

Python	for	Secret	Agents	Second	Edition

Table	of	Contents

Python	for	Secret	Agents	Second	Edition

Credits

About	the	Author

About	the	Reviewer

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	New	Missions	–	New	Tools

Background	briefing	on	tools

Doing	a	Python	upgrade

Preliminary	mission	to	upgrade	pip

Background	briefing:	review	of	the	Python	language

Using	variables	to	save	results

Using	the	sequence	collections:	strings

Using	other	common	sequences:	tuples	and	lists

Using	the	dictionary	mapping

Comparing	data	and	using	the	logic	operators

Using	some	simple	statements

Using	compound	statements	for	conditions:	if

Using	compound	statements	for	repetition:	for	and	while

Defining	functions

Creating	script	files

Mission	One	–	upgrade	Beautiful	Soup

Getting	an	HTML	page

Navigating	the	HTML	structure

Doing	other	upgrades

Mission	to	expand	our	toolkit

Scraping	data	from	PDF	files

Sidebar	on	the	ply	package

Building	our	own	gadgets

Getting	the	Arduino	IDE

Getting	a	Python	serial	interface

Summary

2.	Tracks,	Trails,	and	Logs

Background	briefing	–	web	servers	and	logs

Understanding	the	variety	of	formats

Getting	a	web	server	log

Writing	a	regular	expression	for	parsing

Introducing	some	regular	expression	rules	and	patterns

Finding	a	pattern	in	a	file

Using	regular	expression	suffix	operators

Capturing	characters	by	name

Looking	at	the	CLF

Reading	and	understanding	the	raw	data

Reading	a	gzip	compressed	file

Reading	remote	files

Studying	a	log	in	more	detail

What	are	they	downloading?

Trails	of	activity

Who	is	this	person?

Using	Python	to	run	other	programs

Processing	whois	queries

Breaking	a	request	into	stanzas	and	lines

Alternate	stanza-finding	algorithm

Making	bulk	requests

Getting	logs	from	a	server	with	ftplib

Building	a	more	complete	solution

Summary

3.	Following	the	Social	Network

Background	briefing	–	images	and	social	media

Accessing	web	services	with	urllib	or	http.client

Who’s	doing	the	talking?

Starting	with	someone	we	know

Finding	our	followers

What	do	they	seem	to	be	talking	about?

What	are	they	posting?

Deep	Under	Cover	–	NLTK	and	language	analysis

Summary

4.	Dredging	up	History

Background	briefing–Portable	Document	Format

Extracting	PDF	content

Using	generator	expressions

Writing	generator	functions

Filtering	bad	data

Writing	a	context	manager

Writing	a	PDF	parser	resource	manager

Extending	the	resource	manager

Getting	text	data	from	a	document

Displaying	blocks	of	text

Understanding	tables	and	complex	layouts

Writing	a	content	filter

Filtering	the	page	iterator

Exposing	the	grid

Making	some	text	block	recognition	tweaks

Emitting	CSV	output

Summary

5.	Data	Collection	Gadgets

Background	briefing:	Arduino	basics

Organizing	a	shopping	list

Getting	it	right	the	first	time

Starting	with	the	digital	output	pins

Designing	an	external	LED

Assembling	a	working	prototype

Mastering	the	Arduino	programming	language

Using	the	arithmetic	and	comparison	operators

Using	common	processing	statements

Hacking	and	the	edit,	download,	test	and	break	cycle

Seeing	a	better	blinking	light

Simple	Arduino	sensor	data	feed

Collecting	analog	data

Collecting	bulk	data	with	the	Arduino

Controlling	data	collection

Data	modeling	and	analysis	with	Python

Collecting	data	from	the	serial	port

Formatting	the	collected	data

Crunching	the	numbers

Creating	a	linear	model

Reducing	noise	with	a	simple	filter

Solving	problems	adding	an	audible	alarm

Summary

Index

Python	for	Secret	Agents	Second	Edition

Python	for	Secret	Agents	Second	Edition
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	August	2014

Second	edition:	December	2015

Production	reference:	1011215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78528-340-6

www.packtpub.com

http://www.packtpub.com

Credits
Author

Steven	F.	Lott

Reviewer

Shubham	Sharma

Commissioning	Editor

Julian	Ursell

Acquisition	Editor

Subho	Gupta

Content	Development	Editor

Riddhi	Tuljapurkar

Technical	Editor

Danish	Shaikh

Copy	Editor

Vibha	Shukla

Project	Coordinator

Sanchita	Mandal

Proofreader

Safis	Editing

Indexer

Priya	Sane

Graphics

Kirk	D’Penha

Production	Coordinator

Komal	Ramchandani

Cover	Work

Komal	Ramchandani

About	the	Author
Steven	F.	Lott	has	been	programming	since	the	70s,	when	computers	were	large,
expensive,	and	rare.	As	a	contract	software	developer	and	architect,	he	has	worked	on
hundreds	of	projects	from	very	small	to	very	large.	He’s	been	using	Python	to	solve
business	problems	for	over	10	years.

He’s	currently	leveraging	Python	to	implement	microservices	and	ETL	pipelines.

His	other	titles	with	Packt	Publishing	include	Python	Essentials,	Mastering	Object-
Oriented	Python,	Functional	Python	Programming,	and	Python	for	Secret	Agents.

Steven	is	currently	a	technomad	who	lives	in	various	places	on	the	East	Coast	of	the	U.S.
His	technology	blog	is	http://slott-softwarearchitect.blogspot.com.

http://slott-softwarearchitect.blogspot.com

About	the	Reviewer
Shubham	Sharma	holds	a	bachelor’s	degree	in	computer	science	engineering	with
specialization	in	business	analytics	and	optimization	from	UPES,	Dehradun.	He	has	a
good	skill	set	of	programming	languages.	He	also	has	an	experience	in	web	development
,Android,	and	ERP	development	and	works	as	a	freelancer.

Shubham	also	loves	writing	and	blogs	at	www.cyberzonec.in/blog.	He	is	currently
working	on	Python	for	the	optimal	specifications	and	identifications	of	mobile	phones
from	customer	reviews.

http://www.cyberzonec.in/blog

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	readPackt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Secret	agents	are	dealers	and	brokers	of	information.	Information	that’s	rare	or	difficult	to
acquire	has	the	most	value.	Getting,	analyzing,	and	sharing	this	kind	of	intelligence
requires	a	skilled	use	of	specialized	tools.	This	often	includes	programming	languages
such	as	Python	and	its	vast	ecosystem	of	add-on	libraries.

The	best	agents	keep	their	toolkits	up	to	date.	This	means	downloading	and	installing	the
very	latest	in	updated	software.	An	agent	should	be	able	to	analyze	logs	and	other	large
sets	of	data	to	locate	patterns	and	trends.	Social	network	applications	such	as	Twitter	can
reveal	a	great	deal	of	useful	information.

An	agent	shouldn’t	find	themselves	stopped	by	arcane	or	complex	document	formats.
With	some	effort,	the	data	in	a	PDF	file	can	be	as	accessible	as	the	data	in	a	plain	text	file.
In	some	cases,	agents	need	to	build	specialized	devices	to	gather	data.	A	small	processing
such	as	an	Arduino	can	gather	raw	data	for	analysis	and	dissemination;	it	moves	the	agent
to	the	Internet	of	Things.

What	this	book	covers
Chapter	1,	New	Missions	–	New	Tools,	addresses	the	tools	that	we’re	going	to	use.	It’s
imperative	that	agents	use	the	latest	and	most	sophisticated	tools.	We’ll	guide	field	agents
through	the	procedures	required	to	get	Python	3.4.	We’ll	install	the	Beautiful	Soup
package,	which	helps	you	analyze	and	extract	data	from	HTML	pages.	We’ll	install	the
Twitter	API	so	that	we	can	extract	data	from	the	social	network.	We’ll	add	PDFMiner3K
so	that	we	can	dig	data	out	of	PDF	files.	We’ll	also	add	the	Arduino	IDE	so	that	we	can
create	customized	gadgets	based	on	the	Arduino	processor.

Chapter	2,	Tracks,	Trails,	and	Logs,	looks	at	the	analysis	of	bulk	data.	We’ll	focus	on	the
kinds	of	logs	produced	by	web	servers	as	they	have	an	interesting	level	of	complexity	and
contain	valuable	information	on	who’s	providing	intelligence	data	and	who’s	gathering
this	data.	We’ll	leverage	Python’s	regular	expression	module,	re,	to	parse	log	data	files.
We’ll	also	look	at	ways	in	which	we	can	process	compressed	files	using	the	gzip	module.

Chapter	3,	Following	the	Social	Network,	discusses	one	of	the	social	networks.	A	field
agent	should	know	who’s	communicating	and	what	they’re	communicating	about.	A
network	such	as	Twitter	will	reveal	social	connections	based	on	who’s	following	whom.
We	can	also	extract	meaningful	content	from	a	Twitter	stream,	including	text	and	images.

Chapter	4,	Dredging	Up	History,	provides	you	with	essential	pointers	on	extracting	useful
data	from	PDF	files.	Many	agents	find	that	a	PDF	file	is	a	kind	of	dead-end	because	the
data	is	inaccessible.	There	are	tools	that	allow	us	to	extract	useful	data	from	PDF.	As	PDF
is	focused	on	high-quality	printing	and	display,	it	can	be	challenging	to	extract	data
suitable	for	analysis.	We’ll	show	some	techniques	with	the	PDFMiner	package	that	can
yield	useful	intelligence.	Our	goal	is	to	transform	a	complex	file	into	a	simple	CSV	file,
very	much	similar	to	the	logs	that	we	analyzed	in	Chapter	2,	Tracks,	Trails,	and	Logs.

Chapter	5,	Data	Collection	Gadgets,	expands	the	field	agent’s	scope	of	operations	to	the
Internet	of	Things	(IoT).	We’ll	look	at	ways	to	create	simple	Arduino	sketches	in	order	to
read	a	typical	device;	in	this	case,	an	infrared	distance	sensor.	We’ll	look	at	how	we	will
gather	and	analyze	raw	data	to	do	instrument	calibration.

What	you	need	for	this	book
A	field	agent	needs	a	computer	over	which	they	have	administrative	privileges.	We’ll	be
installing	additional	software.	A	secret	agent	without	the	administrative	password	may
have	trouble	installing	Python	3	or	any	of	the	additional	packages	that	we’ll	be	using.

For	agents	using	Windows,	most	of	the	packages	will	come	prebuilt	using	the	.EXE
installers.

For	agents	using	Linux,	developer’s	tools	are	required.	The	complete	suite	of	developer’s
tools	is	generally	needed.	The	Gnu	C	Compiler	(GCC)	is	the	backbone	of	these	tools.

For	agents	using	Mac	OS	X,	the	developer’s	tool,	XCode,	is	required	and	can	be	found	at
https://developer.apple.com/xcode/.	We’ll	also	need	to	install	a	tool	called	homebrew
(http://brew.sh)	to	help	us	add	Linux	packages	to	Mac	OS	X.

Python	3	is	available	from	the	Python	download	page	at
https://www.python.org/download.

We’ll	download	and	install	several	things	beyond	Python	3.4	itself:

The	Pillow	package	will	allow	us	to	work	with	image	files:
https://pypi.python.org/pypi/Pillow/2.4.0
The	Beautiful	Soup	version	4	package	will	allow	us	to	work	with	HTML	web	pages:
https://pypi.python.org/pypi/beautifulsoup4/4.3.2
The	Twitter	API	package	will	let	us	search	the	social	network:
https://pypi.python.org/pypi/TwitterAPI/2.3.3
We’ll	use	PDF	Miner	3k	to	extract	meaningful	data	from	PDF	files:
https://pypi.python.org/pypi/pdfminer3k/1.3.0
We’ll	use	the	Arduino	IDE.	This	comes	from
https://www.arduino.cc/en/Main/Software.	We’ll	also	want	to	install	PySerial:
https://pypi.python.org/pypi/pyserial/2.7
This	should	demonstrate	how	extensible	Python	is.	Almost	anything	an	agent	might
need	is	already	be	written	and	available	through	the	Python	Package	Index	(PyPi)	at
https://pypi.python.org/pypi.

https://developer.apple.com/xcode/
http://brew.sh
https://www.python.org/download
https://pypi.python.org/pypi/Pillow/2.4.0
https://pypi.python.org/pypi/beautifulsoup4/4.3.2
https://pypi.python.org/pypi/TwitterAPI/2.3.3
https://pypi.python.org/pypi/pdfminer3k/1.3.0
https://www.arduino.cc/en/Main/Software
https://pypi.python.org/pypi/pyserial/2.7
https://pypi.python.org/pypi

Who	this	book	is	for
This	book	is	for	field	agents	who	know	a	little	bit	of	Python	and	are	very	comfortable
installing	new	software.	Agents	must	be	ready,	willing,	and	able	to	write	some	new	and
clever	programs	in	Python.	An	agent	who	has	never	done	any	programming	before	may
find	some	of	this	a	bit	advanced;	a	beginner’s	tutorial	in	the	basics	of	Python	may	be
helpful	as	preparation.

We’ll	expect	that	an	agent	using	this	book	is	comfortable	with	simple	mathematics.	This
involves	some	basic	statistics	and	elementary	geometry.

We	expect	that	secret	agents	using	this	book	will	be	doing	their	own	investigations	as	well.
The	book’s	examples	are	designed	to	get	the	agent	started	down	the	road	to	develop
interesting	and	useful	applications.	Each	agent	will	have	to	explore	further	afield	on	their
own.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	package	names,	folder	names,	filenames,	file	extensions,	pathnames,
dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“We	can	include
other	contexts	through	the	use	of	the	include	directive.”

A	block	of	code	is	set	as	follows:

from	fractions	import	Fraction

p	=	0

for	i	in	range(1,	2000):

				p	+=	Fraction(1,	i**2)

print((p*6)**Fraction(1/2))

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

from	fractions	import	Fraction

p	=	0

for	i	in	range(1,	2000):

				p	+=	Fraction(1,	i**2)

print((p*6)**Fraction(1/2))

Any	command-line	input	or	output	is	written	as	follows:

$	python3.4	-m	doctest	ourfile.py

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Clicking	the	Next
button	moves	you	to	the	next	screen.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	New	Missions	–	New	Tools
The	espionage	job	is	to	gather	and	analyze	data.	This	requires	us	to	use	computers	and
software	tools.

However,	a	secret	agent’s	job	is	not	limited	to	collecting	data.	It	involves	processing,
filtering,	and	summarizing	data,	and	also	involves	confirming	the	data	and	assuring	that	it
contains	meaningful	and	actionable	information.

Any	aspiring	agent	would	do	well	to	study	the	history	of	the	World	War	II	English	secret
agent,	code-named	Garbo.	This	is	an	inspiring	and	informative	story	of	how	secret	agents
operated	in	war	time.

We’re	going	to	look	at	a	variety	of	complex	missions,	all	of	which	will	involve	Python	3
to	collect,	analyze,	summarize,	and	present	data.	Due	to	our	previous	successes,	we’ve
been	asked	to	expand	our	role	in	a	number	of	ways.

HQ’s	briefings	are	going	to	help	agents	make	some	technology	upgrades.	We’re	going	to
locate	and	download	new	tools	for	new	missions	that	we’re	going	to	be	tackling.	While
we’re	always	told	that	a	good	agent	doesn’t	speculate,	the	most	likely	reason	for	new	tools
is	a	new	kind	of	mission	and	dealing	with	new	kinds	of	data	or	new	sources.	The	details
will	be	provided	in	the	official	briefings.

Field	agents	are	going	to	be	encouraged	to	branch	out	into	new	modes	of	data	acquisition.
Internet	of	Things	leads	to	a	number	of	interesting	sources	of	data.	HQ	has	identified	some
sources	that	will	push	the	field	agents	in	new	directions.	We’ll	be	asked	to	push	the	edge
of	the	envelope.

We’ll	look	at	the	following	topics:

Tool	upgrades,	in	general.	Then,	we’ll	upgrade	Python	to	the	latest	stable	version.
We’ll	also	upgrade	the	pip	utility	so	that	we	can	download	more	tools.
Reviewing	the	Python	language.	This	will	only	be	a	quick	summary.
Our	first	real	mission	will	be	an	upgrade	to	the	Beautiful	Soup	package.	This	will
help	us	in	gathering	information	from	HTML	pages.
After	upgrading	Beautiful	Soup,	we’ll	use	this	package	to	gather	live	data	from	a	web
site.
We’ll	do	a	sequence	of	installations	in	order	to	prepare	our	toolkit	for	later	missions.
In	order	to	build	our	own	gadgets,	we’ll	have	to	install	the	Arduino	IDE.

This	will	give	us	the	tools	for	a	number	of	data	gathering	and	analytical	missions.

Background	briefing	on	tools
The	organization	responsible	for	tools	and	technology	is	affectionately	known	as	The
Puzzle	Palace.	They	have	provided	some	suggestions	on	what	we’ll	need	for	the	missions
that	we’ve	been	assigned.	We’ll	start	with	an	overview	of	the	state	of	art	in	Python	tools
that	are	handed	down	from	one	of	the	puzzle	solvers.

Some	agents	have	already	upgraded	to	Python	3.4.	However,	not	all	agents	have	done	this.
It’s	imperative	that	we	use	the	latest	and	greatest	tools.

There	are	four	good	reasons	for	this,	as	follows:

Features:	Python	3.4	adds	a	number	of	additional	library	features	that	we	can	use.
The	list	of	features	is	available	at	https://docs.python.org/3/whatsnew/3.4.html.
Performance:	Each	new	version	is	generally	a	bit	faster	than	the	previous	version	of
Python.
Security:	While	Python	doesn’t	have	any	large	security	holes,	there	are	new	security
changes	in	Python.
Housecleaning:	There	are	a	number	of	rarely	used	features	that	were	and	have	been
removed.

Some	agents	may	want	to	start	looking	at	Python	3.5.	This	release	is	anticipated	to	include
some	optional	features	to	provide	data	type	hints.	We’ll	look	at	this	in	a	few	specific	cases
as	we	go	forward	with	the	mission	briefings.	The	type-analysis	features	can	lead	to
improvements	in	the	quality	of	the	Python	programming	that	an	agent	creates.	The	puzzle
palace	report	is	based	on	intelligence	gathered	at	PyCon	2015	in	Montreal,	Canada.
Agents	are	advised	to	follow	the	Python	Enhancement	Proposals	(PEP)	closely.	Refer
to	https://www.python.org/dev/peps/.

We’ll	focus	on	Python	3.4.	For	any	agent	who	hasn’t	upgraded	to	Python	3.4.3,	we’ll	look
at	the	best	way	to	approach	this.

If	you’re	comfortable	with	working	on	your	own,	you	can	try	to	move	further	and
download	and	install	Python	3.5.	Here,	the	warning	is	that	it’s	very	new	and	it	may	not	be
quite	as	robust	as	the	Python	version	3.4.	Refer	to	PEP	478
(https://www.python.org/dev/peps/pep-0478/)	for	more	information	about	this	release.

https://docs.python.org/3/whatsnew/3.4.html
https://www.python.org/dev/peps/
https://www.python.org/dev/peps/pep-0478/

Doing	a	Python	upgrade
It’s	important	to	consider	each	major	release	of	Python	as	an	add-on	and	not	a
replacement.	Any	release	of	Python	2	should	be	left	in	place.	Most	field	agents	will	have
several	side-by-side	versions	of	Python	on	their	computers.	The	following	are	the	two
common	scenarios:

The	OS	uses	Python	2.	Mac	OS	X	and	Linux	computers	require	Python	2;	this	is	the
default	version	of	Python	that’s	found	when	we	enter	python	at	the	command
prompt.	We	have	to	leave	this	in	place.
We	might	also	have	an	older	Python	3,	which	we	used	for	the	previous	missions.	We
don’t	want	to	remove	this	until	we’re	sure	that	we’ve	got	everything	in	place	in	order
to	work	with	Python	3.4.

We	have	to	distinguish	between	the	major,	minor,	and	micro	versions	of	Python.	Python
3.4.3	and	3.4.2	have	the	same	minor	version	(3.4).	We	can	replace	the	micro	version	3.4.2
with	3.4.3	without	a	second	thought;	they’re	always	compatible	with	each	other.	However,
we	don’t	treat	the	minor	versions	quite	so	casually.	We	often	want	to	leave	3.3	in	place.

Generally,	we	do	a	field	upgrade	as	shown	in	the	following:

1.	 Download	the	installer	that	is	appropriate	for	the	OS	and	Python	version.	Start	at	this
URL:	https://www.python.org/downloads/.	The	web	server	can	usually	identify	your
computer’s	OS	and	suggest	the	appropriate	download	with	a	big,	friendly,	yellow
button.	Mac	OS	X	agents	will	notice	that	we	now	get	a	.pkg	(package)	file	instead	of
a	.dmg	(disk	image)	containing	.pkg.	This	is	a	nice	simplification.

2.	 When	installing	a	new	minor	version,	make	sure	to	install	in	a	new	directory:	keep
3.3	separate	from	3.4.	When	installing	a	new	micro	version,	replace	any	existing
installation;	replace	3.4.2	with	3.4.3.

For	Mac	OS	X	and	Linux,	the	installers	will	generally	use	names	that	include
python3.4	so	that	the	minor	versions	are	kept	separate	and	the	micro	versions
replace	each	other.
For	Windows,	we	have	to	make	sure	we	use	a	distinct	directory	name	based	on
the	minor	version	number.	For	example,	we	want	to	install	all	new	3.4.x	micro
versions	in	C:\Python34.	If	we	want	to	experiment	with	the	Python	3.5	minor
version,	it	would	go	in	C:\Python35.

3.	 Tweak	the	PATH	environment	setting	to	choose	the	default	Python.

This	information	is	generally	in	our	~/.bash_profile	file.	In	many	cases,	the
Python	installer	will	update	this	file	in	order	to	assure	that	the	newest	Python	is
at	the	beginning	of	the	string	of	directories	that	are	listed	in	the	PATH	setting.
This	file	is	generally	used	when	we	log	in	for	the	first	time.	We	can	either	log
out	and	log	back	in	again,	or	restart	the	terminal	tool,	or	we	can	use	the	source
~/.bash_profile	command	to	force	the	shell	to	refresh	its	environment.
For	Windows,	we	must	update	the	advanced	system	settings	to	tweak	the	value
of	the	PATH	environment	variable.	In	some	cases,	this	value	has	a	huge	list	of

https://www.python.org/downloads/

paths;	we’ll	need	to	copy	the	string	and	paste	it	in	a	text	editor	to	make	the
change.	We	can	then	copy	it	from	the	text	editor	and	paste	it	back	in	the
environment	variable	setting.

4.	 After	upgrading	Python,	use	pip3.4	(or	easy_install-3.4)	to	add	the	additional
packages	that	we	need.	We’ll	look	at	some	specific	packages	in	mission	briefings.
We’ll	start	by	adding	any	packages	that	we	use	frequently.

At	this	point,	we	should	be	able	to	confirm	that	our	basic	toolset	works.	Linux	and	Mac
OS	agents	can	use	the	following	command:

MacBookPro-SLott:Code	slott$	python3.4

This	should	confirm	that	we’ve	downloaded	and	installed	Python	and	made	it	a	part	of	our
OS	settings.	The	greeting	will	show	which	micro	version	of	Python	3.4	have	we	installed.

For	Windows,	the	command’s	name	is	usually	just	python.	It	would	look	similar	to	the
following:

C:\>	python

The	Mac	OS	X	interaction	should	include	the	version;	it	will	look	similar	to	the	following
code:

MacBookPro-SLott:NavTools-1.2	slott$	python3.4

Python	3.4.3	(v3.4.3:9b73f1c3e601,	Feb	23	2015,	02:52:03)	

[GCC	4.2.1	(Apple	Inc.	build	5666)	(dot	3)]	on	darwin

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>	import	sys

>>>	sys.version_info

sys.version_info(major=3,	minor=4,	micro=3,	releaselevel='final',	serial=0)

We’ve	entered	the	python3.4	command.	This	shows	us	that	things	are	working	very
nicely.	We	have	Python	3.4.3	successfully	installed.

We	don’t	want	to	make	a	habit	of	using	the	python	or	python3	commands	in	order	to	run
Python	from	the	command	line.	These	names	are	too	generic	and	we	could	accidentally
use	Python	3.3	or	Python	3.5,	depending	on	what	we	have	installed.	We	need	to	be
intentional	about	using	Python3.4.

Preliminary	mission	to	upgrade	pip
The	first	time	that	we	try	to	use	pip3.4,	we	may	see	an	interaction	as	shown	in	the
following:

MacBookPro-SLott:Code	slott$	pip3.4	install	anything

You	are	using	pip	version	6.0.8,	however	version	7.0.3	is	available.

You	should	consider	upgrading	via	the	'pip	install	--upgrade	pip'	command.

The	version	numbers	may	be	slightly	different;	this	is	not	too	surprising.	The	packaged
version	of	pip	isn’t	always	the	latest	and	greatest	version.	Once	we’ve	installed	the	Python
package,	we	can	upgrade	pip3.4	to	the	recent	release.	We’ll	use	pip	to	upgrade	itself.

It	looks	similar	to	the	following	code:

MacBookPro-SLott:Code	slott$	pip3.4	install	--upgrade	pip

You	are	using	pip	version	6.0.8,	however	version	7.0.3	is	available.

You	should	consider	upgrading	via	the	'pip	install	--upgrade	pip'	command.

Collecting	pip	from	https://pypi.python.org/packages/py2.py3/p/pip/pip-

7.0.3-py2.py3-none-any.whl#md5=6950e1d775fea7ea50af690f72589dbd

		Downloading	pip-7.0.3-py2.py3-none-any.whl	(1.1MB)

				100%	|################################|	1.1MB	398kB/s	

Installing	collected	packages:	pip

		Found	existing	installation:	pip	6.0.8

				Uninstalling	pip-6.0.8:

						Successfully	uninstalled	pip-6.0.8

Successfully	installed	pip-7.0.3

We’ve	run	the	pip	installer	to	upgrade	pip.	We’re	shown	some	details	about	the	files	that
are	downloaded	and	new	is	version	installed.	We	were	able	to	do	this	with	a	simple
pip3.4	under	Mac	OS	X.

Some	packages	will	require	system	privileges	that	are	available	via	the	sudo	command.
While	it’s	true	that	a	few	packages	don’t	require	system	privileges,	it’s	easy	to	assume	that
privileges	are	always	required.	For	Windows,	of	course,	we	don’t	use	sudo	at	all.

On	Mac	OS	X,	we’ll	often	need	to	use	sudo	-H	instead	of	simply	using	sudo.	This	option
will	make	sure	that	the	proper	HOME	environment	variable	is	used	to	manage	a	cache
directory.

Note	that	your	actual	results	may	differ	from	this	example,	depending	on	how	out-of-date
your	copy	of	pip	turns	out	to	be.	This	pip	install	--upgrade	pip	is	a	pretty	frequent
operation	as	the	features	advance.

Background	briefing:	review	of	the
Python	language
Before	moving	on	to	our	first	mission,	we’ll	review	some	essentials	of	the	Python
language,	and	the	ways	in	which	we’ll	use	it	to	gather	and	disseminate	data.	We’ll	start	by
reviewing	the	interactive	use	of	Python	to	do	some	data	manipulation.	Then	we’ll	look	at
statements	and	script	files.

When	we	start	Python	from	the	Terminal	tool	or	the	command	line,	we’ll	see	an
interaction	that	starts	as	shown	in	the	following:

MacBookPro-SLott:Code	slott$	python3.4

Python	3.4.3	(v3.4.3:9b73f1c3e601,	Feb	23	2015,	02:52:03)	

[GCC	4.2.1	(Apple	Inc.	build	5666)	(dot	3)]	on	darwin

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>	

The	>>>	prompt	is	Python’s	read-eval-print	loop	(REPL)	that	is	waiting	for	us	to	enter	a
statement.	If	we	use	Python’s	development	environment,	IDLE,	we’ll	also	see	this	>>>
prompt.

One	of	the	simplest	kinds	of	statements	is	a	single	expression.	We	can,	for	example,	enter
an	arithmetic	expression.	The	Read	Eval	Print	Loop	(REPL)	will	print	the	result
automatically.	Here’s	an	example	of	simple	math:

>>>	355/113

3.1415929203539825

We	entered	an	expression	statement	and	Python	printed	the	resulting	object.	This	gives	us
a	way	to	explore	the	language.	We	can	enter	things	and	see	the	results,	allowing	us	to
experiment	with	new	concepts.

Python	offers	us	a	number	of	different	types	of	objects	to	work	with.	The	first	example
showed	integer	objects,	355	and	113,	as	well	as	a	floating-point	result	object,
3.1415929203539825.

In	addition	to	integers	and	floats,	we	also	have	exact	complex	numbers.	With	the	standard
library,	we	can	introduce	decimal	and	fraction	values	using	the	decimal	or	fractions
modules.	Python	can	coerce	values	between	the	various	types.	If	we	have	mixed	values	on
either	side	of	an	operator,	one	of	the	values	will	be	pushed	up	the	numeric	tower	so	that
both	operands	have	the	same	type.	This	means	that	integers	can	be	promoted	up	to	float
and	float	can	be	promoted	up	to	complex	if	necessary.

Python	gives	us	a	variety	of	operators.	The	common	arithmetic	operators	are	+,	-,	*,	/,	//,
%,	and	**.	These	implement	addition,	subtraction,	multiplication,	true	division,	floor
division,	modulus,	and	raising	to	a	power.	The	true	division,	/,	will	coerce	integers	to
floating-point	so	that	the	answer	is	exact.	The	floor	division,	//,	provides	rounded-down
answers,	even	with	floating-point	operands.

We	also	have	some	bit-fiddling	operators:	~,	&,	|,	^,	<<,	and	>>.	These	implement	unary

bitwise	inversion,	and,	or,	exclusive	or,	shift	left,	and	shift	right.	These	work	with
individual	bits	in	a	number.	They’re	not	logical	operators	at	all.

What	about	more	advanced	math?	We’ll	need	to	import	libraries	if	we	need	more
sophisticated	features.	For	example,	if	we	need	to	compute	a	square	root,	we’ll	need	to
import	the	math	module,	as	follows:

>>>	import	math

>>>	p=	math.sqrt(7+math.sqrt(6+math.sqrt(5)))

Importing	the	math	module	creates	a	new	object,	math.	This	object	is	a	kind	of	namespace
that	contains	useful	functions	and	constants.	We’ll	use	this	import	technique	frequently	to
add	features	that	we	need	to	create	useful	software.

Using	variables	to	save	results
We	can	put	a	label	on	an	object	using	the	assignment	statement.	We	often	describe	this	as
assigning	an	object	to	a	variable;	however,	it’s	more	like	assigning	a	symbolic	label	to	an
object.	The	variable	name	(or	label)	must	follow	a	specific	set	of	syntax	rules.	It	has	to
begin	with	a	letter	and	can	include	any	combination	of	letters,	digits,	and	_	characters.
We’ll	often	use	simple	words	such	as	x,	n,	samples,	and	data.	We	can	use	longer_names
where	this	adds	clarity.

Using	variables	allows	us	to	build	up	results	in	steps	by	assigning	names	to	intermediate
results.	Here’s	an	example:

>>>	n	=	355

>>>	d	=	113

>>>	r	=	n/d

>>>	result	=	"ratio:	{0:.6f}".format(r)

>>>	result

'ratio:	3.141593'

We	assigned	the	n	name	to	the	355	integer;	then	we	assigned	the	d	name	to	the	113	integer.
Then	we	assigned	the	ratio	to	another	variable,	r.

We	used	the	format()	method	for	strings	to	create	a	new	string	that	we	assigned	to	the
variable	named	result.	The	format()	method	starts	with	a	format	specification	and
replace	{}	with	formatted	versions	of	the	argument	values.	In	the	{}‘s	object,	we
requested	item	0	from	the	collection	of	arguments.	Since	Python’s	indexes	always	start
from	zero,	this	will	be	the	first	argument	value.	We	used	a	format	specification	of	.6f	to
show	a	floating-point	value	(f)	with	six	digits	to	the	right	of	the	decimal	point	(.6).	This
formatted	number	was	interpolated	into	the	overall	string	and	the	resulting	string	was
given	the	name	result.

The	last	expression	in	the	sequence	of	statements,	result,	is	very	simple.	The	result	of
this	trivial	expression	is	the	value	of	the	variable.	It’s	a	string	that	the	REPL	prints	for	us.
We	can	use	a	similar	technique	to	print	the	values	of	intermediate	results	such	as	the	r
variable.	We’ll	often	make	heavy	use	of	intermediate	variables	in	order	to	expose	the
details	of	a	calculation.

Using	the	sequence	collections:	strings
Python	strings	are	a	sequence	of	Unicode	characters.	We	have	a	variety	of	quoting	rules
for	strings.	Here	are	two	examples:

>>>	'String	with	"	inside'

'String	with	"	inside'

>>>	"String's	methods"

"String's	methods"

We	can	either	use	quotes	or	apostrophes	to	delimit	a	string.	In	the	likely	event	that	a	string
contains	both	quotes	and	apostrophes,	we	can	use	a	'	or	"	to	embed	some	punctuation;	this
is	called	an	escape	sequence.	The	initial	\	escapes	from	the	normal	meaning	of	the	next
character.	The	following	is	an	example	showing	the	complicated	quotes	and	escapes:

>>>	"I	said,	\"Don't	touch.\""

'I	said,	"Don\'t	touch."'

We	used	one	set	of	quotes	to	enter	the	string.	We	used	the	escaped	quotes	in	the	string.
Python	responded	with	its	preferred	syntax;	the	canonical	form	for	a	string	will	generally
use	apostrophes	to	delimit	the	string	overall.

Another	kind	of	string	that	we’ll	encounter	frequently	is	a	byte	string.	Unlike	a	normal
string	that	uses	all	the	available	Unicode	characters,	a	byte	string	is	limited	to	single-byte
values.	These	can	be	shown	using	hexadecimal	numeric	codes,	or	–	for	96	of	the	available
bytes	values	–	an	ASCII	character	instead	of	a	numeric	value.

Here	are	two	examples	of	byte	strings:

>>>	b'\x08\x09\x0a\x0c\x0d\x0e\x0f'

b'\x08\t\n\x0c\r\x0e\x0f'

>>>	b'\x41\x53\x43\x49\x49'

b'ASCII'

In	the	first	example,	we	provided	hexadecimal	values	using	the	\xnn	syntax	for	each	byte.
The	prefix	of	\x	means	that	the	following	values	will	be	in	base	16.	We	write	base	16
values	using	the	digits	0-9	along	with	the	letters	a-f.	We	provide	seven	values	for	\x08	to
\x0f.	Python	replies	using	a	canonical	notation;	our	input	follows	more	relaxed	rules	than
those	of	Python’s	output.	The	canonical	syntax	is	different	for	three	important	byte	values:
the	tab	character,	\x08	can	also	be	entered	as	\t.	The	newline	character	is	most	commonly
entered	as	\n	rather	than	\x0a.	Finally,	the	carriage	return	character,	\r,	is	shorter	than
\x0d.

In	the	second	example,	we	also	provided	some	hexadecimal	values	that	overlap	with	some
of	the	ASCII	characters.	Python’s	canonical	form	shows	the	ASCII	characters	instead	of
the	hexadecimal	values.	This	demonstrates	that,	for	some	byte	values,	ASCII	characters
are	a	handy	shorthand.

In	some	applications,	we’ll	have	trouble	telling	a	Unicode	string,	'hello',	from	a	byte
string,	b'hello'.	We	can	add	a	u'hello'	prefix	in	order	to	clearly	state	that	this	is	a	string
of	Unicode	characters	and	not	a	string	of	bytes.

As	a	string	is	a	collection	of	individual	Unicode	characters,	we	can	extract	the	characters
from	a	string	using	the	character’s	index	positions.	Here’s	a	number	of	examples:

>>>	word	=	'retackling'

>>>	word[0]

'r'

>>>	word[-1]

'g'

>>>	word[2:6]

'tack'

>>>	word[-3:]

'ing'

We’ve	created	a	string,	which	is	a	sequence	object.	Sequence	objects	have	items	that	can
be	addressed	by	their	position	or	index.	In	position	0,	we	see	the	first	item	in	the	sequence,
the	'r'	character.

Sequences	can	also	be	indexed	from	the	right	to	left	using	negative	numbers.	Position	-1	is
the	last	(rightmost)	item	in	a	sequence.	Index	position	-2	is	next-to-rightmost.

We	can	also	extract	a	slice	from	a	sequence.	This	is	a	new	sequence	that	is	copied	from	the
original	sequence.	When	we	take	items	in	positions	2	to	6,	we	get	four	characters	with
index	values	2,	3,	4,	and	5.	Note	that	a	slice	includes	the	first	position	and	never	includes
the	last	specified	position,	it’s	an	upto	but	not	including	rule.	Mathematicians	call	it	a	half-
open	interval	and	write	it	as	[2,	6)	or	sometimes	[2,	6[.	We	can	use	the	following	set
comprehension	rule	to	understand	how	the	interval	works:

All	of	the	sequence	collections	allow	us	to	count	occurrences	of	an	item	and	location	the
index	of	an	item.	The	following	are	some	examples	that	show	the	method	syntax	and	the
two	universal	methods	that	apply	to	sequences:

>>>	word.count('a')

1

>>>	word.index('t')

2

>>>	word.index('z')	

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

ValueError:	substring	not	found

We’ve	counted	the	number	of	items	that	match	a	particular	value.	We’ve	also	asked	for	the
position	of	a	given	letter.	This	returns	a	numeric	value	for	the	index	of	the	item	equal	to
't'.

String	sequences	have	dozens	of	other	methods	to	create	new	strings	in	various	ways.	We
can	do	a	large	number	of	sophisticated	manipulations.

Note	that	a	string	is	an	immutable	object.	We	can’t	replace	a	character	in	a	string.	We	can
only	build	new	strings	from	the	old	strings.

Using	other	common	sequences:	tuples	and	lists
We	can	create	two	other	common	kinds	of	sequences:	the	list	and	the	tuple.	A	tuple	is	a
fixed-length	sequence	of	items.	We	often	use	tuples	for	simple	structures	such	as	pairs
(latitude,	longitude)	or	triples	(r,	g,	b).	We	write	a	literal	tuple	by	enclosing	the	items	in
()s.	It	looks	as	shown	in	the	following:

>>>	ultramarine_blue	=	(63,	38,	191)

We’ve	create	a	three-tuple	or	triple	with	some	RGB	values	that	comprise	a	color.

Python’s	assignment	statement	can	tease	a	tuple	into	its	individual	items.	Here’s	an
example:

>>>	red,	green,	blue	=	ultramarine_blue

>>>	red

63

>>>	blue

191

This	multiple-variable	assignment	works	well	with	tuples	as	a	tuple	has	a	fixed	size.	We
can	also	address	individual	items	of	a	tuple	with	expressions	such	as
ultramarine_blue[0].	Slicing	a	tuple	is	perfectly	legal;	however,	semantically	a	little
murky.	Why	is	ultramarine_blue[:2]	used	to	create	a	pair	from	the	red	and	green
channel?

A	list	is	a	variable-length	sequence	of	items.	This	is	a	mutable	object	and	we	can	insert,
append,	remove,	and	replace	items	in	the	list.	This	is	one	of	the	profound	differences
between	the	tuple	and	list	sequences.	A	tuple	is	immutable;	once	we’ve	built	it,	we	can’t
change	it.	A	list	is	mutable.

The	following	is	an	example	of	a	list	that	we	can	tweak	in	order	to	correct	the	errors	in	the
data:

>>>	samples	=	[8.04,	6.95,	0,	8.81,	8.33,	9.96,	7.24,	4.26,	10.84,	4.82]

>>>	samples[2]=	7.58

>>>	samples.append(5.68)

>>>	samples

[8.04,	6.95,	7.58,	8.81,	8.33,	9.96,	7.24,	4.26,	10.84,	4.82,	5.68]	

>>>	sum(samples)

82.51000000000002

>>>	round(sum(samples)/len(samples),2)

7.5

We’ve	created	a	list	object,	samples,	and	initialized	it	with	10	values.	We’ve	set	the	value
with	an	index	of	two;	replacing	a	the	zero	item	with	7.58.	We’ve	appended	an	item	at	the
end	of	the	list.

We’ve	also	shown	two	handy	functions	that	apply	to	all	sequences.	However,	they’re
particularly	useful	for	lists.	The	sum()	function	adds	up	the	values,	reducing	the	list	to	a
single	value.	The	len()	function	counts	the	items,	also	reducing	the	list	to	a	single	value.

Note	the	awkward	value	shown	for	the	sum;	this	is	an	important	feature	of	floating-point

numbers.	In	order	to	be	really	fast,	they’re	finite.	As	they	have	a	limited	number	of	bits,
they’re	only	an	approximation.	Therefore,	sometimes,	we’ll	see	some	consequences	of
working	with	approximations.

Tip
Floating-point	numbers	aren’t	mathematical	abstractions.

They’re	finite	approximations.	Sometimes,	you’ll	see	tiny	error	values.

One	other	interesting	operator	for	sequences	is	the	in	comparison:

>>>	7.24	in	samples

True

This	checks	whether	a	given	item	is	found	somewhere	in	the	sequence.	If	we	want	the
index	of	a	given	item,	we	can	use	the	index	method:

samples.index(7.24)

Using	the	dictionary	mapping
The	general	idea	of	mapping	is	the	association	between	keys	and	values.	We	might	have	a
key	of	'ultramarine	blue'	associated	with	a	value	of	the	tuple,	(63,	38,	191).	We
might	have	a	key	of	'sunset	orange'	associated	with	a	tuple	of	(254,	76,	64).	We	can
represent	this	mapping	of	string-to-tuple	with	a	Python	dictionary	object,	as	follows:

>>>	colors	=	{'ultramarine	blue':	(63,	38,	191),	'sunset	orange':	(254,	76,	

64)	}

We’ve	replaced	the	words	associated	with	:	and	wrapped	the	whole	in	{}s	in	order	to
create	a	proper	dictionary.	This	is	a	mapping	from	color	strings	to	RGB	tuples.

A	dictionary	is	mutable;	we	can	add	new	key-value	pairs	and	remove	key-value	mappings
from	it.	Of	course,	we	can	interrogate	a	dictionary	to	see	what	keys	are	present	and	what
value	is	associated	with	a	key.

>>>	colors['olive	green']	=	(181,	179,	92)

>>>	colors.pop('sunset	orange')

(254,	76,	64)

>>>	colors['ultramarine	blue']

(63,	38,	191)

>>>	'asparagus'	in	colors

False

The	same	syntax	will	replace	an	existing	key	in	a	dictionary	with	a	new	value.	We	can	pop
a	key	from	the	dictionary;	this	will	both	update	the	dictionary	to	remove	the	key	value	pair
and	return	the	value	associated	with	the	key.	When	we	use	syntax	such	as
colors['ultramarine	blue'],	we’ll	retrieve	the	value	associated	with	a	given	key.

The	in	operator	checks	to	see	whether	the	given	item	is	one	of	the	keys	of	the	mapping.	In
our	example,	we	didn’t	provide	a	mapping	for	the	name	'asparagus'.

We	can	retrieve	the	keys,	the	values,	and	the	key	value	pairs	from	a	mapping	with	methods
of	the	class:

>>>	sorted(colors.items())

[('olive	green',	(181,	179,	92)),	('ultramarine	blue',	(63,	38,	191))]

The	keys()	method	returns	the	keys	in	the	mapping.	The	values()	method	returns	a	list
of	only	the	values.	The	items()	method	returns	a	list	of	two-tuples.	Each	tuple	is	a	key,
value	pair.	We’ve	applied	the	sorted()	function	in	this	example,	as	a	dictionary	doesn’t
guarantee	any	particular	order	for	the	keys.	In	many	cases,	we	don’t	particularly	care
about	the	order.	In	the	cases	where	we	need	to	enforce	the	order,	this	is	a	common
technique.

Comparing	data	and	using	the	logic	operators
Python	implements	a	number	of	comparisons.	We	have	the	usual	==,	!=,	<=,	>=,	<,	and	>
operators.	These	provide	the	essential	comparison	capabilities.	The	result	of	a	comparison
is	a	boolean	object,	either	True	or	False.

The	boolean	objects	have	their	own	special	logic	operators:	and,	or,	and	not.	These
operators	can	short-circuit	the	expression	evaluation.	In	the	case	of	and,	if	the	left-hand
side	expression	is	False,	the	final	result	must	be	False;	therefore,	the	right-hand	side
expression	is	not	evaluated.	In	the	case	of	or,	the	rules	are	reversed.	If	the	left-hand	side
expression	is	True,	the	final	result	is	already	known	to	be	True,	so	the	right-hand	side
expression	is	skipped.

For	example,	take	two	variables,	sum	and	count,as	follows:

>>>	sum

82.51

>>>	count

11

>>>	mean	=	count	!=	0	and	sum/count

Let’s	look	closely	at	the	final	expression.	The	left-hand	side	expression	of	the	and	operator
is	count	!=	0,	which	is	True.	Therefore,	the	right-hand	side	expression	must	be
evaluated.	Interestingly,	the	right-hand	side	object	is	the	final	result.	A	numeric	value	of
7.5	is	the	value	of	the	mean	variable.

The	following	is	another	example	to	show	how	the	and	operator	behaves:

>>>	sum

0.0

>>>	count

0

>>>	mean	=	count	!=	0	and	sum/count

What	happens	here?	The	left-hand	side	expression	of	the	and	operator	is	count	!=	0,
which	is	False.	The	right-hand	side	is	not	evaluated.	There’s	no	division	by	zero	error
exception	raised	by	this.	The	final	result	is	False.

Using	some	simple	statements
All	of	the	preceding	examples	focused	on	one-line	expression	statements.	We	entered	an
expression	in	REPL,	Python	evaluated	the	expression,	and	REPL	helpfully	printed	the
resulting	value.	While	the	expression	statement	is	handy	for	experiments	at	the	REPL
prompt,	there’s	one	expression	statement	that	agents	use	a	lot,	as	shown	in	the	following:

>>>	print("Hello	\N{EARTH}")

Hello	♁

The	print()	function	prints	the	results	on	the	console.	We	provided	a	string	with	a
Unicode	character	that’s	not	directly	available	on	most	keyboards,	this	is	the	EARTH
character,	♁,	U+2641,	which	looks	different	in	different	fonts.

We’ll	need	the	print()	function	as	soon	as	we	stop	using	interactive	Python.	Our	scripts
won’t	show	any	results	unless	we	print	them.

The	other	side	of	printing	is	the	input()	function.	This	will	present	a	prompt	and	then
read	a	string	of	input	that	is	typed	by	a	user	at	the	console.	We’ll	leave	it	to	the	interested
agent	to	explore	the	details	of	how	this	works.

We’ll	need	more	kinds	of	imperative	statements	to	get	any	real	work	done.	We’ve	shown
two	forms	of	the	assignment	statement;	both	will	put	a	label	on	an	object.	The	following
are	two	examples	to	put	label	on	an	object:

>>>	n,	d	=	355,	113

>>>	pi	=	n/d

The	first	assignment	statement	evaluated	the	355,	115	expression	and	created	a	tuple
object	from	two	integer	objects.	In	some	contexts,	the	surrounding	()s	for	a	tuple	are
optional;	this	is	one	of	those	contexts.	Then,	we	used	multiple	assignments	to	decompose
the	tuple	to	its	two	items	and	put	labels	on	each	object.

The	second	assignment	statement	follows	the	same	pattern.	The	n/d	expression	is
evaluated.	It	uses	true	division	to	create	a	floating-point	result	from	integer	operands.	The
resulting	object	has	the	name	pi	applied	to	it	by	the	assignment	statement.

Using	compound	statements	for	conditions:	if
For	conditional	processing,	we	use	the	if	statement.	Python	allows	an	unlimited	number
of	else-if	(elif)	clauses,	allowing	us	to	build	rather	complex	logic	very	easily.

