Query Store for
SQL Server 2019

[dentify and Fix Poorly Performing Queries

Tracy Boggiano
Grant Fritchey

Apress’

http://www.allitebooks.org

Query Store for SQL
Server 2019

|dentify and Fix Poorly
Performing Queries

Tracy Boggiano
Grant Fritchey

Apress’

vww allitebooks.conl

http://www.allitebooks.org

Query Store for SQL Server 2019: Identify and Fix Poorly Performing Queries

Tracy Boggiano Grant Fritchey
Cary, NC, USA Grafton, MA, USA
ISBN-13 (pbk): 978-1-4842-5003-7 ISBN-13 (electronic): 978-1-4842-5004-4

https://doi.org/10.1007/978-1-4842-5004-4

Copyright © 2019 by Tracy Boggiano and Grant Fritchey

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484250037. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

vww allitebooks.conl

https://doi.org/10.1007/978-1-4842-5004-4
http://www.allitebooks.org

Twould like to dedicate this book to my Uncle Elden. He bought
me my first two computer books when I was in seventh grade on
MS-DOS and QBasic igniting my passion for working on compudters.
In writing my first technical book, it seems fitting to recognize
that without his contribution to my early learning on computers,

I may not have stuck with my dreams of becoming
involved in the computer field.

—Tracy Boggiano

vww allitebooks.conl

http://www.allitebooks.org

Table of Contents

About the AUtROrS.......ccucmmimmmsemmmmmmssmsasssssas s Xi
About the Technical ReVIEWETccssesssnssssnsssassssnsssassssassssasssansssasssssssssnsssassssanssas Xiii
1L LT (1 XV
Chapter 1: What Is Query STore?ccccccmmrrmmmmsmsssssssssnssmsmssssssssssssssssssssssssssssssssssssssnns 1
QUETY STOE USEIUINESS....ccueiverirerieresiesirsere e s sa e s s s r e e e s ae s e e s snesae s e e naennens 2
Baselining PErfOrMANCEccccvvererieririerenesesese e sss s e s sse s s e s s sas e ssesaesaessssesaesaessssesaesnens 2
Troubleshooting Without Query Store TeChNIQUES.......ccccvvvricrnicrrerr e 5
SQL SErVEr PrOfiler.......ccoeieieiscccririsss s 5
SEIVEI-SIe TrACEScuceererrsreesese i 11
Disadvantages of SQL Server Profiler or Server-Side Traces over Query Store...........cccevene. 12
Extended EVENES.......cccciii s 12
Lightweight ShOW PIan Trace FIag........cccevvrririerenensensenessssnssesessessssessessesssssssessessessssessessens 17
sys.dm_exec_query_plan_stats ... 18
DIVIVS ...ttt e b e nE e 19

WAt SEALISTICS. ...vveuceeresrsece e 22
Stabilizing Performance Before Query Store TEChNIQUEScccoiverererernsevnseseseses s sesesseens 23
Plan GUIdeS/USE PLAN HiNT........ccccvrrererirrninenssnsnesessssssesesssssesesssssesssssssessssssssessssssssessassnsnens 23
UPdating StatiSHCS ...vvveveveierierie s sere s sa e e s ae s ae e nenaenne s 26
Recompiling STOred ProCEAUIESccvvererirrerrereresesseresesss e s e s sseses e ssesaessssessesaessssessessees 26
Removing Plans from the PIan CacChecccvrrvrnnnienennsense s sessesse e sessessessessssessessenes 27
Query Store: The GAME ChANQETccoverireriresers e se e 27
What Information IS Gathered............covreirnnnncssr e 28
What Information Query Store Provides for Us: USe Cases........ccucurrvrernserennenesesesensesessenens 28
Automatic Plan COrTECHION.........cueercrererrssesese s 29

LT L TR 29

{00 o 1 03O O 29
v

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

Chapter 2: Overview and Architecture of the Query Store..........cccerrssennrrssssnnnnnans 31
HOW QUETY STOrE WOIKSceieeeriecrircririe et se s e se s e e sttt 31
Collecting Query and Plan Information..........cccccuvrninnnnnninsnnesn s 32
Collecting Query Runtime Information and Wait Statistics.........c.ccocvverrinnrininnienninscnnsennn 36
General Notes on Data COlECTIONccoviecrerererse e s 38
The Data Collected by QUErY STOTEccceiiviririrer s rens 38
Query and Query Plan INformationccccccceernnriencnerns e ens 39
Runtime INfOrmation..........ccoeeoererner e s 41
WAt STALISTICS. ... cceeeeeeereeeree e e e 43
Information About the QUErY STOFE........ccovevrecrrc e 45
SUIMIMAIY....eeeeeeeeee s e e e e e e s ae e e e s e e e e e Re e see e re e e e nse e e re e nennnnnnenens 45
Chapter 3: Configuring Query Store.........ccciuumsmmmmmssssnsnmmssssnsnmsssssnnsssssssnssssssssnnnsnsss 47
Query STOre DEfaUILS.......cccoviicerere e s 48
Configuration OPLIONSccceveieririere e s e s ae e e e ne s 50
OPERATION_IMODE.........cciuiuiunrnesesesesesesesesesesesesssesesessssssassssasanas 50
CLEANUP_POLICY (STALE_QUERY_THRESHOLD_DAYS)cccourumrmmrrmrsmsmresesesesesesesessssssssanns 50
DATA_FLUSH_INTERVAL_SECONDS..........ccccosisrmmmmrrrmnmreresesesesesessenes 51
MAX_STORAGE_SIZE_MB..........cccounimiiinssnsssnsssssssesesesesesesesssesenes 51
INTERVAL_LENGTH_MINUTES........cccovierereitrstrene s sese st ses e ssesse s sessessesassesesaessssessensesnens 52
SIZE_BASED_CLEANUP_IMODE........ccccsitrtrrtrnereresessessessessssessesessesssssssessessessssessessesssssssessesees 52
QUERY_STORE_CAPTURE_MODEcccceoeitrierererirsirsene s sesessesse s e sse e s sessessessesessessesnens 52
MAX_PLANS_PER_QUERYcectreniriirererin e se e s s sss e sse s s ssesasssssessesaessssessesnees 54
WAIT_STATISTICS_CAPTURE_MODE.........ccceoeitrererinsirene e se e s e sse e ssesssesaesnes 54
Changing Configuration Using the GULI...........cccccvirrnennsssnsse s ssssesenns 55
Query Store Configuration Catalog VIEWccvcvvererrnnsenienesersesesessssesessessssessessessessssessessenes 56
Query Store Configuration Best PractiCes..........ccuuvrnienninninisnsesins s sesessenens 56
Parameterization and QUErY STOTE ... 57
Impact of “Drop and Create” VS. “AREI"cccvveriererrrserersssensesessessssessessesssssssessessessssessessens 58
Impact of Database RENAMINGccvcrierniininiere e sae e s e ssesnens 59
Reducing Recovery Times With Trace FIAgscccvrvvrrriererennensesessssessessessessssessessessssessessees 59
Query Store and Memory-0ptimized TADIEScocvvrerrenrnse s 59

TABLE OF CONTENTS

Configuring Query Store for Natively Compiled Stored Procedures.........ccoovvevnenernscrnsenenenens 60
Enabling and Disabling Automatic Plan Regression Correction (APRC)ccvvvnienernnerensenenns 61
Maintaining QUErY STOME ..o s e s 62
Monitoring Desired vs. Actual State ... —————— 63
Monitoring SPAce USAQEccuceriviinrnirinsinses s s s e s sss s s 67
How t0 Clear QUErY STOME ... s e s 68
Failed Plan FOrCiNG........ccuiiniiesn s ss s srs s sre s s s 68
Removing Plans and QUENIES.......ccccuvcrrrernninsinese s sse s e s se s ssesssssssesne s 69
Reset Statistics for @ Plan ..o s 70

{00 0 e 11 0 o SRR 70
Chapter 4: Standard Query Store Reportscccccmmmmrmmsssssssssssnnssssssssssssssssnsssssssssns 71
Regressed QUEriES REPOITccvveerrerrienerese s 72
Overall Resource Consumption REPOIcovvervrierererrensene s s s sse e s e sse e sessessesaessssessessenes 74
Top Resource Consuming QUEries REPOMt........c.cucvrirrnirnenine s 79
Queries with Forced Plan REPOIT ...t sessesens 88
Queries with High Variation REPOrtcoceorecrecrrerire s s e sessenens 90
Query Wait Statistics REPOITcccceeeeerrrrccscrrr e 93
Tracked QUENIES REPOIT.........ccucireir e st e e nne 98
0] T 11T (0] 0 N 100

sys.database_query_Store_0OplioNnS.........ccvvvverininnin s 101
SYS.query_ConteXt_SettingS ..o ——————— 108
SYS.QUENY_STOrE_PIAN ...cveviieir e e e 113
SYS.QUETY_SEOIE_(UEIYceeeeeeeerucreeseeesesseseesesessessese s e ssessesse e sessessesessesnesassseseesesasssesssssnesns 116
SYS.query_store_qUery_teXt.......ciirrrsr s ———————————— 118
sys.query_store_Wait_StalS........cccvevririninn s ———————————— 119
sys.query_store_runtime_StalS........ccccvrrinninini s e 124
sys.query_store_runtime_stats_interval...........cccvrvenrirvrse s e 131
{0 0 e 11 0 131

vii

TABLE OF CONTENTS

Chapter 6: Query Store Use CaSescccuussesrrsssssnsssssssnnssssssssnnsssssssnssssssssnnssssssnnnnss 133
Determining What Is @ Normal Workloadcccoceriinnnneninnnsinsenesssissessessssssesessessssessessens 133
Establishing a Baseling for QUEKIEScccuieriinrnennsnsne st ssesnens 135

What IS @ BASEINE? ..o s 136
How to Create a Baseline with Query STOre ... 136
How to Compare a Workload Back to the Baselingccccccucvvrinnsncnnnnnsnsensesessnsensennns 138
See What Happened Last Night..........cocncrr s 138
Troubleshooting RegreSSed QUETIESc.cuoeverermrrenerrnsesesesssesesessesssessssssesessesssssssssssssesssssssenens 139
What Is @ RegreSSed QUETY?ouceceerrirnreeserrressssesesessssssssssessssssssssssssssssssssssssssssssssssnns 140
Viewing Plan ChanQEScccverernnenenenmsese s sessesssssssssssesssssssssssssssssssssssesssssssennns 140
Identify Top Consuming ReSOUrCe QUEKIES.......ccuurerrrserrsereresersnsesessessssesessssesessessssesessssessssesenns 142
Stabilizing SAL SErver UPGratesocvcvvererernenneresesessessessesssssssessessessssessessesssssssessessessssessesses 142
Changing Compatibility Mode EffeCtS........cccvvriernnrnnininrsnsene s s s e e sne s 143
Cardinality Estimation Changes EXpIAiNedccccovvriererensenseniennsessesse s sessesessessssessessens 143
Process for Testing and Completing Upgrades Using Query Store.......ccccvvvvvvevierenensenennes 144
Finding and Improving Ad-hoc WOrKIOadscccvieneriniennennesienses e sessesses e sessessesssessessenns 144
0] T 11T (0] o P 147

Chapter 7: Forcing Planscccccuuunsssssssmmmmmmmmsssnnss 149

Identifying Badly Behaved EXECULION PIANSccoovevvenenenenssesesesese s es s sessenenns 149
Identifying RegreSSed QUENIES.........covrerrrrenerennesesesesre e sessesesse s sesse e ses e ssssessanes 150
Warning Signs in EXECULION PIANScccoeerreerreseresc e sessesesnenens 153

Comparing EXECULiON PIANSccccvicirnesmnnsessesnne s s sns s s ssssssesessssnns 158

Forcing and Unforcing EXecution PIANScccucvvnernninsniens s sesese s sessesessssessessessessssessesaens 161
Forcing Plans Through the REPOMS ... sesse e 162
Forcing Plans USING T-SQL.......cccviurrnrierierinsenesessssesseseseesessessessessssessessesssssssessesasssssessesses 165
Determining Which Plans Have Been FOrcedccuvmenrssnnsesnnessnssessssesessesessssesennes 165

0] T 111 (0] o 167

viil

TABLE OF CONTENTS

Chapter 8: Auto Plan Correction and Wait Statistics......ccuccmmrnssnnmnrnssssnnssssssnnnns 169
Automatic Plan COMECLIONc.oveeererereseeesese e se e s se s ssssnens 169
Identifying REGreSSiON........ccocviiiinsnie e e e 170
Enabling Automatic TUNING ..o s 177
Automatic TUNING @t WOTK.........ccoverircere s se e s sne s s e 181
Query Store Wait STatiStiCScovverrcrrccr 182
Wait Statistics Categories........cuvvrrniinnn e s 182
Looking at Query Store Wait StatiStiCS.........cuoerererernsmrnsesrresernse s s 185
Querying Wait STAtiSTICScovrrrrnrererererrnssesssesrssssse s sesessssesenes 185

[0 1 e 1T SRS 188
Chapter 9: Troubleshooting Issues with Query Storecccinnsemnnrnssssnnsnssssnnnns 189
(TN TeT T (0 (R UL R 189
Extended Events and QUErY STOFe........ccovvevieriniccnni e 192
Tracking Query STore BENAVIOLScccuvceriiernieninesis s sesse s 194

0] T 1T (0] o PR 199
Chapter 10: Community TOOIS........ccemrrmsssnnmrsssssnnnssssssnssssssssnnsssssssnnsssssssnnssssssnnnnss 201
(01072100 3 201
Get-DbaDbQuUeryStore0plioN........ccvinrcrrr e ———— 201
Set-DbaDbQuUeryStore0plioN........cccirnnrne e 204
Copy-DbaQueryStoreConfig.......courrirennnnsnere s s s srs e s e 206
ADATOOIS SUMMANYceveeirereree e p e nr e 207
SP_BIItZQUEIYSTOIEeevccircctrese e e 207
0] T 110 o N 213
1T - 215

ix

About the Authors

Tracy Boggiano Senior Database Administratior for
DocuSign has more than 20 years experience on SQL Server
and is a speaker at several events including local users
groups, virtual groups, SQLSaturdays, and PASS Summit.
Her passion outside of computers is volunteering with foster
kids as their advocate in court through the North Carolina
Guardian ad Litem program.

)
."
P

Grant Fritchey Microsoft Data Platform MVP, has more than 20 years of experience in

IT. That time was spent in technical support, development, and database administration.
He currently works as Product Evangelist at Red Gate Software.

About the Technical Reviewer

Michael Wells is an engineer at Dell EMC in the Azure
Stack product group. He has worked in IT since 2000 and
has supported SQL Server since SQL Server 2000. Michael
has been active in the SQL Server and .NET Development
communities since 2007 and regularly speaks at local user
groups, CodeCamps, SQLSaturday events, IT Pro Camps,
and large conferences like PASS Summit, Microsoft Ignite,
and Oracle OpenWorld.

xiii

Introduction

This book is about the Query Store feature built into SQL Server 2019 and how it works to
help you identify poorly performing queries and fix them in your databases. Query Store
has been in SQL Server since SQL Server 2016 and has gradually added features with
each new release to make it better at what information it captures and how it is captured.
This book is intended for SQL Server DBAs looking for how Query Store works, the best
way to implement it, and how to effectively use it to solve problems. Query Store shows
you in an aggregrated form of what was and is running in your database.

Chapter 1 gives you an introduction to how you troubleshoot problems and gather
statistics without Query Store, so you gain an understanding of why Query Store is an
important new feature of SQL Server. Chapter 2 gives you an overview of how Query
Store works and dives into the details of the architecture of it. It covers how the data is
captured and where that data is stored. Chapter 3 covers how to configure Query Store
and best practices for configuration including trace flags. Chapter 4 covers the six reports
that are available for Query Store in SQL Server Management Studio and how to leverage
them to get information you need. Chapter 5 dives into detailing what data is available in
the catalog views for Query Store.

Chapter 6 covers different use cases for Query Store including using it to show you
what is normal performance on your database, troubleshooting query performance and
regressed queries, establishing a baseline for your database, and testing upgrades to
different versions of SQL Server. Chapter 7 starts showing the real power in Query Store
by showing how to identify poorly performing queries and what goes into forcing a plan
to stabilize performance. Chapter 8 shows us the most powerful feature, Automatic
Plan Regession Correction (APRC), where Query Store automatically forces plans for you.
It also introduces to the feature of capturing wait statistics into categories. Chapter 9
shows you techniques to troubleshoot issues with Query Store itself, wait statistics
and extended events. Chapter 10 introduces you to two community tools dbatools and
sp_blitzQueryStore that help with the configuration of Query Store and getting data out
of Query Store.

CHAPTER 1

What Is Query Store?

Query Store keeps rolled-up aggregates of queries and statistics for workloads that are
run against your SQL Server database when it is enabled. This data can be used to help
you establish a baseline for performance, troubleshoot performance issues, and stabilize
performance on your database. In this chapter, we go over techniques that were used
before Query Store was released, including Profiler/server-side traces, Extended Events,
DMVs (Dynamic Management Views), plan guides, and sp_whoisactive. Then, we will
look at how and why Query Store is a game changer for doing these activities.

Query Store is like a flight recorder box for your SQL Server. Query Store stores
statistics such as duration, reads, writes, CPU, etc. along with query plans in memory
and then aggregates this information based on the settings that were set when Query
Store was enabled on the database, with a default of 1 hour. At specified periods, the
default is 15 minutes, this data is persisted to disk into the catalog views for you to query
or view via the built-in reports in SQL Server Management Studio (SSMS). With the
introduction of SQL Server 2017, we also can utilize the power of auto plan correction
and the aggregation of wait statistics - more on this in Chapter 8.

This is where the true power of Query Store comes into play. Before this data was
only available if you captured it using various other methods that proved to be much
slower and cumbersome to work with. To get a better understanding of what Query Store
is doing under the covers, we will explore these other methods:

1) Query Store Usefulness
2) Troubleshooting Without Query Store Techniques

3) Query Store: The Game Changer

© Tracy Boggiano and Grant Fritchey 2019
T. Boggiano and G. Fritchey, Query Store for SQL Server 2019, https://doi.org/10.1007/978-1-4842-5004-4_1

CHAPTER 1 WHAT IS QUERY STORE?

Query Store Usefulness

Query Store has more than one way it can be utilized to help with your database. In
this section, we will discuss how it can be used to help you establish a baseline for your
database, troubleshoot performance issues, and stabilize performance.

Baselining Performance

One key part of any database professional’s job is being able to baseline the performance
of their database server which is not an easy task. In this section of the book, we will

talk about the why and how of establishing a baseline for your database server and its
relation to Query Store. Query Store’s ability to capture all queries that have executed
against your database and record runtime statistics in the database makes it easier to
collect the baseline information you need.

What Is a Baseline?

Before we talk about how Query Store can provide you with a baseline, let’s discuss
what a baseline is. A baseline is established by running a workload against a server and
taking metrics in several areas to determine if anything has significantly changed over
time. Areas of interest in SQL Server include, but are not limited to, CPU utilization,
memory clerk usage, number of reads and writes (physical and logical), query execution
times, etc. Baselines should be taken during peak and non-peak times to get an accurate
measurement of the overall activity of your server. By having a baseline, you will be able
to isolate performance problems better and identify bottlenecks.

How Query Store Provides a Baseline

Query Store aggregates data about queries ran against the database it is enabled on
into intervals predefined when you configure it. This data is displayed in a few different
reports. One example is the Overall Resource Consumption in Figure 1-1 that shows
charts of the last month of duration, execution count, CPU time, and logical reads by
default. This report is the best for viewing a baseline of the database.

CHAPTER 1 WHAT IS QUERY STORE?

Overall resources consumption for database Time period: Last month ending at 11/26/2018 12:23 PM
id | i Chart
Duration Execution Count
12000000~
70000000~
BO000000
750000000 E poo000c-
£ i
540000000 § 5000000~
g - | 3
i & sooc0on-
i mm m mm
100274, 17147, 11/20/2018 2018 /2018 1120020018 11726420
w:wams 11.-'5{2013 11;11;2013 11;1?;2013 mzyzms wzuls ll-‘srzms 11;’11:’2018 A0 1232018
I €PU Time Logical Reads
100000000~
100000000000~
80000000
B g o
£ 60000000- 2 60000000000-
3
£ s
2 40000000~ £ 40000000000~ |
~ 8‘
L
R 1 S 1 mm .,Jﬂm i ﬁlﬂnn
102772018 117272018 8208 142018 1122002008 1172672008 z.r 178/ m.-'zuls 120208 11721
10/20/2018 117520018 MIAN018 MATR0E 1172302008 1w3wzols ws.-’zms 11;11;2013 A8 mzsfzo‘ls

Figure 1-1. Overall Resource Consumption report

Catalog Views

All the data collected from Query Store are stored in multiple catalog views. The
aggregated runtime statistical data is stored in sys.query store runtime_stats. The
catalog view sys.query store query text stores unique query text values that have
been executed against the database, and the sys.query context settings view stores
the settings for the queries stored in the sys.query store query text view that was
executed under settings such as SET ANSI _NULLS ON or SET QUOTED IDENTIFERS ON.
The view sys.query store query stores all queries uniquely executed based on text
and context settings executed so you can track them. The sys.query_store_plan catalog
view stores the estimated plan for the query executed and the compile time statistics
in XML format. The sys.query store runtime stats interval view stores the time
intervals that the data is stored in.

More details on catalog views will be discussed in Chapter 5.

CHAPTER 1 WHAT IS QUERY STORE?

Stabilizing Performance

The next report to look at for baselines is the Regressed Queries report, which will show
you queries that have regressed in performance. For each of these, you should look at
why the performance has degraded. This report will show how each query plan for a
specific query has performed over the last month by default.

From the Regressed Query report or Top Consuming Queries report, you can easily
see what plans should be forced based on how they are performing. Forcing a plan is
when you take an execution plan and based on the performance you see in the report
decide that you want that plan to be the one the SQL Server engine uses going forward.
Before Query Store, you had to use plan guides and those are discussed later in this
chapter. You would force a plan when you notice plan regression. Plan regression is
when the SQL Server Query Plan Optimizer compiles a new execution plan for a query
that was previously running and the performance is worse than the previous plan. When
a plan is forced manually, you should be aware that no other execution plan will be used
for that query going forward. Also, if there is an index change or table schema change,
the forced plan could start failing causing the SQL Server Query Optimizer to take extra
steps to get an execution plan each time the query is executed. The reports provide
a button by which you can force the plans, but you can also for change management
purposes use T-SQL to force plans with the stored procedure sys.sp_force plan.

The High Variation report shows you which queries are inconsistent in performance
which gives you a way to tell which queries are performing differently at times and may
need to be tuned to perform consistently.

SSMS has a Forced Plan report where you track and verify that any plans that were
forced are performing as expected.

Tip Older query plans will be deleted from Query Store based on your settings
for retaining query plans, so you may want to keep separate documentation of the
performance you expect to see going forward for any forced plans.

Reports will be discussed in greater detail in Chapter 4.

CHAPTER 1 WHAT IS QUERY STORE?

Troubleshooting Without Query Store Techniques

Without Query Store, there are several techniques you can use to troubleshoot problems
related to bad query performance. Here we will discuss using SQL Server Profiler to

run a trace on the server through the application, running a server-side trace to a file by
creating a script using SQL Server Profiler, using Extended Events, pulling information
from the DMVs, using a community stored procedure called sp_whoisactive, and using
wait statistics.

SQL Server Profiler

SQL Server Profiler is a common tool that collects information about what is running
on the server at the moment the application is being executed. Figure 1-2 shows the
user interface for it. SQL Server Profiler is used to capture data for short periods of time
quickly. It comes with templates to help capture data and gives you the ability to save
the data to file or table in a database for later analysis. You must have the ALTER TRACE
permission to run SQL Server Profiler.

= SQL Server Profiler
File Edit View Replay Tools Window Help

ANSEFs | ZEHAOR |DE|P

Trace Properties .
Genenal | Events Selection |
Trace name: (=
Trace provider name: :I- = a
Trace provider type: [Mcrosctt SQL Server "2016" version: 1305232
Use the template: [Standard (defautt) -
I Savetofie: I J
F E
-
™ Savetotable: J
r I
L Mmmmﬁ [nzseoe ~] [Hzemsrm =
Fn | Cacel Help

Figure 1-2. SQL Server Profiler screen

CHAPTER 1 WHAT IS QUERY STORE?

Note SQL Profiler and server-side traces as of SQL Server 2017 are being
deprecated and are in maintenance mode. They will be removed in a future release
of SQL Server in favor of using Extended Events and SSMS XEvent Profiler.

SQL Server Profiler is commonly used in the following use cases:
o Finding slow-running queries and their problem areas.
e Stepping through troublesome queries to find the root cause.

o Capturing a series of events that cause a problem to be replayed on a
test system to reproduce the problem.

o Capturing data to compare to performance counters to diagnose
problems.

o Capturing a baseline workload to tune workloads. SQL Server
Profiler files can be used with the Database Engine Tuning Advisor to
recommend indexes and statistics to tune the captured workload.

Note The Database Engine Tuning Advisor recommends indexes and statistics
that are only ideal for the workload you supplied. Evaluate the recommendations,
don’t blindly apply them.

SQL Server Profiler Concepts

To use SQL Server Profiler, it helps to understand the terms in the tool:
o Eventis an action that occurs in the database engine.

« Event Class is a type of event to be traced. This contains all the data
for the event; there are several Data Columns for you to select from.

» EventCategory defines how the events are grouped in SQL Server
Profiler.

o Data Column contains the data for the Event Class captured. Each
Event Class has predefined Data Columns that are available. Not all
Data Columns are available to all Event Classes.

CHAPTER 1 WHAT IS QUERY STORE?

o Template is a predefined trace with an Event Class selected for a

particular troubleshooting scenario. A template predefines what

events, data columns, and filters to use.

o Trace is what SQL Server Profiler runs to capture the selected event

classes, data columns, and filters.

o Filter is a way to get a subset of data based on criteria that you specify

on a Data Column.

Figure 1-3 shows the screen in SQL Server Profiler user to apply filters.

¥ ApplicationName
BinaryData
ClientProcessID
CcPU
Duration
EndTime
LoginName
NTUserName
Reads
SPID
StartTime
TextData
Writes

Edit Filter B

[~ ApplicationName -

Name of the dient application that created
the connection to SQL Server. This column is
populated with the values passed by the
application rather than the displayed name
of the program.

[#-Like

£ Not like
- SQL Server Profiler - 3281b93b-3f6c-44

< m ' >

[Exdude rows that do not contain values

N

Figure 1-3. SQL Server Profiler filter screen

SQL Server Profiler Event Classes Related to Performance

The different event classes that you would use to collect data related to query

performance are as follows:

o Under the Performance Event Category:

e Auto Stats occurs when statistics for index or columns are

automatically updated. It will also occur when the optimizer

loads statistics to be used.

CHAPTER 1

WHAT IS QUERY STORE?

Performance Statistics are used to get the performance statistics
of queries, stored procedures, and triggers executing. Six event
subclasses construct the lifetime of these actions in the system.
Using the subclasses and the following DMVSs, you can get the
performance history of any query, stored procedure, or trigger:
sys.dm_exec_query stats, sys.dm exec_procedure stats, and
sys.dm_exec_trigger stats.

Showplan All occurs when a SQL Statement is executed. It
contains a subset of information in the Showplan XML Statistics
Profile or Showplan XML event classes.

Showplan All for Query Compile occurs when a SQL Statement
is compiled. This event class is used when you want to identify
the Showplan operators. This is a subset of information in the
Showplan XML for Query Compile event class.

Showplan Statistics Profile occurs when a SQL statement is
executed. This is a subset of information in the Showplan XML
Statistics Profile event class.

Showplan Text occurs when a SQL statement is executed.
This is a subset of the information available in the Showplan All,
Showplan XML Statistics Profile, or Showplan XML event classes.

Showplan Text (Unencoded) is the same as the Showplan Text
event class, except the data is formatted as text instead of as
binary data.

Showplan XML occurs when a SQL statement is executed.

This event class is used when you want to identify the Showplan
operators. The data in this event class is a defined XML
document.

Showplan XML for Query Compile occurs when a SQL
statement is compiled. This event class is used when you want to
identify the Showplan operators.

CHAPTER 1 WHAT IS QUERY STORE?

o Showplan XML Statistics Profile occurs when a SQL statement is
compiled. This event class is used when you want to identify the
Showplan operators. This event class records complete, compile-

time data.

Tip For all Showplan event classes, limit the number of them in use, because
they can cause significant performance overhead. Showplan Text or Showplan
Text (Unencoded) are the event classes that will affect performance the least but
still should be used sparingly.

¢« Plan Guide Successful has three conditions that have to be true
for this event to fire:

1. The batch or module in the plan guide definition must
match the batch or module that is being executed.

2. The query in the plan guide definition must match the
query that is being executed.

3. The compiled query honors the hints in the plan guide.

o Plan Guide Unsuccessful occurs when a plan guide
unsuccessfully produces an execution plan. Three conditions
have to be true for this event to fire:

1. The batch or module in the plan guide definition must
match the batch or module that is being executed.

2. The query in the plan guide definition must match the
query that is being executed.

3. The compiled query did not honor the hints in the plan guide.

Note There is more on how to use plan guides later in this chapter.

e Under the Stored Procedures Event Category:

e SP:Completed occurs when a stored procedure finishes

executing.

CHAPTER 1 WHAT IS QUERY STORE?

o SP:Starting occurs when a stored procedure starts executing.

¢ SP:StmtCompleted occurs when a T-SQL statement inside
the stored procedure finishes executing.

e SP:StmtStarting occurs when a T-SQL statement inside the
stored procedure starts executing.

e Under the T-SQL Event Category:

¢ SQL:BatchCompleted occurs when a T-SQL batch finishes
executing.

o SQL:BatchStarting occurs when a T-SQL batch starts
executing.

o SQL:StmtCompleted occurs when a T-SQL statement
finishes executing.

e SQL:StmtStarting occurs when a T-SQL statement starts
executing.

In Figure 1-4 you can see the trace properties screen from SQL Profiler.

General Events Selection
Review selected events and event columns to trace. To see a complete list, select the “Show all events” and “Show all columns” options.
Events | TextData | Appl | NTUserName | LoginName | CPU | Reads | Wites | Duration | ClientProcs ~
Objects
- Pedormance
[~ Auto Stals C r C r r
[~ Degree of Paralletsm I 0O r O
[~ Pedomance statistics] =
[~ Plan Guide Successful C | = C O i
[Plan Guide Unsuccessful C r C - I
™ SQL:FullTextQuery] r O C r
[~ Showplan Al C r r
[~ Showplan All For Query Compile = I r O
[~ Showplan Statistics Profile | r i
= _Ch dors Tk — — =]
<T_ 1] | >
Sk lan Text
Displays the quary-plan tres of the SQL statemert baing exacuted. Includs the Showplan Text evant class to identfy the ¥ Show all events
operators on SQL Server 2000 or SGL Server 7.0. This event class will also on SQL Server 2005 or later,
however the information included is subset of the jon available in Showplan All, Showplan XML Statistics Profle or | I~ Show al columns
~No data column sel
Column Filters |

Figure 1-4. SQL Server Profiler Event Class screen
10

CHAPTER 1 WHAT IS QUERY STORE?

Server-Side Traces

Server-side traces are a way to run a SQL Server Profiler session without running the
SQL Server Profiler application. This is preferred over running SQL Profiler. You use
system stored procedures to specify all the events, data columns, and filters for the trace
to capture. You use SQL Profiler to create a script for a server-side trace by opening SQL
Server Profiler and specify events and columns you want to capture. Then go under the
File menu and select, then Export » Script Trace Definition » For SQL Server 2005 - 2016.
(Figure 1-5 shows an example of selecting that menu item).

File | Edit View Replay Tools Window Help

New Trace... awi-N HMR DE| @
Open L& 3
Close Ctrl+F4 Untitled - 11 = .0}
i~ [dophostontiame | NTUserName | Logname | CPU |
Save Ctrl+5 == = S |
Save As » . | = L]
Properties... o - !
|- =" L 3 o] an
Templates L) — = T p—— "n =
Run Trace | - == o mms = -l = BE |
Pause Trace £e : = B * *
[= c . L] E LE]
Stop Trace
! Export »| Script Trace Definition 2 For SQL Server 2005 - 2016...
Import Performance Data... : Extract SQL Server Events » For SQL Trace Collection Set...
Exit Extract SOL Server Analysis Services Events 4 For Analysis Services 2005 - 2016...

Figure 1-5. Script out server-side trace definition from SQL Server Profiler

Server-side traces are considered in maintenance mode, meaning they are planned
to be removed in a future version of SQL Server. Thus, you should be trying to switch to
Extended Events, which we discuss next.

The list of system stored procedures used to create a server-side trace is as follows:

e sp_trace create - creates the trace.

e sp trace generated event - creates a user-defined even in SQL

Server.

e sp_trace_setevent - adds and removes Data Columns to the trace.
You must specify the Event Number. A complete list can be found
online at https://docs.microsoft.com/en-us/sql/relational-
databases/system-stored-procedures/sp-trace-setevent-
transact-sql?view=sql-server-2017.

11

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-trace-setevent-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-trace-setevent-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-trace-setevent-transact-sql?view=sql-server-2017

CHAPTER 1 WHAT IS QUERY STORE?

e sp trace set filter - applies a filter to a trace.

o sp_trace setstatus - stops and starts a trace based on the id of the
trace you specify. You can query sys.traces to find your id.

Disadvantages of SQL Server Profiler or Server-Side
Traces over Query Store

A few disadvantages to SQL Profiler or server-side traces over Query Store when getting
a baseline are that the data is not aggregated for you with you writing queries yourself
or using a third-party tool. Running the SQL Server Profiler application can be a big
performance hit in itself to your system under heavy workloads; you should run server-
side traces instead if you are not going to use Extended Events (which we will discuss
next). Due to the length of time you could be running either one to capture every event,
the files or data in the SQL Server Profiler application can get quite large and will take
time to process the data to get the desired information. Query Store automatically
captures all your queries and aggregates them for you without any extra processes and
has a minimal impact in performance on most systems.

Extended Events

Extended Events was introduced in SQL Server 2008 and are a more lightweight way
alternative to server-side traces. Extended Events can provide you with more insight into
the database engine than SQL Server Profiler and server-side traces. In Figure 1-6, you
can see with the newest version of SSMS, you have two built-in Extended Events under
the tree labeled XEvent Profiler. One thing to note is once you start a session, they do not
stop running when you close SSMS, you must manually stop a session. You can stop can
XEvent Profiler session by hitting the red stop button on the toolbar before exiting SSMS.

12

CHAPTER 1 WHAT IS QUERY STORE?

Sl] " "l (SQL Server 13.0.5201.2 - sa)
Databases
@ B Security
= Server Objects
@ Replication
@ PolyBase
® Always On High Availability
@ Management
® Integration Services Catalogs

@ o9 SQL Server Agent
= [¢] XEvent Profiler
§ Standard
e TsaL

Figure 1-6. XEvent Profiler in SSMS

Session definitions can be found in your installation path of SSMS, such as C:\
Program Files (x86)\Microsoft SQL Server\140\Tools\Templates\sql\xevent. In
Figure 1-7, you can find a list of the extended event session provided. The T-SQL
template “Captures all Transact-SQL statements that are submitted to SQL Server by
clients and the time issued. Use to debug client applications.” The Standard template
is a “Generic starting point for creating a trace. Captures all stored procedures and
Transact-SQL batches that are run. Use to monitor general database server activity.”

13

CHAPTER 1

WHAT IS QUERY STORE?

soft SQL Server » 140 > Tools > Templates > sql > xevent v & Search xeve
Name " Date modified Type Size

[xe_activity.xml 5/17/2017 403 AM XML Document 19KB
ij xe_batch_sampling.xml 5/17/2017 4:03 AM XML Document 5KB
D xe_batch_tracking.xml 5/17/2017 403 AM XML Document 4KB
D xe_connection_tracking.xml 5/17/2017 403 AM XML Document 3KB
D xe_log_io_tracking.xml 5/17/2017 403 AM XML Document 4KB
|] xe_Profiler_SP_Counts.xml 5/17/2017 403 AM XML Document 2KB
D xe_Profiler_Standard.xml 5/17/2017 403 AM XML Document 6 KB
|7 xe_Profiler_TSQLxmI 5/17/20174:03AM XML Document 4KB
Ij xe_Profiler_TSQL_Duration.xml 5/17/2017 403 AM XML Document 3KB
E] xe_Profiler_TSQL_Locks.xml 5/17/2017 4:03 AM XML Document 8KB
D xe_Profiler_TSQL_Replay.xml 5/17/2017 4:03 AM XML Document 13KB
D xe_Profiler_TSQL_Sps.xml 5/17/2017 4:03 AM XML Document 6 KB
[j xe_Profiler_Tuning.xml 5/17/2017 403 AM XML Document 4KB
D xe_query_lock_counts.xml 5/17/2017 4:03 AM XML Document 2KB
D xe_query_wait_stats.xml 5/17/2017 4:03 AM XML Document 13 KB
D xe_statement_sample.xml 5/17/2017 4:03 AM XML Document 8 KB
D xe_statement_tracking.xml 5/17/2017 403 AM XML Document 7KB

Figure 1-7. Template directory for extended events templates included with SSMS

Extended Events Concepts

To use Extended Events, it helps to understand the terms used to define them.

14

Packages contain objects used for getting and processing data for an
Extended Events session. Packages can contain the following:

o Events are points that you want to monitor in the execution path
of the SQL Server. They can be asynchronous or synchronous.
To get a list of events that correspond to the Event Classes in SQL
Server Profiler, you can execute the query shown in Listing 1-1.

CHAPTER 1 WHAT IS QUERY STORE?

Listing 1-1. Code to get a list of corresponding Extended Events for SQL Profiler
Events

USE MASTER;
G0,

SELECT DISTINCT
tb.trace event id,
te.[name] AS 'Event Class',
em.package name AS 'Package’,
em.xe_event name AS 'XEvent Name',
tca.[name] AS 'Profiler Category'
FROM (sys.trace events te
LEFT OUTER JOIN sys.trace xe event map em
ON te.trace event id =
em.trace_event id)
LEFT OUTER JOIN sys.trace_event bindings tb
ON em.trace event id = tb.trace event id
INNER JOIN sys.trace categories tca
ON tca.category id = te.category id
WHERE tb.trace event id IS NOT NULL
AND tca.[name] in ('Stored Procedures’,
'TSQL',
"Performance")
ORDER BY tb.trace event_id;

The same cautions exist as with SQL Server Profiler capturing lots of events,
especially with execution plans, can cause performance problems. Below is a list of
common events that you may want to capture in an Extended Events session.

e Sp_statement_completed is captured when a statement in a stored
procedure completes execution.

e Sql_statement_completed is captured when a SQL statement has
completed execution.

e Query_post_compilation_showplan occurs after a SQL statement is
compiled and returns the estimated plan in XML format.

15

CHAPTER 1

16

WHAT IS QUERY STORE?

Targets tell the session where to store the data.

Actions tell the package what action to take if a certain event
happens, such as capturing a stack dump or grabbing an

execution plan.

Types are the type of bytes strung together and the length and
characteristics of the data to be able to interpret the data. The
different types are as follows:

¢ event
e action
o target

e pred_source
e pred_compare
° type

Predicates are like WHERE clauses to help filter out events that are
captured.

Maps is a table that lets you know what an internal value means.
Targets provides a place where the data for a session will be stored.

Event counter is used to keep a count of all events that occurred that
you specified for your session synchronously.

Event file writes all event session data from memory to disk
asynchronously.

Event pairing determines when paired events do occur in a matched
set asynchronously to capture.

Event Tracing for Windows (ETW) correlates events to Windows or
applications event data synchronously.

Histogram is used to keep a count of a specified event and occurs
asynchronously.

Ring buffer holds data in memory in first-in-first-out (FIFO) method
asynchronously.

CHAPTER 1 WHAT IS QUERY STORE?

» Engine implements Extended Events by enabling the definition of
events, processing event data, managing Extended Events services
and objects, and keeping a list of sessions and managing access to
the list.

o Sessions set up with events in them to collect the information you
need to troubleshoot an issue. This pulls everything together to give
you the data you need to troubleshoot your issue by allowing to
specify actions, targets, and predicates.

Disadvantages of Extended Events over Query Store

Some disadvantages to Extended Events are similar to that of SQL Server Profiler in that
the data is not aggregated unless you are doing a single column. It must be run for the
entire period of the workload you are measuring which causes the files to get quite large
and takes time for you to process the data.

Disadvantage of SQL Server Profiler and Server-Side Traces over
Extended Events

SQL Server Profiler and server-side traces process each event that occurs to narrow down
to the specific events you have indicated to capture which can cause a performance

hit. Due to the performance hit and the lightweight nature of Extended Events it is
recommended you use Extended Events. Remember also SQL Server Profiler and
server-side traces are being deprecated.

