- merge all networkline floors into a single table for routing

DROP TABLE IF EXISTS geodata.networklines_3857;

SELECT * INTO geodata.networklines_3857 FROM

(

(SELECT ogc_fid, wkb_geometry, length, type_id, length*o1.cost as total_
cost,

 1 as layer FROM geodata.ch08_e01_networklines_routing o1) UNION

(SELECT ogc_fid, wkb_geometry, length, type_id, length*o2.cost as total_
cost,

Network Routing Analysis

194

 2 as layer FROM geodata.ch08_e02_networklines_routing o2))

as foo ORDER BY ogc_fid;

CREATE INDEX wkb_geometry_gist_index

 ON geodata.networklines_3857 USING gist (wkb_geometry);

CREATE INDEX ogc_fid_idx

 ON geodata.networklines_3857 USING btree (ogc_fid ASC NULLS LAST);

CREATE INDEX network_layer_idx

 ON geodata.networklines_3857

 USING hash

 (layer);

-- create populate geometry view with info

SELECT Populate_Geometry_Columns('geodata.networklines_3857'::regclass);

-- update stairs, ramps and elevators to match with the next layer

UPDATE geodata.networklines_3857 SET wkb_geometry=ST_AddPoint(wkb_
geometry,

 ST_EndPoint(ST_Translate(wkb_geometry,0,0,1)))

 WHERE type_id=3 OR type_id=5 OR type_id=7;

-- remove the second last point

UPDATE geodata.networklines_3857 SET wkb_geometry=ST_RemovePoint(wkb_
geometry,ST_NPoints(wkb_geometry) - 2)

 WHERE type_id=3 OR type_id=5 OR type_id=7;

-- add columns source and target

ALTER TABLE geodata.networklines_3857 add column source integer;

ALTER TABLE geodata.networklines_3857 add column target integer;

ALTER TABLE geodata.networklines_3857 OWNER TO postgres;

-- we dont need the temporary tables any more, delete them

DROP TABLE IF EXISTS geodata.ch08_e01_networklines_routing;

DROP TABLE IF EXISTS geodata.ch08_e02_networklines_routing;

Chapter 8

195

-- remove route nodes vertices table if exists

DROP TABLE IF EXISTS geodata.networklines_3857_vertices_pgr;

-- building routing network vertices (fills source and target columns in
those new tables)

SELECT public.pgr_createTopology3d('geodata.networklines_3857', 0.0001,
'wkb_geometry', 'ogc_fid');

Wow, that was a lot of stuff to get through, and now we are actually ready to run and create
some 3D routes. Hurray!

How to do it...
1. Let's dive into some code full of comments for your reading pleasure:

#!/usr/bin/env python
-*- coding: utf-8 -*-

import psycopg2
import json
from geojson import loads, Feature, FeatureCollection

db_host = "localhost"
db_user = "pluto"
db_passwd = "secret"
db_database = "py_geoan_cb"
db_port = "5432"

connect to DB
conn = psycopg2.connect(host=db_host, user=db_user,
port=db_port,
 password=db_passwd,
database=db_database)

create a cursor
cur = conn.cursor()

define our start and end coordinates in EPSG:3857
set start and end floor level as integer 0,1,2 for
example
x_start_coord = 1587848.414
y_start_coord = 5879564.080
start_floor = 2

x_end_coord = 1588005.547
y_end_coord = 5879736.039

Network Routing Analysis

196

end_floor = 2

find the start node id within 1 meter of the given
coordinate
select from correct floor level using 3D Z value
our Z Value is the same as the floor number as an integer
used as input in routing query start point
start_node_query = """
 SELECT id FROM geodata.networklines_3857_vertices_pgr
AS p
 WHERE ST_DWithin(the_geom, ST_GeomFromText('POINT(
%s %s)',3857), 1)
 AND ST_Z(the_geom) = %s;"""

locate the end node id within 1 meter of the given
coordinate
end_node_query = """
 SELECT id FROM geodata.networklines_3857_vertices_pgr
AS p
 WHERE ST_DWithin(the_geom, ST_GeomFromText('POINT(
%s %s)',3857), 1)
 AND ST_Z(the_geom) = %s;"""

run our query and pass in the 3 variables to the query
make sure the order of variables is the same as the
order in your query
cur.execute(start_node_query, (x_start_coord,
y_start_coord, start_floor))
start_node_id = int(cur.fetchone()[0])

get the end node id as an integer
cur.execute(end_node_query, (x_end_coord, y_end_coord,
end_floor))
end_node_id = int(cur.fetchone()[0])

pgRouting query to return our list of segments
representing
our shortest path Dijkstra results as GeoJSON
query returns the shortest path between our start and end
nodes above
in 3D traversing floor levels and passing in the layer
value = floor

routing_query = '''
 SELECT seq, id1 AS node, id2 AS edge,
ST_Length(wkb_geometry) AS cost, layer,

Chapter 8

197

 ST_AsGeoJSON(wkb_geometry) AS geoj
 FROM pgr_dijkstra(
 'SELECT ogc_fid as id, source, target,
st_length(wkb_geometry) AS cost, layer
 FROM geodata.networklines_3857',
 %s, %s, FALSE, FALSE
) AS dij_route
 JOIN geodata.networklines_3857 AS input_network
 ON dij_route.id2 = input_network.ogc_fid ;
 '''

run our shortest path query
cur.execute(routing_query, (start_node_id, end_node_id))

get entire query results to work with
route_segments = cur.fetchall()

empty list to hold each segment for our GeoJSON output
route_result = []

loop over each segment in the result route segments
create the list of our new GeoJSON
for segment in route_segments:
 print segment
 seg_cost = segment[3] # cost value
 layer_level = segment[4] # floor number
 geojs = segment[5] # geojson coordinates
 geojs_geom = loads(geojs) # load string to geom
 geojs_feat = Feature(geometry=geojs_geom, properties={'floor':
layer_level, 'cost': seg_cost})
 route_result.append(geojs_feat)

using the geojson module to create our GeoJSON Feature
Collection
geojs_fc = FeatureCollection(route_result)

define the output folder and GeoJSON file name
output_geojson_route =
"../geodata/ch08_indoor_3d_route.geojson"

save geojson to a file in our geodata folder
def write_geojson():
 with open(output_geojson_route, "w") as geojs_out:
 geojs_out.write(json.dumps(geojs_fc))

Network Routing Analysis

198

run the write function to actually create the GeoJSON
file
write_geojson()

clean up and close database curson and connection
cur.close()
conn.close()

How it works...
Using the psycopg2 module, we can connect to our fancy new tables in the database and
run some queries. The first query set finds the start and end nodes based on the x, y, and Z
elevation values. The Z value is VERY important; otherwise, the wrong node will be selected.
The Z value corresponds one to one with a layer/floor value. The 3D elevation data assigned
to our networklines_3857 dataset is simply one meter for floor one and two meters for
floor two. This keeps things simple and easy to remember without actually using the real
height of the floors, which, of course, you could do if you want to.

Our 3D routing is then able to run like any other normal 2D routing query because the data is
now in 3D, thanks to our two new pgRouting functions. The query goes through, selects our
data, and returns a nice GeoJSON string.

You have seen the remaining code before. It exports the results to a GeoJSON file on disk
so that you can open it in QGIS for viewing. We've managed to add a couple of properties to
the new GeoJSON file, including the floor number, cost in terms of distance, and the route
segment type that identifies whether a segment is an indoor way or is in the form of stairs.

Calculating indoor route walk time
Our indoor routing application would not be complete without letting us know how long it
would take to walk to our indoor walk now, would it? We will create a couple of small functions
that you can insert into your code in the previous recipe to print out the route walk times.

How to do it...
1. Without further ado, let's take a look at some code:

#!/usr/bin/env python
-*- coding: utf-8 -*-

def format_walk_time(walk_time):
 """
 takes argument: float walkTime in seconds
 returns argument: string time "xx minutes xx seconds"
 """

Chapter 8

199

 if walk_time > 0.0:
 return str(int(walk_time / 60.0)) + " minutes " +
str(int(round(walk_time % 60))) + " seconds"
 else:
 return "Walk time is less than zero! Something is
wrong"

def calc_distance_walktime(rows):
 """
 calculates distance and walk_time.
 rows must be an array of linestrings --> a route,
retrieved from the DB.
 rows[5]: type of line (stairs, elevator, etc)
 rows[3]: cost as length of segment
 returns a dict with key/value pairs route_length,
walk_time
 """

 route_length = 0
 walk_time = 0

 for row in rows:

 route_length += row[3]
 #calculate walk time
 if row[5] == 3 or row[5] == 4: # stairs
 walk_speed = 1.2 # meters per second m/s
 elif row[5] == 5 or row[5] == 6: # elevator
 walk_speed = 1.1 # m/s
 else:
 walk_speed = 1.39 # m/s

 walk_time += (row[3] / walk_speed)

 length_format = "%.2f" % route_length
 real_time = format_walk_time(walk_time)
 print {"route_length": length_format, "walk_time":
real_time}

2. Your results should show you a dictionary as follows:
{'walk_time': '4 minutes 49 seconds', 'route_length':
'397.19'}

Here, it is assumed that you have placed these functions into our previous recipe and
have called the function to print the results to the console.

Network Routing Analysis

200

How it works...
We have two simple functions to create walk times for our indoor routes. The first function,
called format_walk_time(), simply takes the resulting time and converts it to a human-
friendly form, showing the minutes and seconds, respectively, that are required for output.

The second function, calc_distance_walktime(), does the work, expecting a list object
including the distance. This distance then gets summed for each route segment into a total
distance value that's stored in the route_length variable. Our real_time variable is then
created by calling upon the format_walk_time function that passes in the walk_time
value in seconds.

Now you have a sophisticated indoor route with specified walk times for your application.

201

9
Topology Checking and

Data Validation

In this chapter, we will cover the following topics:

 f Creating a rule – only one point inside a polygon

 f A point must be on the starting and ending nodes of a line only

 f LineStrings must not overlap

 f A LineString must not have dangles

 f A polygon centroid must be within a specific distance of a line

Introduction
Topology rules allow you to enforce and test spatial relationships between different geometry
sets. This chapter will build an open source set of topology rules that you can run from the
command line or integrate in your python programs.

The spatial relationships described by the DE-9IM (Nine Intersect Model) are Equals, Disjoint,
Intersects, Touches, Crosses, Within, Contains, and Overlaps. However, exactly how these are
related is something that's unclear for most beginners. We are referring to the interior, boundary,
and exterior of our geometry types: Point, LineString, and Polygon, which are used directly to
perform the topology checks. These are as follows:

 f Interior: This refers to the entire shape except for its boundary. All geometry types
have interiors.

 f Boundary: This refers to the endpoints of all linear parts of line features or the linear
outline of a polygon. Only lines and polygons have boundaries.

Topology Checking and Data Validation

202

 f Exterior: This refers to the outside area a shape. All geometry types have exteriors.

The following table summarizes the topology geometries in a more formal wording:

Geometric subtypes Interior (I) Boundary (B) Exterior (E)
Point, MultiPoint point or points Empty set Points not in the interior

or boundary
LineString, Line Points that are left

when the boundary
points are removed

Two end Points Points not in the interior
or boundary

LinearRing All Points along the
LinearRing

Empty set Points not in the interior
or boundary

MultiLineString Points that are left
when the boundary
points are removed

Those Points
that are in the
boundaries of an
odd number of its
element Curves

Points not in the interior
or boundary

Polygon Points within the Rings Set of Rings Points not in the interior
or boundary

MultiPolygon Points within the Rings Set of Rings of its
Polygons

Points not in the interior
or boundary

The definitions of the interior, boundary, and exterior of the main geometry types are
described by the Open Geospatial Consortium (OGC).

In the following recipes, we will explore some custom topology rules that you could apply to
any project, laying the groundwork for you to create your own set of rules.

Chapter 9

203

Creating a rule – only one point inside
a polygon

A long time ago in GIS history, not having more than one point present in a polygon was super
important because one point per polygon was the standard way to demonstrate a topologically
clean polygon with its associated attribute and ID. Today, it is still important for many other
reasons, such as assigning attributes to polygons based on points inside a polygon. We must
perform a spatial join between the polygon and point to assign these valuable attributes.
If two points are located in one polygon, which attributes do you use? This recipe is about
creating a rule to check your data beforehand to ensure that only one point is located in each
polygon. If this test fails, you will get a list or errors; if it passes, the test returns True.

Getting ready
Data again plays the central role here, so check that your /ch09/geodata/ folder is ready
with two input Shapefiles containing topo_polys.shp and topo_points.shp. The
Shapely library performs the geometry topology testing. If you have followed along so far,
you have it installed already; if not, install it now by referring to Chapter 1, Setting Up Your
Geospatial Python Environment.

Topology Checking and Data Validation

204

How to do it...
1. You will now check to see if each polygon contains a point as follows:

#!/usr/bin/env python
-*- coding: utf-8 -*-
#
for every polygon in a polygon layer there can only be
one point object located in each polygon
the number of points per polygon can be defined by the
user
from utils import shp2_geojson_obj
from utils import create_shply_multigeom
import json

in_shp_poly = "../geodata/topo_polys.shp"
in_shp_point = "../geodata/topo_points.shp"

ply_geojs_obj = shp2_geojson_obj(in_shp_poly)
pt_geojs_obj = shp2_geojson_obj(in_shp_point)

shply_polys = create_shply_multigeom(ply_geojs_obj,
"MultiPolygon")
shply_points = create_shply_multigeom(pt_geojs_obj,
"MultiPoint")

def valid_point_in_poly(polys, points):
 """
 Determine if every polygon contains max one point and
that each
 point is not located on the EDGE or Vertex of the
polygon
 :param point: Point data set
 :param poly: Polygon data set
 :return: True or False if False a dictionary containing
polygon ids
 that contain no or multiple points
 """
 pts_in_polys = []
 pts_touch_plys = []

 pts_plys_geom = []
 pts_touch_geom = []

Chapter 9

205

 # check each polygon for number of points inside
 for i, poly in enumerate(polys):

 pts_in_this_ply = []
 pts_touch_this_ply = []

 for pt in points:
 if poly.touches(pt):
 pts_touch_this_ply.append(
 {'multipoint_errors_touches':
pt.__geo_interface__, 'poly_id': i,
 'point_coord': pt.__geo_interface__})

 if poly.contains(pt):
 pts_in_this_ply.append({'multipoint_contains':
pt.__geo_interface__})

 pts_in_polys.append(len(pts_in_this_ply))
 pts_touch_plys.append(len(pts_touch_this_ply))

 # create list of point geometry errors
 pts_plys_geom.append(pts_in_this_ply)
 pts_touch_geom.append(pts_touch_this_ply)

 # identify if we have more than one point per polygon
or
 # identify if no points are inside a polygon
 no_good = dict()
 all_good = True

 # loop over list containing the number of pts per
polygon
 # each item in list is an integer representing the
number
 # of points located inside a particular polygon [4,1,0]
 # represents 4 points in polygon 1, 1 point in poly 2,
and
 # 0 points in polygon 3
 for num, res in enumerate(pts_in_polys):

 if res == 1:
 # this polygon is good and only has one point
inside
 # no points on the edge or on the vertex of
polygon

Topology Checking and Data Validation

206

 continue
 # no_good['poly num ' + str(num)] = "excellen only 1
point in poly"
 elif res > 1:
 # we have more than one point either inside, on
edge
 # or vertex of a polygon
 no_good['poly num ' + str(num)] = str(res) + "
points in this poly"
 all_good = False
 else:
 # last case no points in this polygon
 no_good['poly num ' + str(num)] = "No points in
this poly"
 all_good = False

 if all_good:
 return all_good
 else:
 bad_list = []
 for pt in pts_plys_geom:
 fgeom = {}
 for res in pt:
 if 'multipoint_contains' in res:
 hui = res['multipoint_contains']
 print hui
 fgeom['geom'] = hui
 bad_list.append(fgeom)
 return bad_list
 # return no_good,pts_in_polys2 # [4,0,1]

valid_res = valid_point_in_poly(shply_polys, shply_points)

final_list = []
for res in valid_res:
 if 'geom' in res:
 geom = res['geom']
 final_list.append(geom)

final_gj = {"type": "GeometryCollection", "geometries":
final_list}
print json.dumps(final_gj)

Chapter 9

207

2. This ends the practical test using two input Shapefiles. Now for your testing pleasure,
here is a simple unit test to break things down for a simple point in polygon tests. The
following test code is located in the ch09/code/ch09-01_single_pt_test_in_
poly.py file:
-*- coding: utf-8 -*-
import unittest
from shapely.geometry import Point
from shapely.geometry import Polygon

class TestPointPerPolygon(unittest.TestCase):
 def test_inside(self):

 ext = [(0, 0), (0, 2), (2, 2), (2, 0), (0, 0)]
 int = [(1, 1), (1, 1.5), (1.5, 1.5), (1.5, 1)]
 poly_with_hole = Polygon(ext,[int])

 polygon = Polygon([(0, 0), (0, 10), (10, 10),
(0, 10)])

 point_on_edge = Point(5, 10)
 point_on_vertex = Point(10, 10)
 point_inside = Point(5, 5)
 point_outside = Point(20,20)
 point_in_hole = Point(1.25, 1.25)

 self.assertTrue(polygon.touches(point_on_vertex))
 self.assertTrue(polygon.touches(point_on_edge))
 self.assertTrue(polygon.contains(point_inside))
 self.assertFalse(polygon.contains(point_outside))
 self.assertFalse(point_in_hole.within(
poly_with_hole))

if __name__ == '__main__':
 unittest.main()

This simple test should run nicely. If you feel like breaking it to see what happens,
change the last call to the following:
self.assertTrue(point_in_hole.within(poly_with_hole)

3. This results in the following output:
Failure

Traceback (most recent call last):

 File "/home/mdiener/ch09/code/ch09-01_single_pt_test_in_poly.
py", line 26, in test_inside

 self.assertTrue(point_in_hole.within(poly_with_hole))

AssertionError: False is not true

Topology Checking and Data Validation

208

How it works...
We have lots of things to test to determine whether there's only one point inside the polygon.
We'll start with what is defined as inside and not inside. Looking back at the introduction to this
chapter, a polygon interior, exterior, and boundary can be logically defined. The position of our
input points is then explicitly defined as a point that lies within a polygon, excluding points that
are located on the polygon boundary, edge, or vertex. Plus, our added criterion is that only one
point per polygon is allowed, thus giving errors if 0 or more points fall inside any given polygon.

