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CHAPTER 1

Introduction

Ris a functional programming language with a focus on statistical analysis.
It has built-in support for model specifications that can be manipulated
as first-class objects, and an extensive collection of functions for dealing
with probability distributions and model fitting, both built-in and through
extension packages.

The language has a long history. It was created in 1992 and is based
on an even older language, S, from 1976. Many quirks and inconsistencies
have entered the language over the years. There are, for example, at least
three partly incompatible ways of implementing object orientation, and
one of these is based on a naming convention that clashes with some built-
in functions. It can be challenging to navigate through the many quirks of
R, but this is alleviated by a suite of extensions, collectively known as the
“Tidyverse.”

While there are many data science applications that involve more
complex data structures, such as graphs and trees, most bread-and-butter
analyses involve rectangular data. That is, the analysis is of data that can
be structured as a table of rows and columns where, usually, the rows
correspond to observations and the columns correspond to explanatory
variables and observations. The usual data sets are also of a size that can
be loaded into memory and analyzed on a single desktop or laptop. I will
assume that both are the case here. If this is not the case, then you need
different, big data techniques that go beyond the scope of this book.

The Tidyverse is a collection of extensions to R; packages that are
primarily aimed at analyzing tabular data that fits into your computer’s

© Thomas Mailund 2019
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CHAPTER 1  INTRODUCTION

memory. Some of the packages go beyond this, but since data science is
predominately manipulation of tabular data, this is the focus of this book.

The Tidyverse packages provide consistent naming conventions,
consistent programming interfaces, and more importantly a consistent
notation that captures how data analysis consists of different steps of data
manipulation and model fitting.

The packages do not merely provide collections of functions for
manipulating data but rather small domain-specific languages for different
aspects of your analysis. Almost all of these small languages are based on
the same overall “pipeline” syntax, so once you know one of them, you can
easily use the others. A noticeable exception is the plotting library ggplot2.
It is slightly older than the other extensions and because of this has a
different syntax. The main difference is the operator used for combining
different operations. The data pipeline notation uses the %>% operator,
while ggplot2 combines plotting instructions using +. If you are like me,
then you will often try to combine ggplot2 instructions using %>%—only
out of habit—but once you get an error from R, you will recognize your
mistake and can quickly fix it.

This book is a syntax reference for modern data science in R, which
means that it is a guide for using Tidyverse packages and it is a guide for
programmers who want to use R’s Tidyverse packages instead of basic R
programming.

This guide does not explain each Tidyverse package exhaustively.

The development of Tidyverse packages progresses rapidly, and the book
would not contain a complete guide shortly after it is printed anyway.

The structure of the extensions and the domain-specific languages they
provide are stable, however, and from examples with a subset of the
functionality in them, you should not have any difficulties with reading the
package documentation for each of them and find the features you need
that are not covered in the book.



CHAPTER 1 INTRODUCTION
To get started with the Tidyverse, install and load it:

install.packages("tidyverse")
library(tidyverse)

The Tidyverse consists of many packages that you can install and
load independently, but loading all through the tidyverse package is the
easiest, so unless you have good reasons to, just load tidyverse when you
start an analysis. In this book I describe three packages that are not loaded
from tidyverse but are generally considered part of the Tidyverse.!

'The Tidyverse I refer to here is the ecosystem of Tidyverse packages but not the
package tidyverse that only loads the key packages.



CHAPTER 2

Importing Data:
readr

Before we can analyze data, we need to load it into R. The main Tidyverse
package for this is called readr, and it is loaded when you load the
tidyverse package.

library(tidyverse)
But you can also load it explicitly using
library(readr)

Tabular data is usually stored in text files or compressed text files
with rows and columns matching the table’s structure. Each line in the
file is a row in the table and columns are separated by a known delimiter
character. The readr package is made for such data representation and
contains functions for reading and writing variations of files formatted in
this way. It also provides functionality for determining the types of data in
each column, either by inferring types or through user specifications.

© Thomas Mailund 2019
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CHAPTER 2  IMPORTING DATA: READR

Functions for Reading Data

The readr package provides the following functions for reading
tabular data:

Function File format

read csv() Comma-separated values

read csv2() Semicolon-separated values

read tsv() Tab-separated values

read delim() General column delimiters’

read table() Space-separated values (fixed length columns)
read table2() Space-separated values (variable length columns)

The interface to these functions differs little. In the following file,
I describe read_csv, but I highlight when the other functions differ. The
read_csv function reads data from a file with comma-separated values.
Such a file could look like this:

A,B,C,D
1,a,a,1.2
2,b,b,2.1
3,c,c,13.0

Unlike the base R read. csv function, read _csv will also handle files
with spaces between the columns, so it will interpret the following data the
same as the preceding file.

'The read_delim() can handle any file format that has a special character that
delimits columns. The read csv(), read_csv2(), and read_tsv() functions are
specializations of it. The first of these uses commas for the delimiter, the second
semicolons, and the third tabs.
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A, B, C, D
1, a, a, 1.2
2, b, b, 2.1

3, ¢, ¢, 13.0

If you use R’s read. csv function instead, the spaces before columns
B and C will be included as part of the data, and the text columns will be
interpreted as factors.

The first line in the file will be interpreted as a header, naming the
columns, and the remaining three lines as data rows.

Assuming the file is named data/data. csv, you read its data like this:

my data <- read_csv(file = "data/data.csv")

## Parsed with column specification:
## cols(
# A

col double(),

## B = col character(),
## C = col character(),
## D = col double()

# )

When reading the file, read _csv will infer that columns A and D are
numbers and columns B and C are strings.

If the file contains tab-separated values

A B C D

1 a a 1.2
2 b b 2.1
3 ¢ ¢ 13.0

you should use read_tsv() instead.

my data <- read_tsv(file = "data/data.tsv")
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The file you read with read_csv can be compressed. If the suffix of the
filename is .gz, .bz2, .xz, or . zip, it will be uncompressed before read
csv loads the data.

my data <- read_csv(file = "data/data.csv.gz")

If the filename is a URL (i.e., has prefix http://, https://, ftp://,
or ftps://), the file will automatically be downloaded.
You can also provide a string as the file object:

read_csv(
"A, B, C, D
1, a, a, 1.2
2, b, b, 2.1
3, ¢, ¢, 13.0

")

This is rarely useful in a data analysis project, but you can use it to
create examples or for debugging.

File Headers

The first line in a comma-separated file is not always the column names;
that information might be available from elsewhere outside the file. If you
do not want to interpret the first line as column names, you can use the
option col names = FALSE.

read_csv(
file = "data/data.csv",
col names =FALSE
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Since the data/data.csv file has a header, that is interpreted as part of
the data, and because the header consists of strings, read_csv infers that
all the column types are strings. If we did not have the header, for example,
if we had the file data/data-no-header.csv:

1, a, a, 1.2
2, b, b, 2.1
3, ¢, ¢, 13.0

then we would get the same data frame as before, except that the names
would be autogenerated:

read_csv(
file = "data/data-no-header.csv",
col names =FALSE

)

## Parsed with column specification:
## cols(

## X1 = col double(),

## X2 = col character(),

## X3 = col character(),

## X4 = col double()

# )

# # A tibble: 3 x 4

Hit X1 X2 X3 X4
#  <dbl> <chr> <chr> <dbl>
## 1 1a a 1.2
## 2 2b b 2.1
## 3 3cC C 13

The autogenerated column names all start with X and are followed by
the number the columns have from left to right in the file.
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If you have data in a file without a header, but you do not want the
autogenerated names, you can provide column names to the col names
option:

read_csv(
file = "data/data-no-header.csv",
Col_names - c("X"’ "Y“’ IIZII’ Ilwll)

If there is a header line, but you want to rename the columns, you
cannot just provide the names to read_csv using col_names. The first row
will still be interpreted as data. This gives you data you do not want in the
first row, and it also affects the inferred types of the columns.

You can, however, skip lines before read _csv parse rows as data. Since
we have a header line in data/data.csv, we can skip one line and set the
column names.

read_csv(
file = "data/data.csv",
col names = ¢("X", "Y", "Z", "W"),
skip = 1

You can also put a limit on how many data rows you want to load using
the n_max option.

read_csv(
file = "data/data.csv",
col names = ¢("X", "Y", "Z", "W"),
skip = 1,
n_max = 2

10
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If your input file has comment lines, identifiable by a character where
the rest of the line should be considered a comment, you can skip them if
you provide the comment option:

read_csv(
"A, B, C, D
# this is a comment
1, a, a, 1.2 # another comment
2, b, b, 2.1
3, ¢, ¢, 13.0",
comment = "#")

For more options affecting how input files are interpreted, read the
function documentation: ?read_csv.

Column Types

When read_csv parses a file, it infers the type of each column. This
inference can be slow, or worse the inference can be incorrect. If you
know a priori what the types should be, you can specify this using the
col_types option. If you do this, then read_csv will not make a guess at
the types. It will, however, replace values that it cannot parse as of the
right type into NA.2

*There is a gotcha here. The types are guessed at after a fixed number of lines
are read (by default 1000). If you have 1000 lines of numbers in a column and
line 1001 has a string, then the type will be inferred as numeric and you lose the
string. If you know the types, it is always better to tell the functions what they are.

11
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String-based Column Type Specification

In the simplest string specification format, you must provide a string with
the same length as you have columns and where each character in the
string specifies the type of one column. The characters specifying different
types are this:

Character Type

Character
Integer
Number
Double
Logical
Factor
Date

Date time

-1 4 O m™mm - O Z H N

Time

-~J

Guess (default)

/- Skip the column

By default, read_csv guesses, so we could make this explicit using the
type specification "???2":

read_csv(
file = "data/data.csv",
col types = "?222?"

The results of the guesses are double for columns A and D and
character for columns B and C. If we wanted to make this explicit, we could
use "dccd".

12



CHAPTER 2  IMPORTING DATA: READR

read_csv(
file = "data/data.csv",
col types = "dccd"

)
If you want an integer type for column A, you can use "iccd":
read_csv(
file = "data/data.csv",
col types = "iccd"
)

If you try to interpret column D as integers as well, you will get a list of
warning messages, and the values in column D will all be NA; the numbers
in column D cannot be interpreted as integers and read_csv will not round
them to integers.

If you specify that a column should have type d, the numbers in the
column must be integers or decimal numbers. If you use the type n (the
default that read csv will guess), you will also get doubles, but the latter
type can handle strings that can be interpreted as numbers such as dollar
amounts, percentages, and group separators in numbers. The column type
n will ignore leading and trailing text and handle number separators:

With this function call

read_csv(
‘A, B, C, D, E
$1, a, a, 1.2%, "1,100,200"
$2, b, b, 2.1%, "140,000"
$3, ¢, ¢, 13.0%, "2,005,000"",
col types = "nccnn”

columns A, D, and E will be read as numbers. If you use the type
specification d, they would not, and all the values would be NA.

13
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The decimal indicator and group delimiter vary around the world. By
default, read_csv uses the US convention with a dot for decimal notation
and comma for grouping in numbers. In many European countries, it is the
opposite. You can use the locale option to change these:

read_csv(
'A, B, C, D, E
$1, a, a, "1,2%", "1.100.200"
$2, b, b, "2,1%", "140.000"
$3", ¢, c, 13,0%", "2.005.000"",

locale=locale(decimal mark = ",",grouping mark ="."),
col types = "nccnn”

In the preceding example, I explicitly specified how read _csv should
interpret numbers, but you can also use ISO 639-1 language codes.? If
you do, you also get the local time conventions and local day and month
names. The default is English, but if your data is from Denmark, for
example, you want to use Danish conventions, you would use the local
locale("da"). For French data, you would use fr, locale("fr"). If you
type this into an R console, you will see the month and week names,
including their abbreviated forms, in these languages.

See the ?1ocale documentation for more options.

In files that use commas as decimal points and “.” for number
groupings, the column delimiter is usually “;” rather than “,”. This way,
itis not necessary to put decimal numbers in quotes. The read _csv2

function works as read_csv but uses “;” as column delimiter and “.” for

number groupings.

Shttps://en.wikipedia.org/wiki/List _of ISO 639-1 codes

14
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The logical type is used for boolean values. If a column only contains
TRUE and FALSE (case doesn’t matter),

read_csv(
‘A, B, C, D
TRUE, a, a, 1.2
false, b, b, 2.1
true, ¢, ¢, 13")

then read csv will guess that the type is logical.

Itis not unusual to code boolean values as 0 and 1; however, and since
these will be interpreted as numbers by default, you can make their type
explicit using 1:

read_csv(
‘A, B, C, D
1, a, a, 1.2
0, b, b, 2.1
1, ¢, ¢, 13",
col types = "lccn")

If you use type 1, you can mix TRUE/FALSE (ignoring case) with 0/1. Any
other number or string will be translated into NA.

The D, t, and T types are for dates, time points, and datetime, in that
order. Dates and time are what you might expect. A date specifies a range
of days, for example, a single day, a week, a month, or a year. A time points
a specific time of the day, for example, an hour, a minute, or a second. A
datetime combines a day and a time, that is, it specifies a specific time
during a specific day.

read_csv(
‘D, T, t
"2018-08-23", "2018-08-23T14:30", 14:30',
col types = "DTt"

15
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## # A tibble: 1 x 3

## D T t

#  <date> <dttm> <drtn>
## 1 2018-08-23 2018-08-23 14:30:00 14:30

If you use one of these type specifications, the time and dates should
be in ISO 8601 format.* Local conventions for writing time and date,
however, differ substantially and are rarely ISO 8601. When your time data
are not ISO 8601, you need to tell read_csv how to read them.

The default time parser handles times in the hh:mm, hh:mm: ss formats
and handles am and pm suffixes; it suffices for most time formats (but notice
that it wants time in hh:mm or hh:mm: ss formats; it is flexible in the number
of characters you use for hours, and you can leave out seconds, but you
cannot leave out minutes). Date and datetime vary much more than time
formats, and there, you usually need to specify the encoding format.

You can use the locale option to change how read csv parses dates
(D) and time (t).

read_csv(
D, t
"23 Oct 2018", pm',
col types = "Dt",
locale = locale(
date format = "%d %b %Y",
time format = "%I%p"

The date_format "%d %b %Y" says that dates are written as day,
three-letter month abbreviation, and year with four digits, and each of the
three separated by a space. The time format "%I%p" says that we want

*https://en.wikipedia.org/wiki/ISO_8601
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time to be written as a number from 1 to 12, with no minute information,
the hour immediately followed by am/pm without any space between.

For data times (T), we cannot specify the format using locale. We
need a more verbose type specification that we return to the following
specification. We also return to formatting specifications for parsing dates
and time later.

Columns that are not immediately parsed as numbers, booleans, dates,
or times will be parsed as strings. If you want these to be factors instead,
you use the f type specification.

read_csv(
‘A, B, C, D
1, a, a, 1.2
0, b, b, 2.1
1, ¢, ¢, 134,
col types = "lcfn")

# # A tibble: 3 x 4
# A B C D
##  <lgl> <chr> <fct> <dbl>

## 1 TRUE a a 1.2
## 2 FALSE b b 2.1
## 3 TRUE ¢ C 13

If you only want to use some of the columns, you can skip the rest
using the “type” - or _:

read_csv(
file = "data/data.csv",

col type = " cc-

)
## # A tibble: 3 x 2
#tt B C

17
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##  <chr> <chr>

## 1 a a
## 2 b b
#f# 3 c C

If you specify the column types using a string, you should specify the
types of all columns. If you only want to define the types of a subset of
columns, you can use the function cols () to specify types. You call this
function with named parameters, where the names are column names and

the arguments are types.

read_csv(
file = "data/data.csv",
col types = cols(A = "c")

)
read_csv(

file = "data/data.csv",

col types = cols(A = "c", D = "c")
)

Function-based Column Type Specification

If you are like me, you might find it hard to remember the single-character
codes for different types. If so, you can use longer type names that you
specify using function calls. These functions have names that start with
col , soyou can use autocomplete to get a list of them. The types you

can specify using functions are the same as those you can specify using
characters, of course, and the functions are:
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Function

Type

col character()

col integer()

col number()
col double()

col logical()

col factor()
col date()

col datetime()

col time()
col guess()
col skip()

Character
Integer
Number
Double
Logical

Factor

Date

Date time
Time

Guess (default)

Skip the column

You need to wrap the function-based type specifications in a call to cols.

read_csv(
file = "data/data.csv",
col types =
)
#t # A tibble: 3 x 4
Hi#t A B C D
#  <int> <chr> <chr> <dbl>
## 1 1a a 1.2
## 2 2 b b 2.1
## 3 3¢ C 13
read_csv(

file = "data/data.csv",

col types

cols(A = col_integer())

cols(D = col_character())
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#i# # A tibble: 3 x 4

## AB C D
##  <dbl> <chr> <chr> <chr>
##fH 1 1 a a 1.2

#H# 2 2 b b 2.1
#t 3 3¢ C 13.0

Most of the col _functions do not take any arguments, but they
are affected by the locale parameter the same way that the string
specifications are.

For factors, date, time, and datetime types, however, you have more
control over the format using the col _functions. You can use arguments to
these functions for specifying how read_csv should parse dates and how it
should construct factors.

For factors, you can explicitly set the levels. If you do not, then the
column parser will set the levels in the order it sees the different strings in
the column. For example, in data/data.csv the strings in columns C and
D are in the order a, b, and c:

A, B, C, D
1, a, a, 1.2
2, b, b, 2.1
3, ¢, ¢, 13.0

By defaults, the two columns will be interpreted as characters, but if we
specify that C should be a factor, we get one where the levels are a, b, and c,
in that order.

my data <- read_csv(
file = "data/data.csv",
col types = cols(C = col_factor())
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my_data$C

# [1] ab c
## Levels: a b c

If we want the levels in a different order, we can give col _factor() a
levels argument.

my data <- read_csv(
file = "data/data.csv",
col types = cols(
C = col_factoxr(levels = ¢("c", "b", "a"))

)
my_data$C

## [1] ab c
## Levels: c b a

We can also make factors ordered using the ordered argument.

my data <- read_csv(
file = "data/data.csv",
col types = cols(
B = col_factor(ordered = TRUE),
C = col_factoxr(levels = ¢("c", "b", "a"))

)
)
my data$B
## [1] ab c
## Levels: a < b < c
my_data$C
# [1] ab c

## Levels: c b a
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Parsing Time and Dates

The most complex types to read (or write) are dates and time (and
datetime), just because these are written in many different ways. You can
specify the format that dates and datetime are in using a string with codes
that indicate how time information is represented.

The codes are these:

Code Time format Example string Interpretation

%Y 4-digit year 1975 The year 1975

%y 2-digit year® 75 Also the year 75

%m 2-digit month 02 February

%b Abbreviated month name® Feb February

%B Full month name February February

%d 2-digit day 15 The 15th of a month

%H Hour number on a 24-hour 18 Six o’clock in the
clock evening

%l Hour number ona 12-hour 6 pm 18:00 hours
clock’

%p Av/pm indicator 6 pm 18:00 hours

*Two-digit years are assumed to be either in the twentieth or the twenty-first
century. The cutoff line is 68; years at or below 68 are in the twentieth century and
69 and above are in the twenty-first century. Therefore, 75 is assumed to be in the
twentieth century, so 75is 1975.

°The name of months and weekdays varies from language to language, and so
does the abbreviations. Therefore, if you use a format that refers to these, you
either need to use numbers or the format will depend on the locale option.

If you use %I, you must also use %p for pm/am.
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Code Time format Example string Interpretation

%M Two-digit minutes 18:30 Half past six

%S Integer seconds 18:30:10 Ten seconds past 18:00
%Z Time zone as name?® America/Chicago Central Time

%z Time zone as o_set from UTC “+0100” Central European Time

There are shortcuts for frequently used formats:

Shortcut Format

%D %m/%d/%y
%X %y /7%m/%d
%F %Y -7%m-%d
%R %H:%M

%7 %H:%M: %S

As we saw earlier, you can set the date and time format using the
locale() function. If you do not, the default codes will be %AD for dates
and %AT for time (there is no locale() argument for datetime). These
codes specify YMD and H:M/H:M: S formats, respectively, but are more
relaxed in matching the patterns. The date parse, for example, will allow
different separators. For dates, both “1975-02-15” and “1975/02/15” will be
read as February the 15th 1975, and for time, both “18:00” and “6:00 pm”
will be six o’clock in the evening.

%Time zones based on locations handle daylight saving time. UTC is a fixed time
zone, and it does not have daylight saving time.
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In the following text, I give a few examples. I will use the functions
parse_date, parse_time, and parse_datetime rather than read csv with
column type specifications. These functions are used by read _csv when
you specify a date, time, or datetime column type, but using read csv for
the examples would be unnecessarily verbose. Each takes a vector string
representation of dates and time. For more examples, you can read the
function documentation ?col datetime.

Parsing time is simplest; there is not much variation in how time points
are written. The main differences are in whether you use 24-hour clocks
or 12-hour clocks. The %R and %T codes expect 24-hour clocks and differ in
whether seconds are included or not.

paxrse_time(c("18:00"), format = "%R")
parse_time(c("18:00:30"), format = "%T")

There is no shortcut for 12-hour codes, but you must combine %I with
%p to read PM/AM formats.

parse_time(c("6 pm"), format = "%I %p")

Here, I have specified that the input only includes hours and not
minutes. If we want hours (and not minutes) in 24-hour clocks, we need to
use %H rather than %R.

For dates, ISO 8601 says that the format should be YYYY-MM-DD. The
default date parser will accept this format, but the explicit format string is

paxrse_date(c("1975/02/05"), format = "%Y/%m/%d")

If you do not want to include the day, and you want to use two-digit
years, you need

parse_date(c("75-02"), format = "%y-%m")

This is February 1975; remember that the %y code assumes that
numbers above 68 are in the twentieth century.
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Dates written on the form 05/02/75 can mean both February 15th 1975
and May 2nd 1975, depending on where you are in the world. Europe uses
the sensible DD/MM/YY format, where the order goes from the smallest
time unit, days, to the medium time units, months, and then to years.

In the United States, they use the MM/DD/YY format. To get the 15th of
February, you need one of these formats:

parse_date(c("75/02/05"), format = "%y/%m/%d")
parse_date(c("75/05/02"), format = "%y/%d/%m")

Date specifications that only use numbers are not affected by the
local language, but if you include the name of months, they are. The
name of months and their abbreviation varies from language to language,
obviously. So do the name of weekdays, but at the time of writing, parsing
weeks and weekdays is not supported by readr. You can get the name
information from locale() if you use a language code. In the following
examples, I parse dates in English and Danish. The month names are
almost the same, but abbreviations in Danish require a dot following them,
and the day is followed by a dot as well.

parse_date(c("Feb 15 1975"),

format = "%b %d %Y", locale = locale("en"))
parse_date(c("15. feb. 1975"),

format = "%d. %b %Y", locale = locale("da"))
parse_date(c("February 15 1975"),

format = "%B %d %Y", locale = locale("en"))
parse_date(c("15. feb. 1975"),

format = "%d. %b %Y", locale = locale("da"))

parse_date(c("Oct 15 1975"),

format = "%b %d %Y", locale = locale("en"))
parse_date(c("15. okt. 1975"),

format = "%d. %b %Y", locale = locale("da"))
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parse_date(c("October 15 1975"),

format = "%B %d %Y", locale = locale("en"))
parse_date(c("15. oktober 1975"),

format = "%d. %B %Y", locale = locale("da"))

Datetimes can be parsed using combinations of date and time strings.
With these, you also want to consider time zones. You can ignore those for
dates and time, but unless you are sure that you will never have to consider
time zones, you should not rely on the default time zone (which is UTC).?

You can either specify that time zones are relative to UTC with %z or
location-based, with %Z if the time zone is given in the input, or you can
use locale() if it is the same for all the input.

If you specify a time zone based on a location, R will automatically
adjust for daylight saving time, but if you use dates relative to UTC, you will
not—UTC does not have daylight savings. Central European Time (CET) is
“+0100” and with daylight saving time “+0200” US Pacific Time is “-0800’,
but with daylight saving time, it is “~-0900”. When you switch back and forth
between daylight savings is determined by your location.

These two datetimes are the same

parse_datetime(c("Feb 15 1975 18:00 US/Pacific"),
format = "%b %d %Y %R %Z")

parse_datetime(c("Feb 15 1975 18:00 -0800"),
format = "%b %d %Y %R %z")

as are these two

parse_datetime(c("May 15 1975 18:00 US/Pacific"),
format = "%b %d %Y %R %Z")

parse_datetime(c("May 15 1975 18:00 -0900"),
format = "%b %d %Y %R %z")

https://en.wikipedia.org/wiki/Coordinated Universal Time
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If you use locale() to specify a time zone, you cannot use zones
relative to UTC. The point of using locale() is local formats, not time
zones. The parser will still handle daylight savings for you, however. These
two are the same datetimes

parse_datetime(c("Aug 15 1975 18:00"),
format = "%b %d %Y %R",
locale = locale(tz = "US/Pacific"))
parse_datetime(c("Aug 15 1975 18:00 US/Pacific"),
format = "%b %d %Y %R %Z")

If you print the objects you parse, there is a difference between using
locale() and using %Z, but the time will be the same. Using %Z you will
automatically translate the time into UTC; using locale() you will not.

x <- parse_datetime(c("Aug 15 1975 18:00"),
format = "%b %d %Y %R",

locale = locale(tz = "US/Pacific"))

X
## [1] "1975-08-15 18:00:00 PDT"

y <- parse_datetime(c("Aug 15 1975 18:00 US/Pacific"),
format = "%b %d %Y %R %Z")
y

## [1] "1975-08-16 01:00:00 UTC"

The output looks like a string, but the object classes are not character,
which, among other things, is why the comparison works.
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Space-separated Columns

The preceding functions all read delimiter-separated columns. They
expect a single character to separate one column from the next. If the
argument trim ws is true, they ignore whitespace. This argument is true by
default for read csv, read csv2, and read_tsv, but false for read _delim.

The functions read_table and read_table2 take a different approach
and separate columns by one or more spaces. The simplest of the two is
read table2.It expects any sequence of whitespace to separate columns.
Consider

read_table2(

"ABCD
1234
15 16 17 18"
)
## # A tibble: 2 x 4
Hit A B C D

##  <dbl> <dbl> <dbl> <dbl>
#H# 1 1 2 3 4
#tH# 2 15 16 17 18

The header names are separated by two spaces. The first data line
has spaces before the first line since the string is indented the way it is.
Between columns, there are also two spaces. For the second data line, we
have several spaces before the first value, once again, but this time only
single space between the columns. If we used a delimiter character to
specify that we wanted a space to separate columns, we had to have exactly
the same number of spaces between each column.

