
Information Technology

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

Unlike other books about R, written from the perspective of statistics, R for

Programmers: Mastering the Tools is written from the perspective of program-

mers, providing a channel for programmers with expertise in other programming

languages to quickly understand R. The contents are divided into four sections.

The first section consists of the basics of R, explaining the advantages of using

R, the installation of different versions of R, and the 12 frequently used packages

of R. This will help you understand the tool packages, time series packages, and

performance monitoring packages of R quickly.

The second section discusses the server of R, examining the communication

between R and other programming languages and the application of R as servers.

This will help you integrate R with other programming languages and implement

the server application of R. The third section discusses databases and big data,

covering the communication between R and various databases, as well as R’s

integration with Hadoop. This will help you integrate R with the underlying level of

other databases and implement the processing of big data by R, based on Hadoop.

The fourth section comprises the appendices, introducing the installation of Java,

various databases, and Hadoop. Because this is a reference book, there is no special

sequence for reading all the chapters. You can choose the chapters in which you

have an interest. If you are new to R, and you wish to master R comprehensively,

simply follow the chapters in sequence.

ISBN: 978-1-4987-3681-7

9 781498 736817

90000

K26506

w w w . c r c p r e s s . c o m

R for Programmers
Mastering the Tools

Dan Zhang

R
 for Program

m
ers

Z
h

a
n

g

K26506 cvr mech.indd 1 11/24/15 10:00 AM

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

R for Programmers

 Mastering the Tools

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

R for Programmers

 Mastering the Tools

Dan Zhang

www.allitebooks.com

http://www.allitebooks.org

Published with arrangement with the original publisher, Beijing Huazhang Graphics and Information Company.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20151203

International Standard Book Number-13: 978-1-4987-3682-4 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.allitebooks.com

http://www.allitebooks.org

v

Contents

Preface .. xiii
About the Translator ..xvii
Acknowledgments ...xix

SeCtion i BASiCS oF R

 1 Basic R Packages ..3
1.1 R Is the Most Worthwhile Programming Language to Learn 3

1.1.1 Experience with Java ... 4
1.1.2 Why Choose R? .. 4

1.1.2.1 Origin of R .. 4
1.1.2.2 Development of R .. 4
1.1.2.3 Communities and Resources of R .. 5
1.1.2.4 Philosophy of R .. 5
1.1.2.5 Users of R ... 5
1.1.2.6 Syntax of R... 6
1.1.2.7 Thinking Patterns of R ... 7
1.1.2.8 Problems to Be Solved by R.. 8
1.1.2.9 Shortcomings of R ... 8

1.1.3 Application Prospects of R .. 8
1.1.4 Missions Assigned to R by the New Era .. 9

1.2 Installation of Different Versions of R ... 9
1.2.1 Installation of R in Windows ...10
1.2.2 Installation of R in Linux Ubuntu ...10
1.2.3 Installation of Latest Version of R ..11
1.2.4 Installation of Certain Versions of R ..11

1.2.4.1 Installation of Version 2.15.3 of R .. 12
1.2.4.2 Installation of Version 3.0.1 of R .. 12

1.3 fortunes: Records the Wisdom of R ... 12
1.3.1 Introduction to fortunes ..13
1.3.2 Installation of fortunes ...13
1.3.3 Use of fortunes ...13

1.4 Using formatR to Format Codes Automatically ...14
1.4.1 Introduction to formatR ..14
1.4.2 Installation of formatR ..15
1.4.3 Use of formatR...15

www.allitebooks.com

http://www.allitebooks.org

vi ◾ Contents

1.4.3.1 tidy.source: To Format Codes by Inputting a Character String ...15
1.4.3.2 tidy.source: To Format Codes by Inputting Files15
1.4.3.3 Formatting and Outputting R Script Files16
1.4.3.4 tidy.eval: Output Formatted R Codes and the Run Results17
1.4.3.5 usage: Definition of Format Function and Output

with Specific Width ..18
1.4.3.6 tidy.gui: A GUI Tool Used to Edit and Format R Codes19
1.4.3.7 tidy.fir: Format All the R Scripts in Directory dir19

1.4.4 Source Code Analysis of formatR ..21
1.4.5 Bugs in the Source Code ... 23

1.5 Multiuser Online Collaboration of R Development: RStudio Server 24
1.5.1 RStudio and RStudio Server ... 24
1.5.2 Installation of RStudio Server ... 24
1.5.3 Use of RStudio Server ..25

1.5.3.1 System Configuration of RStudio Server25
1.5.3.2 System Management of RStudio Server 27

1.5.4 Multiuser Collaboration of RStudio Server ... 28
1.5.4.1 Add New Users and New User Groups 28
1.5.4.2 Share of Git Codes ... 30

1.6 Foolproof Programming of R and JSON ... 32
1.6.1 Introduction to rjson ..33

1.6.1.1 Install and Load rjson .. 34
1.6.1.2 Call Function: fromJSON(): from JSON to R 34
1.6.1.3 toJSON(): from R to JSON .. 36
1.6.1.4 Converting between the C Library and R Library,

and Performance Test ... 37
1.6.2 Introduction to RJSONIO .. 37

1.6.2.1 Install and Load RJSONIO ... 37
1.6.2.2 fromJSON(): from JSON to R ... 38
1.6.2.3 toJSON: from R to JSON .. 38
1.6.2.4 isValidJSON(): Check Whether JSON Is Valid 40
1.6.2.5 asJSVars(): Convert into a Variable Format of JavaScript 40

1.6.3 Implementation of Customized JSON .. 40
1.6.4 Performance Comparison of JSON ... 42

1.6.4.1 Serialization Test (toJSON) on a Large Object between rjson
and RJSONIO ... 42

1.6.4.2 Serialization Test (toJSON) between Output by Lines
and Output by Columns in RJSONIO 43

1.7 High-Quality Graphic Rendering Library of R Cairo ... 44
1.7.1 Introduction to Cairo...45
1.7.2 Installation of Cairo ...45
1.7.3 Use of Cairo ...45

1.7.3.1 Scatterplot .. 46
1.7.3.2 Three-Dimensional Cross-Sectional View47
1.7.3.3 Graphic with Mass Text in It ... 49

1.8 A Peculiar Tool Set: caTools ...52
1.8.1 Introduction to caTools ..52

www.allitebooks.com

http://www.allitebooks.org

Contents ◾ vii

1.8.2 Installation of caTools ..53
1.8.3 Use of caTools ... 54

1.8.3.1 Read/Write Binary Images: gif ... 54
1.8.3.2 Encoder/Decoder of Base64 ..55
1.8.3.3 ROC Curve...57
1.8.3.4 Unordered Combination of Elements of a Vector59
1.8.3.5 Trapezoidal Rule of Numerical Integration59
1.8.3.6 LogitBoost Classifier .. 60
1.8.3.7 Quick Calculation Tool: runmean ... 62
1.8.3.8 Combinations of Quick Calculation Tools 64
1.8.3.9 Exact Summation ... 64

 2 Basic Packages of Time Series ..67
2.1 Basic Time Series Library of R: zoo ..67

2.1.1 Introduction to zoo ..67
2.1.2 Installation of zoo ... 68
2.1.3 Use of zoo ... 69

2.1.3.1 zoo Object .. 69
2.1.3.2 zooreg Object ... 70
2.1.3.3 Difference between a zooreg Object and a zoo Object 72
2.1.3.4 Class Conversion of zoo Object .. 73
2.1.3.5 Draw Time Series Graphs by ggplot2 ..74
2.1.3.6 Data Operation of zoo Object .. 75
2.1.3.7 Functional Processing of Data of zoo Object 78
2.1.3.8 Processing of NA .. 79
2.1.3.9 Display Format of Data .. 82
2.1.3.10 Interval Division .. 83
2.1.3.11 Read Time Series Data from Files and Create zoo Object 83

2.2 Extensible Time Series: xts .. 84
2.2.1 Introduction to xts ...85

2.2.1.1 Data Structure of xts ...85
2.2.1.2 Introduction to API of xts ...85

2.2.2 Installation of xts .. 87
2.2.3 Use of xts .. 87

2.2.3.1 Basic Operation of xts Object .. 87
2.2.3.2 Draw Graphics Using xts Objects .. 89
2.2.3.3 Class Conversion of xts Object ... 90
2.2.3.4 Data Processing of xts Objects ... 92
2.2.3.5 Statistical Calculation of xts Objects .. 98
2.2.3.6 Time Series Operations of xts Objects 100

2.3 Visualization of Time Series: plot.xts ..104
2.3.1 Introduction to xtsExtra...104
2.3.2 Installation of xtsExtra ...105
2.3.3 Use of xtsExtra ...105

2.3.3.1 K-Line Chart ...106
2.3.3.2 Configuration on Panel ...107
2.3.3.3 Configuration on Screens ..108

www.allitebooks.com

http://www.allitebooks.org

viii ◾ Contents

2.3.3.4 Configuration on Events ...110
2.3.3.5 Time Series of Double Coordinates ...113
2.3.3.6 Convert the xts Class and Draw Graphics114
2.3.3.7 Draw Graphs by Barplot ... 115

 3 Performance Monitoring Packages of R ...117
3.1 Local Cache Tool of R: memoise ..117

3.1.1 Introduction to memoise ..118
3.1.2 Installation of memoise ..118
3.1.3 Use of memoise ..118
3.1.4 Source Code Analysis of memoise() ...119

3.1.4.1 Source Code of memoise() ... 120
3.1.4.2 Source Code of forget() .. 120
3.1.4.3 Private Function: Source Code of new_cache()121

3.2 Performance Monitoring Tool of R: Rprof .. 122
3.2.1 Introduction to Rprof() ... 122
3.2.2 Definition of Rprof() .. 122
3.2.3 Use of Rprof(): A Case Study of Stock Data Analysis 123
3.2.4 Use of Rprof(): A Case Study of Data Download 126
3.2.5 To Visualize Performance Indicators Using Profr Package 127
3.2.6 Use of Command Line of Rprof .. 130

3.2.6.1 Check the Help File of Command Line of Rprof 130
3.2.6.2 Use of Command Line of Rprof ... 130

3.3 Performance Visualization Tool of R: lineprof ..131
3.3.1 Introduction to lineprof ...132
3.3.2 Installation of lineprof ...132
3.3.3 Use of lineprof ...133

SeCtion ii R SeRVeR

 4 Cross-Platform Communication of R...139
4.1 Cross-Platform Communication between Rserve and Java139

4.1.1 Installation of Rserve ...140
4.1.2 Remote Connection between Rserve and Java ...141

4.1.2.1 Download JAR Package of Java Client142
4.1.2.2 Create Java Project in Eclipse ..142
4.1.2.3 Implementation of Java Programming142

4.2 Rsession Makes It Easier for Java to Call R ...144
4.2.1 Download of Rsession ..144

4.2.1.1 Download the Distribution Directly ...144
4.2.1.2 Download the Source Code and Compile Distribution.............144

4.2.2 Construct Rsession Projects Using Eclipse ...146
4.2.3 API Introduction of Rsession ...146
4.2.4 Use of Rsession ..147

4.2.4.1 Server Environment of Rserve ...147
4.2.4.2 Java Code ..148
4.2.4.3 Run Journal Output ..149

www.allitebooks.com

http://www.allitebooks.org

Contents ◾ ix

4.3 High-Speed Channel between R and rJava ...152
4.3.1 Introduction to RJava...152
4.3.2 Installation of RJava ...152
4.3.3 Implement R Calling Java Using RJava ..153
4.3.4 Implement Java Calling R Using RJava(JRI) (Windows 7)154
4.3.5 Implement Java Calling R Using RJava(JRI) (Ubuntu)157

4.4 Cross-Platform Communication between Node.js and R158
4.4.1 Introduction to Node.js..158
4.4.2 Environment Configuration of R ...159
4.4.3 Environment Configuration of Node.js ..159
4.4.4 Cross-Platform Communication between Node.js and R160

 5 Server Implementation of R..163
5.1 A Detailed Elaboration of the Server Program of R: Rserve163

5.1.1 Start of Rserve ...164
5.1.1.1 Start the Rserve Server in the Program164
5.1.1.2 Start the Rserve Server in the Command Line165

5.1.2 Advanced Use of Rserve: Rserve Configuration Management166
5.1.3 Advanced Use of Rserve: Users’ Login Authentication169

5.2 Client of Rserve in R: RSclient ...170
5.2.1 Configuration of the Rserve Server ..170
5.2.2 Installation of RSclient ..171
5.2.3 API of RSclient ..172
5.2.4 Use of RSclient ..173
5.2.5 Simultaneous Access of Two Clients ..173

5.3 An R Program Running on the Web: FastRWeb ..175
5.3.1 Introduction to FastRWeb ...175
5.3.2 Installation of FastRWeb ..176
5.3.3 Use of FastRWeb ..177

5.4 Building a WebSocket Server by R ...180
5.4.1 Introduction to websocket ...181
5.4.2 Installation of websockets ..182
5.4.3 Quickly Start the WebSockets Server Demo ..184
5.4.4 Create a WebSocket Server Instance Using R...185
5.4.5 Create a WebSocket Client Connection Using R186
5.4.6 Achieve Client Connection through HTML5 Native API of Browsers187

SeCtion iii DAtABASe AnD BiG DAtA

 6 Database and NoSQL ...191
6.1 Programming Guidance for the RMySQL Database ..191

6.1.1 Installation of RMySQL in Linux ..192
6.1.1.1 View the System Environment of Linux192
6.1.1.2 Install RMySQL in R ..193
6.1.1.3 Create Library and Table in MySQL ...195
6.1.1.4 Read MySQL Data through R ..196

x ◾ Contents

6.1.2 Installation of RMySQL in Windows 7 ...196
6.1.2.1 View the System Environment of Windows 7197
6.1.2.2 Installation of RMySQL in R ..197
6.1.2.3 Create Libraries and Tables in MySQL199
6.1.2.4 Read MySQL Data through R ..201