Lightweight Show Plan Trace Flag

Starting in SQL Server 2014, Trace Flag 7412 was introduced to allow to access the

actual execution plan of queries that are currently running via the sys.dm_exec_query
statistics _xml DMV. This data can also be accessed from the Activity Monitor by right-
clicking on any running process and selecting Show Live Execution Plan. Improvements
were made to make it even more lightweight in SQL Server 2016 SP1. This method is by
far more lightweight than capturing the estimated plans with SQL Server Profiler, server-
side traces, Extended Events, and Query Store. So, it's recommended you patch your SQL
Server instances and enable this trace flag. It is enabled by default in SQL Server 2019.
There is a new query hint as well, query plan profile, to enable at the query level in

17

CHAPTER 1 WHAT IS QUERY STORE?

SQL Server 2017 CU11 and SQL Server 2017 CU3. The overhead of enabling this trace
flag is estimated to be about a 2% CPU performance hit. Figure 1-8 shows how to show
the Live Execution Plan in the Activity Monitor by right-clicking any currently running
process.

Note See this blog post by SQL Server Tiger Team for more information about the
performance impacts: https://bit.1ly/2DKR7qg Also, you can only view the
plan while the query is running.

Overview

Datzbase U0 (15 MB'sec)

Batch Reguestsisec (812)

% Processor Time (36%) Waiting Tasks (5)

RUNNING SELECT NetSal.. tn_ne
O - Report S... 0 24 o intemal

100 10 100
80 8 80
€0 & €0
40 4 40
20 2 20
0 0 0
Processes
S.OU. O logn [Data.. [J Task.. [Com.. [Apphi.. [Wait Tm.. [0 Wai .. [0 Wait .. [J B.. 0 H..] Mem.. [Host.. [0 Work... O
99 1 v wm DT MNet Sql... 0 24 i intemal
104 1 Jo= -— } Microsoft... 0 24 . intemal
105 1 8= = Net Sql... 0 24 b i intemal
106 1 ™y - peeot o 24 = intemal
Details
107 1 pcsm me = m=n 2 =mLE intemal
108 16 e 24 vas intemal
109 1 3 " i Kill Process 24 | inbemal
10 1 == = Trace Process in SQL Server Profiler 32 = intemal
1
1

Figure 1-8. Show Live Execution Plan in Activity Monitor

sys.dm_exec_query_plan_stats

In SQL Server 2019, DMF (Dynamic Management Function) was introduced which
allows you to retrieve the last actual execution plan for a query. This is a compliment
to the Lightweight Show Plan Trace Flag above but you don’t have to catch the query
running to be able to get the execution plan. It requires you to turn on Trace Flag 2451.
Then you can run the code in Listing 1-2 to view the execution plan in column last_
actual_exec_plan.

18

https://bit.ly/2DKR7qg

CHAPTER 1 WHAT IS QUERY STORE?

Listing 1-2. Query for retrieving last actual execution plan for running processes

SELECT er.session_id,

er.start_time,

er.status,

er.command,

st.text,

gp.query plan AS cached plan,

gps.query plan AS last actual exec plan
FROM sys.dm_exec_requests AS er
OUTER APPLY sys.dm exec_query plan(er.plan_handle) gp
OUTER APPLY sys.dm exec_sql text(er.sql handle) st
OUTER APPLY sys.dm exec_query plan_stats(er.plan_handle) gps
WHERE session_id > 50

AND status IN ('running', 'suspended');
GO

DMVs

Dynamic Management Views (DMVs) were introduced in SQL Server 2005 and made
troubleshooting issues with SQL Server easier. There are several DM Vs related to
performance, but only a few that are related to what is running queries against the SQL
Server. We will discuss those DMVs below:

e sys.dm_exec_cached plans stores the estimated execution plan for
each query when it is executed until the cache clears it out.

e sys.dm _exec_connections contains information about all the
connections to the SQL Server. For Azure SQL Database, it returns
connections to the SQL Database. It contains relationships with sys.
dm_exec_requests and sys.dm_exec_sessions.

e sys.dm _exec_cursors contains information about cursors that are
open in the databases on the SQL Server.

19

CHAPTER 1

20

WHAT IS QUERY STORE?

sys.dm_exec_query stats contains aggregated performance data
for plans in the plan cache. When the query is purged from the

plan cache for any reason, so is the data. Similar to sys.dm_exec_
requests, this DMV contains the query_hash and query_plan_hash
fields. The query hash field allows you to find queries with same
logic. The query plan_hash field allows you to find queries with
similar execution plans.

sys.dm_exec_procedure_stats contains aggregated performance
data for cached stored procedures in SQL Server. Similar to the above
DMV, when the stored procedure’s plan is purged from the cache for
any reason, so is the data.

sys.dm_exec_query memory grants stores information on all
queries that have asked for and are waiting for a memory grant or
have been granted a memory grant.

sys.dm_exec_query plan contains the Showplan in XML format for
the batch for the plan_handle provided.

sys.dm exec_query stats contain aggregated performance data

for cached query plans in SQL Server. It contains one row per

query statement within a plan until a plan is removed from the
cache. This DMV contains information on performance including
execution_count, worker_time, physical reads, logical writes,
clr time, elapsed_time, rows, and dop. This data is provided in totals,
lasts, minimums, and maximums. It also contains information on
memory grants, threads, columnstore usage, and tempdb spills. The
query_hash field can be used to identify queries with same logic and
aggregate data together. The query plan_hash field is used to identify
similar query plans and sum up the cost of queries with similar plans.

sys.dm_exec_requests shows you each request that is running on
the SQL Server. This DMV contains information on performance
including cpu_time, reads, writes, logical reads, row_count,
wait time, andwait_type. The query hash field can be used to
identify queries with similar logic and aggregate data together.
The query_plan_hash field is used to identify similar query plans

CHAPTER 1 WHAT IS QUERY STORE?

and sum up the cost of queries with similar plans. The statement

context id field is the foreign key for the sys.query context
settings DMV.

e sys.dm_exec_sessions contains a row for each session to the SQL

Server. It contains information on what is currently running for the

session and the resources the session is using.

e sys.dm_exec_sql_text contains the text of the SQL batch uniquely
identified by the sql_handle field. The sql_handle field can be used
to get information from the following DMVs:

sys.dm_exec_query stats
sys.dm_exec_requests
sys.dm_exec_cursors
sys.dm_exec_xml_handles
sys.dm_exec_query memory grants

sys.dm_exec_connections

The plan_handle field can be used to uniquely identify the query plan for a batch from

the plan cache and obtain information from the following DM Vs:

sys.dm_exec_cached plans
sys.dm_exec_query stats

sys.dm_exec_requests

o sys.dm exec_xml_handles contains information about active

handles that are open from using sp_xml_preparedocument.

Disadvantages of DMVs

There are some disadvantages to using DMVs over Query Store. One is that the data is

not persisted to disk; it is only in memory. So, if you restart SQL Server, the data is lost

for troubleshooting purposes. Two, the plan cache is allocated memory and plans will

be purged from the cache as needed to make room for new plans, so you lose the ability

to see everything that has run on the server since it was started. Lastly, you have to build

some system to persist the data to disk yourself and to analyze it to get the most value out

of the data over time.

21

CHAPTER 1 WHAT IS QUERY STORE?

sp_whoisactive

sp_whoisactive is a stored procedure written by Adam Machanic that is very useful

in capturing information from several DMVs. The procedure and several blog posts
about how to use can be found at http://WhoIsActive.com. This procedure combines
the DMVs discussed above all into one stored procedure with parameters for you to

able to pull back different information. This is useful for getting the estimated plans for
processes that are running on your system at the moment. One useful trick is to capture
this data into a table periodically, such as every minute, so that you capture long running
queries that you can troubleshoot. Article number 25 in the blog series on the web site
describes how to capture the data into a table. In Listing 1-3 you will find code with some
recommended parameters for capturing the text of the query and execution plans in
XML format, along with other useful information, including wait statistics, which will
talk about next:

Listing 1-3. Recommended parameters for running sp_whoisactive into a table
for troubleshooting

EXEC dbo.sp _WhoIsActive
@get _plans = 1,
@get_full inner text = 1,
@format_output = 0,
@get_task info = 2,
@destination table = 'DBA.dbo.WhoIsActiveOutput';

There are several other parameters you may find useful to explore all the articles and
decide for yourself what is most beneficial for you. There is a @help parameter that prints
out documentation of all the parameters.

Wait Statistics

Wait statistics provide another way to troubleshoot what is happening on your SQL
Server. Wait statistics were introduced in SQL Server 2005 and offered us a whole new
way of troubleshooting. Wait statistics essentially tell you what the database engine

is waiting on when it is trying to do work. Wait statistics are in two categories: signal
waits and resource waits. When SQL Server is waiting on a thread to become available,
it considered a signal wait; this usually indicates that the CPU is running high on the

22

http://whoisactive.com

CHAPTER 1 WHAT IS QUERY STORE?

server. Other waits are considered resource waits, such as waiting for the lock of a page.
There are hundreds of resource waits. Wait statistics can be queried from the DMV
sys.dm_os wait_ stats. With this information, you are to tell what your queries are
waiting on to execute. You can'’t tell by an individual query, but with the introduction of
Query Store, you will see later it will accumulate per query.

Tip There is a library online that explains all the wait types available from
SQLskills at the following URL: www.sqlskills.com/help/waits/.A query
that will show you the percent of each wait statistics that has been used since
SQL Server was started is available on Paul Randal’s blog at https://bit.
ly/2wsQHQE.

Stabilizing Performance Before Query Store
Techniques

There were a few ways to stabilize the performance of query plans before Query Store
was introduced in SQL Server 2016. One way was to use plan guides and the USE PLAN
hint with the query. A second was to keep your statistics up to date as best as possible

to ensure the optimizer had the best data available to create a plan. Another was to
UPDATE STATISTICS hoping SQL Server would create a better query plan on next
execution. Then you also could recompile a stored procedure or function to get to see if
SQL Server would generate a better plan. Lastly, you could remove a plan from the cache
so that a new plan would be created the next time the query was executed to see if a
better plan was created.

Plan Guides/USE PLAN Hint

Plan guides are used to stabilize the performance of a query when you cannot or do
not want to change the query. Plan guides work by influencing the optimizer by using
query hints or a fixed query plan. Third-party applications can benefit from the use of
plan guides because you cannot change the queries. To use a plan guide, you specify
the T-SQL you want to optimize and provide query hints for the specific query to use,
and SQL Server will match the text of the T-SQL and use the hints when executing that
statement. Specifying the plan guide is done using the OPTION clause on the query.

23

http://www.sqlskills.com/help/waits/
https://bit.ly/2wsQHQE
https://bit.ly/2wsQHQE

CHAPTER 1 WHAT IS QUERY STORE?

There are different types of plan guides:
e OBJECT plan guides

o This type of plan guide matches to object types, such as stored
procedures, scalar user-defined functions, multi-statement table-
valued user-defined functions, and DML triggers.

e SQL plan guides

This type of plan guide matches queries based on the T-SQL you
provide. They must be parameterized in the correct format. They
have to match exactly down the spacing. They apply to stand-
alone T-SQL and batches.

o TEMPLATE plan guides

This type of plan guide matches stand-alone queries
parameterized to a certain form. They are used to override a
database PARAMETERIZATION option. They can create in the
following situations:

e When the database SET option for PARAMETERIZATION is set to
FORCED, but you want queries to compile using the rules for
Simple Parameterization.

e And when you want the opposite effect, the database SET option
for PARAMETERIZATION is SIMPLE and you are to use Forced
Parameterization.

Plan guide matching occurs at the database level. For SQL or TEMPLATE-based plan
guides, SQL Server matches the parameters @module_or_batch and @params to a query
character by character.

When you create a plan guide, it will remove the current plan from the plan cache.
When you create an OBJECT or SQL plan guide for a batch, SQL Server removes the
query plan that has the same hash value. When you create a TEMPLATE plan guide, SQL
Server removes all the single-statement batches in the plan cache for that database.

After you create a plan guide, you use the OPTION clause to specify the USE PLAN
parameter to specify a query hint.

24

CHAPTER 1 WHAT IS QUERY STORE?

Listing 1-4 is the original query:

Listing 1-4. A SELECT statement for USE PLAN

SELECT count(x) AS Total
FROM Sales.SalesOrderHeader h
INNER JOIN Sales.SalesOrderDetail d
ON h.SalesOrderID = d.SalesOrderID
GO

Listing 1-5 is the same query with the USE PLAN query hint specified:

Listing 1-5. A USE PLAN Example

SELECT count(x) AS Total
FROM Sales.SalesOrderHeader h

INNER JOIN Sales.SalesOrderDetail d

ON h.SalesOrderID = d.SalesOrderID
OPTION (USE PLAN N'
<ShowPlanXML xmlns=
"http://schemas.microsoft.com/sqlserver/2004/07/showplan” Version="0.5"
Build="9.00.1187.07">
<BatchSequence>
<Batch>
<Statements>

</Statements>
</Batch>
</BatchSequence>
</ShowPlanXML>
")
(0]

25

CHAPTER 1 WHAT IS QUERY STORE?

Updating Statistics

Using UPDATE STATISTICS to update statistics for a table or index can help improve
performance if you know a lot of data has changed in the table or index. Beware that
updating statistics does recompile all the plans that the table or index are referenced in,
so you will not want to do this too frequently unless necessary. Prior to SQL Server 2014,
20% of a table had to be updated before the auto updated statistic would be triggered
unless you used Trace Flag 2371 which was introduced in SQL Server 2008 SP1 to lower
this; 20% is not ideal for large tables such as data warehouse tables. In SQL Server 2016,
this trace flag is on by default.

To update statistics for a table, use Listing 1-6.

Listing 1-6. UPDATE STATISTICS for a table

USE DATABASE;

GO

UPDATE STATISTICS SchemaName.TableName;
GO

To update statistics for a particular index, use Listing 1-7.

Listing 1-7. UPDATE STATISTICS for an index

USE DATABASE;

GO

UPDATE STATISTICS SchemaName.TableName IndexName;
GO

Recompiling Stored Procedures

Whenever you can identify a stored procedure, trigger, or function that is performing
poorly due to parameter sniffing or other issues, you can use sp_recompile to recompile
the object on the next execution of the procedure. Parameter sniffing occurs when an
execution plan is generated that is optimal for one workload, but not optimal for all
workloads based on the parameters used for the query. Running this procedure will

26

CHAPTER 1 WHAT IS QUERY STORE?

effectively remove the current plan from the plan cache so a new plan can be compiled
on the next execution of the query. The new plan may be the same as the old plan
though depending on the parameters passed in.

Removing Plans from the Plan Cache

You can query sys.dm_exec_cached_plans and sys.dm_exec_sql_text to retrieve a plan
handle to remove a specific plan from the cache that is not part of a stored procedure,
function, or trigger by using the following code.

First, in Listing 1-8 you select the text you need to find that is part of your query:

Listing 1-8. Find the plan handle for the SQL text you are looking for

SELECT cp.plan_handle, st.

FROM sys.dm exec_cached plans AS cp

CROSS APPLY sys.dm exec_sql text(plan_handle) AS st
WHERE LIKE N'%/x MyTable %';

Then copy and paste the plan handle into the FREEPROCCACHE procedure in the
code provided in Listing 1-9:

Listing 1-9. DBCC FREEPROCCACHE to remove SQL text plan from the plan cache

DBCC FREEPROCCACHE (<plan_handle>);

Query Store: The Game Changer

Query Store changes how you troubleshoot bad query plans because now everything is
collected, stored on disk, and persisted over time to provide you trends in performance.
It provides all the estimated plans that have been used in the retention period you have
defined which allows you to troubleshoot the query with a graphical interface easily and
efficiently. Query Store changes how you can troubleshoot performance, baseline your
system, and stabilize the performance of your SQL Server significantly.

27

CHAPTER 1 WHAT IS QUERY STORE?

What Information Is Gathered

Query Store gathers runtime statistics for each query that ran and their estimated plans.
The following data is collected per query and aggregated per time interval you have
specified in SQL Server 2019:

o Execution count

e Duration

e CPUtime

e Logical reads

o Logical writes

o Physical reads

e CLRtime

« DOP

e Memory consumption
¢ Row count

Each statistic is available in totals, averages, maximums, minimums, and standard

deviations. More information about what data will be discussed in Chapters 4 and 5.

What Information Query Store Provides for Us:
Use Cases

There are different use cases for Query Store besides just collecting performance
information. They include

o Finding and fixing regressed queries

o Finding and identifying top resource consuming queries

o A/Btesting

o Stabilizing performance when upgrading SQL Server

o Finding and identifying ad hoc workloads so you can improve them

These will be discussed in more detail in Chapter 6.

28

CHAPTER 1 WHAT IS QUERY STORE?

Automatic Plan Correction

SQL Server 2017 introduced Automatic Plan Correction that will automatically force
plans and unforce plans based on plan regression. So, you no longer have to force plans,
although you still can if necessary manually. Chapter 8 will talk more about how this
feature works.

Wait Statistics

SQL Server 2017 introduced wait statistics that are being collected per query in 23
different categories, such as buffer and CPU. A detailed list is provided in Chapter 8 of
which wait statistics are in each category. Chapter 8 will talk more about this feature.

Conclusion

Query Store offers an automated and easy way to collect performance information
about queries that are running on your SQL Server. There are several use cases for
using Query Store besides just seeing performance information. It provides Automatic
Plan Correction and wait statistics collection starting in SQL Server 2017, which are
invaluable new tools. The rest of the book will go into much more detail about Query
Store so you can benefit the most from using it.

29

CHAPTER 2

Overview and Architecture
of the Query Store

In order for the Query Store to collect and maintain a baseline on query performance,

it needs an architecture that has minimal impact on the overall performance of SQL
Server. This chapter will review how Query Store operates to collect data. We’ll also cover
the various data sets that make up the Query Store. This information should make it
possible for you to both understand what the Query Store is doing and have faith that it’s
performing these actions in the safest manner possible for your databases.

How Query Store Works

While we are going to cover the data collected in some detail later in the chapter, it
makes it easier to understand how Query Store works if we first give a quick overview of
the types of data being collected. There are three fundamental data sets that define the
Query Store data:

e Query and Plan Information: Data about the query itself and about
the execution plans derived from that query by the query optimizer.

e Query Runtime Information: This is the information about how fast
the query ran and how many times it was called, along with other
performance-related information from query execution.

e Query Wait Statistics: This information covers the various waits that
occurred on a single query during the execution on the server.

31
© Tracy Boggiano and Grant Fritchey 2019

T. Boggiano and G. Fritchey, Query Store for SQL Server 2019, https://doi.org/10.1007/978-1-4842-5004-4_2

CHAPTER 2 OVERVIEW AND ARCHITECTURE OF THE QUERY STORE

With those core data sets defined, we can now move on to determine exactly where
that information comes from and how it gets collected. We will cover all three data sets
in much more detail later in the chapter. We will use these data sets as our architecture
for describing the ways that Query Store gathers the data because the data sets help
define the approach taken by the Query Store. This is why it was important to establish
what those data sets are before we talk about where they came from.

On additional detail that you need to know to understand how the Query Store
works is that this is a database level setting. It’s not controlled on the server, but
rather database-by-database in your system. This is an important detail because the
information the Query Store captures is written to each individual database, not a central

location.

Collecting Query and Plan Information

When a query gets submitted to SQL Server, it runs through a series of processes. These
processes ensure that the query is properly written, that the objects in the database
referenced by the query actually exist, and, most importantly, that the query is optimized
to run quickly. Figure 2-1 shows an overview of this process:

32

CHAPTER 2 OVERVIEW AND ARCHITECTURE OF THE QUERY STORE

T-SQL Query

Algebrizer

Object
Binding

Query
Optimizer

Execution
Plan

Query Plan Cache

Figure 2-1. The basic process of generating an execution plan

33

CHAPTER 2 OVERVIEW AND ARCHITECTURE OF THE QUERY STORE

We start with the T-SQL query of course. Only Data Manipulation Language (DML)
queries are captured by the Query Store. These are queries that are used to SELECT,
UPDATE, DELETE, or INSERT data. Queries that are used to manipulate the data
structures, Data Definition Language (DDL), are not captured to the Query Store. When
the query first comes to SQL Server, it goes through an internal process called the
Algebrizer. This does a number of things, but the two we care about the most are that
it validates that the syntax is correct in the parser and it ensures that the objects in the
query are actually in the database, through object binding. The Algebrizer also gathers a
bunch of information that, along with the query, it passes to the query optimizer.

The query optimizer is the process that determines an efficient way to retrieve or
modify your data based on the query you've supplied it and the tables, indexes, statistics,
and constraints in your database. The result of the query optimization process itself is an
execution plan which gets written into a memory space called the plan cache.

With one exception, which we’ll cover in a minute, the Query Store does not interfere
with this process in any way. What the Query Store does is capture the output of the
processes that create an execution plan. Here’s a graphic showing how the Query Store
works side-by-side with the query optimization process as you can see in Figure 2-2:

34

CHAPTER 2 OVERVIEW AND ARCHITECTURE OF THE QUERY STORE

‘ T-SQL Query '

Algebrizer

Query Store

Object Asynchronous Write to Disk
Binding

Query Store
Memory

Query
Optimizer

Execution

Asynchronous Data Collection
Plan

Query Plan Cache

Figure 2-2. The process of capturing the execution plan and query for the Query Store

35

CHAPTER 2 OVERVIEW AND ARCHITECTURE OF THE QUERY STORE

After the query optimizer does its work and generates an execution plan, an

asynchronous process captures the query and the execution plan for the query store.

It outputs them to a temporary storage space in memory. On a regular basis, the

query information stored in memory gets written to the database through another
asynchronous process. Microsoft describes this as occurring with minimal latency. The
goal is to ensure that the Query Store data collection process does not interfere with the
normal processing of the Query Optimizer.

The one exception to this that mentioned earlier is that the asynchronous process
that captures queries and query plans also checks to see if there is plan forcing in place.
We'll cover that in a lot of detail in Chapter 7. Plan forcing is the one place where the
Query Store does interfere with the normal optimization process. If plan forcing is in
place for a query, then the plan being forced will be used instead of the plan generated
by the Query Optimizer. That will also be the plan that gets written to the plan cache.

With that, the core processing of retrieving queries and query plans is complete. The
information is captured by individual query, not by stored procedure or batch. If the
query is part of an object, that object’s ID is captured along with the query information.
WEe'll cover the details of what exactly gets capture in the section titled “The Data
Collected By Query Store” in this chapter.

Collecting Query Runtime Information and Wait Statistics

The collection of the runtime data is a little more straightforward than the query and
query plan data collection. All the information collected about the runtime statistics
and wait statistics occurs after the query and query plan are already captured. The query
executes and then the Query Store process takes place as Figure 2-3 shows:

36

CHAPTER 2 OVERVIEW AND ARCHITECTURE OF THE QUERY STORE

Query Store

Timed Asynchronous
Write to Disk

Query Store
Memory

Query

: Asynchronous Data Collection
Execution

Figure 2-3. The process of capturing runtime metrics for the Query Store

There is only one fundamental difference in the processing of this data collection
and that of the query and query plan data. This is the timed asynchronous writes to disk.
Instead of a process with minimal latency, the data is stored and aggregated in-memory
for a period of time. The default is 15 minutes. You can control this and we'll cover it in
detail in Chapter 3.

The information, such as how long a query took to run and the waits experienced
during the execution, is written to memory. That data is aggregated there in memory.
When that information is written to disk, it gets reaggregated based on another setting,
the collection interval. By default this is 60 minutes. What this aggregation gives you is
the ability to compare two different time periods so that you can see if the performance
of a query is changing over time. We'll cover this in more detail in the “Data Collected”

section.

37

CHAPTER 2 OVERVIEW AND ARCHITECTURE OF THE QUERY STORE

General Notes on Data Collection

The Query Store works with all the other processes within SQL Server. So, for example,
if a query is recompiling and it generates the same execution plan that is already in the
Query Store, usage statistics are updated and nothing else happens. If, however, this
recompile results in a new execution plan, then that plan will get captured to the Query
Store just as the old plan did.

In the event of a cross-database query using three-part naming, the database from
which the call is being made is where the query will be recorded, regardless of where the
data being retrieved or modified lives. This is important so that you know where to look
for Query Store information if more than one database is involved. You will not see the
query in both databases.

Because all the data collection done in the Query Store gets written to disk
asynchronously, it is possible to lose data because it has not yet been flushed to disk.
There is a command to make this happen manually, sys.sp query store flush db.
Executing that command will force anything currently in memory to be immediately
written to disk. This ensures that before a controlled failover, shutdown, or any event that
would result in the data being removed from memory, you can retain that data.

The Data Collected by Query Store

As we stated at the beginning of the chapter, there are essentially three sets of
information that define the data collected by the Query Store: query and plan data,
runtime data, and wait statistics. As you saw in the previous section, the runtime

data and the wait statistics are collected the same way, so why break them apart? The
reason is simple, the focus of the book is SQL Server 2019, but Query Store has been
implemented since SQL Server 2016. One change between 2016 and 2017 was the
addition of wait statistics in the data collection. So we’re breaking that apart just so those
who will only see the runtime information still get as much out of the book as those who

38

CHAPTER 2 OVERVIEW AND ARCHITECTURE OF THE QUERY STORE

look at both runtime data and wait statistics. Plus, you'll need to plan on querying the
wait statistics slightly differently than you do the runtime data, but we’ll cover that in
detail in Chapter 5.

One point about the system views that expose the Query Store information must
be made. The information displayed in these system views combines, but does not
aggregate, the information stored on disk and in memory. As you know from earlier in
the chapter, data is written first to memory and then eventually written to disk. During
that interval, the runtime data will be aggregated in both places, but visible as separate
rows in some of the catalog views. There’s nothing you need to do to combine this data.
SQL Server does it for you. However, there’s also nothing you can do to separate this
data. It's combined at the system level.

Let’s start with the data collected about the query and the query plan itself.

Query and Query Plan Information

As we've already stated previously, the foundation for the information gathered by Query
Store is the query itself. You may pass a batch with five or ten statements, but each of
those statements, assuming they're all data manipulation statements, will be individual
queries in the Query Store. The catalog views that expose the information available in
Query Store are visible in Figure 2-4:

39

CHAPTER 2 OVERVIEW AND ARCHITECTURE OF THE QUERY STORE

sys.query_store_query

sys.query_context_settings

D query_text_id

context_settings_id

set_options

language_id

date_format

date_first

status

required_cursor_options

merge_action_type

default_schema_id

is_replication_specific

is_contained

D context_settings_id

query_id

object_id

batch_sql_handle

query_hash

last_execution_time

count_compiles

avg_compile_duration

last_optimize_duration

|

sys.query_store_query_text

P query_text_id

query_sql_text

statement_sql_handle

is_part_of_encrypted_mo
dule

has_restricted_text

sys.query_store_plan

engine_version

compatibility_level

query_plan

is_trivial_plan

count_compiles

Figure 2-4. Catalog views containing query and query plan information

40

CHAPTER 2 OVERVIEW AND ARCHITECTURE OF THE QUERY STORE

There are only four catalog views that expose the information stored on the query
and the query plan. At the top and center, you can see sys.query store_query.In
the diagram only a few of the 30 columns are shown as examples of what information
is available. Each query has attributes that may or may not be unique to the query.
These attributes are the tables to the left and right of sys.query store query: sys.
query_store context_settings and sys. query store_query text. These attributes
can be created once and then reused by multiple queries. This includes the query text. If
other attributes change, but the query text remains the same, then more than one query
in sys.query store query may have the same query text idvalue (query_id is the
primary key). The query plans stored in sys.query store plan are tied directly to the
query via a foreign key on query_id. Any given query may have multiple plans. Situations
arise like parameter sniffing and others that result in a given query with more than one
valid execution plan. The table shown in Figure 2-4 for sys.query store plan also only
contains a sampling of the 23 columns available.

We'll be covering querying these tables in detail in Chapter 5. However, it’s worth
pointing out that some of the information may be a little misleading. If you look at both
sys.query store queryand sys.query store plan asshown in Figure 2-4, both have a
column labeled count_compiles. While these values are labeled the same, they actually
represent the difference between the results of a compile or recompile event for a query
or for a plan. Every time a query gets compiled or recompiled, that value will be updated
appropriately. However, that compile event may, or may not, result in the same plan. If a
different plan gets compiled, then that plan gets its own distinct count_compiles value
updated, not every plan associated with the query. Details like this we’ll be addressing
throughout the book.

The rows of data stored in sys.query store plan actually act as the drivers for the
runtime data collected. Let’s now take a look at that information.

Runtime Information

The runtime data actually gets aggregated based on two different values, the plan_id as
mentioned in the previous section and the runtime interval that we talked about earlier
(that has a default of 60 minutes). Figure 2-5 represents the information captured:

41

CHAPTER 2 OVERVIEW AND ARCHITECTURE OF THE QUERY STORE

sys.query_store_plan sys.query_store_runtime_stats_
interval
plan_id
runtime_stats_interval_id

D query_id
start_time

engine_version .
end_time

compatibility_level
comment

query_plan +

is_trivial_plan .
sys.query_store_runtime_stats

count_compiles
runtime_stats_id

|- | D plan_id
o
D runtime_stats_interval_id

execution_type

first_execution_time

last_execution_time poO————

count_executions

avg_duration

min_duration

max_duration

stdev_duration

L 4

Figure 2-5. Catalog views containing runtime information

42

CHAPTER 2 OVERVIEW AND ARCHITECTURE OF THE QUERY STORE

The model may look quite a bit more simplified, but it masks a few complexities that
are worth noting. First up, the sys.query store runtime_stats catalog view shows only
a small part of the 58 columns that make up the view. A lot of that data is laid out similar
to what you see with the duration values: an average, a minimum, a maximum, and a
standard deviation. That holds true for such interesting data as the CPU time, row count,
memory, and more.

The next most important thing to keep in mind when dealing with the runtime data
is that it is broken up into multiple aggregations as determined by the runtime interval.
Since you're unlikely to turn Query Store on at the top of the hour, the sys.query store_
runtime_stats_interval system view will have the start time and end time of each
interval. While these will be the appropriate amount of time apart, 60 minutes by default,
the start and stop times are not going to coincide with the clock.

Another thing to remember is that there are multiple time values to take into account
with this information. In addition to the runtime interval, there is also the time to flush
to disk, with a default of 15 minutes. That means that for any given plan_id, there may
be data on disk across multiple time intervals as well as data in memory.

Further, the execution_type can affect the information collected. This column has
three values:

e 0 - Successful execution
e 3 -User aborted execution
e 4 - An exception or error causing aborted execution

In the case of a query being aborted for any reason, the runtime data is still collected.
However, it’s aggregated into a separate value for the given plan_id and for the given
runtime_stats_interval id. Because of this and the fact that there can be more than
one row of runtime data between memory and disk, when you start writing your own
queries against this data, you need to aggregate based on the plan_id, the execution_
type, and the runtime_stats_interval id.

Wait Statistics

We've separated the wait statistics from the runtime information only because some
people using this book may be on SQL Server 2016. Figure 2-6 shows the layout of the
information gathered for the wait statistics:

43

CHAPTER 2

sys.query_store_plan

engine_version

compatibility_level

query_plan

is_trivial_plan

count_compiles

OVERVIEW AND ARCHITECTURE OF THE QUERY STORE

sys.query_store_runtime_stats_

interval

runtime_stats_interval_id

start_time

end_time

comment

sys.query_store_wait_stats

e

wait_stats_id

D runtime_stats_interval_id
execution_type
wait_category

total_query_wait_time_
ms

avg_query_wait_time_ms
last_query_wait_time_ms
min_query_wait_time_ms

max_query_wait_time_
ms

stdev_query_wait_time_
ms

Figure 2-6. Catalog views contain wait statistics

44

CHAPTER 2 OVERVIEW AND ARCHITECTURE OF THE QUERY STORE

Just like with the runtime information, the wait statistics are aggregated by the
runtime interval. Also, like the runtime information, wait statistics are dependent on
the flush to disk interval, a default of 15 minutes, so will be aggregated in two locations.
Again, like the runtime information, the execution_type also affects the aggregation
of the wait statistics. Finally, the wait statistics add one more wrinkle. There is a
wait_category that must be taken into account when aggregating the data across time
intervals and execution_types. We'll be covering all this in more detail in Chapter 5.

You can also see that there is a similar pattern to the data with a minimum,
maximum, last, average, and standard deviation being stored. However, the wait time is
the only interesting value. I left off a couple of descriptive columns in Figure 2-6 to save
space. The rest of the information there is the important data for wait statistics.

Information About the Query Store

There is actually one final catalog view that we should mention, although the details
of what it represents will be covered in Chapter 3. That view is sys.database_query_
store_options. While it does represent some of the information gathered about the
Query Store, it is not the focus of this chapter.

Summary

The principal driving factor of the methodology of collecting query store data is to do so
in as unobtrusive a way as possible. All the asynchronous calls between the storage of
the information to memory and disk make that abundantly clear. However, once the data
is stored to disk, it lives with the database and will be available, wherever that database
goes, until it is removed from another process, such as automatic cleanup, or by you
manually removing the information. In Chapter 3, we’ll finally get going with starting,
stopping, and controlling the Query Store.

45

CHAPTER 3

Configuring Query Store

As with any SQL Server feature, maximizing its potential involves tuning that feature
for your specific environment. Common advice would be to begin with the defaults,
then compare these with commonly agreed best practices and adjust those to what
makes sense for your use case if necessary. Often there will be a widely accepted set

of best practices within the community for typical deviations from Microsoft defaults.
Sometimes defaults that appear “dumb” are often set that way, not because Microsoft is
ignorant of its product or user base but for backward compatibility reasons.

In this chapter, we will discuss the steps for implementing and configuring the Query
Store feature. We will cover the default configuration both on-premise and in the Azure
SQL Database Platform as a Service (PaaS) offering. There will be a detailed breakdown of
all the Query Store configuration options and the Query Store catalog views related to the
configuration (for a list of all the Query Store-related catalog views, look to Chapter 5).

After this, we will commence a deep dive into best practices for configuring the
Query Store. We will talk about how parameterization and parameterization settings can
impact Query Store as well as the impact of renaming objects. Trace flags to improve
recovery times and important performance-related patches for versions 2016 and 2017
will also be highlighted.

For those of you leveraging the capabilities of In-Memory OLTP, the use of Query
Store with natively compiled stored procedures will be covered. We will also discuss
an exciting new feature introduced in SQL 2017, known as automatic plan regression
correction (APRC). What it entails and how to enable or disable it will be covered.

We will close the chapter with a discussion of the various query store error states and
details on how to maintain the Query Store as a DBA.

47
© Tracy Boggiano and Grant Fritchey 2019

T. Boggiano and G. Fritchey, Query Store for SQL Server 2019, https://doi.org/10.1007/978-1-4842-5004-4_3

CHAPTER 3 CONFIGURING QUERY STORE

Query Store Defaults

In this section, we will look at the default configuration options for the Query Store in
SQL Server. Default options in SQL Server are not always the optimal configuration
setting for your environment, but changing them does merit careful consideration.
An important point to note is that the Query Store is disabled by default in the on-premise
product for versions 2016, 2017, and 2019 at time of this writing. However, in the
Microsoft Platform as a Service (PaaS) offering Azure SQL Database, it is enabled by
default. For Azure SQL Database Managed Instances, a managed Infrastructure as a
Service (IaaS) offering, the Query Store is supported but also disabled by default.

To enable Query Store, run the following T-SQL command in Listing 3-1:

Listing 3-1. T-SQL to enable Query Store on a database
ALTER DATABASE [<Database Name>] SET QUERY STORE=ON;

To enable Query Store on all databases on your instance you can run the code in
Listing 3-2:

Listing 3-2. Turn Query Store on all databases
DECLARE @SQL NVARCHAR(MAX) = N'';

SELECT @SQL += REPLACE(N'ALTER DATABASE [{{DBNAME}}] SET QUERY_STORE=ON ',
"{{DBName}}", [name])

FROM sys.databases

WHERE state desc = 'ONLINE'
AND [name] NOT IN ('master', 'tempdb')

ORDER BY [name];

EXEC (@S0L);

The Query Store cannot be enabled in either the master or the tempdb system
databases. Enabling the Query Store in the model database does not actually capture any
Query Store data in the model database, but this configuration change will be reflected
in newly created databases from that point forward. In the msdb system database, the
Query Store will behave no differently than the Query Store in a user database. A table
of options for Azure SQL Database and regular on-premise SQL server is presented in
Table 3-1.

48

CHAPTER 3 CONFIGURING QUERY STORE

Table 3-1. Configuration options for Query Store

Configuration Name Options Description Default
OPERATION_MODE OFF Mode of operation OFF (SQL 2016 and 2016)
READ_WRITE for the Query Store READ_WRITE for Azure SQL
READ_ONLY Database
CLEANUP_ BIGINT Dictates CLEAN_UP 30 days (or 7 for Azure SQL
POLICY(STALE_QUERY_ policy (0 is never) Database Basic Edition)
THRESHOLD_DAYS)
DATA_FLUSH_ BIGINT Flush interval 900 (15 minutes)
INTERVAL_SECONDS frequency for buffered
Query Store data
MAX_STORAGE_SIZE_ BIGINT The maximum size 100 (SQL Server 2016 and
MB of Query Store in MB ~ 2017), 1000 (SQL Server 2019),
(1024 for SQL Azure Database
Premium and 10 for SQL Azure
Database Basic Edition)
INTERVAL_LENGTH_ 1,5,10,15, Aggregation interval 60
MINUTES 30, 60, or for statistics
1440
SIZE_BASED _ AUTO Attemptto clean up if ~ AUTO
CLEANUP_MODE OFF approaching capacity
QUERY_STORE_ AUTO Query capturing AUTO (SQL Server 2016 and
CAPTURE_MODE ALL behavior 2017), ALL (SQL Server 2019)
CUSTOM ALL (Azure SQL Database)
NONE
MAX_PLANS_PER_ INT How many distinct 200. Not available in SQL Server
QUERY plans to keep per 2016
query
WAIT_STATISTICS_ ON Specifies rather to ON in SQL Server 2017 and
CAPTURE_MODE OFF capture wait statistics 2019 and Azure SQL Database.
for queries Not available in SQL Server 2016

49

CHAPTER 3 CONFIGURING QUERY STORE

Configuration Options

Query Store has many options to configure to properly be set up to collect data in the
most beneficial way for your database. This section will explain those options and give
you recommendations on what the best settings would be and how to set those options.
First, we will go through all the options and what they mean and look at code on how to
change them. Then we will see what is available in the GUI and how to change options
there.

OPERATION_MODE

This setting sets the operational mode of the Query Store. The Query Store operates in
either read-only or read and write mode. In read-only mode, existing data will remain in
the Query Store, but no new queries will be captured. If the Query Store reaches capacity,
it will change from READ_WRITE to READ_ONLY mode. If capturing new queries is desired,
which it typically will be, it is important to monitor to ensure that the Query Store has its
OPERATION_MODE set correctly. The T-SQL syntax for setting this is in Listing 3-3.

Listing 3-3. T-SQL to set Query Store operation mode

ALTER DATABASE [<Database Name>] SET QUERY STORE (OPERATION MODE = READ
WRITE);

The Query Store has the concept of an actual state and the desired state. Where the
desired state is READ_WRITE, and the actual state is READ_ONLY, there will be an associated
reason which will be displayed in the catalog view sys.database query store options
under the column readonly reason. The associated catalog views for the Query Store
will be covered in Chapter 5. The default setting is READ_WRITE.

CLEANUP_POLICY (STALE_QUERY_THRESHOLD_DAYS)

The Query Store has a configurable number of days to store Query Store data. The Query
Store settings SIZE_BASED CLEANUP_MODE and QUERY_STORE_CAPTURE_MODE will also

have an impact on the data stored in Query Store, so it is possible for queries that do

not exceed the stale threshold not to be stored. The default for STALE_QUERY_THREHOLD _
DAYS is 30 days (or 7 days if using Azure SQL Database Basic edition). The T-SQL for
configuring this setting is in Listing 3-4.

50

CHAPTER 3 CONFIGURING QUERY STORE

Listing 3-4. T-SQL to set STALE_QUERY_THRESHOLD_DAYS

ALTER DATABASE [<Database Name>] SET QUERY_STORE (CLEANUP_POLICY = (
STALE_QUERY_THRESHOLD DAYS = <Value>));

DATA_FLUSH_INTERVAL_SECONDS

As discussed in Chapter 2, for performance purposes the Query Store will buffer data
and write it asynchronously to disk at configurable intervals. This interval is known as
the data flush interval, and it is specified in seconds. As will be discussed in greater detail
in the section on Best Practices, this option requires careful consideration as it can have
a considerable impact on the performance of the Query Store. Anyone familiar with
indirect checkpoints and target recovery intervals in SQL Server will have a grasp of the
trade-offs involved in setting the data flush interval for the Query Store. A short flush
interval will result in more aggressive I/0 spikes when the Query Store data is flushed to
disk. This can lead to performance degradation of the I/O subsystem. A longer data flush
interval should allow SQL Server to spread the I/O load over a longer time frame at the
expense of greater data loss in the event of a systemic failure (since more of the Query
Store data will be held in volatile memory). The default flush interval is 900 seconds

(15 minutes). The T-SQL for configuring this setting is in Listing 3-5.

