
Query Store for
SQL Server 2019

Identify and Fix Poorly Performing Queries
—
Tracy Boggiano
Grant Fritchey

www.allitebooks.com

http://www.allitebooks.org

Query Store for SQL
Server 2019

Identify and Fix Poorly
Performing Queries

Tracy Boggiano
Grant Fritchey

www.allitebooks.com

http://www.allitebooks.org

Query Store for SQL Server 2019: Identify and Fix Poorly Performing Queries

ISBN-13 (pbk): 978-1-4842-5003-7 ISBN-13 (electronic): 978-1-4842-5004-4
https://doi.org/10.1007/978-1-4842-5004-4

Copyright © 2019 by Tracy Boggiano and Grant Fritchey

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484250037. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Tracy Boggiano
Cary, NC, USA

Grant Fritchey
Grafton, MA, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5004-4
http://www.allitebooks.org

I would like to dedicate this book to my Uncle Elden. He bought
me my first two computer books when I was in seventh grade on

MS-DOS and QBasic igniting my passion for working on computers.
In writing my first technical book, it seems fitting to recognize

that without his contribution to my early learning on computers,
I may not have stuck with my dreams of becoming

involved in the computer field.

—Tracy Boggiano

www.allitebooks.com

http://www.allitebooks.org

v

About the Authors �� xi

About the Technical Reviewer ��� xiii

Introduction ���xv

Chapter 1: What Is Query Store? �� 1

Query Store Usefulness ��� 2

Baselining Performance �� 2

Troubleshooting Without Query Store Techniques ��� 5

SQL Server Profiler �� 5

Server-Side Traces �� 11

Disadvantages of SQL Server Profiler or Server-Side Traces over Query Store��������������������� 12

Extended Events �� 12

Lightweight Show Plan Trace Flag��� 17

sys�dm_exec_query_plan_stats ��� 18

DMVs ��� 19

Wait Statistics �� 22

Stabilizing Performance Before Query Store Techniques ��� 23

Plan Guides/USE PLAN Hint ��� 23

Updating Statistics �� 26

Recompiling Stored Procedures �� 26

Removing Plans from the Plan Cache ��� 27

Query Store: The Game Changer ��� 27

What Information Is Gathered �� 28

What Information Query Store Provides for Us: Use Cases�� 28

Automatic Plan Correction ��� 29

Wait Statistics �� 29

Conclusion �� 29

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 2: Overview and Architecture of the Query Store �������������������������������������� 31

How Query Store Works �� 31

Collecting Query and Plan Information �� 32

Collecting Query Runtime Information and Wait Statistics �� 36

General Notes on Data Collection �� 38

The Data Collected by Query Store ��� 38

Query and Query Plan Information �� 39

Runtime Information �� 41

Wait Statistics �� 43

Information About the Query Store �� 45

Summary��� 45

Chapter 3: Configuring Query Store �� 47

Query Store Defaults ��� 48

Configuration Options ��� 50

OPERATION_MODE ��� 50

CLEANUP_POLICY (STALE_QUERY_THRESHOLD_DAYS) �� 50

DATA_FLUSH_INTERVAL_SECONDS ��� 51

MAX_STORAGE_SIZE_MB �� 51

INTERVAL_LENGTH_MINUTES �� 52

SIZE_BASED_CLEANUP_MODE �� 52

QUERY_STORE_CAPTURE_MODE �� 52

MAX_PLANS_PER_QUERY ��� 54

WAIT_STATISTICS_CAPTURE_MODE �� 54

Changing Configuration Using the GUI ��� 55

Query Store Configuration Catalog View ��� 56

Query Store Configuration Best Practices ��� 56

Parameterization and Query Store �� 57

Impact of “Drop and Create” vs� “Alter” �� 58

Impact of Database Renaming �� 59

Reducing Recovery Times with Trace Flags �� 59

Query Store and Memory-Optimized Tables ��� 59

Table of ConTenTs

vii

Configuring Query Store for Natively Compiled Stored Procedures �� 60

Enabling and Disabling Automatic Plan Regression Correction (APRC) �������������������������������������� 61

Maintaining Query Store ��� 62

Monitoring Desired vs� Actual State �� 63

Monitoring Space Usage ��� 67

How to Clear Query Store �� 68

Failed Plan Forcing �� 68

Removing Plans and Queries ��� 69

Reset Statistics for a Plan ��� 70

Conclusion �� 70

Chapter 4: Standard Query Store Reports �� 71

Regressed Queries Report �� 72

Overall Resource Consumption Report ��� 74

Top Resource Consuming Queries Report ��� 79

Queries with Forced Plan Report �� 88

Queries with High Variation Report ��� 90

Query Wait Statistics Report ��� 93

Tracked Queries Report ��� 98

Conclusion �� 100

Chapter 5: Query Store Catalog Views �� 101

sys�database_query_store_options �� 101

sys�query_context_settings �� 108

sys�query_store_plan ��� 113

sys�query_store_query ��� 116

sys�query_store_query_text ��� 118

sys�query_store_wait_stats �� 119

sys�query_store_runtime_stats �� 124

sys�query_store_runtime_stats_interval �� 131

Conclusion �� 131

Table of ConTenTs

viii

Chapter 6: Query Store Use Cases �� 133

Determining What Is a Normal Workload �� 133

Establishing a Baseline for Queries �� 135

What Is a Baseline? ��� 136

How to Create a Baseline with Query Store �� 136

How to Compare a Workload Back to the Baseline ��� 138

See What Happened Last Night ��� 138

Troubleshooting Regressed Queries ��� 139

What Is a Regressed Query? ��� 140

Viewing Plan Changes ��� 140

Identify Top Consuming Resource Queries �� 142

Stabilizing SQL Server Upgrades �� 142

Changing Compatibility Mode Effects �� 143

Cardinality Estimation Changes Explained �� 143

Process for Testing and Completing Upgrades Using Query Store �������������������������������������� 144

Finding and Improving Ad-hoc Workloads �� 144

Conclusion �� 147

Chapter 7: Forcing Plans �� 149

Identifying Badly Behaved Execution Plans �� 149

Identifying Regressed Queries ��� 150

Warning Signs in Execution Plans ��� 153

Comparing Execution Plans �� 158

Forcing and Unforcing Execution Plans �� 161

Forcing Plans Through the Reports ��� 162

Forcing Plans Using T-SQL ��� 165

Determining Which Plans Have Been Forced �� 165

Conclusion �� 167

Table of ConTenTs

ix

Chapter 8: Auto Plan Correction and Wait Statistics �� 169

Automatic Plan Correction �� 169

Identifying Regression ��� 170

Enabling Automatic Tuning �� 177

Automatic Tuning at Work �� 181

Query Store Wait Statistics ��� 182

Wait Statistics Categories �� 182

Looking at Query Store Wait Statistics �� 185

Querying Wait Statistics �� 185

Conclusion �� 188

Chapter 9: Troubleshooting Issues with Query Store ��� 189

Query Store Waits ��� 189

Extended Events and Query Store ��� 192

Tracking Query Store Behaviors �� 194

Conclusion �� 199

Chapter 10: Community Tools ��� 201

dbatools �� 201

Get-DbaDbQueryStoreOption ��� 201

Set-DbaDbQueryStoreOption ��� 204

Copy-DbaQueryStoreConfig ��� 206

dbatools Summary �� 207

sp_BlitzQueryStore ��� 207

Conclusion �� 213

Index ��� 215

Table of ConTenTs

xi

About the Authors

Tracy Boggiano Senior Database Administratior for

DocuSign has more than 20 years experience on SQL Server

and is a speaker at several events including local users

groups, virtual groups, SQLSaturdays, and PASS Summit.

Her passion outside of computers is volunteering with foster

kids as their advocate in court through the North Carolina

Guardian ad Litem program.

Grant Fritchey Microsoft Data Platform MVP, has more than 20 years of experience in

IT. That time was spent in technical support, development, and database administration.

He currently works as Product Evangelist at Red Gate Software.

xiii

About the Technical Reviewer

Michael Wells is an engineer at Dell EMC in the Azure

Stack product group. He has worked in IT since 2000 and

has supported SQL Server since SQL Server 2000. Michael

has been active in the SQL Server and .NET Development

communities since 2007 and regularly speaks at local user

groups, CodeCamps, SQLSaturday events, IT Pro Camps,

and large conferences like PASS Summit, Microsoft Ignite,

and Oracle OpenWorld.

xv

Introduction

This book is about the Query Store feature built into SQL Server 2019 and how it works to

help you identify poorly performing queries and fix them in your databases. Query Store

has been in SQL Server since SQL Server 2016 and has gradually added features with

each new release to make it better at what information it captures and how it is captured.

This book is intended for SQL Server DBAs looking for how Query Store works, the best

way to implement it, and how to effectively use it to solve problems. Query Store shows

you in an aggregrated form of what was and is running in your database.

Chapter 1 gives you an introduction to how you troubleshoot problems and gather

statistics without Query Store, so you gain an understanding of why Query Store is an

important new feature of SQL Server. Chapter 2 gives you an overview of how Query

Store works and dives into the details of the architecture of it. It covers how the data is

captured and where that data is stored. Chapter 3 covers how to configure Query Store

and best practices for configuration including trace flags. Chapter 4 covers the six reports

that are available for Query Store in SQL Server Management Studio and how to leverage

them to get information you need. Chapter 5 dives into detailing what data is available in

the catalog views for Query Store.

Chapter 6 covers different use cases for Query Store including using it to show you

what is normal performance on your database, troubleshooting query performance and

regressed queries, establishing a baseline for your database, and testing upgrades to

different versions of SQL Server. Chapter 7 starts showing the real power in Query Store

by showing how to identify poorly performing queries and what goes into forcing a plan

to stabilize performance. Chapter 8 shows us the most powerful feature, Automatic

Plan Regession Correction (APRC), where Query Store automatically forces plans for you.

It also introduces to the feature of capturing wait statistics into categories. Chapter 9

shows you techniques to troubleshoot issues with Query Store itself, wait statistics

and extended events. Chapter 10 introduces you to two community tools dbatools and

sp_blitzQueryStore that help with the configuration of Query Store and getting data out

of Query Store.

1
© Tracy Boggiano and Grant Fritchey 2019
T. Boggiano and G. Fritchey, Query Store for SQL Server 2019, https://doi.org/10.1007/978-1-4842-5004-4_1

CHAPTER 1

What Is Query Store?
Query Store keeps rolled-up aggregates of queries and statistics for workloads that are

run against your SQL Server database when it is enabled. This data can be used to help

you establish a baseline for performance, troubleshoot performance issues, and stabilize

performance on your database. In this chapter, we go over techniques that were used

before Query Store was released, including Profiler/server-side traces, Extended Events,

DMVs (Dynamic Management Views), plan guides, and sp_whoisactive. Then, we will

look at how and why Query Store is a game changer for doing these activities.

Query Store is like a flight recorder box for your SQL Server. Query Store stores

statistics such as duration, reads, writes, CPU, etc. along with query plans in memory

and then aggregates this information based on the settings that were set when Query

Store was enabled on the database, with a default of 1 hour. At specified periods, the

default is 15 minutes, this data is persisted to disk into the catalog views for you to query

or view via the built-in reports in SQL Server Management Studio (SSMS). With the

introduction of SQL Server 2017, we also can utilize the power of auto plan correction

and the aggregation of wait statistics – more on this in Chapter 8.

This is where the true power of Query Store comes into play. Before this data was

only available if you captured it using various other methods that proved to be much

slower and cumbersome to work with. To get a better understanding of what Query Store

is doing under the covers, we will explore these other methods:

 1) Query Store Usefulness

 2) Troubleshooting Without Query Store Techniques

 3) Query Store: The Game Changer

2

 Query Store Usefulness
Query Store has more than one way it can be utilized to help with your database. In

this section, we will discuss how it can be used to help you establish a baseline for your

database, troubleshoot performance issues, and stabilize performance.

 Baselining Performance
One key part of any database professional’s job is being able to baseline the performance

of their database server which is not an easy task. In this section of the book, we will

talk about the why and how of establishing a baseline for your database server and its

relation to Query Store. Query Store’s ability to capture all queries that have executed

against your database and record runtime statistics in the database makes it easier to

collect the baseline information you need.

 What Is a Baseline?

Before we talk about how Query Store can provide you with a baseline, let’s discuss

what a baseline is. A baseline is established by running a workload against a server and

taking metrics in several areas to determine if anything has significantly changed over

time. Areas of interest in SQL Server include, but are not limited to, CPU utilization,

memory clerk usage, number of reads and writes (physical and logical), query execution

times, etc. Baselines should be taken during peak and non-peak times to get an accurate

measurement of the overall activity of your server. By having a baseline, you will be able

to isolate performance problems better and identify bottlenecks.

 How Query Store Provides a Baseline

Query Store aggregates data about queries ran against the database it is enabled on

into intervals predefined when you configure it. This data is displayed in a few different

reports. One example is the Overall Resource Consumption in Figure 1-1 that shows

charts of the last month of duration, execution count, CPU time, and logical reads by

default. This report is the best for viewing a baseline of the database.

Chapter 1 What Is Query store?

3

 Catalog Views

All the data collected from Query Store are stored in multiple catalog views. The

aggregated runtime statistical data is stored in sys.query_store_runtime_stats. The

catalog view sys.query_store_query_text stores unique query text values that have

been executed against the database, and the sys.query_context_settings view stores

the settings for the queries stored in the sys.query_store_query_text view that was

executed under settings such as SET ANSI_NULLS ON or SET QUOTED_IDENTIFERS ON.

The view sys.query_store_query stores all queries uniquely executed based on text

and context settings executed so you can track them. The sys.query_store_plan catalog

view stores the estimated plan for the query executed and the compile time statistics

in XML format. The sys.query_store_runtime_stats_interval view stores the time

intervals that the data is stored in.

More details on catalog views will be discussed in Chapter 5.

Figure 1-1. Overall Resource Consumption report

Chapter 1 What Is Query store?

4

 Stabilizing Performance

The next report to look at for baselines is the Regressed Queries report, which will show

you queries that have regressed in performance. For each of these, you should look at

why the performance has degraded. This report will show how each query plan for a

specific query has performed over the last month by default.

From the Regressed Query report or Top Consuming Queries report, you can easily

see what plans should be forced based on how they are performing. Forcing a plan is

when you take an execution plan and based on the performance you see in the report

decide that you want that plan to be the one the SQL Server engine uses going forward.

Before Query Store, you had to use plan guides and those are discussed later in this

chapter. You would force a plan when you notice plan regression. Plan regression is

when the SQL Server Query Plan Optimizer compiles a new execution plan for a query

that was previously running and the performance is worse than the previous plan. When

a plan is forced manually, you should be aware that no other execution plan will be used

for that query going forward. Also, if there is an index change or table schema change,

the forced plan could start failing causing the SQL Server Query Optimizer to take extra

steps to get an execution plan each time the query is executed. The reports provide

a button by which you can force the plans, but you can also for change management

purposes use T-SQL to force plans with the stored procedure sys.sp_force_plan.

The High Variation report shows you which queries are inconsistent in performance

which gives you a way to tell which queries are performing differently at times and may

need to be tuned to perform consistently.

SSMS has a Forced Plan report where you track and verify that any plans that were

forced are performing as expected.

Tip older query plans will be deleted from Query store based on your settings
for retaining query plans, so you may want to keep separate documentation of the
performance you expect to see going forward for any forced plans.

Reports will be discussed in greater detail in Chapter 4.

Chapter 1 What Is Query store?

5

 Troubleshooting Without Query Store Techniques
Without Query Store, there are several techniques you can use to troubleshoot problems

related to bad query performance. Here we will discuss using SQL Server Profiler to

run a trace on the server through the application, running a server-side trace to a file by

creating a script using SQL Server Profiler, using Extended Events, pulling information

from the DMVs, using a community stored procedure called sp_whoisactive, and using

wait statistics.

 SQL Server Profiler
SQL Server Profiler is a common tool that collects information about what is running

on the server at the moment the application is being executed. Figure 1-2 shows the

user interface for it. SQL Server Profiler is used to capture data for short periods of time

quickly. It comes with templates to help capture data and gives you the ability to save

the data to file or table in a database for later analysis. You must have the ALTER TRACE

permission to run SQL Server Profiler.

Figure 1-2. SQL Server Profiler screen

Chapter 1 What Is Query store?

6

Note sQL profiler and server-side traces as of sQL server 2017 are being
deprecated and are in maintenance mode. they will be removed in a future release
of sQL server in favor of using extended events and ssMs Xevent profiler.

SQL Server Profiler is commonly used in the following use cases:

• Finding slow-running queries and their problem areas.

• Stepping through troublesome queries to find the root cause.

• Capturing a series of events that cause a problem to be replayed on a

test system to reproduce the problem.

• Capturing data to compare to performance counters to diagnose

problems.

• Capturing a baseline workload to tune workloads. SQL Server

Profiler files can be used with the Database Engine Tuning Advisor to

recommend indexes and statistics to tune the captured workload.

Note the Database engine tuning advisor recommends indexes and statistics
that are only ideal for the workload you supplied. evaluate the recommendations,
don’t blindly apply them.

 SQL Server Profiler Concepts

To use SQL Server Profiler, it helps to understand the terms in the tool:

• Event is an action that occurs in the database engine.

• Event Class is a type of event to be traced. This contains all the data

for the event; there are several Data Columns for you to select from.

• EventCategory defines how the events are grouped in SQL Server

Profiler.

• Data Column contains the data for the Event Class captured. Each

Event Class has predefined Data Columns that are available. Not all

Data Columns are available to all Event Classes.

Chapter 1 What Is Query store?

7

• Template is a predefined trace with an Event Class selected for a

particular troubleshooting scenario. A template predefines what

events, data columns, and filters to use.

• Trace is what SQL Server Profiler runs to capture the selected event

classes, data columns, and filters.

• Filter is a way to get a subset of data based on criteria that you specify

on a Data Column.

Figure 1-3 shows the screen in SQL Server Profiler user to apply filters.

 SQL Server Profiler Event Classes Related to Performance

The different event classes that you would use to collect data related to query

performance are as follows:

• Under the Performance Event Category:

• Auto Stats occurs when statistics for index or columns are

automatically updated. It will also occur when the optimizer

loads statistics to be used.

Figure 1-3. SQL Server Profiler filter screen

Chapter 1 What Is Query store?

8

• Performance Statistics are used to get the performance statistics

of queries, stored procedures, and triggers executing. Six event

subclasses construct the lifetime of these actions in the system.

Using the subclasses and the following DMVs, you can get the

performance history of any query, stored procedure, or trigger:

sys.dm_exec_query_stats, sys.dm_exec_procedure_stats, and

sys.dm_exec_trigger_stats.

• Showplan All occurs when a SQL Statement is executed. It

contains a subset of information in the Showplan XML Statistics

Profile or Showplan XML event classes.

• Showplan All for Query Compile occurs when a SQL Statement

is compiled. This event class is used when you want to identify

the Showplan operators. This is a subset of information in the

Showplan XML for Query Compile event class.

• Showplan Statistics Profile occurs when a SQL statement is

executed. This is a subset of information in the Showplan XML

Statistics Profile event class.

• Showplan Text occurs when a SQL statement is executed.

This is a subset of the information available in the Showplan All,

Showplan XML Statistics Profile, or Showplan XML event classes.

• Showplan Text (Unencoded) is the same as the Showplan Text

event class, except the data is formatted as text instead of as

binary data.

• Showplan XML occurs when a SQL statement is executed.

This event class is used when you want to identify the Showplan

operators. The data in this event class is a defined XML

document.

• Showplan XML for Query Compile occurs when a SQL

statement is compiled. This event class is used when you want to

identify the Showplan operators.

Chapter 1 What Is Query store?

9

• Showplan XML Statistics Profile occurs when a SQL statement is

compiled. This event class is used when you want to identify the

Showplan operators. This event class records complete, compile-

time data.

Tip For all showplan event classes, limit the number of them in use, because
they can cause significant performance overhead. showplan text or showplan
text (unencoded) are the event classes that will affect performance the least but
still should be used sparingly.

• Plan Guide Successful has three conditions that have to be true

for this event to fire:

 1. The batch or module in the plan guide definition must

match the batch or module that is being executed.

 2. The query in the plan guide definition must match the

query that is being executed.

 3. The compiled query honors the hints in the plan guide.

• Plan Guide Unsuccessful occurs when a plan guide

unsuccessfully produces an execution plan. Three conditions

have to be true for this event to fire:

 1. The batch or module in the plan guide definition must

match the batch or module that is being executed.

 2. The query in the plan guide definition must match the

query that is being executed.

 3. The compiled query did not honor the hints in the plan guide.

Note there is more on how to use plan guides later in this chapter.

• Under the Stored Procedures Event Category:

• SP:Completed occurs when a stored procedure finishes

executing.

Chapter 1 What Is Query store?

10

• SP:Starting occurs when a stored procedure starts executing.

• SP:StmtCompleted occurs when a T-SQL statement inside

the stored procedure finishes executing.

• SP:StmtStarting occurs when a T-SQL statement inside the

stored procedure starts executing.

• Under the T-SQL Event Category:

• SQL:BatchCompleted occurs when a T-SQL batch finishes

executing.

• SQL:BatchStarting occurs when a T-SQL batch starts

executing.

• SQL:StmtCompleted occurs when a T-SQL statement

finishes executing.

• SQL:StmtStarting occurs when a T-SQL statement starts

executing.

In Figure 1-4 you can see the trace properties screen from SQL Profiler.

Figure 1-4. SQL Server Profiler Event Class screen

Chapter 1 What Is Query store?

11

 Server-Side Traces
Server-side traces are a way to run a SQL Server Profiler session without running the

SQL Server Profiler application. This is preferred over running SQL Profiler. You use

system stored procedures to specify all the events, data columns, and filters for the trace

to capture. You use SQL Profiler to create a script for a server-side trace by opening SQL

Server Profiler and specify events and columns you want to capture. Then go under the

File menu and select, then Export ➤ Script Trace Definition ➤ For SQL Server 2005 – 2016.

(Figure 1-5 shows an example of selecting that menu item).

Server-side traces are considered in maintenance mode, meaning they are planned

to be removed in a future version of SQL Server. Thus, you should be trying to switch to

Extended Events, which we discuss next.

The list of system stored procedures used to create a server-side trace is as follows:

• sp_trace_create – creates the trace.

• sp_trace_generated_event – creates a user-defined even in SQL

Server.

• sp_trace_setevent – adds and removes Data Columns to the trace.

You must specify the Event Number. A complete list can be found

online at https://docs.microsoft.com/en-us/sql/relational-

databases/system-stored-procedures/sp-trace-setevent-

transact-sql?view=sql-server-2017.

Figure 1-5. Script out server-side trace definition from SQL Server Profiler

Chapter 1 What Is Query store?

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-trace-setevent-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-trace-setevent-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-trace-setevent-transact-sql?view=sql-server-2017

12

• sp_trace_set_filter – applies a filter to a trace.

• sp_trace_setstatus – stops and starts a trace based on the id of the

trace you specify. You can query sys.traces to find your id.

 Disadvantages of SQL Server Profiler or Server-Side
Traces over Query Store
A few disadvantages to SQL Profiler or server-side traces over Query Store when getting

a baseline are that the data is not aggregated for you with you writing queries yourself

or using a third-party tool. Running the SQL Server Profiler application can be a big

performance hit in itself to your system under heavy workloads; you should run server-

side traces instead if you are not going to use Extended Events (which we will discuss

next). Due to the length of time you could be running either one to capture every event,

the files or data in the SQL Server Profiler application can get quite large and will take

time to process the data to get the desired information. Query Store automatically

captures all your queries and aggregates them for you without any extra processes and

has a minimal impact in performance on most systems.

 Extended Events
Extended Events was introduced in SQL Server 2008 and are a more lightweight way

alternative to server-side traces. Extended Events can provide you with more insight into

the database engine than SQL Server Profiler and server-side traces. In Figure 1-6, you

can see with the newest version of SSMS, you have two built-in Extended Events under

the tree labeled XEvent Profiler. One thing to note is once you start a session, they do not

stop running when you close SSMS, you must manually stop a session. You can stop can

XEvent Profiler session by hitting the red stop button on the toolbar before exiting SSMS.

Chapter 1 What Is Query store?

13

Session definitions can be found in your installation path of SSMS, such as C:\

Program Files (x86)\Microsoft SQL Server\140\Tools\Templates\sql\xevent. In

Figure 1- 7, you can find a list of the extended event session provided. The T-SQL

template “Captures all Transact-SQL statements that are submitted to SQL Server by

clients and the time issued. Use to debug client applications.” The Standard template

is a “Generic starting point for creating a trace. Captures all stored procedures and

Transact-SQL batches that are run. Use to monitor general database server activity.”

Figure 1-6. XEvent Profiler in SSMS

Chapter 1 What Is Query store?

14

 Extended Events Concepts

To use Extended Events, it helps to understand the terms used to define them.

• Packages contain objects used for getting and processing data for an

Extended Events session. Packages can contain the following:

• Events are points that you want to monitor in the execution path

of the SQL Server. They can be asynchronous or synchronous.

To get a list of events that correspond to the Event Classes in SQL

Server Profiler, you can execute the query shown in Listing 1-1.

Figure 1-7. Template directory for extended events templates included with SSMS

Chapter 1 What Is Query store?

15

Listing 1-1. Code to get a list of corresponding Extended Events for SQL Profiler

Events

USE MASTER;

GO;

SELECT DISTINCT

 tb.trace_event_id,

 te.[name] AS 'Event Class',

 em.package_name AS 'Package',

 em.xe_event_name AS 'XEvent Name',

 tca.[name] AS 'Profiler Category'

FROM (sys.trace_events te

 LEFT OUTER JOIN sys.trace_xe_event_map em

 ON te.trace_event_id =

 em.trace_event_id)

 LEFT OUTER JOIN sys.trace_event_bindings tb

 ON em.trace_event_id = tb.trace_event_id

 INNER JOIN sys.trace_categories tca

 ON tca.category_id = te.category_id

WHERE tb.trace_event_id IS NOT NULL

 AND tca.[name] in ('Stored Procedures',

 'TSQL',

 'Performance')

ORDER BY tb.trace_event_id;

The same cautions exist as with SQL Server Profiler capturing lots of events,

especially with execution plans, can cause performance problems. Below is a list of

common events that you may want to capture in an Extended Events session.

• Sp_statement_completed is captured when a statement in a stored

procedure completes execution.

• Sql_statement_completed is captured when a SQL statement has

completed execution.

• Query_post_compilation_showplan occurs after a SQL statement is

compiled and returns the estimated plan in XML format.

Chapter 1 What Is Query store?

16

• Targets tell the session where to store the data.

• Actions tell the package what action to take if a certain event

happens, such as capturing a stack dump or grabbing an

execution plan.

• Types are the type of bytes strung together and the length and

characteristics of the data to be able to interpret the data. The

different types are as follows:

• event

• action

• target

• pred_source

• pred_compare

• type

• Predicates are like WHERE clauses to help filter out events that are

captured.

• Maps is a table that lets you know what an internal value means.

• Targets provides a place where the data for a session will be stored.

• Event counter is used to keep a count of all events that occurred that

you specified for your session synchronously.

• Event file writes all event session data from memory to disk

asynchronously.

• Event pairing determines when paired events do occur in a matched

set asynchronously to capture.

• Event Tracing for Windows (ETW) correlates events to Windows or

applications event data synchronously.

• Histogram is used to keep a count of a specified event and occurs

asynchronously.

• Ring buffer holds data in memory in first-in-first-out (FIFO) method

asynchronously.

Chapter 1 What Is Query store?

17

• Engine implements Extended Events by enabling the definition of

events, processing event data, managing Extended Events services

and objects, and keeping a list of sessions and managing access to

the list.

• Sessions set up with events in them to collect the information you

need to troubleshoot an issue. This pulls everything together to give

you the data you need to troubleshoot your issue by allowing to

specify actions, targets, and predicates.

 Disadvantages of Extended Events over Query Store

Some disadvantages to Extended Events are similar to that of SQL Server Profiler in that

the data is not aggregated unless you are doing a single column. It must be run for the

entire period of the workload you are measuring which causes the files to get quite large

and takes time for you to process the data.

 Disadvantage of SQL Server Profiler and Server-Side Traces over
Extended Events

SQL Server Profiler and server-side traces process each event that occurs to narrow down

to the specific events you have indicated to capture which can cause a performance

hit. Due to the performance hit and the lightweight nature of Extended Events it is

recommended you use Extended Events. Remember also SQL Server Profiler and

server- side traces are being deprecated.

 Lightweight Show Plan Trace Flag
Starting in SQL Server 2014, Trace Flag 7412 was introduced to allow to access the

actual execution plan of queries that are currently running via the sys.dm_exec_query_

statistics_xml DMV. This data can also be accessed from the Activity Monitor by right-

clicking on any running process and selecting Show Live Execution Plan. Improvements

were made to make it even more lightweight in SQL Server 2016 SP1. This method is by

far more lightweight than capturing the estimated plans with SQL Server Profiler, server-

side traces, Extended Events, and Query Store. So, it’s recommended you patch your SQL

Server instances and enable this trace flag. It is enabled by default in SQL Server 2019.

There is a new query hint as well, query_plan_profile, to enable at the query level in

Chapter 1 What Is Query store?

18

SQL Server 2017 CU11 and SQL Server 2017 CU3. The overhead of enabling this trace

flag is estimated to be about a 2% CPU performance hit. Figure 1-8 shows how to show

the Live Execution Plan in the Activity Monitor by right-clicking any currently running

process.

Note see this blog post by sQL server tiger team for more information about the
performance impacts: https://bit.ly/2DKR7qg also, you can only view the
plan while the query is running.

 sys.dm_exec_query_plan_stats
In SQL Server 2019, DMF (Dynamic Management Function) was introduced which

allows you to retrieve the last actual execution plan for a query. This is a compliment

to the Lightweight Show Plan Trace Flag above but you don’t have to catch the query

running to be able to get the execution plan. It requires you to turn on Trace Flag 2451.

Then you can run the code in Listing 1-2 to view the execution plan in column last_

actual_exec_plan.

Figure 1-8. Show Live Execution Plan in Activity Monitor

Chapter 1 What Is Query store?

https://bit.ly/2DKR7qg

19

Listing 1-2. Query for retrieving last actual execution plan for running processes

SELECT er.session_id,

 er.start_time,

 er.status,

 er.command,

 st.text,

 qp.query_plan AS cached_plan,

 qps.query_plan AS last_actual_exec_plan

FROM sys.dm_exec_requests AS er

OUTER APPLY sys.dm_exec_query_plan(er.plan_handle) qp

OUTER APPLY sys.dm_exec_sql_text(er.sql_handle) st

OUTER APPLY sys.dm_exec_query_plan_stats(er.plan_handle) qps

WHERE session_id > 50

 AND status IN ('running', 'suspended');

GO

 DMVs
Dynamic Management Views (DMVs) were introduced in SQL Server 2005 and made

troubleshooting issues with SQL Server easier. There are several DMVs related to

performance, but only a few that are related to what is running queries against the SQL

Server. We will discuss those DMVs below:

• sys.dm_exec_cached_plans stores the estimated execution plan for

each query when it is executed until the cache clears it out.

• sys.dm_exec_connections contains information about all the

connections to the SQL Server. For Azure SQL Database, it returns

connections to the SQL Database. It contains relationships with sys.

dm_exec_requests and sys.dm_exec_sessions.

• sys.dm_exec_cursors contains information about cursors that are

open in the databases on the SQL Server.

Chapter 1 What Is Query store?

20

• sys.dm_exec_query_stats contains aggregated performance data

for plans in the plan cache. When the query is purged from the

plan cache for any reason, so is the data. Similar to sys.dm_exec_

requests, this DMV contains the query_hash and query_plan_hash

fields. The query_hash field allows you to find queries with same

logic. The query_plan_hash field allows you to find queries with

similar execution plans.

• sys.dm_exec_procedure_stats contains aggregated performance

data for cached stored procedures in SQL Server. Similar to the above

DMV, when the stored procedure’s plan is purged from the cache for

any reason, so is the data.

• sys.dm_exec_query_memory_grants stores information on all

queries that have asked for and are waiting for a memory grant or

have been granted a memory grant.

• sys.dm_exec_query_plan contains the Showplan in XML format for

the batch for the plan_handle provided.

• sys.dm_exec_query_stats contain aggregated performance data

for cached query plans in SQL Server. It contains one row per

query statement within a plan until a plan is removed from the

cache. This DMV contains information on performance including

execution_count, worker_time, physical_reads, logical_writes,

clr_time, elapsed_time, rows, and dop. This data is provided in totals,

lasts, minimums, and maximums. It also contains information on

memory grants, threads, columnstore usage, and tempdb spills. The

query_hash field can be used to identify queries with same logic and

aggregate data together. The query_plan_hash field is used to identify

similar query plans and sum up the cost of queries with similar plans.

• sys.dm_exec_requests shows you each request that is running on

the SQL Server. This DMV contains information on performance

including cpu_time, reads, writes, logical_reads, row_count,

wait_time, and wait_type. The query_hash field can be used to

identify queries with similar logic and aggregate data together.

The query_plan_hash field is used to identify similar query plans

Chapter 1 What Is Query store?