6.1.3 Use of RMySQL Functions ... 202
6.1.3.1 Auxiliary Function of RMySQL .. 202
6.1.3.2 Operation of RMySQL Database ... 203
6.1.3.3 Character Set Configuration of Windows 205

6.1.4 Case Practice of RMySQL .. 206
6.1.4.1 Create Tables in a Remote Database... 206
6.1.4.2 Use RMySQL to Access MySQL Remotely 208

6.2 Connecting R with NoSQL: MongoDB .. 209
6.2.1 Environment Preparation of MongoDB .. 209
6.2.2 Rmongodb Function Library ...211
6.2.3 Basic Operation of Rmongodb ...213
6.2.4 A Case of Performance Test of Rmongodb...216

6.3 Connecting R with NoSQL: Redis ...219
6.3.1 Environment Preparation of Redis ...219
6.3.2 Function Library of rredis ... 220
6.3.3 Basic Operation of rredis ..221

6.3.3.1 Basic Operation of Redis .. 222
6.3.3.2 Operation of Class String ... 223
6.3.3.3 Operation of Class List .. 223
6.3.3.4 Operation of Class Set.. 224
6.3.3.5 Interaction between rredis and Redis-cli 225

6.3.4 Test Case of rredis ... 226
6.4 Connecting R with NoSQL: Cassandra .. 228

6.4.1 Environment Preparation of Cassandra ... 228
6.4.2 Function Library of RCassandra ... 229

6.4.2.1 17 Functions .. 229
6.4.2.2 Comparison of Basic Operations between Cassandra

and RCassandra ... 230
6.4.3 Basic Operations of RCassandra ... 232
6.4.4 A Case Using RCassandra ... 234
6.4.5 Decline of Cassandra ...235

6.5 Connecting R with NoSQL: Hive ... 236
6.5.1 Environment Preparation of Hive ... 236
6.5.2 Installation of RHive .. 238
6.5.3 Function Library of RHive ... 238
6.5.4 Basic Operations of RHive .. 240

6.6 Extract Reverse Repurchase Information from Historical Data Using RHive 242
6.6.1 Introduction of Reverse Repurchase .. 243
6.6.2 Storage Structure of Historical Data ... 243
6.6.3 Extract Data Using RHive .. 243
6.6.4 Strategy Model and Its Implementation ...247

Contents ◾ xi

 7 RHadoop ..253
7.1 R Has Injected Statistical Elements into Hadoop ...253

7.1.1 Introduction to Hadoop .. 254
7.1.2 Why Should We Combine R with Hadoop? ..255

7.1.2.1 Why Should We Combine R with Hadoop When
the Hadoop Family Is Already So Powerful?255

7.1.2.2 Mahout Can Also Perform Data Mining and Machine
Learning. So What’s the Difference between R and Mahout? ...255

7.1.3 How to Combine Hadoop with R ..256
7.1.3.1 RHadoop ..256
7.1.3.2 RHive ...256
7.1.3.3 Rewrite Mahout ..256
7.1.3.4 Use Hadoop to Call R ...256
7.1.3.5 R and Hadoop in Real Practice ...257

7.1.4 Outlook for the Future...257
7.2 Installation and Use of RHadoop ...257

7.2.1 Environment Preparation ...257
7.2.2 Installation of RHadoop ..258

7.2.2.1 Download the Three Relevant Packages of RHadoop258
7.2.2.2 For the Installation of RHadoop, the Root Authority

Operation Is Recommended ...258
7.2.2.3 Installation of the Dependent Library258
7.2.2.4 Install the rhdfs Library ..259
7.2.2.5 Install the rmr Library ... 260
7.2.2.6 Install the rHBase Library .. 260
7.2.2.7 List All the Packages of RHadoop .. 260

7.2.3 Program Development of RHadoop ... 260
7.2.3.1 Basic Operations of rhdfs ... 260
7.2.3.2 Task of the rmr Algorithm ... 262
7.2.3.3 Wordcount Task of the rmr Algorithm 263

7.3 RHadoop Experiment: Count the Times of the Appearance of Certain
E-Mail Addresses ..265
7.3.1 Demand Description ...265
7.3.2 Algorithm Implementation ... 266

7.3.2.1 Calculate How Many Times the E-Mail Addresses Appear 266
7.3.2.2 Sort the E-Mail Addresses by Their Times of Appearance 268

7.4 Implement the Collaborative Filtering Algorithm by RHadoop
Based on MapReduce .. 269
7.4.1 Introduction to the Collaborative Filtering Algorithm

Based on Item Recommendation ...270
7.4.2 Implementation of a Local Program of R ...271

7.4.2.1 Create a Co-Occurrence Matrix of Items271
7.4.2.2 Create a Rating Matrix of Users on Items271
7.4.2.3 Calculate the Recommendation Result through a Matrix 272

7.4.3 Implement a Distributed Program by R Based on Hadoop275
7.4.3.1 Create a Co-Occurrence Matrix of Items276

xii ◾ Contents

7.4.3.2 Create a Rating Matrix of Users on Items 278
7.4.3.3 Merge the Co-Occurrence Matrix and the Rating Matrix 279
7.4.3.4 Calculate the Recommendation Result List 279
7.4.3.5 Get the Recommendation Rating List in Output Format 280
7.4.3.6 Tips for Using rmr2 ..281

7.5 Installation and Use of RHBase .. 288
7.5.1 Environment Preparation of HBase .. 289
7.5.2 Installation of rHBase ... 290
7.5.3 Function Library of rHBase .. 290

7.5.3.1 16 Functions of rHBase .. 290
7.5.3.2 Basic Operations between HBase and rHBase.......................... 290
7.5.3.3 Execute Base Operations of HBase ..291

7.6 Solve the Installation Error of RHadoop PipeMapRed.waitOutputThreads()293
7.6.1 Error Log of rmr2 ..293
7.6.2 Locate the Error in the Hadoop Log ... 294
7.6.3 Find Solutions in Hadoop: Failed ... 296
7.6.4 Find Solutions in RHadoop: Succeeded .. 297

SeCtion iV APPenDiXeS

Appendix A: Installation of a Java Environment ...303

Appendix B: Installation of MySQL ...309

Appendix C: Installation of Redis ...315

Appendix D: Installation of MongoDB ..319

Appendix E: Installation of Cassandra ...323

Appendix F: Installation of Hadoop ...327

Appendix G: Installation of the Hive Environment ..335

Appendix H: Installation of HBase ...339

Bibliography ..345

xiii

Preface

Why this Book?
As a programmer, I’ve worked in the area of program development for 10 years. Being a program-
mer at the very beginning and now an architect, during these 10 years I’ve experienced many sys-
tems and applications. I’ve developed mobile games as well as programming tools. I’ve worked in
large Web application systems, internal Customer Relationship Management (CRM) of companies,
system integration of Service-Oriented Architecture (SOA), and big data tools based on Hadoop.
Outsourcing, E-commerce, group purchase, payment, Social Networking Service (SNS), and mobile
SNS are all within my working range. In the past I used only Java, then I started learning to use
Hypertext Preprocessor (PHP). Just as other programmers, I was exhilarated chasing all kinds of
technical innovations. But I was always puzzled by a problem, that is, how to transform the tech-
niques I master into real value. It’s as if I had access to a gold mine. With all the advanced techniques
I owned I could make mining machines that were stable in performance and outstanding in func-
tion, but what I didn’t know was how to purify the ore and turn it into gold! I could only stay envious
and unwilling every time I saw others getting their gold using my technique.

All of this came to an end when I finally met R. R has opened the gate of treasures from
another perspective. It also helped me to start rethinking and replanning my career and finally
confirmed my decision to transition to statistics and finance. If the aforementioned problem also
occurs in your career, maybe we should get into the world of R and appreciate the special charm of
R together in this book. Learning to use R will help us rediscover the value of big data and further
raise our personal career value.

As I gradually deepen the exchange with my friends in statistics and finance, I realize that
they are also sometimes puzzled and confused about the actual usage of R. For instance, they can
achieve an expected outcome with R in a laboratory environment. But when they transplanted
their computing to the real environment with complex big data, they often found numerous prob-
lems using R. It’s as if they had the most advanced purification technique, but their tools for min-
ing and collecting still remained in the Stone Age. Their outdated tools forced them to deal with
a mass of problems beyond R, which made them quite overwhelmed. Thus some of them even
started to think that R was only a laboratory programming language, or at least it was impossible
to apply R in real practice with the state-of-the-art technique. Therefore the extensive application
of R would be rather unlikely.

If you are a user of R without any computer background, you may have come across similar
problems in your work. Maybe you’ve spent many sleepless nights trying various ways to find the

xiv ◾ Preface

solutions to these problems. However, we already have mature and effective solutions in the com-
puter industry.

All of the content of this book comes from my summary of my experiences of using R in my
work, which means it is rather a real record of my working with R. The content covers the fields of
computing, Internet, database, big data, statistics, and finance. This book is a detailed summary
of all the solutions of the comprehensive application of R with Java, MySQL, Redis, MongoDB,
Cassandra, Hadoop, Hive, HBase, and so forth, which is strong in practice and operability. If
you are a beginner user of R, this book may help you appreciate the charm of R in all industries
and all fields. If you have used R for a while in a certain industry, this book may show a picture
of strong vitality when combining R with other computer languages and help you break through
the bottleneck. If you work in technical areas, the case implementation from a holistic view in
this book may bring you a new enlightenment, or even help you replan your career and find a new
orientation for studying and striving, just like it did for me. If you are a middle or senior manager
of a corporation, you will find many technical achievements in this book. You may even directly
apply these achievements in a corporate environment and make profits according to the detailed
operation records in this book.

Here I should point out that this book is not an introduction or guide, which means there will
be no syntax explanation of R in this book. You may have picked the wrong book if you wish to
gain basic and introductory knowledge of R. However, if you are familiar with the basics of R but
lack a computer language background, this book will tell you what R can do in a real environment
and how to implement the applications step by step.

After discussing with many beginners in R from different fields, I find that the greatest prob-
lem in learning to use R is how to manage to use its numerous software packages. There are few
books and only some pamphlets on the Internet covering this problem. This book covers more
than 30 packages of R with my experiences in practice and case analysis. I believe this will help us
solve problems using the packages of R.

This book is the first one of the series A Geek Ideal of R. Its companion piece, R for Programmers:
Advanced Techniques, will give an in-depth introduction to the underlying principle of R and how
to develop enterprise applications with R.

The environment involved in this book includes two operating systems, Linux Ubuntu® and
Windows® 7 and the 2.15.3 version and 3.0.1 version of R, which are specifically identified in each
section.

R is constantly advancing and undergoing updates, and it will lead a revolution of data eventu-
ally. Interdisciplinary integration is the trend of this development, which is also a great opportu-
nity for us.

Potential Readers of this Book
This book will be helpful to the following people working with R:

 ◾ Software engineers with a computer background
 ◾ DBA with database background
 ◾ Data scientists with a data analysis background
 ◾ Scientific researchers with a statistical background
 ◾ Students in universities and colleges

Preface ◾ xv

How to Read this Book
The content of this book is divided into four sections.

The first section consists of the basics of R (Chapters 1 to 3), which introduces why we should
learn to use R, the installation of different versions of R, and the 12 frequently used packages of R.
This section will help readers quickly understand the tool packages, time series packages, and
performance monitoring packages of R.

The second section discusses the server of R (Chapters 4 and 5), which introduces communica-
tion between R and other programming languages and application of R as servers. This section
will help readers integrate R with other programming languages and implement the server applica-
tion of R.

The third section discusses database and big data (Chapters 6 and 7), which introduce com-
munication between R and various databases, as well as R’s integration with Hadoop. This sec-
tion will help readers integrate R with the underlying level of other databases, and implement the
processing of big data by R based on Hadoop.

The fourth section comprises the appendixes, which introduce the installation of Java, various
databases, and Hadoop. The author expects that readers can accomplish all the cases in this book
without other references.

Because this is a reference book, there is no special sequence for reading all the chapters. You
can choose the chapters in which you have an interest to start reading. If you are a beginner of R
and you wish to master R comprehensively, please follow the chapters in sequence.

Correction and Support
Because the time spent writing this book and the author’s knowledge of R are both limited, there
will inevitably be some errors and incorrect viewpoints in this book. I sincerely hope that readers
will point out and comment on any errors. For this purpose, I have created an online communica-
tion website for this book’s readers (http://onbook.me) to use to communicate. If you encounter
any problems reading this book, please leave notes on this website, and I will try my best to offer a
satisfactory solution. All of the source code of this book can be downloaded from the official web-
site of CRC Press (https://www.crcpress.com) or from the online communication website, where I
will update the codes in time. This book is printed in black and white, so all the colorful pictures
can only be achieved by running the codes of this book. I sincerely hope that you can send your
valuable feedback and advice on this book to bsspirit@gmail.com.

http://onbook.me
https://www.crcpress.com
mailto:bsspirit@gmail.com

xvii

About the translator

Tong Tong, a fan of R language like me, is currently working in an import and export bank in
China. He specializes in RMB trade, which makes him an expert with profound knowledge and
understanding of the internationalization of the RMB. Tong Tong graduated from China Foreign
Affairs University, where he majored in international economics and trade. He also has a back-
ground in statistics and finance.

Tong Tong always has the passion to share his practical experience and combine his daily work
with the R language. I had the privilege of meeting him in a financial forum and I communicated
a lot with him about the use of R language. Despite the fact that Tong Tong does not have a pure
computer background, his passion for R language also made him discover a lot of unique ideas
in the past. As a self-learner, he did encounter many problems during the practice and he finally
found solutions through the book R for Programmers: Mastering the Tools.

Hereby, I am honored to invite Tong Tong to help me spread knowledge about R to many
readers with diverse mother tongues, and we also hope that it is a chance to share with the world
how we use the R language in China.

