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CHAPTER 1

Introduction
R is a functional programming language with a focus on statistical analysis. 

It has built-in support for model specifications that can be manipulated 

as first-class objects, and an extensive collection of functions for dealing 

with probability distributions and model fitting, both built-in and through 

extension packages.

The language has a long history. It was created in 1992 and is based 

on an even older language, S, from 1976. Many quirks and inconsistencies 

have entered the language over the years. There are, for example, at least 

three partly incompatible ways of implementing object orientation, and 

one of these is based on a naming convention that clashes with some built- 

in functions. It can be challenging to navigate through the many quirks of 

R, but this is alleviated by a suite of extensions, collectively known as the 

“Tidyverse.”

While there are many data science applications that involve more 

complex data structures, such as graphs and trees, most bread-and-butter 

analyses involve rectangular data. That is, the analysis is of data that can 

be structured as a table of rows and columns where, usually, the rows 

correspond to observations and the columns correspond to explanatory 

variables and observations. The usual data sets are also of a size that can 

be loaded into memory and analyzed on a single desktop or laptop. I will 

assume that both are the case here. If this is not the case, then you need 

different, big data techniques that go beyond the scope of this book.

The Tidyverse is a collection of extensions to R; packages that are 

primarily aimed at analyzing tabular data that fits into your computer’s 



2

memory. Some of the packages go beyond this, but since data science is 

predominately manipulation of tabular data, this is the focus of this book.

The Tidyverse packages provide consistent naming conventions, 

consistent programming interfaces, and more importantly a consistent 

notation that captures how data analysis consists of different steps of data 

manipulation and model fitting.

The packages do not merely provide collections of functions for 

manipulating data but rather small domain-specific languages for different 

aspects of your analysis. Almost all of these small languages are based on 

the same overall “pipeline” syntax, so once you know one of them, you can 

easily use the others. A noticeable exception is the plotting library ggplot2. 

It is slightly older than the other extensions and because of this has a 

different syntax. The main difference is the operator used for combining 

different operations. The data pipeline notation uses the %>% operator, 

while ggplot2 combines plotting instructions using +. If you are like me, 

then you will often try to combine ggplot2 instructions using %>%—only 

out of habit—but once you get an error from R, you will recognize your 

mistake and can quickly fix it.

This book is a syntax reference for modern data science in R, which 

means that it is a guide for using Tidyverse packages and it is a guide for 

programmers who want to use R’s Tidyverse packages instead of basic R 

programming.

This guide does not explain each Tidyverse package exhaustively. 

The development of Tidyverse packages progresses rapidly, and the book 

would not contain a complete guide shortly after it is printed anyway. 

The structure of the extensions and the domain-specific languages they 

provide are stable, however, and from examples with a subset of the 

functionality in them, you should not have any difficulties with reading the 

package documentation for each of them and find the features you need 

that are not covered in the book.

Chapter 1  IntroduCtIon
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To get started with the Tidyverse, install and load it:

install.packages("tidyverse")

library(tidyverse)

The Tidyverse consists of many packages that you can install and 

load independently, but loading all through the tidyverse package is the 

easiest, so unless you have good reasons to, just load tidyverse when you 

start an analysis. In this book I describe three packages that are not loaded 

from tidyverse but are generally considered part of the Tidyverse.1

1 The Tidyverse I refer to here is the ecosystem of Tidyverse packages but not the 
package tidyverse that only loads the key packages.

Chapter 1  IntroduCtIon
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CHAPTER 2

Importing Data: 
readr
Before we can analyze data, we need to load it into R. The main Tidyverse 

package for this is called readr, and it is loaded when you load the 

tidyverse package.

library(tidyverse)

But you can also load it explicitly using

library(readr)

Tabular data is usually stored in text files or compressed text files 

with rows and columns matching the table’s structure. Each line in the 

file is a row in the table and columns are separated by a known delimiter 

character. The readr package is made for such data representation and 

contains functions for reading and writing variations of files formatted in 

this way. It also provides functionality for determining the types of data in 

each column, either by inferring types or through user specifications.
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 Functions for Reading Data
The readr package provides the following functions for reading  

tabular data:

Function File format

read_csv() Comma-separated values

read_csv2() Semicolon-separated values

read_tsv() Tab-separated values

read_delim() General column delimiters1

read_table() Space-separated values (fixed length columns)

read_table2() Space-separated values (variable length columns)

The interface to these functions differs little. In the following file,  

I describe read_csv, but I highlight when the other functions differ. The 

read_csv function reads data from a file with comma-separated values. 

Such a file could look like this:

A,B,C,D

1,a,a,1.2

2,b,b,2.1

3,c,c,13.0

Unlike the base R read.csv function, read_csv will also handle files 

with spaces between the columns, so it will interpret the following data the 

same as the preceding file.

1 The read_delim() can handle any file format that has a special character that 
delimits columns. The read_csv(), read_csv2(), and read_tsv() functions are 
specializations of it. The first of these uses commas for the delimiter, the second 
semicolons, and the third tabs.

ChapTer 2  ImporTInG DaTa: reaDr
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A, B, C,   D

1, a, a,  1.2

2, b, b,  2.1

3, c, c, 13.0

If you use R’s read.csv function instead, the spaces before columns 

B and C will be included as part of the data, and the text columns will be 

interpreted as factors.

The first line in the file will be interpreted as a header, naming the 

columns, and the remaining three lines as data rows.

Assuming the file is named data/data.csv, you read its data like this:

my_data <- read_csv(file = "data/data.csv")

## Parsed with column specification:

## cols(

##   A = col_double(),

##   B = col_character(),

##   C = col_character(),

##   D = col_double()

## )

When reading the file, read_csv will infer that columns A and D are 

numbers and columns B and C are strings.

If the file contains tab-separated values

A   B   C   D

1   a   a   1.2

2   b   b   2.1

3   c   c   13.0

you should use read_tsv() instead.

my_data <- read_tsv(file = "data/data.tsv")

ChapTer 2  ImporTInG DaTa: reaDr
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The file you read with read_csv can be compressed. If the suffix of the 

filename is .gz, .bz2, .xz, or .zip, it will be uncompressed before read_

csv loads the data.

my_data <- read_csv(file = "data/data.csv.gz")

If the filename is a URL (i.e., has prefix http://, https://, ftp://, 

or ftps://), the file will automatically be downloaded.

You can also provide a string as the file object:

read_csv(

    "A, B, C,    D

     1, a, a,  1.2

     2, b, b,  2.1

     3, c, c, 13.0

")

This is rarely useful in a data analysis project, but you can use it to 

create examples or for debugging.

 File Headers
The first line in a comma-separated file is not always the column names; 

that information might be available from elsewhere outside the file. If you 

do not want to interpret the first line as column names, you can use the 

option col_names = FALSE.

read_csv(

    file = "data/data.csv",

    col_names =FALSE

)

ChapTer 2  ImporTInG DaTa: reaDr
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Since the data/data.csv file has a header, that is interpreted as part of 

the data, and because the header consists of strings, read_csv infers that 

all the column types are strings. If we did not have the header, for example, 

if we had the file data/data-no-header.csv:

1, a, a, 1.2

2, b, b, 2.1

3, c, c, 13.0

then we would get the same data frame as before, except that the names 

would be autogenerated:

read_csv(

    file = "data/data-no-header.csv",

    col_names =FALSE

)

## Parsed with column specification:

## cols(

##   X1 = col_double(),

##   X2 = col_character(),

##   X3 = col_character(),

##   X4 = col_double()

## )

## # A tibble: 3 x 4

##      X1 X2    X3       X4

##   <dbl> <chr> <chr> <dbl>

## 1     1 a     a       1.2

## 2     2 b     b       2.1

## 3     3 c     c      13

The autogenerated column names all start with X and are followed by 

the number the columns have from left to right in the file.

ChapTer 2  ImporTInG DaTa: reaDr
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If you have data in a file without a header, but you do not want the 

autogenerated names, you can provide column names to the col_names 

option:

read_csv(

    file = "data/data-no-header.csv",

    col_names = c("X", "Y", "Z", "W")

)

If there is a header line, but you want to rename the columns, you 

cannot just provide the names to read_csv using col_names. The first row 

will still be interpreted as data. This gives you data you do not want in the 

first row, and it also affects the inferred types of the columns.

You can, however, skip lines before read_csv parse rows as data. Since 

we have a header line in data/data.csv, we can skip one line and set the 

column names.

read_csv(

    file = "data/data.csv",

    col_names = c("X", "Y", "Z", "W"),

    skip = 1

)

You can also put a limit on how many data rows you want to load using 

the n_max option.

read_csv(

    file = "data/data.csv",

    col_names = c("X", "Y", "Z", "W"),

    skip = 1,

    n_max = 2

)

ChapTer 2  ImporTInG DaTa: reaDr
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If your input file has comment lines, identifiable by a character where 

the rest of the line should be considered a comment, you can skip them if 

you provide the comment option:

read_csv(

    "A, B, C,    D

    # this is a comment

    1, a, a,  1.2 # another comment

    2, b, b,  2.1

    3, c, c, 13.0",

    comment = "#")

For more options affecting how input files are interpreted, read the 

function documentation: ?read_csv.

 Column Types
When read_csv parses a file, it infers the type of each column. This 

inference can be slow, or worse the inference can be incorrect. If you 

know a priori what the types should be, you can specify this using the 

col_types option. If you do this, then read_csv will not make a guess at 

the types. It will, however, replace values that it cannot parse as of the 

right type into NA.2

2 There is a gotcha here. The types are guessed at after a fixed number of lines 
are read (by default 1000). If you have 1000 lines of numbers in a column and 
line 1001 has a string, then the type will be inferred as numeric and you lose the 
string. If you know the types, it is always better to tell the functions what they are.
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 String-based Column Type Specification
In the simplest string specification format, you must provide a string with 

the same length as you have columns and where each character in the 

string specifies the type of one column. The characters specifying different 

types are this:

Character Type

C Character

I Integer

N number

D Double

L Logical

F Factor

D Date

T Date time

T Time

? Guess (default)

_/- Skip the column

By default, read_csv guesses, so we could make this explicit using the 

type specification "????":

read_csv(

    file = "data/data.csv",

    col_types = "????"

)

The results of the guesses are double for columns A and D and 

character for columns B and C. If we wanted to make this explicit, we could 

use "dccd".
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read_csv(

    file = "data/data.csv",

    col_types = "dccd"

)

If you want an integer type for column A, you can use "iccd":

read_csv(

    file = "data/data.csv",

    col_types = "iccd"

)

If you try to interpret column D as integers as well, you will get a list of 

warning messages, and the values in column D will all be NA; the numbers 

in column D cannot be interpreted as integers and read_csv will not round 

them to integers.

If you specify that a column should have type d, the numbers in the 

column must be integers or decimal numbers. If you use the type n (the 

default that read_csv will guess), you will also get doubles, but the latter 

type can handle strings that can be interpreted as numbers such as dollar 

amounts, percentages, and group separators in numbers. The column type 

n will ignore leading and trailing text and handle number separators:

With this function call

read_csv(

    'A, B, C,  D,       E

    $1, a, a,  1.2%, "1,100,200"

    $2, b, b,  2.1%,   "140,000"

    $3, c, c, 13.0%, "2,005,000"',

    col_types = "nccnn")

columns A, D, and E will be read as numbers. If you use the type 

specification d, they would not, and all the values would be NA.
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The decimal indicator and group delimiter vary around the world. By 

default, read_csv uses the US convention with a dot for decimal notation 

and comma for grouping in numbers. In many European countries, it is the 

opposite. You can use the locale option to change these:

read_csv(

    'A, B, C,  D,            E

    $1, a, a,  "1,2%",    "1.100.200"

    $2, b, b,  "2,1%",      "140.000"

    $3", c, c, 13,0%",    "2.005.000"',

    locale=locale(decimal_mark = ",",grouping_mark  ="."),

    col_types = "nccnn")

In the preceding example, I explicitly specified how read_csv should 

interpret numbers, but you can also use ISO 639-1 language codes.3 If 

you do, you also get the local time conventions and local day and month 

names. The default is English, but if your data is from Denmark, for 

example, you want to use Danish conventions, you would use the local 

locale("da"). For French data, you would use fr, locale("fr"). If you 

type this into an R console, you will see the month and week names, 

including their abbreviated forms, in these languages.

See the ?locale documentation for more options.

In files that use commas as decimal points and “.” for number 

groupings, the column delimiter is usually “;” rather than “,”. This way, 

it is not necessary to put decimal numbers in quotes. The read_csv2 

function works as read_csv but uses “;” as column delimiter and “.” for 

number groupings.

3 https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
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The logical type is used for boolean values. If a column only contains 

TRUE and FALSE (case doesn’t matter),

read_csv(

    'A,  B, C,     D

    TRUE,   a, a,  1.2

    false,   b, b,  2.1

    true,   c, c, 13')

then read_csv will guess that the type is logical.

It is not unusual to code boolean values as 0 and 1; however, and since 

these will be interpreted as numbers by default, you can make their type 

explicit using l:

read_csv(

    'A, B,  C,   D

    1, a, a,  1.2

    0, b, b,  2.1

    1, c, c, 13',

    col_types = "lccn")

If you use type l, you can mix TRUE/FALSE (ignoring case) with 0/1. Any 

other number or string will be translated into NA.

The D, t, and T types are for dates, time points, and datetime, in that 

order. Dates and time are what you might expect. A date specifies a range 

of days, for example, a single day, a week, a month, or a year. A time points 

a specific time of the day, for example, an hour, a minute, or a second. A 

datetime combines a day and a time, that is, it specifies a specific time 

during a specific day.

read_csv(

    'D, T, t

    "2018-08-23", "2018-08-23T14:30",  14:30',

    col_types = "DTt"

)
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## # A tibble: 1 x 3

##   D          T                   t

##   <date>     <dttm>              <drtn>

## 1 2018-08-23 2018-08-23 14:30:00 14:30

If you use one of these type specifications, the time and dates should 

be in ISO 8601 format.4 Local conventions for writing time and date, 

however, differ substantially and are rarely ISO 8601. When your time data 

are not ISO 8601, you need to tell read_csv how to read them.

The default time parser handles times in the hh:mm, hh:mm:ss formats 

and handles am and pm suffixes; it suffices for most time formats (but notice 

that it wants time in hh:mm or hh:mm:ss formats; it is flexible in the number 

of characters you use for hours, and you can leave out seconds, but you 

cannot leave out minutes). Date and datetime vary much more than time 

formats, and there, you usually need to specify the encoding format.

You can use the locale option to change how read_csv parses dates 

(D) and time (t).

read_csv(

     'D,  t

     "23 Oct 2018", pm',

     col_types = "Dt",

     locale = locale(

         date_format = "%d %b %Y",

         time_format = "%I%p"

     )

)

The date_format "%d %b %Y" says that dates are written as day,  

three- letter month abbreviation, and year with four digits, and each of the 

three separated by a space. The time_format "%I%p" says that we want 

4 https://en.wikipedia.org/wiki/ISO_8601
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time to be written as a number from 1 to 12, with no minute information, 

the hour immediately followed by am/pm without any space between.

For data times (T), we cannot specify the format using locale. We 

need a more verbose type specification that we return to the following 

specification. We also return to formatting specifications for parsing dates 

and time later.

Columns that are not immediately parsed as numbers, booleans, dates, 

or times will be parsed as strings. If you want these to be factors instead, 

you use the f type specification.

read_csv(

     'A, B, C,    D

     1, a, a,  1.2

     0, b, b,  2.1

     1, c, c, 13',

     col_types = "lcfn")

     ## # A tibble: 3 x 4

     ##   A     B     C     D

     ##   <lgl> <chr> <fct> <dbl>

     ## 1 TRUE  a     a       1.2

     ## 2 FALSE b     b       2.1

     ## 3 TRUE  c     c      13

If you only want to use some of the columns, you can skip the rest 

using the “type” - or _:

read_csv(

    file = "data/data.csv",

    col_type = "_cc-"

)

## # A tibble: 3 x 2

##   B     C

ChapTer 2  ImporTInG DaTa: reaDr



18

##   <chr> <chr>

## 1 a     a

## 2 b     b

## 3 c     c

If you specify the column types using a string, you should specify the 

types of all columns. If you only want to define the types of a subset of 

columns, you can use the function cols() to specify types. You call this 

function with named parameters, where the names are column names and 

the arguments are types.

read_csv(

    file = "data/data.csv",

    col_types = cols(A = "c")

)

read_csv(

    file = "data/data.csv",

    col_types = cols(A = "c", D = "c")

)

 Function-based Column Type Specification
If you are like me, you might find it hard to remember the single-character 

codes for different types. If so, you can use longer type names that you 

specify using function calls. These functions have names that start with 

col_, so you can use autocomplete to get a list of them. The types you 

can specify using functions are the same as those you can specify using 

characters, of course, and the functions are:
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Function Type

col_character() Character

col_integer() Integer

col_number() number

col_double() Double

col_logical() Logical

col_factor() Factor

col_date() Date

col_datetime() Date time

col_time() Time

col_guess() Guess (default)

col_skip() Skip the column

You need to wrap the function-based type specifications in a call to cols.

read_csv(

    file = "data/data.csv",

    col_types = cols(A = col_integer())

)

## # A tibble: 3 x 4

##       A B     C         D

##   <int> <chr> <chr> <dbl>

## 1     1 a     a       1.2

## 2     2 b     b       2.1

## 3     3 c     c       13

read_csv(

    file = "data/data.csv",

    col_types = cols(D = col_character())

)
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## # A tibble: 3 x 4

##       A B     C     D

##   <dbl> <chr> <chr> <chr>

## 1     1 a     a     1.2

## 2     2 b     b     2.1

## 3     3 c     c     13.0

Most of the col_ functions do not take any arguments, but they 

are affected by the locale parameter the same way that the string 

specifications are.

For factors, date, time, and datetime types, however, you have more 

control over the format using the col_ functions. You can use arguments to 

these functions for specifying how read_csv should parse dates and how it 

should construct factors.

For factors, you can explicitly set the levels. If you do not, then the 

column parser will set the levels in the order it sees the different strings in 

the column. For example, in data/data.csv the strings in columns C and 

D are in the order a, b, and c:

A, B, C,   D

1, a, a,  1.2

2, b, b,  2.1

3, c, c, 13.0

By defaults, the two columns will be interpreted as characters, but if we 

specify that C should be a factor, we get one where the levels are a, b, and c, 

in that order.

my_data <- read_csv(

    file = "data/data.csv",

    col_types = cols(C = col_factor())

)
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my_data$C

## [1] a b c

## Levels: a b c

If we want the levels in a different order, we can give col_factor() a 

levels argument.

my_data <- read_csv(

    file = "data/data.csv",

    col_types = cols(

        C = col_factor(levels = c("c", "b", "a"))

    )

)

my_data$C

## [1] a b c

## Levels: c b a

We can also make factors ordered using the ordered argument.

my_data <- read_csv(

    file = "data/data.csv",

    col_types = cols(

        B = col_factor(ordered = TRUE),

        C = col_factor(levels = c("c", "b", "a"))

    )

)

my_data$B

## [1] a b c

## Levels: a < b < c

my_data$C

## [1] a b c

## Levels: c b a
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 Parsing Time and Dates
The most complex types to read (or write) are dates and time (and 

datetime), just because these are written in many different ways. You can 

specify the format that dates and datetime are in using a string with codes 

that indicate how time information is represented.

The codes are these:

Code Time format Example string Interpretation

%Y 4-digit year 1975 The year 1975

%y 2-digit year5 75 also the year 75

%m 2-digit month 02 February

%b abbreviated month name6 Feb February

%B Full month name February February

%d 2-digit day 15 The 15th of a month

%h hour number on a 24-hour 

clock

18 Six o’clock in the 

evening

%I hour number on a 12-hour 

clock7

6 pm 18:00 hours

%p am/pm indicator 6 pm 18:00 hours

5 Two-digit years are assumed to be either in the twentieth or the twenty-first 
century. The cutoff line is 68; years at or below 68 are in the twentieth century and 
69 and above are in the twenty-first century. Therefore, 75 is assumed to be in the 
twentieth century, so 75 is 1975.

6 The name of months and weekdays varies from language to language, and so 
does the abbreviations. Therefore, if you use a format that refers to these, you 
either need to use numbers or the format will depend on the locale option.

7 If you use %I, you must also use %p for pm/am.
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Code Time format Example string Interpretation

%m Two-digit minutes 18:30 half past six

%S Integer seconds 18:30:10 Ten seconds past 18:00

%Z Time zone as name8 america/Chicago Central Time

%z Time zone as o_set from UTC “+0100” Central european Time

There are shortcuts for frequently used formats:

Shortcut Format

%D %m/%d/%y

%x %y/%m/%d

%F %Y-%m-%d

%R %H:%M

%T %H:%M:%S

As we saw earlier, you can set the date and time format using the 

locale() function. If you do not, the default codes will be %AD for dates 

and %AT for time (there is no locale() argument for datetime). These 

codes specify YMD and H:M/H:M:S formats, respectively, but are more 

relaxed in matching the patterns. The date parse, for example, will allow 

different separators. For dates, both “1975-02-15” and “1975/02/15” will be 

read as February the 15th 1975, and for time, both “18:00” and “6:00 pm” 

will be six o’clock in the evening.

8 Time zones based on locations handle daylight saving time. UTC is a fixed time 
zone, and it does not have daylight saving time.
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In the following text, I give a few examples. I will use the functions 

parse_date, parse_time, and parse_datetime rather than read_csv with 

column type specifications. These functions are used by read_csv when 

you specify a date, time, or datetime column type, but using read_csv for 

the examples would be unnecessarily verbose. Each takes a vector string 

representation of dates and time. For more examples, you can read the 

function documentation ?col_datetime.

Parsing time is simplest; there is not much variation in how time points 

are written. The main differences are in whether you use 24-hour clocks 

or 12-hour clocks. The %R and %T codes expect 24-hour clocks and differ in 

whether seconds are included or not.

parse_time(c("18:00"), format = "%R")

parse_time(c("18:00:30"), format = "%T")

There is no shortcut for 12-hour codes, but you must combine %I with 

%p to read pm/am formats.

parse_time(c("6 pm"), format = "%I %p")

Here, I have specified that the input only includes hours and not 

minutes. If we want hours (and not minutes) in 24-hour clocks, we need to 

use %H rather than %R.

For dates, ISO 8601 says that the format should be YYYY-MM-DD. The 

default date parser will accept this format, but the explicit format string is

parse_date(c("1975/02/05"), format = "%Y/%m/%d")

If you do not want to include the day, and you want to use two-digit 

years, you need

parse_date(c("75-02"), format = "%y-%m")

This is February 1975; remember that the %y code assumes that 

numbers above 68 are in the twentieth century.
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Dates written on the form 05/02/75 can mean both February 15th 1975 

and May 2nd 1975, depending on where you are in the world. Europe uses 

the sensible DD/MM/YY format, where the order goes from the smallest 

time unit, days, to the medium time units, months, and then to years. 

In the United States, they use the MM/DD/YY format. To get the 15th of 

February, you need one of these formats:

parse_date(c("75/02/05"), format = "%y/%m/%d")

parse_date(c("75/05/02"), format = "%y/%d/%m")

Date specifications that only use numbers are not affected by the 

local language, but if you include the name of months, they are. The 

name of months and their abbreviation varies from language to language, 

obviously. So do the name of weekdays, but at the time of writing, parsing 

weeks and weekdays is not supported by readr. You can get the name 

information from locale() if you use a language code. In the following 

examples, I parse dates in English and Danish. The month names are 

almost the same, but abbreviations in Danish require a dot following them, 

and the day is followed by a dot as well.

parse_date(c("Feb 15 1975"),

           format = "%b %d %Y", locale = locale("en"))

parse_date(c("15. feb. 1975"),

           format = "%d. %b %Y", locale = locale("da"))

parse_date(c("February 15 1975"),

           format = "%B %d %Y", locale = locale("en"))

parse_date(c("15. feb. 1975"),

           format = "%d. %b %Y", locale = locale("da"))

parse_date(c("Oct 15 1975"),

           format = "%b %d %Y", locale = locale("en"))

parse_date(c("15. okt. 1975"),

           format = "%d. %b %Y", locale = locale("da"))
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parse_date(c("October 15 1975"),

           format = "%B %d %Y", locale = locale("en"))

parse_date(c("15. oktober 1975"),

           format = "%d. %B %Y", locale = locale("da"))

Datetimes can be parsed using combinations of date and time strings. 

With these, you also want to consider time zones. You can ignore those for 

dates and time, but unless you are sure that you will never have to consider 

time zones, you should not rely on the default time zone (which is UTC).9

You can either specify that time zones are relative to UTC with %z or 

location-based, with %Z if the time zone is given in the input, or you can 

use locale() if it is the same for all the input.

If you specify a time zone based on a location, R will automatically 

adjust for daylight saving time, but if you use dates relative to UTC, you will 

not—UTC does not have daylight savings. Central European Time (CET) is 

“+0100” and with daylight saving time “+0200”. US Pacific Time is “-0800”, 

but with daylight saving time, it is “-0900”. When you switch back and forth 

between daylight savings is determined by your location.

These two datetimes are the same

parse_datetime(c("Feb 15 1975 18:00 US/Pacific"),

                format = "%b %d %Y %R %Z")

parse_datetime(c("Feb 15 1975 18:00 -0800"),

                format = "%b %d %Y %R %z")

as are these two

parse_datetime(c("May 15 1975 18:00 US/Pacific"),

                format = "%b %d %Y %R %Z")

parse_datetime(c("May 15 1975 18:00 -0900"),

                format = "%b %d %Y %R %z")

9 https://en.wikipedia.org/wiki/Coordinated_Universal_Time
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If you use locale() to specify a time zone, you cannot use zones 

relative to UTC. The point of using locale() is local formats, not time 

zones. The parser will still handle daylight savings for you, however. These 

two are the same datetimes

parse_datetime(c("Aug 15 1975 18:00"),

                format = "%b %d %Y %R",

                locale = locale(tz = "US/Pacific"))

parse_datetime(c("Aug 15 1975 18:00 US/Pacific"),

                format = "%b %d %Y %R %Z")

If you print the objects you parse, there is a difference between using 

locale() and using %Z, but the time will be the same. Using %Z you will 

automatically translate the time into UTC; using locale() you will not.

x <- parse_datetime(c("Aug 15 1975 18:00"),

                     format = "%b %d %Y %R",

                     locale = locale(tz = "US/Pacific"))

x

## [1] "1975-08-15 18:00:00 PDT"

y <- parse_datetime(c("Aug 15 1975 18:00 US/Pacific"),

                     format = "%b %d %Y %R %Z")

y

## [1] "1975-08-16 01:00:00 UTC"

x == y

## [1] TRUE

The output looks like a string, but the object classes are not character, 

which, among other things, is why the comparison works.
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 Space-separated Columns
The preceding functions all read delimiter-separated columns. They 

expect a single character to separate one column from the next. If the 

argument trim_ws is true, they ignore whitespace. This argument is true by 

default for read_csv, read_csv2, and read_tsv, but false for read_delim.