21

and sum up the cost of queries with similar plans. The statement_

context_id field is the foreign key for the sys.query_context_

settings DMV.

• sys.dm_exec_sessions contains a row for each session to the SQL

Server. It contains information on what is currently running for the

session and the resources the session is using.

• sys.dm_exec_sql_text contains the text of the SQL batch uniquely

identified by the sql_handle field. The sql_handle field can be used

to get information from the following DMVs:

• sys.dm_exec_query_stats

• sys.dm_exec_requests

• sys.dm_exec_cursors

• sys.dm_exec_xml_handles

• sys.dm_exec_query_memory_grants

• sys.dm_exec_connections

The plan_handle field can be used to uniquely identify the query plan for a batch from

the plan cache and obtain information from the following DMVs:

• sys.dm_exec_cached_plans

• sys.dm_exec_query_stats

• sys.dm_exec_requests

• sys.dm_exec_xml_handles contains information about active

handles that are open from using sp_xml_preparedocument.

 Disadvantages of DMVs

There are some disadvantages to using DMVs over Query Store. One is that the data is

not persisted to disk; it is only in memory. So, if you restart SQL Server, the data is lost

for troubleshooting purposes. Two, the plan cache is allocated memory and plans will

be purged from the cache as needed to make room for new plans, so you lose the ability

to see everything that has run on the server since it was started. Lastly, you have to build

some system to persist the data to disk yourself and to analyze it to get the most value out

of the data over time.

Chapter 1 What Is Query store?

22

 sp_whoisactive

sp_whoisactive is a stored procedure written by Adam Machanic that is very useful

in capturing information from several DMVs. The procedure and several blog posts

about how to use can be found at http://WhoIsActive.com. This procedure combines

the DMVs discussed above all into one stored procedure with parameters for you to

able to pull back different information. This is useful for getting the estimated plans for

processes that are running on your system at the moment. One useful trick is to capture

this data into a table periodically, such as every minute, so that you capture long running

queries that you can troubleshoot. Article number 25 in the blog series on the web site

describes how to capture the data into a table. In Listing 1-3 you will find code with some

recommended parameters for capturing the text of the query and execution plans in

XML format, along with other useful information, including wait statistics, which will

talk about next:

Listing 1-3. Recommended parameters for running sp_whoisactive into a table

for troubleshooting

EXEC dbo.sp_WhoIsActive

 @get_plans = 1,

 @get_full_inner_text = 1,

 @format_output = 0,

 @get_task_info = 2,

 @destination_table = 'DBA.dbo.WhoIsActiveOutput';

There are several other parameters you may find useful to explore all the articles and

decide for yourself what is most beneficial for you. There is a @help parameter that prints

out documentation of all the parameters.

 Wait Statistics
Wait statistics provide another way to troubleshoot what is happening on your SQL

Server. Wait statistics were introduced in SQL Server 2005 and offered us a whole new

way of troubleshooting. Wait statistics essentially tell you what the database engine

is waiting on when it is trying to do work. Wait statistics are in two categories: signal

waits and resource waits. When SQL Server is waiting on a thread to become available,

it considered a signal wait; this usually indicates that the CPU is running high on the

Chapter 1 What Is Query store?

http://whoisactive.com

23

server. Other waits are considered resource waits, such as waiting for the lock of a page.

There are hundreds of resource waits. Wait statistics can be queried from the DMV

sys.dm_os_wait_stats. With this information, you are to tell what your queries are

waiting on to execute. You can’t tell by an individual query, but with the introduction of

Query Store, you will see later it will accumulate per query.

Tip there is a library online that explains all the wait types available from
sQLskills at the following urL: www.sqlskills.com/help/waits/. a query
that will show you the percent of each wait statistics that has been used since
sQL server was started is available on paul randal’s blog at https://bit.
ly/2wsQHQE.

 Stabilizing Performance Before Query Store
Techniques
There were a few ways to stabilize the performance of query plans before Query Store

was introduced in SQL Server 2016. One way was to use plan guides and the USE PLAN

hint with the query. A second was to keep your statistics up to date as best as possible

to ensure the optimizer had the best data available to create a plan. Another was to

UPDATE STATISTICS hoping SQL Server would create a better query plan on next

execution. Then you also could recompile a stored procedure or function to get to see if

SQL Server would generate a better plan. Lastly, you could remove a plan from the cache

so that a new plan would be created the next time the query was executed to see if a

better plan was created.

 Plan Guides/USE PLAN Hint
Plan guides are used to stabilize the performance of a query when you cannot or do

not want to change the query. Plan guides work by influencing the optimizer by using

query hints or a fixed query plan. Third-party applications can benefit from the use of

plan guides because you cannot change the queries. To use a plan guide, you specify

the T-SQL you want to optimize and provide query hints for the specific query to use,

and SQL Server will match the text of the T-SQL and use the hints when executing that

statement. Specifying the plan guide is done using the OPTION clause on the query.

Chapter 1 What Is Query store?

http://www.sqlskills.com/help/waits/
https://bit.ly/2wsQHQE
https://bit.ly/2wsQHQE

24

There are different types of plan guides:

• OBJECT plan guides

• This type of plan guide matches to object types, such as stored

procedures, scalar user-defined functions, multi-statement table-

valued user-defined functions, and DML triggers.

• SQL plan guides

This type of plan guide matches queries based on the T-SQL you

provide. They must be parameterized in the correct format. They

have to match exactly down the spacing. They apply to stand-

alone T-SQL and batches.

• TEMPLATE plan guides

This type of plan guide matches stand-alone queries

parameterized to a certain form. They are used to override a

database PARAMETERIZATION option. They can create in the

following situations:

• When the database SET option for PARAMETERIZATION is set to

FORCED, but you want queries to compile using the rules for

Simple Parameterization.

• And when you want the opposite effect, the database SET option

for PARAMETERIZATION is SIMPLE and you are to use Forced

Parameterization.

Plan guide matching occurs at the database level. For SQL or TEMPLATE-based plan

guides, SQL Server matches the parameters @module_or_batch and @params to a query

character by character.

When you create a plan guide, it will remove the current plan from the plan cache.

When you create an OBJECT or SQL plan guide for a batch, SQL Server removes the

query plan that has the same hash value. When you create a TEMPLATE plan guide, SQL

Server removes all the single-statement batches in the plan cache for that database.

After you create a plan guide, you use the OPTION clause to specify the USE PLAN

parameter to specify a query hint.

Chapter 1 What Is Query store?

25

Listing 1-4 is the original query:

Listing 1-4. A SELECT statement for USE PLAN

SELECT count(*) AS Total

FROM Sales.SalesOrderHeader h

 INNER JOIN Sales.SalesOrderDetail d

 ON h.SalesOrderID = d.SalesOrderID

GO

Listing 1-5 is the same query with the USE PLAN query hint specified:

Listing 1-5. A USE PLAN Example

SELECT count(*) AS Total

FROM Sales.SalesOrderHeader h

 INNER JOIN Sales.SalesOrderDetail d

 ON h.SalesOrderID = d.SalesOrderID

OPTION (USE PLAN N'

<ShowPlanXML xmlns=

"http://schemas.microsoft.com/sqlserver/2004/07/showplan" Version="0.5"

Build="9.00.1187.07">

 <BatchSequence>

 <Batch>

 <Statements>

 ...

 </Statements>

 </Batch>

 </BatchSequence>

</ShowPlanXML>

')

GO

Chapter 1 What Is Query store?

26

 Updating Statistics
Using UPDATE STATISTICS to update statistics for a table or index can help improve

performance if you know a lot of data has changed in the table or index. Beware that

updating statistics does recompile all the plans that the table or index are referenced in,

so you will not want to do this too frequently unless necessary. Prior to SQL Server 2014,

20% of a table had to be updated before the auto updated statistic would be triggered

unless you used Trace Flag 2371 which was introduced in SQL Server 2008 SP1 to lower

this; 20% is not ideal for large tables such as data warehouse tables. In SQL Server 2016,

this trace flag is on by default.

To update statistics for a table, use Listing 1-6.

Listing 1-6. UPDATE STATISTICS for a table

USE DATABASE;

GO

UPDATE STATISTICS SchemaName.TableName;

GO

To update statistics for a particular index, use Listing 1-7.

Listing 1-7. UPDATE STATISTICS for an index

USE DATABASE;

GO

UPDATE STATISTICS SchemaName.TableName IndexName;

GO

 Recompiling Stored Procedures
Whenever you can identify a stored procedure, trigger, or function that is performing

poorly due to parameter sniffing or other issues, you can use sp_recompile to recompile

the object on the next execution of the procedure. Parameter sniffing occurs when an

execution plan is generated that is optimal for one workload, but not optimal for all

workloads based on the parameters used for the query. Running this procedure will

Chapter 1 What Is Query store?

27

effectively remove the current plan from the plan cache so a new plan can be compiled

on the next execution of the query. The new plan may be the same as the old plan

though depending on the parameters passed in.

 Removing Plans from the Plan Cache
You can query sys.dm_exec_cached_plans and sys.dm_exec_sql_text to retrieve a plan

handle to remove a specific plan from the cache that is not part of a stored procedure,

function, or trigger by using the following code.

First, in Listing 1-8 you select the text you need to find that is part of your query:

Listing 1-8. Find the plan handle for the SQL text you are looking for

SELECT cp.plan_handle, st.

FROM sys.dm_exec_cached_plans AS cp

CROSS APPLY sys.dm_exec_sql_text(plan_handle) AS st

WHERE LIKE N'%/* MyTable %';

Then copy and paste the plan handle into the FREEPROCCACHE procedure in the

code provided in Listing 1-9:

Listing 1-9. DBCC FREEPROCCACHE to remove SQL text plan from the plan cache

DBCC FREEPROCCACHE (<plan_handle>);

 Query Store: The Game Changer
Query Store changes how you troubleshoot bad query plans because now everything is

collected, stored on disk, and persisted over time to provide you trends in performance.

It provides all the estimated plans that have been used in the retention period you have

defined which allows you to troubleshoot the query with a graphical interface easily and

efficiently. Query Store changes how you can troubleshoot performance, baseline your

system, and stabilize the performance of your SQL Server significantly.

Chapter 1 What Is Query store?

28

 What Information Is Gathered
Query Store gathers runtime statistics for each query that ran and their estimated plans.

The following data is collected per query and aggregated per time interval you have

specified in SQL Server 2019:

• Execution count

• Duration

• CPU time

• Logical reads

• Logical writes

• Physical reads

• CLR time

• DOP

• Memory consumption

• Row count

Each statistic is available in totals, averages, maximums, minimums, and standard

deviations. More information about what data will be discussed in Chapters 4 and 5.

 What Information Query Store Provides for Us:
Use Cases
There are different use cases for Query Store besides just collecting performance

information. They include

• Finding and fixing regressed queries

• Finding and identifying top resource consuming queries

• A/B testing

• Stabilizing performance when upgrading SQL Server

• Finding and identifying ad hoc workloads so you can improve them

These will be discussed in more detail in Chapter 6.

Chapter 1 What Is Query store?

29

 Automatic Plan Correction
SQL Server 2017 introduced Automatic Plan Correction that will automatically force

plans and unforce plans based on plan regression. So, you no longer have to force plans,

although you still can if necessary manually. Chapter 8 will talk more about how this

feature works.

 Wait Statistics
SQL Server 2017 introduced wait statistics that are being collected per query in 23

different categories, such as buffer and CPU. A detailed list is provided in Chapter 8 of

which wait statistics are in each category. Chapter 8 will talk more about this feature.

 Conclusion
Query Store offers an automated and easy way to collect performance information

about queries that are running on your SQL Server. There are several use cases for

using Query Store besides just seeing performance information. It provides Automatic

Plan Correction and wait statistics collection starting in SQL Server 2017, which are

invaluable new tools. The rest of the book will go into much more detail about Query

Store so you can benefit the most from using it.

Chapter 1 What Is Query store?

31
© Tracy Boggiano and Grant Fritchey 2019
T. Boggiano and G. Fritchey, Query Store for SQL Server 2019, https://doi.org/10.1007/978-1-4842-5004-4_2

CHAPTER 2

Overview and Architecture
of the Query Store
In order for the Query Store to collect and maintain a baseline on query performance,

it needs an architecture that has minimal impact on the overall performance of SQL

Server. This chapter will review how Query Store operates to collect data. We’ll also cover

the various data sets that make up the Query Store. This information should make it

possible for you to both understand what the Query Store is doing and have faith that it’s

performing these actions in the safest manner possible for your databases.

 How Query Store Works
While we are going to cover the data collected in some detail later in the chapter, it

makes it easier to understand how Query Store works if we first give a quick overview of

the types of data being collected. There are three fundamental data sets that define the

Query Store data:

• Query and Plan Information: Data about the query itself and about

the execution plans derived from that query by the query optimizer.

• Query Runtime Information: This is the information about how fast

the query ran and how many times it was called, along with other

performance-related information from query execution.

• Query Wait Statistics: This information covers the various waits that

occurred on a single query during the execution on the server.

32

With those core data sets defined, we can now move on to determine exactly where

that information comes from and how it gets collected. We will cover all three data sets

in much more detail later in the chapter. We will use these data sets as our architecture

for describing the ways that Query Store gathers the data because the data sets help

define the approach taken by the Query Store. This is why it was important to establish

what those data sets are before we talk about where they came from.

On additional detail that you need to know to understand how the Query Store

works is that this is a database level setting. It’s not controlled on the server, but

rather database-by-database in your system. This is an important detail because the

information the Query Store captures is written to each individual database, not a central

location.

 Collecting Query and Plan Information
When a query gets submitted to SQL Server, it runs through a series of processes. These

processes ensure that the query is properly written, that the objects in the database

referenced by the query actually exist, and, most importantly, that the query is optimized

to run quickly. Figure 2-1 shows an overview of this process:

Chapter 2 Overview and arChiteCture Of the Query StOre

33

Figure 2-1. The basic process of generating an execution plan

Chapter 2 Overview and arChiteCture Of the Query StOre

34

We start with the T-SQL query of course. Only Data Manipulation Language (DML)

queries are captured by the Query Store. These are queries that are used to SELECT,

UPDATE, DELETE, or INSERT data. Queries that are used to manipulate the data

structures, Data Definition Language (DDL), are not captured to the Query Store. When

the query first comes to SQL Server, it goes through an internal process called the

Algebrizer. This does a number of things, but the two we care about the most are that

it validates that the syntax is correct in the parser and it ensures that the objects in the

query are actually in the database, through object binding. The Algebrizer also gathers a

bunch of information that, along with the query, it passes to the query optimizer.

The query optimizer is the process that determines an efficient way to retrieve or

modify your data based on the query you’ve supplied it and the tables, indexes, statistics,

and constraints in your database. The result of the query optimization process itself is an

execution plan which gets written into a memory space called the plan cache.

With one exception, which we’ll cover in a minute, the Query Store does not interfere

with this process in any way. What the Query Store does is capture the output of the

processes that create an execution plan. Here’s a graphic showing how the Query Store

works side-by-side with the query optimization process as you can see in Figure 2-2:

Chapter 2 Overview and arChiteCture Of the Query StOre

35

Figure 2-2. The process of capturing the execution plan and query for the Query Store

Chapter 2 Overview and arChiteCture Of the Query StOre

36

After the query optimizer does its work and generates an execution plan, an

asynchronous process captures the query and the execution plan for the query store.

It outputs them to a temporary storage space in memory. On a regular basis, the

query information stored in memory gets written to the database through another

asynchronous process. Microsoft describes this as occurring with minimal latency. The

goal is to ensure that the Query Store data collection process does not interfere with the

normal processing of the Query Optimizer.

The one exception to this that I mentioned earlier is that the asynchronous process

that captures queries and query plans also checks to see if there is plan forcing in place.

We’ll cover that in a lot of detail in Chapter 7. Plan forcing is the one place where the

Query Store does interfere with the normal optimization process. If plan forcing is in

place for a query, then the plan being forced will be used instead of the plan generated

by the Query Optimizer. That will also be the plan that gets written to the plan cache.

With that, the core processing of retrieving queries and query plans is complete. The

information is captured by individual query, not by stored procedure or batch. If the

query is part of an object, that object’s ID is captured along with the query information.

We’ll cover the details of what exactly gets capture in the section titled “The Data

Collected By Query Store” in this chapter.

 Collecting Query Runtime Information and Wait Statistics
The collection of the runtime data is a little more straightforward than the query and

query plan data collection. All the information collected about the runtime statistics

and wait statistics occurs after the query and query plan are already captured. The query

executes and then the Query Store process takes place as Figure 2-3 shows:

Chapter 2 Overview and arChiteCture Of the Query StOre

37

There is only one fundamental difference in the processing of this data collection

and that of the query and query plan data. This is the timed asynchronous writes to disk.

Instead of a process with minimal latency, the data is stored and aggregated in-memory

for a period of time. The default is 15 minutes. You can control this and we’ll cover it in

detail in Chapter 3.

The information, such as how long a query took to run and the waits experienced

during the execution, is written to memory. That data is aggregated there in memory.

When that information is written to disk, it gets reaggregated based on another setting,

the collection interval. By default this is 60 minutes. What this aggregation gives you is

the ability to compare two different time periods so that you can see if the performance

of a query is changing over time. We’ll cover this in more detail in the “Data Collected”

section.

Figure 2-3. The process of capturing runtime metrics for the Query Store

Chapter 2 Overview and arChiteCture Of the Query StOre

38

 General Notes on Data Collection
The Query Store works with all the other processes within SQL Server. So, for example,

if a query is recompiling and it generates the same execution plan that is already in the

Query Store, usage statistics are updated and nothing else happens. If, however, this

recompile results in a new execution plan, then that plan will get captured to the Query

Store just as the old plan did.

In the event of a cross-database query using three-part naming, the database from

which the call is being made is where the query will be recorded, regardless of where the

data being retrieved or modified lives. This is important so that you know where to look

for Query Store information if more than one database is involved. You will not see the

query in both databases.

Because all the data collection done in the Query Store gets written to disk

asynchronously, it is possible to lose data because it has not yet been flushed to disk.

There is a command to make this happen manually, sys.sp_query_store_flush_db.

Executing that command will force anything currently in memory to be immediately

written to disk. This ensures that before a controlled failover, shutdown, or any event that

would result in the data being removed from memory, you can retain that data.

 The Data Collected by Query Store
As we stated at the beginning of the chapter, there are essentially three sets of

information that define the data collected by the Query Store: query and plan data,

runtime data, and wait statistics. As you saw in the previous section, the runtime

data and the wait statistics are collected the same way, so why break them apart? The

reason is simple, the focus of the book is SQL Server 2019, but Query Store has been

implemented since SQL Server 2016. One change between 2016 and 2017 was the

addition of wait statistics in the data collection. So we’re breaking that apart just so those

who will only see the runtime information still get as much out of the book as those who

Chapter 2 Overview and arChiteCture Of the Query StOre

39

look at both runtime data and wait statistics. Plus, you’ll need to plan on querying the

wait statistics slightly differently than you do the runtime data, but we’ll cover that in

detail in Chapter 5.

One point about the system views that expose the Query Store information must

be made. The information displayed in these system views combines, but does not

aggregate, the information stored on disk and in memory. As you know from earlier in

the chapter, data is written first to memory and then eventually written to disk. During

that interval, the runtime data will be aggregated in both places, but visible as separate

rows in some of the catalog views. There’s nothing you need to do to combine this data.

SQL Server does it for you. However, there’s also nothing you can do to separate this

data. It’s combined at the system level.

Let’s start with the data collected about the query and the query plan itself.

 Query and Query Plan Information
As we’ve already stated previously, the foundation for the information gathered by Query

Store is the query itself. You may pass a batch with five or ten statements, but each of

those statements, assuming they’re all data manipulation statements, will be individual

queries in the Query Store. The catalog views that expose the information available in

Query Store are visible in Figure 2-4:

Chapter 2 Overview and arChiteCture Of the Query StOre

40

Figure 2-4. Catalog views containing query and query plan information

Chapter 2 Overview and arChiteCture Of the Query StOre

41

There are only four catalog views that expose the information stored on the query

and the query plan. At the top and center, you can see sys.query_store_query. In

the diagram only a few of the 30 columns are shown as examples of what information

is available. Each query has attributes that may or may not be unique to the query.

These attributes are the tables to the left and right of sys.query_store_query: sys.

query_store_context_settings and sys._query_store_query_text. These attributes

can be created once and then reused by multiple queries. This includes the query text. If

other attributes change, but the query text remains the same, then more than one query

in sys.query_store_query may have the same query_text_id value (query_id is the

primary key). The query plans stored in sys.query_store_plan are tied directly to the

query via a foreign key on query_id. Any given query may have multiple plans. Situations

arise like parameter sniffing and others that result in a given query with more than one

valid execution plan. The table shown in Figure 2-4 for sys.query_store_plan also only

contains a sampling of the 23 columns available.

We’ll be covering querying these tables in detail in Chapter 5. However, it’s worth

pointing out that some of the information may be a little misleading. If you look at both

sys.query_store_query and sys.query_store_plan as shown in Figure 2-4, both have a

column labeled count_compiles. While these values are labeled the same, they actually

represent the difference between the results of a compile or recompile event for a query

or for a plan. Every time a query gets compiled or recompiled, that value will be updated

appropriately. However, that compile event may, or may not, result in the same plan. If a

different plan gets compiled, then that plan gets its own distinct count_compiles value

updated, not every plan associated with the query. Details like this we’ll be addressing

throughout the book.

The rows of data stored in sys.query_store_plan actually act as the drivers for the

runtime data collected. Let’s now take a look at that information.

 Runtime Information
The runtime data actually gets aggregated based on two different values, the plan_id as

mentioned in the previous section and the runtime interval that we talked about earlier

(that has a default of 60 minutes). Figure 2-5 represents the information captured:

Chapter 2 Overview and arChiteCture Of the Query StOre

42

Figure 2-5. Catalog views containing runtime information

Chapter 2 Overview and arChiteCture Of the Query StOre

43

The model may look quite a bit more simplified, but it masks a few complexities that

are worth noting. First up, the sys.query_store_runtime_stats catalog view shows only

a small part of the 58 columns that make up the view. A lot of that data is laid out similar

to what you see with the duration values: an average, a minimum, a maximum, and a

standard deviation. That holds true for such interesting data as the CPU time, row count,

memory, and more.

The next most important thing to keep in mind when dealing with the runtime data

is that it is broken up into multiple aggregations as determined by the runtime interval.

Since you’re unlikely to turn Query Store on at the top of the hour, the sys.query_store_

runtime_stats_interval system view will have the start_time and end_time of each

interval. While these will be the appropriate amount of time apart, 60 minutes by default,

the start and stop times are not going to coincide with the clock.

Another thing to remember is that there are multiple time values to take into account

with this information. In addition to the runtime interval, there is also the time to flush

to disk, with a default of 15 minutes. That means that for any given plan_id, there may

be data on disk across multiple time intervals as well as data in memory.

Further, the execution_type can affect the information collected. This column has

three values:

• 0 – Successful execution

• 3 – User aborted execution

• 4 – An exception or error causing aborted execution

In the case of a query being aborted for any reason, the runtime data is still collected.

However, it’s aggregated into a separate value for the given plan_id and for the given

runtime_stats_interval_id. Because of this and the fact that there can be more than

one row of runtime data between memory and disk, when you start writing your own

queries against this data, you need to aggregate based on the plan_id, the execution_

type, and the runtime_stats_interval_id.

 Wait Statistics
We’ve separated the wait statistics from the runtime information only because some

people using this book may be on SQL Server 2016. Figure 2-6 shows the layout of the

information gathered for the wait statistics:

Chapter 2 Overview and arChiteCture Of the Query StOre

44

Figure 2-6. Catalog views contain wait statistics

Chapter 2 Overview and arChiteCture Of the Query StOre

45

Just like with the runtime information, the wait statistics are aggregated by the

runtime interval. Also, like the runtime information, wait statistics are dependent on

the flush to disk interval, a default of 15 minutes, so will be aggregated in two locations.

Again, like the runtime information, the execution_type also affects the aggregation

of the wait statistics. Finally, the wait statistics add one more wrinkle. There is a

wait_category that must be taken into account when aggregating the data across time

intervals and execution_types. We’ll be covering all this in more detail in Chapter 5.

You can also see that there is a similar pattern to the data with a minimum,

maximum, last, average, and standard deviation being stored. However, the wait time is

the only interesting value. I left off a couple of descriptive columns in Figure 2-6 to save

space. The rest of the information there is the important data for wait statistics.

 Information About the Query Store
There is actually one final catalog view that we should mention, although the details

of what it represents will be covered in Chapter 3. That view is sys.database_query_

store_options. While it does represent some of the information gathered about the

Query Store, it is not the focus of this chapter.

 Summary
The principal driving factor of the methodology of collecting query store data is to do so

in as unobtrusive a way as possible. All the asynchronous calls between the storage of

the information to memory and disk make that abundantly clear. However, once the data

is stored to disk, it lives with the database and will be available, wherever that database

goes, until it is removed from another process, such as automatic cleanup, or by you

manually removing the information. In Chapter 3, we’ll finally get going with starting,

stopping, and controlling the Query Store.

Chapter 2 Overview and arChiteCture Of the Query StOre

47
© Tracy Boggiano and Grant Fritchey 2019
T. Boggiano and G. Fritchey, Query Store for SQL Server 2019, https://doi.org/10.1007/978-1-4842-5004-4_3

CHAPTER 3

Configuring Query Store
As with any SQL Server feature, maximizing its potential involves tuning that feature

for your specific environment. Common advice would be to begin with the defaults,

then compare these with commonly agreed best practices and adjust those to what

makes sense for your use case if necessary. Often there will be a widely accepted set

of best practices within the community for typical deviations from Microsoft defaults.

Sometimes defaults that appear “dumb” are often set that way, not because Microsoft is

ignorant of its product or user base but for backward compatibility reasons.

In this chapter, we will discuss the steps for implementing and configuring the Query

Store feature. We will cover the default configuration both on-premise and in the Azure

SQL Database Platform as a Service (PaaS) offering. There will be a detailed breakdown of

all the Query Store configuration options and the Query Store catalog views related to the

configuration (for a list of all the Query Store–related catalog views, look to Chapter 5).

After this, we will commence a deep dive into best practices for configuring the

Query Store. We will talk about how parameterization and parameterization settings can

impact Query Store as well as the impact of renaming objects. Trace flags to improve

recovery times and important performance-related patches for versions 2016 and 2017

will also be highlighted.

For those of you leveraging the capabilities of In-Memory OLTP, the use of Query

Store with natively compiled stored procedures will be covered. We will also discuss

an exciting new feature introduced in SQL 2017, known as automatic plan regression

correction (APRC). What it entails and how to enable or disable it will be covered.

We will close the chapter with a discussion of the various query store error states and

details on how to maintain the Query Store as a DBA.

48

 Query Store Defaults
In this section, we will look at the default configuration options for the Query Store in

SQL Server. Default options in SQL Server are not always the optimal configuration

setting for your environment, but changing them does merit careful consideration.

An important point to note is that the Query Store is disabled by default in the on- premise

product for versions 2016, 2017, and 2019 at time of this writing. However, in the

Microsoft Platform as a Service (PaaS) offering Azure SQL Database, it is enabled by

default. For Azure SQL Database Managed Instances, a managed Infrastructure as a

Service (IaaS) offering, the Query Store is supported but also disabled by default.

To enable Query Store, run the following T-SQL command in Listing 3-1:

Listing 3-1. T-SQL to enable Query Store on a database

ALTER DATABASE [<Database Name>] SET QUERY_STORE=ON;

To enable Query Store on all databases on your instance you can run the code in

Listing 3-2:

Listing 3-2. Turn Query Store on all databases

DECLARE @SQL NVARCHAR(MAX) = N'';

SELECT @SQL += REPLACE(N'ALTER DATABASE [{{DBNAME}}] SET QUERY_STORE=ON ',

 '{{DBName}}', [name])

FROM sys.databases

WHERE state_desc = 'ONLINE'

 AND [name] NOT IN ('master', 'tempdb')

ORDER BY [name];

EXEC (@SQL);

The Query Store cannot be enabled in either the master or the tempdb system

databases. Enabling the Query Store in the model database does not actually capture any

Query Store data in the model database, but this configuration change will be reflected

in newly created databases from that point forward. In the msdb system database, the

Query Store will behave no differently than the Query Store in a user database. A table

of options for Azure SQL Database and regular on-premise SQL server is presented in

Table 3-1.

Chapter 3 Configuring Query Store

49

Table 3-1. Configuration options for Query Store

Configuration Name Options Description Default

operation_MoDe off

reaD_Write

reaD_onLy

Mode of operation

for the Query Store

off (SQL 2016 and 2016)

reaD_Write for azure SQL

Database

CLeanup_

poLiCy(StaLe_Query_

threShoLD_DayS)

Bigint Dictates CLean_up

policy (0 is never)

30 days (or 7 for azure SQL

Database Basic edition)

Data_fLuSh_

interVaL_SeConDS

Bigint flush interval

frequency for buffered

Query Store data

900 (15 minutes)

MaX_Storage_SiZe_

MB

Bigint the maximum size

of Query Store in MB

100 (SQL Server 2016 and

2017), 1000 (SQL Server 2019),

(1024 for SQL azure Database

premium and 10 for SQL azure

Database Basic edition)

interVaL_Length_

MinuteS

1, 5, 10, 15,

30, 60, or

1440

aggregation interval

for statistics

60

SiZe_BaSeD_

CLeanup_MoDe

auto

off

attempt to clean up if

approaching capacity

auto

Query_Store_

Capture_MoDe

auto

aLL

CuStoM

none

Query capturing

behavior

auto (SQL Server 2016 and

2017), aLL (SQL Server 2019)

aLL (azure SQL Database)

MaX_pLanS_per_

Query

int how many distinct

plans to keep per

query

200. not available in SQL Server

2016

Wait_StatiStiCS_

Capture_MoDe

on

off

Specifies rather to

capture wait statistics

for queries

on in SQL Server 2017 and

2019 and azure SQL Database.

not available in SQL Server 2016

Chapter 3 Configuring Query Store

50

 Configuration Options
Query Store has many options to configure to properly be set up to collect data in the

most beneficial way for your database. This section will explain those options and give

you recommendations on what the best settings would be and how to set those options.

First, we will go through all the options and what they mean and look at code on how to

change them. Then we will see what is available in the GUI and how to change options

there.

 OPERATION_MODE
This setting sets the operational mode of the Query Store. The Query Store operates in

either read-only or read and write mode. In read-only mode, existing data will remain in

the Query Store, but no new queries will be captured. If the Query Store reaches capacity,

it will change from READ_WRITE to READ_ONLY mode. If capturing new queries is desired,

which it typically will be, it is important to monitor to ensure that the Query Store has its

OPERATION_MODE set correctly. The T-SQL syntax for setting this is in Listing 3-3.

Listing 3-3. T-SQL to set Query Store operation mode

ALTER DATABASE [<Database Name>] SET QUERY_STORE (OPERATION_MODE = READ_

WRITE);

The Query Store has the concept of an actual state and the desired state. Where the

desired state is READ_WRITE, and the actual state is READ_ONLY, there will be an associated

reason which will be displayed in the catalog view sys.database_query_store_options

under the column readonly_reason. The associated catalog views for the Query Store

will be covered in Chapter 5. The default setting is READ_WRITE.

 CLEANUP_POLICY (STALE_QUERY_THRESHOLD_DAYS)
The Query Store has a configurable number of days to store Query Store data. The Query

Store settings SIZE_BASED_CLEANUP_MODE and QUERY_STORE_CAPTURE_MODE will also

have an impact on the data stored in Query Store, so it is possible for queries that do

not exceed the stale threshold not to be stored. The default for STALE_QUERY_THREHOLD_

DAYS is 30 days (or 7 days if using Azure SQL Database Basic edition). The T-SQL for

configuring this setting is in Listing 3-4.

Chapter 3 Configuring Query Store

51

Listing 3-4. T-SQL to set STALE_QUERY_THRESHOLD_DAYS

ALTER DATABASE [<Database Name>] SET QUERY_STORE (CLEANUP_POLICY = (

STALE_QUERY_THRESHOLD_DAYS = <Value>));

 DATA_FLUSH_INTERVAL_SECONDS
As discussed in Chapter 2, for performance purposes the Query Store will buffer data

and write it asynchronously to disk at configurable intervals. This interval is known as

the data flush interval, and it is specified in seconds. As will be discussed in greater detail

in the section on Best Practices, this option requires careful consideration as it can have

a considerable impact on the performance of the Query Store. Anyone familiar with

indirect checkpoints and target recovery intervals in SQL Server will have a grasp of the

trade-offs involved in setting the data flush interval for the Query Store. A short flush

interval will result in more aggressive I/O spikes when the Query Store data is flushed to

disk. This can lead to performance degradation of the I/O subsystem. A longer data flush

interval should allow SQL Server to spread the I/O load over a longer time frame at the

expense of greater data loss in the event of a systemic failure (since more of the Query

Store data will be held in volatile memory). The default flush interval is 900 seconds

(15 minutes). The T-SQL for configuring this setting is in Listing 3-5.