Once again, thank you, Tong Tong!

www.allitebooks.com

http://www.allitebooks.org

xix

Acknowledgments

I wish to thank my teammates Lin Weilin, Lin Weiping, and Deng Yishuo. Thanks to R for
bringing us together. I thank He Ruijun, acquiring editor at CRC Press, who helped promote the
publication of this book. I also thank the translator, Tong Tong, for the translation work on this
book. I give special thanks to my parents and my wife for their support of my work and their care.

This book is dedicated to my dearest family and the fans of R.

iBASiCS oF R

3

Chapter 1

Basic R Packages

This chapter first presents reasons for learning to use R. It then considers the installation, develop-
ment tools, and a few commonly used packages of R to help readers gain a quick acquaintance of
R and stimulate their interest in learning the language.

1.1 R is the Most Worthwhile Programming Language to Learn
Question
Why should we learn to use R?

Among the five programming languages—Node, Lua, Python, Ruby, and R—which one will
have the best application prospects in 2014 in China?

My choice is R, and I think R will be a star programming language not only in 2014 but also
for a long time in the future. This book therefore begins with a discussion of why R is the most
worthwhile programming language to learn.

4 ◾ R for Programmers: Mastering the Tools

1.1.1 Experience with Java

As a programmer and architect, I had long believed, from the start, that Java would be the pro-
gramming language to change the world. To some extent this prediction came true; Java has
changed the world and performed brilliantly, becoming more powerful and covering more fields.
But it turns out that with this growth Java starts to show its limitations, which provides a great
opportunity to develop other programming languages.

I’ve used Java for 12 years, R for 4 years, and Node for 2 years, and as for the question of which
programming language had the best application prospect in 2014, my answer would be R.

1.1.2 Why Choose R?

In this section I will elaborate on the reasons to choose R based on the following perspectives.

 ◾ Origin of R
 ◾ Development of R
 ◾ Communities and resources of R
 ◾ Philosophy of R
 ◾ Users of R
 ◾ Syntax of R
 ◾ Thinking pattern of R
 ◾ Problems to be solved by R
 ◾ Shortcomings of R

1.1.2.1 Origin of R

In 1992, Ross Ihaka and Robert Gentlemen, two statisticians from University of Auckland of
New Zealand, invented a new programming language to teach elementary statistics courses more
conveniently. As both statisticians have R as their first initial, R was adopted as the name of this
newly invented programming language.

I have started a cross-border approach to knowledge since learning to use R. Statistics is based
on probability, while probability is based on mathematics. R is based on the premise that we are
trying to solve practical questions in statistics through programming. The intersection of the
knowledge of various subjects will determine our ability to solve the problems. The generic func-
tions of R in statistics make it a distinctive programming language.

1.1.2.2 Development of R

For a long time, R was used in a minority area, initially only by statisticians who wished to
replace SAS (Statistical Analysis System). As the concept of big data became more widespread, R
was finally discovered by industry. Subsequently, more and more people with engineering back-
grounds started to join the circle and made many improvements and upgrades to the computing
engine, performance, and a variety of programming packages of R, which led to the rebirth of R
reborn as a powerful new language.

The R used today has come much closer to the standard of industrial software. Driven by
engineers instead of only statisticians, R has gained a much more rapid growth. As the demand of
data analysis continues to grow, R will achieve a faster development and become synonym for free
and open data analysis software.

Basic R Packages ◾ 5

1.1.2.3 Communities and Resources of R

The development of R cannot be attained without the support of the various communities of R.
Admittedly, the official R website (http://www.r-project.org/) is too simple and crude as a web-
page. Just a small adjustment of the CSS style sheet will give the website a much better appearance,
although a simple and unadorned style may appeal to statisticians.

In the official R website, we can download the R software as well as many third-party packages
and other supportive software. We can find much information concerning R, such as the developer
forum (http://r.789695.n4.nabble.com/), the R-Journal list (http://journal.r-project.org/), package
list, R book list, and R user groups. The resources provided by communities of R are enormously
abundant, just as for other programming languages.

R is free software, which means that developers can package certain functions in their own
packages and publish them on CRAN (http://cran.rstudio.com/). As of October 2015, the total
number of R packages published on CRAN is 6910.

Some may doubt that 6910 as the number of packages is relatively small compared to other
software. However, all the R packages submitted to CRAN should be reviewed and examined by
R group before their publication. The review and examination processes of R packages are very
strict, which makes high quality a basic requirement for all the packages published on CRAN.
And because many developers find the review process too strict, they opt to publish their packages
on RForge (https://r-forge.r-project.org/). Some other R packages are based on Github. I’ve also
published some R packages on Github, https://github.com/bsspirit/chinaWeather.

The following are some main communities and resources of R.

 ◾ R official website: http://www.r-project.org/
 ◾ Developer forum of R: http://r.789695.n4.nabble.com/
 ◾ CRAN: http://cran.rstudio.com/
 ◾ RForge: https://r-forge.r-project.org/
 ◾ News and blogs of R: http://www.r-bloggers.com/
 ◾ Capital of Statistics: http://cos.name/

1.1.2.4 Philosophy of R

Every programming language has its own design concept and philosophy. As for my experience,
the philosophy of R is to get down to work.

We do not need to write long codes or design certain models using R. We can achieve a com-
plex statistical model just by a function call and entering some parameters. It is about which model
and what parameters to choose, rather than about how to program.

Using R, we will turn a mathematical formula into a statistical model, and we may also con-
sider how to make the result of a classifier more accurate. But we will not think about the time and
space complexity in the application of R.

The philosophy of R can transfer your knowledge of mathematics and statistics into comput-
ing models. And that is also determined by the origin of R.

1.1.2.5 Users of R

As noted previously, at first R was used only by some statisticians in academia, and then it became
widely adopted by scholars in many other fields. The applications of R can cover many fields

http://www.r-project.org
http://r.789695.n4.nabble.com
http://journal.r-project.org
http://cran.rstudio.com
https://r-forge.r-project.org
https://github.com
http://www.r-project.org
http://r.789695.n4.nabble.com
http://cran.rstudio.com
https://r-forge.r-project.org
http://www.r-bloggers.com
http://cos.name

6 ◾ R for Programmers: Mastering the Tools

including statistical analysis, applied mathematics, financial analysis, economic analysis, social
sciences, data mining, artificial intelligence, bioinformatics, biopharmaceuticals, global geograph-
ical science, data visualization, and so forth.

The big data revolution triggered by the Internet in recent years has led many experts in indus-
try to start to learn and use R. With this expansion of interest, R has gradually met the demand
of industrialization and achieved full field development.

The following are some R packages that help promote the development of R in industry.

 ◾ RHadoop products of Revolution Analytics, which allows R to call the cluster resources of
Hadoop

 ◾ RStudio products of RStudio, which gives us some new understanding of editing software.
 ◾ RMySQL, ROracle and RJDBC, which create channels for R to visit databases
 ◾ rmongodb, rredis, RHive, rhbase, RCassandra, which create channels for R to visit NoSQL
 ◾ Rmpi and snow, which make parallel computing of a stand-alone equipment with multicore

possible
 ◾ Rserve and rwebsocket, which allow R to make data communication among platforms

1.1.2.6 Syntax of R

Similar to Python, R is an object-oriented programming language, but the syntax of R is much freer.
The names of many R functions are quite arbitrary, which may be part of the philosophy of R.

A programmer with a foundation in programming languages other than R may possibly feel
disconcerted when he or she sees assignment syntax as follows.

But it is so easy to randomly pick out 10 numbers in a N(0,1) normal distribution.

We could achieve a good visualization effect using R to draw a scatter diagram of the iris data
set.

> a<-c(1,2,3,4)->b
> a
[1] 1 2 3 4
> b
[1] 1 2 3 4

> rnorm(10)
 [1] -0.694541401 1.877780959 -0.178608091 0.004362026
 [5] 0.836891967 1.794961298 0.115284187 0.155175219
 [9] 0.464028612 -0.842569561

> data(iris) #Load data set.
> head(iris) #View the first 6 lines of the data set.
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa

Basic R Packages ◾ 7

The output result can be seen in Figure 1.1.
The free philosophy of R as well as its simple and special syntax are major reasons for its

appeal.

1.1.2.7 Thinking Patterns of R

R has helped me clear away an old mindset. Using R to solve a problem, we should learn to think about
questions from the perspective of statistics rather than from computing. In the thinking patterns of
statistics, we usually consider why before we figure out what to do. But in the thinking patterns of
computing, we just directly think about what to do and then consider the reason based on the result.

R is a programming language that directly deals with data. In our daily lives, data are pro-
duced in whatever we do, such as browsing data while surfing the Internet and consumption data
in shopping. Even if we do nothing, our lives will be influenced by the air quality, and there will be
data of air pollution indexes such as PM2.5. With the help of R, we can analyze these data directly.

3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

> plot(iris) # Draw the graphic.

2.0 3.0 4.0 0.5 1.5 2.5

2.
0

2.
5

1.
5

0.
5

3.
0

4.
0

4.5 6.0 7.5 1 3 5 7 1.0 2.0 3.0

1.
0

2.
0

3.
0

1
3

5
7

4.
5

6.
0

7.
5

Species

Petal.Width

Sepal.Width

Petal.Length

Sepal.Length

Figure 1.1 Scatter diagram of iris data set.

8 ◾ R for Programmers: Mastering the Tools

An advantage of the thinking patterns of R lies in the fact that we can simply analyze the data
we need to cope with. We do not need to go through a role transition from programmer to product
manager and consider what functions are involved, not to mention the program design.

Becoming free of the thinking patterns of programmers will help us learn more and find more
suitable positions of ourselves.

1.1.2.8 Problems to Be Solved by R

Today people use data as a means of production. Thus R has become a productivity tool that can
be used to deal with this new means of production and create value. Therefore R is mainly used
to solve the problems of data.

The volume of data created in the era of the Internet exceeds that created in the entire long
history of the pre-Internet age. How to realize the value of such a great amount of data has become
the most popular topic as Hadoop helps people solve the problem of big data storage. The statisti-
cal analysis ability of R has thus made it the best tool for data analysis. Therefore, the problems to
be solved by R are exactly the problems of this big data era.

1.1.2.9 Shortcomings of R

Although R has many merits, as discussed earlier, it does have some shortcomings.

 ◾ R, as a software created by statisticians, is not as robust as other software created by software
engineers.

 ◾ Some problems exist in R’s performance.
 ◾ R’s essence of freedom somewhat denormalizes the naming of the syntax of Rand makes it

difficult to familiarize.
 ◾ Some basic knowledge of mathematics, probability, and statistics is required to learn R.

However the difficulties of applying R caused by these shortcomings of R can be overcame.
With more and more people with an engineering background joining the circle, R will become
more powerful and help users to create more value in the future.

1.1.3 Application Prospects of R

R is able to accomplish all the assignments of Statistics Analysis System (SAS), which is one of the
most famous commercial analysis software in the world. SAS is used as a large-scale integrated
information system for decision support, so the statistics analysis function is an important com-
ponent and core function of SAS. In the fields of data processing and statistics analysis, SAS is
regarded as an international standard of a software system, or the giant in statistics software.

Now R is in a complete competitive relation with SAS. Being free and open, R will have a
broader application prospect. The following are some major fields where R is applied.

 ◾ Statistics analysis: including statistical distribution, hypothesis testing, and statistical modeling
 ◾ Financial analysis: quantitative strategies, investment portfolio, risk control, time series, and

volatility
 ◾ Data mining: data mining algorithms, data modeling, machine learning
 ◾ Internet: recommender system, consumption prediction, social network

www.allitebooks.com

http://www.allitebooks.org

Basic R Packages ◾ 9

 ◾ Bioinformatics: DNA analysis, species analysis
 ◾ Biopharmaceuticals: survival analysis, pharmaceutical process management
 ◾ Global geographic science: weather, climate, remote sensing data
 ◾ Data visualization: static diagram, interactive dynamic diagram, social diagram, map, heat

map, and integration with all kinds of Java classes

I have written many articles concerning the application of R in my blog, including all the
aforementioned fields except for biology. The broad application prospect of R has made it most
capable of creating value in the new era.

1.1.4 Missions Assigned to R by the New Era

R is a programming language understood and known by the industry in this era of big data. Thus
R has been given missions by the age, including exploring the value of data, finding patterns of
data and creating fortunes by using data.

R is also an optimal productivity tool to help people make full use of their intelligence and
creativity. We should not only learn to use R, but also try to raise the social productivity in all
fields by applying R.

With all the elaboration of R, I believe R is the most worthwhile programming language to
learn. Whether you are still at school or in a career, learning to use R will help you find the most
suitable position and gain a bright future. In conclusion, among the five programming languages
listed at the beginning of this chapter, R is the most special one and is tasked with different objec-
tives. The generic functions of R determine that R will be a star programming language in 2014,
or very possibly in the future.

1.2 installation of Different Versions of R
Question
How do we install different versions of R in Linux Ubuntu?

The R packages have progressed to version 3.2.2, but some of the third-party packages of R have
still not been upgraded beyond version 2.15, such as RHadoop, RHive, and so forth. Thus certain
versions of R are needed if we are to use these R packages.

This is a quite simple operation for Windows®: All we have to do is install different exe files. But
those who are not familiar with Linux may have difficulty with the installation process. This section
therefore describes the installation of certain versions of R packages in Windows and Linux Ubuntu®.

10 ◾ R for Programmers: Mastering the Tools

1.2.1 Installation of R in Windows

It is possible to download R packages of Linux, MacOS, and Windows from the official R website
(http://cran.r-project.org/).

The installation of R in Windows is very easy. We just need to download the executable file and
double-click it to install. The running interface of R after installation can be seen in Figure 1.2.