The functions read_table and read_table2 take a different approach 

and separate columns by one or more spaces. The simplest of the two is 

read_table2. It expects any sequence of whitespace to separate columns. 

Consider

read_table2(

    "A B C D

     1 2 3 4

    15 16 17 18"

)

## # A tibble: 2 x 4

##       A     B     C     D

##   <dbl> <dbl> <dbl> <dbl>

## 1     1     2     3     4

## 2    15    16    17    18

The header names are separated by two spaces. The first data line 

has spaces before the first line since the string is indented the way it is. 

Between columns, there are also two spaces. For the second data line, we 

have several spaces before the first value, once again, but this time only 

single space between the columns. If we used a delimiter character to 

specify that we wanted a space to separate columns, we had to have exactly 

the same number of spaces between each column.

The read_table function instead reads the data as fixed-width 

columns. It uses the whitespace in the file to figure out the width of the 
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columns. After this, each line will be split into characters that match the 

width of the columns and assigned to those columns.

For example, in

read_table(

"

    A      B      C  D

    121    xyz   14  15

    22     abc   24  25

"

)

## # A tibble: 2 x 4

##       A B         C     D

##   <dbl> <chr> <dbl> <dbl>

## 1   121 xyz      14    15

## 2    22 abc      24    25

the columns are aligned, and the rows are interpreted as we might expect. 

Aligned, here, means that we have aligned spaces at some position 

between the columns. If you do not have spaces at the same location in all 

rows, columns will be merged.

read_table(

"

     A    B    C D

     121 xyz 14 15

     22  abc 24 25

"

)
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## # A tibble: 2 x 3

##       A B     `C D`

##   <dbl> <chr> <chr>

## 1   121 xyz   14 15

## 2    22 abc   24 25

Here, the header C is at the position that should separate columns C 

and D, and these columns are therefore merged.

If you have spaces in all rows but data between them in some columns 

only, you will get an error. For example, if your data looks like this

read_table(

    "

    A      B    C D

  121    xyz x 14 15

   22    abc   24 25

"

)

where the x in the first data line sits between two all-space columns. If you 

need more specialized fixed-width files, you might want to consider the 

read_fwf function. See its documentation for details: ?read_fwf.

The read_table and read_table2 functions take many of the same 

arguments as the delimiter-based parser, so you can, for example, specify 

column types and set the locale in the same way as the preceding data.

Not part of the main Tidyverse, the packages loaded when you load the 

package tidyverse, is readxl. Its read_excel function does exactly what 

it says on the tin; it reads Excel spreadsheets into R. Its interface is similar 

to the functions in readr. Where the interface differs is in Excel specific 

options such as which sheet to read. Such options are clearly only needed 

when reading Excel files.
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 Functions for Writing Data
Writing data to a file is more straightforward than reading data because we 

have the data in the correct types and we do not need to deal with different 

formats. With readr’s writing functions, we have fewer options to format 

our output—for example, we cannot give the functions a locale() and we 

cannot specify date and time formatting, but we can use different functions 

to specify delimiters and time will be output in ISO 8601 which is what the 

reading functions will use as default.

The functions are write_delim(), write_csv(), write_csv2(), and 

write_tsv(), and for formats that Excel can read, write_excel_csv() and 

write_excel_csv2(). The difference between write_csv() and write_

excel_csv() and between write_csv2() and write_excel_csv2() is that 

the Excel functions include a UTF-8 byte order mark so Excel knows that 

the file is UTF-8 encoded.

The first argument to these functions is the data we want to write and 

the second is the path to the file we want to write to. If this file has suffix 

.gz, .bz2, or .xz, the output is automatically compressed.

I will not list all the arguments for these functions here, but you can 

read the documentation for them from the R console. The argument you 

are most likely to use is col_names which, if true, means that the function 

will write the column names as the first line in the output, and if false, 

will not. If you use write_delim(), you might also want to specify the 

delimiter character using the delim argument. By default it is a single 

space; if you write to a file using write_delim() with the default options, 

you get the data in a format that you can read using read_table2().

The delimiter characters and the decimal points for write_csv(), 

write_csv2(), and write_tsv are the same as for the corresponding read 

functions.
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CHAPTER 3

Representing Tables: 
tibble
The data that the readr package returns are represented as tibble objects. 

These are tabular data representations similar to the base R data frames 

but are a more modern version.

The package that implements tibbles is tibble. You can load it using:

library(tibble)

Or as part of the tidy verse:

library(tidyverse)

 Creating Tibbles
Tidyverse functions that create tabular data will create tibbles rather 

than data frames. For example, when we use read_csv to read a file into 

memory, the result is a tibble:

x <- read_csv(file = "data/data.csv")

## Parsed with column specification:

## cols(

##   A = col_double(),

##   B = col_character(),
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##   C = col_character(),

##   D = col_double()

## )

x

## # A tibble: 3 x 4

##       A B     C         D

##   <dbl> <chr> <chr> <dbl>

## 1     1 a     a       1.2

## 2     2 b     b       2.1

## 3     3 c     c      13

The table that read_csv() creates has several super-classes, but the 

last is data.frame.

class(x)

## [1] "spec_tbl_df" "tbl_df" "tbl"

## [4] "data.frame"

This means that generic functions, if not specialized in the other 

classes, will use the data.frame version, and this, in turn, means that you 

can often use tibbles in functions that expect data frames. It does not mean 

that you can always use tibbles as a replacement for a data frame. If you 

run into this problem, you can translate a tibble into a data frame using 

as.data.frame():

y <- as.data.frame(x)

y

##   A B C    D

## 1 1 a a  1.2

## 2 2 b b  2.1

## 3 3 c c 13.0
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class(y)

## [1] "data.frame"

Notice that the two objects, when printed, give different output. When 

printing a tibble, there is more information about the column types.

If you have a data frame, you can translate it into a tibble using  

as_tibble():

z <- as_tibble(y)

z

## # A tibble: 3 x 4

##       A B     C         D

##   <dbl> <chr> <chr> <dbl>

## 1     1 a     a     1.2

## 2     2 b     b     2.1

## 3     3 c     c    13

You can create a tibble from vectors using the tibble() function:

x <- tibble(

    x = 1:100,

    y = x^2,

    z = y^2

)

x

## # A tibble: 100 x 3

##        x     y     z

##    <int> <dbl> <dbl>

##  1     1     1     1

##  2     2     4    16

##  3     3     9    81

##  4     4    16   256

##  5     5    25   625
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##  6     6    36  1296

##  7     7    49  2401

##  8     8    64  4096

##  9     9    81  6561

## 10    10   100 10000

## # ... with 90 more rows

Two things to notice here: when you print a tibble, you only see the 

first ten lines. This is because the tibble has enough lines that it will flood 

the console if you print all of them. If a tibble has more than 20 rows, you 

will only see the first ten. If it has fewer, you will see all the rows.

You can change how many lines you will see using the n option to 

print():

print(x, n = 2)

## # A tibble: 100 x 3

##       x     y     z

##   <int> <dbl> <dbl>

## 1     1     1     1

## 2     2     4    16

## # ... with 98 more rows

If a tibble has more columns than your console can show, only some 

will be printed. You can change the number of characters it will print using 

the width option to print.

print(x, n = 2, width = 15)

## # A tibble:

## #   100 x 3

##       x     y

##   <int> <dbl>

## 1     1     1

## 2     2     4
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## # ...  with 98

## #   more rows,

## #   and 1 more

## #   variable:

## #   z <dbl>

You can set either option to Inf. If n is Inf, you will see all rows, and if 

width is Inf, you will see all the columns.

The second thing to notice is that you can refer to previous columns 

when specifying later columns. When we created x, we used

tibble(

    x = 1:100,

    y = x^2,

    z = y^2

)

where column y refers to column x and column z refers to column y. You 

cannot refer to variable in the following columns, so this would be an 

error:

tibble(

    w = x/2,

    x = 1:100

)

When you use tibble() to create a data frame, you specify the 

columns as named arguments. If you indent your code as I have in the 

above example, then you can think of this as defining each column in one 

line. You can also create a tibble with one line per row.

tribble(

    ~x, ~y,  ~z,

     1, 10, 100,
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     2, 20, 200,

     3, 30, 300

)

## # A tibble: 3 x 3

##       x     y     z

##   <dbl> <dbl> <dbl>

## 1     1    10   100

## 2     2    20   200

## 3     3    30   300

The first line names the columns, and the ~ is necessary before the 

names. For large tibbles, using tribble() is not that helpful, but for 

example code or small tables, it can be.

 Indexing Tibbles
You can index a tibble in much the same way as you can index a data 

frame. You can extract a column using single-bracket index ([]), either by 

name or by index:

x <- read_csv(file = "data/data.csv")

## Parsed with column specification:

## cols(

##   A = col_double(),

##   B = col_character(),

##   C = col_character(),

##   D = col_double()

## )

y <- as.data.frame(x)

x["A"]
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## # A tibble: 3 x 1

##       A

##   <dbl>

## 1     1

## 2     2

## 3     3

y["A"]

##   A

## 1 1

## 2 2

## 3 3

x[1]

## # A tibble: 3 x 1

##       A

##   <dbl>

## 1     1

## 2     2

## 3     3

y[1]

##   A

## 1 1

## 2 2

## 3 3

The result is a tibble or data.frame, respectively, containing a single 

column.
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If you use double brackets ([[]]), you will get the vector contained in a 

column rather than a tibble/data frame:

x[["A"]]

## [1] 1 2 3

y[["A"]]

## [1] 1 2 3

You will also get the underlying vector of a column if you use 

$-indexing:

x$A

## [1] 1 2 3

y$A

## [1] 1 2 3

Using [] you can extract more than one column.

x[c("A", "C")]

## # A tibble: 3 x 2

##       A C

##   <dbl> <chr>

## 1     1 a

## 2     2 b

## 3     3 c

y[c("A", "C")]

##   A C

## 1 1 a
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## 2 2 b

## 3 3 c

x[1:2]

## # A tibble: 3 x 2

##       A B

##   <dbl> <chr>

## 1     1 a

## 2     2 b

## 3     3 c

y[1:2]

##   A B

## 1 1 a

## 2 2 b

## 3 3 c

You cannot do this using [[]].

You can extract a subset of rows and columns if you use two indices. 

For example, you can get the first two rows in the first two columns using 

[1:2,1:2]:

x[1:2,1:2]

## # A tibble: 2 x 2

##       A B

##   <dbl> <chr>

## 1     1 a

## 2     2 b
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y[1:2,1:2]

##   A B

## 1 1 a

## 2 2 b

With a single index, you always extract a subset of columns. If you want 

to extract a subset of rows for all columns, you can use

x[1:2,]

## # A tibble: 2 x 4

##       A B     C         D

##   <dbl> <chr> <chr> <dbl>

## 1     1 a     a       1.2

## 2     2 b     b       2.1

y[1:2,]

##   A B C   D

## 1 1 a a 1.2

## 2 2 b b 2.1

If you extract a subset of rows from a single column, tibbles and data 

frames no longer have the same behavior. A tibble will give you a tibble in 

return, while a data frame will give you a vector:

x[1:2,2]

## # A tibble: 2 x 1

##   B

##   <chr>

## 1 a

## 2 b

y[1:2,2]

## [1] "a" "b"

Chapter 3  representing tables: tibble



43

Tibbles are more consistent. When you extract part of a tibble, you 

always get a tibble in return. Data frames sometimes give you a data frame 

and sometimes (in this particular case) a vector. In any function that 

expects a data frame and only use subscripts that return a data frame, you 

can also use a tibble. Tibbles return tibbles, and since a tibble is also a data 

frame, this will not cause any problems. If a function expects to extract a 

vector, you cannot use a tibble. This is where you will need to use as.data.

frame() to get a data.frame() with data frame behavior.
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CHAPTER 4

Reformatting Tables: 
tidyr
Even if we only consider tabular data, there are still many different ways to 

format this data. The packages in the Tidyverse expect that data is represented 

as so-called “tidy data”1 (which is where the name Tidyverse comes from). 

The tidyr package helps you with formatting your data into tidy data.

You can load tidyr as part of the Tidyverse

library(tidyverse)

or on its own

library(tidyr)

 Tidy Data
The fundamental properties that characterize tidy data are that each 

variable is in a column, and each observation is in a row. The terms like 

variables and observations should be familiar from statistics, but what the 

tidy data properties say is that you should not put the values of a variable 

in different columns and you should not put more than one observation in 

the same row.

1 https://en.wikipedia.org/wiki/Tidy_data

https://en.wikipedia.org/wiki/Tidy_data
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Consider data such as this:

mean_income <- tribble(

    ~country,  ~`2001`,  ~`2002`,  ~`2003`,  ~`2004`,  ~`2005`,

    "Numenor",  123456,   132654,   321646,   324156,   325416,

    "Westeros", 314256,   432165,   546123,   465321,   561423,

    "Narnia",   432156,   342165,   564123,   543216,   465321,

    "Gondor",   531426,   321465,   235461,   463521,   561423,

    "Laputa",    14235,    34125,    45123,    51234,    54321

)

We could imagine that this table contains the mean income in five 

(fictional) countries in the first 5 years of the twenty-first century. Let us 

say that you are interested in knowing if there is a pattern in income over 

time when taking the different countries into account. To do this, you 

might consider a formula such as income ~ country + year, but the data 

is not formatted in a way that makes this easy. If year is a variable that you 

can use in the model, it is a problem that different observations, the actual 

years, are split into different columns. Similarly, if the mean income per 

year is a variable, it is a problem that all the observations for a country are 

in the same row. You cannot use income ~ country + year because the 

data is not tidy.

 Gather and Spread
The function gather() can merge several columns into two—a key and a 

value column. The key column will be a discrete variable with values taken 

from the column names, and the value column will contain the data from 

the original columns.
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Consider the mean income data frame. We want the actual years to be 

different outcomes of a year variable and have the income for each year to 

be another variable, income. We can get such a tibble by calling gather() 

with these parameters:

gather(

    data = mean_income,

    key = "year",

    value = "income",

    `2001`, `2001`, `2002`,

    `2003`, `2004`, `2005`

)

## # A tibble: 25 x 3

##    country  year  income

##    <chr>    <chr>  <dbl>

##  1 Numenor  2001  123456

##  2 Westeros 2001  314256

##  3 Narnia   2001  432156

##  4 Gondor   2001  531426

##  5 Laputa   2001   14235

##  6 Numenor  2002  132654

##  7 Westeros 2002  432165

##  8 Narnia   2002  342165

##  9 Gondor   2002  321465

## 10 Laputa   2002   34125

## # ...  with 15 more rows

The data argument is the input data, and the key and value arguments 

are the names of two new columns. In the key column, we get the names 

of the columns we gather, and in the value column, we get the matching 

values from those columns. The remaining parameters specify which 

columns we wish to gather.
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In the preceding example, I explicitly listed all the columns to gather. 

You can also use a range of columns, like this:

gather(

    data = mean_income,

    key = "year",

    value = "income",

    `2001`:`2005`

)

You can use more than one range:

gather(

    data = mean_income,

    key = "year",

    value = "income",

    `2001`:`2002`,

    `2004`:`2005`

)

but the range specification is only useful when the relevant columns are 

contiguous. You can also specify the complement of the columns you want 

to gather using minus. For example, if you want to gather the years, you 

can pick all columns except for country rather than pick all the years:

gather(

    data = mean_income,

    key = "year",

    value = "income",

    -country

)

You can specify more than one column in a complement, and you can 

combine complements with ranges.
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Finally, you can combine gather() with tidy selection (see Chapter 3) 

to select columns.

gather(

    data = mean_income,

    key = "year",

    value = "income",

    tidyselect::starts_with("2")

)

gather(

    data = mean_income,

    key = "year",

    value = "income",

    -tidyselect::starts_with("c")

)

The column names that go into the key column will be strings. If they 

can be translated into logical or numeric values, you can do so by setting 

the argument convert to TRUE.

gather(

    data = mean_income,

    key = "year",

    value = "income",

    -country,

    convert = TRUE

)

## # A tibble: 25 x 3

##    country   year income

##    <chr>    <int>  <dbl>

##  1 Numenor   2001 123456

##  2 Westeros  2001 314256
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##  3 Narnia    2001 432156

##  4 Gondor    2001 531426

##  5 Laputa    2001  14235

##  6 Numenor   2002 132654

##  7 Westeros  2002 432165

##  8 Narnia    2002 342165

##  9 Gondor    2002 321465

## 10 Laputa    2002  34125

## # ...  with 15 more rows

Because all the years are integers, the year column now contains 

integers. If we want to analyze this data set, we most likely want to interpret 

the years as integers.

If you want to translate strings into factors, you have to do this 

explicitly after the transformation.

If you work with functions that do not expect tidy data and rather 

expect to find related data in different columns, you can translate tidy data 

into that format using the spread() function. It is the reverse of gather().2

tidy_income <- gather(

    data = mean_income,

    key = "year",

    value = "income",

    -country,

    convert = TRUE

)

2 The gather() and spread() functions transform tibbles in opposite directions in 
the sense that I have described here, but they are not truly each other’s reverse. 
The types of values can change depending on the convert argument to gather(), 
and the order of rows can change.
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spread(

    data = tidy_income,

    key = "year",

    value = "income"

)

## # A tibble: 5 x 6

##   country  `2001` `2002` `2003` `2004` `2005`

##   <chr>     <dbl>  <dbl>  <dbl>  <dbl>  <dbl>

## 1 Gondor   531426 321465 235461 463521 561423

## 2 Laputa    14235  34125  45123  51234  54321

## 3 Narnia   432156 342165 564123 543216 465321

## 4 Numenor  123456 132654 321646 324156 325416

## 5 Westeros 314256 432165 546123 465321 561423

The key and value arguments pick the values to use as column names 

and the values to put in those columns, respectively. They are the same 

arguments that you would use for gather()’s key and value arguments to 

translate the result back again.

 Complex Column Encodings
Different variables are not always represented in separated columns. 

For example, it is not uncommon to have a column that contains a 

date, but that is really a day and a month and possibly a year. The best 

representation of a date is, of course, a date object, but for the sake of the 

example, let us say that we want to split a date into a day and a month 

column. You can do this using the separate() function.

tbl <- tribble(

    ~date,

    "11/5",
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    "4/7",

    "21/12"

)

separate(tbl, date, into = c("day", "month"))

## # A tibble: 3 x 2

##   day   month

##   <chr> <chr>

## 1 11    5

## 2 4     7

## 3 21    12

The first argument is the data table, the second the column you want 

to split, and the into argument is a list of the columns the original date will 

be put into.

By default, the original column is removed, but if you want to keep it, 

you can use the remove argument.

separate(tbl, date, into = c("day", "month"), remove = FALSE)

## # A tibble: 3 x 3

##   date  day   month

##   <chr> <chr> <chr>

## 1 11/5  11    5

## 2 4/7   4     7

## 3 21/12 21    12

After separating the fields in the data column, which is a column of 

strings, you get a day and a month column, and these also contain strings. 

To convert them into numbers, you can use the convert argument.

separate(tbl, date, into = c("day", "month"), convert = TRUE)

## # A tibble: 3 x 2

##     day month
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##   <int> <int>

## 1    11     5

## 2     4     7

## 3    21    12

By default a column will be split on any non-alphanumeric character. 

This is why / in the data is correctly used as the separator between the 

day and the month. If your separator is something else, you can use the 

sep argument. The argument takes a regular expression, and the column 

will be split on this. For example, we can split on alphabet characters and 

spaces like this:

tbl <- tribble(

    ~date,

    "11th of month 5",

    "4th of month 7",

    "21st of month 12"

)

separate(tbl, date, into = c("day", "month"),

         sep = "([:alpha:]|[:space:])+")

## # A tibble: 3 x 2

##   day   month

##   <chr> <chr>

## 1 11    5

## 2 4     7

## 3 21    12
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The date format in this example is not something you would find in the 

wild, but if we have the date in this format

tbl <- tribble(

    ~date,

    "11th of May",

    "4th of July",

    "21st of December"

)

we cannot easily distinguish the separator string from the months. If the 

delimiter you need is not a single regular expression, you might be able to 

use the extract() function instead of separate(). With extract() you 

can use regular expression groups to identify the fields to extract.

regexp = "([:digit:]+)" \

         "(?:[:alpha:]|[:space:])+" \

         "[:space:]([:alpha:]+)"

extract(

    tbl, date,

    into = c("day", "month"),

    regex = regexp

)

## # A tibble: 3 x 2

##   day   month

##   <chr> <chr>

## 1 11    May

## 2 4     July

## 3 21    December
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The reverse of separating is uniting. For example, let tbl2 contain a 

day and a month column.

tbl <- tribble(

    ~date,

    "11/5",

    "4/7",

    "21/12"

)

tbl2 <- separate(tbl, date, into = c("day", "month"))

To create a date column from the day and the month, we use unite(). 

The col argument should be the column we create and the following 

columns those we create it from.

unite(tbl2, col = "date", day, month)

## # A tibble: 3 x 1

##   date

##   <chr>

## 1 11_5

## 2 4_7

## 3 21_12

By default, the separator in the new column will be _. This is not what 

we want for dates, but we can use the sep argument to change it.

unite(tbl2, col = "date", day, month, sep = "/")

## # A tibble: 3 x 1

##   date

##   <chr>

## 1 11/5

## 2 4/7

## 3 21/12
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If we want to keep the original columns around, we can set the remove 

argument to FALSE.

unite(

   tbl2,

   col = "date", day, month,

   sep = "/", remove = FALSE

)

## # A tibble: 3 x 3

##   date  day   month

##   <chr> <chr> <chr>

## 1 11/5  11    5

## 2 4/7   4     7

## 3 21/12 21    12

Columns that contain more than one value do not always contain 

the same number of values. For example, we could have data such as the 

number of casualties per major group in WW1 and WW2.

military_casualties <- tribble(

    ~war, ~groups, ~deaths,

    'WW1',

    "Allied Powers/Central Powers",

    "5.7,4.0",

    'WW2',

    "Germany/Japan/USSR/British Empire/USA",

    "5.3,2.1,10.7,0.6,0.4"

)

The groupings were not the same in the two wars, so we cannot split 

the data into different columns. We can, however, divide it into more rows 

using separate_rows().
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separate_rows(

    military_casualties,

    groups, deaths,

    sep = "/|,"

)

## # A tibble: 7 x 3

##   war   groups         deaths

##   <chr> <chr>          <chr>

## 1 WW1   Allied Powers  5.7

## 2 WW1   Central Powers 4.0

## 3 WW2   Germany        5.3

## 4 WW2   Japan          2.1

## 5 WW2   USSR           10.7

## 6 WW2   British Empire 0.6

## 7 WW2   USA            0.4

 Expanding, Crossing, and Completing
For some applications, it is useful to create all combinations of values from 

two or more columns—even those combinations that are missing from the 

data. For this, you can use the function expand():

tbl <- tribble(

    ~A, ~B, ~C,

     1, 11, 21,

     2, 11, 22,

     4, 13, 32

)
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expand(tbl, A, B)

## # A tibble: 6 x 2

##       A     B

##   <dbl> <dbl>

## 1     1    11

## 2     1    13

## 3     2    11

## 4     2    13

## 5     4    11

## 6     4    13

Here, we get all combinations of values from columns A and B, while 

column C is ignored. If a column contains values from a larger set than 

what is found in the data, you can give expand() a vector of values:

expand(tbl, A = 1:4, B)

## # A tibble: 8 x 2

##       A     B

##   <int> <dbl>

## 1     1    11

## 2     1    13

## 3     2    11

## 4     2    13

## 5     3    11

## 6     3    13

## 7     4    11

## 8     4    13
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If you have vectors of values you want to combine this way, you can 

also use the crossing() function.

crossing(A = 1:3, B = 11:13)

## # A tibble: 9 x 2

##       A     B

##   <int> <int>

## 1     1    11

## 2     1    12

## 3     1    13

## 4     2    11

## 5     2    12

## 6     2    13

## 7     3    11

## 8     3    12

## 9     3    13

If you only want the combinations found in the data, you can combine 

expand() with the nesting() function:

tbl <- tribble(

    ~A, ~B, ~C,

    1, 11, 21,

    2, 11, 22,

    2, 11, 12,

    4, 13, 42,

    4, 13, 32

)

expand(tbl, nesting(A, B))

## # A tibble: 3 x 2

##       A     B

##   <dbl> <dbl>
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## 1     1    11

## 2     2    11

## 3     4    13

This combination gives you all the combinations of the specified 

columns—all other columns are ignored—and only the unique 

combinations, unlike if you extracted the columns by indexing.

If you need all combinations in a data frame, but accept missing 

values for those that are not present, you can use the complete() function. 

It makes sure you have all combinations and put missing values in the 

remaining columns for the combinations that are not in the original data.

complete(tbl, A = 1:4)

## # A tibble: 6 x 3

##       A     B     C

##   <dbl> <dbl> <dbl>

## 1     1    11    21

## 2     2    11    22

## 3     2    11    12

## 4     3    NA    NA

## 5     4    13    42

## 6     4    13    32

complete(tbl, B = 11:13)

## # A tibble: 6 x 3

##       B     A     C

##   <dbl> <dbl> <dbl>

## 1    11     1    21

## 2    11     2    22

## 3    11     2    12

## 4    12    NA    NA
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## 5    13     4    42

## 6    13     4    32

complete(tbl, A = 1:4, B = 11:13)

## # A tibble: 14 x 3

##        A     B     C

##    <dbl> <dbl> <dbl>

##  1     1    11    21

##  2     1    12    NA

##  3     1    13    NA

##  4     2    11    22

##  5     2    11    12

##  6     2    12    NA

##  7     2    13    NA

##  8     3    11    NA

##  9     3    12    NA

## 10     3    13    NA

## 11     4    11    NA

## 12     4    12    NA

## 13     4    13    42

## 14     4    13    32

 Missing Values
When data has missing values, it often requires application domain 

knowledge to deal with it correctly. The tidyr package has some 

rudimentary support for cleaning data with missing values; you might 

need more features to deal with missing values properly, and you are likely 

to find those in the dplyr package; see Chapter 7.
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The simplest way to handle missing values is to get rid of it. A crude 

approach is to remove all observations with one or more missing variable 

values. The drop_na() function does exactly that.

mean_income <- tribble(

    ~country,  ~`2002`,  ~`2003`,  ~`2004`,  ~`2005`,

    "Numenor",  123456,   132654,       NA,   324156,

    "Westeros", 314256,   NA,           NA,   465321,

    "Narnia",   432156,   NA,           NA,       NA,

    "Gondor",   531426,   321465,   235461,   463521,

    "Laputa",    14235,    34125,    45123,    51234,

)

drop_na(mean_income)

## # A tibble: 2 x 5

##   country `2002` `2003` `2004` `2005`

##   <chr>    <dbl>  <dbl>  <dbl>  <dbl>

## 1 Gondor  531426 321465 235461 463521

## 2 Laputa   14235  34125  45123  51234

In this example, we lose a country entirely if we have missing data for a 

single year. This is unlikely to be acceptable and is another good argument 

for tidy data. If we reformat the table and drop missing values, we will only 

remove the observations where the income is missing for a given year.

tidy_mean_income <- gather(

    data = mean_income,

    key = "year",

    value = "mean_income",

    -country

)
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drop_na(tidy_mean_income)

## # A tibble: 14 x 3

##    country  year  mean_income

##    <chr>    <chr>       <dbl>

##  1 Numenor  2002       123456

##  2 Westeros 2002       314256

##  3 Narnia   2002       432156

##  4 Gondor   2002       531426

##  5 Laputa   2002        14235

##  6 Numenor  2003       132654

##  7 Gondor   2003       321465

##  8 Laputa   2003        34125

##  9 Gondor   2004       235461

## 10 Laputa   2004        45123

## 11 Numenor  2005       324156

## 12 Westeros 2005       465321

## 13 Gondor   2005       463521

## 14 Laputa   2005        51234

Sometimes, you can replace missing data with some appropriate data. 