The read_table function instead reads the data as fixed-width
columns. It uses the whitespace in the file to figure out the width of the
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columns. After this, each line will be split into characters that match the
width of the columns and assigned to those columns.
For example, in

read_table(

A B cC D

121 Xyz 14 15

22 abc 24 25
)
## # A tibble: 2 x 4
#H# A B C D
##  <dbl> <chr> <dbl> <dbl>
## 1 121 xyz 14 15
#H# 2 22 abc 24 25

the columns are aligned, and the rows are interpreted as we might expect.
Aligned, here, means that we have aligned spaces at some position
between the columns. If you do not have spaces at the same location in all
rows, columns will be merged.

read_table(

A B CD
121 xyz 14 15
22 abc 24 25
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## # A tibble: 2 x 3

## A B CD
#  <dbl> <chr> <chr>
## 1 121 xyz 14 15
#Ht 2 22 abc 24 25

Here, the header C s at the position that should separate columns C
and D, and these columns are therefore merged.

If you have spaces in all rows but data between them in some columns
only, you will get an error. For example, if your data looks like this

read_table(
A B cD
121 Xyz x 14 15
22 abc 24 25

)

where the x in the first data line sits between two all-space columns. If you
need more specialized fixed-width files, you might want to consider the
read_fwf function. See its documentation for details: ?read_fwf.

The read table and read table2 functions take many of the same
arguments as the delimiter-based parser, so you can, for example, specify
column types and set the locale in the same way as the preceding data.

Not part of the main Tidyverse, the packages loaded when you load the
package tidyverse, is readxl. Its read_excel function does exactly what
it says on the tin; it reads Excel spreadsheets into R. Its interface is similar
to the functions in readr. Where the interface differs is in Excel specific
options such as which sheet to read. Such options are clearly only needed
when reading Excel files.
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Functions for Writing Data

Writing data to a file is more straightforward than reading data because we
have the data in the correct types and we do not need to deal with different
formats. With readr’s writing functions, we have fewer options to format
our output—for example, we cannot give the functions a locale() and we
cannot specify date and time formatting, but we can use different functions
to specify delimiters and time will be output in ISO 8601 which is what the
reading functions will use as default.

The functions are write delim(),write csv(),write csv2(), and
write tsv(), and for formats that Excel can read, write excel csv() and
write excel csv2().The difference betweenwrite csv() andwrite
excel csv() and betweenwrite csv2() andwrite excel csv2() is that
the Excel functions include a UTF-8 byte order mark so Excel knows that
the file is UTF-8 encoded.

The first argument to these functions is the data we want to write and
the second is the path to the file we want to write to. If this file has suffix
.8z, .bz2, or . xz, the output is automatically compressed.

I'will not list all the arguments for these functions here, but you can
read the documentation for them from the R console. The argument you
are most likely to use is col names which, if true, means that the function
will write the column names as the first line in the output, and if false,
will not. If you use write_delim(), you might also want to specify the
delimiter character using the delim argument. By default it is a single
space; if you write to a file usingwrite delim() with the default options,
you get the data in a format that you can read using read_table2().

The delimiter characters and the decimal points forwrite csv(),
write csv2(),andwrite tsv are the same as for the corresponding read

functions.
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Representing Tables:
tibble

The data that the readr package returns are represented as tibble objects.
These are tabular data representations similar to the base R data frames
but are a more modern version.

The package that implements tibbles is tibble. You can load it using:

library(tibble)
Or as part of the tidy verse:

library(tidyverse)

Creating Tibbles

Tidyverse functions that create tabular data will create tibbles rather
than data frames. For example, when we use read_csv to read a file into
memory, the result is a tibble:

x <- read_csv(file = "data/data.csv")

## Parsed with column specification:
## cols(

## A = col double(),

## B = col character(),

© Thomas Mailund 2019
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e = col_character(),
## D = col double()

# )

X

## # A tibble: 3 x 4

#Ht A B C D
# <dbl> <chr> <chr> <dbl>
## 1 1a a 1.2
## 2 2b b 2.1
## 3 3cC C 13

The table that read _csv() creates has several super-classes, but the
lastis data.frame.

class(x)

## [1] "spec_tbl df" "tbl df" "tbl"
## [4] "data.frame"

This means that generic functions, if not specialized in the other
classes, will use the data. frame version, and this, in turn, means that you
can often use tibbles in functions that expect data frames. It does not mean
that you can always use tibbles as a replacement for a data frame. If you
run into this problem, you can translate a tibble into a data frame using
as.data.frame():

y <- as.data.frame(x)
y

## ABC D
# 11aa 1.2
#H22bb 2.1
## 3 3 c c 13.0
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class(y)
## [1] "data.frame"

Notice that the two objects, when printed, give different output. When
printing a tibble, there is more information about the column types.

If you have a data frame, you can translate it into a tibble using
as_tibble():

z <- as_tibble(y)
z

#i# # A tibble: 3 x 4

## AB C D
##  <dbl> <chr> <chr> <dbl>
##fH 1 1 a a 1.2

#t 2 2b b 2.1
#t 3 3¢ d 13

You can create a tibble from vectors using the tibble() function:

x <- tibble(

= 1:100,
= x"2,
z =y"2
)
X

## # A tibble: 100 x 3

#Hit X y z
#Hit <int> <dbl> <dbl>
#Ho1 1 1 1
#Ho2 2 4 16
## 3 3 9 81
#t 4 4 16 256
## 5 5 25 625
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## 6 6 36 1296
# 7 7 49 2401
## 8 8 64 4096
# 9 9 81 6561

## 10 10 100 10000
## # ... with 90 more rows

Two things to notice here: when you print a tibble, you only see the
first ten lines. This is because the tibble has enough lines that it will flood
the console if you print all of them. If a tibble has more than 20 rows, you
will only see the first ten. If it has fewer, you will see all the rows.

You can change how many lines you will see using the n option to
print():

print(x, n = 2)

## # A tibble: 100 x 3

#Hit X y z
##  <int> <dbl> <dbl>
#H 1 1 1 1

#H# 2 2 4 16
## # ... with 98 more rows

If a tibble has more columns than your console can show, only some
will be printed. You can change the number of characters it will print using
the width option to print.

print(x, n = 2, width = 15)

## # A tibble:
#tH # 100 x 3

#Hit X y
#  <int> <dbl>
#H# 1 1 1

## 2 2 4
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#H# ... with 98
## # more rows,
# # and 1 more
# # variable:
#H#  z <dbl>

You can set either option to Inf. If nis Inf, you will see all rows, and if
widthis Inf, you will see all the columns.

The second thing to notice is that you can refer to previous columns
when specifying later columns. When we created x, we used

tibble(
X = 1:100,
y = x*2,
z=y"2

)

where column y refers to column x and column z refers to column y. You
cannot refer to variable in the following columns, so this would be an

error:
tibble(
W= Xx/2,
X = 1:100

When you use tibble() to create a data frame, you specify the
columns as named arguments. If you indent your code as I have in the
above example, then you can think of this as defining each column in one
line. You can also create a tibble with one line per row.

tribble(
NX) Ny) NZ)
1, 10, 100,

37



CHAPTER 3  REPRESENTING TABLES: TIBBLE

2, 20, 200,
3, 30, 300

)

# # A tibble: 3 x 3
#Hit X y z
# <dbl> <dbl> <dbl>
H## 1 1 10 100
## 2 2 20 200

# 3 3 30 300

The first line names the columns, and the ™ is necessary before the
names. For large tibbles, using tribble() is not that helpful, but for
example code or small tables, it can be.

Indexing Tibbles

You can index a tibble in much the same way as you can index a data
frame. You can extract a column using single-bracket index ([ ]), either by
name or by index:

x <- read_csv(file = "data/data.csv")

## Parsed with column specification:

## cols(

## A = col double(),

## B = col character(),
## C = col character(),
## D = col double()

# )

y <- as.data.frame(x)
x["A"]

38



CHAPTER 3  REPRESENTING TABLES: TIBBLE

## # A tibble: 3 x 1

## A
##  <dbl>
#H 1 1
#H# 2 2
# 3 3
y[IIAII]

#tt A

#H 11

#H# 2 2

## 3 3
x[1]

## # A tibble: 3 x 1
#tH# A
##  <dbl>
## 1 1
#tH 2 2
## 3 3
y[1]

#tH A

##h 11

## 2 2

## 3 3

The resultis a tibble or data. frame, respectively, containing a single
column.
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If you use double brackets ([ [ ]]), you will get the vector contained in a
column rather than a tibble/data frame:

x[["A"]]
# [1] 1 2 3
y[["A"]]
## [1] 1 2 3

You will also get the underlying vector of a column if you use
$-indexing:

x$A
## [1] 1 2 3
y$A
## [1] 1 2 3
Using [ ] you can extract more than one column.
x[e("A", "C")]

# # A tibble: 3 x 2
it AC

#H <dbl> <chr>

## 1 1a

## 2 2 b

## 3 3¢

yle("A", "C")]

## A C
##f 11 a
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## 2 2 b
# 3 3 cC

x[1:2]

# # A tibble: 3 x 2
#H A B

# <dbl> <chr>

H## 1 1a

#H 2 2 b

## 3 3c

y[1:2]

# AB
## 11 a
#H220D
## 3 3 ¢

You cannot do this using [[ ]].

You can extract a subset of rows and columns if you use two indices.
For example, you can get the first two rows in the first two columns using
[1:2,1:2]:

x[1:2,1:2]

#i# # A tibble: 2 x 2

## A B
# <dbl> <chr>
## 1 1a
## 2 2b
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y[1:2,1:2]

## A B
##f 11 a
## 22b

With a single index, you always extract a subset of columns. If you want
to extract a subset of rows for all columns, you can use

x[1:2,]

## # A tibble: 2 x 4

## AB C D
##  <dbl> <chr> <chr> <dbl>
##fH 1 1 a a 1.2
#H# 2 2 b b 2.1
y[1:2,]

#t A BC D

##f 11 aa 1.2
## 22 b b 2.1

If you extract a subset of rows from a single column, tibbles and data
frames no longer have the same behavior. A tibble will give you a tibble in
return, while a data frame will give you a vector:

x[1:2,2]

# # A tibble: 2 x 1
## B

#  <chr>

## 1 a

#H20b

y[1:2,2]
## [1] "a" "b"
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Tibbles are more consistent. When you extract part of a tibble, you
always get a tibble in return. Data frames sometimes give you a data frame
and sometimes (in this particular case) a vector. In any function that
expects a data frame and only use subscripts that return a data frame, you
can also use a tibble. Tibbles return tibbles, and since a tibble is also a data
frame, this will not cause any problems. If a function expects to extract a
vector, you cannot use a tibble. This is where you will need to use as.data.
frame() to get a data.frame() with data frame behavior.
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Reformatting Tables:
tidyr

Even if we only consider tabular data, there are still many different ways to
format this data. The packages in the Tidyverse expect that data is represented
as so-called “tidy data”* (which is where the name Tidyverse comes from).
The tidyr package helps you with formatting your data into tidy data.

You can load tidyr as part of the Tidyverse

library(tidyverse)
or on its own

library(tidyr)

Tidy Data

The fundamental properties that characterize tidy data are that each
variable is in a column, and each observation is in a row. The terms like
variables and observations should be familiar from statistics, but what the
tidy data properties say is that you should not put the values of a variable
in different columns and you should not put more than one observation in
the same row.

'https://en.wikipedia.org/wiki/Tidy_ data
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Consider data such as this:

mean_income <- tribble(
~country, ~"2001°, ~"2002°, ~°2003°, ~72004°, ~72005°,
"Numenor", 123456, 132654, 321646, 324156, 325416,
"Westeros", 314256, 432165, 546123, 465321, 561423,
"Narnia", 432156, 342165, 564123, 543216, 465321,
"Gondor", 531426, 321465, 235461, 463521, 561423,
"Laputa”, 14235, 34125, 45123, 51234, 54321

We could imagine that this table contains the mean income in five
(fictional) countries in the first 5 years of the twenty-first century. Let us
say that you are interested in knowing if there is a pattern in income over
time when taking the different countries into account. To do this, you
might consider a formula such as income ~ country + year, but the data
is not formatted in a way that makes this easy. If year is a variable that you
can use in the model, it is a problem that different observations, the actual
years, are split into different columns. Similarly, if the mean income per
year is a variable, it is a problem that all the observations for a country are
in the same row. You cannot use income ~ country + year because the
data is not tidy.

Gather and Spread

The function gather() can merge several columns into two—a key and a
value column. The key column will be a discrete variable with values taken
from the column names, and the value column will contain the data from
the original columns.
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Consider the mean income data frame. We want the actual years to be
different outcomes of a year variable and have the income for each year to
be another variable, income. We can get such a tibble by calling gather ()
with these parameters:

gather(
data = mean_income,
key = "year",
value = "income",

720017, S2001°, 20027,
720037, 20047, "2005°
)
## # A tibble: 25 x 3

## country year income
## <chr> <chr> <dbl>

## 1 Numenor 2001 123456
## 2 Westeros 2001 314256
## 3 Narnia 2001 432156
## 4 Gondor 2001 531426
## 5 Laputa 2001 14235
## 6 Numenor 2002 132654
## 7 Westeros 2002 432165
## 8 Narnia 2002 342165
## 9 Gondor 2002 321465

## 10 Laputa 2002 34125
## # ... with 15 more rows

The data argument is the input data, and the key and value arguments
are the names of two new columns. In the key column, we get the names
of the columns we gather, and in the value column, we get the matching
values from those columns. The remaining parameters specify which

columns we wish to gather.
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In the preceding example, I explicitly listed all the columns to gather.
You can also use a range of columns, like this:

gather(
data = mean_income,
key = "year",
value = "income",
720017 :72005°
)
You can use more than one range:
gather(
data = mean_income,
key = "year",
value = "income",
720017 :720027,
72004 :72005°
)

but the range specification is only useful when the relevant columns are
contiguous. You can also specify the complement of the columns you want
to gather using minus. For example, if you want to gather the years, you
can pick all columns except for country rather than pick all the years:

gather(
data = mean_income,
key = "year",
value = "income",
-country

)

You can specify more than one column in a complement, and you can
combine complements with ranges.
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Finally, you can combine gather () with tidy selection (see Chapter 3)
to select columns.

gather(
data = mean_income,
key = "year",
value = "income",
tidyselect::starts_with("2")
)
gather(
data = mean_income,
key = "year",
value = "income",
-tidyselect::starts_with("c")
)

The column names that go into the key column will be strings. If they
can be translated into logical or numeric values, you can do so by setting
the argument convert to TRUE.

gather(
data = mean_income,
key = "year",
value = "income",
-country,
convert = TRUE

)

# # A tibble: 25 x 3

## country  year income
#H <chr> <int> «<«dbl>
## 1 Numenor 2001 123456
## 2 Westeros 2001 314256
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#t 3 Narnia 2001 432156
## 4 Gondor 2001 531426
## 5 Laputa 2001 14235
## 6 Numenor 2002 132654
## 7 Westeros 2002 432165
## 8 Narnia 2002 342165
## 9 Gondor 2002 321465
## 10 Laputa 2002 34125

## # ... with 15 more rows

Because all the years are integers, the year column now contains
integers. If we want to analyze this data set, we most likely want to interpret
the years as integers.

If you want to translate strings into factors, you have to do this
explicitly after the transformation.

If you work with functions that do not expect tidy data and rather
expect to find related data in different columns, you can translate tidy data
into that format using the spread() function. It is the reverse of gather().2

tidy income <- gather(
data = mean_income,

key = "year",
value = "income",
-country,

convert = TRUE

2The gather() and spread() functions transform tibbles in opposite directions in
the sense that I have described here, but they are not truly each other’s reverse.
The types of values can change depending on the convert argument to gather(),
and the order of rows can change.
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spread(
data = tidy_income,
key = "year",
value = "income"

## # A tibble: 5 x 6

##  country 2001 2002 2003 2004 "2005°
#  <chr> <dbl> <«dbl> «dbl> «<«dbl> <dbl>
## 1 Condor 531426 321465 235461 463521 561423
## 2 Laputa 14235 34125 45123 51234 54321
## 3 Narnia 432156 342165 564123 543216 465321
## 4 Numenor 123456 132654 321646 324156 325416
## 5 Westeros 314256 432165 546123 465321 561423

The key and value arguments pick the values to use as column names
and the values to put in those columns, respectively. They are the same
arguments that you would use for gather()’s key and value arguments to
translate the result back again.

Complex Column Encodings

Different variables are not always represented in separated columns.
For example, it is not uncommon to have a column that contains a

date, but that is really a day and a month and possibly a year. The best
representation of a date is, of course, a date object, but for the sake of the
example, let us say that we want to split a date into a day and a month
column. You can do this using the separate() function.

tbl <- tribble(
~date,
||11/5n,
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II4/7II’
"21/12"

)
separate(tbl, date, into = ¢("day", "month"))

## # A tibble: 3 x 2
## day month

#  <chr> <chr>

#H 1 11 5

# 2 4 7

# 3 21 12

The first argument is the data table, the second the column you want
to split, and the into argument is a list of the columns the original date will
be put into.

By default, the original column is removed, but if you want to keep it,
you can use the remove argument.

separate(tbl, date, into = ¢("day", "month"), remove = FALSE)

# # A tibble: 3 x 3
## date day month
#  <chr> <chr> <chr>
## 1 11/5 11 5
#24/7 4 7

## 3 21/12 21 12

After separating the fields in the data column, which is a column of
strings, you get a day and a month column, and these also contain strings.
To convert them into numbers, you can use the convert argument.

separate(tbl, date, into = ¢("day", "month"), convert = TRUE)

## # A tibble: 3 x 2
i day month
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# <int> <int>
H## 1 11 5
#H 2 4 7
## 3 21 12

By default a column will be split on any non-alphanumeric character.
This is why / in the data is correctly used as the separator between the
day and the month. If your separator is something else, you can use the
sep argument. The argument takes a regular expression, and the column
will be split on this. For example, we can split on alphabet characters and
spaces like this:

tbl <- tribble(
~date,
"11th of month 5",
"4th of month 7",
"21st of month 12"
)
separate(tbl, date, into = ¢("day", "month"),
sep = "([:alpha:]|[:space:])+")

# # A tibble: 3 x 2
## day month

##  <chr> <chr>

# 111 5

# 24 7

## 3 21 12
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The date format in this example is not something you would find in the
wild, but if we have the date in this format

tbl <- tribble(
~date,
"11th of May",
"4th of July",
"21st of December"

)

we cannot easily distinguish the separator string from the months. If the
delimiter you need is not a single regular expression, you might be able to
use the extract() function instead of separate(). With extract() you
can use regular expression groups to identify the fields to extract.

regexp = "([:digit:]+)" \
"(?:[:alpha:]|[:space:])+" \
"[:space:]([:alpha:]+)"
extract(
tbl, date,
into = ¢("day", "month"),
regex = regexp

## # A tibble: 3 x 2
## day month

#  <chr> <chr>
#1111 May

## 24 July

#H 3 21 December
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The reverse of separating is uniting. For example, let tb12 contain a
day and amonth column.

tbl <- tribble(
~date,
"11/5",
"4/7",
"21/12"

)
tbl2 <- separate(tbl, date, into = ¢("day", "month"))

To create a date column from the day and the month, we use unite().
The col argument should be the column we create and the following

columns those we create it from.
unite(tbl2, col = "date", day, month)

## # A tibble: 3 x 1
##  date

#H  <chr>

## 111 5

# 247

# 3 21 12

By default, the separator in the new column will be . This is not what
we want for dates, but we can use the sep argument to change it.

unite(tbl2, col = "date", day, month, sep = "/")

## # A tibble: 3 x 1
#  date

#H  <chr>

## 1 11/5

# 2 4/7

# 3 21/12

55



CHAPTER 4  REFORMATTING TABLES: TIDYR

If we want to keep the original columns around, we can set the remove
argument to FALSE.

unite(
tbl2,
col = "date", day, month,
sep = "/", remove = FALSE

# # A tibble: 3 x 3
## date day month
#t  <chr> <chr> <chr>
## 1 11/5 11 5

## 2 4/7 4 7

## 3 21/12 21 12

Columns that contain more than one value do not always contain
the same number of values. For example, we could have data such as the
number of casualties per major group in WW1 and WW2.

military casualties <- tribble(
~war, ~groups, ~deaths,

"WW1',

"Allied Powers/Central Powers",
||5.7’4.0n,

"WW2',

"Germany/Japan/USSR/British Empire/USA",
"5.3,2.1,10.7,0.6,0.4"

The groupings were not the same in the two wars, so we cannot split
the data into different columns. We can, however, divide it into more rows
using separate _rows().
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separate_rows (
military casualties,
groups, deaths,

sep = "/|,"
)
# # A tibble: 7 x 3
## war groups deaths
##  <chr> <chr> <chr>
# 1 WW1 Allied Powers 5.7
## 2 WW1 Central Powers 4.0
## 3 WW2  Germany 5.3
## 4 WW2  Japan 2.1
## 5 WW2 USSR 10.7
## 6 WW2 British Empire 0.6
## 7 WW2  USA 0.4

Expanding, Crossing, and Completing

For some applications, it is useful to create all combinations of values from
two or more columns—even those combinations that are missing from the
data. For this, you can use the function expand():

tbl <- tribble(
~A, ~B, ~C,

1, 11, 21,

2, 11, 22,

4, 13, 32
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expand(tbl, A, B)

## # A tibble: 6 x 2

## A B
# <dbl> <dbl>
#H 1 1 11
## 2 1 13
# 3 2 11
# 4 2 13
## 5 4 11
## 6 4 13

Here, we get all combinations of values from columns A and B, while
column Cis ignored. If a column contains values from a larger set than
what is found in the data, you can give expand() a vector of values:

expand(tbl, A = 1:4, B)

#i# # A tibble: 8 x 2

## A B
# <int> <dbl>
#H 1 1 11
## 2 1 13
## 3 2 11
# 4 2 13
## 5 3 11
## 6 3 13
#t 7 4 11
#it 8 4 13
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If you have vectors of values you want to combine this way, you can
also use the crossing() function.

crossing(A = 1:3, B = 11:13)

## # A tibble: 9 x 2

## A B
#H <int> <int>
# 1 1 11
#H 2 1 12
# 3 1 13
# 4 2 11
## 5 2 12
## 6 2 13
#H 7 3 11
## 8 3 12
# 9 3 13

If you only want the combinations found in the data, you can combine

expand() with the nesting() function:

tbl <- tribble(
~A, ~B, ~C,
1, 11, 21,
2, 11, 22,
2, 11, 12,
4, 13, 42,
4, 13, 32

)
expand(tbl, nesting(A, B))

## # A tibble: 3 x 2
#t# A B
##  <dbl> <dbl>
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## 1 1 11
#4 2 2 11
# 3 4 13

This combination gives you all the combinations of the specified
columns—all other columns are ignored—and only the unique
combinations, unlike if you extracted the columns by indexing.

If you need all combinations in a data frame, but accept missing
values for those that are not present, you can use the complete() function.
It makes sure you have all combinations and put missing values in the
remaining columns for the combinations that are not in the original data.

complete(tbl, A = 1:4)
# # A tibble: 6 x 3

## A B C
##  <dbl> <dbl> <dbl>

#4# 1 1 11 21
# 2 2 11 22
# 3 2 11 12
# 4 3 NA NA
#t 5 4 13 42
## 6 4 13 32

complete(tbl, B = 11:13)

## # A tibble: 6 x 3

#H B A C
##  <dbl> <dbl> <dbl>
# 1 11 1 21
#H 2 11 2 22
# 3 11 2 12
## 4 12 NA NA
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#t 5 13 4 42
## 6 13 4 32

complete(tbl, A = 1:4, B = 11:13)

## # A tibble: 14 x 3
#it A B C
it <dbly> <dbly> <dbl>

# 1 1 11 21
H#t 2 1 12 NA
## 3 1 13 NA
# 4 2 11 22
## 5 2 11 12
# 6 2 12 NA
# 7 2 13 NA
# 8 3 11 NA
# 9 3 12 NA
## 10 3 13 NA
## 11 4 11 NA
## 12 4 12 NA
## 13 4 13 42
## 14 4 13 32
Missing Values

When data has missing values, it often requires application domain
knowledge to deal with it correctly. The tidyr package has some
rudimentary support for cleaning data with missing values; you might
need more features to deal with missing values properly, and you are likely
to find those in the dplyr package; see Chapter 7.
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The simplest way to handle missing values is to get rid of it. A crude
approach is to remove all observations with one or more missing variable
values. The drop_na() function does exactly that.

mean_income <- tribble(
~country, ~72002°, ~72003°, ~ 2004, ~7 2005,

"Numenor", 123456, 132654, NA, 324156,
"Westeros", 314256, NA, NA, 465321,
"Narnia", 432156, NA, NA, NA,

"Gondor", 531426, 321465, 235461, 463521,
"Laputa”, 14235, 34125, 45123, 51234,
)

drop_na(mean_income)

# # A tibble: 2 x 5

##  country "2002° “2003° 2004 "2005°
#  <chr> <dbl> <«dbl> <«dbl> <dbl>
## 1 Gondor 531426 321465 235461 463521
## 2 Laputa 14235 34125 45123 51234

In this example, we lose a country entirely if we have missing data for a
single year. This is unlikely to be acceptable and is another good argument
for tidy data. If we reformat the table and drop missing values, we will only
remove the observations where the income is missing for a given year.

tidy mean_income <- gather(
data = mean_income,
key = "year",
value = "mean_income",
-country
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drop_na(tidy mean_income)

## # A tibble: 14 x 3
#H country year mean_income

i <chr> <chr> <dbl>
## 1 Numenor 2002 123456
## 2 Westeros 2002 314256
# 3 Narnia 2002 432156
## 4 Gondor 2002 531426
## 5 Laputa 2002 14235
## 6 Numenor 2003 132654
## 7 Gondor 2003 321465
## 8 Laputa 2003 34125
# 9 Gondor 2004 235461
## 10 Laputa 2004 45123
## 11 Numenor 2005 324156
## 12 Westeros 2005 465321
## 13 Gondor 2005 463521
## 14 Laputa 2005 51234

Sometimes, you can replace missing data with some appropriate data.
For example, we could replace missing data in the mean_income table by
setting each value to the mean of its column. The replace_na() function
does this. It takes a data frame as its first argument and a list specifying
replacements as its second argument. This list should have a name for
each column you want to replace missing values in, and the value assigned
to these names should be the values with which you wish you replace.

replace_na(mean_income, list(
*2003" = mean(mean_income$ 2003, na.rm = TRUE)

))
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#i# # A tibble: 5 x 5

#it
#H
#H
#Hit
#Hit
#H
#Hit

1
2
3
4
5

country "2002°
<chr> <dbl>
Numenor 123456
Westeros 314256
Narnia 432156
Gondor 531426
Laputa 14235

72004 "2005°
<dbl> <dbl>
NA 324156
NA 465321
NA NA
235461 463521
45123 51234

*2003°

<dbl>
132654
162748
162748
321465

34125

replace_na(mean_income, list(

))

#Hit
#H#
#Hit
#Hit
#HH
#Ht
#Hit
#H

#

1
2
3
4
5

72003° =
720047 =
72005° =

A tibble: 5 x 5
country "2002°
<chr> <dbl>
Numenor 123456
Westeros 314256
Narnia 432156
Gondor 531426
Laputa 14235

mean(mean_income$> 2003, na.rm
mean(mean_income$ 2004, na.rm
mean(mean_income$ 2005, na.rm

*2003°

<dbl>
132654
162748

72004 20057

<dbl> <dbl>
140292 324156
140292 465321
162748 140292 326058
321465 235461 463521

34125 45123 51234

TRUE),
TRUE),
TRUE)

In this example, using the mean per year is unlikely to be useful; it

would make more sense to replace missing data with the mean for each

country. This is not immediately possible with tidyr functions, though.