Listing 3-5. T-SQL to set DATA_FLUSH_INTERVAL_SECONDS

ALTER DATABASE [<Database Name>] SET QUERY_STORE (DATA_FLUSH_INTERVAL_

SECONDS = <Value>);

 MAX_STORAGE_SIZE_MB
This setting determines the maximum storage size for the Query Store data for an

individual database in megabytes. The default setting of 1000 MB is quite small for

any database with even a moderate level of activity. If this threshold is reached, the

Query Store will change state from READ_WRITE to READ_ONLY. Even with SIZE_BASED_

CLEANUP_MODE set to AUTO (more on this later), it is still possible for the Query Store to

reach maximum capacity especially during periods of high activity. It is crucial to set

the maximum storage size for the Query Store appropriately for your environment,

considering your desired history retention set by the STALE_QUERY_THRESHOLD_DAYS

value. The T-SQL for configuring this setting is in Listing 3-6:

Chapter 3 Configuring Query Store

52

Listing 3-6. T-SQL to set MAX_STORAGE_MAX_MB

ALTER DATABASE [<Database Name>] SET QUERY_STORE (MAX_STORAGE_SIZE_MB =

<Value>);

 INTERVAL_LENGTH_MINUTES
The INTERVAL_LENGTH_MINUTES is an important setting as it determines what interval

data is aggregated into for viewing later. You can only select from values of 1, 5, 10, 14,

60, and 1440 minutes. The default value is 60 minutes. The smaller the interval, the

more disk space it will take up but the more granular data you will have. The T-SQL for

configuring this setting is in Listing 3-7.

Listing 3-7. T-SQL to set INTERVAL_LENGTH_MINUTES

ALTER DATABASE [<Database Name>] SET QUERY_STORE (INTERVAL_LENGTH_MINUTES

= <Value>);

 SIZE_BASED_CLEANUP_MODE
The SIZE_BASED_CLEANUP_MODE default value is AUTO which means it will automatically

clean up the data based on the MAX_STORAGE_SIZE_MB and CLEANUP_POLICY settings.

The other option is to set it to OFF. This setting is set to tell Query Store to clean up data

automatically before reaching the number of days specified with the CLEANUP_POLICY

setting if it reaches the MAX_STORAGE_SIZE_MB value first. So, if you set Query Store to

keep 30 days of data and it reaches your max size of 2 GB at day 28, it will start purging

data at the point and time. The T-SQL for configuring this setting is in Listing 3-8.

Listing 3-8. T-SQL to set SIZE_BASED_CLEANUP_MODE

ALTER DATABASE [<Database Name>] SET QUERY_STORE (SIZE_BASED_CLEANUP_MODE

= <Value>);

 QUERY_STORE_CAPTURE_MODE
The QUERY_STORE_CAPTURE_MODE default is ALL for both SQL Server on-premise and for

Azure SQL Database. Another option is NONE, which tells Query Store to not capture new

queries only, it continues to capture runtime statistics for queries that have already been

Chapter 3 Configuring Query Store

53

captured by Query Store. The third option AUTO tells SQL Server not to capture queries

that do take up significant resources or are not executed often. The T-SQL for configuring

this setting is in Listing 3-9.

Listing 3-9. T-SQL to set QUERY_STORE_CAPTURE_MODE

ALTER DATABASE [<Database Name>] SET QUERY_STORE (QUERY_STORE_CAPTURE_MODE

= [<Value>]);

For the CUSTOM option for QUERY_STORE_CAPTURE_MODE, there are three options you

can use to control how that data will be stored. This option was introduced to help

with controlling what data was captured for ad-hoc workloads in SQL Server 2019. The

STALE_CAPTURE_POLICY_THRESHOLD accepts a number for days or hours, from

1 hour up to 7 days that a query must exceed on of the values in the next three options

in for the data for query to be captured. The three options that control what will be

captured in the CUSTOM mode and operate in an OR manner are listed below:

• EXECUTION_COUNT – Specifies how many times a query must be

executed in the time period.

• TOTAL_COMPILE_CPU_TIME_MS – Specifies the total CPU compile

time a query must use in the time period.

• TOTAL_EXECUTION_CPU_TIME_MS – Specifies the total CPU

execution time the query must use in the time period.

The T-SQL for configuring the CUSTOM setting is in Listing 3-10.

Listing 3-10. T-SQL to set QUERY_STORE_CAPTURE_MODE for CUSTOM mode

ALTER DATABASE [<Database Name>]

SET QUERY_STORE = ON

 (

 QUERY_CAPTURE_MODE = CUSTOM,

 QUERY_CAPTURE_POLICY = (

 STALE_CAPTURE_POLICY_THRESHOLD = 24 HOURS,

 EXECUTION_COUNT = 30,

 TOTAL_COMPILE_CPU_TIME_MS = 1000,

 TOTAL_EXECUTION_CPU_TIME_MS = 100

)

);

Chapter 3 Configuring Query Store

54

 MAX_PLANS_PER_QUERY
The MAX_PLANS_PER_QUERY default is 200 plans. This setting is not available in SQL Server

2016. That may seem like a large number, but on some systems, there are thousands of

plans per query, but 200 is a good starting point. The higher this setting though, the more

disk space you will need if you have a large number of queries with a large number of

plans. If you notice that you are hitting that limit, you can run the code in Listing 3-11 to

see what your max number of query plans currently in plan cache is and use it determine

what you would like this setting to be set to.

Listing 3-11. T-SQL to find the number of plans in the cache per query

SELECT query_hash,

COUNT (DISTINCT query_plan_hash) distinct_plans

FROM sys.dm_exec_query_stats

GROUP BY query_hash

ORDER BY distinct_plans DESC;

The T-SQL for configuring this setting is in Listing 3-12.

Listing 3-12. T-SQL to set MAX_PLANS_PER_QUERY

ALTER DATABASE [<Database Name>] SET QUERY_STORE (MAX_PLANS_PER_QUERY =

<Value>);

 WAIT_STATISTICS_CAPTURE_MODE
The WAIT_STATISTICS_CAPTURE_MODE default is ON. This setting is not available in SQL

Server 2016. The only other option for this setting is OFF. Wait statistics are discussed

more in Chapter 9. The T-SQL for configuring this setting is in Listing 3-13.

Listing 3-13. T-SQL to set WAIT_STATISTICS_CAPTURE_MODE

ALTER DATABASE [<Database Name>] SET QUERY_STORE (WAIT_STATISTICS_CAPTURE_

MODE = <Value>);

Chapter 3 Configuring Query Store

55

 Changing Configuration Using the GUI
By default, Query Store is turned off on-premise SQL Server databases and turned on

by default in Azure SQL Database. To view the properties and change them, you would

connect to your SQL Server instance, right-click on your database, and click on Properties.

From there, click on the Query Store link on the left-hand side of the properties window.

See Figure 3-1 to see example of what the properties windows looks like.

Figure 3-1. Query Store properties window

Chapter 3 Configuring Query Store

56

Note you cannot change or see the MAX_PLANS_PER_QUERY or
WAIT_STATISTICS_CAPTURE_MODE options in the gui or the three options that
come with the CUSTOM QUERY_STORE_CAPTURE_MODE setting.

You can see how much space the database is taking up and Query Store is taking

up on the pie chart on the left. On the pie chart on the right, you can see the used and

available space in Query Store. You also can purge all the data from Query Store with the

Purge Query Data button.

 Query Store Configuration Catalog View
There is one catalog view that holds the settings for Query Store: sys.database_query_

store_options. For more on the catalog views, see Chapter 5. You can use the sys.

database_query_store_options catalog view to view the settings for Query Store in the

database. To view the configuration settings for Query Store, use the query in Listing 3- 14.

Listing 3-14. T-SQL to view Query Store Options

SELECT *
FROM sys.database_query_store_options

We will look at some other queries in the Maintaining Query Store section later in

this chapter.

 Query Store Configuration Best Practices
The first setting that should be configured differently than the default is MAX_STORAGE_

SIZE_MB. The default setting here is much too small to capture a 30-day or even longer

workload. The general guideline is to start with 2048 MBs and if you must keep a longer

retention period or have a large ad-hoc workload to adjust it up from there. Keep in mind

that this data is stored in the PRIMARY filegroup, so if you are doing piecemeal restores,

this will affect your recovery times, so you don’t want to set the size too high.

The next setting for on-premise SQL Servers that should be changed is QUERY_STORE_

CAPTURE_MODE. This setting should be changed from ALL to AUTO unless you need to

capture queries that take up insignificant resources or execute very few times. Capturing

Chapter 3 Configuring Query Store

57

insignificant queries just causes more work for Query Store and takes more disk space in

Query Store. So before leaving this setting to ALL, take those things into consideration.

The recommended setting for SIZE_BASED_CLEANUP_MODE is to leave the setting on

AUTO because if the MAX_STORAGE_SIZE_MB is reached because it cannot clean up data,

the OPERATION_MODE will be automatically switched to READ_ONLY mode leaving in a state

where you are not collecting new data.

The next setting you may consider changing is INTERVAL_LENGTH_MINUTES. The

recommended setting is the default of 60 unless you need data at a more granular

level. In that case, going as low as 15 would be advisable as systems processing 60,000

transactions per second on the right hardware have been able to keep up aggregating

that data. If you have more of an ad-hoc workload vs. stored procedure or parameterize

workload, you are going to want to keep this setting higher as it will be writing more data.

The recommended setting for WAIT_STATISTICS_CAPTURE_MODE is ON because it gives

more troubleshooting insight for your queries. Turning this setting OFF handicaps your

ability to use a great feature built into Query Store for seeing what queries are causing

which wait statistics to occur on your server by your database.

 Parameterization and Query Store
We have touched on this topic a bit when talking about the QUERY_STORE_CAPTURE_

MODE setting for query store. Let’s explore what this means more. First let’s discuss the

difference between paramterize queries and ad-hoc queries. A parameterized query

comes in as a stored procedure, function, trigger, or via sp_executesql. What makes it

parameterized is that each variable that comes in has a predefined data type that SQL

Server uses each time the query is called. For example, see the code in Listing 3-15 where

we query for the LastName from a Customer table, but we have the data type fixed to 20

characters.

Listing 3-15. Stored Procedure Demonstrating a Parametrized Call to SQL Server

CREATE PROCEDURE dbo.GetName

 @LastName VARCHAR(20)

AS

SET NOCOUNT ON;

SELECT FirstName,

 LastName

Chapter 3 Configuring Query Store

58

FROM dbo.Customer

WHERE LastName = @LastName;

GO

EXEC dbo.GetName @LastName = 'Boggiano';

So, what this means is that every time this procedure is called it gets rolled up into

one record per runtime interval in Query Store because it always has the variable defined

as VARCHAR(20). Now with an ad-hoc query doing the same thing, see Listing 3-16.

Listing 3-16. T-SQL for Ad-hoc query

SELECT FirstName,

 LastName

FROM dbo.Customer

WHERE LastName = 'Boggiano';

When this query is compiled, it stores the variable for LastName as eight characters,

but if you run the same query with the LastName as Smith, it will store the query with a

variable as five characters giving you two records per runtime interval in Query Store.

The data doesn’t get aggregated and therefore makes it harder to tune and troubleshoot

queries that are of the same type. Ad-hoc queries also bloat the size of Query Store due to

the number of unique questions it must keep track of.

 Impact of “Drop and Create” vs. “Alter”
Query Store stores the object_id of the procedures, triggers, and functions that execute

inside of the database. By altering these objects, you preserve the object_id of the

object; if you use the “drop and create” method, you will no longer have the same

object_id so the data will no longer be aggregated together going forward. So, if you

make a change to try to improve performance and you decide to go and compare the

performance in Query Store to prior runtime intervals, you will not be able to view the

results in the Query Store reports, you will have to query the catalog views. In SQL Server

2017, the syntax “CREATE OR ALTER” was introduced so you can avoid the need to code

for a DROP/CREATE operation.

Chapter 3 Configuring Query Store

59

 Impact of Database Renaming
Inside execution plans all objects are referenced as three-part names database.schema.

object because you have the potential of doing cross-database queries. Renaming a

database will cause plan forcing to fail, causing recompilation of all queries using those

forced plans on each execution.

 Reducing Recovery Times with Trace Flags
By default, all queries are blocked from running in the database until Query Store is

loaded if Query Store is enabled on the database. This is where trace flag 7752 comes into

play. By default, this behavior is on in Azure SQL Database, but on-premise you can turn

on this trace flag and have Query Store load asynchronously, and in the background will

be in a read-only state until it is completely loaded, so queries can process while Query

Store loads, but you will not be capturing them. You can tell this is an issue on your

system if you notice the wait stat QDS_LOADDB being high after a restart of your SQL Server

instance. With this being the default behavior in Azure SQL Database it is quite possible

it will become the default behavior in the on-premise product so we might want to go

ahead and enable it now and get the benefits of faster startup times for our SQL Server

instances. This also has the same effects on failovers.

Trace flag 7745 controls rather your SQL Server instance takes the time to flush all

the Query Store data to disk while SQL Server instance is being shut down. This can take

a considerable amount of time that you may not be willing to wait to depend on what

you have your DATA_FLUSH_INTERVAL_SECONDS set to and/or the number of databases

with Query Store enabled on your instance. The recommendation here would be to turn

on this trace flag on because if you tell SQL Server to shut down; you don’t want to wait

for data to be flush to disk, you want to get your SQL Server instance back up and

running as fast as possible.

 Query Store and Memory-Optimized Tables
Memory-optimized tables are tables that are stored entirely in memory. Therefore,

Query Store tracks a limited number of metrics when tracking queries that executed

against memory-optimized tables because those tables are stored in memory. Query

Store does not track I/O due to the table residing entirely in memory and query memory

used. It does, however, track other metrics such as duration, CPU time, the degree of

parallelism, and the row count. When viewing reports discussed in Chapter 4, keep this

in mind if you use memory-optimized tables.

Chapter 3 Configuring Query Store

60

 Configuring Query Store for Natively Compiled
Stored Procedures
Similarly, to memory-optimized tables, natively compiled stored procedures are treated

differently by Query Store. Query plans and query text are stored in Query Store by

default for natively compiled stored procedure and a flag denotes these procedures

in the catalog view sys.query_store_plan. However, runtime statistics are not stored

in the sys.query_store_runtime_stats catalog view by default. To capture runtime

statistics, you must use the procedure sys.sp_xtp_control_query_exec_stats. The

procedure can be used to capture statistics for all natively compiled procedures at the

instance level or just particular ones you need to troubleshoot. There is a performance

overhead associated with collecting these statistics. Listing 3-17 shows you how to set up

a natively compiled stored procedure to capture runtime statistics.

Listing 3-17. Setup Query Store to capture runtime statistics for a natively

compiled stored procedure

DECLARE @dbid INT = DB_ID('<database>');

DECLARE @object_id INT = OBJECT_ID('<InMemoryProcedure>');

EXEC sys.sp_xtp_control_query_exec_stats

 @new_collection_value = 1,

 @database_id = @dbid,

 @xtp_object_id = @object_id;

Listing 3-18 shows you how to capture statistics for all natively compiled stored

procedures on an instance.

Listing 3-18. Setup Query Store to capture runtime statistics for all natively

compiled stored procedures on the instance

EXEC sys.sp_xtp_control_query_exec_stats

 @new_collection_value = 1;

To turn off the collection of statistics, run the same code in Listings 3-16 or 3-17 and

change the parameter @new_collection_value to 0.

Chapter 3 Configuring Query Store

61

Note these settings are reset to not capture statistics on the event that the SQL
Server instance is shut down or restarted. if you need it to persist in collecting
statistics, you will need to set up a startup stored procedure or a SQL agent job
that runs at startup.

 Enabling and Disabling Automatic Plan Regression
Correction (APRC)
To enable automatic plan regression correction (APRC), you can run the following code

in Listing 3-19 for one database or the code in Listing 3-20 to enable Query Store on all

databases where query store is enabled and is a READ_WRITE state. What is APRC and

how it works is discussed more in Chapter 9.

Listing 3-19. T-SQL to enable APRC

ALTER DATABASE [<Database>]

 SET AUTOMATIC_TUNING (FORCE_LAST_GOOD_PLAN = ON);

Listing 3-20. T-SQL to enable APRC where database is online and Query Store is

enabled

DECLARE @SQL NVARCHAR(MAX) = N''

SELECT @SQL += REPLACE(N'ALTER DATABASE [{{DBNAME}}] SET AUTOMATIC_TUNING (

FORCE_LAST_GOOD_PLAN = ON ',

 '{{DBName}}', [name])

FROM sys.databases

WHERE state_desc = 'ONLINE'

 AND is_query_store_on = 1

ORDER BY [name];

EXEC (@SQL);;

To turn off Query Store, we run the same queries with OFF instead on as seen in code

listings above as seen in Listings 3-21 and 3-22.

Chapter 3 Configuring Query Store

62

Listing 3-21. T-SQL to disable APRC

ALTER DATABASE [<Database>]

 SET AUTOMATIC_TUNING (FORCE_LAST_GOOD_PLAN = OFF);

Listing 3-22. T-SQL to disable APRC where database is online and Query Store is

enabled

DECLARE @SQL NVARCHAR(MAX) = N'';

SELECT @SQL += REPLACE(N'ALTER DATABASE [{{DBNAME}}] SET AUTOMATIC_TUNING (

FORCE_LAST_GOOD_PLAN = OFF ',

 '{{DBName}}', [name])

FROM sys.databases

WHERE state_desc = 'ONLINE'

 AND is_query_store_on = 1

ORDER BY [name];

EXEC (@SQL);

 Maintaining Query Store
After you have Query Store configured, there are some items you may need to keep an

eye out for. Sometimes the state of Query Store will change from READ_WRITE to READ_

ONLY or ERROR and you will need to know when this happends and correct this. You also

need to monitor the space usage to determine if you are capturing the write amount of

data for the period of time you need and to make sure you don’t run out of space. You

also need to know if any plans you forced are failing and how to track those. You may

also need to remove plans and queries from Query Store. Finally, you may need to reset

the wait statistics.

Chapter 3 Configuring Query Store

63

 Monitoring Desired vs. Actual State
First, to maintain Query Store, you will want to make sure the desired_state and the

actual_state of Query Store match. You can run the code in Listing 3-23 to check in

single database or the code in Listing 3-24 to check all the databases in Query Store

enabled on your instance.

Listing 3-23. T-SQL to check Query Store’s desired state vs. actual state

SELECT DB_NAME() database_name,

 actual_state_desc,

 desired_state_desc

FROM sys.database_query_store_options

WHERE desired_state_desc <> actual_state_desc

Listing 3-24. T-SQL to check Query Store’s desired state vs. actual state on all

databases

DECLARE @SQL NVARCHAR(MAX) = N'';

SELECT @SQL += REPLACE(REPLACE(N'USE [{{DBName}}];

 SELECT

 "{{DBName}}" database_name,

 actual_state_desc,

 desired_state_desc

 FROM {{DBName}}.sys.database_query_store_options

 WHERE desired_state_desc <> actual_state_desc '

 ,'{{DBName}}', [name])

 ,'"', "")

FROM sys.databases

WHERE is_query_store_on = 1

ORDER BY [name];

EXEC (@SQL);

Chapter 3 Configuring Query Store

64

 Query Store Read-Only States

Query Store can enter the READ_ONLY state from READ_WRITE without telling for a

number of reasons. The reason is stored in the readonly_reason as a bit map in the

sys.query_store_options catalog view. In Table 3-2 you will find a list of the reasons.

Table 3-2. Query Store read-only state reasons

readonly_reason bit map Description

1 Database is in read-only mode

2 Database is in single-user mode

4 Database is in emergency mode

8 Database is a secondary replica (always on and azure SQL Database

geo-replication)

65536 reached limit set by MaX_Storage_SiZe_MB

131072 the number of different statements has reached memory limit. in this

case you should consider remove queries from the Query Store or

upgrading service tier

applies to azure SQL Database

262144 in-memory size limit has been hit. items will be persisted to disk

until space is freed up in memory. Query Store will be temporarily in

read- only mode

applies to azure SQL Database

524288 Database has reached disk size limit so Query Store can no longer grow

applies to azure SQL Database

 How to Fix Query Store in Error State

Starting in SQL Server 2017, Query Store can enter an error state. This can cause

potential performance problems when you depend on manual plan forcing or auto

plan regression correction. This is a rare race condition that can occur without you

knowing. The recommended fix is to first try to turn OFF Query Store and place it in

READ_WRITE mode. If that doesn’t work, the persisted data is corrupted on disk, so we run

sys.sp_query_store_consistency_check. Finally, clear Query Store of all data.

Chapter 3 Configuring Query Store

65

In Listing 3-25 you have code to run against all the databases with Query Store in ERROR

state to fix the ERROR state.

Listing 3-25. T-SQL to fix error state on all databases on instance

DECLARE @SQL AS NVARCHAR(MAX) = N'';

SELECT @SQL += REPLACE(N'USE [{{DBName}}]

 --Try Changing to READ_WRITE

 IF EXISTS (SELECT * FROM sys.database_query_store_options

 WHERE actual_state=3)

 BEGIN

 BEGIN TRY

 ALTER DATABASE [{{DBName}}] SET QUERY_STORE =

 OFF

 ALTER DATABASE [{{DBName}}] SET QUERY_STORE =

 READ_WRITE

 END TRY

 BEGIN CATCH

 SELECT

 ERROR_NUMBER() AS ErrorNumber

 ,ERROR_SEVERITY() AS ErrorSeverity

 ,ERROR_STATE() AS ErrorState

 ,ERROR_PROCEDURE() AS ErrorProcedure

 ,ERROR_LINE() AS ErrorLine

 ,ERROR_MESSAGE() AS ErrorMessage;

 END CATCH;

 END

 --Run sys.sp_query_store_consistency_check

 IF EXISTS (SELECT * FROM sys.database_query_store_options

 WHERE actual_state=3)

 BEGIN

 BEGIN TRY

 EXEC

 [{{DBName}}].sys.sp_query_store_consistency_check

 ALTER DATABASE [{{DBName}}] SET QUERY_STORE =

Chapter 3 Configuring Query Store

66

 ON

 ALTER DATABASE [{{DBName}}] SET QUERY_STORE

 (OPERATION_MODE = READ_WRITE)

 END TRY

 BEGIN CATCH

 SELECT

 ERROR_NUMBER() AS ErrorNumber

 ,ERROR_SEVERITY() AS ErrorSeverity

 ,ERROR_STATE() AS ErrorState

 ,ERROR_PROCEDURE() AS ErrorProcedure

 ,ERROR_LINE() AS ErrorLine

 ,ERROR_MESSAGE() AS ErrorMessage;

 END CATCH;

 END

 --Run purge Query Store

 IF EXISTS (SELECT * FROM sys.database_query_store_options

 WHERE actual_state=3)

 BEGIN

 BEGIN TRY

 ALTER DATABASE [{{DBName}}] SET QUERY_STORE

 CLEAR

 ALTER DATABASE [{{DBName}}] SET QUERY_STORE

 (OPERATION_MODE = READ_WRITE)

 END TRY

 BEGIN CATCH

 SELECT

 ERROR_NUMBER() AS ErrorNumber

 ,ERROR_SEVERITY() AS ErrorSeverity

 ,ERROR_STATE() AS ErrorState

 ,ERROR_PROCEDURE() AS ErrorProcedure

 ,ERROR_LINE() AS ErrorLine

 ,ERROR_MESSAGE() AS ErrorMessage

 END CATCH;

 END

 '

Chapter 3 Configuring Query Store

67

 ,'{{DBName}}', [name])

FROM sys.databases

WHERE is_query_store_on = 1;

EXEC (@SQL);

Tip Due to the potential performance, impact recommendation would set the
above code as a SQL agent job to run a regular basis so you don’t get caught off
guard when the Query Store is in an error state.

 Monitoring Space Usage
If you do set the CLEANUP_POLICY to AUTO as discussed earlier in the chapter, you will

need to monitor the space usage yourself to make sure Query Store doesn’t switch

to read-only mode. By default, Query Store will, at 90% capacity, clean up to an 80%

capacity. If you have the MAX_STORAGE_SIZE_MB size set too low and have a large amount

of transactions coming through, it is possible for Query Store to grow bigger than the max

size specified. In Listing 3-26, you will find code to monitor space for a single database

on your instance that is at 90% capacity.

Listing 3-26. T-SQL code to check if Query Store is at 90% capacity

USE [<Database>];

GO

SELECT current_storage_size_mb,

 max_storage_size_mb,

FROM sys.database_query_store_options

WHERE CAST(CAST(current_storage_size_mb AS

 DECIMAL(21, 2)) / CAST(max_storage_size_mb AS

 DECIMAL(21, 2)) * 100 AS DECIMAL(4, 2)) >= 90

 AND size_based_cleanup_mode_desc = 'OFF';

Tip you will want to put this code in a SQL agent Job and add code to email you
to alert when Query Store is near capacity, so that you may address it.

Chapter 3 Configuring Query Store

68

 How to Clear Query Store
You may find it necessary to clear the data manually from Query Store. You may use one

of the following two methods in Listings 3-27 and 3-28 to this.

Listing 3-27. T-SQL to clear all the data out of Query Store

ALTER DATABASE [<Database Name>] SET QUERY_STORE CLEAR ALL;

Listing 3-28. Stored procedure to clear all the data out of Query Store

USE [<Database>];

GO

EXEC sys.sp_query_store_flush_db;

 Failed Plan Forcing
Plan forcing can fail for a number of reasons such as an index in the plan being changed

or dropped, online index rebuilds while trying to write to the index, or a hint conflict. It’s

important to track failed plans so you know if you are getting the performance gain you

expected when you forced the plans. There are two ways to track forced plans. The first is

with T-SQL. You can query the catalog view sys.query_store_plan to see the last failure

reason and failed count as seen in Listing 3-29.

Listing 3-29. Query of plans with failed forced plans

SELECT plan_id,

 force_failure_count,

 last_force_failure_reason

FROM sys.query_store_plan

Because the above method only shows the last forced plan reason then increments a

counter and is per database, you may want to set up an extended events session that can

track failed plan forcing across your SQL Server instance and set up a SQL Agent job to

query and send out alerts. In Listing 3-30 you will find an extended events session that

can set up to capture failed plan forcing.

Chapter 3 Configuring Query Store

69

Listing 3-30. Extended events session to capture failing force plans

CREATE EVENT SESSION [QueryStore_Forcing_Plan_Failure]

 ON SERVER

ADD EVENT qds.query_store_plan_forcing_failed

ADD TARGET package0.ring_buffer WITH

 (

 MAX_MEMORY=4096 KB,

 EVENT_RETENTION_MODE=ALLOW_SINGLE_EVENT_LOSS,

 MAX_DISPATCH_LATENCY=30 SECONDS,

 MAX_EVENT_SIZE=0 KB,

 MEMORY_PARTITION_MODE=NONE,

 TRACK_CAUSALITY=OFF,

 STARTUP_STATE=ON

);

 Removing Plans and Queries
There are times when you may want to remove a plan from Query Store. You can use the

procedure sys.sp_query_store_remove_plan to remove any plan from Query Store.

When you run the procedure, it also removes the runtime statistics associated with that

plan. It requires the EXECUTE permission on the database and DELETE permission on the

Query Store catalog views. See Listing 3-31 for an example of how to remove a plan from

Query Store.

Listing 3-31. Stored procedure to remove a query from the Query Store

EXECUTE sys.sp_query_store_remove_plan @plan_id = <plan_id>;

Similarly, there are times when you may want to remove a query from Query Store,

such as when you have several ad-hoc queries taking up space in Query Store. You can

use the procedure sys.sp_query_store_remove_query to remove any query from Query

Store. When you run the procedure, it also removes the runtime statistics. It requires the

EXECUTE permission on the database and DELETE permission on the Query Store catalog

views. See Listing 3-32 for an example of how to remove a query from Query Store by

filling in the query_id.

Chapter 3 Configuring Query Store

70

Listing 3-32. Stored procedure to remove a query from the query store

EXECUTE sys.sp_query_store_remove_query @query_id = <query_id>;

 Reset Statistics for a Plan
The stored procedure sys.sp_query_store_reset_exec_stats clears runtime statistics

for a given plan but leaves the plan in Query Store. It requires the EXECUTE permission on

the database and DELETE permission on the Query Store catalog views. See Listing 3-33 for

an example of how to reset statistics for a plan from Query Store by filling in the plan_id.

Listing 3-33. Query to reset statistics for a plan

USE [<Database>];

GO

EXECUTE sys.sp_query_store_reset_exec_stats @plan_id = <plan_id>;

 Conclusion
In this chapter we have learned about all the configuration options for Query Store and

the recommended settings. We talked about the effect of having parameterized queries

on Query Store vs. ad-hoc queries. Then we talked about the impact of using the drop and

create process for stored procedures, functions, and triggers on seeing statistics for those

objects. We talked about how to reduce the shutdown and startup times of the SQL Server

instance by using trace flags. We covered how to capture data for natively compiled stored

procedures. Finally, we discussed various methods to maintain Query Store.

Chapter 3 Configuring Query Store

71
© Tracy Boggiano and Grant Fritchey 2019
T. Boggiano and G. Fritchey, Query Store for SQL Server 2019, https://doi.org/10.1007/978-1-4842-5004-4_4

CHAPTER 4

Standard Query Store
Reports
SQL Server Management Studio (SSMS) has seven built-in reports for Query Store.

These reports give us the ability to quickly view performance data and troubleshoot

performance issues in a graphical interface and transition the data into a grid view.

In this chapter, we will explore how to interact with these reports and how they

complement each other and work together. A list of the reports can be found below the

database in Object Explorer as seen in Figure 4-1:

Figure 4-1. Object Explorer view of reports for Query Store

72

 Regressed Queries Report
The first report we will look at is the Regressed Queries report. This report displays

information on which queries over the specified period have started degrading in

performance. There are several things you can do to navigate around inside of these

reports, but first let’s take a glance at this report in Figure 4-2.

Each bar on the left-hand side represents a different query that could be part of a

stored procedure, trigger, user-defined function or be an ad-hoc query that executed

in the specified period of time. The default period of time for the report is the last hour.

If you click on any of the bars, the query plan will change at the bottom to show the

estimated plan for that query. If you hover over any of the bars, it will show you stats for

each one of the queries the bar represents as seen in Figure 4-3.

Figure 4-2. Regressed Queries report

Chapter 4 Standard Query Store reportS

73

On the left-hand side on the top left-hand pane, you can control the type of

regression that is shown to you by clicking the bar that defaults to additional duration.

Other options are seen in Figure 4-4:

In the bottom pane on any report that shows you a query plan, you will see a box

with three dots in the upper right-hand corner; once you click on the box, it will take the

query text and put in a Query Editor window as seen in Figure 4-5.

Figure 4-3. Regressed Queries report hover over bar statistics

Figure 4-4. Additional options for types of regressions

Figure 4-5. Button to open query test in a Query Editor window

Chapter 4 Standard Query Store reportS

74

You will also see the estimated plan that the stored procedure, function, trigger, or

ad-hoc query generated during the period of time of the reporting period. Similarly,

as you run an estimated or actual plan in a Query Editor window of SQL Server

Management Studio (SSMS), you can hover over each plan operator to see detail

statistics, warnings, and the percentages of where the most work has taken place. You

can right-click on the plan to get the same options to as you get in the Query Editor

window in SSMS as seen in Figure 4-7.

Also, on the bottom pane, you have two buttons as seen in Figure 4-6 that allow to force

and unforce plans based on which plan you have highlighted and shown in the pane.

Note the bottom pane functions the same way across all reports that show
query plans.

 Overall Resource Consumption Report
The Overall Resource Consumption report shows the resources the database is consuming

by default for the last month. The report defaults to showing four categories of performance

in total amounts: duration in milliseconds, execution count, CPU time in milliseconds, and

logical reads in kilobytes. Here is an example of a report shown in Figure 4-8:

Figure 4-6. Regressed Queries report force and unforce plan buttons

Figure 4-7. Regressed Queries report plan options

Chapter 4 Standard Query Store reportS

75

If you double-click on any of the bars shown in the chart, you will automatically open

the next report we will be talking about, the Top Resource Consuming Queries report. If

you hover over any of the bars, you will get a list of statistics for the period of time for the

bar as seen in Figure 4-9.

Figure 4-8. Overall Resource Consumption report

Figure 4-9. Overall Consumption Report hover statistics

Chapter 4 Standard Query Store reportS

76

In the top right-hand corner, you have four buttons that allow you to control the

reports. You can see a close-up picture of these in Figure 4-10:

The Refresh button will allow you to refresh the report on the screen. The Standard

Grid button allows you to view the data in a grid view; see Figures 4-11, 4-12, and 4-13

for an example.

Figure 4-10. Overall Resource Consumption report buttons

Figure 4-11. Overall Resource Consumption report standard grid view

Figure 4-12. Overall Resource Consumption report standard grid view

Figure 4-13. Overall Resource Consumption report standard grid view

Chapter 4 Standard Query Store reportS

77

The Standard Grid view contains a lot more columns than you get in the Standard

View with charts. You can click on the column headings of any of the columns, and it will

sort the columns and place an arrow showing which way it sorted the data. By default, it

is sorted by the interval start date and time.

The Chart button allows you to switch back to the Chart View if you are in the

Standard Grid View.

Finally, the Configure button allows you to control items on the Chart View and the

Time Interval shown in either the Standard View or the Chart View. Figure 4-14 shows

the options available under the Configure button.