Listing 3-5. T-SQL to set DATA_FLUSH_INTERVAL_SECONDS

ALTER DATABASE [<Database Name>] SET QUERY STORE (DATA FLUSH INTERVAL
SECONDS = <Value>);

MAX_STORAGE_SIZE_MB

This setting determines the maximum storage size for the Query Store data for an
individual database in megabytes. The default setting of 1000 MB is quite small for
any database with even a moderate level of activity. If this threshold is reached, the
Query Store will change state from READ_WRITE to READ_ONLY. Even with SIZE_BASED_
CLEANUP_MODE set to AUTO (more on this later), it is still possible for the Query Store to
reach maximum capacity especially during periods of high activity. It is crucial to set
the maximum storage size for the Query Store appropriately for your environment,
considering your desired history retention set by the STALE_QUERY_THRESHOLD_DAYS
value. The T-SQL for configuring this setting is in Listing 3-6:

51

CHAPTER 3 CONFIGURING QUERY STORE
Listing 3-6. T-SQL to set MAX STORAGE_MAX_MB

ALTER DATABASE [<Database Name>] SET QUERY STORE (MAX STORAGE SIZE MB =
<Value>);

INTERVAL_LENGTH_MINUTES

The INTERVAL_LENGTH_MINUTES is an important setting as it determines what interval
data is aggregated into for viewing later. You can only select from values of 1, 5, 10, 14,
60, and 1440 minutes. The default value is 60 minutes. The smaller the interval, the
more disk space it will take up but the more granular data you will have. The T-SQL for
configuring this setting is in Listing 3-7.

Listing 3-7. T-SQL to set INTERVAL_LENGTH_MINUTES

ALTER DATABASE [<Database Name>] SET QUERY_STORE (INTERVAL LENGTH MINUTES
= <Value>);

SIZE_BASED_CLEANUP_MODE

The SIZE_BASED CLEANUP_MODE default value is AUTO which means it will automatically
clean up the data based on the MAX_STORAGE_SIZE MB and CLEANUP_POLICY settings.
The other option is to set it to OFF. This setting is set to tell Query Store to clean up data
automatically before reaching the number of days specified with the CLEANUP_POLICY
setting if it reaches the MAX_STORAGE_SIZE MB value first. So, if you set Query Store to
keep 30 days of data and it reaches your max size of 2 GB at day 28, it will start purging
data at the point and time. The T-SQL for configuring this setting is in Listing 3-8.

Listing 3-8. T-SQL to set SIZE_BASED_CLEANUP_MODE

ALTER DATABASE [<Database Name>] SET QUERY_STORE (SIZE BASED CLEANUP_MODE
= <Value>);

QUERY_STORE_CAPTURE_MODE

The QUERY_STORE_CAPTURE_MODE default is ALL for both SQL Server on-premise and for
Azure SQL Database. Another option is NONE, which tells Query Store to not capture new
queries only, it continues to capture runtime statistics for queries that have already been

52

CHAPTER 3 CONFIGURING QUERY STORE

captured by Query Store. The third option AUTO tells SQL Server not to capture queries
that do take up significant resources or are not executed often. The T-SQL for configuring
this setting is in Listing 3-9.

Listing 3-9. T-SQL to set QUERY_STORE_CAPTURE_MODE

ALTER DATABASE [<Database Name>] SET QUERY STORE (QUERY STORE_ CAPTURE_MODE
= [<Value>]);

For the CUSTOM option for QUERY_STORE_CAPTURE_MODE, there are three options you
can use to control how that data will be stored. This option was introduced to help
with controlling what data was captured for ad-hoc workloads in SQL Server 2019. The
STALE_CAPTURE_POLICY_THRESHOLD accepts a number for days or hours, from
1 hour up to 7 days that a query must exceed on of the values in the next three options
in for the data for query to be captured. The three options that control what will be
captured in the CUSTOM mode and operate in an OR manner are listed below:

o EXECUTION_COUNT - Specifies how many times a query must be
executed in the time period.

e TOTAL_COMPILE_CPU_TIME_MS - Specifies the total CPU compile
time a query must use in the time period.

e TOTAL_EXECUTION_CPU_TIME_MS - Specifies the total CPU
execution time the query must use in the time period.

The T-SQL for configuring the CUSTOM setting is in Listing 3-10.

Listing 3-10. T-SOL to set QUERY STORE CAPTURE_MODE for CUSTOM mode

ALTER DATABASE [<Database Name>]
SET QUERY_STORE = ON
(
QUERY_CAPTURE_MODE = CUSTOM,
QUERY_CAPTURE_POLICY = (
STALE_CAPTURE_POLICY THRESHOLD = 24 HOURS,
EXECUTION_COUNT = 30,
TOTAL_COMPILE _CPU TIME_MS = 1000,
TOTAL_EXECUTION_CPU TIME_MS = 100

);
53

CHAPTER 3 CONFIGURING QUERY STORE

MAX_PLANS_PER_QUERY

The MAX_PLANS_PER_QUERY default is 200 plans. This setting is not available in SQL Server
2016. That may seem like a large number, but on some systems, there are thousands of
plans per query, but 200 is a good starting point. The higher this setting though, the more
disk space you will need if you have a large number of queries with a large number of
plans. If you notice that you are hitting that limit, you can run the code in Listing 3-11 to
see what your max number of query plans currently in plan cache is and use it determine
what you would like this setting to be set to.

Listing 3-11. T-SQL to find the number of plans in the cache per query

SELECT query_hash,

COUNT (DISTINCT query plan hash) distinct plans
FROM sys.dm exec_query stats

GROUP BY query_hash

ORDER BY distinct_plans DESC;

The T-SQL for configuring this setting is in Listing 3-12.

Listing 3-12. T-SQL to set MAX_PLANS_PER_QUERY

ALTER DATABASE [<Database Name>] SET QUERY STORE (MAX PLANS PER QUERY =
<Value>);

WAIT_STATISTICS_CAPTURE_MODE

The WAIT STATISTICS CAPTURE MODE defaultis ON. This setting is not available in SQL
Server 2016. The only other option for this setting is OFF. Wait statistics are discussed
more in Chapter 9. The T-SQL for configuring this setting is in Listing 3-13.

Listing 3-13. T-SQL to set WAIT_STATISTICS_CAPTURE_MODE

ALTER DATABASE [<Database Name>] SET QUERY_STORE (WAIT_STATISTICS CAPTURE_
MODE = <Value>);

54

CHAPTER 3 CONFIGURING QUERY STORE

Changing Configuration Using the GUI

By default, Query Store is turned off on-premise SQL Server databases and turned on

by default in Azure SQL Database. To view the properties and change them, you would

connect to your SQL Server instance, right-click on your database, and click on Properties.

From there, click on the Query Store link on the left-hand side of the properties window.

See Figure 3-1 to see example of what the properties windows looks like.

@ Database Properties - AdventureWorks - O X
s:"dz S LT Scipt v @ Help
K Files
¥ Flegoups S| | =
& Options
& Change Tracking v General =
J Pemissions Operation Mode (Actual) Read Write
K Miroring v Monitoring :
5 Transaction Log Shipping Data Fush Interval (Minutes) 15
5 ey S [} Statistics Collection Interval 1 Hour
v Query Store Retention
Max Size (MB) 1000
Query Store Capture Mode Auto
Size Based Cleanup Mode Auto zl
Stale Query Threshold (Days) 30
Size Based Cleanup Mode
Activates data cleanup automatically when total amount of data reaches maximum size.
Off- Data cleanup does not take place.
Auto- Data cleanuo haooens automatically.
Connection Cument Disk Usage
Server:
WIN-I0RMK3C08VS
Connection:

WIN-IORMK3C08VS\Administrator

Ready

B AdvertureWorks
M Query Store Used

336.0 MB M Query Store Available 1000.0 MB
0.0MB M Query Store Used 0.0MB
Purge Query Data

OK || Cancel

Figure 3-1. Query Store properties window

55

CHAPTER 3 CONFIGURING QUERY STORE

Note You cannot change or see the MAX_PLANS PER_QUERY or
WAIT STATISTICS_ CAPTURE_MODE options in the GUI or the three options that
come with the CUSTOM QUERY_STORE_CAPTURE_MODE setting.

You can see how much space the database is taking up and Query Store is taking
up on the pie chart on the left. On the pie chart on the right, you can see the used and
available space in Query Store. You also can purge all the data from Query Store with the
Purge Query Data button.

Query Store Configuration Catalog View

There is one catalog view that holds the settings for Query Store: sys.database_query
store_options. For more on the catalog views, see Chapter 5. You can use the sys.
database _query store options catalogview to view the settings for Query Store in the
database. To view the configuration settings for Query Store, use the query in Listing 3-14.

Listing 3-14. T-SQL to view Query Store Options

SELECT
FROM sys.database query store options

We will look at some other queries in the Maintaining Query Store section later in
this chapter.

Query Store Configuration Best Practices

The first setting that should be configured differently than the default is MAX_STORAGE _
SIZE_MB. The default setting here is much too small to capture a 30-day or even longer
workload. The general guideline is to start with 2048 MBs and if you must keep a longer
retention period or have a large ad-hoc workload to adjust it up from there. Keep in mind
that this data is stored in the PRIMARY filegroup, so if you are doing piecemeal restores,
this will affect your recovery times, so you don’t want to set the size too high.

The next setting for on-premise SQL Servers that should be changed is QUERY_STORE_
CAPTURE_MODE. This setting should be changed from ALL to AUTO unless you need to
capture queries that take up insignificant resources or execute very few times. Capturing

56

CHAPTER 3 CONFIGURING QUERY STORE

insignificant queries just causes more work for Query Store and takes more disk space in
Query Store. So before leaving this setting to ALL, take those things into consideration.

The recommended setting for SIZE_BASED CLEANUP_MODE is to leave the setting on
AUTO because if the MAX_STORAGE SIZE MBis reached because it cannot clean up data,
the OPERATION_MODE will be automatically switched to READ_ONLY mode leaving in a state
where you are not collecting new data.

The next setting you may consider changing is INTERVAL_LENGTH_MINUTES. The
recommended setting is the default of 60 unless you need data at a more granular
level. In that case, going as low as 15 would be advisable as systems processing 60,000
transactions per second on the right hardware have been able to keep up aggregating
that data. If you have more of an ad-hoc workload vs. stored procedure or parameterize
workload, you are going to want to keep this setting higher as it will be writing more data.

The recommended setting for WAIT _STATISTICS CAPTURE_MODE is ON because it gives
more troubleshooting insight for your queries. Turning this setting OFF handicaps your
ability to use a great feature built into Query Store for seeing what queries are causing
which wait statistics to occur on your server by your database.

Parameterization and Query Store

We have touched on this topic a bit when talking about the QUERY_STORE_CAPTURE _

MODE setting for query store. Let’s explore what this means more. First let’s discuss the
difference between paramterize queries and ad-hoc queries. A parameterized query
comes in as a stored procedure, function, trigger, or via sp_executesql. What makes it
parameterized is that each variable that comes in has a predefined data type that SQL
Server uses each time the query is called. For example, see the code in Listing 3-15 where
we query for the LastName from a Customer table, but we have the data type fixed to 20
characters.

Listing 3-15. Stored Procedure Demonstrating a Parametrized Call to SQL Server

CREATE PROCEDURE dbo.GetName
@LastName VARCHAR(20)

AS

SET NOCOUNT ON;

SELECT FirstName,
LastName

57

CHAPTER 3 CONFIGURING QUERY STORE

FROM dbo.Customer
WHERE LastName = @LastName;
GO0

EXEC dbo.GetName @LastName = 'Boggiano’;

So, what this means is that every time this procedure is called it gets rolled up into
one record per runtime interval in Query Store because it always has the variable defined
as VARCHAR (20). Now with an ad-hoc query doing the same thing, see Listing 3-16.

Listing 3-16. T-SQL for Ad-hoc query

SELECT FirstName,
LastName
FROM dbo.Customer
WHERE LastName = 'Boggiano';

When this query is compiled, it stores the variable for LastName as eight characters,
but if you run the same query with the LastName as Smith, it will store the query with a
variable as five characters giving you two records per runtime interval in Query Store.
The data doesn’t get aggregated and therefore makes it harder to tune and troubleshoot
queries that are of the same type. Ad-hoc queries also bloat the size of Query Store due to
the number of unique questions it must keep track of.

Impact of “Drop and Create” vs. “Alter”

Query Store stores the object id of the procedures, triggers, and functions that execute
inside of the database. By altering these objects, you preserve the object_id of the
object; if you use the “drop and create” method, you will no longer have the same
object_id so the data will no longer be aggregated together going forward. So, if you
make a change to try to improve performance and you decide to go and compare the
performance in Query Store to prior runtime intervals, you will not be able to view the
results in the Query Store reports, you will have to query the catalog views. In SQL Server
2017, the syntax “CREATE OR ALTER” was introduced so you can avoid the need to code
for a DROP/CREATE operation.

58

CHAPTER 3 CONFIGURING QUERY STORE

Impact of Database Renaming

Inside execution plans all objects are referenced as three-part names database.schema.
object because you have the potential of doing cross-database queries. Renaming a
database will cause plan forcing to fail, causing recompilation of all queries using those
forced plans on each execution.

Reducing Recovery Times with Trace Flags

By default, all queries are blocked from running in the database until Query Store is
loaded if Query Store is enabled on the database. This is where trace flag 7752 comes into
play. By default, this behavior is on in Azure SQL Database, but on-premise you can turn
on this trace flag and have Query Store load asynchronously, and in the background will
be in a read-only state until it is completely loaded, so queries can process while Query
Store loads, but you will not be capturing them. You can tell this is an issue on your
system if you notice the wait stat QDS_LOADDB being high after a restart of your SQL Server
instance. With this being the default behavior in Azure SQL Database it is quite possible
it will become the default behavior in the on-premise product so we might want to go
ahead and enable it now and get the benefits of faster startup times for our SQL Server
instances. This also has the same effects on failovers.

Trace flag 7745 controls rather your SQL Server instance takes the time to flush all
the Query Store data to disk while SQL Server instance is being shut down. This can take
a considerable amount of time that you may not be willing to wait to depend on what
you have your DATA_FLUSH_INTERVAL SECONDS set to and/or the number of databases
with Query Store enabled on your instance. The recommendation here would be to turn
on this trace flag on because if you tell SQL Server to shut down; you don’t want to wait
for data to be flush to disk, you want to get your SQL Server instance back up and
running as fast as possible.

Query Store and Memory-Optimized Tables

Memory-optimized tables are tables that are stored entirely in memory. Therefore,
Query Store tracks a limited number of metrics when tracking queries that executed
against memory-optimized tables because those tables are stored in memory. Query
Store does not track I/O due to the table residing entirely in memory and query memory
used. It does, however, track other metrics such as duration, CPU time, the degree of
parallelism, and the row count. When viewing reports discussed in Chapter 4, keep this

in mind if you use memory-optimized tables.
59

CHAPTER 3 CONFIGURING QUERY STORE

Configuring Query Store for Natively Compiled
Stored Procedures

Similarly, to memory-optimized tables, natively compiled stored procedures are treated
differently by Query Store. Query plans and query text are stored in Query Store by
default for natively compiled stored procedure and a flag denotes these procedures

in the catalog view sys.query store plan. However, runtime statistics are not stored

in the sys.query store_runtime_stats catalog view by default. To capture runtime
statistics, you must use the procedure sys.sp_xtp control query exec_stats.The
procedure can be used to capture statistics for all natively compiled procedures at the
instance level or just particular ones you need to troubleshoot. There is a performance
overhead associated with collecting these statistics. Listing 3-17 shows you how to set up
a natively compiled stored procedure to capture runtime statistics.

Listing 3-17. Setup Query Store to capture runtime statistics for a natively
compiled stored procedure

DECLARE @dbid INT = DB_ID('<database>');
DECLARE @object id INT = OBJECT_ID('<InMemoryProcedure>');

EXEC sys.sp_xtp_control query exec stats
@new_collection value = 1,
@database_id = @dbid,

@xtp _object id = @object id;

Listing 3-18 shows you how to capture statistics for all natively compiled stored
procedures on an instance.

Listing 3-18. Setup Query Store to capture runtime statistics for all natively
compiled stored procedures on the instance

EXEC sys.sp_xtp_control query exec stats
@new_collection _value = 1;

To turn off the collection of statistics, run the same code in Listings 3-16 or 3-17 and
change the parameter @new_collection_value to 0.

60

CHAPTER 3 CONFIGURING QUERY STORE

Note These settings are reset to not capture statistics on the event that the SQL
Server instance is shut down or restarted. If you need it to persist in collecting
statistics, you will need to set up a startup stored procedure or a SQL Agent job
that runs at startup.

Enabling and Disabling Automatic Plan Regression
Correction (APRC)

To enable automatic plan regression correction (APRC), you can run the following code
in Listing 3-19 for one database or the code in Listing 3-20 to enable Query Store on all
databases where query store is enabled and is a READ_WRITE state. What is APRC and
how it works is discussed more in Chapter 9.

Listing 3-19. T-SQL to enable APRC

ALTER DATABASE [<Database>]
SET AUTOMATIC TUNING (FORCE_LAST GOOD PLAN = ON);

Listing 3-20. T-SQL to enable APRC where database is online and Query Store is
enabled

DECLARE @SQL NVARCHAR(MAX) = N''

SELECT @SQL += REPLACE(N'ALTER DATABASE [{{DBNAME}}] SET AUTOMATIC TUNING (
FORCE_LAST_GOOD PLAN = ON ',
"{{DBName}}", [name])
FROM sys.databases
WHERE state desc = 'ONLINE'
AND is query store on = 1
ORDER BY [name];

EXEC (@SQL);;

To turn off Query Store, we run the same queries with OFF instead on as seen in code
listings above as seen in Listings 3-21 and 3-22.

61

CHAPTER 3 CONFIGURING QUERY STORE
Listing 3-21. T-SQL to disable APRC

ALTER DATABASE [<Database>]
SET AUTOMATIC TUNING (FORCE_LAST GOOD PLAN = OFF);

Listing 3-22. T-SQL to disable APRC where database is online and Query Store is
enabled

DECLARE @SQL NVARCHAR(MAX) = N'';

SELECT @SQL += REPLACE(N'ALTER DATABASE [{{DBNAME}}] SET AUTOMATIC TUNING (
FORCE_LAST GOOD PLAN = OFF ',
"{{DBName}}", [name])
FROM sys.databases
WHERE state desc = 'ONLINE'
AND is query store on = 1
ORDER BY [name];

EXEC (@SOL);

Maintaining Query Store

After you have Query Store configured, there are some items you may need to keep an
eye out for. Sometimes the state of Query Store will change from READ_WRITE to READ
ONLY or ERROR and you will need to know when this happends and correct this. You also
need to monitor the space usage to determine if you are capturing the write amount of
data for the period of time you need and to make sure you don’t run out of space. You
also need to know if any plans you forced are failing and how to track those. You may
also need to remove plans and queries from Query Store. Finally, you may need to reset
the wait statistics.

62

CHAPTER 3 CONFIGURING QUERY STORE

Monitoring Desired vs. Actual State

First, to maintain Query Store, you will want to make sure the desired state and the
actual_state of Query Store match. You can run the code in Listing 3-23 to check in
single database or the code in Listing 3-24 to check all the databases in Query Store

enabled on your instance.

Listing 3-23. T-SQL to check Query Store’s desired state vs. actual state

SELECT DB_NAME() database name,
actual state desc,
desired state desc
FROM sys.database query store options
WHERE desired state desc <> actual state desc

Listing 3-24. T-SQL to check Query Store’s desired state vs. actual state on all
databases

DECLARE @SQL NVARCHAR(MAX) = N'';

SELECT @SQL += REPLACE(REPLACE(N'USE [{{DBName}}];
SELECT
"{{DBName}}" database name,
actual state desc,
desired state desc
FROM {{DBName}}.sys.database_query store options
WHERE desired state desc <> actual state desc '
, '{{DBName}}"', [name])
) ' "'J "“)
FROM sys.databases
WHERE is_query store on =1
ORDER BY [name];

EXEC (@SOL);

63

CHAPTER 3 CONFIGURING QUERY STORE

Query Store Read-Only States

Query Store can enter the READ_ONLY state from READ_WRITE without telling for a
number of reasons. The reason is stored in the readonly reason as a bit map in the
sys.query store_options catalog view. In Table 3-2 you will find a list of the reasons.

Table 3-2. Query Store read-only state reasons

readonly_reason bit map Description

1 Database is in read-only mode

2 Database is in single-user mode

4 Database is in emergency mode

8 Database is a secondary replica (Always On and Azure SQL Database
geo-replication)

65536 Reached limit set by MAX_STORAGE_SIZE_MB

131072 The number of different statements has reached memory limit. In this

case you should consider remove queries from the Query Store or
upgrading service tier
Applies to Azure SQL Database

262144 In-memory size limit has been hit. [tems will be persisted to disk
until space is freed up in memory. Query Store will be temporarily in
read-only mode
Applies to Azure SQL Database

524288 Database has reached disk size limit so Query Store can no longer grow
Applies to Azure SQL Database

How to Fix Query Store in Error State

Starting in SQL Server 2017, Query Store can enter an error state. This can cause
potential performance problems when you depend on manual plan forcing or auto

plan regression correction. This is a rare race condition that can occur without you
knowing. The recommended fix is to first try to turn OFF Query Store and place it in
READ_WRITE mode. If that doesn’t work, the persisted data is corrupted on disk, so we run
sys.sp_query store consistency check. Finally, clear Query Store of all data.

64

CHAPTER 3 CONFIGURING QUERY STORE

In Listing 3-25 you have code to run against all the databases with Query Store in ERROR
state to fix the ERROR state.

Listing 3-25. T-SQL to fix error state on all databases on instance

DECLARE @SQL AS NVARCHAR(MAX) = N'';

SELECT @SQL
--Try

+= REPLACE(N'USE [{{DBName}}]
Changing to READ WRITE

IF EXISTS (SELECT % FROM sys.database query store options

BEGIN

END

--Run

WHERE actual state=3)

BEGIN TRY

ALTER DATABASE [{{DBName}}] SET QUERY STORE

OFF

ALTER DATABASE [{{DBName}}] SET QUERY STORE

READ WRITE

END TRY

BEGIN CATCH

SELECT
ERROR_NUMBER() AS ErrorNumber
,ERROR_SEVERITY() AS ErrorSeverity
,ERROR_STATE() AS ErrorState
,ERROR_PROCEDURE() AS ErrorProcedure
,ERROR_LINE() AS ErrorLine
,ERROR_MESSAGE() AS ErrorMessage;

END CATCH;

sys.sp_query store consistency check

IF EXISTS (SELECT % FROM sys.database query store options

BEGIN

WHERE actual state=3)

BEGIN TRY
EXEC

[{{DBName}}].sys.sp _query store consistency check
ALTER DATABASE [{{DBName}}] SET QUERY STORE =

65

CHAPTER 3 CONFIGURING QUERY STORE

ON
ALTER DATABASE [{{DBName}}] SET QUERY STORE
(OPERATION MODE = READ WRITE)
END TRY
BEGIN CATCH
SELECT
ERROR_NUMBER() AS ErrorNumber
,ERROR_SEVERITY() AS ErrorSeverity
,ERROR_STATE() AS ErrorState
,ERROR_PROCEDURE() AS ErrorProcedure
,ERROR_LINE() AS ErrorLine
,ERROR_MESSAGE () AS ErrorMessage;
END CATCH;
END

--Run purge Query Store
IF EXISTS (SELECT % FROM sys.database query store options
WHERE actual state=3)
BEGIN
BEGIN TRY
ALTER DATABASE [{{DBName}}] SET QUERY_ STORE
CLEAR
ALTER DATABASE [{{DBName}}] SET QUERY STORE
(OPERATION MODE = READ WRITE)
END TRY
BEGIN CATCH
SELECT
ERROR_NUMBER() AS ErrorNumber
,ERROR_SEVERITY() AS ErrorSeverity
,ERROR_STATE() AS ErrorState
,ERROR_PROCEDURE() AS ErrorProcedure
,ERROR_LINE() AS ErrorLine
,ERROR_MESSAGE () AS ErrorMessage
END CATCH;
END

66

CHAPTER 3 CONFIGURING QUERY STORE

, ' {{DBName}}", [name])
FROM sys.databases
WHERE is query store on = 1;

EXEC (@S0L);

Tip Due to the potential performance, impact recommendation would set the
above code as a SQL Agent job to run a regular basis so you don’t get caught off
guard when the Query Store is in an ERROR state.

Monitoring Space Usage

If you do set the CLEANUP_POLICY to AUTO as discussed earlier in the chapter, you will
need to monitor the space usage yourself to make sure Query Store doesn’t switch

to read-only mode. By default, Query Store will, at 90% capacity, clean up to an 80%
capacity. If you have the MAX_STORAGE_SIZE MB size set too low and have a large amount
of transactions coming through, it is possible for Query Store to grow bigger than the max
size specified. In Listing 3-26, you will find code to monitor space for a single database
on your instance that is at 90% capacity.

Listing 3-26. T-SQL code to check if Query Store is at 90% capacity

USE [<Database>];
Go

SELECT current storage size mb,
max_storage size mb,

FROM sys.database_query store options

WHERE CAST(CAST(current storage size mb AS
DECIMAL(21, 2)) / CAST(max_storage size mb AS
DECIMAL(21, 2)) % 100 AS DECIMAL(4, 2)) >= 90
AND size based cleanup mode desc = 'OFF';

Tip You will want to put this code in a SQL Agent Job and add code to email you
to alert when Query Store is near capacity, so that you may address it.

67

CHAPTER 3 CONFIGURING QUERY STORE

How to Clear Query Store

You may find it necessary to clear the data manually from Query Store. You may use one
of the following two methods in Listings 3-27 and 3-28 to this.

Listing 3-27. T-SQL to clear all the data out of Query Store

ALTER DATABASE [<Database Name>] SET QUERY STORE CLEAR ALL;

Listing 3-28. Stored procedure to clear all the data out of Query Store

USE [<Database>];
Go

EXEC sys.sp_query store flush db;

Failed Plan Forcing

Plan forcing can fail for a number of reasons such as an index in the plan being changed
or dropped, online index rebuilds while trying to write to the index, or a hint conflict. It's
important to track failed plans so you know if you are getting the performance gain you
expected when you forced the plans. There are two ways to track forced plans. The first is
with T-SQL. You can query the catalog view sys.query_store plan to see the last failure
reason and failed count as seen in Listing 3-29.

Listing 3-29. Query of plans with failed forced plans

SELECT plan_id,

force failure count,

last _force failure reason
FROM sys.query store plan

Because the above method only shows the last forced plan reason then increments a
counter and is per database, you may want to set up an extended events session that can
track failed plan forcing across your SQL Server instance and set up a SQL Agent job to
query and send out alerts. In Listing 3-30 you will find an extended events session that
can set up to capture failed plan forcing.

68

CHAPTER 3 CONFIGURING QUERY STORE

Listing 3-30. Extended events session to capture failing force plans

CREATE EVENT SESSION [QueryStore Forcing Plan Failure]
ON SERVER
ADD EVENT qds.query store plan forcing failed
ADD TARGET packageO.ring buffer WITH
(
MAX_MEMORY=4096 KB,
EVENT RETENTION MODE=ALLOW SINGLE EVENT LOSS,
MAX_DISPATCH_LATENCY=30 SECONDS,
MAX_EVENT SIZE=0 KB,
MEMORY_PARTITION MODE=NONE,
TRACK_CAUSALITY=OFF,
STARTUP_STATE=ON

)5

Removing Plans and Queries

There are times when you may want to remove a plan from Query Store. You can use the
procedure sys.sp_query store remove_plan to remove any plan from Query Store.
When you run the procedure, it also removes the runtime statistics associated with that
plan. It requires the EXECUTE permission on the database and DELETE permission on the
Query Store catalog views. See Listing 3-31 for an example of how to remove a plan from

Query Store.

Listing 3-31. Stored procedure to remove a query from the Query Store
EXECUTE sys.sp_query store remove plan @plan_id = <plan_id>;

Similarly, there are times when you may want to remove a query from Query Store,
such as when you have several ad-hoc queries taking up space in Query Store. You can
use the procedure sys.sp_query store remove query to remove any query from Query
Store. When you run the procedure, it also removes the runtime statistics. It requires the
EXECUTE permission on the database and DELETE permission on the Query Store catalog
views. See Listing 3-32 for an example of how to remove a query from Query Store by

filling in the query id.

69

CHAPTER 3 CONFIGURING QUERY STORE
Listing 3-32. Stored procedure to remove a query from the query store

EXECUTE sys.sp _query store remove query @query id = <query id>;

Reset Statistics for a Plan

The stored procedure sys.sp _query store reset exec_stats clears runtime statistics

for a given plan but leaves the plan in Query Store. It requires the EXECUTE permission on
the database and DELETE permission on the Query Store catalog views. See Listing 3-33 for
an example of how to reset statistics for a plan from Query Store by filling in the plan_id.

Listing 3-33. Query to reset statistics for a plan

USE [<Database>];
Go

EXECUTE sys.sp_query_store reset_exec_stats @plan_id = <plan_id>;

Conclusion

In this chapter we have learned about all the configuration options for Query Store and
the recommended settings. We talked about the effect of having parameterized queries
on Query Store vs. ad-hoc queries. Then we talked about the impact of using the drop and
create process for stored procedures, functions, and triggers on seeing statistics for those
objects. We talked about how to reduce the shutdown and startup times of the SQL Server
instance by using trace flags. We covered how to capture data for natively compiled stored
procedures. Finally, we discussed various methods to maintain Query Store.

70

CHAPTER 4

Standard Query Store
Reports

SQL Server Management Studio (SSMS) has seven built-in reports for Query Store.
These reports give us the ability to quickly view performance data and troubleshoot
performance issues in a graphical interface and transition the data into a grid view.

In this chapter, we will explore how to interact with these reports and how they
complement each other and work together. A list of the reports can be found below the
database in Object Explorer as seen in Figure 4-1:

5w
3 Tables
3 Views
3 External Resources
F Synonyms
3 Programmability
= Query Store

&\ Regressed Queries

& Overall Resource Consumption
& Top Resource Consuming Queries
@ Queries With Forced Plans

@ Queries With High Variation

@, Query Wait Statistics

@, Tracked Queries

Figure 4-1. Object Explorer view of reports for Query Store

© Tracy Boggiano and Grant Fritchey 2019
T. Boggiano and G. Fritchey, Query Store for SQL Server 2019, https://doi.org/10.1007/978-1-4842-5004-4_4

71

CHAPTER 4 STANDARD QUERY STORE REPORTS

Regressed Queries Report

The first report we will look at is the Regressed Queries report. This report displays
information on which queries over the specified period have started degrading in
performance. There are several things you can do to navigate around inside of these
reports, but first let’s take a glance at this report in Figure 4-2.

Top 25 regressed queries for database AdventureWorksWL. Time period: Last hour ending at 7/8/2019 3:10 AM B Portrait '-"lew!

Metric | Duration (ms) - Shﬁﬂ:ici’foul M |.E |6 _ Plan summary for query 31 | SS 5] |3§ m =
.
1000000+
§ @
[Plan Id
=2
2 @NE)
2 500000+ [o}::]
£
3 - Oi
o o
400PM B00PM 1200AM 4D0AM
Plan 28 [not forced] |33 ForcePlan | 13 Unforce Pian | _
Query 1: Query cost (relative to the batch): 100%
SELECT ProductID, LineTotal, sum(linecotal), max(linetotal) FROM Sales.SalesOrderDetail WHERE UnictPric..
3T 3T
71 b _ 8itd _ Al
Sert : Compute Scalar '8 prom A i i '8 (m‘ a)) Sort
2 5 grega regate %
Cost: 43 % Cost: 0O % Cost: 1 & Cost: 1 A Cost: 48 % Ce

Figure 4-2. Regressed Queries report

Each bar on the left-hand side represents a different query that could be part of a
stored procedure, trigger, user-defined function or be an ad-hoc query that executed
in the specified period of time. The default period of time for the report is the last hour.
If you click on any of the bars, the query plan will change at the bottom to show the
estimated plan for that query. If you hover over any of the bars, it will show you stats for
each one of the queries the bar represents as seen in Figure 4-3.

72

CHAPTER 4 STANDARD QUERY STORE REPORTS

Query Id 3
Object Id 1799677459
Object Name p_sel_get_sales_rollup_by_product_linetotal

Additional Duration (ms) 146688.21
Total Duration (ms) Recent 1061720.28
Total Duration (ms) History 3530137.65
Execution Count Recent 359
Execution Count History 1385

Plan Count 1

(@i int)SELECT ProductlD, LineTotal, sum(linetotal), max(linetotal)
FROM Sales.SalesOrderDetail
WHERE UnitPrice < @i
group by rollup(productid, linetotal)
ORDER BY ProductID, LineTotal

Figure 4-3. Regressed Queries report hover over bar statistics

On the left-hand side on the top left-hand pane, you can control the type of
regression that is shown to you by clicking the bar that defaults to additional duration.
Other options are seen in Figure 4-4:

additional duraticn

total duration recent
total duration history
execution count recent
execution count history
plan count

Figure 4-4. Additional options for types of regressions

In the bottom pane on any report that shows you a query plan, you will see a box
with three dots in the upper right-hand corner; once you click on the box, it will take the
query text and put in a Query Editor window as seen in Figure 4-5.

Figure 4-5. Button to open query test in a Query Editor window

73

CHAPTER 4 STANDARD QUERY STORE REPORTS

Also, on the bottom pane, you have two buttons as seen in Figure 4-6 that allow to force
and unforce plans based on which plan you have highlighted and shown in the pane.

oo
LR

| 1. Force Plan

Figure 4-6. Regressed Queries report force and unforce plan buttons

You will also see the estimated plan that the stored procedure, function, trigger, or
ad-hoc query generated during the period of time of the reporting period. Similarly,
as you run an estimated or actual plan in a Query Editor window of SQL Server
Management Studio (SSMS), you can hover over each plan operator to see detail
statistics, warnings, and the percentages of where the most work has taken place. You
can right-click on the plan to get the same options to as you get in the Query Editor
window in SSMS as seen in Figure 4-7.

Save Execution Plan As...
Show Execution Plan XML...
Compare Showplan

Find Node

Zoom In

Zoom Out

Custom Zoom...

Zoom to Fit

Properties

Figure 4-7. Regressed Queries report plan options

Note The bottom pane functions the same way across all reports that show
query plans.

Overall Resource Consumption Report

The Overall Resource Consumption report shows the resources the database is consuming
by default for the last month. The report defaults to showing four categories of performance
in total amounts: duration in milliseconds, execution count, CPU time in milliseconds, and
logical reads in kilobytes. Here is an example of a report shown in Figure 4-8:

74

Qvenall Recource Consumption [Bm’] = %

CHAPTER 4 STANDARD QUERY STORE REPORTS

[Elumhl = Standard Grid |) Chast

Duvation (ms)

ﬁw

WEAE 102008

Duration

IUWMB rzmama

Ll

T/1472008 11718/2008

II

IUE)_QI:-IB

IIJZ&ENS

Execution Count
12,000,000~
10,000,000~
& soonooe-
ém |
< som |
Tee 1 amm 11142018 mmola 11!22..2013 na mwm nvzola

TWEZIE VI220NE NGNS 1V0P0ME 120208 12008 122018 TWENE NAIZ2001E NNEME 12020E NRGINE 1128018 122008
CPU Time Logical Reads
100,000,000,000-
100,000,000
30,000,000,000-
50,000,000 =
F 3
£ $ 60,000,000,000-
§mmm g o
£ €
8 o g 4,000,000,
h I || - I |I| i
e unwe:ia e nnams T8 zmom nmzms 12., w8 e 11;13’&]13 117142018 mwaona /222018 nfas.rzms A3

W18 NAZOE NAGE0 112002018 11'2412015 RR20E 1220

W08 NNYME NASENE 10018 124208 11280018 u,mom

Figure 4-8. Overall Resource Consumption report

If you double-click on any of the bars shown in the chart, you will automatically open

the next report we will be talking about, the Top Resource Consuming Queries report. If

you hover over any of the bars, you will get a list of statistics for the period of time for the

bar as

seen in Figure 4-9.

Interval Start

Interval End

Execution Count

Duration (ms)

CPU Time (ms)

Logical Reads (KB)

Logical Writes (KB)
Physical Reads (KB)

CLR Time (ms)

DoP

Memory Consumption (KB)
Row Count

Log Memory Used (KB)
Temp DB Memory Used (KB)
Wait Time (ms)

2019-07-08 02:59:00.000 -07:00
2019-07-08 03:00:00.000 -07:00
17551

10661460.16

2143751.88

759776992

2680152

9985784

103.36

17551

51032040

147447592

70631.19

7951104

1415944

Figure 4-9. Overall Consumption Report hover statistics

75

CHAPTER 4 STANDARD QUERY STORE REPORTS

In the top right-hand corner, you have four buttons that allow you to control the
reports. You can see a close-up picture of these in Figure 4-10:

r Configure

Refresh | T Sandwd Grid |, Char
Figure 4-10. Overall Resource Consumption report buttons

The Refresh button will allow you to refresh the report on the screen. The Standard

Grid button allows you to view the data in a grid view; see Figures 4-11, 4-12, and 4-13
for an example.

total execution count total duration total cpu time total logical reads total logical writes total physical reads
1 8 | 1027 1026 680 0 0
2 |39 255.26 75 6816] 0
3 |16 41.74 26.12 2176 0 0
4 |22 58.02 39.12 2992 0 0
5 48 307.93 93.69 6528 0 0

Figure 4-11. Overall Resource Consumption report standard grid view

total crtime total dop total memory consumption total row count total log memory used total temp db memory used

0 5 5280 60 0 0
0 39 40128 1140 13.5 0
0 16 16896 272 0
0 22 23232 616 0
0 48 50688 726 0

Figure 4-12. Overall Resource Consumption report standard grid view

total wait time interval start interval end

8567993 2019-07-08 02:52:00.000 -07:00 2019-07-08 02:53:00.000 -07:00
1415944 2019-07-08 02:54:00.000 -07:00 2019-07-08 02:55:00.000 -07:00
8567993 2019-07-08 02:56:00.000 -07:00 2019-07-08 02:57:00.000 -07:00
1415944 2019-07-08 02:57:00.000 -07:00 2019-07-08 02:58:00.000 -07:00
8567993 2019-07-08 02:58:00.000 -07:00 2019-07-08 02:59:00.000 -07:00

Figure 4-13. Overall Resource Consumption report standard grid view

76

CHAPTER 4 STANDARD QUERY STORE REPORTS

The Standard Grid view contains a lot more columns than you get in the Standard
View with charts. You can click on the column headings of any of the columns, and it will
sort the columns and place an arrow showing which way it sorted the data. By default, it
is sorted by the interval start date and time.

The Chart button allows you to switch back to the Chart View if you are in the
Standard Grid View.

Finally, the Configure button allows you to control items on the Chart View and the
Time Interval shown in either the Standard View or the Chart View. Figure 4-14 shows
the options available under the Configure button.

i Configure Overall Resource C... - a X

Show Chart for
Execution Count

Duration (ms)

CPU Time (ms)

Logical Reads (KB)

[[] Logical Writes (KB)

[] Physical Reads (KB)

[C] CLR Time (ms)

[J oop

[C] Memory Consumption (KB)
["] Row Count

[[] Log Memory Used (KB)

[[] Temp DB Memory Used (KB)

[[] Wait Time (ms)

Time Interval

Last month ¥| From

To

Aggregation Size: Automatic ¥

Time Format: ®) Local Q utC

Ok Cancel‘lkppiyl

Figure 4-14. Configure button options for Overall Resource Consumption reports

77

CHAPTER 4 STANDARD QUERY STORE REPORTS

On the top half of the screen as of SSMS, Figure 4-14 shows you all the metrics that
are available to be displayed in the Chart View. You can also use it to remove any item
from the view.

The bottom half of the screen in Figure 4-14 applies to both the Chart View and
Standard Grid View. You can change the Time Interval from the last month which is the
default to a value seen in Figure 4-15 to view a different period of time.

Last month v

Last hour
Last day

Last 2 days
Last week
 Last month
Last 6 months
Last year

Custom

Figure 4-15. Overall Resource Consumption report configure time interval
drop-down

When you select Custom from the drop-down box, the From and To boxes will no
longer be greyed and out and you will be able to edit the days by typing or selecting from
a calendar. Next, there is a drop-down box for Aggregation Size where you can specify
the intervals it rolls the data into for your viewing. Values in the drop-down are shown in
Figure 4-16.

Day -
Hour

Day

Week

Month

Uiogiiic: >

Figure 4-16. Aggregation Size drop-down

Finally, you can select if data is shown to you in your Local Time Zone time or UTC
zone.

78

CHAPTER 4 STANDARD QUERY STORE REPORTS

Tip This is the best report for validating whether or not your system is meeting
your expected baselines you have established and for seeing if something unusual
is happening on the server.