For	example,	here’s	a	statement	that	determines	whether	a	value,	n,	is	divisible	by	three,	or
five,	or	both:

>>>	if	n	%	3	==	0	and	n	%	5	==	0:

...					print("fizz-buzz")

...	elif	n	%	3	==	0:

...					print("fizz")

...	elif	n	%	5	==	0:

...					print("buzz")

...	else:

...					print(n)

We’ve	written	three	Boolean	expressions.	The	if	statement	will	evaluate	these	in	top-to-
bottom	order.	If	the	value	of	the	n	variable	is	divisible	by	both,	three	and	five,	the	first
condition	is	True	and	the	indented	suite	of	statements	is	executed.	In	this	example,	the
indented	suite	of	statements	is	a	single	expression	statement	that	uses	the	print()
function.

If	the	first	expression	is	False,	then	the	elif	clauses	are	examined	in	order.	If	none	of	the
elif	clauses	are	true,	the	indented	suite	of	statements	in	the	else	clause	is	executed.

Remember	that	the	and	operator	has	a	short-circuit	capability.	The	first	expression	may
involve	as	little	as	evaluating	n	%	3	==	0.	If	this	subexpression	is	False,	the	entire	and
expression	must	be	False;	this	means	that	the	entire	if	clause	is	not	executed.	Otherwise,
the	entire	expression	must	be	evaluated.

Notice	that	Python	changes	the	prompt	from	>>>	at	the	start	of	a	compound	statement	to	…
to	show	that	more	of	the	statement	can	be	entered.	This	is	a	helpful	hint.	We	indent	each
suite	of	statements	in	a	clause.	We	enter	a	blank	line	in	order	to	show	we’re	at	the	very	end
of	the	compound	statement.

Tip
This	longer	statement	shows	us	an	important	syntax	rule:

Compound	statements	rely	on	indentation.	Indent	consistently.	Use	four	spaces.

The	individual	if	and	elif	clauses	are	separated	based	on	their	indentation	level.	The
keywords	such	as	if,	elif,	and	else	are	not	indented.	The	suite	of	statements	in	each
clause	is	indented	consistently.

Using	compound	statements	for	repetition:	for	and
while
When	we	want	to	process	all	the	items	in	a	list	or	the	lines	in	a	file,	we’re	going	to	use	the
for	statement.	The	for	statement	allows	us	to	specify	a	target	variable,	a	source	collection
of	values,	and	a	suite	of	statements.	The	idea	is	that	each	item	from	the	source	collection	is
assigned	to	the	target	value	and	the	suite	of	statements	is	executed.

The	following	is	a	complete	example	that	computes	the	variance	of	some	measurements:

>>>	samples	=	[8.04,	6.95,	7.58,	8.81,	8.33,	9.96,	7.24,	4.26,	10.84,	4.82,	

5.68]

>>>	sum,	sum2	=	0,	0

>>>	for	x	in	samples:

...					sum	+=	x…					sum2	+=	x**2

>>>	n	=	len(samples)

>>>	var	=	(sum2-(sum**2/n))/(n-1)

We’ve	started	with	a	list	of	values,	assigned	to	the	samples	variable,	plus	two	other
variables,	sum	and	sum2,	to	which	we’ve	assigned	initial	values	of	0.

The	for	statement	will	iterate	through	the	item	in	the	samples	list.	An	item	will	be
assigned	to	the	target	variable,	x,	and	then	the	indented	body	of	the	for	statement	is
executed.	We’ve	written	two	assignment	statements	that	will	compute	the	new	values	for
sum	and	sum2.	These	use	the	augmented	assignment	statement;	using	+=	saves	us	from
writing	sum	=	sum	+	x.

After	the	for	statement,	we	are	assured	that	the	body	has	been	executed	for	all	values	in
the	source	object,	samples.	We	can	save	the	count	of	the	samples	in	a	handy	local
variable,	n.	This	makes	the	calculation	of	the	variance	slightly	more	clear.	In	this	example,
the	variance	is	about	4.13.

The	result	is	a	number	that	shows	how	spread	out	the	raw	data	is.	The	square	root	of	the
variance	is	the	standard	deviation.	We	expect	two-third	of	our	data	points	to	lie	in	one
standard	deviation	of	the	average.	We	often	use	variance	when	comparing	two	data	sets.
When	we	get	additional	data,	perhaps	from	a	different	agent,	we	can	compare	the	averages
and	variances	to	see	whether	the	data	is	similar.	If	the	variances	aren’t	the	same,	this	may
reflect	that	there	are	different	sources	and	possibly	indicate	that	we	shouldn’t	trust	either
of	the	agents	that	are	supplying	us	this	raw	data.	If	the	variances	are	identical,	we	have
another	question	whether	we	being	fed	false	information?

The	most	common	use	of	the	for	statement	is	to	visit	each	item	in	a	collection.	A	slightly
less	common	use	is	to	iterate	a	finite	number	of	times.	We	use	a	range()	object	to	emit	a
simple	sequence	of	integer	values,	as	follows:

>>>	list(range(5))

[0,	1,	2,	3,	4]

This	means	that	we	can	use	a	statement	such	as	for	i	in	range(n):	in	order	to	iterate	n
times.

Defining	functions
It’s	often	important	to	decompose	large,	complex	data	acquisition	and	analysis	problems
into	smaller,	more	solvable	problems.	Python	gives	us	a	variety	of	ways	to	organize	our
software.	We	have	a	tall	hierarchy	that	includes	packages,	modules,	classes,	and	functions.
We’ll	start	with	function	definitions	as	a	way	to	decompose	and	reuse	functionality.	The
later	missions	will	require	class	definitions.

A	function—mathematically—is	a	mapping	from	objects	in	a	domain	to	objects	in	a	range.
Many	mathematical	examples	map	numbers	to	different	numbers.	For	example,	the
arctangent	function,	available	as	math.atan(),	maps	a	tangent	value	to	the	angle	that	has
this	tangent	value.	In	many	cases,	we’ll	need	to	use	math.atan2(),	as	our	tangent	value	is
a	ratio	of	the	lengths	of	two	sides	of	a	triangle;	this	function	maps	a	pair	of	values	to	a
single	result.

In	Python	terms,	a	function	has	a	name	and	a	collection	of	parameters	and	it	may	return	a
distinct	value.	If	we	don’t	explicitly	return	a	resulting	value,	a	function	maps	its	values	to
a	special	None	object.

Here’s	a	handy	function	to	average	the	values	in	a	sequence:

>>>	def	mean(data):

...					if	len(data)	==	0:

...									return	None…					return	sum(data)/len(data)

This	function	expects	a	single	parameter,	a	sequence	of	values	to	average.	When	we
evaluate	the	function,	the	argument	value	will	be	assigned	to	the	data	parameter.	If	the
sequence	is	empty,	we’ll	return	the	special	None	object	in	order	to	indicate	that	there’s	no
average	when	there’s	no	data.

If	the	sequence	isn’t	empty,	we’ll	divide	the	sum	by	the	count	to	compute	the	average.
Since	we’re	using	exact	division,	this	will	return	a	floating-point	value	even	if	the
sequence	is	all	integers.

The	following	is	how	it	looks	when	we	use	our	newly	minted	function	combined	with
built-in	functions:

>>>	samples	=	[8.04,	6.95,	7.58,	8.81,	8.33,	9.96,	7.24,	4.26,	10.84,	4.82,	

5.68]

>>>	round(mean(samples),	2)

7.5

We’ve	computed	the	mean	of	the	values	in	the	samples	variable	using	our	mean()
function.	We’ve	applied	the	round()	function	to	the	resulting	value	to	show	that	the	mean
is	rounded	to	two	decimal	places.

Creating	script	files
We	shouldn’t	try	to	do	all	the	our	data	gathering	and	analysis	by	entering	the	Python	code
interactively	at	the	>>>	prompt.	It’s	possible	to	work	this	way;	however,	the	copy	and	paste
is	tedious	and	error-prone.	It’s	much	better	to	create	a	Python	script	that	will	gather,
analyze,	and	display	useful	intelligence	assets	that	we’ve	gathered	(or	purchased).

A	Python	script	is	a	file	of	Python	statements.	While	it’s	not	required,	it’s	helpful	to	be
sure	that	the	file’s	name	is	a	valid	Python	symbol	that	is	created	with	letters,	numbers,	and
_‘s.	It’s	also	helpful	if	the	file’s	name	ends	with	.py.

Here’s	a	simple	script	file	that	shows	some	of	the	features	that	we’ve	been	looking	at:

import	random,	math

samples	=	int(input("How	many	samples:	"))

inside	=	0

for	i	in	range(samples):

				if	math.hypot(random.random(),	random.random())	<=	1.0:

								inside	+=	1

print(inside,	samples,	inside/samples,	math.pi/4)

This	script	file	can	be	given	a	name	such	as	example1.py.	The	script	will	use	the	input()
function	to	prompt	the	user	for	a	number	of	random	samples.	Since	the	result	of	input()
is	a	string,	we’ll	need	to	convert	the	string	to	an	integer	in	order	to	be	able	to	use	it.	We’ve
initialized	a	variable,	inside,	to	zero.

The	for	statement	will	execute	the	indented	body	for	the	number	of	times	that	are	given
by	the	value	of	samples.	The	range()	object	will	generate	samples	distinct	integer	values.
In	the	for	statement,	we’ve	used	an	if	statement	to	filter	some	randomly	generated
values.	The	values	we’re	examining	are	the	result	of	math.hypot(random.random(),
random.random()).	What	is	this	value?	It’s	the	hypotenuse	of	a	right	angled	triangle	with
sides	that	are	selected	randomly.	We’ll	leave	it	to	each	field	agent	to	rewrite	this	script	in
order	to	assign	and	print	some	intermediate	variables	to	show	precisely	how	this
calculation	works.

We’re	looking	at	a	triangle	with	one	vertex	at	(0,0)	and	another	at	(x,y).	The	third	vertex
could	either	be	at	(0,y)	or	(x,0),	the	results	don’t	depend	on	how	we	visualize	the	triangle.
Since	the	triangle	sides	are	selected	randomly,	the	end	point	of	the	hypotenuse	can	be	any

value	from	(0,0)	to	(1,1);	the	length	of	this	varies	between	0	and	 .

Statistically,	we	expect	that	most	of	the	points	should	lie	in	a	circle	with	a	radius	of	one.
How	many	should	lie	in	this	quarter	circle?	Interestingly,	the	random	distribution	will

have	 	of	the	samples	in	the	circle;	 	will	be	outside	the	circle.

When	working	in	counterintelligence,	the	data	that	we’re	providing	needs	to	be	plausible.
If	we’re	going	to	mislead,	our	fake	data	needs	to	fit	the	basic	statistical	rules.	A	careful
study	of	history	will	show	how	Operation	Mincemeat	was	used	to	deceive	Axis	powers
during	World	War	II.	What’s	central	to	this	story	is	the	plausibility	of	every	nuance	of	the

data	that	is	supplied.

Mission	One	–	upgrade	Beautiful	Soup
It	seems	like	the	first	practical	piece	of	software	that	every	agent	needs	is	Beautiful	Soup.
We	often	make	extensive	use	of	this	to	extract	meaningful	information	from	HTML	web
pages.	A	great	deal	of	the	world’s	information	is	published	in	the	HTML	format.	Sadly,
browsers	must	tolerate	broken	HTML.	Even	worse,	website	designers	have	no	incentive	to
make	their	HTML	simple.	This	means	that	HTML	extraction	is	something	every	agent
needs	to	master.

Upgrading	the	Beautiful	Soup	package	is	a	core	mission	that	sets	us	up	to	do	more	useful
espionage	work.	First,	check	the	PyPI	description	of	the	package.	Here’s	the	URL:
https://pypi.python.org/pypi/beautifulsoup4.	The	language	is	described	as	Python	3,	which
is	usually	a	good	indication	that	the	package	will	work	with	any	release	of	Python	3.

To	confirm	the	Python	3	compatibility,	track	down	the	source	of	this	at	the	following
URL:

http://www.crummy.com/software/BeautifulSoup/.

This	page	simply	lists	Python	3	without	any	specific	minor	version	number.	That’s
encouraging.	We	can	even	look	at	the	following	link	to	see	more	details	of	the
development	of	this	package:

https://groups.google.com/forum/#!forum/beautifulsoup

The	installation	is	generally	just	as	follows:

MacBookPro-SLott:Code	slott$	sudo	pip3.4	install	beautifulsoup4

Windows	agents	can	omit	the	sudo	prefix.

This	will	use	the	pip	application	to	download	and	install	BeautifulSoup.	The	output	will
look	as	shown	in	the	following:

Collecting	beautifulsoup4

		Downloading	beautifulsoup4-4.3.2.tar.gz	(143kB)

				100%	|████████████████████████████████|	143kB	1.1MB/s	

Installing	collected	packages:	beautifulsoup4

		Running	setup.py	install	for	beautifulsoup4

Successfully	installed	beautifulsoup4-4.3.2

Note	that	Pip	7	on	Macintosh	uses	the	█	character	instead	of	#	to	show	status.	The
installation	was	reported	as	successful.	That	means	we	can	start	using	the	package	to
analyze	the	data.

We’ll	finish	this	mission	by	gathering	and	parsing	a	very	simple	page	of	data.

We	need	to	help	agents	make	the	sometimes	dangerous	crossing	of	the	Gulf	Stream
between	Florida	and	the	Bahamas.	Often,	Bimini	is	used	as	a	stopover;	however,	some
faster	boats	can	go	all	the	way	from	Florida	to	Nassau	in	a	single	day.	On	a	slower	boat,
the	weather	can	change	and	an	accurate	multi-day	forecast	is	essential.

The	Georef	code	for	this	area	is	GHLL140032.	For	more	information,	look	at	the	25°32′N

https://pypi.python.org/pypi/beautifulsoup4
http://www.crummy.com/software/BeautifulSoup/
https://groups.google.com/forum/#!forum/beautifulsoup

79°46′W	position	on	a	world	map.	This	will	show	the	particular	stretch	of	ocean	for	which
we	need	to	supply	forecast	data.

Here’s	a	handy	URL	that	provides	weather	forecasts	for	agents	who	are	trying	to	make	the
passage	between	Florida	and	the	Bahamas:

http://forecast.weather.gov/shmrn.php?mz=amz117&syn=amz101.

This	page	includes	a	weather	synopsis	for	the	overall	South	Atlantic	(the	amz101	zone)
and	a	day-by-day	forecast	specific	to	the	Bahamas	(the	amz117	zone).	We	want	to	trim	this
down	to	the	relevant	text.

http://forecast.weather.gov/shmrn.php?mz=amz117&syn=amz101

Getting	an	HTML	page
The	first	step	in	using	BeautifulSoup	is	to	get	the	HTML	page	from	the	US	National
Weather	Service	and	parse	it	in	a	proper	document	structure.	We’ll	use	urllib	to	get	the
document	and	create	a	Soup	structure	from	that.	Here’s	the	essential	processing:

from	bs4	import	BeautifulSoup

import	urllib.request

query=	"http://forecast.weather.gov/shmrn.php?mz=amz117&syn=amz101"

with	urllib.request.urlopen(query)	as	amz117:

				document=	BeautifulSoup(amz117.read())

We’ve	opened	a	URL	and	assigned	the	file-like	object	to	the	amz117	variable.	We’ve	done
this	in	a	with	statement.	Using	with	will	guarantee	that	all	network	resources	are	properly
disconnected	when	the	execution	leaves	the	indented	body	of	the	statement.

In	the	with	statement,	we’ve	read	the	entire	document	available	at	the	given	URL.	We’ve
provided	the	sequence	of	bytes	to	the	BeautifulSoup	parser,	which	creates	a	parsed	Soup
data	structure	that	we	can	assign	to	the	document	variable.

The	with	statement	makes	an	important	guarantee;	when	the	indented	body	is	complete,
the	resource	manager	will	close.	In	this	example,	the	indented	body	is	a	single	statement
that	reads	the	data	from	the	URL	and	parses	it	to	create	a	BeautifulSoup	object.	The
resource	manager	is	the	connection	to	the	Internet	based	on	the	given	URL.	We	want	to	be
absolutely	sure	that	all	operating	system	(and	Python)	resources	that	make	this	open
connection	work	are	properly	released.	This	release	when	finished	guarantees	what	the
with	statement	offers.

Navigating	the	HTML	structure
HTML	documents	are	a	mixture	of	tags	and	text.	The	parsed	structure	is	iterable,	allowing
us	to	work	through	text	and	tags	using	the	for	statement.	Additionally,	the	parsed
structure	contains	numerous	methods	to	search	for	arbitrary	features	in	the	document.

Here’s	the	first	example	of	using	methods	names	to	pick	apart	a	document:

content=	document.body.find('div',	id='content').div

When	we	use	a	tag	name,	such	as	body,	as	an	attribute	name,	this	is	a	search	request	for
the	first	occurrence	of	that	tag	in	the	given	container.	We’ve	used	document.body	to	find
the	<body>	tag	in	the	overall	HTML	document.

The	find()	method	finds	the	first	matching	instance	using	more	complex	criteria	than	the
tag’s	name.	In	this	case,	we’ve	asked	to	find	<div	id="content">	in	the	body	tag	of	the
document.	In	this	identified	<div>,	we	need	to	find	the	first	nested	<div>	tag.	This
division	has	the	synopsis	and	forecast.

The	content	in	this	division	consists	of	a	mixed	sequence	of	text	and	tags.	A	little
searching	shows	us	that	the	synopsis	text	is	the	fifth	item.	Since	Python	sequences	are
based	at	zero,	this	has	an	index	of	four	in	the	<div>.	We’ll	use	the	contents	attribute	of	a
given	object	to	identify	tags	or	text	blocks	by	position	in	a	document	object.

The	following	is	how	we	can	get	the	synopsis	and	forecast.	Once	we	have	the	forecast,
we’ll	need	to	create	an	iterator	for	each	day	in	the	forecast:

synopsis	=	content.contents[4]

forecast	=	content.contents[5]

strong_list	=	list(forecast.findAll('strong'))

timestamp_tag,	*forecast_list	=	strong_list

We’ve	extracted	the	synopsis	as	a	block	of	text.	HTML	has	a	quirky	feature	of	an	<hr>	tag
that	contains	the	forecast.	This	is,	in	principle,	invalid	HTML.	Even	though	it	seems
invalid,	browsers	tolerate	it.	It	has	the	data	that	we	want,	so	we’re	forced	to	work	with	it	as
we	find	it.

In	the	forecast	<hr>	tag,	we’ve	used	the	findAll()	method	to	create	a	list	of	the	sequence
of		tags.	These	tags	are	interleaved	between	blocks	of	text.	Generally,	the	text	in
the	tag	tells	us	the	day	and	the	text	between	the		tags	is	the	forecast	for	that	day.
We	emphasize	generally	as	there’s	a	tiny,	but	important	special	case.

Due	to	the	special	case,	we’ve	split	the	strong_list	sequence	into	a	head	and	a	tail.	The
first	item	in	the	list	is	assigned	to	the	timestamp_tag	variable.	All	the	remaining	items	are
assigned	to	the	forecast_list	variable.	We	can	use	the	value	of	timestamp_tag.string
to	recover	the	string	value	in	the	tag,	which	will	be	the	timestamp	for	the	forecast.

Your	extension	to	this	mission	is	to	parse	this	with	datetime.datetime.strptime().	It
will	improve	the	overall	utility	of	the	data	in	order	to	replace	strings	with	proper	datetime
objects.

The	value	of	the	forecast_list	variable	is	an	alternating	sequence	of		tags	and

forecast	text.	Here’s	how	we	can	extract	these	pairs	from	the	overall	document:

for	strong	in	forecast_list:

				desc=	strong.string.strip()

				print(desc,	strong.nextSibling.string.strip())

We’ve	written	a	loop	to	step	through	the	rest	of	the		tags	in	the	forecast_list
object.	Each	item	is	a	highlighted	label	for	a	given	day.	The	value	of	strong.nextSibling
will	be	the	document	object	after	the		tag.	We	can	use
strong.nextSibling.string	to	extract	the	string	from	this	block	of	text;	this	will	be	the
details	of	the	forecast.

We’ve	used	the	strip()	method	of	the	string	to	remove	extraneous	whitespace	around	the
forecast	elements.	This	makes	the	resulting	text	block	more	compact.

With	a	little	more	cleanup,	we	can	have	a	tidy	forecast	that	looks	similar	to	the	following:

TONIGHT	2015-06-30

E	TO	SE	WINDS	10	TO	15	KT…INCREASING	TO	15	TO	20	KT

	LATE.	SEAS	3	TO	5	FT	ATLC	EXPOSURES…AND	2	FT	OR	LESS

	ELSEWHERE.

WED	2015-07-01

E	TO	SE	WINDS	15	TO	20	KT…DIMINISHING	TO	10	TO	15	KT

	LATE.	SEAS	4	TO	6	FT	ATLC	EXPOSURES…AND	2	FT	OR

	LESS	ELSEWHERE.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

We’ve	stripped	away	a	great	deal	of	HTML	overhead.	We’ve	reduced	the	forecast	to	the
barest	facts.	With	a	little	more	fiddling,	we	can	get	it	down	to	a	pretty	tiny	block	of	text.
We	might	want	to	represent	this	in	JavaScript	Object	Notation	(JSON).	We	can	then
encrypt	the	JSON	string	before	the	transmission.	Then,	we	could	use	steganography	to
embed	the	encrypted	text	in	another	kind	of	document	in	order	to	transmit	to	a	friendly
ship	captain	that	is	working	the	route	between	Key	Biscayne	and	Bimini.	It	may	look	as	if
we’re	just	sending	each	other	pictures	of	rainbow	butterfly	unicorn	kittens.

This	mission	demonstrates	that	we	can	use	Python	3,	urllib,	and	BeautifulSoup.	Now,
we’ve	got	a	working	environment.

http://www.packtpub.com
http://www.packtpub.com/support

Doing	other	upgrades
When	we	upgrade	to	Python	3.4,	we	often	need	to	upgrade	the	packages	that	we	had
previously	been	working	with	in	the	older	versions	of	Python.	We	find	that	we	often	need
to	remind	the	field	agents	that	software	upgrades	may	be	boring	and	mundane	work;
however,	every	mission	is	built	on	a	foundation	of	software	in	order	to	process	the
intelligence	data.

It’s	important	to	be	sure	that	we	can	process	graphics	and	images.	That	means	we’ll	need	a
copy	of	Pillow,	a	project	that	maintains	the	Python	Imaging	Library.

Here’s	how	this	upgrade	will	look:

MacBookPro-SLott:doc	slott$	pip3.4	install	pillow

Collecting	pillow

		Downloading	Pillow-2.9.0-cp34-cp34m-

macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.m

acosx_10_10_x86_64.whl	(2.9MB)

				100%	|████████████████████████████████|	2.9MB	178kB/s	

Installing	collected	packages:	pillow

Successfully	installed	pillow-2.9.0

This	means	that	we	can	continue	to	process	graphics	successfully.	For	more	information
on	Pillow,	refer	to	Python	for	Secret	Agents	1st	Edition.

Also,	refer	to	https://python-pillow.github.io	and	http://pillow.readthedocs.org.

We’ll	start	using	this	package	in	Chapter	3,	Following	the	Social	Network.

https://python-pillow.github.io
http://pillow.readthedocs.org

Mission	to	expand	our	toolkit
Now	that	we	know	our	Python	3	is	up-to-date,	we	can	add	some	additional	tools.	We’ll	be
using	several	advanced	packages	to	help	in	acquiring	and	analyzing	raw	data.

We’re	going	to	need	to	tap	into	the	social	network.	There	are	a	large	number	of	candidate
social	networks	that	we	could	mine	for	information.	We’ll	start	with	Twitter.	We	can
access	the	Twitter	feed	using	direct	API	requests.	Rather	than	working	through	the
protocols	at	a	low	level,	we’ll	make	use	of	a	Python	package	that	provides	some
simplifications.

Our	first	choice	is	the	Twitter	API	project	on	PyPI,	as	follows:
https://pypi.python.org/pypi/TwitterAPI/2.3.3.

This	can	be	installed	using	sudo	pip3.4	install	twitterapi.

We	have	some	alternatives,	one	of	which	is	the	Twitter	project	from	sixohsix.	Here’s	the
URL:	https://pypi.python.org/pypi/twitter/1.17.0.

We	can	install	this	using	sudo	pip3.4	install	twitter.

We’ll	focus	on	the	twitterapi	package.	Here’s	what	happens	when	we	do	the	installation:

MacBookPro-SLott:Code	slott$	sudo	-H	pip3.4	install	twitterapi

Password:

Collecting	twitterapi

		Downloading	TwitterAPI-2.3.3.1.tar.gz

Collecting	requests	(from	twitterapi)

		Downloading	requests-2.7.0-py2.py3-none-any.whl	(470kB)

				100%	|████████████████████████████████|	471kB	751kB/s	

Collecting	requests-oauthlib	(from	twitterapi)

		Downloading	requests_oauthlib-0.5.0-py2.py3-none-any.whl

Collecting	oauthlib>=0.6.2	(from	requests-oauthlib->twitterapi)

		Downloading	oauthlib-0.7.2.tar.gz	(106kB)

				100%	|████████████████████████████████|	106kB	1.6MB/s	

Installing	collected	packages:	requests,	oauthlib,	requests-oauthlib,	

twitterapi

		Running	setup.py	install	for	oauthlib

		Running	setup.py	install	for	twitterapi

Successfully	installed	oauthlib-0.7.2	requests-2.7.0	requests-oauthlib-

0.5.0	twitterapi-2.3.3.1

We	used	the	sudo	-H	option,	as	required	by	Mac	OS	X.	Windows	agents	would	omit	this.
Some	Linux	agents	can	omit	the	-H	option	as	it	may	be	the	default	behavior.

Note	that	four	packages	were	installed.	The	twitterapi	package	included	the	requests
and	requests-oauthlib	packages.	This,	in	turn,	required	the	oauthlib	package,	which
was	downloaded	automatically	for	us.

The	missions	for	using	this	package	start	in	Chapter	3,	Following	the	Social	Network.	For
now,	we’ll	count	the	installation	as	a	successful	preliminary	mission.

https://pypi.python.org/pypi/TwitterAPI/2.3.3
https://pypi.python.org/pypi/twitter/1.17.0

Scraping	data	from	PDF	files
In	addition	to	HTML,	a	great	deal	of	data	is	packaged	as	PDF	files.	PDF	files	are	designed
as	the	requirements	to	produce	the	printed	output	consistently	across	a	variety	of	devices.
When	we	look	at	the	structure	of	these	documents,	we	find	that	we	have	a	complex	and
compressed	storage	format.	In	this	structure,	there	are	fonts,	rasterized	images,	and
descriptions	of	text	elements	in	a	simplified	version	of	the	PostScript	language.

There	are	several	issues	the	come	into	play	here,	as	follows:

The	files	are	quite	complex.	We	don’t	want	to	tackle	the	algorithms	that	are	required
to	read	the	streams	encoded	in	the	PDF	since	we’re	focused	on	the	content.
The	content	is	organized	for	tidy	printing.	What	we	perceive	as	a	single	page	of	text
is	really	just	a	collection	of	text	blobs.	We’ve	been	taught	how	to	identify	the	text
blobs	as	headers,	footers,	sidebars,	titles,	code	examples,	and	other	semantic	features
of	a	page.	This	is	actually	a	pretty	sophisticated	bit	of	pattern	matching.	There’s	an
implicit	agreement	between	readers	and	book	designers	to	stick	to	some	rules	to	place
the	content	on	the	pages.
It’s	possible	that	a	PDF	can	be	created	from	a	scanned	image.	This	will	require
Optical	Character	Recognition	(OCR)	in	order	to	recover	useful	text	from	the
image.

In	order	to	extract	text	from	a	PDF,	we’ll	need	to	use	a	tool	such	as	the	PDF	Miner	3k.
Look	for	this	package	at	https://pypi.python.org/pypi/pdfminer3k/1.3.0.

An	alternative	is	the	pdf	package.	You	can	look	at:

https://pypi.python.org/pypi/PDF/1.0	for	the	package.

In	Chapter	4,	Dredging	up	History,	we’ll	look	at	the	kinds	of	algorithms	that	we’ll	need	to
write	in	order	to	extract	useful	content	from	PDF	files.

However,	for	now,	we	need	to	install	this	package	in	order	to	be	sure	that	we	can	process
PDF	files.	We’ll	use	sudo	-H	pip3.4	install	pdfminer3k	to	do	the	installation.	The
output	looks	as	shown	in	the	following:

MacBookPro-SLott:Code	slott$	sudo	-H	pip3.4	install	pdfminer3k

Collecting	pdfminer3k

		Downloading	pdfminer3k-1.3.0.tar.gz	(9.7MB)

				100%	|████████████████████████████████|	9.7MB	55kB/s	

Collecting	pytest>=2.0	(from	pdfminer3k)

		Downloading	pytest-2.7.2-py2.py3-none-any.whl	(127kB)

				100%	|████████████████████████████████|	131kB	385kB/s	

Collecting	ply>=3.4	(from	pdfminer3k)

		Downloading	ply-3.6.tar.gz	(281kB)

				100%	|████████████████████████████████|	282kB	326kB/s	

Collecting	py>=1.4.29	(from	pytest>=2.0->pdfminer3k)

		Downloading	py-1.4.30-py2.py3-none-any.whl	(81kB)

				100%	|████████████████████████████████|	86kB	143kB/s	

Installing	collected	packages:	py,	pytest,	ply,	pdfminer3k

		Running	setup.py	install	for	ply

		Running	setup.py	install	for	pdfminer3k

https://pypi.python.org/pypi/pdfminer3k/1.3.0
https://pypi.python.org/pypi/PDF/1.0

Successfully	installed	pdfminer3k-1.3.0	ply-3.6	py-1.4.30	pytest-2.7.2

Windows	agents	will	omit	the	sudo	-H	prefix.	This	is	a	large	and	complex	installation.
The	package	itself	is	pretty	big	(almost	10	Mb.)	It	requires	additional	packages	such	as
pytest,	and	py.	It	also	incorporates	ply,	which	is	an	interesting	tool	in	its	own	right.

Interestingly,	the	documentation	for	how	to	use	this	package	can	be	hard	to	locate.	Here’s
the	link	to	locate	it:

http://www.unixuser.org/~euske/python/pdfminer/index.html.

Note	that	the	documentation	is	older	than	the	actual	package	as	it	says	(in	red)	Python	3	is
not	supported.	However,	the	pdfminer3k	project	clearly	states	that	pdfminer3k	is	a	Python
3	port	of	pdfminer.	While	the	software	may	have	been	upgraded,	some	of	the
documentation	still	needs	work.

We	can	learn	more	about	ply	here	at	https://pypi.python.org/pypi/ply/3.6.	The	lex	and
yacc	summary	may	not	be	too	helpful	for	most	of	the	agents.	These	terms	refer	to	the	two
classic	programs	that	are	widely	used	to	create	the	tools	that	support	software
development.

http://www.unixuser.org/~euske/python/pdfminer/index.html
https://pypi.python.org/pypi/ply/3.6

Sidebar	on	the	ply	package
When	we	work	with	the	Python	language,	we	rarely	give	much	thought	on	how	the
Python	program	actually	works.	We’re	mostly	interested	in	results,	not	the	details	of	how
Python	language	statements	lead	to	useful	processing	by	the	Python	program.	The	ply
package	solves	the	problem	of	translating	characters	to	meaningful	syntax.

Agents	that	are	interested	in	the	details	of	how	Python	works	will	need	to	consider	the
source	text	that	we	write.	When	we	write	the	Python	code,	we’re	writing	a	sequence	of
intermingled	keywords,	symbols,	operators,	and	punctuation.	These	various	language
elements	are	just	sequences	of	Unicode	characters	that	follow	a	strict	set	of	rules.	One
wrong	character	and	we	get	errors	from	Python.

There’s	a	two-tier	process	to	translate	a	.py	file	of	the	source	text	to	something	that	is
actionable.

At	the	lowest	tier,	an	algorithm	must	do	the	lexical	scanning	of	our	text.	A	lexical	scanner
identifies	the	keywords,	symbols,	literals,	operators,	and	punctuation	marks;	the	generic
term	for	these	various	language	elements	is	tokens.	A	classic	program	to	create	lexical
scanners	is	called	lex.	The	lex	program	uses	a	set	of	rules	to	transform	a	sequence	of
characters	into	a	sequence	of	higher-level	tokens.

The	process	of	compiling	Python	tokens	to	useful	statements	is	the	second	tier.	The	classic
program	for	this	is	called	Yacc	(Yet	Another	Compiler	Compiler).	The	yacc	language
contained	the	rules	to	interpret	a	sequence	of	tokens	as	a	valid	statement	in	the	language.
Associated	with	the	rules	to	parse	a	target	language,	the	yacc	language	also	contained
statements	for	an	action	to	be	taken	when	the	statement	was	recognized.	The	yacc	program
compiles	the	rules	and	statements	into	a	new	program	that	we	call	a	compiler.

The	ply	Python	package	implements	both	the	tiers.	We	can	use	it	to	define	a	lexical
scanner	and	a	parser	that	is	based	on	the	the	classic	lex	and	yacc	concepts.	Software
developers	will	use	a	tool	such	as	ply	to	process	statements	in	a	well-defined	formal
language.

Building	our	own	gadgets
Sometimes,	we	need	to	move	beyond	the	data	that	is	readily	available	on	computers.	We
might	need	to	build	our	own	devices	for	espionage.	There	are	a	number	of	handy
platforms	that	we	can	use	to	build	our	own	sensors	and	gadgets.	These	are	all	single-board
computers.	These	computers	have	a	few	high-level	interfaces,	often	USB-based,	along
with	a	lot	of	low-level	interfaces	that	allow	us	to	create	simple	and	interactive	devices.

To	work	with	these,	we’ll	create	a	software	on	a	large	computer,	such	as	a	laptop	or
desktop	system.	We’ll	upload	our	software	to	our	a	single	board	computer	and	experiment
with	the	gadget	that	we’re	building.

There	are	a	variety	of	these	single	board	computers.	Two	popular	choices	are	the
Raspberry	Pi	and	the	Arduino.	One	of	the	notable	differences	between	these	devices	is	that
a	Raspberry	Pi	runs	a	small	GNU/Linux	operating	system,	where	as	an	Arduino	doesn’t
offer	much	in	the	way	of	OS	features.

Both	devices	allow	us	to	create	simple,	interactive	devices.	There	are	ways	to	run	Python
on	Raspberry	Pi	using	the	RPi	GPIO	module.	Our	gadget	development	needs	to	focus	on
Arduino	as	there	is	a	rich	variety	of	hardware	that	we	can	use.	We	can	find	small,	robust
Arduinos	that	are	suitable	for	harsh	environments.

A	simple	Arduino	Uno	isn’t	the	only	thing	that	we’ll	need.	We’ll	also	need	some	sensors
and	wires.	We’ll	save	the	detailed	shopping	list	for	Chapter	5,	Data	Collection	Gadgets.
At	this	point,	we’re	only	interested	in	software	tools.

Getting	the	Arduino	IDE
To	work	with	Arduino,	we’ll	need	to	download	the	Arduino	Integrated	Development
Environment	(IDE.)	This	will	allow	us	to	write	programs	in	the	Arduino	language,	upload
them	to	our	Arduino,	and	do	some	basic	debugging.	An	Arduino	program	is	called	a
sketch.

We’ll	need	to	get	the	Arduino	IDE	from	https://www.arduino.cc/en/Main/Software.	On	the
right-hand	side	of	this	web	page,	you	can	pick	the	OS	for	our	working	computer	and
download	the	proper	Arduino	tool	set.	Some	agents	prefer	the	idea	of	making	a
contribution	to	the	Arduino	foundation.	However,	it’s	possible	to	download	the	IDE
without	making	a	contribution.

For	Mac	OS	X,	the	download	will	be	a	.ZIP	file.	This	will	unpack	itself	in	the	IDE
application;	we	can	copy	this	to	our	Applications	folder	and	we’re	ready	to	go.

For	Windows	agents,	we	can	download	a	.MSI	file	that	will	do	the	complete	installation.
This	is	preferred	for	computers	where	we	have	full	administrative	access.	In	some	cases,
where	we	may	not	have	administrative	rights,	we’ll	need	to	download	the	.ZIP	file,	which
we	can	unpack	in	a	C:\Arduino	directory.

We	can	open	the	Arduino	application	to	see	an	initial	sketch.	The	screen	looks	something
similar	to	the	following	screenshot:

https://www.arduino.cc/en/Main/Software

The	sketch	name	will	be	based	on	the	date	on	which	you	run	the	application.	Also,	the
communications	port	shown	in	the	lower	right-hand	corner	may	change,	depending	on
whether	your	Arduino	is	plugged	in.

We	don’t	want	to	do	anything	more	than	be	sure	that	the	Arduino	IDE	program	runs.	Once
we	see	that	things	are	working,	we	can	quit	the	IDE	application.

An	alternative	is	the	Fritzing	application.	Refer	to	http://www.fritzing.org	for	more
information.	We	can	use	this	software	to	create	engineering	diagrams	and	lists	of	parts	for
a	particular	gadget.	In	some	cases,	we	can	also	use	this	to	save	software	sketches	that	are
associated	with	a	gadget.	The	Arduino	IDE	is	used	by	the	Fritzing	tool.	Go	to
http://fritzing.org/download/	to	download	Fritzing.

Getting	a	Python	serial	interface
In	many	cases,	we’ll	want	to	have	a	more	complex	interaction	between	a	desktop
computer	and	an	Arduino-based	sensor.	This	will	often	lead	to	using	the	USB	devices	on
our	computer	from	our	Python	applications.	If	we	want	to	interact	directly	with	an
Arduino	(or	other	single-board	computer)	from	Python,	we’ll	need	PySerial.	An	alternate
is	the	USPP	(Universal	Serial	Port	Python)	library.	This	allows	us	to	communicate
without	having	the	Arduino	IDE	running	on	our	computer.	It	allows	us	separate	our	data
that	is	being	gathered	from	our	software	development.

For	PySerial,	refer	to	https://pypi.python.org/pypi/pyserial/2.7.	We	can	install	this	with
sudo	-H	pip3.4	install	pyserial.

Here’s	how	the	installation	looks:

MacBookPro-SLott:Code	slott$	sudo	-H	pip3.4	install	pyserial

Password:

Collecting	pyserial

		Downloading	pyserial-2.7.tar.gz	(122kB)

				100%	|████████████████████████████████|	122kB	1.5MB/s	

Installing	collected	packages:	pyserial

		Running	setup.py	install	for	pyserial

Successfully	installed	pyserial-2.7

Windows	agents	will	omit	the	sudo	-H	command.	This	command	has	downloaded	and
installed	the	small	PySerial	module.

We	can	leverage	this	to	communicate	with	an	Arduino	(or	any	other	device)	through	a
USB	port.	We’ll	look	at	the	interaction	in	Chapter	5,	Data	Collection	Gadgets.

http://www.fritzing.org
http://fritzing.org/download/
https://pypi.python.org/pypi/pyserial/2.7

Summary
We’ve	upgraded	our	toolkit	in	order	to	include	the	latest	release	of	Python	3.4	(and	even
Python	3.5).	We’ve	upgraded	Beautiful	Soup,	as	well	as	added	the	Twitter	API,	PDFMiner
3K,	and	PySerial.	This	will	give	us	the	kind	of	tools	that	are	required	to	gather	and	process
a	wide	variety	of	information.	We	can	even	start	building	our	own	specialized	gadgets
based	on	the	Arduino	board.

In	the	next	chapter,	we’ll	start	with	some	missions	that	will	exploit	our	new	Python	3.4
tools.	We’ll	examine	some	foundational	data	gathering	techniques.	We’ll	look	at	how
examining	web	server	logs	can	reveal	patterns	of	access.	This	is	a	kind	of	big	data
application	since	a	busy	web	server	can	enjoy	a	lot	of	traffic.

Chapter	2.	Tracks,	Trails,	and	Logs
In	many	cases,	espionage	is	about	data:	primary	facts	and	figures	that	help	make	an
informed	decision.	It	can	be	military,	but	it’s	more	commonly	economic	or	engineering	in
nature.	Where’s	the	best	place	to	locate	a	new	building?	How	well	is	the	other	team	really
doing?	Among	all	of	these	prospects,	which	is	the	best	choice?

In	some	cases,	we’re	looking	for	data	that’s	one	step	removed	from	the	primary	facts.
We’re	might	need	to	know	who’s	downloading	the	current	team	statistics?	Who’s	reading
the	press-release	information?	Who’s	writing	the	bulk	of	the	comments	in	our	comments
section?	Which	documents	are	really	being	downloaded?	What	is	the	pattern	of	access?

We’re	going	to	get	data	about	the	users	and	sources	of	some	primary	data.	It’s	commonly
called	metadata:	data	about	the	primary	data.	It’s	the	lifeblood	of	counter-intelligence.

We’ll	get	essential	web	server	metadata	first.	We’ll	scrape	our	web	server’s	logs	for	details
of	website	traffic.	One	of	the	important	questions	we’ll	ask	is	who	is	making	the	requests?
A	web	site	that	demands	a	login	can	use	cookies	to	track	viewers.	A	web	site	(or	the
introductory	pages	of	a	web	site)	where	cookies	aren’t	in	use	have	to	do	a	bit	more	work.
We’ll	look	at	how	we	can	track	usage	without	cookies.

In	this	chapter,	we’ll	cover	the	following	topics:

A	background	briefing	on	web	servers	and	their	logs
How	to	write	regular	expressions	for	decomposing	a	web	log	into	usable	pieces	of
information
Creating	the	tools	needed	to	parse	the	Apache	Common	Log	Format
Using	Python	packages	to	read	compressed	files	as	well	as	download	files	from
remote	servers
Analyzing	logs	to	find	out	what	users	are	downloading
Using	more	advanced	tools	like	the	Whois	program	to	see	who’s	making	the	requests
How	to	automate	some	of	this	extraction	and	analysis

This	sequence	of	missions	shows	us	how	to	reduce	large	volumes	of	raw	data	to
summaries	of	useful	information.

Background	briefing	–	web	servers	and
logs
At	its	heart,	the	World	Wide	Web	is	a	vast	collection	of	computers	that	handle	the	HTTP
protocol.	The	HTTP	protocol	defines	a	request	message	and	a	response.	A	web	server
handles	these	requests,	creating	appropriate	responses.	This	activity	is	written	to	a	log,	and
we’re	interested	in	that	log.

When	we	interact	with	a	complex	web	site	for	a	company	that	conducts	e-business—
buying	or	selling	on	the	web—it	can	seem	a	lot	more	sophisticated	than	this	simplistic
request	and	reply	protocol.	This	apparent	complexity	arises	from	an	HTML	web	page,
which	includes	JavaScript	programming.	This	extra	layer	of	code	can	make	requests	and
process	replies	in	ways	that	aren’t	obvious	to	the	user	of	the	site.

All	web	site	processing	begins	with	some	initial	request	for	an	HTML	web	page.	Other
requests	from	JavaScript	programs	will	be	data	requests	that	don’t	lead	to	a	complete
HTML	page	being	sent	from	the	server.	It’s	common	for	JavaScript	programs	to	request
JSON	data	instead	of	an	HTML	page.	JSON	is	short	for	JavaScript	Object	Notation,
and	it	can	summarize	complex	data	in	a	relatively	easy-to-use	fashion.

A	request	for	pure	data	is	often	called	Representational	State	Transfer	(REST).	A
RESTful	request	describes	a	resource.	The	web	server	will	create	a	representation	of	the
state	of	that	resource	and	transmit	that	representation.	Often,	this	representation	is	in
JSON	notation.	To	the	web	server,	a	REST	request	in	JSON	and	an	HTML	page	request
are	the	same	thing:	a	request	that	leads	to	a	response.	They’ll	both	show	up	in	the	log	as
requests.

Understanding	the	variety	of	formats
Web	server	logs	have	a	format	that’s	widely	used:	the	Apache	Common	Log	Format
(CLF).	A	server	may	adhere	to	the	CLF,	or	the	administrators	may	have	made	some	local
tweaks	to	expand	or	contract	the	amount	of	available	data.	Python	gives	an	agent	the
flexibility	to	deal	with	logs	files	in	their	endless	variety.

We’ll	focus	on	CLF	as	a	starting	point.	By	using	Python’s	Regular	Expression	module,	re,
we’ll	be	able	to	handle	a	number	of	variants	with	minimal	programming	changes.

Web	server	logs	may	also	be	compressed	as	ZIP	files	for	download.	We’ll	address
automated	unzipping	and	other	physical	format	considerations	as	we	go.	We’ll	use	the
zipfile	module	to	handle	the	overheads	of	dealing	with	zipped	files.	We’ll	try	to	create	a
kind	of	pipeline	for	processing	that	allows	us	to	add	or	change	processing	elements.

Getting	a	web	server	log
An	agent	with	a	personal	web	site	will	have	access	to	the	sites	logs.	Many	hosting	services
have	options	to	save	web	logs	for	analysis.	For	example,	the	A2	hosting	company	offers	a
management	console	which	allows	the	user	to	request	that	logs	be	saved	for	analysis.	The
user	can	then	download	the	log.	Or,	more	to	the	point,	a	Python	script	can	download	the
log.

When	using	a	service	like	Amazon’s	Expandable	Cloud	Computing	(EC2),	the	agent
will	have	to	look	a	little	more	deeply	into	how	Apache	(or	Tomcat	or	Nginx)	logs	work.
While	these	servers	are	quite	sophisticated,	they	often	have	configuration	options	for
periodic	log	rotation	that	fits	our	need	to	see	periodic	details	that	we	can	summarize.	See
http://httpd.apache.org/docs/2.4/logs.html	for	more	information	on	how	this	works.

In	some	cases,	agents	have	a	network	of	contacts	that	serve	as	a	source	for	data	like	this.	A
few	discrete	questions	placed	in	the	right	context	can	yield	a	great	deal	of	assistance.
Meetup	groups	for	technology-minded	people	are	a	good	place	to	locate	more	information.
Maker	fairs	are	also	a	helpful	source	of	information.	In	some	cases,	contacts	have	reached
out	to	experienced	agents	for	help	in	analyzing	logs.

http://httpd.apache.org/docs/2.4/logs.html

Writing	a	regular	expression	for	parsing
The	logs	look	complex.	Here’s	a	sample	line	from	a	log:

109.128.44.217	-	-	[31/May/2015:22:55:59	-0400]	"GET	/	HTTP/1.1"	200	14376	

"-"	"Mozilla/5.0	(iPad;	CPU	OS	8_1_2	like	Mac	OS	X)	AppleWebKit/600.1.4	

(KHTML,	like	Gecko)	Version/8.0	Mobile/12B440	Safari/600.1.4"

How	can	we	pick	this	apart?	Python	offers	us	regular	expressions	as	a	way	to	describe
(and	parse)	this	string	of	characters.

We	write	a	regular	expression	as	a	way	of	defining	a	set	of	strings.	The	set	can	be	very
small	and	have	only	a	single	string	in	it,	or	the	set	can	be	large	and	describe	an	infinite
number	of	related	strings.	We	have	two	issues	that	we	have	to	overcome:	how	do	we
specify	infinite	sets?	How	can	we	separate	those	characters	that	help	specify	a	rule	from
characters	that	just	mean	themselves?

For	example,	we	might	write	a	regular	expression	like	aabr.	This	specifies	a	set	that
contains	a	single	string.	This	regular	expression	looks	like	the	mathematical	expression
a×a×b×r	that	has	been	abbreviated	by	omitting	explicit	multiplication	signs.	Note	that	this
implicit	×	operator	isn’t	commutative	like	the	integer	×.	Mathematically,	we	could	then
abbreviate	aabr	as	a²br.	Since	the	original	ASCII	character	set	lacked	the	necessary
superscript	numbers,	we	have	to	invent	some	more	complex	syntax	to	show	the	concept
using	only	the	available	ASCII	characters.	Something	like	a{2}br	is	used	for	this.	This	is
a	good	beginning,	but	it	brings	up	two	problems.	What	about	indefinite	repetition?	What
about	matching	{	or	}	as	characters?