For example, we could replace missing data in the mean_income table by 

setting each value to the mean of its column. The replace_na() function 

does this. It takes a data frame as its first argument and a list specifying 

replacements as its second argument. This list should have a name for 

each column you want to replace missing values in, and the value assigned 

to these names should be the values with which you wish you replace.

replace_na(mean_income, list(

    `2003` = mean(mean_income$`2003`, na.rm = TRUE)

))
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## # A tibble: 5 x 5

##   country  `2002` `2003` `2004` `2005`

##   <chr>     <dbl>  <dbl>  <dbl>  <dbl>

## 1 Numenor  123456 132654     NA 324156

## 2 Westeros 314256 162748     NA 465321

## 3 Narnia   432156 162748     NA     NA

## 4 Gondor   531426 321465 235461 463521

## 5 Laputa    14235  34125  45123  51234

replace_na(mean_income, list(

    `2003` = mean(mean_income$`2003`, na.rm = TRUE),

    `2004` = mean(mean_income$`2004`, na.rm = TRUE),

    `2005` = mean(mean_income$`2005`, na.rm = TRUE)

))

## # A tibble: 5 x 5

##   country  `2002` `2003` `2004` `2005`

##   <chr>     <dbl>  <dbl>  <dbl>  <dbl>

## 1 Numenor  123456 132654 140292 324156

## 2 Westeros 314256 162748 140292 465321

## 3 Narnia   432156 162748 140292 326058

## 4 Gondor   531426 321465 235461 463521

## 5 Laputa    14235  34125  45123  51234

In this example, using the mean per year is unlikely to be useful; it 

would make more sense to replace missing data with the mean for each 

country. This is not immediately possible with tidyr functions, though. 

With dplyr we have the tools for it and I return to it in Chapter 7.

A final function for managing missing data is the fill() function. It 

replaces missing values with the value above them in their column (or 

below them if you set the argument .direction to "up". Imagine that 

we have a table of income per quarter of each year, but the year is only 

mentioned for the first quarter.
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tbl <- read_csv(

    "year, quarter, income

    2011, Q1, 13

    , Q2, 12

    , Q3, 14

    , Q4, 11

    2012, Q1, 12

    , Q2, 14

    , Q3, 15

    , Q4, 17"

)

We can repeat the years downward through the quarters with fill():

fill(tbl, year)

## # A tibble: 8 x 3

##    year quarter income

##   <dbl> <chr>    <dbl>

## 1  2011 Q1          13

## 2  2011 Q2          12

## 3  2011 Q3          14

## 4  2011 Q4          11

## 5  2012 Q1          12

## 6  2012 Q2          14

## 7  2012 Q3          15

## 8  2012 Q4          17
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 Nesting Data
A final functionality that tidyr provides is nesting data. A tibble entry 

usually contains simple data, such as numbers or strings, but it can also 

hold complex data, such as other tables.

Consider this table:

tbl <- tribble(

    ~A, ~B, ~C,

    1, 11, 21,

    1, 11, 12,

    2, 42, 22,

    2, 15, 22,

    2, 15, 32,

    4, 13, 32

)

From this table, we can create one that, for each value in the A column, 

contains a table of B and C for that A value.

nested_tbl <- nest(tbl, B, C)

nested_tbl

## # A tibble: 3 x 2

##       A data

##   <dbl> <list>

## 1     1 <tibble [2 × 2]>

## 2     2 <tibble [3 × 2]>

## 3     4 <tibble [1 × 2]>

nested_tbl[[1,2]]

## # A tibble: 2 x 2

##       B     C

##   <dbl> <dbl>
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## 1    11    21

## 2    11    12

The column that contains the nested table is named data, but you can 

change this using the .key argument.

nested_tbl <- nest(tbl, B, C, .key = "BC")

nested_tbl

## # A tibble: 3 x 2

##       A BC

##   <dbl> <list>

## 1     1 <tibble [2 × 2]>

## 2     2 <tibble [3 × 2]>

## 3     4 <tibble [1 × 2]>

nested_tbl$BC

## [[1]]

## # A tibble: 2 x 2

##       B     C

##   <dbl> <dbl>

## 1    11    21

## 2    11    12

##

## [[2]]

## # A tibble: 3 x 2

##       B     C

##   <dbl> <dbl>

## 1    42    22

## 2    15    22

## 3    15    32

##

## [[3]]
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## # A tibble: 1 x 2

##       B     C

##   <dbl> <dbl>

## 1    13    32

The arguments after the table pick the columns to be nested. You can 

use any number of columns here, including no columns at all. In the latter 

case, you will nest the entire original table in the data column.

nest(tbl, B)

## # A tibble: 5 x 3

##       A     C data

##   <dbl> <dbl> <list>

## 1     1    21 <tibble [1 × 1]>

## 2     1    12 <tibble [1 × 1]>

## 3     2    22 <tibble [2 × 1]>

## 4     2    32 <tibble [1 × 1]>

## 5     4    32 <tibble [1 × 1]>

nest(tbl)

## # A tibble: 1 x 1

##   data

##   <list>

## 1 <tibble [6 × 3]>

The reverse operation is unnest():

nested_tbl

## # A tibble: 3 x 2

##       A BC

##   <dbl> <list>

## 1     1 <tibble [2 × 2]>
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## 2     2 <tibble [3 × 2]>

## 3     4 <tibble [1 × 2]>

unnest(nested_tbl)

## # A tibble: 6 x 3

##       A     B     C

##   <dbl> <dbl> <dbl>

## 1     1    11    21

## 2     1    11    12

## 3     2    42    22

## 4     2    15    22

## 5     2    15    32

## 6     4    13    32

Nesting is not a typical operation in data analysis, but it is there if you 

need it, and in the packages in Chapter 11 we see some usages.
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CHAPTER 5

Pipelines: magrittr
Data analysis consists of several steps, where your data moves through 

different stages of transformations and cleaning before you finally get to 

model construction. In practical terms, this means that your R code will 

consist of a series of function calls where the output of one is the input of the 

next. The pattern is typical, but a straightforward implementation of it has 

several drawbacks. The Tidyverse provides a “pipe operator” to alleviate this.

The pipe operator is implemented in the magrittr package. You can 

load it as part of the tidyverse package:

library(tidyverse)

Or you can explicitly load the package:

library(magrittr)

If you load magrittr through the tidyverse package, you will get 

the most common pipe operator, %>%, but not alternative ones—see the 

following. For those, you need to load magrittr.

 The Problem with Pipelines
Consider this data from Chapter 4.

write_csv(

    tribble(

        ~country,  ~`2002`, ~`2003`, ~`2004`, ~`2005`,

        "Numenor",  123456,  132654,      NA,  324156,
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        "Westeros", 314256,  NA,          NA,  465321,

        "Narnia",   432156,  NA,          NA,      NA,

        "Gondor",   531426,  321465,  235461,  463521,

        "Laputa",    14235,   34125,   45123,   51234,

    ),

    "data/income.csv"

)

I have written it to a file, data/income.csv, to make the following 

examples easier to read.

In Chapter 4 we reformatted and cleaned this data using gather() and 

drop_na():

mydata <- read_csv("data/income.csv",

                   col_types = "cdddd")

mydata <- gather(

    data = mydata,

    key = "year",

    value = "mean_income",

    -country

)

mydata <- drop_na(mydata)

This is a typical pipeline, although a short one. It consists of three 

steps: 1) read the data into R, 2) tidy the data, and 3) clean the data.

There is nothing inherently wrong with code like this. Each step is easy 

to read; it is a function call that transforms your data from one form to 

another. The pipelined nature of the code, however, is not explicit. We can 

read the code and see that the output of one function is the input of the 

next, but what if it isn’t?
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Consider this:

mydata <- read_csv("data/income.csv",

                   col_types = "cdddd")

data <- gather(...) # Are we assigning to the right name?

mydata <- drop_na(mydata) # Input from read_csv() not gather()

The result of gather() is assigned to the variable data and then drop_

na() is called on mydata. If our intent were the preceding pipeline, this 

would be a mistake. But maybe we wanted the result of gather() to be a 

separate data table needed for some downstream analysis.

A series of transformation steps that constitute a pipeline can only be 

recognized as such by following programming conventions, and unless the 

code is well documented and well understood, we cannot immediately see 

from the code whether assigning to data instead of mydata is an error.

We can make pipelines more explicit. If the output of one function 

should be the input of the next, we can nest the function calls:

mydata <- drop_na(

    gather(

        data = read_csv("data/income.csv",

                        col_types = "cdddd"),

        key = "year",

        value = "mean_income",

        -country

    )

)

This makes the pipeline intention explicit but the code very hard to 

read; you have to work out the pipeline from the innermost function call to 

the outermost.

The magrittr package gives us notation for explicitly describing 

specifying readable pipelines.
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 Pipeline Notation
The pipeline operator, %>%, introduces syntactic sugar for function calls.1 

The code

x %>% f()

is equivalent to

f(x)

and

x %>% f() %>% g() %>% h()

is equivalent to

h(g(f(x)))

So, by the way, is

x %>% f %>% g %>% h

You do not need the parentheses for the function calls, but most prefer 

them to make it clear that we are dealing with functions. Also, if your 

functions take more than one argument, parentheses are needed, so if you 

always include them, it gives you a consistent notation.

1 The pipeline operator is syntactic sugar in the sense that it introduces a more 
readable notation for a function call. In compiled languages, syntactic sugar 
would be directly translated into the original form and have exactly the same 
runtime behavior as the sugar-free version. In R, there is no compile-time phase, 
so you pay a runtime cost for all syntactic sugar. The pipe operator is a complex 
function, so compared to explicit function calls, it is slow to use it. This is rarely an 
issue, though, since the expensive data processing is done inside the function and 
not in function calls.
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The preceding nested function call pipeline

mydata <- drop_na(gather(read_csv(...)))

can thus be rewritten in pipe form

mydata <- read_csv(...) %>% gather(...) %>% drop_na()

or, with all the arguments included, as

mydata <- read_csv("data/income.csv",

                   col_types = "cdddd") %>%

    gather(key = "year", value = "mean_income", -country) %>%

    drop_na()

The pipeline notation combines the readability of single function call 

steps with explicit notation for data processing pipelines.

 Pipelines and Function Arguments
The pipe operator is left-associative, that is, it evaluates from left to right, 

and the expression lhs %>% rhs expects the left-hand side (lhs) to be 

data and the right-hand side (rhs) to be a function. The result will be 

rhs(lhs). The output of this function call is the left-hand side of the next 

pipe operator in the pipeline or the result of the entire pipeline. If the right-

hand side function takes more than one argument, you provide these in 

the rhs expression. The expression

lhs %>% rhs(x, y, z)

will be evaluated as the function call

rhs(lhs, x, y, z)
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By default, the left-hand side is given as the first argument to the right-

hand side function. The arguments that you explicitly write on the right-

hand side expression are the additional function parameters.

You can change the default using the special variable . (dot). If the 

right-hand side expression has . as a parameter, then that is where the left-

hand side value goes. All the following three pipelines are equivalent:

mydata <- read_csv("data/income.csv", col_types = "cdddd") %>%

    gather(key = "year", value = "mean_income", -country) %>%

    drop_na()

mydata <- read_csv("data/income.csv", col_types = "cdddd") %>%

    gather(data = ., key = "year", value = "mean_income", -country) %>%

    drop_na()

mydata <- read_csv("data/income.csv", col_types = "cdddd") %>%

     gather(key = "year", value = "mean_income", -country, data 

= .) %>%

    drop_na()

You can use dot more than once on the right-hand side:

rnorm(5) %>% tibble(x = ., y = .)

## # A tibble: 5 x 2

##         x       y

##     <dbl>   <dbl>

## 1 -0.620  -0.620

## 2  0.0349  0.0349

## 3 -0.183  -0.183

## 4  2.17    2.17

## 5 -1.37   -1.37
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You can also use it in nested function calls.

rnorm(5) %>% tibble(x = ., y = abs(.))

## # A tibble: 5 x 2

##        x     y

##    <dbl> <dbl>

## 1 -0.881 0.881

## 2  1.42  1.42

## 3  0.493 0.493

## 4  1.04  1.04

## 5 -1.56  1.56

If the dot is only found in nested function calls, however, magrittr will 

still add it as the first argument to the right-hand side function.

rnorm(5) %>% tibble(x = sin(.), y = abs(.))

## # A tibble: 5 x 3

##        .      x     y

##    <dbl>  <dbl> <dbl>

## 1 -0.372 -0.363 0.372

## 2 -0.730 -0.667 0.730

## 3  0.202  0.201 0.202

## 4  0.642  0.599 0.642

## 5  0.516  0.493 0.516

To avoid this, you can put the right-hand side expression in curly 

brackets:

rnorm(5) %>% { tibble(x = sin(.), y = abs(.)) }
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## # A tibble: 5 x 2

##         x      y

##     <dbl>  <dbl>

## 1  0.364  0.372

## 2 -0.855  1.03

## 3 -0.141  0.141

## 4  0.172  0.173

## 5 -0.0462 0.0462

In general, you can put expressions in curly brackets as the right-hand 

side of a pipe operator and have magrittr evaluate them. Think of it as 

a way to write one-parameter anonymous functions. The input variable 

is the dot, and the expression inside the curly brackets is the body of the 

function.

 Function Composition
It is trivial to write your own functions such that they work well with 

pipelines. All functions map input to output (ideally with no side effects) so 

all functions can be used in a pipeline. If the key input is the first argument 

of a function you write, the default placement of left-hand side value will 

work—so that is preferable—but otherwise you can explicitly use the dot.

When writing pipelines, however, often you do not need to write 

a function from scratch. If a function is merely a composition of other 

function calls—it is a pipeline function itself—we can define it as such.

In mathematics, the function composition operator, °, defines the 

composition of functions f and g, g ° f to be the function

(g ° f )(x) = g( f (x))
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Many functional programming languages encourage you to write 

functions by combining other functions and have operators for that. 

It is not frequently done in R, and while you can implement function 

composition, there is no built-in operator. The magrittr package, however, 

gives you this syntax:

h <- . %>% f() %>% g()

This defines the function h, such that h(x) = g(f(x)).

If we take the tidy-then-clean pipeline we saw previously, and imagine 

that we need to do the same for several input files, we can define a pipeline 

function for this as

pipeline <- . %>%

    gather(key = "year", value = "mean_income", -country) %>%

    drop_na()

 Other Pipe Operations
There are three other pipe operators in magrittr. These are not imported 

when you import the tidyverse package, so to get access to them, you 

have to import magrittr explicitly.

library(magrittr)

The %<>% operator is used to run a pipeline starting with a variable and 

ending by assigning the result of the pipeline back to that variable.

The code

mydata <- read_csv("data/income.csv",

                   col_types = "cdddd")

mydata %<>% pipeline()
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is equivalent to

mydata <- read_csv("data/income.csv",

                   col_types = "cdddd")

mydata <- mydata %>% pipeline()

This reassignment operator behaves similarly to the step-wise pipeline 

convention we considered at the start of the chapter, but it makes explicit 

that we are updating an existing variable. You cannot accidentally assign 

the result to a different variable.

If your right-hand side is an expression in curly brackets, you can refer 

to the input through the dot variable:

mydata <- tibble(x = rnorm(5), y = rnorm(5))

mydata %>% { .$x - .$y }

## [1]  0.9590534  1.9584677 -0.9095741 -1.8365738

## [5] -0.7331230

If, as here, the input is a data frame and you want to access its columns, 

you need the notation .$ to access them. The %$% pipe operator opens the 

data frame for you so you can refer to the columns by name.

mydata %$% { x - y }

## [1]  0.9590534  1.9584677 -0.9095741 -1.8365738

## [5] -0.7331230

The tee-pipe operator, %T>%, behaves like the regular pipe operator, 

%>%, except that it returns its input rather than the result of calling the 

function on its right-hand side. The regular pipe operation x %>% f() will 

return f(x), but the tee-pipe operation, x %T>% f(), will call f(x) but 

return x. This is useful for calling functions with side effects as a step inside 

a pipeline, such as saving intermediate results to files or plotting data.

Chapter 5  pipelines: magrittr



81

If you call a function in a usual pipeline, you will pass the result of the 

function call on to the next function in the pipeline. If you, for example, want 

to plot intermediate data, you might not be so lucky that the plotting function 

will return the data. The ggplot2 functions will not (see Chapter 12).

If you want to plot intermediate values, you need to save the data in a 

variable, save it, and then start a new pipeline with the data as input.

income <- read_csv("data/income.csv", col_types = "cdddd")

tidy_income <- gather(income, key = "year",

                      value = "mean_income", -country)

ggplot(tidy_income, aes(x = year, y = mean_income))

write_csv(tidy_income, "data/tidy-income.csv")

With the tee operator, you can call the plotting function and continue 

the pipeline.

mydata <- mean_income %>%

    gather(key = "year", value = "mean_income", -country) %T>%

    { print(ggplot(., aes(x = year, y = mean_income)) +

            geom_point()) } %>%

    drop_na()
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CHAPTER 6

Functional 
Programming: purrr
A pipeline-based approach to data processing necessitates a functional 

programming approach. After all, pipelines are compositions of functions, 

and loops and variable assignment do not work well with pipelines. You 

are not precluded from imperative programming, but you need to wrap it 

in functions.

The package purrr makes functional programming easier. As with the 

other packages in this book, it will be loaded if you import tidyverse, but 

you can load it explicitly with:

library(purrr)

I will not describe all the functions in the purrr package; there are 

many and more could be added between the time I write this and the time 

you read it, but I will describe the functions you will likely use often.

Many of the examples in this chapter are so trivial that you would 

not use purrr for them. Many reduce to vector expressions, and vector 

expressions are both more straightforward to read and faster to evaluate. 

However, applications where you cannot use vector expressions are more 

involved, and I do not want the examples to overshadow the syntax.
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 General Features of purrr Functions
The functions in the purrr package are “high-order” functions, which 

means that the functions either take other functions as input or return 

functions when you call them (or both). Most of the functions take data as 

their first argument and return modified data. Thus, they are immediately 

useable with magrittr pipelines. As additional arguments, they will accept 

one or more functions that specify how you want to translate the input into 

the output.

Other functions do not transform data but instead modify functions. 

These are used, so you do not need to write functions for the data 

transformation functions explicitly; you can use a small set of functions 

and adapt them where needed.

 Filtering
One of the most straightforward functional programming patterns is 

filtering. Here, you use a high-order filter function. This function takes a 

predicate function, that is, a function that returns a logical value, and then 

returns all elements where the predicate evaluates to TRUE (the function 

keep()) or all elements where the predicate evaluates to FALSE (the 

function discard()).

is_even <- function(x) x %% 2 == 0

1:6 %>% keep(is_even)

## [1] 2 4 6

1:6 %>% discard(is_even)

## [1] 1 3 5
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When you work with predicates, the negate() function can come 

in handy. It changes the truth-value of your predicate, such that if your 

predicate, p, returns TRUE, then negate(p) returns FALSE and vice versa.

1:6 %>% keep(negate(is_even))

## [1] 1 3 5

1:6 %>% discard(negate(is_even))

## [1] 2 4 6

Since you already have complementary functions in keep() and 

discard(), you would not use negate() for filtering, though.

A special-case function, compact(), removes NULL elements from a list.

y <- list(NULL, 1:3, NULL)

y %>% compact()

## [[1]]

## [1] 1 2 3

If you access attributes on objects, and those are not set, R will give you 

NULL as a result, and for such cases, compact() can be useful.

If we define lists

x <- y <- 1:3

names(y) <- c("one", "two", "three")

then y's values will be named, while x's will not. If we try to get the names 

from x, we will get NULL.

names(x)

## NULL

names(y)

## [1] "one" "two" "three"
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Using compact() with names(), we will discard x.

z <- list(x, y)

z %>% compact()

## [[1]]

## [1] 1 2 3

##

## [[2]]

## one two three

##   1   2     3

z %>% compact(names)

## [[1]]

## one two three

##   1   2     3

 Mapping
Mapping a function, f, over a sequence x = x1, x2, ... , xn returns a new 

sequence of the same length as the input but where each element is an 

application of the function: f(x1), f(x2), ... , f(xn).

The function map() does this and return a list as output. Lists are the 

generic sequence data structure in R since they can hold all types of R objects.

is_even <- function(x) x %% 2 == 0

1:4 %>% map(is_even)

## [[1]]

## [1] FALSE

##

## [[2]]

## [1] TRUE

##
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## [[3]]

## [1] FALSE

##

## [[4]]

## [1] TRUE

Often we want to work with vectors of specific types. For all the atomic 

types, purrr has a specific mapping function. The function for logical 

values is named map_lgl().

is_even <- function(x) x %% 2 == 0

1:4 %>% map_lgl(is_even)

## [1] FALSE TRUE FALSE TRUE

With something as simple as this example, you should not use purrr. 

Vector expressions are faster and easier to use.

1:4 %% 2 == 0

## [1] FALSE TRUE FALSE TRUE

You cannot always use vector expressions, however. Say you want to 

sample n elements from a normal distribution, for a sequence of different 

n values, and then calculate the standard error of the mean. The vector 

expression

sd(rnorm(n = n)) / sqrt(n) # not SEM!

does not compute this. If you give rnorm() a sequence for its n parameter, 

it takes the length of the input as the number of elements to sample.

n <- seq.int(100, 1000, 300)

rnorm(n) # length(n) is used for n!

## [1]  1.0642869  0.6745540 -0.1342023 -0.3390898
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When you have a function that is not vectorized, you can use a map 

function to apply it on all elements in a list.

sem <- function(n) sd(rnorm(n = n)) / sqrt(n)

n %>% map_dbl(sem)

## [1] 0.10643498 0.04872984 0.03715846 0.03247213

Here, I used map_dbl() to get doubles (numerics) as output. The 

functions map_chr() and map_int() will give you strings and integers 

instead.

1:3 %>% map_dbl(identity) %T>% print() %>% class()

## [1] 1 2 3

## [1] "numeric"

1:3 %>% map_chr(identity) %T>% print() %>% class()

## [1] "1" "2" "3"

## [1] "character"

1:3 %>% map_int(identity) %T>% print() %>% class()

## [1] 1 2 3

## [1] "integer"

The different map functions will give you an error if the function you 

apply does not return values of the type the function should. Sometimes 

a map function will do type conversion, as presented earlier, but not 

always. It will usually be happy to convert in a direction that doesn’t lose 

information, for example, from logical to integer and integer to double, but 

not in the other direction.
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For example, map_lgl() will not convert from integers to logical if you 

give it the identity() function, even though you can convert these types. 

Similarly, you can convert strings to integers using as.numeric(), but 

map_dbl() will not do so if we give it identity(). The mapping functions 

are more strict than the base R conversion functions. So you should use 

functions that give you the right type.

The map_dfr() and map_dfc() functions return data frames (tibbles). 

The function you map should return data frames and these will be 

combined, row-wise with map_dfr() and column-wise with map_dfc().

x <- tibble(a = 1:2, b = 3:4)

list(a = x, b = x) %>% map_dfr(identity)

## # A tibble: 4 x 2

##       a     b

##   <int> <int>

## 1     1     3

## 2     2     4

## 3     1     3

## 4     2     4

list(a = x, b = x) %>% map_dfc(identity)

## # A tibble: 2 x 4

##       a     b    a1    b1

##   <int> <int> <int> <int>

## 1     1     3     1     3

## 2     2     4     2     4
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The map_df() function does the same as map_dfr():

list(a = x, b = x) %>% map_df(identity)

## # A tibble: 4 x 2

##       a     b

##   <int> <int>

## 1     1     3

## 2     2     4

## 3     1     3

## 4     2     4

You do not need to give the data frame functions data frames as input, 

as long as the function you apply to the input returns data frames. This 

goes for all the map functions. They will accept any sequence input; they 

only restrict and convert the output.

If the items you map over are sequences themselves, you can extract 

elements by index; you do not need to provide a function to the map 

function.

x <- list(1:3, 4:6)

x %>% map_dbl(1)

## [1] 1 4

x %>% map_dbl(3)

## [1] 3 6

If the items have names, you can also extract values using these.

x <- list(

    c(a = 42, b = 13),

    c(a = 24, b = 31)

)
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x %>% map_dbl("a")

## [1] 42 24

x %>% map_dbl("b")

## [1] 13 31

This is mostly used when you map over data frames.

a <- tibble(foo = 1:3, bar = 11:13)

b <- tibble(foo = 4:6, bar = 14:16)

ab <- list(a, b)

ab %>% map("foo")

## [[1]]

## [1] 1 2 3

##

## [[2]]

## [1] 4 5 6

Related to extracting elements by name or index, you can apply 

functions to different depths of the input using map_depth(). Depth zero 

is the list itself, so mapping over this depth is the same as applying the 

function directly on the input.

ab %>% map_depth(0, length)

## [1] 2

ab %>% length()

## [1] 2

Depth 1 gives us each element in the sequence, so this behaves like a 

normal map. Depth 2 provides us with a map over the nested elements. 

Consider the preceding list ab. The top level, depth 0, is the list. Depth 1 
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is the data frames a and b. Depth 2 is the columns in these data frames. 

Depth 3 is the individual items in these columns.

ab %>% map_depth(1, sum) %>% unlist()

## [1] 42 60

ab %>% map_depth(2, sum) %>% unlist()

## foo bar foo bar

##   6  36  15  45

ab %>% map_depth(3, sum) %>% unlist()

## foo1 foo2 foo3 bar1 bar2 bar3 foo1 foo2 foo3 bar1

##    1    2    3   11   12   13    4    5    6   14

## bar2 bar3

##   15   16

If you only want to apply a function to some of the elements, you can 

use map_if(). It takes a predicate and a function and applies the function 

to those elements where the predicate is true. It returns a list, but you can 

convert it if you want another type.

is_even <- function(x) x %% 2 == 0

add_one <- function(x) x + 1

1:6 %>% map_if(is_even, add_one) %>% as.numeric()

## [1] 1 3 3 5 5 7

Notice that this is different from combining filtering and mapping; that 

combination would remove the elements that do not satisfy the predicate.