Top Resource Consuming Queries Report

The Top Resource Consuming Queries Report by default shows the top 25 queries
summed up by total duration for the last hour. In Figure 4-17, you can see an example
of what this report looks like. Like the other reports we have discussed, there are many
options we can look at the top of the report.

Top 25 resource consumers for database AdventureWorksWL Time period: 7/8/2019 2:59 AM - 7/8/2019 3:00 AM & Portrait View [
Metnic = Execution Count ~ | Statistic Total |3 |9 | = Plan summary for query 14 | 33 ::; 3 | m
> >

600~ 5|

iy
g a00- &
o | Plan Id
€ =
T T T T T 1
o+ — === 2:58:00 AM 2:55:00 AM 3:00:00 AM 3:01:00 AM
63 3333333 333 3. 3.3 3.3-3.3-3-3. 333 3. 2:58:30 AM 2:58:30 AM 3:00:30 AM
execution count v/

Plan 13 [not forced] 25 ForcePlan | 37 Unforce Plan | _

Query 1: Query cost (relative te the batch): 100%
SELECT i

r LIKE 'BE%'

SELECT * INTO =Bicycles FROM Production.Product WHERE ProductMumber LIKE 'BK%'
5 :

T, wn
ehJ [o
SELECT INTO i ' Table Insert Compute Scalar . Clustered Index Scan (Clusterad)
Cost: 0 % (#Bicycles) Cost: 0 & L 1. [PK_]] 1D}
= Cost: 64 % i Cost: 36 %

Figure 4-17. Top Consuming Resources report

At the top right-hand corner, we have three buttons that control the overall reports as
seen in Figure 4-18. The Portrait View button will move the three separate panes stack on
top of each other instead of having the two panes beside each other at the top and one
on the bottom. The Configure button does the same as we have seen in the last report;
refer to Figure 4-14.

79

CHAPTER 4 STANDARD QUERY STORE REPORTS

j Landscape View | XL N0

Figure 4-18. Top Consuming Resources report buttons

When we look at Figure 4-19, we can see the following buttons to allow you to control
the top left-hand corner of the screen.

Metric Duration (ms) v | Statistic Total ~ ’Q‘@‘@Ij“ﬁ @
Figure 4-19. Top Consuming Resource report option bar
First, we have the metric we want to see for the top 25 queries by in the drop-down

listed below:

o Execution count

¢ Duration (ms) (default)

e CPU time (ms)

e Logical reads (KB)

o Logical writes (KB)

e Physical reads (KB)

¢ CLRtime (ms)

« DOP

e Memory consumption (KB)

¢ Row count

e Logmemory used (KB)

e Tempdb memory usage (KB)

e Wait time (ms)

Then instead of having the statistics by total, you can change the statistics to the

following values:
o Avg
¢ Max

80

CHAPTER 4 STANDARD QUERY STORE REPORTS
e Min
o Stddev

o Total (default)

The Refresh button will refresh the report to the current period of time specified.
Next, you have a button that will let you jump to the Track Queries Report to look at the
query highlighted. The button with magnifying glass takes the selected query’s text and
pops it a new query window for you to view. The Grid View button will provide you with
additional metrics to look for each query. See Figures 4-20, 4-21, 4-22, and 4-23 for an
example of what the Grid View looks like.

queryid objectid object name query sql text total duration total cpu time

1 |24 1687677060 p_sel_produ... (@i int)SELEC.. 97816.87 18532.68
2 |3l 1431676148 p_sel_produ.. (@i int)SELEC... 236.04 165.43

3 |54 1415676091 p_sel_produ.. (@i int)SELEC... 202.84 156.63

4 |1 1607676775 p_sel_empl... (@iint,@prod... 58.56 40.8

5 |4 1607676775 p_sel_empl.. (@productNu... 4652.02 1206.26

.............................

Figure 4-20. Top Consuming Resources additional grid view

total logical reads total logical writes total physical reads total cIrtime total dop

1 3514368 0 0 0 352
2 40440 0 0 0 337
3 40440 0 0 0 337
4 5344 0 0 0 334
5 76824 0 0 14.14 334

Figure 4-21. Top Consuming Resources additional grid view

81

CHAPTER 4 STANDARD QUERY STORE REPORTS

1

2
3
4
5

total memory consumption total row count

568832 4445
345088 13029
345088 13984
0 334
662656 950

total log memory used

0

0
0
0
0

total temp db memory used

0

0
0
0
0

Figure 4-22. Top Consuming Resources additional grid view

total wait time

1 89610.91
2 73.47

3 441

< 17.28

5 4265.4

¥ execution count

352
337
337
334
334

plan count

1
1
1
1
1

Figure 4-23. Top Consuming Resources additional grid view

Columns will vary in this view based on the statistic you choose to look at; for

example, the figure is based on totals, but if you pick avg, the view will show averages.

The columns in general that are included in figures above are as follows :

82

e Query_ id

e Object_id

e Object_name
e Query_sql_text
e Duration

e CPUtime

o Logical reads
o Logical writes
o Physical reads
o CLRtime

« DOP

CHAPTER 4 STANDARD QUERY STORE REPORTS

¢ Memory consumption
¢ Row count

e Logmemory used

e Temp db memory used
o Waittime

o Execution count

e Plan count

The Regular Grid View button shows far fewer columns as seen in Figure 4-24. The
Regular Grid View concentrates on the metric and statistic you are looking at in the chart
rather than showing all the metrics. Note both views have the ability for you to change
which metric and statistic you want to view the data inside the view without returning to
the Chart View.

Top 25 resource consumers for database AdventureWorks2017. Time period: Last hour ending

Metric Duration (ms) ¥ | Statistic Total ~
queryid objectid object name query sql text ¥ total duration execution count plan count
1 [58] 1915677516 psel gets.. (@iintSELEC.. 332903084 308 1
2 4 1479676319 p_seldisco.. SELECTpNa.. 114245479 355 1
3 12 1495676376 p_calc_reve... SELECT 'Total.. 1130718.69 355 1
4 10 1831677573 p_sel_prod_.. SELECT p.Na.. 1059439.26 332 1
5 29 1799677459 p_sel_get_s.. (@iint)SELEC.. 488452.74 n 1
6 48 1623676832 p_sel_grou.. SELECT Produ.. 459434 328 1
7 39 1591676718 p_sel_total_... SELECT Sales.. 38858.22 358 1
8 25 1735677231 p_sel_prod... SELECT Produ... 38268.68 312 1
9 24 1767677345 p_sel_sales_... (@iint)SELEC... 38216.17 315 1
10 57 1751677288 p_sel_prod.. SELECT Produ.. 35573.38 303 1

Figure 4-24. Top Consuming Resources regular grid view

83

CHAPTER 4 STANDARD QUERY STORE REPORTS

The Chart View button allows you to return to Chart View if you have entered either
of the Grid Views.

You can change what is shown on the y-axis and x-axis of the chart on the Chart View
on the pane as well. For the x-axis you have the options available in Figure 4-25, and for
the y-axis you have the options available in Figure 4-26.

execution count
plan count

Figure 4-25. Top Consuming Resources chart view y-axis options

query id
execution count

Figure 4-26. Top Consuming Resources chart view x-axis options

The right-hand side of the screen shows you the plans and their IDs associated with
each query; as you click on the query, this side of the screen adjusts along with the query
plan shown at the bottom of the screen.

Also, in the first pane, if you hover over any of the bars for the queries, it will
show you details about the query and the plan you currently have selected as seen in
Figure 4-27.

Query Id 3

Object Id 1639676889

Object Name p_sel_results_by_price
Execution Count 332

Plan Count 1

(@pmoney money)SELECT ProductModellD, AVG(ListPrice) AS "Average List Price’
FROM Production.Product
WHERE ListPrice > @pmoney
GROUP BY ProductModellD
ORDER BY ProductModellD

Figure 4-27. Top Consuming Resources report query ID data

84

CHAPTER 4 STANDARD QUERY STORE REPORTS

On the left-hand side of the left-hand pane, you can change how you group the data.
You can use whichever metric you selected from the top drop-down (duration, CPU,
logical reads, etc.), execution count, and plan count as seen in Figure 4-28. The most
useful here is plan count so you can find queries that have multiple plans which will help
you identify possible queries with plans that can be forced.

* | total duration
execution count
plan count I

Figure 4-28. Top Consuming Resources report left-hand pane group by drop-down

On the left-hand pane in Portrait mode, there are a series of buttons that control
what you may do with the plans being displayed for the selected query. Figure 4-29
shows you the buttons as we go through and explain what each one does.

no
&'y

a1

R |- [

Figure 4-29. Top Consuming Resources report right-hand pane buttons

You are already familiar with the Refresh button as it just refreshes the current report
you are in. The next button forces the plan whichever plan is highlighted in the pane.
The next button either tells you the plan is not forced or will unforce a plan if it has been
forced previously. The next button will allow you to compare two plans if you click two of
the dots in the pane below and hold the Ctrl key. Figure 4-30 shows an example of what
comparing a plan looks like. The differences in the plan operators are highlighted in red
in the plan diagram. Beside that, you will have what you see in Figure 4-31 which shows
you more details about the differences in where the time is spent on each operation.

85

CHAPTER 4 STANDARD QUERY STORE REPORTS

Plan 53
SELECT D.Neme ,E.JobTitle ,GRCUPING_ID(D.Name,

E.JobTitle) AS 'Grouping Lewvel' ,COUNT(E.BusinessEntityIl) AS N'Employee Count' FRON HumanResources.

B om 5] !

]

! 1 =
h i

g3~ Streas Apg- sore Mested L iNented L = " Hasted L= Index Scan (NooClustared) |
el thggregate) Footaroly (Inner J- (Inmar J_ (Inner J- [Department] . [AK_!]
1. Cosc: O & Cost: O % ;GDI(: o8 Cost: O & Cost: & &]

i it

1 :

i Index Sesk (NeoCluszersd)

1 [EaployesDeparcmantiistory] . (1X_1

i Cost: € 4

i -

i |

| = Koy Lockup (Clustesed)

[Esployeelepartmentiisntory] . (FE_Dnp_
Cost: 21 % -

€ » 3
Plan 710

SELECT D.Mame ,E. JobTitle ,GROUPING ID(D.Mame,

E.JobTicle) AS 'Grouping Level' ,COUNTIE.BusinessEntityID) A8 N'Employee Count' FRON HumanResources

pE [I T =~
B 7] | 16 1] I i
gy Stream Agg- - Hash M 'Nested L Wasted L Index Scan (NenClustered) |
e (Aggregatel Geant, 1Innax. i (Innex I (Inner J. [Cepartment] . [AK_Departms_;
] Cost: 0 4 = Cone iCostz 18 Cost: 1 % Conz: 4 4
i}
+
Index Sesk (NenClustered)
IEsployealupartmantiistory] . (1X_Dnp.
Cosz: 4 &
2
Kay Locksp (Clustersd)
[Esployeeluparcaantiistary] . [PK_E=p.
Cowe: 3% % o=
< > .

Figure 4-30.
differences

Top Consuming Resources report comparing plan operator

The differences seen in Figure 4-31 have a not equal sign highlighted in yellow.

86

CHAPTER 4 STANDARD QUERY STORE REPORTS

Top Plan Bottom Plan
SELECT v v
o3l = =31l =

> Actual Numberof 0 > Actual Number of 0

Cached plan size 64 KB
CardinaltyEstimatic 140

CompileCPU g

CompileMemory 728

Compile Time 3

DatabaseContext¢ 1

Estimated Number [3%] 3.80984

Estimated Operato 0 (0%)

Estimated Subtree 0.0615002
MemoryGrantinfo

Optimization Level FULL

OptimizerHardware

OptimizerStatsUsa

Parameter ist @i, @x

ParentObjectld 1303675692

QueryHash (xE54D7BDB2EFCASS6
QueryPlanHash Ox9280E3AABI4E1273
Reason For Eady ~ Good Enough Plan Found
RetrievedFromCac false

SecurtyPolicyAppl False

Set Options ANSI_NULLS: True. ANSI_PAL
Statement SELECT D.Name A
StatementParamet 0

Statement SalHanc (x090056DE50E02097844A3C

Cached plan size 88 KB
CardinaltyEstimati 140

CompileCPU 5

CompileMemory 728

Compile Time 5

DatabaseContext 1

Estimated Numbe [3%] 553432

Estimated Operatc 0 (0%)

Estimated Subtree 0.0900838
MemoryGrant info

Optimization Leve FULL

OptimizerHardwar

OptimizerStatsUs:

Parameter List @i, @x

ParentObjectld 1303675692

QueryHash (xE54D7BD82EFCASS6
QueryPlanHash 0x088D5A236CCEE458
Reason For Eady Good Enough Plan Found
RetrievedFromCa false

SecurtyPolicyApg False

Set Options ANSI_NULLS: True, ANSI_P
Statement SELECT D.Name
StatementParame 0

Statement SalHan Ox090056D650E02097844A

Figure 4-31. Top Consuming Resources report comparing report details

The next button shows you data for the plans in the Grid View as seen in Figure 4-32.

The final button returns the pane into the Chart View.

87

CHAPTER 4 STANDARD QUERY STORE REPORTS

e swmemany b4 suery 3 I8 R ["'I'
plan il plan fosced eecutmn type esuton (o dusten mas deatnn vy dwaton o dee deatn censtion daston ool dwsten ¥ totel duaton frst esecion beme 2 v oot
M ° 9 e o . ads aa o0 Y e 01290 110028 K000 0000 J01H- 12 13 1850.54 K000 + X030

4 " (¥ . am (¥) . 2008-12-90 1243 544570000 <0000 2098-12-13 124731 1770000 - 2000

Figure 4-32. Top Consuming Resources report grid view of plan data

In the right-hand pane, when it is in Chart View, you can hover over the plan and
get data about the plan. Three types of icons will appear in this pane. A dot with nothing
inside of it represents an unforced plan, a dot with a check mark represents a forced
plan, and a square represents a failed execution of the query. These metrics change
based on the metric you have selected at the top left-hand corner of the report; for
example, if you have CPU Time chosen, you would see CPU instead of Duration. In
Figure 4-33 you can see what the statistics an example of the statistics shown when you
hover over a icon in the pane for the period of time it represents.

Plan Id 53

Execution Type Completed

Plan Forced No

Interval Start 2018-12-10 12:47:00.000 +00:00
Interval End 2018-12-10 12:48:00.000 +00:00
Execution Count 470

Total Duration (ms) 212.87

Avg Duration (ms) 0.45

Min Duration (ms) 0.16

Max Duration (ms) 7.62

Std Dev Duration (ms) 0.47

Variation Duration (ms) 1.04

Figure 4-33. Top Consuming Resources report hover over query plan details

Queries with Forced Plan Report

The Queries with Forced Plans report shows you the query plans that have been forced
on your database. This report can be used to check back to make sure you still see the
same performance improvement when you forced the plan or to see what plans have
been forced on the database. A sample report can be seen in Figure 4-34:

88

CHAPTER 4 STANDARD QUERY STORE REPORTS

Queries with forced plans for database AdventureWorksWL CERT] Landscape View

‘ Z] l 3] ‘ B - Plan summary for query 8. Time period: Last hour ending at 7/8/2019

queryid query sql text L/
118 | (@i int)SELECT ProductiD, OrderQty, UnitPrice, Line... 156004
15400+
15200+ PE—
g| 150007 ¥
% a7
250AM Z10AM 330AM
300AM 3:20AM 340AM
L 4).
Plan 7 [forced] |g; ForcePlan | 43) Unforce Plan _

Query 1l: Query cost (relative to the batch): 100% r
SELECT ProductID, OrderQty, UnitPrice, LineTotal, sum(ordergty), sum(linetotal) FROM Sa.. -

: ~
2
B _ B .
SELECT M . Sort) Compute Scalar Conca'r.enation Stream Mgzeqabe o
Cost: 0 % Cost: 19 % Cost: 0 &% Cost: 0 % : H lgg:eq;t:}

Figure 4-34. Queries with Forced Plan report

There are not as many configuration options in this report, but let’s explore the
buttons we do have available to us. The three buttons in the left-hand pane are familiar
to us; the first is the refresh button. The second is to open this query in the Track Queries
report. The last is to open the query text in the Query Editor window.

The right-hand pane has at the very top the same buttons from the Top Resource
Consuming Queries report. One is to put the report in Landscape mode which stacks
the panes. Another one is to change it back to its default Portrait mode. Then we have
the Configure button which looks the same as the one in the Top Resource Consuming
report in Figure 4-34. Underneath that, you have the Refresh button for the right-hand
pane. There is a button to force a plan and a button to unforce a plan. Lastly is the button
to compare plans.

In the bottom pane, you have the plan showed for the highlighted plan ID from the
top right-hand pane and the buttons to force or unforce the plan selected as seen in
Figure 4-34. On the left-hand side of the chart, you have the option to change the statistic
that is used to display the dots which is defaulted to average; see Figure 4-35 for the other
options.

89

CHAPTER 4 STANDARD QUERY STORE REPORTS

Avg
Min
Max

Std Dev
Total

Figure 4-35. Queries with Forced Plan report y-axis options

Just like in the Top Resource Consuming Queries report, you have the same options
to look at the query plans.

Queries with High Variation Report

The Queries with High Variation report can indicate queries with parameterization
problems. Parameterization occurs with a query that is executed with one value and

is parameterized with a parameter then executed again with the different value and a
different plan would be more appropriate due to data distribution. For example, if you
were to execute a query looking for every living in Montana (MO), it would produce a
plan searching based on statistics for a small data set than say if you search for everyone
living in California (CA). An example of Queries with High Variation report is shown in
Figure 4-36.

90

CHAPTER 4 STANDARD QUERY STORE REPORTS

Top 25 gueries with high performance variation for database AdventureWorksWL. Time period: Last hour ending &

Metric | Duration (ms) v | Basedon: Variation = Plan summary for query 59 ‘ (2] | % 1) | 3:‘;‘ 2
-~ .

10+
5 2
B 5-
3 c Plan Id

o

c =
3 o ®
1z =
=

-5 T T T T T T

3:00 AM 3:20 AM 3:40 AM

3:10 AM 3:30 AM 3:50 AM
_ ey 2|

Plan 48 [not forced] |23 Force Plan | 2% Unforce Plan | _

Query 1: Query cost (relative to the batch): 100%
set @pmoney=(select bonus from sales.SalesPerson where BusinessEntityID=@i)

] r

Nested Loops —

SELECT Compute Scalar Constant Scan
s " (Left Quter Join) .
Cost: 0 & Cost: 0 & Cost: 0 &% Cost: 0 %
k
tﬁg

Clustered Index Seek (Clustered)
[SalesPerson] . [PK_SalesPerson Busin.

Figure 4-36. High Variation report

The few differences in this report with the Top Resource Consuming Queries Report
are that under the Statistics drop-down, you only have two options: Variation and
Standard Deviation, and there is no Configure button. When you hover over the bars,
you receive more limited information as it only shows Variation and Standard Deviation
for the metric you have selected as seen in Figure 4-37.

91

CHAPTER 4 STANDARD QUERY STORE REPORTS

Query Id 33

Object Id 1319675749

Object Name p_sel_get_originization_by_employee
Std Dev Duration (ms) 1.78

Avg Duration (ms) 033

Variation Duration (ms) 5.44

Execution Count 382

Plan Count 1

(@i int, @CurrentEmployee sys.hierarchyid)SELECT
@CurrentEmployee=OrganizationNode
from
HumanResources.Employee
where
BusinessEntitylD=@i

Figure 4-37. Queries with High Variation summary information

You have the option on the left-hand pane to change the statistics that are used to
display values; options can be seen in Figures 4-38 and 4-39.

std dev duration
avg duration

variation duration

execution count

plan count
Figure 4-38. Queries with High Variation y-axis options

query id
query id
std dev duration
avg duration
variation duration
execution count

Figure 4-39. Queries with High Variation queries x-axis options

When you hover over the dots, you receive the information based on the metric
selected for the query plan as seen in Figure 4-40.

92

CHAPTER 4 STANDARD QUERY STORE REPORTS

Plan Id 48

Execution Type Completed

Plan Forced No

Interval Start 2019-07-08 03:07:00.000 -07:00
Interval End 2019-07-08 03:08:00.000 -07:00
Execution Count 59

Total Duration (ms) 4.76

Avg Duration (ms) 0.08

Min Duration (ms) 0.03

Max Duration (ms) 0.89

Std Dev Duration (ms) 0.11

Variation Duration (ms) 142

Figure 4-40. Queries with High Variation plan summary information

You can also control the y-axis of the right-hand pane by selecting one of the options
on the left-hand side as seen in Figure 4-41.

Avg
Min
Max
Std Dev

Variation

Figure 4-41. Queries with High Variation report plan summary y-axis options

Query Wait Statistics Report

The newest report introduced to SSMS is the Query Wait Statistics report. When you
initially open the report, you get a report that shows you the total wait time by category.
Query Store takes all the wait statistics and groups them into 23 categories such as CPU,
memory, buffer 10, etc. Wait Statistics is a tried and true way of troubleshooting SQL
Server performance and welcome addition to Query Store in SQL Server 2017. Each wait
statistics category is documented in Chapter 9. An example of this report can be seen in
Figure 4-42.

93

CHAPTER 4 STANDARD QUERY STORE REPORTS

Based on: total wait time ”J |E I@ m_

>

1500000~

N

1000000~

total wait time

.

L l l l 1]

cPu l{Z)':hei' : Memo... 'Tran Log : Lock 'Bu'Ffer
Disk 10 10 10

wait category v

Figure 4-42. Query Wait Statistics report categories

The report defaults like all other reports to show wait statistics by totals, but you have
the option at the top and to the left to change to the options as shown in Figure 4-43.

avg wait time
min wait time
max wait time
std dev wait time

total wait time

execution count

Figure 4-43. Query Wait Statistics report categories reporting options

At the bottom of the Chart View, you also can change the x-axis on the chart to one of
the options in the drop-down as seen in Figure 4-44.

94

CHAPTER 4 STANDARD QUERY STORE REPORTS

wait category
wait category
avg wait time
min wait time
max wait time

std dev wait time
total wait time

execution count

Figure 4-44. Query Wait Statistics report categories x-axis options

At the top of the screen, you have three familiar buttons. The first being the Refresh
button, the second being the Standard Grid button which how that looks can be seen in
Figures 4-45 and 4-46, and finally, the button to change back to the Chart View.

wait category id wait category avgwaittime min waittime max wait time

111 CPU 715.81 0 22154
2 21 Other Disk 10 73.14 0 181
3|17 Memory 2.86 0 IA

4 14 Tran Log 10 15.09 0 153
5|3 Lock 12 12 12

Figure 4-45. Query Wait Statistics report categories grid view

std dev wait time ¥ total waittime execution count

764.62 1405136 1963
50.26 4315 59
3.07 3333 1165
13.56 3153 209
1.73 12 1

Figure 4-46. Query Wait Statistics report categories grid view

95

CHAPTER 4 STANDARD QUERY STORE REPORTS

Once you click on one of the category bars displayed in the chart, you are shown a
drilled down report of top five queries that consumed the most resources for that category
as seen in Figure 4-47. This gives you the ability troubleshoot queries based on where
your bottleneck appears to be based on wait statistics. If you see high CPU that would be
the first on the report, then you can drill down and see the top five queries using CPU and
tune those queries or see if there is a plan that can be forced that uses less resources.

B Portrait View

Query wait statistics for database AdventureWorksWL. Time period: Last hour ending at 7/8/2019 4:08 AM

Based on: total waittime “~ | Wait category: CPU ’ & _ Pln summary for query 31 2] | 3% | 3D |82 | m®
= =
1210104
g 121005+
E
= [®] Plan Id
= = 1210004
z o
: 3 o=
2 120995+
L
310AM 3:20AM 3:30AM 340 AM 350 AM 4:00 AM
J15AM 325AM 335AM 3:45AM 3:55AM 405 AM
query id s
Plan 28 [not forced] | 2% Force Plan | 33 Unforce Plan | _

Query 1: Query cost (relative to the batch): 100%
SELECT ProductID, LineTotal, sum{linetotal), max(linetotal) FROM Sales.SalesOrderDetail WHERE UnitPric..

’E >z
4l | _ u: Eis Al
- 1 Sort " Wt. Sealar i Stream Mg:eq)ﬂu . ! Stream Mﬂ“qjﬂ:! ta] Sort - ')
Cost: 0 & Cost: 43 & Cosz: 0 % (Aggregace (Aggregace Cosz: 42 % o

Figure 4-47. Query Wait Statistics top five by category report

The top bar based on drop-down has some statistics you can use to control which

top five queries show up in the report as seen in Figure 4-48.

avg wait time
max wait time
min wait time
std dev wait time

total wait time

Figure 4-48. Query Wait Statistics top five Queries Statistics

96

CHAPTER 4 STANDARD QUERY STORE REPORTS

To the right of that is a set of buttons all of them should be familiar to us by now
except for the green arrow. The green arrow takes us back to the Query Wait Statistics
Categories Report that we drilled down from.

Like other chart views, you can change the y-axis and x-axis attributes that are
displayed; see Figures 4-49 and 4-50 for what options you have on this screen.

avg wait time
min wait time
max wait time
std dev wait time

total wait time

execution count

Figure 4-49. Query Wait Statistics top five category y-axis options

query id
query id

avg wait time

min wait time

max wait time
std dev wait time

total wait time
execution count

Figure 4-50. Query Wait Statistics top five by Category x-axis options

On the right-hand side pane, you have the usual dotted report representing the
different plans over the period time. The buttons at the top are the same ones on the Top
Resource Consuming Resource Queries Report seen in Figure 4-13. You can also change
the y-axis to different statistics from the default of total to one of the values in the drop-
down as seen in Figure 4-51.

Avg

Min

Max

Std Dev
[Total |

Figure 4-51. Query Wait Statistics top five by Category Plan y-axis options

97

CHAPTER 4 STANDARD QUERY STORE REPORTS

Tracked Queries Report

The Tracked Queries Report is used to show runtime statistics for a particular query
you are tracking and see all the execution plans for that query. An example of a Tracked
Queries Report can be seen in Figure 4-52. This is most useful when you have previously
identified a query by query ID that you want to watch and see how the performance

changes over time.

Tracking query 1| . 19 Auto-Refresh | 2] Refresh | 23 Force Plan | 3i) Unforce Plan | _
>

104

d N

Plan Id

ol O o900 e
«? @1

-5

200 AM 8:00 AM 12:00 PM 400 PM 200 PM 12:00 AM 400 AM

3;‘, Unforce Plan | _

Plan 1 [not forced] 3 ForcePlan

Query 1: Query cost (relative to the batch): 100%
set @productNumber=(select ProductNumber from production.Product where productid=gi)

(5 if] o
SELECT ’ Compute Scalar ' Nested I‘OQP’_] Constant Scan
Cost: 0 % Cost: 0 % (Left OQuter Join) Cost: 0 &
Cost: 0 %
|
td;l

Clustered Index Seek (Clustered)
[Product] . [PK_Product_ProductID]
Cost: 100 %

Figure 4-52. Tracked Queries Report

On the top left-hand corner, you have two ways to find queries that you want to track.
One is to type the query ID in the white box then hit the green arrow to load the data.
The data by default is for the last day. The other is to click the magnifying glass in which
it will pop a window where it has loaded all the queries that have been stored in Query
Store as seen in Figure 4-53.

98

CHAPTER 4 STANDARD QUERY STORE REPORTS

N

SELECT

db.name as HasMemoryOptimizedObjects from master.sys.master_files mf join...

Query ID Query Text ID Query Text

select host_platform from sys.dm_os_host_info

SELECT StatMan([SCO], [5B000O0]) FROM (SELECT TOP 100 PERCENT [SCO], step...

SELECT StatMan([SCO0], [SBO0O0Q]) FROM (SELECT TOP 100 PERCENT [SCO], step...

1 1
2 2
3 3
4 4
5 5

SELECT ProductlD, AVG(OrderQty) AS AverageQuantity, SUM(LineTotal) AS Total

FROM Sales.SalesOrderDetail

FROIN PV P Jo a2l Py

v

Ok

|‘Cancel‘

Figure 4-53. Tracked Queries Report magnifying glass view

From here you can select a query to track then click on OK after which you will need

to hit the green arrow for it to load the data in the report. Hovering over the dots reveals

the statistics for the period of time based on the metric you have configured to be shown

which is the duration by default as seen in Figure 4-54.

99

CHAPTER 4 STANDARD QUERY STORE REPORTS

Plan Id 4

Execution Type Completed

Plan Forced No

Interval Start 2019-07-07 15:00:00.000 -07:00
Interval End 2019-07-07 16:00:00.000 -07:00
Execution Count 186

Total Duration (ms) 3279.37

Avg Duration (ms) 17.63

Min Duration (ms) 0.37

Max Duration (ms) 185.34

Std Dev Duration (ms) 33.17

Variation Duration (ms) 1.88

Figure 4-54. Tracked Queries Report statistics details

At the top, you have a couple of new buttons we have not seen. The first is the Auto
Refresh button which will as suspected auto refreshes the report every 5 seconds. The
Auto Refresh setting is configurable under the Configure button. There is only one other
configurable setting in that screen we have not seen, and that is which query to track
which can change from there.

Conclusion

In this chapter we looked at the Regressed Queries, Overall Resource Consumption,
Top Resource Consumption Queries, Queries with Forced Plans, Queries with High
Variation, Query Wait Statistics, and Tracked Queries reports and how they interacted
with each other. We explored all the options you had available to change what data is
reported on the screen and how to configure each report to meet your needs. These
reports are vital to quickly being able to troubleshoot issues with Query Store on your
SQL Server instance.

100

CHAPTER 5

Query Store Catalog Views

Query Store introduces eight new catalog views to SQL Server where it stores all the
information you need to query data to troubleshoot SQL Server with Query Store and
check the configuration of Query Store. You need VIEW DATABASE STATE permission to
query the catalog views. In this chapter you will find descriptions of all the catalog views
and their columns then examples of the queries behind the standard Query Store reports
we discussed in Chapter 4.

sys.database_query_store_options

The catalog view that holds the options that tell you the settings for the setup of Query
Store is sys.database query store options. This catalog view returns all the options
available that are set for the configuration of Query Store. This catalog view has no
relationships with any of the other catalog views. Sometimes you need to check the
configuration of Query Store across all your databases where Query Store is turned on;
you can use the query in Listing 5-1 to return a result set for each database that has
Query Store enabled with all the settings.

101
© Tracy Boggiano and Grant Fritchey 2019

T. Boggiano and G. Fritchey, Query Store for SQL Server 2019, https://doi.org/10.1007/978-1-4842-5004-4_5

CHAPTER 5 QUERY STORE CATALOG VIEWS

Listing 5-1. Check Query Store options across all databases on a SQL Server
instance

DECLARE @SQL NVARCHAR(MAX) = '';

SELECT @SQL += REPLACE(REPLACE('
USE [{{DBName}}];
SELECT "{{DBName}}",
*
FROM sys.database query store options;
, '{{DBName}}", [name])
)' ! I) e I)
FROM sys.databases
WHERE is query store on = 1;

EXEC (@SOL);

Table 5-1 displays all the column names, data types, and descriptions for the
columns in the sys.database query store options catalog view. Important columns
to keep an eye on are the actual_state_desc; you want to make sure it stays in READ_
WRITE if the desired_state is READ_WRITE and did not switch to READ_ONLY due to
running out of space or ERROR. To understand these options for these columns better,
please refer to Chapter 3.

102

CHAPTER 5 QUERY STORE CATALOG VIEWS

(panu1gu02)

d04d4d
ALIHM Qv
KINO av3d

440
'SMO||0} SB 8B SanjeA pifej "810)S A1anp Jo 8)e)s [enjae au) Jo uondiiasap & noA SaAly

40443 =¢

JLUM Qv =2

ANINO av3d =1

440=0

'SMO||0} SB 9B SaN[eA pIfey "a]e}s Palisap auy) Ui a|qe|ieAr

10U SBM 18U} HOYYT 10 anjeA [euoiippe ay) 810N "8101S A1anp JO 31e]S [enjor 8y} SMOYS

LM Qv
KINO Qv

440
:SMO||0} SB 8B SanjeA pifej "8101S A1anp Jo 8je)s pa.isap au) Jo uondiasap e nok sanly

JLHM avId =2

KINO Qvad = |

440=0

:SMOJ|0} SB 8. SaN[eA pijep “Jasn 8y}

fg 18s aq UBI 1ey) SanjeA Ajuo ay) aJe asay] "a101S AJanp Jo a1els PaJIsap 8yl SMoOUS

(09)eyouenu

Julljews

(09)Jeyosenu

Julljews

9S9paJe}S” [enjoe

a)e)sjenjoe

0S9p 8)B)S palIsap

a)e)S palisap

uonduiasaq

adfy ejeq

aweu uwnjo)

suondo a.103s~Lianb~asvquivp ss 1of suondiisap puv 3uysi] uwnjo) *I-S ajquj,

103

QUERY STORE CATALOG VIEWS

CHAPTER 5

SgIN Ul pasn sI 8101S A1anp 10 azis 1ua.ind ayl noA sjaL

2101 A1anp Buunbiyuon uo ¢ Je1deyn o] Jojol ases|d ‘suoipuod asay) Jo Aue X 0]
a9eds Jo 10 unJ sey aseqelep ay} ‘eseqeleq 1S 8Inzy Ul — 882HeS

apow ATNO @v3y urind Ajueiodwa) aq [jim

21015 Asanp awiy 1eyl Buung “ysip 01 sisisiad 1 810jaq Alowaw Ul pay aq ||Im 1ey) elep
10 JUnowe au} 0} Jwi| e yaeal 0} [enuajod ayy SI 8Jay} aseqeieq TOS anzy U — #1292
Axanb anowax 91031s Axanb™ ds-sAs ainpadoid paiols ul pasn 810)S Alanp

WwoJy paau Jabuoj ou noAk saianb aaowal Jo Jwij Jaybiy e 196 o1 Ja1y 921AI9S Jaybiy e

0] apeibdn Aew noA 1wl 1eul paydeal aaey noA sa1ealpul Siy} 0S ‘Alowaw [eulajul ul
Ppalo}s 8q uea salanb Auew Moy 0} Se Wi B SI 818y} ‘aseqeie(1OS ainzy ul — 0 Ly9y
payoeal Usaq sey gW IZIS IDVI0LS XVW Ul paly1oads jiwi| 8IS Xew 8yl — 98669
saseqe1ep ay} Jo sa1dod Ajuo-peal

aJe sed||dal A1epuoas |je Ajfenuassa asneaaq seseqelep pajedl|dal-0ab aseqeieq T0S
ainzy pue sdnoig Ayjigeieay Joy saijdde siy] "eaidas Alepuodas e si aseqelep ayl — 8
apow Aouabiowa ayy ul paoe|d usaq Sey aseqeiep ayl — ¢

apouwl Jasn-a|buis sy} ul pade|d usaq Sey aseqelep ay} — g

apouw Ajuo-peal ayy ul pade|d usaq Sey aseqeiep ayl — |

:SMOJ|0} SB aJe SanjeA pieA “Aym uoseas sy} 81eaipul 0} UWINj0d 8y} Ul patols si dewiq
B ‘JLIYM aV3Y S! 81els palisap ay} Inq ‘apow AINO™ @v3Y Ul SI 8Seqelep au uaym

uibiq

ul

qu—azIs obeI0)s uUaLIND

uoseas Ajuopeal

uonduasaq

adf} ejeq

auwleu uwnjoy

(ponuuod) *1-g21qVJ,

oy
o
—

CHAPTER 5 QUERY STORE CATALOG VIEWS

(Kjuo g L0g J8n18S 70S 01 saljdde) ai01s 01 Salanb 1eym

aulwalep 03 suondo suoneinBiyuod Woisna asn o} 8101s A1any sj181 — INOLSND = ¥
a10)g A1anp ul Apeauje salianb 10} $11SIILIS 199][09 01 SBNUIIU0I

Janamoy a101S Aianp “salienb mau Buunided dojs 0] a101g A1anp S|181 — INON = €
(eseqgereq

70S ainzy Jo) }neya() ‘sulaped abesn auy) uo paseq salanb sainded — QINY = ¢
(dn pue 910g J1an1a8s TOS Jojf 1neyaq) “salanb |e sainides — TV = |

:SMO|[0J S aJe San|eA pijeA “a101S A1anp Joj apow ainyded ay|

dn pue /10g Jen1as oS 01 salddy

UONBNILWI| OU SABY [|IM 11 ‘0 01 BNjeA 8U 18S NOA

1] *f1enb 1eyy Joj sueld sainydes Jabuoj ou 8101S Alanp ‘payaeal Si Jaquunu WNWIXew
ay1 aouQ A1anb yoea Joj daay |Im 81018 Aienp sueld Jo Jaquunu WNWIXew ay |

skep / si anjen neyap ay} ‘uonp3

aiseg aseqeleq 10S 8.nzy Jo4 “Aoijod uonualas ayy a|gesIp |[IM } ‘0 0} anjeA au} 18s
noA J| *skep g s anjea Jnegap ay] "ai01s Asanp ui sheys Aianb e shep Jo Jaquinu ay)
asn ued }f Jey} adeds ysIp Jo Junowe wnwixew ay} a10}S A1anp sjiaL

Sajnuiw 09 S aN[eA Jneyap 8y ssjnulW Oy | PUe ‘09 ‘0€ ‘GL ‘01 ‘G ‘| :Sanfea

pi[eA aJe Buimojjo) 8y -0ul SOisIiels ay} dn (|0 0} S[eAldlul Jeym 8103S A1anp s|1aL
(saanuiw G1)

SpU09as Q6 S! }neyap ayL ysIp o} eyep Bunsisiad si 81035 A1anp usyo Moy noA sjjaL

TS

uibiq

uibig

uibiq

uibiq

uibiq

apowaindea”Aianb

f1anb™1ad " sue|d xew

sAeppjoysaiyr Asanb gels

qui—azI1s~abeI0)s Xeuw

saynuIW—yybus|[eaayul

SpU0%as [eAJajul ysnyy

105

QUERY STORE CATALOG VIEWS

CHAPTER 5

90eds 931} %08 1noge sayIeal

) [IUN 1SJ1} POAOLUBI 8. Salianb 1Sp|0 pue aAISuadxa }Ses| aljL “anjeA }nejep oy} sl
SIY] "payoeal si 8zIS WNWIXew ay} Jo %06 Uaym Ajjeanewoine dn ueajp — QLNY = |
Areanewoine dn ueajp J0uop — 440 =0

:SMOJ|0} SB Je San[eA pIjeA "9zIS WnWIXeuw

a1 01 850]9 $196 11 usym 31015 Alanp dn ueajd 010U J0 JaLel 810)S Alenp S|8L uIews apow ™ dnuea|o paseq ozIs
(Kuo 6.0z J8n18g DS 01 Saljdde) painided aq pinoys siels Alenb ay JI sulwialep SINOY~ pjoysalyy
01 INOLSNA S! apow aimded Alanb ajiym elep 199]]09 [|IM SaLIaNnb awin 0 Junowe ay | ul ~a1e1s fo1jodaumdes
(Rjuo g L0z 19188 DS 01 saljdde) NOLSND Sw™awn ndouonnooxa
S| apow ainded Aanb ajiym painides si 810Jaq SW Ul dWIL UOIINIBXS NdT [B10L wibiq ~Ie101 Aoijod"aunyded
(Aluo 61.0¢ JonJ8S DS 01 salldde) NO1SNI Swawp ndo
sI apow ainded A1anb ajiym painydes s 81ojaq swi ul awi 9)idwod NdJ [e1o0L wiblg ~apdwos|e10y Aoljodaunyded
(Kuo 6 L0z 18188 DS 01 Saljdde) painided 1unoJ
SI 11 810Jaq INOLSNI SI apow ainyded Alanb ajiym saindaxa Alanb e sawi Jo Jaquiny ul ~uonnaexa Aoljodaundes
3INON
(Aluo 610z JanJas 10S 03 saljdde) WOL1SND
oLnv
v
:SMOJ|0} Se aJe SanfeA pljep 8401S Aianp Jo apow ainided ay Jo uonduaseq (09)Jeyoteau 2s9p apow aindes Aianb
uonduasaq adf} ejeq aweu uwnjo9

(ponuuod) *1-g21qVJ,

106

CHAPTER 5 QUERY STORE CATALOG VIEWS

9]e]S pajoadxa ay ul 10u SI 81L1S ay) ul uaym pareindod
Ajjensn -a1e1s 1ua1Ind ayy ul dn papua a10)S A1any Moy U0 UOIBWLIOjUI [RUOIIPPY
dn pue /10g JaA1as pS 01 salddy

(Unejap) NO
440

:SMOJ|0} S 8J. San[eA pIje/ “1ou Jo paindes ase sansiels Jem Jayies Jo uonduasaq

dn pue /10g JeAn1es pS 01 salddy

NO=1

4H40=0

“SMO|[0} SB 8B SaNnjeA PIjBA 10U J0 $911SN.IS 1em ain1ded 01 81015 Aianp SjjaL
oLnv

440
'SMO0J|0} S 8J. San[eA pijep “dnuesjo paseq-azis Jo uonduosaq

(0008)seY2JRAU

(09)Jeyoseau

juljrews

(09)JeyoseAu

0Jul”[euonIppea]elS [enjoe

2sap
~apowainydessjels T Hem

apowaJnydes sjeis lem

959p
apow—dnues|d_paseq azis

107

CHAPTER 5 QUERY STORE CATALOG VIEWS

sys.query_context_settings

The sys.query context settings catalogview holds the context settings that the
queries in Query Store were running with such ANST_NULLS or QUOTED_IDENTIFIER. If
different context settings are used with the same query, you will end up with different
plans in Query Store. A bit mask is stored in the set_options field to tell us which
options were used when a query was run. There are two ways to view the set options

for a query. The first is to use the Dynamic Management Function sys.dm_exec_plan_
atttibutes and pass in the plan_handle. This method only works if the plan is still in the
plan cache. In Listing 5-2 you can retrieve a plan_handle or context_settings_id for

a particular query by narrowing down your selection by feeling part of the query in the
WHERE clause in the <value> placeholder.