1.2.2 Installation of R in Linux Ubuntu

The Linux system used in this book is Ubuntu 12.04.2 LTS 64bit. The installation of R packages
can be done by the tool apt-get in Ubuntu.

Installation of R in Linux Ubuntu

Check whether R has been installed.
~ R
The program 'R' is currently not installed. You can install it by typing:
sudo apt-get install r-base-core

Install R packages under prompt
~ sudo apt-get install r-base-core

Figure 1.2 installation of R in Windows®.

http://cran.r-project.org

Basic R Packages ◾ 11

We can find that the default version of R is 2.14.1, which is different from the version used in
this book. So next we wish to install the latest version of R packages.

1.2.3 Installation of Latest Version of R

First, delete the original R packages in Linux Ubuntu.

Then, we find a mirror of software sources of Ubuntu (http://mirror.bjtu.edu.cn/cran/bin
/ linux/ubuntu/). The corresponding name of Linux Ubuntu 12.04 is precise. We can find differ-
ent versions of R in r-base-care related files in precise/directory.

Add this software sources to sources.list of apt.

Thus we have finished installing the latest version 3.0.3 of R.

1.2.4 Installation of Certain Versions of R

Because most of the cases in this book are completed in version 3.0.1 of R, while cases involving
RHadoop are based on version 2.15.3, we need to install some specific versions of R.

Check the version of R.
~ R —version
R version 2.14.1 (2011-12-22)
Copyright (C) 2011 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: x86_64-pc-linux-gnu (64-bit)

~ sudo apt-get autoremove r-base-core

Add a new line at the end of sources.list.
~ sudo sh -c "echo deb http://mirror.bjtu.edu.cn/cran/bin/linux/ubuntu precise
/>>/etc/apt/sources.list"

Update the sources.
~ sudo apt-get update

Re-install R packages.
~ sudo apt-get install r-base-core

Check the version of R.
~ R —version
R version 3.0.3 (2014-03-06) — "Warm Puppy"
Copyright (C) 2014 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

http://mirror.bjtu.edu.cn
http://mirror.bjtu.edu.cn

12 ◾ R for Programmers: Mastering the Tools

1.2.4.1 Installation of Version 2.15.3 of R

1.2.4.2 Installation of Version 3.0.1 of R

Here we have installed the different versions of R conveniently to meet the different application
demands.

1.3 fortunes: Records the Wisdom of R
Question
How do we get to know R in depth? What are the origin, growth, and experience of R?

The popularity of big data throughout the world has led to the gradual adoption of R. But because
the R community has existed for many years, many of us might have little idea of the wisdom of
R in its long history. Fortunately, someone is secretly recording the wisdom of R.

Delete the original R packages of the system.
~ sudo apt-get autoremove r-base-core

Install the version 2.15.3 of R.
~ sudo apt-get install r-base-core=2.15.3-1precise0precise1

Check the version of R.
~ R —version
R version 2.15.3 (2013-03-01) — "Security Blanket"
Copyright (C) 2013 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: x86_64-pc-linux-gnu (64-bit)

Delete the original R packages of the system.
~ sudo apt-get autoremove r-base-core

Install the version 3.0.1 of R.
~ sudo apt-get install r-base-core=3.0.1-6precise0

Check the version of R.
~ R —version
R version 3.0.1 (2013-05-16) — "Good Sport"
Copyright (C) 2013 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

Basic R Packages ◾ 13

1.3.1 Introduction to fortunes

The fortunes library is a set of quotations of R. There were altogether 360 R-help messages up to
December 14, 2013, which embody the essence of the wisdom of R. These messages make it easier
for later R users to understand R and get to know the spirit of R.

1.3.2 Installation of fortunes

System environment used in this section:

 ◾ Linux: Ubuntu 12.04.2 LTS 64bit
 ◾ R:3.0.1 x86_64-pc-linux-gnu

Note: fortunes support both Windows 7 and Linux

Installation of fortunes:

1.3.3 Use of fortunes

The use of fortunes is very simple. There is only one function in this package: fortune().

Launch R.
~ R

Install fortunes packages.
> install.packages("fortunes")

Load fortunes packages.
> library(fortunes)

Check the help.
> ?fortunes

Check a random quotation.
> fortune()
Barry Rowlingson: Your grid above has 8*6 = 42 points.
(That was a subtle Hitchhikers Guide To The Galaxy reference there, honest,
and not a stupid dumb multiplication mistake on my part after working four
18-hour days on the trot...)
Peter Dalgaard: [...] Don’t panic, just throw yourself at the ground and miss.
 — Barry Rowlingson and Peter Dalgaard
 R-help (March 2004)

Check a specific quotation.
> fortune(108)
Actually, I see it as part of my job to inflict R on people who are perfectly
happy to have never heard of it. Happiness doesn’t equal proficient and
efficient. In some cases the proficiency of a person serves a greater good
than their momentary happiness.
 — Patrick Burns
 R-help (April 2005)

14 ◾ R for Programmers: Mastering the Tools

The complete quotations can be downloaded from http://cran.r-project.org/web/packages
/ fortunes /vignettes/fortunes.pdf.

We need to slow down and understand a language in depth if we wish to master it.

1.4 Using formatR to Format Codes Automatically
Question
How do we write codes that conform to specifications and can be easily understood by others?

Most beginners may focus only on how to realize certain functions when they write codes but
ignore the importance of coding standards. Such codes will be unpopular not only to those
who need to read them, but also to the writers themselves if they review their codes after a few
months.

The most painful thing for a programmer is not working overtime every day to write codes, but
working overtime every day to try to understand the programs written by others.

At first, most programmers did not consider how to make it more convenient for others to
understand their codes. Finally someone started to make coding standards because he could no
longer tolerate those ugly codes. Then someone invented tools that could implement the automatic
formatting of codes. formatR is such a tool for automatic formatting of R.

1.4.1 Introduction to formatR

formatR is a useful R package that provides the function to format R codes. We can set the codes
format of blank, retract, and line feed automatically in formatR, which may make the codes more
user-friendly.

This is the introduction of API in formatR:

 ◾ tidy.source: to format codes
 ◾ tidy.eval: to output formatted R codes and the results
 ◾ usage: definition of format function and output with specific width
 ◾ tidy.guit: a GUI tool, which supports the editing and formatting of R codes
 ◾ tidy.dir: to format all the R scripts in a certain directory

http://cran.r-project.org
http://cran.r-project.org

Basic R Packages ◾ 15

1.4.2 Installation of formatR

System environment used in this section:

 ◾ Windows 7 64bit
 ◾ R: 3.0.1 x86_64-w64-mingw32/x64 b4bit

Note: formatR supports both Windows 7 and Linux.

Installation of formatR

1.4.3 Use of formatR

1.4.3.1 tidy.source: To Format Codes by Inputting a Character String

1.4.3.2 tidy.source: To Format Codes by Inputting Files

messy.R is a R file that does not conform to the standards well.

Launch R.
~ R

Install formatR package.
> install.packages("formatR")
trying URL
'http://mirror.bjtu.edu.cn/cran/bin/windows/contrib/3.0/formatR_0.10.zip'
Content type 'application/zip' length 49263 bytes (48 Kb)
opened URL
downloaded 48 Kb

package 'formatR' successfully unpacked and MD5 sums checked

Load formatR.
library(formatR)

> tidy.source(text = c("{if(TRUE)1 else 2; if(FALSE){1+1", "## comments", "}
else 2}"))
{
 if (TRUE)
 1 else 2
 if (FALSE) {
 1 + 1
 ## comments
 } else 2
}

> messy = system.file("format", "messy.R", package = "formatR")
> messy
[1] "C:/Program Files/R/R-3.0.1/library/formatR/format/messy.R"

16 ◾ R for Programmers: Mastering the Tools

The original code output of messy.R:

The code output after formatting:

The output after formatting has been processed with blank, retract, line feed, and comment,
which increases the readability of the codes.

1.4.3.3 Formatting and Outputting R Script Files

Create a new R script file: demo.r:

> src = readLines(messy)
> cat(src,sep="\n")
 # a single line of comments is preserved
1+1

if(TRUE){
x=1 # inline comments
}else{
x=2;print('Oh no... ask the right bracket to go away!')}
1*3 # one space before this comment will become two!
2+2+2 # 'short comments'

lm(y~x1+x2, data=data.frame(y=rnorm(100),x1=rnorm(100),x2=rnorm(100))) ###
only 'single quotes' are allowed in comments
1+1 ## comments after a long line
'a character string with \t in it'

here is a long long long long long long long long long long long long long
long long long long long long long comment

> tidy.source(messy)
a single line of comments is preserved
1 + 1

if (TRUE) {
 x = 1 # inline comments
} else {
 x = 2
 print("Oh no... ask the right bracket to go away!")
}
1 * 3 # one space before this comment will become two!
2 + 2 + 2 # 'short comments'

lm(y ~ x1 + x2, data = data.frame(y = rnorm(100), x1 = rnorm(100), x2 =
rnorm(100))) ### only 'single quotes' are allowed in comments
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
+ 1 + 1 + 1 ## comments after a long line
"a character string with \t in it"

here is a long long long long long long long long long long long long long
long long long
long long long long comment

Basic R Packages ◾ 17

Format demo.r:

Output the result of formatting to file demo2.r, as in Figure 1.3.

1.4.3.4 tidy.eval: Output Formatted R Codes and the Run Results

Run an R script in character string form:

~ vi demo.r

a<-1+1;a;matrix(rnorm(10),5);
if(a>2) {b=c('11',832);"#a>2";} else print('a is invalid!!')

> x = "demo.r"
> tidy.source(x)
a <- 1 + 1
a
matrix(rnorm(10), 5)
if (a > 2) {
 b = c("11", 832)
 "#a>2"
} else print("a is invalid!!")

> f="demo2.r"
> tidy.source(x, keep.blank.line = TRUE, file = f)
> file.show(f)

> tidy.eval(text = c("a<-1+1;a", "matrix(rnorm(10),5)"))
a <- 1 + 1
a
[1] 2

matrix(rnorm(10), 5)
[,1] [,2]
[1,] 0.65050729 0.1725221
[2,] 0.05174598 0.3434398
[3,] -0.91056310 0.1138733
[4,] 0.18131010 -0.7286614
[5,] 0.40811952 1.8288346

Figure 1.3 outputting the result of formatting to file.

18 ◾ R for Programmers: Mastering the Tools

1.4.3.5 usage: Definition of Format Function
and Output with Specific Width

We can print out only the function definition and skip the details of function by using usage.
Take the var function as an example: the default would be printing out a function detail if we

input var:

Sometimes the definition of a function can be very long, like in the function lm. We can con-
trol the display width of a function by the width parameter in usage.

> var
function (x, y = NULL, na.rm = FALSE, use)
{
if (missing(use))
use <- if (na.rm)
"na.or.complete"
else "everything"
na.method <- pmatch(use, c("all.obs", "complete.obs", "pairwise.complete.obs",
"everything", "na.or.complete"))
if (is.na(na.method))
stop("invalid 'use' argument")
if (is.data.frame(x))
x <- as.matrix(x)
else stopifnot(is.atomic(x))
if (is.data.frame(y))
y <- as.matrix(y)
else stopifnot(is.atomic(y))
.Call(C_cov, x, y, na.method, FALSE)
}
<bytecode: 0x0000000008fad030>
<environment: namespace:stats>

Print out only function definition by usage.
> usage(var)
var(x, y = NULL, na.rm = FALSE, use)

> usage(lm)
lm(formula, data, subset, weights, na.action, method = "qr", model =
TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE, contrasts
= NULL, offset,...)

Width parameter in usage, which can control the display width of a
function,
> usage(lm,width=30)
lm(formula, data, subset, weights,
 na.action, method = "qr", model = TRUE,
 x = FALSE, y = FALSE, qr = TRUE,
 singular.ok = TRUE, contrasts = NULL,
 offset,...)

Basic R Packages ◾ 19

1.4.3.6 tidy.gui: A GUI Tool Used to Edit and Format R Codes

tidy.gui() is a GUI tool that can be used to edit and format R codes in the interface. First install
the gWidgetsRGtk2 library:

Open GUI console:

First we input a piece of code that is not so reader-friendly, as in Figure 1.4.
Click transform, and we can see that the R codes are formatted in GUI editor. The result can

be seen in Figure 1.5.

1.4.3.7 tidy.fir: Format All the R Scripts in Directory dir

tidy.dir() can be used to format files in batch in certain directory. Now let’s create a new directory:
dir and create two R script files: dir.r, dir2.r in the directory dir.

> install.packages("gWidgetsRGtk2")
also installing the dependencies 'RGtk2', 'gWidgets'

trying URL
'http://mirror.bjtu.edu.cn/cran/bin/windows/contrib/3.0/RGtk2_2.20.25.
zip'
Content type 'application/zip' length 13646817 bytes (13.0 Mb)
opened URL
downloaded 13.0 Mb

trying URL
'http://mirror.bjtu.edu.cn/cran/bin/windows/contrib/3.0/
gWidgets_0.0-52.zip'
Content type 'application/zip' length 1212449 bytes (1.2 Mb)
opened URL
downloaded 1.2 Mb

trying URL

'http://mirror.bjtu.edu.cn/cran/bin/windows/contrib/3.0/gWidgetsRGtk2_
0.0-82.zip'
Content type 'application/zip' length 787592 bytes (769 Kb)
opened URL
downloaded 769 Kb

package 'RGtk2' successfully unpacked and MD5 sums checked
package 'gWidgets' successfully unpacked and MD5 sums checked
package 'gWidgetsRGtk2' successfully unpacked and MD5 sums checked

> library("gWidgetsRGtk2")
> g = tidy.gui()

20 ◾ R for Programmers: Mastering the Tools

Create directory dir.
~ mkdir dir
~ cd dir

Use vi to create file dir.r
~ vi dir.r
a<-1+1;a;matrix(rnorm(10),5);

~ vi dir2.r
if(a>2) {b=c('11',832);"#a>2";} else print('a is invalid!!')