With dplyr we have the tools for it and I return to it in Chapter 7.

A final function for managing missing data is the fi11() function. It

replaces missing values with the value above them in their column (or

below them if you set the argument .direction to "up". Imagine that

we have a table of income per quarter of each year, but the year is only

mentioned for the first quarter.
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tbl <- read_csv(

"year, quarter, income
2011,

)

)

)

02,
03,
04,

2012,

)

)

)

02,
03,
04,

01, 13
12
14
11
01, 12
14
15
17"
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We can repeat the years downward through the quarters with fill():

fill(tbl, year)

## # A tibble: 8 x 3

#Hit
#H#
#Hit
#Hit
#HH#
#Ht
#Hit
#H
#H
#Hit

0N OO U1 AW N R

year
<dbl>
2011
2011
2011
2011
2012
2012
2012
2012

quarter income
<chr> <dbl>
01 13
02 12
03 14
04 11
01 12
02 14
03 15
04 17
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Nesting Data

A final functionality that tidyr provides is nesting data. A tibble entry
usually contains simple data, such as numbers or strings, but it can also
hold complex data, such as other tables.

Consider this table:

tbl <- tribble(
~A, ~B, ~C,
1, 11, 21,
1, 11, 12,
2, 42, 22,
2, 15, 22,
2, 15, 32,
4, 13, 32

From this table, we can create one that, for each value in the A column,
contains a table of B and C for that A value.

nested tbl <- nest(tbl, B, C)
nested tbl

# # A tibble: 3 x 2

Hit A data

#H o <dbl> <list>

## 1 1 <tibble [2 x 2]>
# 2 2 <tibble [3 x 2]>
## 3 4 <tibble [1 x 2]>

nested tbl[[1,2]]

## # A tibble: 2 x 2
it B C
##  <dbl> <dbl>
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## 1 11 21
#4 2 11 12

The column that contains the nested table is named data, but you can
change this using the . key argument.

nested tbl <- nest(tbl, B, C, .key = "BC")
nested_tbl

## # A tibble: 3 x 2

it A BC

#H o <dbl> <list>

#Ht 1 1 <tibble [2 x 2]>
#H 2 2 <tibble [3 x 2]>
## 3 4 <tibble [1 x 2]»

nested tb1$BC

# [[1]]
#i# # A tibble: 2 x 2
## B C

##  <dbl> <dbl>
#H# 1 11 21
## 2 11 12

##

# [[2]]

#i# # A tibble: 3 x 2
## B C

# <dbl> <dbl>
## 1 42 22
# 2 15 22
## 3 15 32
##

# [[3]]
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## # A tibble: 1 x 2
## B C
# <dbl> <dbl>
## 1 13 32

The arguments after the table pick the columns to be nested. You can
use any number of columns here, including no columns at all. In the latter
case, you will nest the entire original table in the data column.

nest(tbl, B)

## # A tibble: 5 x 3
## A C data
##  <dbl> <dbl> <1list>

# 1 1 21 <tibble [1 x 1]>
#it 2 1 12 <tibble [1 x 1]>
# 3 2 22 <tibble [2 x 1]>
# 4 2 32 <tibble [1 x 1]>
#it 5 4 32 <tibble [1 x 1]>
nest(tbl)

## # A tibble: 1 x 1

## data

#H <list>

## 1 <tibble [6 x 3]>
The reverse operation is unnest():
nested tbl

# # A tibble: 3 x 2

## A BC

#H o <dbl> <list>

## 1 1 <tibble [2 x 2]>
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# 2 2 <tibble [3 x 2]>
## 3 4 <tibble [1 x 2]»

unnest(nested tbl)

## # A tibble: 6 x 3
#it A B C
##  <dbl> <dbl> <dbl>

# 1 1 11 21
# 2 1 11 12
## 3 2 42 22
#t 4 2 15 22
# 5 2 15 32
## 6 4 13 32

Nesting is not a typical operation in data analysis, but it is there if you
need it, and in the packages in Chapter 11 we see some usages.
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Pipelines: magrittr

Data analysis consists of several steps, where your data moves through
different stages of transformations and cleaning before you finally get to
model construction. In practical terms, this means that your R code will
consist of a series of function calls where the output of one is the input of the
next. The pattern is typical, but a straightforward implementation of it has
several drawbacks. The Tidyverse provides a “pipe operator” to alleviate this.

The pipe operator is implemented in the magrittr package. You can
load it as part of the tidyverse package:

library(tidyverse)
Or you can explicitly load the package:
library(magrittr)

If you load magrittr through the tidyverse package, you will get
the most common pipe operator, %>%, but not alternative ones—see the
following. For those, you need to load magrittr.

The Problem with Pipelines

Consider this data from Chapter 4.

write_csv(

tribble(
”countIy, ~\2002\, ”\2003\, ~\2004\, ”\2005\,
"Numenor", 123456, 132654, NA, 324156,
© Thomas Mailund 2019
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"Westeros", 314256, NA, NA, 465321,

"Narnia", 432156, NA, NA, NA,

"Gondor", 531426, 321465, 235461, 463521,

"Laputa"”, 14235, 34125, 45123, 51234,
)5

"data/income.csv"

I have written it to a file, data/income.csv, to make the following
examples easier to read.

In Chapter 4 we reformatted and cleaned this data using gather() and
drop_na():

mydata <- read_csv("data/income.csv",
col types = "cdddd")
mydata <- gather(
data = mydata,
key = "year",
value = "mean_income",
-country

)

mydata <- drop_na(mydata)

This is a typical pipeline, although a short one. It consists of three
steps: 1) read the data into R, 2) tidy the data, and 3) clean the data.

There is nothing inherently wrong with code like this. Each step is easy
to read; it is a function call that transforms your data from one form to
another. The pipelined nature of the code, however, is not explicit. We can
read the code and see that the output of one function is the input of the
next, but what if it isn’t?
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Consider this:

mydata <- read_csv("data/income.csv",

col types = "cdddd")
data <- gather(...) # Are we assigning to the right name?
mydata <- drop_na(mydata) # Input from read csv() not gather()

The result of gather () is assigned to the variable data and then drop
na() is called on mydata. If our intent were the preceding pipeline, this
would be a mistake. But maybe we wanted the result of gather() to be a
separate data table needed for some downstream analysis.

A series of transformation steps that constitute a pipeline can only be
recognized as such by following programming conventions, and unless the
code is well documented and well understood, we cannot immediately see
from the code whether assigning to data instead of mydata is an error.

We can make pipelines more explicit. If the output of one function
should be the input of the next, we can nest the function calls:

mydata <- drop_na(
gather(
data = read_csv("data/income.csv",
col types = "cdddd"),
key = "year",
value = "mean_income",
-country

This makes the pipeline intention explicit but the code very hard to
read; you have to work out the pipeline from the innermost function call to
the outermost.

The magrittr package gives us notation for explicitly describing
specifying readable pipelines.
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Pipeline Notation

The pipeline operator, %>%, introduces syntactic sugar for function calls.
The code

x %>% £()

is equivalent to

(x)

and

x %% £() %>% g() %>% h()
is equivalent to

h(g(£(x)))

So, by the way, is

x %% t %>% g %>% h

You do not need the parentheses for the function calls, but most prefer
them to make it clear that we are dealing with functions. Also, if your
functions take more than one argument, parentheses are needed, so if you

always include them, it gives you a consistent notation.

'The pipeline operator is syntactic sugar in the sense that it introduces a more
readable notation for a function call. In compiled languages, syntactic sugar
would be directly translated into the original form and have exactly the same
runtime behavior as the sugar-free version. In R, there is no compile-time phase,
so you pay a runtime cost for all syntactic sugar. The pipe operator is a complex
function, so compared to explicit function calls, it is slow to use it. This is rarely an
issue, though, since the expensive data processing is done inside the function and
not in function calls.
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The preceding nested function call pipeline
mydata <- drop_na(gather(read_csv(...)))
can thus be rewritten in pipe form
mydata <- read_csv(...) %>% gather(...) %>% drop_na()
or, with all the arguments included, as

mydata <- read_csv("data/income.csv",
col types = "cdddd") %>%
gather(key = "year", value = "mean_income", -country) %>%
drop_na()

The pipeline notation combines the readability of single function call
steps with explicit notation for data processing pipelines.

Pipelines and Function Arguments

The pipe operator is left-associative, that is, it evaluates from left to right,
and the expression lhs %>% rhs expects the left-hand side (1hs) to be

data and the right-hand side (rhs) to be a function. The result will be
rhs(1lhs). The output of this function call is the left-hand side of the next
pipe operator in the pipeline or the result of the entire pipeline. If the right-
hand side function takes more than one argument, you provide these in
the rhs expression. The expression

lhs %>% rhs(x, y, z)
will be evaluated as the function call

rhs(lhs, x, y, z)
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By default, the left-hand side is given as the first argument to the right-
hand side function. The arguments that you explicitly write on the right-
hand side expression are the additional function parameters.

You can change the default using the special variable . (dot). If the
right-hand side expression has . as a parameter, then that is where the left-
hand side value goes. All the following three pipelines are equivalent:

mydata <- read_csv("data/income.csv", col types = "cdddd") %>%
gather(key = "year", value = "mean_income", -country) %>%
drop_na()

mydata <- read_csv("data/income.csv", col types = "cdddd") %>%
gather(data = ., key = "year", value = "mean_income", -country) %%
drop_na()

mydata <- read_csv("data/income.csv", col types = "cdddd") %>%
gather(key = "year", value = "mean_income", -country, data
=.) %%
drop_na()

You can use dot more than once on the right-hand side:
rnoxm(5) %>% tibble(x = ., y = .)

# # A tibble: 5 x 2
#Ht X y
#i <dbl>  <dbl>
## 1 -0.620 -0.620
## 2 0.0349 0.0349
## 3 -0.183 -0.183
## 4 2.17 2.17
## 5 -1.37 -1.37
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You can also use it in nested function calls.
rnorm(5) %>% tibble(x = ., y = abs(.))

## # A tibble: 5 x 2
#Hit X y
i <dbl> <dbl>

# 1 -0.881 0.881
# 2 1.42 1.42

## 3 0.493 0.493
## 4 1.04 1.04

## 5 -1.56 1.56

If the dot is only found in nested function calls, however, magrittr will
still add it as the first argument to the right-hand side function.

rnoxm(5) %>% tibble(x = sin(.), y = abs(.))

# # A tibble: 5 x 3

#Ht . X y
#H <dbl> «<dbl> <dbl>
## 1 -0.372 -0.363 0.372
## 2 -0.730 -0.667 0.730
## 3 0.202 0.201 0.202
# 4 0.642 0.599 0.642
# 5 0.516 0.493 0.516

To avoid this, you can put the right-hand side expression in curly
brackets:

rnorm(5) %>% { tibble(x = sin(.), y = abs(.)) }
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## # A tibble: 5 x 2
#it X y
#H <dbl> <dbl>
## 1 0.364 0.372
## 2 -0.855 1.03

## 3 -0.141 0.1241
## 4 0.172 0.173
## 5 -0.0462 0.0462

In general, you can put expressions in curly brackets as the right-hand
side of a pipe operator and have magrittr evaluate them. Think of it as
a way to write one-parameter anonymous functions. The input variable
is the dot, and the expression inside the curly brackets is the body of the
function.

Function Composition

It is trivial to write your own functions such that they work well with
pipelines. All functions map input to output (ideally with no side effects) so
all functions can be used in a pipeline. If the key input is the first argument
of a function you write, the default placement of left-hand side value will
work—so that is preferable—but otherwise you can explicitly use the dot.
When writing pipelines, however, often you do not need to write
a function from scratch. If a function is merely a composition of other
function calls—it is a pipeline function itself—we can define it as such.
In mathematics, the function composition operator, °, defines the
composition of functions fand g, g° fto be the function

(g°f)x) = g(f(x))
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Many functional programming languages encourage you to write
functions by combining other functions and have operators for that.
It is not frequently done in R, and while you can implement function
composition, there is no built-in operator. The magrittr package, however,
gives you this syntax:

h <- . %% £() %% g()

This defines the function h, such thath(x) = g(f(x)).

If we take the tidy-then-clean pipeline we saw previously, and imagine
that we need to do the same for several input files, we can define a pipeline
function for this as

pipeline <- . %>%
gather(key = "year", value = "mean_income", -country) %>%
drop_na()

Other Pipe Operations

There are three other pipe operators in magrittr. These are not imported
when you import the tidyverse package, so to get access to them, you
have to import magrittr explicitly.

library(magrittr)

The %<>% operator is used to run a pipeline starting with a variable and
ending by assigning the result of the pipeline back to that variable.
The code

mydata <- read_csv("data/income.csv",
col types = "cdddd")
mydata %<>% pipeline()
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is equivalent to

mydata <- read_csv("data/income.csv",
col types = "cdddd")
mydata <- mydata %>% pipeline()

This reassignment operator behaves similarly to the step-wise pipeline
convention we considered at the start of the chapter, but it makes explicit
that we are updating an existing variable. You cannot accidentally assign
the result to a different variable.

If your right-hand side is an expression in curly brackets, you can refer
to the input through the dot variable:

mydata <- tibble(x = rnoxrm(5), y = xnorm(5))
mydata %>% { .$x - .$y }

## [1] 0.9590534 1.9584677 -0.9095741 -1.8365738
## [5] -0.7331230

If, as here, the input is a data frame and you want to access its columns,
you need the notation . $ to access them. The %%$% pipe operator opens the
data frame for you so you can refer to the columns by name.

mydata %$% { x -y }

## [1] 0.9590534 1.9584677 -0.9095741 -1.8365738
## [5] -0.7331230

The tee-pipe operator, %T>%, behaves like the regular pipe operator,
%>%, except that it returns its input rather than the result of calling the
function on its right-hand side. The regular pipe operation x %>% f() will
return f(x), but the tee-pipe operation, x %T>% f(), will call f(x) but
return x. This is useful for calling functions with side effects as a step inside
a pipeline, such as saving intermediate results to files or plotting data.

80



CHAPTER 5  PIPELINES: MAGRITTR

If you call a function in a usual pipeline, you will pass the result of the
function call on to the next function in the pipeline. If you, for example, want
to plot intermediate data, you might not be so lucky that the plotting function
will return the data. The ggplot2 functions will not (see Chapter 12).

If you want to plot intermediate values, you need to save the data in a
variable, save it, and then start a new pipeline with the data as input.

income <- read_csv("data/income.csv", col types = "cdddd")
tidy income <- gather(income, key = "year",

value = "mean_income", -country)
ggplot(tidy income, aes(x = year, y = mean_income))
write_csv(tidy income, "data/tidy-income.csv")

With the tee operator, you can call the plotting function and continue
the pipeline.

mydata <- mean_income %>%
gather(key = "year", value = "mean_income", -country) %T>%
{ print(ggplot(., aes(x = year, y = mean_income)) +
geom_point()) } %>%
drop_na()
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CHAPTER 6

Functional
Programming: purrr

A pipeline-based approach to data processing necessitates a functional
programming approach. After all, pipelines are compositions of functions,
and loops and variable assignment do not work well with pipelines. You
are not precluded from imperative programming, but you need to wrap it
in functions.

The package purrr makes functional programming easier. As with the
other packages in this book, it will be loaded if you import tidyverse, but
you can load it explicitly with:

library(purrr)

I'will not describe all the functions in the purrr package; there are
many and more could be added between the time I write this and the time
you read it, but I will describe the functions you will likely use often.

Many of the examples in this chapter are so trivial that you would
not use purrr for them. Many reduce to vector expressions, and vector
expressions are both more straightforward to read and faster to evaluate.
However, applications where you cannot use vector expressions are more
involved, and I do not want the examples to overshadow the syntax.

© Thomas Mailund 2019
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General Features of purrr Functions

The functions in the purrr package are “high-order” functions, which
means that the functions either take other functions as input or return
functions when you call them (or both). Most of the functions take data as
their first argument and return modified data. Thus, they are immediately
useable with magrittr pipelines. As additional arguments, they will accept
one or more functions that specify how you want to translate the input into
the output.

Other functions do not transform data but instead modify functions.
These are used, so you do not need to write functions for the data
transformation functions explicitly; you can use a small set of functions
and adapt them where needed.

Filtering

One of the most straightforward functional programming patterns is
filtering. Here, you use a high-order filter function. This function takes a
predicate function, that is, a function that returns a logical value, and then
returns all elements where the predicate evaluates to TRUE (the function
keep()) or all elements where the predicate evaluates to FALSE (the
function discard()).

is_even <- function(x) x %% 2 ==
1:6 %>% keep(is_even)

## [1] 2 4 6
1:6 %>% discard(is even)

## [1] 13 5
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When you work with predicates, the negate() function can come
in handy. It changes the truth-value of your predicate, such that if your
predicate, p, returns TRUE, then negate(p) returns FALSE and vice versa.

1:6 %>% keep(negate(is even))

## [1] 13 5

1:6 %>% discard(negate(is even))
## [1] 24 6

Since you already have complementary functions in keep() and
discard(), you would not use negate() for filtering, though.
A special-case function, compact (), removes NULL elements from a list.

y <- list(NULL, 1:3, NULL)
y %>% compact()

## [[1]]
## [1] 1 2 3

If you access attributes on objects, and those are not set, R will give you
NULL as a result, and for such cases, compact () can be useful.
If we define lists

X <- y <- 1:3
names(y) <- c("one", "two", "three")

then y's values will be named, while x"'s will not. If we try to get the names
from x, we will get NULL.

names (x)
## NULL
names(y)

## [1] "one" "two" "three"
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Using compact () with names (), we will discard x.

z <- list(x, y)
z %>% compact()

## [[1]]

## [1] 1 2 3
##

## [[2]]

## one two three
# 1 2 3

z %>% compact(names)

## [[1]]
## one two three
## 1 2 3

Mapping

Mapping a function, f, over a sequence x = x;, X, ..., X, returns a new
sequence of the same length as the input but where each element is an
application of the function: f(x;), f(x,), ..., f(x,).

The function map() does this and return a 1ist as output. Lists are the
generic sequence data structure in R since they can hold all types of R objects.

is _even <- function(x) x %% 2 == 0
1:4 %>% map(is_even)

## [[1]]

## [1] FALSE
it

## [[2]]

## [1] TRUE
it
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## [[3]]
## [1] FALSE
it

## [[4]]
## [1] TRUE

Often we want to work with vectors of specific types. For all the atomic
types, purrr has a specific mapping function. The function for logical
values is named map_1g1().

is_even <- function(x) x %% 2 == 0
1:4 %>% map_lgl(is_even)

## [1] FALSE TRUE FALSE TRUE

With something as simple as this example, you should not use purrr.
Vector expressions are faster and easier to use.

1:4 %% 2 ==
## [1] FALSE TRUE FALSE TRUE

You cannot always use vector expressions, however. Say you want to
sample n elements from a normal distribution, for a sequence of different
nvalues, and then calculate the standard error of the mean. The vector
expression

sd(xnoxm(n = n)) / sqrt(n) # not SEM!

does not compute this. If you give rnorm() a sequence for its n parameter,
it takes the length of the input as the number of elements to sample.

n <- seq.int(100, 1000, 300)
rnorm(n) # length(n) is used for n!

## [1] 1.0642869 0.6745540 -0.1342023 -0.3390898
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When you have a function that is not vectorized, you can use a map
function to apply it on all elements in a list.

sem <- function(n) sd(xnorm(n = n)) / sqrt(n)
n %>% map_dbl(sem)
# [1] 0.10643498 0.04872984 0.03715846 0.03247213

Here, Iused map_db1() to get doubles (numerics) as output. The
functions map_chr () and map_int() will give you strings and integers
instead.

1:3 %>% map_dbl(identity) %T>% print() %>% class()

# [1] 1 2 3

## [1] "numeric"

1:3 %>% map_chx(identity) %T>% print() %>% class()
# [1] "2 "2t "3t

## [1] "character”

1:3 %>% map_int(identity) %T>% print() %>% class()
## [1] 1 2 3

## [1] "integer"

The different map functions will give you an error if the function you
apply does not return values of the type the function should. Sometimes
a map function will do type conversion, as presented earlier, but not
always. It will usually be happy to convert in a direction that doesn’t lose
information, for example, from logical to integer and integer to double, but
not in the other direction.
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For example, map_1g1() will not convert from integers to logical if you
give it the identity() function, even though you can convert these types.
Similarly, you can convert strings to integers using as.numeric(), but
map_db1() will not do so if we give it identity(). The mapping functions
are more strict than the base R conversion functions. So you should use
functions that give you the right type.

The map_dfr() and map_dfc() functions return data frames (tibbles).
The function you map should return data frames and these will be
combined, row-wise with map_dfr() and column-wise with map_dfc().

x <- tibble(a
list(a = x, b

1:2, b = 3:4)
x) %>% map_dfr(identity)

# # A tibble: 4 x 2

#H a b

#  <int> <int>

## 1 1 3

## 2 2 4

## 3 1 3

# 4 2 4

list(a = x, b = x) %>% map_dfc(identity)

# # A tibble: 2 x 4

#Hit a b al b1
## <int> <int> <int> <int>
#H o1 1 3 1 3
## 2 2 4 2 4

89



CHAPTER6  FUNCTIONAL PROGRAMMING: PURRR
The map_df() function does the same asmap_dfr():
list(a = x, b = x) %>% map_df(identity)

#i# # A tibble: 4 x 2

Hit a b
#H o <int> <int>
## 1 1 3
#i# 2 2 4
# 3 1 3
## 4 2 4

You do not need to give the data frame functions data frames as input,
as long as the function you apply to the input returns data frames. This
goes for all the map functions. They will accept any sequence input; they
only restrict and convert the output.

If the items you map over are sequences themselves, you can extract
elements by index; you do not need to provide a function to the map

function.

x <- list(1:3, 4:6)
X %>% map_dbl(1)

# [1] 1 4
x %>% map_dbl(3)
## [1] 3 6

If the items have names, you can also extract values using these.

x <- list(
c(a = 42, b = 13),
c(a =24, b = 31)
)
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X %>% map_dbl("a")

#H [1] 42 24

X %>% map_dbL("b")

## [1] 13 31

This is mostly used when you map over data frames.

a <- tibble(foo
b <- tibble(foo
ab <- list(a, b)
ab %>% map("foo")

1:3, bar
4:6, bar

11:13)
14:16)

# [[1]]
# [1] 1 2 3
H#it

## [[2]]
## [1] 4 5 6

Related to extracting elements by name or index, you can apply
functions to different depths of the input using map_depth(). Depth zero
is the list itself, so mapping over this depth is the same as applying the
function directly on the input.

ab %>% map_depth(0, length)
# [1] 2

ab %>% length()

# [1] 2

Depth 1 gives us each element in the sequence, so this behaves like a
normal map. Depth 2 provides us with a map over the nested elements.
Consider the preceding list ab. The top level, depth 0, is the list. Depth 1
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is the data frames a and b. Depth 2 is the columns in these data frames.
Depth 3 is the individual items in these columns.

ab %>% map_depth(1, sum) %>% unlist()
## [1] 42 60
ab %>% map_depth(2, sum) %>% unlist()

## foo bar foo bar
# 6 36 15 45

ab %>% map_depth(3, sum) %>% unlist()

## fool foo2 foo3 barl bar2 bar3 fool foo2 foo3 bari
## 1 2 3 11 12 13 4 5 6 14
## bar2 bar3
## 15 16

If you only want to apply a function to some of the elements, you can
use map_if(). It takes a predicate and a function and applies the function
to those elements where the predicate is true. It returns a list, but you can
convert it if you want another type.

is_even <- function(x) x %% 2 ==
add one <- function(x) x + 1
1:6 %>% map_if(is_even, add _one) %>% as.numeric()

#[1]1 133557

Notice that this is different from combining filtering and mapping; that
combination would remove the elements that do not satisfy the predicate.

1:6 %>% keep(is_even) %>% map_dbl(add one)

## [1] 357
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Withmap_if(), you keep all elements, but the function is only applied
to some of them.

If you want to apply one function to the elements where the predicate
is true and another to the elements where it is false, you can prove a
function to the .else element:

add_two <- function(x) x + 2

1:6 %>%
map_if(is even, add one, .else = add _two) %>%
as.numeric()

# [1] 335577

If you know which indices you want to apply the function to, instead of
a predicate they must satisfy, you can use map_at(). This function takes a
sequence of indices instead of the predicate but otherwise works the same
asmap_if().

1:6 %>% map_at(2:5, add one) %>% as.numeric()
#[1]1 134566

If you map over a list, X, then your function will be called with the
elements in the list, x[ [1] ]. If you want to get the elements wrapped in a
length-one list, that is, use indexing x[1], you can use 1map().

list(1:3, 4:6) %>% map(print) %>% invisible()

## [1] 1 2 3

## [1] 456

list(1:3, 4:6) %>% lmap(print) %>% invisible()
# [[1]]

## [1] 1 2 3

##

## [[1]]
## [1] 4 5 6
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The function you apply must always return a list, and 1map () will
concatenate them.

f <- function(x) list("foo")
1:2 %>% lmap(f)

## [[1]]
## [1] "foo"
#H

# [[2]]
## [1] "foo"

f <- function(x) list("foo", "bar")
1:2 %>% lmap(f)

## [[1]]

## [1] "foo"
it

## [[2]]

## [1] "bar"
##

## [[3]]

## [1] "foo"
##

## [[4]]

## [1] "bar"

For example, while you can get the length of elements in a list using
map() and length()

list(1:3, 4:6) %>% map(length) %>% unlist()

## [1] 3 3
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you will get an error if you try the same using 1lmap (). This is because
length() returns a numeric and not a list. You need to wrap length() with
list() so the result is the length in a (length-one) list.

wrapped length <- . %>% length %>% list()
list(1:3, 4:6) %>% lmap(wrapped length) %>% unlist()

# [1] 1 1

If it surprises you that the lengths are one here, remember that the
function is called with the length-one lists at each index. If you want the
length of what they contain, you need to extract that.

wrapped length <- . %% .[[1]] %>% length %>% list()
list(1:3, 4:6) %>% lmap(wrapped length) %>% unlist()

## [1] 3 3

If you want to extract the nested data, though, you probably want map ()
and not Imap().

The functions Imap_if() and lmap_at() workasmap_if() and map_
at() except for how they index the input and handle the output as lists to
be concatenated.