Figure 4-14. Configure button options for Overall Resource Consumption reports

Chapter 4 Standard Query Store reportS

78

On the top half of the screen as of SSMS, Figure 4-14 shows you all the metrics that

are available to be displayed in the Chart View. You can also use it to remove any item

from the view.

The bottom half of the screen in Figure 4-14 applies to both the Chart View and

Standard Grid View. You can change the Time Interval from the last month which is the

default to a value seen in Figure 4-15 to view a different period of time.

When you select Custom from the drop-down box, the From and To boxes will no

longer be greyed and out and you will be able to edit the days by typing or selecting from

a calendar. Next, there is a drop-down box for Aggregation Size where you can specify

the intervals it rolls the data into for your viewing. Values in the drop-down are shown in

Figure 4-16.

Finally, you can select if data is shown to you in your Local Time Zone time or UTC

zone.

Figure 4-15. Overall Resource Consumption report configure time interval
drop- down

Figure 4-16. Aggregation Size drop-down

Chapter 4 Standard Query Store reportS

79

Tip this is the best report for validating whether or not your system is meeting
your expected baselines you have established and for seeing if something unusual
is happening on the server.

 Top Resource Consuming Queries Report
The Top Resource Consuming Queries Report by default shows the top 25 queries

summed up by total duration for the last hour. In Figure 4-17, you can see an example

of what this report looks like. Like the other reports we have discussed, there are many

options we can look at the top of the report.

At the top right-hand corner, we have three buttons that control the overall reports as

seen in Figure 4-18. The Portrait View button will move the three separate panes stack on

top of each other instead of having the two panes beside each other at the top and one

on the bottom. The Configure button does the same as we have seen in the last report;

refer to Figure 4-14.

Figure 4-17. Top Consuming Resources report

Chapter 4 Standard Query Store reportS

80

When we look at Figure 4-19, we can see the following buttons to allow you to control

the top left-hand corner of the screen.

First, we have the metric we want to see for the top 25 queries by in the drop- down

listed below:

• Execution count

• Duration (ms) (default)

• CPU time (ms)

• Logical reads (KB)

• Logical writes (KB)

• Physical reads (KB)

• CLR time (ms)

• DOP

• Memory consumption (KB)

• Row count

• Log memory used (KB)

• Tempdb memory usage (KB)

• Wait time (ms)

Then instead of having the statistics by total, you can change the statistics to the

following values:

• Avg

• Max

Figure 4-18. Top Consuming Resources report buttons

Figure 4-19. Top Consuming Resource report option bar

Chapter 4 Standard Query Store reportS

81

• Min

• Std dev

• Total (default)

The Refresh button will refresh the report to the current period of time specified.

Next, you have a button that will let you jump to the Track Queries Report to look at the

query highlighted. The button with magnifying glass takes the selected query’s text and

pops it a new query window for you to view. The Grid View button will provide you with

additional metrics to look for each query. See Figures 4-20, 4-21, 4-22, and 4-23 for an

example of what the Grid View looks like.

Figure 4-20. Top Consuming Resources additional grid view

Figure 4-21. Top Consuming Resources additional grid view

Chapter 4 Standard Query Store reportS

82

Columns will vary in this view based on the statistic you choose to look at; for

example, the figure is based on totals, but if you pick avg, the view will show averages.

The columns in general that are included in figures above are as follows :

• Query_id

• Object_id

• Object_name

• Query_sql_text

• Duration

• CPU time

• Logical reads

• Logical writes

• Physical reads

• CLR time

• DOP

Figure 4-22. Top Consuming Resources additional grid view

Figure 4-23. Top Consuming Resources additional grid view

Chapter 4 Standard Query Store reportS

83

• Memory consumption

• Row count

• Log memory used

• Temp db memory used

• Wait time

• Execution count

• Plan count

The Regular Grid View button shows far fewer columns as seen in Figure 4-24. The

Regular Grid View concentrates on the metric and statistic you are looking at in the chart

rather than showing all the metrics. Note both views have the ability for you to change

which metric and statistic you want to view the data inside the view without returning to

the Chart View.

Figure 4-24. Top Consuming Resources regular grid view

Chapter 4 Standard Query Store reportS

84

The Chart View button allows you to return to Chart View if you have entered either

of the Grid Views.

You can change what is shown on the y-axis and x-axis of the chart on the Chart View

on the pane as well. For the x-axis you have the options available in Figure 4-25, and for

the y-axis you have the options available in Figure 4-26.

The right-hand side of the screen shows you the plans and their IDs associated with

each query; as you click on the query, this side of the screen adjusts along with the query

plan shown at the bottom of the screen.

Also, in the first pane, if you hover over any of the bars for the queries, it will

show you details about the query and the plan you currently have selected as seen in

Figure 4- 27.

Figure 4-25. Top Consuming Resources chart view y-axis options

Figure 4-26. Top Consuming Resources chart view x-axis options

Figure 4-27. Top Consuming Resources report query ID data

Chapter 4 Standard Query Store reportS

85

On the left-hand side of the left-hand pane, you can change how you group the data.

You can use whichever metric you selected from the top drop-down (duration, CPU,

logical reads, etc.), execution count, and plan count as seen in Figure 4-28. The most

useful here is plan count so you can find queries that have multiple plans which will help

you identify possible queries with plans that can be forced.

On the left-hand pane in Portrait mode, there are a series of buttons that control

what you may do with the plans being displayed for the selected query. Figure 4-29

shows you the buttons as we go through and explain what each one does.

You are already familiar with the Refresh button as it just refreshes the current report

you are in. The next button forces the plan whichever plan is highlighted in the pane.

The next button either tells you the plan is not forced or will unforce a plan if it has been

forced previously. The next button will allow you to compare two plans if you click two of

the dots in the pane below and hold the Ctrl key. Figure 4-30 shows an example of what

comparing a plan looks like. The differences in the plan operators are highlighted in red

in the plan diagram. Beside that, you will have what you see in Figure 4-31 which shows

you more details about the differences in where the time is spent on each operation.

Figure 4-28. Top Consuming Resources report left-hand pane group by drop- down

Figure 4-29. Top Consuming Resources report right-hand pane buttons

Chapter 4 Standard Query Store reportS

86

The differences seen in Figure 4-31 have a not equal sign highlighted in yellow.

Figure 4-30. Top Consuming Resources report comparing plan operator
differences

Chapter 4 Standard Query Store reportS

87

The next button shows you data for the plans in the Grid View as seen in Figure 4-32.

The final button returns the pane into the Chart View.

Figure 4-31. Top Consuming Resources report comparing report details

Chapter 4 Standard Query Store reportS

88

In the right-hand pane, when it is in Chart View, you can hover over the plan and

get data about the plan. Three types of icons will appear in this pane. A dot with nothing

inside of it represents an unforced plan, a dot with a check mark represents a forced

plan, and a square represents a failed execution of the query. These metrics change

based on the metric you have selected at the top left-hand corner of the report; for

example, if you have CPU Time chosen, you would see CPU instead of Duration. In

Figure 4-33 you can see what the statistics an example of the statistics shown when you

hover over a icon in the pane for the period of time it represents.

 Queries with Forced Plan Report
The Queries with Forced Plans report shows you the query plans that have been forced

on your database. This report can be used to check back to make sure you still see the

same performance improvement when you forced the plan or to see what plans have

been forced on the database. A sample report can be seen in Figure 4-34:

Figure 4-32. Top Consuming Resources report grid view of plan data

Figure 4-33. Top Consuming Resources report hover over query plan details

Chapter 4 Standard Query Store reportS

89

There are not as many configuration options in this report, but let’s explore the

buttons we do have available to us. The three buttons in the left-hand pane are familiar

to us; the first is the refresh button. The second is to open this query in the Track Queries

report. The last is to open the query text in the Query Editor window.

The right-hand pane has at the very top the same buttons from the Top Resource

Consuming Queries report. One is to put the report in Landscape mode which stacks

the panes. Another one is to change it back to its default Portrait mode. Then we have

the Configure button which looks the same as the one in the Top Resource Consuming

report in Figure 4-34. Underneath that, you have the Refresh button for the right-hand

pane. There is a button to force a plan and a button to unforce a plan. Lastly is the button

to compare plans.

In the bottom pane, you have the plan showed for the highlighted plan ID from the

top right-hand pane and the buttons to force or unforce the plan selected as seen in

Figure 4-34. On the left-hand side of the chart, you have the option to change the statistic

that is used to display the dots which is defaulted to average; see Figure 4-35 for the other

options.

Figure 4-34. Queries with Forced Plan report

Chapter 4 Standard Query Store reportS

90

Just like in the Top Resource Consuming Queries report, you have the same options

to look at the query plans.

 Queries with High Variation Report
The Queries with High Variation report can indicate queries with parameterization

problems. Parameterization occurs with a query that is executed with one value and

is parameterized with a parameter then executed again with the different value and a

different plan would be more appropriate due to data distribution. For example, if you

were to execute a query looking for every living in Montana (MO), it would produce a

plan searching based on statistics for a small data set than say if you search for everyone

living in California (CA). An example of Queries with High Variation report is shown in

Figure 4-36.

Figure 4-35. Queries with Forced Plan report y-axis options

Chapter 4 Standard Query Store reportS

91

The few differences in this report with the Top Resource Consuming Queries Report

are that under the Statistics drop-down, you only have two options: Variation and

Standard Deviation, and there is no Configure button. When you hover over the bars,

you receive more limited information as it only shows Variation and Standard Deviation

for the metric you have selected as seen in Figure 4-37.

Figure 4-36. High Variation report

Chapter 4 Standard Query Store reportS

92

You have the option on the left-hand pane to change the statistics that are used to

display values; options can be seen in Figures 4-38 and 4-39.

When you hover over the dots, you receive the information based on the metric

selected for the query plan as seen in Figure 4-40.

Figure 4-37. Queries with High Variation summary information

Figure 4-38. Queries with High Variation y-axis options

Figure 4-39. Queries with High Variation queries x-axis options

Chapter 4 Standard Query Store reportS

93

You can also control the y-axis of the right-hand pane by selecting one of the options

on the left-hand side as seen in Figure 4-41.

 Query Wait Statistics Report
The newest report introduced to SSMS is the Query Wait Statistics report. When you

initially open the report, you get a report that shows you the total wait time by category.

Query Store takes all the wait statistics and groups them into 23 categories such as CPU,

memory, buffer IO, etc. Wait Statistics is a tried and true way of troubleshooting SQL

Server performance and welcome addition to Query Store in SQL Server 2017. Each wait

statistics category is documented in Chapter 9. An example of this report can be seen in

Figure 4-42.

Figure 4-40. Queries with High Variation plan summary information

Figure 4-41. Queries with High Variation report plan summary y-axis options

Chapter 4 Standard Query Store reportS

94

The report defaults like all other reports to show wait statistics by totals, but you have

the option at the top and to the left to change to the options as shown in Figure 4-43.

At the bottom of the Chart View, you also can change the x-axis on the chart to one of

the options in the drop-down as seen in Figure 4-44.

Figure 4-42. Query Wait Statistics report categories

Figure 4-43. Query Wait Statistics report categories reporting options

Chapter 4 Standard Query Store reportS

95

At the top of the screen, you have three familiar buttons. The first being the Refresh

button, the second being the Standard Grid button which how that looks can be seen in

Figures 4-45 and 4-46, and finally, the button to change back to the Chart View.

Figure 4-44. Query Wait Statistics report categories x-axis options

Figure 4-45. Query Wait Statistics report categories grid view

Figure 4-46. Query Wait Statistics report categories grid view

Chapter 4 Standard Query Store reportS

96

Once you click on one of the category bars displayed in the chart, you are shown a

drilled down report of top five queries that consumed the most resources for that category

as seen in Figure 4-47. This gives you the ability troubleshoot queries based on where

your bottleneck appears to be based on wait statistics. If you see high CPU that would be

the first on the report, then you can drill down and see the top five queries using CPU and

tune those queries or see if there is a plan that can be forced that uses less resources.

The top bar based on drop-down has some statistics you can use to control which

top five queries show up in the report as seen in Figure 4-48.

Figure 4-47. Query Wait Statistics top five by category report

Figure 4-48. Query Wait Statistics top five Queries Statistics

Chapter 4 Standard Query Store reportS

97

To the right of that is a set of buttons all of them should be familiar to us by now

except for the green arrow. The green arrow takes us back to the Query Wait Statistics

Categories Report that we drilled down from.

Like other chart views, you can change the y-axis and x-axis attributes that are

displayed; see Figures 4-49 and 4-50 for what options you have on this screen.

On the right-hand side pane, you have the usual dotted report representing the

different plans over the period time. The buttons at the top are the same ones on the Top

Resource Consuming Resource Queries Report seen in Figure 4-13. You can also change

the y-axis to different statistics from the default of total to one of the values in the drop-

down as seen in Figure 4-51.

Figure 4-49. Query Wait Statistics top five category y-axis options

Figure 4-50. Query Wait Statistics top five by Category x-axis options

Figure 4-51. Query Wait Statistics top five by Category Plan y-axis options

Chapter 4 Standard Query Store reportS

98

 Tracked Queries Report
The Tracked Queries Report is used to show runtime statistics for a particular query

you are tracking and see all the execution plans for that query. An example of a Tracked

Queries Report can be seen in Figure 4-52. This is most useful when you have previously

identified a query by query ID that you want to watch and see how the performance

changes over time.

On the top left-hand corner, you have two ways to find queries that you want to track.

One is to type the query ID in the white box then hit the green arrow to load the data.

The data by default is for the last day. The other is to click the magnifying glass in which

it will pop a window where it has loaded all the queries that have been stored in Query

Store as seen in Figure 4-53.

Figure 4-52. Tracked Queries Report

Chapter 4 Standard Query Store reportS

99

From here you can select a query to track then click on OK after which you will need

to hit the green arrow for it to load the data in the report. Hovering over the dots reveals

the statistics for the period of time based on the metric you have configured to be shown

which is the duration by default as seen in Figure 4-54.

Figure 4-53. Tracked Queries Report magnifying glass view

Chapter 4 Standard Query Store reportS

100

At the top, you have a couple of new buttons we have not seen. The first is the Auto

Refresh button which will as suspected auto refreshes the report every 5 seconds. The

Auto Refresh setting is configurable under the Configure button. There is only one other

configurable setting in that screen we have not seen, and that is which query to track

which can change from there.

 Conclusion
In this chapter we looked at the Regressed Queries, Overall Resource Consumption,

Top Resource Consumption Queries, Queries with Forced Plans, Queries with High

Variation, Query Wait Statistics, and Tracked Queries reports and how they interacted

with each other. We explored all the options you had available to change what data is

reported on the screen and how to configure each report to meet your needs. These

reports are vital to quickly being able to troubleshoot issues with Query Store on your

SQL Server instance.

Figure 4-54. Tracked Queries Report statistics details

Chapter 4 Standard Query Store reportS

101
© Tracy Boggiano and Grant Fritchey 2019
T. Boggiano and G. Fritchey, Query Store for SQL Server 2019, https://doi.org/10.1007/978-1-4842-5004-4_5

CHAPTER 5

Query Store Catalog Views
Query Store introduces eight new catalog views to SQL Server where it stores all the

information you need to query data to troubleshoot SQL Server with Query Store and

check the configuration of Query Store. You need VIEW DATABASE STATE permission to

query the catalog views. In this chapter you will find descriptions of all the catalog views

and their columns then examples of the queries behind the standard Query Store reports

we discussed in Chapter 4.

 sys.database_query_store_options
The catalog view that holds the options that tell you the settings for the setup of Query

Store is sys.database_query_store_options. This catalog view returns all the options

available that are set for the configuration of Query Store. This catalog view has no

relationships with any of the other catalog views. Sometimes you need to check the

configuration of Query Store across all your databases where Query Store is turned on;

you can use the query in Listing 5-1 to return a result set for each database that has

Query Store enabled with all the settings.

102

Listing 5-1. Check Query Store options across all databases on a SQL Server

instance

DECLARE @SQL NVARCHAR(MAX) = '';

SELECT @SQL += REPLACE(REPLACE('

 USE [{{DBName}}];

 SELECT "{{DBName}}",

 *
 FROM sys.database_query_store_options; '

 ,'{{DBName}}', [name])

 ,' " ','' '')

FROM sys.databases

WHERE is_query_store_on = 1;

EXEC (@SQL);

Table 5-1 displays all the column names, data types, and descriptions for the

columns in the sys.database_query_store_options catalog view. Important columns

to keep an eye on are the actual_state_desc; you want to make sure it stays in READ_

WRITE if the desired_state is READ_WRITE and did not switch to READ_ONLY due to

running out of space or ERROR. To understand these options for these columns better,

please refer to Chapter 3.

Chapter 5 Query Store Catalog ViewS

103

Ta
bl

e
5-

1.
 C

ol
u

m
n

 li
st

in
g

an
d

de
sc

ri
pt

io
n

s
fo

r
sy

s.
da

ta
ba

se
_q

u
er

y_
st

or
e

op
ti

on
s

Co
lu

m
n

na
m

e
Da

ta
 ty

pe
De

sc
rip

tio
n

de
si

re
d_

st
at

e
sm

al
lin

t
Sh

ow
s

th
e

de
si

re
d

st
at

e
of

 Q
ue

ry
 S

to
re

. t
he

se
 a

re
 th

e
on

ly
 v

al
ue

s
th

at
 c

an
 b

e
se

t b
y

th
e

us
er

. V
al

id
 v

al
ue

s
ar

e
as

 fo
llo

w
s:

0
=

 o
FF

1
=

 r
ea

D_
oN

ly

2
=

 r
ea

D_
w

ri
te

de
si

re
d_

st
at

e_
de

sc
nv

ar
ch

ar
(6

0)
gi

ve
s

yo
u

a
de

sc
rip

tio
n

of
 th

e
de

si
re

d
st

at
e

of
 Q

ue
ry

 S
to

re
. V

al
id

 v
al

ue
s

ar
e

as
 fo

llo
w

s:

oF
F

re
aD

_o
Nl

y

re
aD

_w
ri

te

ac
tu

al
_s

ta
te

sm
al

lin
t

Sh
ow

s
th

e
ac

tu
al

 s
ta

te
 o

f Q
ue

ry
 S

to
re

. N
ot

e
th

e
ad

di
tio

na
l v

al
ue

 o
f e

rr
or

 th
at

 w
as

 n
ot

av
ai

la
bl

e
in

 th
e

de
si

re
d

st
at

e.
 V

al
id

 v
al

ue
s

ar
e

as
 fo

llo
w

s:

0
=

 o
FF

1
=

 r
ea

D_
oN

ly

2
=

 r
ea

D_
w

ri
te

3
=

 e
rr

or

ac
tu

al
_s

ta
te

_d
es

c
nv

ar
ch

ar
(6

0)
gi

ve
s

yo
u

a
de

sc
rip

tio
n

of
 th

e
ac

tu
al

 s
ta

te
 o

f Q
ue

ry
 S

to
re

. V
al

id
 v

al
ue

s
ar

e
as

 fo
llo

w
s:

oF
F

re
aD

_o
Nl

y

re
aD

_w
ri

te

er
ro

r
(c

on
ti

n
u

ed
)

Chapter 5 Query Store Catalog ViewS

104

Co
lu

m
n

na
m

e
Da

ta
 ty

pe
De

sc
rip

tio
n

re
ad

on
ly

_r
ea

so
n

in
t

w
he

n
th

e
da

ta
ba

se
 is

 in
 r

ea
D_

oN
ly

 m
od

e,
 b

ut
 th

e
de

si
re

d
st

at
e

is
 r

ea
D_

w
ri

te
, a

bi
tm

ap
 is

 s
to

re
d

in
 th

e
co

lu
m

n
to

 in
di

ca
te

 th
e

re
as

on
 w

hy
. V

al
id

 v
al

ue
s

ar
e

as
 fo

llo
w

s:

1
–

th
e

da
ta

ba
se

 h
as

 b
ee

n
pl

ac
ed

 in
 th

e
re

ad
-o

nl
y

m
od

e

2
–

th
e

da
ta

ba
se

 h
as

 b
ee

n
pl

ac
ed

 in
 th

e
si

ng
le

-u
se

r m
od

e

4
–

th
e

da
ta

ba
se

 h
as

 b
ee

n
pl

ac
ed

 in
 th

e
em

er
ge

nc
y

m
od

e

8
–

th
e

da
ta

ba
se

 is
 a

 s
ec

on
da

ry
 re

pl
ic

a.
 t

hi
s

ap
pl

ie
s

fo
r a

va
ila

bi
lit

y
gr

ou
ps

 a
nd

 a
zu

re

SQ
l

Da
ta

ba
se

 g
eo

-r
ep

lic
at

ed
 d

at
ab

as
es

 b
ec

au
se

 e
ss

en
tia

lly
 a

ll
se

co
nd

ar
y

re
pl

ic
as

 a
re

re
ad

-o
nl

y
co

pi
es

 o
f t

he
 d

at
ab

as
es

65
53

6
–

th
e

m
ax

 s
iz

e
lim

it
sp

ec
ifi

ed
 in

 M
AX
_S
TO
RA
GE
_S
IZ
E_
MB

 h
as

 b
ee

n
re

ac
he

d

46
41

0
–

in
 a

zu
re

 S
Ql

 D
at

ab
as

e,
 th

er
e

is
 a

 li
m

it
as

 to
 h

ow
 m

an
y

qu
er

ie
s

ca
n

be
 s

to
re

d

in
 in

te
rn

al
 m

em
or

y,
so

 th
is

 in
di

ca
te

s
yo

u
ha

ve
 re

ac
he

d
th

at
 li

m
it.

 y
ou

 m
ay

 u
pg

ra
de

 to

a
hi

gh
er

 s
er

vi
ce

 ti
er

 to
 g

et
 a

 h
ig

he
r l

im
it

or
 re

m
ov

e
qu

er
ie

s
yo

u
no

 lo
ng

er
 n

ee
d

fro
m

Qu
er

y
St

or
e

us
ed

 in
 s

to
re

d
pr

oc
ed

ur
e
sy
s.
sp
_q
ue
ry
_s
to

re
_r
em
ov
e_
qu
er
y

26
21

44
 –

 in
 a

zu
re

 S
Ql

 D
at

ab
as

e
th

er
e

is
 th

e
po

te
nt

ia
l t

o
re

ac
h

a
lim

it
to

 th
e

am
ou

nt
 o

f

da
ta

 th
at

 w
ill

 b
e

he
ld

 in
 m

em
or

y
be

fo
re

 it
 p

er
si

st
s

to
 d

is
k.

 D
ur

in
g

th
at

 ti
m

e
Qu

er
y

St
or

e

w
ill

 b
e

te
m

po
ra

ril
y

pu
t i

n
RE
AD
_O
NL
Y

m
od

e

52
42

88
 –

 in
 a

zu
re

 S
Ql

 D
at

ab
as

e,
 th

e
da

ta
ba

se
 h

as
 ru

n
ou

t o
f s

pa
ce

to
 fi

x
an

y
of

 th
es

e
co

nd
iti

on
s,

 p
le

as
e

re
fe

r t
o

Ch
ap

te
r 3

 o
n

Co
nf

ig
ur

in
g

Qu
er

y
St

or
e

cu
rr

en
t_

st
or

ag
e_

si
ze

_m
b

bi
gi

nt
te

lls
 y

ou
 th

e
cu

rr
en

t s
iz

e
of

 Q
ue

ry
 S

to
re

 is
 u

se
d

in
 M

Bs

Ta
bl

e
5-

1.
 (

co
n

ti
n

u
ed

)
Chapter 5 Query Store Catalog ViewS

105

flu
sh

_i
nt

er
va

l_
se

co
nd

s
bi

gi
nt

te
lls

 y
ou

 h
ow

 o
fte

n
Qu

er
y

St
or

e
is

 p
er

si
st

in
g

da
ta

 to
 d

is
k.

 t
he

 d
ef

au
lt

is
 9

00
 s

ec
on

ds

(1
5

m
in

ut
es

)

in
te

rv
al

_l
en

gt
h_

m
in

ut
es

bi
gi

nt
te

lls
 Q

ue
ry

 S
to

re
 w

ha
t i

nt
er

va
ls

 to
 ro

ll
up

 th
e

st
at

is
tic

s
in

to
. t

he
 fo

llo
w

in
g

ar
e

va
lid

va
lu

es
: 1

, 5
, 1

0,
 1

5,
 3

0,
 6

0,
 a

nd
 1

44
0

m
in

ut
es

. t
he

 d
ef

au
lt

va
lu

e
is

 6
0

m
in

ut
es

m
ax

_s
to

ra
ge

_s
iz

e_
m

b
bi

gi
nt

te
lls

 Q
ue

ry
 S

to
re

 th
e

m
ax

im
um

 a
m

ou
nt

 o
f d

is
k

sp
ac

e
th

at
 it

 c
an

 u
se

st
al

e_
qu

er
y_

th
re

sh
ol

d_
da

ys
bi

gi
nt

th
e

nu
m

be
r o

f d
ay

s
a

qu
er

y
st

ay
s

in
 Q

ue
ry

 S
to

re
. t

he
 d

ef
au

lt
va

lu
e

is
 3

0
da

ys
. i

f y
ou

se
t t

he
 v

al
ue

 to
 0

, i
t w

ill
 d

is
ab

le
 th

e
re

te
nt

io
n

po
lic

y.
Fo

r a
zu

re
 S

Ql
 D

at
ab

as
e

Ba
si

c

ed
iti

on
, t

he
 d

ef
au

lt
va

lu
e

is
 7

 d
ay

s

m
ax

_p
la

ns
_p

er
_q

ue
ry

bi
gi

nt
th

e
m

ax
im

um
 n

um
be

r o
f p

la
ns

 Q
ue

ry
 S

to
re

 w
ill

 k
ee

p
fo

r e
ac

h
qu

er
y.

on
ce

 th
e

m
ax

im
um

 n
um

be
r i

s
re

ac
he

d,
 Q

ue
ry

 S
to

re
 n

o
lo

ng
er

 c
ap

tu
re

s
pl

an
s

fo
r t

ha
t q

ue
ry

. i
f

yo
u

se
t t

he
 v

al
ue

 to
 0

, i
t w

ill
 h

av
e

no
 li

m
ita

tio
n

ap
pl

ie
s

to
 S

Ql
 S

er
ve

r 2
01

7
an

d
up

qu
er

y_
ca

pt
ur

e_
m

od
e

sm
al

lin
t

th
e

ca
pt

ur
e

m
od

e
fo

r Q
ue

ry
 S

to
re

. V
al

id
 v

al
ue

s
ar

e
as

 fo
llo

w
s:

1
=

 a
ll

 –
 c

ap
tu

re
s

al
l q

ue
rie

s.
 (D

ef
au

lt
fo

r S
Ql

 S
er

ve
r 2

01
6

an
d

up
)

2
=

 a
ut

o
–

ca
pt

ur
es

 q
ue

rie
s

ba
se

d
on

 th
e

us
ag

e
pa

tte
rn

s.
 (D

ef
au

lt
fo

r a
zu

re
 S

Ql

Da
ta

ba
se

)

3
=

 N
oN

e
–

te
lls

 Q
ue

ry
 S

to
re

 to
 s

to
p

ca
pt

ur
in

g
ne

w
 q

ue
rie

s.
 Q

ue
ry

 S
to

re
 h

ow
ev

er

co
nt

in
ue

s
to

 c
ol

le
ct

 s
ta

tis
tic

s
fo

r q
ue

rie
s

al
re

ad
y

in
 Q

ue
ry

 S
to

re

4
=

 C
uS

to
M

 –
 te

lls
 Q

ue
ry

 S
to

re
 to

 u
se

 c
us

to
m

 c
on

fig
ur

at
io

ns
 o

pt
io

ns
 to

 d
et

er
m

in
e

w
ha

t q
ue

rie
s

to
 s

to
re

 (a
pp

lie
s

to
 S

Ql
 S

er
ve

r 2
01

9
on

ly
)

Chapter 5 Query Store Catalog ViewS

106

Co
lu

m
n

na
m

e
Da

ta
 ty

pe
De

sc
rip

tio
n

qu
er

y_
ca

pt
ur

e_
m

od
e_

de
sc

nv
ar

ch
ar

(6
0)

De
sc

rip
tio

n
of

 th
e

ca
pt

ur
e

m
od

e
of

 Q
ue

ry
 S

to
re

. V
al

id
 v

al
ue

s
ar

e
as

 fo
llo

w
s:

al
l

au
to

Cu
St

oM
 (a

pp
lie

s
to

 S
Ql

 S
er

ve
r 2

01
9

on
ly

)

No
Ne

ca
pt

ur
e_

po
lic

y_
ex

ec
ut

io
n_

co
un

t

in
t

Nu
m

be
r o

f t
im

es
 a

 q
ue

ry
 e

xe
cu

te
s

w
hi

le
 q

ue
ry

 c
ap

tu
re

 m
od

e
is

 C
uS

to
M

 b
ef

or
e

it
is

ca
pt

ur
ed

 (a
pp

lie
s

to
 S

Ql
 S

er
ve

r 2
01

9
on

ly
)

ca
pt

ur
e_

po
lic

y_
to

ta
l_

co
m

pi
le

_

cp
u_

tim
e_

m
s

bi
gi

nt
to

ta
l C

pu
 c

om
pi

le
 ti

m
e

in
 m

s
be

fo
re

 is
 c

ap
tu

re
d

w
hi

le
 q

ue
ry

 c
ap

tu
re

 m
od

e
is

Cu
St

oM
 (a

pp
lie

s
to

 S
Ql

 S
er

ve
r 2

01
9

on
ly

)

ca
pt

ur
e_

po
lic

y_
to

ta
l_

ex
ec

ut
io

n_
cp

u_
tim

e_
m

s

bi
gi

nt
to

ta
l C

pu
 e

xe
cu

tio
n

tim
e

in
 m

s
be

fo
re

 is
 c

ap
tu

re
d

w
hi

le
 q

ue
ry

 c
ap

tu
re

 m
od

e
is

Cu
St

oM
 (a

pp
lie

s
to

 S
Ql

 S
er

ve
r 2

01
9

on
ly

)

ca
pt

ur
e_

po
lic

y_
st

at
e_

th
re

sh
ol

d_
ho

ur
s

in
t

th
e

am
ou

nt
 o

f t
im

e
qu

er
ie

s
w

ill
 c

ol
le

ct
 d

at
a

w
hi

le
 q

ue
ry

 c
ap

tu
re

 m
od

e
is

 C
uS

to
M

 to

de
te

rm
in

e
if

th
e

qu
er

y
st

at
s

sh
ou

ld
 b

e
ca

pt
ur

ed
 (a

pp
lie

s
to

 S
Ql

 S
er

ve
r 2

01
9

on
ly

)

si
ze

_b
as

ed
_c

le
an

up
_m

od
e

sm
al

lin
t

te
lls

 Q
ue

ry
 S

to
re

 ra
th

er
 o

r n
ot

 to
 c

le
an

 u
p

Qu
er

y
St

or
e

w
he

n
it

ge
ts

 c
lo

se
 to

 th
e

m
ax

im
um

 s
iz

e.
 V

al
id

 v
al

ue
s

ar
e

as
 fo

llo
w

s:

0
=

 o
FF

 –
 d

o
no

t c
le

an
 u

p
au

to
m

at
ic

al
ly

1
=

 a
ut

o
–

cl
ea

n
up

 a
ut

om
at

ic
al

ly
 w

he
n

90
%

 o
f t

he
 m

ax
im

um
 s

iz
e

is
 re

ac
he

d.
 t

hi
s

is
 th

e
de

fa
ul

t v
al

ue
. t

he
 le

as
t e

xp
en

si
ve

 a
nd

 o
ld

es
t q

ue
rie

s
ar

e
re

m
ov

ed
 fi

rs
t u

nt
il

it

re
ac

he
s

ab
ou

t 8
0%

 fr
ee

 s
pa

ce

Ta
bl

e
5-

1.
 (

co
n

ti
n

u
ed

)
Chapter 5 Query Store Catalog ViewS

107

si
ze

_b
as

ed
_c

le
an

up
_m

od
e_

de
sc

nv
ar

ch
ar

(6
0)

De
sc

rip
tio

n
of

 s
iz

e-
ba

se
d

cl
ea

nu
p.