1:6 %>% keep(is_even) %>% map_dbl(add_one)

## [1] 3 5 7
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With map_if(), you keep all elements, but the function is only applied 

to some of them.

If you want to apply one function to the elements where the predicate 

is true and another to the elements where it is false, you can prove a 

function to the .else element:

add_two <- function(x) x + 2

1:6 %>%

    map_if(is_even, add_one, .else = add_two) %>%

    as.numeric()

## [1] 3 3 5 5 7 7

If you know which indices you want to apply the function to, instead of 

a predicate they must satisfy, you can use map_at(). This function takes a 

sequence of indices instead of the predicate but otherwise works the same 

as map_if().

1:6 %>% map_at(2:5, add_one) %>% as.numeric()

## [1] 1 3 4 5 6 6

If you map over a list, x, then your function will be called with the 

elements in the list, x[[i]]. If you want to get the elements wrapped in a 

length-one list, that is, use indexing x[i], you can use lmap().

list(1:3, 4:6) %>% map(print) %>% invisible()

## [1] 1 2 3

## [1] 4 5 6

list(1:3, 4:6) %>% lmap(print) %>% invisible()

## [[1]]

## [1] 1 2 3

##

## [[1]]

## [1] 4 5 6
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The function you apply must always return a list, and lmap() will 

concatenate them.

f <- function(x) list("foo")

1:2 %>% lmap(f)

## [[1]]

## [1] "foo"

##

## [[2]]

## [1] "foo"

f <- function(x) list("foo", "bar")

1:2 %>% lmap(f)

## [[1]]

## [1] "foo"

##

## [[2]]

## [1] "bar"

##

## [[3]]

## [1] "foo"

##

## [[4]]

## [1] "bar"

For example, while you can get the length of elements in a list using 

map() and length()

list(1:3, 4:6) %>% map(length) %>% unlist()

## [1] 3 3
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you will get an error if you try the same using lmap(). This is because 

length() returns a numeric and not a list. You need to wrap length() with 

list() so the result is the length in a (length-one) list.

wrapped_length <- . %>% length %>% list()

list(1:3, 4:6) %>% lmap(wrapped_length) %>% unlist()

## [1] 1 1

If it surprises you that the lengths are one here, remember that the 

function is called with the length-one lists at each index. If you want the 

length of what they contain, you need to extract that.

wrapped_length <- . %>% .[[1]] %>% length %>% list()

list(1:3, 4:6) %>% lmap(wrapped_length) %>% unlist()

## [1] 3 3

If you want to extract the nested data, though, you probably want map() 

and not lmap().

The functions lmap_if() and lmap_at() work as map_if() and map_

at() except for how they index the input and handle the output as lists to 

be concatenated.

Sometimes, we only want to call a function for its side effect. In that 

case, you can pipe the result of a map into invisible(). The function 

walk() does that for you, and using it makes it explicit that this is what you 

want, but it is simply syntactic sugar for map() + invisible()

1:3 %>% map(print) %>% invisible()

## [1] 1

## [1] 2

## [1] 3

Chapter 6  FunCtional programming: purrr



96

1:3 %>% walk(print)

## [1] 1

## [1] 2

## [1] 3

If you need to map over multiple sequences, you have two choices 

of map functions to choose from. Some functions map over exactly two 

sequences. For each of the map() functions, there are similar map2() 

functions. These take two sequences as the first two arguments.

x <- 1:3

y <- 3:1

map2_dbl(x, y, `+`)

## [1] 4 4 4

You can also create lists of sequences and use the pmap() functions.

list(x, y) %>% pmap_dbl(`+`)

## [1] 4 4 4

There are the same type-specific versions as there are for map() and 

map2(), but with the pmap() functions, you can map over more than one or 

two input sequences.

z <- 4:6

f <- function(x, y, z) x + y - z

list(x, y, z) %>% pmap_dbl(f)

## [1] 0 -1 -2

If you need to know the indices for each value you map over, you can 

use the imap() variations. When you use these to map over a sequence, 

your function needs to take two arguments where the first argument is the 

sequence value and the second the value’s index in the input.
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x <- c("foo", "bar", "baz")

f <- function(x, i) paste0(i, ": ", x)

x %>% imap_chr(f)

## [1] "1: foo" "2: bar" "3: baz"

There is yet another variant of the mapping functions, the modify() 

functions. These do not have the type variants (but the _at, _if, _depth, 

and so on); instead, they will always give you an output of the same type as 

the input:

modify2(1:3, 3:1, `+`)

## [1] 4 4 4

x <- c("foo", "bar", "baz")

f <- function(x, i) paste0(i, ": ", x)

x %>% imodify(f)

## [1] "1: foo" "2: bar" "3: baz"

 Reduce and Accumulate
If you want to summarize all your input into a single value, you probably 

want to reduce() them. Reduce repeatedly applies a function over your 

input sequence: If you have a function of two arguments, f (a, x) and a 

sequence x1, x2, ... , xn, then reduce(f) will compute f(... f( f(x1, x2, x3), ... 

,xn), xn), that is, it will be called on the first two elements of the sequence, 

the result will be paired with the next element, and so forth. Think of the 

argument a as an accumulator that keeps the result of the calculation so far.

To make the order of function application clear, I define a “pair” type:

pair <- function(first, second) {

    structure(list(first = first, second = second),

              class = "pair")

}
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toString.pair <- function(x, ...) {

    first <- toString(x$first, ...)

    rest <- toString(x$second, ...)

    paste('[', first, ', ', rest, ']', sep = ' ')

}

print.pair <- function(x, ...) {

    x %>% toString() %>% cat() %>% invisible()

}

If we reduce using pair(), we see how the values are paired when the 

function is called:

1:4 %>% reduce(pair)

## [[[1, 2], 3], 4]

If you reverse the input, you can reduce in the opposite order, 

combining the last pair first and propagating the accumulator in that order.

1:4 %>% rev() %>% reduce(pair)

## [[[4, 3], 2], 1]

If, for some reason, you want to apply the function and have the 

accumulator as the last argument, you can use the .dir = "backward" 

argument.

1:4 %>% reduce(pair, .dir = "backward")

## [1, [2, [3, 4]]]

The first (or last) element in the input does not have to be the value for 

the initial accumulator. If you want a specific starting value, you can pass 

that to reduce() using the .init argument.

1:3 %>% reduce(pair, .init = 0)

## [[[0, 1], 2], 3]

Chapter 6  FunCtional programming: purrr



99

1:3 %>% rev() %>% reduce(pair, .init = 4)

## [[[4, 3], 2], 1]

1:3 %>% reduce(pair, .init = 4, .dir = "backward")

## [1, [2, [3, 4]]]

If your function takes more than one argument, you can provide the 

additional arguments to reduce() and then input sequence and function. 

Consider, for example, a three-argument function like this:

# additional arguments

loud_pair <- function(acc, next_val, volume) {

    ret <- pair(acc, next_val)

    ret %>% toString() %>%

        paste(volume, '\n', sep = ' ') %>%

        cat()

    ret

}

It builds a pair object but, as a side effect, prints the pair followed by 

a string that indicates how “loud” the printed value is. We can provide the 

volume as an extra argument to reduce():

1:3 %>%

    reduce(loud_pair, volume = '!') %>%

    invisible()

## [1, 2]!

## [[1, 2], 3]!

1:3 %>%

    reduce(loud_pair, volume = '!!') %>%

    invisible()
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## [1, 2]!!

## [[1, 2], 3]!!

If you want to reduce two sequences instead of one—similar to a 

second argument to reduce() but a sequence instead of a single value—

you can use reduce2():

volumes <- c('!', '!!')

1:3 %>% reduce2(volumes, loud_pair) %>% invisible()

## [1, 2]!

## [[1, 2], 3]!!

1:3 %>%

    reduce2(c('!', '!!', '!!!'), .init = 0, loud_pair) %>%

    invisible()

## [0, 1]!

## [[0, 1], 2]!!

## [[[0, 1], 2], 3]!!!

If you want all the intermediate values of the reductions, you can use 

the accumulate() function. It returns a sequence of the results of each 

function application.

res <- 1:3 %>% accumulate(pair)

print(res[[1]])

## [1] 1

print(res[[2]])

## [1, 2]

print(res[[3]])

## [[1, 2], 3]
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res <- 1:3 %>% accumulate(pair, .init = 0)

print(res[[1]])

## [1] 0

print(res[[4]])

## [[[0, 1], 2], 3]

res <- 1:3 %>% accumulate(

    pair, .init = 0,

    .dir = "backward"

)

print(res[[1]])

## [1, [2, [3, 0]]]

print(res[[4]])

## [1] 0

The accumulate2() function works like reduce2(), except that it keeps 

the intermediate values like accumulate() does.

 Partial Evaluation and Function Composition
When you filter, map, or reduce over sequences, you sometimes want to 

modify a function to match the interface of purrr’s functions. If you have 

a function that takes too many arguments for the interface, but where you 

can fix some of the parameters to get the application you want, you can do 

what is called a partial evaluation. This just means that you create a new 

function that calls the original function with some of the parameters fixed.

Chapter 6  FunCtional programming: purrr



102

For example, if you filter, you want a function that takes one input 

value and returns one (boolean) output value. If you want to filter the 

values that are less than or greater than, say three, you can create functions 

for this.

greater_than_three <- function(x) 3 < x

less_than_three <- function(x) x < 3

1:6 %>% keep(greater_than_three)

## [1] 4 5 6

1:6 %>% keep(less_than_three)

## [1] 1 2

The drawback of doing this is that you might need to define many such 

functions, even if you only use each once in your pipeline.

Using the partial() function, you can bind parameters without 

explicitly defining new functions. For example, to bind the first parameter 

to <, as in the greater_than_three() function, you can use partial():

1:6 %>% keep(partial(`<`, 3))

## [1] 4 5 6

By default, you always bind the first parameter(s). To bind others, you 

need to name which parameters to bind. The less-than operator has these 

parameter names

`<`

## function (e1, e2) .Primitive("<")

so you can use this partial evaluation for less_than_three():

1:6 %>% keep(partial(`<`, e2 = 3))

## [1] 1 2
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Similarly, you can use partial evaluation for mapping:

1:6 %>% map_dbl(partial(`+`, 2))

## [1] 3 4 5 6 7 8

1:6 %>% map_dbl(partial(`-`, 1))

## [1] 0 -1 -2 -3 -4 -5

1:3 %>% map_dbl(partial(`-`, e1 = 4))

## [1] 3 2 1

1:3 %>% map_dbl(partial(`-`, e2 = 4))

## [1] -3 -2 -1

If you need to apply more than one function, for example

1:3 %>%

    map_dbl(partial(`+`, 2)) %>%

    map_dbl(partial(`*`, 3))

## [1] 9 12 15

you can also simply combine the functions. The function composition, 

°, works as this: (g ° f )(x) = g(f(x)). So the preceding pipeline can also be 

written as

1:3 %>% map_dbl(

    compose(partial(`*`, 3), partial(`+`, 2))

)

## [1] 9 12 15

With partial() and combine(), you can modify functions, but using 

them does not exactly give you code that is easy to read. A more readable 

alternative is using lambda expressions.
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 Lambda Expressions
Lambda expressions are a concise syntax for defining anonymous 

functions, that is, functions that we do not name. The name “lambda 

expressions” comes from “lambda calculus,”1 a discipline in formal logic, 

but in computer science, it is mostly used as a synonym for anonymous 

functions. In some programming languages, you cannot create anonymous 

functions; you need to name a function to define it. In other languages, you 

have special syntax for lambda expressions. In R, you define anonymous 

functions the same way that you define named functions. You always 

define functions the same way; you only give them a name when you 

assign a function definition to a variable.

If this sounds too theoretical, consider this example. When we 

filtered values that are even, we defined a function, is_even(), to use as a 

predicate.

is_even <- function(x) x %% 2 == 0

1:6 %>% keep(is_even)

## [1] 2 4 6

We defined the function using the expression function(x) x %%  

2 == 0 and then we assigned the function to the name is_even. Instead of  

assigning the function to a name, we could use the function definition 

directly in the call to keep():

1:6 %>% keep(function(x) x %% 2 == 0)

## [1] 2 4 6

1 The name comes from the syntax for functions that uses the Greek letter lambda, 
λ. A function that adds two to its argument would be written as λx.x + 2.
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So, R already has lambda expressions, but the syntax is verbose. In 

purrr, you can use a formula as a lambda expression. You can define an 

is_even() function using a formula like this

is_even_lambda <- ~ .x %% 2 == 0

1:6 %>% keep(is_even_lambda)

## [1] 2 4 6

or use the formula directly in your pipeline.

1:6 %>% keep(~ .x %% 2 == 0)

## [1] 2 4 6

The variable .x in the expression will be interpreted as the first 

argument to the lambda expression.

Lambda expressions are not an approach you can use to define 

functions in general. They only work because purrr functions understand 

formulae as function specifications. You cannot write

is_even_lambda <- ~ .x %% 2 == 0

is_even_lambda(3)

This will give you an error. The error message is not telling you that you 

try to use a formula as a function, unfortunately, but just that it cannot find 

the function is_even_lambda. This is because R will look for a function 

when you call a variable as a function and ignore other variables with the 

same name. If you reassign to a variable

f <- function(x) 2 * x

f <- 5

f(2)

## Error in f(2): could not find function "f"
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you are told that it cannot find a function with the name you call—not that 

the variable does not refer to a non-function. That is the error you get if 

you attempt to call a lambda expression outside a purrr function.

R’s rule for looking for functions can be even more confusing if there is 

a variable in an inner scope and a function in an outer scope:

f <- function(x) 2 * x

g <- function() {

    f <- 5 # not a function

    f(2) # will look for a function

}

g()

## [1] 4

Here, the f() function in the outer scope is called because it is a 

function; the variable in the inner scope is ignored.

Getting back to lambda expressions in purrr functions, you can use 

them as more readable versions of partial evaluation.

1:4 %>% map_dbl(~ .x / 2)

## [1] 0.5 1.0 1.5 2.0

1:3 %>% map_dbl(~ 2 + .x)

## [1] 3 4 5

1:3 %>% map_dbl(~ 4 - .x)

## [1] 3 2 1

1:3 %>% map_dbl(~ .x - 4)

## [1] -3 -2 -1
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Or you can use them for more readable versions of function 

composition.

1:3 %>% map_dbl(~ 3 * (.x + 2))

## [1] 9 12 15

If you need a lambda expression with two arguments, you can use .x 

and .y as the first and second argument, respectively.

map2_dbl(1:3, 1:3, ~ .x + .y)

## [1] 2 4 6

If you need more than two arguments, you can use .n for the n’th 

argument:

list(1:3, 1:3, 1:3) %>% pmap_dbl(~ .1 + .2 + .3)

## [1] 0.6 0.6 0.6
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CHAPTER 7

Manipulating Data 
Frames: dplyr
The dplyr package resembles the functionality in the purrr package, 

but it is designed for manipulating data frames. It will be loaded with the 

tidyverse package, but you can also load it using

library(dplyr)

The usual way that you use dplyr is similar to how you use purrr. 

You string together a sequence of actions in a pipeline, with the actions 

separated by the %>% operator. The difference between the two packages 

is that the purrr functions work on sequences, while the dplyr functions 

work on data frames.

This package is huge and more functionality is added in each new 

release, so it would be impossible for me to describe everything you can 

do with dplyr. I can only give you a flavor of the package functionality and 

refer you to the documentation for more information.

 Selecting Columns
One of the simplest operations you can do on a data frame is selecting one 

or more of its columns. You can do this by indexing with $:

iris_df <- as_tibble(iris)

print(iris_df, n = 3)
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## # A tibble: 150 x 5

##   Sepal.Length Sepal.Width Petal.Length

##          <dbl>       <dbl>        <dbl>

## 1          5.1         3.5          1.4

## 2          4.9         3            1.4

## 3          4.7         3.2          1.3

## # ... with 147 more rows, and 2 more variables:

## #  Petal.Width <dbl>, Species <fct>

head(iris_df$Species)

## [1] setosa setosa setosa setosa setosa setosa

## Levels: setosa versicolor virginica

This, however, does not work well with pipelines where a data frame 

is flowing through from action to action. In dplyr, you have the function 

select() for picking out columns. You can give it one or more column 

names, and it will give you a data frame containing only those columns.

iris_df %>%

    select(Sepal.Length, Species) %>%

    print(n = 3)

## # A tibble: 150 x 2

##   Sepal.Length Species

##          <dbl> <fct>

## 1          5.1 setosa

## 2          4.9 setosa

## 3          4.7 setosa

## # ... with 147 more rows

You can also use complements when selecting columns; just put a 

minus in front of the column names.
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iris_df %>%

    select(-Species) %>%

    print(n = 3)

## # A tibble: 150 x 4

##   Sepal.Length Sepal.Width Petal.Length

##          <dbl>       <dbl>        <dbl>

## 1          5.1         3.5          1.4

## 2          4.9         3            1.4

## 3          4.7         3.2          1.3

## # ... with 147 more rows, and 1 more variable:

## #  Petal.Width <dbl>

iris_df %>%

    select(-Species, -Sepal.Length) %>%

    print(n = 3)

## # A tibble: 150 x 3

##   Sepal.Width Petal.Length Petal.Width

##         <dbl>        <dbl>       <dbl>

## 1         3.5          1.4         0.2

## 2         3            1.4         0.2

## 3         3.2          1.3         0.2

## # ... with 147 more rows

You do not need to use column names. You can also use indices.

iris_df %>%

    select(1) %>%

    print(n = 3)

## # A tibble: 150 x 1

##   Sepal.Length

##          <dbl>
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## 1          5.1

## 2          4.9

## 3          4.7

## # ... with 147 more rows

iris_df %>%

    select(1:3) %>%

    print(n = 3)

## # A tibble: 150 x 3

##   Sepal.Length Sepal.Width Petal.Length

##          <dbl>       <dbl>        <dbl>

## 1          5.1         3.5          1.4

## 2          4.9         3            1.4

## 3          4.7         3.2          1.3

## # ... with 147 more rows

This, of course, is less informative about what is being selected when 

you read the code. The second selection in the preceding code shows that 

you can extract ranges. You can also do this with column names.

iris_df %>%

    select(Petal.Length:Species) %>%

    print(n = 3)

## # A tibble: 150 x 3

##   Petal.Length Petal.Width Species

##          <dbl>       <dbl> <fct>

## 1          1.4         0.2 setosa

## 2          1.4         0.2 setosa

## 3          1.3         0.2 setosa

## # ... with 147 more rows
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With select() you can also use various predicates for selecting 

columns. For example, you can pick columns based on the properties of 

the names. The starts_with() function lets you select columns based on 

the prefix of the column names and the ends_with() function based on 

the suffix of the column names:

iris_df %>%

    select(starts_with("Petal")) %>%

    print(n = 3)

## # A tibble: 150 x 2

##   Petal.Length Petal.Width

##          <dbl>       <dbl>

## 1          1.4         0.2

## 2          1.4         0.2

## 3          1.3         0.2

## # ... with 147 more rows

iris_df %>%

    select(-starts_with("Petal")) %>%

    print(n = 3)

## # A tibble: 150 x 3

##   Sepal.Length Sepal.Width Species

##          <dbl>       <dbl> <fct>

## 1          5.1         3.5 setosa

## 2          4.9         3   setosa

## 3          4.7         3.2 setosa

## # ... with 147 more rows

iris_df %>%

    select(starts_with("Petal"), Species) %>%

    print(n = 3)
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## # A tibble: 150 x 3

##   Petal.Length Petal.Width Species

##          <dbl>       <dbl> <fct>

## 1          1.4         0.2 setosa

## 2          1.4         0.2 setosa

## 3          1.3         0.2 setosa

## # ... with 147 more rows

iris_df %>%

    select(starts_with("PETAL", ignore.case = TRUE)) %>%

    print(n = 3)

## # A tibble: 150 x 2

##   Petal.Length Petal.Width

##          <dbl>       <dbl>

## 1          1.4         0.2

## 2          1.4         0.2

## 3          1.3         0.2

## # ... with 147 more rows

iris_df %>%

    select(starts_with("S")) %>%

    print(n = 3)

## # A tibble: 150 x 3

##   Sepal.Length Sepal.Width Species

##          <dbl>       <dbl> <fct>

## 1          5.1         3.5 setosa

## 2          4.9         3   setosa

## 3          4.7         3.2 setosa

## # ... with 147 more rows

iris_df %>%

    select(ends_with("Length")) %>%

    print(n = 3)
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## # A tibble: 150 x 2

##   Sepal.Length Petal.Length

##          <dbl>        <dbl>

## 1          5.1          1.4

## 2          4.9          1.4

## 3          4.7          1.3

## # ... with 147 more rows

If you use the contains() function, you select columns whose names 

contain a string.

iris_df %>%

    select(contains("ng")) %>%

    print(n = 3)

## # A tibble: 150 x 2

##   Sepal.Length Petal.Length

##          <dbl>        <dbl>

## 1          5.1          1.4

## 2          4.9          1.4

## 3          4.7          1.3

## # ... with 147 more rows

The most powerful predicate function is matches(). It lets you select 

columns using regular expressions. For the iris_df example, there is not 

much that you can select using a regular expression that you cannot select 

using one of the simpler functions, but consider this table:

df <- tribble(

    ~a1x, ~ax, ~a2x, ~b2, ~b2y, ~by,

    1, 2, 3, 4, 5, 6

)
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We can pick a column that contains an integer using the regular 

expression .*\\d.*:

df %>%

    select(matches(".*\\d.*")) %>%

    print(n = 3)

## # A tibble: 1 x 4

##     a1x   a2x    b2    b2y

##   <dbl> <dbl> <dbl>  <dbl>

## 1     1     3     4      5

If we need the names to have non-empty strings before and after the 

digit, we can use this expression:

df %>%

    select(matches(".+\\d.+")) %>%

    print(n = 3)

## # A tibble: 1 x 3

##     a1x   a2x   b2y

##   <dbl> <dbl> <dbl>

## 1     1     3     5

You can also use select() to rename columns. If you use a named 

parameter, the columns you select will get the names you use for the 

function parameters.

iris_df %>%

    select(sepal_length = Sepal.Length,

           sepal_width = Sepal.Width) %>%

    print(n = 3)

## # A tibble: 150 x 2

##   sepal_length sepal_width

##          <dbl>       <dbl>
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## 1          5.1         3.5

## 2          4.9         3

## 3          4.7         3.2

## # ... with 147 more rows

Since select() removes the columns you do not select, it might not 

always be the best approach. A similar function to select(), where you 

do not lose columns, is rename(). With this function, you can rename 

columns and keep the remaining columns as well.

iris_df %>%

    rename(sepal_length = Sepal.Length,

           sepal_width = Sepal.Width) %>%

    print(n = 3)

## # A tibble: 150 x 5

##   sepal_length sepal_width Petal.Length

##          <dbl>       <dbl>        <dbl>

## 1          5.1         3.5          1.4

## 2          4.9         3            1.4

## 3          4.7         3.2          1.3

## # ... with 147 more rows, and 2 more variables:

## #  Petal.Width <dbl>, Species <fct>

 Filter
While select() extracts a subset of columns, the filter() function does 

the same for rows.

The iris_df contains three different species. We can see this using the 

distinct() function. This function is also from the dplyr package, and it 

gives you all the unique rows from selected columns.
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iris_df %>%

    distinct(Species)

## # A tibble: 3 x 1

##   Species

##   <fct>

## 1 setosa

## 2 versicolor

## 3 virginica

We can select the rows where the species is “setosa” using filter():

iris_df %>%

    filter(Species == "setosa") %>%

    print(n = 3)

## # A tibble: 50 x 5

##   Sepal.Length Sepal.Width Petal.Length

##          <dbl>       <dbl>        <dbl>

## 1          5.1         3.5          1.4

## 2          4.9         3            1.4

## 3          4.7         3.2          1.3

## # ... with 47 more rows, and 2 more variables:

## #  Petal.Width <dbl>, Species <fct>

We can combine filter() and select() in a pipeline to get a subset of 

the columns as well as a subset of the rows.

iris_df %>%

    filter(Species == "setosa") %>%

    select(ends_with("Length"), Species) %>%

    print(n = 3)

## # A tibble: 50 x 3

##   Sepal.Length Petal.Length Species
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##          <dbl>        <dbl> <fct>

## 1          5.1          1.4 setosa

## 2          4.9          1.4 setosa

## 3          4.7          1.3 setosa

## # ... with 47 more rows

Generally, we can string together as many dplyr (or purrr) functions 

as we desire in pipelines.

iris_df %>%

    filter(Species != "setosa") %>%

    distinct(Species) %>%

    print(n = 3)

## # A tibble: 2 x 1

##   Species

##   <fct>

## 1 versicolor

## 2 virginica

We can use more than one columns to filter by

iris_df %>%

    filter(Sepal.Length > 5, Petal.Width < 0.4) %>%

    print(n = 3)

## # A tibble: 15 x 5

##   Sepal.Length Sepal.Width Petal.Length

##          <dbl>       <dbl>        <dbl>

## 1          5.1         3.5          1.4

## 2          5.4         3.7          1.5

## 3          5.8         4            1.2

## # ... with 12 more rows, and 2 more variables:

## #  Petal.Width <dbl>, Species <fct>
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We can also use functions as a predicate, for example, the between() 

function to select numbers in a given range.

iris_df %>%

    filter(between(Sepal.Width, 2, 2.5)) %>%

    print(n = 3)

## # A tibble: 19 x 5

##   Sepal.Length Sepal.Width Petal.Length

##          <dbl>       <dbl>        <dbl>

## 1          4.5         2.3          1.3

## 2          5.5         2.3          4

## 3          4.9         2.4          3.3

## # ... with 16 more rows, and 2 more variables:

## #  Petal.Width <dbl>, Species <fct>

We cannot use the functions starts_with(), ends_with(), and so 

on. that we can use with select(). This does not mean, however, that we 

cannot filter rows using string patterns. We just need different functions. 