How	can	we	show	an	indefinite	repetition	of	a	character?	While	we	could	try	to	write	a	x
br,	that’s	not	exactly	what	we	mean.	In	some	cases,	we	don’t	care	about	the	value	of	x,	the
number	of	copies	of	a.	Mathematically,	we	prefer	to	write	a*br	to	show	that	the	first
character	in	the	string	can	be	repeated	any	number	of	times,	and	we	don’t	know	or	care
how	many	times.	Any	number,	in	this	case,	can	include	zero	copies	of	the	first	character.

This	means	that	the	set	of	strings	is	 .

Our	keyboards	don’t	quite	have	the	typesetting	flexibility	that	we	need	to	be	able	to	write
regular	expressions	like	this.	We	can’t	use	the	star	as	a	superscript	character:	the	*	and	□
characters	can	only	sit	in	the	middle	of	the	line	when	working	in	a	pure	text	file.	This	flat
presentation	can	lead	to	some	confusion	when	trying	to	read	and	write	regular	expressions.

To	write	regular	expressions	in	a	very	general	way,	it	would	be	nice	to	have	some	way	to
state	rules,	patterns,	or	classes	of	characters	rather	than	merely	individual	characters	to
match.	The	problem	is	that	any	character	we	might	want	to	use	for	writing	rules	or
patterns	is	also	a	character	we’d	like	to	match!

Over	the	years,	we’ve	adopted	the	following	conventions:

Most	characters—but	not	all—are	ordinary	characters	and	match	themselves.	For
example,	the	regular	expression	a	matches	the	character	a.
Some	characters,	specifically	*,	+,	?,	|,	.,	[,],	{,	},	|,	\,),	and),	are	special

characters	because	they’re	used	to	write	rules	or	patterns.	These	characters	don’t
simply	match	themselves.
We’ll	use	\	to	escape	the	meaning	of	the	following	character.	This	will	make	an
ordinary	character	special	or	a	special	character	ordinary.	For	example,	the	regular
expression	*	removes	the	special	meaning	of	*,	and	now	it	matches	*.	The	regular
expression	\d	adds	a	special	meaning	to	d,	and	now	it	matches	any	single	decimal
digit.

This	leads	us	to	regular	expressions	which	will	use	a	lot	of	\	characters.	However,	it’s
confusing	that	the	Python	language	also	uses	\	escapes	when	writing	a	string	literal.	We
have	to	distinguish	between	two	contexts	for	string	literals:

Ordinary	Python	Strings:	The	default	case	is	to	have	Python	examine	the	string	and
replace	escape	sequences	with	otherwise	unprintable	characters.	When	we	write
'\u03c0\xd7r\xb2',	we	expect	Python	to	replace	the	various	escapes	with	proper
Unicode	characters;	the	escapes	really	mean	this:	'π×r²'.	Sometimes,	we’ll	use	the
u'	prefix	for	this:	u'\u03c0\xd7r\xb2'.
Regular	Expression	Strings:	When	writing	regular	expressions,	we	do	not	want
Python	messing	with	the	\	characters.	To	do	this,	we’ll	use	raw	strings.	We’ll	write
regular	expressions	using	r'.*\..*'.	The	alternative	is	to	use	\\	to	stand	for	a	single
\	in	the	resulting	string.	We	want	to	avoid	'.*\\..*'.

Using	raw	strings	for	regular	expressions	will	make	our	lives	simpler.

Introducing	some	regular	expression	rules	and
patterns
One	of	the	most	useful	features	of	regular	expressions	is	using	a	symbol	to	match	single
character	in	a	larger	class	of	characters.	We	have	several	such	symbols:

(.)	matches	any	character.	This	is	a	special	character.
(\d)	matches	any	digit	between	0-9.	We’ve	used	an	escape,	\,	to	make	an	ordinary	d
into	a	special	\d.
(\s)	matches	any	whitespace:	spacebar,	tab,	newline,	carriage	return,	form	feed,	or
vertical	tab.	The	first	two,	spacebar	and	tab,	are	pretty	common.	A	newline	is	often
only	present	at	the	end	of	a	string,	and	sometimes	we’ll	intentionally	strip	that.	The
other	characters	are	really	rare.
(\w)	matches	any	word	character.	Since	this	includes	letters,	digits,	and	the	(_)
character,	it	will	match	proper	Python	identifiers.
[...]	matches	any	character	inside	the	brackets.	We	can	use	[wxyz]	to	match	any
character	from	the	four	characters	listed	explicitly.	We	can	use	[A-Z]	to	match	any
character	in	the	range	A	to	Z.	We	can	use	something	like	[a-zA-Z0-9_]	to	match
ASCII	word	characters	the	hard	way	(\w	is	the	easy	way.)	There	are	a	few	special
cases	for	this:

To	match	a	-	character,	we	have	to	use	it	either	first	or	last	inside	[].	Something
like	this	is	not	a	good	idea:	[+-*/].	This	is	because	there’s	an	implied	range	of
characters	from	+	to	*.	However,	[-+*/]	works	perfectly.	Putting	the	–	character
first	means	it’s	no	longer	part	of	a	range;	it’s	just	a	hyphen.
To	match	a]	character,	we	have	to	escape	it	with	\].
Other	special	characters	such	as	.,	*,	and	so	on,	will	lose	their	special	meanings
in	this	set	specification.

[^...]	matches	any	character	which	is	not	in	the	given	set.	This	is	the	inverse	of
[...].
(\D)	matches	any	non-digit	character.
(\S)	matches	any	non-whitespace	character;	this	will	be	either	a	punctuation	character
or	a	word	character.
(\W)	matches	any	non-word	character;	this	will	be	either	a	punctuation	character	or	a
whitespace	character.

As	an	example,	we	can	locate	an	hour:minute:second	timestamp	in	a	longer	string	using
a	pattern	like	r'\d\d:\d\d:\d\d'.	This	pattern	will	match	an	eight	character	string	that
has	digits	and	punctuation	in	the	given	order.

Let’s	put	this	simple	expression	to	use.

Finding	a	pattern	in	a	file
Let’s	look	at	the	simple	problem	of	scanning	a	file	for	the	occurrence	of	a	specific	pattern.
We’ll	explore	the	basics	and	then	scale	our	design	for	more	complex	patterns.	For	our
initial	exploration,	we	don’t	even	really	need	to	process	a	file.	We	can	leverage	the	idea
that	Python	has	a	large	variety	of	file-like	objects.

The	first	step	in	using	a	pattern	is	compiling	it.	The	re	module	includes	some	functions
that	work	directly	with	the	pattern	text.	While	these	are	handy,	it’s	more	efficient	to
compile	a	pattern	explicitly	and	use	the	compiled	version	many	times.	When	we’re	using
pattern	to	match	thousands	(or	millions)	of	lines	of	a	file,	small	efficiencies	like	compiling
a	pattern	add	up	quickly.

Here’s	how	we	compile	a	pattern:

>>>	import	re

>>>	pattern	=	re.compile(r'\d\d:\d\d:\d\d')

>>>	print(pattern)

re.compile('\\d\\d:\\d\\d:\\d\\d')

We’ve	provided	the	regular	expression	as	a	raw	string	because	it	has	six	\	characters	in	it.
The	re.compile()	function	will	translate	the	pattern	string	into	an	internal	representation
that’s	optimized	for	speedy	examination	of	a	block	of	text.

When	we	print	a	pattern	object,	it	displays	the	code	used	to	produce	the	pattern.	Note	that
the	printed	output	shows	the	pattern	string	in	Python’s	preferred	canonical	string	notation.
Instead	of	showing	a	raw	string,	it	shows	a	non-raw	(cooked)	Python	string.	Because	\	is
Python’s	escape	character,	it	uses	\\	to	stand	for	a	single	\	in	the	resulting	string	object.

Tip
Raw	versus	cooked	strings

Raw	strings,	for	example,	r'stuff	with	\b	in	it',	are	untouched	by	Python.	No
replacement	happens.

Cooked	strings,	such	as	'stuff	with	\b	in	it',	use	\	to	escape	the	meaning	of	the	next
character.	This	means	that	all	\x	escape	sequences	are	replaced	by	characters.	\unnnn,	for
example,	is	replaced	by	the	Unicode	character	with	the	given	number.	\N{name}	is
replaced	by	a	Unicode	character	with	the	given	name.	There	are	several	short	escapes,
including	\n,	\r,	\t,	\f,	\v,	and	\b,	which	translate	to	various	kinds	of	whitespace
characters	in	the	resulting	string	object.

Once	we	have	the	pattern	object,	we	can	use	it	to	match	source	text.	There	are	several
ways	to	look	for	a	regular	expression	pattern	in	source	text:

Finding:	This	will	find	all	occurrences	in	the	given	text.	We	can	use
pattern.findall()	and	pattern.finditer()	for	this.
Searching:	This	will	find	one	occurrence	somewhere	in	a	string.	We’ll	use
pattern.search()	for	this.
Matching:	This	will	determine	if	the	entire	source	string	matches	the	pattern.	We	use

pattern.match()	and	pattern.fullmatch().
Splitting:	This	will	use	the	pattern	to	break	the	source	text	into	sections.	We	use
pattern.split()	for	this.
Substitution:	This	will	replace	occurrences	of	the	pattern	with	another	pattern.	We
use	pattern.sub()	and	pattern.subn()	for	this.

Here’s	an	example	of	finding	all	occurrences	in	a	long	string:

some_text	=	"""

This	is	a	sample	block	of	text

It	starts	at	06:41:15.

And	it	has	non-matching	rows.

It	ends	at	06:42:23.

"""

def	find_times_in(text):

				pattern	=	re.compile(r'\d\d:\d\d:\d\d')

				for	match	in	pattern.finditer(text):

								print(match)

First,	we	defined	a	long	string	using	triple	quotes	("""),	and	saved	it	in	the	some_text
variable.	In	later	examples,	we’ll	show	how	to	read	the	string	from	a	file,	or	from	a	URL
on	the	Internet.	For	now,	we’ll	stick	with	a	literal.

Second,	we	defined	a	function	that	will	compile	a	pattern,	and	the	find	all	matches	of	that
pattern	in	the	source	string.	We’re	using	the	finditer()	method	of	the	pattern	object.	We
provide	a	block	of	sample	text	to	this	method	of	the	pattern.	The	pattern	object	will	then
sweep	through	the	text,	yielding	each	match.

The	finditer()	method	collaborates	with	the	for	statement.	Each	individual	Match	object
created	by	the	finditer()	method	is	assigned	to	the	match	variable.	In	this	example,
we’re	merely	printing	the	Match	objects.

When	we	run	this,	we’ll	see	an	output	that	looks	like	this:

>>>	find_times_in(some_text)

<_sre.SRE_Match	object;	span=(50,	58),	match='06:41:15'>

<_sre.SRE_Match	object;	span=(101,	109),	match='06:42:23'>

The	output	shows	the	two	match	objects.	The	default	string	representation	of	a	match
object	shows	the	span	of	characters	which	matched,	and	it	also	shows	the	actual	text
which	matched.

To	work	with	the	text	which	matched,	we	use	the	group()	method	of	a	Match	object.	We
can	define	a	slightly	more	useful	function	like	this:

def	all_times_in(text):

				pattern	=	re.compile(r'\d\d:\d\d:\d\d')

				return	[x.group()	for	x	in	pattern.finditer(text)]

This	function	uses	the	same	pattern	object,	but	it	creates	a	list	of	all	of	the	places	where
the	text	was	found.	This	last	is	built	using	a	technique	called	a	comprehension:	we’ve
embedded	a	for	loop	as	a	generator	expression	inside	the	brackets	[]	that	mark	the	list.

The	generator	expression	uses	the	finditer()	method	to	create	a	sequence	of	Match
objects.	Each	Match	object	is	assigned	to	a	variable,	x,	the	value	of	x.group()	is	the	group
of	characters	which	matched	the	pattern.

The	output	from	this	function	is	a	list	of	groups	of	characters	which	match	the	pattern.	It
looks	like	this:

['06:41:15',	'06:42:23']

We’ve	extracted	two	pieces	of	data	from	a	larger	block	of	text.	We’re	able	to	do	this
without	worrying	about	details	of	the	larger	block	of	text.

It	turns	out	that	this	is	so	common	that	each	pattern	has	a	method	which	does	this	for	us.
The	findall()	method	returns	a	list	of	the	matched	text.	We	can	use
pattern.findall(text)	to	get	a	list	of	text	items,	and	we	can	use	the	more	general
list(pattern.finditer(text))	method	to	get	a	list	of	Match	objects.

Using	regular	expression	suffix	operators
So	far,	we	looked	at	regular	expression	symbols	that	stand	for	any	character	from	a	larger
set.	We	can	use	r'\d',	for	example,	to	match	for	any	digit	character;	we	could	also	use
r'[0-9]'.	Other	useful	regular	expression	features	are	the	suffixes	that	we	can	use	to
express	repetition.	This	can	include	a	finite	number	of	repeats,	but	it	also	includes	an
indefinite	number	of	repeats.

We	have	several	forms	of	suffixes:

(*):	The	previous	regular	expression	can	be	repeated	any	number	of	times.	This
includes	zero	repetitions,	which	means	the	previous	expression	is	optional.	This	is	the
greedy	version;	it	has	to	be	used	carefully	with	generic	patterns.	If	we	write	r'.*\d'
to	match	some	characters	followed	by	a	digit,	we’ll	be	unhappy	because	the	greedy
.*	will	also	match	the	digit.
(*?):	The	previous	regular	expression	can	be	repeated	any	number	of	times.	This	is
the	non-greedy	version;	when	used	with	generic	patterns	like	.;	this	will	stop
matching	as	early	as	possible.	If	we	write	r'.*?\d'	to	match	some	characters
followed	by	a	digit,	the	non-greedy	.*?	will	stop	matching	when	it	reaches	the	digit.
(+):	The	previous	expression	can	be	repeated	one	or	more	times.	This	is	the	greedy
version.
(+?):	This	is	the	non-greedy	version	that	matches	one	or	more	characters.
(?):	The	previous	expression	is	optional;	it	can	be	repeated	zero	or	one	time	only.
{x}:	The	previous	expression	must	be	repeated	x	times.
{x,y}:	The	previous	expression	must	be	repeated	between	x	and	y	times.	We	can
think	of	?	as	short-hand	for	the	equivalent	{0,1}.

We	can	also	use	()	to	group	expressions	so	that	something	rather	complex	can	be
repeated.	We	actually	have	several	different	varieties	of	()	available	to	us.

Simple	(pattern)	will	both	group	regular	expressions	together	and	also	capture	the
matching	text	within	the	group.	We	can	use	the	match.group()	method	to	return	the
captured	text.
The	more	ornate	(?:pattern)	will	group	regular	expressions	together,	but	won’t
capture	the	details.	We	use	these	like	this:	r'(?:\d\d:){2}(?:\d\d)'.	Note	that	the
(?:	construct	is	just	a	long-winded	three-character	version	of	a	(.	The	regular
expression	inside	the	parenthesis	includes	\d\d:;	the	colon	is	a	character	that	must	be
found	after	two	digits.	When	reading	this	kind	of	code,	we	have	to	mentally	isolate
(?:	and	the	following)	as	punctuation	around	\d\d:.

A	common	file	format	is	a	properties	file.	This	will	have	lines	that	include	a	name,	some
punctuation	(either	:	or	=),	and	a	value.	A	properties	file	might	look	like	this:

time_of_day	=	06:00

map_zone	=		amz117

synopsis	=	amz101

We	can	parse	these	lines	with	a	pattern	like	that	looks	like	this:

r'\w+\s*[=:]\s*.*'

Let’s	break	this	down	carefully.	We’ll	use	the	verbose	mode	to	write	lots	of	extra	details
about	the	pattern	we’re	defining.	In	verbose	mode,	actual	spaces	in	the	pattern	(as	well	as
#	comments)	are	ignored.	This	lets	us	write	comments	to	clarify	how	a	pattern	works.
Here’s	an	example:

>>>	prop_pat_v	=	re.compile(

...	r'''\w+	#	A-Za-z0-9_	repeated…			\s*			#	0	or	more	spaces…			[=:]		#	

punctuation…			\s*			#	0	or	more	spaces…			.*				#	Anything…			''',	

re.VERBOSE)

We’ve	annotated	the	interesting	pieces	of	the	regular	expression	to	clarify	how	we’ll
match	items.	We’ve	used	a	mixture	of	character	class	symbols,	including	\w,	\s,	and	..
We’ve	used	the	+	suffix	to	match	one	or	more	characters	of	the	\w	class.	We’ve	used	the	.*
construct	to	match	an	indefinite	number	of	characters.

Here’s	where	the	()	characters	for	grouping	come	into	play.	We	can	use	the	()	symbols	to
separate	the	label	from	the	value:

>>>	prop_pat_g	=	re.compile(r'(\w+)\s*[=:]\s*(.*)',)

>>>	for	match	in	prop_pat_g.finditer(properties_file):

...					print(match.group(1),	match.group(2))

time_of_day	06:00

map_zone	amz117

synopsis	amz101

We’ve	introduced	()	around	\w+	to	capture	the	label	and	around	.*	to	capture	the	value.
We’re	using	plain	()	because	we	want	the	matched	characters	to	be	available	as
match.group(1)	and	match.group(2).

Capturing	characters	by	name
The	core	feature	of	wrapping	a	regular	expression	in	()	to	capture	matching	characters	is
really	useful.	It	allows	us	to	parse	a	complex	string	into	the	relevant	pieces.	Because	we
can	use	indefinite	matching,	like	\s+	and	\s*,	we	can	tolerate	flexible	whitespace,
allowing	a	person	to	format	their	input	any	way	they	want	to.

The	one	downside	of	taking	the	groups	of	characters	apart	is	remembering	which	group
number	has	which	piece	of	the	overall	string.	With	a	simple	two-item	pattern	for	parsing	a
properties	file,	it’s	pretty	easy	to	remember	what	group(1)	and	group(2)	both	mean.	For
more	complex	data	formats,	this	can	become	a	source	of	errors.

The	regular	expression	language	has	a	third	kind	of	()	for	collecting	matched	characters:

(?P<name>pattern)

This	allows	us	to	provide	a	name	for	the	characters	that	are	captured	and	match	the
pattern.	We	can	get	the	characters	using	match.group('	name	'),	which	is	very	similar	to
the	match.group(number)	method	that	we’ve	already	used.

This	leads	us	to	the	following	kind	of	function	to	parse	the	text	read	from	a	properties	file:

def	properties(text):

				prop_pat_named	=	re.compile(r'(?P<key>\w+)\s*[=:]\s*(?P<value>.*)',)

				prop_dict=	{}

				for	match	in	prop_pat_named.finditer(properties_file):

								prop_dict[match.group('key')]=	match.group('value')

				return	prop_dict

We’ve	created	yet	another	variation	on	our	regular	expression.	In	this	example,	we’ve
used	named	groups,	bracketed	with	the	(?P<	name	>	some	pattern)	parenthesis.	We’ve
also	initialized	the	prop_dict	variable	with	an	empty	dictionary	object.	The	for	statement
will	iterate	through	all	the	matching	property	settings.

For	each	match	in	the	block	of	text,	we’ll	extract	characters	to	act	as	key	and	value.	We’ll
use	the	matching	characters	named	key	in	the	regular	expression	to	be	the	key	in	our
properties	dictionary.	We’ll	use	the	matching	characters	called	value	in	the	regular
expression	to	be	the	value	for	that	key.

When	we	evaluate	this	function	on	a	block	of	text,	it	might	look	like	this:

>>>	properties(properties_file)

{'time_of_dany':	'06:00',	'map_zone':	'amz117',	'synopsis':	'amz101'}

We’ve	use	the	properties	example	text	from	the	previous	section	as	the	properties_file
variable.	The	properties	function	located	all	name	and	value	pairs,	loaded	a	dictionary,	and
returned	the	resulting	dictionary	object.	We’ve	grabbed	data	from	a	file	using	regular
expressions	and	created	a	useful	data	structure	with	that	data.

Because	of	the	flexibility	built	into	our	regular	expressions,	a	few	extra	spaces	or	blank
lines	in	the	file	will	have	no	impact	on	the	resulting	dictionary.	Regular	expressions	allow
us	to	create	a	lot	of	flexibility	in	our	Python	applications.

Looking	at	the	CLF
The	basic	definition	of	Apache	CLF	is	available	at
http://httpd.apache.org/docs/2.4/mod/mod_log_config.html#formats.

Based	on	this	specification,	we	can	see	that	a	web	log	will	have	at	least	seven	fields.	Some
typical	lines	might	look	like	this:

109.128.44.217	-	-	[31/May/2015:22:55:59	-0400]	"GET	/	HTTP/1.1"	200	14376	

"-"	"Mozilla/5.0	(iPad;	CPU	OS	8_1_2	like	Mac	OS	X)	AppleWebKit/600.1.4	

(KHTML,	like	Gecko)	Version/8.0	Mobile/12B440	Safari/600.1.4"

109.128.44.217	-	-	[31/May/2015:22:56:00	-0400]	"GET	/_static/default.css	

HTTP/1.1"	200	4040	"http://buildingskills.itmaybeahack.com/"	"Mozilla/5.0	

(iPad;	CPU	OS	8_1_2	like	Mac	OS	X)	AppleWebKit/600.1.4	(KHTML,	like	Gecko)	

Version/8.0	Mobile/12B440	Safari/600.1.4"

109.128.44.217	-	-	[31/May/2015:22:56:00	-0400]	"GET	/_images/Cover3x4.jpg	

HTTP/1.1"	200	15986	"http://buildingskills.itmaybeahack.com/"	"Mozilla/5.0	

(iPad;	CPU	OS	8_1_2	like	Mac	OS	X)	AppleWebKit/600.1.4	(KHTML,	like	Gecko)	

Version/8.0	Mobile/12B440	Safari/600.1.4"

We	can	see	the	following	fields	described	in	the	CLF	definition:

host:	This	is	an	IP	address	like	109.128.44.217.
identity:	Generally,	this	is	-	unless	the	web	server	enforces	authentication.
user:	Generally,	this	is	–	as	well.
time:	This	is	a	timestamp,	31/May/2015:22:56:00	-0400,	in	[].	This	has	several
subfields:	day,	month,	year,	hour,	minute,	second,	and	the	offset	from	UTC	time.	We
can	use	the	datetime	module	to	parse	this.
request:	This	is	the	actual	HTTP	request,	GET	/	HTTP/1.1,	surrounded	by	".	This
has	three	parts—the	method,	the	path	to	the	resource,	and	the	protocol	that	was	used.
status:	This	is	the	response	from	the	server,	often	200	to	show	success.	It	might	be
404	for	a	page	that’s	not	found.
bytes:	This	is	the	number	of	bytes	transmitted.	Sometimes,	this	is	(-)	if	no	page	was
returned.
referer:	This	is	a	source	for	the	request	surrounded	by	".	In	some	cases,	it	might	be
-	because	it’s	not	known	or	was	explicitly	concealed.	In	other	cases,	it	will	be	the
URL	for	a	web	page	which	contained	a	link	that	was	followed	to	this	page:

Yes,	“referer”	is	spelled	wrong;	this	is	a	long-standing	problem	in	the	original
Request	For	Comments	used	to	define	the	protocol.

user_agent:	The	software	being	used	to	browse	the	web,	surrounded	by	".	In	this
case,	it	is	an	iPad	running	Safari.	However,	there	are	also	a	lot	of	additional	details
about	the	compatibility	of	the	software	and	how	the	software	was	built.

Ideally,	each	field	is	simply	separated	by	spaces.	Some	fields	are	complex	and	contain
internal	spaces,	and	so	they’re	surrounded	by	[]	or	".	This	leads	to	a	longish	regular
expression	to	decompose	the	log	entries.

Here’s	the	pattern	we	can	use,	exploded	out	in	verbose	mode:

http://httpd.apache.org/docs/2.4/mod/mod_log_config.html#formats

clf_pat=	re.compile(r'''

				(?P<host>[\d\.]+)\s+					#	Usually	an	IP	Address

				(?P<identity>\S+)\s+					#	Often	-

				(?P<user>\S+)\s+									#	Also	-

				\[(?P<time>.+?)\]\s+					#	[31/May/2015:22:55:59	-0400]

				"(?P<request>.+?)"\s+				#	"GET	/	HTTP/1.1"

				(?P<status>\d+)\s+							#	Status	number

				(?P<bytes>\d+|-)\s+						#	Number	of	bytes	or	"-"

				"(?P<referer>.*?)"\s+				#	[SIC]

				"(?P<user_agent>.*?)"\s*	#	The	browser

				''',	re.VERBOSE)

In	general,	the	fields	are	separated	by	one	or	more	spaces:	each	field	ends	with	\s+.	The
final	field	may	not	have	any	trailing	spaces,	so	we’ve	include	\s*	to	match	zero	or	more
spaces	at	the	end	of	the	line.

Some	fields	in	this	pattern	are	matched	very	specifically,	others	use	general	patterns.	In
some	cases,	we	use	a	pattern	that’s	moderately	specific.	The	pattern	for	host	will	match
any	number	of	\d	and	\..	This	will	match	a	typical	IP	address,	but	it	will	also	match	junk
like	1.2.3…7.8.9.	We	could	use	(?:\d+\.){3}\d+	to	specifically	look	for	IPv4	addresses,
but	that	will	be	too	specific;	we’d	have	to	use	a	more	complex	(?:[0-9a-f]+:){7}[0-9a-
f]+	to	match	an	IPv6	address	for	logs	from	systems	that	use	the	newer	addresses.	We
could	have	used	\S+	to	match	anything	that’s	not	a	space;	this	seems	a	bit	too	general.

In	some	cases,	we’ve	adopted	a	very	general	pattern.	The	identity	and	and	user	fields	must
use	\S+	to	match	anything	which	isn’t	a	space.	The	time,	request,	user	agent,	and	referer
fields	all	use	an	even	more	general	.+?	to	match	anything	without	being	too	greedy.	For
time,	the	non-greedy	.+?	will	stop	matching	at	the];	for	the	other	three	fields,	it	will	stop
matching	at	the	following	"	character.

The	bytes	field	is	matched	using	\d+|-	to	represent	either	many	digits,	\d+,	or	a	single
hyphen	-.	This	uses	the	regular	expression	or	operator,	which	is	|.

Some	log	files	are	available	in	text	mode	and	will	be	easy	to	read	and	process.	Some	log
files,	however,	are	compressed,	using	gzip.	In	order	to	make	sense	of	these	files,	we’ll
need	another	Python	library.

Reading	and	understanding	the	raw	data
Files	come	in	a	variety	of	formats.	Even	a	file	that	appears	to	be	simple	text	is	often	a
UTF-8	encoding	of	Unicode	characters.	When	we’re	processing	data	to	extract
intelligence,	we	need	to	look	at	three	tiers	of	representation:

Physical	Format:	We	might	have	a	text	file	encoded	in	UTF-8,	or	we	might	have	a
GZIP	file,	which	is	a	compressed	version	of	the	text	file.	Across	these	different
physical	formats,	we	can	find	a	common	structure.	In	the	case	of	log	files,	the
common	structure	is	a	line	of	text	which	represents	a	single	event.
Logical	Layout:	After	we’ve	extracted	data	from	the	physical	form,	we	often	find	that
the	order	of	the	fields	is	slightly	different	or	some	optional	fields	are	missing.	The
trick	of	using	named	groups	in	a	regular	expression	gives	us	a	way	to	handle
variations	in	the	logical	layouts	by	using	different	regular	expressions	depending	on
the	details	of	the	layout.
Conceptual	Content:	This	is	the	data	we	were	looking	for,	represented	as	proper
Python	objects.	We	can	then	do	any	analysis	required	on	these	meaningful	objects.

To	deal	with	these	three	tiers,	we’ll	often	write	collections	of	functions	so	that	we	can	mix
and	match	as	needed.	We’ll	look	at	some	physical	format	processing	techniques	first.

Our	goal	is	to	make	the	physical	format	of	the	file	transparent	to	other	parts	of	the	analysis
application.	We’d	like	to	be	able	to	read	a	gzipped	file	with	the	same	level	of	simplicity	as
we	read	a	text	file.	In	some	cases,	we	merely	need	to	replace	the	open()	function	to
achieve	some	transparency.	This	doesn’t	always	work,	so	it’s	easier	to	write	a	family	of
generator	functions	that	yield	lines	allowing	for	unique	features	of	a	file	format.

Our	target	function	looks	like	this:

def	local_text_long(filename):

				with	open(filename,	"rt")	as	log:

								for	line	in	log:

												yield	line.rstrip()

This	will	generate	all	of	the	lines	in	a	text	file.	We’ve	used	rt	as	the	open	mode,	even
though	this	is	generally	assumed.	For	other	physical	formats,	this	may	not	be	the	default
assumption,	and	it	helps	to	clarify	this	early	and	often.	This	function	will	remove	the	line
ending	character	and	any	trailing	whitespace,	also.

We	can	use	this	generator	function	in	a	for	loop	like	this:

>>>	for	line	in	local_text_long('buildingskills.itmaybeahack.com-Jun-

2015.log'):

...					match	=	clf_pat.match(line)

...					print(match.group('status'))

This	produces	31,000	lines	of	status	codes;	not	really	useful	output.	To	be	more	useful,
we’d	need	to	make	a	collection	to	summarize	the	data.	Once	we	have	a	consistent	way	to
handle	gzip	and	text	formats,	we’ll	look	into	more	useful	analyses.

We’re	creating	a	generator	function	so	that	we	don’t	have	to	place	an	entire	log	file	in

memory	to	process	it.	We’re	going	to	leverage	an	aspect	of	generator	functions	known	as
laziness.	When	we	use	a	file	object	in	a	for	loop,	the	file	object	is	lazy	about	reading
bytes	and	returning	complete	lines.	Only	enough	data	is	read	to	return	the	next	line	of	the
file.	The	same	principle	holds	for	functions	using	a	yield	statement.	One	line	of	the	file	is
read	and	one	stripped	line	is	yielded	from	the	function.	Memory	use	is	optimized,
allowing	us	to	work	with	very,	very	large	collections	of	data.

Reading	a	gzip	compressed	file
We	want	our	function	that	reads	from	gzip	files	to	look	just	like	our	function	that	reads
text	files.	This	will	allow	us	to	process	either	kind	of	file	transparently.	We	can	apply	the
concept	of	polymorphism—usually	reserved	for	class	definitions—to	functions	as	well.
Here’s	how	we	can	read	all	the	lines	of	a	compressed	version	of	a	log	file:

import	gzip

def	local_gzip(filename):

				with	gzip.open(filename,	"rt")	as	log:

								yield	from	(line.rstrip()	for	line	in	log)

The	parameters	to	our	local_gzip()	function	match	the	parameters	to	our
local_text_long()	function.	We’ll	make	sure	that	the	results	of	these	functions	match	so
that	either	of	them	can	be	used	to	process	a	file.

Note	that	the	gzip	module’s	open()	function	requires	us	to	explicitly	state	that	we’re
reading	the	file	in	text	mode.	The	gzip	module	can	deal	with	a	wide	variety	of	files,	and
defaults	to	reading	bytes	instead	of	Unicode	characters.

We’ve	used	the	new	yield	from	statement	to	yield	all	of	the	lines	of	the	generator
function	without	the	overhead	of	explicitly	writing	a	for	statement.	This	yield	from
parallels	the	for	and	yield	statements	in	the	local_text_long()	function.

We’ll	leave	it	to	each	agent	to	rewrite	local_text_long()	into	local_text().	The	new
local_text()	should	have	the	same	results	as	local_text_long(),	but	make	use	of	the
yield	from	statement.

Rather	than	simply	print	31,000	rows	of	details,	let’s	summarize	a	particular	attribute.	The
host	field	provides	the	IP	address	of	someone	making	a	request.	It’s	not	a	unique	identifier
because	a	router	can	make	it	appear	that	multiple	individuals	all	have	the	same	address.
We’d	need	to	look	at	cookies	to	try	to	track	individual	users.

We’re	using	named	groups	in	our	pattern.	This	handles	logical	layout	issues	for	us.	We	can
analyze	a	specific	column	like	this:

from	collections	import	Counter

def	common(limit=12):

				unique_ip	=	Counter()

				for	line	in	local_gzip('buildingskills.itmaybeahack.com-Jun-2015.gz'):

								match	=	clf_pat.match(line)

								if	match	is	None:

												print(line)

												continue

								unique_ip[match.group('host')]	+=	1

				return	unique_ip.most_common(limit)

We’re	using	the	Counter	class	from	the	collections	module	to	summarize	the	raw	data
into	something	we	can	report	back	to	headquarters.

Our	function	creates	an	empty	Counter	and	assigns	this	to	the	unique_ip	variable.	As	we
read	each	row	of	a	log,	we’ll	use	the	clf_pat.match()	method	to	try	and	create	a	Match

object.	If	the	clf_pat	pattern	can’t	create	a	Match	object,	it	means	that	our	pattern	doesn’t
properly	describe	a	specific	line	of	data.	We’ll	need	to	see	the	line	and	correct	our	pattern.

The	Match	object	is	assigned	to	a	variable	with	the	unimaginative	name	of	match.	The
match.group()	method	will	return	any	of	the	named	groups.	The	characters	captured	by
match.group('host')	will	be	the	IP	address	making	the	request.	We	use	this	string	to
update	the	Counter	object	assigned	to	the	unique_ip	variable.

The	final	result	is	the	most	common	IP	addresses	that	are	making	requests	for	this	web
site.	We’ll	need	to	do	some	additional	processing	to	find	out	who	owns	the	IP	address.	It’s
time-consuming	to	do	this	resolution,	so	we’ll	set	it	aside	for	now.

Reading	remote	files
We’ve	given	these	functions	names	such	as	local_text	and	local_gzip	because	the	files
are	located	on	our	local	machine.	We	might	want	to	write	other	variations	that	use
urrlib.request.urlopen()	to	open	remote	files.	For	example,	we	might	have	a	log	file
on	a	remote	server	that	we’d	like	to	process.	This	allows	us	to	write	a	generator	function,
which	yields	lines	from	a	remote	file	allowing	us	to	interleave	processing	and
downloading	in	a	single	operation.

We	can	use	the	urllib.request	module	to	handle	remote	files	using	URLs	of	this	form:
ftp://username:password@/server/path/to/file.	We	can	also	use	URLs	of	the	form
file:///path/to/file	to	read	local	files.	Because	of	this	transparency,	we	might	want	to	look
at	using	urllib.request	for	all	file	access.

As	a	practical	matter,	it’s	somewhat	more	common	to	use	FTP	to	acquire	files	in	bulk.

http://file:///path/to/file

Studying	a	log	in	more	detail
A	file	is	the	serialized	representation	for	Python	objects.	In	some	rare	cases,	the	objects	are
strings,	and	we	can	deserialize	the	strings	from	the	text	file	directly.	In	the	case	of	our	web
server	logs,	some	of	the	strings	represent	a	date-time	stamp.	Also,	the	size	of	the
transmitted	content	shouldn’t	be	treated	as	a	string,	since	it’s	properly	either	an	integer
size	or	the	None	object	if	nothing	was	transmitted	to	the	browser.

When	requests	for	analysis	come	in,	we’ll	often	have	to	convert	objects	from	strings	to
more	useful	Python	objects.	Generally,	we’re	happiest	if	we	simply	convert	everything
into	a	useful,	native	Python	data	structure.

What	kind	of	data	structure	should	we	use?	We	can’t	continue	to	use	a	Match	object:	it
only	knows	about	strings.	We	want	to	work	with	integers	and	datetimes.

The	first	answer	is	often	to	create	a	customized	class	that	will	hold	the	various	attributes
from	a	single	entry	in	a	log.	This	gives	the	most	flexibility.	It	may,	however,	actually	be
more	than	we	need.	We	can	also	collect	distinct	data	items	into	a	namedtuple	object.	The
collections	module	has	a	namedtuple	function	that	introduces	a	new	class	into	our
application.	This	allows	us	to	access	individual	attributes	by	name,	but	we	don’t	have	to
write	a	complete	class	definition.

We	can	also	do	this	with	a	SimpleNamespace	object.	This	comes	from	the	types	module.
This	offers	more	flexibility;	that	flexibility	introduces	a	cost	of	more	storage	than	a
namedtuple.	A	SimpleNamespace	object	is	even	simpler	than	creating	a	namedtuple
object,	so	we’ll	start	there.

We	can	create	a	SimpleNamespace	object	by	assigning	names	and	values	in	the
constructor.	We	can	do	things	like	this:

>>>	from	types	import	SimpleNamespace

>>>	options	=	SimpleNamespace(

...				time_of_day	=	'06:00',

...				map_zone	=	'amz117',

...				synopsis	=	'amz101')

We’ve	created	a	SimpleNamespace	object	and	assigned	it	to	the	options	variable.	The
reason	we	like	to	use	a	SimpleNamespace	object	is	we’ve	created	a	collection	of	named
attributes.	We	can	now	manipulate	this	object	with	code	that	looks	like	this:

>>>	options.map_zone

'amz117'

The	SimpleNamespace	object	is	a	Python	object	with	named	attributes	but	no	customized
method	functions.	For	these	kinds	of	statistical	and	analytical	applications,	this	kind	of
object	is	ideal.

Using	the	**	operator,	we	can	populate	a	SimpleNamespace	object	from	a	dictionary.	A
regular	expression	Match	object	has	a	groupdict()	method,	which	produces	a	dictionary
of	named	groups.	If	we	make	sure	that	our	group	names	are	valid	Python	identifiers,	we
can	easily	build	a	SimpleNamespace	object	directly	from	valid	matches.

We’ll	need	a	function	that	can	take	the	output	from	a	local_gzip()	or	local_text()
function,	and	create	SimpleNamespace	instances.	The	code	looks	like	this:

from	types	import	SimpleNamespace

import	datetime

def	log_event_1(line_iter):

				for	line	in	line_iter:

								match=	clf_pat.match(line)

								event=	SimpleNamespace(**match.groupdict())

								event.datetime=	datetime.datetime.strptime(

												event.time,	"%d/%b/%Y:%H:%M:%S	%z")

								event.bytes=	None	if	event.bytes	==	'-'	else	int(event.bytes)

								yield	event

The	argument	to	this	function	must	be	a	line	iterator	that	provides	clean	lines	from	some
kind	of	log	file.	We’ll	match	those	lines	using	our	clf_pat	pattern.	We’ll	then	build	a
SimpleNamespace	object	from	the	groupdict()	dictionary	that	has	each	group	name	and
each	group	string	as	its	value.

Once	we	have	this	SimpleNamespace	object,	we	can	tweak	the	attributes.	We’ll	make	two
significant	changes	in	this	function.	First,	we’ll	throw	in	an	additional	attribute,	datetime,
which	contains	a	proper	datetime	object.	Second,	we’ll	replace	the	bytes	attribute	with
either	a	None	object	or	a	proper	integer	value.

We	can	make	a	strong	case	for	always	adding	new	attributes	and	never	replacing	an
existing	attribute.	This	can	simplify	debugging	because	the	original	data	is	still	present	in
the	object.	We	can	also	make	a	strong	case	for	replacing	attributes	where	the	original	data
isn’t	useful	as	a	string.	We’ve	included	both	in	this	example	to	provide	food	for	thought.
There’s	no	right	answer,	and	experienced	agents	know	that	absolutes	like	never	and
always	are	always	a	source	of	confusion	and	should	never	be	used.

Now	we	can	easily	refer	to	event.host,	event.datetime,	and	event.request.	This	is
even	better	than	match.group('request').	Speaking	of	the	request,	this	is	a	three-part
field.	We’ll	need	to	break	this	down,	also,	so	that	we	can	explore	the	path.

What	are	they	downloading?
In	order	to	see	what	people	are	downloading,	we’ll	need	to	parse	the	request	field.	This
field	has	three	elements:	a	method,	a	path,	and	a	protocol.	The	method	is	almost	always
GET	and	the	protocol	is	almost	always	HTTP/1.1.	The	path,	however,	shows	the	resource
which	was	requested.	This	tells	us	what	people	are	reading	from	a	given	website.

In	our	case,	we	can	expand	on	the	processing	done	in	log_event_1()	to	gather	the	path
information.	It’s	a	small	change,	and	we’ll	add	this	line:

								event.method,	event.path,	event.protocol	=	event.request.split("	")

This	will	update	the	event	object	by	splitting	the	event.request	attribute	to	create	three
separate	attributes:	event.method,	event.path,	and	event.protocol.

We’ll	leave	it	to	each	individual	agent	to	create	the	log_event_2()	function	from	their
log_event_1()	function.	It’s	helpful	to	have	sample	data	and	some	kind	of	simple	unit
test	to	be	sure	that	this	works.	We	can	use	this	log_event_2()	function	as	follows:

>>>	unique_paths	=	Counter(

...					event.path	for	event	in	log_event_2(local_gzip(filename)))

>>>	unique_paths.most_common(20)

We’ve	created	a	Counter	object	based	on	all	of	the	event.path	attribute	values	that	are
returned	from	the	log_event_2()	function.	Since	the	log_event_2()	function	includes
the	additional	step	of	parsing	the	request,	we	can	depend	on	the	presence	of	the	path
attribute	in	each	event	object.

Within	the	top	20	paths,	we	can	see	items	like	these:

2161	/favicon.ico

170	/robots.txt

163	/

We’ve	printed	the	value	(the	count	of	occurrences)	and	the	key	for	three	items.	The	2,161
requests	for	the	favicon.ico	file	show	how	many	users	retrieve	any	of	the	HTML	page.
The	site	has	PDF	files	and	other	downloads;	this	shows	us	that	downloads	are	much	more
popular	than	the	HTML	content.	Of	the	HTML	requests,	170	were	clearly	requests	that	hit
the	robots.txt	file.	The	robots.txt	file	is	used	to	steer	tools	like	Google	around	the	site
when	doing	indexing.	163	requests	where	for	the	top-level	/	path,	which	usually	returns
the	home	page,	index.html.	The	other	1,998	requests	were	for	some	HTML	deeper	inside
the	site.

Trails	of	activity
We	can	leverage	the	referrer	(famously	misspelled	referer)	information	to	track	access
around	a	web	site.	As	with	other	interesting	fields,	we	need	to	decompose	this	into	host
name	and	path	information.	The	most	reliable	way	to	do	this	is	to	use	the	urllib.parse
module.

This	means	that	we’ll	need	to	make	a	change	to	our	log_event_2()	function	to	add	yet
another	parsing	step.	When	we	parse	the	referrer	URL,	we’ll	get	at	least	six	pieces	of
information:

scheme:	This	is	usually	http.
netloc:	This	is	the	server	which	made	the	referral.	This	will	be	the	name	of	the
server,	not	the	IP	address.
path:	This	is	the	path	to	the	page	which	had	the	link.
params:	This	can	be	anything	after	the	?	symbol	in	a	URL.	Usually,	this	is	empty	for
simple	static	content	sites.
fragment:	This	can	be	anything	after	the	#	in	a	URL.

These	details	are	items	within	a	Namedtuple	object:	we	can	refer	to	them	by	name	or	by
position	within	the	tuple.	We	have	three	ways	to	handle	the	parsing	of	URLs:

We	can	simply	put	the	Namedtuple	object	into	our	SimpleNamespace	object.	To	get
the	host	that	sent	a	referral,	we’d	use	something	like	event.referer.netloc.

We	can	put	all	six	things	into	separate	named	fields	in	the	SimpleNamespace	object.	This
would	lead	to	a	small	problem	with	the	name	path,	because	we	have	a	path	we	extracted
from	the	request,	as	well	as	a	path	extract	from	the	referer.	To	get	the	host	that	sent	a
referral,	we’d	use	something	like	event.netloc.

We	can	be	really	slick	and	convert	the	namedtuple	object	into	a	SimpleNamespace
object.	While	this	is	a	cool	use	of	the	vars()	function,	it	leads	to	syntax	that	looks
like	option	1.	It	doesn’t	seem	to	be	adding	significant	value.

We’ll	call	our	new	function	log_event_3();	it	will	be	based	on	log_event_2(),	but	it	will
have	this	line	inserted:

								event.referer	=	urllib.parse.urlparse(event.referer)

Now,	we	can	do	the	following	analysis	to	see	who	our	top	referrers	are:

>>>	unique_referer_host	=	Counter(

...					event.referer.netloc	for	event	in	log_event_3(local_gzip(filename))	

)

>>>	unique_referer_host

There	are	two	interesting	bits	of	information	in	this	output.	First,	we	can	see	that	19,479
referrers	are	internal	references	from	page	to	page	within	the	web	site.	From	this,	we	can
see	what	a	person	clicked	next	as	they	browsed.	This	can	be	a	very	interesting	analysis.

Second,	we	can	see	that	33	references	are	from	completely	outside	the	site.	Places	like

www.couponmate.com	apparently	have	a	link	to	this	site.	Since	only	one	of	these	links
was	followed,	that	means	there	might	be	some	opportunities	left	on	the	table.	Perhaps	the
owner	of	the	site	needs	to	reach	out	to	make	some	better	sales	and	marketing	relationships
with	these	sites	that	are	acting	as	referrers.

http://www.couponmate.com

Who	is	this	person?
We	can	learn	more	about	an	IP	address	using	the	Whois	program.	For	agents	with	Linux	or
Mac	OS	X,	the	Whois	program	is	built-in.	Agents	using	Windows	may	want	to	download
and	install	a	whois	program.	See	https://technet.microsoft.com/en-
us/sysinternals/bb897435.aspx	for	more	information.

The	Whois	program	will	examine	the	various	registries	used	to	track	the	names	of	servers
on	the	internet.	It	will	provide	whatever	information	is	available	for	a	given	server.	This
often	includes	the	name	of	a	person	or	organization	that	owns	the	server.

We’ll	start	by	using	the	built-in	whois	program.	An	alternative	is	to	make	a	REST	API
request	to	a	whois	service	using	urllib.	We’re	going	to	defer	making	REST	API	requests
to	the	Chapter	3,	Following	the	Social	Network.

The	Whois	program	makes	a	request	of	a	server	and	displays	the	results.	The	request	is	a
single	line	of	text,	usually	containing	a	domain	name	or	IP	address.	The	response	from	the
server	is	a	flood	of	text	providing	information	about	the	server	or	address.

This	particular	request/response	protocol	dates	from	the	early	days	of	the	internet;	it	was
initially	developed	in	1982.	It	has	seen	some	changes,	but	it’s	still	a	rather	primitive	tool.
For	more	information,	see	https://en.wikipedia.org/wiki/WHOIS.

We	can	experiment	with	the	Whois	program	from	the	command	line	by	running	a
command	like	this:

$	whois	201.160.255.73

This	will	dump	a	great	deal	of	information	about	the	IP	address	given	in	the	query.	The
exact	source	of	the	data	varies	based	on	the	agent’s	location	and	OS	configuration.	For
agents	based	in	the	US,	this	will	generally	start	with	whois.arin.net	to	do	the	actual	work
and	respond	appropriately.

We	can	get	some	additional	information	about	the	whois	program	by	running	the	whois	?
command.	This	will	send	the	?	query	to	the	whois	server,	which	may	send	back	a
summary	of	what	information	the	server	can	provide.

Because	this	protocol	has	relatively	unstructured	definition,	the	format	for	the	query	and
the	nature	of	the	responses	are	highly	variable.	Different	servers	can	(and	will)	behave
differently.	There	are	some	common	patterns.	Therefore,	we’ll	need	to	use	a	very	flexible
design	as	we	gather	information	the	IP	addresses	hitting	a	given	site.

Clearly,	we	don’t	want	to	run	the	whois	command-line	program	manually	to	gather
information	about	users.	We	want	to	have	this	automated.	Note	that	we’ll	run	into
problems	if	we	try	to	resolve	every	single	IP	address:	most	servers	will	throttle	our
requests.	Rather	than	blindly	make	requests	until	we	get	an	error,	we	can	limit	our
exploration	to	the	top	few	dozen	users	of	a	web	site.

https://technet.microsoft.com/en-us/sysinternals/bb897435.aspx
https://en.wikipedia.org/wiki/WHOIS
http://whois.arin.net

Using	Python	to	run	other	programs
One	of	Python’s	strengths	is	its	ability	to	run	other	programs	that	are	already	installed	on
our	computer.	We	can	do	this	with	the	subprocess	module.	This	creates	a	child	process
that	runs	the	given	program.	We	can	collect	the	output	from	that	child	process.