Our spatial predicates include touches to find out whether the point is on the vertex or edge.
If touches returns True, our point is located on the edge or vertex, which means that it is not
inside. This is followed by the contains method that checks whether the point is inside our
polygon. Here, we check to see that there's no more than one point inside our polygon.

The code works through importing and converting a Shapefile for processing performed by the
Shapely module. As we process our polygons, we create a couple of lists to track what kind
of relationship is found between them so that we can sum them up at the end, allowing us to
count if zero or more than one point is inside a single polygon.

Our last bit of code then runs through a series of simple function calls, testing out the several
scenarios relative to whether a point is inside the polygon or not. The final call runs through
the Shapefiles with multiple polygons and points in a more realistic test. This then returns
either True if no errors are found or it returns a GeoJSON printout, showing you where the
errors are located.

A point must be on the starting and ending
nodes of a line only

A routing network of connected edges may contain some routing logic associated with the
intersections of roads that are represented as points. These points must, of course, be exactly
located at the start or end of a line in order to identify these junctions. Once the junctions are
found, various rules can be applied in the attributes to control your routing, for example.

Chapter 9

209

A typical example would be turn restrictions that could be modeled as points:

How to do it...
Our handy utils.py module located in the trunk folder helps us out with the mundane tasks
of importing a Shapefile and converting it to a Shapely geometry object for us to work with.

1. Now let's create our point check code like this:
#!/usr/bin/env python
-*- coding: utf-8 -*-

from utils import shp2_geojson_obj
from utils import create_shply_multigeom
from utils import out_geoj
from shapely.geometry import Point, MultiPoint

in_shp_line = "../geodata/topo_line.shp"
in_shp_point = "../geodata/topo_points.shp"

create our geojson like object from a Shapefile
shp1_data = shp2_geojson_obj(in_shp_line)
shp2_data = shp2_geojson_obj(in_shp_point)

convert the geojson like object to shapely geometry
shp1_lines = create_shply_multigeom(shp1_data,
"MultiLineString")

Topology Checking and Data Validation

210

shp2_points = create_shply_multigeom(shp2_data,
"MultiPoint")

def create_start_end_pts(lines):
 '''
 Generate a list of all start annd end nodes
 :param lines: a Shapely geometry LineString
 :return: Shapely multipoint object which includes
 all the start and end nodes
 '''
 list_end_nodes = []
 list_start_nodes = []

 for line in lines:
 coords = list(line.coords)

 line_start_point = Point(coords[0])
 line_end_point = Point(coords[-1])

 list_start_nodes.append(line_start_point)
 list_end_nodes.append(line_end_point)

 all_nodes = list_end_nodes + list_start_nodes

 return MultiPoint(all_nodes)

def check_points_cover_start_end(points, lines):
 '''

 :param points: Shapely point geometries
 :param lines:Shapely linestrings
 :return:
 '''

 all_start_end_nodes = create_start_end_pts(lines)

 bad_points = []
 good_points = []
 if len(points) > 1:
 for pt in points:
 if pt.touches(all_start_end_nodes):
 print "touches"

Chapter 9

211

 if pt.disjoint(all_start_end_nodes):
 print "disjoint" # 2 nodes
 bad_points.append(pt)
 if pt.equals(all_start_end_nodes):
 print "equals"
 if pt.within(all_start_end_nodes):
 print "within" # all our nodes on start or
end
 if pt.intersects(all_start_end_nodes):
 print "intersects"
 good_points.append(pt)
 else:
 if points.intersects(all_start_end_nodes):
 print "intersects"
 good_points.append(points)
 if points.disjoint(all_start_end_nodes):
 print "disjoint"
 good_points.append(points)

 if len(bad_points) > 1:
 print "oh no 1 or more points are NOT on a start or
end node"
 out_geoj(bad_points,
'../geodata/points_bad.geojson')
 out_geoj(good_points,
'../geodata/points_good.geojson')

 elif len(bad_points) == 1:
 print "oh no your input single point is NOT on
start or end node"

 else:
 print "super all points are located on a start or
end node" \
 "NOTE point duplicates are NOT checked"

check_points_cover_start_end(shp2_points, shp1_lines)

How it works...
You can attack this problem in a number of different ways. This method may not be very
efficient but demonstrates how to go about solving a spatial problem.

Topology Checking and Data Validation

212

Our logic begins with creating a function to find all the true start and end node locations of our
input LineString. Shapely helps us out with some simple lists by slicing to get us the first and
last coordinate pair for each of our lines. These two sets are then combined into a single list
holder for all our nodes to check against.

The second function actually does the check to see whether our point is located on either
the start or end node in our master list. We begin by creating the master list of start and end
nodes for comparison by calling our first function. Now, if our input has more than one point,
we loop through each point and check several spatial relationships. The only two that are of
any real interest are disjoint and intersects. These deliver our answer by showing us which
points are good and which are not.

The within predicate could also be used instead of the
intersect, but was not chosen simply because it is not always
understood properly by beginners, while intersects seem to be
easier to understand.

The remaining checks simply export the list of bad and good points to a GeoJSON file that you
can open in QGIS to visualize.

LineStrings must not overlap
Overlapping lines are hard to find usually because you cannot see them on a map. They might
be deliberate, for example, bus route network lines that might overlap. This exercise sets out
to discover these overlapping lines for better or for worse.

The following diagram shows a set of two input LineStrings and you can see clearly where they
overlap, but this is a cartographic visual inspection. We need this to work on many, many lines
that you cannot always see as clearly.

Chapter 9

213

How to do it...
1. Let's dive into the code:

#!/usr/bin/env python
-*- coding: utf-8 -*-

from utils import shp2_geojson_obj
from utils import create_shply_multigeom
from utils import out_geoj

in_shp_line = "../geodata/topo_line.shp"
in_shp_overlap = "../geodata/topo_line_overlap.shp"

shp1_data = shp2_geojson_obj(in_shp_line)
shp2_data = shp2_geojson_obj(in_shp_overlap)

shp1_lines = create_shply_multigeom(shp1_data,
"MultiLineString")
shp2_lines_overlap = create_shply_multigeom(shp2_data,
"MultiLineString")

overlap_found = False

for line in shp1_lines:
 if line.equals(shp2_lines_overlap):
 print "equals"
 overlap_found = True
 if line.within(shp2_lines_overlap):
 print "within"
 overlap_found = True

output the overlapping Linestrings
if overlap_found:
 print "now exporting overlaps to GeoJSON"
 out_int = shp1_lines.intersection(shp2_lines_overlap)
 out_geoj(out_int,
'../geodata/overlapping_lines.geojson')

 # create final Linestring only list of overlapping
lines
 # uses a pyhton list comprehension expression
 # only export the linestrings Shapely also creates 2
Points
 # where the linestrings cross and touch

Topology Checking and Data Validation

214

 final = [feature for feature in out_int if
feature.geom_type == "LineString"]

 # code if you do not want to use a list comprehension
expresion
 # final = []
 # for f in out_int:
 # if f.geom_type == "LineString":
 # final.append(f)

 # export final list of geometries to GeoJSON
 out_geoj(final, '../geodata/final_overlaps.geojson')
else:
 print "hey no overlapping linestrings"

How it works...
Overlapping LineStrings are sometimes desirable and sometimes not. In this code, you
can make some simple adjustments and have them report either situation in the form of
GeoJSON. The default case is to output a GeoJSON file showing the overlapping LineStrings.

We begin the journey with the boilerplate code to convert our Shapefiles to Shapely
geometries so that we can use our spatial relation predicates to filter out our overlaps. We
only need two predicate equals and within to find what we are looking for. If we use intersects,
these might return a false positive since both crosses() and touches() are also checked.

We could also use the intersects predicate that is equivalent
to the OR-ing of contains(), crosses(), equals(),
touches(), and within() as stated in the Shapely online
documentation at http://toblerity.org/shapely/
manual.html#object.intersects.

A LineString must not have dangles
Dangles are like cul-de-sac (roads). You can find them only in LineStrings where a line ends
and does not connect to another line segment. "To dangle in the air" refers to a LineString
that is not connected to any other LineString. These are very important to identify if you are
looking to ensure that a road network is connected or to identify where streets come together
as they should.

http://toblerity.org/shapely/manual.html#object.intersects
http://toblerity.org/shapely/manual.html#object.intersects

Chapter 9

215

A more technical description of a dangle could be described as an edge that has one or both
ends that are not incidental to another edge endpoint.

How to do it...
1. You will now check for dangles on your set of LineStrings as follows:

#!/usr/bin/env python
-*- coding: utf-8 -*-
from utils import shp2_geojson_obj
from utils import create_shply_multigeom
from utils import out_geoj
from shapely.geometry import Point

in_shp_dangles = "../geodata/topo_dangles.shp"
shp1_data = shp2_geojson_obj(in_shp_dangles)
shp1_lines = create_shply_multigeom(shp1_data,
"MultiLineString")

def find_dangles(lines):
 """
 Locate all dangles
 :param lines: list of Shapely LineStrings or
MultiLineStrings
 :return: list of dangles
 """
 list_dangles = []
 for i, line in enumerate(lines):
 # each line gets a number

Topology Checking and Data Validation

216

 # go through each line added first to second
 # then second to third and so on
 shply_lines = lines[:i] + lines[i+1:]
 # 0 is start point and -1 is end point
 # run through
 for start_end in [0, -1]:
 # convert line to point
 node = Point(line.coords[start_end])
 # Return True if any element of the iterable is
true.
 # https://docs.python.org/2/library/functions.html#any
 # python boolean evaluation comparison
 if any(node.touches(next_line) for next_line in
shply_lines):
 continue
 else:
 list_dangles.append(node)
 return list_dangles

convert our Shapely MultiLineString to list
list_lines = [line for line in shp1_lines]

find those dangles
result_dangles = find_dangles(list_lines)

return our results
if len(result_dangles) >= 1:
 print "yes we found some dangles exporting to GeoJSON"
 out_geoj(result_dangles, '../geodata/dangles.geojson')
else:
 print "no dangles found"

How it works...
Finding dangles is easy at first glance, but this is really a little more involved than one might
think. So, for clarity's sake, let's explain some logic in dangle identification as pseudo code.

These are not a part of Dangle logic:

 f If the start nodes of two different lines are equal, it is not a dangle

 f If the end nodes of two different lines are equal, it is not a dangle

 f If the start node of one line is equal to the end node of the other line, it is not
a dangle

 f If the end node of one line is equal to the start node of the other line, it is not
a dangle

Chapter 9

217

So, we need to loop over each LineString and compare the start and end points from one
LineString to the next, checking if they touch each other using touches() from Shapely. If
they do touch, we move on to the next comparison without breaking the use of continue. It
moves to the else section and here we will catch those nice dangles and append them to the
dangles list.

We are then only left with one last fun decision: to print out confirmation that we have no
dangles or export the dangles to a GeoJSON fine for some visual inspection.

A polygon centroid must be within a specific
distance of a line

Check that each polygon centroid is within a distance tolerance to a LineString. An example
use case for such a rule could be for a routing network that defines the snap tolerance in
meters from a room centroid to the nearest routing networkline. This line must be located
within a certain distance; otherwise, no route can be generated, for example. The following
screenshot shows the use of some dummy polygons and LineStrings, indicating the centroids
that fall within our set tolerance of 20000 m in red. These are polygons that are spread far
apart from Venice to Vienna:

If you're up for some algorithm reading material, this is a
nice read by Paul Bourke at http://paulbourke.net/
geometry/pointlineplane/.

http://paulbourke.net/geometry/pointlineplane/
http://paulbourke.net/geometry/pointlineplane/

Topology Checking and Data Validation

218

How to do it...
1. This code will now automatically find centroids outside your distance tolerance:

#!/usr/bin/env python
-*- coding: utf-8 -*-
from utils import shp2_geojson_obj
from utils import create_shply_multigeom
from utils import out_geoj

in_shp_lines = "../geodata/topo_line.shp"
shp1_data = shp2_geojson_obj(in_shp_lines)
shp1_lines = create_shply_multigeom(shp1_data,
"MultiLineString")

in_shp_poly = "../geodata/topo_polys.shp"
ply_geojs_obj = shp2_geojson_obj(in_shp_poly)
shply_polys = create_shply_multigeom(ply_geojs_obj,
"MultiPolygon")

nearest point using linear referencing
with interpolation and project
pt_interpolate = line.interpolate(line.project(point))

create point centroids from all polygons
measure distance from centroid to nearest line segment

def within_tolerance(polygons, lines, tolerance):
 """
 Discover if all polygon centroids are within a distance
of a linestring
 data set, if not print out centroids that fall outside
tolerance
 :param polygons: list of polygons
 :param lines: list of linestrings
 :param tolerance: value of distance in meters
 :return: list of all points within tolerance
 """

 # create our centroids for each polygon
 list_centroids = [x.centroid for x in polygons]

Chapter 9

219

 # list to store all of our centroids within tolerance
 good_points = []

 for centroid in list_centroids:
 for line in lines:
 # calculate point location on line nearest to
centroid
 pt_interpolate =
line.interpolate(line.project(centroid))
 # determine distance between 2 cartesian points
 # that are less than the tolerance value in
meters
 if centroid.distance(pt_interpolate) >
tolerance:
 print "to far " +
str(centroid.distance(pt_interpolate))
 else:
 print "hey your in " + str(centroid.distance(pt_
interpolate))
 good_points.append(centroid)

 if len(good_points) > 1:
 return good_points
 else:
 print "sorry no centroids found within your
tolerance of " + str(tolerance)

run our function to get a list of centroids within
tolerance
result_points = within_tolerance(shply_polys,
shp1_lines, 20000)

if result_points:
 out_geoj(result_points,
'../geodata/centroids_within_tolerance.geojson')
else:
 print "sorry cannot export GeoJSON of Nothing"

Topology Checking and Data Validation

220

How it works...
Our boilerplate starter code brings in a polygon and a LineString Shapefile so that we can
calculate our centroids and shortest distances. The main logic here is that we need to first
create a list of centroids for each polygon, and then find the nearest point location on a line
to this centroid. Of course, the last step is to get the distance between these two points in
meters and check if it is less than our specified tolerance value.