Sometimes, we only want to call a function for its side effect. In that
case, you can pipe the result of a map into invisible(). The function
walk() does that for you, and using it makes it explicit that this is what you
want, but it is simply syntactic sugar formap() + invisible()

1:3 %>% map(print) %>% invisible()

# [1] 1
# [1] 2
## [1] 3
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1:3 %>% walk(print)
# [1] 1
# [1] 2
# [1] 3
If you need to map over multiple sequences, you have two choices
of map functions to choose from. Some functions map over exactly two

sequences. For each of the map() functions, there are similar map2 ()
functions. These take two sequences as the first two arguments.

X <- 1:3
y <- 3:1
map2_dbl(x, y, "+°)

# [1] 4 4 4

You can also create lists of sequences and use the pmap() functions.
list(x, y) %>% pmap_dbl( +")
# [1] 4 4 4

There are the same type-specific versions as there are for map() and
map2 (), but with the pmap () functions, you can map over more than one or
two input sequences.

zZ <- 4:6
f <- function(x, y, z) x +y - z
list(x, y, z) %>% pmap_dbl(f)

## [1] 0 -1 -2

If you need to know the indices for each value you map over, you can
use the imap() variations. When you use these to map over a sequence,
your function needs to take two arguments where the first argument is the
sequence value and the second the value’s index in the input.
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x <- ¢("foo", "bar", "baz")

f <- function(x, i) pasteo(i, y X)

X %>% imap_chx(f)
## [1] "1: foo" "2: bar" "3: baz"

There is yet another variant of the mapping functions, the modify()
functions. These do not have the type variants (but the at, if, depth,
and so on); instead, they will always give you an output of the same type as
the input:

modify2(1:3, 3:1, "+)
# [1] 4 4 4

x <- ¢("foo", "bar", "baz")
f <- function(x, i) pasteo(i,
x %>% imodify(f)

» X)

## [1] "1: foo" "2: bar" "3: baz"

Reduce and Accumulate

If you want to summarize all your input into a single value, you probably
want to reduce() them. Reduce repeatedly applies a function over your
input sequence: If you have a function of two arguments, f(a, x) and a
sequence x,, Xy, ..., X, then reduce () will compute f(... f( f(x1, X2, X3), ...
,X,), X,,), that is, it will be called on the first two elements of the sequence,
the result will be paired with the next element, and so forth. Think of the
argument a as an accumulator that keeps the result of the calculation so far.
To make the order of function application clear, I define a “pair” type:

pair <- function(first, second) {
structure(list(first = first, second = second),
class = "pair")
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toString.pair <- function(x, ...) {
first <- toString(x$first, ...)
rest <- toString(x$second, ...)

paste('[', first, ', ', rest, ']", sep ="' ")

}

print.pair <- function(x, ...) {
X %>% toString() %>% cat() %>% invisible()

If we reduce using pair(), we see how the values are paired when the
function is called:

1:4 %>% reduce(pair)
## [[[1, 2], 3], 4]

If you reverse the input, you can reduce in the opposite order,
combining the last pair first and propagating the accumulator in that order.

1:4 %>% revu() %>% reduce(pair)
# [[[4, 3], 2], 1]

If, for some reason, you want to apply the function and have the
accumulator as the last argument, you can use the .dir = "backward"
argument.

1:4 %>% reduce(pair, .dir = "backward")
## [1, [2, [3, 4]]]

The first (or last) element in the input does not have to be the value for
the initial accumulator. If you want a specific starting value, you can pass
that to reduce() using the .init argument.

1:3 %>% reduce(pair, .init = 0)

## [[[o, 1], 2], 3]
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1:3 %>% revw() %>% reduce(pair, .init = 4)
# [[[4, 3], 2], 1]
1:3 %>% reduce(pair, .init = 4, .dir = "backward")

## [1, [2, [3, 4]]]

If your function takes more than one argument, you can provide the
additional arguments to reduce() and then input sequence and function.
Consider, for example, a three-argument function like this:

# additional arguments
loud pair <- function(acc, next val, volume) {
ret <- pair(acc, next val)
ret %>% toString() %>%
paste(volume, '\n', sep = " ") %>%
cat()
ret

It builds a pair object but, as a side effect, prints the pair followed by
a string that indicates how “loud” the printed value is. We can provide the
volume as an extra argument to reduce():

1:3 %%
reduce(loud pair, volume = "!'") %>%
invisible()

## [1, 2]!

## [[1, 2], 3]!

1:3 %%
reduce(loud pair, volume = "!l") %>%

invisible()
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## [1, 2]!!
## [[1, 2], 3]!!

If you want to reduce two sequences instead of one—similar to a
second argument to reduce() but a sequence instead of a single value—
you can use reduce2():

volumes <- e¢("!", "Il")
1:3 %>% reduce2(volumes, loud pair) %>% invisible()

# [1, 2]!
## [[1, 2], 3]!!

1:3 %%
reduce2(c('!"', "!!", "111"), .init = 0, loud pair) %>%
invisible()

## [0, 1]!
## [[o, 1], 2]!!
## [[[o, 1], 2], 3]!!!

If you want all the intermediate values of the reductions, you can use
the accumulate() function. It returns a sequence of the results of each
function application.

res <- 1:3 %>% accumulate(pair)
print(res[[1]])

# [1] 1
print(res[[2]])
# [1, 2]
print(res[[3]])

## [[1, 2], 3]
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res <- 1:3 %>% accumulate(pair, .init
print(res[[1]])

# [1] 0
print(res[[4]])
## [[[o, 1], 2], 3]

res <- 1:3 %>% accumulate(
pair, .init = 0,
.dir = "backward"

)
print(res[[1]])

## [1, [2, [3, 0]]]
print(res[[4]])

## [1] 0

FUNCTIONAL PROGRAMMING: PURRR

= 0)

The accumulate2 () function works like reduce2(), except that it keeps

the intermediate values like accumulate() does.

Partial Evaluation and Function Composition

When you filter, map, or reduce over sequences, you sometimes want to

modify a function to match the interface of purrr’s functions. If you have

a function that takes too many arguments for the interface, but where you

can fix some of the parameters to get the application you want, you can do

what is called a partial evaluation. This just means that you create a new

function that calls the original function with some of the parameters fixed.
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For example, if you filter, you want a function that takes one input
value and returns one (boolean) output value. If you want to filter the
values that are less than or greater than, say three, you can create functions
for this.

greater than three <- function(x) 3 < x
less_than three <- function(x) x < 3

1:6 %>% keep(greater than three)
## [1] 4 5 6

1:6 %>% keep(less than_three)

# [1] 1 2

The drawback of doing this is that you might need to define many such
functions, even if you only use each once in your pipeline.

Using the partial() function, you can bind parameters without
explicitly defining new functions. For example, to bind the first parameter
to <, asin the greater_than_three() function, you can use partial():

1:6 %>% keep(partial("<’, 3))
## [1] 4 5 6

By default, you always bind the first parameter(s). To bind others, you
need to name which parameters to bind. The less-than operator has these

parameter names
“
## function (e1, e2) .Primitive("<")

so you can use this partial evaluation for less_than_three():

1:6 %>% keep(partial(*< ', e2 = 3))

# [1] 1 2
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Similarly, you can use partial evaluation for mapping:
1:6 %>% map_dbl(partial( +, 2))
## [1] 345678
1:6 %>% map_dbl(partial( -, 1))
## [1] 0 -1 -2 -3 -4 -§
1:3 %>% map_dbl(partial( -", el = 4))

## [1] 321

1:3 %>% map_dbl(partial( -, e2 = 4))
## [1] -3 -2 -1
If you need to apply more than one function, for example
1:3 %%
map_dbl (partial("+", 2)) %>%
map_dbl(partial("x", 3))
## [1] 9 12 15

you can also simply combine the functions. The function composition,
°, works as this: (g° f)(x) = g(f(x)). So the preceding pipeline can also be
written as

1:3 %>% map_dbl(
compose(partial ("« , 3), partial("+, 2))

)
## [1] 9 12 15

With partial() and combine(), you can modify functions, but using
them does not exactly give you code that is easy to read. A more readable
alternative is using lambda expressions.
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Lambda Expressions

Lambda expressions are a concise syntax for defining anonymous
functions, that is, functions that we do not name. The name “lambda
expressions” comes from “lambda calculus,” a discipline in formal logic,
but in computer science, it is mostly used as a synonym for anonymous
functions. In some programming languages, you cannot create anonymous
functions; you need to name a function to define it. In other languages, you
have special syntax for lambda expressions. In R, you define anonymous
functions the same way that you define named functions. You always
define functions the same way; you only give them a name when you
assign a function definition to a variable.

If this sounds too theoretical, consider this example. When we
filtered values that are even, we defined a function, is_even(), to use as a

predicate.

is _even <- function(x) x %% 2 ==
1:6 %>% keep(is_even)

##[1] 24 6

We defined the function using the expression function(x) x %%
2 == 0 and then we assigned the function to the name is_even. Instead of
assigning the function to a name, we could use the function definition
directly in the call to keep() :

1:6 %>% keep(function(x) x %% 2 == 0)

## [1] 24 6

'The name comes from the syntax for functions that uses the Greek letter lambda,
. A function that adds two to its argument would be written as Ax.x + 2.
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So, R already has lambda expressions, but the syntax is verbose. In
purrr, you can use a formula as a lambda expression. You can define an
is_even() function using a formula like this

is_even_lambda <- ~ .x %% 2 == 0
1:6 %>% keep(is_even lambda)

##[1] 246

or use the formula directly in your pipeline.
1:6 %>% keep(~ .x %% 2 == 0)

# [1] 246

The variable .x in the expression will be interpreted as the first
argument to the lambda expression.

Lambda expressions are not an approach you can use to define
functions in general. They only work because purrr functions understand
formulae as function specifications. You cannot write

is_even_lambda <- ~ .x %% 2 ==
is_even_lambda(3)

This will give you an error. The error message is not telling you that you
try to use a formula as a function, unfortunately, but just that it cannot find
the function is_even_lambda. This is because R will look for a function
when you call a variable as a function and ignore other variables with the
same name. If you reassign to a variable

f <- function(x) 2 * x
f <5
(2)

## Exrror in f(2): could not find function "f"
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you are told that it cannot find a function with the name you call—not that
the variable does not refer to a non-function. That is the error you get if
you attempt to call a lambda expression outside a purrr function.

R’s rule for looking for functions can be even more confusing if there is
avariable in an inner scope and a function in an outer scope:

f <- function(x) 2 * x
g <- function() {
f <- 5 # not a function
f(2) # will look for a function

}
g()

# [1] 4

Here, the f() function in the outer scope is called because it is a
function; the variable in the inner scope is ignored.

Getting back to lambda expressions in purrr functions, you can use
them as more readable versions of partial evaluation.

1:4 %>% map_dbl(~ .x / 2)
## [1] 0.5 1.0 1.5 2.0
1:3 %>% map_dbl(~ 2 + .x)
# [1]1 34 5

1:3 %>% map_dbl(~ 4 - .x)
# [1] 321

1:3 %>% map_dbl(~ .x - 4)

## [1] -3 -2 -1
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Or you can use them for more readable versions of function
composition.

1:3 %>% map_dbl(~ 3 * (.x + 2))
# [1] 9 12 15

If you need a lambda expression with two arguments, you can use .X
and .y as the first and second argument, respectively.

map2_dbl(1:3, 1:3, ~ .X + .y)
## [1] 24 6

If you need more than two arguments, you can use .z for the n’th
argument:

list(1:3, 1:3, 1:3) %>% pmap_dbl(~ .1 + .2 + .3)

## [1] 0.6 0.6 0.6
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Manipulating Data
Frames: dplyr

The dplyr package resembles the functionality in the purrr package,
but it is designed for manipulating data frames. It will be loaded with the
tidyverse package, but you can also load it using

library(dplyr)

The usual way that you use dplyr is similar to how you use purrr.

You string together a sequence of actions in a pipeline, with the actions
separated by the %>% operator. The difference between the two packages
is that the purrr functions work on sequences, while the dplyr functions
work on data frames.

This package is huge and more functionality is added in each new
release, so it would be impossible for me to describe everything you can
do with dplyr. I can only give you a flavor of the package functionality and
refer you to the documentation for more information.

Selecting Columns

One of the simplest operations you can do on a data frame is selecting one
or more of its columns. You can do this by indexing with $:

iris_df <- as_tibble(iris)
print(iris df, n = 3)

© Thomas Mailund 2019 109
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## # A tibble: 150 x 5
##  Sepal.Length Sepal.Width Petal.Length

## <dbl> <dbl> <dbl>

## 1 5.1 3.5 1.4

#H# 2 4.9 3 1.4

## 3 4.7 3.2 1.3

# # ... with 147 more rows, and 2 more variables:
## # Petal.Width <dbl>, Species <fct>

head(iris_df$Species)

## [1] setosa setosa setosa setosa setosa setosa
## Levels: setosa versicolor virginica

This, however, does not work well with pipelines where a data frame
is flowing through from action to action. In dplyr, you have the function
select() for picking out columns. You can give it one or more column
names, and it will give you a data frame containing only those columns.

iris_df %>%
select(Sepal.Length, Species) %>%
print(n = 3)

## # A tibble: 150 x 2
##  Sepal.Length Species

#H <dbl> <fct>
# 1 5.1 setosa
#i# 2 4.9 setosa
# 3 4.7 setosa
# # ... with 147 more rows

You can also use complements when selecting columns; just put a
minus in front of the column names.
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iris_df %>%
select(-Species) %>%
print(n = 3)

## # A tibble: 150 x 4
##  Sepal.Length Sepal.Width Petal.Length

Hit <dbl> <dbl> <dbl>

H## 1 5.1 3.5 1.4

## 2 4.9 3 1.4

## 3 4.7 3.2 1.3

# # ... with 147 more rows, and 1 more variable:
## # Petal.Width <dbl>

iris_df %>%
select(-Species, -Sepal.Length) %>%
print(n = 3)

## # A tibble: 150 x 3
##  Sepal.Width Petal.Length Petal.Width

#Hi <dbl> <dbl> <dbl>
## 1 3.5 1.4 0.2
## 2 3 1.4 0.2
## 3 3.2 1.3 0.2
#H# ... with 147 more rows

You do not need to use column names. You can also use indices.

iris_df %>%
select(1) %>%
print(n = 3)

## # A tibble: 150 x 1
##  Sepal.length
#H <dbl>
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# 1 5.1
#t 2 4.9
## 3 4.7

## # ... with 147 more rows

iris_df %%
select(1:3) %>%
print(n = 3)

## # A tibble: 150 x 3
##  Sepal.lLength Sepal.Width Petal.Length

#H <dbl> <dbl> <dbl>
H## 1 5.1 3.5 1.4
## 2 4.9 3 1.4
## 3 4.7 3.2 1.3
#H# ... with 147 more rows

This, of course, is less informative about what is being selected when
you read the code. The second selection in the preceding code shows that
you can extract ranges. You can also do this with column names.

iris_df %>%
select(Petal.Length:Species) %>%
print(n = 3)

## # A tibble: 150 x 3
## Petal.Length Petal.Width Species

#H <dbl> <dbl> <fct>
# 1 1.4 0.2 setosa
# 2 1.4 0.2 setosa
## 3 1.3 0.2 setosa
#H # ... with 147 more rows
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With select () you can also use various predicates for selecting
columns. For example, you can pick columns based on the properties of
the names. The starts_with() function lets you select columns based on
the prefix of the column names and the ends_with() function based on
the suffix of the column names:

iris _df %>%
select(starts_with("Petal")) %>%
print(n = 3)

## # A tibble: 150 x 2
##  Petal.Length Petal.Width

Hit <dbl> <dbl>
# 1 1.4 0.2
# 2 1.4 0.2
## 3 1.3 0.2
#H # ... with 147 more rows

iris_df %>%
select(-starts_with("Petal")) %>%
print(n = 3)

## # A tibble: 150 x 3
##  Sepal.Length Sepal.Width Species

Hit <dbl> <dbl> <fct>
# 1 5.1 3.5 setosa
#H# 2 4.9 3 setosa
# 3 4.7 3.2 setosa
# # ... with 147 more rows

iris_df %%
select(starts_with("Petal"), Species) %>%
print(n = 3)
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## # A tibble: 150 x 3
## Petal.Length Petal.Width Species

#H <dbl> <dbl> <fct>
# 1 1.4 0.2 setosa
## 2 1.4 0.2 setosa
# 3 1.3 0.2 setosa
# # ... with 147 more rows

iris_df %%
select(starts_with("PETAL", ignore.case = TRUE)) %>%
print(n = 3)

## # A tibble: 150 x 2
##  Petal.lLength Petal.Width

#H <dbl> <dbl>
H## 1 1.4 0.2
## 2 1.4 0.2
## 3 1.3 0.2
## ... with 147 more rows

iris_df %>%
select(starts_with("S")) %>%
print(n = 3)

## # A tibble: 150 x 3
##  Sepal.lLength Sepal.Width Species

#H <dbl> <dbl> <fct>
# 1 5.1 3.5 setosa
#i# 2 4.9 3 setosa
## 3 4.7 3.2 setosa
# # ... with 147 more rows

iris_df %>%
select(ends_with("Length")) %>%
print(n = 3)
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A tibble: 150 x 2
Sepal.Length Petal.Length
<dbl> <dbl>
5.1 1.4
4.9 1.4
4.7 1.3

. with 147 more rows
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If you use the contains() function, you select columns whose names

contain a string.

iris_df %>%

#
Hit
#Hit
#H#
#Hit
#Hit
#HH#

#

1
2
3
#

select(contains("ng")) %>%
print(n = 3)

A tibble: 150 x 2
Sepal.Length Petal.Length
<dbl> <dbl>
5.1 1.4
4.9 1.4
4.7 1.3

. with 147 more rows

The most powerful predicate function is matches (). It lets you select

columns using regular expressions. For the iris_df example, there is not

much that you can select using a regular expression that you cannot select

using one of the simpler functions, but consider this table:

df <- tribble(
~alx, ~ax, ~a2x, ~b2, ~b2y, ~by,

1, 2, 3,4,5,6
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We can pick a column that contains an integer using the regular
expression . *\\d.*:

df %>%
select(matches(".*\\d.*")) %>%
print(n = 3)

## # A tibble: 1 x 4

## alx  a2x b2 b2y
##  <dbl> <dbly> <dbl> <dbl>
## 1 1 3 4 5

If we need the names to have non-empty strings before and after the
digit, we can use this expression:

df %>%
select(matches(".+\\d.+")) %>%
print(n = 3)

# # A tibble: 1 x 3

## alx a2x  bzy
# <dbl> <dbl> <dbl>
## 1 1 3 5

You can also use select() to rename columns. If you use a named
parameter, the columns you select will get the names you use for the
function parameters.

iris_df %>%
select(sepal length = Sepal.length,
sepal width = Sepal.Width) %>%
print(n = 3)

## # A tibble: 150 x 2
## sepal length sepal width
## <dbl> <dbl>
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1 5.1 3.5
#t 2 4.9 3
## 3 4.7 3.2

## # ... with 147 more rows

Since select() removes the columns you do not select, it might not
always be the best approach. A similar function to select(), where you
do not lose columns, is rename (). With this function, you can rename
columns and keep the remaining columns as well.

iris_df %>%
rename(sepal length = Sepal.length,
sepal width = Sepal.Width) %>%
print(n = 3)

## # A tibble: 150 x 5
## sepal length sepal width Petal.Length

T <dbl> <dbl> <dbl>

## 1 5.1 3.5 1.4

#t 2 4.9 3 1.4

# 3 4.7 3.2 1.3

# # ... with 147 more rows, and 2 more variables:
## # Petal.Width <dbl>, Species <fct>

Filter

While select() extracts a subset of columns, the filter() function does
the same for rows.

The iris_df contains three different species. We can see this using the
distinct() function. This function is also from the dplyr package, and it
gives you all the unique rows from selected columns.
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iris_df %>%
distinct(Species)

## # A tibble: 3 x 1

##  Species
#  <fct>
## 1 setosa

## 2 versicolor
## 3 virginica

We can select the rows where the species is “setosa” using filter():
iris_df %%

filter(Species == "setosa") %>%

print(n = 3)

## # A tibble: 50 x 5
##  Sepal.lLength Sepal.Width Petal.Length

#H <dbl> <dbl> <dbl>

## 1 5.1 3.5 1.4

## 2 4.9 3 1.4

## 3 4.7 3.2 1.3

# # ... with 47 more rows, and 2 more variables:
## # Petal.Width <dbl>, Species <fct>

We can combine filter() and select() in a pipeline to get a subset of
the columns as well as a subset of the rows.

iris_df %%
filter(Species == "setosa") %>%
select(ends_with("Length"), Species) %>%
print(n = 3)

## # A tibble: 50 x 3
##  Sepal.Length Petal.Length Species
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Hit <dbl> <dbl> <fct>
## 1 5.1 1.4 setosa
## 2 4.9 1.4 setosa
## 3 4.7 1.3 setosa

## # ... with 47 more rows

Generally, we can string together as many dplyr (or purrr) functions
as we desire in pipelines.

iris_df %>%
filter(Species != "setosa") %>%
distinct(Species) %>%
print(n = 3)

# # A tibble: 2 x 1
##  Species

#H <fct>

## 1 versicolor

## 2 virginica

We can use more than one columns to filter by

iris_df %>%
filter(Sepal.Length > 5, Petal.Width < 0.4) %>%
print(n = 3)

## # A tibble: 15 x 5
##  Sepal.lLength Sepal.Width Petal.Length

#H <dbl> <dbl> <dbl>

## 1 5.1 3.5 1.4

#i# 2 5.4 3.7 1.5

## 3 5.8 4 1.2

#H# ... with 12 more rows, and 2 more variables:
## # Petal.Width <dbl>, Species <fct>
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We can also use functions as a predicate, for example, the between()
function to select numbers in a given range.
iris_df %>%

filter (between(Sepal.Width, 2, 2.5)) %>%

print(n = 3)

## # A tibble: 19 x 5
##  Sepal.Length Sepal.Width Petal.Length

#Ht <dbl> <dbl> <dbl>

## 1 4.5 2.3 1.3

#H# 2 5.5 2.3 4

## 3 4.9 2.4 3.3

# # ... with 16 more rows, and 2 more variables:
## # Petal.Width <dbl>, Species <fct>

We cannot use the functions starts with(), ends with(), and so
on. that we can use with select(). This does not mean, however, that we
cannot filter rows using string patterns. We just need different functions.
For example, we can use str_starts() from the stringr package. We
return to stringr in Chapter 8.

iris_df %>%
filter(str_starts(Species, "v")) %>%
print(n = 3)

## # A tibble: 100 x 5
##  Sepal.Length Sepal.Width Petal.Length

#Ht <dbl> <dbl> <dbl>

## 1 7 3.2 4.7

#i# 2 6.4 3.2 4.5

# 3 6.9 3.1 4.9

## # ... with 97 more rows, and 2 more variables:
## # Petal.Width <dbl>, Species <fct>
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iris_df %>%
filter(str_ends(Species, "r")) %>%
print(n = 3)

## # A tibble: 50 x 5
##  Sepal.Length Sepal.Width Petal.Length

Hit <dbl> <dbl> <dbl>

H## 1 7 3.2 4.7

# 2 6.4 3.2 4.5

# 3 6.9 3.1 4.9

# # ... with 47 more rows, and 2 more variables:
## # Petal.Width <dbl>, Species <fct>

While filter() selects rows by applying predicates on individual
columns, other filter variants will use predicates over more than one
column.

The filter all() function will apply the predicate over all columns.
You must provide an expression where you use . (dot) for the table cell
value and wrap the expression in one of two functions: any_var() or
all var().Ifyouuseany var(), itsuffices that one column satisfies
the predicate for the row to be included; if you use all var(), then all
columns must satisfy the predicate.

We can require that any value in the iris_df data must be larger than
five:
iris_df %%

select(-Species) %>%
filter_all(any vars(. > 5)) %>%
print(n = 3)
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## # A tibble: 118 x 4
##  Sepal.Length Sepal.Width Petal.Length

## <dbl> <dbl> <dbl>

## 1 5.1 3.5 1.4

#H# 2 5.4 3.9 1.7

# 3 5.4 3.7 1.5

# # ... with 115 more rows, and 1 more variable:
# # Petal.Width <dbl>

The expression . > 5 is not meaningful if . is a string, so I had to
remove the Species column before I filtered. Rarely will we accept to lose
an informative variable. If you want to keep a column, but not apply the
predicate to values in it, you can use the filter at() function.

iris_df %>%
filter_at(vars(-Species), any_vars(. > 5)) %>%
print(n = 3)

## # A tibble: 118 x 5
##  Sepal.Length Sepal.Width Petal.Length

#HH <dbl> <dbl> <dbl>

## 1 5.1 3.5 1.4

## 2 5.4 3.9 1.7

## 3 5.4 3.7 1.5

## # ... with 115 more rows, and 2 more variables:
## # Petal.Width <dbl>, Species <fct>

You can give filter at() avector of strings or a vector of variables
(unquoted column names). Because I need to negate Species to select
all other columns, I used vars() here. In other cases, you can use either
option.
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iris_df %>%
filter_at(c("Petal.Length", "Sepal.length"),
any vars(. > 0)) %>%
print(n = 3)

## # A tibble: 150 x 5
##  Sepal.Length Sepal.Width Petal.Length

#Ht <dbl> <dbl> <dbl>

## 1 5.1 3.5 1.4

#t 2 4.9 3 1.4

## 3 4.7 3.2 1.3

# # ... with 147 more rows, and 2 more variables:
## # Petal.Width <dbl>, Species <fct>

iris_df %>%
filter_at(vars(Petal.Length, Sepal.length),
any vars(. > 0)) %>%
print(n = 3)

## # A tibble: 150 x 5
##  Sepal.lLength Sepal.Width Petal.Length

## <dbl> <dbl> <dbl>

#H 1 5.1 3.5 1.4

#H 2 4.9 3 1.4

# 3 4.7 3.2 1.3

# # ... with 147 more rows, and 2 more variables:
## # Petal.Width <dbl>, Species <fct>

You can use filter if() to use a predicate over the columns:

iris_df %>%
filter_if(is.numeric, all _vars(. < 5)) %>%
print(n = 3)
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## # A tibble: 22 x 5
##  Sepal.Length Sepal.Width Petal.Length

#Ht <dbl> <dbl> <dbl>

## 1 4.9 3 1.4

## 2 4.7 3.2 1.3

## 3 4.6 3.1 1.5

## # ... with 19 more rows, and 2 more variables:
## # Petal.Width <dbl>, Species <fct>

You can use functions or lambda expressions as the predicate.