Figure 1.5 Codes after formatting.

Figure 1.4 tidy in GUi.

Basic R Packages ◾ 21

Run tidy.dir:

View dir.r and dir2.r:

The codes have already been formatted!

1.4.4 Source Code Analysis of formatR

After all of the preceding operations, we easily find that the core function of formatR is tidy. source.
The source code can be downloaded from Github: https://github.com/yihui/formatR / blob
/ master/R/tidy.R.

I have added comments to the code:

> tidy.dir(path="dir")
tidying dir/dir.r
tidying dir/dir2.r

~ vi dir.r
a <- 1 + 1
a
matrix(rnorm(10), 5)

~ vi dir2.r
if (a > 2) {
 b = c("11", 832)
 "#a>2"
} else print("a is invalid!!")

tidy.source = function(
 source = 'clipboard', keep.comment = getOption('keep.comment', TRUE),
 keep.blank.line = getOption('keep.blank.line', TRUE),
 replace.assign = getOption('replace.assign', FALSE),
 left.brace.newline = getOption('left.brace.newline', FALSE),
 reindent.spaces = getOption('reindent.spaces', 4),
 output = TRUE, text = NULL,
 width.cutoff = getOption('width'),...
) {

 # Determine the source of input is clipboard.
 if (is.null(text)) {
 if (source == 'clipboard' && Sys.info()['sysname'] == 'Darwin') {
 source = pipe('pbpaste')
 }

https://github.com
https://github.com

22 ◾ R for Programmers: Mastering the Tools

 } else { # Determine the source of input is character string.
 source = textConnection(text); on.exit(close(source))
 }

 # Read source data by lines.
 text = readLines(source, warn = FALSE)

 # Length processing.
 if (length(text) == 0L || all(grepl('^\\s*$', text))) {
 if (output) cat('\n',...)
 return(list(text.tidy = text, text.mask = text))
 }

 # Blank processing.
 if (keep.blank.line && R3) {
 one = paste(text, collapse = '\n') # record how many line breaks
before/after
 n1 = attr(regexpr('^\n*', one), 'match.length')
 n2 = attr(regexpr('\n*$', one), 'match.length')
 }

 # Comment processing.
 if (keep.comment) text = mask_comments(text, width.cutoff, keep.
blank.line)

 # Transform the R codes into expression and back to character
string,to implement the interception of each statement.
 text.mask = tidy_block(text, width.cutoff, replace.assign &&
length(grep('=', text)))

 # Format the comments.
 text.tidy = if (keep.comment) unmask.source(text.mask) else text.
mask

 # Re-locate the retract.
 text.tidy = reindent_lines(text.tidy, reindent.spaces)

 # Linefeed of brackets.
 if (left.brace.newline) text.tidy = move_leftbrace(text.tidy)

 # Add null string to the beginning and the end.
 if (keep.blank.line && R3) text.tidy = c(rep('', n1), text.tidy,
rep('', n2))

 # Print out the formatted results in console.
 if (output) cat(paste(text.tidy, collapse = '\n'), '\n',...)

 # Return without printing out the results.
 invisible(list(text.tidy = text.tidy, text.mask = text.mask))

Basic R Packages ◾ 23

1.4.5 Bugs in the Source Code

I find a small problem while reading the source code: Assigning toward the right has not been
processed in version 3.0.1 of R. The bug has been reported to the author at https://github.com
/ yihui/formatR/issues/31.

Code of bug testing:

The bug has been fixed. The author’s reply: This bug has been fixed in R 3.0.2.

The functions provided in formatR are very useful and practical, especially when we read some
codes that do not conform to the standards very well. Here I suggest that integrated development
environment (IDE) insert formatR into the tools of editors as a standardized formatting tool. We
hope that reading others’ codes may become a happy experience in the future.

> c('11',832)->x2
> x2
[1] "11" "832"

Format the code.
> tidy.source(text="c('11',832)->x2")
c("11", 832) <- x2

> tidy.eval(text="c('11',832)->x2")
c("11", 832) <- x2
Error in eval(expr, envir, enclos): object 'x2' not found

Format the code.
> formatR::tidy.source(text="c('11',832)->x2")
x2 <- c("11", 832)
> sessionInfo()
R version 3.0.2 (2013-09-25)
Platform: x86_64-pc-linux-gnu (64-bit)

locale:
 [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
 [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
 [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
 [9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

loaded via a namespace (and not attached):
[1] formatR_0.10.3

https://github.com
https://github.com

24 ◾ R for Programmers: Mastering the Tools

1.5 Multiuser online Collaboration of R
Development: RStudio Server

Question
Which tool is the best for R development?

RStudio is an effective tool for R development, and it’s also the best IDE integrated environment
for R. RStudio Server is one of the best in RStudio. It not only provides Web functions, which can
be installed on remote server and visited by the Web, but also supports multiuser collaboration
development. Let’s try to use such an effective tool!

1.5.1 RStudio and RStudio Server

RStudio is a powerful, free and open application software of integrated development environment
of R. It can be installed on many systems including Windows, Linux, and Mac OS. RStudio
Server, a cloud development environment of RStudio based on Web visiting, needs to be installed
on a Linux server to support remote multiuser visits.

1.5.2 Installation of RStudio Server

The system environment used in this section:

 ◾ Linux: Ubuntu Server 12.04.2 LTS 64bit
 ◾ R: 3.0.1 x86_64-pc-linux-gnu
 ◾ IP:192.168.1.13

Note: RStudio Server supports only the Linux system. The latest version of RStudio Server can
be downloaded from http://www.rstudio.com/ide/download/server.html/.

Download and install RStudio Server of 64bit in Linux Ubuntu:

~ sudo apt-get install gdebi-core
~ sudo apt-get install libapparmor1 # Required only for Ubuntu, not
Debian
~ wget http://download2.rstudio.org/rstudio-server-0.97.551-amd64.
deb
~ sudo gdebi rstudio-server-0.97.551-amd64.deb

http://www.rstudio.com

Basic R Packages ◾ 25

RStudio Server will be launched automatically after installation.

It can be seen that RStudio Server has been launched, and port 8787 has been opened.

1.5.3 Use of RStudio Server

We can visit RStudio Server at http://192.168,1,13:8787, as in Figure 1.6.
A user account for the Linux system is needed if we log in to RStudio Server. We could oper-

ate directly on the Linux system if we need to increase or decrease the number of users. In this
case, the username is conan, and the password is conan111. The screen after log-in can be seen in
Figure 1.7.

1.5.3.1 System Configuration of RStudio Server

There are two main configuration files of RStudio Server. The default file does not exist.

Check the running process of RStudio Server.
~ ps -aux|grep rstudio-server
998 2914 0.0 0.1 192884 2568 ? Ssl 10:40 0:00 /
usr/lib /rstudio-server/bin/rserver

/etc/rstudio/rserver.conf
/etc/rstudio/rsession.conf

Figure 1.6 Log-in screen of RStudio Server.

http://192.168,1,13:8787,

26 ◾ R for Programmers: Mastering the Tools

Set up the port and ip control:

Restart RStudio Server and the configuration have taken effect.

~ vi/etc/rstudio/rserver.conf

Listener port.
www-port=8080

IP address allowed for visiting. The default is 0.0.0.0.
www-address=127.0.0.1

~ sudo rstudio-server restart

Figure 1.7 Web screen of RStudio Server.

Basic R Packages ◾ 27

Management of session configuration.

1.5.3.2 System Management of RStudio Server

Here are the commands to start, stop, and restart RStudio Server.

Check that the R process is running.

Point PID, and stop the R process from running.

Suspend all the R processes from running.

~ vi/etc/rstudio/rsession.conf

Timeout minutes of session.
session-timeout-minutes=30

Setting up CRAN repository.
r-cran-repos=http://ftp.ctex.org/mirrors/CRAN/

Start
~ sudo rstudio-server start

Stop
~ sudo rstudio-server stop

Restart
~ sudo rstudio-server restart

~ sudo rstudio-server active-sessions

PID TIME COMMAND
6817 00:00:03/usr/lib/rstudio-server/bin/rsession -u zd

~ sudo rstudio-server suspend-all

~ sudo rstudio-server suspend-session 6817

Check the process again.
~ sudo rstudio-server active-sessions
 PID TIME COMMAND

28 ◾ R for Programmers: Mastering the Tools

Force suspension of the running of the R process. This is an operation with the highest priority,
which will be executed immediately.

A temporary offline of RStudio Server will reject Web visiting and give users a friendly error.

Online of RStudio Server.

Other operations of RStudio Server are just the same as in the standalone version of RStudio.

1.5.4 Multiuser Collaboration of RStudio Server

1.5.4.1 Add New Users and New User Groups

~ sudo rstudio-server force-suspend-session <pid>
~ sudo rstudio-server force-suspend-all

~ sudo rstudio-server offline
rstudio-server start/running, process 6880

~ sudo rstudio-server online
rstudio-server start/running, process 6908

Create user group of Hadoop.
~ sudo groupadd hadoop

Create Hadoop user and add it to user group.
~ sudo useradd hadoop -g hadoop

Set the password for Hadoop user.
~ sudo passwd hadoop

Add Hadoop user to sudo.
~ sudo adduser hadoop sudo

Create home directory for Hadoop user.
~ sudo mkdir/home/hadoop

Set user permission for/home/Hadoop directory and its subdirectory.
~ sudo chown -R hadoop:hadoop/home/hadoop

www.allitebooks.com

http://www.allitebooks.org

Basic R Packages ◾ 29

Log in as a Hadoop user to check whether the setup is successful.

Open a new browser window and log in through the Hadoop account, as in Figure 1.8.

Remote log in through ssh.
~ ssh hadoop@localhost
~ bash

View the visiting directory after logging in.
~ pwd
/home/hadoop

Figure 1.8 Log in through Hadoop account.

30 ◾ R for Programmers: Mastering the Tools

1.5.4.2 Share of Git Codes

First, install Git.

Then we should upload the local project to Github. Create a new project rstudio-demo on
Github, with the address https://github.com/bsspirit/rstudio-demo. Upload the local directory to
rstudio-demo project by the operations that follow.

Open RStudio and set it to directory/home/conan/R/Github, tools –> version control –> proj-
ect setup, as in Figure 1.9.

sudo apt-get install git

Generate rsa key pair.
ssh-keygen -t rsa

View the public key.
cat/home/conan/.ssh/id_rsa.pub
ssh-rsa

AAAAB3NzaC1yc2EAAAADAQABAAABAQDMmnFyZe2RHpXaGmENdH9kSyDyVzRas4GtR wMN
x+qQ4QsB8xVTrIbFayG2ilt+P8UUkVYO0qtUJIaLRjGy/SvQzzL7JKX12+VyYoKTfKvZ
ZnANJ414d6 oZpbDwsC0Z7JARcWsFyTW1KxOMyesmzNNdB+F3bYN9sYNiTkOeVNVYmEQ8
aXywn4kcljBhVpT8PbuHl5eadSLt5zpN6bcX7tlquuTlRpLi1e4K+8j
Qo67H54FuDyrPLUYtVaiTNT/xWN6IU+DQ 9CbfykJ0hrfDU1d1LiLQ4K2Fdg+vcKtB7Wxe
z2wKjsxb4Cb8TLSbXdIKEwSOFooI Nw25g/Aamv /nVvW1 conan@conan-deskop

Create directory for rstudio-demo project.
~ mkdir /home/conan/R/github
~ cd /home/conan/R/github

Initialize git.
~ git init

Add current directory and its subdirectory to local Git library.
~ git add.

Commit in local Git library.
~ git commit -m 'first comment'

Bind current directory with Github projetct.
~ git remote add origin git@github.com:bsspirit/rstudio-demo.git

Upload codes in local git library to Github.
~ git push -u origin masterv

https://github.com

Basic R Packages ◾ 31

Modify the codes of sayHello.r in RStudio:

Commit: click tools –> version control –> commit, as in Figure 1.10.
Upload to Github: click tools –> version control –> push, as in Figure 1.11.
These powerful functions of RStudio have made programming quite easy to learn. Let’s start

doing this and try to be a real geek!

sayHello<-function(name){
 print(paste("hello",name))
}

sayHello("Conan")
sayHello("World")

Figure 1.9 Configure Github address in RStudio.

32 ◾ R for Programmers: Mastering the Tools

1.6 Foolproof Programming of R and JSon
Question
How do we convert an R data class into a JSON data class?

As a lightweight data format, JSON (JavaScript Object Notation) has been widely applied in all
kinds of environments. JSON is a standard object embedded in JavaScript, and a storage class of

Figure 1.10 Perform Git operations through RStudio.

Basic R Packages ◾ 33

table structure of MongoDB as well. JSON is semistructured, and it can express a rich meaning of
documents. There are fewer JSON documents than XML documents, which makes JSON docu-
ments more suitable for network transmission. As it is at an early stage, JSON is rarely used in R
programming. But as R becomes more popular and powerful, it has extended to many other fields,
including JSON. How can one convert a JSON data class into an R data class in a foolproof way?
The following is an introduction.

1.6.1 Introduction to rjson

rjson is an R package to make conversions between R and JSON that is very simple and supports
two ways of converting: based on R itself and based on the C library. Rjson provides only three
functions: fromJSON(), newJSONParser(), toJSON(). Here we introduce how to use rjson. The
system environment used in this section is

 ◾ Win7: x86_64-w64-mingw32/x64 (64-bit)
 ◾ R: version 3.0.1

Note: rjson supports both Windows 7 and Linux.

Figure 1.11 View the operations committed to Github.

34 ◾ R for Programmers: Mastering the Tools

1.6.1.1 Install and Load rjson

Then we create a new JSON file for testing.
Create JOSN file: fin0.json:

1.6.1.2 Call Function: fromJSON(): from JSON to R

Read JSON and parse it into an R object from fin0.json. We usually name the process of convert-
ing a byte or text formatting into a program an object deserialization process. The opposite process
is termed a serialization process.