In	this	respect,	Python	is	essentially	another	shell.	It	turns	out	that	Python	can	do	all	of	the
things	that	the	Korn	shell	(ksh)	or	the	Bash	shell	do.	A	common	Python	trick	is	to	include
a	#!/usr/bin/env	python3	line	at	the	beginning	of	every	.py	script	so	that	when	the	file
is	executed,	the	shell	will	hand	the	work	off	to	Python	seamlessly.	Indeed,	it’s	often	easier
to	write	shell-like	programs	in	Python	than	in	one	of	the	traditional	OS	shells.

We	can	use	the	os	module	to	have	our	Python	program	run	other	programs.	The
os.spawn…()	family	of	functions,	for	example,	will	start	another	program,	providing
command-line	options	and	environment	variables.	The	complexity	arises	in	setting	up	the
internal	file	descriptors	for	the	child	process.	Also,	the	Windows	implementation	is	not
thread-safe:	a	multi-threaded	application	will	have	problems.	The	Python	Standard	Library
warns	us	away	from	casual	use	of	the	os	module,	and	suggests	we	use	the	subprocess
module.

We’ll	focus	on	the	check_output()	function	of	the	subprocess	module.	This	function
will	create	a	child	process,	wait	for	it	to	finish,	and	gather	the	output	from	that	child.	We
need	to	provide	the	name	of	the	program	we	want	to	run,	and	any	of	the	command-line
arguments	to	that	program.

We	have	two	forms	for	the	command	that	creates	the	child	process:

We	can	write	the	command	as	a	single	string	to	be	parsed	by	the	OS’s	shell	(bash	or
cmd.exe).	This	is	very	flexible	but	involves	the	overhead	of	actually	running	the	shell
which	then	runs	the	target	program.
We	can	write	the	command	as	a	sequence	of	strings	as	if	the	shell	had	already	done
the	parsing.	This	requires	a	bit	more	care,	since	we	don’t	have	all	of	the	cool	features
of	the	shell.

Since	our	needs	are	relatively	simple,	we’ll	stick	with	the	second	option.	We	can	submit	a
command	like	this:

>>>	import	subprocess

>>>	command	=	['pwd']

>>>	subprocess.check_output(command).decode("utf-8")

We’ve	created	a	command	that’s	a	very	short	sequence	with	a	single	string	in	it.	Windows
Agents	can	use	the	chdir	(or	cd)	command	instead	of	the	Linux	pwd	command	as
something	that	reports	a	single,	easy-to-understand	result.

We	send	the	list	of	strings	to	the	OS	to	be	executed.	The	output	will	be	a	stream	of	bytes,
which	we	can	then	decode	to	recover	Unicode	characters.

We	can	use	something	like	['echo',	'some	confirmation	string']	as	an	example	of	a
slightly	more	complex	command.

An	interesting	difference	between	POSIX	operating	systems	(Mac	OS	X	and	Linux)	and
Windows	is	the	way	wild-cards	are	handled.	A	Windows	agent	can	use	['ls',	'*.py']	as
a	command,	and	get	an	interesting	result	that	shows	many	files.	Mac	OS	X	and	Linux
don’t	handle	wild-cards	this	way:	they’re	handled	by	the	shell,	long	before	the	actual
command	is	executed.	For	this	to	work	in	Mac	OS	X	or	Linux,	we’d	have	to	add	the
shell=True	keyword	parameter.

Processing	whois	queries
The	whois	command	requires	an	IP	address.	It	may	need	to	include	a	specific	Network
Information	Center	(NIC)	host	name.	We	might,	for	example,	need	to	use	the
whois.lacnic.net	to	resolve	address	owned	in	Latin	America	or	Caribbean	(LAC).

We’ll	need	a	function	that	can	build	two	forms	of	the	whois	command.	One	form	will	use
our	default	host,	and	the	other	will	allow	us	to	plugin	a	specific	host.

Here’s	one	way	to	handle	this:

import	subprocess

def	get_whois(ip,	server=None):

				command	=	["whois"]

				if	server:

								command.extend(["-h",	server])

				command.append(ip)

				results=	subprocess.check_output(command).decode("us-ascii")

				return	results.splitlines()

Our	function	starts	by	building	the	command	as	a	list	of	strings.	We’ve	used	a	generic
name	for	the	command.	If	this	is	run	in	a	context	where	the	PATH	environment	variable	has
been	altered	dramatically,	an	unexpected	whois	program	might	get	executed;	where	this	is
a	concern,	using	/usr/bin/whois	avoids	this	potential	problem.

If	we	have	been	given	a	specific	server	to	use,	we’ll	append	two	more	strings	to	the
command.	We’ll	put	the	target	IP	address	last.	Once	we’ve	built	the	sequence	of	strings,
we	can	then	execute	the	whois	command,	collect	the	output,	and	then	decode	Unicode
characters	from	the	sequence	of	bytes.

In	the	case	of	whois	command,	the	encoding	is	often	ASCII,	not	UTF-8.	The	standard
RFC	3912	(https://tools.ietf.org/html/rfc3912)	is	clear	that	the	encoding	is	not	itself
standardized:	some	sleuth	work	may	be	required	to	decode	the	character	set	used	by	a
particular	host.

We’ve	split	the	result	into	lines	because	this	seems	helpful	for	initial	exploration.	In	the
long	run,	this	may	not	really	be	the	best	idea.	It	will	be	much	more	helpful	to	split	the
output	into	two	tiers:

A	stanza	that	separated	from	other	stanzas	by	completely	blank	lines.	Some	stanzas
have	comments	marked	with	#	or	%.	Some	stanzas	have	name:	value	lines.	Some	of
the	names	are	unique,	but	some	names	are	repeated	in	different	stanzas;	therefore,
each	stanza	has	to	be	treated	as	a	distinct	object.
A	line	within	a	stanza.	The	content	of	the	line	depends	on	the	type	of	stanza:	this	will
either	be	a	comment	line	or	an	individual	name:	value	pair.

Also,	the	Whois	program	can	actually	accept	an	indefinite	number	of	IP	addresses	to
resolve.	We	should	define	a	function	that	will	make	all	of	our	IP	resolution	requests	in	a
single	burst	of	activity.

http://whois.lacnic.net
https://tools.ietf.org/html/rfc3912

Breaking	a	request	into	stanzas	and	lines
How	can	we	decompose	a	list	of	strings	into	a	collection	of	stanzas?	How	can	we	locate
the	blank	lines	that	separate	stanzas?

We	have	two	general	approaches.	One	way	to	do	this	is	to	index	the	blank	lines.	Any	gap
in	the	index	numbers	is	a	stanza.	Let’s	say	our	response	from	whois	command	is	a	list	of
lines	in	the	response	variable.	We	can	use	a	list	comprehension	to	enumerate	the	indices
of	the	blank	lines:

blank_lines	=	[n	for	n,	line	in	enumerate(response)	if	len(line)	==	0]

This	will	produce	the	list	of	index	positions	where	the	length	of	the	line	is	zero.	The	list
will	look	like	this:

[0,	8,	9,	16,	21,	33,	34,	35,	46,	47,	53,	59,	60,	68]

This	tells	us	which	lines	separate	the	stanzas.	We	can	pair	these	up	to	see	where	the
stanzas	begin	and	end.	For	example	lines	in	the	ranges	1-8,	10-16,	22-33,	36-46,	and	so
on,	are	going	to	be	the	stanzas	of	non-blank	lines.

How	can	we	pair	them	up?	We	can	use	the	zip()	function	to	create	pairs	of	numbers	from
two	copies	of	the	original	list	of	blank	lines:

start_end	=	zip(blank_lines[:-1],	blank_lines[1:])

This	will	take	a	copy	of	the	blank_lines	list	without	the	very	last	value,	and	a	copy	of	the
blank_lines	list	that	skips	the	very	first	value.	We’ll	pair	up	items	from	both	lists	to
create	a	dumb	list	of	pairs	of	blank	line	indices.	It	looks	like	this:

[(0,	8),	(8,	9),	(9,	16),	(16,	21),	(21,	33),	(33,	34),	(34,	35),	(35,	46),	

(46,	47),	(47,	53),	(53,	59),	(59,	60),	(60,	68)]

We	can	call	this	a	dumb	list	because	the	sequence	of	lines	from	8	to	9	will	only	have	one
line	(line	number	8)	in	it,	and	this	line	(by	definition)	is	blank.	Looking	at	this	list	again,
note	that	the	starting	line	in	each	pair	is	a	blank	line.	The	pair	(9,	16)	represents	a	stanza
with	the	first	line	of	meaningful	text	on	line	10	and	ending	just	before	line	16.	This	means
that	we	only	want	(start,	end)	pairs	where	start+1	<	end.

This	leads	us	to	the	third	line	of	code	in	this	process:

stanzas	=	[response[s+1:e]	for	s,e	in	start_end	if	s+1	<	e]

We’ve	picked	ranges	of	lines	from	the	response	list.	We’ve	used	the	start-end	pairs,	but
only	when	the	range	of	lines	between	start	and	end	will	actually	include	some	useful	data.

These	three	lines	are	the	body	of	a	split_stanzas()	function.	We’ll	leave	it	to	the	field
agents	to	assemble	a	working	function	out	of	these	three	lines.

Once	we’ve	decomposed	the	data	into	stanzas,	we	can	identify	the	kind	of	stanza	by
looking	at	the	first	character	of	the	first	line.	If	it’s	#	or	%,	we	have	some	kind	of	comment
or	annotation	block.	Otherwise,	we	have	a	block	that	will	require	a	pattern	like
r'\w+:\s*\w+'	to	extract	the	meaningful	details.

Alternate	stanza-finding	algorithm
A	second	way	to	decompose	a	long	list	of	text	into	stanzas	is	to	use	a	generator	function
which	buffers	each	stanza.	The	idea	is	that	we	can	accumulate	a	list	of	non-blank	lines	and
yield	the	whole	block	when	we	encounter	a	blank	line.

The	entire	function	looks	like	this:

def	split_stanzas_2(response):

				stanza=	[]

				for	line	in	response:

								if	len(line)	==	0:

												if	stanza:	yield	stanza

												stanza=	[]

								else:

												stanza.append(line)

				if	stanza:	yield	stanza

We’ve	initialized	an	empty	list	and	assigned	it	to	the	stanza	variable.	We’ll	use	this	to
accumulate	the	lines	of	a	stanza.	We’ll	then	use	each	line	in	the	response	object.

A	blank	line	signals	the	end	of	a	stanza.	If	we’ve	accumulated	any	lines,	we	can	yield	the
complete	stanza.	We	can	then	reset	the	stanza	variable	to	an	empty	list.	A	non-blank	line
is	simply	appended	to	the	current	stanza.

When	we’ve	exhausted	the	lines,	we	might	have	a	complete	stanza	in	our	buffer.	We	need
to	yield	this	final	stanza.	While	it	seems	like	the	output	almost	always	ends	with	a	blank
line,	we	need	to	be	sure	to	check	the	final	status	of	the	stanza	variable,	and	yield	a	non-
empty	stanza.

Since	this	function	is	a	generator,	it	works	very	nicely	with	the	for	statement.	We	can
easily	process	each	stanza	to	accumulate	the	relevant	details	about	an	IP	address	that’s
creating	web	traffic.

Making	bulk	requests
We	can	make	two	tiny	tweaks	to	the	get_whois()	function	that	will	allow	us	to	get
information	about	a	list	of	IP	addresses	instead	of	a	single	address.	The	first	change	is	to
allow	an	unlimited	number	of	ip	parameters	by	using	the	*	prefix	on	the	positional
parameter	to	this	function:

def	get_whois_2(*ip,	server=None):

All	argument	values	will	be	collected	into	a	single	list.	If	we	need	to	provide	a	separate
server	address,	we	must	use	a	keyword	argument.

Once	we	have	a	list	of	addresses,	we	change	append()	to	extend()	like	this:

				command.extend(ip)

Now	all	of	the	provided	address	will	extend	the	command	list.	These	two	changes	allow
us	to	do	the	following	kind	of	request:

get_whois_2('66.249.69.78',	'201.160.255.73')

This	will	make	in	inquiry	about	a	batch	of	IP	addresses	in	a	single	request.

Getting	logs	from	a	server	with	ftplib
When	we’ve	created	an	analysis	that	HQ	finds	useful,	we’ll	often	have	to	scale	this	up	to
work	on	a	larger	supply	of	log	files.	This	will	involve	acquiring	and	downloading	files
from	servers	without	manually	clicking	a	link	to	download	and	save	each	file.

We’ll	provide	a	sample	of	how	we	might	use	Python’s	ftplib	to	acquire	files	in	bulk	for
analysis.	Once	we	have	the	files	locally,	we	can	process	them	using	our	local_gzip()	or
local_text()	functions.

Here’s	a	function	that	performs	a	complex	of	FTP	interaction:

import	ftplib

def	download(host,	path,	username=None):

				with	ftplib.FTP(host,	timeout=10)	as	ftp:

								if	username:

												password	=	getpass.getpass("Password:	")

												ftp.login(user=username,passwd=password)

								else:

												ftp.login()

								ftp.cwd(path)

								for	name,	facts	in	ftp.mlsd(".",	["type","size"]):

												if	name.startswith("."):	continue

												if	facts['type']	==	'dir':	continue

												print("Fetching",	name,	facts)

												command=	"RETR	{0}".format(name)

												with	open(os.path.join(path,name),	'wb')	as	target:

																ftp.retrbinary(command,	target.write)

								ftp.quit()

Our	function	needs	four	parameters:	the	host	we’re	going	to	interact	with,	a	path	to	the
files,	the	username,	and	the	password.	We	don’t	like	the	idea	of	passwords	being	handled
casually,	so	we	use	the	getpass	module	to	prompt	for	a	password.	The
getpass.getpass()	function	is	like	the	input()	function,	but	it	will	suppress	echoing	the
characters	on	the	console.

We’ve	wrapped	all	the	operations	in	a	with	statement	because	the	FTP	object	is	a	context
manager.	Using	the	with	statement	assures	us	that	all	the	network	connections	are	dropped
when	we’re	done	doing	downloads.	Even	if	an	exception	is	raised,	the	FTP	object	will	be
able	to	close	all	of	the	connections	before	the	exception	handling	starts.

We’ve	broken	this	into	two	parts:	authentication	and	download.	The	authentication	part	is
used	if	there’s	a	username.	It	will	prompt	for	the	password	and	provide	these	credentials	to
the	FTP	server	via	the	login()	method.	If	there’s	no	username	provided,	we’re	doing	a
guest	login	via	an	empty	login()	request.

The	cwd()	method	changes	the	working	directory	to	the	path	given	as	an	argument.	We
might	have	to	change	to	a	logs	directory	to	locate	web	logs.	Once	we’ve	changed
directories,	we’ll	use	(.)	for	the	local	directory.

The	mlsd()	method	provides	a	sequence	of	two-tuples.	The	first	item	of	each	tuple	is	the
name	of	a	file;	the	second	item	is	a	dictionary	of	the	requested	additional	details.
Filenames	that	begin	with	(.)	are	politely	ignored	by	some	OS;	we	follow	this	convention
by	skipping	over	these.	We	also	skip	over	sub-directories	by	checking	the	content	of	the
facts	dictionary	to	see	what	type	of	file	it	is.

The	actual	download	requires	us	to	build	a	command	and	then	use	retrbinary()	or
retrlines()	to	initiate	the	command.	The	second	argument	to	a	retr…()	method	is	a
function	which	will	be	called	for	each	block	of	data	being	transferred.	We’ve	used	an	inner
with	statement	to	act	as	a	context	manager	for	the	target	file;	we	assign	the	open	file	to	the
target	variable.	We	can	then	provide	the	target.write	function	to	be	called	for	each
block	of	data	received	from	the	server.

Building	a	more	complete	solution
A	more	complete	solution	could	be	something	like	this:

1.	 Download	the	current	directory	listing	from	a	server,	and	save	the	details	in	a	local
file.	If	we	create	a	simple	list	object,	we	can	use	the	pickle	module	to	save	that	list
of	information.	We	can	also	save	a	list	of	file	information	using	the	json	module.

2.	 Compare	the	most	recent	download	of	directory	information	with	the	previous
download	of	directory	information.	If	they	differ,	we	have	a	new	file	to	analyze.	If
they’re	the	same,	there’s	nothing	new	to	learn	here.

3.	 For	each	changed	file,	download	the	raw	file	so	that	a	local_gzip()	or
local_text()	function	can	be	used	for	analysis	of	the	file.	In	most	situations,	we’ll
want	to	preserve	the	parsed	data	using	the	csv	module	to	create	an	easy-to-process
file	that	can	be	read	without	the	overheads	of	processing	regular	expressions.	This
refined	log	data	can	now	be	examined	efficiently	since	it’s	all	local	and	all	in	simple
csv	notation.

4.	 The	various	kinds	of	analyses	of	most	common	IP	addresses,	most	common
downloads,	most	common	referrers,	and	so	on,	can	now	be	done	on	the	cleaned-up,
easy-to-parse	csv	files.

We’ll	leave	it	to	each	field	agent	to	examine	the	pickle,	json,	and	csv	modules	to	locate
ways	to	store	local	data	that	reflects	the	cleaned	and	parsed	log	files.

Summary
In	this	chapter,	we	discussed	a	large	number	of	elements	of	data	analysis.	We’ve	looked	at
how	we	have	to	disentangle	physical	format	from	logical	layout	and	conceptual	content.
We	covered	the	gzip	module	as	an	example	of	how	we	can	handle	one	particularly
complex	physical	format	issue.

We	focused	a	lot	of	attention	on	using	the	re	module	to	write	regular	expressions	that	help
us	parse	complex	text	files.	This	addresses	a	number	of	logical	layout	considerations.
Once	we’ve	parsed	the	text,	we	can	then	do	data	conversions	to	create	proper	Python
objects	so	that	we	have	useful	conceptual	content.

We	also	saw	how	we	can	use	a	collections.Counter	object	to	summarize	data.	This
helps	us	find	the	most	common	items,	or	create	complete	histograms	and	frequency	tables.

The	subprocess	module	helped	us	run	the	whois	program	to	gather	data	from	around	the
internet.	The	general	approach	to	using	subprocess	allows	us	to	leverage	a	number	of
common	utilities	for	getting	information	about	the	internet	and	the	World	Wide	Web.	For
Windows	agents,	some	of	these	utilities	must	be	downloaded	and	installed	since	they’re
not	available	by	default.

In	the	next	chapter,	we’ll	take	a	radically	different	approach	to	gathering	intelligence.
We’ll	look	at	the	social	network:	the	web	of	connections	people	form	through	online
services.	This	will	require	us	to	make	RESTful	API	requests	from	some	of	the	social
media	web	sites.	We	can	learn	quite	a	bit	from	how	people	are	interacting	and	what
they’re	saying	to	each	other.

Chapter	3.	Following	the	Social	Network
Intelligence	gathering	is	really	networking.	It’s	networking	with	an	avowed	purpose	of
learning	something	new.	It’s	an	essentially	social	game.	Most	agents	have	connections;	the
more	successful	agents	seem	to	have	the	most	connections.	When	you	read	historical
accounts	of	the	British	MI5/SIS	agent	code-named	Garbo,	you’ll	see	how	a	vast	and
sophisticated	social	network	is	essential	to	espionage.

We’ll	leverage	Twitter	to	gather	pictures	and	text.	We’ll	explore	the	Twitter	Application
Program	Interface	(API)	to	see	what	people	are	doing.	The	Twitter	API	uses
Representational	State	Transfer	(REST)	as	its	protocol.	We’ll	use	Python’s	http.client
to	connect	with	RESTful	web	services	like	Twitter.

We	can	use	the	Twitter	APIs	to	discover	the	extent	of	a	social	network.	We’ll	try	to	discern
the	interactions	one	person	has.	We	can	use	this	to	find	the	active	connections	among
people.	It	requires	some	statistical	care,	but	we	can	make	steps	toward	discerning	who
leads	and	who	follows.	We	can	see	some	of	what	they’re	sharing.

In	Chapter	1,	New	Missions,	New	Tools,	we	downloaded	the	necessary	libraries	to	be	able
to	process	images	and	access	Twitter.	We’ll	make	extensive	use	of	the	Twitter	API
package.

We’ll	be	able	to	answer	two	important	questions:	Who’s	talking?	What	are	they	saying?

In	this	chapter,	we’ll	be	looking	at	the	following	topics:

Introduction	to	image	processing	as	a	prelude	to	looking	at	social	media
How	Pillow	helps	us	examine	image	files	safely	and	avoid	the	potential	problems	of
viruses	embedded	in	image	files
Using	the	Twitter	API	to	see	who’s	posting	on	Twitter
Finding	the	followers	of	a	given	Twitter	user	(for	some	people,	this	is	a	small	list;	for
others	it	can	run	to	millions	of	names)
Checking	tweets	and	images	attached	to	tweets
Natural	Language	Tool	Kit	(NLTK)

The	NLTK	can	be	used	to	analyze	the	text	of	tweets.	We	won’t	dwell	on	this,	since	it’s	a
very	deep	and	complex	subject.	With	these	tools,	we’ll	be	able	to	examine	social
connections	among	the	agents	in	our	network.

Background	briefing	–	images	and	social
media
We’ll	use	the	Pillow	implementation	of	the	PIL	package	to	extract	and	convert	any
graphics	or	images.	In	Chapter	1,	New	Missions,	New	Tools,	we	used	the	pip3.4	program
to	install	Pillow	2.9.0.	The	PIL	package	has	modules	that	allow	us	to	convert	images	to	a
common	format.	It	also	allows	us	to	create	thumbnails	of	images.	This	can	help	us	build	a
tidy	summary	of	images	we	collected.

Most	importantly,	it	allows	us	to	validate	an	image	file.	It	turns	out	that	the	compression
algorithms	used	on	some	images	can	be	hacked.	Someone	can	tweak	the	bytes	of	an	image
so	that	it	appears	to	be	infinitely	large.	This	will	cause	the	computer	opening	the	image	to
get	progressively	slower	until	the	image	processing	application	finally	crashes.	A	basic
counter-intelligence	ploy	is	to	circulate	damaged	image	files	that	leave	agents	struggling
to	figure	out	what	went	wrong.

The	PIL	module	is	an	important	piece	of	counter-counter-intelligence.	We	don’t	want	to
accept	fraudulent	or	malicious	files.	The	rule	is	simple:	if	we	can’t	process	the	image	in
PIL,	it’s	not	a	proper	image	file	and	should	be	discarded.

We’ll	start	by	grabbing	some	images	from	Flickr,	since	that’s	a	good	source	of	high-
quality	images,	some	of	which	are	free	from	copyright	constraints:

Here’s	a	link	to	one	of	our	favorite	photo	streams:
https://www.flickr.com/photos/sdasmarchives/.
Here’s	another	link	to	some	other	classic	photos:	https://www.flickr.com/search/?
tags=americascup&license=7%2C9%2C10.

We’ll	use	Pillow	to	create	a	standardized	PNG	thumbnail	of	an	image.	We’ll	aim	to	create
something	small	that	we	can	embed	in	an	e-mail.

The	essence	of	working	with	PIL	is	to	open	and	operate	on	an	Image	object.	PIL	offers
large	number	of	functions	and	classes	that	we	can	use	to	transform	or	even	create	an
image.	We’ll	focus	on	the	Image	class	itself	in	this	introductory	briefing.

Here’s	how	we	can	create	a	properly	scaled	thumbnail	image:

import	os

from	PIL	import	Image

def	thumbnail(filename,	target_max=128):

				name,	ext	=	os.path.splitext(filename)

				thumb_name	=	name	+	"_thumb"	+	".png"

				im	=	Image.open(filename)

				h,	w	=	im.size

				scale	=	target_max	/	min(h,	w)

				im.thumbnail((h*scale,	w*scale))

				im.save(thumb_name,	"PNG")

We	defined	a	function	that	accepts	a	filename	and	a	target	maximum	dimension.	For
images	that	are	in	portrait	mode	(height	>	width),	this	will	specify	the	new	height.	For

https://www.flickr.com/photos/sdasmarchives/
https://www.flickr.com/search/?tags=americascup&license=7%2C9%2C10

images	that	are	in	landscape	mode	(width	>	height),	this	will	specify	the	new	width.

We	used	the	os.path.splitext()	function	to	separate	the	filename	from	the	extension.
This	allows	us	to	append	_thumb	to	the	filename.	We	also	switched	the	extension	to	.png
because	we’re	going	to	convert	the	image	to	PNG	format.

The	image-related	processing	starts	when	we	open	the	Image.	If	the	file	is	corrupt,
damaged,	or	incomplete,	this	will	raise	an	exception.	If	the	file	contains	a	hacked	image,	a
warning	is	raised.	If	we	want	to	treat	this	warning	as	an	error	and	stop	processing	the	file,
we	can	use	the	warnings	module.	We	would	add	this	to	our	application	in	a	global
context:

warnings.simplefilter('error',	Image.DecompressionBombWarning)

This	line	of	code	will	escalate	the	warning	into	an	error.

The	im.size	attribute	has	the	height	and	width	of	the	image.	We	can	then	determine	the
largest	dimension,	and	compute	the	scaling	factor	from	this.	Since	we’re	using	exact
division,	we’ll	get	a	floating-point	result.	PIL	automatically	converts	the	floats	to	integers
to	determine	the	resulting	size	in	pixels.	The	thumbnail()	method	of	the	image	to	resize	it
down	to	the	target	size.	Finally,	we	save	the	image	file	in	PNG	format.

This	shows	us	the	essence	of	image	processing	with	the	PIL	package.	We	opened	an	image
file,	made	a	transformation,	and	saved	the	resulting	file.

Accessing	web	services	with	urllib	or	http.client
We’ll	look	at	the	basics	of	making	a	web	services	request	so	that	it’s	clear	how	things
work	under	the	hood.

Many	web	APIs	follow	the	REST	design	pattern.	The	overall	approach	is	based	on	the
Hypertext	Transfer	Protocol	(HTTP),	the	backbone	of	the	World	Wide	Web	(WWW).

The	REST	pattern	leverages	the	method,	path,	and	header	parts	of	the	HTTP	request.	The
HTTP	methods	(post,	get,	put,	and	delete)	to	implement	the	canonical	create,	retrieve,
update,	and	delete	(CRUD)	operations.	The	path	is	used	to	identify	a	resource.	Because
the	HTTP	path	is	often	viewed	as	a	hierarchy,	an	organization	may	define	its	resources	in	a
complex	hierarchy.	The	headers	may	also	include	some	additional	information	like
security	credentials,	or	the	data	representation	which	should	be	used.

As	a	practical	matter,	some	big	web	services	will	require	us	to	sign	up	and	get	an	API	Key.
This	is	how	the	data	providers	track	usage	and	determine	if	you’re	doing	something	that’s
billable.	Many	agents	have	a	large	collection	of	API	keys	for	a	large	number	of	data
sources.	Some	APIs	are	revenue	sources	for	the	host	organization.	As	every	agent	knows,
information	has	value.

We’ll	focus	our	efforts	on	open	data,	readily	available	from	government	agencies	at	many
levels.	We’ll	use	the	data.gov	catalog	as	an	example	of	basic	RESTful	API	requests.

For	information,	start	at	https://www.data.gov.	You	may	also	want	to	bookmark	the
http://ckan.org/developers/about-ckan/	pages,	since	the	CKAN	project	is	used	to
implement	the	services	in	data.gov.

Here’s	a	function	that	we	can	use	to	get	the	list	of	available	datasets:

import	urllib.request

import	urllib.parse

import	json

import	pprint

def	get_packages(query,	start=0,	rows=100):

				request=	{'q':	query,	'start':	start,	'rows':	rows}

				data_string	=	urllib.parse.quote(json.dumps(request)).encode('utf-8')

				with	urllib.request.urlopen(

												'http://catalog.data.gov/api/3/action/package_search',

												data_string)	as	response:

								assert	response.code	==	200,	"Unexpected	response	

{0}".format(response.code)

								response_dict	=	json.loads(response.read().decode('utf-8'))

				assert	response_dict['success'],	"Failed	request	{0}".format(response)

				print("Total	Available",	response_dict['result']['count'])

				for	item	in	response_dict['result']['results']:

								print(item['name'])	

We	used	two	modules	within	the	urllib	package	to	make	RESTful	requests.	The
urllib.parse	module	helps	us	create	proper	query	strings	and	request	bodies.	The
urllib.request	module	actually	makes	the	Internet	connection	and	gathers	the	response

http://data.gov
https://www.data.gov
http://ckan.org/developers/about-ckan/
http://data.gov

data.	We	also	used	the	json	module	because	the	requests	and	replies	are	Python	objects	in
JSON	notation.

The	request	body	starts	as	a	dictionary	named	request.	We	set	three	of	the	variables	that
are	used	for	package	search	requests.	The	query	is	the	package	subject	area;	the	start	and
rows	parameters	are	used	to	paginate	the	responses.	Waiting	for	6,000	responses	can	take	a
fairly	long	time:	it’s	considered	unacceptable	for	an	interactive	website.	Requesting
batches	of	rows	using	the	start	and	rows	is	how	we	cut	down	on	the	time	required	to
respond.

We	do	a	three-step	dance	to	prepare	data	as	part	of	a	RESTful	request:

1.	 Dump	the	request	into	JSON	notation	using	the	json	module.
2.	 Add	quote	characters	so	that	the	JSON	will	not	confuse	the	HTTP	request	protocol.

An	HTTP	request	has	a	simple	syntax	and	some	characters	would	cause	problems	if
they	were	part	of	the	request	string.	For	example,	an	out-of-place	space	character	can
make	the	HTTP	request	invalid.	The	urllib.parse.quote()	function	will	replace	a
space	with	the	sequence	%20,	for	example.	API	servers	will	unquote	the	data.

3.	 Encode	the	string	using	UTF-8	encoding	rules	to	create	a	bytes	object.	All	web
traffic	works	in	bytes.	As	a	general	rule,	many	(but	not	all)	websites	expect	the	bytes
to	be	a	UTF-8	encoding	of	a	string.	In	some	cases,	we	might	have	to	use	ASCII	or
US-ASCII	encoding.	UTF-8	is	a	way	to	encode	the	entire	domain	of	Unicode
characters.	The	ASCII	(or	US-ASCII)	encodings	use	a	small	subset	of	characters.

We	can	then	open	the	given	URL,	allowing	us	to	read	the	response.	There	are	several	parts
to	the	response	to	a	RESTful	API	request.	The	HTTP	protocol	specifies	a	status,	some
headers,	and	a	potential	body.	The	HTTP	status	has	a	numeric	code	and	a	string	of	text.
We’re	interested	in	successful	requests,	which	have	a	numeric	code	of	200;	the	text	is
often	the	string	"OK".	We’re	not	interested	in	the	headers—we	simply	ignored	them.

There	are	a	number	of	commonly	used	status	codes.	The	general	principle	is	that	codes
starting	with	2	indicate	success.	Codes	starting	with	1	are	intermediate	status,	and	aren’t
common	in	HTTP	processing.	Codes	starting	with	3	mean	that	something	more	needs	to
be	done	to	get	a	useful	response.	Codes	starting	with	4	mean	that	the	request	is	invalid	in
some	way.	Codes	starting	with	5	indicate	that	the	API	server	is	having	a	problem.

We’re	very	interested	in	the	body	of	a	successful	request.	To	process	the	body,	we	do
another	three-part	dance:

1.	 Read	the	bytes	from	the	body.
2.	 Decode	the	bytes	to	create	a	Python	string.	We	follow	the	general	rule	of	expecting

that	the	bytes	are	encoded	via	UTF-8.	It’s	possible	that	some	servers	will	use	ASCII
or	US-ASCII	for	their	encoding.

3.	 Use	the	JSON	module	to	parse	the	JSON	data	and	create	a	proper	Python	object	that
we	can	work	with.	The	Python	object	created	will	often	be	a	dictionary.	Some	APIs
may	respond	with	a	list.	In	this	case,	the	response	is	defined	as	a	dictionary	with	four
standard	keys.

Once	we	have	the	final	dictionary	object,	we	can	look	inside	to	see	the	details	of	the
response.	The	CKAN	definitions	say	that	there	will	be	three	keys	in	the	dictionary:

help:	This	will	provide	more	information	on	the	request	being	made.
success:	This	will	be	True	or	False.
result:	When	success	is	True,	this	will	have	the	expected	results.	This	is	the	data	we
wanted;	we	refer	to	it	as	response_dict['result']	in	the	function	shown
previously.
Error:	when	success	is	False,	this	will	have	details	of	the	error.

The	general	outline	of	processing	shown	above	is	universally	true	of	all	requests	made	to	a
site	using	CKAN.	We’ll	create	a	request	object	and	send	the	request.	We	examine	the
response	in	two	ways:	the	general	HTTP	status	must	be	successful	and	the	detailed	status
inside	the	response	document	must	also	indicate	success.

The	final	part	of	the	processing	is	unique	to	the	package_search	request.	The	response	to
this	request	is	a	dictionary	with	the	requested	packages.	We	only	show	two	parts	of	this
dictionary:

response_dict['result']['count']:	This	is	the	overall	count	of	packages	that
match	the	search	request.	We	can	use	this	to	step	through	a	sequence	of	page
requests.	Alternatively,	we	can	make	a	huge	request	for	everything.
response_dict['result']['results']:	This	will	be	a	list	of	individual	data
packages.	There’s	a	wealth	of	detail	describing	each	package.	We	haven’t	shown	the
details,	and	we’ll	leave	studying	the	details	to	each	field	agent.

Note	that	data.gov	doesn’t	keep	the	data	itself;	they	only	keep	metadata	about	the	package
of	data.	Each	individual	package	will	have	its	own	URL	that	can	then	be	used	to	access	the
data.	This	will,	of	course,	involve	additional	RESTful	API	requests	to	get	the	data.
However,	if	the	data	is	offered	by	a	site	that	doesn’t	use	CKAN,	then	the	details	of	the
request	and	response	will	not	match	the	CKAN	protocol	shown	here.

The	core	steps	of	RESTful	API	processing	as	generally	very	consistent.	CKAN	illustrates
general	best	practices	in	using	JSON	and	responding	with	a	standardized	dictionary	that
contains	the	response	as	well	as	more	detailed	status.

http://data.gov

Who’s	doing	the	talking?
We’ll	use	the	TwitterAPI	module	to	gather	information	about	people	by	using	the	Twitter
social	network.	This	is	not	necessarily	the	“best”	social	network.	It’s	widely-used	and	has
a	good	API.	Other	social	networking	software	is	also	important,	and	worthy	of	study.	We
have	to	begin	somewhere,	and	Twitter	seems	to	have	a	fairly	low	barrier	to	entry.

In	Chapter	1,	New	Missions,	New	Tools,	we	downloaded	the	Twitter	API.	For	information
on	how	to	use	this	package,	visit	http://pythonhosted.org/TwitterAPI/.

The	first	step	to	using	Twitter	is	to	have	a	Twitter	account.	This	is	easy	and	free.	Agents
who	don’t	have	a	Twitter	account	can	sign	up	at	http://www.twitter.com.	Once	signed	up,
agents	might	want	to	follow	the	Twitter	feed	of	PacktPub	(https://twitter.com/PacktPub)	to
see	how	Twitter	works.

An	agent	will	need	to	provide	a	mobile	phone	number	to	Twitter	to	create	applications.
The	information	is	available	here:	https://support.twitter.com/articles/110250-adding-your-
mobile-number-to-your-account-via-web.

We	need	to	click	on	our	personal	icon	in	the	upper-right	corner	of	the	page	to	get	a	drop-
down	menu	of	choices,	one	of	which	is	settings.	On	the	settings	page,	there’s	a	long	list	of
specific	settings	down	the	left-hand	side.	The	mobile	tab	is	where	we	enter	a	phone
number.	The	Twitter	platform	will	send	a	text	message	to	the	given	phone	number.	When
we	enter	the	code	from	that	text	message,	we	have	provided	some	small	bit	of	assurance
that	we’re	a	real	human	being,	not	some	automated	bot	trying	to	abuse	the	Twitter
platform.

In	order	to	use	the	APIs,	we	need	to	sign	in	to	Twitter	and	generate	oAuth	keys.	We’ll
focus	on	oAuth2,	sometimes	called	application	authentication.	This	gives	us	read-only
access	to	Twitter.	Until	we’re	tasked	with	counter-intelligence,	we	won’t	need	to	post
information.	We	want	to	focus	on	gathering	and	analyzing	information.

We’ll	wind	up	at	this	page:	https://apps.twitter.com/app/new.	Here’s	what	it	looks	like:

http://pythonhosted.org/TwitterAPI/
http://www.twitter.com
https://twitter.com/PacktPub
https://support.twitter.com/articles/110250-adding-your-mobile-number-to-your-account-via-web
https://apps.twitter.com/app/new

We	need	to	provide	three	pieces	of	information:

Application	name:	This	must	be	short	(32	characters	at	most).	We’re	doing	analysis
of	relationships	among	people,	so	we	need	to	pick	some	name	that	summarizes	this.
A	clever	pun	or	tricky	misspelling	is	not	necessary	at	this	time.	An	agent	code	name
might	work	out	well.
Description:	This	can	be	up	to	200	characters	summarizing	what	we’re	doing.
Website:	Ideally,	a	personal	site	that	might	(someday)	host	an	analytical	application.
Twitter	provides	this	helpful	advice:	If	you	don’t	have	a	URL	yet,	just	put	a
placeholder	here	but	remember	to	change	it	later.	At	this	point,	some	agents	might
want	to	sign	up	with	the	Google	Cloud	Platform	to	get	a	URL	they	can	use	to	deploy
web	applications.	Visit	https://cloud.google.com/appengine/docs/python/	for	more
information.

We	won’t	be	using	the	callback	feature,	so	we’ll	leave	the	callback	URL	field	empty.

https://cloud.google.com/appengine/docs/python/

We	should	read	the	Developer	Agreement,	particularly	part	IV	on	Ownership	to	be	sure
we	see	what	limitations	we	need	to	work	under.	We’ll	need	to	agree	to	the	terms	and
conditions	before	we	can	create	our	application.	Once	the	application	has	been	created,
we’ll	see	a	page	that	includes	this	information.

We	have	several	things	that	we’ll	need	to	collect	from	this	page.	The	security	tokens	that
are	shown	here	will	become	part	of	each	of	our	Twitter	API	requests.	These	tokens	are
passwords	that	our	application	will	use	to	authenticate	itself	in	a	general	way.

For	some	requests,	we’ll	need	the	pair	of	Access	Tokens	also.	This	is	used	to	authenticate
an	individual	user	to	Twitter.	Requests	which	make	any	changes	(for	example,	posting	a
new	tweet)	need	both	application	authentication	as	well	user	authentication.

Starting	with	someone	we	know
Let’s	start	exploring	the	social	media	space	by	getting	some	profile	information	about
ourself.	We	need	to	have	a	Twitter	account	in	order	to	access	the	social	network.	What	can
other	users	see	about	us?

When	we	look	at	the	Twitter	API	documentation,	we	start	here:
https://dev.twitter.com/overview/documentation.	This	includes	the	REST	APIs	as	well	as
the	streaming	APIs.	We	won’t	dwell	on	the	streaming	data	feeds	because	they	involve
downloads	from	Twitter	to	our	computer.	We	can	do	this	on	a	personal	computer,	but	it
works	out	better	with	a	larger	server	that	can	be	dedicated	to	acquiring,	digesting,	and
publishing	data	as	it	arrives.

The	interesting	bits,	however,	are	here:	https://dev.twitter.com/rest/public.	This	section
describes	the	REST	APIs	that	will	allow	us	to	probe	more	selectively	into	the
“Twitterverse”	of	data.	We’re	going	to	exercise	this	API	first:
https://dev.twitter.com/rest/reference/get/users/show.

The	documentation	shows	the	complete	URL:

https://api.twitter.com/1.1/users/show.json

This	is	the	complete	path	to	a	resource.	If	we’re	going	to	be	writing	our	own	processing
using	urllib.request,	this	is	some	of	the	essential	information	required	to	build	a	valid
request.	Since	we’re	going	to	be	leveraging	the	TwitterAPI	module,	we	don’t	need	to	use
all	of	the	available	details.	In	fact,	we	only	need	the	name	of	the	API:	users/show.	This	is
an	abbreviated	version	of	the	path	to	the	resource.

The	path	isn’t	the	entire	thing	we	need	to	send.	We’ll	also	need	to	send	a	query	string.	The
default	kind	of	request	uses	the	HTTP	GET	method,	and	the	data	attached	to	a	GET
request	is	often	shown	after	a	?	symbol	in	the	URL.

We	also	need	the	consumer	key	and	consumer	secret	that	were	issued	to	us	when	we
signed	up.	The	whole	call	to	Twitter	looks	like	this:

from	TwitterAPI	import	TwitterAPI

consumer_key	=	'from	your	application	settings	page'

consumer_secret	=	'also	from	your	application	settings'

api	=	TwitterAPI(consumer_key,

																	consumer_secret,

																	auth_type='oAuth2')

response=	api.request('users/show',	{'screen_name':'PacktPub'})

print("status",	response.status_code)

print("headers",	response.headers)

We	imported	the	TwitterAPI	class	from	the	TwitterAPI	module.	We	set	two	variables
with	the	consumer	key	and	consumer	secret	information	from	the	application	information
page.	Each	agent	will	need	to	paste	in	their	own	unique	consumer	key	and	consumer
secret.	We’re	using	application-level	security,	called	oAuth2;	this	gives	us	read-only
access.

https://dev.twitter.com/overview/documentation
https://dev.twitter.com/rest/public
https://dev.twitter.com/rest/reference/get/users/show
https://api.twitter.com/1.1/users/show.json

We	create	an	object,	api,	which	contains	all	of	the	security	overheads.	Once	we	have	this
object,	we	can	make	repeated	requests	without	having	to	rebuild	it.

The	users/show	request	requires	parameters	to	clarify	which	user	and	whether	or	not	we
want	the	“entities”	associated	with	this	account.	For	information	on	the	entities,	visit
https://dev.twitter.com/overview/api/entities.	Entities	are	hashtags,	media,	URLs,	and	user
mentions.	These	are	the	important	details	that	connect	the	social	network.	We’re	very
interested	in	this.

We	printed	the	status	code	(usually	200)	and	the	batch	of	headers.	Generally,	the	headers
aren’t	too	interesting,	since	they’re	largely	technical	details.	One	interesting	detail	is	this
header:

'x-rate-limit-remaining':	'177'

This	shows	us	how	many	requests	we	can	make	in	a	given	15-minute	interval.	This	is
shows	us	how	Twitter	assures	that	its	servers	are	responsive.	When	the	limit	remaining
reaches	zero,	we’re	cut	off.

The	most	interesting	part	of	the	response,	however,	is	the	JSON	payload	that	was
downloaded.

Here’s	a	handy	way	to	print	that	payload:

import	json

print(json.dumps(response.json(),	indent=2))

The	value	of	response.json()	is	the	Python	object	that	had	been	encoded	into	JSON
notation	by	the	Twitter	server.	This	is	often	a	dictionary,	but	it	can	also	be	a	list.	We	used
the	json	module	to	create	a	nicely-formatted	dump	by	rebuilding	the	JSON	object	from
the	Python	object.

This	does	double	the	effort	by	creating	a	Python	object	from	JSON	and	then	recreating
some	JSON.	It	also	introduces	a	tiny	bit	of	variability	because	the	Python	object	will	use	a
default	dictionary	that	does	not	guarantee	the	order	of	the	keys.	It’s	much	easier	to	read,
and	it	is	worth	the	effort	to	make	debugging	easier.

The	output	is	immense.	It	starts	like	this:

{

		"contributors_enabled":	false,

		"is_translation_enabled":	false,

		"favourites_count":	494,

		"profile_link_color":	"0084B4",

		"profile_sidebar_fill_color":	"CC9933",

		"profile_background_color":	"FFA200",

		"has_extended_profile":	false,

		"profile_background_image_url_https":	

"https://pbs.twimg.com/profile_background_images/498821312354058242/-

H6BGz56.png",

		"profile_background_image_url":	

"http://pbs.twimg.com/profile_background_images/498821312354058242/-

H6BGz56.png",

		"statuses_count":	9651,

https://dev.twitter.com/overview/api/entities

		"profile_image_url_https":	

"https://pbs.twimg.com/profile_images/622000526033592320/oHzUsSbm_normal.pn

g",

		"profile_location":	null,

		"utc_offset":	3600,

		"name":	"Packt	Publishing",

		"url":	"http://t.co/vEPCgOu235",

It	continues	on	for	many	more	lines	of	code.	There’s	a	lot	of	technical	details	that	Twitter
makes	available.

Finding	our	followers
The	really	important	features	of	a	social	network	are	the	connections	among	the	people.
Twitter	exposes	this	with	two	sets	of	relationships:	who	follows	a	user	and	who	a	user	is
following;	the	latter	group	are	called	friends.

Relationships	are	directional.	If	A	has	a	friend	B,	then	A	is	usually	notified	when	B	posts
something	(unless	B	is	muted).	This	is	revealed	from	A‘s	friend	list.	In	addition,	we	will
also	see	A	placed	in	B‘s	followers	list;	which	is	a	redundant	description	of	the	relationship.
If	B	has	a	friend	A,	then	the	relationship	is	mutual.	We	line	from	A	to	B	or	B	to	A	has	a
start	viewpoint	and	an	end	viewpoint.

Connections	among	a	larger	group	can,	of	course,	be	considerably	more	complex.

There	are	(at	most)	 	possible	connections	among	n	people.	This	is
sum(range(n)).	The	proof	is	interesting,	but	we’ll	leave	it	to	each	agent	to	work	out	the
details	of	why	this	has	to	be	true.

Who	follows	us?	We’ll	need	to	make	a	query	for	the	followers/list	resource.	This	query
is	rather	complex	because	there	could	be	multiple	pages	of	responses.	Imagine	someone
who	has	millions	of	followers:	a	single	response	listing	all	the	followers	would	be	huge.
Twitter	sends	back	results	in	batches	using	fields	called	“cursors”	to	allow	paging	forward
(and	backward)	through	the	results.	Visit	https://dev.twitter.com/overview/api/cursoring
for	more	information	on	how	this	works.

We’ll	need	to	take	a	more	intentional	approach	to	working	with	cursors.	We	need	to
address	an	issue	sometimes	called	the	“loop	and	a	half”	problem.	Visit
https://www.cs.duke.edu/~ola/patterns/plopd/loops.html#loop-and-a-half	for	a	brief
summary.

This	is	a	common	design	concern.	From	one	point	of	view,	we	want	to	exit	in	the	middle
of	the	indented	code	in	a	while	statement:	we’re	forced	to	use	an	if…break	statement,
which	makes	the	condition	on	the	while	statement	itself	moot.	From	another	point	of
view,	we	have	asymmetric	processing	around	the	cursor:	either	the	first	or	last	response
has	to	be	handled	outside	the	while	statement.	While	many	agents	are	comfortable	with
the	break	statement,	HQ	prefers	to	avoid	it	if	possible:	they	recommend	the	status	variable
pattern	shown	below.

Our	list_followers_by_screen_name()	function	will	accept	a	screen	name	and	will
print	all	of	the	followers.	These	are	the	direct	followers:	people	who	will	be	notified	of	a
tweet.	Beyond	them	is	a	second	tier	of	followers	who	will	see	retweets.	This	second	tier
can	be	surprisingly	large.

We’ll	break	this	function	into	two	parts.	In	the	first	part,	we’ll	define	a	nested	function	to
display	useful	information	from	the	response	object:

def	list_followers_by_screen_name(screen_name):

				counter=	0

https://dev.twitter.com/overview/api/cursoring
https://www.cs.duke.edu/~ola/patterns/plopd/loops.html#loop-and-a-half

				def	show_user_list(response):

								nonlocal	counter

								for	u	in	response['users']:

												print(u['name'],	u['screen_name'],	u['friends_count'])

												counter	+=	1

This	inner	show_user_list()	function	steps	through	the	response	object,	showing	all	of
the	items	associated	with	the	'users'	key.	This	value	is	a	list	of	objects	that	show	detailed
information	about	each	Twitter	user	in	the	response.	Since	this	is	inside	a	function	that
fetches	followers,	each	user	displayed	will	be	a	follower	of	some	central	user.