For example, we can use str_starts() from the stringr package. We 

return to stringr in Chapter 8.

iris_df %>%

    filter(str_starts(Species, "v")) %>%

    print(n = 3)

## # A tibble: 100 x 5

##   Sepal.Length Sepal.Width Petal.Length

##          <dbl>       <dbl>        <dbl>

## 1          7           3.2          4.7

## 2          6.4         3.2          4.5

## 3          6.9         3.1          4.9

## # ... with 97 more rows, and 2 more variables:

## #  Petal.Width <dbl>, Species <fct>
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iris_df %>%

    filter(str_ends(Species, "r")) %>%

    print(n = 3)

## # A tibble: 50 x 5

##   Sepal.Length Sepal.Width Petal.Length

##          <dbl>       <dbl>        <dbl>

## 1          7           3.2          4.7

## 2          6.4         3.2          4.5

## 3          6.9         3.1          4.9

## # ... with 47 more rows, and 2 more variables:

## #  Petal.Width <dbl>, Species <fct>

While filter() selects rows by applying predicates on individual 

columns, other filter variants will use predicates over more than one 

column.

The filter_all() function will apply the predicate over all columns. 

You must provide an expression where you use . (dot) for the table cell 

value and wrap the expression in one of two functions: any_var() or 

all_var(). If you use any_var(), it suffices that one column satisfies 

the predicate for the row to be included; if you use all_var(), then all 

columns must satisfy the predicate.

We can require that any value in the iris_df data must be larger than 

five:

iris_df %>%

    select(-Species) %>%

    filter_all(any_vars(. > 5)) %>%

    print(n = 3)
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## # A tibble: 118 x 4

##   Sepal.Length Sepal.Width Petal.Length

##          <dbl>       <dbl>        <dbl>

## 1          5.1         3.5          1.4

## 2          5.4         3.9          1.7

## 3          5.4         3.7          1.5

## # ... with 115 more rows, and 1 more variable:

## #  Petal.Width <dbl>

The expression . > 5 is not meaningful if . is a string, so I had to 

remove the Species column before I filtered. Rarely will we accept to lose 

an informative variable. If you want to keep a column, but not apply the 

predicate to values in it, you can use the filter_at() function.

iris_df %>%

    filter_at(vars(-Species), any_vars(. > 5)) %>%

    print(n = 3)

## # A tibble: 118 x 5

##   Sepal.Length Sepal.Width Petal.Length

##          <dbl>       <dbl>        <dbl>

## 1          5.1         3.5          1.4

## 2          5.4         3.9          1.7

## 3          5.4         3.7          1.5

## # ... with 115 more rows, and 2 more variables:

## #  Petal.Width <dbl>, Species <fct>

You can give filter_at() a vector of strings or a vector of variables 

(unquoted column names). Because I need to negate Species to select 

all other columns, I used vars() here. In other cases, you can use either 

option.
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iris_df %>%

    filter_at(c("Petal.Length", "Sepal.Length"),

               any_vars(. > 0)) %>%

    print(n = 3)

## # A tibble: 150 x 5

##   Sepal.Length Sepal.Width Petal.Length

##          <dbl>       <dbl>        <dbl>

## 1          5.1         3.5          1.4

## 2          4.9         3            1.4

## 3          4.7         3.2          1.3

## # ... with 147 more rows, and 2 more variables:

## #  Petal.Width <dbl>, Species <fct>

iris_df %>%

    filter_at(vars(Petal.Length, Sepal.Length),

              any_vars(. > 0)) %>%

    print(n = 3)

## # A tibble: 150 x 5

##   Sepal.Length Sepal.Width Petal.Length

##          <dbl>       <dbl>        <dbl>

## 1          5.1         3.5          1.4

## 2          4.9         3            1.4

## 3          4.7         3.2          1.3

## # ... with 147 more rows, and 2 more variables:

## #  Petal.Width <dbl>, Species <fct>

You can use filter_if() to use a predicate over the columns:

iris_df %>%

    filter_if(is.numeric, all_vars(. < 5)) %>%

    print(n = 3)
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## # A tibble: 22 x 5

##   Sepal.Length Sepal.Width Petal.Length

##          <dbl>       <dbl>        <dbl>

## 1          4.9         3            1.4

## 2          4.7         3.2          1.3

## 3          4.6         3.1          1.5

## # ... with 19 more rows, and 2 more variables:

## #  Petal.Width <dbl>, Species <fct>

You can use functions or lambda expressions as the predicate.

Consider a case where we have numbers with missing data in a table. 

If we want to filter the rows where all values are greater than three, we can 

use filter_all():

df <- tribble(

    ~A, ~B, ~C,

     1,  2,  3,

     4,  5, NA,

    11, 12, 13,

    22, 22,  1

)

df %>% filter_all(all_vars(. > 3))

## # A tibble: 1 x 3

##       A     B     C

##   <dbl> <dbl> <dbl>

## 1    11    12    13

It removes the first two and the last row because they all contain values 

smaller or equal to three. It also deletes the third row because NA is not 

considered greater than three. We can restrict the tests to the columns that 

do not contain missing values:

df %>%

    filter_if(~ all(!is.na(.)), all_vars(. > 3))
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## # A tibble: 3 x 3

##       A     B     C

##   <dbl> <dbl> <dbl>

## 1     4     5    NA

## 2    11    12    13

## 3    22    22     1

This removes column C from the tests. It means that we also keep the 

last row even though C has a value smaller than three.

If you want to keep the two middle row but not the first or last, you can 

write a more complex predicate and use filter_all().

df %>% filter_all(all_vars(is.na(.) | . > 3))

## # A tibble: 2 x 3

##       A     B     C

##   <dbl> <dbl> <dbl>

## 1     4     5    NA

## 2    11    12    13

You need to use the | vector-or. The expression needs to be a vector 

expression so you cannot use ||.

Many dplyr functions have _all, _at, and _if variants, but I will only 

describe the frequently used functions here. For the others, I refer to the 

package documentation.

 Sorting
If you want to sort rows by values in selected columns, the function you 

want is called arrange(). You can sort by one or more columns:

iris_df %>%

    arrange(Petal.Length) %>%

    print(n = 5)
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## # A tibble: 150 x 5

##   Sepal.Length Sepal.Width Petal.Length

##          <dbl>       <dbl>        <dbl>

## 1          4.6         3.6          1

## 2          4.3         3            1.1

## 3          5.8         4            1.2

## 4          5           3.2          1.2

## 5          4.7         3.2          1.3

## # ... with 145 more rows, and 2 more variables:

## #  Petal.Width <dbl>, Species <fct>

iris_df %>%

    arrange(Sepal.Length, Petal.Length) %>%

    print(n = 5)

## # A tibble: 150 x 5

##   Sepal.Length Sepal.Width Petal.Length

##          <dbl>       <dbl>        <dbl>

## 1          4.3         3            1.1

## 2          4.4         3            1.3

## 3          4.4         3.2          1.3

## 4          4.4         2.9          1.4

## 5          4.5         2.3          1.3

## # ... with 145 more rows, and 2 more variables:

## #  Petal.Width <dbl>, Species <fct>

If you want to sort in descending order, you can use the function 

desc().

iris_df %>%

    arrange(desc(Petal.Length)) %>%

    print(n = 5)
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## # A tibble: 150 x 5

##   Sepal.Length Sepal.Width Petal.Length

##          <dbl>       <dbl>        <dbl>

## 1          7.7         2.6          6.9

## 2          7.7         3.8          6.7

## 3          7.7         2.8          6.7

## 4          7.6         3            6.6

## 5          7.9         3.8          6.4

## # ... with 145 more rows, and 2 more variables:

## #  Petal.Width <dbl>, Species <fct>

 Modifying Data Frames
When we work with data frames, we usually want to compute values based 

on the variables (columns) in our tables. Filtering rows and columns will 

only get us so far.

The mutate() function lets us add columns to a data frame based on 

expressions that can involve any of the existing columns. Consider a table 

of widths and heights.

df <- tribble(

    ~height, ~width,

         10,     12,

         42,     24,

         14,     12

)

We can add an area column using mutate() and this expression:

df %>% mutate(area = height * width)

## # A tibble: 3 x 3

##   height width  area
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##    <dbl> <dbl> <dbl>

## 1     10    12   120

## 2     42    24  1008

## 3     14    12   168

If you add columns to a data frame, you can refer to variables you 

have already added. For example, if your height and width data are in 

inches and you want them in centimeters, and you also want the area in 

centimeters squared, you can do this:

cm_per_inch = 2.54

df %>% mutate(

    height_cm = cm_per_inch * height,

    width_cm = cm_per_inch * width,

    area_cm = height_cm * width_cm

)

## # A tibble: 3 x 5

##   height width height_cm width_cm area_cm

##    <dbl> <dbl>     <dbl>    <dbl>   <dbl>

## 1     10    12      25.4     30.5    774.

## 2     42    24     107.      61.0   6503.

## 3     14    12      35.6     30.5   1084.

The following expression, however, will not work since you cannot 

refer to variables you are adding later in the mutate() call.

df %>% mutate(

    area_cm   = height_cm * width_cm,

    height_cm = cm_per_inch * height,

    width_cm  = cm_per_inch * width

)
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If you do not give the new variable a name, that is, you call mutate() 

with named parameters, then the expression will become the variable 

name:

df %>% mutate(cm_per_inch * height)

## # A tibble: 3 x 3

##   height width `cm_per_inch * height`

##    <dbl> <dbl>                  <dbl>

## 1     10    12                   25.4

## 2     42    24                  107.

## 3     14    12                   35.6

In this example, the units (inches and centimeters), are not encoded 

with the data, and in future computations, you might end up mixing 

the wrong units. If you use the units package—which is not part of the 

Tidyverse—you can make the units explicit, automatically convert between 

units where that makes sense, and you will get unit type safety as a bonus.

library(units)

df %>% mutate(

    height_in = units::as_units(height, "in"),

    width_in  = units::as_units(width, "in"),

    area_in   = height_in * width_in,

    height_cm = units::set_units(height_in, "cm"),

    width_cm  = units::set_units(width_in, "cm"),

    area_cm   = units::set_units(area_in, "cm^2")

)

## # A tibble: 3 x 8

##   height width height_in width_in area_in

##    <dbl> <dbl>      [in]     [in]  [in^2]

## 1     10    12        10       12     120

## 2     42    24        42       24    1008
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## 3     14    12        14       12     168

## # ... with 3 more variables: height_cm [cm],

## #  width_cm [cm], area_cm [cm^2]

This is possible because tibbles can contain classes of various types, 

which the units package exploits. Tibbles use an interface that lets you 

define how your own classes should be displayed,1 but this is beyond the 

scope of this book.

In the preceding example, we created unit-carrying values for the 

original data table, but the original height and weight columns are 

still around. We could use select() to remove them, but the function 

transmute() already does this for us.

df %>% transmute(

    height_in = units::as_units(height, "in"),

    width_in  = units::as_units(width, "in"),

    area_in   = height_in * width_in,

    height_cm = units::set_units(height_in, "cm"),

    width_cm  = units::set_units(width_in, "cm"),

    area_cm   = units::set_units(area_in, "cm^2")

)

## # A tibble: 3 x 6

##   height_in width_in area_in height_cm width_cm

##        [in]     [in]  [in^2]      [cm]     [cm]

## 1        10       12     120     25.40    30.48

## 2        42       24    1008    106.68    60.96

## 3        14       12     168     35.56    30.48

## # ... with 1 more variable: area_cm [cm^2]

1 http://tinyurl.com/yya2btby
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When you use transmute() instead of mutate(), the variables that you 

are not assigning to will be removed.

As with filtering, the expressions you use when mutating a data frame 

must be vector expressions. Consider this example:

df <- tibble(

    x = rnorm(3, mean = 12, sd = 5),

)

my_abs <- function(x) if (x < 0) -x else x

df %>% mutate(my_abs(x))

## Warning in if (x < 0) -x else x: the condition has

## length > 1 and only the first element will be used

## # A tibble: 3 x 2

##       x `my_abs(x)`

##   <dbl>       <dbl>

## 1 16.1        16.1

## 2 -2.07       -2.07

## 3 14.9        14.9

It fails because the function my_abs() (my version of the abs() 

function) is not a vector expression. It is not a vector expression because of 

x in the if expression.

If we use the built-in abs() function, then there is no problem with the 

expression; it handles vectors.

df %>% mutate(abs(x))

## # A tibble: 3 x 2

##       x `abs(x)`

##   <dbl>    <dbl>

## 1 16.1     16.1

## 2 -2.07     2.07

## 3 14.9     14.9
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If you use the ifelse() vector version of if expressions, you get a 

vector expression.

ifelse_abs <- function(x) ifelse(x < 0, -x, x)

df %>% mutate(ifelse_abs(x))

## # A tibble: 3 x 2

##       x `ifelse_abs(x)`

##   <dbl>           <dbl>

## 1 16.1            16.1

## 2 -2.07            2.07

## 3 14.9            14.9

Or you can use the Vectorize() function to make a vector expression 

out of a function that does not handle vectors.

my_abs <- Vectorize(my_abs)

df %>% mutate(my_abs(x))

## # A tibble: 3 x 2

##       x `my_abs(x)`

##   <dbl>       <dbl>

## 1 16.1        16.1

## 2 -2.07        2.07

## 3 14.9        14.9

If you need to map the input to several different output values, you 

can nest ifelse() expressions arbitrarily deep, but it gets difficult to read. 

A function that alleviates this problem substantially is case_when(). You 

can give it a sequence of predicates with matching expressions, and it will 

return the expression for the first matching predicate.
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Consider this example where we use case_when() to categorize the 

variable x based on its value:

df <- tibble(x = rnorm(100))

df %>%

    mutate(

        x_category = case_when(

            x - mean(x) < -2 * sd(x) ~ "small",

            x - mean(x) > 2 * sd(x) ~ "large",

            TRUE ~ "medium"

        )

    ) %>%

    print(n = 3)

## # A tibble: 100 x 2

##         x x_category

##     <dbl> <chr>

## 1 -0.311  medium

## 2  0.0992 medium

## 3 -1.26   medium

## # ... with 97 more rows

The TRUE line corresponds to the else part of an if-else statement.

 Grouping and Summarizing
In many analyses, we need summary statistics of our data. If you can map 

one or more of your columns into a single summary, you can use the 

summarise() function.

df <- tibble(x = rnorm(100), y = rnorm(100))

df %>% summarise(mean_x = mean(x), mean_y = mean(y))
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## # A tibble: 1 x 2

##    mean_x mean_y

##     <dbl>  <dbl>

## 1 -0.0529 0.0141

In this example, we summarized our data as the mean of variables x 

and y.

If you split your data into different classes and want to work on the data 

per group, you can use the function group_by().

classify <- function(x) {

    case_when(

        x - mean(x) < -2 * sd(x) ~ "small",

        x - mean(x) > 2 * sd(x) ~ "large",

        TRUE ~ "medium"

    )

}

df %>%

    mutate(x_category = classify(x)) %>%

    group_by(x_category) %>%

    print(n = 3)

## # A tibble: 100 x 3

## # Groups: x_category [2]

##        x     y x_category

##    <dbl> <dbl> <chr>

## 1 -0.702 0.959 medium

## 2  1.10  0.557 medium

## 3 -0.667 0.399 medium

## # ... with 97 more rows

The result is a data frame that, when we print it, doesn’t look different 

from before we grouped the data.
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df %>%

    mutate(x_category = classify(x)) %>%

    print(n = 3)

## # A tibble: 100 x 3

##        x     y x_category

##    <dbl> <dbl> <chr>

## 1 -0.702 0.959 medium

## 2  1.10  0.557 medium

## 3 -0.667 0.399 medium

## # ... with 97 more rows

In the header, however, you will notice the line

# Groups:   x_category [3]

This tells you that something is different when you have grouped your 

data. This is apparent when you combine grouping with summarizing.

df %>%

    mutate(x_category = classify(x)) %>%

    group_by(x_category) %>%

    summarise(mean_x = mean(x), no_x = n())

## # A tibble: 2 x 3

##   x_category mean_x  no_x

##   <chr>       <dbl> <int>

## 1 large       2.34      4

## 2 medium     -0.153    96

When you group your data and then summarize, you get a per-group 

summary statistics. Here, we calculate the mean and the number of 

observations in each category (the function n() gives you the number of 

observations).
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You can get the variables your data is grouped by using the group_

vars() function.

df %>%

    mutate(x_category = classify(x)) %>%

    group_by(x_category) %>%

    group_vars()

## [1] "x_category"

You can group data by more than one variable.

df <- tibble(x = rnorm(100), y = rnorm(100))

df %>%

    mutate(

        x_category = classify(x),

        y_category = classify(y)

    ) %>%

    group_by(x_category, y_category) %>%

    group_vars()

## [1] "x_category" "y_category"

If you do, you will get summaries for each combination of the grouping 

variables.

df %>%

    mutate(

        x_category = classify(x),

        y_category = classify(y)

    ) %>%

    group_by(x_category, y_category) %>%

    summarise(mean_x = mean(x), mean_y = mean(y))

## # A tibble: 6 x 4
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## # Groups:   x_category [3]

##   x_category y_category mean_x  mean_y

##   <chr>      <chr>       <dbl>   <dbl>

## 1 large      medium      2.02  -0.836

## 2 medium     large       0.871  1.98

## 3 medium     medium     -0.118  0.0213

## 4 medium     small      -0.679 -2.69

## 5 small      large      -3.48   1.96

## 6 small      medium     -2.74  -0.0693

If you group by one variable and summarize another, you get 

summaries for both variables according for each of the grouped by 

variables.

df %>%

    mutate(

        x_category = classify(x),

        y_category = classify(y)

    ) %>%

    group_by(x_category) %>%

    summarise(mean_x = mean(x), mean_y = mean(y))

## # A tibble: 3 x 3

##   x_category mean_x  mean_y

##   <chr>       <dbl>   <dbl>

## 1 large       2.02  -0.836

## 2 medium     -0.114  0.0133

## 3 small      -2.98   0.607

Here, we calculate the mean of x and y for each category of x value. In 

general, you can use any number of variables to group the data and any 

number of variables to summarize, and the summaries will be computed 

per group.
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When you have grouped your data by more than one variable, a 

summary will remove the last group you added, that is, the last variable 

you grouped by. A summary gives you a new data frame containing the 

grouping variable and the summaries. If you have grouped with more than 

one variable, this data frame will be grouped by all but the last grouping 

variables.

For example, if we group by variables A and B and then summarise 

another variable, C, the result will be grouped by A and not B. If you group 

by A, B, and D, the result will be a data frame grouped by A and B.

df2 <- tribble(

    ~A,      ~B,    ~C, ~D,

    "left",  "up",   2, "yes",

    "right", "up",   5, "no",

    "left",  "down", 2, "yes",

    "left",  "down", 7, "no",

    "left",  "down", 3, "no",

    "right", "up",   8, "yes",

    "right", "up",   2, "yes",

    "right", "up",   8, "no"

)

df2 %>% group_by(A, B) %>%

    summarise(min_c = min(C), max_c = max(C))

## # A tibble: 3 x 4

## # Groups:   A [2]

##   A     B     min_c max_c

##   <chr> <chr> <dbl> <dbl>

## 1 left  down      2     7

## 2 left  up        2     2

## 3 right up        2     8
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df2 %>% group_by(A, B) %>%

    summarise(min_c = min(C), max_c = max(C)) %>%

    summarise(max_diff = max(max_c - min_c))

## # A tibble: 2 x 2

##   A     max_diff

##   <chr>    <dbl>

## 1 left         5

## 2 right        6

df2 %>% group_by(A, B, D) %>%

    summarise(min_c = min(C), max_c = max(C))

## # A tibble: 5 x 5

## # Groups:   A, B [3]

##   A     B     D     min_c max_c

##   <chr> <chr> <chr> <dbl> <dbl>

## 1 left  down  no        3     7

## 2 left  down  yes       2     2

## 3 left  up    yes       2     2

## 4 right up    no        5     8

## 5 right up    yes       2     8

df2 %>% group_by(A, B, D) %>%

    summarise(min_c = min(C), max_c = max(C)) %>%

    summarise(max_diff = max(max_c - min_c))

## # A tibble: 3 x 3

## # Groups:   A [2]

##   A     B     max_diff

##   <chr> <chr>    <dbl>

## 1 left  down         4

## 2 left  up           0

## 3 right up           6
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The order you use in group_by() is important here. If you flip the 

variables, you will get a data frame that is still grouped by B instead.

df2 %>% group_by(A, B) %>%

    summarise(min_c = min(C), max_c = max(C))

## # A tibble: 3 x 4

## # Groups:   A [2]

##   A     B     min_c max_c

##   <chr> <chr> <dbl> <dbl>

## 1 left  down      2     7

## 2 left  up        2     2

## 3 right up        2     8

The way grouping variables are removed one by one each time you 

call summarise() is a potential source of errors. Say you have variables 

A, B, C, and D, grouped by A, B, and D. Within each combination of these, 

you define a distance as the maximum value of C minus its minimum 

value. You want to know the smallest difference between maximum and 

minimum in the overall data. You might, reasonably, try this:

You compute the minimum and maximum per group:

df2 %>% group_by(A, B, D) %>%

    summarise(min_c = min(C), max_c = max(C)) %>%

## Error: <text>:3:0: unexpected end of input

## 1: df2 %>% group_by(A, B, D) %>%

## 2:    summarise(min_c = min(C), max_c = max(C)) %>%

##   ^

Then you try another summarise() to find the minimum between 

max_c and min_c for each row in the result:

df2 %>% group_by(A, B, D) %>%

    summarise(min_c = min(C), max_c = max(C)) %>%

    summarise(min_diff = min(max_c - min_c))
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## # A tibble: 3 x 3

## # Groups:   A [2]

##   A     B     min_diff

##   <chr> <chr>    <dbl>

## 1 left  down         0

## 2 left  up           0

## 3 right up           3

This, however, gives you the smallest difference for each combination 

of A and B, but not the overall smallest. The first summarise only removes 

the D group (and the second removes B).

If you have grouped your data, or you get grouped data from one 

summary as in the preceding example, you can remove the groups again 

using ungroup(). Once you have done this, you can compute global 

summaries again.

df2 %>% group_by(A, B, D) %>%

    summarise(min_c = min(C), max_c = max(C)) %>%

    ungroup() %>%

    summarise(min_diff = min(max_c - min_c))

## # A tibble: 1 x 1

##   min_diff

##      <dbl>

## 1        0

Grouping is not only useful when collecting summaries of your 

data. You can also add columns to your data frame based on per-group 

computations using mutate():

df %>%

    mutate(

        x_category = classify(x),

        y_category = classify(y)

    ) %>%
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    group_by(x_category) %>%

    mutate(mean_x = mean(x), mean_y = mean(y)) %>%

    print(n = 5)

## # A tibble: 100 x 6

## # Groups:   x_category [3]

##        x       y x_category y_category mean_x

##    <dbl>   <dbl> <chr>      <chr>       <dbl>

## 1  0.352  1.23   medium     medium     -0.114

## 2 -2.84  -0.705  small      medium     -2.98

## 3  0.332 -0.0964 medium     medium     -0.114

## 4  1.37  -1.28   medium     medium     -0.114

## 5 -0.893 -0.373  medium     medium     -0.114

## # ... with 95 more rows, and 1 more variable:

## #  mean_y <dbl>

When you calculate a summary and then mutate, you create columns 

where a summary parameter takes values based on the groupings, but they 

are combined with the existing data rather than extracted as a new data 

frame as summarise() would do.

A mutate() without a group_by() will give you summaries for the 

entire data.

df %>%

    mutate(

        x_category = classify(x),

        y_category = classify(y)

    ) %>%

    mutate(mean_x = mean(x), mean_y = mean(y))
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## # A tibble: 100 x 6

##         x       y x_category y_category mean_x

##     <dbl>   <dbl> <chr>      <chr>       <dbl>

##  1  0.352  1.23   medium     medium     -0.157

##  2 -2.84  -0.705  small      medium     -0.157

##  3  0.332 -0.0964 medium     medium     -0.157

##  4  1.37  -1.28   medium     medium     -0.157

##  5 -0.893 -0.373  medium     medium     -0.157

##  6 -0.561  0.465  medium     medium     -0.157

##  7 -1.14  -0.874  medium     medium     -0.157

##  8  0.812 -0.897  medium     medium     -0.157

##  9  0.162  0.634  medium     medium     -0.157

## 10 -1.12  -0.311  medium     medium     -0.157

## # ...  with 90 more rows, and 1 more variable:

## #  mean_y <dbl>

In contrast, if you group before adding variables to the data, then the 

summaries are per group.

df %>%

    mutate(

        x_category = classify(x),

        y_category = classify(y)

    ) %>%

    group_by(x_category) %>%

    mutate(mean_x = mean(x), mean_y = mean(y))

## # A tibble: 100 x 6

## # Groups:   x_category [3]

##         x       y x_category y_category mean_x

##     <dbl>   <dbl> <chr>      <chr>       <dbl>

##  1  0.352  1.23   medium     medium     -0.114

##  2 -2.84  -0.705  small      medium     -2.98
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##  3  0.332 -0.0964 medium     medium     -0.114

##  4  1.37  -1.28   medium     medium     -0.114

##  5 -0.893 -0.373  medium     medium     -0.114

##  6 -0.561  0.465  medium     medium     -0.114

##  7 -1.14  -0.874  medium     medium     -0.114

##  8  0.812 -0.897  medium     medium     -0.114

##  9  0.162  0.634  medium     medium     -0.114

## 10 -1.12  -0.311  medium     medium     -0.114

## # ...  with 90 more rows, and 1 more variable:

## #  mean_y <dbl>

You can combine data-wide summaries with grouped summaries if 

you calculate the global summaries before you group.

df %>%

    mutate(

        x_category = classify(x),

        y_category = classify(y)

    ) %>%

    mutate(mean_y = mean(y)) %>%

    group_by(x_category) %>%

    mutate(mean_x = mean(x)) %>%

    distinct(mean_x, mean_y)

## # A tibble: 3 x 3

## # Groups:   x_category [3]

##   mean_x mean_y x_category

##    <dbl>  <dbl> <chr>

## 1 -0.114 0.0142 medium

## 2 -2.98  0.0142 small

## 3  2.02  0.0142 large
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Here I used mutate() + distinct() rather than summarise() to keep 

all the variables in the output. With summarise(), I would only keep the 

grouping variables and the summaries.

If you need to compute summaries with different groups, for example, 

the mean for x for each x_category as well as the mean of y for each 

y_category, then you can call group_by(x_category) for summarizing x, 

followed by group_by(y_category) for changing the grouping so you can 

summarize y.

df %>%

    mutate(

        x_category = classify(x),

        y_category = classify(y)

    ) %>%

    group_by(x_category) %>%

    mutate(mean_x = mean(x)) %>%

    group_by(y_category) %>%

    mutate(mean_y = mean(y)) %>%

    distinct(

        x_category, mean_x,

        y_category, mean_y

)

## # A tibble: 6 x 4

## # Groups:   y_category [3]

##   x_category mean_x y_category  mean_y

##   <chr>       <dbl> <chr>        <dbl>

## 1 medium     -0.114 medium     0.00175

## 2 small      -2.98  medium     0.00175

## 3 medium     -0.114 large      1.97

## 4 medium     -0.114 small     -2.69

## 5 small      -2.98  large      1.97

## 6 large       2.02  medium     0.00175
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 Joining Tables
It is not uncommon to have your data in more than one table. This could 

be because the tables are created from different calculations, for example, 

different kinds of summaries, or it can be because you got the data from 

different files.