Consider a case where we have numbers with missing data in a table.
If we want to filter the rows where all values are greater than three, we can
use filter all():

df <- tribble(
~A, ~B, ~C,
1, 2, 3,
4, 5, NA,
11, 12, 13,
22, 22, 1
)
df %>% filter_all(all vars(. > 3))

#Ht # A tibble: 1 x 3

#H A B C
##  <dbl> <dbl> <dbl>
# 1 11 12 13

It removes the first two and the last row because they all contain values
smaller or equal to three. It also deletes the third row because NA is not
considered greater than three. We can restrict the tests to the columns that
do not contain missing values:

df %>%
filter if(~ all(!is.na(.)), all_vars(. > 3))
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## # A tibble: 3 x 3

#i# A B C
# <dbl> <dbl> <dbl>
## 1 4 5 NA
## 2 11 12 13
## 3 22 22 1

This removes column C from the tests. It means that we also keep the
last row even though C has a value smaller than three.

If you want to keep the two middle row but not the first or last, you can
write a more complex predicate and use filter all().

df %>% filter_all(all_vars(is.ma(.) | . > 3))

# # A tibble: 2 x 3

## A B C
# <dbl> <dbl> <dbl>
## 1 4 5 NA
## 2 11 12 13

You need to use the | vector-or. The expression needs to be a vector
expression so you cannot use | |.

Many dplyr functions have all, at,and if variants, but I will only
describe the frequently used functions here. For the others, I refer to the
package documentation.

Sorting

If you want to sort rows by values in selected columns, the function you
want is called arrange(). You can sort by one or more columns:
iris df %>%

arrange(Petal.Length) %>%

print(n = 5)
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## # A tibble: 150 x 5
##  Sepal.Length Sepal.Width Petal.Length

#H <dbl> <dbl> <dbl>

## 1 4.6 3.6 1

## 2 4.3 3 1.1

## 3 5.8 4 1.2

# 4 5 3.2 1.2

## 5 4.7 3.2 1.3

## ... with 145 more rows, and 2 more variables:
## # Petal.Width <dbl>, Species <fct>

iris_df %>%
arrange(Sepal.Llength, Petal.lLength) %>%
print(n = 5)

## # A tibble: 150 x 5
##  Sepal.lLength Sepal.Width Petal.Length

#Ht <dbl> <dbl> <dbl>

# 1 4.3 3 1.1

## 2 4.4 3 1.3

# 3 4.4 3.2 1.3

## 4 4.4 2.9 1.4

## 5 4.5 2.3 1.3

# # ... with 145 more rows, and 2 more variables:
## # Petal.Width <dbl>, Species <fct>

If you want to sort in descending order, you can use the function
desc().

iris_df %>%
arrange(desc(Petal.Length)) %>%
print(n = 5)
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## # A tibble: 150 x 5
##  Sepal.Length Sepal.Width Petal.Length

#H <dbl> <dbl> <dbl>

## 1 7.7 2.6 6.9

#i# 2 7.7 3.8 6.7

## 3 7.7 2.8 6.7

# 4 7.6 3 6.6

#4 5 7.9 3.8 6.4

# # ... with 145 more rows, and 2 more variables:
## # Petal.Width <dbl>, Species <fct>

Modifying Data Frames

When we work with data frames, we usually want to compute values based
on the variables (columns) in our tables. Filtering rows and columns will
only get us so far.

The mutate() function lets us add columns to a data frame based on
expressions that can involve any of the existing columns. Consider a table
of widths and heights.

df <- tribble(
~height, ~width,

10, 12,
42, 24,
14, 12

We can add an area column using mutate() and this expression:

df %>% mutate(area = height * width)

## # A tibble: 3 x 3
##  height width area
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#H <dbl> <dbl> <dbl>
H## 1 10 12 120
## 2 42 24 1008
## 3 14 12 168

If you add columns to a data frame, you can refer to variables you
have already added. For example, if your height and width data are in
inches and you want them in centimeters, and you also want the area in
centimeters squared, you can do this:

cm_per_inch = 2.54

df %>% mutate(
height c¢cm = cm per inch * height,
width_cm = cm_per inch * width,
area_cm = height cm * width_cm

)

## # A tibble: 3 x 5
##  height width height_cm width_cm area_cm
## <dbl> <dbl> <dbl> <dbl> <dbl>

# 1 10 12 25.4 30.5 774.
#H# 2 42 24 107. 61.0 6503.
#t 3 14 12 35.6 30.5 1084.

The following expression, however, will not work since you cannot
refer to variables you are adding later in the mutate() call.

df %>% mutate(

area_cm = height cm * width_cm,
height cm = cm_per_inch * height,
width cm = cm per inch * width
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If you do not give the new variable a name, that is, you call mutate()
with named parameters, then the expression will become the variable
name:

df %>% mutate(cm per inch * height)

## # A tibble: 3 x 3
##  height width “cm_per_inch * height”

#Ht <dbl> <dbl> <dbl>
# 1 10 12 25.4
## 2 42 24 107.

## 3 14 12 35.6

In this example, the units (inches and centimeters), are not encoded
with the data, and in future computations, you might end up mixing
the wrong units. If you use the units package—which is not part of the
Tidyverse—you can make the units explicit, automatically convert between
units where that makes sense, and you will get unit type safety as a bonus.

library(units)

df %>% mutate(

height in = units::as_units(height, "in"),
width in = units::as_units(width, "in"),
area_in = height_in * width_in,

height cm = units::set_units(height in, "cm"),
width cm = units::set_units(width in, "cm"),
area_cm = units::set_units(area in, "cm*2")

)

## # A tibble: 3 x 8
##  height width height in width_in area in

#H <dbl> <dbl> [in] [in] [in*2]
## 1 10 12 10 12 120
## 2 42 24 42 24 1008
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## 3 14 12 14 12 168
## # ... with 3 more variables: height cm [cm],
## # width_cm [cm], area_cm [cm*2]

This is possible because tibbles can contain classes of various types,
which the units package exploits. Tibbles use an interface that lets you
define how your own classes should be displayed,' but this is beyond the
scope of this book.

In the preceding example, we created unit-carrying values for the
original data table, but the original height and weight columns are
still around. We could use select () to remove them, but the function
transmute() already does this for us.

df %>% transmute(
height_in = units::as_units(height, "in"),

width in = units::as_units(width, "in"),
area_in = height_in * width_in,

height cm = units::set_units(height in, "cm"),
width _cm = units::set_units(width in, "cm"),
area_cm = units::set_units(area_in, "cm*2")

## # A tibble: 3 x 6
##  height in width_in area in height cm width_cm

# [in] [in] [in*2] [cm] [cm]
## 1 10 12 120 25.40 30.48
## 2 42 24 1008 106.68 60.96
## 3 14 12 168 35.56 30.48
## # ... with 1 more variable: area cm [cm*2]

'http://tinyurl.com/yya2btby
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When you use transmute() instead of mutate(), the variables that you
are not assigning to will be removed.

As with filtering, the expressions you use when mutating a data frame
must be vector expressions. Consider this example:

df <- tibble(
x = rnoxrm(3, mean = 12, sd = 5),

)

my abs <- function(x) if (x < 0) -x else x
df %>% mutate(my_abs(x))

## Warning in if (x < 0) -x else x: the condition has
## length > 1 and only the first element will be used

## # A tibble: 3 x 2

#t X “my_abs(x)"
#H <dbl> <dbl>
## 1 16.1 16.1
## 2 -2.07 -2.07
# 3 14.9 14.9

It fails because the function my_abs () (my version of the abs ()
function) is not a vector expression. It is not a vector expression because of
X in the if expression.

If we use the built-in abs () function, then there is no problem with the
expression; it handles vectors.

df %>% mutate(abs(x))

## # A tibble: 3 x 2

#t x “abs(x)"
# <dbl> <dbl>
## 1 16.1 16.1
## 2 -2.07 2.07

## 3 14.9 14.9
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If you use the ifelse() vector version of if expressions, you get a
vector expression.

ifelse abs <- function(x) ifelse(x < 0, -x, Xx)
df %>% mutate(ifelse_abs(x))

## # A tibble: 3 x 2

it x “ifelse abs(x)"
##  <dbl> <dbl>
## 1 16.1 16.1
## 2 -2.07 2.07
## 3 14.9 14.9

Or you can use the Vectorize() function to make a vector expression
out of a function that does not handle vectors.

my_abs <- Vectorize(my abs)
df %>% mutate(my_abs(x))

#i# # A tibble: 3 x 2

#t X “my_abs(x)"
##  <«dbl> <dbl>
## 1 16.1 16.1
## 2 -2.07 2.07
# 3 14.9 14.9

If you need to map the input to several different output values, you
can nest ifelse() expressions arbitrarily deep, but it gets difficult to read.
A function that alleviates this problem substantially is case_when(). You
can give it a sequence of predicates with matching expressions, and it will
return the expression for the first matching predicate.
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Consider this example where we use case_when() to categorize the
variable x based on its value:

df <- tibble(x = xrnoxm(100))

df %>%
mutate(
x_category = case_when(
X - mean(x) < -2 * sd(x) ~ "small",
x - mean(x) > 2 * sd(x) ~ "large",
TRUE ~ "medium"
)
) %5>%

print(n = 3)

# # A tibble: 100 x 2

#Hit X X_category
#Ht <dbl> <chr>

## 1 -0.311 medium

# 2 0.0992 medium

# 3 -1.26  medium

# # ... with 97 more rows

The TRUE line corresponds to the else part of an if-else statement.

Grouping and Summarizing

In many analyses, we need summary statistics of our data. If you can map
one or more of your columns into a single summary, you can use the
summarise() function.

df <- tibble(x = rmorm(100), y = rnorm(100))
df %>% summarise(mean x = mean(x), mean_ y = mean(y))
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## # A tibble: 1 x 2
#it mean_x mean_y
## <dbl> <dbl>
## 1 -0.0529 0.0141

In this example, we summarized our data as the mean of variables x
andy.

If you split your data into different classes and want to work on the data
per group, you can use the function group _by().

classify <- function(x) {
case_when(
X - mean(x) < -2 * sd(x) ~ "small",
x - mean(x) > 2 * sd(x) ~ "large",
TRUE ~ "medium"

df %>%
mutate(x_category = classify(x)) %>%
group_by(x category) %>%
print(n = 3)

## # A tibble: 100 x 3

## # Groups: x_category [2]
#Ht X y X_category
## <dbl> <dbl> <chr>

## 1 -0.702 0.959 medium

## 2 1.10 0.557 medium

## 3 -0.667 0.399 medium

## # ... with 97 more rows

The result is a data frame that, when we print it, doesn’t look different
from before we grouped the data.
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df %>%
mutate(x_category = classify(x)) %>%
print(n = 3)

# # A tibble: 100 x 3

## X y x_category
#H <dbl> <dbl> <chr>

## 1 -0.702 0.959 medium

## 2 1.10 0.557 medium

## 3 -0.667 0.399 medium
## ... with 97 more rows

In the header, however, you will notice the line
# Groups: x_category [3]

This tells you that something is different when you have grouped your
data. This is apparent when you combine grouping with summarizing.

df %>%
mutate(x_category = classify(x)) %>%
group_by(x_category) %>%
summarise(mean x = mean(x), no x = n())

## # A tibble: 2 x 3
##  x_category mean_x no_x

#  <chr> <dbl> <int>
## 1 large 2.34 4
## 2 medium -0.153 96

When you group your data and then summarize, you get a per-group
summary statistics. Here, we calculate the mean and the number of
observations in each category (the function n() gives you the number of
observations).
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You can get the variables your data is grouped by using the group
vars () function.

df %>%
mutate(x_category = classify(x)) %>%
group_by(x category) %>%
group_vars()

## [1] "x_category"
You can group data by more than one variable.

df <- tibble(x = rmorm(100), y = rnorm(100))

df %>%
mutate(
x_category = classify(x),
y_category = classify(y)
) %%

group_by(x category, y category) %>%
group_vars()

## [1] "x_category" "y category"

If you do, you will get summaries for each combination of the grouping

variables.
df %>%
mutate(
x_category = classify(x),
y _category = classify(y)
) %>%

group_by(x category, y category) %>%
summarise(mean x = mean(x), mean_ y = mean(y))

## # A tibble: 6 x 4
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## # Groups: x_category [3]
##  x_category y category mean_x mean_y

#  <chr> <chr> <dbl>  <dbl>
## 1 large medium 2.02 -0.836
## 2 medium large 0.871 1.98
## 3 medium medium -0.118 0.0213
## 4 medium small -0.679 -2.69
## 5 small large -3.48 1.96
# 6 small medium -2.74 -0.0693

If you group by one variable and summarize another, you get
summaries for both variables according for each of the grouped by

variables.
df %>%
mutate(
x_category = classify(x),
y_category = classify(y)
) %>%

group_by(x category) %>%
summarise(mean x = mean(x), mean_y = mean(y))

## # A tibble: 3 x 3
##  x_category mean_x mean_y

#  <chr> <dbl>  <dbl>
## 1 large 2.02 -0.836
# 2 medium -0.114 0.0133
## 3 small -2.98 0.607

Here, we calculate the mean of x and y for each category of x value. In
general, you can use any number of variables to group the data and any
number of variables to summarize, and the summaries will be computed

per group.
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When you have grouped your data by more than one variable, a
summary will remove the last group you added, that is, the last variable
you grouped by. A summary gives you a new data frame containing the
grouping variable and the summaries. If you have grouped with more than
one variable, this data frame will be grouped by all but the last grouping
variables.

For example, if we group by variables A and B and then summarise
another variable, C, the result will be grouped by A and not B. If you group
by A, B, and D, the result will be a data frame grouped by A and B.

df2 <- tribble(
NA) NB) NCJ ND)
"left", "up", 2, "yes",
"right", "up", 5, "no",
"left", "down", 2, "yes",
"left", "down", 7, "no",
"left", "down", 3, "no",
"right", "up", 8, "yes",
"right", "up", 2, "yes",
"right", "up", 8, "no

)

df2 %>% group_by(A, B) %>%
summarise(min ¢ = min(C), max_c = max(C))

# # A tibble: 3 x 4
## # Groups: A [2]

# A B min_c max_c
##  <chr> <chr> <dbl> <dbl>
## 1 left down 2 7
## 2 left up 2 2
## 3 right up 2 8
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df2 %>% group_by(A, B) %>%
summarise(min ¢ = min(C), max_c = max(C)) %>%
summarise(max_diff = max(max _c - min_c))

# # A tibble: 2 x 2
# A max_diff
#  <chr> <dbl>
# 1 left 5
## 2 right 6

df2 %>% group_by(A, B, D) %>%
summarise(min ¢ = min(C), max_c = max(C))

# # A tibble: 5 x 5
## # Groups: A, B [3]

# A B D min_c max_c
##  <chr> <chr> <chr> <dbl> <dbl>
## 1 left down no 3 7
## 2 left down yes 2 2
## 3 left wup yes 2 2
## 4 right up no 5 8
## 5 right up yes 2 8

df2 %>% group_by(A, B, D) %>%
summarise(min_c = min(C), max_c = max(C)) %>%
summarise(max_diff = max(max c - min _c))

# # A tibble: 3 x 3
## # Groups: A [2]
# A B max_diff
#  <chr> <chr> <dbl>

## 1 left down 4
## 2 left up 0
## 3 right up 6
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The order you use in group_by() is important here. If you flip the
variables, you will get a data frame that is still grouped by B instead.

df2 %>% group_by(A, B) %>%
summarise(min ¢ = min(C), max_c = max(C))

## # A tibble: 3 x 4
## # Groups: A [2]

# A B min_c max_c
##  <chr> <chr> <dbl> <dbl>
## 1 left down 2 7
## 2 left wup 2 2
## 3 right up 2 8

The way grouping variables are removed one by one each time you
call summarise() is a potential source of errors. Say you have variables
A, B, C, and D, grouped by A, B, and D. Within each combination of these,
you define a distance as the maximum value of C minus its minimum
value. You want to know the smallest difference between maximum and
minimum in the overall data. You might, reasonably, try this:

You compute the minimum and maximum per group:

df2 %>% group_by(A, B, D) %>%
summarise(min ¢ = min(C), max_c = max(C)) %>%

## Error: <text>:3:0: unexpected end of input

## 1: df2 %% group_by(A, B, D) %>%

# 2: summarise(min_c = min(C), max_c = max(C)) %>%
# "

Then you try another summarise() to find the minimum between
max_c and min_c for each row in the result:
df2 %>% group_by(A, B, D) %>%

summarise(min ¢ = min(C), max_c = max(C)) %>%

summarise(min_diff = min(max_c - min _c))
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## # A tibble: 3 x 3
## # Groups: A [2]
# A B min_diff
#t  <chr> <chr> <dbl>

#Ht 1 left down 0
## 2 left up 0
## 3 right up 3

This, however, gives you the smallest difference for each combination
of A and B, but not the overall smallest. The first summarise only removes
the D group (and the second removes B).

If you have grouped your data, or you get grouped data from one
summary as in the preceding example, you can remove the groups again
using ungroup (). Once you have done this, you can compute global

summaries again.

df2 %>% group_by(A, B, D) %>%
summarise(min ¢ = min(C), max _c = max(C)) %>%
ungroup() %>%
summarise(min_diff = min(max_c - min c))

#i# # A tibble: 1 x 1

##  min_diff
g <dbl>
# 1 0

Grouping is not only useful when collecting summaries of your
data. You can also add columns to your data frame based on per-group
computations using mutate():

df %>%
mutate(
x_category = classify(x),
y_category = classify(y)
) %%
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group_by(x category) %>%
mutate(mean_x = mean(x), mean_y = mean(y)) %>%
print(n = 5)

## # A tibble: 100 x 6
## # Groups:  x_category [3]

#H X y x_category y category mean_x
i <dbl>  <dbl> <chr> <chr> <dbl>
# 1 0.352 1.23 medium medium -0.114
## 2 -2.84 -0.705 small medium -2.98
# 3 0.332 -0.0964 medium medium -0.114
# 4 1.37 -1.28 medium medium -0.114
## 5 -0.893 -0.373 medium medium -0.114
#H # ... with 95 more rows, and 1 more variable:
## # mean_y <dbl>

When you calculate a summary and then mutate, you create columns
where a summary parameter takes values based on the groupings, but they
are combined with the existing data rather than extracted as a new data
frame as summarise() would do.

Amutate() without a group_by() will give you summaries for the
entire data.

df %>%
mutate(
x_category = classify(x),
y _category = classify(y)
) %%

mutate(mean x = mean(x), mean_y = mean(y))
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## # A tibble: 100 x 6

#Hit X y X_category y category mean_x
#Ht <dbl>  <dbl> <chr> <chr> <dbl>
# 1 0.352 1.23 medium medium -0.157
#H 2 -2.84 -0.705 small medium -0.157
# 3 0.332 -0.0964 medium medium -0.157
# 4 1.37 -1.28 medium medium -0.157
# 5 -0.893 -0.373 medium medium -0.157
# 6 -0.561 0.465 medium medium -0.157
# 7 -1.14 -0.874 medium medium -0.157
#H 8 0.812 -0.897 medium medium -0.157
# 9 0.162 0.634 medium medium -0.157
## 10 -1.12 -0.311 medium medium -0.157
# # ... with 90 more rows, and 1 more variable:

## # mean_y <dbl>

In contrast, if you group before adding variables to the data, then the

summaries are per group.

df %>%
mutate(
x_category = classify(x),
y _category = classify(y)
) %%

group_by(x_category) %>%
mutate(mean _x = mean(x), mean_y = mean(y))

## # A tibble: 100 x 6
## # Groups:  x_category [3]

Hit
#Ht
#
Hit

X y X_category y category mean_x

<dbl>  <dbl> <chr> <chr> <dbl>

1 0.352 1.23 medium medium -0.114
2 -2.84 -0.705 small medium -2.98
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# 3 0.332 -0.0964 medium medium -0.114
# 4 1.37 -1.28 medium medium -0.114
# 5 -0.893 -0.373 medium medium -0.114
## 6 -0.561 0.465 medium medium -0.114
#H 7 -1.14 -0.874 medium medium -0.114
# 8 0.812 -0.897 medium medium -0.114
# 9 0.162 0.634 medium medium -0.114
# 10 -1.12 -0.311 medium medium -0.114

# # ... with 90 more rows, and 1 more variable:
## # mean_y <dbl>

You can combine data-wide summaries with grouped summaries if

you calculate the global summaries before you group.

df %>%
mutate(
x_category = classify(x),
y_category = classify(y)
) %>%

mutate(mean_y = mean(y)) %>%
group_by(x_category) %>%
mutate(mean x = mean(x)) %>%
distinct(mean_x, mean_y)

## # A tibble: 3 x 3

## # Groups: x_category [3]
## mean_x mean_y X _category
## <dbl> <dbl> <chr>

## 1 -0.114 0.0142 medium

## 2 -2.98 0.0142 small

## 3 2.02 0.0142 large
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Here I used mutate() + distinct() rather than summarise() to keep

grouping variables and the summaries.

the mean for x for each x_category as well as the mean of y for each

If you need to compute summaries with different groups, for example,

y_category, then you can call group _by(x_category) for summarizing X,

followed by group by(y_category) for changing the grouping so you can

summarize y.

df %>%
mutate(
x_category = classify(x),
y _category = classify(y)
) %>%

#
#Hit
#Hit
#H
#H
#Hit
#Ht
#H
Hit
#Ht

#
#

oV B WN R

group_by(x_category) %>%
mutate(mean x = mean(x)) %>%
group_by(y category) %>%
mutate(mean_y = mean(y)) %>%
distinct(
x_category, mean x,
y_category, mean_y

A tibble: 6 x 4
Groups: y category [3]
X_category mean_x y category

<chr> <dbl> <chr>
medium -0.114 medium
small -2.98 medium
medium -0.114 large
medium -0.114 small
small -2.98 large
large 2.02 medium

mean_y
<dbl>

0.00175
0.00175
1.97

.69

1.97
0.00175
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Joining Tables

It is not uncommon to have your data in more than one table. This could
be because the tables are created from different calculations, for example,
different kinds of summaries, or it can be because you got the data from
different files.

If you merely need to combine tables by row or column, then you can
use the bind_rows() and bind_columns() functions which do precisely
what you would expect.

df1 <- tibble(
A = pasteo("a", 1:2),
B = pasteo("b", 1:2)
)
df2 <- tibble(
A
B

pasteo("a", 3:4),
pasteo("b", 3:4)

)
df3 <- tibble(

C = pasteo("c", 1:2),
D = pasteo("d", 1:2)
)
bind_rows(df1, df2)

## # A tibble: 4 x 2

# A B
#t  <chr> <chr>
# 1 a1 b1
# 2 a2 b2
## 3 a3 b3

# 4 a4 ba
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bind_cols(df1, df3)

# # A tibble: 2 x 4

#H A B C D

#  <chr> <chr> <chr> <chr>
## 1 a1 b1 cl d1i

# 2 a2 b2 c2 d2

MANIPULATING DATA FRAMES: DPLYR

When you combine rows, the tables must have the same columns, and

when you combine by column, the tables must have the same number of

TOWS.

If you have tables that represent different relations between variables—

the underlying principle of relational databases aimed at avoiding

duplicated data—then you can combine them using join functions.

Say you have a table that maps students to grades for each class you

teach. You can join tables from two different classes using inner_join().

You use a key to join them on, specified by argument by.

grades_maths <- tribble(

~nhame, ~grade,
"Marko Polo", "D",
"Isaac Newton", "A+",

"Charles Darwin", "B"

)

grades_biology <- tribble(
~name, ~grade,
"Marko Polo", "F,
"Isaac Newton", "D",
"Charles Darwin", "A+"

)
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inner_join(grades maths, grades biology, by = "name"

## # A tibble: 3 x 3

##  name grade.x grade.y
#  <chr> <chr>  <chr>
## 1 Marko Polo D F

## 2 Isaac Newton A+ D

## 3 Charles Darwin B A+

This tells inner_join() that you want to combine all rows in the first
table with all rows in the second, where the two rows have the same name.
You can use more than one key in a join if you give by a vector of variable
names.

In the previous example, each name appears once per table. If a key
appears more than once, then the result of an inner join will have a list
with all combinations of rows sharing a name.

grades_maths2 <- tribble(
~nhame, ~grade,
"Marko Polo", "D",
"Isaac Newton", "A+", # so good at physics
"Isaac Newton", "A+", # that he got an A+ twice
“Charles Darwin", "B"

)
grades_biology2 <- tribble(
~hame, ~grade,
"Marko Polo", "F",
"Isaac Newton", "D",
"Charles Darwin", "A+", # so good at biology that we
"Charles Darwin", "A+" # listed him twice
)

inner_join(grades maths2, grades biology2, by = "name"
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#i# # A tibble: 5 x 3

##  name grade.x grade.y
#  <chr> <chr>  <chr>
## 1 Marko Polo D F

## 2 Isaac Newton A+ D

## 3 Isaac Newton A+ D

## 4 Charles Darwin B A+

## 5 Charles Darwin B A+

inner_join(grades maths2, grades biology2, by = "grade")

## # A tibble: 5 x 3

##  name.x grade name.y
##  <chr> <chry> <chr>
## 1 Marko Polo D Isaac Newton

## 2 Isaac Newton A+ Charles Darwin
## 3 Isaac Newton A+ Charles Darwin
## 4 Isaac Newton A+ Charles Darwin
## 5 Isaac Newton A+ Charles Darwin

In the last join, you see that you can get the same line multiple times
from an inner join. Combine the join with distinct() if you want to
avoid this.

inner_join(grades maths2, grades biology2, by = "grade") %>%
distinct()

## # A tibble: 2 x 3

##  name.x grade name.y
##  <chr> <chry> <chr>
## 1 Marko Polo D Isaac Newton

## 2 Isaac Newton A+ Charles Darwin
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The tables can have different variables—if they represent different
relations—or they can share several or all variables. In the grades example,
each table contains the same name/grade relationships, just for different
classes. Therefore, they also share variables.

With shared variables, the data from the two tables can be
differentiated by a suffix. The default (see previous example) is “x” and “y".
You can change that using the suffix argument.

inner_join(
grades maths, grades biology,
by = "name", suffix = ¢(".maths", ".biology")

)

# # A tibble: 3 x 3

##  name grade.maths grade.biology
#H  <chr> <chr> <chr>

## 1 Marko Polo D F

## 2 Isaac Newton A+ D

## 3 Charles Darwin B A+

Students might take different classes, and you have several choices on
how to combine tables with different keys.