Listing 5-2. Query to retrieve a plan handle from cache

SELECT
q.query id,
qt.query sql text,
gs.plan_handle,
q.context_settings id
FROM sys.query store query q
INNER JOIN sys.dm exec_query stats gs
ON g.last compile batch_sql handle =
gs.sql _handle
INNER JOIN sys.query store query text qt
ON g.query text id = qt.query text_id
INNER JOIN sys.query context settings cs
ON cs.context settings id = q.context settings id
WHERE qgt.query sql text LIKE '%<value>%'
ORDER BY q.query id

Next, you copy the plan handle for the query you want to see the set options for and
putin Listing 5-3 replacing <plan_handle> in the listing.

108

CHAPTER5 QUERY STORE CATALOG VIEWS

Listing 5-3. Retrieve set options for a plan handle

SELECT =%
FROM sys.dm exec_plan attributes(<plan_handle>)
WHERE attribute = 'set options'

Second, you can create a function then you can query a record from the catalog
view and use the context_settings_id returned in Listing 5-2 as the @SetOptions value to
view the set options that were used as seen in Listing 5-4.

Listing 5-4. Function to retrieve SET options for queries executed

CREATE FUNCTION fn_QueryStoreSetOptions (@SetOptions as int)
RETURNS VARCHAR (MAX)
AS
BEGIN
DECLARE @Result VARCHAR(MAX)=",
@SetOptionFound INT
DECLARE @SetOptionsList TABLE
(
[Value] INT,
[Option] VARCHAR(60)
)

INSERT INTO @SetOptionsList
VALUES

(1, "ANSI_PADDING'),

(2, "Parallel Plan'),

(4, 'FORCEPLAN'),

(8, 'CONCAT NULL_YIELDS NULL'),
(16, 'ANSI_WARNINGS'),

(32, 'ANSI_NULLS'),

(64, 'QUOTED IDENTIFIER'),
(128, 'ANSI_NULL DFLT ON'),
(256, 'ANSI_NULL DFLT OFF'),
(512, 'NoBrowseTable'),
(1024, 'TriggerOneRow'),
(2048, 'ResyncQuery'),

109

CHAPTER 5 QUERY STORE CATALOG VIEWS

(4096, 'ARITH ABORT'),

(8192, 'NUMERIC_ROUNDABORT'),
(16384, 'DATEFIRST'),

(32768, 'DATEFORMAT '),
(65536, 'LanguageID"),
(1312072, '"UPON"),

(262144, "ROWCOUNT")

SELECT TOP 1 @SetOptionFound = ISNULL([Value], -1),
@Result = ISNULL([Option] , "") + '; '

FROM @SetOptionsList

WHERE [Value] <= @SetOptions

ORDER BY [Value] DESC

RETURN @Result +
CASE WHEN @SetOptionFound > -1 THEN
dbo.fn_QueryStoreSetOptions(@SetOptions -
@SetOptionFound)
ELSE "'
END
END
GO

Next, we need to query the sys.query_context_settings catalog view and CAST the
set_options column to an INT value to parse the SET options as seen in Listing 5-5. You
can see an example of the output of the results in Figure 5-1.

Listing 5-5. Query to return SET options for a query executed
SELECT dbo.fn_QueryStoreSetOptions(CAST(set options as int))
FROM sys.query context settings

[ARITH_ABORT: ANSI_NULL_DFLT_ON: GUOTED_IDENTIFIER: ANSI_NULLS; ANSI_WARNINGS: CONCAT_NULL_YIELDS_NULL: Paraliel Pian: ANS|_PADDING: |

Figure 5-1. Set options query results

Table 5-2 displays all the column names, data types, and descriptions for the
columns in the sys.query context settings catalog view.

110

CHAPTER 5 QUERY STORE CATALOG VIEWS

Table 5-2. Column listing and descriptions for sys.query_context_settings

Column name

Data type

Description

context_settings_id

set_options

language_id

date_format

date_first

bigint

varbinary(8)

smallint

smallint

smallint

Primary key. This value is in the Showplan XML queries
for reference

Bit mask reflecting SET options. Values for bit mask
values are calculated using the following:
1 —ANSI_PADDING

2 — Parallel Plan

4 — FORCEPLAN

8 — CONCAT _NULL_YIELDS NULL
16 — ANSI_WARNINGS

32 — ANSI_NULLS

64 —QUOTED IDENTIFIER

128 — ANSI_NULL_DFLT_ON

256 —ANSI NULL DFLT OFF
512 — NoBrowseTable

1024 — TriggerOneRow

2048 — ResyncQuery

4096 — ARITH_ABORT

8192 — NUMERIC_ROUNDABORT
16384 — DATEFIRST

32768 — DATEFORMAT

65536 — LanguagelD

131072 — UPON

262144 — ROWCOUNT

The ID of the language. Look for more information
online by looking at the sys.languages table

The date format. See the SET DATEFORMAT command
for more information

The date first value. See the SET DATEFIRST
command for more information

(continued)

111

CHAPTER 5 QUERY STORE CATALOG VIEWS

Table 5-2. (continued)

Column name Data type Description
status varbinary(2) Bit mask field indicating the type of query or context in
which it was executed. Value can be any combination
of flags in hexadecimal:
0x0 — regular query (no specific flags)
0x1 — query that was executed through on or the
cursor APIs’ stored procedures
0x2 — query for notification
0x4 — internal query
0x8 — auto parameterized query without universal
parameterization
0x10 — cursor fetch refresh query
0x20 — a query that is being used in cursor update
requests
0x40 — initial result set is returned when a cursor is
opened (Cursor Auto Fetch)
0x80 — encrypted query
0x100 — query in context of row-level security predicate
required_cursor_options int Options specified for cursor
acceptable_cursor_options int Options SQL Server may implicitly convert a cursor to
support the execution of the statement
merge_action_type smallint A MERGE statement trigger execution plan is used.
Valid values are as follows:
0 —no trigger or executes as a DELETE action.
1 — INSERT plan.
2 — UPDATE plan.
3 — DELETE plan with the addition of an INSERT or
UPDATE action
default_schema_id int ID of the default schema, which is used to resolve
names that are not fully qualified names
is_replication_specific bit Used for replication

is_contained

varbinary(1)

1 indicates a contained database

112

CHAPTER5 QUERY STORE CATALOG VIEWS

sys.query_store_plan

The sys.query store plan catalog view stores the query plan associated with each query
in Query Store. The most important column in this catalog view is the query plan column
as it shows you the execution plan that was stored for the query. You can copy and paste
this into an editor of your choice and save with a .sqlplan extension and open with SSMS
to view the graphical execution plan. Two other interesting columns are the engine_
version and compatibility_level columns. The engine_version column lets us know what
the exact version of SQL Server that was running when the query plan was captured. This
is useful for troubleshooting plan regression due to upgrades. The compatibility level
column tells which compatibility level the query was ran under. This is useful when
upgrading as well but especially when going from a compatibility level below SQL Server
2014 to SQL Server 2014 and up due to the cardinality estimator (CE) changes made in
SQL Server 2014. Table 5-3 displays all the column names, data types, and descriptions for
the columns in the sys.query store plan catalog view.

Table 5-3. Column listing and descriptions for sys.query_store_plan

Column Name Data Type Description

plan_id bigint Primary key

query_id bigint Foreign key to sys.query store query. Refer to
Table 5-4

plan_group_id bigint ID of plan group. Multiple plans are often created

for cursor queries. The same group will contain the
populate and fetch plans

engine_version nvarchar(32) Version of SQL Server for the compiled plan “major.
minor.build.revision” format

compatibility_level smallint Compatibility level of the database when the query
was ran

query_plan_hash varbinary(8) MD5 hash of the query plan

query_plan nvarchar(max) Showplan XML for the query plan

is_online_index_plan bit Indicates rather the plan was used during an online
index rebuild

(continued)

113

CHAPTER 5 QUERY STORE CATALOG VIEWS

Table 5-3. (continued)

Column Name

Data Type

Description

is_trivial_plan
is_parallel_plan

is_forced_plan

is_natively_compiled

force_failure_count

last_force failure_
reason

bit
bit
bit

bit

bigint

int

The plan is a trivial plan
The plan is parallel plan

The plan is a forced plan marked by using stored
procedure sys.sp_query store forced plan.
Plan forcing does not guarantee this exact plan will
be used. The query compiles and compares the new
compiled plan to the one that was forced. If it fails

to match, the column force failure count
increments and the column last_force failure_
reason will record the reason

The plan includes natively compiled memory-
optimized procedure. Valid values are as follows:
0 - false

1 —true

The number of times that forcing this plan has failed

Last reason why plan forcing failed. Valid values are
as follows:

0 — no failure

8637 — ONLINE_INDEX_BUILD

8683 — INVALID_STARJOIN

8684 — TIME_OUT

8689 — NO_DB

8690 — HINT_CONFLICT

8691 — SETOPT_CONFLICT

8694 — DQ_NO_FORCING_SUPPORTED
8698 — NO_PLAN

8712 — NO_INDEX

8713 — VIEW_COMPILE_FAILED

<other value> — GENERAL_FAILURE

114

(continued)

Table 5-3. (continued)

CHAPTER 5 QUERY STORE CATALOG VIEWS

Column Name Data Type Description

last_force_failure_ nvarchar(128) Description of last force plan failure. Valid values are

reason_desc as follows:
ONLINE_INDEX_BUILD — online rebuild was occurring
on the a table in the query while the query was trying
to modify data
INVALID_STARJOIN — contains invalid StarJoin
TIME_OUT - forced plan could not be found by the
optimizer in the number of allowed operations
HINT_CONFLICT — query hint conflicts
prevented the query from being compiled
DQ_NO_FORCING_SUPPORTED - plan conflicts with
the use of a distributed query or full-text operations
NO_PLAN — forced plan could not be verified so the
query processor did not produce a query plan
NO_INDEX — index specified in the plan no longer exists
VIEW_COMPILE_FAILED — problem exists in an
indexed view referenced in the plan
GENERAL_FAILURE — general forcing error

count_compiles bigint The number of compiles

initial_compile_start_ datetimeoffset Initial compile start time

time

last_compile_start_ datetimeoffset Last compile start time

time

last_execution_time datetimeoffset Last execution time

avg_compile_duration float Average compile duration

(continued)

115

CHAPTER 5 QUERY STORE CATALOG VIEWS

Table 5-3. (continued)

Column Name Data Type Description
last_compiled_duration bigint Last compile duration
plan_forcing_type int Plan forcing type
0 — NONE
1 — MANUAL
2 —AUTO
plan_forcing_type_desc nvarchar(60) Text description of plan_forcing_type

NONE — no plan forcing
MANUAL - plan forced by user
AUTO - plan forced by automatic tuning

Note When querying using the datetimeoffset datatypes, you need to
specify the time zone the data was generated in to see the data at the times it was
generated because all data is stored in UTC time in this datatype.

sys.query_store_query

All metrics per query executed are stored inside this catalog view. The data in the catalog
view is stored at the SQL statement level. Batches are split up into statements in the
catalog view allowing for better troubleshooting. Most of the columns in the catalog view
are metrics for compiling and binding the plan for the statements. Of note in this catalog
view is the object_id column. This column allows you to tie the statements back to their
stored procedure, function, or trigger. Table 5-4 shows all the column names, data types,
and descriptions for the columns in the sys.query store query catalog view.

116

CHAPTER5 QUERY STORE CATALOG VIEWS

Table 5-4. Column listing and descriptions for sys.query_store_query

Column name Data type Description
query_id bigint Primary key
query_text_id bigint Foreign key to sys.query store

query_text. Refer to Table 5-5

context_settings_id bigint Foreign key to sys.query context
settings. Refer to Table 5-2

object_id bigint ID of the database object. Value will be
0 for ad-hoc queries

batch_sql_handle varbinary(64) ID of the statement batch the query
is part of. Populated only if the query
references temporary tables or table

variables
query_hash binary(8) MD5 hash of the query including

optimizer hints
is_internal_query bit The query was generated internally
query_paramterization_type tinyint Kind of parameterization:

0 —none

1 —user

2 —simple

3 —forced
query_paramterization_type_desc nvarchar(60) Text description of type of

parameterization
initial_compile_start_time datetimeoffset Initial compile start time
last_compile_start_time datetimeoffset Last compile start time
last_execution_time datetimeoffset Last execution time
last_compile_batch_sql_handle varbinary(64) Last SQL batch handle

for this query. It can be used with
sys.dm _exec_sql text to getthe
full text of the batch

(continued)

117

CHAPTER 5 QUERY STORE CATALOG VIEWS

Table 5-4. (continued)

Column name Data type Description
last_compile_batch_offset_start bigint Last start compile batch line number
last_compile_batch_offset_end bigint Last end compile batch line number
count_compiles bigint The number of compiles
avg_compile_duration float Average compile time in microseconds
last_compile_duration bigint Last compile time in microseconds
avg_bind_duration float Average bind time in microseconds
last_bind_duration bigint Last bind time in microseconds
avg_bind_cpu_time float Average bind CPU time in
microseconds
last_bind_cpu_time bigint Last bind CPU time in microseconds
avg_optimize_duration float Average optimize time in microseconds
last_optimize_duration bigint Last optimize time in microseconds
avg_optimize_cpu_time float Average optimize CPU time in
microseconds
last_optimize_cpu_time bigint Last optimize CPU time in
microseconds
avg_compile_memory_kb float Average compile memory in kilobytes
last_compile_memory_kb bigint Last compile memory in kilobytes
max_compile_memory_kb bigint Max compile memory in kilobytes
is_clouddb_internal_query bit Always 0 on on-premises instances

sys.query_store_query_text

The sys.query store_query_text catalog view contains the query text of the SQL

Statement to be joined to sys.query store query catalog view to get statement level

data, not batch level data. Using the object_id from sys.query_store_query, we are in

Listing 5-6 querying for all the statements for an object by subbing in an object name in

the placeholder <object_name>.

118

CHAPTER5 QUERY STORE CATALOG VIEWS

Listing 5-6. Retrieve statements for an object

SELECT x
FROM sys.query store query text qt
INNER JOIN sys.query store query q
ON g.query text id = qt.query text id
INNER JOIN sys.objects o on o.object id = q.object id
WHERE o.name = '<object_name>'

Table 5-5 shows all the column names, data types, and descriptions for the columns
in the sys.query store query text catalogview.

Table 5-5. Column listing and descriptions for sys.query_store_query_text

Column name Data type Description

query_text_id bigint Primary key

query_sql_text nvarchar(max) SQL text of the query as provided by user

statement_sql_handle varbinary(64) SQL handle of the query

is_part_of_encrypted_module bit Indicates if the query is part of an encrypted
module

has_restricted_text bit Indicates if the query text contains passwords

or other unmentionable words

sys.query_store_wait_stats

The sys.query store wait_stats catalog view was introduced to Query Store in SQL
Server 2017 and gave us major insights into what each query was waiting on when
executing. In Listing 5-7 you can see a summary of the wait statistics collected across
categories for the statements in an object by subbing in value for <object_name>.

Listing 5-7. Wait stats for statements in an object

SELECT x
FROM sys.query store query text qt
INNER JOIN sys.query store query q
ON g.query text id = qt.query text id

119

CHAPTER 5 QUERY STORE CATALOG VIEWS

INNER JOIN sys.objects o on o.object _id = q.object_id
INNER JOIN sys.query store plan p

ON p.query id = q.query id
INNER JOIN sys.query store wait_stats ws

ON ws.plan_id = p.plan_id
WHERE o.name = '<object_name>'

Below in Table 5-6 are all the column names, data types, and descriptions for the

columns in the sys.query store wait stats catalogview.

Table 5-6. Column listing and descriptions for sys.query_store_wait_stats

Column name

Data type

Description

wait_stats_id

plan_id

runtime_stats_interval_id

wait_category

wait_category_desc

bigint

bigint

bigint

tinyint

nvarchar(128)

Identifier of the row representing wait statistics for
the plan_id, runtime_stats interval id,
execution_type, and wait_category.Itis
unique only for the past runtime statistics intervals.
For currently active intervals, there may be multiple
rows representing one row of statistics flushed to
disk and possible multiple rows for data still held in
memory

Foreign key to sys.query store plan.
Refer to Table 5-3

Foreign key to sys.query store runtime_
stats_interval. Refer to Table 5-8

Represents what category wait time is aggregated
into. Refer to Table 5-7 for wait statistics type
mappings and valid values

Description of the wait statistics category. Refer to
Table 5-7 for wait statistics type mappings and valid
values

120

(continued)

Table 5-6. (continued)

CHAPTER5 QUERY STORE CATALOG VIEWS

Column name Data type

Description

execution_type tinyint

execution_type_desc nvarchar(128)

total_query_wait_time_ms bigint

avg_query_wait_time_ms float

last_query_wait_time_ms bigint

min_query_wait_time_ms bigint

max_query_wait_time_ms bigint

stdev_query_wait_time_ms float

Determines the type of query execution. Valid values
are as follows:

0 — regular execution: successful

3 — client aborted the execution

4 — exception aborted execution

Textual description of the execution type field. Valid
values are as follows:

0 —regular

3 — aborted

4 — exception

Total CPU wait time in the aggregation interval in
milliseconds

Average CPU wait duration per execution in the
aggregation interval in milliseconds

Last CPU wait duration in the aggregation interval in
milliseconds

Minimum CPU wait time in the aggregation interval
in milliseconds

Maximum CPU wait time in the aggregation interval
in milliseconds

Standard deviation CPU wait time in the
aggregation interval in milliseconds

Wait statistics are divided into 23 categories a list of which can be found in Table 5-7

with a list of which wait statistics belong in each category.

121

CHAPTER 5 QUERY STORE CATALOG VIEWS

Table 5-7. Wait statistics categories mapping table

Wait Wait statistics category Wait statistics types included

statistics ID description in the category

0 Unknown Unknown

1 CPU SOS_SCHEDULER_YIELD

2 Worker thread THREADPOOL

3 Lock LCK_M_%

4 Latch LATCH_%

5 Buffer latch PAGELATCH_%

6 Buffer 10 PAGEIOLATCH_%

7 Compilation® RESOURCE_SEMAPHORE_QUERY_COMPILE

8 SQL CLR CLR%, SQLCLR%

9 Mirroring DBMIRROR%

10 Transaction XACT%, DTC%, TRAN_MARKLATCH_%, MSQL_XACT_%,
TRANSACTION_MUTEX

11 ldle SLEEP_%, LAZYWRITER_SLEEP, SQLTRACE_BUFFER_

FLUSH, SQLTRACE_INCREMENTAL_FLUSH_SLEEP,
SQLTRACE_WAIT_ENTRIES, FT_IFTS_SCHEDULER_
IDLE_WAIT, XE_DISPATCHER_WAIT, REQUEST_FOR_
DEADLOCK_SEARCH, LOGMGR_QUEUE, ONDEMAND _
TASK_QUEUE, CHECKPOINT_QUEUE, XE_TIMER_EVENT

12 Preemptive PREEMPTIVE_%

13 Service broker BROKER_% (but not BROKER_RECEIVE_WAITFOR)

14 Tran Log 10 LOGMGR, LOGBUFFER, LOGMGR_RESERVE_APPEND,
LOGMGR_FLUSH, LOGMGR_PMM_LOG, CHKPT,
WRITELOGF

15 Network 10 ASYNC_NETWORK_IO, NET_WAITFOR_PACKET, PROXY_
NETWORK_IO, EXTERNAL_SCRIPT_NETWORK_IOF

16 Parallelism CXPACKET, EXCHANGE

(continued)

122

CHAPTER 5 QUERY STORE CATALOG VIEWS

Table 5-7. (continued)

Wait Wait statistics category Wait statistics types included
statistics ID description in the category
17 Memory RESOURCE_SEMAPHORE, CMEMTHREAD,

CMEMPARTITIONED, EE_PMOLOCK, MEMORY_
ALLOCATION_EXT, RESERVED_MEMORY_ALLOCATION_
EXT, MEMORY_GRANT_UPDATE

18 User wait WAITFOR, WAIT_FOR_RESULTS, BROKER_RECEIVE_
WAITFOR
19 Tracing TRACEWRITE, SQLTRACE_LOCK, SQLTRACE_FILE _

BUFFER, SQLTRACE_FILE_WRITE_I0_COMPLETION,
SQLTRACE_FILE_READ_|0_COMPLETION, SQLTRACE_
PENDING_BUFFER_WRITERS, SQLTRACE_SHUTDOWN,
QUERY_TRACEOQUT, TRACE_EVTNOTIFF

20 Full text search FT_RESTART_CRAWL, FULLTEXT GATHERER,
MSSEARCH, FT_METADATA_MUTEX, FT_IFTSHC_
MUTEX, FT_IFTSISM_MUTEX, FT_IFTS_RWLOCK,
FT_COMPROWSET_RWLOCK, FT_MASTER_MERGE,
FT_PROPERTYLIST_CACHE, FT_MASTER_MERGE_
COORDINATOR, PWAIT_RESOURCE_SEMAPHORE_FT_
PARALLEL_QUERY_SYNC

21 Other disk 10 ASYNC_IO_COMPLETION, 10_COMPLETION, BACKUPIO,
WRITE_COMPLETION, 10_QUEUE_LIMIT, I0_RETRY
22 Replication SE_REPL_%, REPL_%, HADR_% (but not HADR _

THROTTLE_LOG_RATE_GOVERNOR), PWAIT_HADR_%,
REPLICA_WRITES, FCB_REPLICA_WRITE, FCB_
REPLICA_READ, PWAIT_HADRSIM

23 Log rate governor LOG_RATE_GOVERNOR, POOL_LOG_RATE_GOVERNOR,
HADR_THROTTLE_LOG_RATE_GOVERNOR, INSTANCE _
LOG_RATE_GOVERNOR

*Currently not supported.

123

CHAPTER 5 QUERY STORE CATALOG VIEWS

sys.query_store_runtime_stats

The sys.query store runtime stats catalog view contains the runtime stats for all
the plans that Query Store has store aggregated by the runtime_stats_interval id.
Statistics it collects include average, last, minimum, maximum, and standard deviation
for the duration, CPU, logical IO, physical IO, CLR, DOP (degree of parallelism),

query max used memory, row count, and for Azure SQL Database log bytes used.
Besides the wait statistics catalog view, this catalog view is where you harvest the most
data. Listing 5-8 will return the top 10 queries by average duration that have a last_

execution_time in the last hour.

Listing 5-8. Top 10 queries by CPU in the last hour

SELECT TOP 10 sum(rs.count_executions x rs.avg duration) avg duration,
qt.query sql text,
q.query id,
qt.query text id,
p.plan_id,
rs.last_execution_time
FROM sys.query store query text AS qt
INNER JOIN sys.query store query AS q
ON gqt.query text id = q.query text id
INNER JOIN sys.query store plan AS p
ON g.query id = p.query id
INNER JOIN sys.query store runtime stats AS rs
ON p.plan_id = rs.plan_id
WHERE rs.last execution time > DATEADD(hour, -1, GETUTCDATE())
GROUP BY gt.query sql text,
q.query id,
qt.query text id,
p.plan_id,
rs.last_execution_time
ORDER BY avg duration DESC;

Table 5-8 shows all the column names, data types, and descriptions for the columns
in the sys.query store runtime stats catalogview.

124

CHAPTER5 QUERY STORE CATALOG VIEWS

Table 5-8. Column listing and descriptions for sys.query_store_runtime_stats

Column name Data type Description

runtime_stats_id Bigint Identifier of the row representing runtime
execution statistics for the plan_id,
execution type, and runtime stats_
interval id.Itis unique only for the past
runtime statistics intervals. For currently active
intervals, there may be multiple rows representing
one row of statistics flushed to disk and possible
multiple rows for data still held in memory

plan_id Bigint Foreign key to sys.query store plan refers
to Table 5-3

runtime_stats_interval_id Bigint Foreign key to sys.query store runtime_
stats_interval refers to Table 5-9

execution_type tinyint Determines the type of query execution. Valid
values are as follows:
0 —regular execution: successful
3 — client aborted the execution
4 — exception aborted execution

execution_type_desc nvarchar(128) Textual description of the execution type field.
Valid values are as follows:
0 —regular
3 —aborted
4 — exception

first_execution_time datetimeoffset First execution time for the query plan within the
aggregation interval

last_execution_time datetimeoffset Last execution time for the query plan within the
aggregation interval

count_executions bigint Total count of executions for the query plan within

the aggregation interval

(continued)

125

CHAPTER 5 QUERY STORE CATALOG VIEWS

Table 5-8. (continued)

Column name Data type Description
avg_duration float The average duration for the query plan within the
aggregation interval in microseconds
last_duration bigint The last duration for the query plan within the
aggregation interval in microseconds
min_duration bigint The minimum duration for the query plan within
the aggregation interval in microseconds
max_duration bigint The maximum duration for the query plan within
the aggregation interval in microseconds
stdev_duration float The standard deviation duration for the query plan
within the aggregation interval in microseconds
avg_cpu_time float The average CPU time for the query plan within
the aggregation interval in microseconds
last_cpu_time bigint The last CPU time for the query plan within the
aggregation interval in microseconds
min_cpu_time bigint The minimum CPU time for the query plan within
the aggregation interval in microseconds
max_cpu_time bigint The maximum CPU time for the query plan within
the aggregation interval in microseconds
stdev_cpu_time float The standard deviation CPU time for the
query plan within the aggregation interval in
microseconds
avg_logical_io_reads float The average number of logical 10 reads for the
query plan within the aggregation interval in 8KB
pages
last_logical_io_reads bigint The last number of logical |0 reads for the query

plan within the aggregation interval in 8KB pages

126

(continued)

Table 5-8. (continued)

CHAPTER 5 QUERY STORE CATALOG VIEWS

Column name Data type Description

min_logical_io_reads bigint The minimum number of logical 10 reads for the
query plan within the aggregation interval in 8KB
pages

max_logical_io_reads bigint The maximum number of logical 10 reads for the
query plan within the aggregation interval in 8KB
pages

stdev_logical_io_reads float The standard deviation number of logical |0 reads
for the query plan within the aggregation interval
in 8KB pages

avg_logical_io_writes float The average number of logical 10 writes for the
query plan within the aggregation interval

last_logical_io_writes bigint The last number of logical |0 writes for the query
plan within the aggregation interval

min_logical_io_writes bigint The minimum number of logical 10 writes for the
query plan within the aggregation interval

max_logical_io_writes bigint The maximum number of logical 10 writes for the
query plan within the aggregation interval

stdev_logical_io_writes float The standard deviation number of logical |0 writes
for the query plan within the aggregation interval

avg_physical_io_reads float The average number of physical 10 reads for the
query plan within the aggregation interval in 8KB
pages

last_physical_io_reads bigint The last number of physical 10 reads for the query
plan within the aggregation interval in 8KB pages

min_physical_io_reads bigint The minimum number of physical 10 reads for the

query plan within the aggregation interval in 8KB
pages

(continued)

127

CHAPTER 5 QUERY STORE CATALOG VIEWS

Table 5-8. (continued)

Column name Data type Description

max_physical_io_reads bigint The maximum number of physical 10 reads for the
query plan within the aggregation interval in 8KB
pages

stdev_physical_io_reads float The standard deviation number of physical 10
reads for the query plan within the aggregation
interval in 8KB pages

avg_clr_time float The average CLR time for the query plan within
the aggregation interval in microseconds

last_clr_time bigint The last CLR time for the query plan within the
aggregation interval in microseconds

min_clr_time bigint The minimum CLR time for the query plan within
the aggregation interval in microseconds

max_clr_time bigint The maximum CLR time for the query plan within
the aggregation interval in microseconds

stdev_clr_time float The standard deviation CLR time for the query plan
within the aggregation interval in microseconds

avg_dop_time float The average DOP (degree of parallelism) for the
query plan within the aggregation interval in
microseconds

last_dop_time bigint The last DOP for the query plan within the
aggregation interval in microseconds

min_dop_time bigint The minimum DOP for the query plan within the
aggregation interval in microseconds

max_dop_time bigint The maximum DOP for the query plan within the
aggregation interval in microseconds

stdev_dop_time float The standard deviation DOP for the query plan

within the aggregation interval in microseconds

128

(continued)

Table 5-8. (continued)

CHAPTER 5 QUERY STORE CATALOG VIEWS

Column name Data type Description
avg_query_max_used_memory float The average memory grant for the query plan
within the aggregation interval in 8 KB pages.
Always 0 for queries using natively compiled
memory optimized procedures
last_query_max_used_memory bigint The last memory grant for the query plan within
the aggregation interval in 8 KB pages. Always
0 for queries using natively compiled memory
optimized procedures
min_query_max_used_ bigint The minimum memory grant for the query plan
memory within the aggregation interval in 8 KB pages.
Always 0 for queries using natively compiled
memory optimized procedures
max_query_max_used_ bigint The maximum memory grant for the query plan
memory within the aggregation interval in 8 KB pages.
Always 0 for queries using natively compiled
memory optimized procedures
stdev_query_max_used_ float The standard deviation memory grant for the
memory query plan within the aggregation interval in
8 KB pages. Always 0 for queries using natively
compiled memory optimized procedures
avg_rowcount float The average number of returned rows for the
query plan within the aggregation interval
last_rowcount bigint The last number of returned rows for the query
plan within the aggregation interval
min_rowcount bigint The minimum number of returned rows for the
query plan within the aggregation interval
max_rowcount bigint The maximum number of returned rows for the

query plan within the aggregation interval

(continued)

129

CHAPTER 5 QUERY STORE CATALOG VIEWS

Table 5-8. (continued)

Column name Data type Description

stdev_rowcount float The standard deviation number of returned rows
for the query plan within the aggregation interval

avg_log_bytes_used float The average number of bytes in the database log
used by the query plan within the aggregation
interval. Applies only to Azure SQL Database

last_log_bytes_used bigint The last number of bytes in the database log used
by the query plan within the aggregation interval.
Applies only to Azure SQL Database

min_log_bytes_used bigint The minimum number of bytes in the database
log used by the query plan within the aggregation
interval. Applies only to Azure SQL Database

max_log_bytes_used bigint The maximum number of bytes in the database
log used by the query plan within the aggregation
interval. Applies only to Azure SQL Database

stdev_log_bytes_used float The standard deviation number of bytes in the
database log used by the query plan within the
aggregation interval Applies only to Azure SQL

Database

avg_tempdb_space_used float Average amount of tempdb space used by the
query

last_tempdb_space_used bigint The last amount of tempdb space used by the

query plan within the aggregation interval

min_tempdb_space_used bigint Minimum amount of tempdb space used by the
query plan within the aggregation interval

max_tempdb_space_used bigint Maximum amount of tempdb space used by the
query plan within the aggregation interval

stdev_tempdb_space_used float The standard deviation of tempdb space used by
the query plan within the aggregation interval

130

CHAPTER5 QUERY STORE CATALOG VIEWS

sys.query_store_runtime_stats_interval

The sys.query store runtime stats interval catalog view is the most basic and
smallest. It contains the start and end time of each runtime interval. Statistics collection
intervals are in 1 minute, 5 minutes, 10 minutes, 15 minutes, 30 minutes, 1 hour, and
1-day segments. See more in Chapter 3 on how to configure this setting. Table 5-9 shows
all the column names, data types, and descriptions for the columns in the sys.query
store_runtime stats_interval catalog view.

Table 5-9. Column listing and descriptions for sys.query_runtime_stats_interval

Column name Data type Description
runtime_stats_interval_id bigint Primary key.

start_time datetimeoffset Start time of the interval.
end_time datetimeoffset End time of the interval.
comment nvarchar(32) Always NULL.
Conclusion

To get the most out of Query Store, you will need to understand how the catalog

views are related to each other and query them directly for different use cases. All the
information you need about what is running against your SQL Server is contained here
depending on your settings and can be customized to your specifications. The data is
here for the harvesting, and we looked at visual ways of looking at this data in Chapter 4
and will look at a stored procedure for retrieving data in Chapter 10.

131

CHAPTER 6

Query Store Use Cases

Query Store has different use cases that it is useful for. This chapter will go into detail
on those use cases. We will discuss how to determine what is a normal workload on
your database using Query Store by looking at the reports or catalog views and viewing
changes against that baseline. Baselining a database is an essential skill for any DBA,
and Query Store is a tool you can use to provide you with a baseline for your database.
Sometimes you will need to identify what happened during a previous window of time.
As a DBA you also will have to troubleshoot poorly performing queries or queries that
have regressed in performance, and Query Store gives you the data to be able to do that
as well. Query Store can help you identify the top consuming queries so you can see
how to improve performance on the SQL Server database. Query Store can be used to
capture queries after an upgrade of SQL Server to a different version and change the
compatibility mode on each database later and fix any regressed queries, stabilizing
upgrades of your SQL Server databases. Finally, we will look at how Query Store is used
to track ad-hoc workloads and improve their performance.

Determining What Is a Normal Workload

With Query Store turned on, you are collecting data in the INTERVAL_LENGTH_MINUTES
specified when you configured Query Store as discussed in Chapter 3. To refresh your
memory on this configuration option, the data can be aggregated in 1, 5, 10, 15, 60, and
1440 minute intervals. With these data points in mind, you can let your normal workload
run against your server and view the reports discussed in Chapter 4 starting with the
Overall Resource Consumption Report as seen in Figure 6-1.

133
© Tracy Boggiano and Grant Fritchey 2019

T. Boggiano and G. Fritchey, Query Store for SQL Server 2019, https://doi.org/10.1007/978-1-4842-5004-4_6

CHAPTER6 QUERY STORE USE CASES

Time period: Last month ending at 1

|.3M|d|| ™ Standaed Gid |, Chast
Duration [Execution Count
12,000,000
_ 1no0a0-
00,
-gsq M 3 EI0000
|n.zn1s /o0 1 e TR 1|.rzz.'zn|s 11 e 1
/82008 II!IZ&OI! WG 102018 1242008 11282008 |mla ns.zms u.rlzn:na nne.l?ms um'm nrz.;z:ns u.rzmms 12;2.'2,31:
CPU Time Logical Reads
100,000,000,000-
100,000,000
£0,000,000,000-
-, 000,000 g
é 5
¥ 60.000,000- 2
B <
s
g am § e
irmn mmrzma 28 TIINE 11 1 eI 117102018 11m.ms nnama 1.’221'! w 218 130
TWEME NAZDE 118203 nmr:ma :mn 11323\-2013 122:2015 W8 112008 NS08 0208 118 11202008 lz.mmn

Figure 6-1. Overall Resource Consumption report

From viewing this report, you can determine what a normal workload is for your
database. From the report in Figure 6-1, you will notice a pattern of 2 days a week where
activity is low. Those happen to correspond to weekends which can tell us that this
database is used in a company where less activity occurs on the weekends and most
activity occurs on weekdays. We can also notice a pattern, where the duration is higher
than normal, and logical reads are higher than in other periods. For those you want to
click on those bars and drill down to the Top Resource Consuming Queries Report, we
discussed in Chapter 4 to diagnose which queries caused those unusual patterns and
determine if those workloads are something you need to be concerned about.

Another way to get to data is to query the catalog views discussed in Chapter 5. The
query in Listing 6-1 queries data from the catalog views for the last 10 days and pulls the
top 10 queries by duration.

Listing 6-1. T-SQL to top queries by duration in last 10 days

SELECT TOP 10 qt.query sql text,
q.query id,
so.name,
so.type,

134

CHAPTER6 QUERY STORE USE CASES

SUM(rs.count_executions * rs.avg duration)
AS 'Total Duration'
FROM sys.query store query text qt
INNER JOIN sys.query store query q
ON gt.query text id = q.query text id
INNER JOIN sys.query store plan p
ON g.query id = p.query id
INNER JOIN sys.query store runtime stats rs
ON p.plan_id = rs.plan_id
INNER JOIN sys.query store runtime_stats_interval rsi
ON rsi.runtime stats interval id =
rs.runtime_stats interval id
INNER JOIN sysobjects so on so.id = q.object id
WHERE rsi.start time >= DATEADD(DAY, -10, GETUTCDATE())
GROUP BY gt.query sql text,
q.query id,
so.name,
so.type
ORDER BY SUM(rs.count executions x rs.avg duration time) DESC

Note All times are stored in UTC time so you would need to adjust the query to fit
your time zone for data to exactly match your time zone.

Establishing a Baseline for Queries

Query Store gives you the ability to establish a baseline for the queries in your database.
Query Store stores all the execution runtime statistics in the catalog view sys.query
store_runtime_stats soyou can query this catalog view to see a number of statistics about
how your queries have performed in the past and are currently performing as you work to
establish a baseline to compare against. It is not how you would baseline your server.

135

CHAPTER6 QUERY STORE USE CASES

What Is a Baseline?

First, let’s discuss what a baseline is. A baseline is a workload you run against your server
that sets a starting point for comparisons against future runs of the same workload.

In theory, you would run your workload to make any necessary changes to your
environment; the changes could be code or hardware changes, and you would rerun the
same workload and compare and see what metrics have changed.

How to Create a Baseline with Query Store

Establishing a baseline in Query Store involves knowing what data is being collected and
when. When you look at the Overall Resource Consumption Report seen in Figure 6-1,

it can be helpful to clear Query Store before starting your workload to establish your
baseline. Two ways to do this were discussed in Chapter 3. One is to right-click on the
database, go to Properties, then the Query Store tab. As seen in Figure 6-2, there is Purge
Query Data that will clear all the data from Query Store so you can start your baseline. Be
sure before you run your workload that your statistics collection interval is low enough
to collect your data and you don’t have to wait too long between each interval to run this
next workload.

136

CHAPTER 6

QUERY STORE USE CASES

Selecta page

et IT Scipt v @ Help
& Files
& Filegroups
% Coti -
% Change Tracki 4 General :
F Pemissions Operation Mode (Actual) Read Write
S el Operation Mode (Requested) Read Write
& Mimoring 4 Monitoring
K Transaction Log Shipping Data FAush Interval (Minutes) 15
, Statistics Collection Interval 15 Minutes
4 Query Store Retention
Max Size (MB) 2048
Query Store Capture Mode Al
Size Based Cleanup Mode Auto
Stale Query Threshold (Days) 30
Data Hush Interval (Minutes)
The frequency at which guery store data is flushed and persisted to disk.
Connection | Curent Disk Usage
|~

Progress | N B 287GB B Query Store Available 667.0 MB
Ready M Query Store Used 13GB M Query Store Used 13GB
| Purge Query Data |

| ok

=)

Figure 6-2. Database properties for Query Store

The second is to run the stored procedure in Listing 6-2.

Listing 6-2. Store procedure to clear all the data out of Query Store

USE [<Database>]
GO
EXEC sys.sp_query store flush db;

Now we have a clean slate to capture data for our workload. To capture your
workload so that you can replay it later, open SQL Server Profiler and pick the

137

CHAPTER6 QUERY STORE USE CASES

TSQL_Replay template and create a server-side trace as we discussed in Chapter 1.
Now run your workload, and let Query Store capture all the data for the queries in the
workload, and once the workload is done, stop the trace. Note the time period you ran
your baseline workload for future comparisons. Now make your changes to the code or
server that you want to compare. See the next section on how to compare the results.

How to Compare a Workload Back to the Baseline

The best way to compare your workload back is to use the reports from Chapter 4. If you
have set your statistics collection interval to 15 minutes, for example, you can run your
workload outside the next interval to collect data for your comparison. The basic steps to
make sure you can compare baselines are as follows:

1. Runyour workload to establish your baseline.
2. Apply your changes.
3. Run your workload again.

4. Compare the results by looking at the Overall Resource
Consumption Report and drilling down to the Top Consuming
Resources Report to check on the particular queries that may have
been impacted by your changes.

5. Then you can decide rather to keep your changes or roll them back.

See What Happened Last Night

A common problem is to have someone come over to you and say such and such ran
slow yesterday at 5 AM and without any tracing turned you would have no idea what
had run. Now with Query Store, all the queries that ran are being recorded for you

to be able to see what ran yesterday at any time. By looking at the Top Consuming
Resources Report, you can drill down to a specific time period and look for what was
running slow. Not only can you tell what was running slow you could see what query
caused a CPU spike or a large number of reads if someone had complained that the
SAN had slowed down. Figure 6-3 shows your configuration options for narrowing
down what happened on the server during the time frame you need and by the metric
you heard was the problem.