If you merely need to combine tables by row or column, then you can 

use the bind_rows() and bind_columns() functions which do precisely 

what you would expect.

df1 <- tibble(

    A = paste0("a", 1:2),

    B = paste0("b", 1:2)

)

df2 <- tibble(

    A = paste0("a", 3:4),

    B = paste0("b", 3:4)

)

df3 <- tibble(

    C = paste0("c", 1:2),

    D = paste0("d", 1:2)

)

bind_rows(df1, df2)

## # A tibble: 4 x 2

##   A     B

##   <chr> <chr>

## 1 a1    b1

## 2 a2    b2

## 3 a3    b3

## 4 a4    b4
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bind_cols(df1, df3)

## # A tibble: 2 x 4

##   A     B     C     D

##   <chr> <chr> <chr> <chr>

## 1 a1    b1    c1    d1

## 2 a2    b2    c2    d2

When you combine rows, the tables must have the same columns, and 

when you combine by column, the tables must have the same number of 

rows.

If you have tables that represent different relations between variables—

the underlying principle of relational databases aimed at avoiding 

duplicated data—then you can combine them using join functions.

Say you have a table that maps students to grades for each class you 

teach. You can join tables from two different classes using inner_join(). 

You use a key to join them on, specified by argument by.

grades_maths <- tribble(

    ~name,            ~grade,

    "Marko Polo",     "D",

    "Isaac Newton",   "A+",

    "Charles Darwin", "B"

)

grades_biology <- tribble(

    ~name,            ~grade,

    "Marko Polo",     "F",

    "Isaac Newton",   "D",

    "Charles Darwin", "A+"

)
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inner_join(grades_maths, grades_biology, by = "name")

## # A tibble: 3 x 3

##   name           grade.x grade.y

##   <chr>          <chr>   <chr>

## 1 Marko Polo     D       F

## 2 Isaac Newton   A+      D

## 3 Charles Darwin B       A+

This tells inner_join() that you want to combine all rows in the first 

table with all rows in the second, where the two rows have the same name. 

You can use more than one key in a join if you give by a vector of variable 

names.

In the previous example, each name appears once per table. If a key 

appears more than once, then the result of an inner join will have a list 

with all combinations of rows sharing a name.

grades_maths2 <- tribble(

    ~name,            ~grade,

    "Marko Polo",     "D",

    "Isaac Newton",   "A+", # so good at physics

    "Isaac Newton",   "A+", # that he got an A+ twice

    "Charles Darwin", "B"

)

grades_biology2 <- tribble(

    ~name,            ~grade,

    "Marko Polo",     "F",

    "Isaac Newton",   "D",

    "Charles Darwin", "A+", # so good at biology that we

    "Charles Darwin", "A+" # listed him twice

)

inner_join(grades_maths2, grades_biology2, by = "name")
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## # A tibble: 5 x 3

##   name           grade.x grade.y

##   <chr>          <chr>   <chr>

## 1 Marko Polo     D       F

## 2 Isaac Newton   A+      D

## 3 Isaac Newton   A+      D

## 4 Charles Darwin B       A+

## 5 Charles Darwin B       A+

inner_join(grades_maths2, grades_biology2, by = "grade")

## # A tibble: 5 x 3

##   name.x       grade name.y

##   <chr>        <chr> <chr>

## 1 Marko Polo   D     Isaac Newton

## 2 Isaac Newton A+    Charles Darwin

## 3 Isaac Newton A+    Charles Darwin

## 4 Isaac Newton A+    Charles Darwin

## 5 Isaac Newton A+    Charles Darwin

In the last join, you see that you can get the same line multiple times 

from an inner join. Combine the join with distinct() if you want to 

avoid this.

inner_join(grades_maths2, grades_biology2, by = "grade") %>%

    distinct()

## # A tibble: 2 x 3

##   name.x       grade name.y

##   <chr>        <chr> <chr>

## 1 Marko Polo   D     Isaac Newton

## 2 Isaac Newton A+    Charles Darwin
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The tables can have different variables—if they represent different 

relations—or they can share several or all variables. In the grades example, 

each table contains the same name/grade relationships, just for different 

classes. Therefore, they also share variables.

With shared variables, the data from the two tables can be 

differentiated by a suffix. The default (see previous example) is “.x” and “.y”. 

You can change that using the suffix argument.

inner_join(

    grades_maths, grades_biology,

    by = "name", suffix = c(".maths", ".biology")

)

## # A tibble: 3 x 3

##   name           grade.maths grade.biology

##   <chr>          <chr>       <chr>

## 1 Marko Polo     D           F

## 2 Isaac Newton   A+          D

## 3 Charles Darwin B           A+

Students might take different classes, and you have several choices on 

how to combine tables with different keys.

An inner_join() will only give you the rows where a key is in both 

tables.

grades_geography <- tribble(

    ~name,            ~grade,

    "Marko Polo",     "A",

    "Charles Darwin", "A",

    "Immanuel Kant",  "A+"

)

grades_physics <- tribble(

    ~name,            ~grade,

    "Isaac Newton",    "A+",
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    "Albert Einstein", "A+",

    "Charles Darwin",  "C"

)

inner_join(

    grades_geography, grades_physics,

    by = "name", suffix = c(".geography", ".physics")

)

## # A tibble: 1 x 3

##   name           grade.geography grade.physics

##   <chr>          <chr>           <chr>

## 1 Charles Darwin A               C

The full_join() function, in contrast, gives you a table containing all 

keys. If a key is only found in one of the tables, the variables from the other 

table will be set to NA.

full_join(

    grades_geography, grades_physics,

    by = "name", suffix = c(".geography", ".physics")

)

## # A tibble: 5 x 3

##   name            grade.geography grade.physics

##   <chr>           <chr>           <chr>

## 1 Marko Polo      A               <NA>

## 2 Charles Darwin  A               C

## 3 Immanuel Kant   A+              <NA>

## 4 Isaac Newton    <NA>            A+

## 5 Albert Einstein <NA>            A+
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If you want all keys from the left or right table (but not both left and 

right)—potentially with NA if the other table does not have the key—then 

you need left_join() or right_join().

left_join(

    grades_geography, grades_physics,

    by = "name", suffix = c(".geography", ".physics")

)

## # A tibble: 3 x 3

##   name            grade.geography grade.physics

##   <chr>           <chr>           <chr>

## 1 Marko Polo      A               <NA>

## 2 Charles Darwin  A               C

## 3 Immanuel Kant   A+              <NA>

right_join(

    grades_maths, grades_physics,

    by = "name", suffix = c(".maths", ".physics")

)

## # A tibble: 3 x 3

##   name            grade.maths grade.physics

##   <chr>           <chr>       <chr>

## 1 Isaac Newton    A+          A+

## 2 Albert Einstein <NA>        A+

## 3 Charles Darwin  B           C

A semi_join() will give you all the rows in the first table that contains 

a key in the second table.

semi_join(

    grades_maths2, grades_biology2,

    by = "name", suffix = c(".geography", ".physics")

)
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## # A tibble: 4 x 2

##   name           grade

##   <chr>          <chr>

## 1 Marko Polo     D

## 2 Isaac Newton   A+

## 3 Isaac Newton   A+

## 4 Charles Darwin B

You only get one copy per row in the first table when a key matches, 

regardless of how many times the key appears in the second table.

This is unlike inner_join() where you get all combinations of rows 

from the two tables. The inner_join() is, therefore, not an analog to an 

inner_join() combined with a select().

inner_join(

    grades_maths2, grades_biology2,

    by = "name", suffix = c(".geography", ".physics")

) %>% select(1:2)

## # A tibble: 5 x 2

##   name           grade.geography

##   <chr>          <chr>

## 1 Marko Polo     D

## 2 Isaac Newton   A+

## 3 Isaac Newton   A+

## 4 Charles Darwin B

## 5 Charles Darwin B

You can still get multiple identical rows from a semi_join(). If the first 

table has duplicated rows, you will get the same duplications of the rows. If 

you do not want that, you can combine the join with distinct().
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An anti_join() gives you all the rows in the first table where the key 

or keys are not found in the second table. Think of it as the complement of 

semi_join().

anti_join(

    grades_maths2, grades_physics,

    by = "name", suffix = c(".geography", ".physics")

)

## # A tibble: 1 x 2

##   name       grade

##   <chr>      <chr>

## 1 Marko Polo D

The join functions only take two tables as input, so you might wonder 

how you can combine multiple tables. One solution is to use purrr’s 

reduce() function:

grades <- list(

    grades_maths, grades_biology,

    grades_geography, grades_physics

)

grades %>%

    reduce(full_join, by = "name") %>%

    rename_at(2:5, ~ c("maths", "biology", "geography", "physics

## # A tibble: 5 x 5

##   name            maths biology geography physics

##   <chr>           <chr> <chr>   <chr>     <chr>

## 1 Marko Polo      D     F       A         <NA>

## 2 Isaac Newton    A+    D       <NA>      A+

## 3 Charles Darwin  B     A+      A         C

## 4 Immanuel Kant   <NA>  <NA>    A+        <NA>

## 5 Albert Einstein <NA>  <NA>    <NA>      A+
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The rename_at() function works similarly to select_at(), and here, I 

use it to rename the last four columns.

 Income in Fictional Countries
We had an example with income in fictional countries in Chapter 4. There, we 

did not have the proper tools needed to deal with missing data. We wanted to 

replace NA with the mean income for a country in rows with missing data, but 

the functions from tidyr didn’t suffice. With dplyr we have the tools.

Recall the data:

mean_income <- tribble(

    ~country,  ~`2002`, ~`2003`, ~`2004`,  ~`2005`,

    "Numenor",  123456,  132654,      NA,   324156,

    "Westeros", 314256,  NA,          NA,   465321,

    "Narnia",   432156,  NA,          NA,       NA,

    "Gondor",   531426,  321465,  235461,   463521,

    "Laputa",    14235,   34125,   45123,    51234,

)

The following pipeline does what we want. I will explain it here, but 

you can try to work out the steps.

mean_income %>%

    gather(

        key = "year",

        value = "mean_income",

        -country

    ) %>% group_by(

        country

    ) %>% mutate(

        mean_per_country = mean(mean_income, na.rm = TRUE),

        mean_income = ifelse(

Chapter 7  Manipulating Data FraMes: Dplyr



156

            is.na(mean_income),

            mean_per_country,

            mean_income

        )

    ) %>% spread(key = "year", value = "mean_income")

## # A tibble: 5 x 6

## # Groups:   country [5]

##   country mean_per_country `2002` `2003` `2004`

##   <chr>              <dbl>  <dbl>  <dbl>  <dbl>

## 1 Gondor           387968. 531426 3.21e5 2.35e5

## 2 Laputa            36179.  14235 3.41e4 4.51e4

## 3 Narnia           432156  432156 4.32e5 4.32e5

## 4 Numenor          193422  123456 1.33e5 1.93e5

## 5 Wester...           389788. 314256 3.90e5 3.90e5

## # ... with 1 more variable: `2005` <dbl>

The first step in the pipeline is reformatting the data. We saw how this 

work in Chapter 4.

mean_income %>%

    gather(

        key = "year",

        value = "mean_income",

        -country

    )

## # A tibble: 20 x 3

##    country  year  mean_income

##    <chr>    <chr>       <dbl>

##  1 Numenor  2002       123456

##  2 Westeros 2002       314256

##  3 Narnia   2002       432156

##  4 Gondor   2002       531426
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##  5 Laputa   2002        14235

##  6 Numenor  2003       132654

##  7 Westeros 2003           NA

##  8 Narnia   2003           NA

##  9 Gondor   2003       321465

## 10 Laputa   2003        34125

## 11 Numenor  2004           NA

## 12 Westeros 2004           NA

## 13 Narnia   2004           NA

## 14 Gondor   2004       235461

## 15 Laputa   2004        45123

## 16 Numenor  2005       324156

## 17 Westeros 2005       465321

## 18 Narnia   2005           NA

## 19 Gondor   2005       463521

## 20 Laputa   2005        51234

In the next two steps, we group by countries, so the means we calculate 

are per country and not the full data set, and then we compute the means 

and replace NA cells with them. To get a glimpse into the mutate() call, you 

can replace it with summarise() and see the mean of each country.

mean_income %>%

    gather(

        key = "year",

        value = "mean_income",

        -country

    ) %>% group_by(

        country

    ) %>% summarise(

        per_country_mean = mean(mean_income, na.rm = TRUE)

    )
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## # A tibble: 5 x 2

##   country per_country_mean

##   <chr>              <dbl>

## 1 Gondor           387968.

## 2 Laputa            36179.

## 3 Narnia           432156

## 4 Numenor          193422

## 5 Westeros         389788.

In the next step, we can replace the missing data with their country 

mean in the mutate() call because we can refer to earlier columns when 

we create later columns in mutate().

If you had a pipeline where you had steps between the group_by() call 

and the mutate() call that sets the mean_income, you have to be careful. 

Do not put an ungroup() in there. The pipeline works because the mean_

income is per country when we call mutate(). If we ungrouped, we would 

get the mean over all countries.

mean_income %>%

    gather(

        key = "year",

        value = "mean_income",

        -country

    ) %>% group_by(

        country

    ) %>% mutate(

        mean_per_country = mean(mean_income, na.rm = TRUE)

    )
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## # A tibble: 20 x 4

## # Groups:   country [5]

##    country  year  mean_income mean_per_country

##    <chr>    <chr>       <dbl>            <dbl>

##  1 Numenor  2002       123456          193422

##  2 Westeros 2002       314256          389788.

##  3 Narnia   2002       432156          432156

##  4 Gondor   2002       531426          387968.

##  5 Laputa   2002        14235           36179.

##  6 Numenor  2003       132654          193422

##  7 Westeros 2003           NA          389788.

##  8 Narnia   2003           NA          432156

##  9 Gondor   2003       321465          387968.

## 10 Laputa   2003        34125           36179.

## 11 Numenor  2004           NA          193422

## 12 Westeros 2004           NA          389788.

## 13 Narnia   2004           NA          432156

## 14 Gondor   2004       235461          387968.

## 15 Laputa   2004        45123           36179.

## 16 Numenor  2005       324156          193422

## 17 Westeros 2005       465321          389788.

## 18 Narnia   2005           NA          432156

## 19 Gondor   2005       463521          387968.

## 20 Laputa   2005        51234           36179.

In the last step, we ungroup and update the table before reformatting 

the tibble again.

mean_income %>%

    gather(

        key = "year",

        value = "mean_income",

        -country
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    ) %>% group_by(

        country

    ) %>% mutate(

        mean_per_country = mean(mean_income, na.rm = TRUE)

    ) %>% ungroup(

    ) %>% mutate(

        mean_income = ifelse(

            is.na(mean_income),

            mean_per_country,

            mean_income

        )

    ) %>% spread(key = "year", value = "mean_income")

## # A tibble: 5 x 6

##   country mean_per_country `2002` `2003` `2004`

##   <chr>              <dbl>  <dbl>  <dbl>  <dbl>

## 1 Gondor           387968. 531426 3.21e5 2.35e5

## 2 Laputa            36179.  14235 3.41e4 4.51e4

## 3 Narnia           432156  432156 4.32e5 4.32e5

## 4 Numenor          193422  123456 1.33e5 1.93e5

## 5 Wester...        389788. 314256 3.90e5 3.90e5

## # ...  with 1 more variable: `2005` <dbl>

This is how we replace all missing data with the mean for the 

corresponding countries.
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CHAPTER 8

Working with Strings: 
stringr
The stringr package gives you functions for string manipulation. The 

package will be loaded when you load the tidyverse package:

library(tidyverse)

You can also load the package alone using

library(stringr)

 Counting String Patterns
The str_count() function counts how many tokens a string contain, 

where tokens, for example, can be characters or words.

By default, str_count() will count the number of characters in a 

string.

strings <- c(

    "Give me an ice cream",

    "Get yourself an ice cream",

    "We are all out of ice creams",

    "I scream, you scream, everybody loves ice cream.",

    "one ice cream,
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    two ice creams,

    three ice creams",

    "I want an ice cream. Do you want an ice cream?"

)

str_count(strings)

## [1] 20 25 28 48 55 46

For each of the strings in strings, we get the number of characters. 

The result is the same as we would get using nchar() (but not length() 

which would give us the length of the list containing them, six in this 

example).

You can be explicit in specifying that str_count() should count 

characters by giving it a boundary() option. This determines the boundary 

between tokens, that is, the units to count.

str_count(strings, boundary("character"))

## [1] 20 25 28 48 55 46

If you want to count words instead, you can use boundary("word"):

str_count(strings, boundary("word"))

## [1] 5 5 7 8 9 11

You can use two additional options to boundary(): "line_break" and 

"sentence." They use heuristics for determining how many line breaks 

and sentences the text contains dependent on a locale().

str_count(strings, boundary("line_break"))

## [1] 5 5 7 8 11 11

str_count(strings, boundary("sentence"))

## [1] 1 1 1 1 3 2
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Notice that the line breaks are not the newlines in the text. The line 

breaks are where you would be expected to put newlines in your locale().

Finally, str_count() lets you count how often a substring is found in a 

string:

str_count(strings, "ice cream")

## [1] 1 1 1 1 3 2

str_count(strings, "cream") # gets the screams as well

## [1] 1 1 1 3 3 2

The pattern you ask str_count() to count is not just a string. It is a 

regular expression. Some characters take on special meaning in regular 

expressions.1 For example, a dot represents any single character, not a full 

stop.

str_count(strings, ".")

## [1] 20 25 28 48 53 46

If you want your pattern to be taken as a literal string and not a regular 

expression, you can wrap it in fixed():

str_count(strings, fixed("."))

## [1] 0 0 0 1 0 1

Since the pattern is a regular expression, we can use it to count 

punctuation characters:

str_count(strings, "[:punct:]")

## [1] 0 0 0 3 2 2

1 Regular expressions are beyond the scope of this book, but if you are frequently 
working with strings, you might want to familiarize yourself with them.
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Or the number of times ice cream(s) is at the end of the string:

str_count(strings, "ice creams?$")

## [1] 1 1 1 0 1 0

The s? means zero or one s, and the $ means the end of the string or 

at the end of the string except that it might be followed by a punctuation 

mark.

str_count(strings, "ice creams?[:punct:]?$")

## [1] 1 1 1 1 1 1

 Splitting Strings
Sometimes you want to split a string based on some separator—not unlike 

how we split on commas in comma-separated value files. The stringr 

function for this is str_split().

We can, for example, split on a space:

strings <- c(

    "one",

    "two",

    "one two",

    "one two",

    "one. two."

)

str_split(strings, " ")

## [[1]]

## [1] "one"

##

## [[2]]
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## [1] "two"

##

## [[3]]

## [1] "one" "two"

##

## [[4]]

## [1] "one" ""  ""  "two"

##

## [[5]]

## [1] "one." "two."

Since we are splitting on a single space, we get empty strings for "one 

two" which contains three spaces.

You can use the boundary() function for splitting as well. For example, 

you can split a string into its words using boundary("word):

str_split(strings, boundary("word"))

## [[1]]

## [1] "one"

##

## [[2]]

## [1] "two"

##

## [[3]]

## [1] "one" "two"

##

## [[4]]

## [1] "one" "two"

##

## [[5]]

## [1] "one" "two"
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When we do this, we get rid of the empty strings from the previous 

example, and we also get rid of the full stops in the last string.

 Capitalizing Strings
You can use the str_to_lower() to transform a string into all lowercase.

macdonald <- "Old MACDONALD had a farm."

str_to_lower(macdonald)

## [1] "old macdonald had a farm."

Similarly, you can use str_to_upper() to translate it into all 

uppercase.

str_to_upper(macdonald)

## [1] "OLD MACDONALD HAD A FARM."

If you use str_to_sentence(), the first character is uppercase and the 

rest lowercase.

str_to_sentence(macdonald)

## [1] "Old macdonald had a farm."

The str_to_title() function will capitalize all words in your string.

str_to_title(macdonald)

## [1] "Old Macdonald Had A Farm."

 Wrapping, Padding, and Trimming
If you want to wrap strings, that is, add newlines, so they fit into a certain 

width, you can use str_wrap().
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strings <- c(

    "Give me an ice cream",

    "Get yourself an ice cream",

    "We are all out of ice creams",

    "I scream, you scream, everybody loves ice cream.",

    "one ice cream,

    two ice creams,

    three ice creams",

    "I want an ice cream. Do you want an ice cream?"

)

str_wrap(strings)

## [1] "Give me an ice cream"

## [2] "Get yourself an ice cream"

## [3] "We are all out of ice creams"

## [4] "I scream, you scream, everybody loves ice cream."

## [5] "one ice cream, two ice creams, three ice creams"

## [6] "I want an ice cream. Do you want an ice cream?"

The default width is 80 characters, but you can change that using the 

width argument.

str_wrap(strings, width = 10)

## [1] "Give me an\nice cream"

## [2] "Get\nyourself\nan ice\ncream"

## [3] "We are all\nout of ice\ncreams"

## [4] "I scream,\nyou\nscream,\neverybody\nloves ice\ncream."

## [5] "one ice\ncream,\ntwo ice\ncreams,\nthree ice\ncreams"

## [6] "I want an\nice cream.\nDo you\nwant an\nice cream?"
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You can indent the first line in the strings while wrapping them using 

the indent argument.

str_wrap(strings, width = 10, indent = 2)

## [1] " Give me an\nice cream"

## [2] " Get\nyourself\nan ice\ncream"

## [3] " We are all\nout of ice\ncreams"

## [4] " I scream,\nyou\nscream,\neverybody\nloves ice\ncream."

## [5] " one ice\ncream,\ntwo ice\ncreams,\nthree ice\ncreams"

## [6] " I want an\nice cream.\nDo you\nwant an\nice cream?"

If you want your string to be left, right, or center justified, you can use 

str_pad().

The default is right-justifying strings.

str_pad(strings, width = 50)

## [1] "                           Give me an ice cream"

## [2] "                      Get yourself an ice cream"

## [3] "                   We are all out of ice creams"

## [4] " I scream, you scream, everybody loves ice cream."

## [5] "one ice cream,\n two ice creams,\n three ice creams"

## [6] " I want an ice cream. Do you want an ice cream?"

If you want to left justify instead, you can pass "right" to the side 

argument.

str_pad(strings, width = 50, side = "right")

## [1] "Give me an ice cream"

## [2] "Get yourself an ice cream"

## [3] "We are all out of ice creams"

## [4] "I scream, you scream, everybody loves ice cream."

## [5] "one ice cream,\n two ice creams,\n three ice creams"

## [6] "I want an ice cream. Do you want an ice cream?"
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You need to use "right" to left justify because the side argument 

determines which side to pad, and for left-justified text, the padding is on 

the right.

If you want to center your text, you should use "both"; you are padding 

both on the left and on the right.

str_pad(strings, width = 50, side = "both")

## [1] "              Give me an ice cream             "

## [2] "           Get yourself an ice cream           "

## [3] "          We are all out of ice creams         "

## [4] " I scream, you scream, everybody loves ice cream."

## [5] "one ice cream,\n two ice creams,\n three ice creams"

## [6] " I want an ice cream. Do you want an ice cream?"

In these padding examples, we do not keep the lengths of the strings 

below the padding width. If a string is longer than the padding width, it is 

unchanged. You can use the str_trunc() function to cut the width down 

to a certain value. For example, we could truncate all the strings to width 

25 before we pad them:

strings %>% str_trunc(25) %>% str_pad(width = 25, side = "left")

## [1] "     Give me an ice cream"

## [2] "Get yourself an ice cream"

## [3] "We are all out of ice ..."

## [4] "I scream, you scream, ..."

## [5] " one ice cream,\n two..."

## [6] "I want an ice cream. D..."
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The str_trim() function removes whitespace to the left and right of a 

string:

str_trim(c(

    " one small coke",

    "two large cokes ",

    " three medium cokes "

))

## [1] "one small coke" "two large cokes"

## [3] "three medium cokes"

It keeps whitespace inside the string.

Since str_trim() does not touch whitespace that is not flanking on 

the left or right, we cannot use it to remove extra spaces inside our string. 

For example, if we have two spaces between two words, as in the following 

example, str_trim() leaves them alone.

str_trim(c(

    " one small coke",

    "two large cokes ",

    " three medium cokes "

))

## [1] "one small coke" "two large cokes"

## [3] "three medium cokes"

If we want the two spaces to be shortened into a single space, we can 

use str_squish() instead.

str_squish(c(

    " one small coke",

    "two large cokes ",

    " three medium cokes "

))
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## [1] "one small coke" "two large cokes"

## [3] "three medium cokes"

 Detecting Substrings
To check if a substring is found in another string, you can use str_

detect().

str_detect(strings, "me")

## [1] TRUE FALSE FALSE FALSE FALSE FALSE

str_detect(strings, "I")

## [1] FALSE FALSE FALSE TRUE FALSE TRUE

str_detect(strings, "cream")

## [1] TRUE TRUE TRUE TRUE TRUE TRUE

The pattern is a regular expression, so to test for ice cream followed by 

a full stop, you cannot search for “ice cream.”.

str_detect(strings, "ice cream.")

## [1] FALSE FALSE TRUE TRUE TRUE TRUE

You can, again, use a fixed() string.

str_detect(strings, fixed("ice cream."))

## [1] FALSE FALSE FALSE TRUE FALSE TRUE

Alternatively, you can escape the dot.

str_detect(strings, "ice cream\\.")

## [1] FALSE FALSE FALSE TRUE FALSE TRUE
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You can test if a substring is not found in a string by setting the negate 

argument to TRUE.

str_detect(strings, fixed("ice cream."), negate = TRUE)

## [1] TRUE TRUE TRUE FALSE TRUE FALSE

Two special case functions test for a string at the start or end of a string:

str_starts(strings, "I")

## [1] FALSE FALSE FALSE TRUE FALSE TRUE

str_ends(strings, fixed("."))