> install.packages("rjson")
> library(rjson)

~ vi fin0.json

{
 "table1": {
 "time": "130911",
 "data": {
 "code": [
 "TF1312",
 "TF1403",
 "TF1406"
],
 "rt_time": [
 130911,
 130911,
 130911
]
 }
 },
 "table2": {
 "time": "130911",
 "data": {
 "contract": [
 "TF1312",
 "TF1312",
 "TF1403"
],
 "jtid": [
 99,
 65,
 21
]
 }
 }
}

Basic R Packages ◾ 35

Check the data class of R after converting:

It can be seen that after converting, the original JSON object has been parsed into an R
list except for the innermost part, which is now a basic class (numeric, character). If you take
a leaf node of JSON data in R object structure, the index path of JSON will be json.table1.
data.code[0].

> json_data <- fromJSON(paste(readLines("fin0.json"), collapse=""))
> json_data
$table1
$table1$time
[1] "130911"

$table1$data
$table1$data$code
[1] "TF1312" "TF1403" "TF1406"

$table1$data$rt_time
[1] 130911 130911 130911

$table2
$table2$time
[1] "130911"

$table2$data
$table2$data$contract
[1] "TF1312" "TF1312" "TF1403"

$table2$data$jtid
[1] 99 65 21

> class(json_data)
[1] "list"

> class(json_data$table2)
[1] "list"

> class(json_data$table2$data)
[1] "list"

> class(json_data$table2$data$jtid)
[1] "numeric"

> class(json_data$table1$data$code)
[1] "character"

36 ◾ R for Programmers: Mastering the Tools

1.6.1.3 toJSON(): from R to JSON

The process of turning R object into JSON string is named serialization process. Again we use
json_data above as example.

We can implement the conversion from an R object to JSON if we use the function toJSON().
If we output the result with the function print(), it would be an escaping output(\”). If we output
the result with the function cat, it would be a standard JSON string. There are two ways to output
JSON to fin0_out.json: writeLines() and skin().

Although the code is different, the output will be the same. WriteLines will create a blank line
at the end.

> json_data$table1$data$code
[1] "TF1312" "TF1403" "TF1406"

> json_data$table1$data$code[1]
[1] "TF1312"

> json_str<-toJSON(json_data)

> print(json_str)
[1]
"{\"table1\":{\"time\":\"130911\",\"data\":{\"code\":[\"TF1312\",\"T
F1403\",\"TF1406\"],\"rt_time\":[130911,130911,130911]}},\"table2\":
{\"time\":\"130911\",\"data\":{\"contract\":[\"TF1312\",\"TF1312\",\
"TF1403\"],\"jtid\":[99,65,21]}}}"

> cat(json_str)
{"table1":{"time":"130911","data":{"code":["TF1312","TF1403","TF1406
"],"rt_time":[130911,130911,130911]}},"table2":{"time":"130911","dat
a":{"contract":["TF1312","TF1312","TF1403"],"jtid":[99,65,21]}}}

writeLines
> writeLines(json_str, "fin0_out1.json")

sink
> sink("fin0_out2.json")
> cat(json_str)
> sink()

{"table1":{"time":"130911","data":{"code":["TF1312","TF1403","TF1406
"],"rt_time":[130911,130911,130911]}},"table2":{"time":"130911","dat
a":{"contract":["TF1312","TF1312","TF1403"],"jtid":[99,65,21]}}}

Basic R Packages ◾ 37

1.6.1.4 Converting between the C Library and R Library,
and Performance Test

Run a performance test to fromJSON:

It can be seen that an operation based on the C library is faster than that based on the R
library. The difference of 0.02 is not so obvious because the amount of data is small. When the
JSON string gets much bigger, the difference will be bigger too. The default way adopted by
fromJSON is C, so we do not need to add the parameter method = ‘C’ normally. Next we run a
performance test of toJSON.

The explanation is the same as given previously.

1.6.2 Introduction to RJSONIO

RSJONIO provides two main operations: deserialize a JSON string into an R object, and serialize an
R object into a JSON string. The two main functions of RJSONIO are fromJSON() and toJSON().
There are other helper functions: asJSVars(), basicJSONHandler(), isValidJSON() and readJSON-
Stream(). It is relatively slow to serialize a large object in rjson, whereas RJSONIO has solved this
problem. RJSONIO depends on the underlying C library, libjson.

1.6.2.1 Install and Load RJSONIO

> system.time(y <- fromJSON(json_str,method="C"))
User System Elapse
 0 0 0
> system.time(y2 <- fromJSON(json_str,method = "R"))
User System Elapse
0.02 0.00 0.02
> system.time(y3 <- fromJSON(json_str))
User System Elapse
 0 0 0

> system.time(y <- fromJSON(json_str,method="C"))
User System Elapse
 0 0 0
> system.time(y2 <- fromJSON(json_str,method = "R"))
User System Elapse
0.02 0.00 0.01
> system.time(y3 <- fromJSON(json_str))
User System Elapse
 0 0 0

> install.packages("RJSONIO")
> library(RJSONIO)

38 ◾ R for Programmers: Mastering the Tools

1.6.2.2 fromJSON(): from JSON to R

Test function fromJSON as in rjson.

We find that the result is the same as in rjson: The class of R object is all lists except for the
innermost part. Then take a leaf node:

1.6.2.3 toJSON: from R to JSON

Run a performance test for toJSON:

> json_data <- fromJSON(paste(readLines("fin0.json"), collapse=""))
> json_data
$table1
$table1$time
[1] "130911"

$table1$data
$table1$data$code
[1] "TF1312" "TF1403" "TF1406"

$table1$data$rt_time
[1] 130911 130911 130911

$table2
$table2$time
[1] "130911"

$table2$data
$table2$data$contract
[1] "TF1312" "TF1312" "TF1403"

$table2$data$jtid
[1] 99 65 21

> json_data$table1$data$code
[1] "TF1312" "TF1403" "TF1406"

> json_data$table1$data$code[1]
[1] "TF1312"

> json_str<-toJSON(json_data)

> print(json_str)
[1] "{\n \"table1\": {\n \"time\": \"130911\",\n\"data\": {\n
\"code\": [\"TF1312\", \"TF1403\", \"TF1406\"],\n\"rt_time\":

Basic R Packages ◾ 39

The output of toJSON is formatted, which is different from that of rjson. Then output it to
the file:

The result:

[1.3091e+05, 1.3091e+05, 1.3091e+05] \n} \n},\n\"table2\": {\n
\"time\": \"130911\",\n\"data\": {\n \"contract\": [\"TF1312\",
\"TF1312\", \"TF1403\"],\n\"jtid\": [99, 65, 21] \n}
\n} \n}"

> cat(json_str)
{
 "table1": {
 "time": "130911",
"data": {
 "code": ["TF1312", "TF1403", "TF1406"],
"rt_time": [1.3091e+05, 1.3091e+05, 1.3091e+05]
}
},
"table2": {
 "time": "130911",
"data": {
 "contract": ["TF1312", "TF1312", "TF1403"],
"jtid": [99, 65, 21]
}
}
}

> writeLines(json_str, "fin0_io.json")

{
 "table1": {
 "time": "130911",
 "data": {
 "code": ["TF1312", "TF1403", "TF1406"],
 "rt_time": [1.3091e+05, 1.3091e+05, 1.3091e+05]
 }
 },
 "table2": {
 "time": "130911",
 "data": {
 "contract": ["TF1312", "TF1312", "TF1403"],
 "jtid": [99, 65, 21]
 }
 }
}

40 ◾ R for Programmers: Mastering the Tools

1.6.2.4 isValidJSON(): Check Whether JSON Is Valid

Check whether the format of JSON is valid.

1.6.2.5 asJSVars(): Convert into a Variable Format of JavaScript

We get two JavaScript variables, array a and two-dimensional array myMatrix.

1.6.3 Implementation of Customized JSON

Data.frame is the most frequently used class in R. Next we will implement the conversion between
data.frame and JSON. First, convert a data.frame object of R into a JSON format defined by us.

Define the output format of JSON:

> isValidJSON(json_str)
Error in file(con, "r"): cannot open the connection

> isValidJSON(json_str,TRUE)
[1] TRUE

> isValidJSON(I('{"foo": "bar"}'))
[1] TRUE
> isValidJSON(I('{foo: "bar"}'))
[1] FALSE

> cat(asJSVars(a = 1:10, myMatrix = matrix(1:15, 3, 5)))
a = [1, 2, 3, 4, 5, 6, 7,f 8, 9, 10] ;

myMatrix = [[1, 4, 7, 10, 13],
 [2, 5, 8, 11, 14],
 [3, 6, 9, 12, 15]] ;

[
 {
 "code": "TF1312",
 "rt_time": "152929",
 "rt_latest": 93.76,
 "rt_bid1": 93.76,
 "rt_ask1": 90.76,
 "rt_bsize1": 2,
 "rt_asize1": 100,
 "optionValue": -0.4,
 "diffValue": 0.6
 }
]

Basic R Packages ◾ 41

Define a data.frame:

Use toJSON directly. The JSON string was transformed to array by its columns, which is not
what we want.

We need to run data processing to data.frame:

> df<-data.frame(
+ code=c('TF1312','TF1310','TF1313'),
+ rt_time=c("152929","152929","152929"),
+ rt_latest=c(93.76,93.76,93.76),
+ rt_bid1=c(93.76,93.76,93.76),
+ rt_ask1=c(90.76,90.76,90.76),
+ rt_bsize1=c(2,3,1),
+ rt_asize1=c(100,1,11),
+ optionValue=c(-0.4,0.2,-0.1),
+ diffValue=c(0.6,0.6,0.5)
+)

> df
 code rt_time rt_latest rt_bid1 rt_ask1 rt_bsize1 rt_asize1
optionValue diffValue
1 TF1312 152929 93.76 93.76 90.76 2 100
-0.4 0.6
2 TF1310 152929 93.76 93.76 90.76 3 1
0.2 0.6
3 TF1313 152929 93.76 93.76 90.76 1 11
-0.1 0.5

> cat(toJSON(df))
{
 "code": ["TF1312", "TF1310", "TF1313"],
"rt_time": ["152929", "152929", "152929"],
"rt_latest": [93.76, 93.76, 93.76],
"rt_bid1": [93.76, 93.76, 93.76],
"rt_ask1": [90.76, 90.76, 90.76],
"rt_bsize1": [2, 3, 1],
"rt_asize1": [100, 1, 11],
"optionValue": [-0.4, 0.2, -0.1],
"diffValue": [0.6, 0.6, 0.5]
}

Use plyr to run data processing
> library(plyr).
> cat(toJSON(unname(alply(df, 1, identity))))
[
 {
 "code": "TF1312",

42 ◾ R for Programmers: Mastering the Tools

The output is displayed through data conversion by the function alply(). Such output by lines
is exactly what we want.

1.6.4 Performance Comparison of JSON

We will run two performance tests: One is a serialization test (toJSON) on a large object between
rjson and RJONIO and the other is a serialization test (toJSON) between the output by lines and
output by columns in RJSONIO.

1.6.4.1 Serialization Test (toJSON) on a Large Object
between rjson and RJSONIO

Create a test script of rjson and run it on the command line.

"rt_time": "152929",
"rt_latest": 93.76,
"rt_bid1": 93.76,
"rt_ask1": 90.76,
"rt_bsize1": 2,
"rt_asize1": 100,
"optionValue": -0.4,
"diffValue": 0.6
},
{
 "code": "TF1310",
"rt_time": "152929",
"rt_latest": 93.76,
"rt_bid1": 93.76,
"rt_ask1": 90.76,
"rt_bsize1": 3,
"rt_asize1": 1,
"optionValue": 0.2,
"diffValue": 0.6
},
{
 "code": "TF1313",
"rt_time": "152929",
"rt_latest": 93.76,
"rt_bid1": 93.76,
"rt_ask1": 90.76,
"rt_bsize1": 1,
"rt_asize1": 11,
"optionValue": -0.1,
"diffValue": 0.5
}
]

> library(rjson)
> df<-data.frame(

Basic R Packages ◾ 43

And create a test script of RJSONIO and run it on the command line.

The results of a comparison show that the performance of rjson is better than that of RJSONIO.

1.6.4.2 Serialization Test (toJSON) between Output by Lines
and Output by Columns in RJSONIO

Create a test script of rjson and run it on the command line.

+ a=rep(letters,10000),
+ b=rnorm(260000),
+ c=as.factor(Sys.Date()-rep(1:260000))
+)
>
> system.time(rjson::toJSON(df))
1.01 0.02 1.03
> system.time(rjson::toJSON(df))
1.01 0.03 1.04
> system.time(rjson::toJSON(df))
0.98 0.05 1.03

> library(RJSONIO)
> df<-data.frame(
+ a=rep(letters,10000),
+ b=rnorm(260000),
+ c=as.factor(Sys.Date()-rep(1:260000))
+)

> system.time(RJSONIO::toJSON(df))
2.23 0.02 2.24
> system.time(RJSONIO::toJSON(df))
2.30 0.00 2.29
> system.time(RJSONIO::toJSON(df))
2.25 0.01 2.26

> library(rjson)
> library(plyr)

> df<-data.frame(
+ a=rep(letters,100),
+ b=rnorm(2600),
+ c=as.factor(Sys.Date()-rep(1:2600))
+)

> system.time(rjson::toJSON(df))
0.01 0.00 0.02
> system.time(rjson::toJSON(df))
0.01 0.00 0.02

44 ◾ R for Programmers: Mastering the Tools

And create a test script of RJSONIO and run it on the command line.

The result shows that output by columns is much more efficient than output by lines. Obviously
output by lines will run through extra data processes.