Most of the comments explain the details, but the actual shortest distance to the line is
accomplished using the linear referencing feature of Shapely. We have encountered this
process in Chapter 5, Vector Analysis, using our snap point to a line. The interpolate and
project functions do the heavy lifting to find the nearest point on the line.

This, as usual, is followed up by exporting our results to GeoJSON if any points are found with
the specified tolerance value.

221

10
Visualizing Your

Analysis

In this chapter, we will cover the following topics:

 f Generating a leaflet web map with Folium

 f Setting up TileStache to serve tiles

 f Visualizing DEM data with Three.js

 f Draping an orthophoto over a DEM

Introduction
The great part about geospatial analysis is visualization. This chapter is all about showing
some ways to visualize your analysis results. Up to this point, we have used QGIS, leaflet, and
Openlayers 3 to see our results. Here, we will concentrate on web mapping with some of the
newest libraries to publish our data.

Most of this code will mix Python with JavaScript, HTML, and CSS.

An awesome list of visualization techniques and libraries can be found at
http://selection.datavisualization.ch/.

http://selection.datavisualization.ch/

Visualizing Your Analysis

222

Generating a leaflet web map with Folium
Creating a web map with your own data is becoming easier with every new web mapping
library. Folium (http://folium.readthedocs.org/) is a small new Python project that
can create a simple web map directly from your Python code, leveraging the leaflet JavaScript
mapping library. This is still more than one line, but with under 20 lines of Python code, you
can have Folium generate a nice web map for you.

Getting ready
Folium requires the Jinja2 template engine alongside Pandas for data binding. The nice part
about this is that both are simple to install using pip:

pip install jinja2

pip install pandas

Instructions on using Pandas are also found in Chapter 1, Setting Up Your Geospatial Python
Environment.

How to do it...
1. Now make sure that you are in your /ch10/code/ folder to see the live example of

Folium as follows:

#!/usr/bin/env python
-*- coding: utf-8 -*-
import folium
import pandas as pd

define the polygons
states_geojson = r'us-states.json'

statistic data to connect to our polygons
state_unemployment = r'../www/html/US_Unemployment_Oct2012.csv'

read the csv statistic data
state_data = pd.read_csv(state_unemployment)

http://folium.readthedocs.org/

Chapter 10

223

Let Folium determine the scale
map = folium.Map(location=[48, -102], zoom_start=3,
tiles="Stamen Toner")

create the leaflet map settings
map.geo_json(geo_path=states_geojson, data=state_data,
 columns=['State', 'Unemployment'],
 threshold_scale=[5, 6, 7, 8, 9, 10],
 key_on='feature.id',
 fill_color='YlGn', fill_opacity=0.7,
 line_opacity=0.2,
 legend_name='Unemployment Rate (%)')

output the final map file
map.create_map(path='../www/html/ch10-01_folium_map.html')

How it works...
Folium uses the Jinja2 Python template engine to render the final results and Pandas to
bind the CSV statistic data. The code begins with importing and then defining the data
sources. The GeoJSON file of the U.S. State polygons will be displayed as a chloropleth map.
A choropleth map is one that displays data values that are classified into a defined set of data
ranges, usually based on some statistical method. Within the GeoJSON data is a key-filed
named id with a value the U.S. State abbreviation code. This id binds the spatial data to the
statistic CSV column that also includes a corresponding id field, hence allowing us to connect
our two datasets.

Folium then needs to create a map object, setting the map center coordinates alongside
a zoom level and a base tile map for our background. In our case, the Stamen Toner tile
set is defined.

Next up, we define the vector GeoJSON that is going to appear on top of our background map.
We need to pass in the path of our source GeoJSON and the Pandas data frame object that
references our CSV file columns, State and Unemployment. Next, we set the linking key
value that connects our CSV with the GeoJSON data. The key_on parameter reads the id
GeoJSON properties key in the feature array.

Visualizing Your Analysis

224

Lastly, we set the color brewer to a color we want along with the style. The legend is a D3
legend that's automatically created for us and is scaled via quantiles.

Setting up TileStache to serve tiles
Once you have data and want to get it onto the Web, a server of some sort is required. TileStache,
originally developed by Michal Migurski, is a Python tile map server that can pump out vector
tiles. Vector tiles are the future of web mapping and make web map applications super fast. In
the end, you will have a TileStache instance running and serving up a simple web map.

Getting ready
A few requirements are needed to get TileStache running on your machine, including
Werkzeug, PIL, SimpleJson, and Modestmaps, so we must first install these. Let's start with
running our pip install commands like this:

Getting TileStache to run on a full-blown server, such as Nginx or
Apache, with mod-python is beyond the scope of this book but is
highly recommended for production deployment (for more information
on this refer to http://modpython.org/).

pip install Werkzeug

pip install modestmaps

pip install simplejson

http://modpython.org/

Chapter 10

225

The Python library called Werkzeug (http://werkzeug.pocoo.org/) is the WSGI server
for our test application. Mapnik is not required, but go ahead and install it to view the demo
application.

How to do it...
1. Now let's download the most recent code from GitHub as a ZIP from

https://github.com/TileStache/TileStache/archive/master.zip.

Use the command-line git if you have it installed as follows:
$ git clone https://github.com/TileStache/TileStache.git

2. Unpack this into your /ch10/TileStache-master folder.

3. Test and check whether your installation went smoothly by going into your /ch10/
TileStache-master/ directory and entering the following command line:
> python tilestache-server.py -c ../tilestache.cfg

4. After running the preceding command, you should see this:
* Running on http://127.0.0.1:8080/ (Press CTRL+C to quit)

5. Now open up your web browser and type in http://localhost:8080/; you should
see some simple text stating TileStache belows hello.

6. Next, try to enter http://localhost:8080/osm/0/0/0.png; you will get the
following output:

http://werkzeug.pocoo.org/
https://github.com/TileStache/TileStache/archive/master.zip

Visualizing Your Analysis

226

This is the map of the world that you should be able to see.

7. To get a live scrollable map around Vancouver, British Colombia, visit
http://localhost:8080/osm/preview.html#10/49.1725/-123.0719.

Visualizing DEM data with Three.js
You have a great 3D Digital Elevation Model (DEM) that you may want to view on a web
page, so your choices are limited only to your imagination and programming skills. In this little
example based on the great work of Bjorn Sandvik, we will explore the methods needed to
manipulate a DEM to load a Three.js HTML-based web page.

A great plugin that I would highly recommend for QGIS is the qgis2threejs
plugin, written by Minoru Akagi. The Python plugin code is available on
GitHub at https://github.com/minorua/Qgis2threejs where
you can find a nice gdal2threejs.py converter.

The resulting 3D DEM mesh can be viewed in your browser:

https://github.com/minorua/Qgis2threejs

Chapter 10

227

Getting ready
We need Jinja2 as our template engine (installed in the first section of this chapter) to create
our HTML. The remaining requirements include JavaScript and our 3D DEM data. Our DEM
data is from Chapter 7, Raster Analysis, and is located in the /ch07/geodata/dem_3857.
dem folder, so if you have not already downloaded all the data and code, do so now.

The gdal_translate GDAL executable is used to convert our DEM into an ENVI .bin 16-bit
raster. This raster will contain the elevation values that the threejs library can read to create
the 3D mesh.

Using an IDE is not always necessary, but in this case, the PyCharm Pro IDE
is helpful since we are using HTML, JavaScript, and Python to create our
results. There is also a free PyCharm community edition that I would also
recommend but it lacks the HTML, JavaScript, and Jinja2 template support.

Three.js is available if you have downloaded the /ch10/www/js folder on your machine. If
not, do so now and download the entire /ch10/www/ folder. Inside it, you will find the folders
needed for the output of HTML and the web templates used by Jinja2.

How to do it...
1. We'll start by running a subprocess call to generate the needed raster with elevation

data for Three.js. Then, we'll step into the HTML template code containing a single
Jinja2 variable as follows:
#!/usr/bin/env python
-*- coding: utf-8 -*-
import subprocess

from jinja2 import Environment, FileSystemLoader

Create our DEM

use gdal_translate command to create an image to store
elevation values
-scale from 0 meters to 2625 meters
stretch all values to full 16bit 0 to 65535
-ot is output type = UInt16 unsigned 16bit
-outsize is 200 x 200 px

Visualizing Your Analysis

228

-of is output format ENVI raster image .bin file type
then our input .tif with elevation
followed by output file name .bin
subprocess.call("gdal_translate -scale 0 2625 0 65535 "
 "-ot UInt16 -outsize 200 200 -of ENVI "
 "../../ch07/geodata/dem_3857.tif "
 "../geodata/whistler2.bin")

create our Jinja2 HTML
create a standard Jinja2 Environment and load all files
located in the folder templates
env = Environment(loader=FileSystemLoader(["../www/templates"]))

define which template we want to render
template = env.get_template("base-3d-map.html")

path and name of input 16bit raster image with our
elevation values
dem_3d = "../../geodata/whistler2.bin"

name and location of the output HTML file we will
generate
out_html = "../www/html/ch10-03_dem3d_map.html"

dem_file is the variable name we use in our Jinja2 HTML
template file
result = template.render(title="Threejs DEM Viewer",
dem_file=dem_3d)

write out our template to the HTML file on disk
with open(out_html,mode="w") as f:
 f.write(result)

2. Our Jinja2 HTML template code only contains one simple variable called {{ dem_3d
}} so that you can see what's happening clearly:

#!/usr/bin/env python
<html lang="en">
<head>
 <title>DEM threejs Browser</title>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, user-
scalable=no, minimum-scale=1.0, maximum-scale=1.0">

Chapter 10

229

 <style> body { margin: 0; overflow: hidden; }</style>
</head>
<body>
 <div id="dem-map"></div>
 <script src="../js/three.min.js"></script>
 <script src="../js/TrackballControls.js"></script>
 <script src="../js/TerrainLoader.js"></script>
 <script>

 var width = window.innerWidth,
 height = window.innerHeight;

 var scene = new THREE.Scene();

 var axes = new THREE.AxisHelper(200);
 scene.add(axes);

 var camera = new THREE.PerspectiveCamera(45, width
 / height, 0.1, 1000);
 camera.position.set(0, -50, 50);

 var renderer = new THREE.WebGLRenderer();
 renderer.setSize(width, height);

 var terrainLoader = new THREE.TerrainLoader();
 terrainLoader.load('{{ dem_3d }}', function(data) {

 var geometry = new THREE.PlaneGeometry(60, 60,
 199, 199);

 for (var i = 0, l = geometry.vertices.length;
 i < l; i++) {
 geometry.vertices[i].z = data[i] / 65535 *
 10;
 }

 var material = new THREE.MeshPhongMaterial({
 color: 0xdddddd,
 wireframe: true
 });

 var plane = new THREE.Mesh(geometry, material);
 scene.add(plane);

Visualizing Your Analysis

230

 });

 var controls = new THREE.TrackballControls(camera);

 document.getElementById(
'dem-map').appendChild(renderer.domElement);

 render();

 function render() {
 controls.update();
 requestAnimationFrame(render);
 renderer.render(scene, camera);
 }

 </script>
</body>
</html>

How it works...
Our gdal_translate does the hard work for us by converting the DEM data into a raster
format that Three.js can understand. The Jinja2 template HTML code shows us the required
moving parts, starting with three JavaScript files. TerrainLoader.js reads this binary .bin
format raster into the Three.js terrain.

Inside our HTML file, the JavaScript code shows how we can go about creating the Three.js
scene where the most important part is creating THREE.PlaneGeometry. We assign each
geometry.vertices the elevation height in this JavaScript for loop, assigning each vertex
the flat plane of the elevation value.

We follow this with MeshPhongMaterial so that we can see the mesh on our screen as a
wireframe. To view the resulting HTML file generated, you need to run a local web server and
for this, Python comes with SimpleHTTPServer out of the box. This can be run from the
command line as the following Python command:

> python -m SimpleHTTPServer 8080

Then, go visit your browser and enter http://localhost:8080/; select the html folder,
and then click on the ch10-03_dem3d_map.html file.

Chapter 10

231

Using the PyCharm IDE, you can simply open the HTML file inside
PyCharm, move your mouse to the upper right-hand corner of the open
file, and select a browser, such as Chrome, to open a new HTML page.
PyCharm will automatically start a web server for you and display the
3D terrain in your selected browser.

Draping an orthophoto over a DEM
This time around, we are going to take our previous recipe to the next level by draping satellite
imagery over our DEM to create a truly impressive 3D interactive web map.

You can take a look at other orthophotos from geogratis.ca at http://geogratis.
gc.ca/api/en/nrcan-rncan/ess-sst/77618678-421b-4a28-a0a5-
b074e5f072ff.html.

http://geogratis.gc.ca/api/en/nrcan-rncan/ess-sst/77618678-421b-4a28-a0a5-b074e5f072ff.html
http://geogratis.gc.ca/api/en/nrcan-rncan/ess-sst/77618678-421b-4a28-a0a5-b074e5f072ff.html
http://geogratis.gc.ca/api/en/nrcan-rncan/ess-sst/77618678-421b-4a28-a0a5-b074e5f072ff.html

Visualizing Your Analysis

232

Getting ready
To drape an orthophoto directly over our DEM, we need to make sure that the input DEM and
the orthophoto have the same extent and pixel size. For this exercise, you need to complete
the previous section and have data available in the /ch10/geodata/092j02_1_1.tif
folder. This is the orthophoto that we are going to drape over the DEM.

How to do it...
1. Let's dive into some code that's full of comments for your enlightenment:

#!/usr/bin/env python
-*- coding: utf-8 -*-

import subprocess
from PIL import Image
from jinja2 import Environment, FileSystemLoader

convert from Canada UTM http://epsg.io/3157/map to 3857
transform the orthophto from epsg:3157 to epsg:3857
cut the orthophoto to same extent of DEM
subprocess.call("gdalwarp -s_srs EPSG:3157
-t_srs EPSG:3857 -overwrite "
 "-te -13664479.091 6446253.250
 -13636616.770 6489702.670"
 "/geodata/canimage_092j02_tif/092j02_1_1.tif
../geodata/whistler_ortho.tif")

convert the new orthophoto into a 200 x 200 pixel image
subprocess.call("gdal_translate -outsize 200 200 "
 "../geodata/whistler_ortho.tif "
 "../geodata/whistler_ortho_f.tif")

prepare to create new jpg output from .tif
processed_ortho = '../geodata/whistler_ortho_f.tif'
drape_texture = '../../geodata/whistler_ortho_f.jpg'

export the .tif to a jpg to make is smaller for web using
pil
Image.open(processed_ortho).save(drape_texture)

Chapter 10

233

set Jinja2 env and load folder where templates are
located
env =
Environment(loader=FileSystemLoader(["../www/templates"]))

assign template to our HTML file with our variable inside
template = env.get_template("base-3d-map-drape.html")

define the original DEM file
dem_3d = "../../geodata/whistler2.bin"

location of new HTML file to be output
out_html = "../www/html/ch10-04_dem3d_map_drape.html"

create the new output HTML object and set variable names
result = template.render(title="Threejs DEM Drape Viewer",
dem_file=dem_3d,
 texture_map=drape_texture)

write the new HTML file to disk
with open(out_html,mode="w") as file:
 file.write(result)

2. Our Jinja2 HTML template file looks like this:

<html lang="en">
<head>
 <title>DEM threejs Browser</title>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width,
user-scalable=no, minimum-scale=1.0, maximum-scale=1.0">
 <style> body { margin: 0; overflow: hidden; }</style>
</head>
<body>
 <div id="dem-map"></div>
 <script src="../js/three.min.js"></script>
 <script src="../js/TrackballControls.js"></script>
 <script src="../js/TerrainLoader.js"></script>
 <script>

 var width = window.innerWidth,
 height = window.innerHeight;

Visualizing Your Analysis

234

 var scene = new THREE.Scene();
 scene.add(new THREE.AmbientLight(0xeeeeee));

 var axes = new THREE.AxisHelper(200);
 scene.add(axes);

 var camera = new THREE.PerspectiveCamera(45, width
 / height, 0.1, 1000);
 camera.position.set(0, -50, 50);

 var renderer = new THREE.WebGLRenderer();
 renderer.setSize(width, height);

 var terrainLoader = new THREE.TerrainLoader();
 terrainLoader.load('{{ dem_file }}', function(data)
{

 var geometry = new THREE.PlaneGeometry(60, 60,
 199, 199);

 for (var i = 0, l = geometry.vertices.length; i
 < l; i++) {
 geometry.vertices[i].z = data[i] / 65535 *
 10;
 }

 var material = new THREE.MeshPhongMaterial({
 map: THREE.ImageUtils.loadTexture('{{
 texture_map }}')
 });

 var plane = new THREE.Mesh(geometry, material);
 scene.add(plane);

 });

 var controls = new THREE.TrackballControls(camera);
 document.getElementById('dem-
 map').appendChild(renderer.domElement);
 render();
 function render() {
 controls.update();

Chapter 10

235

 requestAnimationFrame(render);
 renderer.render(scene, camera);
 }

 </script>
</body>
</html>

How it works...
The main methodology for draping an orthophoto is the same as seen in the previous section,
with a slight difference in the way we use the Three.js material rendering.