## [1] FALSE FALSE FALSE TRUE FALSE FALSE

If you want to know where a substring is found, you can use str_

locate(). It will give you the start and the end index where it found a 

match.

str_locate(strings, "ice cream")

##      start end

## [1,]    12  20

## [2,]    17  25

## [3,]    19  27

## [4,]    39  47

## [5,]     5  13

## [6,]    11  19

Here you get a start and an end index for each string, but string 

number six has more than one occurrence of the pattern.

strings[6]

## [1] "I want an ice cream. Do you want an ice cream?"
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You only get the indices for the first occurrence when you use str_

locate().

str_locate(strings[6], "ice cream")

##     start end

## [1,]   11  19

The function str_locate_all() gives you all occurrences.

str_locate_all(strings[6], "ice cream")

## [[1]]

##     start end

## [1,]   11  19

## [2,]   37  45

If you want the start and end points of the strings between the 

occurrences, you can use invert_match().

ice_cream_locations <- str_locate_all(strings[6], "ice cream")

ice_cream_locations

## [[1]]

##      start end

## [1,]    11  19

## [2,]    37  45

invert_match(ice_cream_locations[[1]])

##     start end

## [1,]    0  10

## [2,]   20  36

## [3,]   46  -1
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 Extracting Substrings
To extract a substring matching a pattern, you can use str_extract(). It 

gives you the first substring that matches a regular expression.

str_extract(strings, "(s|ice )cream\\w*")

## [1] "ice cream" "ice cream" "ice creams"

## [4] "scream"    "ice cream" "ice cream"

It only gives you the first match, but if you want all substrings that 

match you can use str_extract_all().

strings[4]

## [1] "I scream, you scream, everybody loves ice cream."

str_extract(strings[4], "(s|ice )cream\\w*")

## [1] "scream"

str_extract_all(strings[4], "(s|ice )cream\\w*")

## [[1]]

## [1] "scream"    "scream"    "ice cream"

 Transforming Strings
We can replace a substring that matches a pattern with some other string.

lego_str <- str_replace(strings, "ice cream[s]?", "LEGO")

lego_str

## [1] "Give me an LEGO"

## [2] "Get yourself an LEGO"

## [3] "We are all out of LEGO"

## [4] "I scream, you scream, everybody loves LEGO."
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## [5] "one LEGO,\n two ice creams,\n three ice creams"

## [6] "I want an LEGO. Do you want an ice cream?"

lego_str <- str_replace(lego_str, "an LEGO", "a LEGO")

lego_str

## [1] "Give me a LEGO"

## [2] "Get yourself a LEGO"

## [3] "We are all out of LEGO"

## [4] "I scream, you scream, everybody loves LEGO."

## [5] "one LEGO,\n two ice creams,\n three ice creams"

## [6] "I want a LEGO. Do you want an ice cream?"

These two replacement operators can be written as a pipeline to make 

the code more Tidyverse-y:

strings %>%

    str_replace("ice cream[s]?", "LEGO") %>%

    str_replace("an LEGO", "a LEGO")

## [1] "Give me a LEGO"

## [2] "Get yourself a LEGO"

## [3] "We are all out of LEGO"

## [4] "I scream, you scream, everybody loves LEGO."

## [5] "one LEGO,\n two ice creams,\n three ice creams"

## [6] "I want a LEGO. Do you want an ice cream?"

Like most of the previous functions, the function only affects the first 

match. To replace all occurrences, you need str_replace_all().

strings %>%

    str_replace_all("ice cream[s]?", "LEGO") %>%

    str_replace_all("an LEGO", "a LEGO")
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## [1] "Give me a LEGO"

## [2] "Get yourself a LEGO"

## [3] "We are all out of LEGO"

## [4] "I scream, you scream, everybody loves LEGO."

## [5] "one LEGO,\n two LEGO,\n three LEGO"

## [6] "I want a LEGO. Do you want a LEGO?"

You can refer back to matching groups in the replacement string, 

something you will be familiar with for regular expressions.

us_dates <- c(

    valentines = "2/14",

    my_birthday = "2/15",

    # no one knows but let's just go

    # with this

    jesus_birthday = "12/24"

)

# US date format to a more sane format

str_replace(us_dates, "(.*)/(.*)", "\\2/\\1")

## [1] "14/2" "15/2" "24/12"

The str_dup() function duplicates a string, that is, it repeats a string 

several times.

str_c(

    "NA",

    str_dup("-NA", times = 7),

    " BATMAN!"

)

## [1] "NA-NA-NA-NA-NA-NA-NA-NA BATMAN!"
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Here we also used str_c() to concatenate strings. This function works 

differently from c(); the latter will create a vector of multiple strings, while 

the former will create one string.

# -- concatenation -------------------------------------------

c("foo", "bar", "baz")

## [1] "foo" "bar" "baz"

str_c("foo", "bar", "baz")

## [1] "foobarbaz"

A more direct way to extract and modify a substring is using str_

sub(). It lets you extract a substring specified by a start and an end index, 

and if you assign to it, you replace the substring. The str_sub() function 

is less powerful than the other functions as it doesn’t work on regular 

expressions, but because of this, it is also easier to understand.

If you do not know where a substring is found, you must first find it. 

You can use str_locate() for this.

my_string <- "this is my string"

my_location <- str_locate(my_string, "my")

my_location

##     start end

## [1,]    9  10

s <- my_location[,"start"]

e <- my_location[,"end"]

str_sub(my_string, s, e)

## [1] "my"

my_string_location <- str_locate(my_string, "string")

s <- my_string_location[,"start"]
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e <- my_string_location[,"end"]

str_sub(my_string, s, e)

## [1] "string"

your_string <- my_string

s <- my_location[,"start"]

e <- my_location[,"end"]

str_sub(your_string, s, e) <- "your"

your_string

## [1] "this is your string"

your_banana <- your_string

your_string_location <- str_locate(your_string, "string")

s <- your_string_location[,"start"]

e <- your_string_location[,"end"]

str_sub(your_banana, s, e) <- "banana"

your_banana

## [1] "this is your banana"

When you assign to a call to str_sub(), it looks like you are modifying 

a string. This is an illusion. Assignment functions create new data and 

change the data that a variable refers to. So, if you have more than one 

reference to a string, be careful. Only one variable will point to the new 

value; the remaining will point to the old string. This is not specific to  

str_sub() but for R in general, and it is a potential source of errors.

my_string

## [1] "this is my string"

your_string

## [1] "this is your string"
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your_banana

## [1] "this is your banana"

If you often write code to produce standard reports, virtually the same 

text each time but with a few selected values changed, then you are going 

to love str_glue(). This does precisely what you want. You give str_

glue() a template string, a string with the mutable pieces in curly brackets. 

The result of calling str_glue() is the template text but with the values in 

the curly brackets replaced by what R expression they contain.

The most straightforward use is when the template refers to variables.

macdonald <- "Old MacDonald"

eieio <- "E-I-E-I-O"

str_glue("{macdonald} had a farm. {eieio}")

## Old MacDonald had a farm. E-I-E-I-O

The variables do not need to be global. They can also be named 

arguments to str_glue().

str_glue(

    "{macdonald} had a farm. {eieio}",

    macdonald = "Thomas",

    eieio = "He certainly did not!"

)

## Thomas had a farm. He certainly did not!

Generally, you can put R expressions in the curly brackets, and the 

result of evaluating the expressions will be what is inserted into the 

template string.

str_glue(

    "{str_dup(\"NA-\", times = 7)}NA BATMAN!"

)
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## NA-NA-NA-NA-NA-NA-NA-NA BATMAN!

x <- seq(1:10)

str_glue(

  "Holy {mean(x)} BATMAN!"

  )

## Holy 5.5 BATMAN!
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CHAPTER 9

Working with Factors: 
forcats
If you work with categorical data, you can often represent the categories 

by strings. Strings have some drawbacks, however. For example, a spelling 

mistake can easily go undiscovered. If you want your categories ordered, 

then the lexicographical order on strings will not always be the order you 

need. As an alternative to strings for categories is factors. In this chapter, 

we look at the functionality that the forcats package provides for creating 

and manipulating factors.

The package is loaded when you import tidyverse,

library(tidyverse)

but you can also load it explicitly

library(forcats)

 Creating Factors
The built-in factor() function is still an excellent choice to build a factor 

from scratch, especially if you want to specify the levels of the factor when 

you create it.
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If you create a factor without explicitly specifying the levels, you get a 

level per unique element in the input.

factor(c("A", "C", "B"))

## [1] A C B

## Levels: A B C

Otherwise, you get the levels you pass to the levels argument.

factor(c("A", "C", "B"), levels = c("A", "B", "C", "D"))

## [1] A C B

## Levels: A B C D

factor(c("A", "C", "B"), levels = c("D", "C", "B", "A"))

## [1] A C B

## Levels: D C B A

If you have a value that is not found in the levels, it will be set to NA.

factor(c("A", "C", "B"), levels = c("A", "B"))

## [1] A<NA> B

## Levels: A B

The factor() function is usually the right choice for creating factors. 

The function is not generic, however, so if you want a way to translate a 

data structure you have implemented yourself, one that needs a specific 

method to do so, then you might want to specialize as_factor() from 

forcats.

If you specialize as_factor(), you can do anything you want, but on 

normal vectors, as_factor() works similarly to as.factor() from base R.  

The two functions differ, though, in how they set levels. If you use  

as.factor(), the levels will be sorted.
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f1 <- as.factor(c("C", "B", "B", "A", "D"))

f1 # levels ordered alphabetically

## [1] C B B A D

## Levels: A B C D

With as_factor(), the levels are in the order they appear in the input.

f2 <- as_factor(c("C", "B", "B", "A", "D"))

f2 # levels in the order they appear in the input

## [1] C B B A D

## Levels: C B A D

 Concatenation
If you have two factors, then you can concatenate them using fct_c(). The 

levels of the resulting factor are the union of the levels of the input factors. 

The order of the levels depends on the order of the input factors. The levels 

in the first factor go first, then the levels in the second. If the factors share 

levels, then the order is determined by the first vector.

For example, consider again the factors f1 and f2 from the preceding 

example.

f1

## [1] C B B A D

## Levels: A B C D

f2

## [1] C B B A D

## Levels: C B A D
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They have the same levels, but they have them in different orders. If we 

concatenate f1 with f2, we get the levels in the order from f1.

fct_c(f1, f2)

##  [1] C B B A D C B B A D

## Levels: A B C D

If we concatenate f2 with f1, then the levels are ordered as in f2.

fct_c(f2, f1)

##  [1] C B B A D C B B A D

## Levels: C B A D

Consider now a factor that has levels not found in f1, for example, this:

f3 <- as_factor(c("X", "Y", "A"))

It shares one level, A, with f1, but X and Y are unique to f3. If we 

concatenate, with f1 as the first argument, the new levels are included but 

after the factors from f1 (and the shared factor A).

fct_c(f1, f3)

## [1] C B B A D X Y A

## Levels: A B C D X Y

If we concatenate with f3 as the first argument, then f3’s levels come 

first.

fct_c(f3, f1)

## [1] X Y A C B B A D

## Levels: X Y A B C D
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You can concatenate more than one factor using fct_c(). The rules 

are the same as for two factors.

fct_c(f1, f2, f3)

##  [1] C B B A D C B B A D X Y A

## Levels: A B C D X Y

fct_c(f2, f3, f1)

##  [1] C B B A D X Y A C B B A D

## Levels: C B A D X Y

fct_c(f3, f1, f2)

##  [1] X Y A C B B A D C B B A D

## Levels: X Y A B C D

If you have several factors that do not have the same levels, but you 

want them to have (without concatenating them), you can use fct_

unify(). It takes a list of factors and gives you a list of factors where they all 

have as levels the union of the levels of the input.

fct_unify(fs = list(f1, f2, f3))

## [[1]]

## [1] C B B A D

## Levels: A B C D X Y

##

## [[2]]

## [1] C B B A D

## Levels: A B C D X Y

##

## [[3]]

## [1] X Y A

## Levels: A B C D X Y
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 Projection
It happens that your categorical data is too fine-grained and you want 

to group categories into larger classes. If so, the function you want is 

fct_collapse(). It lets you map your existing levels to new levels. Its 

first argument is a factor and after that you provide named arguments. 

As parameters to the named arguments, you must provide a list of level 

names. Each name becomes a level, and that level will contain the 

elements in the list you give as the argument.

fct_collapse(

    fct_c(f3, f1),

    a = c("A", "X"),

    b = c("B", "Y"),

    c = c("C", "D")

)

## [1] a b a c b b a c

## Levels: a b c

You do not need to remap all levels. Those you do not map will stay as 

they were.

fct_collapse(

    fct_c(f3, f1),

    a = c("A", "X"),

    b = c("B", "Y")

)

## [1] a b a C b b a D

## Levels: a b C D

If you only want to rename and not collapse levels, you can use fct_

recode().
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f1

## [1] C B B A D

## Levels: A B C D

fct_recode(f1, a = "A", b = "B")

## [1] C b b a D

## Levels: a b C D

fct_recode(f1, X = "A", X = "B", Y = "C", Y = "D")

## [1] Y X X X Y

## Levels: X Y

If you want to reduce the number of levels based on how many 

elements they have, rather than merge the levels in an explicitly specified 

way, then you can use fct_lump(). You can merge levels such that you 

keep the n levels with the most elements, for example, for n = 5 and n = 2:

f <- factor(sample(1:10, 20, replace = TRUE), levels = 1:10)

table(f)

## f

## 1 2 3 4 5 6 7 8 9 10

## 0 2 5 2 1 3 1 1 3  2

f %>% fct_lump(n = 5, other_level = "X") %>% table()

## .

## 2 3 4 6 9 10 X

## 2 5 2 3 3  2 3

f %>% fct_lump(n = 2, other_level = "X") %>% table()

## .

## 3 6 9 X

## 5 3 3 9
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You see more than five and two levels here, even though we called 

fct_lump() with n = 5 and n = 2. If there are several levels with the same 

number of elements, the function doesn’t pick random ones to keep. You 

get all with the largest counts.

If you use a negative number, you get the least common categories.

f %>% fct_lump(n = -2, other_level = "X") %>% table()

## .

## 1 5 7 8  X

## 0 1 1 1 17

Instead of picking the number of categories you want, you can require 

that they contain at least or at most a fraction of the data. For that, you use 

the prop parameter. To get the levels that contain at least 10% of the data, 

you use prop = 0.1:

f %>% fct_lump(prop = 0.1, other_level = "X") %>% table()

## .

## 3 6 9 X

## 5 3 3 9

If you want the categories that contain less than 10% of the data, 

you use prop as well but with a negative value. To get the categories that 

contain at most 10%, you use

f %>% fct_lump(prop = -0.1, other_level = "X") %>% table()

## .

## 1 2 4 5 7 8 10  X

## 0 2 2 1 1 1  2 11

A more straightforward way to map categories is to map a fixed 

number to a new category. The fct_other() lets you pick a list of 

categories to keep or drop. If you keep categories, then all the others are 
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put in the same “other” category. If you drop categories, then those you 

drop are placed in an “other” category. You can name the “other” category 

using the argument other_level.

f %>% fct_other(keep = 1:5, other_level = "X")

##  [1] 3 X X 3 2 X X X X 2 3 5 4 X 3 3 4 X X X

## Levels: 1 2 3 4 5 X

f %>% fct_other(drop = 1:5, other_level = "X")

##  [1] X 7 10 X X 8 6 9 10 X X X X 6 X

## [16] X X 9 6 9

## Levels: 6 7 8 9 10 X

Sometimes what you want is even simpler. You have levels that are 

not found in the actual data. You can get rid of the empty levels using 

fct_drop()

f1

## [1] C B B A D

## Levels: A B C D

levels(f1) <- LETTERS[1:10]

f1

## [1] C B B A D

## Levels: A B C D E F G H I J

fct_drop(f1)

## [1] C B B A D

## Levels: A B C D
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 Adding Levels
The opposite of fct_drop() is adding extra levels. Assigning to levels(), 

as we did previously, will add levels that are not necessarily in the factor, 

but it might also rename the levels at the same time. The levels are 

renamed; you are not just adding to them. This happened to f1. Its original 

levels, 1, 2, 3, and 4, were replaced with A, B, C, and D when we added the 

new levels.

With the fct_expand() function, you can add levels that are not in 

your factor, and any levels that are already in the data will be ignored.

f1

## [1] C B B A D

## Levels: A B C D E F G H I J

f3

## [1] X Y A

## Levels: X Y A

fct_expand(f1, levels(f3))

## [1] C B B A D

## Levels: A B C D E F G H I J X Y

Missing data is not considered missing data by R, and often we can 

simply ignore it. Sometimes, however, there is information in missing data 

that we need to consider. Since R doesn’t play well with missing data in many 

statistical tests, it is best to translate it into a category that R will work with. 

You can use fct_explicit_na() to map all missing data into a new category:

f2

## [1] C B B A D

## Levels: C B A D

Chapter 9  Working With FaCtors: ForCats



191

fna <- f2

fna[2] <- NA

fna[3] <- NA

fna

## [1] C <NA> <NA> A D

## Levels: C B A D

fna <- fct_explicit_na(fna, na_level = "Missing")

fna

## [1] C Missing Missing A D

## Levels: C B A D Missing

 Reorder Levels
If you construct a factor with factor(), you can control the order of the 

levels using the levels argument. If you use as.factor(), your levels will 

get sorted, and if you use as_factor(), they will be sorted in the order 

that the levels appear in the data. You can map between these orders if you 

want to, though.

If you have a factor created with factor() without specifying the levels, 

then the levels will be all elements seen in the input sorted in their natural 

order.

f <- factor(sample(LETTERS[1:5], 10, replace = TRUE))

f

##  [1] E D B B A C C E A E

## Levels: A B C D E
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The function fct_inorder() will order your levels to match the order 

that the categories are seen in the data—the order you get from as_factor().

fct_inorder(f)

##  [1] E D B B A C C E A E

## Levels: E D B A C

The functions for reordering levels can also make the factors ordered.1

fct_inorder(f, ordered = TRUE)

##  [1] E D B B A C C E A E

## Levels: E < D < B < A < C

If you want to sort the levels, you do not need forcats functions. The 

plain old factor() will do nicely.

factor(f, levels = sort(levels(f)))

##  [1] E D B B A C C E A E

## Levels: A B C D E

factor(f, levels = sort(levels(f)), ordered = TRUE)

##  [1] E D B B A C C E A E

## Levels: A < B < C < D < E

1 Ordered factors are not just factors with the levels sorted. Ordered factors specify 
that there is an order on the levels. Regardless of how the levels are sorted in a 
factor that is not ordered, the categories do not have a natural order to them. This 
is used in some statistical tests.
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You can order levels by their frequency in the factor using fct_infreq()

table(f)

## f

## A B C D E

## 2 2 2 1 3

fct_infreq(f)

##  [1] E D B B A C C E A E

## Levels: E A B C D

f %>% fct_infreq() %>% table()

## .

## E A B C D

## 3 2 2 2 1

f %>% fct_infreq(ordered = TRUE)

##  [1] E D B B A C C E A E

## Levels: E < A < B < C < D

f %>% fct_infreq() %>% fct_rev() %>% table()

## .

## D C B A E

## 1 2 2 2 3

In the last example, I reversed the levels, so the order is smallest to 

largest rather than largest to smallest. The function fct_rev() reverses 

the levels; a frequent use for this is when you plot with an axis given by 

the factor. There, the order is given by the levels, and you might want it 

reversed.
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CHAPTER 10

Working with Dates: 
lubridate
The lubridate package is essential for working with dates and fits well 

with the Tidyverse. It is not, however, loaded when you import the 

tidyverse package, so you need to explicitly load it.

library(lubridate)

 Time Points
You can create dates and dates with time-of-day information using 

variations of the ymd() function. The letters y, m, and d stand for year, 

month, and day, respectively. With ymd() you should write your data in 

a format that puts the year first, the month second, and the day last. The 

function is very flexible in what it can parse as a date.

ymd("1975 Feb 15")

## [1] "1975-02-15"

ymd("19750215")

## [1] "1975-02-15"
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ymd("1975/2/15")

## [1] "1975-02-15"

ymd("1975-02-15")

## [1] "1975-02-15"

You can permute the y, m, and d letters if the order of year, month, and 

day is different. Each permutation gives you a parser that will interpret its 

input in the specified order.

dmy("150275")

## [1] "1975-02-15"

mdy("February 15th 1975")

## [1] "1975-02-15"

If you want to add a time of the day to your date, you can add an hour, 

an hour and a minute, or an hour, a minute, and a second by using _h(), 

_hm() and _hms() variants of the ymd() functions.

dmy_h("15/2/1975 2pm")

## [1] "1975-02-15 14:00:00 UTC"

dmy_hm("15/2/1975 14:30")

## [1] "1975-02-15 14:30:00 UTC"

dmy_hms("15/2/1975 14:30:10")

## [1] "1975-02-15 14:30:10 UTC"

If you have a time object

x <- dmy_hms("15/2/1975 14:30:10")
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then you can extract its components through dedicated functions:

c(day(x), month(x), year(x))

## [1]   15    2 1975

c(hour(x), minute(x), second(x))

## [1] 14 30 10

c(week(x), # The week in the year

  wday(x), # The day in the week

  yday(x)) # The day in the year

## [1] 7 7 46

These functions have corresponding assignment functions that you 

can use to modify the components of the time point.

minute(x) <- 15

wday(x) <- 42

x

## [1] "1975-03-22 14:15:10 UTC"

 Time Zones
When you add a time of day, a time zone is also necessary. After all, 

we do not know what time a given hour is before we know which time 

zone we are in. If I tell you that I am going to call you at two o’clock, you 

can’t assume that it is two o’clock in your time zone.1 Unless you tell the 

functions otherwise, they will assume UTC is the time zone. You can 

specify another time zone via the tz argument.

1 I am in CEST right now. In Denmark, we switch between CEST and CET 
depending on daylight saving time.
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x <- dmy_hm(

  "15/2/1975 14:00",

  tz = "Europe/Copenhagen"

)

x

## [1] "1975-02-15 14:00:00 CET"

You can take a time point in one time zone and move it to another in 

two different ways. You set the time zone and pretend that the day and 

time of day were already in this time zone. That is, you can just change the 

time zone attribute of the object and not touch the time information.  

You can do this using the function force_tz().

force_tz().

force_tz(

  dmy_hm("15/2/1975 14:00",

          tz = "Europe/Copenhagen"),

  tz = "Europe/London"

)

## [1] "1975-02-15 14:00:00 GMT"

A much more likely situation is that you want to know at what a time 

point in one time zone was in another time zone. For example, if I promise 

to call you at two o’clock in Denmark, and you are in the UK, you can 

translate the time from my time zone to yours using with_tz().

with_tz(x, tz = "Europe/London")

## [1] "1975-02-15 13:00:00 GMT"
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 Time Intervals
If you have two time points, you also have a time interval: the time between 

the two points. You can create an interval object from two time points 

using the interval() function.

start <- dmy("02 11 1949")

end <- dmy("15 02 1975")

interval(start, end)

## [1] 1949-11-02 UTC--1975-02-15 UTC

The infix operator %--% does the same thing.

start %--% end

## [1] 1949-11-02 UTC--1975-02-15 UTC

You can get the start and end points of an interval using int_start() 

and int_end().

int <- interval(start, end)

int

## [1] 1949-11-02 UTC--1975-02-15 UTC

int_start(int)

## [1] "1949-11-02 UTC"

int_end(int)

## [1] "1975-02-15 UTC"
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The start point does not have to be before the endpoint. You can define 

an interval that starts after it ends.

end %--% start

## [1] 1975-02-15 UTC--1949-11-02 UTC

int_start(start %--% end)

## [1] "1949-11-02 UTC"

int_start(end %--% start)

## [1] "1975-02-15 UTC"

You can flip an interval using int_flip().

int_flip(end %--% start)

## [1] 1949-11-02 UTC--1975-02-15 UTC

The function int_standardize() will flip the interval if the start point 

comes after the endpoint but otherwise will leave the interval as it is.

int_standardize(start %--% end)

## [1] 1949-11-02 UTC--1975-02-15 UTC

int_standardize(end %--% start)

## [1] 1949-11-02 UTC--1975-02-15 UTC

The int_length() will give you the length of an interval in seconds.

x <- now()

int <- interval(x, x + minutes(1))

int
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## [1] 2019-06-18 09:28:32 CEST--2019-06-18 09:29:32 CEST

int_length(int)

## [1] 60

int <- interval(x, x + minutes(20))

int

## [1] 2019-06-18 09:28:32 CEST--2019-06-18 09:48:32 CEST

int_length(int) / 60

## [1] 20

You can check if a point is in an interval using the %within% operator.

ymd("1867 05 02") %within% int

## [1] FALSE

ymd("1959 04 23") %within% int

## [1] FALSE

You can update the start and end point in an interval by assigning to 

int_start() or int_end():

int_start(int) <- dmy("19 Aug 1950")

int

## [1] 1950-08-19 01:00:00 CET--2019-06-18 09:48:32 CEST

int_end(int) <- dmy("19 Sep 1950")

int

## [1] 1950-08-19 01:00:00 CET--1950-09-19 01:00:00 CET
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You can move the entire interval by a fixed amount. For example, you 

can move the interval one month forward using

int_shift(int, months(1))

## [1] 1950-09-19 01:00:00 CET--1950-10-19 01:00:00 CET

Given two intervals, the int_overlaps() function checks if they 

overlap.

int1 <- interval(dmy("19 oct 1950"), dmy("25 nov 1951"))

int2 <- interval(dmy("19 oct 1948"), dmy("25 aug 1951"))

int3 <- interval(dmy("19 oct 1981"), dmy("25 aug 2051"))

c(int, int1)

## [1] 1950-08-19 01:00:00 CET--1950-09-19 01:00:00 CET

## [2] 1950-10-19 01:00:00 CET--1951-11-25 01:00:00 CET

# int1 is contained in int

int_overlaps(int, int1)

## [1] FALSE

# int2 starts before int but they overlap

int_overlaps(int, int2)

## [1] TRUE

# no overlap

int_overlaps(int, int3)

## [1] FALSE

The function int_aligns() checks if any of the four start/end points 

are equal. That is, either the start or the end point of the first interval must 

be equal to at least one of the points in the second interval.
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The preceding four intervals we have created do not have shared 

interval endpoints.

c(

  int_aligns(int, int1),

  int_aligns(int, int2),

  int_aligns(int, int3)

)

## [1] FALSE FALSE FALSE

Test it with intervals that share end points and test int_aligns():

int4 <- interval(int_start(int), int_end(int) + years(3))

int5 <- int_shift(int4, -years(3))

int6 <- int_shift(int5, -years(3))

c(

  int_aligns(int, int4), # share start

  int_aligns(int, int5), # share end

  int_aligns(int, int6) # overlaps but does not share endpoints

)

## [1] TRUE TRUE FALSE
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CHAPTER 11

Working with Models: 
broom and modelr
There are many models to which you can fit your data, from classical 

statistical models to modern machine learning methods, and a thorough 

exploration of R packages that support this is well beyond the scope of 

this book. The main concern when choosing and fitting models is not the 

syntax, and this book is, after all, a syntax reference. We will look at two 

packages that aim at making a tidy interface to models.