We	used	the	nonlocal	statement	so	that	we	can	increment	the	counter	variable	that’s	part
of	the	parent	function.	The	nonlocal	statement	is	rarely	needed;	without	it,	however,
there’s	no	other	good	way	to	do	this	simple	thing.	The	alternatives	either	involve	global
variables	or	error-prone	complications.

For	each	user,	we’re	just	printing	a	few	things.	The	friends	count	shows	us	how	large	the
social	circle	becomes	when	we	include	friends	of	our	followers.

We	don’t	technically	need	a	nested	function	for	this.	However,	it	seems	slightly	simpler	to
disentangle	the	display	portions	from	the	request	portions	of	the	overall	function.	We’ll
often	tweak	the	display	without	needing	to	disturb	the	larger	context	of	request	and
response	handling.

The	second	part	of	the	list_followers_by_screen_name()	function	does	the	request
processing:

				api	=	TwitterAPI(consumer_key,

																					consumer_secret,

																					auth_type='oAuth2')

				cursor=	-1

				while	cursor	!=	0:

								response=	api.request('followers/list',	

												{'screen_name':screen_name,	'cursor':cursor})

								assert	response.status_code	==	200,	"Request	failed:	

{text}\n{headers}".format_map(vars(response))

								body=	response.json()

								show_user_list(body)

								cursor=	body['next_cursor']

				print("Total	{counter}".format_map(vars))

We	build	the	TwitterAPI	object	using	the	required	application	keys.	We	can	then	use	this
object	to	make	multiple	requests.	In	a	larger	or	more	complex	application,	we’ll	often
build	just	one	of	these	during	initialization,	and	use	it	throughout	the	application’s
processing.

We	initialized	a	status	variable,	cursor,	to	the	starting	value	of	-1.	This	tells	the	Twitter
application	that	this	is	our	first	request	and	we	want	to	start	at	the	beginning	of	the	list	of
followers.

The	actual	request	uses	the	resource	path,	'followers/list',	and	two	parameter	values:
the	screen	name	of	the	user	we’re	asking	about	and	the	cursor	value	used	to	step	through
the	result	set.	Initially,	the	cursor	value	is	-1,	but	this	will	change	with	each	request.

We	used	an	assert	statement	to	show	that	our	request	has	a	status_code	value	of	200.	If
the	value	is	not	200,	this	will	raise	an	AssertionError.	We	could	use	an	if…raise
statement	for	this.	The	problem	with	the	assert	statement	is	that	it’s	terribly	long.	The
most	common	error	will	be	running	afoul	of	the	rate	limiting	rules	in	Twitter.	An	agent	to
tries	to	gather	too	much	data	too	quickly	will	find	themselves	cutoff	temporarily.

We	decoded	the	body	object	from	its	JSON	representation	and	provided	this	object	to	our
nested	function,	show_user_list().	This	will	display	information	about	the	followers.	It
will	also	count	the	total	number	of	followers.

We	then	extracted	the	value	of	body['next_cursor']	from	the	response	object.	If	this	is
0,	there	is	no	more	data.	If	this	is	non-zero,	we	must	provide	it	in	our	request	so	that	we
get	the	next	batch	of	followers.	We	update	the	cursor	variable	so	that	our	while	statement
has	an	invariant	condition:	a	non-zero	cursor	value	means	we	can	make	a	valid	request.

How	many	second-tier	followers	do	we	see	in	the	results?

We’ll	need	to	tweak	this	program	to	do	more	than	simply	count	followers.	We’ll	need
some	additional	variables,	and	we’ll	need	to	update	the	nonlocal	statement.	This	is	your
mission:	count	up	the	second-tier	followers.

What	do	they	seem	to	be	talking	about?
Finding	the	social	network	is	only	the	first	step.	We	want	to	examine	the	conversation,
also.	We’ll	look	at	two	aspects	of	this	conversion:	words	and	pictures.	Our	first
background	mission	in	this	section	was	to	be	sure	we	had	Pillow	working	properly.	This
will	also	help	us	download	pictures.

Words	are	somewhat	simpler.	Interestingly,	the	tweet	content	isn’t	obvious	in	the	Twitter
API	definitions.	It	turns	out	that	“status”	is	what	we’re	looking	for.	The	resource	called
statuses/user_timeline	has	the	tweets	made	by	a	given	user.

Each	status	or	tweet	is	packaged	with	a	collection	of	entities.	These	are	the	URL
references,	media	attachments,	@	user_mentions,	#	hashtags,	and	$	symbols.	The	entities
are	separated	from	the	body	of	the	tweet,	which	greatly	simplifies	our	analysis.

Here’s	a	function	to	get	the	last	20	tweets	from	a	user:

def	tweets_by_screen_name(screen_name):

				api	=	TwitterAPI(consumer_key,

																					consumer_secret,

																					auth_type='oAuth2')

				response=	api.request('statuses/user_timeline',

																														{'screen_name':screen_name,	'count':20})

				for	item	in	response.json():

								text=	item['text']

								entities=	item['entities']

								#	entities	include	$symbols,	@user_mentions,	#hashtags,	urls,	media

								sym_list	=	[s['text']	for	s	in	entities['symbols']]

								user_list	=	[u['screen_name']	for	u	in	entities['user_mentions']]

								hash_list	=	[h['text']	for	h	in	entities['hashtags']]

								url_list	=	[u['expanded_url']	for	u	in	entities['urls']]

								if	'media'	in	entities:

												media_list	=	[m['media_url']	for	m	in	entities['media']]

								else:

												media_list	=	[]

								print(item['text'],	"$",	sym_list,	"@",	user_list,	

												"#",	hash_list,	url_list,	media_list)

As	with	the	previous	examples,	we	build	an	instance	of	TwitterAPI	using	our	two	keys.
We	used	this	object	to	request	the	statuses/user_timeline	resource	for	a	particular
screen	name.	We	limited	this	to	the	last	20	tweets	to	keep	the	response	small	and	focused.

The	response	object	will	be	a	list	of	individual	status	tweets.	We	can	iterate	through	that
object,	processing	each	individual	item	separately.	The	value	of	item['text']	is	the
actual	tweet.	But	there’s	a	great	deal	of	additional	information	about	the	tweet.	We
decomposed	the	various	entities	associated	with	a	tweet	to	show	some	of	the	details
available.

The	value	of	item['entities']	will	be	a	dictionary	with	a	number	of	keys,	including
'symbols',	'user_mentions',	'hashtags',	'urls',	and	(optionally)	'media'.	Each	one
of	these	various	kinds	of	entities	has	a	number	of	attributes,	including	the	text	value	that
was	part	of	the	original	tweet	and	the	indices	that	show	the	character	position	occupied	by

the	entity.	Some	entity	types	are	pure	text,	with	no	additional	details.	Other	entity	types
(such	as	URLs	and	media)	have	considerable	additional	detail.	We’ll	look	at	the	media
separately.

We	used	a	list	comprehension	to	create	a	list	of	values	from	each	type	of	entity.	Each
comprehension	is	similar	to	this:

[s['text']	for	s	in	entities['symbols']]

This	will	iterate	through	the	sequence	of	values	found	in	entities['symbols'].	Each	of
those	objects	is	a	tiny	dictionary,	which	is	assigned	to	the	s	variable	inside	the	for
expression.	The	values	of	s['text']	become	the	resulting	list.

Here’s	the	thing	which	is	printed	from	this:

What	does	the	#appdev	industry	look	like	today?	Find	out	with	our	#SkillUp	

report!	http://t.co/ocxVJQBbiW	http://t.co/nKkntoDWbs	$	[]	@	[]	#	

['appdev',	'SkillUp']	['http://bit.ly/PacktDailyOffer']	

['http://twitter.com/PacktPub/status/626678626734333956/photo/1']

You	can	see	the	text	of	the	tweet	first.	There	are	no	$	symbols,	nor	any	specific	@	user
mentions.	There	are	two	#	hashtags:	appdev	and	SkillUp.	There’s	a	URL	in	the	tweet	as
well	as	a	chunk	of	media	associated	with	the	tweet.	We	can	pursue	the	URL’s	to	download
additional	content	related	to	this	tweet.

This	leads	us	to	several	additional	topics:	we	can	download	the	media	objects	to	see	the
images.	As	we	noted	in	the	first	background	briefing,	we	need	to	use	Pillow	to	confirm
that	these	files	are	valid.	We	can	open	the	referenced	URL	and	use	BeautifulSoup	to
extract	the	text	from	the	page	to	get	detailed	additional	content.

We	can	also	use	more	advanced	Twitter	search	functions	to	examine	hashtags,	user
mentions,	followers,	and	friends.	One	interesting	bit	of	intelligence	gathering	is	to	rank
followers	and	friends	based	on	their	rate	of	retweeting.	We	can	locate	influencers	this	way
by	tracking	popular	retweeted	content	back	to	its	source.

What	are	they	posting?
To	gather	images	being	posted,	we’ll	modify	our	query	that	retrieves	tweets.	We’ll	get	the
media	URL	from	the	tweet,	use	urllib.request	to	get	the	image	file,	and	use	Pillow	to
confirm	that	it’s	a	valid	image	and	create	a	thumbnail	of	the	image.	While	there	are	a	lot	of
steps,	each	of	them	is	something	we’ve	already	seen.

We’ll	break	this	function	into	two	parts:	the	Twitter	part	and	the	image	processing	part.
Here’s	the	first	part,	making	the	essential	Twitter	request:

import	urllib.request

import	urllib.parse

from	PIL	import	Image

import	io

def	tweet_images_by_screen_name(screen_name):

				api	=	TwitterAPI(consumer_key,

																					consumer_secret,

																					auth_type='oAuth2')

				response=	api.request('statuses/user_timeline',

																														{'screen_name':screen_name,	'count':30})

				for	item	in	response.json():

								text=	item['text']

								entities=	item['entities']

								if	'media'	in	entities:

												media_list	=	entities['media']

								else:

												media_list	=	[]

								print(item['text'],	item['entities'].keys(),	media_list)

The	four	imports	are	entirely	focused	on	extracting	the	image	file.	We’ll	look	at	those
next.

As	with	other	examples,	we	created	the	essential	TwitterAPI	object.	We	make	a	request
for	the	statuses/user_timeline	resource,	providing	the	screen	name	of	someone	whose
images	we	want	to	examine.	For	each	tweet,	we	extract	the	text	and	the	entities.	From	the
entities,	we	extract	the	list	of	media	items,	if	the	'media'	key	is	present	in	the	entities
dictionary.	We	can	print	the	tweet	and	the	details	of	the	media.

The	output	will	include	lines	like	this:

Use	#Pentaho?	Grab	our	free	eBook	and	handle	all	kinds	of	data	

manipulation!	http://t.co/ocxVJQBbiW	http://t.co/Wsu93Xpizo	

dict_keys(['urls',	'user_mentions',	'media',	'hashtags',	'symbols'])	

[{'type':	'photo',	'id':	626316242257776640,	'url':	

'http://t.co/Wsu93Xpizo',	'indices':	[100,	122],	'display_url':	

'pic.twitter.com/Wsu93Xpizo',	'id_str':	'626316242257776640',	

'expanded_url':	

'http://twitter.com/PacktPub/status/626316242329034752/photo/1',	

'media_url_https':	'https://pbs.twimg.com/media/CLEfTdDVEAAHw1i.png',	

'media_url':	'http://pbs.twimg.com/media/CLEfTdDVEAAHw1i.png',	'sizes':	

{'large':	{'w':	590,	'h':	295,	'resize':	'fit'},	'thumb':	{'w':	150,	'h':	

150,	'resize':	'crop'},	'small':	{'w':	340,	'h':	170,	'resize':	'fit'},	

'medium':	{'w':	590,	'h':	295,	'resize':	'fit'}}}]

Notice	that	Twitter	provides	size	information	for	large,	medium,	and	small,	versions	of	the
image	using	information	like	'resize':	'fit'.	This	can	be	useful	for	scaling	the	image
and	maintaining	the	shape.	It	also	provides	'thumb':	{'w':	150,	'h':	150,	'resize':
'crop'}.	This	seems	to	be	advice	on	cropping	the	image	down	to	a	smaller	size;	we	don’t
think	this	is	as	useful	as	the	other	sizing	information.

Here’s	the	second	part,	processing	each	image	in	the	entities	list	associated	with	a	tweet:

								for	media_item	in	media_list:

												url_text	=	media_item['media_url']

												parsed_name=	urllib.parse.urlparse(url_text)

												filename=	parsed_name.path.split('/')[-1]

												with	urllib.request.urlopen(url_text)	as	image_file:

																data	=	image_file.read()

												temp_file	=	io.BytesIO(data)

												im	=	Image.open(temp_file)

												im.show()

												#im.save(filename)

We	saved	the	value	of	the	'media_url'	in	the	url_text	variable.	We	then	used	the
urllib.parse.urlparse()	function	to	parse	this	URL	so	that	we	can	decompose	the	full
URL	and	get	a	filename.	The	result	of	parsing	is	a	namedtuple	with	the	various	elements
of	a	URL,	which	we	assigned	to	the	parsed_name	variable.	From	this	variable,	we	used
the	parsed_name.path	attribute,	which	ends	with	a	filename.

For	example,	http://pbs.twimg.com/media/CLEfTdDVEAAHw1i.png	has	a	path
media/CLEfTdDVEAAHw1i.png.	When	we	split	the	path	on	/	characters,	the	final	entry	is	the
filename,	CLEfTdDVEAAHw1i.png.

We	use	urllib.request.urlopen()	to	open	the	URL.	We	do	this	inside	a	with	statement
so	that	it	acts	as	a	context	manager	and	releases	any	network	resources	at	the	end	of	the
overall	with	statement.	We	read	the	data	without	actually	saving	a	local	file	on	our
computer.	We	need	to	confirm	that	the	image	is	valid.

We	created	an	io.BytesIO	object	from	the	bytes	read	from	the	file.	This	is	a	file-like
object	that	PIL.Image	can	use	instead	of	an	actual	file	on	a	local	computer.	If	the	image
can	be	opened,	it’s	a	valid	file.	Now,	we	can	do	things	like	show	it,	save	it	to	our	local
computer,	or	create	a	thumbnail	version	of	the	image.

Deep	Under	Cover	–	NLTK	and	language
analysis
As	we	study	Twitter	more	and	more,	we	see	that	they’ve	made	an	effort	to	expose
numerous	details	of	the	social	network.	They’ve	parsed	the	Tweet	to	extract	hashtags	and
user	mentions,	they’ve	carefully	organized	the	media.	This	makes	a	great	deal	of	analysis
quite	simple.

On	the	other	hand,	some	parts	of	the	analysis	are	still	quite	difficult.	The	actual	topic	of	a
Twitter	conversion	is	just	a	string	of	characters.	It’s	essentially	opaque	until	a	person	reads
the	characters	to	understand	the	words	and	the	meaning	behind	the	words.

Understanding	natural-language	text	is	a	difficult	problem.	We	often	assign	it	to	human
analysts.	If	we	can	dump	the	related	tweets	into	a	single	easy-to-read	document,	then	a
person	can	scan	it,	summarize,	and	decide	if	this	is	actionable	intelligence	or	just
background	noise.

One	of	the	truly	great	counter-intelligence	missions	is	Operation	Mincemeat.	There	are
many	books	that	describe	this	operation.	What’s	import	about	this	is	that	the	Allies
provided	enough	related	information	to	make	the	false	intelligence	data	appear	true.	The
Mincemeat	data	had	the	feel	of	truth	to	enough	of	the	Axis	intelligence	service,	that	it	was
trusted.

It’s	often	difficult	to	judge	between	truth	and	clever	fiction.	That’s	an	inherently	human
job.	What	we	can	automate,	however,	is	the	collection	and	summarization	of	data	to
support	that	judgment.

Artificial	languages	like	JSON	or	Python	have	rigid,	inflexible	rules	for	grammar	and
syntax.	Natural	languages	like	English	don’t	have	any	actual	rules.	What	we	have	are
conventions	that	many	people	know.	Native	speakers	learn	a	language	from	parents,	care-
givers,	neighbors,	teachers,	media,	vendors,	customers,	and	so	on.	While	teachers	can	try
to	impose	grammar	rules,	they’re	not	fixed,	and	they’re	rarely	even	required.	Book
publishers—in	an	effort	to	reach	the	widest-possible	audience—stick	assiduously	to
widely-accepted	grammar	rules.

Children	don’t	know	the	grammar	rules,	make	outrageous	mistakes,	and	are	still
understood.	Indeed,	we	often	chuckle	at	children	who	“goed	to	the	store	with	mommy.”
We	know	they	went	to	the	store	even	though	they	used	a	non-word	to	express	themselves.
We	can’t	use	the	primt()	function	in	Python.	We	get	a	syntax	error	and	that’s	it;	the
compiler	doesn’t	chuckle	politely	and	suggest	we	meant	print().	This	is	a	profound
difference	between	people’s	ability	to	understand	and	software	tools	that	parse	text.

As	human	members	of	social	networks,	we	follow	only	the	grammar	rules	that	apply
within	a	given	social	context.	In	some	contexts,	the	term	“7331	h4x0r”	is	perfectly
meaningful.	To	other	people,	the	jumble	of	symbols	looks	like	a	technical	glitch.	This
applies	across	languages,	as	well	as	applying	across	cultures	that	use	a	common	language.
Compare	British	English,	Australian	English,	and	American	English.	A	common-seeming

word	like	jumper	can	have	a	wide	variety	of	meanings.

While	the	problem	is	hugely	complex,	there	are	tools	we	can	apply.	The	premier	tool	for
natural	language	processing	is	the	Python	NLTK.	For	many	kinds	of	analysis,	this	tool	is
central	and	essential.	Some	people	learn	Python	only	so	that	they	can	use	NLTK	for
analysis	of	text.

NLTK	and	natural	language	analysis	is	too	complex	to	address	here.	Agents	are
encouraged	to	study	material	like	the	Python	3	Text	Processing	with	NLTK	3	Cookbook	by
author	Jacob	Perkins:

https://www.packtpub.com/application-development/python-3-text-processing-nltk-3-
cookbook

It’s	difficult	to	provide	more	than	a	few	ideas	here.	We’ll	suggest	that	there	are	two
common	strategies	that	can	help	with	natural	language	analysis:

Word	Stemming
Stop	Words

Word	stemming	refers	to	stripping	away	prefixes	and	suffixes	to	get	to	the	stem	of	a	word.
We	know	that	“goes”,	“went”,	and	“going”	are	all	related	to	the	verb	“to	go”	in	spite	of	the
problem	that	“went”	is	spelled	completely	differently.	By	stemming	words,	we	can	strip
away	features	that	aren’t	as	helpful	in	an	effort	to	look	for	the	real	meaning.

Stop	words	are	connectives	that	don’t	materially	impact	the	subject	of	the	text.	Words	like
“the”	and	“an”	are	called	stop	words	because	we	don’t	need	to	process	them.	The	exact	list
of	stop	words	relevant	to	a	particular	problem	domain	requires	careful	research.

Interested	agents	will	need	to	pursue	this	on	their	own.	It’s	beyond	the	scope	of	these
missions.

https://www.packtpub.com/application-development/python-3-text-processing-nltk-3-cookbook

Summary
We	discussed	the	basics	of	automated	analysis	of	the	social	network.	We	looked	at	one
particular	social	network:	the	people	who	use	Twitter	to	exchange	messages.	This	is	about
316	million	active	users,	exchanging	about	500	million	messages	a	month.	We	saw	how	to
find	information	about	specific	people,	about	the	list	of	friends	a	person	follows,	and	the
tweets	a	person	makes.

We	also	discussed	how	to	download	additional	media	from	social	networking	sites.	We
used	PIL	to	confirm	that	an	image	is	saved	to	work	with.	We	also	used	PIL	to	create
thumbnails	of	images.	We	can	do	a	great	deal	of	processing	to	gather	and	analyze	data	that
people	readily	publish	about	themselves.

In	the	next	chapter,	we’ll	look	at	another	source	of	data	that’s	often	difficult	to	work	with.
The	ubiquitous	PDF	file	format	is	difficult	to	process	without	specialized	tools.	The	file	is
designed	to	allow	consistent	display	and	printing	of	documents.	It’s	not,	however,	too
helpful	for	analysis	of	content.	We’ll	need	to	leverage	several	tools	to	crack	open	the
contents	of	a	PDF	file.

Chapter	4.	Dredging	up	History
Parse	PDF	files	to	locate	data	that’s	otherwise	nearly	inaccessible.	The	web	is	full	of	PDF
files,	many	of	which	contain	valuable	intelligence.	The	problem	is	extracting	this
intelligence	in	a	form	where	we	can	analyze	it.	Some	PDF	text	can	be	extracted	with
sophisticated	parsers.	At	other	times,	we	have	to	resort	to	Optical	Character	Recognition
(OCR)	because	the	PDF	is	actually	an	image	created	with	a	scanner.	How	can	we	leverage
information	that’s	buried	in	PDFs?

In	some	cases,	we	can	use	a	save	as	text	option	to	try	and	expose	the	PDF	content.	We
then	replace	a	PDF	parsing	problem	with	a	plain-text	parsing	problem.	While	PDFs	can
seem	dauntingly	complex,	the	presence	of	exact	page	coordinates	can	actually	simplify
our	efforts	at	gleaning	information.

Also,	some	PDFs	have	fill-in-the-blanks	features.	If	we	have	one	of	these,	we’ll	be	parsing
the	annotations	within	the	PDF.	This	is	similar	to	parsing	the	text	of	the	PDF.

The	most	important	consideration	here	is	that	a	PDF	is	focused	on	printing	and	display.
It’s	not	designed	to	be	useful	for	analysis.	In	order	to	overcome	this	limitation,	we’ll	need
to	have	a	powerful	toolkit	available.	The	primary	tool	is	Python	extended	with	the
PDFMiner3k	module.

The	other	tools	in	this	toolkit	are	our	personal	collection	of	functions	and	classes	that	we
can	use	to	extract	meaningful	content	from	PDFs.	There’s	no	single,	universal	solution	to
this	problem.	Different	documents	will	require	different	kinds	of	tweaks	and	adjustments
to	handle	the	document’s	unique	features.	We’ll	show	some	of	the	functions	that	serve	as	a
starting	point	in	building	this	toolkit.	As	agents	pursue	more	and	more	information,	they
will	inevitably	build	up	their	own	toolkits	of	unique	classes	and	functions.

This	section	will	cover	the	following	topics:

We’ll	start	with	a	background	briefing	on	PDF	documents.
We’ll	also	review	the	Python	techniques	of	generator	functions	that	can	yield
sequential	pieces	of	a	complex	document.	This	will	speed	up	processing	by	allowing
us	to	focus	on	meaningful	content	and	avoid	some	of	the	overheads	that	are	part	of
PDFs.
We’ll	also	look	at	how	Python	context	managers	and	the	with	statement	can	fit	nicely
with	picking	apart	the	content	in	a	PDF.
We’ll	pull	these	threads	together	to	create	a	resource	manager	that	helps	us	filter	and
extract	text	from	PDFs.
Once	we	have	the	raw	text,	we	can	use	layout	information	to	understand	how	tables
are	represented	so	that	we	can	extract	meaningful	tabular	data.
We’ll	tweak	the	layout	parameters	to	help	PDFMiner	assemble	meaningful	blocks	of
text	from	complex	tabular	layouts.
Finally,	we’ll	emit	useful	CSV-format	data	for	further	analysis.

Once	we	get	the	real	underlying	data,	we	can	apply	techniques	we	saw	in	Chapter	2,
Tracks,	Trails,	and	Logs,	to	the	raw	data.

Background	briefing–Portable	Document
Format
The	PDF	file	format	dates	from	1991.	Here’s	a	quote	from	Adobe’s	website	about	the
format:	it	can	capture	documents	from	any	application,	send	electronic	versions	of	these
documents	anywhere,	and	view	and	print	these	documents	on	any	machines.	The	emphasis
is	clearly	on	view	and	print.	What	about	analysis?

There’s	an	ISO	standard	that	applies	to	PDF	documents,	assuring	us	that	no	single	vendor
has	a	lock	on	the	technology.	The	standard	has	a	focus	on	specific	technical	design,	user
interface	or	implementation	or	operational	details	of	rendering.	The	presence	of	a	standard
doesn’t	make	the	document	file	any	more	readable	or	useful	as	a	long-term	information
archive.

What’s	the	big	problem?

The	Wikipedia	page	summarizes	three	technologies	that	are	part	of	a	PDF	document:

A	subset	of	the	PostScript	page	description	programming	language,	for	generating	the
page	layout	and	graphics
Font	management	within	the	document
A	document	storage	structure,	including	compression,	to	create	a	single	file

Of	these,	it’s	the	page	layout	that	causes	the	most	problems.

The	PostScript	language	describes	the	look	of	a	page	of	text.	It	doesn’t	require	that	the	text
on	that	page	is	provided	in	any	coherent	order.	This	is	different	from	HTML	or	XML,
where	tags	can	be	removed	from	the	HTML	source	and	a	sensible	plain	text	document	can
be	recovered.

In	PostScript,	text	is	commingled	with	page	layout	commands	in	such	a	way	that	the
underlying	sequence	of	characters,	words,	sentences	and	paragraphs	can	be	lost.
Pragmatically,	complete	obfuscation	of	a	page	is	rare.	Many	documents	occupy	a	middle
ground	where	the	content	is	difficult	to	parse.	One	common	quirk	is	out-of-place	headline
text;	we	have	to	use	the	coordinates	on	the	page	to	deduce	where	it	belongs	in	the	text.

PDF	can	be	abused	too.	In	the	most	extreme	cases,	people	will	print	some	content,	scan
the	pages,	and	build	a	PDF	around	the	scanned	images.	This	kind	of	document	will	display
and	print	nicely.	But	it	defies	simple	analysis.	More	complex	OCR	is	required	to	deal	with
this.	This	is	beyond	our	scope,	since	the	algorithms	can	be	very	complex.

Here’s	a	typical	document	that	contains	mountains	of	useful	data.	However,	it’s	hard	to
access	because	it’s	locked	up	in	a	PDF
(http://bhpr.hrsa.gov/healthworkforce/data/compendiumfederaldatasources.pdf).	The	title
is	the	Compendium	of	Federal	Data	Sources	to	Support	Health	Workforce	Analysis	April
2013.

Agents	interested	in	industrial	espionage—particularly	about	the	workforce—would	need
to	understand	the	various	sources	in	this	document.

http://bhpr.hrsa.gov/healthworkforce/data/compendiumfederaldatasources.pdf

Some	agents	agree	that	governments	(and	industry)	use	PDFs	entirely	to	provide	data	in	a
“see-but-don’t-touch”	mode.	We	can	only	leverage	the	data	through	expensive,	error-
prone,	manual	operations.	We	can’t	easily	reach	out	and	touch	the	data	digitally	to	do
deeper	analysis.

Extracting	PDF	content
In	Chapter	1,	New	Missions	–	New	Tools,	we	installed	PDF	Miner	3K	to	parse	PDF	files.
It’s	time	to	see	how	this	tool	works.	Here’s	the	link	to	the	documentation	for	this	package:
http://www.unixuser.org/~euske/python/pdfminer/index.html.	This	link	is	not	obvious
from	the	PyPI	page,	or	from	the	BitBucket	site	that	contains	the	software.	An	agent	who
scans	the	docs/index.html	will	see	this	reference.

In	order	to	see	how	we	use	this	package,	visit
http://www.unixuser.org/~euske/python/pdfminer/programming.html.	This	has	an
important	diagram	that	shows	how	the	various	classes	interact	to	represent	the	complex
internal	details	of	a	PDF	document.	For	some	helpful	insight,	visit
http://denis.papathanasiou.org/2010/08/04/extracting-text-images-from-pdf-files/.

A	PDF	document	is	a	sequence	of	physical	pages.	Each	page	has	boxes	of	text	(in	addition
to	images	and	line	graphics).	Each	textbox	contains	lines	of	text	and	each	line	contains	the
individual	characters.	Each	of	these	layers	has	positioning	information.	For	the	most	part,
the	textbox	positions	are	the	most	interesting,	and	we	can	use	those	to	disentangle
complex	documents.	Our	focus	is	on	the	central	relationships	of	document,	page,	and
textbox	within	the	page.

There	may	be	additional	information	like	forms	that	can	be	filled	in,	or	thumbnails	that
provide	an	outline	of	the	document.	This	information	can	also	be	extracted	from	the	PDF.
Seeing	the	outline	can	be	handy,	so	we’ll	start	with	that.

In	order	to	work	with	PDF	Miner,	we’ll	create	a	parsing	class.	We’ll	use	a	class	definition
for	this	because	some	elements	of	the	parsing	process	are	a	bit	too	complex	for	separate
functions.	Because	of	the	complex	entanglements	of	PDFParser,	PDFDocument,
PDFResourceManager,	and	PDFPageInterpreter,	we’ll	want	to	use	a	context	manager
to	be	sure	that	all	of	the	resources	are	released	when	we’re	done	working	with	a	given	file.

http://www.unixuser.org/~euske/python/pdfminer/index.html
http://www.unixuser.org/~euske/python/pdfminer/programming.html
http://denis.papathanasiou.org/2010/08/04/extracting-text-images-from-pdf-files/

Using	generator	expressions
Before	we	can	dig	into	the	nuances	of	PDFs,	we’ll	need	to	address	a	Python	programming
feature	that	the	PDFMiner	relies	on:	the	generator	function.	A	generator	function	behaves
in	some	ways	like	a	sequence	collection.	The	important	difference	is	that	a	sequence
collection	is	created	eagerly,	where	a	generator	function	is	lazy.

Eager:	All	the	items	in	collection	are	created	and	saved	in	memory.
Lazy:	The	items	in	the	collection	aren’t	created	until	they	demanded	by	a	for	loop	or
a	function	that	created	a	collection	like	list(),	tuple(),	set(),	or	dict().

The	simplest	kind	of	generator	is	a	generator	expression.	We	provide	three	pieces	of
information	in	a	syntax	that	looks	much	like	a	for	statement:

(expression	for	variable	in	source)

The	overall	expression	has	an	expression	which	is	evaluated	with	a	variable	assigned	each
value	from	some	source.	We	might	use	a	range()	object	as	a	source.	We	might	use	an
existing	list,	tuple,	set,	or	dict,	also.	We	can	even	use	a	file	as	a	source	of	lines.

Here’s	an	example:

>>>	gen=	(2*i+1	for	i	in	range(10))

>>>	gen

<generator	object	<genexpr>	at	0x1007a1318>

The	generator	expression	didn’t	create	anything	interesting.	The	value	of	the	gen	variable
is	the	generator.	The	output	is	an	obscure	note	that	it’s	a	generator	object	based	on	a
<genexpr>.	Since	the	object	is	lazy,	it	won’t	produce	anything	until	required.

Here’s	an	example	of	building	a	list	object	from	a	generator:

>>>	list(gen)

[1,	3,	5,	7,	9,	11,	13,	15,	17,	19]

When	we	applied	the	list()	function	to	the	generator	expression,	the	values	were
produced	by	the	generator	and	consumed	by	the	list()	function	to	create	a	resulting	list
object.

We	can	also	consume	the	items	manually	with	a	for	statement.	It	would	look	like	this:

>>>	gen2	=	(2*i+1	for	i	in	range(10))

>>>	s	=	0

>>>	for	x	in	gen2:

...					print(x)

...					s	+=	x

1

3

5

etc.

We	created	a	second	generator,	gen2,	which	is	identical	to	gen.	We	used	a	for	statement	to
consume	items	from	the	generator.	In	this	case,	we	produced	output	and	we	also	computed
the	sum	of	the	various	items	in	the	list.

It’s	important	to	note	that	generators	can	only	produce	their	data	items	once.	If	we	try	to
use	the	gen	or	gen2	generators	for	anything	else,	we’ll	find	that	they	won’t	produce	any
more	values:

>>>	list(gen)

[]

>>>	list(gen2)

[]

We	have	to	bear	this	rule	in	mind	when	working	the	generator	expressions	in	the
PDFMiner3k	package.

Tip
Generator	expression	can	be	consumed	only	once.

The	lazy	nature	of	generators	makes	them	ideal	for	dealing	with	large,	complex	PDF
documents	in	a	pure	Python	application.	A	program	written	in	C	or	C++	can	process	PDFs
very	quickly.	A	library	that	leverages	special	PDF-parsing	libraries	can	be	very	fast.
PDFMiner3k	doesn’t	have	these	speedups,	so	it	relies	on	Python	generators	to	do	as	little
work	as	it	possibly	can.

Writing	generator	functions
A	generator	function	looks	a	lot	like	a	simple	function	with	one	important	change.	A
generator	function	includes	a	yield	statement.	Each	time	the	yield	statement	is	executed,
another	value	is	produced.	This	can	be	consumed	by	a	list()	function	or	a	for	loop.

A	generator	function	looks	like	this:

def	gen_function(start):

				c	=	start

				for	i	in	range(10):

								yield	c

								if	c%2	==	0:

												c=	c//2

								else:

												c=	3*c+1	

This	function	will	yield	10	values	based	on	a	fairly	complex	calculation	that	is	based	on
the	starting	value.	This	uses	the	half	or	triple	plus	one	(HOTPO)	rule	to	compute	each
subsequent	value.	Here’s	how	we	can	use	this	generator	function:

				>>>	gen_function(13)	#	doctest:	+ELLIPSIS

				<generator	object	gen_function	at…>

				>>>	list(gen_function(13))

				[13,	40,	20,	10,	5,	16,	8,	4,	2,	1]

We	try	to	apply	the	function	to	an	argument	and	all	we	get	is	a	generator	object.	When	we
use	a	function	like	list(),	the	lazy	generator	expression	is	forced	to	produce	all	of	its
values.	The	list()	function	consumes	the	values	and	creates	a	list	object.

An	interesting	exercise	is	to	replace	the	for	statement	with	while	c	!=	1.	Will	the	loop
always	yield	a	finite	sequence	of	values?

We’ll	use	these	concepts	of	generator	expression	and	generator	function	to	examine	the
contents	of	a	PDF	file.	Perhaps	the	single	more	important	concept	is	that	generators	are
lazy	and	yield	their	values	one	time	only.	After	the	values	have	been	consumed,	the
generator	appears	to	be	empty.

Filtering	bad	data
One	of	the	important	uses	for	generator	expressions	and	generator	functions	is	filtering
bad	data.	We	can	use	either	of	these—as	well	as	third	technique—to	reject	bad	data	or
pass	good	data.

The	generator	expression	has	an	additional	clause	available:

(expression	for	variable	in	source	if	condition)

This	will	apply	the	if	condition	to	each	value	in	the	source.	If	the	condition	is	true,	the
internal	expression	is	the	value	that’s	kept.	If	the	condition	is	false,	the	value	is	ignored.

For	example,	we	might	have	something	like	this:

>>>	fb	=	(n	for	n	in	range(10)	if	n	%	3	==	0	or	n	%	5	==	0)

>>>	sum(fb)

23

We’ve	started	with	a	source	that’s	a	range()	object.	We’ll	assign	each	value	to	the
variable	n.	If	the	value	of	n	is	a	multiple	of	three	or	a	multiple	of	five,	the	value	that’s	kept
is	simply	n.	If	the	value	of	n	is	neither	a	multiple	of	three	nor	a	multiple	of	five,	the	value
is	ignored.

The	resulting	values	can	be	processed	by	a	function	that	can	consume	generator
expressions.	We	could	use	list()	or	tuple()	to	keep	the	individual	values.	Instead,	we
reduced	the	sequence	to	a	single	value.

We	can	add	an	if	statement	to	a	generator	function,	too.	This	shouldn’t	be	too	surprising.

The	third	way	we	can	filter	is	by	using	a	separate	function	available	in	Python:	the
filter()	function.	This	requires	two	things:	a	function	that	decides	which	values	to	pass
and	which	to	reject,	and	an	iterable	sequence	of	values.	The	filter()	function	is	a
generator:	it’s	lazy	and	won’t	produce	answers	unless	we	demand	them.	Here’s	how	we
can	use	filter()	as	if	it	was	a	generator	expression:

>>>	fb2	=	filter(lambda	n:	n%3==0	or	n%5==0,	range(10))

>>>	sum(fb2)

23

We’ve	written	a	very	small	function	to	evaluate	whether	or	not	n	is	a	multiple	of	three	or	a
multiple	of	five.	The	function	is	so	small	we	didn’t	even	provide	a	name,	just	the
parameter	and	the	expression	we	would	have	placed	on	a	return	statement.	We	write	tiny
one-expression	functions	using	the	lambda	form:	lambda	parameters	:	expression.	We’ve
provided	the	source	of	data,	the	range(10)	object.	The	filter	function	does	the	rest:	it
iterates	through	the	source,	applies	the	given	lambda	function	to	each	value,	and	produces
the	individual	values	for	which	the	function	is	true.	Values	for	which	the	function	are	false
are	rejected.

As	with	a	generator	expression,	the	value	of	fb2	is	the	cryptic-looking	<filter	object
at	0x1023ce9e8>.	We	have	to	consume	the	values	with	list(),	tuple(),	sum(),	a	for
statement,	or	some	other	function,	because	it’s	lazy	and	not	eager.	In	this	example,	we

consumed	the	values	with	the	sum()	function.

As	we	noted	previously,	we	can	only	consume	the	values	from	the	fb	or	fb2	variables	one
time.	If	we	try	to	use	these	variables	again,	they	won’t	yield	any	more	values.

We’ll	switch	gears	here,	and	look	at	a	second	import	Python	design	pattern.	This	will	help
us	deal	with	the	complexity	of	files	and	parsers	for	the	file	content.

Writing	a	context	manager
In	addition	to	generator	functions,	we’ll	also	need	another	Python	design	pattern:	the
context	manager.	We’ll	need	to	define	a	context	manager	so	that	we	can	work	with	the
parser,	the	document,	and	the	open	file	object.	After	processing	a	PDF	file,	we	want	to	be
sure	that	all	of	the	related	objects	are	properly	released	from	memory.

A	context	manager	is	easily	built	via	a	class	definition.	The	object	will	have	three	stages	in
its	life:

1.	 We	create	a	context	manager	object.	The	__init__()	method	handles	this.
2.	 We	enter	the	context.	This	is	what	happens	when	a	with	statement	starts	execution.

The	__enter__()	method	is	invoked;	the	value	returned	is	the	object	assigned	via	the
“as”	clause	in	a	with	statement.	While	this	is	often	the	context	manager	itself,	it
doesn’t	actually	have	to	be.	It	could	some	more	useful	object	that	the	application	will
use.

3.	 We	exit	the	context.	This	is	what	happens	when	we	leave	the	with	statement.	The
__exit__()	method	is	invoked.	There	are	two	ways	to	leave	a	with	statement:
normal	exit	and	an	exception-caused	exit.	Exceptional	exits	will	include	parameters
with	details	about	the	exception.	Normal	exits	will	have	no	additional	details.

Here’s	how	a	context	manager	looks	in	a	with	statement.

with	ContextManager()	❶	as	cm:	❷
				cm.method()

				❸
next	statement	after	the	context

We’ve	decorated	this	to	show	the	life	cycle	events.	Here’s	the	outline	of	a	context	manager
class	definition.	We’ve	added	the	numbers	to	show	how	the	two	fit	together.

class	ContextManager:

				def	__init__(self):		❶
								"Build	the	context	manager."

				def	__enter__(self):	❷
								"Enter	the	context.	The	return	value	is	assigned	via	the	`as`	

clause"

								return	self

				def	__exit__(self,	*exc):	❸
								"Exit	the	context.	Return	True	to	silence	the	exception."

The	__init__()	method	from	a	context	manager	is	(usually)	where	we’ll	open	a	file	or
create	a	network	connection	or	otherwise	allocate	resources.	We’ll	create	the	various
PDFMiner	objects	here.	A	common	implementation	of	the	__enter__()	method	returns
the	context	manager	itself	as	a	useful	object.	Since	the	initialization	handled	all	the	hard
work	of	building	the	context	object,	nothing	more	needs	to	be	done	here.	The	__exit__()
method	should	delete	all	of	the	resources	allocated	by	the	__init__()	method.	The	default
return	value	of	None	will	allow	exceptions	to	propagate	normally	after	__exit__()	has
released	the	resources.

Writing	a	PDF	parser	resource	manager
The	complexity	of	PDF	documents	means	that	the	PDFMiner3k	package	requires	a	fairly
complex	initialization.	At	a	minimum,	we	need	to	parse	the	contents	of	the	PDF	file	and
represent	the	document	that	is	found	within	that	complex	file	structure.	The	initialization
will	get	more	complex	as	we	seek	to	get	more	detail	from	the	PDF	file.

We’ll	start	our	software	design	with	a	basic	context	manager.	We’ll	use	inheritance	to	add
features	as	we	seek	to	gather	more	and	more	data	from	the	document.	We’ll	show	the
context	manager	class	definition	in	two	parts.	We’ll	start	with	the	__init__()	method:

from	pdfminer.pdfparser	import	PDFParser,	PDFDocument

class	Miner:

				def	__init__(self,	filename,	password=''):

								self.fp	=	open(filename,	'rb')

								self.parser	=	PDFParser(self.fp)

								self.doc	=	PDFDocument()

								self.parser.set_document(self.doc)

								self.doc.set_parser(self.parser)

								self.doc.initialize(password)

This	class	initialization	method	creates	three	closely-related	objects:	the	open	file	object,
the	parser	which	extracts	details	from	the	document,	and	the	document	object	that	we	can
examine	to	find	some	of	the	PDF	content.	In	the	later	examples,	we’ll	build	on	this	by
adding	more	and	more	objects	that	are	part	of	the	parsing.

Note	that	we	must	call	the	initialize()	method	of	the	document	even	if	the	document
has	no	password	protection.	For	documents	without	a	password,	we	should	provide	a	zero-
length	string	object,	which	is	the	default	value	for	the	password	parameter.

In	order	to	be	a	proper	context	manager,	there	are	two	additional	methods	we	need	to
define:

				def	__enter__(self):

								return	self

				def	__exit__(self,	*args):

								self.fp.close()

								del	self.doc._parser

								del	self.parser.doc

								self.doc	=	None

								self.parser	=	None

We	defined	the	minimal	__enter__()	method	that	simply	returns	the	self	instance
variable.	We	defined	an	__exit__()	method	that	will	close	the	file	object	and	remove
references	to	the	document	and	parser	objects.	Agents	who	look	closely	at	the
PDFMiner3k	implementation	will	see	that	there	are	mutual	object	references	between
document	and	parser;	in	order	to	assure	that	the	objects	aren’t	both	stuck	in	memory,	we
explicitly	break	the	mutual	connection.

We	can	use	the	Miner	context	manager	like	this:

				with	Miner(filename)	as	miner:

								outlines	=	miner.doc.get_outlines()

								toc	=	[(level,	title)	for	(level,title,dest,a,se)	in	outlines]

								pprint(toc)

This	evaluates	the	get_outlines()	method	of	the	PDFDocument	object	inside	the	Miner
object.	This	method	returns	a	generator	function.	The	value	of	get_outlines()	is	not	a
list:	it’s	a	generator	which	can	be	used	to	build	a	list.	The	generator	will	yield	five	tuples
that	contain	outline	information.

When	we	create	the	toc	list	using	list	comprehension,	we’re	forcing	the	lazy
get_outlines()	method	to	actually	build	outline	strings	from	the	document.	Each	outline
contains	a	level	number,	a	title,	and	a	reference	to	a	PDF	object.	The	a	and	se	attributes	of
the	five	tuple	always	have	a	value	of	None,	so	we’ll	ignore	them.

This	function	will	dump	the	outline	information	from	the	document.	Not	all	documents
have	outlines,	so	it’s	possible	that	this	will	raise	an	exception.

The	most	important	part	about	this	is	that	it	shows	the	basics	of	how	to	use	parts	of
PDFMiner3k.	We’ll	build	on	this	to	get	pages	and	then	get	the	layout	objects	within	each
page.

Extending	the	resource	manager
We’ll	leverage	inheritance	to	add	some	additional	features	to	our	context	manager.	Rather
than	rewrite	the	entire	context	manager,	or	(even	worse)	copy	and	paste	the	code	from	one
context	manager	to	create	another,	we’ll	create	a	new	one	which	extends	the	previous	one.
This	principle	of	object-oriented	class	extension	via	inheritance	allows	us	to	create
closely-related	families	of	classes	that	reuse	critical	features	without	introducing	errors	by
copying	code.

Here’s	the	initial	portion	of	the	class	definition:

from	pdfminer.pdfinterp	import	PDFResourceManager,	PDFPageInterpreter

from	pdfminer.pdfdevice	import	PDFDevice

class	Miner_Page(Miner):

				def	__init__(self,	filename,	password='',	**kw):

								super().__init__(filename,	password)

								self.resources	=	PDFResourceManager()

								self.device	=	self.init_device(self.resources,	**kw)

								self.interpreter	=	PDFPageInterpreter(self.resources,	self.device)

				def	init_device(self,	resource_manager,	**params):

								"""Return	a	generic	PDFDevice	object	without	parameter	settings."""

								return	PDFDevice(resource_manager)

				def	init_device(self,	resource_manager,	**params):

								"""Return	a	generic	PDFDevice	object	without	parameter	settings."""

								return	PDFDevice(resource_manager)

The	Miner_Page	subclass	of	Miner	uses	a	common	Python	technique	for	extending	the
__init__()	method	to	add	new	features.	We’ve	defined	the	subclass	__init__()	method
using	the	same	parameters	as	the	parent	class,	plus	we’ve	added	**kw.	This	means	that	any
additional	keyword	argument	values	are	collected	into	a	single	dictionary	and	assigned	to
the	kw	parameter.	We	provide	the	positional	parameters	to	the	superclass.	We	use	the
keyword	parameters	when	building	a	device.

The	super()	function	locates	this	object’s	superclass,	which	is	the	Miner	class.	Using
super().__init__()	is	slightly	more	generic	(and	easier	to	understand)	than	trying	to	use
Miner.__init__();	the	super()	function	also	sets	the	self	variable	for	us.	We’ve	passed
the	positional	arguments	and	keyword	parameters	to	the	superclass	__init__():	this
delegates	the	details	of	initialization	to	the	Miner	class.

Once	the	basics	are	taken	care	of,	this	Miner_Page	subclass	can	create	the	three	additional
components	we	need	for	extract	text	from	PDF	files.	The	PDFResourceManager	and	a
PDFDevice	tools	are	required	to	process	the	PostScript	commands	that	describe	a	page	of
text.	We	put	the	creation	of	the	device	into	a	separate	method,	init_device().	The
PDFPageInterpreter	tool	uses	the	resource	manager	and	the	device	to	process	the
PostScript	commands.

It	turns	out	that	we’ll	need	to	change	the	way	a	PDFDevice	instance	is	created.	We’ve
isolated	this	detail	into	a	separate	method;	a	subclass	will	override	this	method	and	add	yet
more	clever	features.	For	now,	we’ve	provided	an	object	which	will	extract	some	useful
information	from	PDF	page.

We	can	see	that	there	are	three	separate	design	principles	for	methods	in	a	class:

The	method	is	required	to	support	a	particular	interface.	The	__enter__()	and
__exit__()	methods	for	interacting	with	the	with	statement	are	examples	of	this.
The	method	is	helpful	for	isolating	a	feature	that	is	subject	to	change.	The
init_device()	is	an	example	of	this.
The	method	does	something	we	need.	We’ll	look	at	these	kinds	of	methods	next.