The test result that rjson is more efficient than RJSONIO cannot support the introduction of
RJSONIO. Of course, my one test cannot fully prove this conclusion. I hope that you can run
some tests by yourselves if you have enough time and interest.

1.7 High-Quality Graphic Rendering Library of R Cairo
Question
How do we draw a high-definition graphic without jagged edges using R?

> system.time(rjson::toJSON(unname(alply(df, 1, identity))))
1.55 0.02 1.56
> system.time(rjson::toJSON(unname(alply(df, 1, identity))))
0.83 0.00 0.83

> library(RJSONIO)
> library(plyr)

> df<-data.frame(
+ a=rep(letters,100),
+ b=rnorm(2600),
+ c=as.factor(Sys.Date()-rep(1:2600))
+)
>
> system.time(RJSONIO::toJSON(df))
0.03 0.00 0.03
> system.time(RJSONIO::toJSON(df))
0.04 0.00 0.03

> system.time(RJSONIO::toJSON(unname(alply(df, 1, identity))))
2.82 0.02 2.84
> system.time(RJSONIO::toJSON(unname(alply(df, 1, identity))))
2.06 0.00 2.06

Basic R Packages ◾ 45

R not only offers strong computing power in statistical analysis and data mining, but also qualifies
as a powerful tool in data visualization when compared to other expensive commercial software.
However, R cannot be strong in visualization without the support of all kinds of open source pack-
ages. Cairo is such a class library used in vector graphic processing. You can create high-quality vector
graphics (GIF, SVG, PDF, PostScript) and bitmaps (PNG, JEPG, TIFF) in Cairo and run high-
quality rendering in background programs as well. This section introduces how to use Cairo in R.

1.7.1 Introduction to Cairo

Cairo is a free library used for graphic drawing and rendering. It supports complex 2D drawing
and hardware acceleration. Although Cairo is written in C language, it provides an interface for
many languages and allows other languages to call it directly, including C++, C#, Java, Python,
Perl, Ruby, Scheme, and Smalltalk. The license agreement published by Cairo is GNU Lesser
General Public License version 2.1 (LGPL), or Mozilla Public License 1.1 (MPL). The official
release page of Cairo’s interface for R is http://www.rforge.net/Cairo/.

1.7.2 Installation of Cairo

System environment used in this section:

 ◾ Linux: Ubuntu 12.04.2 LTS 64bit
 ◾ R: 3.0.1 x86_64-pc-linux-gnu

Note: Cairo supports both Windows 7 and Linux.

Installation of Cairo in Linux Ubuntu is as follows.

1.7.3 Use of Cairo

It is very easy to use Cairo. It corresponds to the functions of the basic package grDevices.

 ◾ CairoPNG: grDevices:png()
 ◾ CairoJPEG: grDevices:jepg()
 ◾ CairoTIFF: grDevices:tiff()
 ◾ CairoSVG: grDevices:svg()
 ◾ Cairo PDF: grDevices:pdf()

Underlying dependant libraries of Cairo.
~ sudo apt-get install libcairo2-dev
~ sudo apt-get install libxt-dev

Start R.
~ R

Install Cairo.
> install.packages("Cairo")

http://www.rforge.net

46 ◾ R for Programmers: Mastering the Tools

The usual graphic output of me is png and svg. Here let’s check the compatibility of Cairo:

Here is the result of this check:

 ◾ Support: png, jpeg, pdf, svg, ps, xl1 (Linux desktop), raster
 ◾ Not support: tiff, win (win desktop)

Note: x11 would be FALSE and win would be TRUE in Windows.

Then let’s compare the effect of output by CairoPNG() and png().

1.7.3.1 Scatterplot

First we draw a scatterplot with 6000 points.

Two png files, plot4.pgn and Cairo4.png, will be generated in the current directory, as in
Figures 1.12 and 1.13.

The code of graphic output of SVG is

Load Cairo.
> library(Cairo)

Check the capability of Cairo.
> Cairo.capabilities()
 png jpeg tiff pdf svg ps x11 win raster
 TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE

Pick 6000 point coordinates randomly.
> x<-rnorm(6000)
> y<-rnorm(6000)

png function.
> png(file="plot4.png",width=640,height=480)
> plot(x,y,col="#ff000018",pch=19,cex=2,main = "plot")
> dev.off()

CairoPNG function
> CairoPNG(file="Cairo4.png",width=640,height=480)
> plot(x,y,col="#ff000018",pch=19,cex=2,main = "Cairo")
> dev.off()

> svg(file="plot-svg4.svg",width=6,height=6)
> plot(x,y,col="#ff000018",pch=19,cex=2,main = "plot-svg")
> dev.off()

> CairoSVG(file="Cairo-svg4.svg",width=6,height=6)
> plot(x,y,col="#ff000018",pch=19,cex=2,main = "Cairo-svg")
> dev.off()

Basic R Packages ◾ 47

Two svg files will be generated in the current directory: plot-svg4.svg and Cairo-svg4.svg.
These two files can be displayed in browsers.

1.7.3.2 Three-Dimensional Cross-Sectional View

Next, we’ll draw a three-dimensional cross-sectional view and use it to compare the output effect
between png() and CairoPNG().

Plot
4

2

0

–2

–2 0 2 4

–4

y

x

Figure 1.12 Graphic generated by png().

Cairo
4

2

0

–2

–2 0 2 4

–4

y

x

Figure 1.13 Graphic generated by CairoPnG().

48 ◾ R for Programmers: Mastering the Tools

Two png files will be generated in the current directory: plot2.png and Cairo2.ong, as in
Figures 1.14 and 1.15.

> x <- seq(-10, 10, length= 30)
> y <- x
> f <- function(x,y) {r <- sqrt(x^2+y^2); 10 * sin(r)/r}
> z <- outer(x, y, f)
> z[is.na(z)] <- 1

PNG graphic.
> png(file="plot2.png",width=640,height=480)
> op <- par(bg = "white", mar=c(0,2,3,0)+.1)
> persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col =
"lightblue", ltheta = 120, shade = 0.75, ticktype = "detailed", xlab
= "X", ylab = "Y", zlab = "Sinc(r)", main = "Plot")
> par(op)
> dev.off()

> CairoPNG(file="Cairo2.png",width=640,height=480)
> op <- par(bg = "white", mar=c(0,2,3,0)+.1)
> persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col =
"lightblue", ltheta = 120, shade = 0.75, ticktype = "detailed", xlab
= "X", ylab = "Y", zlab = "Sinc(r)", main = "Cairo")
> par(op)
> dev.off()

Plot

0.8

0.6

0.4

−1.0

−0.5

−0.5

0.0

0.5

1.0

0.0

0.5

Sinc (r)

X

Y

Figure 1.14 Graphic generated by png().

Basic R Packages ◾ 49

1.7.3.3 Graphic with Mass Text in It

Lastly, we compare the output effect of graphics with mass text in it between png() and CairroPNG().

Two png files will be generated in the current directory: plot5.png and Cairo5.png, as in
Figures 1.16 and 1.17.

If we check the properties of these two files we find that a graphic generated by png is 54 kb
in size, while that generated by CairoPNG is 43.8 kb in size, which can be seen in Figure 1.18.

Load MASS.
> library(MASS)

Load HairEyeColor data set.
> data(HairEyeColor)
> x <- HairEyeColor[,,1]+HairEyeColor[,,2]

> n <- 100
> m <- matrix(sample(c(T,F),n^2,replace=T), nr=n, nc=n)

PNG Graphic.
> png(file="plot5.png",width=640,height=480)
> biplot(corresp(m, nf=2), main="Plot")
> dev.off()

> CairoPNG(file="Cairo5.png",width=640,height=480)
> biplot(corresp(m, nf=2), main="Cairo")
> dev.off()

Cairo

0.8

0.6

0.4

−1.0

−0.5

−0.5

0.0

0.5

1.0

0.0

0.5

Sinc (r)

X

Y

Figure 1.15 Graphic generated by CairoPnG().

50 ◾ R for Programmers: Mastering the Tools

−0.6 −0.4 −0.2 0.0 0.2 0.4
Plot

0.4

0.2

0.0

−0.2

−0.4

−0.6

−0.4

−0.2

0.0

0.2

0.4

−0.6

−0.6 0.4 −0.2 0.0 0.2 0.4

R 60

R 45

C 69 R 72
R 27 C 95

R 54C 67 R 4 R 11 C 58R 82C 27 C 5748 R 76R 98
R 73

C 82 R 30 R 90R 84C 2
R 6R 99C 98C 29R

R 1C 100C 6R 6
R 53

C 68
C 96

R 66
R 79R 3 C 18

C 756 C 88C 56
C 76R 5C 99

C 24
C 65C 26C 50

C 9
C 56R 88R 43

C 89R 89C 88

R 26R 86C 41R 1R 77C 68C 88

C 99R 37R 69R 13

C 58
C 82 C 18

C 97 C 77
R 34

C 3C 6

R 94
C 89

C 74C 94
C 90

R 28
R 83

C 8
C 24R 100R 16

C 31

C 62
C 14R 10C 39

C 54C 59
C 80C 59C 85

R 45C 47C 74

R 67
R 38

R 48C 17

C 12C 64

R 46
R 80R 91

R 21
C 38 R 62

R 96C 15

R 51

C 49
R 40

R 12

R 89

C 44C 32
C 61

C 23R 52
R 87C 72

C 30C 81R 43 R 56R 65
R 22

R 24R 82

R 92C 25R 29C 34C 32
C 54
C 28
C 56

R 32R 56R 93
R 14R 63

C 53
C 11R 58R 8R 75C 8R 9

R 49C 84
R 23

C 18

C 72C 58 R 25

R 47

C 75C 69

R 51

C 88

C 94
C 99

R 83R 28

C 53

R 2

Figure 1.16 Graphic generated by png().

−0.6 −0.4 −0.2 0.0 0.2 0.4
Cairo

0.4

0.2

0.0

−0.2

−0.4

−0.6

−0.4

−0.2

0.0

0.2

0.4

−0.6

−0.6 0.4 −0.2 0.0 0.2 0.4

R 60

R 45

C 69 R 72
R 27 C 95

R 54C 67 R 4 R 11 C 58R 82C 27 C 5748 R 76R 98
R 73

C 82 R 30 R 90R 84C 2
R 6R 99C 98C 29R

R 1C 100C 6R 6
R 53

C 68
C 96

R 66
R 79R 3 C 18

C 756 C 88C 56
C 76R 5C 99

C 24
C 65C 26C 50

C 9
C 56R 88R 43

C 89R 89C 88

R 26R 86C 41R 1R 77C 68C 88

C 99R 37R 69R 13

C 58
C 82 C 18

C 97 C 77
R 34

C 3C 6

R 94
C 89

C 74C 94
C 90

R 28
R 83

C 8
C 24R 100R 16

C 31

C 62
C 14R 10C 39

C 54C 59
C 80C 59C 85

R 45C 47C 74

R 67
R 38

R 48C 17

C 12C 64

R 46
R 80R 91

R 21
C 38 R 62

R 96C 15

R 51

C 49
R 40

R 12

R 89

C 44C 32
C 61

C 23R 52
R 87C 72

C 30C 81R 43 R 56R 65
R 22

R 24R 82

R 92C 25R 29C 34C 32
C 54
C 28
C 56

R 32R 56R 93
R 14R 63

C 53
C 11R 58R 8R 75C 8R 9

R 49C 84
R 23

C 18

C 72C 58 R 25

R 47

C 75C 69

R 51

C 88

C 94
C 99

R 83R 28

C 53

R 2

Figure 1.17 Graphic generated by CairoPnG().

Basic R Packages ◾ 51

The code of graphic output of SVG is

Two svg files will be generated in the current directory: plot-svg5.svg and Cairo-svg5.svg.
For all three of the cases in the preceding text, it’s quite difficult to tell the difference between

CairoPNG() and png(). Cairo is just a little lighter and softer. Concerning this issue, Xie Yihui has
added that it’s hard to tell the difference because now the png() equipment of R adopts Cairo in
default. Several years ago png() did not adopt Cairo, so the PNG generated at that time is rather
low in quality. In most cases there would be little difference, while sometimes the performance of
anti-aliasing will be different.

> svg(file="plot-svg5.svg",width=6,height=6)
> biplot(corresp(m, nf=2), main="Plot-svg")
> dev.off()

> CairoSVG(file="Cairo-svg5.svg",width=6,height=6)
> biplot(corresp(m, nf=2), main="Cairo-svg")
> dev.off()

Figure 1.18 Comparison of properties of two files.

52 ◾ R for Programmers: Mastering the Tools

1.8 A Peculiar tool Set: catools
Question
What can R do except statistics?

R is born to be free. It is different from languages like Java and PHP as they are restrained by
unified standards. Almost all R packages vary in their naming and syntax, while R is even mixed
and matched in its functions. CaTools is such a mixed and matched library, covering several sets
of unrelated functions including image processing, encoding and decoding, classifier, vector com-
puting, and scientific computing, which are all convenient in use and powerful in function. It’s
impossible to describe these packages in a few words. Only the word peculiar can summarizes its
features.

1.8.1 Introduction to caTools

caTools is a basic tool package of R, including moving windows statistics, read/write binary
images, quick calculation of area under the curve (AUC), LogitBoost classifier, encoder/decoder
of base64, and various functions in quick calculation such as round-off, error, sum, and accumula-
tive sum. The following is an introduction of API in caTools.

 1. Read/write binary images
 a. read.gif & write.gif: read/write images in GIF format
 b. read.ENVI & write.ENVI: read/write images in ENVI format, such as GIS images
 2. Encoder/decoder of Base64
 a. base64encode: encoder
 b. base64decode: decoder

Note: Base64 is a way to present binary data-based 64 printable characters. As the sixth
power of 2 is 64, every 6 bits will be a unit, corresponding to a certain printable character.