The two packages, broom and modelr, are not loaded with tidyverse 

so you must load them individually.

library(broom)

library(modelr)

 broom
When you fit a model, you get an object in return that holds information 

about the data and the fit. This data is represented in different ways—it 

depends on the implementation of the function used to fit the data. For a 

linear model, for example, we get this information:

model <- lm(disp ~ hp + wt, data = mtcars)

summary(model)
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##

## Call:

## lm(formula = disp ~ hp + wt, data = mtcars)

##

## Residuals:

##     Min      1Q Median    3Q    Max

## -82.565 -23.802 2.111 35.731 99.107

##

## Coefficients:

##              Estimate Std. Error t value Pr(>|t|)

## (Intercept) -129.9506    29.1890  -4.452 0.000116

## hp             0.6578     0.1649   3.990 0.000411

## wt            82.1125    11.5518   7.108 8.04e-08

##

## (Intercept) ***
## hp          ***
## wt          ***
## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 47.35 on 29 degrees of freedom

## Multiple R-squared: 0.8635, Adjusted R-squared:   0.8541

## F-statistic: 91.71 on 2 and 29 DF, p-value: 2.889e-13

The problem with this representation is that it can be difficult to extract 

relevant data because the data isn’t tidy. The broom package fixes this. It 

defines three generic function, tidy(), glance(), and augment(). These 

functions return tibbles. The first gives you the fit, the second a summary 

of how good the fit is, and the third gives you the original data augmented 

with fit summaries.
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tidy(model) # transform to tidy tibble

## # A tibble: 3 x 5

##   term      estimate std.error statistic   p.value

##   <chr>        <dbl>     <dbl>     <dbl>     <dbl>

## 1 (Interce...  -130.      29.2     -4.45   1.16e-4

## 2 hp              0.658    0.165    3.99   4.11e-4

## 3 wt             82.1     11.6      7.11   8.04e-8

glance(model) # model summaries

## # A tibble: 1 x 11

##   r.squared adj.r.squared sigma statistic    p.value

##       <dbl>         <dbl> <dbl>     <dbl>      <dbl>

## 1     0.863         0.854  47.3      91.7   2.89e-13

## # ...  with 6 more variables: df <int>,

## #  logLik <dbl>, AIC <dbl>, BIC <dbl>,

## #  deviance <dbl>, df.residual <int>

augment(model) # add model info to data

## # A tibble: 32 x 11

##    .rownames    disp    hp     wt    .fitted  .se.fit

##    <chr>       <dbl>   <dbl>  <dbl>    <dbl>    <dbl>

##  1 Mazda RX4     160     110   2.62     158.     9.96

##  2 Mazda RX. . . 160     110   2.88     178.     9.53

##  3 Datsun 7. . . 108      93   2.32     122.    11.6

##  4 Hornet 4. . . 258     110   3.22     206.    10.3

##  5 Hornet S. . . 360     175   3.44     268.     9.09

##  6 Valiant       225     105   3.46     223.    12.3

##  7 Duster 3. . . 360     245   3.57     324.    16.2

##  8 Merc 240D     147.     62   3.19     173.    16.1

##  9 Merc 230      141.     95   3.15     191.    11.6

## 10 Merc 280      168.    123   3.44     233.    10.3
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## # . . . with 22 more rows, and 5 more variables:

## #   .resid <dbl>, .hat <dbl>, .sigma <dbl>,

## #   .cooksd <dbl>, .std.resid <dbl>

The broom package implements specializations for most models. 

Not all of the three functions are meaningful for all models, so some 

models only have a subset of the functions. If you want your own model 

to work with broom, let us call it mymodel, then you have to implement 

specializations of the functions, tidy.mymodel(), glance.mymodel(), and 

augment.mymodel(), that are relevant for the model.

 modelr
The modelr package also provides functionality for fitting and inspecting 

models and for extracting information about model fits. We start with the 

latter.

Consider the following example model.

x <- tibble(

  x = runif(5),

  y = 15 *12 * x + 42 + rnorm(5)

)

model <- lm(y ~ x, data = x)

tidy(model)

## # A tibble: 2 x 5

##   term      estimate std.error statistic   p.value

##   <chr>          <dbl>     <dbl>    <dbl>     <dbl>

## 1 (Interce. . .   41.8    0.271      154.   5.99e-7

## 2 x              180.     1.15       157.   5.72e-7
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We have fitted a linear model to data that is sampled from a linear 

model. The details of the data and model do not matter; it is just an 

example. I have used the broom function tidy() to inspect the model.

Two functions, add_predictions() and add_residuals(), extend your 

data with predictions the model would make from each data row and the 

residuals for each row.

add_predictions(x, model)

## # A tibble: 5 x 3

##        x     y  pred

##    <dbl> <dbl> <dbl>

## 1 0.445  122.  122.

## 2 0.0594  52.9  52.5

## 3 0.275   91.3  91.4

## 4 0.0311  46.9  47.5

## 5 0.0145  44.7  44.4

add_residuals(x, model)

## # A tibble: 5 x 3

##        x     y    resid

##    <dbl> <dbl>    <dbl>

## 1 0.445  122.    0.0653

## 2 0.0594  52.9   0.399

## 3 0.275   91.3  -0.140

## 4 0.0311  46.9  -0.566

## 5 0.0145  44.7   0.242
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Predictions need not be for existing data. You can create a data frame of 

explanatory variables and predict the response variable from the new data.

xs <- tibble(x = seq(0, 1, length.out = 5))

add_predictions(xs, model)

## # A tibble: 5 x 2

##       x  pred

##   <dbl> <dbl>

## 1  0     41.8

## 2  0.25  86.9

## 3  0.5  132.

## 4  0.75 177.

## 5  1    222.

I know that the x values are in the range from zero to one, but we 

cannot always a priori know the range that a variable falls within. If you 

don’t know, you can use the seq_range() function to get equidistant 

points in the range from the lowest to the highest value in your data.

seq(0, 1, length.out = 5)

## [1] 0.00 0.25 0.50 0.75 1.00

seq_range(x$x, n = 5) # over the range of observations

## [1] 0.01448234 0.12204440 0.22960645 0.33716850

## [5] 0.44473056

If you have two models and want to know how they compare with 

respect to their predictions, you can use gather_predictions() and 

spread_predictions():

# comparing models

model2 <- lm(y ~ I(x^2) + x, data = x)

gather_predictions(xs, model, model2)
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## # A tibble: 10 x 3

##    model      x  pred

##    <chr>  <dbl> <dbl>

##  1 model   0     41.8

##  2 model   0.25  86.9

##  3 model   0.5  132.

##  4 model   0.75 177.

##  5 model   1    222.

##  6 model2  0     41.9

##  7 model2  0.25  86.8

##  8 model2  0.5  132.

##  9 model2  0.75 178.

## 10 model2  1    223.

spread_predictions(xs, model, model2)

## # A tibble: 5 x 3

##       x  model model2

##   <dbl>  <dbl>  <dbl>

## 1   0     41.8   41.9

## 2   0.25  86.9   86.8

## 3   0.5  132.   132.

## 4   0.75 177.   178.

## 5   1    222.   223.

They show the same data, just with the tables formatted differently. 

The names gather and spread resembles the tidyr functions gather and 

spread.
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In the previous example, we made predictions on new data, but you 

can, of course, also do it on your original data.

gather_predictions(x, model,   model2)

## # A tibble: 10 x 4

##    model       x        y    pred

##    <chr>   <dbl>    <dbl>   <dbl>

##  1 model    0.445    122.    122.

##  2 model    0.0594    52.9    52.5

##  3 model    0.275     91.3    91.4

##  4 model    0.0311    46.9    47.5

##  5 model    0.0145    44.7    44.4

##  6 model2   0.445    122.    122.

##  7 model2   0.0594    52.9    52.5

##  8 model2   0.275     91.3    91.3

##  9 model2   0.0311    46.9    47.5

## 10 model2   0.0145    44.7    44.5

spread_predictions(x, model,  model2)

## # A tibble:   5 x 4

##        x       y model model2

##    <dbl>   <dbl> <dbl>  <dbl>

## 1 0.445    122.  122.   122.

## 2 0.0594    52.9  52.5   52.5

## 3 0.275     91.3  91.4   91.3

## 4 0.0311    46.9  47.5   47.5

## 5 0.0145    44.7  44.4   44.5
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If you have the original data, you can also get residuals.

gather_residuals(x, model, model2)

## # A tibble: 10 x 4

##    model       x      y     resid

##    <chr>   <dbl>  <dbl>     <dbl>

##  1 model  0.445   122.     0.0653

##  2 model  0.0594   52.9    0.399

##  3 model  0.275    91.3   -0.140

##  4 model  0.0311   46.9   -0.566

##  5 model  0.0145   44.7    0.242

##  6 model2 0.445   122.     0.0225

##  7 model2 0.0594   52.9    0.412

##  8 model2 0.275    91.3   -0.0710

##  9 model2 0.0311   46.9   -0.578

## 10 model2 0.0145   44.7    0.215

spread_residuals(x, model, model2)

## # A tibble: 5 x 4

##        x     y      model  model2

##    <dbl> <dbl>      <dbl>    <dbl>

## 1 0.445  122.      0.0653   0.0225

## 2 0.0594  52.9     0.399    0.412

## 3 0.275   91.3    -0.140   -0.0710

## 4 0.0311  46.9    -0.566   -0.578

## 5 0.0145  44.7     0.242    0.215

Depending on the type of data science you usually do, you might have 

to sample to get empirical distributions or to split your data into training 

and test data to avoid overfitting. With modelr you have functions for this.
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You can build n data sets using bootstrapping with the function 

bootstrap().1

bootstrap(x, n = 3)

## # A tibble: 3 x 2

##   strap      .id

##   <list>     <chr>

## 1 <resample> 1

## 2 <resample> 2

## 3 <resample> 3

It samples random data points and creates n new data sets from this. 

The resulting tibble has two columns: the first, strap, contains the data for 

each sample and the second an id.

The crossv_mc() function—Monte Carlo cross-validation—creates 

cross-validation data, that is, it splits your data into training and test data. 

It creates n random data sets divided into test and training data.

crossv_mc(x, n = 3)

## # A tibble: 3 x 3

##   train      test       .id

##   <list>     <list>     <chr>

## 1 <resample> <resample> 1

## 2 <resample> <resample> 2

## 3 <resample> <resample> 3

By default, the test data is 20% of the sampled data; you can change 

this using the test argument.

The crossv_kfold and crossv_loo give you k-fold data and leave-one- 

out data, respectively.

1 There is also a bootstrap() function in broom, but it is deprecated there, so use 
the modelr function.
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crossv_kfold(x, k = 3)

## # A tibble: 3 x 3

##   train      test       .id

##   <list>     <list>     <chr>

## 1 <resample> <resample> 1

## 2 <resample> <resample> 2

## 3 <resample> <resample> 3

crossv_loo(x)

## # A tibble: 5 x 3

##   train      test         .id

##   <list>     <list>     <int>

## 1 <resample> <resample>    1

## 2 <resample> <resample>    2

## 3 <resample> <resample>    3

## 4 <resample> <resample>    4

## 5 <resample> <resample>    5

As an example, say you have sampled three bootstrap data sets. The 

samples are in the strap column, so we can map over it and fit a linear 

model to each sampled data set.

samples <- bootstrap(x, 3)

fitted_models <- samples$strap %>%

  map(~ lm(y ~ x, data = .))

Then we can map over the three models and inspect them using 

broom's glance() function:

fitted_models %>%

  map(glance) %>%

  bind_rows()
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## # A tibble: 3 x 11

##   r.squared adj.r.squared sigma statistic  p.value

##       <dbl>         <dbl> <dbl>     <dbl>    <dbl>

## 1     1.000         1.000 0.171   160710.  3.42e-8

## 2     1.000         1.000 0.513    16835.  1.01e-6

## 3     1.000         1.000 0.485    17065.  9.89e-7

## # . . . with 6 more variables: df <int>,

## #   logLik <dbl>, AIC <dbl>, BIC <dbl>,

## #   deviance <dbl>, df.residual <int>

If we were interested in the empirical distribution of x, then we could 

extract the distribution over the bootstrapped data and go from there.

get_x <- function(m) {

  tidy(m) %>% filter(term == "x") %>%

    select(estimate) %>% as.double()

}

fitted_models %>% map_dbl(get_x)

## [1] 179.3946 180.6586 180.0705

If you want to compare models, rather than samples of your data, then 

modelr has support for that as well. You can make a list of the formulae you 

want to fit. The formulae() function lets you create such a list.

models <- formulae(~y, linear = ~x, quadratic = ~I(x^2) + x)

The first argument is the response variable (the left-hand side of the 

formulae), and the remaining arguments are (named) parameters that 

describe the explanatory variables, the righthand part of a model formula.

If you call fit_with() with your data, the fitting function to use (here 

lm()) and the formulae you wish to fit, then you get what you want—a fit 

for each formula.
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fits <- fit_with(x, lm, models)

fits %>% map(glance) %>% bind_rows()

## # A tibble: 2 x 11

##   r.squared adj.r.squared sigma statistic    p.value

##       <dbl>         <dbl> <dbl>     <dbl>      <dbl>

## 1     1.000         1.000 0.433    24589.    5.72e-7

## 2     1.000         1.000 0.527     8310.    1.20e-4

## # . . . with 6 more variables: df <int>,

## # logLik <dbl>, AIC <dbl>, BIC <dbl>,

## # deviance <dbl>, df.residual <int>

You will find many model quality measures in modelr. For example, 

root-mean-square error

fits %>% map_dbl(rmse, data = x)

##    linear quadratic

## 0.3354516 0.3331588

mean-absolute-error

fits %>% map_dbl(mae, data = x)

##    linear quadratic

## 0.2826265 0.2595208

and many more.

Since overfitting is always a problem, you might want to use a quality 

measure that, at least attemps to, take model complexity into account. You 

have some in the glance() function from broom.

fits %>% map_dbl(~ glance(.x)$AIC)

##   linear quadratic

## 9.266611 11.198024
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If at all possible, however, you want to use test data to measure how 

well a model generalizes. For this, you first need to fit your models to the 

training data and then make predictions on the test data. In the following 

example, I have fitted lm(y ~ x) on leave-one-out data and then applied 

it on the test data. I then measure the quality of the generalization using 

RMSE.

samples <- crossv_loo(x)

training_fits <-

  samples$train %>% map(~lm(y ~ x, data = .))

test_measurement <- training_fits %>%

  map2_dbl(samples$test, rmse)

test_measurement

##         1         2         3         4         5

## 0.2618250 0.5535395 0.1963251 0.8401988 0.3776097
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CHAPTER 12

Plotting: ggplot2
The ggplot2 package contains a vast number of functions for creating a 

wide variety of plots. It would take an entire book to cover it all—there are 

already several that cover it—so I cannot attempt this here. In this chapter, 

I will only try to give you a flavor of how the package works.

The ggplot2 package is loaded when you load tidyverse, but you can 

always include it on its own using

library(ggplot2)

 The Basic Plotting Components in ggplot2
Unlike in R’s base graphics, with ggplot2 you do not create individual 

plot components by drawing lines, points, or whatever you need onto a 

graphics canvas. Instead, you specify how your data should be mapped 

to abstract graphical aesthetics, for example, x- and y-coordinates, 

colors, shapes, and so on. Then you specify how aesthetics should be 

represented in the graphics, for example, whether x- and y-coordinates 

should be plotted as scatter plots or lines. On top of this can add graphics 

information such as which shapes points in a scatter plot should have, 

which colors the color aesthetics maps, and such. You add attributes as 

separate steps which makes it easy to change a plot. If you want to add a 

linear regression to your plot, you can do it with a single command; since 

ggplot2 already knows which of your data variables are mapped to the  

x- and y-coordinates, it simply computes the linear regression and adds it 
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to the plot. If you want to plot your data on a log scale, you tell ggplot2 that 

the axis should be log-transformed.

At first, ggplot2 might seem more complicated than basic R’s graphics, 

but you will soon get used to it.

The main components of ggplot2 are these:

• Data—Obviously, you have data you want to plot.

• Aesthetics—Aesthetics map data to abstract graphical 

concepts such as x- and y-coordinates, colors and fills.

• Geometries—Geometries, geometric objects, 

determine which kind of plot you are making, for 

example, whether you will get a histogram, a scatter 

plot, or a boxplot.

• Statistics—How should the data be summarized before 

plotting. Your data is not always summarized, that is, 

the statistics can be the identity mapping. A scatter plot 

doesn’t compute a summary for the x- and y-coordinates, 

but a regression line or a histogram does.

• Scales—Scales specify how the data you mapped to 

graphical concepts with the aesthetics should actually 

be placed on a plot. Your x- and y-coordinate data 

might be measured in meters, but those meters should 

be mapped to points on your plot. The scales are 

responsible for this.

• Coordinates—Coordinates allow you to transform the 

result of scaling your data to plot components. If, for 

example, you want your plot to show the y-axis on a log 

scale, then the coordinates transformation does this.

• Faceting—Faceting splits your plot into subplots based 

on the variables in your data.
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You create a ggplot2 plot using the ggplot() function. To that object, 

you add one or more of the preceding components. Nothing happens 

until you print the graphical object; printing it will make the plot. A 

typical pattern is to plot it right away and add the components in the same 

statement in which you create the graphical object.

ggplot(. . . ) + . . . components . . .

To add components to a plot, you use addition. The ggplot2 package 

does not use pipelines. You often see data piped into the ggplot() call, 

though, but after that, you must remember to add rather than pipe.

A layer creates (part of) the graphics you can see. At a minimum, 

it must consist of data, aesthetics, statistics (can be the identity), and a 

geometric object (that might specify the statistics). Your plot must have at 

least one layer before your plot shows your data.

 Adding Components to Plot Objects
The simplest plot we can create is empty. You can create it by calling 

ggplot() without any arguments.

p <- ggplot()

You can see what it consists of by calling the summary() function, but 

most of the information is not relevant here. I will highlight lines relevant 

to the components we see in this section as we go along.

summary(p)

## data: [x]

## faceting: <ggproto object: Class FacetNull, Facet, gg>

##     compute_layout: function

##     draw_back: function

##     draw_front: function
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##     draw_labels: function

##     draw_panels: function

##     finish_data: function

##     init_scales: function

##     map_data: function

##     params: list

##     setup_data: function

##     setup_params: function

##     shrink: TRUE

##     train_scales: function

##     vars: function

##   super: <ggproto object: Class FacetNull, Facet, gg>

To create a plot, you print the plot object. You can do this explicitly

print(p)

or just type it into your R terminal.

p

Since putting an object at the outermost level in an R script will print 

an object, ggplot objects are not always assigned to a variable and then 

plotted later. You can just write the ggplot() object.

ggplot()

Why would anyone create an empty plot object? You cannot print the 

empty object. Well, you can, but you will get an empty canvas, so there 

is not much point to that. You can, however, build up a plot by adding 

components to it. You can start with the empty plot and add all you want to 

it in separate commands.
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 Adding Data
You add data to a plot as an argument to ggplot(). If you want to add data 

to the empty plot, you will use geometries; see the following example. If 

you add data in the ggplot() function, then all components you add to the 

plot later will be able to see the data.

With some random test data, we can create a plot object with 

associated data.

dat <- tibble(

  foo = runif(100),

  bar = 20 * foo + 5 + rnorm(100, sd = 10),

  baz = rep(1:2, each = 50)

)

p <- ggplot(data = dat)

If you call summary(p) you can see the line:

data: foo, bar, baz [100x3]

It shows you the variables in the data. They are not mapped to any 

graphical objects yet; that is the purview of aesthetics.

 Adding Aesthetics
What we see in a plot are points, lines, colors, and so on. To create 

these plots, ggplot2 needs to know which variables in the data should 

be interpreted as coordinates, which determines line thickness, which 

determines colors and so on. Aesthetics do this.

Consider this plot object:

p <- ggplot(data = dat, aes(x = foo, y = bar, color = baz))
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Here, we have specified that foo determines the x-coordinate, bar the 

y-coordinate, and baz the color. If you check the summary of the plot, you 

can see the mapping from data variables to graphical objects below the 

data line:

data: foo, bar, baz [100x3]

mapping:  x = ~foo, y = ~bar, colour = ~baz

Plotting (printing) this will give you an empty plot where the x- and 

y-axes match the range of the data’s x and y (foo and bar) values. The plot 

is otherwise empty because it does not have a geometry.

 Adding Geometries
Geometries specify the type of the plot. They use the aesthetics’ maps from 

the data to graphical properties and create a plot based on them.

One of the most straightforward plots is a scatter plot. We can add the 

geom_point() geometry to the plot we created previously to get a scatter 

plot.

p <- ggplot(data = dat, aes(x = foo, y = bar, color = baz)) +

       geom_point()

If you call summary(p), you will see these lines at the bottom of the 

output:

geom_point: na.rm = FALSE

stat_identity: na.rm = FALSE

They tell you that you have a point geometry and that the statistic that 

maps from the data to a summary is the identity. We do not make any 

summary of the data when we plot it as points. You can create the plot by 

printing the plot object; you can see the result in Figure 12-1.

print(p)
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You can add data and aesthetics directly to the geometry. This is 

especially useful if you want to overlay alternative data onto a plot but as 

an example consider moving the same data and aesthetics to the geom_

point() call.

Figure 12-1. Point geometry plot

p <- ggplot() +

  geom_point(data = dat, aes(x = foo, y = bar, color = baz))

If you look at the summary, you will see that the mapping from the 

aesthetics is now grouped with the geometry

mapping: x = ~foo, y = ~bar, colour = ~baz

geom_point: na.rm = FALSE

stat_identity: na.rm = FALSE
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but otherwise, there is little change. This can be used to add additional 

data to a plot. It also shows that it sometimes can make sense to start 

with an empty plot object and then add different data sets in different 

geometries.

Since baz is numerical, it is interpreted as a continuous variable. You 

can get a discrete color mapping by transforming it into a factor.

ggplot(data = dat, aes(x = foo, y = bar, color = factor(baz))) 

+ geom_point()

You can see the result in Figure 12-2.

You can change the levels in the factor to reorder the legend. See 

Chapter 9 for more on manipulating factors.

Another simple geometry is a line plot.

ggplot(data = arrange(dat, foo),

       aes(x = foo, y = bar, color = factor(baz))) +

  geom_line()
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Figure 12-2. Discrete color aesthetics

Chapter 12  plotting: ggplot2



228

See the result in Figure 12-3. I sorted the data with respect to the x-axis 

before I plotted it using arrange(). Otherwise, the lines would not go left 

to right.

You can have more than one geometry, for example:

p <- ggplot(data = dat, aes(x = foo, y = bar, color = baz)) +

             geom_point() + geom_smooth(method = "loess")

If you call summary(p), you will see two layers at the bottom of the output.

geom_point: na.rm = FALSE

stat_identity: na.rm = FALSE

position_identity

Figure 12-3. A line plot
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geom_smooth: na.rm = FALSE, se = TRUE

stat_smooth: na.rm = FALSE, se = TRUE, # more here. . .

position_identity

Observe that the smooth geometry does not have the identity statistics. 

It shows a summary of the data and the mapping from the data to that 

summary is handled by a stat_smooth statistics.

We can print the plot

print(p)

Figure 12-4. Plot with two geometries

and see the result in Figure 12-4.
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If we use a discrete color, it also groups the data, so if we make baz a 

factor again, we will get the data in a differently colored point and get two 

smoothed lines.

ggplot(data = dat, aes(x = foo, y = bar, color = factor(baz))) +

  geom_point() + geom_smooth(method = "loess")

See the result in Figure 12-5.

You can build a histogram plot with geom_histogram() (see Figure 12- 6).

ggplot(data = dat, aes(x = foo)) + geom_histogram(binwidth = 0.05)

Notice that you only need an x-axis for this geometry. With summary(p) 

you will see that the statistic is stat_bin.

geom_bar: na.rm = FALSE

stat_bin: binwidth = NULL, # there is more here

If you want a density plot instead, you use geom_density().

ggplot(data = dat, aes(x = bar)) + geom_density()

There, you will see that the statistic is stat_density.

geom_density: na.rm = FALSE
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Figure 12-5. Plot with two geometries and a discrete color
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stat_density: na.rm = FALSE

I think you see the pattern now.

 Facets
The effect of adding a grid facet is that we get sub-figures where the data 

is split into groups determined by the formula we give facet_grid(); see 

Figure 12-7.

ggplot(data = dat, aes(x = foo, y = bar)) + geom_point() + 

  facet_grid(~ factor(baz))

Figure 12-6. Histogram plot
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In the previous plots, when you looked at their summary, you would 

see, under faceting, that the class was FacetNull.

faceting: <ggproto object: Class FacetNull, Facet, gg>

When we added the grid facet, we now see this:

faceting: <ggproto object: Class FacetGrid, Facet, gg>

You can plot in a two-dimensional grid by having variables on both 

sides of the formula:

dat2 <- tibble(

  foo = rep(1:5, each = 20),

  bar = rep(1:2, each = 50),

  x = foo * bar + rnorm(100),

  y = -foo

)

ggplot(data = dat2, aes(x = x, y = y)) +

  geom_point() + facet_grid(factor(foo) ~ factor(bar))
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Figure 12-7. Faceting the plot
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The result is shown in Figure 12-8.

You can use more than two variables but (naturally) only two 

dimensions. If you use more than two variables, then the different 

categories will be shown as labels on the facet sides. You will see all 

combinations of factors that appear in the formula. As an example, 

consider this:

dat3 <- tibble(

  foo = factor(rep(1:5, each = 20)),

  bar = factor(rep(1:2, each = 50)),

  baz = factor(rep(1:5, times = 20)),

  qux = factor(rep(1:2, times = 50)),

Figure 12-8. Facet grid for two variables
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  x = rnorm(100),

  y = rnorm(100)

)

ggplot(data = dat3, aes(x = x, y = y)) +

  geom_point() + facet_grid(foo + bar ~ baz + qux)

The result is shown in Figure 12-9.

 Adding Coordinates
All the preceding plots were plotted in cartesian coordinates—the default 

coordinates. You can change the coordinates of a plot. For example, you 

can flip an axis, for example, the x-axis of a plot:

ggplot(data = dat, aes(x = foo, y = bar)) + geom_point() + 

coord_flip()

Or you can plot in polar coordinates instead of cartesian coordinates.
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Figure 12-9. Facet with four variables

Figure 12-10. Plot with the x-coordinate flipped
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Figure 12-11. Plot in polar coordinates

ggplot(data = dat, aes(x = foo, y = bar)) + geom_point() + 

  coord_polar()

See Figures 12-10 and 12-11.
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CHAPTER 13

Conclusions
R, extended with the Tidyverse, is a powerful language for data science. 

There is strong support for each step along a data analysis pipeline.  

After reading this book, you should have a good grasp of how the Tidyverse 

packages work and how you use them. The book did not cover which data 

science and machine learning model to use on particular data, but only 

how they could fit into pipelines. Covering actual data analysis and the 

methods to use—and packages supporting them—is beyond the scope of 

this book. Each statistical or machine learning method could fill a book in 

itself, and there are many such models in R packages. The book is mainly 

a syntax guide and what it covered can be used with any model you need 

to apply to your data, so it is a good foundation for how to adapt your data 

analysis into the Tidyverse framework.
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