Data preparation plays the biggest and most important role once again to make things jive
together. Inside our Python code, Ch10-04_drapeOrtho.py uses the subprocess call to
execute the gdalwarp and gdal_translate command-line tools. Gdalwarp is first used by
taking the original orthophoto in EPSG:3157 and converting it to the EPSG:3857 Web Mercator
format. At the same time, it also cuts the original raster to the same extent as our DEM input.
This extent is achieved by reading the gdalinfo whistler.bin raster command-line call.

After this, we need to cut the raster down to size and make a 200 x 200 pixel image to match
our DEM size. This is followed by using PIL to transform the output .tif file into a much
smaller .jpg file that's better suited for web presentations and speed.

With the major leg work out of the way, we can use Jinja2 to create our output HTML
template and pass in two dem_file, variables pointing to the original DEM. The second
variable called texture_map points to the newly created whistler .jpg that's used to drape
over the DEM.

The final results are written to the /ch10/www/html/ch10-04_dem3d_map_drape.html
folder for you to then open and view in the browser. To view this HTML file, you will need to
start a local web server from the /ch10/www/ directory:

> python -m simpleHTTPServer 8080

Then, visit the browser at http://localhost.8080/ and you should see a draped image
on the DEM.

237

11
Web Analysis with

GeoDjango

In this chapter, we will cover the following topics:

 f Setting up a GeoDjango web application

 f Creating an indoor web routing service

 f Visualizing an indoor routing service

 f Creating an indoor route-type service

 f Creating an indoor route from room to room

Introduction
Our final chapter is all about extending our analysis into a web application using the Django
web framework. One of the standard Django contributed packages is known as GeoDjango
and is found in the django/contrib/gis package. This is a feature-packed GIS toolset for
geospatial web application development. The spatial libraries used here depend on the spatial
database backend that you choose. For PostgreSQL the library requirements include GEOS,
PROJ.4, and PostGIS.

Django is known for its good documentation and the gis contrib package installation
is no exception, having its own set of instructions for you to follow at https://docs.
djangoproject.com/en/dev/ref/contrib/gis/.

Since GeoDjango is part of the standard Django installation, you will see that your first step is
to install the Django framework. For any reference on installing GeoDjango, PostgreSQL, and
PostGIS, take a look at Chapter 1, Setting Up Your Geospatial Python Environment.

https://docs.djangoproject.com/en/dev/ref/contrib/gis/
https://docs.djangoproject.com/en/dev/ref/contrib/gis/

Web Analysis with GeoDjango

238

Setting up a GeoDjango web application
We need to get some basic Django groundwork done and this will be a very high-level fly over
at setting up the required basics to start a Django web application. Check out the official
Django tutorials for further information at https://docs.djangoproject.com/en/dev/
intro/tutorial01/.

If you are not familiar with Django or GeoDjango, I would highly
recommend that you read through and complete the online tutorials,
starting with Django at https://docs.djangoproject.
com/en/dev/ followed by the GeoDjango tutorial at https://
docs.djangoproject.com/en/dev/ref/contrib/gis/
tutorial/. For this chapter, it is assumed that you are familiar
with Django, have completed the entire online Django tutorial,
and are, therefore, familiar with Django concepts.

Getting ready
We are going to build a routing web service using the Django REST framework (http://www.
django-rest-framework.org/). All that we need to implement is a basic web service that
you can install with the help of pip:

>pip install djangorestframework==3.1.3

This will install version 3.1.3, the latest version. If you want to install the newest version,
simply enter the following command but, beware, it might not work with this example:

>pip install djangorestframework

How to do it...
Let's now create a Django project using the django-admin tool as follows:

1. From the command line, enter the /ch11/code directory and execute this command:
> django-admin startproject web_analysis

2. Now you will have a /ch11/code/web_analysis/web_analysis directory and
inside it, you'll find all the standard basic Django components.

3. To create our web service, we are going to place all the services into a Django App
called api. This app will store all our services. Creating this api application is as
easy as typing this code:
> cd web_analysis

https://docs.djangoproject.com/en/dev/intro/tutorial01/
https://docs.djangoproject.com/en/dev/intro/tutorial01/
https://docs.djangoproject.com/en/dev/
https://docs.djangoproject.com/en/dev/
https://docs.djangoproject.com/en/dev/ref/contrib/gis/tutorial/
https://docs.djangoproject.com/en/dev/ref/contrib/gis/tutorial/
https://docs.djangoproject.com/en/dev/ref/contrib/gis/tutorial/
http://www.django-rest-framework.org/
http://www.django-rest-framework.org/

Chapter 11

239

Change into the newly created web_analysis directory:
> django-admin startapp api

Now create your new application called "api".

4. This creates a new /ch11/code/web_analysis/api folder and inside it you will
find the default installed Django app files. Next, we need to tell Django about the
Django REST Framework, GeoDjango gis app, and our new api application; we do
this in our /ch11/code/web_analysis/web_analysis/settings.py file.
Let's add the lines 'django.contrib.gis', 'rest_framework', and 'api'
to our INSTALLED_APPS variable as follows:
INSTALLED_APPS = (

 'django.contrib.admin',

 'django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.messages',

 'django.contrib.staticfiles',

 #### GeoDjango Contrib APP

 # 'django.contrib.gis',

 #### third party apps

 'rest_framework',

 ##### our local apps

 'api',

)

5. To enable the GeoDjango spatial models and spatial capabilities, 'django.
contrib.gis' will allow us to access the rich geospatial framework. We have it
commented out at this point since we are not going to use it until later, but feel free
to uncomment it as this will do no harm. This spatial framework requires a spatial
database and we will use PostgreSQL with PostGIS as our backend. Let's go ahead
and change the database connection now in our settings.py as follows:
DATABASES = {
 'default': {
 # PostgreSQL with PostGIS
 'ENGINE': 'django.contrib.gis.db.backends.postgis',

Web Analysis with GeoDjango

240

 'NAME': 'py_geoan_cb', # DB name
 'USER': 'saturn', # DB user name
 'PASSWORD': 'secret', # DB user password
 'HOST': 'localhost',
 'PORT': '5432',
 }
}

The database here is referencing the same PostgreSQL + PostGIS
database that we created earlier on in Chapter 3, Moving Spatial
Data from One Format to Another. Visit the Converting a Shapefile
to a PostGIS table using ogr2ogr, recipe in Chapter 3, Moving
Spatial Data from One Format to Another where we created the
py_geoan_cb database, if you are going to skip ahead to this
section.

6. Our final settings.py configuration is set up to log errors and exceptions to a
log file, catching errors if any occur. First up, we'll create a new folder called /web_
analysis/logs and add two new files called debug.log and verbose.log. We
will write any errors that occur into these two files and log a request or simply print
out an error to these files. So, go ahead and copy this code into the bottom of your
/web_analysis/web_analysis/settings.py file as follows:
LOGGING_CONFIG = None

LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'formatters': {
 'verbose': {
 'format' : "[%(asctime)s] %(levelname)s
 [%(name)s:%(lineno)s] %(message)s",
 'datefmt' : "%d/%b/%Y %H:%M:%S"
 },
 'simple': {
 'format': '%(levelname)s %(message)s'
 },
 },
 'handlers': {
 'file_verbose': {
 'level': 'DEBUG',
 'class': 'logging.FileHandler',
 'filename': 'logs/verbose.log',
 'formatter': 'verbose'
 },
 'file_debug': {

Chapter 11

241

 'level': 'DEBUG',
 'class': 'logging.FileHandler',
 'filename': 'logs/debug.log',
 'formatter': 'verbose'
 },
 },
 'loggers': {
 'django': {
 'handlers':['file_verbose'],
 'propagate': True,
 'level':'DEBUG',
 },
 'api': {
 'handlers': ['file_debug'],
 'propagate': True,
 'level': 'DEBUG',
 },

 }
}

import logging.config
logging.config.dictConfig(LOGGING)

7. Next up, let's create a new database user and a separate PostgreSQL schema
to store all our Django-related tables; otherwise, all the new Django tables will
automatically be created in the PostgreSQL default schema public. Our new user is
called saturn and can log in with the secret password. To create a new user, you
can use the command-line tool that's run as the postgres user:
>createuser saturn

You can also use the PGAdmin free tool. On Ubuntu, don't forget to change to the
postgres user that will allow you to create a new user on your database.

8. Now, let's create a new schema called django that will store all our Django
application tables. Use PGAdmin or the SQL command to do this as follows:
CREATE SCHEMA django AUTHORIZATION saturn;

9. With this new schema in place, we only need to assign the PostgreSQL search_
path variable order to set the django schema as the first priority. To accomplish
this, we need to use the SQL ALTER ROLE command as follows:
ALTER ROLE saturn SET search_path = django, geodata, public,
topology;

Web Analysis with GeoDjango

242

10. This sets the search_path order defining django as the first schema, geodata as
the second, and so forth. This order is for all database connections for the saturn
user. When we create our new Django tables, all of them will now automatically be
created inside the django schema.

11. Let's go ahead now and initialize our Django project and create all the tables
as follows:
> python manage.py migrate

12. The built-in Django manage.py command calls the migrate function and performs
the sync in one go. Next, let's create a superuser for our application who can login
and have full control of the entire web application. Then, follow the command-line
instructions to enter the username, e-mail, and password as follows:
> python manage.py createsuperuser

13. With all these steps now completed, we are ready to actually get something done and
build our online routing application. To test whether everything is working, run this
command:
> python manage.py runserver 8000

14. Open up your local web browser and see the welcome Django default page.

Creating an indoor web routing service
Let's take all the effort we put into Chapter 8, Network Routing Analysis, out onto the World
Wide Web. Our routing service will simply accept a starting point location, an x, y coordinate
pair, a floor level, and a destination location. The indoor routing service will then calculate the
shortest path and return a complete route in the form of a GeoJSON file.

Getting ready
To layout the tasks ahead, let's list out what we need to accomplish at a high level so that
we're clear about where we are going:

1. Create a URL pattern to call a route service.

2. Build a view to handle an incoming URL request and deliver the appropriate GeoJSON
route web response:

1. Accept incoming request parameters.

Start x coordinate.

Start y coordinate.

Start floor number.

End x coordinate.

Chapter 11

243

End y coordinate.

End floor number.

2. Return GeoJSON LineString.

Route geometry.

Route length.

Route walk time.

We also need to let our new database user named saturn in order to have access to the
tables located in the PostgreSQL geodata schema created in Chapter 8, Network Routing
Analysis. Currently, only the user named postgres is the owner and almighty one. This needs
to change so that we can keep on trucking without needing to recreate our tables as created
in Chapter 8, Network Routing Analysis. So, let's go ahead and simply make the saturn user
the owner of each of these tables as follows:

ALTER TABLE geodata.ch08_e01_networklines OWNER TO saturn;

ALTER TABLE geodata.ch08_e01_networklines_vertices_pgr OWNER TO saturn;

ALTER TABLE geodata.ch08_e02_networklines OWNER TO saturn;

ALTER TABLE geodata.ch08_e02_networklines_vertices_pgr OWNER TO saturn;

ALTER TABLE geodata.networklines_3857 OWNER TO saturn;

ALTER TABLE geodata.networklines_3857_vertices_pgr OWNER TO saturn;

If you are looking for a way to allow both the saturn user and
any other user to gain access to these tables, you could create a
PostgreSQL group role and assign the user to this role as follows:
CREATE ROLE gis_edit VALID UNTIL 'infinity';
GRANT ALL ON SCHEMA geodata TO GROUP gis_edit;
GRANT gis_edit TO saturn;
GRANT ALL ON TABLE geodata.ch08_e01_networklines
TO GROUP gis_edit;
GRANT ALL ON TABLE geodata.ch08_e01_networklines_
vertices_pgr TO GROUP gis_edit;
GRANT ALL ON TABLE geodata.ch08_e02_networklines
TO GROUP gis_edit;
GRANT ALL ON TABLE geodata.ch08_e02_networklines_
vertices_pgr TO GROUP gis_edit;
GRANT ALL ON TABLE geodata.networklines_3857 TO
GROUP gis_edit;
GRANT ALL ON TABLE geodata.networklines_3857_
vertices_pgr TO GROUP gis_edit;

Web Analysis with GeoDjango

244

How to do it...
Our code is now in one folder in a structure that's common to all Django web projects, so
following these steps should be straightforward:

1. Let's begin by wiring up our new URL. Go ahead and open up the urls.py file inside
your ch11/code/web_analysis/ folder. Inside the file, you will need to enter the
main URL configuration for our new web page. This file was automatically created
when we created the project. Django fills in some helper text, as you can see, that
shows you some basic configuration options. We need to add the admin app, which
we will use later, and the URL for our new API. The API application will have its very
own URL configuration file as you can see in the api.urls references, which
we will create next. The /web_analysis/urls.py file should look like this:
"""web_analysis URL Configuration

The `urlpatterns` list routes URLs to views. For more
information please see:
 https://docs.djangoproject.com/en/1.8/topics/http/urls/
Examples:
Function views
 1. Add an import: from my_app import views
 2. Add a URL to urlpatterns: url(r'^$', views.home,
 name='home')
Class-based views
 1. Add an import: from other_app.views import Home
 2. Add a URL to urlpatterns: url(r'^$',
 Home.as_view(), name='home')
Including another URLconf
 1. Add an import: from blog import urls as blog_urls
 2. Add a URL to urlpatterns: url(r'^blog/',
 include(blog_urls))
"""
from django.conf.urls import include, url
from django.contrib import admin

urlpatterns = [
 url(r'^admin/', include(admin.site.urls)),
 url(r'^api/', include('api.urls')),
]

2. Next up, let's create the /web_analysis/api/urls.py api URLs. This file is not
automatically generated so we'll create this file now. The content of this /api/urls.
py file will be as follows:
from django.conf.urls import patterns, url
from rest_framework.urlpatterns import format_suffix_patterns

Chapter 11

245

urlpatterns = patterns('api.views',
 # ex valid call from to
/api/directions/
1587848.414,5879564.080,2&1588005.547,5879736.039,2
 url(r'^directions/(?P<start_coord>[-
]?\d+\.?\d+,\d+\.\d+),(?P<start_floor>\d+)&(?P<end_coord>[-
]?\d+\.?\d+,\d+\.\d+),(?P<end_floor>\d+)/$',
'create_route', name='directions'),

)

urlpatterns = format_suffix_patterns(urlpatterns)

3. The regular expression looks wild as most regular expressions do. If you need some
help understanding it, try referring to https://regex101.com/#python. Go
ahead and paste this regular expression in the regular expression field:
(?P<start_coord>[-
]?\d+\.?\d+,\d+\.\d+),(?P<start_floor>\d+)&(?P<end_coord>[-
]?\d+\.?\d+,\d+\.\d+),(?P<end_floor>\d+)

4. To test your URL string, simply paste this text in the TEST STRING field:
1587848.414,5879564.080,2&1588005.547,5879736.039,2

5. If it's lit up in some funky colors, you are good to go:

Django's use of regular expressions for URL configuration is quite handy but not
always obvious and explicit to read. Our URL is explained in a textual manner and
would read like this:
/api/directions/start_x,start_y,start_floor&end_x,end_y,end_floor

This is a real example from your development machine. When calling the URL, it will
look like this:
http://localhost:8000/api/
directions/1587848.414,5879564.080,2&1588005.547,5879736.039,2

https://regex101.com/#python

Web Analysis with GeoDjango

246

The start and end location information is separated with an & symbol, while the
contents of each start parameter and end parameter are separated by a comma.