138

CHAPTER6 QUERY STORE USE CASES

& Configure Top Resource Consu...

Resource Consumption Criteria
Check for top consumers of:

) Execution Count
® Duration (ms)
) CPU Time (ms)
) Logical Reads (KB)
) Logical Writes (KB)
_) Physical Reads (KB)
) CLR Time (ms)
) DOP
) Memory Consumption (KB)
) Row Count
D) Log Memory Used (K8)
) Temp DB Memory Used (KB)

) Wait Time (ms)

Based on:

Avg

Min
Std Dev

® Total

Time Interval

Last hour A From

To

Time Format: ®) Local

) UTC

Return
) All

® Top |25

Filters

Minimum number of query plans: 1

[ox | [cmn | [s |

Figure 6-3. Top Consuming Resources report configuration screen

Troubleshooting Regressed Queries

One of the most powerful use cases for Query Store is to be able to identify queries
that have regressed in performance. Queries can regress in performance for various
reasons such as a change in statistics, the data cardinality has changed, indexes have
been created, indexes that existed before could have been altered or deleted, etc. In

139

CHAPTER6 QUERY STORE USE CASES

most cases, the Query Optimizer in SQL Server does pick a better plan, but there are
times where it does not, and Query Store gives a quick, easy way to go in and find those
queries.

What Is a Regressed Query?

A regressed query is a query in which the performance has changed due to a change
on the system such as a change in statistics, the data cardinality has changed, indexes
that have been created, etc. The change results in a different plan being generated than
before that does not perform as well. Back in Chapter 4, we explored the Regressed
Queries Report which gives you a quick way to identify regressed queries.

Viewing Plan Changes

In the Regressed Queries Report, you can identify a query with two plans and use the
compare plan button at the top right-hand corner after you select both plans in the top
right-hand pane. The differences will highlight in red as seen in Figure 6-4. And in Figure 6-5,
you can see what difference there is between any operator you hightlight in the plans.

Plan 53
SELECT D.Hame ,E.JobTitle ,GROUPING_ID(D.Name, E.JobTitle) AS 'Grouping Level' ,COUNT(E.BusinessEntityID) AS N'Employee Count' FROM HumanResources.
B [] & i Tz
- Steesm Age- T - Busted L.° “Nasted L. x Scan (KorClustered) |
oy [(Aggregate} h.:F [HErE |Innes J. [an z2ant] . [AX_Depar m_
e Conti © 4 Cont: 0 % Con: 0 % Cors: 5 4
! L}
i Index Sesk (NorClustered)
(E=ployeelepartmentiistory] . [IX_Isp.
Cosz: & %
ga|
Koy Loskup (Cluszezed)
[E=ployeelepartmentiistory] . [7%_E=p
{ Cost: 32 % -
< =
Plan 710
SELECT D.Meme ,E.JobTitle ,GROUPING_ID(D.Name, E.JobTitle) AS 'Grouping Level' ,COUNT(E.BusinessEntitylD) AS N'Employee Count' FROM HumanRescurces
bz = T I [
bz E Rt it s i
e Sureas Agg- = Hask M- Weared L1 Index Scan (HorClustered) |
akal [—— el [Inmer_ iInner - [Cepartaent] . [AX_Departme_;
i Cose: 0 4 Cant: Cost: 14 Cows: 4 %

i r|l
H hm Seak (KoeClustared)
i [Employws] eyl [IX_Emp.
{ Cost: 4 &
o
| Koy Lookup (Clustered)
i [EmployesDepartmantHisvory] . [FE_Esp
< >

Coss: 35 8 o

Figure 6-4. Regressed Query peport comparing plan operator differences

The differences seen in Figure 4-24 have a not equal sign highlighted in yellow.

140

CHAPTER6 QUERY STORE USE CASES

Top Plan Bottom Plan
SELECT vI | v
su 3l & sul| 3
> Actual Numberof 0 > Actual Numberof 0
Cached plan size 64 KB Cached plan size 88 KB
CardinalityEstimatic 140 CardinaltyEstimati 140
CompileCPU 6 CompileCPU 5
CompileMemory 728 CompileMemory 728
Compile Time 6 Compile Time 5
DatabaseContext$ 1 DatabaseContext 1
Estimated Number [35] 3.80984 Estimated Numbe 553432
Estimated Operato 0 (0%) Estimated Operatc 0 (0%)
Estimated Subtree 0.0615002 Estimated Subtree 0.0300838
> MemoryGrantinfo > MemoryGrantinfo
Optimization Level FULL Optimization Leve FULL
> OptimizerHardware > OptimizerHardwar
> OptimizerStatsUsa > OptimizerStatsUsz
> ParameterLlit @i @x > Parameterlis @i, @x
ParentObjectld 1303675692 ParentObjectld 1303675692
QueryHash (xE54D7BDB2EFCAYS56 QueryHash xE54D7BD82EFCA956
QueryPlanHash (x9280E3AAB34E1273 QueryPlanHash (x088D5A236CCHE4SS
Reason For Eady * Good Enough Plan Found Reason For Eady Good Enough Plan Found
RetrievedFromCac false RetrievedFromCa false
SecurityPolicyAppl False SecurityPolicyApp False
> Set Options ANSI_NULLS: True, ANSI_PAL | » Set Options ANSI_NULLS: True, ANSI_P
Statement SELECT D.Name A Statement SELECT D.Name
StatementParamet 0 StatementParame 0
Statement SqlHanc (x090056D650E02097B44A3C Statement SalHan (x090056D650E02097B44A

Figure 6-5. Regressed Query report comparing report details

As we have seen in Chapter 4, when viewing a query with multiple plans, you can
force the plan manually from the report screen. If you find a plan that needs to be forced,
you can force the plan from the report and monitor performance.

141

CHAPTER6 QUERY STORE USE CASES

Identify Top Consuming Resource Queries

In Chapter 4, we discussed the Top Consuming Resource Report where you visually see
what queries are taking up the most resources on the SQL Server database. We can view
the following metrics when troubleshooting what the top consuming resource queries
on the SQL Server database are:

o Execution count

e Duration (ms) (default)

e CPU Time (ms)

e Logical reads (KB)

e Logical writes (KB)

e Physical reads (KB)

e CLR time (ms)

e DOP

e Memory consumption (KB)
¢ Row count

e Logmemory used (KB)

e Tempdb memory usage (KB)
e Wait time (ms)

They can be aggregated into totals, averages, minimums, maximums, and standard
deviation. When looking for top consumers, total is a good starting place. If you are
seeing high CPU, start with looking at the total with CPU time. The report will display
by default the top 25 queries with their plans. You can then see if there is anything that
could be tuned in those queries or perhaps a plan that can be forced.

Stabilizing SQL Server Upgrades

Another great benefit of Query Store is to help stabilize SQL Server upgrades. Every
SQL Server upgrade due to changes to the query optimizer has the potential to cause
regression in queries if you change the compatibility mode of a database. Since it is

142

CHAPTER6 QUERY STORE USE CASES

recommended best practice to change the compatibility mode of a database when you
upgrade SQL Server so you can take advantage of the query optimizer enhancements
and new T-SQL functions, it becomes even more critical to be able to stabilize the
upgrade of SQL Server. Also, SQL Server 2014 introduced significant changes to the
cardinality estimator causing some regressed queries when changing the compatibility
mode.

Changing Compatibility Mode Effects

Before SQL Server 2014, changing compatibility modes didn’t affect the query optimizer
because compatibility mode did not affect the cardinality estimator because there had
not been a new one released since SQL Server 7.0. So the only benefits you got form
changing compatibility modes were any enhancements made to the query optimizer and
new T-SQL functions.

Cardinality Estimation Changes Explained

Starting with the release of SQL Server 2014, Microsoft started making changes to the
cardinality estimator (CE) which affects how queries estimate how many rows are
being returned by the query. In most cases, the queries ran faster under the new CE,
but some queries had some significant regressions. Your only recourse was to revert the
compatibility mode or use trace flags to control the behavior.

In SQL Server 2016, Microsoft introduced database scoped configurations that
allowed you to control MAXDOP, LEGACY_CARDINALITY ESTIMATION, PARAMETER _
SNIFFING, and QUERY_OPTIMIZER_HOTFIXES at the database level. The two most
important ones in this list for what we are talking about are LEGACY_CARDINALITY
ESTIMATION and QUERY_OPTIMIZER _HOTFIXES. If you set the LEGACY_
CARDINALITY ESTIMATION, it will use the old CE no matter what compatibility level
the databases is set to. The advantage to this is you can still get to use the new T-SQL
functions in the database and not have the query regressions. The QUERY_OPTIMIZER _
HOTFIXES option is the same thing as setting the trace flag 4199 which activates the all
the query optimizer fixes put in the engine via a new version or patch or CU. Before 2016,
you had to set trace flag 4199, and it applied to all the databases, and you had no easy
way to troubleshoot and fix regressed queries.

143

CHAPTER6 QUERY STORE USE CASES

Process for Testing and Completing Upgrades Using
Query Store

Now that you are familiar with how changing the compatibility mode effects the query
optimizer and CE and what may cause you regressed queries, let’s talk about how to
upgrade SQL Server the most effective way using Query Store to stabilize any regressed
queries after the upgrade. This is best illustrated in Figure 6-6.

Upgrade SQL Collect a Fix Regressed

and Keep Enable Query normal work

Setto N t . .
SYIamewes Queries Using

Compatibility

Regressed
Mode

Database Store or baseline of

Compatibility database
Mode

Queries
Report

Figure 6-6. Steps to upgrade SQL Server using Query Store

The first step is to upgrade to SQL Server 2016 or higher. Next, you would enable
Query Store on your database(s). Let your workload run on the database(s) as long
as you think is necessary to capture a good baseline of your workload. Then set the
compatibility mode to the newest mode on the database(s). Finally, monitor the
Regressed Queries report discussed in Chapter 4 for plans that you need to force due to
regression. Chapter 7 covers Automatic Plan Correction where starting in SQL Server
2017, Query Store will automatically force plans for you. See Chapter 7 for more details.

Finding and Improving Ad-hoc Workloads

Finally, Query Store can be used to find your ad-hoc queries and improve them. If you
have a lot of ad-hoc queries, when you look at the Top Consuming Resources report,
you will not see a large number of resources being consumed by queries with execution
counts greater than one. If your systems are mostly ad-hoc workloads, it will not be ideal
for working with Query Store as you are sending in different queries, and it is not able

to aggregate data for you or force plans to help performance. While your application is
generating ad-hoc queries, SQL Server is spending its time compiling queries for every
new query that is executed, bloating the plan cache and consuming resources extra than
if they were already in the plan cache. This will also cause bloat of Query Store because
it will be storing different plans and aggregated rows of runtime statistics for each query.

144

CHAPTER6 QUERY STORE USE CASES

This will cause the background processes that clean up Query Store to take up more
resources as well to keep the space at a level where it can add data.

Instead, of using the Top Consuming Resources report, there is T-SQL you can run
to first get the total number of query texts, queries, and plans, and then compare the
query_hash and query plan_hash to find your ad-hoc queries that are similar as seen in
Listing 6-3.

Listing 6-3. T-SQL to check for ad-hoc workload

--Total Query Texts
SELECT COUNT(x) AS CountQueryTextRows
FROM sys.query store query text;

--Total Queries
SELECT COUNT(*) AS CountQueryRows
FROM sys.query store query;

--Total distinct query hashes (different queries)
SELECT COUNT(DISTINCT query hash) AS CountDifferentQueryRows
FROM sys.query store query;

--Total plans
SELECT COUNT(*) AS CountPlanRows
FROM sys.query store plan;

--Total unique query plan_hash (different plans)
SELECT COUNT(DISTINCT query plan hash) AS CountDifferentPlanRows
FROM sys.query store plan;

If you see a difference in CountQueryRows and CountDifferentQueryRows or
CountPlanRows and CountDifferentPlansRows, thatis an indication you have similar
queries running, and you would benefit from writing them in a parameterized way such
as in stored procedures if you can control the application code, so it can be compiled
once and stored in memory and stored efficiently in Query Store. If you cannot manage
the application code, you can have two other options. One is to use plan guides; a
template for a plan guide is in Listing 6-4.

145

CHAPTER6 QUERY STORE USE CASES

Listing 6-4. Template for implementing a plan guide for PARAMETERIZATION
FORCED

DECLARE @stmt nvarchar(max);
DECLARE @params nvarchar(max);

EXEC sp_get query template
N'<your query text goes here>',
@stmt OUTPUT,
@params OUTPUT;

EXEC sp_create_plan_guide
N'TemplateGuidel1',
@stmt,
N'TEMPLATE',
NULL,
@params,
N'OPTION (PARAMETERIZATION FORCED)';

Alternately you can turn on PARAMETERIZATION FORCED at the database level using
Listing 6-5.

Listing 6-5. Turn on PARATERIZATION FORCED at database level
ALTER DATABASE <database name> SET PARAMETERIZATION FORCED;

If in Listing 6-3 the counts remained close to the same, then you will not want to turn
on PARAMETERIZATION FORCED. Instead, you will want to enable optimize for ad hoc
workloads and set the QUERY_ CAPTURE_MODE to AUTO for Query Store instead of ALL. See
Listing 6-6 to set these options. This will keep the plans from bloating the plan cache
because the first time a query is executed it will only store a stub and store the plan on
the second execution for future reuse. The AUTO capture mode will let Query Store not
capture these queries that consumed insignificant amount of resources to limit the
amount that is stored.

146

CHAPTER6 QUERY STORE USE CASES

Listing 6-6. Enable optimize for ad-hoc workloads and set capture mode to
AUTO for Query Store

EXEC sys.sp_configure N'show advanced options', N'1'

Go

RECONFIGURE WITH OVERRIDE

GO

EXEC sys.sp_configure N'optimize for ad hoc workloads', N'1'
GO

RECONFIGURE WITH OVERRIDE

GO

ALTER DATABASE [QueryStoreTest] SET QUERY STORE CLEAR;

ALTER DATABASE [QueryStoreTest] SET QUERY STORE = ON
(OPERATION MODE = READ WRITE, QUERY CAPTURE_MODE = AUTO);

Conclusion

In this chapter, we explored several use cases for Query Store. We discussed how to
establish a baseline so you can discover how your system normally performs and see
what happens when you make changes. Then we discussed who to view what happened
last night or any previous point in time for a problem. Next we discussed what regressed
queries were and how to troubleshoot them and force plans. Then we discussed
identifying top consuming queries so you could look at improving them. Next we looked
at how you could use Query Store to stabilize the upgrade of SQL Server and why this

is an important feature to use for this. Finally, we discussed who to use Query Store to
improve your ad-hoc workloads.

147

CHAPTER 7

Forcing Plans

While the information collected in the Query Store and all that it tells you about the
performance of your system is the part of Query Store that you'll use more frequently,
the most powerful part of Query Store is the ability to force execution plans. Plan forcing
is where the choices made by the optimizer during a compile or recompile event are
superceded by a plan you select. Query Store provides enough information between the
performance metrics and the execution plan to enable you to decide that, under some
circumstances, you can pick a superior execution plan.

This chapter will show you how to use Query Store information and reports to
identify a poorly behaving execution plan. With a badly behaving plan identified, we’ll
explore how to use the information in Query Store to identify a well-behaved plan, if one
exists. With this information in hand, we can then force the good plan to be used.

Identifying Badly Behaved Execution Plans

Execution plans, also called query plans or show plans, are your window into the choices
made by the query optimization process. They show how your T-SQL, indexes, statistics,
tables, columns, and constraints make up your database, and its queries will be used
to retrieve or modify the data stored there. Reading execution plans is a very dense
topic. For a detailed look, you should read the book Execution Plans by Grant Fritchey
(one of the co-authors of this book). Here we’ll explore the information and reports
that may suggest you have a poorly performing query. We'll then use that to lead us to
an execution plan. We'll cover a few of the guideposts that can help you tell that a plan
might not be supporting a query well, but we won't be covering all the details of how to
read an execution plan.

To get started, we have to understand how we can use Query Store to identify a
query that has both changed its execution plan and how that plan caused performance

149
© Tracy Boggiano and Grant Fritchey 2019

T. Boggiano and G. Fritchey, Query Store for SQL Server 2019, https://doi.org/10.1007/978-1-4842-5004-4_7

CHAPTER 7 FORCING PLANS

to degrade. Another way you can identify poorly performing queries is when you get
alerted to issues from the consumers of your database that performance is poor but with
the information in the Query Store, we can be more proactive than that.

Identifying Regressed Queries

A regression is something that occurs when a query was behaving well and now
performs poorly. You may have a query that runs badly from the start. These are easily
identified and dealt with. You may have a query that slowly degrades in performance
over time as more and more data is added to the system. These are also easily identified
and dealt with. The real issues come when you have queries that were performing well
and suddenly, sometimes intermittently, run slowly. Prior to Query Store, these were
frequently difficult problems to solve.

The causes for these regressions are varied. You might see them when you migrate
from earlier versions of SQL Server to later versions of SQL Server. These are caused by
changes to how the query optimizer works and the introduction in SQL Server 2014 of
a new cardinality estimation engine. You may see a regression caused by statistics on
your database being incorrect or out of date. You could also be suffering from a problem
known as bad parameter sniffing.

While incorrect and out-of-date statistics are probably the most common cause of
regressions in query performance, the most talked about problem, and the one we’ll use
for our examples in this chapter, is bad parameter sniffing. Let’s start by explaining what
parameter sniffing is and how it can sometimes cause problems.

When you have a parameterized query, whether that’s a stored procedure, a
parameterized query from an ORM tool such as Entity Framework, or parameters in
sp_executesql, the query optimizer will use the values passed to that parameter when
compiling an execution plan. It takes those exact values and uses them to look at the
statistics for the column or index being referenced and creates and execution plan based
on those precise values. This sampling of values is what is known as parameter sniffing.
The majority of the time, this is a benign practice. A lot of the time, this is a very helpful
practice. Sometimes though, you'll see a situation where a plan gets created for one
value that performs well enough for the query immediately called. However, all other
queries perform very poorly with that same execution plan. This situation is known as
bad parameter sniffing.

150

CHAPTER 7 FORCING PLANS

When you hit a situation where a query was performing well, but is suddenly
performing poorly, you can use the information in Query Store to identify both the query
metrics that define the performance and get a look at the execution plans both for when
the query was running well and when it was running badly. You can do this one of two
ways. You can run T-SQL code against the data collected in Query Store. Alternatively,
you can use the Regressed Query report. Since the Regressed Query report may not
always identify a query that is giving you problems as a regressed query, it’s a very good
idea to know how to retrieve this information from the Query Store data yourself.

Identifying Regressed Queries from Query Store Data

We discussed the information collected by the Query Store in Chapter 2. We then went
over the basics of how to retrieve data from the Query Store catalog views in Chapter 5.
If you don’t get what we're doing with the queries below, I'd recommend going back and
reviewing those chapters before proceeding with this one.

To start with, we need a query that we can reliably get different execution plans from.
The data distribution in the Person.Address table is such that depending on what value
is used to filter the City column, you can get a couple of different execution plans in the
AdventureWorks database. Here is the query we’ll use to explore behavior in the rest of
the chapter:

CREATE OR ALTER PROC [dbo].[AddressByCity] @City NVARCHAR(30)
AS
SELECT a.AddressID,
a.AddresslLine1,
a.AddresslLine2,
a.City,
sp.Name AS StateProvinceName,
a.PostalCode
FROM Person.Address AS a
JOIN Person.StateProvince AS sp
ON a.StateProvinceID = sp.StateProvinceID
WHERE a.City = @City;
GO

With this procedure in place, we can execute the query with one of two different
values to arrive at two different execution plans. If you run the following script with

151

CHAPTER 7 FORCING PLANS

execution plans enabled, you can see the two plans. Note: For test purposes we're using
a simple way to clear the procedure cache. This may not be the best approach on a
production system:

EXEC dbo.AddressByCity @City = N'London';
ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE;
EXEC dbo.AddressByCity @City = N'Mentor';

This is a classic case of parameter sniffing resulting in different execution plans. Each
plan is optimized for the result set it is returning; 434 rows for the value “London” and
one row for the value “Mentor.” However, each plan causes poor performance for the
opposite data set. What I mean here is that the plan to return 434 rows runs fast when
returning 434 rows, but it doesn’t run as fast as the other plan when returning only a few
rows. The opposite is also true. In fact, the query will run so much slower when using the
plan for “Mentor” when returning 434 rows that it will be marked as a regressed query in
the Regressed Query report.

Regressed Query Report

We're going to be covering the reports in detail in Chapter 4. However, here we want to

show how the behavior of the dbo.AddressByCity procedure returns in the report:

Metric Duration (ms) | Statistic| Total * |@le |=|a] . Plan summary for query 262 [alE]s ml=]=],
" 2000 4000007
3500001 O
~ 1500 300000
5 2500001
_JE 2000001 Plan 1d
= 1000 5| 150000 @
z
O
8 2| 1000001 o
% 500 500007
| . -
o D | ; 342019 3019 3BE019 3102019 3/12/2019
i il b ol 2 3/52019 312019 3/9/2019 3/11/201%

i3 Force Plan | I Unforce Plan

JOIN Pezson-StateProvincs AS sp ON a.Stat.

Figure 7-1. Regressed Query report showing poor performance

152

CHAPTER 7 FORCING PLANS

The first pane, on the left, is a listing of the queries based on the metric you're
measuring (duration by default). The second pane in the report shows query execution
speed and the different plans involved. Clicking on one of the dots will change the
plan being displayed in the bottom pane. Hovering over the dot will show how many
executions it represents, average runtime, and more. Again, for more details on using the
reports, see Chapter 4.

You can’t simply run the code above and arrive at a regressed query. The Regressed
Query report compares behavior over time. So to get the report to generate, you have to
run the code multiple times over a period of time. To simulate this yourself, you can run
the following script. You may have to run it multiple times to get the query to show up as
aregressed query because it has to have the data inside the Query Store to get the report
to fire and it has to show a substantial difference over time. However, this script will work:

--Establish baseline behavior
EXEC dbo.AddressByCity @City = N'London';
GO 100

--Remove the plan from cache

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE;
--Compile a new plan

EXEC dbo.AddressByCity @City = N'Mentor';

GO

--Execute the code to show query regression
EXEC dbo.AddressByCity @City = N'London';
GO 100

You should be able to see the query in the Regressed Query report and it should
show two different execution plans the same as Figure 7-1.

Warning Signs in Execution Plans

Regressed query behavior is driven by changes to the execution plans. There isn’t
room in this book to cover everything you need to know to read execution plans. For a
detailed examination on that topic, we recommend Grant Fritchey’s book, SQL Server
Execution Plans (Redgate Press, 2018). However, there a few warning signs we can look
for in execution plans as a quick set of guides. Just understand, these will only guide

153

CHAPTER 7 FORCING PLANS

you initially. You'll have to eventually learn the details to read and understand the
information inside execution plans.
Here is a core set of things to look at when examining execution plans for the first time.

First Operator: A detailed collection of information about the
plan itself

Most Costly Operator: The highest estimated cost showing a
highly likely culprit for poor performance

Warnings and Errors: Issues experienced by the optimization
process, if any

Fat Pipes: An indication of data flow, with wider pipes showing
more data

Scans: An indicator of larger data movement

Extra Operators: Operators that you can’t explain readily why they
are there or what they are doing

Estimates vs. Actuals: The comparisons between the estimated number
of rows or executions for an operator and the actual number of either

Here’s what you are using these guides to look for. I'll use the execution plan that
is causing us the most trouble, the one from the value of “Mentor” as shown here in

Figure 7-2:

Nested Loops Index Scan (NonCl..
SELECT :
(Inner Join) [Address] . [IX Add..
Easts B % & e
COELE 5 % CeEts 93 %

l
cl'l;w

Clustered Index S..
[StateProvince]. [..
Cest: 2 %

Figure 7-2. Execution plan for the value “Mentor”

We’ll now walk through the guideposts looking for information about this plan.

154

CHAPTER 7 FORCING PLANS

First Operator

The first operator is the one all the way on the left side of any plan. It will usually be
labeled by the type of operation your T-SQL is performing: SELECT, INSERT, UPDATE,
and DELETE. Right-click on that operator and select properties. You'll see something like

Figure 7-3:

Cached plan size 32 KB

CardinalityEstimationModelVersion 140

CompileCPU 78

CompileMemory 424

CompileTime 106

DatabaseContextSettingsld 1

Estimated Number of Rows 1.66667

Estimated Operator Cost 0 (0%)

Estimated Subtree Cost 0.193771

MemoryGrantinfo

MissingIndexes

Optimization Level FULL

OptimizerHardwareDependentProperties

OptimizerStatsUsage

Parameter List @City
Column @City
Parameter Compiled Value N'Mentor’
Parameter Data Type nvarchar(30)

ParentObjectld 1271675578

QueryHash OxDD75E124763781F2

QueryPlanHash 0x84AED2D3F83C43D2

Reason For Early Termination Of Statement Optir Good Enough Plan Found

Figure 7-3. Partial list of first operator properties

This is only a partial of all the properties and information exposed through the
first operator of an execution plan. When looking at plan regressions, chances are high
that you may be seeing problems caused by changes in data or statistics, or parameter
sniffing. In that case, the Parameter List property shows you the parameter or parameters
used to compile the execution plan. You can see in Figure 7-3 that this plan used the
value “Mentor”

155

CHAPTER 7 FORCING PLANS

Most Costly Operator

The plan shown in Figure 7-2 is very simple and easy to read. You can quickly spot
that the Index Scan operator is 93% of the estimated cost. These costs are based on
calculations within the optimizer and are not reflective of actual behavior. However,
since the numbers that drive the costs are derived from your code, objects, and the
row counts in the statistics, it’s a value we use to examine execution plans. A high cost

operator may indicate where the problem lies.

Warnings and Errors

These will show as a yellow caution sign or a red “X” They can be indicators of problems
with the code that affect how the execution plan behaves. There are none in Figure 7-2.

Fat Pipes

The arrows that connect the operators represent data flow. Big pipes reflect a lot of data
flow, whereas small pipes represent small data flow. Look for the fat pipes to understand
how data is being moved. You also have to look for transitions where more and more
data is created, or where data is moved from disk and then filtered later. These can be
strong indicators of problems.

Scans

A scan indicates that the entire table or index was read in order to retrieve data. This

is not necessarily a problem; however, it indicates possible large amounts of I/0 and
therefore is something to consider when evaluating an execution plan. Please note
that seeks, the opposite of scans, can also cause problems depending on the rest of the
plan. Index scans such as the one in Figure 7-2 should lead us to question the plan.
We have a data set that is filtering down to one row yet it’s scanning an entire clustered
index to do that.

Extra Operators

This concept is a little harder to explain. If you're looking at a plan and you can’t explain
what an operator is, or why a given operator is being used, that should draw your eye for
consideration. Let’s take a look at the plan for the value “London” in Figure 7-4:

156

EEE Eﬁg
Merge Join
SELECT ,
(Inner Join)
Cost: 0 %

Cost: 3 %

CHAPTER 7 FORCING PLANS

|
n
Clustered Index S..

[StateProvince]. [..
Cost: 2 %

o as!

Index Scan (NonCl..
[Address] . [IX_Add..
Cost: 83 %

Sort
Cost: 12 %

Figure 7-4. Execution plan for the value “London”

In this plan we have an Index Scan, a Clustered Index Scan, a Merge Join, and a Sort.
When you consider the query in dbo.AddressByCity, you'll note that there is no ORDER
BY command. Therefore, in this case, the Sort operator is a mystery, an extra operator.

Why do we have a Sort operation? The answer here is because the optimizer decided that

the Merge Join was faster for the larger data set. However, a Merge Join requires that all

data be ordered. So a Sort operator was added to satisfy the needs of the Merge Join.

Estimated vs. Actual

You can only compare these values when you're looking at an Actual plan, which looks
like the same thing as an Estimated plan but has additional runtime metrics. In short, to

capture an Actual plan, you have to execute the query. If we look at the execution plan

for the value of “Mentor” after executing the query with the value of “London,” we can

see this comparison in action as shown in Figure 7-5:

157

CHAPTER 7 FORCING PLANS

i It

e Nested Loops Index Scan (NonCl...
e (Inner Join) [Address].[IX_Addr...
SELECT Cost: 5% Cost: 93 %
Cost: 0% 0.011s 0.006s
434 of 434 of
2 (21700%) 2 (21700%)

ot
Clustered Index Se...
[StateProvince].[PK...
Cost: 2 %
0.003s
434 of

Figure 7-5. Estimated vs. Actual values compared

Here we're seeing one of the estimated vs. actual comparisons, the number of rows
processed by each operator. You can see that the Nested Loops join processed 434 rows of
the 2 that it anticipated. In this case, the estimated number of rows was 2, but the actual
was 434. This wide disparity, 21,700%, can be an indicator for why performance is poor.

Even with these guides for looking at execution plans, you're still going to need to
drill down into the properties in order to understand better how execution plans work.
However, the guideposts will get you started. In order to evaluate if a plan is better, it’s a
good idea to learn how to compare one plan to the other.

Comparing Execution Plans

From the Regressed Query report (as well as other Query Store reports), you have the
ability to easily, and quickly, compare execution plans. Yes, you can look at the plans
graphically and compare them by clicking on the dots. However, there is a utility for
comparing execution plans that shows a lot more detail and functionality.

158

CHAPTER 7 FORCING PLANS

To access this functionality, you'll need to shift-click on two of the execution plans
(you can only compare two plans at a time). Then click on the toolbar of the report as

shown in Figure 7-6:
nea s 2]
4® | & JI |

Compare the plans for the selected query in a separate window.
-

ary for query 262

Figure 7-6. The toolbar for comparing two execution plans

When you click on this after selecting two plans, a new window will open looking like
Figure 7-7:

.Sl-‘;ONpl.an.Cémpali;on B Ficore
Plan 269
SELECT aAddressiD, aAddresslinel, aAddressLine2, aCity, spName AS StateProvinceName, aPos..

Bottom Plan

Missing Index (Impact 95.9701): CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysna...
[5n) H
@ a]
SELECT bt £ i
Cosic {Inmer Join)
Cost 3%

d.}
H
Clustered Index Seek (Clustered)
[StateProvinee]. [FK_StateProvince StatePr.
Cost: 2%

Plan 273
SELECT aAddresslD, aAddressLinel, aAddressLine2, aCity, sp.Name AS StateProvinceName, aPos...
Missing Index {Impact 85.1939): CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysna...

BtEl ;l-_h, meuewm [Persc
sELECT Merge... Clustered Index Scan (Clustered) ll\dc\u'in\'\‘nd:s [Pem
G (inner 1. [Staefrovinge].[PK_SuareProvince StatePr. arad False

Cosud% Cost2% - Physical Operation Index Scan
ry Precicate [Advertune\Worka] [Fer
2l £ Stormge RowStars B
" 2l Tahial™ anve adr 18814
¢ ::r: Defined Values Dedined Volues
Ak Contans a comma separated et of values Cortang a comma-separated et of vahues

Introduced by this aperater, which may be comput... | | introduced by this oparator. which may be compu.

Figure 7-7. Two execution plans being compared

What you're seeing in Figure 7-7 are two execution plans being compared in the two
panes, top and bottom, on the left. On the right are two sets of properties from a selected
operator. Those property values are also being compared. The shading (pink in my case)
around the operators in both plans is indicated operators, or even sets of operators, that
are common between two plans. So, in our plan, the scan of the index on the Person.
Address table is essentially the same in both plans. The other operators are different.
This information can be used to help troubleshoot performance either by showing you a
common problem needing a solution (in this case a scan of all the data in an index) or by
showing you the differences in the plan that are causing poor performance.

159

CHAPTER 7 FORCING PLANS

Clicking on any operator on the left panes will change the property values on the
right side, allowing you to further explore the details and differences. Figure 7-8 is the
properties from the common Index Scan operator:

Top Plan Bottom Plan
[index Scan (NonClustered) i [incex Scan (NonClustered) V]

2: 41l &= =)

> Defined Values [AdventureWorks].[Person].[f | » Defined Values [AdventureWorks].[Person] |
Description Scan a nonclustered index, & Description Scan a nonclustered index, {
Estimated CPU Cos 0.0217324 Estimated CPU Cos 0.0217324
Estimated Executior Row Estimated Executio Row
Estimated |/0 Cost 0.158681 Estimated 1/0 Cost 0.158681
Estimated Number ¢ 1 Estimated Number: 1
Estimated Number ¢ [28] 1.66667 Estimated Number ([28] 434
Estimated Number ¢ 19614 Estimated Number: 19614
Estimated Operator [25] 0.180413 (33%) Estimated Operator [25] 0.180413 (83%)
Estimated Rebinds 0 Estimated Rebinds 0
Estimated Rewinds 0 Estimated Rewinds 0
Estimated Row Size 177 B Estimated Row Siz¢ 177 B
Estimated Subtree (0.180413 Estimated Subtree | 0.180413
Forced Index False Forced Index False
ForceScan False ForceScan False
ForceSeek False ForceSeek False
Logical Operation Index Scan Logical Operation Index Scan
Node ID 1 Node ID 3
NoExpandHint False MNoExpandHint False

> Object [AdventureWorks].[Person].[f | > Object [AdventureWorks].[Person].|
Ordered False Ordered False

> Output List [AdventureWorks].[Person].[f | > Output List [AdventureWorks].[Person].|
Parallel False Parallel False
Physical Operation Index Scan Physical Operation Index Scan
Predicate [AdventureWorks].[Person].[4 Predicate [AdventureWorks].[Person].|
Storage RowStore Storage RowStore
TableCardinality 19614 TableCardinalty 19614

Figure 7-8. Common operator in both execution plans

The property values that do not match have the yellow “does not equal” icon in
front of those values. You can see that overall, the estimated costs, row size, object
information, and the rest are all the same. It’s only the estimated number of rows,
node ID, and the estimated operator percentage costs that are different. In fact, the
percentage estimates are only different because all the other operators in the two
plans are different.

Comparing common operators, especially in this case, a scan, can give you
indications where the query performance may be improved by changes to the code or

160

CHAPTER 7 FORCING PLANS

structure. However, the whole point of using plan forcing is to avoid having to modify the
code or structure. You mainly want to compare plans so that you're sure the one you pick
to force is more likely to succeed.

When you are looking at operators that are not marked as common between the
two plans, in order to compare those operators, you would need to select each one
individually. As a general rule, this won't tell you much about the plans because when
different operators are performing different functions between plans, comparing them is
of little use.

You combine the performance metrics, the wait statistics, and the information you
glean from the execution plans in question. Along with this information, you should also
take into account things like the importance of the query, the frequency at which it is
being called, and other factors that will help you decide that, in fact, one of these plans
will outperform the other for your most common needs.

Once you've decided which of the plans you want to force, you have several options
to force the plan.

Forcing and Unforcing Execution Plans

When a plan regresses for whatever reason, the single best solution is to make changes,
whether that is to code, structure, or statistics. However, it’s just not always possible, or
desirable, to make those changes. In this case, we're going to want to force a plan. There
are several things you should know about plan forcing before we get on to how it’s done.

Plan forcing overrides the work of the query optimizer. When you choose to force a
plan, that is the plan that will always be used until you unforce, or invalidate, that plan.
You can only force a plan that is valid for a given query. If you make changes to the code
or the structures, such as dropping an index or something along those lines, it invalidates
the plan, forcing is no longer possible.

The query optimizer will still generate a plan if one is not in the cache. However, in
the event that you have a forced plan, any other plan generated by the optimizer will
be discarded. You can sometimes see a situation where a forced plan looks different
than the original plan that you forced. Because the optimizer still goes through the
optimization process, if a plan that is morally equivalent (Microsoft’s term) is generated,
meaning a plan that for all intents and purposes is exactly the same, that morally
equivalent plan will be used. However, in most cases, you'll see the exact plan that you
chose to force.

161

CHAPTER 7 FORCING PLANS

SQL Server has long had a function that is similar in behavior to plan forcing in
the Query Store, plan guides. These were a way to apply a query hint or even suggest
an entire execution plan for a query, like plan forcing. However, they are very difficult
to use and frequently fail. This is one of many reasons why plan forcing in Query Store
is so attractive. If you are using plan guides, plan forcing overrides the plan guides.
Although, you'll still see evidence that guide was applied in both Extended Events and
the execution plan itself.

When you mark a plan as forced, that is stored within the Query Store catalog views.
This means that plan forcing will survive a restart, a detach, or even a failover in a
clustered environment. This is because the fact that a plan is forced has been persisted
to disk with the database. The only way to stop plan forcing is to invalidate the plan as
described earlier, or choose to stop forcing that plan.

Because data and statistics change over time, it’s a good idea to plan to review forced
plans on a regular basis. You want to be sure that the reasons for forcing a particular plan
still hold true as things change over time. It’s also a very good idea to be very judicious
about plan forcing and only do it when absolutely necessary in order to address

regression.

Forcing Plans Through the Reports

Choosing to force a plan is never difficult. It’s especially easy inside the Query Store
reports. In the right-hand pane where you can see the performance of the queries
over time, you'll see the execution plans for a query. There may be one, or there may
be several. In Figure 7-9 you can see that I have two. They are listed on the right of
Figure 7-9 in the little box labeled “Plan ID”:

162

CHAPTER 7 FORCING PLANS

Plan summary for query 262 el bR =
127 @
@
107
8 Plan Id
2| 6 ®269
i
4
| 3
2_:: I Ll T 1 T T T 1 T
3/7/2019 3/9/2019 3/11/2019 3/13/2019 3/15/2019
3/8/2019 3/10/2019 3/12/2019 3/14/2019

Figure 7-9. Two execution plans in the Query Store report

Once we decide which of the plans we wish to force, we just have to click on that
Plan ID value on the right, either 269 or 273 in Figure 7-9. With that selected, the toolbar
above has an icon for forcing plans as shown in Figure 7-10:

Plan summary for query 262 ‘ 2] | 2o I o

>

r [@

sl
a4

i | Forces query 262 to try to use plan 273. ‘

Figure 7-10. Button in the report that lets you force plans

Clicking that button opens a confirmation window. You have the opportunity to
choose not to force the plan. Figure 7-11 shows the window:

Confirmation

Do you want to force plan 273 for query 2627

Yes No

Figure 7-11. Confirming that you wish to force a plan

163

CHAPTER 7 FORCING PLANS

Clicking on the Yes button will immediately force the plan. Clicking on the No
button will of course cancel the process. After you click yes, the plan will be forced. In
my case, I'm choosing to force plan 273. When I do this, the report then marks that plan
with a check mark. You can see this immediately in the Query Store report as shown in
Figure 7-12:

Plan summary for query 262 |£I |23 Holl E | E
124 ’
104
Bd . Planid
> 67 @269
b
3
2" T T T T T T 1 T 1 :
3/7/2019 3/9/2019 3/11/2019 3/13/2019 3/15/2019
3/8/2019 3/10/2019 3/12/2019 3/14/2019

Figure 7-12. The plans after picking a plan to force

You can see that a check mark as been placed on plan 273 and will remain there
until the plan forcing is removed. This is an immediate indication that the plan has been
forced. You'll also see that the “Force Plan” button is marked as depressed when the plan
is forced and not depressed when the plan is not forced.

Another way to force the plan is immediately below the pane we’ve been looking at
in Figures 7-9 and 7-12. Another set of buttons are visible as shown in Figure 7-13:

29 Force Plan | 3& Unforce Plan

Figure 7-13. Plan forcing buttons in the Query Store report

This button works the same as before. Pick the plan you wish to force and select the
button. A confirmation window will open and you can acknowledge forcing the plan.

164

CHAPTER 7 FORCING PLANS

Choosing to remove forcing, or unforcing a plan, is very simple. You have to use
the button shown in Figure 7-13. When you have a plan selected that has already been
forced, the “Unforce Plan” button will be enabled. You can then remove plan forcing for
that query. You'll again be prompted to confirm that you are unforcing the plan.

Forcing Plans Using T-SQL

You can also force a plan programmatically using T-SQL. The actual functionality of
plan forcing through T-SQL is extremely easy. The only trick is that you have to have two
pieces of information. You have to have the query_id within the Query Store and you
have to have the plan_id. As you can see above, you can retrieve these using the Query
Store reports. You can also use T-SQL against the Query Store catalog views as outlined
in Chapter 5. With T-SQL you can retrieve the query_id and plan_id. With those in hand,
forcing the plan is quite simple:

EXEC sys.sp_query store force plan 262,273;

Since we’re now doing this programmatically, there is no confirmation necessary.
Assuming that both ID values are accurate and that the plan chosen is a valid plan, the
plan_id, in this case 273, is forced for the query_id, in this case 262. If either ID is invalid,
you'll get an error.

Choosing to unforce the plan programmatically is not very difficult either:

EXEC sys.sp_query store unforce plan 262,273;

Again, there is no confirmation needed when forcing and unforcing
programmatically through T-SQL.