We’ll	add	one	more	method	to	this	class	so	that	we	can	process	each	page	of	the
document.	This	will	wrap	the	PDFDocument	get_pages()	method	so	that	we	can	get	the
text	of	the	page.

				def	page_iter(self):

								"""Yields	a	PDFPage	for	each	page	in	the	document."""

								for	page	in	self.doc.get_pages():

												self.interpreter.process_page(page)

												yield	page

This	function	applies	the	interpreter	object	to	each	page.	The	interpreter	uses	the
resource	manager	and	the	device	definition	to	process	the	PostScript	commands	and	build
the	blocks	of	text,	graphics,	and	image	components	that	make	up	a	PostScript	page.

We	defined	this	as	a	generator	function.	This	generator	will	process	the	results	of	the
self.doc.get_pages()	generator	function.	Since	get_pages()	is	lazy,	our	page_iter()
should	also	be	lazy.	Each	page	is	processed	separately,	avoiding	the	overhead	of	trying	to
process	the	entire	document	at	once.

The	internal	details	of	each	page	object	will	be	rather	complex,	since	each	individual
PostScript	command	is	left	more-or-less	intact.	We’ll	add	some	text	aggregation	rules	to
this	to	create	more	meaningful	blocks	of	text.	For	now,	however,	we	created	a	subclass
that	extends	the	parent	class	to	add	a	feature.

Here’s	an	example	of	using	this	class	to	extract	each	page	from	a	document.

				with	Miner_Page(filename)	as	miner:

								count=	0

								for	page	in	miner.page_iter():

												count	+=	1

												print(count,	page.mediabox)

								print("{count}	pages".format_map(vars()))

We	dumped	a	little	bit	of	page	information	from	each	page	of	the	document.	The	mediabox
attribute	shows	the	rectangle	that	defines	the	size	of	the	page.

PDF	documents	can	include	fill-in-the-blanks	forms.	In	the	case	of	form	processing,	the
annots	attribute	will	have	details	of	the	values	filled	in	before	the	document	was	saved.

Getting	text	data	from	a	document
We’ll	need	to	add	some	more	features	to	our	class	definition	so	that	we	can	extract
meaningful,	aggregated	blocks	of	text.	We’ll	need	to	add	some	layout	rules	and	a	text
aggregator	that	uses	the	rules	and	the	raw	page	to	create	aggregated	blocks	of	text.

We’ll	override	the	init_device()	method	to	create	a	more	sophisticated	device.	Here’s
the	next	subclass,	built	on	the	foundation	of	the	Miner_Page	and	Miner	classes:

from	pdfminer.converter	import	PDFPageAggregator

from	pdfminer.layout	import	LAParams

class	Miner_Layout(Miner_Page):

				def	__init__(self,	*args,	**kw):

								super().__init__(*args,	**kw)

				def	init_device(self,	resource_manager,	**params):

								"""Return	an	PDFPageAggregator	as	a	device."""

								self.layout_params	=	LAParams(**params)

								return	PDFPageAggregator(resource_manager,	

laparams=self.layout_params)

				def	page_iter(self):

								"""Yields	a	LTPage	object	for	each	page	in	the	document."""

								for	page	in	super().page_iter():

												layout	=	self.device.get_result()

												yield	layout

We	provided	an	__init__()	method	that	accepts	all	positional	and	keyword	arguments	as
*args	and	**kw.	This	method	merely	calls	the	super().__init__()	method.	This	isn’t
necessary	because	the	superclass	__init__()	is	used	by	default.	We’ve	included	this	to
help	to	show	that	nothing	extra	is	done	in	the	initialization	for	this	class.	This	also	acts	a
placeholder	in	case	we	do	need	to	change	the	object	initialization.

The	init_device()	method	overrides	the	superclass	init_device()	and	provides	a
different	device.	Instead	of	a	simple	PDFDevice,	we	provided	a	PDFPageAggregator
instance.	This	instance	is	configured	by	the	LAParams	object,	which	can	be	customized	to
change	the	rules	for	recognizing	blocks	of	text.	For	now,	we’ll	stick	with	the	default
parameters,	as	they	seem	to	work	for	many	documents.

Notice	that	we	provided	an	implementation	of	the	page_iter()	method,	which	extends
the	superclass	implementation	of	this	method.	Our	subclass	method	uses	the	lazy
superclass	version	and	does	an	additional	processing	step:	it	invokes	the	device’s
get_result()	method.	This	method	builds	a	more	useful	PDFPage	object	in	which	the
page’s	text	is	collected	into	meaningful	chunks.

Look	back	at	the	Miner_Page	superclass	and	its	implementation	of	page_iter().	In	that
class,	we	consumed	the	results	of	the	document’s	get_pages()	generator	method	and	used
the	interpreter’s	process_page()	method	on	each	page.	Since	the
Miner_Page.page_iter()	method	was	a	generator	function	and	only	produced	pages
when	requested.

The	Miner_Layout	subclass	provides	an	implementation	of	page_iter(),	which	is	also	a
generator	function.	This	will	use	the	superclass().page_iter()	to	get	page	objects.	It

will	then	use	the	device	object	to	refine	the	data	structure	into	meaningful	blocks	of	text.
Since	this	class	has	a	lazy	generator	based	on	other	lazy	generators,	nothing	is	done	until
an	object	is	requested.	This	limits	processing	to	the	minimum	required	to	produce	the	text
on	a	single	page.

We	can	use	the	with	function	like	this:

				with	Miner_Layout(filename)	as	miner:

								for	page	in	miner.page_iter():

												print(page,	len(page))

This	shows	us	that	each	page	has	dozens	of	individual	items.	Most	of	these	are	blocks	of
text.	Other	items	are	images	or	graphics.	If,	for	example,	a	block	of	text	is	surrounded	by	a
box,	there	will	be	a	number	of	line	drawing	objects	within	the	page	object.	Fortunately,	it’s
easy	to	distinguish	the	various	kinds	of	objects	available	within	a	page.

Displaying	blocks	of	text
In	many	cases,	we’ll	do	our	object-oriented	design	to	try	and	create	classes	that	have	a
common	interface	but	distinct	implementations.	The	principle	is	called	isomorphism.
Sometimes,	this	is	summarized	as	the	substitution	principle:	we	can	replace	an	instance	of
one	class	with	an	instance	of	an	isomorphic	class.	Since	the	two	classes	are	used	in	have
different	behaviors,	the	results	are	different.	Since	the	classes	have	the	same	interface,	the
programming	change	amounts	to	replacing	one	class	name	with	another.

In	some	cases,	complete	isomorphism	is	not	implemented.	If	two	classes	many	similar
methods	but	few	different	methods,	then	the	programming	change	to	use	one	class	instead
of	the	other	may	be	more	extensive.	In	some	cases,	we’re	required	to	use	isinstance()	to
determine	the	class	of	an	object	so	that	we	can	use	methods	and	attributes	appropriately.

A	PDF	document	has	many	things	besides	simple	text	in	it.	The	PDF	Miner	simply
produces	a	list	object	which	contains	the	items	on	a	page.	We’ll	need	to	use	isinstance()
to	identify	text	separate	from	other	items	on	a	page.	Here’s	a	function	that	will	simply
print	the	text:

from	pdfminer.layout	import	LTText

def	show_text(filename):

				with	Miner_Layout(filename)	as	miner:

								for	page	in	miner.page_iter():

												for	ltitem	in	page:

																if	isinstance(ltitem,	LTText):

																				print(ltitem.get_text())

We	used	Miner_Layout	to	open	a	document.	This	means	that	the	page_iter()	method
will	provide	pages	that	have	been	analyzed	by	the	PDFPageAggregator	object	to	create
meaningful	blocks	of	text.	The	output	from	this	is	a	dump	of	the	PDF	content	including
page	headers	and	page	footers.

When	we	evaluate	show_text('compendiumfederaldatasources.pdf'),	we’ll	see	text
starting	with	this:

Compendium	of	Federal	Data	Sources	to	

Support	Health	Workforce	Analysis		

April	2013	

Health	Resources	and	Services	Administration	

Bureau	of	Health	Professions	

National	Center	for	Health	Workforce	Analysis	

Compendium	of	Federal	Data	Sources	to	Support	Health	Workforce	Analysis	

April	2013	

1	

The	1	at	the	end	is	the	page	number.	This	is	the	kind	of	junk	text	that	we’ll	need	to	filter
out.

As	we	look	further	into	the	document,	we	find	this:

Table	1-Summary	List:	Federal	Data	Sources	for	Health	Workforce	Analysis	

Data	Source	

Federal	Agency	Website	

Data	Collection	

Method	

Unit	of	

Analysis	

Potential	Use	

in	Health	

Workforce	

Analysis	

The	content	of	the	table	has	been	broken	down	into	cells	and	the	cells	have	been	emitted
in	a	potentially	confusing	order.	The	problem	gets	worse.	Here’s	where	the	data	starts	to
get	interesting:

http://www.ah

rq.gov/data/h

cup/	

We	really	want	the	list	of	URLs	so	that	we	can	get	the	primary	data	to	analyze	the
workforce.	But	the	URLs	are	all	chopped	up	to	cram	them	into	a	table.

We	have	some	elements	of	the	solution:

If	we	purge	the	\n	characters,	we’ll	be	able	to	track	down	the	URLs	buried	in	the
content.	But	will	we	have	enough	context	to	know	what	they	mean?
If	we	do	a	little	clever	layout	exploration,	we	might	be	able	to	put	the	cells	of	the
table	into	a	proper	grid	and	recover	some	context	clues.
Also,	this	is	a	summary	table.	We	can	also	try	to	locate	the	URLs	deeper	in	the	body
of	the	document.

If	we	can	recover	the	original	grid	layout,	we	might	be	able	to	gather	useful	context
information	from	the	table.	We’ll	look	at	the	bbox	(bounding	box)	attribute	of	each	item.

Understanding	tables	and	complex	layouts
In	order	to	work	successfully	with	PDF	documents,	we	need	to	process	some	parts	of	the
page	geometry.	For	some	kinds	of	running	text,	we	don’t	need	to	worry	about	where	the
text	appears	on	the	page.	But	for	tabular	layouts,	we’re	forced	to	understand	the	gridded
nature	of	the	display.	We’re	also	forced	to	grapple	with	the	amazing	subtlety	of	how	the
human	eye	can	take	a	jumble	of	letters	on	a	page	and	resolves	them	into	meaningful	rows
and	columns.

It	doesn’t	matter	now,	but	as	we	move	forward	it	will	become	necessary	to	understand	two
pieces	of	PDF	trivia.	First,	coordinates	are	in	points,	which	are	about	1/72	of	an	inch.
Second,	the	origin,	(0,0),	is	the	lower-left	corner	of	the	page.	As	we	read	down	the	page,
the	y	coordinate	decreases	toward	zero.

A	PDF	page	will	be	a	sequence	of	various	types	of	layout	objects.	We’re	only	interested	in
the	various	subclasses	of	LTText.

The	first	thing	we’ll	need	is	a	kind	of	filter	that	will	step	through	an	iterable	sequence	of
LTText	objects;	it	will	reject	those	before	the	first	trigger,	it	will	yield	those	after	the	first
trigger,	and	it	will	stop	when	it	gets	to	the	second	trigger.	This	sounds	like	a	small	function
with	some	for	statements	and	if	statements.

In	order	to	keep	this	function	simple,	we’ll	define	a	function	that	iterates	through	all	the
LTText	objects	on	a	page	of	the	document.	It’s	a	tiny	modification	to	the	previous
show_text()	function:

def	layout_iter(page):

				for	ltitem	in	page:

								if	isinstance(ltitem,	LTText):

												yield	ltitem

This	function	requires	a	Miner_Layout	function	for	a	given	document	file.	It	must	be
given	a	page	from	the	layout’s	page_iter()	method.	Within	each	page	it	will	iterate
through	each	item.	If	the	item	is	an	instance	of	LTText,	then	it	is	produced	as	the	result	of
this	generator.	All	of	the	other	items	are	silently	rejected.

While	some	parts	of	a	document	appear	to	span	pages,	that’s	entirely	something	we’ve
learned	to	do	while	being	taught	to	read.	The	text	ends	on	one	page.	There	may	be
additional	text	like	page	footers	and	page	headers.	The	text	then	resumes	on	a	subsequent
page.	The	connection	between	pages	is	a	conclusion	we	draw	from	a	well-designed
document.

We	can	use	this	function	in	a	for	statement	like	this:

>>>	with	Miner_Layout('compendiumfederaldatasources.pdf')	as	miner:

...					for	page	in	miner.page_iter():

...									text=	list(layout_iter(page))

...									break

>>>	text[0]

			<LTTextBoxHorizontal(0)	72.024,630.355,539.390,713.369	'Compendium	of	

Federal	Data	Sources	to	\nSupport	Health	Workforce	Analysis		\nApril	2013	

\n'>

>>>	text[-1]

<LTTextLineHorizontal	565.900,760.776,568.150,768.957	'	\n'>

We	created	a	Miner_Layout	object	and	assigned	it	to	the	miner	variable.	We	retrieved	the
first	page	from	this	document,	and	then	built	a	list	from	our	layout_iter()	generator
function.	This	list	object	will	have	each	text	object	from	a	given	page.	The	output	shows
us	that	we	created	a	proper	generator	function	that	produces	only	text	items.

This	function	also	acts	like	a	filter.	It’s	rejecting	non-text	objects	and	passing	the	LTText
objects.	We	could	use	the	built-in	filter()	function	to	do	this.	We	can	transform	a	for-
if	structure	into	a	filter()	function	by	taking	the	condition	out	of	the	if	statement	and
making	it	a	separate	function,	or	a	lambda	object.

The	resulting	expression	would	look	like	this:

list(filter(lambda	ltitem:	isinstance(ltitem,	LTText),	page))

While	this	is	shorter	than	the	layout_iter()	function,	it	may	be	more	confusing.	It	can
also	be	somewhat	harder	to	tweak	as	we	learn	more	about	the	data.	Since	both	the
layout_iter()	function	and	the	filter()	expression	are	equivalent,	the	choice	of	which
one	to	use	depends	on	clarity	and	expressiveness.

The	output	shows	us	that	our	text	items	have	names	like	LTTextBoxHorizontal.	This	is	a
subclass	of	LTText.	We	won’t	care	about	the	precise	subclass.	All	of	the	subclasses	of
LTText	are—it	turns	out—polymorphic	for	our	purposes.	We	don’t	need	to	use	the
isinstance()	function	to	distinguish	among	the	subclasses.

The	output	also	shows	us	that	some	text	items	will	have	just	spaces	and	newlines,	and	can
be	safely	ignored.	It	appears	that	we	need	to	filter	the	content	as	well	as	filtering	the
structure	of	the	resulting	objects.

Writing	a	content	filter
We’ll	need	to	do	some	filtering	of	the	content.	The	previous	layout_iter()	filter	looked
at	the	class	of	each	item	on	a	page.	It	passed	objects	of	some	classes—specifically	any
subclass	of	LTText	and	it	rejected	objects	of	all	other	classes.

We’ll	need	two	filters	to	look	at	the	content	of	the	text,	and	reject	specific	blocks	of	text.
First,	we	need	to	reject	empty	blocks	of	text.	This	function	can	follow	the	same	template
as	the	layout_iter()	function.	We’ll	call	this	reject_empty(),	since	it	rejects	empty
blocks	of	text:

def	reject_empty(text_iter):

				for	ltitem	in	text_iter:

								if	ltitem.get_text().strip():

												yield	ltitem

This	will	iterate	through	all	of	the	layout	items	on	a	given	page.	If	the	text—when	stripped
—still	has	some	content	left,	we’ll	continue	to	process	this.	If	nothing	is	left	after	applying
the	strip()	method,	we’ll	silently	reject	this	whitespace.

We	can	rebuild	this	to	use	the	filter()	function.	We	would	create	a	lambda	object	out	of
the	condition,	ltitem.get_text().strip().	We’ll	leave	that	rewrite	as	an	exercise	for	the
agent	who	needs	to	know	all	of	their	software	design	alternatives.

We	can	also	write	this	function	using	a	generator	expression:

def	reject_empty(text_iter):

				return	(ltitem	for	ltitem	in	text_iter	

								if	ltitem.get_text().strip())

This	expression	yields	text	items	from	the	text_iter	variable	if	there’s	content	after	the
item	has	been	stripped	of	whitespace.	A	generator	expression	combines	the	iterating
capability	of	a	for	statement	with	the	conditional	processing	of	an	if	statement.	When	the
result	is	a	simple	expression	(like	the	ltitem	variable),	this	kind	of	compact	notation	can
express	the	intent	very	clearly.

When	we	look	at	stray	text	scattered	around	the	page,	a	simple	filter	becomes	awkward.
We	have	several	things	we	want	to	get	rid	of,	and	they	form	a	very	short	list.	We	need	a
function	like	this:

def	reject_footer(text_iter):

				for	ltitem	in	text_iter:

								txt	=	ltitem.get_text().strip()

								if	txt	in	('5',	'6'):	continue

								if	txt	==		'Compendium	of	Federal	Data	Sources	to	Support	Health	

Workforce	Analysis	April	2013':

												continue

								if	txt	==	'Table	1-Summary	List:	Federal	Data	Sources	for	Health	

Workforce	Analysis':

												continue

								yield	ltitem

We’ve	identified	four	specific	strings	that	we	don’t	want	to	see:	page	numbers,	page

footer,	and	table	header.	Yes,	the	function	is	misnamed:	three-quarters	of	the	junk	text	are
footers,	but	one-quarter	is	actually	a	table	header.	When	we	see	any	of	these	strings,	we
continue	processing	the	for	statement,	essentially	rejecting	these	text	items.	All	other
strings,	however,	are	yielded	as	the	result	from	this	filter.	We	could	try	to	finesse	this	into
a	slightly	more	sophisticated	filter	or	generator	expression.	However,	we	always	seem	to
turn	up	another	odd-ball	piece	of	text	to	ignore.	Leaving	this	filter	as	an	easy-to-edit
function	seems	to	provide	the	best	approach.

We’ve	seen	three	ways	of	filtering	here:

Generator	functions	using	the	yield	statement
The	filter()	function	using	functions	or	lambda	objects
Generator	expressions	using	(expression	for	variable	in	source	if	condition)

Since	they’re	all	functionally	identical,	the	choice	of	which	one	to	use	depends	on	clarity.

Filtering	the	page	iterator
We	don’t	want	to	extract	text	for	the	entire	document.	We	only	want	to	extract	text	from
the	two	pages	that	have	the	relevant	table.	This	calls	for	a	slightly	more	sophisticated
filter.	Clearly,	we	can	filter	page	numbers	in	range(5,7).	(Remember,	Python	interprets

this	as	 :	the	start	value	is	included,	and	the	stop	value	is	excluded.)

However,	once	we’re	past	page	seven,	there’s	no	reason	to	continue	processing.	So,	we
have	a	slightly	more	complex	filter	function.

def	between(start,	stop,	page_iter):

				for	page	in	page_iter:

								if	start	<=	page.pageid	<	stop:

												yield	page

								if	stop	<=	page.pageid:

												break

This	function’s	input	must	be	the	kinds	of	data	produced	by	a	Miner_Layout	object.	This
can	be	used	to	“wrap”	the	page_iter()	method	and	yield	only	pages	in	the	desired	range,
stopping	when	the	range	is	finished.

While	we	could	try	to	use	this	as	an	equivalent,	this	version	doesn’t	stop	early.

filter(lambda	page:	start	<=	page.pageid	<	stop,	page_iter)

This	alternative	would	process	all	pages,	wasting	a	bit	of	time.

We’d	use	this	as	follows:

with	Miner_Layout('compendiumfederaldatasources.pdf')	as	miner:

				for	page	in	between(5,	7,	miner.page_iter()):

								sort_by_yx(page)

This	will	apply	some	function	named	sort_by_yx()	to	each	page	in	the	given	range.	This
demonstrates	the	general	context	we’ll	use	to	extract	useful	data	from	the	larger	PDF
document	structure.	We’ll	look	at	the	sort_by_yx()	function	next.

Exposing	the	grid
We’ve	seen	how	we	can	reject	non-text,	empty	blocks	of	text,	and	junk	text	from	a	page.
We’ve	even	seen	how	to	reject	the	wrong	pages.	Let’s	see	what’s	available	on	the	page.
We	want	to	grab	each	block	of	text	and	put	them	into	a	list	organized	by	their	row	and
column	based	on	the	y	and	x	coordinates	of	the	bounding	box.	Generally,	it	looks	like	top-
left	portion	of	each	box	in	this	document	seems	to	be	nicely	positioned	within	the	grid.

We’ll	use	a	design	pattern	called	the	wrap-sort-unwrap	design.	We’ll	create	a	small	3-tuple
from	each	layout	item:	(y,	x,	item).	The	item	is	the	original	item.	The	y	and	x
coordinates	are	attributes	extracted	from	the	item’s	bbox	attribute.	We’ve	wrapped	the
original	item	just	for	the	purposes	of	sorting.	We	can	then	unwrap	the	item	to	recover	a
sequence	of	layout	items	in	a	proper	sequence	from	top-left	to	bottom-right	of	the	overall
grid.

Here’s	how	we	can	do	this:

def	sort_by_yx(page):

				base_text	=	reject_footer(reject_empty(layout_iter(page)))

				x0=	lambda	bbox	:	int(bbox[0])

				y1=	lambda	bbox	:	int(bbox[3])

				rows	=	[(y1(ltitem.bbox),	x0(ltitem.bbox),	ltitem)	for	ltitem	in	

base_text]

				rows.sort(key=lambda	triple:	(-triple[0],triple[1]))

				for	y,	x,	ltitem	in	rows:

								print(y,	x,	repr(ltitem.get_text()))

This	function	combines	our	various	filters	into	a	chain.	First	we’ll	use	the	layout_iter()
filter	to	winnow	our	all	by	LTText	items;	then	we’ll	use	reject_empty()	to	filter	out	text
with	no	meaningful	content;	and	finally	we’ll	use	reject_footer()	to	reject	page
numbers,	page	footers,	and	a	table	header	that	aren’t	meaningful.

We’ve	created	two	lambda	objects,	x0	and	y1,	to	pick	items	out	of	the	bbox	tuple	and
apply	the	int()	conversion	to	the	values.	This	kind	of	named	lambda	allows	us	to	use
y1(ltitem.bbox)	instead	of	int(ltitem.bbox[3]).	When	working	with	tuples,	it’s	often
difficult	to	remember	which	position	a	useful	item	is	in.	Using	lambdas	like	this	is	one
way	to	clarify	the	positions	in	use.

In	this	case,	bbox	has	four	values,	x0,	y0,	x1,	y2,	that	comprise	two	sets	of	coordinates:
(x0,y0)	is	the	left-bottom	corner	and	(x1,y1)	is	the	right-top	corner.	We	want	the	left-top
coordinates,	so	we	use	x0	and	y2.

We’ve	used	a	list	comprehension	to	build	the	rows	object.	This	comprehension	will	create
the	list	of	three-tuples	that	have	the	y	and	x	coordinates	as	well	as	the	layout	item,	ltitem,
of	interest.

Once	we’ve	build	the	rows	object,	we	can	sort	it	and	display	the	results.	The	sort	must	be
in	decreasing	order	of	y	coordinate	and	increasing	order	of	x	coordinate.	We’ve	stolen	a
pretty	clever	trick	of	negating	one	number	to	put	the	y	values	into	decreasing	order

The	details	are	very	interesting.	We’ll	show	some	highlights	of	the	output.	Here	are	the

first	two	rows	of	the	table:

703	72	'Data	Source	\n'

703	151	'Federal	Agency	Website	\n'

703	310	'Data	Collection	\nMethod	\n'

703	389	'Unit	of	\nAnalysis	\n'

703	469	'Potential	Use	\nin	Health	\nWorkforce	\nAnalysis	\n'

643	72	'Healthcare	\nCost	and	\nUtilization	\nProject	(HCUP)	\n'

643	151	'Agency	for	\nHealthcare	\nResearch	and	\nQuality	(AHRQ),	\nU.S.	

DHHS		\nAgency	for	\nHealthcare	\nResearch	and	\nQuality	(AHRQ),	\nU.S.	

DHHS		\n'

643	239	'http://www.ah\nrq.gov/data/h\ncup/	\n'

643	310	'health	claims	\ndata	\n'

643	389	'health	care	\nencounter	\n'

643	469	'health	care	\ndemand	\n'

What	we	see	is	that	the	x	coordinates	step	nicely	across	the	page.	Since	PDFs	are
measured	in	points,	about	1/72	of	an	inch,	position	72	is	one	inch	from	the	edge.	We	can
similarly	see	that	the	top-most	row	is	about	9.76	inches	from	the	bottom	of	the	page.

Once	we’ve	seen	all	of	the	coordinates	on	the	page,	we	can	easily	create	a	mapping	x
values	to	column	numbers	and	y	values	to	row	numbers.	This	can	be	done	after	seeing	all
of	the	rows	so	that	the	complete	set	of	unique	coordinate	values	are	known.

The	second	page	has	a	number	of	anomalies.	The	first	is	the	text	which	is	present	after	the
awkward	page	break	that	occurred	before	the	last	line	of	a	cell.	This	leads	to	a	jumble	of
text	for	the	first	row	of	the	second	page	of	the	table.	Some	of	that	jumble	is	an	artifact	of
how	PDFMiner3k	is	valiantly	trying	to	assemble	text	blocks	for	us.

The	next	anomaly	on	the	second	page	is	this:

537	73	'Medicare	\nClaims	Data	\n'

537	240	'http://www.c\nms.gov/Resea\nrch-Statistics-\nData-and-

\nSystems/Rese\narch-\nStatistics-\nData-and-\nSystems.html		

\nhttp://www.c\nms.gov/Resea\nrch-Statistics-\nData-and-

\nSystems/Rese\narch/MCBS/in\ndex.html	

\nhttp://www.c\nms.gov/Regul\nations-and-\nGuidance/HIP\nAA-

\nAdministrative\n-\nSimplification/\nNationalProvId\nentStand/inde\nx.html	

\nhttp://arf.hrsa\n.gov/		\n'

537	311	'health	claims	\ndata	\n'

537	391	'health	care	\nencounter	\n'

537	470	'provider	supply;	\nhealth	care	\ndemand;	health	\ncare	access	\n'

The	third	column,	positioned	at	(240,	537)	has	a	host	of	\n	characters	in	it.	Looking
carefully	for	http,	we	can	see	that	it	has	at	least	four	URLs	jammed	into	it.	The
subsequent	rows	have	no	data	in	the	third	column.	This	is	very	difficult	to	decompose.

Clearly,	the	LAParams	settings	have	lead	the	PDFPageAggregator	algorithms	to	mash	the
content	of	four	table	cells	together.	This	is	likely	because	they	are	so	close	that	they	appear
to	be	one	giant	text	block.	We	need	to	tweak	the	LAParams	values	to	gently	pry	this	text
apart.

Making	some	text	block	recognition	tweaks
Adjusting	the	LAParams	settings	is	fraught	with	peril.	This	is	not	wonderfully	well
documented.	Interested	agents	can—and	should—read	the	relevant	code	form	the
pdfminer.layout	module.	It’s	instructive	in	that	it	shows	good	programming	practices,
and	the	consequences	of	having	very	little	documentation.

This	module	is	highly	configurable	and	can	be	used	to	extract	meaningful	content	from	a
variety	of	documents.	However,	it	requires	some	care	to	be	sure	that	the	parameters
continue	to	provide	useful	results.

We’ll	adjust	the	LAParams	settings	like	this:

				with	Miner_Layout('compendiumfederaldatasources.pdf',	

												char_margin=2.0,	line_margin=0.25)	as	miner:

								print(miner.layout_params)

								for	page	in	between(5,	7,	miner.page_iter()):

												print("page",	page.pageid)

												sort_by_yx(page)

We’ve	provided	two	keyword	parameters	to	the	Miner_Layout	constructor.	These	will	be
collected	into	the	kw	dictionary.	From	there,	they’re	given	to	the	superclass,	which	will	use
to	initialize	the	LAParams	function	when	creating	the	device	in	the	init_device()
method.	Changing	the	line	margin	will	change	the	rules	for	running	blocks	of	text	together
and	will	lead	to	less	jumble	in	the	output.

When	we	see	these	results,	the	anomaly	on	the	second	page	after	location	537	73
'Medicare	\nClaims	Data	\n'	has	disappeared.	We’ve	disentangled	the	four	lines	of	text
by	reducing	the	margin	between	text	blocks.	A	quick	scan	shows	that	this	looks	like
something	we	can	repackage	into	a	more	useful	form.

Emitting	CSV	output
We	want	to	get	to	a	plain	text	file	that	we	can	use	as	a	simple	reference.	We	can	read	this
file	to	get	the	URLs	and	then	use	those	URLs	to	build	up	a	library	of	actionable
intelligence.	CSV	format	files	are	perhaps	the	greatest	invention	for	agents	and	analysts.
They’re	timeless	and	don’t	require	sophisticated	software	to	process	them.	We	can	load
them	into	spreadsheets	and	reformat	them	to	be	pretty,	but	the	underlying	data	is	columns
of	pure,	sweet	text.

We’ll	need	to	make	some	small	changes	to	our	current	functions	so	that	we	can	write	CSV
files	instead	of	printing	debugging	and	diagnostic	information	to	the	console.

The	first	thing	we	need	to	do	is	chop	the	sort_by_yx()	function	into	two	parts.	The
function	should	be	shortened	to	return	the	sorted	list	of	(y,	x,	ltitem)	tuples	and	do
nothing	more.	A	new	function,	print_yxtext(),	should	accept	the	list	of	three-tuples	as
parameter	and	iterate	through	the	rows	printing	y,	x,	and	the	value	of	ltitem.get_text().

Once	we’ve	chopped	the	original	sort_by_yx()	function	apart,	we	can	write	a	new
function	that	accepts	a	list	of	three-tuples	as	a	parameter	and	builds	individual	CSV	rows.
We	note	that	the	x	values	increment	across	a	row	and	then	jump	back	down	at	the
beginning	of	the	next	row.	We	can	use	this	to	separate	the	cells	of	each	spreadsheet	row:

def	csv_yxtext(rows):

				max_x	=	0

				line	=	[]

				for	y,	x,	ltitem	in	rows:

								if	x	<	max_x:

												yield	line

												line=	[]

								line.append(ltitem.get_text().replace('\n','').strip())

								max_x=	x

				yield	line

We’ve	started	with	an	empty	line	and	a	maximum	x	value,	max_x,	set	to	an	initial	value	of
zero.	As	we	look	at	each	cell,	we’ll	compare	the	cells	x	with	max_x.	If	the	cells	x	is	less
than	max_x,	we’ve	started	a	new	line.	We	can	emit	the	old	line.	We	always	append	the	cells
text	to	the	current	line	and	save	the	maximum	value	of	x	seen	so	far	in	max_x.	After	we
emit	the	final	line,	we’ll	have	a	list	of	(y,	x,	ltitem)	in	individual	rows	of	ltitems.

The	result	is	a	respectable	CSV	file	that	can	(almost)	be	used	without	any	further	manual
tweaks.	There	are	two	rows	that	require	special	attention.	We	can	simply	edit	those	two
rows.	One	row	has	a	stray	block	of	CDC,	U.S.	DHH,	and	the	other	row	has	a	stray	line	of
x.html.

We	can	try	to	fine-tune	the	LAParams	settings	to	keep	the	stray	x.html	block	of	text
properly	connected	to	the	cell	above	it.	This	leads	to	a	machine	learning	sort	of	solution.
We	will	consider	this	table	as	a	training	set	of	data.	We	iterate	through	multiple	LAParams
settings	until	we	find	values	for	which	the	training	set	passes	the	test	of	reconstructing	all
but	one	cell	perfectly.

(The	other	damaged	cell	with	CDC,	U.S.	DHH	can’t	be	rebuilt	because	it	spans	pages.

Don’t	try	to	fix	this	by	adjusting	the	LAParams	settings.)

Perfectionists	will	note	that	the	x	value	in	these	two	cases	provides	a	hint	as	to	what’s
going	on.	The	row	didn’t	start	with	an	x	value	of	72	or	73,	it	started	with	a	larger	number
that	maps	to	a	column	that’s	not	column	one.

Rather	than	simply	assume	that	a	low	number	starts	a	new	row,	we	could	see	if	the	low
number	means	that	we’ve	got	text	that	should	get	appended	to	a	particular	column	within
the	previous	row.	We	can	see	that	an	x	value	of	152	maps	to	column	two	and	an	x	value	of
240	maps	to	column	three.	This	little	cleanup	logic	might	be	simpler	than	using	machine
learning	to	tweak	the	LAParams	settings.

This	little	cleanup	is	quite	challenging	to	address	in	a	perfectly	general	way.	Another	table
will	of	course	have	other	column	positions.	A	more	general	solution	will	gather	a	sorted
list	of	x	coordinates	to	map	a	position	to	a	column	number.	For	some	small	things	like	this,
it	might	be	easier	to	edit	the	CSV	than	it	is	to	edit	the	code	that	rebuilds	the	CSV.

Summary
We	saw	how	we	can	tease	meaningful	information	out	of	a	PDF	document.	We	assembled
a	core	set	of	tools	to	extract	outlines	from	documents,	summarize	the	pages	of	a	document,
and	pull	the	text	from	each	page.	We	also	discussed	how	we	can	analyze	a	table	or	other
complex	layout	to	reassemble	meaningful	information	from	that	complex	layout.

We	used	a	very	clever	Python	design	pattern	called	wrap-sort-unwrap	to	decorate	text
blocks	with	coordinate	information,	and	then	sort	it	into	the	useful	top-to-bottom	and	left-
to-right	positions.	Once	we	had	the	text	properly	organized,	we	could	unwrap	the
meaningful	data	and	produce	useful	output.

We	also	discussed	two	other	important	Python	design	patterns:	the	context	manager	and
the	filter.	We	used	object-oriented	design	techniques	to	create	a	hierarchy	of	context
managers	that	simplify	our	scripts	to	extract	data	from	files.	The	filter	concept	has	three
separate	implementations:	as	a	generator	expression,	as	a	generator	function,	and	using	the
built-in	filter()	function.

In	the	next	chapter,	we’ll	look	at	data	collection	at	the	gadget	level.	We’ll	dig	into	the
ways	that	we	can	use	a	small	device	like	an	Arduino	or	a	Raspberry	Pi	as	part	of	the
Internet	of	Things	(IoT).	We	can	attach	controls	and	sensors	to	these	devices	and	gather
data	from	a	wide	variety	of	sources.

Chapter	5.	Data	Collection	Gadgets
We’ve	looked	at	gathering	intelligence	from	web	server	logs,	from	the	social	network,	and
from	hard-to-examine	PDF	files.	In	this	chapter,	we’ll	see	how	we	can	gather	data	from
the	real	world—the	space	that	isn’t	inside	our	computers.	This	can	be	poetically	termed
meatspace	to	distinguish	it	from	the	cyberspace	of	networked	computers.

There	are	a	large	number	of	small,	programmable	devices	with	sophisticated	network
interfaces,	processes,	and	memory.	We’ll	focus	on	the	Arduino	family	of	processors	as	a
way	to	gather	data	for	analysis.	Some	agents	will	prefer	to	use	other	processors	because
they’re	less	expensive,	more	sophisticated,	or	have	different	programming	language
support.

Our	goal	is	to	build	our	own	gadget	using	a	simple	sensor.	We	can	easily	find	numerous
online	shops	that	sell	a	variety	of	sensors.	We	can	even	find	kits	with	a	collection	of
different	kinds	of	sensors.	Some	agents	will	prefer	to	shop	for	individual	sensors	on	a
project-by-project	basis.	This	trades	upfront	cash	outlay	against	incremental	transportation
costs	as	more	parts	are	ordered.

We’ll	look	at	a	specific	sensor	for	measuring	distance.	It’s	got	a	relatively	simple	interface,
and	it	requires	some	care	to	calibrate	it	properly.	Calibration	means	that	we’ll	need	to	do
some	careful	preliminary	data	gathering	before	we	can	use	the	device	operationally.

This	chapter	will	cover	a	number	of	topics:

We’ll	start	with	a	background	briefing	on	Arduino	basics.
This	will	help	us	organize	a	shopping	list	of	parts	that	we’ll	need	in	order	to	build	a
working	sensor.	We’ll	look	at	doing	all	of	our	shopping	at	once	versus	buying	parts	as
we	need	them.
We’ll	look	at	Arduino	sketches	to	control	the	digital	output	pins.	We’ll	start	with	the
traditional	“hello	world”	sketch	that	blinks	an	LED.
We’ll	look	at	some	hardware	design	considerations	regarding	current	and	voltage
levels.	This	will	help	us	avoid	frying	our	parts	with	too	much	power.	We’ll	use	small
Python	programs	to	design	the	resistors	that	protect	our	LEDs.
We’ll	look	at	how	we	put	some	parts	into	a	breadboard	to	create	a	working	gadget.
The	Arduino	programming	language	will	take	some	effort	to	learn.	It’s	not	Python,
and	field	agents	will	see	the	need	to	learn	multiple	programming	languages.
Once	we’ve	seen	the	basics	of	the	Arduino	language,	we	can	create	a	much	better
blinking	light.
We’ll	leverage	the	blinking	light	design	to	poll	a	push-button.	The	polling	technique
we’ll	use	allows	us	to	build	responsive	gadgets.
Once	we’ve	seen	the	basics	of	the	Arduino	language	and	connecting	parts	with	a
breadboard,	we’re	ready	to	create	our	data	collection	device.
We	can	use	the	USB	interface	to	send	collected	data	back	to	our	computer.	We	can
then	use	Python	programs	to	analyze	the	data.	The	first	analysis	job	will	be	to
calibrate	our	sensor.
Based	on	our	Python-based	analysis,	we’ll	create	a	simple	software	filter	algorithm	to

reduce	the	noise	in	our	sensor.	This	will	allow	us	to	collect	high-quality	data	for
subsequent	analysis	with	Python.

We	won’t	address	some	of	the	final	construction	and	assembly	issues	for	gadgets.	There
are	many	places	that	will	create	printed	circuit	boards:	an	agent	can	attach	parts	to	create	a
robust	device	this	way.	There	are	some	places	that	can	even	assemble	boards	given
detailed	engineering	specifications.	CadSoft,	for	example,	offers	the	Eagle	software	and
has	PCB	fabrication	partners	that	can	build	boards.	Visit	http://www.cadsoftusa.com.	Also,
visit	http://fab.fritzing.org/fritzing-fab	for	another	software	package	that	can	help	design
the	boards	that	go	into	sophisticated	gadgets.

http://www.cadsoftusa.com
http://fab.fritzing.org/fritzing-fab

Background	briefing:	Arduino	basics
The	history	of	the	Arduino	combines	art	and	technology.	For	more	information,	visit
http://aliciagibb.com/wp-content/uploads/2013/01/New-Media-Art-Design-and-the-
Arduino-Microcontroller-2.pdf.

More	relevant	background	will	come	from	the	Getting	Started	with	Arduino	by	author
Massimo	Banzi,	which	is	the	standard	starter	book.	Also,	most	publishers,	like	Packt
Publishing,	have	dozens	of	books	on	Arduino.	We	won’t	duplicate	any	of	that	material.
We	will	show	how	data	collection	and	analysis	works	with	customized	gadgets.

The	Arduino	supports	the	idea	of	physical	computing—computing	that	interacts	with	the
real	world	through	sensors	and	actuators.	To	this	end,	the	Arduino	board	has	a	processor,
some	pins	that	the	processor	can	sense,	and	some	pins	that	the	processor	can	control.
There’s	also	a	small	reset	button	and	a	USB	connector,	plus	miscellaneous	parts	like	a
crystal	for	the	clock	and	a	connector	for	power	that	can	be	used	instead	of	the	USB
connector.

Each	of	the	Arduino	boards	is	slightly	different.	The	older	Arduino	Uno	is	typical,	so
we’ll	look	at	that	as	representative	of	the	various	kinds	of	boards	available.

First,	and	most	important,	some	of	the	terms	are	metaphoric.	The	term	pin	for	instance,
often	refers	to	the	leg	or	stiff	wire	connector	to	an	electronic	component.	Some	boards	will
have	pin	connectors	bristling	around	the	edges.	For	most	things	there’s	a	male	and	a
female	part	to	the	connection.	The	Arduino	Uno	board,	for	example,	has	a	ring	of	plastic
sockets	into	which	a	pin	can	fit	and	make	a	secure,	reliable	electrical	connection.	These
sockets	are	called	pins	even	though	they’re	clearly	sockets	into	which	pins	must	be
inserted.

Around	the	edge	of	the	board,	there	are	14	digital	I/O	pins.	These	are	capable	of	sensing	a
completed	circuit	or	providing	board-level	voltage.	We	often	use	these	to	detect	the	state
of	external	buttons	or	switches.	We	might	also	use	the	output	feature	for	status	lights.

There	are	six	analog	input	pins.	These	can	detect	from	0	to	5	volts.	The	exact	voltage	level
is	available	to	software	as	an	input.	This	is	summarized	as	Analog-to-Digital	(A/D	or	A	to
D)	conversion.

There	are	six	analog	output	pins.	This	can	produce	from	0	to	5	volts	under	control	of
software.	These	aren’t	separate	pins	on	the	Arduino;	these	are	separate	use	cases	for	six	of
the	digital	pins.	If	we	want	to	use	analog	output,	we	have	to	sacrifice	some	digital
capabilities.	We	can	call	this	Digital-to-Analog	(D/A	or	D	to	A)	conversion.

Perhaps	most	importantly,	there’s	a	serial/USB	interface	that	we	can	use	via	the	Arduino
IDE	or	via	standalone	Python	applications.	We’ll	use	the	USB	connector	to	download
software	to	the	Arduino.	We’ll	also	use	this	to	extract	data	from	the	Arduino	for
calibration	and	analysis.

Additionally,	there’s	a	2.1	mm	power	connector	that	can	be	used	to	power	a	board	instead
of	the	USB	connector.	We	can	use	this	to	run	an	Arduino	separately	from	any	computer.

http://aliciagibb.com/wp-content/uploads/2013/01/New-Media-Art-Design-and-the-Arduino-Microcontroller-2.pdf

This	expects	9V	DC;	the	2.1	mm	connector	should	have	a	positive	tip.	Some	vendors	sell
handy	boxes	that	hold	a	9V	batter	and	have	the	required	connector	already	attached.

Organizing	a	shopping	list
In	order	to	build	Arduino	gadgets,	we’ll	need	an	Arduino	board.	We	described	the	Arduino
Uno,	but	any	board	from	the	Arduino	family	will	work	nicely.	Arduino’s	Entry-Level
products	are	the	focus	here.	The	entry-level	kit	products	include	much	of	what	we	need.

It	helps	to	have	a	bag	of	buttons,	potentiometers,	LEDs,	and	a	mixed	collection	of
resistors.	A	set	of	jumper	wires	are	also	essential.	The	more	complex	missions	will	require
a	small	solderless	breadboard	to	lay	out	parts.

We’ll	be	building	a	data	collection	gadget	using	an	infrared	(IR)	Range	Sensor.	These
devices	seem	to	be	a	reliable	way	to	watch	doors	or	windows	open,	and	watch	people
come	and	go.	This	sensor	is	an	infrared	diode	and	detector	in	one	tidy	little	package.	An
example	is	the	Sharp	GP2D12	(or	the	more	commonly-available	GP2Y0A02YK0F.)	It	is
small	and	it	can	be	affixed	in	a	variety	of	places.	There	are	a	number	of	alternatives	with
different	distance	capabilities.

Many	of	these	distance	sensors	have	a	small	mounting	bracket	that	requires	a	JST	3-wire
male	jumper	to	connect	from	the	socket	to	an	Arduino.	It’s	possible	to	find	vendors	who
supply	both	parts,	saving	some	shipping	costs.	Ideally,	an	agent	can	locate	an	Arduino
starter	kit	plus	these	additional	non-standard	sensors	from	a	single	vendor.

A	piezo	buzzer	(more	properly	a	speaker)	can	be	used	to	produce	tones.	We	might	use	this
as	part	of	an	alarm	or	warning	in	addition	to	LEDs.

For	agents	new	to	building	gadgets,	there	are	some	nice	items,	also.	While	it	is	not
essential	to	have	a	reliable	volt-ohm	meter,	many	gadget	builders	find	them	indispensable.
It	is	sometimes	handy	to	be	able	to	examine	the	voltage	available	on	a	pin	or	check	the
resistance	of	a	device.	A	basic	meter	is	helpful	for	seeing	if	a	battery	is	dead,	too.

We	won’t	start	by	soldering	anything.	Agents	should	be	able	to	solder	without	making	a
terrible	mess	of	the	parts.	Many	of	the	vendors	sell	breakout	boards	onto	which	small	parts
can	be	soldered.	These	breakout	boards	can	then	be	plugged	into	breadboards	or
interconnected	easily	with	jumper	wires,	making	it	somewhat	easier	to	make	complex
gadgets.

Getting	it	right	the	first	time
Getting	it	right	the	first	time	is	not	the	Arduino	way.	Any	experienced	agent	knows	that
nothing	ever	works	quite	the	way	we	expect.	It	helps	to	be	flexible	and	responsive	to	a
fluid	situation.	We	write	Python	software	to	analyze	and	gather	data	because	we	know	that
flexibility	is	important.	Last-minute	changes	are	part	of	the	job.

The	Arduino-based	gadget	building	is	no	different.	The	voltages	are	low	and	the	amount
of	current	involved	is	minor.	If	we	wire	something	backwards,	it	simply	won’t	work.	If	we
miscalculate	a	resistor,	we	may	fry	an	LED.	We	redo	our	calculations,	plug	in	a	new
resistor	and	fresh	LED,	and	start	again.	The	goal	of	the	Arduino	is	to	explore	the	world	of
interactive	gadgets	without	concerns	about	expensive	mistakes.

A	common	phrase	among	gadget	builders	is	the	smoke	test:	plug	it	in	and	see	if	it	smokes.
If	there’s	smoke,	one	of	the	parts	is	fried	and	we’ll	have	some	debugging	to	do	to	find	the
misplaced	wires.	Since	we’re	only	talking	about	5V	DC	and	a	board	that	requires	about	25
mA	of	current,	this	only	involves	0.125	Watts	of	power.	We	don’t	get	much	smoke	if
something	does	go	wrong.

(For	comparison,	a	common	household	appliance	like	a	Waffle	Maker	runs	at	110V	AC,
and	may	draw	1000	W.	This	represents	an	actual	hazard	as	compared	to	an	Arduino.)

Starting	with	the	digital	output	pins
We’ll	use	the	digital	output	pins	for	our	first	mission.	This	will	show	us	the	basics	of
preparing	a	sketch—an	Arduino	program.	We’ll	download	it	to	an	Arduino	and	watch	it
work.

The	Arduino	language	is	vaguely	like	Python,	with	some	extraneous	punctuation.	The
language	is	quite	a	bit	simpler	and	is	statically	compiled	into	hardware-level	instructions
that	are	downloaded	to	the	processor.

An	Arduino	sketch	must	define	two	functions:	setup()	and	loop().	The	setup()	function
will	run	just	once	when	the	board	is	reset.	The	loop()	will	be	evaluated	repeatedly—as
often	as	possible—by	the	Arduino	processor.	The	exact	timing	will	vary	depending	on
what	additional	tasks	the	processor	has	to	engage	in	to	manage	memory	and	deal	with	the
various	devices.	It’s	almost	is	if	the	Arduino	has	an	overall	piece	of	code	that	looks	like
this:

main()	{

			setup();

			while(true)	{	loop();	}

}

We	don’t	need	to	actually	write	code	like	this;	our	sketch	is	written	as	if	this	processing
exists	somewhere	in	the	Arduino.

We	design	our	sketches	to	fit	into	the	overall	Arduino	design	pattern	of	one	setup()
evaluation	and	an	infinite	number	of	loop()	evaluations.	Because	of	this	repetitive	loop
concept	built-in	to	the	Arduino,	we	can	minimize	loops	in	our	programming.

Here’s	the	sketch	to	blink	an	LED:

//	Pin	13	has	an	internal	LED	connected	on	most	Arduino	boards.

const	int	LED	=	13;

void	setup()	{																

		pinMode(LED,	OUTPUT);					

}

void	loop()	{

		digitalWrite(LED,	HIGH);		

		delay(1000);

		digitalWrite(LED,	LOW);

		delay(1000);

}

We	defined	a	handy	global	variable,	LED,	which	specifies	the	pin	we’re	going	to	use.
We’d	rather	not	copy	and	paste	the	pin	number	in	several	places.	We	defined	it	to	be	an
integer,	and	further	specified	that	this	is	a	constant	and	cannot	be	changed.