An inner_join() will only give you the rows where a key is in both
tables.

grades_geography <- tribble(
~name, ~grade,
"Marko Polo", "A"
"Charles Darwin", "A",
"Immanuel Kant", "A+"

)

grades_physics <- tribble(
~name, ~grade,
"Isaac Newton", "A+",
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"Albert Einstein", "A+",
"Charles Darwin", "C"

)

inner_join(
grades_geography, grades physics,
by = "name", suffix = c¢(".geography", ".physics")

)

## # A tibble: 1 x 3

##  name grade.geography grade.physics
##  <chr> <chr> <chr>

## 1 Charles Darwin A C

The full join() function, in contrast, gives you a table containing all
keys. If a key is only found in one of the tables, the variables from the other
table will be set to NA.

full_join(
grades geography, grades physics,
by = "name", suffix = e¢(".geography", ".physics")

)

## # A tibble: 5 x 3

##  name grade.geography grade.physics
#  <chr> <chr> <chr>

## 1 Marko Polo A <NA>

## 2 Charles Darwin A C

## 3 Immanuel Kant A+ <NA>

## 4 Isaac Newton <NA> A+

## 5 Albert Einstein <NA> A+
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If you want all keys from the left or right table (but not both left and
right)—potentially with NA if the other table does not have the key—then
youneed left join() or right join().

left_join(
grades_geography, grades physics,
by = "name", suffix = ¢(".geography", ".physics")

)

# # A tibble: 3 x 3

##  name grade.geography grade.physics
#  <chr> <chr> <chr>

## 1 Marko Polo A <NA>

## 2 Charles Darwin A C

## 3 Immanuel Kant A+ <NA>

right_join(
grades maths, grades physics,
by = "name", suffix = e¢(".maths", ".physics")

)

## # A tibble: 3 x 3

##  name grade.maths grade.physics
#  <chr <chr> <chr>

## 1 Isaac Newton A+ A+

## 2 Albert Einstein <NA> A+

## 3 Charles Darwin B C

A semi_join() will give you all the rows in the first table that contains
a key in the second table.
semi_join(

grades maths2, grades biology2,

by = "name", suffix = c¢(".geography", ".physics")
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## # A tibble: 4 x 2

##  name grade
#  <chr> <chr>
## 1 Marko Polo D

## 2 Isaac Newton A+

## 3 Isaac Newton A+

## 4 Charles Darwin B

You only get one copy per row in the first table when a key matches,
regardless of how many times the key appears in the second table.

This is unlike inner_join() where you get all combinations of rows
from the two tables. The inner_join() is, therefore, not an analog to an
inner_join() combined with a select().

inner_join(

grades maths2, grades biology2,

by = "name", suffix = ¢(".geography", ".physics")
) %>% select(1:2)

## # A tibble: 5 x 2

##  name grade.geography
#  <chr> <chr>

## 1 Marko Polo D

## 2 Isaac Newton A+

## 3 Isaac Newton A+

## 4 Charles Darwin B

## 5 Charles Darwin B

You can still get multiple identical rows from a semi_join(). If the first
table has duplicated rows, you will get the same duplications of the rows. If
you do not want that, you can combine the join with distinct().
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Ananti_join() gives you all the rows in the first table where the key
or keys are not found in the second table. Think of it as the complement of
semi_join().

anti_join(
grades maths2, grades physics,
by = "name", suffix = ¢(".geography", ".physics")

)

## # A tibble: 1 x 2
##  name grade
#  <chr> <chr>

## 1 Marko Polo D

The join functions only take two tables as input, so you might wonder
how you can combine multiple tables. One solution is to use purrr’s
reduce() function:

grades <- list(
grades maths, grades biology,
grades_geography, grades physics
)

grades %>%
reduce(full join, by = "name") %>%
rename_at(2:5, ~ c("maths", "biology", "geography", "physics

## # A tibble: 5 x 5

##  name maths biology geography physics
#  <chr> <chr> <chr> <chr> <chr>
## 1 Marko Polo D F A <NA>

## 2 Isaac Newton A+ D <NA> A+

## 3 Charles Darwin B A+ A C

## 4 Immanuel Kant  <NA> <NA> A+ <NA>

## 5 Albert Einstein <NA> <NA> <NA> A+
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The rename_at() function works similarly to select_at(), and here,
use it to rename the last four columns.

Income in Fictional Countries

We had an example with income in fictional countries in Chapter 4. There, we
did not have the proper tools needed to deal with missing data. We wanted to
replace NA with the mean income for a country in rows with missing data, but
the functions from tidyr didn’t suffice. With dplyr we have the tools.

Recall the data:

mean_income <- tribble(
~country, ~7 20027, ~72003°, ~2004°, "~ 2005,

"Numenor", 123456, 132654, NA, 324156,
"Westeros", 314256, NA, NA, 465321,
"Narnia", 432156, NA, NA, NA,

"Gondor", 531426, 321465, 235461, 463521,
"Laputa", 14235, 34125, 45123, 51234,

The following pipeline does what we want. I will explain it here, but
you can try to work out the steps.

mean_income %>%

gather(
key = "year",
value = "mean_income",
-country

) %>% group_by(
country

) %>% mutate(
mean_per country = mean(mean_income, na.rm = TRUE),
mean_income = ifelse(
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is.na(mean_income),
mean_per country,
mean_income

)

) %>% spread(key = "year", value = "mean_income")

## # A tibble: 5 x 6
## # Groups: country [5]
##  country mean_per country "2002° "2003° 2004

#  <chr> <dbl> <dbl> <dbl> <dbl>

## 1 Gondor 387968. 531426 3.21e5 2.35e5
## 2 Laputa 36179. 14235 3.41e4 4.51e4
## 3 Narnia 432156 432156 4.32e5 4.32e5
## 4 Numenor 193422 123456 1.33e5 1.93e5
## 5 Wester... 389788. 314256 3.90e5 3.90e5
## # ... with 1 more variable: “2005° <dbl>

The first step in the pipeline is reformatting the data. We saw how this
work in Chapter 4.

mean_income %>%
gather(
key = "year",
value = "mean_income",
-country

)

## # A tibble: 20 x 3
#Hit country year mean_income

i <chr> <chr> <dbl>
## 1 Numenor 2002 123456
## 2 Westeros 2002 314256
# 3 Narnia 2002 432156
# 4 Gondor 2002 531426
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## 5 Laputa 2002 14235
## 6 Numenor 2003 132654
## 7 Westeros 2003 NA
## 8 Narnia 2003 NA
# 9 Gondor 2003 321465
## 10 Laputa 2003 34125
## 11 Numenor 2004 NA
## 12 Westeros 2004 NA
## 13 Narnia 2004 NA
## 14 Gondor 2004 235461
## 15 Laputa 2004 45123
## 16 Numenor 2005 324156
## 17 Westeros 2005 465321
## 18 Narnia 2005 NA
## 19 Gondor 2005 463521
## 20 Laputa 2005 51234

In the next two steps, we group by countries, so the means we calculate
are per country and not the full data set, and then we compute the means
and replace NA cells with them. To get a glimpse into the mutate() call, you
can replace it with summarise() and see the mean of each country.

mean_income %>%

gather(
key = "year",
value = "mean_income",
-country

) %>% group_by(
country

) %>% summarise(
per_country mean = mean(mean_income, na.rm = TRUE)
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## # A tibble: 5 x 2
##  country per_ country mean

#  <chr> <dbl>
## 1 Gondor 387968.
## 2 Laputa 36179.
## 3 Narnia 432156
## 4 Numenor 193422
## 5 Westeros 389788.

In the next step, we can replace the missing data with their country
mean in the mutate() call because we can refer to earlier columns when
we create later columns in mutate().

If you had a pipeline where you had steps between the group_by() call
and the mutate() call that sets the mean_income, you have to be careful.

Do not put an ungroup() in there. The pipeline works because the mean_
income is per country when we call mutate(). If we ungrouped, we would
get the mean over all countries.

mean_income %>%

gather(
key = "year",
value = "mean_income",
-country
) %>% group_by(
country

) %>% mutate(
mean_per country = mean(mean_income, na.rm = TRUE)
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## # Groups:

#H
#H
Hit
#Ht
#H
#Hit
#Ht
#H
#Hit
#Hit
#H
Hit
#Hit
#H#
#Hit
#Hit
#H
#H
Hit
#Ht
#H
#Hit

mean_income %>%
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20

country
<chr>
Numenor
Westeros
Narnia
Gondor
Laputa
Numenor
Westeros
Narnia
Gondor
Laputa
Numenor
Westeros
Narnia
Gondor
Laputa
Numenor
Westeros
Narnia
Gondor
Laputa

20 x 4
country [5]
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year mean_income mean_per country

<chr>
2002
2002
2002
2002
2002
2003
2003
2003
2003
2003
2004
2004
2004
2004
2004
2005
2005
2005
2005
2005

<dbl>
123456
314256
432156
531426
14235
132654
NA

NA
321465
34125
NA

NA

NA
235461
45123
324156
465321
NA
463521
51234

<dbl>
193422
389788.
432156
387968.
36179.
193422
389788.
432156
387968.
36179.
193422
389788.
432156
387968.
36179.
193422
389788.
432156
387968.
36179.
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In the last step, we ungroup and update the table before reformatting
the tibble again.

gather(

key = '

1 n
year",

value = "mean_income",

-country
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) %>% group_by(
country
) %>% mutate(
mean_per country = mean(mean_income, na.rm = TRUE)
) %>% ungroup(
) %>% mutate(
mean_income = ifelse(
is.na(mean_income),
mean_per_country,
mean_income

)

) %>% spread(key = "year", value = "mean_income")

## # A tibble: 5 x 6
##  country mean_per country "2002° 2003 2004

#  <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Gondor 387968. 531426 3.21e5 2.35e5
## 2 Laputa 36179. 14235 3.41e4 4.51e4
## 3 Narnia 432156 432156 4.32e5 4.32e5
## 4 Numenor 193422 123456 1.33e5 1.93e5
## 5 Wester.. 389788. 314256 3.90e5 3.90e5
#H# . w1th 1 more variable: 2005 <dbl>

This is how we replace all missing data with the mean for the
corresponding countries.
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Working with Strings:

stringr

The stringr package gives you functions for string manipulation. The
package will be loaded when you load the tidyverse package:

library(tidyverse)
You can also load the package alone using

library(stringr)

Counting String Patterns

The str_count() function counts how many tokens a string contain,
where tokens, for example, can be characters or words.

By default, str_count() will count the number of characters in a
string.

strings <- ¢(
"Give me an ice cream",
"Get yourself an ice cream",
"We are all out of ice creams",
"I scream, you scream, everybody loves ice cream.",
"one ice cream,

© Thomas Mailund 2019
T. Mailund, R Data Science Quick Reference, https://doi.org/10.1007/978-1-4842-4894-2_8
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two ice creams,
three ice creams",
"I want an ice cream. Do you want an ice cream?"

)

str_count(strings)
## [1] 20 25 28 48 55 46

For each of the strings in strings, we get the number of characters.
The result is the same as we would get using nchar () (but not length()
which would give us the length of the list containing them, six in this
example).

You can be explicit in specifying that str_count() should count
characters by giving it a boundary() option. This determines the boundary
between tokens, that is, the units to count.

str_count(strings, boundary("character"))
## [1] 20 25 28 48 55 46
If you want to count words instead, you can use boundary ("word"):
str_count(strings, boundary("word"))
# [1] 557 89 11

You can use two additional options to boundary(): "line break" and
"sentence." They use heuristics for determining how many line breaks
and sentences the text contains dependent on a locale().

str_count(strings, boundary("line break"))
# [1] 557 8 1111
str_count(strings, boundary("sentence"))

#[1] 111132
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Notice that the line breaks are not the newlines in the text. The line
breaks are where you would be expected to put newlines in your locale().

Finally, str_count() lets you count how often a substring is found in a
string:

str_count(strings, "ice cream"

#[1] 111132

str_count(strings, "cream") # gets the screams as well
## [1] 1112332

The pattern you ask str_count() to count is not just a string. It is a
regular expression. Some characters take on special meaning in regular
expressions.! For example, a dot represents any single character, not a full
stop.

str_count(strings, ".")
## [1] 20 25 28 48 53 46

If you want your pattern to be taken as a literal string and not a regular
expression, you can wrap it in fixed():

str_count(strings, fixed("."))
## [1] 000101

Since the pattern is a regular expression, we can use it to count
punctuation characters:

str_count(strings, "[:punct:]")

# [1] 000322

'Regular expressions are beyond the scope of this book, but if you are frequently
working with strings, you might want to familiarize yourself with them.
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Or the number of times ice cream(s) is at the end of the string:
str_count(strings, "ice creams?$")
# [1]111010

The s? means zero or one s, and the $ means the end of the string or
at the end of the string except that it might be followed by a punctuation
mark.

str_count(strings, "ice creams?[:punct:]?$")

#[1]111111

Splitting Strings

Sometimes you want to split a string based on some separator—not unlike
how we split on commas in comma-separated value files. The stringr
function for thisis str_split().

We can, for example, split on a space:

strings <- ¢(

"one",
"two",
"one two",
"one two",
"one. two."
)
str_split(strings, " ")
# [[1]]
## [1] "one"
#i#

## [[2]]
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## [1] "two"

#H#

## [[3]]

## [1] "one" "two"
#H#

## [[4]]

## [1] "one™ "™ "" "two"
#H#

## [[5]]

## [1] "one." "two.

Since we are splitting on a single space, we get empty strings for "one
two" which contains three spaces.

You can use the boundary () function for splitting as well. For example,
you can split a string into its words using boundary ("word):

str_split(strings, boundary("word"))

## [[1]]

## [1] "one"

##

## [[2]]

## [1] "two"

#H#

## [[3]]

## [1] "one" "two"
#H#

#i [[4]]

## [1] "one" "two"
#H#

## [[5]]

## [1] "one" "two"
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When we do this, we get rid of the empty strings from the previous
example, and we also get rid of the full stops in the last string.

Capitalizing Strings
You can use the str_to lower() to transform a string into all lowercase.

macdonald <- "0ld MACDONALD had a farm."
str_to_lower(macdonald)

## [1] "old macdonald had a farm."

Similarly, you can use str_to_upper() to translate it into all

uppercase.
str_to_upper(macdonald)
## [1] "OLD MACDONALD HAD A FARM."

Ifyouuse str_to_sentence(), the first character is uppercase and the
rest lowercase.

stx_to_sentence(macdonald)
## [1] "01d macdonald had a farm."

The str_to title() function will capitalize all words in your string.
str_to_title(macdonald)

## [1] "0ld Macdonald Had A Farm."

Wrapping, Padding, and Trimming

If you want to wrap strings, that is, add newlines, so they fit into a certain
width, you can use str_wrap().
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strings <- ¢(

)

"Give me an ice cream",

"Get yourself an ice cream",
"We are all out of ice creams",
"I scream, you scream, everybody loves ice cream.",

"one ice cream,

two ice creams,

three ice creams",
"I want an ice cream. Do you want an ice cream?"

str_wrap(strings)

#H
Hit
#Ht
#
Hit
#Hit

[
[
[
[
[
[

1
2
3
4

5
6

_ e e e e

"Give me an ice cream"

"Get yourself an ice cream"

"We are all out of ice creams"

"I scream, you scream, everybody loves ice cream."
"

one ice cream, two ice creams, three ice creams"
"I want an ice cream. Do you want an ice cream?"

The default width is 80 characters, but you can change that using the

width argument.

str_wrap(strings, width = 10)

#Hit
#H
#Ht
#Hit
#t
#H

— /e

~
— —) ) ) e

(o))

"Give me an\nice cream"
"Get\nyourself\nan ice\ncream"
"We are all\nout of ice\ncreams"

"I scream,\nyou\nscream,\neverybody\nloves ice\ncream.'
one ice\ncream,\ntwo ice\ncreams,\nthree ice\ncreams"

"I want an\nice cream.\nDo you\nwant an\nice cream?"
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You can indent the first line in the strings while wrapping them using

the indent argument.

str_wrap(strings, width = 10, indent = 2)

#Hit
#Hit
#HH#
#Hit
#Hit
#

[1] " Give me an\nice cream"

[2] " Get\nyourself\nan ice\ncream"

[3] " We are all\nout of ice\ncreams"

[4] " I scream,\nyou\nscream,\neverybody\nloves ice\ncream."
[5] " one ice\ncream,\ntwo ice\ncreams,\nthree ice\ncreams"
[6] " I want an\nice cream.\nDo you\nwant an\nice cream?"

If you want your string to be left, right, or center justified, you can use

str_pad().

The default is right-justifying strings.

str_pad(strings, width = 50)

#Hit
#Ht
#
Hit
#Hit
#H

[1] " Give me an ice cream"

[2] " Get yourself an ice cream"

[3] " We are all out of ice creams"

[4] " I scream, you scream, everybody loves ice cream."
[5] "one ice cream,\n two ice creams,\n three ice creams"
[6] " I want an ice cream. Do you want an ice cream?"

If you want to left justify instead, you can pass "right" to the side

argument.

str_pad(strings, width = 50, side = "right")

#Hit
#Hit
#HH
#Ht
#Hit
#H
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You need to use "right" to left justify because the side argument
determines which side to pad, and for left-justified text, the padding is on
the right.

If you want to center your text, you should use "both"; you are padding
both on the left and on the right.

str_pad(strings, width = 50, side = "both")

# [1] Give me an ice cream

#[2] " Get yourself an ice cream "

## [3] " We are all out of ice creams "

## [4] " I scream, you scream, everybody loves ice cream."
## [5] "one ice cream,\n two ice creams,\n three ice creams"
## [6] " I want an ice cream. Do you want an ice cream?"

In these padding examples, we do not keep the lengths of the strings
below the padding width. If a string is longer than the padding width, it is
unchanged. You can use the str_trunc() function to cut the width down
to a certain value. For example, we could truncate all the strings to width
25 before we pad them:

strings %>% str_trunc(25) %>% str_pad(width = 25, side = "left")

## [1] Give me an ice cream"
## [2] "Get yourself an ice cream"
## [3] "We are all out of ice ..."
## [4] "I scream, you scream, ..."
## [5] " one ice cream,\n two..."
## [6] "I want an ice cream. D..."
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The str_trim() function removes whitespace to the left and right of a
string:

str_trim(c(
" one small coke",

"two large cokes ",

" three medium cokes

))

## [1] "one small coke" "two large cokes"
## [3] "three medium cokes"

It keeps whitespace inside the string.

Since str_trim() does not touch whitespace that is not flanking on
the left or right, we cannot use it to remove extra spaces inside our string.
For example, if we have two spaces between two words, as in the following
example, str_trim() leaves them alone.

str_trim(c(
" one small coke",

"two large cokes ",

" three medium cokes

))

## [1] "one small coke" "two large cokes"
## [3] "three medium cokes"

If we want the two spaces to be shortened into a single space, we can
use str_squish() instead.

stxr_squish(c(
" one small coke",

"two large cokes ",
" three medium cokes

))
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## [1] "one small coke" "two large cokes"
## [3] "three medium cokes"

Detecting Substrings

To check if a substring is found in another string, you can use str_
detect().

str_detect(strings, "me")

## [1] TRUE FALSE FALSE FALSE FALSE FALSE
str_detect(strings, "I")

## [1] FALSE FALSE FALSE TRUE FALSE TRUE
str_detect(strings, "cream")

## [1] TRUE TRUE TRUE TRUE TRUE TRUE

The pattern is a regular expression, so to test for ice cream followed by
a full stop, you cannot search for “ice cream.”

str_detect(strings, "ice cream."

## [1] FALSE FALSE TRUE TRUE TRUE TRUE
You can, again, use a fixed() string.

str_detect(strings, fixed("ice cream."))

## [1] FALSE FALSE FALSE TRUE FALSE TRUE
Alternatively, you can escape the dot.

str_detect(strings, "ice cream\\.")

## [1] FALSE FALSE FALSE TRUE FALSE TRUE
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You can test if a substring is not found in a string by setting the negate
argument to TRUE.

str_detect(strings, fixed("ice cream."), negate = TRUE)
## [1] TRUE TRUE TRUE FALSE TRUE FALSE
Two special case functions test for a string at the start or end of a string:
str_starts(strings, "I")
## [1] FALSE FALSE FALSE TRUE FALSE TRUE
str_ends(strings, fixed("."))
## [1] FALSE FALSE FALSE TRUE FALSE FALSE

If you want to know where a substring is found, you can use str_
locate(). It will give you the start and the end index where it found a
match.

str_locate(strings, "ice cream"

#Ht start end
#[1,] 12 20
# [2,] 17 25
# [3,] 19 27
## [4,] 39 47
#t [5,] 5 13
## [6,] 11 19

Here you get a start and an end index for each string, but string
number six has more than one occurrence of the pattern.

strings([6]

## [1] "I want an ice cream. Do you want an ice cream?"
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You only get the indices for the first occurrence when you use str_
locate().

str_locate(strings[6], "ice cream”

## start end
## [1,] 11 19

The function str locate all() gives you all occurrences.

str_locate_all(strings[6], "ice cream"

## [[1]]

#Ht start end
# [1,] 11 19
## [2,] 37 45

If you want the start and end points of the strings between the
occurrences, you can use invert match().

ice cream locations <- str_locate_all(strings[6], "ice cream"
ice cream locations

## [[1]]

Ht start end
# [1,] 11 19
# [2,] 37 45

invert_match(ice cream locations[[1]])

H# start end
#[1,] 0 10
# [2,] 20 36
## [3,] 46 -1
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Extracting Substrings

To extract a substring matching a pattern, you can use str_extract().It
gives you the first substring that matches a regular expression.

str_extract(strings, "(s|ice )cream\\wx")

## [1] "ice cream" "ice cream" "ice creams"

## [4] "scream” "ice cream" "ice cream"

It only gives you the first match, but if you want all substrings that
match you can use str_extract all().

strings[4]

## [1] "I scream, you scream, everybody loves ice cream."”
str_extract(strings[4], "(s|ice )cream\\wx")

## [1] "scream"

str_extract_all(strings[4], "(s|ice )cream\\wx")

## [[1]]

## [1] "scream" "scream” "ice cream"

Transforming Strings

We can replace a substring that matches a pattern with some other string.

lego str <- str_replace(strings, "ice cream[s]?", "LEGO")
lego str

## [1] "Give me an LEGO"

## [2] "Get yourself an LEGO"

## [3] "We are all out of LEGO"

## [4] "I scream, you scream, everybody loves LEGO."
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## [5] "one LEGO,\n two ice creams,\n three ice creams"
## [6] "I want an LEGO. Do you want an ice cream?”

lego str <- str_replace(lego str, "an LEGO", "a LEGO")
lego str

## [1] "Give me a LEGO"

## [2] "Get yourself a LEGO"

## [3] "We are all out of LEGO"

## [4] "I scream, you scream, everybody loves LEGO."
## [5] "
#t [6]

one LEGO,\n two ice creams,\n three ice creams"
"I want a LEGO. Do you want an ice cream?"

These two replacement operators can be written as a pipeline to make
the code more Tidyverse-y:

strings %>%
str_replace("ice cream[s]?", "LEGO") %>%
str_replace("an LEGO", "a LEGO")

## [1] "Give me a LEGO"

## [2] "Get yourself a LEGO"

## [3] "We are all out of LEGO"

## [4] "I scream, you scream, everybody loves LEGO."

## [5] "one LEGO,\n two ice creams,\n three ice creams"
## [6] "I want a LEGO. Do you want an ice cream?”

Like most of the previous functions, the function only affects the first
match. To replace all occurrences, you need str_replace all().
strings %>%

str_replace_all("ice cream[s]?", "LEGO") %>%
str_replace_all("an LEGO", "a LEGO")
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## [1] "Give me a LEGO"

## [2] "Get yourself a LEGO"

## [3] "We are all out of LEGO"

## [4] "I scream, you scream, everybody loves LEGO."
## [5] "one LEGO,\n two LEGO,\n three LEGO"

## [6] "I want a LEGO. Do you want a LEGO?"

You can refer back to matching groups in the replacement string,
something you will be familiar with for regular expressions.

us_dates <- ¢(
valentines = "2/14",
my birthday = "2/15",
# no one knows but let's just go
# with this
jesus_birthday = "12/24"
)
# US date format to a more sane format
str_replace(us dates, "(.x)/(.%)", "\\2/\\1")

## [1] "14/2" "15/2" "24/12"

The str_dup() function duplicates a string, that is, it repeats a string

several times.

str_c(
"NA",
str_dup("-NA", times = 7),
" BATMAN!"

)

## [1] "NA-NA-NA-NA-NA-NA-NA-NA BATMAN!"
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Here we also used str_c() to concatenate strings. This function works

differently from c(); the latter will create a vector of multiple strings, while

the former will create one string.

# -- concatenation ----------mmmmmm

c(ll_Fooll’ "barll, Ilbazll)
## [1] "foo" "bar" "baz"
str_c("foo", "bar", "baz")

## [1] "foobarbaz"

A more direct way to extract and modify a substring is using str_

sub(). It lets you extract a substring specified by a start and an end index,

and if you assign to it, you replace the substring. The str_sub() function

is less powerful than the other functions as it doesn’t work on regular
expressions, but because of this, it is also easier to understand.
If you do not know where a substring is found, you must first find it.

You can use str_locate() for this.

my_string <- "this is my string"
my location <- str_locate(my string,

llmyll)
my location

#H start end

# [1,] 9 10

s <- my location[,"start"]
e <- my location[,"end"]
str_sub(my string, s, e)

# [1] "my"

my_string location <- str_locate(my string, "string")

s <- my_string location[,"start"]
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e <- my_string location[,"end"]
str_sub(my string, s, e)

## [1] "string"

your_string <- my_string

s <- my_location[,"start"]

e <- my location[,"end"]
str_sub(your string, s, e) <- "your"
your string

## [1] "this is your string"

your_banana <- your_ string

your string location <- str_locate(your string, "string")
s <- your_string location[,"start"]

e <- your_string location[,"end"]

str_sub(your banana, s, e) <- "banana"

your_banana

## [1] "this is your banana"

When you assign to a call to str_sub(), it looks like you are modifying
a string. This is an illusion. Assignment functions create new data and
change the data that a variable refers to. So, if you have more than one
reference to a string, be careful. Only one variable will point to the new
value; the remaining will point to the old string. This is not specific to
str_sub() but for R in general, and it is a potential source of errors.

my string
## [1] "this is my string"
your string

## [1] "this is your string"
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your_banana
## [1] "this is your banana"

If you often write code to produce standard reports, virtually the same
text each time but with a few selected values changed, then you are going
to love str_glue(). This does precisely what you want. You give str_
glue() a template string, a string with the mutable pieces in curly brackets.
The result of calling str_glue() is the template text but with the values in
the curly brackets replaced by what R expression they contain.

The most straightforward use is when the template refers to variables.

macdonald <- "Old MacDonald"
eieio <- "E-I-E-I-0"
str_glue("{macdonald} had a farm. {eieio}")

## 01d MacDonald had a farm. E-I-E-I-O

The variables do not need to be global. They can also be named
arguments to str_glue().

str_glue(
"{macdonald} had a farm. {eieio}",
macdonald = "Thomas",
eieio = "He certainly did not!"

)

## Thomas had a farm. He certainly did not!

Generally, you can put R expressions in the curly brackets, and the
result of evaluating the expressions will be what is inserted into the
template string.

str_glue(
"{str_dup(\"NA-\", times = 7)}NA BATMAN!"
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## NA-NA-NA-NA-NA-NA-NA-NA BATMAN!

x <- seq(1:10)
str_glue(
"Holy {mean(x)} BATMAN!"