Determining Which Plans Have Been Forced

As you've seen in Figure 7-12, it’s very easy to see if a plan has been forced. There is even
areport that lists forced plans. We'll go over that report in Chapter 4 in some detail. The
question should be, is there a way to programmatically tell that a plan has been forced.
The answer to this is, of course, yes. You just have to query the Query Store catalog views:

SELECT gsq.query_id,
gsp.plan_id,
qsp.is_forced plan

165

CHAPTER 7 FORCING PLANS

FROM sys.query store query AS qsq
JOIN sys.query store plan AS gsp
ON gsp.query id = gsq.query id
WHERE gsq.query_id = 262;

The results of this query look like Figure 7-14:

query_ld plan_id is_forced_plan
1 [o o
2 262 273 1

Figure 7-14. Showing which query plan is forced programmatically

You can quickly see that the plan_id 273 has been forced since it’s is_forced plan
value is set to 1, while the other plan, 269, is not forced.

You can also see if a plan is forced by looking at some execution plans. You won't see
it on plans where you just capture an estimated plan if the plan is not yet in cache. You
won't see it on a plan from the Query Store itself. You will see this on pretty much any
other plan. What you're looking for is a little obscure. We'll need to go the properties of
the first operator and look for the “Use Plan” property value as shown in Figure 7-15:

StatementSqlHandle 0x09005BEBBF981
Useplan JiIE
WaitStats

Figure 7-15. The “Use Plan” property in the first operator

This is only available as a property in the first operator. It’s not visible in the tooltip.
You'll only see this on a plan that has been forced. You won'’t even see the property on
any other plan, so there is no “Use Plan” that will resolve to False.

166

CHAPTER 7 FORCING PLANS

Conclusion

Query regression is a real problem. The best way to solve it still remains modifying the
code, structure, or statistics to ensure a more appropriate plan is generated. However,
when you must, you do have the capability of forcing an execution plan. There are plenty
of ways to keep an eye on plan forcing, so you can adjust them as necessary when the
structure or code changes or other changes are made to the system that may affect plan
generation. As already mentioned, only use this functionality when you have to and have
a plan for a regular review of the queries that have forced plans.

167

CHAPTER 8

Auto Plan Correction
and Wait Statistics

The information captured and stored within Query Store begins to open up new
functionality for Microsoft and you. First, for Microsoft, having the ability to identify a
query that has suffered from a regression (as we describe in Chapter 7) means that they
can monitor the system and, using the information in the Query Store, automate forcing
a plan to fix the regression. This is the Auto Plan Correction at work. Second, for us,
the addition of wait statistics within the Query Store information opens up additional
troubleshooting possibilities.

This chapter explores additional capabilities of Query Store including:

e The ability to automatically mark queries with regressions and the
new catalog views that support this

o The capacity for SQL Server to automatically force, or unforce, a plan
based on its performance regressing

o The 23 categories of wait statistics that have been added to the Query
Store information

Automatic Plan Correction

The concepts of Automatic Plan Correction are completely built on Query Store.
Without the information collected by Query Store, the ability of SQL Server and

Azure SQL Database to determine that a plan has regressed would not be possible.
Remember that the core of plan regression is built around the idea that the query itself
has not changed. Changes in code cause changes in behavior all the time. It’s when

169
© Tracy Boggiano and Grant Fritchey 2019

T. Boggiano and G. Fritchey, Query Store for SQL Server 2019, https://doi.org/10.1007/978-1-4842-5004-4_8

CHAPTER 8 AUTO PLAN CORRECTION AND WAIT STATISTICS

you don’t change the code or the structure of the database and performance degrades
anyway that you have a regression. Query Store makes identifying regressions easier.

With the regression identified, the basic approach of Automatic Plan Correction is
simple. The behavior for this query was better under the older plan. SQL Server can,
when Automatic Plan Correction is enabled, automatically force that older plan, the
last known good plan. Then, the behavior of the system is observed again for a time. If
forcing the last good plan didn’t work, then it can be automatically unforced. All this
occurs behind the scenes with no real input from the user, the developer, or the DBA.

This behavior makes the job of tuning SQL Server easier because instead of
attempting to fix simple issues that can be readily automated, you have time to address
more difficult subjects that require more knowledge and understanding. Simply picking
the last well-behaved plan and applying it is simple tuning, but it can solve a large
number of issues easily.

Identifying Regression

We can start by understanding how SQL Server identifies a regressed query and
how it communicates why it thinks that query has regressed. Luckily, all this
functionality is summarized in a new dynamic management view: sys.dm_db_tuning
recommendations.

However, before we can show off the behavior of the new DMV it’s necessary to have
a query which will reliably supply behavior that can be identified as a regression. In
order to do that, we’ll have to make some modifications to the standard AdventureWorks
database. Adam Machanic has a script called BigAdventure that uses some of the
tables from AdventureWorks to create a much larger database. The code is available
to download here: http://dataeducation.com/thinking-big-adventure/. First run
Adam’s script to create the necessary structures. With that in place, we’ll run this script to
create a stored procedure and modify the database:

CREATE INDEX ix ActualCost ON dbo.bigTransactionHistory (ActualCost);
Go

--a simple query for the experiment

CREATE OR ALTER PROCEDURE dbo.ProductByCost (@ActualCost MONEY)
AS

SELECT bth.ActualCost

170

http://dataeducation.com/thinking-big-adventure/

CHAPTER 8 AUTO PLAN CORRECTION AND WAIT STATISTICS

FROM dbo.bigTransactionHistory AS bth
JOIN dbo.bigProduct AS p

ON p.ProductID = bth.ProductID

WHERE bth.ActualCost = @ActualCost;
GO

--ensuring that Query Store is on and has a clean data set
ALTER DATABASE AdventureWorks SET QUERY_STORE = ON;

ALTER DATABASE AdventureWorks SET QUERY_STORE CLEAR;

Go

All this is necessary to enable us to create a load with queries that will suffer from
aregression in a reliable fashion. With these preparations in place, in order to see the

regression occur, we'll run the following script:

-- 1. Establish a history of query performance
EXEC dbo.ProductByCost @ActualCost = 8.2205;
GO 30

-- 2. Remove the plan from cache
DECLARE @PlanHandle VARBINARY(64);
SELECT @PlanHandle = deps.plan_handle
FROM sys.dm_exec_procedure stats AS deps
WHERE deps.object id = OBJECT ID('dbo.ProductByCost"');
IF @PlanHandle IS NOT NULL

BEGIN

DBCC FREEPROCCACHE(@PlanHandle);

END

GO

-- 3. Execute a query that will result in a different plan
EXEC dbo.ProductByCost @ActualCost = 0.0;
GO

-- 4. Establish a new history of poor performance
EXEC dbo.ProductByCost @ActualCost = 8.2205;
GO 15

171

CHAPTER 8 AUTO PLAN CORRECTION AND WAIT STATISTICS

That script does a number of things. I've placed markers in the comments in
the code so that we can refer back to each section of the code to understand what is
happening. First, at number 1, we have to establish behavior for the query. It takes a
number of executions to establish that a query is behaving a certain way, capturing
the data in Query Store. Next, at number 2, we remove the plan from the plan cache by
getting the plan_handle and using FREEPROCCACHE to remove just the one plan from
cache. This means that the next execution will have to compile a new plan. Without this
step, even if we executed the query with different values, the plan would remain the
same until it naturally aged out of cache. By forcibly removing it from cache, we
set up the next step. In step 3, we execute the query, but we use a different value which
has a very different data distribution in the statistics. This results in a change to the
execution plan. Finally, in step 4, we again establish a pattern of behavior with the new
execution plan.

Before I explain why the performance was so bad between the two versions
of the execution plan, let’s quickly see if this resulted in a regression by querying
sys.dm_db_tuning_recommendations like this:

SELECT ddtr.type,
ddtr.reason,
ddtr.last_refresh,
ddtr.state,
ddtr.score,
ddtr.details
FROM sys.dm_db_tuning recommendations AS ddtr;

The results should look like Figure 8-1:

Yoo reason Lot revesr reae. score detais
FORCE_LAST_GOOD_PLAN | Average query CPU tme changed bom 0 16ms 049 20180511 14 1146 6066667 [cunenfValue™ “Acive” eason” “AuometicTun 3 [planForceOetais” ("quend” 2 “regressedPian

Figure 8-1. Results in the tuning recommendations DMV

172

CHAPTER 8 AUTO PLAN CORRECTION AND WAIT STATISTICS

The reason for this is easy enough to understand. If we were to look at the execution
plan generated the first time we executed the store procedure using the value 8.2205,
it looks like this:

&} tC] 5

Nested Loops Nested Loops Index Seek (NonCl..
(Inner Join) (Inner Join) [bigTransactionHi..
SELECT | Cost: 0 & Cost: 0 & Cost: 30 %
0.000s 0.000s 0.000s
2 of 2 of 2 of
1 (200%) 1 (200%) 1 (200%)
L
aty]
Clustered Index S.. Key Lookup (Clust..
[bigProduct]. [pk_.. [bigTransactionHi...
Cost: 35 % Cost: 35 %
0.000s 0.000s
2 of 2 of
1 (200%) 1 (200%)

Figure 8-2. Original execution plan for dbo.ProductByCost stored procedure

There could be tuning opportunities with this query as you can see in the plan with
the Key Lookup operation. However, the plan works well enough for the data set being
retrieved. The estimated number of rows was 1 and the actual was 2, which is extremely
close, so the plan performs fairly well. After recompiling using the value 0.0, even when
executed using the value 8.2205, the plan looks like this:

173

CHAPTER 8 AUTO PLAN CORRECTION AND WAIT STATISTICS

0

SELECT |
Cost: 0 %

e

Merge Join
(Inner Join)
Cost: 24 %
2.794s
2 of
12420300 (0%)

Clustered Index S..

[bigProduct]. [pk_..
Costy O
0.001s

6933 of
25200 (27%)

ol

4

Index Scan (NonCl..
[bigTransactionHi..

Cast: 195 %
2.793s
2 of

12420400 (0%)

Figure 8-3. Execution plan with very poor performance

The reason for this change is because the value 0.0 has 12,420,400 rows as shown
in the plan, not the two we were dealing with originally. This different plan degraded
performance seriously because we're scanning a giant index to retrieve only two rows
rather than a simple seek. By executing the query multiple times, SQL Server was able to
identify a regression and added data to sys.dm_db_tuning recommendations. Let’s take
a closer look at that information in Figure 8-4:

Ll reason G even e o deis
FORCE_LAST_GOOD_PLAN | Average query CPU tme changed fom 0 1ms 049 20180511 14 1146 6066667 [cunentValue™ “Acive” eason” “AumetcTun . 3 [planForceOetais” ("quend” 2 “regressedPian

Figure 8-4. Suggested tuning recommendations

The first column tells us the type of tuning recommendation, in this case, FORCE_
LAST_GOOD_PLAN. Microsoft is likely to add further recommendations in the future.
The next column is the reason for the recommendation and reads as follows:

Average query CPU time changed from 0.16ms to 4909.41ms

As we explained above, changing the execution plan to scan the index instead of
seeking on it degraded performance. We executed the procedure enough times that
averages were established and it went from 0.16ms to 4909.41ms on average, a huge leap.

174

CHAPTER 8 AUTO PLAN CORRECTION AND WAIT STATISTICS

The next column lets us know when the recommendation was last updated.

Because things change within the system, you can, and will, see changes made to
recommendations over time.

We also have the state column. This is JSON data showing us the current status of the
recommendation as follows:

{“currentValue”:“Active’; “reason”:“AutomaticTuningOptionNotEnabled”}

The recommendation is active, but it is not implemented. The reason for this is clear,
we have yet to enable Automatic Tuning. Finally, all the details of the information are
shown in another JSON column:

{“planForceDetails”:{“queryld”:2, “regressedPlanld”:2, “regressedPlanExecutionCount”:15,
“regressedPlanErrorCount”:0, “regressedPlanCpuTimeAverage”:4.909411600000000e+006,”
regressedPlanCpuTimeStddev":1.181213221539555e+007, “recommendedPlanId”: 1,
“recommendedPlanExecutionCount”:30, “recommendedPlanErrorCount”: 0,
“recommendedPlanCpuTimeAverage”:1.622333333333333e+002, “recommended
PlanCpuTimeStddev”:2.380063281138177e+002}, “implementationDetails”:
{“method”:“TSql’ “script”:“exec sp_query_store_force_plan @query_id = 2, @plan_id = 1"}}

That'’s very difficult to read, so we’ll lay it out in a table to make it easier to see:

Table 8-1 list the columns in the JSON data in the details column above in the DMV.

Table 8-1. Details of the tuning recommendation from the JSON data

planForceDetails

querylD 2: query_id value from the Query Store

regressedPlaniD 2: The plan_id value from the Query Store of the problem plan
regressedPlanExecutionCount 5: Number of times the regressed plan was used
regressedPlanErrorCount 0: When there is a value, errors during execution
regressedPlanCpuTimeAverage 4.909411600000000e+006: Average CPU of the plan
regressedPlanCpuTimeStddev 1.181213221539555e+006: Standard deviation of that value
recommendedPlanID 1: The plan_id that the tuning recommendation is suggesting

recommendedPlanExecutionCount 30: Number of times the recommended plan was used

recommendedPlanErrorCount 0: When there is a value, errors during execution

(continued)

175

CHAPTER 8 AUTO PLAN CORRECTION AND WAIT STATISTICS

Table 8-1. (continued)

planForceDetails

recommendedPlanCpuTimeAverage 1.622333333333333e+002: Average CPU of the plan
recommendedPlanCpuTimeStddev ~ 2.380063281138177e+002: Standard deviation of that value
implementationDetails

Method TSql: Value will always be T-SQL until new types of
recommendations are created

script exec sp_query_store_force_plan @query_id = 2, @plan_id = 1

This data means that you don’t need to enable Automatic Tuning in order to see
what types of suggested changes are needed in your system. You can, if you want to,
query this information much more directly by using JSON queries as follows:

WITH DbTuneRec
AS (SELECT ddtr.reason,
ddtr.score,
pfd.query id,
pfd.regressedPlanld,
pfd.recommendedPlanId,
JSON_VALUE(ddtr.state,
"$.currentValue') AS CurrentState,
JSON_VALUE(ddtr.state,
"$.reason') AS CurrentStateReason,
JSON_VALUE(ddtr.details,
'$.implementationDetails.script') AS
ImplementationScript
FROM sys.dm db tuning recommendations AS ddtr
CROSS APPLY
OPENJSON(ddtr.details,
'$.planForceDetails")
WITH (query id INT '$.queryIld’,
regressedPlanId INT '$.regressedPlanld’,
recommendedPlanId INT '$.recommendedPlanId') AS pfd)

176

CHAPTER 8 AUTO PLAN CORRECTION AND WAIT STATISTICS

SELECT gsq.query_id,
dtr.reason,
dtr.score,
dtr.CurrentState,
dtr.CurrentStateReason,
gsqt.query sql text,
CAST(rp.query plan AS XML) AS RegressedPlan,
CAST(sp.query plan AS XML) AS SuggestedPlan,
dtr.ImplementationScript
FROM DbTuneRec AS dtr
JOIN sys.query store plan AS rp
ON rp.query id = dtr.query id
AND rp.plan_id = dtr.regressedPlanId
JOIN sys.query store plan AS sp
ON sp.query id = dtr.query id
AND sp.plan_id = dtr.recommendedPlanId
JOIN sys.query store_query AS gsq
ON gsq.query id = rp.query id
JOIN sys.query store query text AS gsqt
ON gsqt.query text _id = gsq.query_text id;

These recommendations are just that, recommendations. While SQL Server is
very good at making these based on the behavior captured through Query Store,
until you enable Automatic Tuning, you can use these recommendations on your
systems manually if you want. One thing you need to know about sys.dm_db_tuning
recommendations is that the information is not persisted. In a failover, reboot, or other
type of outage, this data will be reset. Any plans forced through Automatic Tuning will
remain forced. However, you'll lose a history for why that plan was forced. You may want
to capture this information regularly into other locations just in case.

Enabling Automatic Tuning

There are different ways to enable Automatic Tuning depending on if you're working
within SQL Server 2019 or Azure SQL Database. If you're working with SQL Server 2017
or greater, you can use T-SQL to enable it. If you're working with Azure SQL Database,
you can use T-SQL or the Azure portal. The T-SQL for both is the same, as is all the other

177

CHAPTER 8 AUTO PLAN CORRECTION AND WAIT STATISTICS

queries you would run to look at the information. We'll start with Azure so you can see
what that looks like.

Automatic Tuning in Azure SQL Database

Before we go on, please note that Azure is updated extremely frequently. The GUI that
you see after you get this book could be different than that shown here. The processes
should remain basically the same.

Connecting to a database within the portal and then scrolling to the bottom of the
page, you should see something like Figure 8-5:

‘ Automatic tuning

Monitors and tunes your database automatically to
optimize performance.

NOT CONFIGURED @

Figure 8-5. Automatic Tuning in the Azure portal, not currently configured

If you have not yet enabled Automatic Tuning, as you can see, it will show as “Not
Configured” in the portal. You can click on this and it will open a new blade as shown in
Figure 8-6:

178

CHAPTER 8 AUTO PLAN CORRECTION AND WAIT STATISTICS

‘ Azure SQL Database built-in intelligence automatically tunes your databases to optimize performance. @&
Click here to learn more about automatic tuning.

Inherit from: @

The database is inheriting automatic tuning configuration from the server. You can set the configuration to be
inherited by going to:
: T EISETi T

A The database is inheriting settings from the server, but the server is in the unspecified state. Please specify the

automatic tuning state on the server.

Configure the automatic tuning options @

OPTION DESIRED STATE CURRENT STATE

OFF

Aeldz b Inherited from server

OFF
Inherited from server

CREATE INDEX

OFF
Inherited from server

DROP INDEX

Figure 8-6. Settings for Automatic Tuning on a database in the Azure portal

Everything is explained fairly clearly on the blade. You can inherit from the server
that contains the database, from the Azure defaults, or change the setting to not
inheriting from anywhere. You can see a warning that while we’re inheriting currently
from the server, the server itself is not configured. We can make the change there, but for
our purposes, we'll make the change right here. You can see at the bottom of the screen
that in addition to forcing a plan, you can also have Azure SQL Database create or drop
indexes. The index functionality is not directly related to Query Store, so we won’t cover
it here. To enable the forcing of the last known good plan, we just have to click ON as you
can see in Figure 8-7:

179

CHAPTER 8 AUTO PLAN CORRECTION AND WAIT STATISTICS

Configure the automatic tuning options @

OPTION DESIRED STATE CURRENT STATE

OFF

FORCE PLAN .
Inherited from server

2 " = [. OFF

Az 12 2 Inherited from server

] s OFF
S DROP INDEX N U INHERIT) ‘
N — Inherited from server

Figure 8-7. Enabling Automatic Tuning in Azure SQL Database

To complete this process, you will click the Apply button at the top of the page. It will
prompt you to be sure that’s the action you want. Once you click OK, Automatic Tuning
is enabled on your database. No other actions are required.

Enable Automatic Tuning with T-SQL

There is no graphical interface for enabling automatic query tuning within Management
Studio as I type this. Instead, you have to use a T-SQL command. You can also use
this same command within Azure SQL Database or Azure Managed Instances. The

command is as follows:
ALTER DATABASE current SET AUTOMATIC TUNING (FORCE_LAST_GOOD_PLAN = ON);

You can of course substitute the appropriate database name for the default value of
current that I use here. This command can only be run on one database at a time. If you
wish to enable automatic tuning for all databases on your instance, you either have to
enable it in the model database before those other databases are created, or you need to
set it to on for each database on the server.

The only option currently for automatic_tuning is to do as we have done and enable
the forcing of the last good plan. You can disable this by using the following command:

ALTER DATABASE current SET AUTOMATIC TUNING (FORCE_LAST GOOD PLAN = OFF);

It’s that easy. No other actions are necessary and this doesn’t require a reboot or
changes to the server itself.

180

CHAPTER 8 AUTO PLAN CORRECTION AND WAIT STATISTICS

Automatic Tuning at Work

In order to see Automatic Tuning at work, after we enable it and Query Store, we just
have to rerun the script above. However, to ensure that the tests run successfully, we're
going to clear Query Store and the cache so that everything is starting from scratch. This
is the updated script:

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE;
Go

ALTER DATABASE AdventureWorks SET QUERY STORE CLEAR;

Go

EXEC dbo.ProductByCost @ActualCost = 8.2205;
GO 30

--remove the plan from cache
DECLARE @PlanHandle VARBINARY(64);
SELECT @PlanHandle = deps.plan_handle
FROM sys.dm_exec_procedure stats AS deps
WHERE ~ deps.object_id = OBJECT_ID('dbo.ProductByCost');
IF @PlanHandle IS NOT NULL

BEGIN

DBCC FREEPROCCACHE(@PlanHandle);

END

GO

--execute a query that will result in a different plan
EXEC dbo.ProductByCost @ActualCost = 0.0;
Go

--establish a new history of poor performance
EXEC dbo.ProductByCost @ActualCost = 8.2205;
GO 15

After executing this script, we’ll want to go back and query sys.dm_db_tuning
recommendations. Figure 8-8 shows how the data there has now changed:

181

CHAPTER 8 AUTO PLAN CORRECTION AND WAIT STATISTICS

query_id reason score CurrentState CurrentStateReason
1 Average query CPU time changed from 0.15ms to 53... 36 Verifying LastGoodPlanForced

Figure 8-8. The regression has been fixed by Automatic Tuning

The CurrentState value has been changed to Verifying. It will measure performance
over a number of executions, much as it did before. If the performance degrades, it will
unforce the plan. Further, if there are errors such as time outs or aborted executions, the
plan will also be unforced. You'll also see the error_prone column in sys.dm_db_tuning_
recommendations changed to a value of “Yes” in this event.

If you restart the server, the information in sys.dm_db_tuning recommendations
will be removed. Also, any plans that have been forced will also be removed. As soon as
a query regresses again, any plan forcing will be automatically re-enabled. If this is an
issue, you can always force the plan manually.

If a query is forced and then performance degrades, it will be unforced, as already
noted. If that query again suffers from degraded performance, plan forcing will be
removed and the query will be marked such that, at least until a server reboot when the
information is removed, it will not be forced again.

Query Store Wait Statistics

The information we’ve talked about throughout the book that Query Store captures for
query performance behavior changes the way lots of people do monitoring and query
tuning. The addition of wait statistics for a given query adds to those changes. Now, you
can get the wait statistics for a query easily. This information is aggregated using the
time interval that you're aggregating your queries with, 60 minutes by default. Further,
because there are so many waits, rather than list them all individually, the wait statistics
in Query Store are grouped into categories of waits. If you need individual, detailed, wait
statistics on a query, you'll need to use other mechanisms to capture the data.

Wait Statistics Categories

There’s not much to say about the categories. You need to know how the categories are
broken down in order to understand what waits they represent. Other than that, there’s
no additional functionality associated with them. This is purely informational so that you
can correctly interpret the information when you look at the wait statistics in Query Store.

182

CHAPTER 8 AUTO PLAN CORRECTION AND WAIT STATISTICS

Table 8-2 shows the categories and the associated waits as published by Microsoft.

Following their convention, percent signs (%) represent wild cards.

Table 8-2. Query Store wait statistics categories and waits

Integer value Wait category Wait types include in the category

0 Unknown Unknown

1 CPU SOS_SCHEDULER_YIELD

2 Worker thread THREADPOOL

3 Lock LCK_M_%

4 Latch LATCH_%

5 Buffer latch PAGELATCH_%

6 Buffer I/0 PAGEIOLATCH_%

7 Compilation” RESOURCE_SEMAPHORE_QUERY_COMPILE

8 SQL CLR CLR%, SQLCLR%

9 Mirroring DBMIRROR%

10 Transaction XACTC%, DTC%, TRAN_MARKLATCH_%, MSQL_XACT %,
TRANSACTION_MUTEX

11 Idle SLEEP_%, LAZYWRITER_SLEEP, SQLTRACE_BUFFER _
FLUSH, SQLTRACE_INCREMENTAL_FLUSH_SLEEP,
SQLTRACE_WAIT_ENTRIES, FT_IFTS_SCHEDULER_IDLE_
WAIT, XE_DISPATCHER_WAIT, REQUEST_FOR_DEADLOCK _
SEARCH, LOGMGR_QUEUE, ONDEMAND_TASK_QUELUE,
CHECKPOINT_QUEUE, XE_TIMER_EVENT

12 Preemptive PREEMPTIVE_%

13 Service broker BROKER_% (but not BROKER_RECEIVE_WAITFOR)

14 Tran log 1/0 LOGMGR, LOGBUFFER, LOGMGR_RESERVE_APPEND,
LOGMGR_FLUSH, LOGMGR_PMM_LOG, CHKPT, WRITELOG

15 Network I/0 ASYNC_NETWORK_IO, NET_WAITFOR_PACKET, PROXY _

NETWORK_IO, EXTERNAL_SCRIPT_NETWORK_IOF

(continued)

183

CHAPTER 8 AUTO PLAN CORRECTION AND WAIT STATISTICS

Table 8-2. (continued)

Integer value

Wait category

Wait types include in the category

16
17

18

19

20

21

22

23

Parallelism

Memory

User wait

Tracing

Full text search

Other disk 1/0

Replication

Log rate governor

CXPACKET, EXCHANGE

RESOURCE_SEMAPHORE, CMEMTHREAD,
CMEMPARTITIONED, EE_PMOLOCK, MEMORY _
ALLOCATION_EXT, RESERVED_MEMORY_ALLOCATION_EXT,
MEMORY_GRANT_UPDATE

WAITFOR, WAIT_FOR_RESULTS, BROKER_RECEIVE_
WAITFOR

TRACEWRITE, SQLTRACE_LOCK, SQLTRACE_FILE_BUFFER,
SQLTRACE_FILE_WRITE_IO_COMPLETION, SQLTRACE _
FILE_READ_|O_COMPLETION, SQLTRACE_PENDING_
BUFFER_WRITERS, SQLTRACE_SHUTDOWN, QUERY_
TRACEOUT, TRACE_EVTNOTIFF

FT_RESTART_CRAWL, FULLTEXT GATHERER, MSSEARCH,
FT_METADATA_MUTEX, FT_IFTSHC_MUTEX, FT_IFTSISM_
MUTEX, FT_IFTS_RWLOCK, FT_COMPROWSET_RWLOCK,
FT_MASTER_MERGE, FT_PROPERTYLIST_CACHE,
FT_MASTER_MERGE_COORDINATOR, PWAIT_RESOURCE_
SEMAPHORE_FT_PARALLEL_QUERY_SYNC

ASYNC_IO_COMPLETION, I0_COMPLETION, BACKUPIO,
WRITE_COMPLETION, 10_QUEUE_LIMIT, I0_RETRY

SE_REPL_%, REPL_%, HADR_% (but not HADR_
THROTTLE_LOG_RATE_GOVERNOR), PWAIT_HADR_%,
REPLICA_WRITES, FCB_REPLICA_WRITE, FCB_REPLICA _
READ, PWAIT_HADRSIM

LOG_RATE_GOVERNOR, POOL_LOG_RATE_GOVERNOR,
HADR_THROTTLE_LOG_RATE_GOVERNOR, INSTANCE_
LOG_RATE_GOVERNOR

184

CHAPTER 8 AUTO PLAN CORRECTION AND WAIT STATISTICS

Looking at Query Store Wait Statistics

There are two ways you can look at the wait statistics for a query within the Query Store.
You can use T-SQL to query the information, or, there is a report within SQL Server
Management Studio 18. We'll start by querying the wait statistics.

Querying Wait Statistics

Querying the wait statistics in Query Store is very straightforward. The most important
thing to remember is that the statistics are aggregated through the time interval. While
you can leave this off when you query the statistics, doing so then requires you to
aggregate the aggregates in order to arrive at meaningful data. Here’s an example query
that looks at the wait statistics for the stored procedure we used earlier in the chapter:

SELECT gsws.wait_category desc,
gsws.total query wait time ms,
gsws.avg_query wait time ms,
gsws.stdev_query wait time_ms

FROM sys.query store query AS qsq

JOIN sys.query store plan AS gsp
ON gsp.query id = gsq.query_id
JOIN sys.query store wait stats AS qgsws
ON gsws.plan id = gsp.plan_id
JOIN sys.query store runtime stats interval AS gsrsi
ON gsrsi.runtime_stats_interval id = qsws.runtime_stats interval id
WHERE qsq.object id = OBJECT_ID('dbo.ProductByCost"');

You can see the results in Figure 8-9:

wait_category_desc ftotal_query_wait tme_ms avg_query_wait tme_ms stdev_query wait time_ms start_time end_time

CPU 10087 631.0625 1747.54082065633 2019-05-11 15:00:00.0000000 +00:00 2018-05-11 16:00.00.0000000 +00:00
Netwerk 10 954 59.625 231.1409310355%1 2019-05-11 15:00:00.0000000 +00:00 2019-05-11 16:00.00.0000000 +00:00
CPU 4867 311.133333333332 184.384523461762 2019-05-11 17:00:00.0000000 +00:00 2018-05-11 18:00:00.0000000 +00:00

Figure 8-9. Wait statistics for dbo.ProductbyCost

You can see that there are two different time intervals with different wait statistics.
The only waits experienced by the query were in the CPU and Network I/O categories.
Using the table from the section above, that means that the waits experienced could be
any of these in Table 8-3:

185

CHAPTER 8 AUTO PLAN CORRECTION AND WAIT STATISTICS

Table 8-3. The waits experienced by dbo.ProductByCost

Network I0 ASYNC_NETWORK_IO, NET_WAITFOR_PACKET, PROXY_NETWORK_IO,
EXTERNAL_SCRIPT_NETWORK_IOF

CPU SOS_SCHEDULER_YIELD

Clearly, this makes for a quick and easy way to understand the bottleneck experience
by a query. However, that will be a general set of knowledge, not detailed. Still, it makes a
huge difference in our ability to easily identify problems that need our attention.

Wait Statistics Report

Chapter 4 is going to cover the Query Store reports in detail. Here I'll just show the
general behavior of the report itself. Upon opening the report, you'll see something
similar to Figure 8-10:

Query wait statistics for database AdventureWorks. Time period: Last hour ending at 5/11/2019 10:17 AM

B e vt e~ | |2 [[u].

>

12000~

10000~

8000~

6000~

total wait time

4000~

2000~

Buffer Latch Memory

wait category b

Figure 8-10. Wait statistics report showing aggregate information

186

CHAPTER 8 AUTO PLAN CORRECTION AND WAIT STATISTICS

When you first open the report, only aggregate information for the time period is
shown. You're seeing all the queries and the various waits with a given category. If you
then click on a category, such as the CPU wait that you see, the view will change to

something like Figure 8-11:

istics for database AdventureWorks. Time period: Last hour ending at 5/11/2019 10:20 AM
Tl o=
Based on: | total wait time * | Wait category: CPU | (€] ‘ E3| ‘ =} | el I = @ - Plan summary for query 1 |.E| |ae; bl bt ‘ (=2]

50000 53195

40000
53190

30000

total wait time

T| 53185
20000+ | e o2
10000~ 53180
b t t 4 920AM S30AM G40AM 9S0AM 1000AM 10:00AM 1020 AM
L 3 2 925AM S35AM 9ASAM 9SSAM 1005AM T0:15AM
query id
Plan 2 [nat forced] 23 Force Plan | 13 Unforce Plan | _
Query l: Query cost (relative to the batch): 100%
SELECT bth.hctualCost EROM dbo.bigTransactisnHistory AS bth JOIN dbo.bigPreduct AS p ON p.ProductID = bth.ProductID WHERE bth.ictualCest = BActualCest
[l
ta i

HMerge Jain Clustered indax 5.
{Inner Jain) [bigProdust]. [pk_.
Cost: 24 % Cost: 0 3

Figure 8-11. Report showing all queries that have experienced the wait selected

What is now shown in the report is a series of queries in the upper left that have
experienced the wait that was selected. Then, the report functions much as other reports
do. Selecting a query shows its various query plans over time on the right. Selecting
any of those plans will cause the full plan to be shown in the pane at the bottom of
the screen. In our instance you can see that the query with the most waits was dbo.
ProductByCost. Specifically, it was the bad plan from our original example at the start of
the chapter.

All this provides a way to understand not simply query performance, but the waits
affecting the query as well.

187

CHAPTER 8 AUTO PLAN CORRECTION AND WAIT STATISTICS

Conclusion

Query Store enables a bunch of interesting scenarios and Automatic Tuning to eliminate
plan regression is one of the more exciting. As with all else, you should monitor your
systems to ensure that this behavior is benefiting you. However, most systems will

likely benefit, thus freeing you up to do other work. That work may entail using the wait
statistics that are now stored with queries to better identify the ones that need to be
tuned. All this Query Store functionality is changing the way we do database monitoring
and database tuning.

188

CHAPTER 9

Troubleshooting Issues
with Query Store

Like any other aspect of SQL Server, most of the time, you can simply turn Query Store
on and then not worry about it. However, like any other aspect of SQL Server, things can
go wrong. There are two tools that you can use to understand what is happening with
Query Store on your database:

e Query Store specific wait statistics
o Extended Events for Query Store

This chapter will look at some common problems that can arise with Query Store
and how you can use the tools provided in order to ensure that Query Store is working
well on your systems.

Query Store Waits

By design, as we described in the first couple of chapters, Query Store is designed to

be as unobtrusive as possible. In physics, the observer effect says that observation of

a process or object can affect the behavior of that process or object. Similarly in SQL
Server, however lightweight the data collection, the act of collecting information is
adding some additional load to your SQL Server instance. The number of possible
factors that can lead to issues with the Query Store is huge. It is the same list as any other
process within SQL Server: the amount of memory and CPU you have available; the
number, size, and volume of the transactions in your system; the number and speed of
your disks and disk controllers, and, frankly, the code running in your T-SQL statements.
Any or all of these and more can change the behavior of Query Store.

189
© Tracy Boggiano and Grant Fritchey 2019

T. Boggiano and G. Fritchey, Query Store for SQL Server 2019, https://doi.org/10.1007/978-1-4842-5004-4_9

CHAPTER9 TROUBLESHOOTING ISSUES WITH QUERY STORE

The first way we can understand Query Store behavior is to use the wait
statistics. Generally speaking, wait statistics are always the best way to gain a general
understanding of the behavior of any given system. If you know what the system is
waiting on, you know where your bottlenecks are. There are two ways to look at waits in
the Query Store, through the traditional dynamic management view, sy.dm_os_wait_
stats, or, on Azure SQL Database, sys.dm_db_wait_stats. You can also use Extended
Events wait_completed to see waits, but that’s a very granular approach and won’t
generally be needed. We'll focus only on the DMV.

When talking about querying the wait statistics within SQL Server, I recommend
you start with Paul Randal’s scripts. The import of these scripts is that they eliminate the
noise, the wait statistics that never mean anything. You can access those scripts here:
https://bit.ly/2wsQHQE.

Query Store wait statistics have a common naming convention. They always start
with “qds_" To see just the wait statistics coming from Query Store, you would run this
query in Listing 9-1:

Listing 9-1. Wait Statistics coming from Query Store

SELECT dows.wait_type,
dows.waiting tasks_count,
dows.wait time ms,
dows.max_wait time ms,
dows.signal wait_time_ms

FROM sys.dm os wait stats AS dows

WHERE dows.wait type LIKE 'qds %';

The results would look something like Figure 9-1:

190

https://bit.ly/2wsQHQE

CHAPTER9 TROUBLESHOOTING ISSUES WITH QUERY STORE

wait_type waiting_tasks_count wait_time_ms max_wait_tme_ms signal_wait_time_ms
1 |[GDSDYNVECTOR 0 0 0 0
2 QDS_STMT 0 0 0 0
3 QDS_CTXS 0 0 0 0
4 QDS_BCKG_TASK 0 0 0 0
5 QDS_DB_DISK 0 0 0 0
6 QDS_STMT_DISK 0 0 0 0
7 QDS_ASYNC_PERSIST_TASK 0 0 0 0
8 QDS_LOADDB 0 0 0 0
9 QDS _ASYNC_PERSIST_TASK_START 1 170 170 0
10 QDS _ASYNC CHECK_CONSISTENCY TASK 0 0 0 0
1 QDS _TASK_START 1 24 24 4
12 QDS_PERSIST_TASK_MAIN_LOOP_SLEEP 1105 132103279 21616262 243034
13 QDS_TASK_SHUTDOWN 0 0 0 0
14 QDS_SHUTDOWN_QUEUE 0 0 0 0
15 QDS_EXCLUSIVE_ACCESS 0 0 0 0
16 QDS_CLEANUP_STALE_QUERIES_TASK_MAIN_LOOP_SLEEP 0 0 0 0
17 QDS_ASYNC_QUEUE 1 0 0 0
18 QDS_BLOOM_FILTER 0 0 0 0
19 QDS _QDS_CAPTURE_INIT 0 0 0 0
20 QDS _HOST_INIT 0 0 0 0

Figure 9-1. All the Query Store wait statistics

Of course, your system will have different values in each of the columns, but you
should see a similar list of waits. You would not normally look at the Query Store wait
statistics in isolation. Instead, you would query the wait statistics and look for the top
ones on your system. When those top waits are Query Store, you're likely experiencing
some sort of issue.

However, there are just a few Query Store waits that you can safely ignore.

Paul Randal also maintains a library of wait statistics (accessible here: https://bit.
ly/2ePzY02). Based on his documentation, there are three waits, currently, that you can
safely ignore when it comes to Query Store:

qds_async_queue
qds_cleanup stale queries task main_loop_sleep
qds_shutdown_queue

You would not simply query for the Query Store waits. Instead, as part of your normal
monitoring of wait statistics on your system, you would look for the waits above because
they would indicate Query Store itself, its operations, is leading to issues on your system.
If you see any of the “qds_sx" waits in your top 10, you would want to understand what
that wait statistics is and then drill down on why it’s causing problems for you in your
system. The way we drill down when monitoring Query Store is to use Extended Events.

191

https://bit.ly/2ePzYO2
https://bit.ly/2ePzYO2

CHAPTER9 TROUBLESHOOTING ISSUES WITH QUERY STORE

Extended Events and Query Store

Extended Events are the best method to do a detailed analysis of the behavior of Query
Store in your systems. Extended Events are a fairly dense topic that we're not going to try
to explain in detail in this book. To get started with Extended Events, I suggest first the
Microsoft documentation here: https://bit.1ly/2LfWMoj. Once you're comfortable with
how Extended Events works, you can more easily explore the capabilities of monitoring
Query Store using Extended Events.

At this writing, there are currently 92 events within the qds, Query Data Store,
package defined within SQL Server 2019. You can easily list them if you want to run a
query as follows in Listing 9-2:

Listing 9-2. List Query Data Store Extended Events

SELECT dxo.name,
dxo.description
FROM sys.dm_xe_packages AS dxp
JOIN sys.dm xe objects AS dxo
ON dxp.guid = dxo.package guid
WHERE dxp.name = 'qds'
AND dxo.object type = 'event';

Another way to access the information is through the Extended Events GUI within
SQL Server Management Studio as shown in Figure 9-2:

192

https://bit.ly/2LfWMoj

CHAPTER9 TROUBLESHOOTING ISSUES WITH QUERY STORE

Ui New Session - S X
6 Cannot create a session without any avents.
Select a page LT script - @ Help
J General
K Events
J Data Storage . Select Select the events you want to capture from the event library.
M Advanced
Event library: Selected events:
Search Events in Event names only v Na = g
| Name Category [~] channel v ~|
query_store_async_qu...query_store Operational
query_store_auto_ena... query_store Operational
query_store_auto_ena... query_store Operational
query_store_backgrou... query_store Operational
query_store_backgrou... query_store Operational < >
muany_citore hackoros ooend stone Dinarationnal '. |
Event Fialds NDascrintinn .
memory ~
[merge_trace :
[oledb
. . <
T [J optimization
rm [process
0 4 TESTBED\SQL2017 ¥ »
[TESTBED\Administrator] &d query_store
[redo v
View connection properties
Progress
Ready
OK Cancel Help

Figure 9-2. Selecting only the Query Store events in Extended Events

The only issue here is that not all these events are active. Many of them, maybe even
most of them, are only accessible through special flags set by Microsoft. So, while you
can see them, even add them to a session, no activity will ever be recorded by them.

As is normal with every other event in Extended Events, the Query Store events will
have a name, a description, and a defined set of columns associated with the event. So,
if we were to monitor the behavior of Query Store using Extended Events, one event
we might be interested in is the query_store_size_retention_cleanup_finished event.
Selecting that event, we can then see the information that Query Store itself is gathering
asyou can see in Figure 9-3:

193

CHAPTER9 TROUBLESHOOTING ISSUES WITH QUERY STORE

Event Fields Description

database_id ID of the database for which Query Store size based retention policy cle...
deleted_plan_count The number of query plans that has been deleted from the Query Store ...
deleted_query_count The number of queries that has been deleted from the Query Store as p...

estimated_deleted_size_kb Estimated amount of data that the clean-up task has managed to delete ...
last_deleted_query_total_c... Total CPU of the last evicted query.

max_deleted_total_cpu Max total CPU of all deleted queries

query_cost Cost of the last evicted query.