Going forward, in terms of complexity, we now need to enter the logic part of our
API. Django handles this in the views. Our /web_analysis/api/views.py code
contains the code to handle the request and response.

6. The main def create_route function should look familiar as it is taken directly
from Chapter 8, Network Routing Analysis, with some modifications. A new helper
function is created called find_closest_network_node. This new function is
more robust and faster than our previous SQL that we used to find the node closest
to any given x, y coordinate entered by a user:
#!/usr/bin/env python
-*- coding: utf-8 -*-

import traceback
from django.http import HttpResponseNotFound
from rest_framework.decorators import api_view
from rest_framework.response import Response
from geojson import loads, Feature, FeatureCollection
import logging
logger = logging.getLogger(__name__)
from django.db import connection

def find_closest_network_node(x_coord, y_coord, floor):
 """
 Enter a given coordinate x,y and floor number and
 find the nearest network node
 to start or end the route on
 :param x_coord: float in epsg 3857
 :param y_coord: float in epsg 3857
 :param floor: integer value equivalent to floor such as
 2 = 2nd floor
 :return: node id as an integer
 """
 # connect to our Database
 logger.debug("now running function
find_closest_network_node")
 cur = connection.cursor()

 # find nearest node on network within 200 m
 # and snap to nearest node
 query = """ SELECT
 verts.id as id
 FROM geodata.networklines_3857_vertices_pgr AS
verts

Chapter 11

247

 INNER JOIN
 (select ST_PointFromText('POINT(%s %s %s)',
 3857)as geom) AS pt
 ON ST_DWithin(verts.the_geom, pt.geom, 200.0)
 ORDER BY ST_3DDistance(verts.the_geom, pt.geom)
 LIMIT 1;"""

 # pass 3 variables to our %s %s %s place holder in
query
 cur.execute(query, (x_coord, y_coord, floor,))

 # get the result
 query_result = cur.fetchone()

 # check if result is not empty
 if query_result is not None:
 # get first result in tuple response there is only
one
 point_on_networkline = int(query_result[0])
 return point_on_networkline
 else:
 logger.debug("query is none check tolerance value
of 200")
 return False

use the rest_framework decorator to create our api
view for get, post requests
@api_view(['GET', 'POST'])
def create_route(request, start_coord, start_floor,
end_coord, end_floor):
 """
 Generate a GeoJSON indoor route passing in a start
x,y,floor
 followed by & then the end x,y,floor
 Sample request: http:/localhost:8000/api/directions/
1587848.414,5879564.080,2&1588005.547,5879736.039,2
 :param request:
 :param start_coord: start location x,y
 :param start_floor: floor number ex) 2
 :param end_coord: end location x,y
 :param end_floor: end floor ex) 2
 :return: GeoJSON route
 """

 if request.method == 'GET' or request.method == 'POST':

Web Analysis with GeoDjango

248

 cur = connection.cursor()

 # parse the incoming coordinates and floor using
 # split by comma
 x_start_coord = float(start_coord.split(',')[0])
 y_start_coord = float(start_coord.split(',')[1])
 start_floor_num = int(start_floor)

 x_end_coord = float(end_coord.split(',')[0])
 y_end_coord = float(end_coord.split(',')[1])
 end_floor_num = int(end_floor)

 # use our helper function to get vertices
 # node id for start and end nodes
 start_node_id =
find_closest_network_node(x_start_coord,
 y_start_coord,
 start_floor_num)

 end_node_id =
find_closest_network_node(x_end_coord,
 y_end_coord,
 end_floor_num)

 routing_query = '''
 SELECT seq, id1 AS node, id2 AS edge,
 total_cost AS cost, layer,
 type_id, ST_AsGeoJSON(wkb_geometry) AS geoj
 FROM pgr_dijkstra(
 'SELECT ogc_fid as id, source, target,
 st_length(wkb_geometry) AS cost,
 layer, type_id
 FROM geodata.networklines_3857',
 %s, %s, FALSE, FALSE
) AS dij_route
 JOIN geodata.networklines_3857 AS
input_network
 ON dij_route.id2 = input_network.ogc_fid ;
 '''

 # run our shortest path query
 if start_node_id or end_node_id:
 cur.execute(routing_query, (start_node_id,
 end_node_id))
 else:
 logger.error("start or end node is None "
 + str(start_node_id))

Chapter 11

249

 return HttpResponseNotFound('<h1>Sorry NO start
 or end node'
 ' found within 200m</h1>')

 # get entire query results to work with
 route_segments = cur.fetchall()

 # empty list to hold each segment for our GeoJSON
 output
 route_result = []

 # loop over each segment in the result route
segments
 # create the list of our new GeoJSON
 for segment in route_segments:
 seg_cost = segment[3] # cost value
 layer_level = segment[4] # floor number
 seg_type = segment[5]
 geojs = segment[6] # geojson
coordinates
 geojs_geom = loads(geojs) # load string to
geom
 geojs_feat = Feature(geometry=geojs_geom,
 properties={'floor': layer_level,
 'length': seg_cost,
 'type_id':
 seg_type})
 route_result.append(geojs_feat)

 # using the geojson module to create our GeoJSON
Feature Collection
 geojs_fc = FeatureCollection(route_result)

 try:
 return Response(geojs_fc)
 except:
 logger.error("error exporting to json model: "+
 str(geojs_fc))
 logger.error(traceback.format_exc())
 return Response({'error': 'either no JSON or no
 key params in your JSON'})
 else:
 retun HttpResponseNotFound('<h1>Sorry not a GET or
 POST request</h1>')

Web Analysis with GeoDjango

250

The resulting API call has a nice web interface that's automatically generated by the
Django REST Framework as shown in the following screenshot. The URL you need to
call is also shown and should return a GeoJSON result.

The following URL will return GeoJSON to your browser; in Chrome, it will normally
just show up as simple text. IE users may download it as a file by simply opening it in
Notepad++ or a local text editor to see the contents of GeoJSON:
http://localhost:8000/api/directions/1587848.414,5879564.080,2&158
8005.547,5879736.039,2/?format=json

Chapter 11

251

How it works...
Our view handles the request and response using the Django REST Framework. There are two
functions that do all the hard work without ever using the Django Object Relational Mapper
(ORM). The reason for this is two-fold: first, to show you the basics of direct Database usage
without too much abstraction and the inner workings of what is going on; second, because we
are using functions of PostGIS that are not available directly through the ORM of GeoDjango,
such as ST_3DDistance or ST_PointFromText. We could use some of the fancy Django
helpers, such as .extra(), but this would confuse everyone but an experienced Django user.

Let's discuss the first find_closest_network_node function that takes three parameters:
x_coord, y_coord, and floor. The x and y coordinates should be double precision float
values, while the floor is an integer. Our regular expression URL limits any request to digits
so there is no need to do any extra format checking in our code.

The SQL query that finds the nearest node and returns its ID limits the search radius to
200 m, which would equal one huge room or auditorium. Then, we order by the 3D distance
between the points and LIMIT the result to one since we are not routing to multiple locations.

This feeds our second function called create_route where we pass it the start coordinate,
start floor integer, end coordinate, and end floor number. Our URL at /web_analysis/api/
urls.py uses a regular expression named groups that corresponds to the same names
used in the request parameters of our function. This keeps things more explicit so that you
know what values belong where in a query.

We begin with parsing the incoming parameters to get the exact values as floats and integers
to feed our routing query. The routing query itself is unchanged from Chapter 8, Network
Routing Analysis, so refer to this chapter for more details. The Django REST framework
response sends the GeoJSON back to the client and has the ability to return it as raw text
as well.

Visualizing an indoor routing service
With our wonderful API created, it's time now to visualize this indoor route returned as
GeoJSON on a map. We will now dive into the Django template components to create the
HTML, JS, and CSS for our front-facing web page that displays a simple slippy web map using
Openlayers 3.4.0. and Bootstrap CSS.

Web Analysis with GeoDjango

252

Our new web map will display the GeoJSON on the map with a nice style alongside a menu bar
where we will include later functionality.

Getting ready
We need to build a few new folders and files to store new static and template content for our
Django web application. Let's begin doing this by creating the /web_analysis/templates
folder followed by the /web_analysis/static folder.

Inside our /static/ folder, we will place the nondynamic content of the JavaScript and CSS
files. The /templates/ folder will store the HTML template files used to create our web pages.

Next up, let's tell Django /web_analysis/settings.py about the location of our new
templates folder; add the os.path.join(BASE_DIR, 'templates') value to the
'DIRS' key shown here so that the TEMPLATES variable looks like this:

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': [os.path.join(BASE_DIR, 'templates'),],
 'APP_DIRS': True,
 'OPTIONS': {
 'context_processors': [
 'django.template.context_processors.debug',
 'django.template.context_processors.request',

Chapter 11

253

 'django.contrib.auth.context_processors.auth',
 'django.contrib.messages.
 context_processors.messages',
],
 },
 },
]

To manage our maps, lets create a new Django application called maps where we can store all
our map information as follows:

> python manage.py startapp maps

Next, register your new app in the /web_analysis/web_analysis/settings.py
INSTALLED APPS variable by adding this under the api entry 'maps', under the entry 'api'.

The /maps/urls.py file is not automatically created so let's do this now and fill in some
content as follows:

from django.conf.urls import patterns, url
from rest_framework.urlpatterns import format_suffix_patterns

urlpatterns = patterns('maps.views',
 # ex valid call from to
/api/directions/1587848.414,5879564.080,2&1588005.547,5879736.039,2
 url(r'^(?P<map_name>\w+)/$', 'route_map', name='route-map'),

)

urlpatterns = format_suffix_patterns(urlpatterns)

We need to assign maps/urls.py within our main /web_analysis/web_analysis/
urls.py so that we can freely create any URL for all our mapping needs.

Add this line to the /web_analysis/web_analysis/urls.py file as follows:

 url(r'^maps/', include('maps.urls')),

This means that all the URL's inside our /maps/urls.py will start with
http://localhost:8000/maps/.

We are now ready to set up the static files and static contents inside settings.py
as follows:

STATIC_URL = '/static/'
STATIC_FOLDER = 'static'

STATICFILES_DIRS = [

Web Analysis with GeoDjango

254

 os.path.join(BASE_DIR, STATIC_FOLDER),
]

finds all static folders in all apps
STATICFILES_FINDERS = (
 'django.contrib.staticfiles.finders.FileSystemFinder',
 'django.contrib.staticfiles.finders.AppDirectoriesFinder',
)

You should have the following folders and files now in the /static/ folder:

static
+---css
| bootstrap-responsive.min.css
| bootstrap.min.css
| custom-layout.css
| font-awesome.min.css
| ol.css
|
+---img
\---js
 bootstrap.min.js
 jquery-1.11.2.min.js
 jquery.min.js
 ol340.js

This should be enough to set up your Django project in order for it to serve up a static map.

How to do it...
Actually serving up the map requires us to create an HTML page. We use the built-in Django
template engine to build two HTML pages. The first page template is base.html that will
hold the basics of our web map page, making it a very important part of our frontend design.
What's included in this page is a set of block tags, each for separate content place holders.
This allows us to quickly create new map pages based on our base template, which sets up
our basic template architecture.

1. Here is the /templates/base.html file:
{% load staticfiles %}
<!DOCTYPE html>
<html lang="en">
<head>
 {% block head %}

Chapter 11

255

 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width,
 initial-scale=1">
 <meta name="description" content="Sample Map">
 <meta name="author" content="Michael Diener">
 <meta charset="UTF-8">

 <title>{% block title %}Default Title{% endblock
 %}</title>

 <script src="{% static "js/jquery-1.11.2.min.js"
 %}"></script>
 <link rel="stylesheet" href="{% static
 "css/bootstrap.min.css"
 %}">
 <script src="{% static "js/bootstrap.min.js"
 %}"></script>
 <link rel="stylesheet" href="{% static "css/ol.css" %}"
 type="text/css">
 <link rel="stylesheet" href="{% static
 "css/custom-layout.css" %}" type="text/css">
 <script src="{% static "js/ol340.js" %}"></script>

 {% endblock head %}
</head>
<body>
{% block body %}

 {% block nav %}
 <nav class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle
 collapsed" data-toggle="collapse"
 data-target="#navbar" aria-expanded="false"
 aria-controls="navbar">
 Toggle
 navigation

 </button>
 Indoor
 Project
 </div>

Web Analysis with GeoDjango

256

 <div id="navbar"
 class="collapse navbar-collapse">
 <ul class="nav navbar-nav">
 About
 Contact

 </div><!--/.nav-collapse -->
 </div>
 </nav>
 {% endblock nav %}

{% endblock body %}
</body>
</html>

2. Now, let's move on to the actual map. A new template called /templates/route-
map.html contains all the actual Django template blocks that are filled with HTML
content as follows:
{% extends "base.html" %}
{% load staticfiles %}

{% block title %}Simple route map{% endblock %}

{% block body %}

{{ block.super }}

<div class="container-fluid">

 <div class="row">
 <div class="col-md-2">
 <div id="directions" class="directions">
 <form>
 <div class="radio">
 <label>
 <input type="radio" name="typeRoute"
 id="routeTypeStandard" value="0"
 checked>
 Standard Route
 </label>
 </div>
 <div class="radio">
 <label>

Chapter 11

257

 <input type="radio" name="typeRoute"
 id="routeTypeBarrierFree" value="1">
 Barrier Free Route
 </label>
 </div>
 <button type="submit"
 class="btn btn-default">Submit</button>

 </form>

 </div>
 </div>
 <div class="col-md-10">
 <div id="map" class="map"></div>
 </div>

 </div>
</div>

 <script>

 var routeUrl =
'/api/
directions/1587848.414,5879564.080,2&1588005.547,5879736.039,2&' +
sel_Val2 + '/?format=json';

 map.getLayers().push(new ol.layer.Vector({
 source: new ol.source.GeoJSON({url:
 routeUrl, crossDomain: true,}),
 style: new ol.style.Style({
 stroke: new ol.style.Stroke({
 color: 'blue',
 width: 4
 })
 }),
 title: "Route",
 name: "Route"
 }));

 });
 var vectorLayer = new ol.layer.Vector({
 source: new ol.source.GeoJSON({url:
 geojs_url}),

Web Analysis with GeoDjango

258

 style: new ol.style.Style({
 stroke: new ol.style.Stroke({
 color: 'red',
 width: 4
 })
 }),
 title: "Route",
 name: "Route"
 });

 var map = new ol.Map({
 layers: [
 new ol.layer.Tile({
 source: new ol.source.OSM()
 }),
 vectorLayer
],
 target: 'map',
 controls: ol.control.defaults({
 attributionOptions: /** @type
 {olx.control.AttributionOptions} */ ({
 collapsible: false
 })
 }),
 view: new ol.View({
 center: [1587927.09817072,5879650.90059265],
 zoom: 18
 })
 });

 </script>

{% endblock body %}

3. For our application to actually show these templates, we need to create a view. The
view handles the request and serves route-map.html in return. Now, our simple
view is complete:
from django.shortcuts import render

def route_map(request):
 return render(request, 'route-map.html')

Chapter 11

259

How it works...
Starting with the base.html template, we set out the basic building blocks for map making.
The static files and resources were set up to handle serving our JavaScript and CSS code. The
base.html file is designed to allow us to add elements that are shared between multiple
HTML pages such as a master page in Microsoft PowerPoint. The more blocks, that is, place
holders, the better your base.