Around	the	edge	of	the	Arduino	board,	the	pins	are	labeled.	On	an	Arduino	Uno,	pin	13	is
often	next	to	a	socket	labeled	GND	for	ground.	On	many	Arduinos,	the	pins	are	encased	in
sockets,	making	them	easier	to	work	with.

We’ve	set	this	pin	into	output	mode.	We	can	set	an	output	pin	to	high	level	(+5V)	or	low

level	(ground.)	The	digitalWrite()	function	changes	the	state	of	a	given	pin.	The	two
literal	values	HIGH	and	LOW	are	predefined	constants	that	are	used	to	set	the	value	of	digital
output	pins.

Socket	13	is	often	connected	to	a	small	on-board	LED.	We	don’t	really	need	any	parts	to
see	if	this	works.	We	can	connect	the	board	via	the	USB	cable	to	our	computer	and
download	the	sketch.	We	can	click	download	to	send	the	sketch	to	the	Arduino.	Once	the
download	is	complete,	the	little	on-board	LED	should	commence	blinking.

This	is	an	important	first	step.	It’s	worthy	of	celebration.	There	are	a	number	of	further
steps	we	need	to	take.	First,	we	want	to	add	our	own	external	LED	to	the	circuit.	Second,
we	need	to	fix	a	design	flaw	in	this	application.	While	it’s	elegantly	simple,	it	relies	in	a
programming	technique	that	doesn’t	work	well	for	data	gathering	applications.	Let’s	start
with	the	hardware	design	considerations.

Designing	an	external	LED
Since	this	is	our	first	gadget,	it’s	essential	to	break	out	the	collection	of	parts	and	create	a
proper	external	LED	using	a	resistor	to	limit	the	voltage.	The	issue	we	have	is	that	LEDs
need	only	a	fraction	of	the	available	voltage.	We	have	a	design	issue	to	solve	before	we
start	frying	our	parts.	We’ll	use	Python	functions	to	help	us	design	a	proper	resistor.

For	agents	new	to	gadget-building,	think	of	current	as	the	volume	of	water	pouring
through	a	pipe	and	voltage	as	the	pressure	behind	that	water.	High	current,	measured	in
Amperes,	means	water	filling	a	big	pipe:	the	pressure	can	be	low	even	if	the	volume	is
large.	Our	LED	will	consume	some	of	the	available	current	to	create	a	stream	of	photons.
We	could	try	to	flood	our	LED	with	more	current,	but	the	device	can	only	sip	the	current	it
needs,	the	rest	will	just	flow	past—unused.

An	LED	is	a	diode:	it’s	called	a	semiconductor	because	of	its	behavior.	It	must	have
enough	pressure	to	start	working.	Too	little	pressure	(called	Voltage)	and	it	won’t	create
photons.	Too	much	pressure	and	things	will	get	cooked.	Sometimes,	the	cooking	is	quick
and	there’s	a	little	pop	when	the	device	stops	working.	At	other	times,	the	cooking	is	slow
and	we	notice	one	day	that	the	device	doesn’t	work	any	more,	or	doesn’t	work	properly.

Our	Arduino	pins	produce	5.0V	really	reliably.	Our	LEDs	only	need	2V	to	3.5V,
depending	on	the	color	and	they	only	sip	about	15	mA	of	the	available	current.	Different
LEDs	have	different	specifications.	Each	agent	needs	to	check	the	specifications	for	the
LEDs	they	have	available.	Typical	values	include:

Red	LEDs	often	need	about	2.5	V	to	work
Yellow	LEDs	may	need	2.8	V
Green	LEDs	typically	need	as	much	as	3.4	V

We	reduce	the	Arduino’s	output	voltage	by	adding	a	resistor	to	the	circuit.	Resistors	are
measured	in	a	unit	called	Ohms,	Ω,	which	is	the	ratio	of	voltage	pressure	to	the	volume	of
amps	that	will	be	sipped	from	the	circuit.	The	idea	is	that	the	pipe	stays	the	same	size,	but
the	pressure	of	the	water	filling	it	has	been	reduced	by	a	clever	kind	of	valve.

The	rule	for	designing	a	voltage	limiting	resistor	is	based	on	the	supply	voltage,	V_s,
compared	with	the	desired	voltage	at	our	LED,	V_led.	To	compute	the	required	resistance,
R,	we	divide	the	voltage	by	the	current	that	will	be	consumed	by	the	LED,	called	I_led.
Here’s	the	calculation	defined	as	a	Python	function:

def	LED_R(V_led,	I_led=.015,	V_s=5.0):

				"""LED	resistor	required	to	reduce	V_s	to	V_led."""

				R	=	(V_s-V_led)/I_led

				R	=	std_resistor(R)

				print("V_s={V_s:.1f}V,	V_led={V_led:.1f}V,"

										"	I_led={I_led:.3f}A,	R={R:.0f}Ω".format_map(vars()))

We	defined	a	function	with	two	common	assumptions	about	LEDs	in	an	Arduino	context.
The	current	for	most	LEDs,	in	the	I_led	parameter,	is	typically	about	15mA,	although
bright	20	mA	LEDs	are	popular,	too.	The	supply	voltage,	in	the	V_s	parameter,	is	almost
always	5.0	V.

We	calculate	the	resistance	as	follows:

The	difference	is	the	voltage	that	must	be	eliminated	from	the	circuit.

Before	we	can	start	rooting	in	our	parts	box,	the	calculated	resistance	must	be	converted	to
a	standard	resistor	value.	We	can	then	print	the	details	of	the	calculation	so	we	know
which	resistor	to	pair	with	the	LED.	The	problem	is	that	our	desired	resistance	may	not	be
a	standard	value.

Resistor	values	are	defined	by	an	international	standard.	We’ll	use	10	percent	tolerance
resistors	for	much	of	our	gadget	building.	For	this	level	of	tolerance,	each	decade	or	power
of	10	is	divided	into	12	steps.	We	can	calculate	the	steps	that	make	up	the	standard	with	an
expression	like	this:

>>>	list(round(10**(i/12),1)	for	i	in	range(12))

[1.0,	1.2,	1.5,	1.8,	2.2,	2.6,	3.2,	3.8,	4.6,	5.6,	6.8,	8.3]

While	this	is	close	to	the	standard,	our	calculation	isn’t	exact	enough.	Getting	the	standard
values	doesn’t	seem	to	be	a	simple	matter	of	rounding—agents	are	encouraged	to	fiddle
around	with	the	calculation	to	see	if	they	can	reproduce	the	standard	values.

To	be	perfectly	correct,	it	seems	simpler	to	provide	an	explicit	list	of	standard	values	for
10	percent	tolerance	resistors:

E12	=	(1.0,	1.2,	1.5,	1.8,	2.2,	2.7,	3.3,	3.9,	4.7,	5.6,	6.8,	8.2)	

Here’s	how	we	use	these	standard	numbers.	We	want	2.5	V	(of	pressure)	with	15	mA	(of
volume)	from	our	5	V	Arduino,	we	need	166.67	Ω	of	resistance.	Assuming	the	resistors
we	have	are	only	accurate	to	about	10	percent,	any	resistor	in	the	range	from	150	Ω	to
183.3	Ω	is	likely	to	be	166.67	Ω.	Either	of	the	standard	values	of	150	Ω	or	180	Ω	will	be
close	enough.	The	180	Ω	resistor	is	slightly	closer	to	the	target.

We	can	write	a	small	Python	function	that	will	compute	the	appropriate	standard	resistor.
It	looks	like	this:

def	std_resistor(r,	series=E12):

				#	1.	What	decade?

				decade=	10**(int(math.log10(r)))

				#	2.	R	value	within	the	decade.

				r_d=	r/decade

				#	3.	What	are	the	bracketing	values?

				above=	decade*min(s	for	s	in	series	if	s	>=	r_d)

				below	=	decade*max(s	for	s	in	series	if	s	<=	r_d)

				#	4.	Pick	closest	value.

				if	(above-r)/r	<=	(r-below)/r:	return	above

				return	below

This	function	relies	on	the	standardized	series	values.	By	default,	we’ll	use	the	values

from	the	E12	series,	which	are	defined	for	resistors	with	10	percent	tolerance.	We
computed	the	decade	as	a	power	of	10	that	we	can	use	to	scale	the	value	down	to	a	range
from	1	to	10,	and	then	scale	the	series	number	back	up	to	the	proper	resistor	value.	In	this
example	of	166.667	Ω,	the	decade	variable	will	be	100.	The	resistance	factor	of	1.6	is
assigned	to	the	r_d	variable.

We	can	find	the	smallest	standard	value	which	is	larger	than	our	target.	We	can	also	find
the	largest	standard	value	which	is	smaller	than	our	target	resistance.	This	will	give	us	two
alternatives,	which	we’ve	assigned	to	the	variables	above	and	below.

The	final	decision	is	to	pick	the	value	closest	to	the	target.	If	the	value	of	(above-r)/r	is
less	than	(r-below)/r,	then	the	value	assigned	to	the	above	variable	is	the	closest
standard	resistor.	Otherwise,	we’ll	use	the	below	resistor.	In	rare	cases,	our	target
resistance	will	happen	to	be	a	standard	value.	In	this	case,	both	the	above	and	below
variables	will	have	the	same	value,	and	the	selection	between	them	is	moot.

Assembling	a	working	prototype
Here’s	a	typical	engineering	diagram	for	what	we’re	going	to	build.	We’ve	drawn	this
using	the	Fritzing	software,	hence	the	watermark	on	the	diagram.

This	schematic	diagram	shows	the	Arduino	processor	as	a	big	rectangle	with	all	of	its	pins
scattered	around	the	outside.	The	locations	on	the	diagram	don’t	reflect	the	physical
placement	of	the	pins;	this	is	the	conceptual	organization	of	the	board.	We’ve	shown	our
LED,	LED1,	as	a	little	triangle	with	a	line	and	arrows.	We’ve	annotated	the	LED	with	the
current	load	(15	mA)	and	the	color	(633	nm).	The	resistor,	R1,	is	a	squiggle	annotated
with	the	resistance	required.

An	LED’s	positive	leg	(the	anode)	is	usually	longer	or	offset	slightly	or	a	different	shape.
On	the	diagram,	the	positive	leg	connects	to	the	triangle	side	of	the	diode.	The	cathode	leg

(usually	shorter)	will	connect	to	the	Arduino	GND	socket.

The	breadboard	setup	will	look	like	this:

We’ve	saved	a	breadboard	diagram	to	illustrate	how	we’ll	start	building	things	on
breadboard	before	we	attempt	to	create	printed	circuit	boards.	We	used	two	jumper	wires
between	the	Arduino	and	the	breadboard.	We	carefully	bent	the	legs	on	a	resistor	and
pushed	them	into	the	breadboard.	We	put	the	LED	in	the	board	so	that	the	anode	leg
connects	to	the	resistor	and	the	cathode	(or	ground)	leg	connects	to	Arduino	ground.

For	agents	new	to	picking	out	resistors,	there	are	numerous	references	that	explain	the
color	coding:	essentially	the	digits	are	encoded	with	color	bands:	black,	brown,	red,
orange,	yellow,	green,	blue,	violet,	grey,	and	white	stand	for	the	digits	0	through	9.	We	can
consider	adding	the	color	code	to	our	program	that	picks	out	standard	resistors.	The	first
two	bands	will	be	the	two	digits	of	the	resistance,	the	third	band	is	the	decade,	and	the
fourth	band	is	generally	silver	for	10	percent	resistors.

LEDs	are	diodes,	and	current	can	only	flow	one	way.	If	it’s	plugged	in	backwards,	it
simply	fails	to	work.	This	is	a	common	error	in	setting	up	the	breadboard	circuit.

When	we	see	this	LED	blinking,	we’ve	created	our	first	working	gadget.	We’ve	written
the	Arduino	programming	sketch.	We’ve	designed	and	assembled	the	supporting

hardware.	Once	we’ve	created	a	working	prototype,	we	can	dig	in	more	deeply	to	create
active	sensors.

Mastering	the	Arduino	programming
language
The	Arduino	programming	language	is	based	on	C++.	In	Python,	we	use	indentation	to
identify	the	body	of	an	if	statement,	while	statement,	a	function,	or	a	class.	An	Arduino
sketch	will	use	{}	instead	of	indentation.

While	the	{}	are	required	syntax,	almost	all	Arduino	code	that	we’ll	see	will	be	nicely
indented	as	if	it	was	Python.

Similarly,	Arduino	statements	are	separated	by	;	(semicolon).	Python	statements	end	at
the	end	of	the	line,	or	the	end	of	the	matching	(),	[],	or	{}.	It’s	challenging—at	first—to
remember	the	;	(semicolon).	When	we	try	to	upload	the	sketch	to	our	Arduino,	the	final
syntax	check	will	alert	us	to	missing	;(semicolon).

Arduino	has	two	kinds	of	comments:	everything	after	//	is	a	comment.	This	is	similar	to
Python’s	#	comment	delimiter.	Also,	Arduino	programs	can	have	longer	comments	which
begin	with	/*	and	end	with	*/.	This	will	often	be	used	similarly	to	Python’s	'''	triple-
quote	strings.	The	Arduino	/*	*/	comments	can	be	used	anywhere—even	in	the	middle
of	a	statement.

For	simple	immutable	data	types,	the	Arduino	language	is	forced	to	make	several
distinctions	that	Python	doesn’t	make.	Python	has	a	single	integer	type	that	represents	all
integers.	The	Arduino	has	a	number	of	alternatives:

boolean:	This	is	a	single	byte	that’s	expected	to	have	a	simple	value,	the	literal	true
or	the	literal	false.
char:	This	is	often	used	to	store	a	single	ASCII	character.	It	can	also	be	used	for
numbers	in	the	range	-128	to	+127.
byte:	This	is	also	called	unsigned	char.	A	single	physical	byte	of	memory	holds
values	from	0	to	255.
int:	This	is	2	bytes	of	memory,	and	holds	values	in	the	range	of	-32,768	to	+32,767.
unsigned	int	(or	word):	This	is	also	two	bytes	of	memory,	holding	values	from	0	to
65,535.
long:	This	uses	4	bytes	of	memory	and	holds	values	that	are	±2	billion.
unsigned	long:	This	uses	4	bytes	of	memory	and	holds	values	from	0	to	about	4
billion.	One	of	the	internal	clocks	on	the	Arduino	counts	time	in	milliseconds	using
unsigned	long	numbers.	This	gives	us	about	50	days	of	time	before	the	internal
clock	resets	back	to	zero.

Given	all	these	kinds	of	integers,	we’ll	need	to	predict	the	ranges	of	values	we’ll	be	using,
and	select	a	data	type	that	will	use	the	least	amount	of	memory	for	the	task	at	hand.	Input
pins,	generally,	provide	int	values.	If	we’re	counting	events	that	occur	about	1	time	per
minute,	there	will	be	no	more	that	1,440	in	a	day:	too	large	for	a	byte	or	char.	If	we’re
using	the	internal	clock,	we’re	forced	to	work	with	a	few	unsigned	long	values.

The	Arduino	supports	float	and	double-precision	floating	point	values.	We	try	to	minimize

their	use,	since	they	consume	precious	storage.

In	some	cases,	we’ll	work	with	string	values.	These	are	simple	arrays	of	individual
characters.	These	are	limited	to	the	ASCII	character	set,	so	we’ll	only	have	127	distinct
characters	available.	In	later	missions,	we’ll	send	string-encoded	data	from	our	Arduino	to
our	computer.

Unlike	Python,	all	Arduino	variables	are	associated	with	a	data	type.	When	we	create	a
variable,	we	must	also	state	what	type	of	data	will	be	used	with	that	variable.	We’ll	often
see	statements	like	this:

int	sensor	=	digitalRead(SOMEPIN);

We’ve	defined	a	sensor	variable	that	must	hold	int	values.	We	also	used	the
digitalRead()	function	to	set	this	variable	the	current	status	of	some	input	pin.

Using	the	arithmetic	and	comparison	operators
We	have	several	common	arithmetic	operators	available	in	the	Arduino	language:	+,	-,	*,
/,	and	%.	In	the	unlikely	event	we	need	to	raise	a	number	to	a	power,	there’s	a	pow()
function	available.	Arduino	doesn’t	offer	different	division	operators:	if	we	need	to	do	true
division,	we’ll	have	to	explicitly	convert	from	an	int	value	to	a	float	or	a	double	value.

The	Arduino	language	uses	&,	|,	~,	>>,	and	<<	exactly	like	Python.	These	operators	are
performing	bit-by-bit	operations	on	integer	values.	We	can	do	things	like	this:

boolean	b2=	(a	&	0x02)	>>	1;

This	will	extract	the	second	bit	of	an	integer	value	in	the	variable	a.	It	will	define	a
variable	b2,	and	assign	the	new	value	to	that	variable.

The	Arduino	language	has	operators	like	Python’s	and,	or,	and	not	Boolean	operators.	In
Arduino,	these	logical	operators	are	spelled	&&,	||,	and	!.	These	are	shorter	than	Python’s
operators	and	look	confusingly	like	the	bit-manipulation	operators.

The	Arduino	comparison	operators	are	the	same	as	Python’s	comparisons.	Python	allows
us	to	use	2	<=	a	<	10	to	combine	two	comparisons	into	a	single	tidy	expression.	We
cannot	use	this	shortcut	in	Arduino,	and	we	must	use	(2	<=	a)	&&	(a	<	10).

Arduino	also	offers	++	and	—	operators.	These	have	fairly	subtle	semantics,	making	them
easy	to	misuse.	We	suggest	that	++	be	used	only	in	the	context	of	a	for	statement.	We’ll
look	at	the	Arduino	for	statement	next.

Using	common	processing	statements
The	Arduino	language	has	a	variety	of	processing	statements.	There’s	potential	for
confusion	when	trying	to	create	a	mapping	from	one	language	to	another	language.	We’ll
point	out	some	of	the	similarities	between	the	languages,	and	try	to	use	the	Arduino
features	that	are	most	similar	to	Python.

Arduino	has	an	assignment	statement	that’s	very	similar	to	Python’s.	Note	that	we	must
define	a	variable’s	type	before	we	can	use	the	variable.	It’s	common	to	see	variables
defined	outside	the	loop()	and	setup()	functions:

int	BUTTON_IN	=	3;

void	setup()	{

			pinMode(BUTTON_IN,	INPUT);

}

We	defined	the	type	of	the	variable	named	BUTTON_IN,	and	assigned	an	initial	value	of	3.
Inside	the	setup()	function,	we’ve	use	the	pinMode()	function	to	use	this	pin	for	input.

Arduino	offers	us	augmented	assignment	statements:	+=,	-=,	|=,	and	so	on,	so	that	we	can
perform	a	calculation	which	updates	an	existing	variable.	We	might	have	something	like
this:

counter	+=	1;

For	decision-making,	Python	has	an	if	statement:	this	starts	with	an	if	clause,	has	an
unlimited	number	of	elif	clauses	and	an	optional	final	else	clause.	We	can	build	a	wide-
variety	of	conditional	processing	with	this	flexible	statement.

The	Arduino	language	has	two	variations	on	the	conditional	statement:

if	with	else	if	clauses	and	an	else	clause.	Note	that	()	are	required	around	the
condition	and	{}	are	required	around	the	indented	body.
switch	statement	with	case	alternatives.

The	Arduino	if	statement—except	for	minor	syntax	differences—parallels	the	Python	if
statement.	For	this	reason,	we	strongly	encourage	using	the	Arduino	if	statement	and
avoiding	the	switch	statement.	While	there	may	be	some	possible	advantages	to	the
switch	statement,	the	misuse	of	break	statements	in	each	case	can	lead	to	endless
debugging.	It’s	easier	to	avoid	using	it.

We	might	see	this	in	Arduino	programming:

				if(push	>=	2000)	{

						//	2	second	press.

						digitalWrite(BUTTON_LED,	HIGH);

				}

				else	if	(push	>=	500)	{	

						//	0.5	sec	press.

						digitalWrite(BUTTON_LED,	LOW);

				}

				else	{	

						//	too	short.

				}

This	is	similar	to	a	Python	if-elif-else	statement.	It	includes	the	()	and	{}	as	required
by	the	Arduino	language.	It	includes	;	at	the	end	of	statements	as	well.	Note	that	we	don’t
have	a	pass	statement	in	the	Arduino	language	because	we’re	allowed	to	have	empty	{}.

There	are	a	number	of	looping	statements.	We’ll	look	at	these	in	the	next	section.	We’ve
seen	enough	of	the	language	to	create	a	better	blinking	LED.	Once	we’ve	looked	at	that,
we	can	start	to	gather	data	more	seriously.

Hacking	and	the	edit,	download,	test	and	break
cycle
The	Arduino	development	cycle	is	a	similar	to	the	Python	development	cycle.	In	Python,
we	have	the	>>>	interactive	prompt,	allowing	us	to	do	experimentation.	We	don’t	have	this
available	for	writing	Arduino	programs.	When	we’re	done	experimenting	at	Python’s	>>>
prompt,	our	development	forms	an	edit-test-break	cycle:	we	edit	a	script,	test	it,	and	fix
anything	that	breaks.

The	essential	life-cycle	on	the	Arduino	has	an	extra	step;	we’ll	call	this	the	Edit-Compile-
Test-Break	cycle:

We’ll	create	or	modify	our	sketch	in	the	Arduino	IDE	(or	perhaps	in	the	Fritzing	code
tab).
We’ll	download	this	to	our	board.	This	will	compile	the	sketch,	reporting	any	syntax
errors.	If	the	sketch	is	valid,	it	will	be	transferred;	the	board	will	automatically	reset
and	start	operating.
We’ll	try	to	use	the	board	to	see	if	it	works.	We’ll	observe	the	LEDs,	or	we’ll	push
the	buttons,	turn	the	knobs,	or	we’ll	wave	our	hand	in	front	of	the	distance	sensor.
The	idea	is	to	exercise	all	of	the	features	until	we	either	break	the	software,	or	we	feel
that	it’s	fit	for	use.
If	something	did	break,	we’ll	fix	it	by	changing	the	hardware	components	or	writing
different	software.	In	some	cases,	things	will	work,	but	we’ll	have	an	idea	for	a	new
feature,	restarting	the	cycle	for	the	next	version	of	our	gadget.

In	some	cases,	our	software	will	behave	badly	and	we’ll	struggle	to	see	what	went	wrong.
The	Arduino	serial	interface	is	very	helpful	for	this.	We	can	use	the	Arduino	Serial
interface	to	write	on	the	USB	device;	the	Arduino	IDE	can	capture	this	data	using	the
serial	interface	monitor.	We	can	also	use	Python’s	pyserial	interface	to	collect	this	data.
This	can	help	diagnose	problems	turned	by	during	the	test	step.

Seeing	a	better	blinking	light
The	core	blinking	light	sketch	uses	a	delay(1000)	to	essentially	stop	all	work	for	1
second.	If	we	want	to	have	a	more	responsive	gadget,	this	kind	of	delay	can	be	a	problem.
This	design	pattern	is	called	Busy	Waiting	or	Spinning:	we	can	do	better.

The	core	loop()	function	is	executed	repeatedly.	We	can	use	the	millis()	function	to	see
how	long	it’s	been	since	we	turned	the	LED	on	or	turned	the	LED	off.	By	checking	the
clock,	we	can	interleave	LED	blinking	with	other	operations.	We	can	gather	sensor	data	as
well	as	check	for	button	presses,	for	example.

Here’s	a	way	to	blink	an	LED	that	allows	for	additional	work	to	be	done:

const	int	LED=13;	//	the	on-board	LED

void	setup()	{

				pinMode(LED,	OUTPUT);

}

void	loop()	{

				//	Other	Work	goes	here.

				heartbeat();

}

//	Blinks	LED	13	once	per	second.

void	heartbeat()	{

		static	unsigned	long	last=	0;

		unsigned	long	now=	millis();

		if	(now	-	last	>	1000)	{

				digitalWrite(LED,	LOW);

				last=	now;

		}

		else		if	(now	-	last	>	900)	{

				digitalWrite(LED,	HIGH);

		}

}

We	used	the	const	keyword	on	the	LED	variable.	This	formalizes	the	notion	that	this
variable	should	not	be	changed	anywhere	else	in	the	sketch.

The	setup()	function	sets	pin	13	to	be	in	output	mode.	We	can	then	energize	and	de-
energize	this	pin	to	blink	an	LED.	The	loop()	function	can	do	some	work—like	read
sensors—as	well	as	execute	the	heartbeat()	function.

The	heartbeat()	function	defines	the	last	variable	marked	with	static.	The	keyword
static	in	Arduino	is	related	to	the	@staticmethod	descriptor	used	in	Python.	This	static
annotation	means	that	the	value	of	the	variable	is	not	reset	each	time	the	function	is
evaluated.	Compare	this	with	the	variable	now,	which	is	recreated	every	time	the	function
is	executed.	This	alternative	to	static	is	called	automatic—a	new	variable	is	created	and
initialized	each	time	the	function	is	executed.

We’ve	created	a	kind	of	timeline	based	on	the	millis()	clock.	There	are	three	ranges	of
values:

0	<=	now-last	<	900:	We	want	to	leave	the	LED	pin	set	to	LOW.

900	<=	now-last	<	1000:	We	set	LED	pin	set	to	HIGH.
1000	<=	now-last:	We’ll	reset	the	last	variable	and	also	set	the	pin	to	LOW.

The	range	of	values	can	be	changed	to	modify	the	duty	cycle	of	the	LED.	We’ve	defined
the	rules	to	be	90	percent	off	and	10	percent	on.

Simple	Arduino	sensor	data	feed
A	button	is	not	the	simplest	kind	of	sensor	to	read.	While	the	concept	is	simple,	there’s	an
interesting	subtlety	to	reading	a	button.	The	problem	is	that	buttons	bounce:	they	make
some	intermittent	contact	before	they	make	a	final,	solid	connection.

There’s	a	simplistic	way	to	debounce	that	involves	a	Busy	Waiting	design.	We’ll	avoid
this	and	show	a	somewhat	more	sophisticated	debounce	algorithm.	As	with	the	LED
blinking,	we’ll	rely	on	the	millis()	function	to	see	how	long	the	button	has	stayed	in	a
given	state.

To	debounce,	we’ll	need	to	save	the	current	state	of	the	button.	When	the	button	is
pressed,	the	signal	on	the	input	pin	will	become	HIGH	and	we	can	save	the	time	at	which
this	leading	edge	event	occurred.	When	the	button	is	released,	the	signal	will	go	back	to
LOW.	We	can	subtract	the	two	times	to	compute	the	duration.	We	can	use	this	to	determine
if	this	was	a	proper	press,	just	a	bounce,	or	even	a	long	press-and-hold	event.

The	function	looks	like	this:

const	int	BUTTON_IN=	7;

unsigned	long	debounce()	{

		static	unsigned	long	rise_time=	0;

		static	int	button_state=	LOW;

		int	probe=	digitalRead(BUTTON_IN);		

		//	Leading	edge.

		if(probe	==	HIGH	&&	button_state	==	LOW)	{

				rise_time=	millis();

				button_state=	probe;

				return	0;

		}

		unsigned	long	duration=	millis()-rise_time;

		//	Trailing	edge.

		if(probe	==	LOW	&&	button_state	==	HIGH)	{

				button_state=	probe;

				return	duration;

		}

		return	0;

}

We	used	two	static	variables	to	save	the	previous	button	state	in	the	button_state
variable	and	the	time	at	which	the	button	was	pressed	in	the	rise_time	variable.	The
signal	from	the	pin	rose	from	LOW	to	HIGH,	so	we	decided	to	call	this	time	value
rise_time.

We	set	the	probe	variable	to	the	current	state	of	the	pin	to	which	the	button	is	connected.
When	this	is	HIGH,	the	button	has	been	pressed	(or	is	bouncing).	When	this	is	LOW,	the
button	has	been	released.	The	expression	probe	==	HIGH	&&	button_state	==	LOW
reflects	the	state	change	when	the	button	is	first	pressed	and	starts	bouncing.	When	this
happens,	we’ll	change	the	button	state	and	save	the	value	of	millis().	We	return	a	value
of	0	because	we	don’t	yet	know	the	duration	of	the	button	press.

The	expression	probe	==	LOW	&&	button_state	==	HIGH	will	be	true	when	the	button

has	been	released	(or	finished	a	bounce.)	We	can	reset	the	button	state	and	return	the
duration	since	the	button	was	pressed.	If	this	is	a	number	that’s	greater	than	10,	it’s
generally	a	solid	push	of	the	button,	not	a	bounce.	A	value	of	about	100	would	be	a	full
1/10th	of	a	second	push.	A	value	of	2,000	would	be	a	long	2-second	push-and-hold.

We’ll	use	this	function	in	the	loop()	like	this:

const	int	BUTTON_LED=	8;

void	loop()	{

		static	int	button	=	LOW;

		unsigned	long	push=	debounce();

		if	(push	>=	10)	{	

						//	change	button	LED	from	HIGH	to	LOW

						if(button	==	LOW)	{	button	=	HIGH;	}

						else	{	button	=	LOW;	}

						digitalWrite(BUTTON_LED,	button);

		}

		heartbeat();

}

This	version	of	the	loop()	function	references	the	heartbeat()	function	shown
previously.	This	will	provide	some	visual	confirmation	that	the	sketch	is	running.	If	we
measure	a	button	press	of	more	than	1/100th	of	a	second,	it’s	not	a	bounce	and	we’ll	make
a	change	to	an	LED.	If	the	LED	was	previously	LOW,	we’ll	switch	the	LED	to	HIGH;
otherwise,	the	LED	must	have	been	HIGH,	so	we’ll	switch	it	to	LOW.

We	defined	a	variable	named	BUTTON_LED	to	identify	the	LED	that’s	being	changed.	The
name	implies	that	the	LED	has	something	to	do	with	a	button.	HQ	likes	us	to	use	the
clever	little	tactile	buttons	that	have	an	LED	in	the	dome	of	the	button.	The	package	for
this	is	very	small,	and	doesn’t	easily	plug	into	the	breadboard.	Agents	will	need	to	buy	a
breakout	board	for	these	tactile	LEDs.	We	can	solder	the	tactile	LED	button	to	little	board
along	with	header	pins,	and	connect	the	assembly	as	a	whole	to	our	breadboard.

The	advantage	of	this	is	that	we	can	use	this	LED	to	provide	visual	feedback	that
something	is	operating	properly.	The	downside	of	complex	gadgets	is	that	they	can	fail	in
sometimes	mysterious	ways.	Providing	rich	levels	of	feedback	can	help	show	that	the
gadget	is	operating	properly.

The	wiring	schematic	for	a	button	with	an	LED	looks	like	this:

We’ve	shown	the	button	as	S1.	It	has	a	rather	complex	circuit	using	a	10	KΩ	resistor.	This
is	called	a	pull	down	resistor	and	is	required	to	provide	a	proper	LOW	voltage	state	on	the
input	pin.	For	these	kinds	of	digital	devices,	we	can’t	simply	leave	a	circuit	open	with	no
connection.

We’ve	shown	the	LED,	LED1,	also.	We	separated	these	two	parts	in	the	schematic
diagram.	Physically,	the	switch	and	LED	are	both	packaged	as	a	single	part.	We’ve
assumed	that	the	tactile	LED	that	requires	only	2.5	V	and	therefore	needs	180	Ω	of
resistance.

We	build	a	responsive	little	device	which	can	change	state	and	shows	an	active	heartbeat.

We	can	leverage	this	design	to	do	analog	data	collection.	We	can	even	do	some
preliminary	analysis	of	the	data	on	the	Arduino	board.

Collecting	analog	data
Our	goal	is	to	gather	data	from	an	analog	range	sensor.	This	device	must	be	connected	to
one	of	the	analog	input	pins.	We	also	need	to	connect	it	to	power	and	ground	pins.
According	to	the	documentation	for	the	GP2Y0A21YK,	the	sensor	has	three	connections:
Vo,	GND,	and	Vcc.	With	the	sensor	pointing	up,	the	left-most	pin	is	generally	Vo,	the
output	that	will	connect	to	Arduino	A0	to	provide	analog	input.	The	center	pin	is	ground,
which	connects	to	one	of	the	Arduino	GND	connections.	The	right-most	pin	will	be	Vcc,
the	supply	voltage	that	will	connect	to	the	+5	V	pin	on	the	Arduino.

Many	of	these	devices	have	a	little	JST	three-wire	socket.	We	can	buy	a	nice	little	JST
three-wire	jumper.	The	color	coding	of	the	wires	on	the	jumper	may	not	fit	our
expectations	very	well.	We	may	wind	up	with	Vcc	on	the	black-colored	wire	(black	is
often	used	for	ground)	and	the	ground	connection	on	the	red-colored	wire	(red	is	often
used	for	+5V.)

If	we	connect	things	up	wrong,	there	will	likely	be	a	short	circuit	and	the	Arduino	board
will	simply	stop	working.	The	green	power	LED	on	the	board	will	fade	out.

Once	we	have	the	part	wired	properly,	we’ll	need	to	use	the	analogRead()	function	to
gather	the	input	from	pin	A0.	This	will	be	an	integer	value	between	0	and	1024	that
reflects	the	measured	voltage	level	between	0	and	5	V.	We	can	compute	the	actual	voltage
level,	V,	from	a	raw	input	number,	s,	as	V=5*s/1024.	For	now,	we’ll	just	look	at	the	raw
input	values.

We	can	collect	some	initial	data	with	a	very	simple	sketch	that	reads	the	value	and	writes
it	to	the	serial	interface.	Here’s	this	initial	sketch	for	reading	the	distance	device:

int	samples[4];

void	gather_data()	{

		for(int	i=	0;	i	!=	4;	++i)	{

						samples[i]=	analogRead(IR_IN);

		}

}

void	share_data()	{

		for(int	i=0;	i	!=	4;	++i)	{

				Serial.print(samples[i],	DEC);

				Serial.print("\t");

		}

		Serial.println();

}

We	defined	a	function	to	gather	data	and	a	function	to	share	this	data.	We’ve	broken	the
two	features	into	separate	functions	so	that	we	can	easily	tweak	these	as	we	go	forward.
We	defined	a	buffer	with	room	for	four	samples.	This	is	an	entirely	arbitrary	amount	of
data.	It	seems	like	enough	to	demonstrate	the	device	is	working.	We	can	easily	tweak	this
to	be	16	samples,	if	we	want	to	see	more	information.

This	sketch	introduces	the	for	statement.	This	statement	contains	three	clauses	separated

by	;	in	the	()	and	a	body	inside	the	{}:

It	has	an	initialization	clause.	We	used	int	i=	0	to	create	as	well	as	initialize	the
integer	variable	i.	This	variable	is	local	to	the	body	of	the	for	statement.
It	has	a	completion	clause.	We	used	i	!=	4	so	that	we’ll	process	the	body	of	the	for
statement	while	the	i	variable	is	not	equal	to	four,	and	stop	when	i	is	equal	to	four.
It	has	an	increment	clause.	We	used	++i	to	increment	the	value	of	the	i	variable	by	1.
We	generally	avoid	the	++	operator	in	other	contexts	because	the	semantics	can
become	confusing.	In	this	context,	however,	there’s	no	ambiguity.

These	for	statements	are	similar	to	Python’s	for	i	in	range(4).	The	three	explicit
clauses	allow	us	to	write	very	complex	processing.

We	shared	the	data	by	writing	on	the	Arduino	serial	interface.	We	used	the	Serial	object’s
print()	function	to	provide	a	decimal	representation	of	the	input	value.	The	Arduino	IDE
can	capture	this	data	for	us	on	our	computer.

This	requires	a	change	in	the	setup()	as	well:

void	setup()	{

		pinMode(LED,	OUTPUT);

		digitalWrite(LED,	LOW);

		Serial.begin(9600);

}

We	added	a	Serial.begin()	to	open	the	serial	output	port	for	writing.	The	9600
parameter	specifies	part	of	the	hardware	configuration.	We’ll	return	to	the	meaning	of	the
9600	later.

The	overall	loop()	function	might	look	like	this	to	simply	gather	data	every	2	seconds:

void	loop()	{

				static	unsigned	long	last=	0;

				unsigned	long	now	=	millis();

				if	(now-last	>	2000)	{

						gather_data();

						share_data();

						last=	now;

				}

				heartbeat();

}

We’ll	check	the	clock.	If	it’s	been	2	seconds	since	the	last	data	gathering,	we’ll	collect	four
data	points	and	emit	those	four	points.	We’ll	also	keep	the	heartbeat	function	running	so
that	we	can	see	the	LEDs	blinking	to	show	the	status	of	our	board.

We	can	see	the	output	when	we	open	the	Serial	Monitor	window	in	the	Arduino	IDE.
When	we	open	this	window,	we’ll	see	a	trickle	of	numbers	as	we	wave	our	hands	in	front
of	the	sensor.	Once	we’ve	determined	that	things	work,	we’ll	need	to	create	a	slightly
more	stable	setup.	We	might	point	the	sensor	at	a	wall.	If	we	do,	we’ll	see	output	that
looks	like	this:

273	 274	 273	 280

231	 231	 234	 232

This	shows	that	even	when	things	aren’t	moving	around,	there’s	a	small	amount	of
variability	in	the	output	from	the	IR	distance	sensor.	Each	burst	of	four	numbers	seems	to
be	nearly	similar.	Perhaps	if	we	create	a	more	stable	environment	and	use	a	few	clamps	to
hold	a	white	paper	card	in	place	at	a	fixed	distance	from	the	sensor,	we	might	get	more
consistent	results.

The	data	sheet	for	the	GP2Y0A02YK0F	sensor	includes	a	timing	chart	that	shows	a	delay
of	30	to	50	ms	before	a	stable	distance	can	be	read.	After	a	lag	of	5	ms,	the	device	will
emit	a	new	measurement.	The	data	sheet	shows	us	that	the	device	will	have	moments	of
instability	in	the	output.	There’s	a	long	period	of	time	with	a	stable	reading	and	a	short
period	of	time	with	an	unstable	reading.

If	we	collect	simple	counts	of	matching	raw	data	values,	we’ll	see	that	about	64	percent	of
the	raw	values	are	completely	consistent.	Up	to	75	percent	are	±1	from	the	most	common
value,	or	mode.	For	example,	if	the	mode	is	251,	then	the	three	values	between	250	and
252	account	for	75	percent	of	the	data.	The	problem	we	face	is	recognizing	whether	or	not
the	first	sample	we	read	is	part	of	the	stable	readings	or	is	a	reading	from	the	small	period
of	instability	that	occurs	every	38	or	so	milliseconds.

We’re	forced	to	compute	the	mode	over	a	small	period	of	time.	Because	the	Arduino	can
read	(and	process)	a	value	in	about	200	microseconds,	it	can	read	as	many	as	40	values	in
5	milliseconds.	The	most	common	value	among	these	will	be	the	current	distance.

Our	goal	is	to	identify	a	current	stable	reading	and	turn	this	number	into	a	useful	distance
measurement.	For	that,	we’ll	need	to	do	some	more	precise	calibration.	We’ll	enhance	this
data	collection	sketch	to	gather	a	few	more	samples	suitable	for	statistical	analysis.	We
can	combine	our	button	and	distance	reader	so	that	the	board	can	emit	a	burst	of
measurements.	This	will	allow	us	to	gather	data	at	different	distances	and	derive	the	exact
relationship	between	the	input	voltage	and	distance.

Collecting	bulk	data	with	the	Arduino
First,	we’ll	expand	our	IR	sensor	reading	sketch	to	wait	for	the	sensor	to	show	a	stable
reading.	We’ll	use	this	stable	reading	algorithm	to	gather	a	batch	of	16	samples	from	the
sensor.	This	will	give	us	some	data	that	we	can	use	for	calibration.

The	expanded	version	of	the	gather_data()	function	includes	three	separate	features.
We’ve	left	them	in	a	single	function,	but	they	can	be	decomposed	if	required	to	make	the
Arduino	more	responsive.	Here	are	the	global	variables	shared	by	gather_data()	and
share_data():

unsigned	long	start_time,	end_time;

int	raw_reading;

#define	MODE_LIMIT	6

int	reading[MODE_LIMIT];

int	count[MODE_LIMIT];

const	int	TIME_LIMIT	=	5000;	//	Microseconds.

We	defined	three	important	features	for	our	data	collection:	the	start	time	for	reading,	the
end	time	for	reading,	and	the	raw	value	that	was	read.	We	included	two	other	pieces	of
data	definition	that	are	unique	to	the	Arduino	language.

The	#define	statement	creates	a	symbol	that’s	used	to	modify	the	source	prior	to
compiling	it.	In	this	case,	MODE_LIMIT	has	a	simple	value	of	6.	Wherever	MODE_LIMIT	is
used,	a	simple	textual	substitution	is	done	to	replace	this	with	its	replacement	text	of	6.	If
we	change	this	value,	the	source	text	is	changed	in	several	places.

The	values	for	reading	and	count	are	analogous	to	Python	list	structures.	In	Arduino,
we’ll	call	them	arrays.	They	have	an	important	difference	from	Python	lists:	arrays	are	of	a
fixed	size.	The	size	is	defined	when	the	sketch	is	compiled	and	cannot	be	changed	without
recompiling	and	uploading	the	sketch.	The	size,	MODE_LIMIT,	must	be	an	integer	constant.
Because	#define	names	do	simple	text	substitution,	this	use	of	a	symbol	instead	of	a
constant	can	be	a	handy	clarification.	It’s	better	to	see	a	consistent	symbolic	name	than	the
number	6.

We	included	a	comment	on	the	TIME_LIMIT	variable	to	clarify	the	units.	We	don’t	mind
waiting	for	5,000	microseconds,	that’s	only	5	milliseconds.	We	wouldn’t	want	to	wait
5,000	milliseconds.	That	would	be	5	seconds.

Here’s	the	first	part	of	the	gather_data()	function:

//	Read	IR	data	computing	a	mode	of	no	more	than	16	distinct	values.

//	After	TIME_LIMIT	microseconds,	return	the	mode.

void	gather_data()	{

		//	Start	gathering.

		start_time=	micros();

		for(int	i=	0;	i	!=	MODE_LIMIT;	++i)	{	reading[i]=	-1;	count[i]=	0;	}

		//	Next	Sample.	This	could	be	a	separate	function,	part	of	loop()

		while(micros()-start_time	<	TIME_LIMIT)	{

				int	next=	analogRead(IR_IN);

				for(int	i=	0;	i	!=	MODE_LIMIT;	++i)	{

						if(reading[i]	==	next)	{

								count[i]	+=	1;

								break;

						}

						else	if(reading[i]	==	-1)	{

								reading[i]	=	next;

								break;

						}

				}

		}

We	saved	the	starting	time	for	our	data	gathering.	We	used	a	for	statement	to	set	all	of	the
values	in	the	reading	to	-1	and	all	the	values	of	the	count	array	to	0.	We’ll	use	the	value
-1	as	a	kind	of	sentinel	to	locate	unused	slots	in	the	reading	array.	In	Python,	we’d	append
to	the	end	of	a	list.	In	Arduino,	we	can’t	expand	an	array,	so	we’ll	use	sentinel	values
instead.

We	used	the	while	statement	to	execute	a	sequence	of	statements	while	a	given	condition
is	true.	In	this	case,	we’re	subtracting	the	start_time	value	from	the	current	time,	given
by	micros().	If	this	is	less	than	the	value	of	TIME_LIMIT,	we	can	continue	gathering	data
to	compute	the	mode.	If	this	is	false,	we’ve	run	out	of	time,	and	we’ll	move	to	the	rest	of
the	gather_data()	function.

We’ll	use	the	analogRead()	function	to	get	another	value	from	the	IR	device;	we’ll	assign
this	to	the	next	variable.	Then,	we’ll	use	a	for	statement	to	examine	each	value	in	our
array	of	readings:

If	the	value	in	the	reading	array	matches	the	value	in	next,	we’ll	increment	the
matching	value	in	the	count	array	and	break	from	the	for	statement.
If	the	reading	is	-1,	this	is	a	sentinel.	No	previous	value	has	matched,	so	we’ll	replace
the	value	in	the	reading	array	with	the	value	in	next.	We’ll	also	break	from	the	for
statement.
If	we	don’t	find	a	matching	reading	or	a	sentinel	value,	then	the	array	of	readings	is
full.	Based	on	analysis	of	captured	data,	this	is	rare	for	an	array	with	six	positions	in
it.	We’ll	wind	up	ignoring	this	value	of	next.

Once	we’ve	reached	the	time	limit,	we’ll	digest	the	frequency	counts	we’ve	accumulated.
Here’s	the	rest	of	the	gather_data()	function:

		//	End	processing

		int	mx	=	0;

		for(int	i=	1;	i	!=	MODE_LIMIT;	++i)	{

				if(reading[i]	==	-1)	break;

				if(count[i]	>	count[mx])	mx=	i;

		}

		raw_reading=	reading[mx];

		end_time=	micros();

}

We	initialized	a	local	variable,	mx,	to	zero.	This	is	the	value	that	is	assumed	to	be	the
largest	value	in	the	count	array.	We’ll	use	a	for	statement	to	compare	the	remaining

values	with	this	initial	assumption.	If	any	element	of	the	count	array	is	larger	the	value	in
count[mx],	we’ll	change	mx	to	reflect	this	correction	to	our	initial	assumption.	After
examining	all	values,	the	value	of	count[mx]	will	be	the	largest	count	and	the	value	of
reading[mx]	will	be	the	most	common	reading.

Controlling	data	collection
The	share_data()	function	needs	to	be	expanded	to	emit	the	value	of	raw_reading
instead	of	four	samples.	For	deeper	analysis	(and	debugging	purposes),	we’ll	want	to
update	share_data()	to	print	start_time,	end_time,	and	the	values	from	the	reading
and	count	arrays	onto	the	serial	interface.

We	can	then	modify	the	main	loop()	to	include	the	following:

void	loop()	{

				unsigned	long	push=	debounce();

				if(push	>	10)	{

								for(int	i=	0;	i	!=	16;	++i)	{

												gather_data();

												share_data();

								}

				}

				heartbeat();

}

This	allows	us	to	position	a	card	at	a	known	distance	from	the	sensor	and	push	the	button.
A	little	burst	of	data	from	the	sensor	will	be	sent	through	the	serial	interface.	We	can	then
move	the	card	and	gather	another	burst	of	data.

Data	modeling	and	analysis	with	Python
We	will	use	the	pyserial	module	to	write	a	separate	data	gathering	application	in	Python.
For	this	to	work,	we’ll	have	to	shut	down	the	Arduino	IDE	so	that	our	Python	program	can
access	the	USB	serial	port.

A	serial	interface	will	see	a	stream	of	individual	bits	that	can	be	reassembled	into	bytes.
The	low-level	sequence	of	signals	flips	between	high	and	low	voltage	at	a	defined	rate,
called	baud.	In	addition	to	the	baud,	there	are	a	number	of	other	parameters	that	define
serial	interface	configuration.

In	some	contexts,	we	might	summarize	an	interface	configuration	as	9600/8-N-1.	This
says	that	we	will	exchange	bits	at	9600	baud,	using	8-bit	bytes,	no	parity	checking,	and	a
single	stop	bit	included	after	the	data	bits.	8-N-1	specification	after	the	“/”	is	a	widely-
used	default	and	can	be	safely	assumed.	The	transmission	speed	of	9600	baud	can’t	be
assumed,	and	needs	to	be	stated	explicitly.	Our	Arduino	Serial.begin(9600)	in	the
setup()	function	specified	9600	baud;	this	means	that	our	Python	data	collection
application	must	also	specify	9600	baud.	The	Arduino	default	configuration	is
SERIAL_8N1,	as	is	the	pyserial	default.