)
## Holy 5.5 BATMAN!
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Working with Factors:
forcats

If you work with categorical data, you can often represent the categories
by strings. Strings have some drawbacks, however. For example, a spelling
mistake can easily go undiscovered. If you want your categories ordered,
then the lexicographical order on strings will not always be the order you
need. As an alternative to strings for categories is factors. In this chapter,
we look at the functionality that the forcats package provides for creating
and manipulating factors.

The package is loaded when you import tidyverse,

library(tidyverse)
but you can also load it explicitly

library(forcats)

Creating Factors

The built-in factor () function is still an excellent choice to build a factor
from scratch, especially if you want to specify the levels of the factor when
you create it.
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If you create a factor without explicitly specifying the levels, you get a
level per unique element in the input.

factor(c("A", "C", "B"))

#t [1] A CB
## Levels: A B C

Otherwise, you get the levels you pass to the levels argument.

factor(c("A"’ "C") IIBII)’ 1evels C("A", IIBII’ "C"J IIDII))

#t [1] A CB
## Levels: ABCD

factor(c("A", "C", "B"), levels

c("D", "C", "B", "A")

## [1] ACB
## Levels: D C B A

If you have a value that is not found in the levels, it will be set to NA.
factor(c(llAll, Ilcll) IIBII)’ 1evels - c("A", IIBII))

#t [1] A<NA> B
## Levels: A B

The factor () function is usually the right choice for creating factors.
The function is not generic, however, so if you want a way to translate a
data structure you have implemented yourself, one that needs a specific
method to do so, then you might want to specialize as_factor() from
forcats.

If you specialize as_factor(), you can do anything you want, but on
normal vectors, as_factor () works similarly to as.factor() from base R.
The two functions differ, though, in how they set levels. If you use
as.factor(), the levels will be sorted.
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_Fl <_ as.{actor(c(llcll’ IIBII, IIBII’ IIAII, IIDII))
f1 # levels ordered alphabetically

## [1] CBBAD
## Levels: ABCD

With as_factor(), the levels are in the order they appear in the input.

_Fz <_ as_factor(c("c", IIB", "B"’ IIAII’ IIDII))
f2 # levels in the order they appear in the input

# [1] CBBAD
## Levels: CBAD

Concatenation

If you have two factors, then you can concatenate them using fct_c(). The
levels of the resulting factor are the union of the levels of the input factors.
The order of the levels depends on the order of the input factors. The levels
in the first factor go first, then the levels in the second. If the factors share
levels, then the order is determined by the first vector.

For example, consider again the factors f1 and 2 from the preceding
example.

f1

## [1] CBBAD
## Levels: ABCD

f2

# [1] CBBAD
## Levels: CBAD
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They have the same levels, but they have them in different orders. If we
concatenate 1 with 2, we get the levels in the order from f1.

fct_c(f1, f2)

#t [1] CBBADCBBAD
## Levels: ABCD

If we concatenate 2 with 1, then the levels are ordered as in f2.
fct_c(f2, f1)

#t [1] CBBADCBBAD
## Levels: CBAD

Consider now a factor that has levels not found in f1, for example, this:
f3 <- as_factor(c("X", "Y", "A"))

It shares one level, A, with 1, but X and Y are unique to f3. If we
concatenate, with f1 as the first argument, the new levels are included but
after the factors from f1 (and the shared factor A).

fct_c(f1, f3)

# [1] CBBADXYA
## Levels: ABCDXY

If we concatenate with f3 as the first argument, then f3’s levels come
first.

fct_c(f3, f1)

## [1] X YACBBAD
## Levels: XYABCD
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You can concatenate more than one factor using fct_c(). The rules
are the same as for two factors.

fct_c(f1, f2, f3)

## [1]CBBADCBBADXYA
## Levels: ABCDXY

fct_c(f2, f3, f1)

## [1J] CBBADXYACBBAD
## Levels: CBADXY

fct_c(f3, f1, f2)

# [1] XYACBBADCBBAD
## Levels: X YABCD

If you have several factors that do not have the same levels, but you
want them to have (without concatenating them), you can use fct_
unify(). It takes a list of factors and gives you a list of factors where they all
have as levels the union of the levels of the input.

fct_unify(fs = list(f1, f2, f3))

# [[1]]

# [1] CBBAD

## Levels: ABCDXY
Hit

## [[2]]

# [1] CBBAD

## Levels: ABCDXY
Ht

## [[3]]

# [1] X Y A

## Levels: ABCDXY
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Projection

It happens that your categorical data is too fine-grained and you want
to group categories into larger classes. If so, the function you want is
fct_collapse(). It lets you map your existing levels to new levels. Its
first argument is a factor and after that you provide named arguments.
As parameters to the named arguments, you must provide a list of level
names. Each name becomes a level, and that level will contain the
elements in the list you give as the argument.

fct_collapse(
fct_c(f3, f1),
a =c("A", "X"),
b =c("B", "Y"),
c=c("C", "D")

)

## [1] abacbbac
## Levels: a b c

You do not need to remap all levels. Those you do not map will stay as
they were.

fct_collapse(
fct_c(f3, f1),
a=c("A", "X"),
b =c("B", "Y")
)

## [1] abaCbbabD
## Levels: a b CD

If you only want to rename and not collapse levels, you can use fct_
recode().
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f1

## [1] CBB A D
## Levels: ABCD

fct_recode(f1, a

1}
>
S

1

")

# [1]CbbabD
## Levels: a b CD

fct_recode(f1, X = "A", X = "B", Y = "C", Y = "D")

# [1] Y XX XY
## Levels: X Y

If you want to reduce the number of levels based on how many
elements they have, rather than merge the levels in an explicitly specified
way, then you can use fct_lump(). You can merge levels such that you
keep the n levels with the most elements, for example, for n =5 and n = 2:

f <- factor(sample(1:10, 20, replace = TRUE), levels = 1:10)
table(f)

#f
# 12345678910
# 025213113 2

f %>% fct_lump(n = 5, other level = "X") %>% table()

#HH# .
# 23469 10X
# 25233 23

f %>% fct_lump(n = 2, other level = "X") %>% table()

# .
## 369X
#5339
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You see more than five and two levels here, even though we called
fct_lump() with n =5 and n = 2. If there are several levels with the same
number of elements, the function doesn’t pick random ones to keep. You
get all with the largest counts.

If you use a negative number, you get the least common categories.

f %>% fct_lump(n = -2, other level = "X") %>% table()

.
#1578 X
## 01 11 17

Instead of picking the number of categories you want, you can require
that they contain at least or at most a fraction of the data. For that, you use
the prop parameter. To get the levels that contain at least 10% of the data,
you use prop = 0.1:

f %>% fct_lump(prop = 0.1, other level = "X") %>% table()

# .
# 369X
#5339

If you want the categories that contain less than 10% of the data,
you use prop as well but with a negative value. To get the categories that
contain at most 10%, you use

f %>% fct_lump(prop = -0.1, other level = "X") %>% table()

#HH# .
# 12457810 X
# 022111 211

A more straightforward way to map categories is to map a fixed
number to a new category. The fct_other () lets you pick a list of
categories to keep or drop. If you keep categories, then all the others are
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put in the same “other” category. If you drop categories, then those you

drop are placed in an “other” category. You can name the “other” category

using the argument other level.

f %>% fct_other(keep = 1:5, other level = "X")

# [1] 3 X X3 2XXXX2354X334XXX
## Levels: 1 2 3 45 X

f %>% fct_othexr(drop = 1:5, other level = "X")

# [1] X 710X X 86 9 10 X X X X 6 X
# [16] X X 9 6 9
## Levels: 6 7 8 9 10 X

Sometimes what you want is even simpler. You have levels that are
not found in the actual data. You can get rid of the empty levels using
fct_drop()

f1

## [1] CBBAD
## Levels: ABCD

levels(f1) <- LETTERS[1:10]
f1

## [1] CB B A D
## Levels: ABCDEFGHTIJ

fct_drop(f1)

## [1] CBBAD
## Levels: ABCD
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Adding Levels

The opposite of fct_drop() is adding extra levels. Assigning to levels(),
as we did previously, will add levels that are not necessarily in the factor,
but it might also rename the levels at the same time. The levels are
renamed; you are not just adding to them. This happened to f1. Its original
levels, 1, 2, 3, and 4, were replaced with A, B, C, and D when we added the
new levels.

With the fct_expand() function, you can add levels that are not in
your factor, and any levels that are already in the data will be ignored.

f1

## [1] CB B A D
## Levels: ABCDEFGHTIJ

3

#H [1] X Y A
## Levels: X Y A

fct_expand(f1, levels(f3))

## [1] CBBAD
## Levels: ABCDEFGHIJIXY

Missing data is not considered missing data by R, and often we can
simply ignore it. Sometimes, however, there is information in missing data
that we need to consider. Since R doesn’t play well with missing data in many
statistical tests, it is best to translate it into a category that R will work with.
You can use fct_explicit na() to map all missing data into a new category:

f2

## [1] CB B AD
## Levels: CB AD
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fna <- f2
fna[2] <- NA
fna[3] <- NA
fna

## [1] C <NA> <NA> A D
## Levels: CB AD

fna <- fct_explicit_na(fna, na_level = "Missing")
fna

## [1] C Missing Missing A D
## Levels: C B A D Missing

Reorder Levels

If you construct a factor with factor(), you can control the order of the
levels using the levels argument. If you use as.factor (), your levels will
get sorted, and if you use as_factor(), they will be sorted in the order
that the levels appear in the data. You can map between these orders if you
want to, though.

If you have a factor created with factor () without specifying the levels,
then the levels will be all elements seen in the input sorted in their natural
order.

f <- factor(sample(LETTERS[1:5], 10, replace = TRUE))
.F

# [1]EDBBACCEAE
#i# Levels: ABCDE
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The function fct_inorder () will order your levels to match the order
that the categories are seen in the data—the order you get from as_factor().

fct_inorder(f)

#t [1] EDBBACCEAE
## Levels: EDB A C

The functions for reordering levels can also make the factors ordered.!
fct_inorder(f, ordered = TRUE)

## [1]EDBBACCEAE
#i# Levels: E< D <B<A<C

If you want to sort the levels, you do not need forcats functions. The
plain old factor () will do nicely.

factor(f, levels = sort(levels(f)))

#t [1] EDBBACCEAE
## Levels: ABCDE

factor(f, levels = sort(levels(f)), ordered = TRUE)

## [1] EDBBACCEAE
## Levels: A< B < C<D<E

'Ordered factors are not just factors with the levels sorted. Ordered factors specify
that there is an order on the levels. Regardless of how the levels are sorted in a
factor that is not ordered, the categories do not have a natural order to them. This
is used in some statistical tests.
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You can order levels by their frequency in the factor using fct_infreq()

table(f)

# T
# ABCDE
## 22213

fct_infreq(f)

# [1]EDBBACCEAE
## Levels: EABCD

f %>% fct_infreq() %>% table()

#HHt .
# EABCD
#M32221

f %>% fct_infreq(ordered = TRUE)

## [1]EDBBACCEAE
#i# Levels: E<A<B<C<D

f %>% fct_infreq() %>% fct_rev() %>% table()

#HH# .
# D CBAE
#M 12223

In the last example, I reversed the levels, so the order is smallest to
largest rather than largest to smallest. The function fct_rev() reverses
the levels; a frequent use for this is when you plot with an axis given by
the factor. There, the order is given by the levels, and you might want it

reversed.
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Working with Dates:
lubridate

The lubridate package is essential for working with dates and fits well
with the Tidyverse. It is not, however, loaded when you import the
tidyverse package, so you need to explicitly load it.

library(lubridate)

Time Points

You can create dates and dates with time-of-day information using
variations of the ymd () function. The letters y, m, and d stand for year,
month, and day, respectively. With ymd() you should write your data in
a format that puts the year first, the month second, and the day last. The
function is very flexible in what it can parse as a date.

ymd("1975 Feb 15")
## [1] "1975-02-15"
ymd("19750215")

## [1] "1975-02-15"
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ymd("1975/2/15")

## [1] "1975-02-15"
ymd("1975-02-15")

## [1] "1975-02-15"

You can permute the y, m, and d letters if the order of year, month, and
day is different. Each permutation gives you a parser that will interpret its
input in the specified order.

dmy("150275")

## [1] "1975-02-15"
mdy("February 15th 1975")
## [1] "1975-02-15"

If you want to add a time of the day to your date, you can add an hour,
an hour and a minute, or an hour, a minute, and a second by using _h(),
_hm() and _hms () variants of the ymd() functions.

dmy_h("15/2/1975 2pm")

## [1] "1975-02-15 14:00:00 UTC"
dmy_hm("15/2/1975 14:30")

## [1] "1975-02-15 14:30:00 UTC"
dmy_hms("15/2/1975 14:30:10")

## [1] "1975-02-15 14:30:10 UTC"
If you have a time object

X <- dmy_hms("15/2/1975 14:30:10")
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then you can extract its components through dedicated functions:
c(day(x), month(x), year(x))

## [1] 15 2 1975
c(hour(x), minute(x), second(x))
## [1] 14 30 10

c(week(x), # The week in the year
wday(x), # The day in the week
yday(x)) # The day in the year

#h [1] 7 7 46

These functions have corresponding assignment functions that you
can use to modify the components of the time point.

minute(x) <- 15
wday(x) <- 42
X

## [1] "1975-03-22 14:15:10 UTC"

Time Zones

When you add a time of day, a time zone is also necessary. After all,

we do not know what time a given hour is before we know which time
zone we are in. If I tell you that I am going to call you at two o’clock, you
can’t assume that it is two o’clock in your time zone.! Unless you tell the
functions otherwise, they will assume UTC is the time zone. You can
specify another time zone via the tz argument.

'Tam in CEST right now. In Denmark, we switch between CEST and CET
depending on daylight saving time.
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x <- dmy_hm(
"15/2/1975 14:00",
tz = "Europe/Copenhagen”

X
## [1] "1975-02-15 14:00:00 CET"

You can take a time point in one time zone and move it to another in
two different ways. You set the time zone and pretend that the day and
time of day were already in this time zone. That is, you can just change the
time zone attribute of the object and not touch the time information.

You can do this using the function force tz().

force tz().

force_tz(
dmy_hm("15/2/1975 14:00",
tz = "Europe/Copenhagen"),
tz = "Europe/London"

)
## [1] "1975-02-15 14:00:00 GMT"

A much more likely situation is that you want to know at what a time
point in one time zone was in another time zone. For example, if I promise
to call you at two o’clock in Denmark, and you are in the UK, you can
translate the time from my time zone to yours usingwith tz().

with_tz(x, tz = "Europe/London")

## [1] "1975-02-15 13:00:00 GMT"
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Time Intervals

If you have two time points, you also have a time interval: the time between
the two points. You can create an interval object from two time points
using the interval() function.

start <- dmy("02 11 1949")
end <- dmy("15 02 1975")
intexval(start, end)

## [1] 1949-11-02 UTC--1975-02-15 UTC
The infix operator %- -% does the same thing.

start %--% end

## [1] 1949-11-02 UTC--1975-02-15 UTC

You can get the start and end points of an interval using int_start()
and int_end().

int <- interval(start, end)
int

## [1] 1949-11-02 UTC--1975-02-15 UTC
int_start(int)

## [1] "1949-11-02 UTC"

int_end(int)

## [1] "1975-02-15 UTC"
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The start point does not have to be before the endpoint. You can define
an interval that starts after it ends.

end %--% start
## [1] 1975-02-15 UTC--1949-11-02 UTC
int_start(start %--% end)
## [1] "1949-11-02 UTC"
int_start(end %--% start)
## [1] "1975-02-15 UTC"
You can flip an interval using int_flip().

int_flip(end %--% start)

## [1] 1949-11-02 UTC--1975-02-15 UTC

The function int_standardize() will flip the interval if the start point
comes after the endpoint but otherwise will leave the interval as it is.

int_standardize(start %--% end)
## [1] 1949-11-02 UTC--1975-02-15 UTC
int_standardize(end %--% start)
## [1] 1949-11-02 UTC--1975-02-15 UTC

The int_length() will give you the length of an interval in seconds.

X <- now()
int <- interval(x, x + minutes(1))
int
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## [1] 2019-06-18 09:28:32 CEST--2019-06-18 09:29:32 CEST
int_length(int)
## [1] 60

int <- interval(x, x + minutes(20))
int

## [1] 2019-06-18 09:28:32 CEST--2019-06-18 09:48:32 CEST
int_length(int) / 60
## [1] 20
You can check if a point is in an interval using the %within% operator.
ymd("1867 05 02") %within% int
## [1] FALSE
ymd("1959 04 23") %within% int
## [1] FALSE

You can update the start and end point in an interval by assigning to
int_start() orint_end():

int_start(int) <- dmy("19 Aug 1950")
int

## [1] 1950-08-19 01:00:00 CET--2019-06-18 09:48:32 CEST

int_end(int) <- dmy("19 Sep 1950")
int

## [1] 1950-08-19 01:00:00 CET--1950-09-19 01:00:00 CET
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You can move the entire interval by a fixed amount. For example, you
can move the interval one month forward using

int_shift(int, months(1))
## [1] 1950-09-19 01:00:00 CET--1950-10-19 01:00:00 CET

Given two intervals, the int_overlaps() function checks if they
overlap.

int1 <- interval(dmy("19 oct 1950"), dmy("25 nov 1951"))
int2 <- interval(dmy("19 oct 1948"), dmy("25 aug 1951"))
int3 <- interval(dmy("19 oct 1981"), dmy("25 aug 2051"))
c(int, int1)

## [1] 1950-08-19 01:00:00 CET--1950-09-19 01:00:00 CET
## [2] 1950-10-19 01:00:00 CET--1951-11-25 01:00:00 CET

# int1 is contained in int
int_overlaps(int, int1)

## [1] FALSE

# int2 starts before int but they overlap
int_overlaps(int, int2)

## [1] TRUE

# no overlap
int_overlaps(int, int3)

## [1] FALSE

The function int_aligns() checks if any of the four start/end points
are equal. That is, either the start or the end point of the first interval must
be equal to at least one of the points in the second interval.

202



CHAPTER 10  WORKING WITH DATES: LUBRIDATE

The preceding four intervals we have created do not have shared
interval endpoints.

<(
int_aligns(int, int1),
int_aligns(int, int2),
int_aligns(int, int3)

)
## [1] FALSE FALSE FALSE

Test it with intervals that share end points and test int_aligns():

int4 <- interval(int_start(int), int_end(int) + years(3))
int5 <- int_shift(int4, -years(3))
int6 <- int_shift(int5, -years(3))

<(
int_aligns(int, int4), # share start
int_aligns(int, int5), # share end
int_aligns(int, int6) # overlaps but does not share endpoints

)
## [1] TRUE TRUE FALSE
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CHAPTER 11

Working with Models:
broom and modelr

There are many models to which you can fit your data, from classical
statistical models to modern machine learning methods, and a thorough
exploration of R packages that support this is well beyond the scope of
this book. The main concern when choosing and fitting models is not the
syntax, and this book is, after all, a syntax reference. We will look at two
packages that aim at making a tidy interface to models.

The two packages, broom and modelr, are notloaded with tidyverse
so you must load them individually.

library(broom)
library(modelr)

broom

When you fit a model, you get an object in return that holds information
about the data and the fit. This data is represented in different ways—it
depends on the implementation of the function used to fit the data. For a
linear model, for example, we get this information:

model <- Im(disp ~ hp + wt, data = mtcars)
summaxy (model)
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##

## Call:

## Im(formula = disp ~ hp + wt, data = mtcars)

#i

## Residuals:

#Hit Min 10 Median 30 Max

## -82.565 -23.802 2.111 35.731 99.107

##

## Coefficients:

#t Estimate Std. Error t value Pr(>|t])

## (Intercept) -129.9506 29.1890 -4.452 0.000116

## hp 0.6578 0.1649  3.990 0.000411

## wt 82.1125 11.5518 7.108 8.04e-08

##

## (Intercept) sxx

## hp *kk

## wt Hkok

# ---

## Signif. codes:

# 0 "xxx' 0.001 'sxx' 0.01 'sx' 0.05 '.' 0.1 "' "1

#

## Residual standard error: 47.35 on 29 degrees of freedom
## Multiple R-squared: 0.8635, Adjusted R-squared: 0.8541
## F-statistic: 91.71 on 2 and 29 DF, p-value: 2.889e-13

The problem with this representation is that it can be difficult to extract
relevant data because the data isn’t tidy. The broom package fixes this. It
defines three generic function, tidy(), glance(), and augment(). These
functions return tibbles. The first gives you the fit, the second a summary
of how good the fit is, and the third gives you the original data augmented

with fit summaries.
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tidy(model) # transform to tidy tibble

## # A tibble: 3 x 5

##  term estimate std.error statistic p.value
##  <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Interce... -130. 29.2 -4.45 1.16e-4
## 2 hp 0.658 0.165 3.99 4.11e-4
# 3 wt 82.1 11.6 7.11  8.04e-8

glance(model) # model summaries

## # A tibble: 1 x 11
## r.squared adj.r.squared sigma statistic p.value

#Hit <dbl> <dbl> <dbl> <dbl> <dbl>
##fH 1 0.863 0.854 47.3 91.7 2.89e-13
## ... with 6 more variables: df <int>,

## # loglik <dbl>, AIC <dbl>, BIC <dbl>,
## # deviance <dbl>, df.residual <int>

augment(model) # add model info to data

## # A tibble: 32 x 11
i .TO0WNames disp hp wt .fitted .se.fit

#Ht <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Mazda RX4 160 110 2.62 158. 9.96
#t 2 Mazda RX. . . 160 110 2.88 178. 9.53
## 3 Datsun 7. . . 108 93 2.32 122. 11.6
## 4 Hornet 4. . . 258 110 3.22 206. 10.3
## 5 Hornet S. . . 360 175 3.44 268. 9.09
## 6 Valiant 225 105  3.46 223. 12.3
## 7 Duster 3. . . 360 245  3.57 324. 16.2
## 8 Merc 240D 147. 62 3.19 173. 16.1
## 9 Merc 230 141. 95 3.15 191. 11.6
## 10 Merc 280 168. 123 3.44 233. 10.3
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# # . . . with 22 more rows, and 5 more variables:
## #  .resid <dbl>, .hat <dbl>, .sigma <dbl>,
# #  .cooksd <dbl>, .std.resid <dbl>

The broom package implements specializations for most models.
Not all of the three functions are meaningful for all models, so some
models only have a subset of the functions. If you want your own model
to work with broom, let us call it mymodel, then you have to implement
specializations of the functions, tidy.mymodel(), glance.mymodel(), and
augment.mymodel(), that are relevant for the model.

modelx

The modelr package also provides functionality for fitting and inspecting
models and for extracting information about model fits. We start with the
latter.

Consider the following example model.

x <- tibble(

x = runif(5),

y = 15 %12 % X + 42 + rnoxm(5)
)
model <- Im(y ~ x, data = x)
tidy(model)
## # A tibble: 2 x 5
#  term estimate std.error statistic p.value
#  <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Interce. . . 41.8 0.271 154.  5.99%e-7
# 2 x 180. 1.15 157. 5.72e-7
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We have fitted a linear model to data that is sampled from a linear
model. The details of the data and model do not matter; it is just an
example. I have used the broom function tidy() to inspect the model.

Two functions, add_predictions() and add_residuals(), extend your
data with predictions the model would make from each data row and the
residuals for each row.

add_predictions(x, model)

# # A tibble: 5 x 3

## X y pred
#Ht <dbl> <dbl> <dbl>
## 1 0.445 122. 122.
## 2 0.0594 52.9 52.5
## 3 0.275 91.3 91.4
## 4 0.0311 46.9 47.5
## 5 0.0145 44.7 44.4

add_residuals(x, model)

## # A tibble: 5 x 3

## X y resid
#H <dbl> <dbl> <dbl>
# 1 0.445 122. 0.0653
## 2 0.0594 52.9 0.399
## 3 0.275 91.3 -0.140
## 4 0.0311 46.9 -0.566
## 5 0.0145 44.7 0.242
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Predictions need not be for existing data. You can create a data frame of
explanatory variables and predict the response variable from the new data.

xs <- tibble(x = seq(0, 1, length.out = 5))
add_predictions(xs, model)

# # A tibble: 5 x 2
# X pred

# <dbl> <dbl>

## 1 0 41.8

# 2 0.25 86.9

## 3 0.5 132.

# 4 0.75 177.

#5 1 222.

I know that the x values are in the range from zero to one, but we
cannot always a priori know the range that a variable falls within. If you
don’t know, you can use the seq_range() function to get equidistant
points in the range from the lowest to the highest value in your data.

seq(0, 1, length.out = 5)
## [1] 0.00 0.25 0.50 0.75 1.00
seq_range(x$x, n = 5) # over the range of observations

## [1] 0.01448234 0.12204440 0.22960645 0.33716850
## [5] 0.44473056

If you have two models and want to know how they compare with
respect to their predictions, you can use gather predictions() and
spread_predictions():

# comparing models
model2 <- Im(y ~ I(x"2) + x, data = x)
gather_predictions(xs, model, model2)
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## # A tibble: 10 x 3
## model X pred
#H <chr> «<dbl> <dbl>

# 1 model O 41.8
# 2 model 0.25 86.9
# 3 model 0.5 132.
## 4 model 0.75 177.
# 5 model 1 222.
# 6 model2 o0 41.9
## 7 model2 0.25 86.8
# 8 model2 0.5 132.
## 9 model2 0.75 178.

## 10 model2 1 223.
spread_predictions(xs, model, model2)

## # A tibble: 5 x 3

#H X model model2
#  <dbl> «dbl> «dbl>
#Ha1 0 41.8 41.9
## 2 0.25 86.9 86.8
## 3 0.5 132. 132.
## 4 0.75 177. 178.
## 5 1 222. 223.