Figure 9-3. The information captured by query_store_execution_runtime_info

The information in this event represents the data that the Query Store is capturing
after a query completes its cleanup process. So, with this event, you could observe and
monitor that part of the behavior of the Query Store. We're going to look at a couple of
different ways you can monitor Query Store behavior and some very particular events
that aid in that regard.

Tracking Query Store Behaviors

A number of processes that make up the Query Store can be observed by capturing
Extended Events. We've already see an event that fires when Query Store is cleansing
itself for size. You can also watch a matching event, query_store_size_retention_cleanup_
started to see when this event begins. For general observation of Query Store behavior,
Listing 9-3 contains a set of events that, as of this writing, I know will fire to produce
information about the standard behavior of Query Store:

Listing 9-3. Extended Event Session producing information on the standard
behavior of Query Store

CREATE EVENT SESSION QueryStoreBehavior
ON SERVER
ADD EVENT qds.query store background task persist finished,
ADD EVENT qds.query store background task persist started,
ADD EVENT qds.query store capture policy evaluate,
ADD EVENT qds.query store capture policy start capture,
ADD EVENT qds.query store database out of disk space,
ADD EVENT qds.query store db cleared,
ADD EVENT qds.query store db_diagnostics,
ADD EVENT qds.query store db settings changed,

194

CHAPTER9 TROUBLESHOOTING ISSUES WITH QUERY STORE

ADD EVENT qds.query store plan removal,
ADD EVENT qds.query store size retention cleanup finished,
ADD EVENT qds.query store size retention cleanup started
ADD TARGET packageO.event file
(SET filename = N'C:\ExEvents\QueryStorePlanForcing.xel', max_rollover
files = (3))
WITH (TRACK CAUSALITY = ON);

These events capture some of the behaviors of the Query Store. If you create this
session, start it, and watch the Live Data window in SSMS, we can actually see some of the
events fire if we manipulate queries and the Query Store itself. Let’s fire a few commands to
see this in action. To start with, we’ll clear the Query Store with the code in Listing 9-4:
Listing 9-4. Clear Query Store
ALTER DATABASE AdventureWorks SET QUERY STORE CLEAR;

This will fire the event, query_store_db_cleared, as we see in Figure 9-4:

:

Event:query_store_db_cleared (2019-06-24 16:52:33.4106312)
Details

Field Value

attach_activity_id.g... 70B1E569-B908-496F-9456-621E44E96106

| attach_activity_ids... 1
attach_activity_id_... B29A1CED-8ADS-4AFE-SE3A-5BFC28FF047B
attach_activity id_... 0

| clear_al False

| database_id 6

Figure 9-4. query_store_db_cleared event captured for a given database

The first four columns are for managing the Extended Events causality tracking,
showing the distinct grouping of events and the order in which they occur. We can
ignore that in this instance. What we see are the clear_all setting, which is defined in the
QUERY_STORE CLEAR command, which can be set to clear ALL.

To see the next event, we'll run the following stored procedure in Listing 9-5 from the
previous chapter:

195

CHAPTER9 TROUBLESHOOTING ISSUES WITH QUERY STORE

Listing 9-5. Call stored procedure
EXEC dbo.AddressByCity @City = N'London';

We'll get the following two events, related and in the order in which they are firing as
shown in Figure 9-5:

3 query_store_capture_policy_evaluate

query_store_capture_policy_start_capture

Zvent:query_store_capture_policy_evaluate (2019-06-24 17:03:44.2018389)
Details

| Field Value

attach_activity_id.guid DC8E338E-14B3-4B0A-AOCE-EE7B281A13E7
attach_activity_id seq 1

attach_activity_id_xfer.g... B2SA1CED-8ADS-4AFE-SE3A-5BFC28FF047B
attach_activity_id_xferseq 0

capture_policy_result CAPTURE

database_id 6

query_id 1

Figure 9-5. Query Store evaluates a query and then captures it

I'm showing the details of the query_store_capture_policy_evaluate event. You can
see that the capture_policy_result is showing the result of the evaluation, in this case,
CAPTURE. You'll also frequently see UNDECIDED for queries that have been evaluated
but are not going to be captured.

You may see an intermittent event showing how Query Store self-evaluates on a
regular basis as shown in Figure 9-6:

196

CHAPTER9 TROUBLESHOOTING ISSUES WITH QUERY STORE

» query_store_db_diagnostics

Event:query_store_db_diagnostics (2019-06-24 17.08:32.1083664)
Details

Field Value

attach_activity_idouid FODC67B6-0B96-49B6-8755-4E56AD 1CSEA4
attach_activity_id seq 3

capture_policy_mode %_qdsCaptureMode Al
context_settings_memor... 0

current_buffered_tems_... 16

cument_stmt_hash_map... 104

database_id 6
db_state_actual 2
db_state_desired 2

flush_interval_seconds 120
interval_length_minutes 60
max_buffered_ttems_size... 6187816
max_memory_available_kb 6187816
max_plans_per_query 200
max_size_mb 1000
max_stmt_hash_map_siz... 6187816
pending_persistance_me... 16
plan_count
plans_used_last_day
plans_used_last_hour
queries_used_last_day
queries_used_last_hour
query_count
query_store_read_only r...
query_text_count
runtime_stats_memory_u...
size_based_cleanup_mo...
size_based_cleanup_per...
size_based_cleanup_per...
stale_query_threshold_d...
undecided_queries_wind...
undecided_query_count

watt_stats_capture_mode x_qdsWaitStatsCapture ModeMax

-=h

P |k |k [| k| k| ol

_qdsSizeBasedCleanupModeAuto

SeE8s

Figure 9-6. Settings and diagnostics of Query Store

You can see the current settings for Query Store, such as the plans per query limit,
currently set at 200. You also get to see the plans and plan use being managed by Query
Store. These numbers will obviously change over time, showing the behavior of Query
Store over time.

197

CHAPTER9 TROUBLESHOOTING ISSUES WITH QUERY STORE

Let’s take a look at one more of the events in action. Run the following code in
Listing 9-6 to remove a plan from the plan cache:

Listing 9-6. Remove a plan from cache
DECLARE @PlanID INT;

SELECT TOP 1
@PlanID = gsp.plan_id
FROM sys.query store query AS gsq
JOIN sys.query store plan AS gsp
ON gsp.query id = gsq.query id
WHERE gsq.object_id = OBJECT_ID('dbo.AddressByCity');

EXEC sys.sp_query store remove plan @plan_id = @PlanID;

We can then see this event as shown in Figure 9-7:

» query_store_plan_removal

Event:query_store_plan_removal (2015-06-24 17:43:10.0377234)
Details

Field Value

attach_activity_id.guid 9DABED37-5CB4-476A-955F-BDD3ASBASCFE
attach_activity_id seq 1

attach_activity_id_xfer.g... B2SA1CED-8ADS-4AFE-SE3A-5BFC28FF0478
attach_activity_id_xferseq 0

database_id 3
is_removed True
plan_id 4

Figure 9-7. Plan removed from Query Store

You can see the database, the fact that plan was successfully removed, and the plan
being removed.

All these events give you a good idea of what’s happening within Query Store,
allowing you to see how Query Store behaves.

198

CHAPTER9 TROUBLESHOOTING ISSUES WITH QUERY STORE

Conclusion

While you really should just see normal behavior from Query Store the vast majority of
the time, it is possible for things to go wrong. Knowing how to monitor Query Store itself
ensures that you have a higher degree of confidence that Query Store is supporting and
helping you, not hurting you. Wait statistics are going to be the principal mechanism of
assuring good Query Store behavior. You can drill down on the details of that behavior
using Extended Events to see exactly how the system is working. These processes should
enable you to protect your systems and better understand the behavior of Query Store.

199

CHAPTER 10

Community Tools

A few community tools have been developed to help with configuration and harvesting
of the data in Query Store. dbatools is a community-driven PowerShell module that
includes three cmdlets for helping you configure Query Store. The First Responder Kit
contains a set of stored procedures including one that queries Query Store data. In this
chapter we will cover these tools to how they can help see the options of Query Store, set
the options of Query Store, and harvest the data in Query Store.

dbatools

dbatools is a PowerShell open source module developed with currently over 400
commands to help manage SQL Server. There currently are three commands for
Query Store: Get-DbaDbQueryStoreOption, Set-DbaDbQueryStoreOption, and
Copy-DbaQueryStoreConfig. By using dbatools, you can retrieve and set the settings
across multiple databases and servers at the same time. Full documentation and
information on dbatools can be found at http://dbatools.io and installed on

any machine with PowerShell 5 or higher by running the code in Listing 10-1 ata
PowerShell command prompt.

Listing 10-1. Install dbatools

Install-Module dbatools

Get-DbaDbQueryStoreOption

The first command from dbatools we will explore is Get-DbaDbQueryStoreOption. This
command retrieves the Query Store options that have been set on a database. There
are several ways to run the command to return the data. Listing 10-2 will return the
Query Store options for all databases on the server specified except master and tempdb

201
© Tracy Boggiano and Grant Fritchey 2019

T. Boggiano and G. Fritchey, Query Store for SQL Server 2019, https://doi.org/10.1007/978-1-4842-5004-4_10

http://dbatools.io

CHAPTER 10 COMMUNITY TOOLS

because you cannot use Query Store with those databases. The results of the code from
Listing 10-2 can be seen in Figure 10-1.

Listing 10-2. Return all the Query Store options for all the databases on the
specified server

Get-DbaDbQueryStoreOption -SqlInstance MyServer

ComputerName : WIN-IORMK3CO8VS
InstanceName : MSSQLSERVER
SglInstance : WIN-IORMK3CO8VS
Database : msdb
ActualState : Off
DataFlushIntervalInSeconds : 900
StatisticsCollectionIntervalInMinutes : 60
MaxStorageSizeInMB : 1000
CurrentStorageSizeInMB 2)
QueryCaptureMode : Auto
SizeBasedCleanupMode - Auto
StaleQueryThresholdInDays L30
ComputerName : WIN-IORMK3CO8VS
InstanceName : MSSQLSERVER
SglInstance : WIN-IORMK3CO8VS
Database : AdventureWorks
ActualState : Readwrite
DataFTushIntervalInSeconds : 900
StatisticsCollectionIntervalInMinutes : 60
MaxStorageSizeInMB : 1024
CurrentStorageSizeInMB : 0
QueryCaptureMode : 4
SizeBasedCleanupMode : Auto
StaleQueryThresholdInDays : 90

Figure 10-1. The output from Get-DbaDbQueryStoreOption for the whole SQL
Server instance

202

CHAPTER 10 COMMUNITY TOOLS

To see the settings for a particular database, you can run the code in Listing 10-3. The
results are show in Figure 10-2.

Listing 10-3. Return all the Query Store options for the AdventureWorks database

Get-DbaDbQueryStoreOption -SqlInstance MyServer
-Database AdventureWorks

ComputerName : WIN-IORMK3CO8VS
InstanceName : MSSQLSERVER
SglInstance : WIN-IORMK3CO8VS
Database : AdventureWorks
ActualState : Readwrite
DataFlushIntervalInSeconds : 900
StatisticsCollectionIntervalInMinutes : 60
MaxStorageSizeInMB : 1024
CurrentStorageSizeInMB : 0
QueryCaptureMode : 4
Si1zeBasedCleanupMode : Auto
StaleQueryThresholdInDays : 90

Figure 10-2. The output from Get-DbaDbQueryStoreOption for the
AdventureWorks database

The results if you have several databases on one server can be hard to read and
require a lot of scrolling, but there is an option to get this data back in a table format. See
the code in Listing 10-4 for how to accomplish this. Part of the results from the code in
Listing 10-4 can be seen in Figure 10-3.

Listing 10-4. Return Query Store settings in table format

Get-DbaDbQueryStoreOption -SqlInstance MyServer | Format-Table
-AutoSize -Wrap

ComputerName InstanceName SqlInstance Database ActualState DataFlushIntervalInSeconds

WIN-IORMK3CO8VS MSSQLSERVER WIN-IORMK3CO8VS AdventureWorks ReadwWrite 900

Figure 10-3. The output from Get-DbaDbQueryStoreOption in table format

203

CHAPTER 10 COMMUNITY TOOLS

Lastly, you can use the Get-DbaDbQueryStoreOption command to return all the
databases with a particular configuration setting. In the following example, we will
return all the databases that have the ActualState of Query Store as ReadWrite as seen in
Listing 10-5. The results of the code in Listing 10-5 can be seen in Figure 10-4.

Listing 10-5. Return database where Query Store ActualState is ReadWrite

Get-DbaDbQueryStoreOption -SqlInstance MyServer | Where-Object
{$_.ActualState -eq "ReadWrite"}

ComputerName : WIN-IORMK3CO8VS
InstanceName : M55QLSERVER
SqlInstance : WIN-IORMK3CO8VS
Database : AdventureWorks
ActualState : Readwrite
DataFlushIntervalInSeconds : 900
StatisticsCollectionIntervalInMinutes : 60
MaxStorageSizeInMB : 1024
CurrentStorageSizeInMB : 0
QueryCaptureMode : 4
SizeBasedCleanupMode : Auto
StaleQueryThresholdInDays : 90

Figure 10-4. The output from Get-DbaDbQueryStoreOption for ReadWrite Query
Store databases

More parameters can be found for this command online at the dbatools website
(https://dbatools.io).

Set-DbaDbQueryStoreOption

The second command from dbatools we will explore is Set-DbaDbQueryStoreOptions.
This command sets the Query Store options that exists in the databases you specity.
You can use the command to set just one setting or them all depending on your needs.
We will, in Listing 10-6, set the Query Store options for the best practices laid out in
Chapter 3 for all the databases on the SQL Server instance. The only exceptions to this
configuration, if you remember from Chapter 3, would be if you needed a larger Query
Store or if you wanted a different collection interval.

204

https://dbatools.io

CHAPTER 10 COMMUNITY TOOLS

Listing 10-6. Use Set-DbaDbQueryStoreOption to set options on all the
databases to best practices

Set-DbaDbQueryStoreOption -SqlInstance MyServer -State ReadWrite
-FlushInterval 900 -CollectionInterval 60 -MaxSize 2048
-CaptureMode AUTO -CleanupMode Auto -StaleQueryThreshold 30

After issuing the command from Listing 10-6, the command outputs the new settings
for each database as you have seen before from the Get-DbaDbQueryStoreOption
command. These can be seen in Figure 10-5.

ComputerName : WIN-IORMK3CO8VS
InstanceName : MSSQLSERVER
SqlInstance : WIN-IORMK3CO8VS
Database : msdb
ActualState : Readwrite
DataFlushIntervalInSeconds : 900
StatisticsCollectionIntervalInMinutes : 60
MaxStorageSizeInMB : 2048
CurrentStorageSizeInMB : 0
QueryCaptureMode : Auto
SizeBasedCleanupMode : Auto
StaleQueryThresholdInDays : 30

ComputerName : WIN-IORMK3CO8VS
InstanceName : MSSQLSERVER
SqlInstance : WIN-IORMK3CO8VS
Database : AdventureWorks
ActualState : Readwrite
DataFlushIntervalInSeconds : 900
StatisticsCollectionIntervalInMinutes 60
MaxStorageSizeInMB : 2048
CurrentStorageSizeInMB : 0
QueryCaptureMode : Auto
SizeBasedCleanupMode : Auto
StaleQueryThresholdInDays 30

Figure 10-5. Output from Set-DbaDbQueryStoreOption for best practices

It is possible, for example, to change the size of the particular database and the
statistics collection interval if you need to, by using the code in Listing 10-6. This code
allows you to keep more data at a more granular level. The output from the code in
Listing 10-7 can be seen in Figure 10-6.

205

CHAPTER 10 COMMUNITY TOOLS

Listing 10-7. Use Set-DbaDbQueryStoreOption to change the size and collection
interval for AdventureWorks

Set-DbaDbQueryStoreOption -SqlInstance MyServer
-Database AdventureWorks -MaxSize 4096
-CollectionInterval 15

ComputerName : WIN-IORMK3CO8VS
InstanceName : M55QLSERVER
SqlInstance : WIN-IORMK3CO8VS
Database : AdventureWorks
ActualState : ReadWrite
DataFlushIntervalInSeconds : 900
StatisticsCollectionIntervalInMinutes : 15
MaxStorageSizeInMB : 4096
CurrentStorageSizeInMB : 0
QueryCaptureMode : Auto
SizeBasedCleanupMode : Auto
StaleQueryThresholdInDays : 30

Figure 10-6. Output from Set-DbaDbQueryStoreOption changing max size and
collection interval

More parameters can be found for this command online at the dbatools website
(https://dbatools.io).

Copy-DbaQueryStoreConfig

The last command we will explore is Copy-DbaQueryStoreConfig. This command
can copy the Query Store options between databases on the same server or the
settings from one database on one server to databases on another server, with the
parameter -Al1Databases. Listing 10-8 will copy the options from MyServerA and the
AdventureWorks database to all the databases on MyServerB.

206

https://dbatools.io

CHAPTER 10 COMMUNITY TOOLS

Listing 10-8. Copy Query Store options from one database to all the databases
on another server

Copy-DbaDbQueryStoreOption -Source MyServerA
-SourceDatabase AdventureWorks -Destination MyServerB
-AllDatabases

You may also copy the options to one database server on the destination database
server using the code in Listing 10-9.

Listing 10-9. Copy Query Store options from one database to another database
on another server

Copy-DbaDbQueryStoreOption -Source MyServerA
-SourceDatabase AdventureWorks -Destination MyServerB
-DestinationDatabase AdventuresWorksDW

dbatools Summary

In summary, we covered the three cmdlets in dbatools that help you see

the configuration of Query Store and configure Query Store. The Get-
DbaDbQueryStoreOption cmdlet allows you to view the options set for Query Store. The
Set-DbaDbQueryStoreOptions cmdlet allows you to set the options for Query Store.
The Copy-DbaQueryStoreConfig cmdlet allows you to copy configurations between
databases and servers.

sp_BlitzQueryStore

sp_BlitzQueryStore is part of the First Responder Kit made by Brent Ozar, ULTD., located
athttp://FirstResponderKit.org. The whole kit can be downloaded from there, or you
can install it using the code in Listing 10-10 if you have dbatools installed.

Listing 10-10. PowerShell to install First Responder Kit

Install-DbaFirstResponderKit -Server MyServer -Database master

207

http://firstresponderkit.org

CHAPTER 10 COMMUNITY TOOLS

The procedure by default looks at the data in Query Store for the last 7 days (by
default), finds the times that consumed the most resources for each metric, and finds
the top three queries (by default) that consumed the most resources for each metric.
By analyzing by each time period and each metric, you can get a more balanced and
targeted analysis of data from Query Store. For example, it will find the time period in the
last 7 days where you did the most logical reads and return the top three queries doing
the reads during that time period. Then you can dive in and try to figure out how to
improve the performance for those queries during that time period

By default, you can execute the procedure with just the database you want to see
data for, and it will return the top query for each metric for the last 7 days. Listing 10-11
shows you the T-SQL to execute to see the results. Figures 10-7 and 10-8 show some of
the columns that are returned when you run the stored procedure.

Listing 10-11. Execute sp_BlitzQueryStore for the top query for each metric the
last 7 days

EXEC sp_BlitzQueryStore @DatabaseName =

PN B W N -

database_ name query cost plan_id query id query_id_all plan_ids query_sg_text

[AdvertureWodks | 4815 4% 213 4.7 (@ int)SELECT
AdvertwreWorks 5132 7 pAk .76 (@ int)SELECT
AdventureWodks 755 4 216 4 SELECT p Nam
AdventureWoks 755 53 7] 53 SELECT p Nam
AdventureWoks 754 50 217 50 SELECT Totali

Figure 10-7. sp_BlitzQueryStore result set

I

wamings

Parallel, Muttiple Plans, High tempdb use
Parallel, Mutiple Plans, High tempdb use
Parallel, Expensive Sort, Long Running With Low
Parallel, Epensive Sot

Parallel. Expensive Sort

pattem

avg cpu, avg duration, avg log bytes, avg logc
avg cpu, avg duration, avg log bytes, avg logic
avg rows, max duration

avg rows

avg rows

Figure 10-8. sp_BlitzQueryStore result set

208

'AdventurelWorks'

proc_or_function_name Query_plan_xmi

[dbo) lp_sel_get_sales_ ShowPlanXML x
[dbo) jp_sel_get_sales_.. <ShowPlanXMLx
[dbo) fp_sel_dscount s.. <ShowPlanXMLx
[dbo) jp_sel_prod thle_ .. <ShowPlanXMix

[dbo] jp_calc_revenue_... <ShowPlanXMix

parameter_sniffing_symptoms

Low physical reads sometimes

Too few executions to compare (¢ 2)

Low physical reads sometimes, Low physical rea

High physcal reads sometimes

CHAPTER 10 COMMUNITY TOOLS

You can click on the query_plan_xml column and bring up the query plan to view

and troubleshoot. Some analysis has been done for you by giving you the top_three

waits, missing indexes, and implicit conversion_info. Other columns that returned

are as follows:

top_three_waits - with total ms in parentheses

missing_indexes - listed from the missing index hints in the query
plans

implicit_conversion_info - listed from the query plan
cached_execution_parameters
count_executions
count_compiles

total_cpu_time

avg_cpu_time

total_duration

avg_duration
total_logical_io_reads
avg_logical io_reads
total_physical_io_reads
avg_physical_io_reads
total_logical _io_writes
avg_logical_io_writes
total_rowcount

avg_rowcount
total_query_max_used_memory
avg_query_max_used_memory
total_tempdb_space_used

avg_tempdb_space_used

209

CHAPTER 10 COMMUNITY TOOLS

o total_log bytes_used

e avg log bytes_used

e total_num_physical_io_reads

e avg num_physical_io_reads

o first_execution_time

o last_execution_time

o last_force_failure_reason_desc
e context_settings

You can see below the results returned that there is a detailed analysis of queries
that were executed during that time period including if it finds problems with
your execution plans, high tempdb usage, long-running queries but low CPU, and
then it wraps up by identifying the worst times by each metric that the system was
performing in. See Figure 10-9 for example of this output. This gives you the ability to
drill down on specific poorly performing times or queries that are troublesome within
the specified time period.

Note Use the @TOP parameter to return more than the top one query. But use
it cautiously as this procedure does a lot processing through the query plans.
Recommendations are to limit to 10.

210

CHAPTER 10 COMMUNITY TOOLS

Prioty FindngsGroup Finding URL Detais
1 100 Execution Plans Bpensive Sort Ftp/Awww b bl h ... There's a sort in your plan that costs >=50% of 1.
2 100 High tempdb use This query uses more than haff of adatafieon .. Mo URLyet You should take a look at tempdb wats to see f .
3 150 Long Running Low CPU You have a query that runs for much longerthan... hitps.//www brentozar com/bltzcache/longrunnin... This can be a sign of blocking. linked servers. o...
4 200 Execution Plans Multipls execution plans hitp//brertozar com/bitzcache multiple-plans,’ Guenes edst with multiple execution plans (asd...
5 200 Execution Flans Paralelsm hitp.//b /bt he/parallel plans-dete... Paralel plans detected. These wamant investiga...
6 25 Need more help? Paste your pian on the intemet! Fitp://pastetheplan com This makes & easy to share plans and post them
7 %5 Thanks forusng p_B.. From Your Communty Volunteers Hitp://FirstResponderiGt org We hope you found this tool usefil. Cument ver...
8 25 Worsts Worst Avg CPU | nsa Your worst avg cpu range was on 2019-03-04b
9 255 Worsts Worst Avg Duration N/A Your worst avg duration range was on 2015-03-
0 255 Worsts Worst Avg Log Bytes N/A Your worst avg log bytes range was on 201303
11 255 Worsts Worst Avg Logical Reads N/A Your worst avg logical read range was on 2015
12 255 Worsts Worst Avg Logical Wites N/A Your worst avg logical write range was on 2013-.
13 255 Worsts Worst Avg Memory N/A Your worst avg memory range was on 2019-03-.
14 255 Worsts Worst Avg Physical Reads N/A Your worst avg physical read range was on 201
%5 255 Worsts Worst Avg tempdb N/A Your worst avg tempdb range was on 201903
16 255 Worsts Worst Max CPU N/A Your worst max cpu range was on 2019-03-04 b
17 255 Worsts Worst Max Duration N/A Your worst max duration range was on 201303-...
18 255 Worsts Worst Max Log Bytes N/A Your worst max log bytes range was on 2019-03...
19 255 Worsts Worst Max Logical Reads N/A Your worst max logical read range was on 2013-...
20 55 Worsts Worst Max Logical Wites N/A Your worst max logical write range was on 2019
21 55 Worsts ‘Worst Maxx Memory N/A ‘Your worst max memory range was on 2013-03-..,
2 X5 Worsts Worst Max Physical Reads N/A Your worst max physical read range was on 201
23 55 Worsts Worst Max tempdb NAA Your worst max tempdb range was on 2019:03-...
24 255 Worsts Worst Row Courts MN/A Your worst avg row count range was on 2015-0.

Figure 10-9. sp_BlitzQueryStore time period analysis

There are other options for running this procedure; we will go through a few
important ones to help you to get the data you need. In Listing 10-12 you can specify the
date range you want to return in your output by specifying the @StateDate and @EndDate
parameters.

Listing 10-12. Specify date range for sp_BlitzQueryStore

EXEC sp_BlitzQueryStore @DatabaseName = 'AdventureWorks',
@StartDate = '20170526', @EndDate = '20170527'

If you are trying to troubleshoot a specific stored procedure, you can look for that
stored procedure specifically. In Listing 10-13 you will find the code on how to return the
top statement in the procedure MyStoredProcedure by specifying the @StoredProcName
parameter.

Listing 10-13. Return top statement for a specific stored procedure

EXEC sp BlitzQueryStore @DatabaseName = 'AdventureWorks',
@Top = 1, @StoredProcName = 'MyStoredProcedure’

You can also use it to look at failed queries by specifying the @Failed parameter.
Listing 10-14 is an example of how to return the top query that has failed.

211

CHAPTER 10 COMMUNITY TOOLS

Listing 10-14. Return top failed query

EXEC sp_BlitzQueryStore @DatabaseName = 'AdventureWorks',
@Top = 1, @Failed = 1

Back in Chapter 4, we looked at the many reports in Grid View you could see the
plan_ids and query_ids. If you are looking to see the sp BlitzQueryStore data for a
query you have identified from those reports, then you can use the code from Listings
10-15 and 10-16 to pull the data out of Query Store.

Listing 10-15. Return data by plan_id

EXEC sp BlitzQueryStore @DatabaseName
@PlanIdFilter = 3356

'AdventureWorks"',

Listing 10-16. Return data by query_id

EXEC sp_BlitzQueryStore @DatabaseName
@QueryIdFilter = 2958

'AdventureWorks"',

Other parameters you can specify include the following in Table 10-1.

Table 10-1. sp_BlitzQueryStore parameters

Parameter name Data type Default
@Help bit 0
@MinimumExecutionCount int NULL
@DurationFilter decimal(38, 4) NULL
@ExportToExcel bit 0
@HideSummary bit 0
@SkipXML bit 0
@Debug bit 0
@ExpertMode bit 0
@Version varchar(30) NULL
@VersionDate datetime NULL
@VersionCheckMode bit 0

212

CHAPTER 10 COMMUNITY TOOLS

Conclusion

Community tools prove to enhance our ability to use Query Store. dbatools lets us
configure and check the settings of Query Store across multiple databases and servers
with ease. sp_BlitzQueryStore lets you harvest the data in Query Store in a different
format than the reports shown in Chapter 4 and can be useful for finding out what your
top queries are for each metric quickly and what your busiest periods of times are for
each metric. Finally, it allows you to track data for a stored procedure, query_id, or
plan_id that you have identified you want to investigate further.

213

Index

A

ad-hoc queries, 57, 58, 69, 74, 144, 145
AdventureWorks database, 151, 170, 203, 206
Automatic plan correction

automatic tuning (see Automatic tuning)

behavior, 170

capabilities, 169

concepts, 169

regression (see Regression)
Automatic plan regression correction

(APRC), 47, 61, 62

disable T-SQL, 62

enable T-SQL, 61
Automatic tuning, 177-178, 181

Azure portal, 178-180

CurrentState value, 182

performance, 182

regression, 182

T-SQL command, 180

B

Baseline, 2
catalog views, 3
compare workload back, 138
create, 136
definition, 136
establish, 135
overall resource consumption, 2, 3
performance, 4

© Tracy Boggiano and Grant Fritchey 2019

C

Catalog view, Query store, 56
Compiled stored procedures, 47, 60, 70
Configuration options
cache per query, 54
capture queries, 53
changing, GUI, 55, 56
CUSTOM mode, 53
database renaming, 59
data clean up, 52
data flush interval, 51
drop /create, 58
interval data, 52
maximuimn storage size, 51
operational mode, 50
parameterization, 57, 58

STALE_QUERY_THRESHOLD_DAYS, 50

trace flag, 59
wait statistics, 54
Copy-DbaQueryStoreConfig, 206
database, 206
CPU, queries, 124

D

Database Platform as a Service
(PaaS), 47, 48

Database properties, 137

Data Definition Language (DDL), 34

Data flush interval, 51, 59

T. Boggiano and G. Fritchey, Query Store for SQL Server 2019, https://doi.org/10.1007/978-1-4842-5004-4

215

https://doi.org/10.1007/978-1-4842-5004-4

INDEX

Data Manipulation Language (DML), 24, 34
dbatools
Copy-DbaQueryStoreConfig, 206
Get-DbaDbQueryStoreOption, 201
Set-DbaDbQueryStoreOptions, 204-206
Desired state vs. actual state, 63
Drop/create vs. alter, 58
Dynamic Management Function (DMF), 18
Dynamic Management Views (DMVs), 1,
19, 20
disadvantages, 21
query_plan_hash field, 20
sp_whoisactive, 22
sql_handle field, 21

E

ERROR state, 65-67
Estimated plan vs. actual plan, 157, 158
Event tracing for windows (ETW), 16
Execution plans/query plans
compare, 158, 160, 161
forcing/unforcing
check mark, 164
forced programmatically, 166
reports, 162, 163
T-SQL, 165
regressed queries identification, 150
query store data, 151, 152
report, 152
warning signs
errors, 156
estimated vs. actual plan, 157, 158
fat pipes, 156
first operator, 155
most costly operator, 156
scans, 156
sort operator, 157

216

Extended events, 192
database, 195
evaluate and capture, 196
information capture, 194
selecting events, 193
tracking behaviors, 194, 195
troubleshooting
concepts, 14-17
disadvantages, 17
template directory, 14
XEvent profiler, SSMS, 13

F

First-in-first-out (FIFO) method, 16
FREEPROCCACHE procedure, 27

G, H
The Game Changer, Query store
automatic plan correction, 29
runtime statistics, 28
use cases, 28
wait statistics, 29
Get-DbaDbQueryStoreOption
AdventureWorks, 203
database, 202
output, 202
ReadWrite, 204
table format, 203

LJ,K L

Infrastructure as a Service (IaaS), 48

master system database, 48
Memory-optimized tables, 59
@module_or_batch, 24

N

Naming convention, 190, 191

O

OBJECT plan guides, 24
OPTION clause, 23, 24
Overall Resource Consumption
report, 74, 75, 134
buttons, 76
configure button options, 77
configure time interval drop-down, 78
hover statistics, 75
standard grid view, 76

P

Performance
plan cache, removing, 27
plan guides/USE PLAN hint, 23-25
stored procedure, 26, 27
UPDATE STATISTICS, 26
Plan forcing, 36, 68, 149, 161-162
Plan handle
query to retrieve, 108
set options retrieve, 109

Q

Queries with Forced Plan
report, 88, 89
right/left-hand pane, 89, 90
Queries with High Variation report, 90
high variation report, 91
parameterization, 90
summary information, 92, 93
Query optimizer, 31, 34, 36, 140, 143,
144, 161

INDEX

Query Store

actual state, 50

asynchronous process, 36

clear the data, 68

configuration (see Configuration
options)

data collection, 38

data sets, 31

DDL, 33, 34

default options, 48

desired state, 50

DML, 34

execution plan, 35

execution_type, 43

object explorer reports, 71

plan removed, 198

properties window, 55

remove a plan, 69, 70

runtime interval, 43

runtime statistics, 36, 37

settings and diagnostics, 197

space usage, 67

sys.database_query_store options, 101

sys.query_context_settings, 108

sys.query_store_plan, 113

sys.query_store_query, 116

sys.query_store_query_text, 118

sys.query_store_runtime_stats, 124

sys.query_store_runtime_stats_
interval, 131

sys.query_store_wait_stats, 119

T-SQL, 48

wait_category, 45

wait statistics, 36, 37

Query Wait Statistics report, 93

categories, 94
grid view, 94, 95
top five, 96, 97

217

INDEX

R

Read-only state, 59, 64
Regressed Queries report, 72, 73
force/unforce plan buttons, 74
plan options, 74
types, 73
Regressed query
compare plan, 140
compare report, 141
definition, 140
plan, 140
Regression
automatic tuning, 175
dbo.ProductByCost stored
procedure, 173
dynamic management view, 170
execution plan, 174
FREEPROCCACHE, 172
JSON data, 175-177
query performance, 171
stored procedure, 170
sys.dm_db_tuning_recommendations,
172
tuning recommendations
DMV, 172
Runtime information, 41, 42

S

Set-DbaDbQueryStoreOptions

AdventureWorks, 206

database, 205

output, 205

size and collection interval, 206
SET options

function to retrieve, 109

query to return, 110

218

sp_BlitzQueryStore, 207, 208
date range, 211
parameters, 212
result set, 208
time period analysis, 211
SQL plan guides, 24
SQL Server Management Studio
(SSMS), 1, 74
SQL Server upgrade
CE, 143
compatibility modes, 143
testing process, 144
Standard Grid view, 77, 78
sys.database_query_store options
catalog view, 101
SQL Server, 102
sys.query_context_settings catalog view,
108,110
sys.query_store_plan catalog view, 3, 113
sys.query_store_query catalog view, 116
sys.query_store_query_text catalog view,
118
sys.query_store_runtime_stats catalog
view, 60, 124
sys.query_store_runtime_stats_interval
catalog view, 131
sys.query_store_wait_stats catalog view,
119, 120
sys.sp_force_plan, 4

T

tempdb system
database, 48

TEMPLATE plan guides, 24

Top Resource Consuming Queries
Report, 79, 142

buttons, 80
columns, 82, 83
configuration screen, 139
grid view, 81-83
hover over query plan, 88
ID data, 84
left-hand pane, 85
metric, 80
option bar, 80
plan grid view, 88
plan operator comparison, 86
report details comparison, 87
right-hand pane, 85
SQL Server, 142
statistics, 80
Tracked Queries Report, 98
magnifying glass view, 99
statistics details, 100
Troubleshooting, 5
DME 18
DMVs, 19-21
disadvantages, 21
sp_whoisactive, 22
Extended Events (see Extended events,
troubleshooting)

INDEX

lightweight show plan trace
flag, 17, 18
server-side traces, 11, 12
SQL server profiler, 5
concepts, 6
event classes, 7-10
filter screen, 7
use cases, 6
wait statistics, 22, 23

u,Vv

USE PLAN parameter, 24

W XY,Z
Wait statistics, 43, 44
categories, 182-184
mapping table, 122
querying, 185
dbo.ProductbyCost, 185, 186
report, 186, 187

219

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Introduction
	Chapter 1: What Is Query Store?
	Query Store Usefulness
	Baselining Performance
	What Is a Baseline?
	How Query Store Provides a Baseline
	Catalog Views
	Stabilizing Performance

	Troubleshooting Without Query Store Techniques
	SQL Server Profiler
	SQL Server Profiler Concepts
	SQL Server Profiler Event Classes Related to Performance

	Server-Side Traces
	Disadvantages of SQL Server Profiler or Server-Side Traces over Query Store
	Extended Events
	Extended Events Concepts
	Disadvantages of Extended Events over Query Store
	Disadvantage of SQL Server Profiler and Server-Side Traces over Extended Events

	Lightweight Show Plan Trace Flag
	sys.dm_exec_query_plan_stats
	DMVs
	Disadvantages of DMVs
	sp_whoisactive

	Wait Statistics

	Stabilizing Performance Before Query Store Techniques
	Plan Guides/USE PLAN Hint
	Updating Statistics
	Recompiling Stored Procedures
	Removing Plans from the Plan Cache

	Query Store: The Game Changer
	What Information Is Gathered
	What Information Query Store Provides for Us: Use Cases
	Automatic Plan Correction
	Wait Statistics

	Conclusion

	Chapter 2: Overview and Architecture of the Query Store
	How Query Store Works
	Collecting Query and Plan Information
	Collecting Query Runtime Information and Wait Statistics
	General Notes on Data Collection

	The Data Collected by Query Store
	Query and Query Plan Information
	Runtime Information
	Wait Statistics
	Information About the Query Store

	Summary

	Chapter 3: Configuring Query Store
	Query Store Defaults
	Configuration Options
	OPERATION_MODE
	CLEANUP_POLICY (STALE_QUERY_THRESHOLD_DAYS)
	DATA_FLUSH_INTERVAL_SECONDS
	MAX_STORAGE_SIZE_MB
	INTERVAL_LENGTH_MINUTES
	SIZE_BASED_CLEANUP_MODE
	QUERY_STORE_CAPTURE_MODE
	MAX_PLANS_PER_QUERY
	WAIT_STATISTICS_CAPTURE_MODE
	Changing Configuration Using the GUI

	Query Store Configuration Catalog View
	Query Store Configuration Best Practices
	Parameterization and Query Store
	Impact of “Drop and Create” vs. “Alter”
	Impact of Database Renaming
	Reducing Recovery Times with Trace Flags

	Query Store and Memory-Optimized Tables
	Configuring Query Store for Natively Compiled Stored Procedures
	Enabling and Disabling Automatic Plan Regression Correction (APRC)
	Maintaining Query Store
	Monitoring Desired vs. Actual State
	Query Store Read-Only States
	How to Fix Query Store in Error State

	Monitoring Space Usage
	How to Clear Query Store
	Failed Plan Forcing
	Removing Plans and Queries
	Reset Statistics for a Plan

	Conclusion

	Chapter 4: Standard Query Store Reports
	Regressed Queries Report
	Overall Resource Consumption Report
	Top Resource Consuming Queries Report
	Queries with Forced Plan Report
	Queries with High Variation Report
	Query Wait Statistics Report
	Tracked Queries Report
	Conclusion

	Chapter 5: Query Store Catalog Views
	sys.database_query_store_options
	sys.query_context_settings
	sys.query_store_plan
	sys.query_store_query
	sys.query_store_query_text
	sys.query_store_wait_stats
	sys.query_store_runtime_stats
	sys.query_store_runtime_stats_interval
	Conclusion

	Chapter 6: Query Store Use Cases
	Determining What Is a Normal Workload
	Establishing a Baseline for Queries
	What Is a Baseline?
	How to Create a Baseline with Query Store
	How to Compare a Workload Back to the Baseline

	See What Happened Last Night
	Troubleshooting Regressed Queries
	What Is a Regressed Query?
	Viewing Plan Changes

	Identify Top Consuming Resource Queries
	Stabilizing SQL Server Upgrades
	Changing Compatibility Mode Effects
	Cardinality Estimation Changes Explained
	Process for Testing and Completing Upgrades Using Query Store

	Finding and Improving Ad-hoc Workloads
	Conclusion

	Chapter 7: Forcing Plans
	Identifying Badly Behaved Execution Plans
	Identifying Regressed Queries
	Identifying Regressed Queries from Query Store Data
	Regressed Query Report

	Warning Signs in Execution Plans
	First Operator
	Most Costly Operator
	Warnings and Errors
	Fat Pipes
	Scans
	Extra Operators
	Estimated vs. Actual

	Comparing Execution Plans
	Forcing and Unforcing Execution Plans
	Forcing Plans Through the Reports
	Forcing Plans Using T-SQL
	Determining Which Plans Have Been Forced

	Conclusion

	Chapter 8: Auto Plan Correction and Wait Statistics
	Automatic Plan Correction
	Identifying Regression
	Enabling Automatic Tuning
	Automatic Tuning in Azure SQL Database
	Enable Automatic Tuning with T-SQL

	Automatic Tuning at Work

	Query Store Wait Statistics
	Wait Statistics Categories

	Looking at Query Store Wait Statistics
	Querying Wait Statistics
	Wait Statistics Report

	Conclusion

	Chapter 9: Troubleshooting Issues with Query Store
	Query Store Waits
	Extended Events and Query Store
	Tracking Query Store Behaviors

	Conclusion

	Chapter 10: Community Tools
	dbatools
	Get-DbaDbQueryStoreOption
	Set-DbaDbQueryStoreOption
	Copy-DbaQueryStoreConfig

	dbatools Summary
	sp_BlitzQueryStore
	Conclusion

	Index