 V
al

id
 v

al
ue

s
ar

e
as

 fo
llo

w
s:

oF
F

au
to

w
ai

t_
st

at
s_

ca
pt

ur
e_

m
od

e
sm

al
lin

t
te

lls
 Q

ue
ry

 S
to

re
 to

 c
ap

tu
re

 w
ai

t s
ta

tis
tic

s
or

 n
ot

. V
al

id
 v

al
ue

s
ar

e
as

 fo
llo

w
s:

0
=

 o
FF

1
=

 o
N

ap
pl

ie
s

to
 S

Ql
 S

er
ve

r 2
01

7
an

d
up

w
ai

t_
st

at
s_

ca
pt

ur
e_

m
od

e_

de
sc

nv
ar

ch
ar

(6
0)

De
sc

rip
tio

n
of

 ra
th

er
 w

ai
t s

ta
tis

tic
s

ar
e

ca
pt

ur
ed

 o
r n

ot
. V

al
id

 v
al

ue
s

ar
e

as
 fo

llo
w

s:

oF
F

oN
 (d

ef
au

lt)

ap
pl

ie
s

to
 S

Ql
 S

er
ve

r 2
01

7
an

d
up

ac
tu

al
_s

ta
te

_a
dd

iti
on

al
_i

nf
o

nv
ar

ch
ar

(8
00

0)
ad

di
tio

na
l i

nf
or

m
at

io
n

on
 h

ow
 Q

ue
ry

 S
to

re
 e

nd
ed

 u
p

in
 th

e
cu

rr
en

t s
ta

te
. u

su
al

ly

po
pu

la
te

d
w

he
n

in
 th

e
st

at
e

is
 n

ot
 in

 th
e

ex
pe

ct
ed

 s
ta

te

Chapter 5 Query Store Catalog ViewS

108

 sys.query_context_settings
The sys.query_context_settings catalog view holds the context settings that the

queries in Query Store were running with such ANSI_NULLS or QUOTED_IDENTIFIER. If

different context settings are used with the same query, you will end up with different

plans in Query Store. A bit mask is stored in the set_options field to tell us which

options were used when a query was run. There are two ways to view the set options

for a query. The first is to use the Dynamic Management Function sys.dm_exec_plan_

atttibutes and pass in the plan_handle. This method only works if the plan is still in the

plan cache. In Listing 5-2 you can retrieve a plan_handle or context_settings_id for

a particular query by narrowing down your selection by feeling part of the query in the

WHERE clause in the <value> placeholder.

Listing 5-2. Query to retrieve a plan handle from cache

SELECT

 q.query_id,

 qt.query_sql_text,

 qs.plan_handle,

 q.context_settings_id

FROM sys.query_store_query q

 INNER JOIN sys.dm_exec_query_stats qs

 ON q.last_compile_batch_sql_handle =

 qs.sql_handle

 INNER JOIN sys.query_store_query_text qt

 ON q.query_text_id = qt.query_text_id

 INNER JOIN sys.query_context_settings cs

 ON cs.context_settings_id = q.context_settings_id

WHERE qt.query_sql_text LIKE '%<value>%'

ORDER BY q.query_id

Next, you copy the plan handle for the query you want to see the set options for and

put in Listing 5-3 replacing <plan_handle> in the listing.

Chapter 5 Query Store Catalog ViewS

109

Listing 5-3. Retrieve set options for a plan handle

SELECT *
FROM sys.dm_exec_plan_attributes(<plan_handle>)

WHERE attribute = 'set_options'

Second, you can create a function then you can query a record from the catalog

view and use the context_settings_id returned in Listing 5-2 as the @SetOptions value to

view the set options that were used as seen in Listing 5-4.

Listing 5-4. Function to retrieve SET options for queries executed

CREATE FUNCTION fn_QueryStoreSetOptions (@SetOptions as int)

RETURNS VARCHAR(MAX)

AS

BEGIN

 DECLARE @Result VARCHAR(MAX)=",

 @SetOptionFound INT

 DECLARE @SetOptionsList TABLE

 (

 [Value] INT,

 [Option] VARCHAR(60)

)

 INSERT INTO @SetOptionsList

 VALUES

 (1,'ANSI_PADDING'),

 (2,'Parallel Plan'),

 (4, 'FORCEPLAN'),

 (8, 'CONCAT_NULL_YIELDS_NULL'),

 (16, 'ANSI_WARNINGS'),

 (32, 'ANSI_NULLS'),

 (64, 'QUOTED_IDENTIFIER'),

 (128, 'ANSI_NULL_DFLT_ON'),

 (256, 'ANSI_NULL_DFLT_OFF'),

 (512, 'NoBrowseTable'),

 (1024, 'TriggerOneRow'),

 (2048, 'ResyncQuery'),

Chapter 5 Query Store Catalog ViewS

110

 (4096,'ARITH_ABORT'),

 (8192,'NUMERIC_ROUNDABORT'),

 (16384,'DATEFIRST'),

 (32768,'DATEFORMAT'),

 (65536,'LanguageID'),

 (131072,'UPON'),

 (262144,'ROWCOUNT')

 SELECT TOP 1 @SetOptionFound = ISNULL([Value], -1),

 @Result = ISNULL([Option] , '') + '; '

 FROM @SetOptionsList

 WHERE [Value] <= @SetOptions

 ORDER BY [Value] DESC

 RETURN @Result +

 CASE WHEN @SetOptionFound > -1 THEN

 dbo.fn_QueryStoreSetOptions(@SetOptions –

 @SetOptionFound)

 ELSE ''

 END

END

GO

Next, we need to query the sys.query_context_settings catalog view and CAST the

set_options column to an INT value to parse the SET options as seen in Listing 5-5. You

can see an example of the output of the results in Figure 5-1.

Listing 5-5. Query to return SET options for a query executed

SELECT dbo.fn_QueryStoreSetOptions(CAST(set_options as int))

FROM sys.query_context_settings

Table 5-2 displays all the column names, data types, and descriptions for the

columns in the sys.query_context_settings catalog view.

Figure 5-1. Set options query results

Chapter 5 Query Store Catalog ViewS

111

Table 5-2. Column listing and descriptions for sys.query_context_settings

Column name Data type Description

context_settings_id bigint primary key. this value is in the Showplan XMl queries

for reference

set_options varbinary(8) Bit mask reflecting SET options. Values for bit mask

values are calculated using the following:

1 – ANSI_PADDING

2 – parallel plan

4 – FORCEPLAN

8 – CONCAT_NULL_YIELDS_NULL

16 – ANSI_WARNINGS

32 – ANSI_NULLS

64 – QUOTED_IDENTIFIER

128 – ANSI_NULL_DFLT_ON

256 – ANSI_NULL_DFLT_OFF

512 – NoBrowsetable

1024 – triggeronerow

2048 – resyncQuery

4096 – ARITH_ABORT

8192 – NUMERIC_ROUNDABORT

16384 – DATEFIRST

32768 – DATEFORMAT

65536 – languageiD

131072 – UPON

262144 – ROWCOUNT

language_id smallint the iD of the language. look for more information

online by looking at the sys.languages table

date_format smallint the date format. See the SET DATEFORMAT command

for more information

date_first smallint the date first value. See the SET DATEFIRST

command for more information

(continued)

Chapter 5 Query Store Catalog ViewS

112

Column name Data type Description

status varbinary(2) Bit mask field indicating the type of query or context in

which it was executed. Value can be any combination

of flags in hexadecimal:

0x0 – regular query (no specific flags)

0x1 – query that was executed through on or the

cursor apis’ stored procedures

0x2 – query for notification

0x4 – internal query

0x8 – auto parameterized query without universal

parameterization

0x10 – cursor fetch refresh query

0x20 – a query that is being used in cursor update

requests

0x40 – initial result set is returned when a cursor is

opened (Cursor auto Fetch)

0x80 – encrypted query

0x100 – query in context of row-level security predicate

required_cursor_options int options specified for cursor

acceptable_cursor_options int options SQl Server may implicitly convert a cursor to

support the execution of the statement

merge_action_type smallint a MERGE statement trigger execution plan is used.

Valid values are as follows:

0 – no trigger or executes as a DELETE action.

1 – INSERT plan.

2 – UPDATE plan.

3 – DELETE plan with the addition of an INSERT or

UPDATE action

default_schema_id int iD of the default schema, which is used to resolve

names that are not fully qualified names

is_replication_specific bit used for replication

is_contained varbinary(1) 1 indicates a contained database

Table 5-2. (continued)

Chapter 5 Query Store Catalog ViewS

113

 sys.query_store_plan
The sys.query_store_plan catalog view stores the query plan associated with each query

in Query Store. The most important column in this catalog view is the query_plan column

as it shows you the execution plan that was stored for the query. You can copy and paste

this into an editor of your choice and save with a .sqlplan extension and open with SSMS

to view the graphical execution plan. Two other interesting columns are the engine_

version and compatibility_level columns. The engine_version column lets us know what

the exact version of SQL Server that was running when the query plan was captured. This

is useful for troubleshooting plan regression due to upgrades. The compatibility_level

column tells which compatibility level the query was ran under. This is useful when

upgrading as well but especially when going from a compatibility level below SQL Server

2014 to SQL Server 2014 and up due to the cardinality estimator (CE) changes made in

SQL Server 2014. Table 5-3 displays all the column names, data types, and descriptions for

the columns in the sys.query_store_plan catalog view.

(continued)

Table 5-3. Column listing and descriptions for sys.query_store_plan

Column Name Data Type Description

plan_id bigint primary key

query_id bigint Foreign key to sys.query_store_query. refer to

table 5-4

plan_group_id bigint iD of plan group. Multiple plans are often created

for cursor queries. the same group will contain the

populate and fetch plans

engine_version nvarchar(32) Version of SQl Server for the compiled plan “major.

minor.build.revision” format

compatibility_level smallint Compatibility level of the database when the query

was ran

query_plan_hash varbinary(8) MD5 hash of the query plan

query_plan nvarchar(max) Showplan XMl for the query plan

is_online_index_plan bit indicates rather the plan was used during an online

index rebuild

Chapter 5 Query Store Catalog ViewS

114

Table 5-3. (continued)

(continued)

Column Name Data Type Description

is_trivial_plan bit the plan is a trivial plan

is_parallel_plan bit the plan is parallel plan

is_forced_plan bit the plan is a forced plan marked by using stored

procedure sys.sp_query_store_forced_plan.

plan forcing does not guarantee this exact plan will

be used. the query compiles and compares the new

compiled plan to the one that was forced. if it fails

to match, the column force_failure_count

increments and the column last_force_failure_

reason will record the reason

is_natively_compiled bit the plan includes natively compiled memory-

optimized procedure. Valid values are as follows:

0 – false

1 – true

force_failure_count bigint the number of times that forcing this plan has failed

last_force_failure_

reason

int last reason why plan forcing failed. Valid values are

as follows:

0 – no failure

8637 – oNliNe_iNDeX_BuilD

8683 – iNValiD_StarJoiN

8684 – tiMe_out

8689 – No_DB

8690 – hiNt_CoNFliCt

8691 – Setopt_CoNFliCt

8694 – DQ_No_ForCiNg_SupporteD

8698 – No_plaN

8712 – No_iNDeX

8713 – View_CoMpile_FaileD

<other value> – geNeral_Failure

Chapter 5 Query Store Catalog ViewS

115

Table 5-3. (continued)

(continued)

Column Name Data Type Description

last_force_failure_

reason_desc

nvarchar(128) Description of last force plan failure. Valid values are

as follows:

oNliNe_iNDeX_BuilD – online rebuild was occurring

on the a table in the query while the query was trying

to modify data

iNValiD_StarJoiN – contains invalid StarJoin

tiMe_out – forced plan could not be found by the

optimizer in the number of allowed operations

hiNt_CoNFliCt – query hint conflicts

prevented the query from being compiled

DQ_No_ForCiNg_SupporteD – plan conflicts with

the use of a distributed query or full-text operations

No_plaN – forced plan could not be verified so the

query processor did not produce a query plan

No_iNDeX – index specified in the plan no longer exists

View_CoMpile_FaileD – problem exists in an

indexed view referenced in the plan

geNeral_Failure – general forcing error

count_compiles bigint the number of compiles

initial_compile_start_

time

datetimeoffset initial compile start time

last_compile_start_

time

datetimeoffset last compile start time

last_execution_time datetimeoffset last execution time

avg_compile_duration float average compile duration

Chapter 5 Query Store Catalog ViewS

116

Note when querying using the datetimeoffset datatypes, you need to
specify the time zone the data was generated in to see the data at the times it was
generated because all data is stored in utC time in this datatype.

 sys.query_store_query
All metrics per query executed are stored inside this catalog view. The data in the catalog

view is stored at the SQL statement level. Batches are split up into statements in the

catalog view allowing for better troubleshooting. Most of the columns in the catalog view

are metrics for compiling and binding the plan for the statements. Of note in this catalog

view is the object_id column. This column allows you to tie the statements back to their

stored procedure, function, or trigger. Table 5-4 shows all the column names, data types,

and descriptions for the columns in the sys.query_store_query catalog view.

Table 5-3. (continued)

Column Name Data Type Description

last_compiled_duration bigint last compile duration

plan_forcing_type int plan forcing type

0 – NoNe

1 – MaNual

2 – auto

plan_forcing_type_desc nvarchar(60) text description of plan_forcing_type

NoNe – no plan forcing

MaNual – plan forced by user

auto – plan forced by automatic tuning

Chapter 5 Query Store Catalog ViewS

117

Table 5-4. Column listing and descriptions for sys.query_store_query

Column name Data type Description

query_id bigint primary key

query_text_id bigint Foreign key to sys.query_store_

query_text. refer to table 5-5

context_settings_id bigint Foreign key to sys.query_context_

settings. refer to table 5-2

object_id bigint iD of the database object. Value will be

0 for ad-hoc queries

batch_sql_handle varbinary(64) iD of the statement batch the query

is part of. populated only if the query

references temporary tables or table

variables

query_hash binary(8) MD5 hash of the query including

optimizer hints

is_internal_query bit the query was generated internally

query_paramterization_type tinyint Kind of parameterization:

0 – none

1 – user

2 – simple

3 – forced

query_paramterization_type_desc nvarchar(60) text description of type of

parameterization

initial_compile_start_time datetimeoffset initial compile start time

last_compile_start_time datetimeoffset last compile start time

last_execution_time datetimeoffset last execution time

last_compile_batch_sql_handle varbinary(64) last SQl batch handle

for this query. it can be used with

sys.dm_exec_sql_text to get the

full text of the batch

(continued)

Chapter 5 Query Store Catalog ViewS

118

Column name Data type Description

last_compile_batch_offset_start bigint last start compile batch line number

last_compile_batch_offset_end bigint last end compile batch line number

count_compiles bigint the number of compiles

avg_compile_duration float average compile time in microseconds

last_compile_duration bigint last compile time in microseconds

avg_bind_duration float average bind time in microseconds

last_bind_duration bigint last bind time in microseconds

avg_bind_cpu_time float average bind Cpu time in

microseconds

last_bind_cpu_time bigint last bind Cpu time in microseconds

avg_optimize_duration float average optimize time in microseconds

last_optimize_duration bigint last optimize time in microseconds

avg_optimize_cpu_time float average optimize Cpu time in

microseconds

last_optimize_cpu_time bigint last optimize Cpu time in

microseconds

avg_compile_memory_kb float average compile memory in kilobytes

last_compile_memory_kb bigint last compile memory in kilobytes

max_compile_memory_kb bigint Max compile memory in kilobytes

is_clouddb_internal_query bit always 0 on on-premises instances

Table 5-4. (continued)

 sys.query_store_query_text
The sys.query_store_query_text catalog view contains the query text of the SQL

Statement to be joined to sys.query_store_query catalog view to get statement level

data, not batch level data. Using the object_id from sys.query_store_query, we are in

Listing 5-6 querying for all the statements for an object by subbing in an object name in

the placeholder <object_name>.

Chapter 5 Query Store Catalog ViewS

119

Listing 5-6. Retrieve statements for an object

SELECT *
FROM sys.query_store_query_text qt

 INNER JOIN sys.query_store_query q

 ON q.query_text_id = qt.query_text_id

 INNER JOIN sys.objects o on o.object_id = q.object_id

WHERE o.name = '<object_name>'

Table 5-5 shows all the column names, data types, and descriptions for the columns

in the sys.query_store_query_text catalog view.

Table 5-5. Column listing and descriptions for sys.query_store_query_text

Column name Data type Description

query_text_id bigint primary key

query_sql_text nvarchar(max) SQl text of the query as provided by user

statement_sql_handle varbinary(64) SQl handle of the query

is_part_of_encrypted_module bit indicates if the query is part of an encrypted

module

has_restricted_text bit indicates if the query text contains passwords

or other unmentionable words

 sys.query_store_wait_stats
The sys.query_store_wait_stats catalog view was introduced to Query Store in SQL

Server 2017 and gave us major insights into what each query was waiting on when

executing. In Listing 5-7 you can see a summary of the wait statistics collected across

categories for the statements in an object by subbing in value for <object_name>.

Listing 5-7. Wait stats for statements in an object

SELECT *
FROM sys.query_store_query_text qt

 INNER JOIN sys.query_store_query q

 ON q.query_text_id = qt.query_text_id

Chapter 5 Query Store Catalog ViewS

120

 INNER JOIN sys.objects o on o.object_id = q.object_id

 INNER JOIN sys.query_store_plan p

 ON p.query_id = q.query_id

 INNER JOIN sys.query_store_wait_stats ws

 ON ws.plan_id = p.plan_id

WHERE o.name = '<object_name>'

Below in Table 5-6 are all the column names, data types, and descriptions for the

columns in the sys.query_store_wait_stats catalog view.

Table 5-6. Column listing and descriptions for sys.query_store_wait_stats

Column name Data type Description

wait_stats_id bigint identifier of the row representing wait statistics for

the plan_id, runtime_stats_interval_id,

execution_type, and wait_category. it is

unique only for the past runtime statistics intervals.

For currently active intervals, there may be multiple

rows representing one row of statistics flushed to

disk and possible multiple rows for data still held in

memory

plan_id bigint Foreign key to sys.query_store_plan.

refer to table 5-3

runtime_stats_interval_id bigint Foreign key to sys.query_store_runtime_

stats_interval. refer to table 5-8

wait_category tinyint represents what category wait time is aggregated

into. refer to table 5-7 for wait statistics type

mappings and valid values

wait_category_desc nvarchar(128) Description of the wait statistics category. refer to

table 5-7 for wait statistics type mappings and valid

values

(continued)

Chapter 5 Query Store Catalog ViewS

121

Wait statistics are divided into 23 categories a list of which can be found in Table 5-7

with a list of which wait statistics belong in each category.

Table 5-6. (continued)

Column name Data type Description

execution_type tinyint Determines the type of query execution. Valid values

are as follows:

0 – regular execution: successful

3 – client aborted the execution

4 – exception aborted execution

execution_type_desc nvarchar(128) textual description of the execution type field. Valid

values are as follows:

0 – regular

3 – aborted

4 – exception

total_query_wait_time_ms bigint total Cpu wait time in the aggregation interval in

milliseconds

avg_query_wait_time_ms float average Cpu wait duration per execution in the

aggregation interval in milliseconds

last_query_wait_time_ms bigint last Cpu wait duration in the aggregation interval in

milliseconds

min_query_wait_time_ms bigint Minimum Cpu wait time in the aggregation interval

in milliseconds

max_query_wait_time_ms bigint Maximum Cpu wait time in the aggregation interval

in milliseconds

stdev_query_wait_time_ms float Standard deviation Cpu wait time in the

aggregation interval in milliseconds

Chapter 5 Query Store Catalog ViewS

122

Table 5-7. Wait statistics categories mapping table

Wait
statistics ID

Wait statistics category
description

Wait statistics types included
in the category

0 unknown unknown

1 Cpu SoS_SCheDuler_yielD

2 worker thread threaDpool

3 lock lCK_M_%

4 latch latCh_%

5 Buffer latch pagelatCh_%

6 Buffer io pageiolatCh_%

7 Compilation* reSourCe_SeMaphore_Query_CoMpile

8 SQl Clr Clr%, SQlClr%

9 Mirroring DBMirror%

10 transaction XaCt%, DtC%, traN_MarKlatCh_%, MSQl_XaCt_%,

traNSaCtioN_MuteX

11 idle Sleep_%, laZywriter_Sleep, SQltraCe_BuFFer_

FluSh, SQltraCe_iNCreMeNtal_FluSh_Sleep,

SQltraCe_wait_eNtrieS, Ft_iFtS_SCheDuler_

iDle_wait, Xe_DiSpatCher_wait, reQueSt_For_

DeaDloCK_SearCh, logMgr_Queue, oNDeMaND_

taSK_Queue, CheCKpoiNt_Queue, Xe_tiMer_eVeNt

12 preemptive preeMptiVe_%

13 Service broker BroKer_% (but not BROKER_RECEIVE_WAITFOR)

14 tran log io logMgr, logBuFFer, logMgr_reSerVe_appeND,

logMgr_FluSh, logMgr_pMM_log, ChKpt,

writelogF

15 Network io aSyNC_NetworK_io, Net_waitFor_paCKet, proXy_

NetworK_io, eXterNal_SCript_NetworK_ioF

16 parallelism CXpaCKet, eXChaNge

(continued)

Chapter 5 Query Store Catalog ViewS

123

Wait
statistics ID

Wait statistics category
description

Wait statistics types included
in the category

17 Memory reSourCe_SeMaphore, CMeMthreaD,

CMeMpartitioNeD, ee_pMoloCK, MeMory_

alloCatioN_eXt, reSerVeD_MeMory_alloCatioN_

eXt, MeMory_graNt_upDate

18 user wait waitFor, wait_For_reSultS, BroKer_reCeiVe_

waitFor

19 tracing traCewrite, SQltraCe_loCK, SQltraCe_File_

BuFFer, SQltraCe_File_write_io_CoMpletioN,

SQltraCe_File_reaD_io_CoMpletioN, SQltraCe_

peNDiNg_BuFFer_writerS, SQltraCe_ShutDowN,

Query_traCeout, traCe_eVtNotiFF

20 Full text search Ft_reStart_Crawl, FullteXt gatherer,

MSSearCh, Ft_MetaData_MuteX, Ft_iFtShC_

MuteX, Ft_iFtSiSM_MuteX, Ft_iFtS_rwloCK,

Ft_CoMprowSet_rwloCK, Ft_MaSter_Merge,

Ft_propertyliSt_CaChe, Ft_MaSter_Merge_

CoorDiNator, pwait_reSourCe_SeMaphore_Ft_

parallel_Query_SyNC

21 other disk io aSyNC_io_CoMpletioN, io_CoMpletioN, BaCKupio,

write_CoMpletioN, io_Queue_liMit, io_retry

22 replication Se_repl_%, repl_%, haDr_% (but not HADR_
THROTTLE_LOG_RATE_GOVERNOR), pwait_haDr_%,

repliCa_writeS, FCB_repliCa_write, FCB_

repliCa_reaD, pwait_haDrSiM

23 log rate governor log_rate_goVerNor, pool_log_rate_goVerNor,

haDr_throttle_log_rate_goVerNor, iNStaNCe_

log_rate_goVerNor

*Currently not supported.

Table 5-7. (continued)

Chapter 5 Query Store Catalog ViewS

124

 sys.query_store_runtime_stats
The sys.query_store_runtime_stats catalog view contains the runtime stats for all

the plans that Query Store has store aggregated by the runtime_stats_interval_id.

Statistics it collects include average, last, minimum, maximum, and standard deviation

for the duration, CPU, logical IO, physical IO, CLR, DOP (degree of parallelism),

query max used memory, row count, and for Azure SQL Database log bytes used.

Besides the wait statistics catalog view, this catalog view is where you harvest the most

data. Listing 5-8 will return the top 10 queries by average duration that have a last_

execution_time in the last hour.

Listing 5-8. Top 10 queries by CPU in the last hour

SELECT TOP 10 sum(rs.count_executions * rs.avg_duration) avg_duration,

 qt.query_sql_text,

 q.query_id,

 qt.query_text_id,

 p.plan_id,

 rs.last_execution_time

FROM sys.query_store_query_text AS qt

INNER JOIN sys.query_store_query AS q

 ON qt.query_text_id = q.query_text_id

INNER JOIN sys.query_store_plan AS p

 ON q.query_id = p.query_id

INNER JOIN sys.query_store_runtime_stats AS rs

 ON p.plan_id = rs.plan_id

WHERE rs.last_execution_time > DATEADD(hour, -1, GETUTCDATE())

GROUP BY qt.query_sql_text,

 q.query_id,

 qt.query_text_id,

 p.plan_id,

 rs.last_execution_time

ORDER BY avg_duration DESC;

Table 5-8 shows all the column names, data types, and descriptions for the columns

in the sys.query_store_runtime_stats catalog view.

Chapter 5 Query Store Catalog ViewS

125

Table 5-8. Column listing and descriptions for sys.query_store_runtime_stats

Column name Data type Description

runtime_stats_id Bigint identifier of the row representing runtime

execution statistics for the plan_id,

execution_type, and runtime_stats_

interval_id. it is unique only for the past

runtime statistics intervals. For currently active

intervals, there may be multiple rows representing

one row of statistics flushed to disk and possible

multiple rows for data still held in memory

plan_id Bigint Foreign key to sys.query_store_plan refers

to table 5-3

runtime_stats_interval_id Bigint Foreign key to sys.query_store_runtime_

stats_interval refers to table 5-9

execution_type tinyint Determines the type of query execution. Valid

values are as follows:

0 – regular execution: successful

3 – client aborted the execution

4 – exception aborted execution

execution_type_desc nvarchar(128) textual description of the execution type field.

Valid values are as follows:

0 – regular

3 – aborted

4 – exception

first_execution_time datetimeoffset First execution time for the query plan within the

aggregation interval

last_execution_time datetimeoffset last execution time for the query plan within the

aggregation interval

count_executions bigint total count of executions for the query plan within

the aggregation interval

(continued)

Chapter 5 Query Store Catalog ViewS

126

Column name Data type Description

avg_duration float the average duration for the query plan within the

aggregation interval in microseconds

last_duration bigint the last duration for the query plan within the

aggregation interval in microseconds

min_duration bigint the minimum duration for the query plan within

the aggregation interval in microseconds

max_duration bigint the maximum duration for the query plan within

the aggregation interval in microseconds

stdev_duration float the standard deviation duration for the query plan

within the aggregation interval in microseconds

avg_cpu_time float the average Cpu time for the query plan within

the aggregation interval in microseconds

last_cpu_time bigint the last Cpu time for the query plan within the

aggregation interval in microseconds

min_cpu_time bigint the minimum Cpu time for the query plan within

the aggregation interval in microseconds

max_cpu_time bigint the maximum Cpu time for the query plan within

the aggregation interval in microseconds

stdev_cpu_time float the standard deviation Cpu time for the

query plan within the aggregation interval in

microseconds

avg_logical_io_reads float the average number of logical io reads for the

query plan within the aggregation interval in 8KB

pages

last_logical_io_reads bigint the last number of logical io reads for the query

plan within the aggregation interval in 8KB pages

Table 5-8. (continued)

(continued)

Chapter 5 Query Store Catalog ViewS

127

Table 5-8. (continued)

Column name Data type Description

min_logical_io_reads bigint the minimum number of logical io reads for the

query plan within the aggregation interval in 8KB

pages

max_logical_io_reads bigint the maximum number of logical io reads for the

query plan within the aggregation interval in 8KB

pages

stdev_logical_io_reads float the standard deviation number of logical io reads

for the query plan within the aggregation interval

in 8KB pages

avg_logical_io_writes float the average number of logical io writes for the

query plan within the aggregation interval

last_logical_io_writes bigint the last number of logical io writes for the query

plan within the aggregation interval

min_logical_io_writes bigint the minimum number of logical io writes for the

query plan within the aggregation interval

max_logical_io_writes bigint the maximum number of logical io writes for the

query plan within the aggregation interval

stdev_logical_io_writes float the standard deviation number of logical io writes

for the query plan within the aggregation interval

avg_physical_io_reads float the average number of physical io reads for the

query plan within the aggregation interval in 8KB

pages

last_physical_io_reads bigint the last number of physical io reads for the query

plan within the aggregation interval in 8KB pages

min_physical_io_reads bigint the minimum number of physical io reads for the

query plan within the aggregation interval in 8KB

pages

(continued)

Chapter 5 Query Store Catalog ViewS

128

Table 5-8. (continued)

Column name Data type Description

max_physical_io_reads bigint the maximum number of physical io reads for the

query plan within the aggregation interval in 8KB

pages

stdev_physical_io_reads float the standard deviation number of physical io

reads for the query plan within the aggregation

interval in 8KB pages

avg_clr_time float the average Clr time for the query plan within

the aggregation interval in microseconds

last_clr_time bigint the last Clr time for the query plan within the

aggregation interval in microseconds

min_clr_time bigint the minimum Clr time for the query plan within

the aggregation interval in microseconds

max_clr_time bigint the maximum Clr time for the query plan within

the aggregation interval in microseconds

stdev_clr_time float the standard deviation Clr time for the query plan

within the aggregation interval in microseconds

avg_dop_time float the average Dop (degree of parallelism) for the

query plan within the aggregation interval in

microseconds

last_dop_time bigint the last Dop for the query plan within the

aggregation interval in microseconds

min_dop_time bigint the minimum Dop for the query plan within the

aggregation interval in microseconds

max_dop_time bigint the maximum Dop for the query plan within the

aggregation interval in microseconds

stdev_dop_time float the standard deviation Dop for the query plan

within the aggregation interval in microseconds

(continued)

Chapter 5 Query Store Catalog ViewS

129

Table 5-8. (continued)

Column name Data type Description

avg_query_max_used_memory float the average memory grant for the query plan

within the aggregation interval in 8 KB pages.

always 0 for queries using natively compiled

memory optimized procedures

last_query_max_used_memory bigint the last memory grant for the query plan within

the aggregation interval in 8 KB pages. always

0 for queries using natively compiled memory

optimized procedures

min_query_max_used_

memory

bigint the minimum memory grant for the query plan

within the aggregation interval in 8 KB pages.

always 0 for queries using natively compiled

memory optimized procedures

max_query_max_used_

memory

bigint the maximum memory grant for the query plan

within the aggregation interval in 8 KB pages.

always 0 for queries using natively compiled

memory optimized procedures

stdev_query_max_used_

memory

float the standard deviation memory grant for the

query plan within the aggregation interval in

8 KB pages. always 0 for queries using natively

compiled memory optimized procedures

avg_rowcount float the average number of returned rows for the

query plan within the aggregation interval

last_rowcount bigint the last number of returned rows for the query

plan within the aggregation interval

min_rowcount bigint the minimum number of returned rows for the

query plan within the aggregation interval

max_rowcount bigint the maximum number of returned rows for the

query plan within the aggregation interval

(continued)

Chapter 5 Query Store Catalog ViewS

130

Table 5-8. (continued)

Column name Data type Description

stdev_rowcount float the standard deviation number of returned rows

for the query plan within the aggregation interval

avg_log_bytes_used float the average number of bytes in the database log

used by the query plan within the aggregation

interval. applies only to Azure SQL Database

last_log_bytes_used bigint the last number of bytes in the database log used

by the query plan within the aggregation interval.

applies only to Azure SQL Database

min_log_bytes_used bigint the minimum number of bytes in the database

log used by the query plan within the aggregation

interval. applies only to Azure SQL Database

max_log_bytes_used bigint the maximum number of bytes in the database

log used by the query plan within the aggregation

interval. applies only to Azure SQL Database

stdev_log_bytes_used float the standard deviation number of bytes in the

database log used by the query plan within the

aggregation interval applies only to Azure SQL
Database

avg_tempdb_space_used float average amount of tempdb space used by the

query

last_tempdb_space_used bigint the last amount of tempdb space used by the

query plan within the aggregation interval

min_tempdb_space_used bigint Minimum amount of tempdb space used by the

query plan within the aggregation interval

max_tempdb_space_used bigint Maximum amount of tempdb space used by the

query plan within the aggregation interval

stdev_tempdb_space_used float the standard deviation of tempdb space used by

the query plan within the aggregation interval

Chapter 5 Query Store Catalog ViewS

131

 sys.query_store_runtime_stats_interval
The sys.query_store_runtime_stats_interval catalog view is the most basic and

smallest. It contains the start and end time of each runtime interval. Statistics collection

intervals are in 1 minute, 5 minutes, 10 minutes, 15 minutes, 30 minutes, 1 hour, and

1-day segments. See more in Chapter 3 on how to configure this setting. Table 5-9 shows

all the column names, data types, and descriptions for the columns in the sys.query_

store_runtime_stats_interval catalog view.

Table 5-9. Column listing and descriptions for sys.query_runtime_stats_interval

Column name Data type Description

runtime_stats_interval_id bigint primary key.

start_time datetimeoffset Start time of the interval.

end_time datetimeoffset end time of the interval.

comment nvarchar(32) always Null.

 Conclusion
To get the most out of Query Store, you will need to understand how the catalog

views are related to each other and query them directly for different use cases. All the

information you need about what is running against your SQL Server is contained here

depending on your settings and can be customized to your specifications. The data is

here for the harvesting, and we looked at visual ways of looking at this data in Chapter 4

and will look at a stored procedure for retrieving data in Chapter 10.

Chapter 5 Query Store Catalog ViewS

133
© Tracy Boggiano and Grant Fritchey 2019
T. Boggiano and G. Fritchey, Query Store for SQL Server 2019, https://doi.org/10.1007/978-1-4842-5004-4_6

CHAPTER 6

Query Store Use Cases
Query Store has different use cases that it is useful for. This chapter will go into detail

on those use cases. We will discuss how to determine what is a normal workload on

your database using Query Store by looking at the reports or catalog views and viewing

changes against that baseline. Baselining a database is an essential skill for any DBA,

and Query Store is a tool you can use to provide you with a baseline for your database.

Sometimes you will need to identify what happened during a previous window of time.

As a DBA you also will have to troubleshoot poorly performing queries or queries that

have regressed in performance, and Query Store gives you the data to be able to do that

as well. Query Store can help you identify the top consuming queries so you can see

how to improve performance on the SQL Server database. Query Store can be used to

capture queries after an upgrade of SQL Server to a different version and change the

compatibility mode on each database later and fix any regressed queries, stabilizing

upgrades of your SQL Server databases. Finally, we will look at how Query Store is used

to track ad-hoc workloads and improve their performance.