They show the same data, just with the tables formatted differently.
The names gather and spread resembles the tidyr functions gather and
spread.
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In the previous example, we made predictions on new data, but you
can, of course, also do it on your original data.

gather_predictions(x, model, model2)

## # A tibble: 10 x 4

i model X y pred
#Hit <chr> <dbl> <dbl>  <dbl>
## 1 model 0.445 122. 122.
# 2 model 0.0594 52.9 52.5
## 3 model 0.275 91.3 91.4
## 4 model 0.0311 46.9 47.5
## 5 model 0.0145 44.7 44.4
## 6 model2 0.445 122, 122.
## 7 model2 0.0594 52.9 52.5
# 8 model2 0.275 91.3 91.3
# 9 model2 0.0311 46.9 47.5
## 10 model2 0.0145 44.7 44.5

spread_predictions(x, model, model2)

## # A tibble: 5 x4

i X y model model2
T <dbl>  <dbl> <dbl> <dbl>
## 1 0.445 122. 122. 122.
## 2 0.0594 52.9 52.5 52.5
## 3 0.275 91.3 91.4 91.3
## 4 0.0311 46.9 47.5 47.5
## 5 0.0145 44.7 44.4  44.5
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If you have the original data, you can also get residuals.
gather_residuals(x, model, model2)

## # A tibble: 10 x 4

#H model X y resid
i <chr> <dbl> <dbl> <dbl>
# 1 model 0.445 122. 0.0653
## 2 model 0.0594 52.9 0.399
# 3 model 0.275 91.3 -0.140
## 4 model 0.0311 46.9 -0.566
## 5 model 0.0145 44.7 0.242
#t 6 model2 0.445 122. 0.0225
## 7 model2 0.0594 52.9 0.412
## 8 model2 0.275 91.3 -0.0710
## 9 model2 0.0311 46.9 -0.578
## 10 model2 0.0145 44.7 0.215

spread_residuals(x, model, model2)

## # A tibble: 5 x 4

## X y model model2
it <dbl> <dbl> <dbl> <dbl>
## 1 0.445 122. 0.0653 0.0225

## 2 0.0594 52.9 0.399 0.412
## 3 0.275 91.3 -0.140 -0.0710
## 4 0.0311 46.9 -0.566 -0.578
## 5 0.0145 44.7 0.242 0.215

Depending on the type of data science you usually do, you might have
to sample to get empirical distributions or to split your data into training
and test data to avoid overfitting. With modelr you have functions for this.
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You can build 7z data sets using bootstrapping with the function
bootstrap().!

bootstrap(x, n = 3)

## # A tibble: 3 x 2
##  strap .id
#  <list> <chr>
## 1 <resample> 1

## 2 <resample> 2

## 3 <resample> 3

It samples random data points and creates n new data sets from this.
The resulting tibble has two columns: the first, strap, contains the data for
each sample and the second an id.

The crossv_mc() function—Monte Carlo cross-validation—creates
cross-validation data, that is, it splits your data into training and test data.
It creates n random data sets divided into test and training data.

crossv_mc(x, n = 3)

## # A tibble: 3 x 3

##  train test .1d
# <list> <list> <chr>
## 1 <resample> <resample> 1

## 2 <resample> <resample> 2

## 3 <resample> <resample> 3

By default, the test data is 20% of the sampled data; you can change
this using the test argument.

The crossv_kfold and crossv_loo give you k-fold data and leave-one-
out data, respectively.

'There is also a bootstrap() function in broom, but it is deprecated there, so use
the modelr function.

214



crossv_kfold(x,

CHAPTER 11 WORKING WITH MODELS: BROOM AND MODELR

## # A tibble: 3 x 3

##  train
#H <list
## 1 <resample>
## 2 <resample>
## 3 <resample>

k = 3)
test .id
<list> <chr>

<resample> 1
<resample> 2
<resample> 3

crossv_loo(x)

## # A tibble: 5 x 3

#  train test .1d
# <list> <list> <int>
## 1 <resample> <resample> 1
## 2 <resample> <resample> 2
## 3 <resample> <resample> 3
## 4 <resample> <resample> 4
## 5 <resample> <resample> 5

As an example, say you have sampled three bootstrap data sets. The
samples are in the strap column, so we can map over it and fit a linear

model to each sampled data set.

samples <- bootstrap(x, 3)
fitted models <- samples$strap %>%
map(~ Im(y ~ x, data = .))

Then we can map over the three models and inspect them using
broom's glance() function:

fitted models %>%
map(glance) %>%
bind_rows()
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## # A tibble: 3 x 11

## r.squared adj.r.squared sigma statistic p.value
#Ht <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1.000 1.000 0.171 160710. 3.42e-8
## 2 1.000 1.000 0.513 16835. 1.01e-6
## 3 1.000 1.000 0.485 17065. 9.89e-7
# # . . . with 6 more variables: df <int>,

## #  loglik <dbl>, AIC <dbl>, BIC <dbl>,

## #  deviance <dbl>, df.residual <int>

If we were interested in the empirical distribution of x, then we could
extract the distribution over the bootstrapped data and go from there.

get x <- function(m) {
tidy(m) %>% filter(term == "x") %>%
select(estimate) %>% as.double()

}
fitted models %>% map_dbl(get x)

## [1] 179.3946 180.6586 180.0705

If you want to compare models, rather than samples of your data, then
modelr has support for that as well. You can make a list of the formulae you
want to fit. The formulae() function lets you create such a list.

models <- formulae(~y, linear = ~x, quadratic = ~I(x"2) + x)

The first argument is the response variable (the left-hand side of the
formulae), and the remaining arguments are (named) parameters that
describe the explanatory variables, the righthand part of a model formula.

If you call fit with() with your data, the fitting function to use (here
1m()) and the formulae you wish to fit, then you get what you want—a fit
for each formula.
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fits <- fit_with(x, lm, models)
fits %>% map(glance) %>% bind_rows()

## # A tibble: 2 x 11
## r.squared adj.r.squared sigma statistic p.value

it <dbl> <dbl> <dbl> <dbl> <dbl>
#H 1 1.000 1.000 0.433 24589. 5.72e-7
## 2 1.000 1.000 0.527 8310. 1.20e-4

# # . . . with 6 more variables: df <int>,
## # loglik <dbl>, AIC <dbl>, BIC <dbl>,
## # deviance <dbl>, df.residual <int>

You will find many model quality measures in modelr. For example,

root—mean-square error
fits %>% map_dbl(rmse, data = x)

## linear quadratic
## 0.3354516 0.3331588

mean-absolute-error
fits %>% map_dbl(mae, data = x)

## linear quadratic
## 0.2826265 0.2595208

and many more.

Since overfitting is always a problem, you might want to use a quality
measure that, at least attemps to, take model complexity into account. You
have some in the glance() function from broom.

fits %>% map_dbl(~ glance(.x)$AIC)

## linear quadratic
## 9.266611 11.198024

217



CHAPTER 11 WORKING WITH MODELS: BROOM AND MODELR

If at all possible, however, you want to use test data to measure how
well a model generalizes. For this, you first need to fit your models to the
training data and then make predictions on the test data. In the following
example, I have fitted Im(y ~ x) on leave-one-out data and then applied
it on the test data. I then measure the quality of the generalization using
RMSE.

samples <- crossv_loo(x)
training fits <-
samples$train %>% map(~lm(y ~ x, data = .))
test_measurement <- training fits %>%
map2_dbl(samples$test, rmse)

test _measurement

#Ht 1 2 3 4 5
## 0.2618250 0.5535395 0.1963251 0.8401988 0.3776097
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Plotting: ggplot2

The ggplot2 package contains a vast number of functions for creating a
wide variety of plots. It would take an entire book to cover it all—there are
already several that cover it—so I cannot attempt this here. In this chapter,
I will only try to give you a flavor of how the package works.

The ggplot2 package is loaded when you load tidyverse, but you can
always include it on its own using

library(ggplot2)

The Basic Plotting Components in ggplot2

Unlike in R’s base graphics, with ggplot2 you do not create individual
plot components by drawing lines, points, or whatever you need onto a
graphics canvas. Instead, you specify how your data should be mapped
to abstract graphical aesthetics, for example, x- and y-coordinates,
colors, shapes, and so on. Then you specify how aesthetics should be
represented in the graphics, for example, whether x- and y-coordinates
should be plotted as scatter plots or lines. On top of this can add graphics
information such as which shapes points in a scatter plot should have,
which colors the color aesthetics maps, and such. You add attributes as
separate steps which makes it easy to change a plot. If you want to add a
linear regression to your plot, you can do it with a single command; since
ggplot2 already knows which of your data variables are mapped to the

x- and y-coordinates, it simply computes the linear regression and adds it

© Thomas Mailund 2019 219
T. Mailund, R Data Science Quick Reference, https://doi.org/10.1007/978-1-4842-4894-2_12



CHAPTER 12  PLOTTING: GGPLOT2

to the plot. If you want to plot your data on a log scale, you tell ggplot2 that
the axis should be log-transformed.

At first, ggplot2 might seem more complicated than basic R’s graphics,
but you will soon get used to it.

The main components of ggplot2 are these:

e Data—Obviously, you have data you want to plot.

o Aesthetics—Aesthetics map data to abstract graphical
concepts such as x- and y-coordinates, colors and fills.

e Geometries—Geometries, geometric objects,
determine which kind of plot you are making, for
example, whether you will get a histogram, a scatter
plot, or a boxplot.

o Statistics—How should the data be summarized before
plotting. Your data is not always summarized, that is,
the statistics can be the identity mapping. A scatter plot
doesn’t compute a summary for the x- and y-coordinates,
but a regression line or a histogram does.

e Scales—Scales specify how the data you mapped to
graphical concepts with the aesthetics should actually
be placed on a plot. Your x- and y-coordinate data
might be measured in meters, but those meters should
be mapped to points on your plot. The scales are
responsible for this.

e Coordinates—Coordinates allow you to transform the
result of scaling your data to plot components. If, for
example, you want your plot to show the y-axis on a log
scale, then the coordinates transformation does this.

o Faceting—Faceting splits your plot into subplots based
on the variables in your data.
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You create a ggplot2 plot using the ggplot () function. To that object,
you add one or more of the preceding components. Nothing happens
until you print the graphical object; printing it will make the plot. A
typical pattern is to plot it right away and add the components in the same
statement in which you create the graphical object.

ggplot(. . . ) + . . . components . . .

To add components to a plot, you use addition. The ggplot2 package
does not use pipelines. You often see data piped into the ggplot() call,
though, but after that, you must remember to add rather than pipe.

A layer creates (part of) the graphics you can see. At a minimum,
it must consist of data, aesthetics, statistics (can be the identity), and a
geometric object (that might specify the statistics). Your plot must have at
least one layer before your plot shows your data.

Adding Components to Plot Objects

The simplest plot we can create is empty. You can create it by calling
ggplot () without any arguments.

p <- ggplot()

You can see what it consists of by calling the summary () function, but
most of the information is not relevant here. I will highlight lines relevant
to the components we see in this section as we go along.

summaxy(p)

## data: [x]

## faceting: <ggproto object: Class FacetNull, Facet, gg>
## compute layout: function

## draw_back: function

i draw_front: function

221



CHAPTER 12  PLOTTING: GGPLOT2

## draw_labels: function
i draw_panels: function
## finish_data: function
#H init_scales: function

i map_data: function
## params: list
## setup_data: function

#Hit setup_params: function
## shrink: TRUE

## train_scales: function
#H# vars: function

##  super: <ggproto object: Class FacetNull, Facet, gg>

To create a plot, you print the plot object. You can do this explicitly

print(p)

or just type it into your R terminal.

P

Since putting an object at the outermost level in an R script will print
an object, ggplot objects are not always assigned to a variable and then
plotted later. You can just write the ggplot () object.

ggplot()

Why would anyone create an empty plot object? You cannot print the
empty object. Well, you can, but you will get an empty canvas, so there
is not much point to that. You can, however, build up a plot by adding
components to it. You can start with the empty plot and add all you want to
it in separate commands.
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Adding Data

You add data to a plot as an argument to ggplot(). If you want to add data
to the empty plot, you will use geometries; see the following example. If
you add data in the ggplot () function, then all components you add to the
plot later will be able to see the data.

With some random test data, we can create a plot object with
associated data.

dat <- tibble(
foo = runif(100),
bar = 20 * foo + 5 + rnorm(100, sd = 10),
baz = rep(1:2, each = 50)

)

p <- ggplot(data = dat)

If you call summary(p) you can see the line:
data: foo, bar, baz [100x3]

It shows you the variables in the data. They are not mapped to any
graphical objects yet; that is the purview of aesthetics.

Adding Aesthetics

What we see in a plot are points, lines, colors, and so on. To create
these plots, ggplot2 needs to know which variables in the data should
be interpreted as coordinates, which determines line thickness, which
determines colors and so on. Aesthetics do this.

Consider this plot object:

p <- ggplot(data = dat, aes(x = foo, y = bar, color = baz))
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Here, we have specified that foo determines the x-coordinate, bar the
y-coordinate, and baz the color. If you check the summary of the plot, you
can see the mapping from data variables to graphical objects below the
data line:

data: foo, bar, baz [100x3]
mapping: x = ~foo, y = “bar, colour = ~baz

Plotting (printing) this will give you an empty plot where the x- and
y-axes match the range of the data’s x and y (foo and bar) values. The plot
is otherwise empty because it does not have a geometry.

Adding Geometries

Geometries specify the type of the plot. They use the aesthetics’ maps from
the data to graphical properties and create a plot based on them.

One of the most straightforward plots is a scatter plot. We can add the
geom_point() geometry to the plot we created previously to get a scatter
plot.

p <- ggplot(data = dat, aes(x = foo, y = bar, color = baz)) +
geom_point()

If you call summary(p), you will see these lines at the bottom of the
output:

geom_point: na.rm = FALSE
stat_identity: na.rm = FALSE

They tell you that you have a point geometry and that the statistic that
maps from the data to a summary is the identity. We do not make any
summary of the data when we plot it as points. You can create the plot by
printing the plot object; you can see the result in Figure 12-1.

print(p)
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You can add data and aesthetics directly to the geometry. This is
especially useful if you want to overlay alternative data onto a plot but as
an example consider moving the same data and aesthetics to the geom_
point() call.

40-

30- - .
- -
- . -
% i . baz
20- b . . = 2.00
= =l ‘e 1.75
E-] % 1.50
s . ~ . Ry 1.28
10- . . . *® - 1.00
. - - .
. -
- .. : -
- ) =
0+ - -
-
B[R
o.00 0.25 0.;50 0.75 1.00
foo

Figure 12-1. Point geometry plot

p <- ggplot() +
geom_point(data = dat, aes(x = foo, y = bar, color = baz))

If you look at the summary, you will see that the mapping from the
aesthetics is now grouped with the geometry

mapping: x = ~foo, y = ~bar, colour = “~baz
geom _point: na.rm = FALSE
stat_identity: na.rm = FALSE
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but otherwise, there is little change. This can be used to add additional
data to a plot. It also shows that it sometimes can make sense to start
with an empty plot object and then add different data sets in different
geometries.

Since baz is numerical, it is interpreted as a continuous variable. You
can get a discrete color mapping by transforming it into a factor.

ggplot(data = dat, aes(x = foo, y = bar, color = factor(baz)))
+ geom_point()

You can see the result in Figure 12-2.

You can change the levels in the factor to reorder the legend. See
Chapter 9 for more on manipulating factors.

Another simple geometry is a line plot.

ggplot(data = arrange(dat, foo),
aes(x = foo, y = bar, color = factor(baz))) +
geom_line()
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Figure 12-2. Discrete color aesthetics
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40-
30- . P
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Figure 12-3. A line plot

See the result in Figure 12-3. I sorted the data with respect to the x-axis
before I plotted it using arrange(). Otherwise, the lines would not go left
to right.

You can have more than one geometry, for example:

p <- ggplot(data = dat, aes(x = foo, y = bar, color = baz)) +
geom_point() + geom_smooth(method = "loess")

If you call summary(p), you will see two layers at the bottom of the output.

geom_point: na.rm = FALSE
stat_identity: na.rm = FALSE
position_identity
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TRUE
TRUE, # more here. . .

geom_smooth: na.rm

FALSE, se
FALSE, se

stat_smooth: na.rm
position_identity

Observe that the smooth geometry does not have the identity statistics.
It shows a summary of the data and the mapping from the data to that
summary is handled by a stat_smooth statistics.

We can print the plot

print(p)

40-

30- .

baz
20 - 2.00
. 1.75
1]
a 1.50
1.25
10~ 1.00
0 1 - -
- L
-
- .
RE——L
0.00 0.25 0.50 0.75 1.00

foo

Figure 12-4. Plot with two geometries

and see the result in Figure 12-4.
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If we use a discrete color, it also groups the data, so if we make baz a
factor again, we will get the data in a differently colored point and get two
smoothed lines.

ggplot(data = dat, aes(x = foo, y = bar, color = factor(baz))) +
geom_point() + geom_smooth(method = "loess")

See the result in Figure 12-5.
You can build a histogram plot with geom_histogram() (see Figure 12-6).

ggplot(data = dat, aes(x = foo)) + geom_histogram(binwidth = 0.05)

Notice that you only need an x-axis for this geometry. With summary(p)
you will see that the statistic is stat_bin.

geom _bar: na.rm = FALSE
stat _bin: binwidth = NULL, # there is more here

If you want a density plot instead, you use geom_density().
ggplot(data = dat, aes(x = bar)) + geom_density()
There, you will see that the statistic is stat_density.

geom density: na.rm = FALSE
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Figure 12-5. Plot with two geometries and a discrete color
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foo

Figure 12-6. Histogram plot
stat_density: na.rm = FALSE

I think you see the pattern now.

Facets

The effect of adding a grid facet is that we get sub-figures where the data
is split into groups determined by the formula we give facet_grid(); see
Figure 12-7.

ggplot(data = dat, aes(x = foo, y = bar)) + geom_point() +
facet_grid(~ factor(baz))

232



CHAPTER 12  PLOTTING: GGPLOT2

In the previous plots, when you looked at their summary, you would
see, under faceting, that the class was FacetNull.

faceting: <ggproto object: Class FacetNull, Facet, gg>
When we added the grid facet, we now see this:
faceting: <ggproto object: Class FacetGrid, Facet, gg>

You can plot in a two-dimensional grid by having variables on both
sides of the formula:

dat2 <- tibble(
foo = rep(1:5, each
bar = rep(1:2, each

20),
50),
foo * bar + rnorm(100),

X

-foo

y

)
ggplot(data = dat2, aes(x = x, y =y)) +
geom_point() + facet_grid(factor(foo) ~ factor(bar))
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Figure 12-7. Faceting the plot
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Figure 12-8. Facet grid for two variables

The result is shown in Figure 12-8.

You can use more than two variables but (naturally) only two
dimensions. If you use more than two variables, then the different
categories will be shown as labels on the facet sides. You will see all
combinations of factors that appear in the formula. As an example,
consider this:

dat3 <- tibble(

foo = factor(xep(1:5, each = 20)),
bar = factor(xep(1:2, each = 50)),
baz = factor(rep(1:5, times = 20)),
qux = factor(rep(1:2, times = 50)),
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rnoxm(100),
rnorm(100)

x
1

)
ggplot(data = dat3, aes(x = x, y =y)) +
geom_point() + facet_grid(foo + bar ~ baz + qux)

The result is shown in Figure 12-9.

Adding Coordinates

All the preceding plots were plotted in cartesian coordinates—the default
coordinates. You can change the coordinates of a plot. For example, you
can flip an axis, for example, the x-axis of a plot:

ggplot(data = dat, aes(x = foo, y = bar)) + geom_point() +
coord_flip()

Or you can plot in polar coordinates instead of cartesian coordinates.
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Figure 12-11. Plot in polar coordinates

ggplot(data = dat, aes(x = foo, y = bar)) + geom_point() +
coord_polar()

See Figures 12-10 and 12-11.
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Conclusions

R, extended with the Tidyverse, is a powerful language for data science.
There is strong support for each step along a data analysis pipeline.

After reading this book, you should have a good grasp of how the Tidyverse

packages work and how you use them. The book did not cover which data
science and machine learning model to use on particular data, but only
how they could fit into pipelines. Covering actual data analysis and the
methods to use—and packages supporting them—is beyond the scope of
this book. Each statistical or machine learning method could fill a book in
itself, and there are many such models in R packages. The book is mainly
a syntax guide and what it covered can be used with any model you need
to apply to your data, so it is a good foundation for how to adapt your data
analysis into the Tidyverse framework.

© Thomas Mailund 2019
T. Mailund, R Data Science Quick Reference, https://doi.org/10.1007/978-1-4842-4894-2_13
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arrange() function, 125, 228

B

bootstrap() function, 214
boundary() function, 165
broom package

augment(), 207

example, 205

glance() function, 207, 215

tidy(), 206

C

col_factor(), 19, 21

col_functions, 20

Column encodings
convert argument, 52
extract() function, 54
remove argument, 52, 56
separate() function, 51, 52
separate_rows(), 56, 57

Column types
function-based

specification, 18-22

string-based (see String-based

specification)

© Thomas Mailund 2019

complete() function, 60, 61
crossing() function, 59

D

Data frame
column selection
contains() function, 115
ends_with() function,
113-115
indices, 111, 112
matches() function, 115
non-empty strings, 116
ranges, 112
rename, 117
select(), 110, 117
sorting, 125, 126

starts_with() function, 113

example, countries income
dplyr, 155
mean_income, 158
missing data, 155
mutate(), 157
reformatting, 156, 157
ungroup table, 159

Data frames modification
abs() function, 131
add columns, 128

T. Mailund, R Data Science Quick Reference, https://doi.org/10.1007/978-1-4842-4894-2
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Data frames modification (cont.)
case_when(), 133
mutate(), 127
transmute(), 130, 131
units package, 129
vector expressions, 131
Vectorize() function, 132

delim argument, 31

desc() function, 126

dplyr package, 109, 117

drop_na() function, 62, 72

E

expand() function, 57-59

F

facet_grid(), 232
factor() function, 181, 182
Factors
adding levels, 190
concatenation, 183-185
creation, 182
projection
fct_collapse(), 186
fct_drop(), 189
fct_lump(), 187, 188
fct_other(), 188
fct_recode(), 186
recorder levels, 191, 192
fct_collapse(), 186
fct_drop(), 189
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fct_expand(), 190
fct_explicit_na(), 190
fct_infreq(), 193
fct_inorder(), 192
fct_lump(), 187
fct_other(), 188
fct_recode(), 186
fct_rev(), 193
File headers, 8-11
fill() function, 64
filter_all() function, 121, 124, 125
Filter data frames
between() function, 120
filter(), 118
filter_all() function, 121,
124,125
filter_at() function, 122
filter_if() function, 123
select(), 118, 120
filter() function, 117
Forcats package (see Factors)
force_tz() function, 198
formulae() function, 216
full_join() function, 151
Function composition
operator, 78

G, H
gather() function, 46
convert to TRUE
argument, 49, 50
key and value arguments, 51



range of columns, 48
tidy selection, 49
ggplot() function, 221
ggplot2 package, 2
adding components
to objects, 221, 222
adding coordinates, 236-238
adding geometry
geom_histogram(), 230, 232
geom_point(), 224, 225
line plot, 226, 228
statistic, 230, 231
stat_smooth statistics, 229
components, 220, 221
facets, 232-236
objects
adding aesthetics, 223, 224
adding data, 223
glance() function, 217
group_by() function, 134, 140
Grouping and summarizing
global summaries, 144
more variable, 136
mutate() + distinct(), 145
summarise(), 140
group_vars() function, 136

,J, K

int_aligns(), 202, 203
interval(), 199
int_flip(), 200
int_overlaps(), 202
int_standardize(), 200
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L

Lambda expressions
anonymous
functions, 104
is_even() function, 105
keep() function, 104
purrr function, 105, 106
readable versions, 106, 107
locale() function, 20, 23
Lubridate package
force_tz() function, 198
time interval
int_aligns(), 202, 203
interval(), 199
int_flip(), 200
int_length(), 200
int_overlaps(), 202
int_standardize(), 200
%within% operator, 201
time points, 195-197
time zone, 197, 198

magrittr package, 71, 73, 79
map() function, 86, 94, 96
Mapping function
extract values, 90
identity() function, 89
imap() variations, 96
Imap(), 93, 95
Imap_at(), 95
Imap_if(), 95
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Mapping function (cont.) N
map_at(), 93
map_dbl(), 88
map_depth(), 91
map_df(), 90
map_dfc(), 89
map_dfr(), 89
map_if(), 92, 93

Nesting data, 66
data column, 68
.key argument, 67
unnest(), 68
nesting() function, 59

map_lgl(), 87 O
pmap(), 96 ordered argument, 21
vector expression, 87
Missing values
dplyr, 64 P; Q
drop_na() function, 62 Parsing time/dates
fill() function, 64, 65 codes, 22, 23
replace_na() formats, 23
function, 63 functions, 24
modelr package, 208 locale(), 27
add_predictions(), 209 PM/AM formats, 24
add_residuals(), 209 readr, 25
bootstrap() function, 214 string format, 24
broom’s glance() 24-hour/12-hour
function, 215 clocks, 24
crossv_kfold, 214 UTC, 26
crossv_loo, 214 Partial evaluation, 101
example, 208 combine functions, 103
fit_with(), 216, 217 filter values, 102
gather_predictions(), 210, 213 mapping, 103
seq_range() partial() function, 102
function, 210 Pipelines
spread_predictions(), 211 function arguments, 75-78
modify() functions, 97 nested function, 77
mutate() function, 127, 141, 142 notation, 74, 75
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Pipe operator
%<>% operator, 79
%$% operator, 80
magrittr package, 71
tee-pipe operator, %1>%, 80
tidyverse package, 71
pmap() functions, 96
purrr functions, 84
filtering
compact() function, 85
negate() function, 85
predicate function, 84
high-order functions, 84
magrittr pipelines, 84

mapping (see Mapping function)

R

Reading data, functions, 6-8
readr package
column types, 11
reading data,
functions, 6-8
space-separated columns,
28-30
writing data, functions, 31
reduce(), 97, 154
accumulate()
function, 100, 101
init argument, 98
pair(), 98
rename_at() function, 155
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semi_join(), 152-154
separate_rows(), 56
seq_range() function, 210
Space-separated columns, 28-30
spread() function, 50
str_count() function, 161-163
str_dup() function, 176
str_extract(), 174
String-based specification
Boolean values, 15
characters, 12
cols() function, 18
encoding format, 16
function call, 13
read_csv, 13
strings, 15, 17
Strings
capitalization, 166
padding, 168
str_count(), 161-163
str_detect(), 171-173
str_extract(), 174
str_split(), 164-166
tidyverse package, 161
transforming
operators, 175
regular expressions, 176
str_c(), 177
str_dup(), 176
str_glue(), 179, 180
str_sub(), 177,178
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Strings (cont.)
trimming, 170
wrapping, 166, 168

str_pad(), 168

str_split(), 164

str_sub(), 177,178

str_to_lower(), 166

str_to_title(), 166

str_trunc(), 169

str_wrap(), 166

summarise(), 133, 140, 142, 145

T

Tables, join
anti_join(), 154

bind_columns(), 146

bind_rows(), 146
distinct(), 149
full_join(), 151

inner_join(), 147, 148, 150-153
reduce() function, 154
semi_join(), 152, 153

suffix argument, 150
Tibbles
creation

as.data.frame(), 34

as_tibble(), 35
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columns, 37, 38
print(), 36
read_csv, 33, 34
indexing, 38
double brackets ([[]]), 40-42
single-bracket([]), 38, 39
tidy(), 206
Tidy data, 45, 46
tidyr functions, 64, 211
tidyr package, 45, 61
tidyverse package, 1, 2, 5, 71, 109

U

ungroup(), 141
unnest() operation, 68
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Vectorize() function, 132

W, X

Writing data, functions, 31
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ymd() function, 195, 196
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