Our route-map.html contains the actual code referencing our api by calling it with a
predefined, hardcoded from, to URL:

var geojs_url =
"http://localhost:8000/api/directions/1587898.414,5879564.080,
1&1588005.547,5879736.039,2/?format=json"

The /maps/views.py code is where any map logic, variables, or parameters are passed
around to the template. In our code, we simply take in a request and return an HTML page.
Now you have a rudimentary indoor routing service and visualization client to show off to
your friends.

Creating an indoor route-type service
Building a route based on a specified type value, such as a Barrier Free Route or Standard
Pedestrian Route value, is great for your users. How to build different route types is based on
the available data connected to our indoor graph of ways. This example will allow a user to select
the barrier-free route and our service will generate a path, avoiding obstacles such as stairs:

Web Analysis with GeoDjango

260

Getting ready
We need to access some more data on our network to allow routing types. The type of route
is based on a network line type, which is stored as an attribute on each LineString. To classify
our route types, we have the following lookup table schema:

Value Route type
0 Indoor route
1 Outdoor route
2 Elevator
3 Stairs

Therefore, we want to avoid any stairs segments, which technically means avoiding
type_id = 3.

Optionally, you could create a lookup table to store all the
possible types and their equivalent weights. These values could
then be included in the calculation of the total cost value to
influence the route outcome.

Now we can control how the route is generated based on certain preferences as well. A
standard route search can now be set for preferences, such as taking the stairs over the
elevator or vice versa, depending on your needs:

ALTER TABLE geodata.ch08_e01_networklines ADD COLUMN total_cost double
precision;

ALTER TABLE geodata.ch08_e02_networklines ADD COLUMN total_cost double
precision;

update geodata.networklines_3857 set total_cost = st_length(wkb_
geometry)*88

where type_id = 2;

update geodata.networklines_3857 set total_cost = st_length(wkb_
geometry)*1.8

where type_id = 3;

If you update geodata.networklines_3857, make sure the user saturn is the owner or
has access; otherwise, your API call will break.

Chapter 11

261

How to do it...
The least-cost path from any point is controlled by a basic property called cost. For a
standard route, the cost is equal to the distance of a segment. We search for the least-cost
path, which means finding the shortest path to our destination.

To control the path, we set the cost values. Creating a barrier-free route involves setting all
segment types equal to stairs at an extraordinarily high value so that the path, that is, the
distance, is huge and is, therefore, excluded in the shortest path route finding process. Our
other option is to add a WHERE clause to the query and only accept values where type_id is
not equal to 3, which means that it is not of the type stairs. We are going to use this option
in our upcoming code.

Therefore our data needs to be clean in order to allow us to assign specific costs to specific
segment types in our network lines.

Now, we need to add a new parameter to capture the route type:

1. We'll update the /api/views.py function, create route(), and add a new
parameter called route_type. Next up is the actual query that needs to accept this
new parameter. We set up a new variable called barrierfree_q to hold the WHERE
clause that we will add to our original query:
def create_route(request, start_coord, start_floor,
end_coord, end_floor, route_type):
 base_route_q = """SELECT ogc_fid as id, source,
 target,
 total_cost AS cost,
 layer, type_id
 FROM geodata.networklines_3857"""

 # set default query
 barrierfree_q = "WHERE 1=1"
 if route_type == "1":
 # exclude all networklines of type stairs
 barrierfree_q = "WHERE type_id not in (3,4)"

 routing_query = '''
 SELECT seq, id1 AS node, id2 AS edge,
 ST_Length(wkb_geometry) AS cost, layer,
 type_id, ST_AsGeoJSON(wkb_geometry) AS geoj
 FROM pgr_dijkstra('
 {normal} {type}', %s, %s, FALSE, FALSE
) AS dij_route
 JOIN geodata.networklines_3857 AS input_network
 ON dij_route.id2 = input_network.ogc_fid ;
 '''.format(normal=base_route_q,
 type=barrierfree_q)

Web Analysis with GeoDjango

262

2. We'll update our /api/urls.py to input our new URL parameter, route_type. The
newly added named group regular expression is naturally called route_type and only
accepts numbers from 0 to 9. This then, of course, also limits you to 10 route types. So,
if you want to add more types, you will need to update your regex as follows:
from django.conf.urls import patterns, url
from rest_framework.urlpatterns import format_suffix_patterns

urlpatterns = patterns('api.views',
 # ex valid call from to
/api/directions/1587848.414,5879564.080,2&1588005.547,5879736.039,2
 url(r'^directions/(?P<start_coord>[-
]?\d+\.?\d+,\d+\.\d+),(?P<start_floor>\d+)&(?P<end_coord>[-
]?\d+\.?\d+,\d+\.\d+),(?P<end_floor>\d+)&(?P<route_type>[0-
9])/$', 'create_route', name='directions'),

)

urlpatterns = format_suffix_patterns(urlpatterns)

3. The /maps/views.py function needs a facelift too so that we can pass in the
parameters. Now, it will accept route_type as defined in our /api/urls.py:
from django.shortcuts import render

def route_map(request, route_type = "0"):

 return render(request, 'route-map.html',
 {'route_type': route_type})

4. It's time to update route-map.html to include radio buttons that allow a user to
select either a Standard Route or Barrier Free Route. The map will then update the
route as soon as you click on the route type radio button:
{% extends "base.html" %}
{% load staticfiles %}

{% block title %}Simple route map{% endblock %}

{% block body %}

{{ block.super }}

<div class="container-fluid">

 <div class="row">
 <div class="col-md-2">

Chapter 11

263

 <div id="directions" class="directions">
 <form>
 <div class="radio">
 <label>
 <input type="radio" name="typeRoute"
 id="routeTypeStandard" value="0"
 checked>
 Standard Route
 </label>
 </div>
 <div class="radio">
 <label>
 <input type="radio" name="typeRoute"
 id="routeTypeBarrierFree" value="1">
 Barrier Free Route
 </label>
 </div>
 <button type="submit"
 class="btn btn-default">Submit</button>

 </form>

 </div>
 </div>
 <div class="col-md-10">
 <div id="map" class="map"></div>
 </div>

 </div>
</div>

 <script>
 var url_base = "/api/directions/";
 var start_coord = "1587848.414,5879564.080,2";
 var end_coord = "1588005.547,5879736.039,2";
 var r_type = {{ route_type }};
 var geojs_url = url_base + start_coord + "&" +
 end_coord + "&" + sel_Val + '/?format=json';
 var sel_Val = $("input:radio[name=typeRoute]:checked"
).val();

 $(".radio").change(function() {
 map.getLayers().pop();
 var sel_Val2 = $("input:radio[name=typeRoute]:checked"
).val();

Web Analysis with GeoDjango

264

 var routeUrl =
'/api/
directions/1587848.414,5879564.080,2&1588005.547,5879736.039,2&' +
sel_Val2 + '/?format=json';

 map.getLayers().push(new ol.layer.Vector({
 source: new ol.source.GeoJSON({url:
 routeUrl, crossDomain: true,}),
 style: new ol.style.Style({
 stroke: new ol.style.Stroke({
 color: 'blue',
 width: 4
 })
 }),
 title: "Route",
 name: "Route"
 }));

 });
 var vectorLayer = new ol.layer.Vector({
 source: new ol.source.GeoJSON({url:
 geojs_url}),
 style: new ol.style.Style({
 stroke: new ol.style.Stroke({
 color: 'red',
 width: 4
 })
 }),
 title: "Route",
 name: "Route"
 });

 var map = new ol.Map({
 layers: [
 new ol.layer.Tile({
 source: new ol.source.OSM()
 }),
 vectorLayer
],
 target: 'map',
 controls: ol.control.defaults({
 attributionOptions: /** @type
 {olx.control.AttributionOptions} */ ({
 collapsible: false
 })

Chapter 11

265

 }),
 view: new ol.View({
 center: [1587927.09817072,5879650.90059265],
 zoom: 18
 })
 });

 </script>

{% endblock body %}

Our results for type = 0 or a route using stairs should look like this:

Web Analysis with GeoDjango

266

The barrier-free route will use type = 1, which means forced elevator use and
avoiding all stairs. Your result should then look like this:

How it works...
The main part to understand here is that we need to add an option route type to our API call.
This API call must accept a specific route type that we have defined as a number from 0 to 9.
This route type number is then passed to our URL as a parameter and api/views.py runs
the call. The API then generates a new route based on the route type.

All our changes are made inside the /api/view.py code that now includes a SQL WHERE
clause and excludes networklines with a type_id = 3—that is, stairs. This query
change keeps our app fast without actually increasing any Django middleware code in
our views.

The frontend needs the user to select a route type with the default route type set to a
standard value, such as 0, as in the case of stairs. This default type is used because in
most indoor environments the stairs are usually shorter. You can, of course, change this
default to whatever value or criteria you'd like at any time. A radio select box is used to
restrain the choice to either a standard route or a barrier-free route. Upon selecting a route
type, the map automatically removes the old route and creates a new route.

Chapter 11

267

Creating an indoor route from room to room
Routing from room A to room B in an indoor routing web application over multiple floors with
routing types brings together all our work up to this point. We will import some room data and
utilize our network to then allow a user to select a room, route from one room to the next, and
select a type of route.

Getting ready
We need to import a set of room polygons for both the first and second floor as follows:

1. Import a Shapefile of the first floor room polygons as follows:
ogr2ogr -a_srs EPSG:3857 -lco "SCHEMA=geodata" -lco
"COLUMN_TYPES=name=varchar,room_num=integer,floor=integer"
-nlt POLYGON -nln ch11_e01_roomdata -f PostgreSQL
"PG:host=localhost port=5432 user=saturn dbname=py_geoan_cb
password=secret" e01_room_data.shp

2. Import a Shapefile of the second floor room polygons as follows:
ogr2ogr -a_srs EPSG:3857 -lco "SCHEMA=geodata" -lco
"COLUMN_TYPES=name=varchar,room_num=integer,floor=integer"
-nlt POLYGON -nln ch11_e02_roomdata -f PostgreSQL
"PG:host=localhost port=5432 user=saturn dbname=py_geoan_cb
password=secret" e02_room_data.shp

Web Analysis with GeoDjango

268

3. Create a new PostgreSQL view to merge all the new room data into one table so that
we can query all the rooms at once:
CREATE OR REPLACE VIEW geodata.search_rooms_v AS

SELECT floor, wkb_geometry, room_num FROM geodata.ch11_e01_
roomdata

UNION

SELECT floor, wkb_geometry, room_num FROM geodata.ch11_e02_
roomdata ;

ALTER TABLE geodata.search_rooms_v OWNER TO saturn;

How to do it...
To allow a user to route from A to B, we need to enable a route from a field and a route to a
field, as follows:

1. Create a new URL to accept the new parameter of the start and end room number.
The first URL for example will look like http://localhost:8000/api/
directions/10010&20043&0, which means that the route from room number
10010 to room number 20042 using the standard route type equals to zero.

The second URL is an extra function that you can call to only
return the center coordinate of a room when you pass in
the room number like this: http://localhost:8000/
directions/10010.

This function in the view does not exist and is left for you to
do as homework.

 url(r'^directions/(?P<start_room_num>\d{5})&(?P<end_room_num>\
d{5})&(?P<route_type>[0-9])/$', 'route_room_to_room',
name='route-room-to-room'),
 url(r'^directions/(?P<room_num>\d{5})/$',
'get_room_centroid_node', name='room-center'),

2. Build a new /api/views.py function to find a room center coordinate and return
the nearest node on networklines to this coordinate:
def get_room_centroid_node(room_number):
 '''
 Find the room center point coordinates
 and find the closest route node point
 :param room_number: integer value of room number
 :return: Closest route node to submitted room number
 '''

Chapter 11

269

 room_center_q = """SELECT floor,
 ST_asGeoJSON(st_centroid(wkb_geometry))
 AS geom FROM geodata.search_rooms_v
 WHERE room_num = %s;"""

 cur = connection.cursor()
 cur.execute(room_center_q, (room_number,))

 res = cur.fetchall()

 res2 = res[0]

 room_floor = res2[0]
 room_geom_x = json.loads(res2[1])
 room_geom_y = json.loads(res2[1])

 x_coord = float(room_geom_x['coordinates'][0])
 y_coord = float(room_geom_y['coordinates'][1])

 room_node = find_closest_network_node(x_coord, y_coord,
 room_floor)
 try:
 return room_node
 except:
 logger.error("error get room center " + str(room_node))
 logger.error(traceback.format_exc())
 return {'error': 'error get room center'}

3. Build the function inside /api/views.py to accept a start node ID, end node ID,
and a route type that will then return a GeoJSON of the final route as follows:
def run_route(start_node_id, end_node_id, route_type):
 '''

 :param start_node_id:
 :param end_node_id:
 :param route_type:
 :return:
 '''

 cur = connection.cursor()
 base_route_q = """SELECT ogc_fid AS id, source, target,
 total_cost AS cost,
 layer, type_id
 FROM geodata.networklines_3857"""

Web Analysis with GeoDjango

270

 # set default query
 barrierfree_q = "WHERE 1=1"
 if route_type == "1":
 # exclude all networklines of type stairs
 barrierfree_q = "WHERE type_id not in (3,4)"

 routing_query = '''
 SELECT seq, id1 AS node, id2 AS edge,
 ST_Length(wkb_geometry) AS cost, layer,
 type_id, ST_AsGeoJSON(wkb_geometry) AS geoj
 FROM pgr_dijkstra('
 {normal} {type}', %s, %s, FALSE, FALSE
) AS dij_route
 JOIN geodata.networklines_3857 AS input_network
 ON dij_route.id2 = input_network.ogc_fid ;
 '''.format(normal=base_route_q, type=barrierfree_q)

 # run our shortest path query
 if start_node_id or end_node_id:
 cur.execute(routing_query, (start_node_id,
 end_node_id))
 else:
 logger.error("start or end node is None "
 + str(start_node_id))
 return HttpResponseNotFound('<h1>Sorry NO start or
 end node'
 ' found within
 200m</h1>')

 # get entire query results to work with
 route_segments = cur.fetchall()

 # empty list to hold each segment for our GeoJSON
 output
 route_result = []

 # loop over each segment in the result route segments
 # create the list of our new GeoJSON
 for segment in route_segments:
 seg_cost = segment[3] # cost value
 layer_level = segment[4] # floor number
 seg_type = segment[5]
 geojs = segment[6] # geojson coordinates
 geojs_geom = loads(geojs) # load string to geom
 geojs_feat = Feature(geometry=geojs_geom,

Chapter 11

271

 properties={'floor':
 layer_level,
 'length':
 seg_cost,
 'type_id':
 seg_type})
 route_result.append(geojs_feat)

 # using the geojson module to create our GeoJSON
 Feature Collection
 geojs_fc = FeatureCollection(route_result)

 return geojs_fc

4. At last, we can create a function that our API will call to generate a response:
@api_view(['GET', 'POST'])
def route_room_to_room(request, start_room_num,
end_room_num, route_type):
 '''
 Generate a GeoJSON route from room number
 to room number
 :param request: GET or POST request
 :param start_room_num: an integer room number
 :param end_room_num: an integer room number
 :param route_type: an integer room type
 :return: a GeoJSON linestring of the route
 '''

 if request.method == 'GET' or request.method == 'POST':

 start_room = int(start_room_num)
 end_room = int(end_room_num)

 start_node_id = get_room_centroid_node(start_room)
 end_node_id = get_room_centroid_node(end_room)

 res = run_route(start_node_id, end_node_id,
 route_type)

 try:
 return Response(res)
 except:
 logger.error("error exporting to json model: "
 + str(res))
 logger.error(traceback.format_exc())

Web Analysis with GeoDjango

272

 return Response({'error': 'either no JSON or no
 key params in your JSON'})
 else:
 return HttpResponseNotFound('<h1>Sorry not a GET or
 POST request</h1>')