 Determining What Is a Normal Workload
With Query Store turned on, you are collecting data in the INTERVAL_LENGTH_MINUTES

specified when you configured Query Store as discussed in Chapter 3. To refresh your

memory on this configuration option, the data can be aggregated in 1, 5, 10, 15, 60, and

1440 minute intervals. With these data points in mind, you can let your normal workload

run against your server and view the reports discussed in Chapter 4 starting with the

Overall Resource Consumption Report as seen in Figure 6-1.

134

From viewing this report, you can determine what a normal workload is for your

database. From the report in Figure 6-1, you will notice a pattern of 2 days a week where

activity is low. Those happen to correspond to weekends which can tell us that this

database is used in a company where less activity occurs on the weekends and most

activity occurs on weekdays. We can also notice a pattern, where the duration is higher

than normal, and logical reads are higher than in other periods. For those you want to

click on those bars and drill down to the Top Resource Consuming Queries Report, we

discussed in Chapter 4 to diagnose which queries caused those unusual patterns and

determine if those workloads are something you need to be concerned about.

Another way to get to data is to query the catalog views discussed in Chapter 5. The

query in Listing 6-1 queries data from the catalog views for the last 10 days and pulls the

top 10 queries by duration.

Listing 6-1. T-SQL to top queries by duration in last 10 days

SELECT TOP 10 qt.query_sql_text,

 q.query_id,

 so.name,

 so.type,

Figure 6-1. Overall Resource Consumption report

Chapter 6 Query Store uSe CaSeS

135

 SUM(rs.count_executions * rs.avg_duration)

 AS 'Total Duration'

FROM sys.query_store_query_text qt

 INNER JOIN sys.query_store_query q

 ON qt.query_text_id = q.query_text_id

 INNER JOIN sys.query_store_plan p

 ON q.query_id = p.query_id

 INNER JOIN sys.query_store_runtime_stats rs

 ON p.plan_id = rs.plan_id

 INNER JOIN sys.query_store_runtime_stats_interval rsi

 ON rsi.runtime_stats_interval_id =

 rs.runtime_stats_interval_id

 INNER JOIN sysobjects so on so.id = q.object_id

WHERE rsi.start_time >= DATEADD(DAY, -10, GETUTCDATE())

GROUP BY qt.query_sql_text,

 q.query_id,

 so.name,

 so.type

ORDER BY SUM(rs.count_executions * rs.avg_duration_time) DESC

Note all times are stored in utC time so you would need to adjust the query to fit
your time zone for data to exactly match your time zone.

 Establishing a Baseline for Queries
Query Store gives you the ability to establish a baseline for the queries in your database.

Query Store stores all the execution runtime statistics in the catalog view sys.query_

store_runtime_stats so you can query this catalog view to see a number of statistics about

how your queries have performed in the past and are currently performing as you work to

establish a baseline to compare against. It is not how you would baseline your server.

Chapter 6 Query Store uSe CaSeS

136

 What Is a Baseline?
First, let’s discuss what a baseline is. A baseline is a workload you run against your server

that sets a starting point for comparisons against future runs of the same workload.

In theory, you would run your workload to make any necessary changes to your

environment; the changes could be code or hardware changes, and you would rerun the

same workload and compare and see what metrics have changed.

 How to Create a Baseline with Query Store
Establishing a baseline in Query Store involves knowing what data is being collected and

when. When you look at the Overall Resource Consumption Report seen in Figure 6-1,

it can be helpful to clear Query Store before starting your workload to establish your

baseline. Two ways to do this were discussed in Chapter 3. One is to right-click on the

database, go to Properties, then the Query Store tab. As seen in Figure 6-2, there is Purge

Query Data that will clear all the data from Query Store so you can start your baseline. Be

sure before you run your workload that your statistics collection interval is low enough

to collect your data and you don’t have to wait too long between each interval to run this

next workload.

Chapter 6 Query Store uSe CaSeS

137

The second is to run the stored procedure in Listing 6-2.

Listing 6-2. Store procedure to clear all the data out of Query Store

USE [<Database>]

GO

EXEC sys.sp_query_store_flush_db;

Now we have a clean slate to capture data for our workload. To capture your

workload so that you can replay it later, open SQL Server Profiler and pick the

Figure 6-2. Database properties for Query Store

Chapter 6 Query Store uSe CaSeS

138

TSQL_Replay template and create a server-side trace as we discussed in Chapter 1.

Now run your workload, and let Query Store capture all the data for the queries in the

workload, and once the workload is done, stop the trace. Note the time period you ran

your baseline workload for future comparisons. Now make your changes to the code or

server that you want to compare. See the next section on how to compare the results.

 How to Compare a Workload Back to the Baseline
The best way to compare your workload back is to use the reports from Chapter 4. If you

have set your statistics collection interval to 15 minutes, for example, you can run your

workload outside the next interval to collect data for your comparison. The basic steps to

make sure you can compare baselines are as follows:

 1. Run your workload to establish your baseline.

 2. Apply your changes.

 3. Run your workload again.

 4. Compare the results by looking at the Overall Resource

Consumption Report and drilling down to the Top Consuming

Resources Report to check on the particular queries that may have

been impacted by your changes.

 5. Then you can decide rather to keep your changes or roll them back.

 See What Happened Last Night
A common problem is to have someone come over to you and say such and such ran

slow yesterday at 5 AM and without any tracing turned you would have no idea what

had run. Now with Query Store, all the queries that ran are being recorded for you

to be able to see what ran yesterday at any time. By looking at the Top Consuming

Resources Report, you can drill down to a specific time period and look for what was

running slow. Not only can you tell what was running slow you could see what query

caused a CPU spike or a large number of reads if someone had complained that the

SAN had slowed down. Figure 6-3 shows your configuration options for narrowing

down what happened on the server during the time frame you need and by the metric

you heard was the problem.

Chapter 6 Query Store uSe CaSeS

139

 Troubleshooting Regressed Queries
One of the most powerful use cases for Query Store is to be able to identify queries

that have regressed in performance. Queries can regress in performance for various

reasons such as a change in statistics, the data cardinality has changed, indexes have

been created, indexes that existed before could have been altered or deleted, etc. In

Figure 6-3. Top Consuming Resources report configuration screen

Chapter 6 Query Store uSe CaSeS

140

most cases, the Query Optimizer in SQL Server does pick a better plan, but there are

times where it does not, and Query Store gives a quick, easy way to go in and find those

queries.

 What Is a Regressed Query?
A regressed query is a query in which the performance has changed due to a change

on the system such as a change in statistics, the data cardinality has changed, indexes

that have been created, etc. The change results in a different plan being generated than

before that does not perform as well. Back in Chapter 4, we explored the Regressed

Queries Report which gives you a quick way to identify regressed queries.

 Viewing Plan Changes
In the Regressed Queries Report, you can identify a query with two plans and use the

compare plan button at the top right-hand corner after you select both plans in the top

right-hand pane. The differences will highlight in red as seen in Figure 6-4. And in Figure 6-5,

you can see what difference there is between any operator you hightlight in the plans.

The differences seen in Figure 4-24 have a not equal sign highlighted in yellow.

Figure 6-4. Regressed Query peport comparing plan operator differences

Chapter 6 Query Store uSe CaSeS

141

As we have seen in Chapter 4, when viewing a query with multiple plans, you can

force the plan manually from the report screen. If you find a plan that needs to be forced,

you can force the plan from the report and monitor performance.

Figure 6-5. Regressed Query report comparing report details

Chapter 6 Query Store uSe CaSeS

142

 Identify Top Consuming Resource Queries
In Chapter 4, we discussed the Top Consuming Resource Report where you visually see

what queries are taking up the most resources on the SQL Server database. We can view

the following metrics when troubleshooting what the top consuming resource queries

on the SQL Server database are:

• Execution count

• Duration (ms) (default)

• CPU Time (ms)

• Logical reads (KB)

• Logical writes (KB)

• Physical reads (KB)

• CLR time (ms)

• DOP

• Memory consumption (KB)

• Row count

• Log memory used (KB)

• Tempdb memory usage (KB)

• Wait time (ms)

They can be aggregated into totals, averages, minimums, maximums, and standard

deviation. When looking for top consumers, total is a good starting place. If you are

seeing high CPU, start with looking at the total with CPU time. The report will display

by default the top 25 queries with their plans. You can then see if there is anything that

could be tuned in those queries or perhaps a plan that can be forced.

 Stabilizing SQL Server Upgrades
Another great benefit of Query Store is to help stabilize SQL Server upgrades. Every

SQL Server upgrade due to changes to the query optimizer has the potential to cause

regression in queries if you change the compatibility mode of a database. Since it is

Chapter 6 Query Store uSe CaSeS

143

recommended best practice to change the compatibility mode of a database when you

upgrade SQL Server so you can take advantage of the query optimizer enhancements

and new T-SQL functions, it becomes even more critical to be able to stabilize the

upgrade of SQL Server. Also, SQL Server 2014 introduced significant changes to the

cardinality estimator causing some regressed queries when changing the compatibility

mode.

 Changing Compatibility Mode Effects
Before SQL Server 2014, changing compatibility modes didn’t affect the query optimizer

because compatibility mode did not affect the cardinality estimator because there had

not been a new one released since SQL Server 7.0. So the only benefits you got form

changing compatibility modes were any enhancements made to the query optimizer and

new T-SQL functions.

 Cardinality Estimation Changes Explained
Starting with the release of SQL Server 2014, Microsoft started making changes to the

cardinality estimator (CE) which affects how queries estimate how many rows are

being returned by the query. In most cases, the queries ran faster under the new CE,

but some queries had some significant regressions. Your only recourse was to revert the

compatibility mode or use trace flags to control the behavior.

In SQL Server 2016, Microsoft introduced database scoped configurations that

allowed you to control MAXDOP, LEGACY_CARDINALITY ESTIMATION, PARAMETER_

SNIFFING, and QUERY_OPTIMIZER_HOTFIXES at the database level. The two most

important ones in this list for what we are talking about are LEGACY_CARDINALITY

ESTIMATION and QUERY_OPTIMIZER_HOTFIXES. If you set the LEGACY_

CARDINALITY ESTIMATION, it will use the old CE no matter what compatibility level

the databases is set to. The advantage to this is you can still get to use the new T-SQL

functions in the database and not have the query regressions. The QUERY_OPTIMIZER_

HOTFIXES option is the same thing as setting the trace flag 4199 which activates the all

the query optimizer fixes put in the engine via a new version or patch or CU. Before 2016,

you had to set trace flag 4199, and it applied to all the databases, and you had no easy

way to troubleshoot and fix regressed queries.

Chapter 6 Query Store uSe CaSeS

144

 Process for Testing and Completing Upgrades Using
Query Store
Now that you are familiar with how changing the compatibility mode effects the query

optimizer and CE and what may cause you regressed queries, let’s talk about how to

upgrade SQL Server the most effective way using Query Store to stabilize any regressed

queries after the upgrade. This is best illustrated in Figure 6-6.

The first step is to upgrade to SQL Server 2016 or higher. Next, you would enable

Query Store on your database(s). Let your workload run on the database(s) as long

as you think is necessary to capture a good baseline of your workload. Then set the

compatibility mode to the newest mode on the database(s). Finally, monitor the

Regressed Queries report discussed in Chapter 4 for plans that you need to force due to

regression. Chapter 7 covers Automatic Plan Correction where starting in SQL Server

2017, Query Store will automatically force plans for you. See Chapter 7 for more details.

 Finding and Improving Ad-hoc Workloads
Finally, Query Store can be used to find your ad-hoc queries and improve them. If you

have a lot of ad-hoc queries, when you look at the Top Consuming Resources report,

you will not see a large number of resources being consumed by queries with execution

counts greater than one. If your systems are mostly ad-hoc workloads, it will not be ideal

for working with Query Store as you are sending in different queries, and it is not able

to aggregate data for you or force plans to help performance. While your application is

generating ad-hoc queries, SQL Server is spending its time compiling queries for every

new query that is executed, bloating the plan cache and consuming resources extra than

if they were already in the plan cache. This will also cause bloat of Query Store because

it will be storing different plans and aggregated rows of runtime statistics for each query.

Figure 6-6. Steps to upgrade SQL Server using Query Store

Chapter 6 Query Store uSe CaSeS

145

This will cause the background processes that clean up Query Store to take up more

resources as well to keep the space at a level where it can add data.

Instead, of using the Top Consuming Resources report, there is T-SQL you can run

to first get the total number of query texts, queries, and plans, and then compare the

query_hash and query_plan_hash to find your ad-hoc queries that are similar as seen in

Listing 6-3.

Listing 6-3. T-SQL to check for ad-hoc workload

--Total Query Texts

SELECT COUNT(*) AS CountQueryTextRows

FROM sys.query_store_query_text;

--Total Queries

SELECT COUNT(*) AS CountQueryRows

FROM sys.query_store_query;

--Total distinct query hashes (different queries)

SELECT COUNT(DISTINCT query_hash) AS CountDifferentQueryRows

FROM sys.query_store_query;

--Total plans

SELECT COUNT(*) AS CountPlanRows

FROM sys.query_store_plan;

--Total unique query_plan_hash (different plans)

SELECT COUNT(DISTINCT query_plan_hash) AS CountDifferentPlanRows

FROM sys.query_store_plan;

If you see a difference in CountQueryRows and CountDifferentQueryRows or

CountPlanRows and CountDifferentPlansRows, that is an indication you have similar

queries running, and you would benefit from writing them in a parameterized way such

as in stored procedures if you can control the application code, so it can be compiled

once and stored in memory and stored efficiently in Query Store. If you cannot manage

the application code, you can have two other options. One is to use plan guides; a

template for a plan guide is in Listing 6-4.

Chapter 6 Query Store uSe CaSeS

146

Listing 6-4. Template for implementing a plan guide for PARAMETERIZATION

FORCED

DECLARE @stmt nvarchar(max);

DECLARE @params nvarchar(max);

EXEC sp_get_query_template

 N'<your query text goes here>',

 @stmt OUTPUT,

 @params OUTPUT;

EXEC sp_create_plan_guide

 N'TemplateGuide1',

 @stmt,

 N'TEMPLATE',

 NULL,

 @params,

 N'OPTION (PARAMETERIZATION FORCED)';

Alternately you can turn on PARAMETERIZATION FORCED at the database level using

Listing 6-5.

Listing 6-5. Turn on PARATERIZATION FORCED at database level

ALTER DATABASE <database name> SET PARAMETERIZATION FORCED;

If in Listing 6-3 the counts remained close to the same, then you will not want to turn

on PARAMETERIZATION FORCED. Instead, you will want to enable optimize for ad hoc

workloads and set the QUERY_CAPTURE_MODE to AUTO for Query Store instead of ALL. See

Listing 6-6 to set these options. This will keep the plans from bloating the plan cache

because the first time a query is executed it will only store a stub and store the plan on

the second execution for future reuse. The AUTO capture mode will let Query Store not

capture these queries that consumed insignificant amount of resources to limit the

amount that is stored.

Chapter 6 Query Store uSe CaSeS

147

Listing 6-6. Enable optimize for ad-hoc workloads and set capture mode to

AUTO for Query Store

EXEC sys.sp_configure N'show advanced options', N'1'

GO

RECONFIGURE WITH OVERRIDE

GO

EXEC sys.sp_configure N'optimize for ad hoc workloads', N'1'

GO

RECONFIGURE WITH OVERRIDE

GO

ALTER DATABASE [QueryStoreTest] SET QUERY_STORE CLEAR;

ALTER DATABASE [QueryStoreTest] SET QUERY_STORE = ON

 (OPERATION_MODE = READ_WRITE, QUERY_CAPTURE_MODE = AUTO);

 Conclusion
In this chapter, we explored several use cases for Query Store. We discussed how to

establish a baseline so you can discover how your system normally performs and see

what happens when you make changes. Then we discussed who to view what happened

last night or any previous point in time for a problem. Next we discussed what regressed

queries were and how to troubleshoot them and force plans. Then we discussed

identifying top consuming queries so you could look at improving them. Next we looked

at how you could use Query Store to stabilize the upgrade of SQL Server and why this

is an important feature to use for this. Finally, we discussed who to use Query Store to

improve your ad-hoc workloads.

Chapter 6 Query Store uSe CaSeS

149
© Tracy Boggiano and Grant Fritchey 2019
T. Boggiano and G. Fritchey, Query Store for SQL Server 2019, https://doi.org/10.1007/978-1-4842-5004-4_7

CHAPTER 7

Forcing Plans
While the information collected in the Query Store and all that it tells you about the

performance of your system is the part of Query Store that you’ll use more frequently,

the most powerful part of Query Store is the ability to force execution plans. Plan forcing

is where the choices made by the optimizer during a compile or recompile event are

superceded by a plan you select. Query Store provides enough information between the

performance metrics and the execution plan to enable you to decide that, under some

circumstances, you can pick a superior execution plan.

This chapter will show you how to use Query Store information and reports to

identify a poorly behaving execution plan. With a badly behaving plan identified, we’ll

explore how to use the information in Query Store to identify a well-behaved plan, if one

exists. With this information in hand, we can then force the good plan to be used.

 Identifying Badly Behaved Execution Plans
Execution plans, also called query plans or show plans, are your window into the choices

made by the query optimization process. They show how your T-SQL, indexes, statistics,

tables, columns, and constraints make up your database, and its queries will be used

to retrieve or modify the data stored there. Reading execution plans is a very dense

topic. For a detailed look, you should read the book Execution Plans by Grant Fritchey

(one of the co-authors of this book). Here we’ll explore the information and reports

that may suggest you have a poorly performing query. We’ll then use that to lead us to

an execution plan. We’ll cover a few of the guideposts that can help you tell that a plan

might not be supporting a query well, but we won’t be covering all the details of how to

read an execution plan.

To get started, we have to understand how we can use Query Store to identify a

query that has both changed its execution plan and how that plan caused performance

150

to degrade. Another way you can identify poorly performing queries is when you get

alerted to issues from the consumers of your database that performance is poor but with

the information in the Query Store, we can be more proactive than that.

 Identifying Regressed Queries
A regression is something that occurs when a query was behaving well and now

performs poorly. You may have a query that runs badly from the start. These are easily

identified and dealt with. You may have a query that slowly degrades in performance

over time as more and more data is added to the system. These are also easily identified

and dealt with. The real issues come when you have queries that were performing well

and suddenly, sometimes intermittently, run slowly. Prior to Query Store, these were

frequently difficult problems to solve.

The causes for these regressions are varied. You might see them when you migrate

from earlier versions of SQL Server to later versions of SQL Server. These are caused by

changes to how the query optimizer works and the introduction in SQL Server 2014 of

a new cardinality estimation engine. You may see a regression caused by statistics on

your database being incorrect or out of date. You could also be suffering from a problem

known as bad parameter sniffing.

While incorrect and out-of-date statistics are probably the most common cause of

regressions in query performance, the most talked about problem, and the one we’ll use

for our examples in this chapter, is bad parameter sniffing. Let’s start by explaining what

parameter sniffing is and how it can sometimes cause problems.

When you have a parameterized query, whether that’s a stored procedure, a

parameterized query from an ORM tool such as Entity Framework, or parameters in

sp_executesql, the query optimizer will use the values passed to that parameter when

compiling an execution plan. It takes those exact values and uses them to look at the

statistics for the column or index being referenced and creates and execution plan based

on those precise values. This sampling of values is what is known as parameter sniffing.

The majority of the time, this is a benign practice. A lot of the time, this is a very helpful

practice. Sometimes though, you’ll see a situation where a plan gets created for one

value that performs well enough for the query immediately called. However, all other

queries perform very poorly with that same execution plan. This situation is known as

bad parameter sniffing.

Chapter 7 ForCing plans

151

When you hit a situation where a query was performing well, but is suddenly

performing poorly, you can use the information in Query Store to identify both the query

metrics that define the performance and get a look at the execution plans both for when

the query was running well and when it was running badly. You can do this one of two

ways. You can run T-SQL code against the data collected in Query Store. Alternatively,

you can use the Regressed Query report. Since the Regressed Query report may not

always identify a query that is giving you problems as a regressed query, it’s a very good

idea to know how to retrieve this information from the Query Store data yourself.

 Identifying Regressed Queries from Query Store Data

We discussed the information collected by the Query Store in Chapter 2. We then went

over the basics of how to retrieve data from the Query Store catalog views in Chapter 5.

If you don’t get what we’re doing with the queries below, I’d recommend going back and

reviewing those chapters before proceeding with this one.

To start with, we need a query that we can reliably get different execution plans from.

The data distribution in the Person.Address table is such that depending on what value

is used to filter the City column, you can get a couple of different execution plans in the

AdventureWorks database. Here is the query we’ll use to explore behavior in the rest of

the chapter:

CREATE OR ALTER PROC [dbo].[AddressByCity] @City NVARCHAR(30)

AS

 SELECT a.AddressID,

 a.AddressLine1,

 a.AddressLine2,

 a.City,

 sp.Name AS StateProvinceName,

 a.PostalCode

 FROM Person.Address AS a

 JOIN Person.StateProvince AS sp

 ON a.StateProvinceID = sp.StateProvinceID

 WHERE a.City = @City;

GO

With this procedure in place, we can execute the query with one of two different

values to arrive at two different execution plans. If you run the following script with

Chapter 7 ForCing plans

152

execution plans enabled, you can see the two plans. Note: For test purposes we’re using

a simple way to clear the procedure cache. This may not be the best approach on a

production system:

EXEC dbo.AddressByCity @City = N'London';

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE;

EXEC dbo.AddressByCity @City = N'Mentor';

This is a classic case of parameter sniffing resulting in different execution plans. Each

plan is optimized for the result set it is returning; 434 rows for the value “London” and

one row for the value “Mentor.” However, each plan causes poor performance for the

opposite data set. What I mean here is that the plan to return 434 rows runs fast when

returning 434 rows, but it doesn’t run as fast as the other plan when returning only a few

rows. The opposite is also true. In fact, the query will run so much slower when using the

plan for “Mentor” when returning 434 rows that it will be marked as a regressed query in

the Regressed Query report.

 Regressed Query Report

We’re going to be covering the reports in detail in Chapter 4. However, here we want to

show how the behavior of the dbo.AddressByCity procedure returns in the report:

Figure 7-1. Regressed Query report showing poor performance

Chapter 7 ForCing plans

153

The first pane, on the left, is a listing of the queries based on the metric you’re

measuring (duration by default). The second pane in the report shows query execution

speed and the different plans involved. Clicking on one of the dots will change the

plan being displayed in the bottom pane. Hovering over the dot will show how many

executions it represents, average runtime, and more. Again, for more details on using the

reports, see Chapter 4.

You can’t simply run the code above and arrive at a regressed query. The Regressed

Query report compares behavior over time. So to get the report to generate, you have to

run the code multiple times over a period of time. To simulate this yourself, you can run

the following script. You may have to run it multiple times to get the query to show up as

a regressed query because it has to have the data inside the Query Store to get the report

to fire and it has to show a substantial difference over time. However, this script will work:

--Establish baseline behavior

EXEC dbo.AddressByCity @City = N'London';

GO 100

--Remove the plan from cache

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE;

--Compile a new plan

EXEC dbo.AddressByCity @City = N'Mentor';

GO

--Execute the code to show query regression

EXEC dbo.AddressByCity @City = N'London';

GO 100

You should be able to see the query in the Regressed Query report and it should

show two different execution plans the same as Figure 7-1.

 Warning Signs in Execution Plans
Regressed query behavior is driven by changes to the execution plans. There isn’t

room in this book to cover everything you need to know to read execution plans. For a

detailed examination on that topic, we recommend Grant Fritchey’s book, SQL Server

Execution Plans (Redgate Press, 2018). However, there a few warning signs we can look

for in execution plans as a quick set of guides. Just understand, these will only guide

Chapter 7 ForCing plans

154

you initially. You’ll have to eventually learn the details to read and understand the

information inside execution plans.

Here is a core set of things to look at when examining execution plans for the first time.

First Operator: A detailed collection of information about the

plan itself

Most Costly Operator: The highest estimated cost showing a

highly likely culprit for poor performance

Warnings and Errors: Issues experienced by the optimization

process, if any

Fat Pipes: An indication of data flow, with wider pipes showing

more data

Scans: An indicator of larger data movement

Extra Operators: Operators that you can’t explain readily why they

are there or what they are doing

Estimates vs. Actuals: The comparisons between the estimated number

of rows or executions for an operator and the actual number of either

Here’s what you are using these guides to look for. I’ll use the execution plan that

is causing us the most trouble, the one from the value of “Mentor” as shown here in

Figure 7-2:

We’ll now walk through the guideposts looking for information about this plan.

Figure 7-2. Execution plan for the value “Mentor”

Chapter 7 ForCing plans

155

 First Operator

The first operator is the one all the way on the left side of any plan. It will usually be

labeled by the type of operation your T-SQL is performing: SELECT, INSERT, UPDATE,

and DELETE. Right-click on that operator and select properties. You’ll see something like

Figure 7-3:

This is only a partial of all the properties and information exposed through the

first operator of an execution plan. When looking at plan regressions, chances are high

that you may be seeing problems caused by changes in data or statistics, or parameter

sniffing. In that case, the Parameter List property shows you the parameter or parameters

used to compile the execution plan. You can see in Figure 7-3 that this plan used the

value “Mentor.”

Figure 7-3. Partial list of first operator properties

Chapter 7 ForCing plans

156

 Most Costly Operator

The plan shown in Figure 7-2 is very simple and easy to read. You can quickly spot

that the Index Scan operator is 93% of the estimated cost. These costs are based on

calculations within the optimizer and are not reflective of actual behavior. However,

since the numbers that drive the costs are derived from your code, objects, and the

row counts in the statistics, it’s a value we use to examine execution plans. A high cost

operator may indicate where the problem lies.

 Warnings and Errors

These will show as a yellow caution sign or a red “X”. They can be indicators of problems

with the code that affect how the execution plan behaves. There are none in Figure 7-2.

 Fat Pipes

The arrows that connect the operators represent data flow. Big pipes reflect a lot of data

flow, whereas small pipes represent small data flow. Look for the fat pipes to understand

how data is being moved. You also have to look for transitions where more and more

data is created, or where data is moved from disk and then filtered later. These can be

strong indicators of problems.

 Scans

A scan indicates that the entire table or index was read in order to retrieve data. This

is not necessarily a problem; however, it indicates possible large amounts of I/O and

therefore is something to consider when evaluating an execution plan. Please note

that seeks, the opposite of scans, can also cause problems depending on the rest of the

plan. Index scans such as the one in Figure 7-2 should lead us to question the plan.

We have a data set that is filtering down to one row yet it’s scanning an entire clustered

index to do that.

 Extra Operators

This concept is a little harder to explain. If you’re looking at a plan and you can’t explain

what an operator is, or why a given operator is being used, that should draw your eye for

consideration. Let’s take a look at the plan for the value “London” in Figure 7-4:

Chapter 7 ForCing plans

157

In this plan we have an Index Scan, a Clustered Index Scan, a Merge Join, and a Sort.

When you consider the query in dbo.AddressByCity, you’ll note that there is no ORDER

BY command. Therefore, in this case, the Sort operator is a mystery, an extra operator.

Why do we have a Sort operation? The answer here is because the optimizer decided that

the Merge Join was faster for the larger data set. However, a Merge Join requires that all

data be ordered. So a Sort operator was added to satisfy the needs of the Merge Join.

 Estimated vs. Actual

You can only compare these values when you’re looking at an Actual plan, which looks

like the same thing as an Estimated plan but has additional runtime metrics. In short, to

capture an Actual plan, you have to execute the query. If we look at the execution plan

for the value of “Mentor” after executing the query with the value of “London,” we can

see this comparison in action as shown in Figure 7-5:

Figure 7-4. Execution plan for the value “London”

Chapter 7 ForCing plans

158

Here we’re seeing one of the estimated vs. actual comparisons, the number of rows

processed by each operator. You can see that the Nested Loops join processed 434 rows of

the 2 that it anticipated. In this case, the estimated number of rows was 2, but the actual

was 434. This wide disparity, 21,700%, can be an indicator for why performance is poor.

Even with these guides for looking at execution plans, you’re still going to need to

drill down into the properties in order to understand better how execution plans work.

However, the guideposts will get you started. In order to evaluate if a plan is better, it’s a

good idea to learn how to compare one plan to the other.

 Comparing Execution Plans
From the Regressed Query report (as well as other Query Store reports), you have the

ability to easily, and quickly, compare execution plans. Yes, you can look at the plans

graphically and compare them by clicking on the dots. However, there is a utility for

comparing execution plans that shows a lot more detail and functionality.

Figure 7-5. Estimated vs. Actual values compared

Chapter 7 ForCing plans

159

To access this functionality, you’ll need to shift-click on two of the execution plans

(you can only compare two plans at a time). Then click on the toolbar of the report as

shown in Figure 7-6:

When you click on this after selecting two plans, a new window will open looking like

Figure 7-7:

What you’re seeing in Figure 7-7 are two execution plans being compared in the two

panes, top and bottom, on the left. On the right are two sets of properties from a selected

operator. Those property values are also being compared. The shading (pink in my case)

around the operators in both plans is indicated operators, or even sets of operators, that

are common between two plans. So, in our plan, the scan of the index on the Person.

Address table is essentially the same in both plans. The other operators are different.

This information can be used to help troubleshoot performance either by showing you a

common problem needing a solution (in this case a scan of all the data in an index) or by

showing you the differences in the plan that are causing poor performance.

Figure 7-6. The toolbar for comparing two execution plans

Figure 7-7. Two execution plans being compared

Chapter 7 ForCing plans

160

Clicking on any operator on the left panes will change the property values on the

right side, allowing you to further explore the details and differences. Figure 7-8 is the

properties from the common Index Scan operator:

The property values that do not match have the yellow “does not equal” icon in

front of those values. You can see that overall, the estimated costs, row size, object

information, and the rest are all the same. It’s only the estimated number of rows,

node ID, and the estimated operator percentage costs that are different. In fact, the

percentage estimates are only different because all the other operators in the two

plans are different.

Comparing common operators, especially in this case, a scan, can give you

indications where the query performance may be improved by changes to the code or

Figure 7-8. Common operator in both execution plans

Chapter 7 ForCing plans

161

structure. However, the whole point of using plan forcing is to avoid having to modify the

code or structure. You mainly want to compare plans so that you’re sure the one you pick

to force is more likely to succeed.

When you are looking at operators that are not marked as common between the

two plans, in order to compare those operators, you would need to select each one

individually. As a general rule, this won’t tell you much about the plans because when

different operators are performing different functions between plans, comparing them is

of little use.

You combine the performance metrics, the wait statistics, and the information you

glean from the execution plans in question. Along with this information, you should also

take into account things like the importance of the query, the frequency at which it is

being called, and other factors that will help you decide that, in fact, one of these plans

will outperform the other for your most common needs.

Once you’ve decided which of the plans you want to force, you have several options

to force the plan.

 Forcing and Unforcing Execution Plans
When a plan regresses for whatever reason, the single best solution is to make changes,

whether that is to code, structure, or statistics. However, it’s just not always possible, or

desirable, to make those changes. In this case, we’re going to want to force a plan. There

are several things you should know about plan forcing before we get on to how it’s done.

Plan forcing overrides the work of the query optimizer. When you choose to force a

plan, that is the plan that will always be used until you unforce, or invalidate, that plan.

You can only force a plan that is valid for a given query. If you make changes to the code

or the structures, such as dropping an index or something along those lines, it invalidates

the plan, forcing is no longer possible.

The query optimizer will still generate a plan if one is not in the cache. However, in

the event that you have a forced plan, any other plan generated by the optimizer will

be discarded. You can sometimes see a situation where a forced plan looks different

than the original plan that you forced. Because the optimizer still goes through the

optimization process, if a plan that is morally equivalent (Microsoft’s term) is generated,

meaning a plan that for all intents and purposes is exactly the same, that morally

equivalent plan will be used. However, in most cases, you’ll see the exact plan that you

chose to force.

Chapter 7 ForCing plans

162

SQL Server has long had a function that is similar in behavior to plan forcing in

the Query Store, plan guides. These were a way to apply a query hint or even suggest

an entire execution plan for a query, like plan forcing. However, they are very difficult

to use and frequently fail. This is one of many reasons why plan forcing in Query Store

is so attractive. If you are using plan guides, plan forcing overrides the plan guides.

Although, you’ll still see evidence that guide was applied in both Extended Events and

the execution plan itself.

When you mark a plan as forced, that is stored within the Query Store catalog views.

This means that plan forcing will survive a restart, a detach, or even a failover in a

clustered environment. This is because the fact that a plan is forced has been persisted

to disk with the database. The only way to stop plan forcing is to invalidate the plan as

described earlier, or choose to stop forcing that plan.

Because data and statistics change over time, it’s a good idea to plan to review forced

plans on a regular basis. You want to be sure that the reasons for forcing a particular plan

still hold true as things change over time. It’s also a very good idea to be very judicious

about plan forcing and only do it when absolutely necessary in order to address

regression.