Even	though	flow	control	isn’t	used	by	default	in	the	Arduino,	it’s	best	to	always	use	a
timeout	option	in	our	Python	software.	If	the	Arduino	stops	sending	(or	receiving),	our
Python	application	can	continue	operating.	This	means	that	we’ll	observe	an	empty	line	of
input	when	there’s	no	input	available	at	the	end	of	the	timeout	interval.	We	can	ignore
these	empty	lines	and	process	everything	else	normally.

Collecting	data	from	the	serial	port
On	Mac	OS	X,	the	OS	representation	of	the	serial	port	device	is	created	when	a	physical
device	is	plugged	into	a	USB	interface.	We’ll	see	the	physical	device	appear	as	a	name	in
the	filesystem	that	looks	like	this:	/dev/cu.*.	To	see	this,	use	the	OS	command	ls
dev/cu.*	before	and	after	connecting	the	Arduino.	On	Windows,	the	behavior	may	be
somewhat	different,	since	the	Windows	COM0:	and	COM1:	ports	may	exist	without	a
device	connected.

When	the	Arduino	IDE	is	running,	it	will	open	the	serial	interface	so	that	sketches	can	be
uploaded.	Since	a	Mac	OS	X	or	Linux	serial	device	is	used	exclusively	by	a	single
process,	we	can’t	capture	data	from	a	Python	application	while	the	Arduino	IDE	is
running.	Once	we’ve	uploaded	our	sketch,	we	no	longer	need	the	Arduino	IDE,	and	we
can	safely	quit.

Once	the	Arduino	IDE	has	stopped,	we	can	use	Python	to	read	(and	write)	to	the	serial
interface.	If	we	forget	to	quit	the	Arduino	IDE,	we’ll	see	exceptions	when	we	try	to
connect	to	the	serial	interface	in	Python.

To	communicate	with	the	Arduino,	we’ll	use	serial.Serial	to	create	a	file	that	we	can
use	for	input	or	output.	The	basic	connection	looks	like	this:

import	serial

import	sys

def	sample(port,	baud=9600,	limit=128):

				with	serial.Serial(port,	baud,	timeout=1)	as	ir_sensor:

								while	limit	!=	0:

												line=	ir_sensor.readline()

												if	line:

																print(line.decode("ascii").rstrip())

																sys.stdout.flush()

																limit	-=	1

We	imported	the	serial	module,	which	allows	us	to	access	USB	serial	devices	from
Python.	We	also	imported	the	sys	module	so	that	we	can	work	with	sys.stdout.	Our
sample()	function	will	gather	up	to	128	lines	of	input	from	the	Arduino.	This	function
opens	the	named	serial	interface	device,	usually	"/dev/cu.usbmodem1421".	We	provided
the	ability	to	change	the	baud	setting;	since	9600	is	a	common	default,	we’ve	made	this	a
default	for	the	baud	parameter.

The	timeout	value	of	1	means	that	the	interface	will	wait	for	only	1	second	for	a	complete
line	of	input.	If	a	complete	line	isn’t	available,	the	serial	interface	readline()	method	will
return	a	zero-length	string	of	bytes,	b''.	If	a	complete	line	(including	the	b'\r\n'	at	the
end)	is	available,	this	string	of	bytes	will	be	returned.

The	timeout	is	essential	to	prevent	the	interface	from	becoming	stuck	while	it	waits	for	the
Arduino	to	provide	input.

In	order	to	show	results	as	they	become	available,	we	included	sys.stdout.flush().	This
will	assure	that	the	output	is	displayed	on	the	Python	console	as	soon	as	it’s	available.	This
isn’t	essential,	but	it’s	a	handy	debugging	feature.	We	often	want	immediate	feedback	that

everything	is	working.	We	may	have	Python	errors,	Arduino	sketch	errors,	or	wiring
problems.	Using	the	heartbeat()	function	in	our	Arduino	sketch	and
sys.stdout.flush()	in	our	Python	gives	us	a	way	to	assess	the	root	cause	of	a	problem.

Formatting	the	collected	data
The	raw	serial	output—punctuated	with	'\t'	characters—is	directly	useful	in	Python.	We
can	use	the	csv	module	to	parse	this	data.	We	can	open	a	reader	using
csv.reader(ir_sensor,	delimiter='\t')	to	properly	split	the	columns.

For	long-term	analysis,	it’s	useful	to	save	data	into	a	CSV	file	using	a	more	common
delimiter	of	“,“.	It’s	also	helpful	to	include	a	header	row	so	that	we	know	the	meaning	of
the	various	integers	in	the	file.

For	calibration	purposes,	we’ll	want	to	use	the	expected	distance	and	actual	Arduino
analog	input	values	together	as	a	sequence	of	simple	pairs.	This	will	allow	us	to	create
statistical	models	that	correlate	expected	distance	readings	with	input	values.

Here’s	the	Python	side	of	our	data	collection.	We’ll	show	this	as	three	functions.	The	first
filters	the	Arduino	data,	discarding	the	line-ending	characters	as	well	as	blank	lines	that
happen	when	the	serial	interface	times	out:

def	gather(ir_sensor,	samples=16):

				while	samples	!=	0:

								line=	ir_sensor.readline()

								if	line:

												yield	line.decode("ascii").rstrip()

												samples	-=	1	

This	generator	function	will	emit	lines	of	sample	data	read	from	an	Arduino.	It	requires
that	the	serial	interface	has	been	opened	properly	and	provided	as	the	ir_sensor
parameter.	The	upper	limit	on	the	number	of	samples	has	a	default	value	of	16.	This
generator	is	a	kind	of	filter	that	rejects	empty	lines.	It’s	also	a	kind	of	map	that	converts
bytes	to	proper	Unicode	characters.

Each	run	of	the	experiment	requires	an	expected	distance	value,	collects	data	using	the
gather()	function,	and	reformats	it	into	a	useful	output.	Here’s	a	function	that	reformats
the	data	from	one	experiment:

import	csv

def	experiment_run(ir_sensor,	writer,	expected,	samples=16):

				rdr=	csv.reader(gather(ir_sensor,	samples),	delimiter='\t')

				for	row	in	rdr:

								data	=	dict(

												Start=	row[0],

												Stop=	row[1],

												Raw=	row[2],

												#	Ignore	12	columns	of	measurement	and	count	pairs.

												Expected=	expected,

)

								writer.writerow(data)

We	provide	this	function	the	serial	interface	as	the	ir_sensor	parameter,	plus	a	CSV
DictWriter	object	as	the	output.	We	also	provided	the	value	for	the	expected
measurement	to	be	added	to	each	line	of	data	and	the	number	of	samples	to	gather.

We	used	the	gather()	generator	function	to	create	a	file-like	iterable	sequence	of	input

lines.	The	gather()	function	rejects	the	blank	lines	which	are	an	artifact	of	the	timeout
setting.	We	wrapped	the	output	of	gather	with	a	csv.reader()	that	uses	the	\t	delimiters
to	parse	the	columns	of	data.

We	can	then	read	each	line	of	input	from	the	serial	interface,	separate	the	raw	and	time
values,	and	write	the	times,	the	raw	value,	and	the	expected	distance	to	the	output	CSV
file.	This	will	give	us	a	file	of	data	that	we	can	use	for	future	analysis.

The	overall	main	function	prompts	the	user	to	enter	an	expected	value.	Once	that’s
available,	the	user	can	press	the	data	collection	button	on	the	Arduino	to	collect	a	batch	of
16	samples.

def	collect_data():

				with	serial.Serial(port,	baud,	timeout=1)	as	ir_sensor:

								with	open("ir_data.csv",	"w",	newline="")	as	results:

												wtr=	csv.DictWriter(results,	["Start",	"Stop",	"Raw",	

"Expected"])

												wtr.writeheader()

												exp_str=	input('Expected	[q]:	')

												while	not	exp_str.lower().startswith('q'):

																try:

																				exp	=	int(exp_str)

																				distance_run(ir_sensor,	wtr,	exp)

																except	ValueError	as	e:

																				print(e)

																exp_str=	input('Expected	[q]:	')

This	function	will	open	the	serial	interface	from	the	Arduino	so	that	we	can	begin
collecting	data.	It	will	also	open	a	data	collection	file	for	the	final	data.	We’ve	used	a
DictWriter	so	that	we’ll	have	consistent	headings	on	the	file	of	collected	data.

We’ve	prompted	an	interactive	user	to	enter	an	expected	distance.	If	the	user	enters	‘q‘	or
even	‘quit‘,	we’ll	end	the	while	statement,	closing	the	two	files.	If	the	user	enters	a	valid
number	for	the	expected	distance,	this	will	then	collect	16	samples	at	the	given	expected
distance	using	the	distance_run()	function.

The	output	will	be	a	simple	CSV	file	that	looks	like	this:

Start,Stop,Raw,Expected	

39248264,39253316,118,30	

39255860,39260908,118,30	

This	shows	the	start	time	and	end	time	for	the	data	collection.	These	are	in	microseconds,
and	we	expect	the	two	times	to	be	at	least	5,000	microseconds	apart	from	each	other.	The
raw	value	also	comes	from	the	Arduino.	The	expected	value	was	entered	by	the	user	and
defines	(in	part)	the	experimental	setup.

Crunching	the	numbers
Our	calibration	process	works	like	this.	First,	we’ll	download	the	code	to	the	Arduino.	We
can	quit	the	Arduino	IDE	and	start	our	Python	data	collection	application.	We	enter	a
distance	to	our	Python	program	and	then	stand	up	a	paper	card	at	a	known	distance	from
the	sensor.	When	we	push	the	data	collection	button	on	our	prototype,	the	button’s	LED
will	flash	as	data	is	being	collected.	We	can	enter	a	new	distance,	move	the	card,	push	the
button,	and	collect	more	data.

One	of	the	first	steps	is	to	gather	basic	descriptive	statistics	on	the	raw	data	values	in	our
CSV	files.	We’ll	generally	use	the	mean	and	the	standard	deviation	to	compare	two	files	of
measurements.	If	we	extract	all	the	measurements	at,	for	example,	15	cm	distance,	and	the
mean	in	one	file	is	wildly	different	from	the	mean	in	another	file,	we	can’t	simply	lump
the	two	files	together.	If	the	averages	are	not	within	three	standard	deviations	of	each
other,	the	values	are	significantly	different.

When	we	process	these	files,	we’ll	make	use	of	this	handy	function:

import	csv

from	types	import	SimpleNamespace

def	nsreader(source):

				rdr=	csv.DictReader(source)

				return	(SimpleNamespace(**{k:int(v)

												for	k,v	in	row.items()})

																for	row	in	rdr)

This	function	works	with	the	csv	module	to	create	a	slightly	easier-to-use	data	structure.
The	results	of	a	csv.DictReader	are	a	little	awkward:	we	have	to	write	row['Raw']	to
reference	a	specific	column.	In	the	case	where	all	of	the	column	names	are	valid	Python
identifiers,	we	can	create	a	SimpleNamespace	and	use	row.Raw	to	reference	a	specific
column.

We	used	{k:int(v)	for	k,v	in	row.items()}	to	create	a	mapping	from	a	key	to	an
integer	for	each	column	in	the	source	data.	For	our	data	gathering,	this	is	convenient.	In
other	contexts,	we	may	have	to	develop	a	more	sophisticated	function	to	convert	attributes
to	different	data	types.

The	SimpleNamespace(**{k:int(v)	…	})	expression	will	use	this	mapping	as	the	basis
for	creating	the	resulting	SimpleNamespace	object.	Each	key	in	this	dictionary	will
become	an	attribute	name.	We	wrapped	this	expression	in	a	generator	function	so	that	we
can	iterate	through	the	results	of	our	nsreader()	function.

We	can	use	the	statistics	module	to	see	the	average,	standard	deviation,	and	variance
for	each	collection	of	samples.	We	need	to	group	the	samples	around	the	expected	distance
value	that	we	recorded	with	each	collection	of	16	samples:

from	collections	import	defaultdict

from	statistics	import	mean,	stdev

def	distance():

				by_dist	=	defaultdict(list)

				for	filename	in	'irdata_0.csv',	'irdata_1.csv',	'irdata_2.csv':

								with	open(filename)	as	source:

												for	row	in	nsreader(source):

																by_dist[row.Expected].append(row)

								for	d	in	sorted(by_dist):

												m	=	mean(row.Raw	for	row	in	by_dist[d])

												s	=	stdev(row.Raw	for	row	in	by_dist[d])

												count	=	len(by_dist[d])

												print("{d}cm	n={count}:	µ={m:7.3f},	"

																		"σ={s:8.4f}".format_map(vars()))

								print()

We	created	a	collections.defaultdict	that	will	contain	lists	of	items	that	all	have	a
common	expected	distance.	We	can	then	compare	the	15	cm	expected	distance
measurements	from	three	calibration	runs.

Once	we’ve	separated	our	data	by	expected	distance,	we	can	compute	some	descriptive
statistics	for	each	distance.	In	this	case,	we’ve	used	the	statistics	module	to	compute
mean	and	standard	deviation.	The	standard	deviation	is	the	square	root	of	the	variance:	it
also	tells	us	how	spread	out	the	data	is.

Here’s	some	sample	output:

irdata_0.csv

15cm	n=16:	µ=421.812,	σ=		3.5444

20cm	n=16:	µ=254.438,	σ=		2.9432

25cm	n=16:	µ=214.125,	σ=		0.6191

We	need	to	look	at	just	the	15cm	data	for	each	run:

15cm	n=16:	µ=421.812,	σ=		3.5444

15cm	n=16:	µ=299.438,	σ=		2.3085

15cm	n=16:	µ=300.312,	σ=		1.0145

Clearly,	the	first	run	isn’t	measuring	the	same	thing	the	second	and	third	runs	are
measuring.	Something	must	have	been	different	in	that	setup.	The	data	is	more	variable
and	the	average	is	remarkably	different	from	the	other	two	runs.

Over	90	percent	of	the	data	should	fall	within	three	standard	deviations	of	a	given	mean.
With	a	mean	of	about	300	and	a	standard	deviation	of	about	2.3,	we	expect	data	to	fall
between	293	and	307.	A	mean	of	about	421	is	very	unlikely	to	belong	to	the	same
population.

Creating	a	linear	model
The	data	sheet	for	most	IR	devices	shows	a	kind	of	inverse	power	curve	between	voltage
and	distance.	We’ve	only	measured	the	performance	between	15	cm	and	30	cm,	which	is	a
fraction	of	the	overall	range	the	device	is	capable	of.	One	of	the	reasons	for	limiting	the
range	is	because	this	portion	of	the	range	appears	linear.	Another	reason	is	that	a	12-inch
desk	ruler	only	covers	about	30	cm.	A	meter	stick	or	yard	stick	would	show	different
results.

We	can—with	a	small	transformation—convert	the	nonlinear	power	curve	data	to	a	proper
power	curve.	We	might,	for	example,	use	1/raw	to	convert	the	raw	value	in	a	way	that
leads	to	more	accurate	position	calculation	over	a	wider	range	of	distances.	This
conversion	is	something	we’ll	leave	for	agents	who	need	more	accuracy	over	greater
distances.	Our	data	is	only	measured	over	a	short	range	of	15	cm	to	30	cm	and	appears
linear	over	that	range.

To	create	the	conversion	between	reading	and	distance,	we’ll	create	a	linear	model.	This

will	give	us	the	two	parameters	for	the	equation	 .	In	this	case,	y	is	the	linear
distance,	in	cm,	x	is	the	input	reading	(ideally,	as	a	voltage,	but	we’ll	see	that	the	raw
reading	also	works	over	short	distances).	β	is	the	slope	of	the	line,	and	α	is	the	y-axis
intercept	where	x	equals	zero.

The	Python	statistics	module	does	not	include	a	linear	estimation	function.	A	little
search	among	sources	on	the	internet	turns	up	a	number	of	approaches.	We’ll	rely	on	the
following	calculations	for	the	two	coefficients.

The	values	for	 	and	 	are	the	standard	deviations	of	x	and	y	values.	The	values	for	

and	 	are	the	means	of	these	two	variables.	The	value	for	r	is	the	Pearson	correlation
coefficient.	We	can	calculate	it	as	follows:

The	value	N	is	the	number	of	samples.	The	values	 	and	 	are	standardized	z-

scores	computed	from	the	value,	the	population	mean,	and	the	population	standard
deviation.	We	convert	each	raw	value	to	the	number	of	standard	deviations	from	the	mean:

We	can	implement	this	linear	estimation	as	the	following	Python	function:

from	statistics	import	mean,	stdev,	pstdev

def	z(x,	μ_x,	σ_x):

				return	(x-μ_x)/σ_x

def	linest(pairs):

				x_seq	=	tuple(p[0]	for	p	in	pairs)

				y_seq	=	tuple(p[1]	for	p	in	pairs)

				μ_x,	σ_x=	mean(x_seq),	stdev(x_seq)

				μ_y,	σ_y=	mean(y_seq),	stdev(y_seq)

				z_x	=	(z(x,	μ_x,	σ_x)	for	x	in	x_seq)

				z_y	=	(z(y,	μ_y,	σ_y)	for	y	in	y_seq)

				r_xy	=	sum(zx*zy	for	zx,	zy	in	zip(z_x,	z_y))/len(pairs)

				beta=	r_xy	*	σ_y/σ_x

				alpha=	μ_y	-	beta*μ_x

				return	r_xy,	alpha,	beta

We	ensured	the	input	to	be	a	list	of	(x,	y)	pairs.	We’ll	compute	a	model	that	predicts	the	y
values	from	the	x	values.	We	decomposed	the	sequence	of	pairs	into	a	sequence	of	x
values	and	a	sequence	of	y	values.	(This	two-step	process	means	that	the	pairs	variable
must	be	a	sequence	object,	and	it	can’t	be	an	iterable	generator	of	values.)

We	calculate	the	mean	and	standard	deviation	values	for	both	sequences.	We	also	use	two
generator	expressions	to	apply	the	z()	function	to	create	two	sequences	of	standardized
values	from	the	original	sequences	of	raw	values.	The	z()	function	is	so	small	that	we
could	have	used	a	lambda	object:	z=lambda	x,	μ_x,	σ_x:	(x-μ_x)/σ_x.	This	can	be
confusing,	so	we	defined	a	complete,	but	small	function.

Once	we	have	the	set	of	standardized	z-values,	we	can	compute	the	correlation	between
the	two	sequences,	given	by	the	r_xy	variable.	We	use	the	construct	for	zx,	zy	in
zip(z_x,	z_y)	to	process	matching	values	from	the	two	parallel	sequences.	From	the
r_xy	value,	we	compute	the	alpha	and	beta	parameters	of	the	linear	model	that	maps	x
values	to	y	values.

We	can	use	a	function	like	this	to	show	the	linear	model:

def	correlation(filename,	xform=lambda	x:x):

				with	open(filename)	as	source:

								data	=	nsreader(source)

								pairs	=	list((xform(row.Raw),	row.Expected)	for	row	in	data)

				r,	alpha,	beta	=	linest(pairs)

				r_2	=	r*r

				print("r²	=	{r_2:.4f}".format_map(vars()))

				print("d	=	{beta:.5f}*raw	+	{alpha:.2f}".format_map(vars()))

This	will	extract	the	Raw	and	Expected	attributes	values	from	one	of	our	collected	data
files.	We	used	the	nsreader()	to	create	namespace	objects,	which	allows	us	to	use	syntax
like	row.Expected	to	reference	an	attribute	of	a	sample.	We’ve	applied	the	xform	function
to	each	Raw	value.	The	default	xform	function	is	a	lambda	object	which	does	nothing.	We
can	supply	different	functions	(or	lambda	objects)	to	explore	any	transformations	that
might	be	needed	to	make	the	raw	data	linear.

We’ll	use	the	pairs	list	as	the	argument	to	the	linest()	function.	This	will	return	the
correlation,	r,	plus	the	parameters	for	the	linear	model,	alpha	and	beta.	We	compute	the	
	value	because	this	shows	the	fraction	of	the	variance	that’s	explained	by	the	linear

model.

The	output	for	the	ir_data.csv	file	looks	like	this:

r²	=	0.8267

d	=	-0.12588*raw	+	43.90

This	tells	us	that	82	percent	of	the	values	will	be	predicted	by	this	formula.	The	actual
formula	for	distance	is	given	next.	We	can	implement	this	in	our	Arduino	and	report	actual
distance	instead	of	a	raw	voltage	measurement.	It’s	a	small	change	to	the	sketch	to	do	this
additional	distance	calculation.

We’ve	followed	a	multi-step	procedure	for	calibrating	our	measurement	and	data
collection	device:

1.	 We	ran	some	controlled	experiments	to	gather	data	points.
2.	 We	did	some	basic	statistics	to	see	what	parts	of	the	data	were	usable.
3.	 We	created	a	linear	model	to	describe	the	data.

We	can	then	modify	the	software	in	our	device	based	on	this	calibration	procedure.	This
becomes	part	of	an	ongoing	effort	to	gather	and	analyze	raw	data	to	be	sure	our	device’s
results	are	meaningful.

Reducing	noise	with	a	simple	filter
Is	there	a	way	that	we	can	reduce	the	variability	in	the	output?	One	possibility	to	use	a
moving	average	of	the	raw	values.	Using	an	Exponentially	Weighted	Moving	Average
(EWMA)	algorithm	will	tend	to	damp	out	small	perturbations	in	the	data,	providing	a
more	stable	reading.

This	moving	average	is	called	exponentially	weighted	because	the	weights	given	to
previous	values	fall	off	exponentially.	The	immediately	previous	value	is	weighted	more
heavily	than	the	value	before	that.	All	values	figure	into	the	current	value,	but	as	we	go
back	in	time,	the	weights	for	those	old	values	become	very,	very	small.

The	core	calculation	for	a	weighted	data	point,	 ,	from	the	raw	data	point,	 ,	looks	like
this:

We	used	a	weighting	value,	w,	that	expresses	the	influence	of	the	previous	data	point	on
the	current	data	point.	If	w	is	one,	previous	values	have	no	influence.	If	w	is	zero,	the
initial	value	is	the	only	one	that	matters	and	new	values	are	ignored.

The	very	first	data	point,	 ,	can	be	simply	the	first	raw	point,	 .	No	transformation	is
applied;	this	initial	value	is	used	to	start	the	processing.	A	common	variation	is	to	average
an	initial	burst	of	four	values.

A	weighting	value	of	 ,	for	example,	means	that	each	new	point	consists	of	1/3	of	the
next	raw	value	and	2/3	of	the	all	of	the	previously	weighted	values.	This	means	that	small
variations	will	be	ignored.	As	we	move	back	in	time,	the	effective	weightings	for	those
older	and	older	values	are	0.666,	0.444,	0.296,	0.197,	etc.

We	can	explore	the	impact	of	this	filter	using	the	raw	data	we’ve	already	collected.	We	can
write	a	function	like	this	to	experiment	with	different	weighting	values:

def	ewma(row_iter,	w=0.4):

				row	=	next(row_iter)

				r	=	row.Raw

				s	=	r

				row.Weighted	=	s

				yield	row

				for	row	in	row_iter:

								r=	row.Raw

								s=	round(w*r	+	(1-w)*s)

								row.Weighted=	s

								yield	row

This	generator	function	will	apply	a	weighting	of	w	=	0.4	to	the	value	of	Raw	in	each	item

in	the	row_iter	sequence	of	values.	We	use	the	next()	function	to	extract	the	initial	item,
row,	which	we	use	to	seed	the	raw	values,	r,	and	the	sequence	of	weighted	values,	s.	In
this	case,	we	seeded	the	weighted	sequence	with	a	single	initial	value.	An	alternative	is	to
create	an	unweighted	average	of	the	first	few	values.

We	inserted	the	weighted	value	into	each	row	of	data,	setting	the	Weighted	attribute	of
each	row.	We	then	yielded	the	modified	row.

For	all	of	the	remaining	items	in	the	row_iter	sequence,	we’ll	get	the	value	of	the	Raw
attribute,	r.	From	this,	we’ll	compute	the	weighted	moving	average,	s.	As	with	the	first
item,	we’ll	insert	this	back	into	the	row	as	the	Weighted	attribute	and	yield	the	modified
row.

This	is	a	mapping	from	the	input	data	to	an	extended	form	of	the	input	data.	Interestingly,
this	kind	of	mapping	is	difficult	to	do	with	the	built-in	map()	function.	The	transformation
we’re	applying	that	creates	the	Weighted	value	from	the	Raw	value	is	a	stateful
transformation:	something	a	generator	function	does	well.

As	an	initial	experiment,	we	can	look	at	the	data	like	this:

				from	ch_5_ex_3	import	nsreader

				with	open("irdata_2.csv")	as	data:

								for	row	in	ewma(nsreader(data)):

												print(row.Raw,	row.Weighted)

This	small	script	allows	us	to	see	the	effect	of	the	ewma()	generator	function	by	comparing
the	Raw	and	Weighted	values.	We’ll	see	sequences	of	data	that	shows	the	raw	and	weighted
values:

300	300

299	300

301	300

The	raw	value	jumped	around	between	299	and	up	to	301;	the	weighted	value	stayed
steady	at	300.	Here’s	a	second	example	of	data	from	this	weighted	moving	average:

300	300

301	300

300	300

288	295

288	292

289	291

In	this	case,	the	distance	from	the	IR	reader	to	the	target	jumped	suddenly	from	300	to	288
(from	15	cm	to	16	cm).	The	weighted	moving	average	stepped	down	slowly	through	300,
295,	292,	and	291.	A	good	consequence	of	the	weighted	moving	average	is	that	small
changes	are	damped	out;	a	large	change	will	be	slowed	down.

We	can	easily	implement	this	algorithm	in	the	Arduino.	We	can	couple	this	with	our	linear
model	for	translating	the	weighted	value	to	a	distance.	This	provides	us	with	a	slowly
changing	distance	measure.

Solving	problems	adding	an	audible	alarm
We	used	LEDs	to	provide	feedback.	We	started	with	a	heartbeat	LED	that	showed	us	that
our	sketch	was	running	properly.	We	can	easily	add	LEDs	based	on	other	conditions.	For
example,	we	might	add	red	and	green	LEDs	to	show	when	the	distance	being	measured	is
outside	certain	limits.

We’ll	need	to	add	appropriate	resistors	for	these	LEDs.	We’ll	also	need	to	allocate	two
pins	to	control	these	LEDs.

We	can	convert	the	raw	measurement	into	a	distance	with	a	simple	calculation	in	the
Arduino	program.	We	might	add	code	somewhat	like	this:

float	next	=	debounce_ir();

float	raw	=	next*w	+	(1-w)*current;	

float	d	=	-0.12588*raw	+	43.90;

This	depends	on	a	debounce_ir()	function	that	reads	a	single	distance	value	from	the	IR
device.	This	is	a	small	change	to	our	gather_data()	function.	We	want	to	return	a	value
instead	of	update	a	global	variable.

We	used	a	EWMA	algorithm	to	compute	the	weighted	moving	average	of	the	sequence	of
raw	values.	This	is	saved	in	a	global	variable,	raw.	It	depends	on	a	weighting	value,	w,
which	we	developed	by	exploring	the	data	with	a	Python	program.	We	then	converted	this
to	a	distance	value,	d,	which	we	can	use	for	illuminating	some	LEDs.

We	can	then	use	this	distance	value	in	if	statements:

if(d	<	16.0)	{	digitalWrite(RED_LED,	HIGH);	}

else	{	digitalWrite(RED_LED,	LOW);		}

if(d	>	29.0)	{	digitalWrite(GREEN_LED,	HIGH);	}

else	{	digitalWrite(GREED_LED,	LOW);		}

This	requires	us	to	define	the	two	pins	used	for	the	red	and	green	limit	LEDs.	We	can
experiment	with	this	to	be	sure	that	LEDs	goes	on	when	a	target	is	placed	too	close	or	too
far	from	the	sensor.

We	can	also	add	a	Piezo	speaker	and	use	the	Arduino	tone()	and	noTone()	functions	to
create	audible	signals.	Note	that	the	speaker	requires	a	small	resistor,	usually	100	Ω,	to
reduce	the	voltage	to	a	manageable	level.

Instead	of	setting	a	pin	to	HIGH	or	LOW,	we	use	the	tone()	function	to	provide	a	frequency
(try	1,000)	and	a	duration	(1,000	milliseconds	or	1	second).	This	will	produce	a	handy
beep	noise	that	serves	as	an	audio	alert.

When	starting	out	on	this	kind	of	mission,	it’s	hard	to	know	where	we’ll	end	up.	A	single
alarm	LED	or	two	LEDs	as	the	limits	are	being	reached?	A	tone?	Multiple	tones?	The
exact	feedback	we	need	is	difficult	to	imagine	without	seeing	the	device	in	operation.
Being	able	to	change	the	device	easily	allows	us	to	experiment	with	different	kinds	of
interactions.

Summary
In	this	chapter,	we	looked	at	data	collection	at	the	gadget	level.	We	used	an	Arduino	board
to	build	a	data	collection	gadget.	We	looked	at	how	we	can	build	a	simple	display	using
LEDs.	We	also	discussed	providing	simple	input	by	debouncing	a	push	button.	We	used
Python	programs	to	help	us	design	some	of	these	circuits.

We	also	used	the	analog	input	pins	to	gather	data	from	an	infrared	distance	sensor.	To	be
sure	that	we’ve	got	reliable,	usable	data,	we	wrote	a	calibration	process.	We	collected	that
raw	data	and	analyzed	it	in	Python.	Because	of	the	sophisticated	statistics	module,	we
were	able	to	evaluate	the	quality	of	the	results.

We	used	Python	to	build	a	linear	model	that	maps	the	raw	measurements	to	accurate
distance	measurements.	We	can	use	these	Python	analytical	modules	for	ongoing
calibration	and	fine-tuning	the	way	this	device	works.

We	also	used	Python	to	examine	the	parameters	for	an	EWMA	algorithm.	We	can	use
Python	to	explore	the	weighting	factor.	It’s	very	easy	to	process	raw	data	from	the
Arduino	device	and	tweak	the	Python	algorithms	quickly	and	easily.	Once	we	arrived	at	a
good	algorithm,	we	can	implement	it	in	the	Arduino.

We	built	a	device	that	becomes	part	of	the	Internet	of	Things	(IoT.)	This	small	device
produces	a	stream	of	serial	data	that	a	computer	can	capture	and	process.	With	a
foundation	of	data	gathering,	transformation,	and	upload,	we’re	able	to	create	additional
gadgets	that	work	with	different	kinds	of	data.

In	our	first	missions,	we	upgraded	and	extended	Python	to	add	state-of-the-art	modules
and	components.	This	is	a	regular	practice	that	all	agents	need	to	follow.	The	pace	of
change	is	supplied	in	documents	available	at	https://www.python.org/dev/peps/pep-0429/.
This	information	helps	us	keep	current	with	the	ever-changing	world	of	open	source
software.

One	of	the	common	types	of	mission	involves	extracting	or	analyzing	data	from	log	files.
Many	pieces	of	software,	including	databases	and	web	servers,	keep	extensive	logs.
Anyone	who	creates	a	web	site	has	access	to	the	logs	that	show	what	parts	of	the	site	are
being	accessed.	This	data	is	voluminous,	and	Python	tools	are	one	common	way	to	digest
and	summarize	the	details.

One	of	the	most	useful	sources	of	information	is	other	people.	We	can	connect	with	other
people	through	the	numerous	social	networks	that	people	join.	There	are	in-person	groups
that	we	can	find	using	sites	like	http://www.meetup.com.	We	can	search	for	like-minded
groups	using	keywords	like	Python,	Arduino,	or	Maker.

We	can	also	use	online	social	networks	to	locate	people,	and	their	interests.	Some	social
network	web	sites,	such	as	https://twitter.com	have	very	sophisticated	Application
Program	Interfaces	(API).	We	can	often	find	the	kind	of	information	we	want	using
Twitter’s	very	sophisticated	API.	Other	social	network	web	sites	aren’t	quite	so
sophisticated,	and	we	may	be	forced	to	do	more	work	to	analyze	and	interpret	the	data.

https://www.python.org/dev/peps/pep-0429/
http://www.meetup.com
https://twitter.com

In	some	cases,	we’re	forced	to	work	with	data	sources	that	aren’t	simple	to	analyze.	A
PDF	file,	for	example,	might	have	a	great	deal	of	useful	information,	but	it	may	also	be
difficult	to	parse.	We’ve	looked	at	one	(of	many)	libraries	that	attempt	to	do	a	useful
decoding	of	PDF	content.	The	pdfminer	package	seems	to	provide	a	useful	level	of
flexibility	for	extracting	data	that	might	be	otherwise	locked	into	a	PDF.

Our	final	missions	showed	us	how	we	can	use	the	Internet	of	Things	to	gather	data.	The
common	theme	that	many	agents	observe	is	that	raw	data	isn’t	as	useful	as	data	that’s
properly	analyzed	and	summarized.	Merely	collecting	bits	and	bytes	of	data	isn’t	what	HQ
needs.	The	truly	successful	agents	transform	raw	data	into	actionable	information.

Index
A

analog	data
collecting	/	Collecting	analog	data

Apache	CLF
URL	/	Looking	at	the	CLF

Apache	logs
URL	/	Getting	a	web	server	log

Arduino
defining	/	Background	briefing:	Arduino	basics
references	/	Background	briefing:	Arduino	basics
shopping	list,	organizing	/	Organizing	a	shopping	list
flexible	and	responsive,	to	fluid	situation	/	Getting	it	right	the	first	time
bulk	data,	collecting	with	/	Collecting	bulk	data	with	the	Arduino

Arduino	IDE
obtaining	/	Getting	the	Arduino	IDE
URL	/	Getting	the	Arduino	IDE

Arduino	programming	language
mastering	/	Mastering	the	Arduino	programming	language
arithmetic	operators,	using	/	Using	the	arithmetic	and	comparison	operators
comparison	operators,	using	/	Using	the	arithmetic	and	comparison	operators
common	processing	statements,	using	/	Using	common	processing	statements
Edit-Compile-Test-Break	cycle,	defining	/	Hacking	and	the	edit,	download,	test
and	break	cycle

Arduino	sensor	data	feed
about	/	Simple	Arduino	sensor	data	feed

B
Beautiful	Soup

upgrading	/	Mission	One	–	upgrade	Beautiful	Soup
reference	/	Mission	One	–	upgrade	Beautiful	Soup
HTML	page,	obtaining	/	Getting	an	HTML	page
HTML	structure,	navigating	/	Navigating	the	HTML	structure

blinking	light
about	/	Seeing	a	better	blinking	light

blocks	of	text
displaying	/	Displaying	blocks	of	text

bulk	data
collecting,	with	Arduino	/	Collecting	bulk	data	with	the	Arduino

Busy	Waiting
about	/	Seeing	a	better	blinking	light

Busy	Waiting	design
about	/	Simple	Arduino	sensor	data	feed

C
CLF

definition	/	Looking	at	the	CLF
fields	/	Looking	at	the	CLF
pattern	/	Looking	at	the	CLF

collected	data
formatting	/	Formatting	the	collected	data

Common	Log	Format	(CLF)
about	/	Understanding	the	variety	of	formats

complex	layouts
defining	/	Understanding	tables	and	complex	layouts

content	filter
writing	/	Writing	a	content	filter

cooked	strings
versus	raw	strings	/	Finding	a	pattern	in	a	file

CSV	output
emitting	/	Emitting	CSV	output

D
data

scraping,	from	PDF	files	/	Scraping	data	from	PDF	files
collecting,	from	serial	port	/	Collecting	data	from	the	serial	port

data	collection
controlling	/	Controlling	data	collection

data	modeling	and	analysis
with	Python	/	Data	modeling	and	analysis	with	Python

design	principles,	for	methods
about	/	Extending	the	resource	manager

digital	output	pins
starting	with	/	Starting	with	the	digital	output	pins
external	LED,	designing	/	Designing	an	external	LED
working	prototype,	assembling	/	Assembling	a	working	prototype

diode
about	/	Designing	an	external	LED

document
text	data,	obtaining	from	/	Getting	text	data	from	a	document

downloads
tracking	/	What	are	they	downloading?

E
EARTH	character

about	/	Using	some	simple	statements
entities

URL	/	Starting	with	someone	we	know
about	/	Starting	with	someone	we	know

Expandable	Cloud	Computing	(EC2)
about	/	Getting	a	web	server	log

F
filter

noise,	reducing	with	/	Reducing	noise	with	a	simple	filter
Flickr

URL,	for	photos	/	Background	briefing	–	images	and	social	media
Fritzing	application

URL	/	Getting	the	Arduino	IDE
Fritzing	tool

URL	/	Getting	the	Arduino	IDE
ftplib

solution,	for	obtaining	logs	from	server	/	Building	a	more	complete	solution

G
gadgets

building	/	Building	our	own	gadgets
generator	expressions

Eager	/	Using	generator	expressions
Lazy	/	Using	generator	expressions

Google	Cloud	Platform
URL	/	Who’s	doing	the	talking?

grid
exposing	/	Exposing	the	grid

gzip	compressed	file
reading	/	Reading	a	gzip	compressed	file

H
http.client

web	services,	accessing	with	/	Accessing	web	services	with	urllib	or	http.client
Hypertext	Transfer	Protocol	(HTTP)

about	/	Accessing	web	services	with	urllib	or	http.client

I
image	processing

with	PIL	package	/	Background	briefing	–	images	and	social	media

J
JavaScript	Object	Notation	(JSON)

about	/	Navigating	the	HTML	structure,	Background	briefing	–	web	servers	and
logs

L
language	analysis

about	/	Deep	Under	Cover	–	NLTK	and	language	analysis
Latin	America	or	Caribbean	(LAC)

about	/	Processing	whois	queries
linear	model

creating	/	Creating	a	linear	model

N
Network	Information	Center	(NIC)

about	/	Processing	whois	queries
NLTK

about	/	Deep	Under	Cover	–	NLTK	and	language	analysis
reference	link	/	Deep	Under	Cover	–	NLTK	and	language	analysis

noise
reducing,	with	simple	filter	/	Reducing	noise	with	a	simple	filter

numbers
defining	/	Crunching	the	numbers

O
other	upgrades

defining	/	Doing	other	upgrades

P
page	iterator

filtering	/	Filtering	the	page	iterator
PDF

URL	/	Background	briefing–Portable	Document	Format
PDF	content

extracting	/	Extracting	PDF	content
generator	expressions,	using	/	Using	generator	expressions
generator	functions,	writing	/	Writing	generator	functions
bad	data,	filtering	/	Filtering	bad	data
context	manager,	writing	/	Writing	a	context	manager
PDF	parser	resource	manager,	writing	/	Writing	a	PDF	parser	resource	manager
resource	manager,	extending	/	Extending	the	resource	manager

PDF	document
URL	/	Extracting	PDF	content
about	/	Extracting	PDF	content

PDFDocument
about	/	Extracting	PDF	content

PDF	files
data,	scraping	from	/	Scraping	data	from	PDF	files

PDF	Miner
references	/	Extracting	PDF	content

PDF	Miner	3k
URL	/	Scraping	data	from	PDF	files

pdf	package
URL	/	Scraping	data	from	PDF	files

PDFPageInterpreter
about	/	Extracting	PDF	content

PDFParser
about	/	Extracting	PDF	content

PDFResourceManager
about	/	Extracting	PDF	content

Pillow
references	/	Doing	other	upgrades

PIL	package
used,	for	processing	image	/	Background	briefing	–	images	and	social	media

pip3.4	program
about	/	Background	briefing	–	images	and	social	media

pip	application
using	/	Mission	One	–	upgrade	Beautiful	Soup

ply	package
references	/	Scraping	data	from	PDF	files
defining	/	Sidebar	on	the	ply	package

Portable	Document	Format
defining	/	Background	briefing–Portable	Document	Format

PostScript
about	/	Background	briefing–Portable	Document	Format

PyPI
URL	/	Mission	One	–	upgrade	Beautiful	Soup

PySerial
URL	/	Getting	a	Python	serial	interface

Python
URL	/	Doing	a	Python	upgrade
about	/	Sidebar	on	the	ply	package
used,	for	running	other	programs	/	Using	Python	to	run	other	programs

Python	3	compatibility
URL	/	Mission	One	–	upgrade	Beautiful	Soup

Python	Enhancement	Proposals	(PEP)
about	/	Background	briefing	on	tools
URL	/	Background	briefing	on	tools

Python	language
reviewing	/	Background	briefing:	review	of	the	Python	language
variables	used,	for	saving	results	/	Using	variables	to	save	results
strings,	using	/	Using	the	sequence	collections:	strings
tuples	and	lists,	using	/	Using	other	common	sequences:	tuples	and	lists
dictionary	mapping,	using	/	Using	the	dictionary	mapping
data,	comparing	/	Comparing	data	and	using	the	logic	operators
logic	operators,	using	/	Comparing	data	and	using	the	logic	operators
simple	statements,	using	/	Using	some	simple	statements
if	statement,	using	/	Using	compound	statements	for	conditions:	if
for	statement,	using	/	Using	compound	statements	for	repetition:	for	and	while
while	statement,	using	/	Using	compound	statements	for	repetition:	for	and
while
functions,	defining	/	Defining	functions
script	files,	creating	/	Creating	script	files

Python	serial	interface
obtaining	/	Getting	a	Python	serial	interface

R
raw	data

reading	/	Reading	and	understanding	the	raw	data
Physical	Format	/	Reading	and	understanding	the	raw	data
Logical	Layout	/	Reading	and	understanding	the	raw	data
Conceptual	Content	/	Reading	and	understanding	the	raw	data
gzip	compressed	file,	reading	/	Reading	a	gzip	compressed	file

raw	strings
versus	cooked	strings	/	Finding	a	pattern	in	a	file

Read	Eval	Print	Loop	(REPL)
about	/	Background	briefing:	review	of	the	Python	language

referrer	URL
parsing	/	Trails	of	activity

regular	expression
writing,	for	parsing	/	Writing	a	regular	expression	for	parsing
rules	and	patterns	/	Introducing	some	regular	expression	rules	and	patterns
pattern,	searching	in	file	/	Finding	a	pattern	in	a	file
suffix	operators,	using	/	Using	regular	expression	suffix	operators
characters,	capturing	by	name	/	Capturing	characters	by	name
CLF	/	Looking	at	the	CLF

Regular	Expression	Strings
about	/	Writing	a	regular	expression	for	parsing

remote	files
reading	/	Reading	remote	files

Representational	State	Transfer	(REST)
about	/	Background	briefing	–	web	servers	and	logs

resistors
adding,	for	LEDs	/	Solving	problems	adding	an	audible	alarm

RFC	3912
URL	/	Processing	whois	queries

S
semiconductor

about	/	Designing	an	external	LED
Spinning

about	/	Seeing	a	better	blinking	light
suffix	operators

using	/	Using	regular	expression	suffix	operators

T
tables

defining	/	Understanding	tables	and	complex	layouts
text	block	recognition	tweaks

creating	/	Making	some	text	block	recognition	tweaks
text	data

obtaining,	from	document	/	Getting	text	data	from	a	document
toolkit

expanding	/	Mission	to	expand	our	toolkit
tools

defining	/	Background	briefing	on	tools
reasons	/	Background	briefing	on	tools
features	/	Background	briefing	on	tools
performance	/	Background	briefing	on	tools
security	/	Background	briefing	on	tools
housecleaning	/	Background	briefing	on	tools
Python,	upgrading	/	Doing	a	Python	upgrade
pip,	upgrading	/	Preliminary	mission	to	upgrade	pip

Twitter	API	project,	on	PyPI
URL	/	Mission	to	expand	our	toolkit

Twitter	project	from	sixohsix
URL	/	Mission	to	expand	our	toolkit

Twitter	social	network
user	information,	gathering	/	Who’s	doing	the	talking?
profile	information,	obtaining	/	Starting	with	someone	we	know
URL	/	Starting	with	someone	we	know
followers,	searching	/	Finding	our	followers
conversation,	examining	/	What	do	they	seem	to	be	talking	about?
images	being	posted,	gathering	/	What	are	they	posting?

U
urllib

web	services,	accessing	with	/	Accessing	web	services	with	urllib	or	http.client

W
weather	forecasts

URL	/	Mission	One	–	upgrade	Beautiful	Soup
web	server	logs

overview	/	Background	briefing	–	web	servers	and	logs
formats	/	Understanding	the	variety	of	formats
obtaining	/	Getting	a	web	server	log
studying	/	Studying	a	log	in	more	detail
obtaining,	from	server	with	ftplib	/	Getting	logs	from	a	server	with	ftplib

web	services
accessing,	with	urllib	/	Accessing	web	services	with	urllib	or	http.client
accessing,	with	http.client	/	Accessing	web	services	with	urllib	or	http.client

Whois	program
about	/	Who	is	this	person?
URL	/	Who	is	this	person?
reference	link	/	Who	is	this	person?
Python,	using	/	Using	Python	to	run	other	programs
whois	queries,	processing	/	Processing	whois	queries
request,	decomposing	/	Breaking	a	request	into	stanzas	and	lines
stanza-finding	algorithm	/	Alternate	stanza-finding	algorithm
bulk	requests,	creating	/	Making	bulk	requests

World	Wide	Web	(WWW)
about	/	Accessing	web	services	with	urllib	or	http.client

Y
Yacc	(Yet	Another	Compiler	Compiler)

about	/	Sidebar	on	the	ply	package

	Python for Secret Agents Second Edition
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. New Missions – New Tools
	Background briefing on tools
	Doing a Python upgrade
	Preliminary mission to upgrade pip
	Background briefing: review of the Python language
	Using variables to save results
	Using the sequence collections: strings
	Using other common sequences: tuples and lists
	Using the dictionary mapping
	Comparing data and using the logic operators
	Using some simple statements
	Using compound statements for conditions: if
	Using compound statements for repetition: for and while
	Defining functions
	Creating script files
	Mission One – upgrade Beautiful Soup
	Getting an HTML page
	Navigating the HTML structure
	Doing other upgrades
	Mission to expand our toolkit
	Scraping data from PDF files
	Sidebar on the ply package
	Building our own gadgets
	Getting the Arduino IDE
	Getting a Python serial interface
	Summary
	2. Tracks, Trails, and Logs
	Background briefing – web servers and logs
	Understanding the variety of formats
	Getting a web server log
	Writing a regular expression for parsing
	Introducing some regular expression rules and patterns
	Finding a pattern in a file
	Using regular expression suffix operators
	Capturing characters by name
	Looking at the CLF
	Reading and understanding the raw data
	Reading a gzip compressed file
	Reading remote files
	Studying a log in more detail
	What are they downloading?
	Trails of activity
	Who is this person?
	Using Python to run other programs
	Processing whois queries
	Breaking a request into stanzas and lines
	Alternate stanza-finding algorithm
	Making bulk requests
	Getting logs from a server with ftplib
	Building a more complete solution
	Summary
	3. Following the Social Network
	Background briefing – images and social media
	Accessing web services with urllib or http.client
	Who's doing the talking?
	Starting with someone we know
	Finding our followers
	What do they seem to be talking about?
	What are they posting?
	Deep Under Cover – NLTK and language analysis
	Summary
	4. Dredging up History
	Background briefing–Portable Document Format
	Extracting PDF content
	Using generator expressions
	Writing generator functions
	Filtering bad data
	Writing a context manager
	Writing a PDF parser resource manager
	Extending the resource manager
	Getting text data from a document
	Displaying blocks of text
	Understanding tables and complex layouts
	Writing a content filter
	Filtering the page iterator
	Exposing the grid
	Making some text block recognition tweaks
	Emitting CSV output
	Summary
	5. Data Collection Gadgets
	Background briefing: Arduino basics
	Organizing a shopping list
	Getting it right the first time
	Starting with the digital output pins
	Designing an external LED
	Assembling a working prototype
	Mastering the Arduino programming language
	Using the arithmetic and comparison operators
	Using common processing statements
	Hacking and the edit, download, test and break cycle
	Seeing a better blinking light
	Simple Arduino sensor data feed
	Collecting analog data
	Collecting bulk data with the Arduino
	Controlling data collection
	Data modeling and analysis with Python
	Collecting data from the serial port
	Formatting the collected data
	Crunching the numbers
	Creating a linear model
	Reducing noise with a simple filter
	Solving problems adding an audible alarm
	Summary
	Index