5. Add a URL to /api/urls.py to access a list of all available rooms:
 url(r'^rooms/$', 'room_list', name='room-list'),

6. Create an API service to return a JSON array of all room numbers. This array is
used in autocomplete fields, route-from, and route-to. We use the Twitter
Typeahead.js JavaScript library to handle our autocomplete dropdown type hinting.
As a user, all you need to do is type 1, for example, and all the rooms beginning
with 1 will show up as 10010 (check this out at http://twitter.github.io/
typeahead.js/examples/):
@api_view(['GET', 'POST'])
def room_list(request):
 '''
 http://localhost:8000/api/rooms
 :param request: no parameters GET or POST
 :return: JSON Array of room numbers
 '''
 cur = connection.cursor()
 if request.method == 'GET' or request.method == 'POST':

 room_query = """SELECT room_num FROM
 geodata.search_rooms_v"""

 cur.execute(room_query)
 room_nums = cur.fetchall()

 room_num_list = []
 for x in room_nums:
 v = x[0]
 room_num_list.append(v)

 try:
 return Response(room_num_list)
 except:
 logger.error("error exporting to json model: "
 + str(room_num_list))
 logger.error(traceback.format_exc())
 return Response({'error': 'either no JSON or no
 key params in your JSON'})

http://twitter.github.io/typeahead.js/examples/
http://twitter.github.io/typeahead.js/examples/

Chapter 11

273

7. Our final base.html template is complete, containing all the spice needed for our
final route from room to room as follows:
{% load staticfiles %}
<!DOCTYPE html>
<html lang="en">
<head>
 {% block head %}

 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width,
 initial-scale=1">
 <meta name="description" content="Sample Map">
 <meta name="author" content="Michael Diener">
 <meta charset="UTF-8">

 <title>{% block title %}Default Title{% endblock
 %}</title>

 <script src="{% static "js/jquery-1.11.2.min.js"
 %}"></script>
 <link rel="stylesheet" href="{% static
 "css/bootstrap.min.css" %}">
 <script src="{% static "js/bootstrap.min.js"
 %}"></script>
 <link rel="stylesheet" href="{% static "css/ol.css" %}"
 type="text/css">
 <link rel="stylesheet" href="{% static
 "css/custom-layout.css" %}" type="text/css">
 <script src="{% static "js/ol340.js" %}"></script>

 {% endblock head %}
</head>
<body>
{% block body %}

 {% block nav %}
 <nav
 class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button"
 class="navbar-toggle collapsed"
 data-toggle="collapse" data-target="#navbar"
 aria-expanded="false" aria-controls="navbar">

Web Analysis with GeoDjango

274

 Toggle
 navigation

 </button>
 <a class="navbar-brand"
 href="http://www.indrz.com"
 target="_blank">Indoor Project
 </div>
 <div id="navbar"
 class="collapse navbar-collapse">
 <ul class="nav navbar-nav">
 <a href="#about"
 target="_blank">About
 <a href="https://github.com/mdiener21/"
 target="_blank">Contact

 </div><!--/.nav-collapse -->
 </div>
 </nav>
 {% endblock nav %}

{% endblock body %}
</body>
</html>

8. Now we'll create our final route-map.html template and the JavaScript that goes
with it as follows:
{% extends "base.html" %}
{% load staticfiles %}

{% block title %}Simple route map{% endblock %}

{% block head %}
{{ block.super }}
 <script src="{% static "js/bloodhound.min.js"
 %}"></script>
 <script src="{% static "js/typeahead.bundle.min.js"
 %}"></script>
{% endblock head %}

{% block body %}

Chapter 11

275

{{ block.super }}

<div class="container-fluid">

 <div class="row">
 <div class="col-md-2">
 <div id="directions" class="directions">
 <form id="submitForm">
 <div id="rooms-prefetch" class="form-group">
 <label for="route-to">Route From:</label>
 <input type="text"
 class="typeahead form-control"
 id="route-to" placeholder="Enter Room
 Number">
 </div>
 <div id="rooms-prefetch" class="form-group">
 <label for="route-from">Route To:</label>
 <input type="text"
 class="typeahead form-control"
 id="route-from" placeholder="Enter Room
 Number">
 </div>

 <div class="radio">
 <label>
 <input type="radio" name="typeRoute"
 id="routeTypeStandard" value="0"
 checked>
 Standard Route
 </label>
 </div>
 <div class="radio">
 <label>
 <input type="radio" name="typeRoute"
 id="routeTypeBarrierFree" value="1">
 Barrier Free Route
 </label>
 </div>
 <button id="enterRoute" type="submit"
 class="btn btn-default">Go !</button>

 </form>

 </div>
 </div>

Web Analysis with GeoDjango

276

 <div class="col-md-10">
 <div id="map" class="map"></div>
 </div>

 </div>
</div>

<script> {% include 'routing.js' %} </script>

<script>
 var roomNums = new Bloodhound({
 datumTokenizer: Bloodhound.tokenizers.whitespace,
 queryTokenizer: Bloodhound.tokenizers.whitespace,
 prefetch:
'http://localhost:8000/api/rooms/?format=json'
 });

 // passing in `null` for the `options` arguments will
 result in the default
 // options being used
 $('#rooms-prefetch .typeahead').typeahead(null, {
 name: 'countries',
 limit: 100,
 source: roomNums
 });

 $("#submitForm").submit(function(event) {
 {# alert("Handler for .submit() called.");#}
 var startNum = $('#route-from').val();
 var endNum = $('#route-to').val();
 var rType = $("input:radio[name=typeRoute]:checked"
).val();
 addRoute(startNum, endNum, rType);
 event.preventDefault();
 });

</script>

{% endblock body %}

Chapter 11

277

9. Our maps/templates/routing.js contains the functions needed to call the
routing API as follows:
 var url_base = "/api/directions/";
 var start_coord = "1587848.414,5879564.080,2";
 var end_coord = "1588005.547,5879736.039,2";
 var sel_Val = $("input:radio[name=typeRoute]:checked"
).val();
 var geojs_url = url_base + start_coord + "&" +
 end_coord + "&" + sel_Val + '/?format=json';

// uncomment this code if you want to reactivate
// the quick static demo switcher
 //$(".radio").change(function() {
 // map.getLayers().pop();
 // var sel_Val2 = $("input:radio[name=typeRoute]:check
ed").val();
 // var routeUrl = '/api/
directions/1587848.414,5879564.080,2&1588005.547,5879736.039,2&' +
sel_Val2 + '/?format=json';
 //
 // map.getLayers().push(new ol.layer.Vector({
 // source: new ol.source.GeoJSON({url:
 routeUrl}),
 // style: new ol.style.Style({
 // stroke: new ol.style.Stroke({
 // color: 'blue',
 // width: 4
 // })
 // }),
 // title: "Route",
 // name: "Route"
 // }));
 //
 //});

 var vectorLayer = new ol.layer.Vector({
 source: new ol.source.GeoJSON({url:
 geojs_url}),
 style: new ol.style.Style({
 stroke: new ol.style.Stroke({
 color: 'red',
 width: 4
 })
 }),
 title: "Route",

Web Analysis with GeoDjango

278

 name: "Route"
 });

 var map = new ol.Map({
 layers: [
 new ol.layer.Tile({
 source: new ol.source.OSM()
 })
 ,
 vectorLayer
],
 target: 'map',
 controls: ol.control.defaults({
 attributionOptions: /** @type
 {olx.control.AttributionOptions} */ ({
 collapsible: false
 })
 }),
 view: new ol.View({
 center: [1587927.09817072,5879650.90059265],
 zoom: 18
 })
 });

function addRoute(fromNumber, toNumber, routeType) {
 map.getLayers().pop();
 console.log("addRoute big"+ String(fromNumber));
 var baseUrl = 'http://localhost:8000/api/directions/';
 var geoJsonUrl = baseUrl + fromNumber + '&' + toNumber
 + '&' + routeType +'/?format=json';
 console.log("final url " + geoJsonUrl);
 map.getLayers().push(new ol.layer.Vector({
 source: new ol.source.GeoJSON({url:
 geoJsonUrl}),
 style: new ol.style.Style({
 stroke: new ol.style.Stroke({
 color: 'purple',
 width: 4
 })
 }),
 title: "Route",
 name: "Route"
 }));
 }

Chapter 11

279

10. Now, go ahead and enter 1 and see the autocomplete in action; then, select Route
To: and enter 2 to see the second floor options. Finally, click on GO! and see the
magic happen:

How it works...
The internal workings of each step are shown, so let's go through all of them one at a time.
We start off with the data import of our new room dataset as the basic starting and ending
points of our new indoor routing tool. We lay out the top-level structure of our API with some
new URLs, defining how we will call the new routing service, and then define these variables.
Our regular expressions handle the correct data types that are passed in the URL without
any exceptions.

These URL patterns are then used by api/views.py to actually accept the incoming room
numbers and route types to generate our new route. This generation is split up into a few
functions to increase usability. The get_room_centroid_node() function is necessary
so that we can find the middle point of the room and then find the next nearest node on a
network. We could also simply use the polygon geometry to find the nearest node but this
can lead to ambiguity if the rooms are large and the entrances are close to each other. The
centroid method is much more reliable and does not add too much overhead.

The run_route() function actually then runs find_closest_network_node(), which
we created earlier, making things work well together. The run_route function then generates
our GeoJSON result as it is passed in the start node ID, end node ID, and the route type.

Web Analysis with GeoDjango

280

The route_room_to_room() function is small as the heavy lifting has already been
completed by our other functions. It simply inputs the URL parameters called by our API call,
as seen in http://localhost:8000/api/directions/10010&20043&0. The final
steps after step 6 are for the user interface. We need to provide the user with a list of rooms
that are available to route from and to. The /api/rooms URL provides exactly this, delivering
a JSON array of room numbers. The input fields are bootstrap inputs with Twitter Typeahead.
js and Bloodhound.js to prefetch remote data. As a user, you simply enter a number and,
bingo, a list appears. More detailed instructions on the JavaScript side of things are a little
beyond the scope of this book, but these are, thankfully, kept to a minimum.

All in all, you now have a fully functional indoor mapping web application with a basic set of
indoor 3D routing functions that you can expand on at any time.

281

A
Other Geospatial
Python Libraries

We have covered many libraries and examples but we haven't covered them all. This appendix
is meant to quickly go over the other libraries out there that play a special role in the Python
geospatial working environment. This list is definitely not complete and I have not had the
pleasure of working with all these libraries at the time of writing.

The listing is a resource for further reading and experiments that will, hopefully, provide you
with a step in the right direction to solve your specific problems. Each description of a library
starts with the official library name followed by a short description and a link to the web page:

Library name Description Website

Rtree This is a Python wrapper of libspatialindex
that provides advanced spatial indexing features

http://toblerity.
org/rtree

rasterio This is a Mapbox creation that aims at working with
rasters in an easier manner

https://github.com/
mapbox/rasterio

Fiona This focuses on reading and writing data in the
standard Python I/O style

http://toblerity.
org/fiona

geopy This helps geocoding in Python http://www.geopy.org

PyQGIS This is the Python interface to QGIS (formerly known
as Quantum GIS) that helps extend QGIS and more

http://
pythongisbook.com

GeoPandas This is an extension of the pandas library and
handles geospatial database

http://geopandas.
org/

MapFish This is Python's geospatial web framework http://mapfish.org

PyWPS This client interacts with various open geospatial
standard services

http://pywps.wald.
intevation.org

pycsw This provides a metadata catalog interface http://pycsw.org

http://toblerity.org/rtree
http://toblerity.org/rtree
https://github.com/mapbox/rasterio
https://github.com/mapbox/rasterio
http://toblerity.org/fiona
http://toblerity.org/fiona
http://www.geopy.org
http://pythongisbook.com
http://pythongisbook.com
http://geopandas.org/
http://geopandas.org/
http://mapfish.org
http://pywps.wald.intevation.org
http://pywps.wald.intevation.org
http://pycsw.org

Other Geospatial Python Libraries

282

Library name Description Website

GeoNode This provides Python geospatial content
management for the Web and is built on the Django
web framework and GeoServer

http://geonode.org

mapnik This is a map visualization library to create maps for
web tile cache

http://mapnik.org

cartopy This is mapping made easy in Python-shapely http://scitools.org.
uk/cartopy

Kartograph This creates SVG maps or web maps http://kartograph.
org

basemap This is an extension of matplotlib in combination
with descartes

http://matplotlib.
org/basemap

SciPy This is a collection of Python libraries for scientific
data analysis that are bundled or available as
individual installations

http://www.scipy.org

GeoAlchemy This is a spatial extension to SQLAlchemy that
works with the spatial database PostGIS

http://geoalchemy.
org

pyspatialite This helps you work with spatialite databases of
geospatial data

https://pypi.
python.org/pypi/
pyspatialite

gpxpy This helps when working with GPS data in the
standard GPX format in a Python - friendly format

http://www.
trackprofiler.com/
gpxpy/index.html

ShaPy This is a pure Python version of Shapely with no
dependencies

https://github.com/
karimbahgat/Shapy

pyshp This reads and writes Shapefiles in pure Python https://github.com/
GeospatialPython/
pyshp

TileCache This is an implementation of a WMS-C (catalog) Tile
Mapping Server (TMS) server

http://tilecache.org

TileStache This is a Python-based server application that can
serve up map tiles based on rendered geographic
data

http://www.
tilestache.org

FeatureServer This is a restful feature service to easily get, edit,
delete, and update features over the Web with the
help of HTTP

http://
featureserver.org

GeoScript This is an implementation of Python, giving spatial
analysis functionality to other scripting languages
and Python is one of them; it is similar to Shapely

http://www.
geoscript.org

karta This is a Leatherman for geographic analyses http://ironicmtn.
com/karta

http://geonode.org
http://mapnik.org
http://scitools.org.uk/cartopy
http://scitools.org.uk/cartopy
http://kartograph.org
http://kartograph.org
http://matplotlib.org/basemap
http://matplotlib.org/basemap
http://www.scipy.org
http://geoalchemy.org
http://geoalchemy.org
https://pypi.python.org/pypi/pyspatialite
https://pypi.python.org/pypi/pyspatialite
https://pypi.python.org/pypi/pyspatialite
http://www.trackprofiler.com/gpxpy/index.html
http://www.trackprofiler.com/gpxpy/index.html
http://www.trackprofiler.com/gpxpy/index.html
https://github.com/karimbahgat/Shapy
https://github.com/karimbahgat/Shapy
https://github.com/GeospatialPython/pyshp
https://github.com/GeospatialPython/pyshp
https://github.com/GeospatialPython/pyshp
http://tilecache.org
http://www.tilestache.org
http://www.tilestache.org
http://featureserver.org
http://featureserver.org
http://www.geoscript.org
http://www.geoscript.org
http://ironicmtn.com/karta
http://ironicmtn.com/karta

283

B
Mapping Icon Libraries

Finding the perfect mapping icon set is hard. The following list provides some of the better
map symbols around, for your web map application:

Library name Description Website
map-icons This is an icon font that's used with the Google

Maps API and Google Places API using SVG
markers and icon labels

http://map-icons.
com/

Maki This creates Mapbox Pixel-perfect icons for web
cartography

https://www.mapbox.
com/maki

map icons This focuses on reading and writing data in the
standard Python IO style

https://mapicons.
mapsmarker.com/

Integration and
Application
Network

This creates 2782 custom vector symbols http://ian.umces.
edu/symbols/

OSM icons This is a set of free SVG icons that are used for
OSM maps

http://osm-icons.
org/wiki/Icons

OSGeo map
symbol set

This is a collection of links to map icons http://wiki.osgeo.
org/wiki/OSGeo_map_
symbol_set

SJJB collection This is a set of PD/CC0 SVG map icons and
tools to generate PNG icons

https://github.
com/twain47/Open-
SVG-Map-Icons and
http://www.sjjb.
co.uk/mapicons/
contactsheet

http://map-icons.com/
http://map-icons.com/
https://www.mapbox.com/maki
https://www.mapbox.com/maki
https://mapicons.mapsmarker.com/
https://mapicons.mapsmarker.com/
http://ian.umces.edu/symbols/
http://ian.umces.edu/symbols/
http://osm-icons.org/wiki/Icons
http://osm-icons.org/wiki/Icons
http://wiki.osgeo.org/wiki/OSGeo_map_symbol_set
http://wiki.osgeo.org/wiki/OSGeo_map_symbol_set
http://wiki.osgeo.org/wiki/OSGeo_map_symbol_set
https://github.com/twain47/Open-SVG-Map-Icons
https://github.com/twain47/Open-SVG-Map-Icons
https://github.com/twain47/Open-SVG-Map-Icons
http://www.sjjb.co.uk/mapicons/contactsheet
http://www.sjjb.co.uk/mapicons/contactsheet
http://www.sjjb.co.uk/mapicons/contactsheet