 Forcing Plans Through the Reports
Choosing to force a plan is never difficult. It’s especially easy inside the Query Store

reports. In the right-hand pane where you can see the performance of the queries

over time, you’ll see the execution plans for a query. There may be one, or there may

be several. In Figure 7-9 you can see that I have two. They are listed on the right of

Figure 7- 9 in the little box labeled “Plan ID”:

Chapter 7 ForCing plans

163

Once we decide which of the plans we wish to force, we just have to click on that

Plan ID value on the right, either 269 or 273 in Figure 7-9. With that selected, the toolbar

above has an icon for forcing plans as shown in Figure 7-10:

Clicking that button opens a confirmation window. You have the opportunity to

choose not to force the plan. Figure 7-11 shows the window:

Figure 7-9. Two execution plans in the Query Store report

Figure 7-10. Button in the report that lets you force plans

Figure 7-11. Confirming that you wish to force a plan

Chapter 7 ForCing plans

164

Clicking on the Yes button will immediately force the plan. Clicking on the No

button will of course cancel the process. After you click yes, the plan will be forced. In

my case, I’m choosing to force plan 273. When I do this, the report then marks that plan

with a check mark. You can see this immediately in the Query Store report as shown in

Figure 7-12:

You can see that a check mark as been placed on plan 273 and will remain there

until the plan forcing is removed. This is an immediate indication that the plan has been

forced. You’ll also see that the “Force Plan” button is marked as depressed when the plan

is forced and not depressed when the plan is not forced.

Another way to force the plan is immediately below the pane we’ve been looking at

in Figures 7-9 and 7-12. Another set of buttons are visible as shown in Figure 7-13:

This button works the same as before. Pick the plan you wish to force and select the

button. A confirmation window will open and you can acknowledge forcing the plan.

Figure 7-12. The plans after picking a plan to force

Figure 7-13. Plan forcing buttons in the Query Store report

Chapter 7 ForCing plans

165

Choosing to remove forcing, or unforcing a plan, is very simple. You have to use

the button shown in Figure 7-13. When you have a plan selected that has already been

forced, the “Unforce Plan” button will be enabled. You can then remove plan forcing for

that query. You’ll again be prompted to confirm that you are unforcing the plan.

 Forcing Plans Using T-SQL
You can also force a plan programmatically using T-SQL. The actual functionality of

plan forcing through T-SQL is extremely easy. The only trick is that you have to have two

pieces of information. You have to have the query_id within the Query Store and you

have to have the plan_id. As you can see above, you can retrieve these using the Query

Store reports. You can also use T-SQL against the Query Store catalog views as outlined

in Chapter 5. With T-SQL you can retrieve the query_id and plan_id. With those in hand,

forcing the plan is quite simple:

EXEC sys.sp_query_store_force_plan 262,273;

Since we’re now doing this programmatically, there is no confirmation necessary.

Assuming that both ID values are accurate and that the plan chosen is a valid plan, the

plan_id, in this case 273, is forced for the query_id, in this case 262. If either ID is invalid,

you’ll get an error.

Choosing to unforce the plan programmatically is not very difficult either:

EXEC sys.sp_query_store_unforce_plan 262,273;

Again, there is no confirmation needed when forcing and unforcing

programmatically through T-SQL.

 Determining Which Plans Have Been Forced
As you’ve seen in Figure 7-12, it’s very easy to see if a plan has been forced. There is even

a report that lists forced plans. We’ll go over that report in Chapter 4 in some detail. The

question should be, is there a way to programmatically tell that a plan has been forced.

The answer to this is, of course, yes. You just have to query the Query Store catalog views:

SELECT qsq.query_id,

 qsp.plan_id,

 qsp.is_forced_plan

Chapter 7 ForCing plans

166

FROM sys.query_store_query AS qsq

 JOIN sys.query_store_plan AS qsp

 ON qsp.query_id = qsq.query_id

WHERE qsq.query_id = 262;

The results of this query look like Figure 7-14:

You can quickly see that the plan_id 273 has been forced since it’s is_forced_plan

value is set to 1, while the other plan, 269, is not forced.

You can also see if a plan is forced by looking at some execution plans. You won’t see

it on plans where you just capture an estimated plan if the plan is not yet in cache. You

won’t see it on a plan from the Query Store itself. You will see this on pretty much any

other plan. What you’re looking for is a little obscure. We’ll need to go the properties of

the first operator and look for the “Use Plan” property value as shown in Figure 7-15:

This is only available as a property in the first operator. It’s not visible in the tooltip.

You’ll only see this on a plan that has been forced. You won’t even see the property on

any other plan, so there is no “Use Plan” that will resolve to False.

Figure 7-14. Showing which query plan is forced programmatically

Figure 7-15. The “Use Plan” property in the first operator

Chapter 7 ForCing plans

167

 Conclusion
Query regression is a real problem. The best way to solve it still remains modifying the

code, structure, or statistics to ensure a more appropriate plan is generated. However,

when you must, you do have the capability of forcing an execution plan. There are plenty

of ways to keep an eye on plan forcing, so you can adjust them as necessary when the

structure or code changes or other changes are made to the system that may affect plan

generation. As already mentioned, only use this functionality when you have to and have

a plan for a regular review of the queries that have forced plans.

Chapter 7 ForCing plans

169
© Tracy Boggiano and Grant Fritchey 2019
T. Boggiano and G. Fritchey, Query Store for SQL Server 2019, https://doi.org/10.1007/978-1-4842-5004-4_8

CHAPTER 8

Auto Plan Correction
and Wait Statistics
The information captured and stored within Query Store begins to open up new

functionality for Microsoft and you. First, for Microsoft, having the ability to identify a

query that has suffered from a regression (as we describe in Chapter 7) means that they

can monitor the system and, using the information in the Query Store, automate forcing

a plan to fix the regression. This is the Auto Plan Correction at work. Second, for us,

the addition of wait statistics within the Query Store information opens up additional

troubleshooting possibilities.

This chapter explores additional capabilities of Query Store including:

• The ability to automatically mark queries with regressions and the

new catalog views that support this

• The capacity for SQL Server to automatically force, or unforce, a plan

based on its performance regressing

• The 23 categories of wait statistics that have been added to the Query

Store information

 Automatic Plan Correction
The concepts of Automatic Plan Correction are completely built on Query Store.

Without the information collected by Query Store, the ability of SQL Server and

Azure SQL Database to determine that a plan has regressed would not be possible.

Remember that the core of plan regression is built around the idea that the query itself

has not changed. Changes in code cause changes in behavior all the time. It’s when

170

you don’t change the code or the structure of the database and performance degrades

anyway that you have a regression. Query Store makes identifying regressions easier.

With the regression identified, the basic approach of Automatic Plan Correction is

simple. The behavior for this query was better under the older plan. SQL Server can,

when Automatic Plan Correction is enabled, automatically force that older plan, the

last known good plan. Then, the behavior of the system is observed again for a time. If

forcing the last good plan didn’t work, then it can be automatically unforced. All this

occurs behind the scenes with no real input from the user, the developer, or the DBA.

This behavior makes the job of tuning SQL Server easier because instead of

attempting to fix simple issues that can be readily automated, you have time to address

more difficult subjects that require more knowledge and understanding. Simply picking

the last well-behaved plan and applying it is simple tuning, but it can solve a large

number of issues easily.

 Identifying Regression
We can start by understanding how SQL Server identifies a regressed query and

how it communicates why it thinks that query has regressed. Luckily, all this

functionality is summarized in a new dynamic management view: sys.dm_db_tuning_

recommendations.

However, before we can show off the behavior of the new DMV, it’s necessary to have

a query which will reliably supply behavior that can be identified as a regression. In

order to do that, we’ll have to make some modifications to the standard AdventureWorks

database. Adam Machanic has a script called BigAdventure that uses some of the

tables from AdventureWorks to create a much larger database. The code is available

to download here: http://dataeducation.com/thinking-big-adventure/. First run

Adam’s script to create the necessary structures. With that in place, we’ll run this script to

create a stored procedure and modify the database:

CREATE INDEX ix_ActualCost ON dbo.bigTransactionHistory (ActualCost);

GO

--a simple query for the experiment

CREATE OR ALTER PROCEDURE dbo.ProductByCost (@ActualCost MONEY)

AS

SELECT bth.ActualCost

Chapter 8 auto plan CorreCtion and Wait StatiStiCS

http://dataeducation.com/thinking-big-adventure/

171

FROM dbo.bigTransactionHistory AS bth

JOIN dbo.bigProduct AS p

ON p.ProductID = bth.ProductID

WHERE bth.ActualCost = @ActualCost;

GO

--ensuring that Query Store is on and has a clean data set

ALTER DATABASE AdventureWorks SET QUERY_STORE = ON;

ALTER DATABASE AdventureWorks SET QUERY_STORE CLEAR;

GO

All this is necessary to enable us to create a load with queries that will suffer from

a regression in a reliable fashion. With these preparations in place, in order to see the

regression occur, we’ll run the following script:

-- 1. Establish a history of query performance

EXEC dbo.ProductByCost @ActualCost = 8.2205;

GO 30

-- 2. Remove the plan from cache

DECLARE @PlanHandle VARBINARY(64);

SELECT @PlanHandle = deps.plan_handle

FROM sys.dm_exec_procedure_stats AS deps

WHERE deps.object_id = OBJECT_ID('dbo.ProductByCost');

IF @PlanHandle IS NOT NULL

 BEGIN

 DBCC FREEPROCCACHE(@PlanHandle);

 END

GO

-- 3. Execute a query that will result in a different plan

EXEC dbo.ProductByCost @ActualCost = 0.0;

GO

-- 4. Establish a new history of poor performance

EXEC dbo.ProductByCost @ActualCost = 8.2205;

GO 15

Chapter 8 auto plan CorreCtion and Wait StatiStiCS

172

That script does a number of things. I’ve placed markers in the comments in

the code so that we can refer back to each section of the code to understand what is

happening. First, at number 1, we have to establish behavior for the query. It takes a

number of executions to establish that a query is behaving a certain way, capturing

the data in Query Store. Next, at number 2, we remove the plan from the plan cache by

getting the plan_handle and using FREEPROCCACHE to remove just the one plan from

cache. This means that the next execution will have to compile a new plan. Without this

step, even if we executed the query with different values, the plan would remain the

same until it naturally aged out of cache. By forcibly removing it from cache, we

set up the next step. In step 3, we execute the query, but we use a different value which

has a very different data distribution in the statistics. This results in a change to the

execution plan. Finally, in step 4, we again establish a pattern of behavior with the new

execution plan.

Before I explain why the performance was so bad between the two versions

of the execution plan, let’s quickly see if this resulted in a regression by querying

sys.dm_db_tuning_recommendations like this:

SELECT ddtr.type,

 ddtr.reason,

 ddtr.last_refresh,

 ddtr.state,

 ddtr.score,

 ddtr.details

FROM sys.dm_db_tuning_recommendations AS ddtr;

The results should look like Figure 8-1:

Figure 8-1. Results in the tuning recommendations DMV

Chapter 8 auto plan CorreCtion and Wait StatiStiCS

173

The reason for this is easy enough to understand. If we were to look at the execution

plan generated the first time we executed the store procedure using the value 8.2205,

it looks like this:

There could be tuning opportunities with this query as you can see in the plan with

the Key Lookup operation. However, the plan works well enough for the data set being

retrieved. The estimated number of rows was 1 and the actual was 2, which is extremely

close, so the plan performs fairly well. After recompiling using the value 0.0, even when

executed using the value 8.2205, the plan looks like this:

Figure 8-2. Original execution plan for dbo.ProductByCost stored procedure

Chapter 8 auto plan CorreCtion and Wait StatiStiCS

174

The reason for this change is because the value 0.0 has 12,420,400 rows as shown

in the plan, not the two we were dealing with originally. This different plan degraded

performance seriously because we’re scanning a giant index to retrieve only two rows

rather than a simple seek. By executing the query multiple times, SQL Server was able to

identify a regression and added data to sys.dm_db_tuning_recommendations. Let’s take

a closer look at that information in Figure 8-4:

The first column tells us the type of tuning recommendation, in this case, FORCE_

LAST_GOOD_PLAN. Microsoft is likely to add further recommendations in the future.

The next column is the reason for the recommendation and reads as follows:

Average query CPU time changed from 0.16ms to 4909.41ms

As we explained above, changing the execution plan to scan the index instead of

seeking on it degraded performance. We executed the procedure enough times that

averages were established and it went from 0.16ms to 4909.41ms on average, a huge leap.

Figure 8-3. Execution plan with very poor performance

Figure 8-4. Suggested tuning recommendations

Chapter 8 auto plan CorreCtion and Wait StatiStiCS

175

The next column lets us know when the recommendation was last updated.

Because things change within the system, you can, and will, see changes made to

recommendations over time.

We also have the state column. This is JSON data showing us the current status of the

recommendation as follows:

{“currentValue”:“Active”, “reason”:“AutomaticTuningOptionNotEnabled”}

The recommendation is active, but it is not implemented. The reason for this is clear,

we have yet to enable Automatic Tuning. Finally, all the details of the information are

shown in another JSON column:

{“planForceDetails”:{“queryId”:2, “regressedPlanId”:2, “regressedPlanExecutionCount”:15,

“regressedPlanErrorCount”:0, “regressedPlanCpuTimeAverage”:4.909411600000000e+006,”

regressedPlanCpuTimeStddev":1.181213221539555e+007, “recommendedPlanId”: 1,

“recommendedPlanExecutionCount”:30, “recommendedPlanErrorCount”: 0,

“recommendedPlanCpuTimeAverage”:1.622333333333333e+002, “recommended

PlanCpuTimeStddev”:2.380063281138177e+002}, “implementationDetails”:

{“method”:“TSql”, “script”:“exec sp_query_store_force_plan @query_id = 2, @plan_id = 1”}}

That’s very difficult to read, so we’ll lay it out in a table to make it easier to see:

Table 8-1 list the columns in the JSON data in the details column above in the DMV.

Table 8-1. Details of the tuning recommendation from the JSON data

planForceDetails

queryid 2: query_id value from the Query Store

regressedplanid 2: the plan_id value from the Query Store of the problem plan

regressedplanexecutionCount 5: number of times the regressed plan was used

regressedplanerrorCount 0: When there is a value, errors during execution

regressedplanCputimeaverage 4.909411600000000e+006: average Cpu of the plan

regressedplanCputimeStddev 1.181213221539555e+006: Standard deviation of that value

recommendedplanid 1: the plan_id that the tuning recommendation is suggesting

recommendedplanexecutionCount 30: number of times the recommended plan was used

recommendedplanerrorCount 0: When there is a value, errors during execution

(continued)

Chapter 8 auto plan CorreCtion and Wait StatiStiCS

176

This data means that you don’t need to enable Automatic Tuning in order to see

what types of suggested changes are needed in your system. You can, if you want to,

query this information much more directly by using JSON queries as follows:

WITH DbTuneRec

AS (SELECT ddtr.reason,

 ddtr.score,

 pfd.query_id,

 pfd.regressedPlanId,

 pfd.recommendedPlanId,

 JSON_VALUE(ddtr.state,

 '$.currentValue') AS CurrentState,

 JSON_VALUE(ddtr.state,

 '$.reason') AS CurrentStateReason,

 JSON_VALUE(ddtr.details,

 '$.implementationDetails.script') AS

ImplementationScript

 FROM sys.dm_db_tuning_recommendations AS ddtr

 CROSS APPLY

 OPENJSON(ddtr.details,

 '$.planForceDetails')

 WITH (query_id INT '$.queryId',

 regressedPlanId INT '$.regressedPlanId',

 recommendedPlanId INT '$.recommendedPlanId') AS pfd)

planForceDetails

recommendedplanCputimeaverage 1.622333333333333e+002: average Cpu of the plan

recommendedplanCputimeStddev 2.380063281138177e+002: Standard deviation of that value

implementationDetails

Method tSql: Value will always be t-SQl until new types of

recommendations are created

script exec sp_query_store_force_plan @query_id = 2, @plan_id = 1

Table 8-1. (continued)

Chapter 8 auto plan CorreCtion and Wait StatiStiCS

177

SELECT qsq.query_id,

 dtr.reason,

 dtr.score,

 dtr.CurrentState,

 dtr.CurrentStateReason,

 qsqt.query_sql_text,

 CAST(rp.query_plan AS XML) AS RegressedPlan,

 CAST(sp.query_plan AS XML) AS SuggestedPlan,

 dtr.ImplementationScript

FROM DbTuneRec AS dtr

 JOIN sys.query_store_plan AS rp

 ON rp.query_id = dtr.query_id

 AND rp.plan_id = dtr.regressedPlanId

 JOIN sys.query_store_plan AS sp

 ON sp.query_id = dtr.query_id

 AND sp.plan_id = dtr.recommendedPlanId

 JOIN sys.query_store_query AS qsq

 ON qsq.query_id = rp.query_id

 JOIN sys.query_store_query_text AS qsqt

 ON qsqt.query_text_id = qsq.query_text_id;

These recommendations are just that, recommendations. While SQL Server is

very good at making these based on the behavior captured through Query Store,

until you enable Automatic Tuning, you can use these recommendations on your

systems manually if you want. One thing you need to know about sys.dm_db_tuning_

recommendations is that the information is not persisted. In a failover, reboot, or other

type of outage, this data will be reset. Any plans forced through Automatic Tuning will

remain forced. However, you’ll lose a history for why that plan was forced. You may want

to capture this information regularly into other locations just in case.

 Enabling Automatic Tuning
There are different ways to enable Automatic Tuning depending on if you’re working

within SQL Server 2019 or Azure SQL Database. If you’re working with SQL Server 2017

or greater, you can use T-SQL to enable it. If you’re working with Azure SQL Database,

you can use T-SQL or the Azure portal. The T-SQL for both is the same, as is all the other

Chapter 8 auto plan CorreCtion and Wait StatiStiCS

178

queries you would run to look at the information. We’ll start with Azure so you can see

what that looks like.

 Automatic Tuning in Azure SQL Database

Before we go on, please note that Azure is updated extremely frequently. The GUI that

you see after you get this book could be different than that shown here. The processes

should remain basically the same.

Connecting to a database within the portal and then scrolling to the bottom of the

page, you should see something like Figure 8-5:

If you have not yet enabled Automatic Tuning, as you can see, it will show as “Not

Configured” in the portal. You can click on this and it will open a new blade as shown in

Figure 8-6:

Figure 8-5. Automatic Tuning in the Azure portal, not currently configured

Chapter 8 auto plan CorreCtion and Wait StatiStiCS

179

Everything is explained fairly clearly on the blade. You can inherit from the server

that contains the database, from the Azure defaults, or change the setting to not

inheriting from anywhere. You can see a warning that while we’re inheriting currently

from the server, the server itself is not configured. We can make the change there, but for

our purposes, we’ll make the change right here. You can see at the bottom of the screen

that in addition to forcing a plan, you can also have Azure SQL Database create or drop

indexes. The index functionality is not directly related to Query Store, so we won’t cover

it here. To enable the forcing of the last known good plan, we just have to click ON as you

can see in Figure 8-7:

Figure 8-6. Settings for Automatic Tuning on a database in the Azure portal

Chapter 8 auto plan CorreCtion and Wait StatiStiCS

180

To complete this process, you will click the Apply button at the top of the page. It will

prompt you to be sure that’s the action you want. Once you click OK, Automatic Tuning

is enabled on your database. No other actions are required.

 Enable Automatic Tuning with T-SQL

There is no graphical interface for enabling automatic query tuning within Management

Studio as I type this. Instead, you have to use a T-SQL command. You can also use

this same command within Azure SQL Database or Azure Managed Instances. The

command is as follows:

ALTER DATABASE current SET AUTOMATIC_TUNING (FORCE_LAST_GOOD_PLAN = ON);

You can of course substitute the appropriate database name for the default value of

current that I use here. This command can only be run on one database at a time. If you

wish to enable automatic tuning for all databases on your instance, you either have to

enable it in the model database before those other databases are created, or you need to

set it to on for each database on the server.

The only option currently for automatic_tuning is to do as we have done and enable

the forcing of the last good plan. You can disable this by using the following command:

ALTER DATABASE current SET AUTOMATIC_TUNING (FORCE_LAST_GOOD_PLAN = OFF);

It’s that easy. No other actions are necessary and this doesn’t require a reboot or

changes to the server itself.

Figure 8-7. Enabling Automatic Tuning in Azure SQL Database

Chapter 8 auto plan CorreCtion and Wait StatiStiCS

181

 Automatic Tuning at Work
In order to see Automatic Tuning at work, after we enable it and Query Store, we just

have to rerun the script above. However, to ensure that the tests run successfully, we’re

going to clear Query Store and the cache so that everything is starting from scratch. This

is the updated script:

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE;

GO

ALTER DATABASE AdventureWorks SET QUERY_STORE CLEAR;

GO

EXEC dbo.ProductByCost @ActualCost = 8.2205;

GO 30

--remove the plan from cache

DECLARE @PlanHandle VARBINARY(64);

SELECT @PlanHandle = deps.plan_handle

FROM sys.dm_exec_procedure_stats AS deps

WHERE deps.object_id = OBJECT_ID('dbo.ProductByCost');

IF @PlanHandle IS NOT NULL

 BEGIN

 DBCC FREEPROCCACHE(@PlanHandle);

 END

GO

--execute a query that will result in a different plan

EXEC dbo.ProductByCost @ActualCost = 0.0;

GO

--establish a new history of poor performance

EXEC dbo.ProductByCost @ActualCost = 8.2205;

GO 15

After executing this script, we’ll want to go back and query sys.dm_db_tuning_

recommendations. Figure 8-8 shows how the data there has now changed:

Chapter 8 auto plan CorreCtion and Wait StatiStiCS

182

The CurrentState value has been changed to Verifying. It will measure performance

over a number of executions, much as it did before. If the performance degrades, it will

unforce the plan. Further, if there are errors such as time outs or aborted executions, the

plan will also be unforced. You’ll also see the error_prone column in sys.dm_db_tuning_

recommendations changed to a value of “Yes” in this event.

If you restart the server, the information in sys.dm_db_tuning_recommendations

will be removed. Also, any plans that have been forced will also be removed. As soon as

a query regresses again, any plan forcing will be automatically re-enabled. If this is an

issue, you can always force the plan manually.

If a query is forced and then performance degrades, it will be unforced, as already

noted. If that query again suffers from degraded performance, plan forcing will be

removed and the query will be marked such that, at least until a server reboot when the

information is removed, it will not be forced again.

 Query Store Wait Statistics
The information we’ve talked about throughout the book that Query Store captures for

query performance behavior changes the way lots of people do monitoring and query

tuning. The addition of wait statistics for a given query adds to those changes. Now, you

can get the wait statistics for a query easily. This information is aggregated using the

time interval that you’re aggregating your queries with, 60 minutes by default. Further,

because there are so many waits, rather than list them all individually, the wait statistics

in Query Store are grouped into categories of waits. If you need individual, detailed, wait

statistics on a query, you’ll need to use other mechanisms to capture the data.

 Wait Statistics Categories
There’s not much to say about the categories. You need to know how the categories are

broken down in order to understand what waits they represent. Other than that, there’s

no additional functionality associated with them. This is purely informational so that you

can correctly interpret the information when you look at the wait statistics in Query Store.

Figure 8-8. The regression has been fixed by Automatic Tuning

Chapter 8 auto plan CorreCtion and Wait StatiStiCS

183

Table 8-2 shows the categories and the associated waits as published by Microsoft.

Following their convention, percent signs (%) represent wild cards.

Table 8-2. Query Store wait statistics categories and waits

Integer value Wait category Wait types include in the category

0 unknown unknown

1 Cpu SoS_SCheduler_Yield

2 Worker thread threadpool

3 lock lCK_M_%

4 latch latCh_%

5 Buffer latch paGelatCh_%

6 Buffer i/o paGeiolatCh_%

7 Compilation* reSourCe_SeMaphore_QuerY_CoMpile

8 SQl Clr Clr%, SQlClr%

9 Mirroring dBMirror%

10 transaction XaCt%, dtC%, tran_MarKlatCh_%, MSQl_XaCt_%,

tranSaCtion_MuteX

11 idle Sleep_%, laZYWriter_Sleep, SQltraCe_BuFFer_

FluSh, SQltraCe_inCreMental_FluSh_Sleep,

SQltraCe_Wait_entrieS, Ft_iFtS_SCheduler_idle_

Wait, Xe_diSpatCher_Wait, reQueSt_For_deadloCK_

SearCh, loGMGr_Queue, ondeMand_taSK_Queue,

CheCKpoint_Queue, Xe_tiMer_eVent

12 preemptive preeMptiVe_%

13 Service broker BroKer_% (but not BroKer_reCeiVe_WaitFor)

14 tran log i/o loGMGr, loGBuFFer, loGMGr_reSerVe_append,

loGMGr_FluSh, loGMGr_pMM_loG, ChKpt, WriteloG

15 network i/o aSYnC_netWorK_io, net_WaitFor_paCKet, proXY_

netWorK_io, eXternal_SCript_netWorK_ioF

(continued)

Chapter 8 auto plan CorreCtion and Wait StatiStiCS

184

Integer value Wait category Wait types include in the category

16 parallelism CXpaCKet, eXChanGe

17 Memory reSourCe_SeMaphore, CMeMthread,

CMeMpartitioned, ee_pMoloCK, MeMorY_

alloCation_eXt, reSerVed_MeMorY_alloCation_eXt,

MeMorY_Grant_update

18 user wait WaitFor, Wait_For_reSultS, BroKer_reCeiVe_

WaitFor

19 tracing traCeWrite, SQltraCe_loCK, SQltraCe_File_BuFFer,

SQltraCe_File_Write_io_CoMpletion, SQltraCe_

File_read_io_CoMpletion, SQltraCe_pendinG_

BuFFer_WriterS, SQltraCe_ShutdoWn, QuerY_

traCeout, traCe_eVtnotiFF

20 Full text search Ft_reStart_CraWl, FullteXt Gatherer, MSSearCh,

Ft_Metadata_MuteX, Ft_iFtShC_MuteX, Ft_iFtSiSM_

MuteX, Ft_iFtS_rWloCK, Ft_CoMproWSet_rWloCK,

Ft_MaSter_MerGe, Ft_propertYliSt_CaChe,

Ft_MaSter_MerGe_Coordinator, pWait_reSourCe_

SeMaphore_Ft_parallel_QuerY_SYnC

21 other disk i/o aSYnC_io_CoMpletion, io_CoMpletion, BaCKupio,

Write_CoMpletion, io_Queue_liMit, io_retrY

22 replication Se_repl_%, repl_%, hadr_% (but not hadr_

throttle_loG_rate_GoVernor), pWait_hadr_%,

repliCa_WriteS, FCB_repliCa_Write, FCB_repliCa_

read, pWait_hadrSiM

23 log rate governor loG_rate_GoVernor, pool_loG_rate_GoVernor,

hadr_throttle_loG_rate_GoVernor, inStanCe_

loG_rate_GoVernor

Table 8-2. (continued)

Chapter 8 auto plan CorreCtion and Wait StatiStiCS

185

 Looking at Query Store Wait Statistics
There are two ways you can look at the wait statistics for a query within the Query Store.

You can use T-SQL to query the information, or, there is a report within SQL Server

Management Studio 18. We’ll start by querying the wait statistics.

 Querying Wait Statistics
Querying the wait statistics in Query Store is very straightforward. The most important

thing to remember is that the statistics are aggregated through the time interval. While

you can leave this off when you query the statistics, doing so then requires you to

aggregate the aggregates in order to arrive at meaningful data. Here’s an example query

that looks at the wait statistics for the stored procedure we used earlier in the chapter:

SELECT qsws.wait_category_desc,

 qsws.total_query_wait_time_ms,

 qsws.avg_query_wait_time_ms,

 qsws.stdev_query_wait_time_ms

FROM sys.query_store_query AS qsq

 JOIN sys.query_store_plan AS qsp

 ON qsp.query_id = qsq.query_id

 JOIN sys.query_store_wait_stats AS qsws

 ON qsws.plan_id = qsp.plan_id

 JOIN sys.query_store_runtime_stats_interval AS qsrsi

 ON qsrsi.runtime_stats_interval_id = qsws.runtime_stats_interval_id

WHERE qsq.object_id = OBJECT_ID('dbo.ProductByCost');

You can see the results in Figure 8-9:

You can see that there are two different time intervals with different wait statistics.

The only waits experienced by the query were in the CPU and Network I/O categories.

Using the table from the section above, that means that the waits experienced could be

any of these in Table 8-3:

Figure 8-9. Wait statistics for dbo.ProductbyCost

Chapter 8 auto plan CorreCtion and Wait StatiStiCS

186

Clearly, this makes for a quick and easy way to understand the bottleneck experience

by a query. However, that will be a general set of knowledge, not detailed. Still, it makes a

huge difference in our ability to easily identify problems that need our attention.

 Wait Statistics Report

Chapter 4 is going to cover the Query Store reports in detail. Here I’ll just show the

general behavior of the report itself. Upon opening the report, you’ll see something

similar to Figure 8-10:

Table 8-3. The waits experienced by dbo.ProductByCost

network io aSYnC_netWorK_io, net_WaitFor_paCKet, proXY_netWorK_io,

eXternal_SCript_netWorK_ioF

Cpu SoS_SCheduler_Yield

Figure 8-10. Wait statistics report showing aggregate information

Chapter 8 auto plan CorreCtion and Wait StatiStiCS

187

When you first open the report, only aggregate information for the time period is

shown. You’re seeing all the queries and the various waits with a given category. If you

then click on a category, such as the CPU wait that you see, the view will change to

something like Figure 8-11:

What is now shown in the report is a series of queries in the upper left that have

experienced the wait that was selected. Then, the report functions much as other reports

do. Selecting a query shows its various query plans over time on the right. Selecting

any of those plans will cause the full plan to be shown in the pane at the bottom of

the screen. In our instance you can see that the query with the most waits was dbo.

ProductByCost. Specifically, it was the bad plan from our original example at the start of

the chapter.

All this provides a way to understand not simply query performance, but the waits

affecting the query as well.

Figure 8-11. Report showing all queries that have experienced the wait selected

Chapter 8 auto plan CorreCtion and Wait StatiStiCS

188

 Conclusion
Query Store enables a bunch of interesting scenarios and Automatic Tuning to eliminate

plan regression is one of the more exciting. As with all else, you should monitor your

systems to ensure that this behavior is benefiting you. However, most systems will

likely benefit, thus freeing you up to do other work. That work may entail using the wait

statistics that are now stored with queries to better identify the ones that need to be

tuned. All this Query Store functionality is changing the way we do database monitoring

and database tuning.

Chapter 8 auto plan CorreCtion and Wait StatiStiCS

189
© Tracy Boggiano and Grant Fritchey 2019
T. Boggiano and G. Fritchey, Query Store for SQL Server 2019, https://doi.org/10.1007/978-1-4842-5004-4_9

CHAPTER 9

Troubleshooting Issues
with Query Store
Like any other aspect of SQL Server, most of the time, you can simply turn Query Store

on and then not worry about it. However, like any other aspect of SQL Server, things can

go wrong. There are two tools that you can use to understand what is happening with

Query Store on your database:

• Query Store specific wait statistics

• Extended Events for Query Store

This chapter will look at some common problems that can arise with Query Store

and how you can use the tools provided in order to ensure that Query Store is working

well on your systems.

 Query Store Waits
By design, as we described in the first couple of chapters, Query Store is designed to

be as unobtrusive as possible. In physics, the observer effect says that observation of

a process or object can affect the behavior of that process or object. Similarly in SQL

Server, however lightweight the data collection, the act of collecting information is

adding some additional load to your SQL Server instance. The number of possible

factors that can lead to issues with the Query Store is huge. It is the same list as any other

process within SQL Server: the amount of memory and CPU you have available; the

number, size, and volume of the transactions in your system; the number and speed of

your disks and disk controllers, and, frankly, the code running in your T-SQL statements.

Any or all of these and more can change the behavior of Query Store.

190

The first way we can understand Query Store behavior is to use the wait

statistics. Generally speaking, wait statistics are always the best way to gain a general

understanding of the behavior of any given system. If you know what the system is

waiting on, you know where your bottlenecks are. There are two ways to look at waits in

the Query Store, through the traditional dynamic management view, sy.dm_os_wait_

stats, or, on Azure SQL Database, sys.dm_db_wait_stats. You can also use Extended

Events wait_completed to see waits, but that’s a very granular approach and won’t

generally be needed. We’ll focus only on the DMV.

When talking about querying the wait statistics within SQL Server, I recommend

you start with Paul Randal’s scripts. The import of these scripts is that they eliminate the

noise, the wait statistics that never mean anything. You can access those scripts here:

https://bit.ly/2wsQHQE.

Query Store wait statistics have a common naming convention. They always start

with “qds_”. To see just the wait statistics coming from Query Store, you would run this

query in Listing 9-1:

Listing 9-1. Wait Statistics coming from Query Store

SELECT dows.wait_type,

 dows.waiting_tasks_count,

 dows.wait_time_ms,

 dows.max_wait_time_ms,

 dows.signal_wait_time_ms

FROM sys.dm_os_wait_stats AS dows

WHERE dows.wait_type LIKE 'qds_%';

The results would look something like Figure 9-1:

Chapter 9 troubleshooting issues with Query store

https://bit.ly/2wsQHQE

191

Of course, your system will have different values in each of the columns, but you

should see a similar list of waits. You would not normally look at the Query Store wait

statistics in isolation. Instead, you would query the wait statistics and look for the top

ones on your system. When those top waits are Query Store, you’re likely experiencing

some sort of issue.

However, there are just a few Query Store waits that you can safely ignore.

Paul Randal also maintains a library of wait statistics (accessible here: https://bit.

ly/2ePzYO2). Based on his documentation, there are three waits, currently, that you can

safely ignore when it comes to Query Store:

qds_async_queue

qds_cleanup_stale_queries_task_main_loop_sleep

qds_shutdown_queue

You would not simply query for the Query Store waits. Instead, as part of your normal

monitoring of wait statistics on your system, you would look for the waits above because

they would indicate Query Store itself, its operations, is leading to issues on your system.

If you see any of the “qds_∗” waits in your top 10, you would want to understand what

that wait statistics is and then drill down on why it’s causing problems for you in your

system. The way we drill down when monitoring Query Store is to use Extended Events.

Figure 9-1. All the Query Store wait statistics

Chapter 9 troubleshooting issues with Query store

https://bit.ly/2ePzYO2
https://bit.ly/2ePzYO2

192

 Extended Events and Query Store
Extended Events are the best method to do a detailed analysis of the behavior of Query

Store in your systems. Extended Events are a fairly dense topic that we’re not going to try

to explain in detail in this book. To get started with Extended Events, I suggest first the

Microsoft documentation here: https://bit.ly/2LfWMoj. Once you’re comfortable with

how Extended Events works, you can more easily explore the capabilities of monitoring

Query Store using Extended Events.

At this writing, there are currently 92 events within the qds, Query Data Store,

package defined within SQL Server 2019. You can easily list them if you want to run a

query as follows in Listing 9-2:

Listing 9-2. List Query Data Store Extended Events

SELECT dxo.name,

 dxo.description

FROM sys.dm_xe_packages AS dxp

 JOIN sys.dm_xe_objects AS dxo

 ON dxp.guid = dxo.package_guid

WHERE dxp.name = 'qds'

AND dxo.object_type = 'event';

Another way to access the information is through the Extended Events GUI within

SQL Server Management Studio as shown in Figure 9-2:

Chapter 9 troubleshooting issues with Query store

https://bit.ly/2LfWMoj

193

The only issue here is that not all these events are active. Many of them, maybe even

most of them, are only accessible through special flags set by Microsoft. So, while you

can see them, even add them to a session, no activity will ever be recorded by them.

As is normal with every other event in Extended Events, the Query Store events will

have a name, a description, and a defined set of columns associated with the event. So,

if we were to monitor the behavior of Query Store using Extended Events, one event

we might be interested in is the query_store_size_retention_cleanup_finished event.

Selecting that event, we can then see the information that Query Store itself is gathering

as you can see in Figure 9-3:

Figure 9-2. Selecting only the Query Store events in Extended Events

Chapter 9 troubleshooting issues with Query store

194

The information in this event represents the data that the Query Store is capturing

after a query completes its cleanup process. So, with this event, you could observe and

monitor that part of the behavior of the Query Store. We’re going to look at a couple of

different ways you can monitor Query Store behavior and some very particular events

that aid in that regard.

 Tracking Query Store Behaviors
A number of processes that make up the Query Store can be observed by capturing

Extended Events. We’ve already see an event that fires when Query Store is cleansing

itself for size. You can also watch a matching event, query_store_size_retention_cleanup_

started to see when this event begins. For general observation of Query Store behavior,

Listing 9-3 contains a set of events that, as of this writing, I know will fire to produce

information about the standard behavior of Query Store:

Listing 9-3. Extended Event Session producing information on the standard

behavior of Query Store

CREATE EVENT SESSION QueryStoreBehavior

ON SERVER

 ADD EVENT qds.query_store_background_task_persist_finished,

 ADD EVENT qds.query_store_background_task_persist_started,

 ADD EVENT qds.query_store_capture_policy_evaluate,

 ADD EVENT qds.query_store_capture_policy_start_capture,

 ADD EVENT qds.query_store_database_out_of_disk_space,

 ADD EVENT qds.query_store_db_cleared,

 ADD EVENT qds.query_store_db_diagnostics,

 ADD EVENT qds.query_store_db_settings_changed,

Figure 9-3. The information captured by query_store_execution_runtime_info

Chapter 9 troubleshooting issues with Query store

195

 ADD EVENT qds.query_store_plan_removal,

 ADD EVENT qds.query_store_size_retention_cleanup_finished,

 ADD EVENT qds.query_store_size_retention_cleanup_started

 ADD TARGET package0.event_file

 (SET filename = N'C:\ExEvents\QueryStorePlanForcing.xel', max_rollover_

files = (3))

WITH (TRACK_CAUSALITY = ON);

These events capture some of the behaviors of the Query Store. If you create this

session, start it, and watch the Live Data window in SSMS, we can actually see some of the

events fire if we manipulate queries and the Query Store itself. Let’s fire a few commands to

see this in action. To start with, we’ll clear the Query Store with the code in Listing 9-4:

Listing 9-4. Clear Query Store

ALTER DATABASE AdventureWorks SET QUERY_STORE CLEAR;

This will fire the event, query_store_db_cleared, as we see in Figure 9-4:

The first four columns are for managing the Extended Events causality tracking,

showing the distinct grouping of events and the order in which they occur. We can

ignore that in this instance. What we see are the clear_all setting, which is defined in the

QUERY_STORE CLEAR command, which can be set to clear ALL.

To see the next event, we’ll run the following stored procedure in Listing 9-5 from the

previous chapter:

Figure 9-4. query_store_db_cleared event captured for a given database

Chapter 9 troubleshooting issues with Query store

196

Listing 9-5. Call stored procedure

EXEC dbo.AddressByCity @City = N'London';

We’ll get the following two events, related and in the order in which they are firing as

shown in Figure 9-5:

I’m showing the details of the query_store_capture_policy_evaluate event. You can

see that the capture_policy_result is showing the result of the evaluation, in this case,

CAPTURE. You’ll also frequently see UNDECIDED for queries that have been evaluated

but are not going to be captured.

You may see an intermittent event showing how Query Store self-evaluates on a

regular basis as shown in Figure 9-6:

Figure 9-5. Query Store evaluates a query and then captures it

Chapter 9 troubleshooting issues with Query store

197

You can see the current settings for Query Store, such as the plans per query limit,

currently set at 200. You also get to see the plans and plan use being managed by Query

Store. These numbers will obviously change over time, showing the behavior of Query

Store over time.

Figure 9-6. Settings and diagnostics of Query Store

Chapter 9 troubleshooting issues with Query store

198

Let’s take a look at one more of the events in action. Run the following code in

Listing 9-6 to remove a plan from the plan cache:

Listing 9-6. Remove a plan from cache

DECLARE @PlanID INT;

SELECT TOP 1

 @PlanID = qsp.plan_id

FROM sys.query_store_query AS qsq

JOIN sys.query_store_plan AS qsp

 ON qsp.query_id = qsq.query_id

WHERE qsq.object_id = OBJECT_ID('dbo.AddressByCity');

EXEC sys.sp_query_store_remove_plan @plan_id = @PlanID;

We can then see this event as shown in Figure 9-7:

You can see the database, the fact that plan was successfully removed, and the plan

being removed.

All these events give you a good idea of what’s happening within Query Store,

allowing you to see how Query Store behaves.

Figure 9-7. Plan removed from Query Store

Chapter 9 troubleshooting issues with Query store

199

 Conclusion
While you really should just see normal behavior from Query Store the vast majority of

the time, it is possible for things to go wrong. Knowing how to monitor Query Store itself

ensures that you have a higher degree of confidence that Query Store is supporting and

helping you, not hurting you. Wait statistics are going to be the principal mechanism of

assuring good Query Store behavior. You can drill down on the details of that behavior

using Extended Events to see exactly how the system is working. These processes should

enable you to protect your systems and better understand the behavior of Query Store.

Chapter 9 troubleshooting issues with Query store

201
© Tracy Boggiano and Grant Fritchey 2019
T. Boggiano and G. Fritchey, Query Store for SQL Server 2019, https://doi.org/10.1007/978-1-4842-5004-4_10

CHAPTER 10

Community Tools
A few community tools have been developed to help with configuration and harvesting

of the data in Query Store. dbatools is a community-driven PowerShell module that

includes three cmdlets for helping you configure Query Store. The First Responder Kit

contains a set of stored procedures including one that queries Query Store data. In this

chapter we will cover these tools to how they can help see the options of Query Store, set

the options of Query Store, and harvest the data in Query Store.

 dbatools
dbatools is a PowerShell open source module developed with currently over 400

commands to help manage SQL Server. There currently are three commands for

Query Store: Get-DbaDbQueryStoreOption, Set-DbaDbQueryStoreOption, and

Copy- DbaQueryStoreConfig. By using dbatools, you can retrieve and set the settings

across multiple databases and servers at the same time. Full documentation and

information on dbatools can be found at http://dbatools.io and installed on

any machine with PowerShell 5 or higher by running the code in Listing 10-1 at a

PowerShell command prompt.

Listing 10-1. Install dbatools

Install-Module dbatools

 Get-DbaDbQueryStoreOption
The first command from dbatools we will explore is Get-DbaDbQueryStoreOption. This

command retrieves the Query Store options that have been set on a database. There

are several ways to run the command to return the data. Listing 10-2 will return the

Query Store options for all databases on the server specified except master and tempdb

http://dbatools.io

202

because you cannot use Query Store with those databases. The results of the code from

Listing 10-2 can be seen in Figure 10-1.

Listing 10-2. Return all the Query Store options for all the databases on the

specified server

Get-DbaDbQueryStoreOption -SqlInstance MyServer

Figure 10-1. The output from Get-DbaDbQueryStoreOption for the whole SQL
Server instance

Chapter 10 Community tools

203

To see the settings for a particular database, you can run the code in Listing 10-3. The

results are show in Figure 10-2.

Listing 10-3. Return all the Query Store options for the AdventureWorks database

Get-DbaDbQueryStoreOption -SqlInstance MyServer

 -Database AdventureWorks

The results if you have several databases on one server can be hard to read and

require a lot of scrolling, but there is an option to get this data back in a table format. See

the code in Listing 10-4 for how to accomplish this. Part of the results from the code in

Listing 10-4 can be seen in Figure 10-3.

Listing 10-4. Return Query Store settings in table format

Get-DbaDbQueryStoreOption -SqlInstance MyServer | Format-Table

 -AutoSize -Wrap

Figure 10-2. The output from Get-DbaDbQueryStoreOption for the
AdventureWorks database

Figure 10-3. The output from Get-DbaDbQueryStoreOption in table format

Chapter 10 Community tools

204

Lastly, you can use the Get-DbaDbQueryStoreOption command to return all the

databases with a particular configuration setting. In the following example, we will

return all the databases that have the ActualState of Query Store as ReadWrite as seen in

Listing 10-5. The results of the code in Listing 10-5 can be seen in Figure 10-4.

Listing 10-5. Return database where Query Store ActualState is ReadWrite

Get-DbaDbQueryStoreOption -SqlInstance MyServer | Where-Object

 {$_.ActualState -eq "ReadWrite"}

More parameters can be found for this command online at the dbatools website

(https://dbatools.io).

 Set-DbaDbQueryStoreOption
The second command from dbatools we will explore is Set-DbaDbQueryStoreOptions.

This command sets the Query Store options that exists in the databases you specify.

You can use the command to set just one setting or them all depending on your needs.

We will, in Listing 10-6, set the Query Store options for the best practices laid out in

Chapter 3 for all the databases on the SQL Server instance. The only exceptions to this

configuration, if you remember from Chapter 3, would be if you needed a larger Query

Store or if you wanted a different collection interval.

Figure 10-4. The output from Get-DbaDbQueryStoreOption for ReadWrite Query
Store databases

Chapter 10 Community tools

https://dbatools.io

205

Listing 10-6. Use Set-DbaDbQueryStoreOption to set options on all the

databases to best practices

Set-DbaDbQueryStoreOption -SqlInstance MyServer -State ReadWrite

 -FlushInterval 900 -CollectionInterval 60 -MaxSize 2048

 -CaptureMode AUTO -CleanupMode Auto -StaleQueryThreshold 30

After issuing the command from Listing 10-6, the command outputs the new settings

for each database as you have seen before from the Get-DbaDbQueryStoreOption

command. These can be seen in Figure 10-5.

It is possible, for example, to change the size of the particular database and the

statistics collection interval if you need to, by using the code in Listing 10-6. This code

allows you to keep more data at a more granular level. The output from the code in

Listing 10-7 can be seen in Figure 10-6.

Figure 10-5. Output from Set-DbaDbQueryStoreOption for best practices

Chapter 10 Community tools

206

Listing 10-7. Use Set-DbaDbQueryStoreOption to change the size and collection

interval for AdventureWorks

Set-DbaDbQueryStoreOption -SqlInstance MyServer

 -Database AdventureWorks -MaxSize 4096

 -CollectionInterval 15

More parameters can be found for this command online at the dbatools website

(https://dbatools.io).

 Copy-DbaQueryStoreConfig
The last command we will explore is Copy-DbaQueryStoreConfig. This command

can copy the Query Store options between databases on the same server or the

settings from one database on one server to databases on another server, with the

parameter -AllDatabases. Listing 10-8 will copy the options from MyServerA and the

AdventureWorks database to all the databases on MyServerB.

Figure 10-6. Output from Set-DbaDbQueryStoreOption changing max size and
collection interval

Chapter 10 Community tools

https://dbatools.io

207

Listing 10-8. Copy Query Store options from one database to all the databases

on another server

Copy-DbaDbQueryStoreOption -Source MyServerA

 -SourceDatabase AdventureWorks -Destination MyServerB

 -AllDatabases

You may also copy the options to one database server on the destination database

server using the code in Listing 10-9.

Listing 10-9. Copy Query Store options from one database to another database

on another server

Copy-DbaDbQueryStoreOption -Source MyServerA

 -SourceDatabase AdventureWorks -Destination MyServerB

 -DestinationDatabase AdventuresWorksDW

 dbatools Summary
In summary, we covered the three cmdlets in dbatools that help you see

the configuration of Query Store and configure Query Store. The Get-

DbaDbQueryStoreOption cmdlet allows you to view the options set for Query Store. The

Set-DbaDbQueryStoreOptions cmdlet allows you to set the options for Query Store.

The Copy-DbaQueryStoreConfig cmdlet allows you to copy configurations between

databases and servers.

 sp_BlitzQueryStore
sp_BlitzQueryStore is part of the First Responder Kit made by Brent Ozar, ULTD., located

at http://FirstResponderKit.org. The whole kit can be downloaded from there, or you

can install it using the code in Listing 10-10 if you have dbatools installed.

Listing 10-10. PowerShell to install First Responder Kit

Install-DbaFirstResponderKit -Server MyServer -Database master

Chapter 10 Community tools

http://firstresponderkit.org

208

The procedure by default looks at the data in Query Store for the last 7 days (by

default), finds the times that consumed the most resources for each metric, and finds

the top three queries (by default) that consumed the most resources for each metric.

By analyzing by each time period and each metric, you can get a more balanced and

targeted analysis of data from Query Store. For example, it will find the time period in the

last 7 days where you did the most logical reads and return the top three queries doing

the reads during that time period. Then you can dive in and try to figure out how to

improve the performance for those queries during that time period

By default, you can execute the procedure with just the database you want to see

data for, and it will return the top query for each metric for the last 7 days. Listing 10-11

shows you the T-SQL to execute to see the results. Figures 10-7 and 10-8 show some of

the columns that are returned when you run the stored procedure.

Listing 10-11. Execute sp_BlitzQueryStore for the top query for each metric the

last 7 days

EXEC sp_BlitzQueryStore @DatabaseName = 'AdventureWorks'

Figure 10-7. sp_BlitzQueryStore result set

Figure 10-8. sp_BlitzQueryStore result set

Chapter 10 Community tools

209

You can click on the query_plan_xml column and bring up the query plan to view

and troubleshoot. Some analysis has been done for you by giving you the top_three_

waits, missing_indexes, and implicit_conversion_info. Other columns that returned

are as follows:

• top_three_waits – with total ms in parentheses

• missing_indexes – listed from the missing index hints in the query

plans

• implicit_conversion_info – listed from the query plan

• cached_execution_parameters

• count_executions

• count_compiles

• total_cpu_time

• avg_cpu_time

• total_duration

• avg_duration

• total_logical_io_reads

• avg_logical_io_reads

• total_physical_io_reads

• avg_physical_io_reads

• total_logical_io_writes

• avg_logical_io_writes

• total_rowcount

• avg_rowcount

• total_query_max_used_memory

• avg_query_max_used_memory

• total_tempdb_space_used

• avg_tempdb_space_used

Chapter 10 Community tools

210

• total_log_bytes_used

• avg_log_bytes_used

• total_num_physical_io_reads

• avg_num_physical_io_reads

• first_execution_time

• last_execution_time

• last_force_failure_reason_desc

• context_settings

You can see below the results returned that there is a detailed analysis of queries

that were executed during that time period including if it finds problems with

your execution plans, high tempdb usage, long-running queries but low CPU, and

then it wraps up by identifying the worst times by each metric that the system was

performing in. See Figure 10-9 for example of this output. This gives you the ability to

drill down on specific poorly performing times or queries that are troublesome within

the specified time period.

Note use the @top parameter to return more than the top one query. But use
it cautiously as this procedure does a lot processing through the query plans.
recommendations are to limit to 10.

Chapter 10 Community tools

211

There are other options for running this procedure; we will go through a few

important ones to help you to get the data you need. In Listing 10-12 you can specify the

date range you want to return in your output by specifying the @StateDate and @EndDate

parameters.

Listing 10-12. Specify date range for sp_BlitzQueryStore

EXEC sp_BlitzQueryStore @DatabaseName = 'AdventureWorks',

 @StartDate = '20170526', @EndDate = '20170527'

If you are trying to troubleshoot a specific stored procedure, you can look for that

stored procedure specifically. In Listing 10-13 you will find the code on how to return the

top statement in the procedure MyStoredProcedure by specifying the @StoredProcName

parameter.

Listing 10-13. Return top statement for a specific stored procedure

EXEC sp_BlitzQueryStore @DatabaseName = 'AdventureWorks',

 @Top = 1, @StoredProcName = 'MyStoredProcedure'

You can also use it to look at failed queries by specifying the @Failed parameter.

Listing 10-14 is an example of how to return the top query that has failed.

Figure 10-9. sp_BlitzQueryStore time period analysis

Chapter 10 Community tools

212

Listing 10-14. Return top failed query

EXEC sp_BlitzQueryStore @DatabaseName = 'AdventureWorks',

 @Top = 1, @Failed = 1

Back in Chapter 4, we looked at the many reports in Grid View you could see the

plan_ids and query_ids. If you are looking to see the sp_BlitzQueryStore data for a

query you have identified from those reports, then you can use the code from Listings

10-15 and 10-16 to pull the data out of Query Store.

Listing 10-15. Return data by plan_id

EXEC sp_BlitzQueryStore @DatabaseName = 'AdventureWorks',

 @PlanIdFilter = 3356

Listing 10-16. Return data by query_id

EXEC sp_BlitzQueryStore @DatabaseName = 'AdventureWorks',

 @QueryIdFilter = 2958

Other parameters you can specify include the following in Table 10-1.

Table 10-1. sp_BlitzQueryStore parameters

Parameter name Data type Default

@help bit 0

@minimumexecutionCount int null

@DurationFilter decimal(38, 4) null

@exporttoexcel bit 0

@hidesummary bit 0

@skipXml bit 0

@Debug bit 0

@expertmode bit 0

@Version varchar(30) null

@VersionDate datetime null

@VersionCheckmode bit 0

Chapter 10 Community tools

213

 Conclusion
Community tools prove to enhance our ability to use Query Store. dbatools lets us

configure and check the settings of Query Store across multiple databases and servers

with ease. sp_BlitzQueryStore lets you harvest the data in Query Store in a different

format than the reports shown in Chapter 4 and can be useful for finding out what your

top queries are for each metric quickly and what your busiest periods of times are for

each metric. Finally, it allows you to track data for a stored procedure, query_id, or

plan_id that you have identified you want to investigate further.

Chapter 10 Community tools

215
© Tracy Boggiano and Grant Fritchey 2019
T. Boggiano and G. Fritchey, Query Store for SQL Server 2019, https://doi.org/10.1007/978-1-4842-5004-4

Index

A
ad-hoc queries, 57, 58, 69, 74, 144, 145
AdventureWorks database, 151, 170, 203, 206
Automatic plan correction

automatic tuning (see Automatic tuning)
behavior, 170
capabilities, 169
concepts, 169
regression (see Regression)

Automatic plan regression correction
(APRC), 47, 61, 62

disable T-SQL, 62
enable T-SQL, 61

Automatic tuning, 177–178, 181
Azure portal, 178–180
CurrentState value, 182
performance, 182
regression, 182
T-SQL command, 180

B
Baseline, 2

catalog views, 3
compare workload back, 138
create, 136
definition, 136
establish, 135
overall resource consumption, 2, 3
performance, 4

C
Catalog view, Query store, 56
Compiled stored procedures, 47, 60, 70
Configuration options

cache per query, 54
capture queries, 53
changing, GUI, 55, 56
CUSTOM mode, 53
database renaming, 59
data clean up, 52
data flush interval, 51
drop /create, 58
interval data, 52
maximum storage size, 51
operational mode, 50
parameterization, 57, 58
STALE_QUERY_THRESHOLD_DAYS, 50
trace flag, 59
wait statistics, 54

Copy-DbaQueryStoreConfig, 206
database, 206

CPU, queries, 124

D
Database Platform as a Service

(PaaS), 47, 48
Database properties, 137
Data Definition Language (DDL), 34
Data flush interval, 51, 59

https://doi.org/10.1007/978-1-4842-5004-4

216

Data Manipulation Language (DML), 24, 34
dbatools

Copy-DbaQueryStoreConfig, 206
Get-DbaDbQueryStoreOption, 201
Set-DbaDbQueryStoreOptions, 204–206

Desired state vs. actual state, 63
Drop/create vs. alter, 58
Dynamic Management Function (DMF), 18
Dynamic Management Views (DMVs), 1,

19, 20
disadvantages, 21
query_plan_hash field, 20
sp_whoisactive, 22
sql_handle field, 21

E
ERROR state, 65–67
Estimated plan vs. actual plan, 157, 158
Event tracing for windows (ETW), 16
Execution plans/query plans

compare, 158, 160, 161
forcing/unforcing

check mark, 164
forced programmatically, 166
reports, 162, 163
T-SQL, 165

regressed queries identification, 150
query store data, 151, 152
report, 152

warning signs
errors, 156
estimated vs. actual plan, 157, 158
fat pipes, 156
first operator, 155
most costly operator, 156
scans, 156
sort operator, 157

Extended events, 192
database, 195
evaluate and capture, 196
information capture, 194
selecting events, 193
tracking behaviors, 194, 195
troubleshooting

concepts, 14–17
disadvantages, 17
template directory, 14
XEvent profiler, SSMS, 13

F
First-in-first-out (FIFO) method, 16
FREEPROCCACHE procedure, 27

G, H
The Game Changer, Query store

automatic plan correction, 29
runtime statistics, 28
use cases, 28
wait statistics, 29

Get-DbaDbQueryStoreOption
AdventureWorks, 203
database, 202
output, 202
ReadWrite, 204
table format, 203

I, J, K, L
Infrastructure as a Service (IaaS), 48

M
master system database, 48
Memory-optimized tables, 59
@module_or_batch, 24

INDEX

217

N
Naming convention, 190, 191

O
OBJECT plan guides, 24
OPTION clause, 23, 24
Overall Resource Consumption

report, 74, 75, 134
buttons, 76
configure button options, 77
configure time interval drop-down, 78
hover statistics, 75
standard grid view, 76

P
Performance

plan cache, removing, 27
plan guides/USE PLAN hint, 23–25
stored procedure, 26, 27
UPDATE STATISTICS, 26

Plan forcing, 36, 68, 149, 161–162
Plan handle

query to retrieve, 108
set options retrieve, 109

Q
Queries with Forced Plan

report, 88, 89
right/left-hand pane, 89, 90

Queries with High Variation report, 90
high variation report, 91
parameterization, 90
summary information, 92, 93

Query optimizer, 31, 34, 36, 140, 143,
144, 161

Query Store
actual state, 50
asynchronous process, 36
clear the data, 68
configuration (see Configuration

options)
data collection, 38
data sets, 31
DDL, 33, 34
default options, 48
desired state, 50
DML, 34
execution plan, 35
execution_type, 43
object explorer reports, 71
plan removed, 198
properties window, 55
remove a plan, 69, 70
runtime interval, 43
runtime statistics, 36, 37
settings and diagnostics, 197
space usage, 67
sys.database_query_store options, 101
sys.query_context_settings, 108
sys.query_store_plan, 113
sys.query_store_query, 116
sys.query_store_query_text, 118
sys.query_store_runtime_stats, 124
sys.query_store_runtime_stats_

interval, 131
sys.query_store_wait_stats, 119
T-SQL, 48
wait_category, 45
wait statistics, 36, 37

Query Wait Statistics report, 93
categories, 94

grid view, 94, 95
top five, 96, 97

Index

218

R
Read-only state, 59, 64
Regressed Queries report, 72, 73

force/unforce plan buttons, 74
plan options, 74
types, 73

Regressed query
compare plan, 140
compare report, 141
definition, 140
plan, 140

Regression
automatic tuning, 175
dbo.ProductByCost stored

procedure, 173
dynamic management view, 170
execution plan, 174
FREEPROCCACHE, 172
JSON data, 175–177
query performance, 171
stored procedure, 170
sys.dm_db_tuning_recommendations,

172
tuning recommendations

DMV, 172
Runtime information, 41, 42

S
Set-DbaDbQueryStoreOptions

AdventureWorks, 206
database, 205
output, 205
size and collection interval, 206

SET options
function to retrieve, 109
query to return, 110

sp_BlitzQueryStore, 207, 208
date range, 211
parameters, 212
result set, 208
time period analysis, 211

SQL plan guides, 24
SQL Server Management Studio

(SSMS), 1, 74
SQL Server upgrade

CE, 143
compatibility modes, 143
testing process, 144

Standard Grid view, 77, 78
sys.database_query_store options

catalog view, 101
SQL Server, 102

sys.query_context_settings catalog view,
108, 110

sys.query_store_plan catalog view, 3, 113
sys.query_store_query catalog view, 116
sys.query_store_query_text catalog view,

118
sys.query_store_runtime_stats catalog

view, 60, 124
sys.query_store_runtime_stats_interval

catalog view, 131
sys.query_store_wait_stats catalog view,

119, 120
sys.sp_force_plan, 4

T
tempdb system

database, 48
TEMPLATE plan guides, 24
Top Resource Consuming Queries

Report, 79, 142

INDEX

219

buttons, 80
columns, 82, 83
configuration screen, 139
grid view, 81–83
hover over query plan, 88
ID data, 84
left-hand pane, 85
metric, 80
option bar, 80
plan grid view, 88
plan operator comparison, 86
report details comparison, 87
right-hand pane, 85
SQL Server, 142
statistics, 80

Tracked Queries Report, 98
magnifying glass view, 99
statistics details, 100

Troubleshooting, 5
DMF, 18
DMVs, 19–21

disadvantages, 21
sp_whoisactive, 22

Extended Events (see Extended events,
troubleshooting)

lightweight show plan trace
flag, 17, 18

server-side traces, 11, 12
SQL server profiler, 5

concepts, 6
event classes, 7–10
filter screen, 7
use cases, 6

wait statistics, 22, 23

U, V
USE PLAN parameter, 24

W, X, Y, Z
Wait statistics, 43, 44

categories, 182–184
mapping table, 122
querying, 185

dbo.ProductbyCost, 185, 186
report, 186, 187

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Introduction
	Chapter 1: What Is Query Store?
	Query Store Usefulness
	Baselining Performance
	What Is a Baseline?
	How Query Store Provides a Baseline
	Catalog Views
	Stabilizing Performance

	Troubleshooting Without Query Store Techniques
	SQL Server Profiler
	SQL Server Profiler Concepts
	SQL Server Profiler Event Classes Related to Performance

	Server-Side Traces
	Disadvantages of SQL Server Profiler or Server-Side Traces over Query Store
	Extended Events
	Extended Events Concepts
	Disadvantages of Extended Events over Query Store
	Disadvantage of SQL Server Profiler and Server-Side Traces over Extended Events

	Lightweight Show Plan Trace Flag
	sys.dm_exec_query_plan_stats
	DMVs
	Disadvantages of DMVs
	sp_whoisactive

	Wait Statistics

	Stabilizing Performance Before Query Store Techniques
	Plan Guides/USE PLAN Hint
	Updating Statistics
	Recompiling Stored Procedures
	Removing Plans from the Plan Cache

	Query Store: The Game Changer
	What Information Is Gathered
	What Information Query Store Provides for Us: Use Cases
	Automatic Plan Correction
	Wait Statistics

	Conclusion

	Chapter 2: Overview and Architecture of the Query Store
	How Query Store Works
	Collecting Query and Plan Information
	Collecting Query Runtime Information and Wait Statistics
	General Notes on Data Collection

	The Data Collected by Query Store
	Query and Query Plan Information
	Runtime Information
	Wait Statistics
	Information About the Query Store

	Summary

	Chapter 3: Configuring Query Store
	Query Store Defaults
	Configuration Options
	OPERATION_MODE
	CLEANUP_POLICY (STALE_QUERY_THRESHOLD_DAYS)
	DATA_FLUSH_INTERVAL_SECONDS
	MAX_STORAGE_SIZE_MB
	INTERVAL_LENGTH_MINUTES
	SIZE_BASED_CLEANUP_MODE
	QUERY_STORE_CAPTURE_MODE
	MAX_PLANS_PER_QUERY
	WAIT_STATISTICS_CAPTURE_MODE
	Changing Configuration Using the GUI

	Query Store Configuration Catalog View
	Query Store Configuration Best Practices
	Parameterization and Query Store
	Impact of “Drop and Create” vs. “Alter”
	Impact of Database Renaming
	Reducing Recovery Times with Trace Flags

	Query Store and Memory-Optimized Tables
	Configuring Query Store for Natively Compiled Stored Procedures
	Enabling and Disabling Automatic Plan Regression Correction (APRC)
	Maintaining Query Store
	Monitoring Desired vs. Actual State
	Query Store Read-Only States
	How to Fix Query Store in Error State

	Monitoring Space Usage
	How to Clear Query Store
	Failed Plan Forcing
	Removing Plans and Queries
	Reset Statistics for a Plan

	Conclusion

	Chapter 4: Standard Query Store Reports
	Regressed Queries Report
	Overall Resource Consumption Report
	Top Resource Consuming Queries Report
	Queries with Forced Plan Report
	Queries with High Variation Report
	Query Wait Statistics Report
	Tracked Queries Report
	Conclusion

	Chapter 5: Query Store Catalog Views
	sys.database_query_store_options
	sys.query_context_settings
	sys.query_store_plan
	sys.query_store_query
	sys.query_store_query_text
	sys.query_store_wait_stats
	sys.query_store_runtime_stats
	sys.query_store_runtime_stats_interval
	Conclusion

	Chapter 6: Query Store Use Cases
	Determining What Is a Normal Workload
	Establishing a Baseline for Queries
	What Is a Baseline?
	How to Create a Baseline with Query Store
	How to Compare a Workload Back to the Baseline

	See What Happened Last Night
	Troubleshooting Regressed Queries
	What Is a Regressed Query?
	Viewing Plan Changes

	Identify Top Consuming Resource Queries
	Stabilizing SQL Server Upgrades
	Changing Compatibility Mode Effects
	Cardinality Estimation Changes Explained
	Process for Testing and Completing Upgrades Using Query Store

	Finding and Improving Ad-hoc Workloads
	Conclusion

	Chapter 7: Forcing Plans
	Identifying Badly Behaved Execution Plans
	Identifying Regressed Queries
	Identifying Regressed Queries from Query Store Data
	Regressed Query Report

	Warning Signs in Execution Plans
	First Operator
	Most Costly Operator
	Warnings and Errors
	Fat Pipes
	Scans
	Extra Operators
	Estimated vs. Actual

	Comparing Execution Plans
	Forcing and Unforcing Execution Plans
	Forcing Plans Through the Reports
	Forcing Plans Using T-SQL
	Determining Which Plans Have Been Forced

	Conclusion

	Chapter 8: Auto Plan Correction and Wait Statistics
	Automatic Plan Correction
	Identifying Regression
	Enabling Automatic Tuning
	Automatic Tuning in Azure SQL Database
	Enable Automatic Tuning with T-SQL

	Automatic Tuning at Work

	Query Store Wait Statistics
	Wait Statistics Categories

	Looking at Query Store Wait Statistics
	Querying Wait Statistics
	Wait Statistics Report

	Conclusion

	Chapter 9: Troubleshooting Issues with Query Store
	Query Store Waits
	Extended Events and Query Store
	Tracking Query Store Behaviors

	Conclusion

	Chapter 10: Community Tools
	dbatools
	Get-DbaDbQueryStoreOption
	Set-DbaDbQueryStoreOption
	Copy-DbaQueryStoreConfig

	dbatools Summary
	sp_BlitzQueryStore
	Conclusion

	Index