Mapping Icon Libraries

284

Library name Description Website
OSM map-
icons

This creates an OpenStreetMap set of icons https://github.com/
openstreetmap/map-
icons/tree/master/
svg

opensreetmap-
carto

Andy Allan created these set of mapping icons
in PNG

https://github.
com/gravitystorm/
openstreetmap-
carto/tree/master/
symbols

https://github.com/openstreetmap/map-icons/tree/master/svg
https://github.com/openstreetmap/map-icons/tree/master/svg
https://github.com/openstreetmap/map-icons/tree/master/svg
https://github.com/openstreetmap/map-icons/tree/master/svg
https://github.com/gravitystorm/openstreetmap-carto/tree/master/symbols
https://github.com/gravitystorm/openstreetmap-carto/tree/master/symbols
https://github.com/gravitystorm/openstreetmap-carto/tree/master/symbols
https://github.com/gravitystorm/openstreetmap-carto/tree/master/symbols
https://github.com/gravitystorm/openstreetmap-carto/tree/master/symbols

285

Index
Symbols
3D ground distance

calculating 114-120
.prj file 26

A
alpha shapes

references 182

B
basemap

about 282
URL 282

Blender
URL 67

C
cartopy

about 282
URL 282

centerlines
creating, from polygons 182-189

chloropleth map 223
color relief map

generating, rasters merged 159-162
complex spatial analysis query

conducting, with ST_Distance() 87-91

D
Dangles 214
DEM

aspect images, generating from 156-159

data, visualizing, with Three.js 226-230
orthophoto, draping over 231-235
reference 144
slope, generating from 156-159

DEM USGS ACSII CDED
loading, into PostGIS 144-146

DEM, with ogr
hillshade raster, creating from 153-155

descartes library
about 10
installing 10, 11

Digital Elevation Model (DEM) 65, 143
Dijkstra shortest path

finding, with NetworkX in pure Python 172-175
finding, with pgRouting 165-171

Dimensionally Extended nine intersection
model (DE-9IM)

about 122
URL 122

Django
about 237
references 238

E
elevation profile

creating 147-151
EPSG code 24
ESRI ASCII DEM

converting, to image height map 65-68
ESRI Shapefile 53
evacuation polygons

generating, based on indoor shortest
path 176-182

286

F
FeatureServer

about 282
URL 282

Fiona
about 281
URL 281

Folium
leaflet web map, generating with 222, 223
URL 222

G
GDAL

about 15
installing 16-18
raster (GeoTiff), converting to vector

(Shapefile) 61, 62
gdal_rasterize command-line tool

reference link 60
GeoAlchemy

about 282
URL 282

geodata 46
GeoDjango

about 19, 237
installing 19

GeoDjango web application
setting up 238-241

geographic coordinate system 24
geogratis.ca

reference 231
geojson library

about 12
installing 12
URL 12

GeoJSON datasets 127
GeoJSON file

projection, discovering 25-31
geometric subtypes

defining 202
geometry types

boundary 201
exterior 202
interior 201

GeoNames
reference link 62

GeoNode
about 282
URL 282

GeoPandas
about 281
URL 281

geopy library 281
GeoScript

about 282
URL 282

Geospatial Python libraries
basemap 282
cartopy 282
FeatureServer 282
Fiona 281
GeoAlchemy 282
GeoNode 282
GeoPandas 281
geopy 281
GeoScript 282
gpxpy 282
karta 282
Kartograph 282
MapFish 281
mapnik 282
pycsw 281
PyQGIS 281
pyshp 282
pyspatialite 282
PyWPS 281
rasterio 281
Rtree 281
SciPy 282
ShaPy 282
TileCache 282
TileStache 282

GeoTiff (raster)
Shapefile (vector), converting to 57-60

gis contrib package
reference link 237

gpxpy library
about 282
URL 282

287

H
heightmap

reference link 65
hillshade raster

about 153
creating, from DEM with ogr 153-155
references 153

holes
punching, in polygon with symmetric

difference operation 122-127

I
identity function

performing 137-141
image height map

ESRI ASCII DEM, converting to 65-68
imposm

about 55
reference link 55

indoor route type service
creating 259-266

indoor route walk times
calculating 198-200

indoor routing
creating, through building in 3D 189-198
from room to room 267-280
service, visualizing 251-259

indoor shortest path
evacuation polygons, generating on 176-182

indoor web routing service
creating 242-251

Integration and Application Network
about 283
URL 283

IPython
about 13
installing 14, 15

J
JavaScript file

defining 127
JavaScript variable

creating 127

K
karta library

about 282
URL 282

Kartograph
about 282
URL 282

L
leaflet web map

generating, with Folium 222, 223
linear referencing

about 113
reference link 109
used, for finding location of point

on line 105-109
LineString

avoiding, with Dangles 214-216
LineStrings

clipping, to area of interest 95-101
splitting at intersections, ST_Node used 77-81
validity, checking 82, 83

Linux/Ubuntu 14.04 machine 2

M
Maki

about 283
URL 283

MapFish
about 281
URL 281

map icons library
about 283
URL 283

map-icons library
about 283
URL 283

mapnik
about 282
URL 282

matplotlib
about 10
installing 10, 11
URL 10

288

N
National Oceanic and Atmospheric

Administration (NOAA) 128
NetworkX

about 172
Dijkstra shortest path, finding with 172-175
URL 172

NumPy
about 7
installing 7, 8
URL 8

O
Object Relational Mapper (ORM) 251
OGR

about 15
installing 16

ogr2ogr
about 54, 55
Shapefile, converting to PostGIS table 44-48
Shapefiles folder, batch importing into

PostGIS 49, 51
Open Geospatial Consortium (OGC)

about 202
URL 137

Openlayers 3 web mapping client 123
opensreetmap-carto

about 284
URL 284

OpenStreetMap (OSM)
about 78
XML, converting to Shapefile 54-56

options, ogr2ogr command
reference link 48

orthophoto
draping, over DEM 231-235

OSGeo4W
URL 45
URL, for windows installer 17

OSGeo map symbol set
about 283
URL 283

OSGEO (Open Source Geospatial Foundation
URL 15

osm2pgsql
about 55

URL 55
OSM icons

about 283
URL 283

OSM map-icons
about 284
URL 284

overlapping LineStrings
defining 212-214

Overpass API 29

P
pandas

about 12
installing 12
URL 12

PgAdmin 48
pgAdmin user tool

using 165
pgRouting

about 164
Dijkstra shortest path, finding with 165-171
URL 165

pgsql2shp tool 55
point

defining, on starting and ending nodes
of line 208-211

snapping, to nearest line 109-113
point attributes

assigning, to polygon 83-86
point inside a polygon analysis query

executing 73-77
polygon centroid

defining, within specific distance
of line 217-220

polygons
centerlines, creating from 182-189
splitting, with lines 101-104

PostGIS
about 19
DEM USGS ACSII CDED, loading into 144-146
reference 146
Shapefiles folder, batch importing into 49-51

PostGIS
about 69
table, converting to Shapefile 44-48

289

PostGIS ST_Buffer analysis query
executing 70-73
exporting, to GeoJSON 70-73

PostGIS, to Shapefiles
tables list, batch importing from 52, 53

PostgreSQL
about 19, 69
installing, with PostGIS 19-21

project area 95
projected coordinate system 25
projection definition, for Shapefile

batch setting 36-38
creating 34, 35

Psycopg 71
pycsw

about 281
URL 281

pyproj
about 7
installing 7-9
URL 7

PyQGIS
about 281
URL 281

PySAL
about 13
installing 14, 15

pyshp
about 12, 282
installing 12, 13
URL 12, 282

pyspatialite
about 282
URL 282

Python generator object
creating 133

PyWPS
about 281
URL 281

Q
QGIS

URL 59
qgis2threejs plugin

URL 226
QGIS (Quantum GIS) 79

Quantum GIS
URL 48

R
raster (GeoTiff)

converting, to vector (Shapefile) 61, 62
rasterio

about 281
URL 281

rasters
merging, for generating color

relief map 159-162
regular expression

reference link 245
ridges

extracting 189
routing 163
Rtree

about 281
URL 281

S
scalable vector graphic (svg) 10
scikit-image 165
SciPy

about 13, 282
installing 14, 15
URL 282

Shapefile
converting, to PostGIS table 44-48
creating, from point data stored in Microsoft

Excel 62-64
OpenStreetMap (OSM) xml,

converting to 54-56
projection, discovering 25-31
reprojecting, from one projection to

another 39, 41
URL 172

Shapefiles folder
batch importing, into PostGIS 49-51

Shapefile (vector)
converting, to GeoTiff (raster) 57-60

shapely
about 9
installing 10, 11
URL 9

290

ShaPy
about 282
URL 282

single point
defining, in polygon 203-208

SJJB collection
about 283
URL 283

spatial join
executing 83-86

spatial module 13
Spatial Reference System (SRS) 41
Stack Overflow

reference 11
state boundaries, union polygons

reference 134
symmetric difference operation

holes, punching in polygons with 122-127

T
tables list

batch importing, from PostGIS to
Shapefiles 52, 53

Three.js
DEM data, visualizing with 226-230

TileCache
about 282
URL 282

TileStache
about 282
setting up, for serving tiles 224-226
URL 225, 282

topology rules 201
total elevation gain

calculating 114-120

U
union polygons

about 133
references 134
with merging (dissolving) 134-137
without merging 128-133

Unity
URL 67

Universal Transverse Mercator (UTM)
coordinate reference system 25

USGS ASCII CDED format
URL 144

V
Vagrant

URL 2
Vancouver open geodata portal

URL 45
vector (Shapefile)

raster (GeoTiff), converting to 61, 62
virtualbox 2
virtualenv

about 2, 3
installing 2-6

virtualenvwrapper
about 4
installing 4-6

visualization techniques and libraries
URL 221

Voronoi polygons
using 189

W
Web Mapping Service (WMS)

about 32
projection, listing from 32-34
reference 32

Well Known Text (WKT) 123
Werkzeug

URL 225
World Geographic System 1984 (WGS 84) 24

X
xlrd

reference link 62
xlwt 62

Thank you for buying

Python Geospatial Analysis Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

QGIS Python Programming
Cookbook
ISBN: 978-1-78398-498-5 Paperback: 340 pages

Over 140 recipes to help you turn QGIS from a desktop
GIS tool into a powerful automated geospatial framework

1. Use Python and QGIS to create and transform
data, produce appealing GIS visualizations, and
build complex map layouts.

2. Learn undocumented features of the new QGIS
processing module.

3. A set of user-friendly recipes that can automate
the entire geospatial workflows by connecting
Python GIS building blocks into comprehensive
processes.

Learning R for Geospatial
Analysis
ISBN: 978-1-78398-436-7 Paperback: 364 pages

Leverage the power of R to elegantly manage crucial
geospatial analysis tasks

1. Write powerful R scripts to manipulate your
spatial data.

2. Gain insight from spatial patterns utilizing
R's advanced computation and visualization
capabilities.

3. Work within a single spatial analysis environment
from start to finish.

Please check www.PacktPub.com for information on our titles

Learning Geospatial Analysis
with Python
ISBN: 978-1-78328-113-8 Paperback: 364 pages

Master GIS and Remote Sensing analysis using Python
with these easy to follow tutorials

1. Construct applications for GIS development by
exploiting Python.

2. Focuses on built-in Python modules and libraries
compatible with the Python Packaging Index
distribution system – no compiling of C libraries
necessary.

3. This is a practical, hands-on tutorial that teaches
you all about Geospatial analysis in Python.

Python Geospatial
Development
Second Edition
ISBN: 978-1-78216-152-3 Paperback: 508 pages

Learn to build sophisticated mapping applications from
scratch using Python tools for geospatial development

1. Build your own complete and sophisticated
mapping applications in Python.

2. Walks you through the process of building
your own online system for viewing and editing
geospatial data.

3. Practical, hands-on tutorial that teaches you all
about geospatial development in Python.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Untitled
	About the Author
	About the Reviewers
	Untitled
	Table of Contents
	Preface
	Chapter 1: Setting Up Your Geospatial Python Environment
	Introduction
	Installing virtualenv and virtualenvwrapper
	Installing pyproj and NumPy
	Installing shapely, matplotlib, and descartes
	Installing pyshp, geojson, and pandas
	Installing SciPy, PySAL, and IPython
	Installing GDAL and OGR
	Installing GeoDjango and PostgreSQL
with PostGIS

	Chapter 2: Working with Projections
	Introduction
	Discovering projection(s) of a Shapefile or GeoJSON dataset
	Listing projection(s) from a WMS server
	Creating a projection definition for a Shapefile if it does not exist
	Batch setting the projection definition of a folder full of Shapefiles
	Reprojecting a Shapefile from one projection to another

	Chapter 3: Moving Spatial Data from One Format
to Another
	Introduction
	Converting a Shapefile to a PostGIS table using ogr2ogr
	Batch importing a folder of Shapefiles into PostGIS using ogr2ogr
	Batch exporting a list of tables from PostGIS to Shapefiles
	Converting an OpenStreetMap (OSM) XML
to a Shapefile
	Converting a Shapefile (vector) to
a GeoTiff (raster)
	Converting a raster (GeoTiff) to a vector (Shapefile) using GDAL
	Creating a Shapefile from point data stored in Microsoft Excel
	Converting an ESRI ASCII DEM to an image height map

	Chapter 4: Working with PostGIS
	Introduction
	Executing a PostGIS ST_Buffer analysis query and exporting it to GeoJSON
	Finding out whether a point is inside a polygon
	Splitting linestrings at intersections using ST_Node
	Checking the validity of linestrings
	Executing a spatial join and assigning point attributes to a polygon
	Conducting a complex spatial analysis query using ST_Distance()

	Chapter 5: Vector Analysis
	Introduction
	Clipping linestrings to an area of interest
	Splitting polygons with lines
	Finding the location of a point on a line using linear referencing
	Snapping a point to the nearest line
	Calculating 3D ground distance and total elevation gain

	Chapter 6: Overlay Analysis
	Introduction
	Punching holes in polygons with a symmetric difference operation
	Union polygons without merging
	Union polygons with merging (dissolving)
	Performing an identity function
(difference + intersection)

	Chapter 7: Raster Analysis
	Introduction
	Loading a DEM USGS ACSII CDED into PostGIS
	Creating an elevation profile
	Creating a hillshade raster from your DEM with ogr
	Generating slope and aspect images from your DEM
	Merging rasters to generate a color relief map

	Chapter 8: Network Routing Analysis
	Introduction
	Finding the Dijkstra shortest path with pgRouting
	Finding the Dijkstra shortest path with NetworkX in pure Python
	Generating evacuation polygons based on an indoor shortest path
	Creating centerlines from polygons
	Building an indoor routing system in 3D
	Calculating indoor route walk times

	Chapter 9: Topology Checking and Data Validation
	Introduction
	There must not be more than one point in side a polygon
	A point must be on the starting and ending nodes of a line only
	Linestrings must not overlap
	A Linestring must not have dangles
	A polygon centroid must be within a specific distance of a line

	Chapter 10: Visualizing Your Analysis
	Introduction
	Generating a leaflet web map with Folium
	Setting up TileStache to serve tiles
	Visualizing DEM data with Three.js
	Draping an orthophoto over a DEM

	Chapter 11: Web Analysis with GeoDjango
	Introduction
	Setting up a GeoDjango web application
	Creating an indoor web routing service
	Visualizing an indoor routing service
	Creating an indoor route-type service
	Creating an indoor route from room to room

	Appendix A: Other Geospatial Python Libraries
	Appendix B: Mapping Icon Libraries
	Index