 3. Quick calculation of area under the curve (AUC)
 a. colAUC: calculate area under the ROC curve (AUC)
 b. combs: find all unordered combination of elements of vector
 c. trapz: trapezoidal rule of numerical integration
 4. LogitBoost classifier
 a. LogitBoost: logitBoost classification algorithm
 b. Predict.LogitBoost: prediction based on logitBoost classification algorithm
 c. sample.split: split data into test and train set

Basic R Packages ◾ 53

 5. Quick calculation tools
 a. runmad: calculate median of vector
 b. runmean: calculate mean of vector
 c. runmin & runmax: calculate min and max of vector
 d. runquatile: calculate quantile of vector
 e. runsd: calculate standard deviation of vector
 f. sumexact, cumsumexact: sum without round-off errors, aiming at optimization of accu-

racy of double data types in programming languages

1.8.2 Installation of caTools

Environment system used in this section:

 ◾ Linux: Ubuntu Server 12.04.2 LTS 64bit
 ◾ R: 3.0.1 x86_64-pc-linux-gnu

Note: caTools supports both Windows 7 and Linux.

We only need one command to install caTools.

Start R.
~ R

Installation command of caTools.
> install.packages("caTools")
* installing *source* package 'caTools'...
** package 'caTools' successfully unpacked and MD5 sums checked
** libs
g++ -I/usr/share/R/include -DNDEBUG -fpic -O3 -pipe -g -c
Gif2R.cpp -o Gif2R.o
g++ -I/usr/share/R/include -DNDEBUG -fpic -O3 -pipe -g -c
GifTools.cpp -o GifTools.o
gcc -std=gnu99 -I/usr/share/R/include -DNDEBUG -fpic -O3 -pipe
-g -c runfunc.c -o runfunc.o
g++ -shared -o caTools.so Gif2R.o GifTools.o runfunc.o -L/usr/lib/R/lib
-lR
installing to/home/conan/R/x86_64-pc-linux-gnu-library/3.0/caTools/
libs
** R
** preparing package for lazy loading
** help
*** installing help indices
** building package indices
** testing if installed package can be loaded
* DONE (caTools)

54 ◾ R for Programmers: Mastering the Tools

1.8.3 Use of caTools

Load caTools library in R.

1.8.3.1 Read/Write Binary Images: gif

 1. Write a gif image.

 2. Read a gif image into memory and output it.

> library(caTools)

Extract the data set: datasets::volcano
Write it into volcano.gif.
> write.gif(volcano, "volcano.gif", col=terrain.colors, flip=TRUE,
scale="always", comment="Maunga Whau Volcano")

Read the image to y.
> y = read.gif("volcano.gif", verbose=TRUE, flip=TRUE)
GIF image header
Global colormap with 256 colors
Comment Extension
Image [61 x 87]: 3585 bytes
GIF Terminator

Check the attribute of y.
> attributes(y)
$names
[1] "image" "col" "transparent" "comment"

Check the storage matrix of image.
> class(y$image)
[1] "matrix"

Number of columns.
> ncol(y$image)
[1] 61

Number of rows.
> nrow(y$image)
[1] 87

Extract the first 10 colors from color table.
> head(y$col,10)
 [1] "#00A600FF" "#01A600FF" "#03A700FF" "#04A700FF" "#05A800FF"
"#07A800FF" "#08A900FF"
 [8] "#09A900FF" "#0BAA00FF" "#0CAA00FF"

Basic R Packages ◾ 55

 3. Create a Git animation.

A wave.gif file will be generated in the current directory, as in Figure 1.20. The demonstration
effect of animation can be seen in the online sources of this book, file wave.gif.

We can see that caTools has the same function of outputting GIF animation with the anima-
tion package made by Xie Yihui. We do not need to rely on other software libraries when we use
caTools to make gif animation, but the saveGIF function of animation package needs to rely on
third-party software such as ImageMagick and GraphicsMagick.

1.8.3.2 Encoder/Decoder of Base64

Base64 is often used to process text data, to present, transfer, and store some binary data, includ-
ing e-mail of MIME, e-mail via MIME, and complex data stored in XML. The encoding and

Check the comment of the image.
> y$comment
[1] "Maunga Whau Volcano"

Draw the image through y, as in Figure 1.19.*
image(y$image, col=y$col, main=y$comment, asp=1)

* The readers may run the codes and generate color images.

> x <- y <- seq(-4*pi, 4*pi, len=200)
> r <- sqrt(outer(x^2, y^2, "+"))
> image = array(0, c(200, 200, 10))
> for(i in 1:10) image[,,i] = cos(r-(2*pi*i/10))/(r^.25)
> write.gif(image, "wave.gif", col="rainbow")
> y = read.gif("wave.gif")
> for(i in 1:10) image(y$image[,,i], col=y$col, breaks=(0:256)-0.5,
asp=1)

Figure 1.19 topographic map of volcano.

56 ◾ R for Programmers: Mastering the Tools

decoding of base64 supports only a class of vector but not data.frame and list. Here is the code to
encode and decode a Boolean vector:

Here is the code to encode and decode a character string:

Set the size of each element.
> size=1
> x = (10*runif(10)>5)
> y = base64encode(x, size=size)
> z = base64decode(y, typeof(x), size=size)

Original Data
> x
 [1] FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE

Ciphertext after encoding.
> y
 [1] "AAAAAAEBAAAAAA=="

Plaintext after decoding.
> z
 [1] FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE

> x = "Hello R!!" # character
> y = base64encode(x)
> z = base64decode(y, typeof(x))

Original data.
> x
 [1] "Hello R!!"

Figure 1.20 Animation of concentric circles.

Basic R Packages ◾ 57

Error test: Encode and decode a data frame.

1.8.3.3 ROC Curve

ROC curve is the abbreviation for receiver operating characteristic curve, which is an analytical tool
of row pictures. It is used mainly in selecting the optimal signal detection model, giving up sub-
optimal models and setting the optimal threshold value in a model. The ROC curve was invented
by electronics engineers and radar engineers during the Second World War, for signal detection of
enemy carriers on the battlefield. It was then introduced to psychology to make perception tests of
signals. ROC analysis has been used in medicine, wireless, biology, and criminal psychology for
decades. It has also recently gained substantial applications in machine learning and data mining.

Extract data set Mass::cats, the three columns are Sex, Bwt (body weight), and Hwt (heart weight).

Ciphertext after encoding.
> y
 [1] "SGVsbG8gUiEh"

Plaintext after decoding.
> z
 [1] "Hello R!!"

> data(iris)
> class(iris)
 [1] "data.frame"

Original data.
> head(x)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

Encode the data frame.
> base64encode(x)
Error in writeBin(x, raw(), size = size, endian = endian):
 can only write vector objects

> library(MASS)
Load the data set.
> data(cats)
Print the first 6 lines.

58 ◾ R for Programmers: Mastering the Tools

The standard to judge the quality of classifiers (predicting models) by AUC:

 ◾ AUC = 1 is a perfect classifier. We can always get a perfect prediction no matter what thresh-
old value we set by using such a classifier. A perfect classifier does not exist for prediction on
most occasions.

 ◾ 0.5 < AUC < 1 is better than a random prediction. The classifier (model) will have predictive
value if the threshold value is set appropriately.

 ◾ AUC = 0.5 is the same as a random prediction (like flipping coins). The model does not have
predictive value.

 ◾ AUC < 0.5 is worse than a random prediction. But if we always take the opposite side of this
prediction, it’s better than a random prediction.

> head(cats)
 Sex Bwt Hwt
1 F 2.0 7.0
2 F 2.0 7.4
3 F 2.0 9.5
4 F 2.1 7.2
5 F 2.1 7.3
6 F 2.1 7.6

Calculate the AUC of ROC curve and output image, as in Figure 1.21.
> colAUC(cats[,2:3], cats[,1], plotROC=TRUE)
 Bwt Hwt
F vs. M 0.8338451 0.759048

ROC curves
1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

(S
en

sit
iv

ity
)

Probability of false alarm
(1-specificity)

Bwt
Hwt

Figure 1.21 RoC curve.

Basic R Packages ◾ 59

It can be seen from Figure 1.21 that Bwt and Hwt are all within (0.5, 1). So data set cats is a a
real and effective data set. If the data set cats is a data set of classification, we can judge the quality
of this classifier using AUC on this data set.

1.8.3.4 Unordered Combination of Elements of a Vector

The function combs(v,k) is used to create a matrix of an unordered combination. The columns of
the matrix represent the elements in this combination, and the rows of the matrix represent each
combination. Parameter v is a vector, and k is numeric, less than the length of v [1:length(v)].

1.8.3.5 Trapezoidal Rule of Numerical Integration

Trapezoidal rule: If you approximate an integrand to a linear function, the integrated part will be
an approximation of a trapezoid.

> combs(2:5, 3)
 [,1] [,2] [,3]
[1,] 2 3 4
[2,] 2 3 5
[3,] 2 4 5
[4,] 3 4 5

> combs(c("cats", "dogs", "mice"), 2)
 [,1] [,2]
[1,] "cats" "dogs"
[2,] "cats" "mice"
[3,] "dogs" "mice"

Create a matrix by quick combination.
> a = combs(1:4, 2)
> a
[,1] [,2]
[1,] 1 2
[2,] 1 3
[3,] 1 4
[4,] 2 3
[5,] 2 4
[6,] 3 4
> b = matrix(c(1,1,1,2,2,3,2,3,4,3,4,4), 6, 2)
> b
 [,1] [,2]
[1,] 1 2
[2,] 1 3
[3,] 1 4
[4,] 2 3
[5,] 2 4
[6,] 3 4

60 ◾ R for Programmers: Mastering the Tools

1.8.3.6 LogitBoost Classifier

If you extract the data set datasets::iris, the five columns are Sepan.Length, Sepal.Width, Petal.
Length, Petal.Width and Species.

integral of sine function in [0, pi] range suppose to be exactly
2.
lets calculate it using 10 samples:
> x = (1:10)*pi/10
> trapz(x, sin(x))
[1] 1.934983

> x = (1:1000)*pi/1000
> trapz(x, sin(x))
[1] 1.999993

 > head(iris)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

> Data = iris[,-5]
> Label = iris[, 5]

Train model.
> model = LogitBoost(Data, Label, nIter=20)

Model data.
> model
$Stump
 feature threshhold sign feature threshhold sign feature threshhold sign
 [1,] 3 1.9 -1 2 2.9 -1 4 1.6 1
 [2,] 4 0.6 -1 3 4.7 -1 3 4.8 1
 [3,] 3 1.9 -1 2 2.0 -1 4 1.7 1
 [4,] 4 0.6 -1 3 1.9 1 3 4.9 1
 [5,] 3 1.9 -1 4 1.6 -1 4 1.3 1
 [6,] 4 0.6 -1 1 6.5 1 2 2.6 -1
 [7,] 3 1.9 -1 3 1.9 1 4 1.7 1
 [8,] 4 0.6 -1 2 2.0 -1 2 3.0 -1
 [9,] 3 1.9 -1 3 5.0 -1 3 5.0 1
[10,] 4 0.6 -1 2 2.9 1 1 4.9 -1
[11,] 3 1.9 -1 3 1.9 1 3 4.4 1
[12,] 4 0.6 -1 2 2.0 -1 4 1.7 1
[13,] 3 1.9 -1 3 5.1 -1 2 3.1 -1
[14,] 4 0.6 -1 2 2.0 -1 3 5.1 1
[15,] 3 1.9 -1 3 1.9 1 1 6.5 -1
[16,] 4 0.6 -1 4 1.6 -1 3 5.1 1
[17,] 3 1.9 -1 2 3.1 1 2 3.1 -1
[18,] 4 0.6 -1 3 1.9 1 1 4.9 -1

Basic R Packages ◾ 61

For the first six pieces of data, Lab columns show that the data belong to classification 1, setosa.
The other three columns—setosa, versicolor, and virginica—represent the probability of that clas-
sification. Next we set iterations to compare the result of the classification and that of real data.

[19,] 3 1.9 -1 2 2.0 -1 4 1.4 1
[20,] 4 0.6 -1 3 5.1 -1 2 2.2 -1

$lablist
[1] setosa versicolor virginica
Levels: setosa versicolor virginica

attr(,"class")
[1] "LogitBoost"

Prediction on Classification. Lab only displays the result of classifying,
Prob displays the probability of each classification.
> Lab = predict(model, Data)
> Prob = predict(model, Data, type="raw")

Merge the result and print out the first 6.
> t = cbind(Lab, Prob)
> head(t)
 Lab setosa versicolor virginica
[1,] 1 1 0.017986210 1.522998e-08
[2,] 1 1 0.002472623 3.353501e-04
[3,] 1 1 0.017986210 8.315280e-07
[4,] 1 1 0.002472623 4.539787e-05
[5,] 1 1 0.017986210 1.522998e-08
[6,] 1 1 0.017986210 1.522998e-08

Set iterations to 2.
> table(predict(model, Data, nIter=2), Label)
 Label
 setosa versicolor virginica
 setosa 48 0 0
 versicolor 0 45 1
 virginica 0 3 45

Set iterations to 10.
> table(predict(model, Data, nIter=10), Label)
 Label
 setosa versicolor virginica
 setosa 50 0 0
 versicolor 0 47 0
 virginica 0 1 47

Default iteration, nIter value of LogitBoost in train.
> table(predict(model, Data), Label)
 Label
 setosa versicolor virginica
 setosa 50 0 0
 versicolor 0 49 0
 virginica 0 0 48

62 ◾ R for Programmers: Mastering the Tools

From the three preceding tests we can see that the more iteration, the more accurate the
model will be. Then we split the train set and test set randomly and make a prediction on the
classification.

1.8.3.7 Quick Calculation Tool: runmean

The moving average is a very popular, simple, and practical analytical index in stock trading. Now
we calculate the moving average of time series data. The output is in Figure 1.22.

Extract train set randomly.
> mask = sample.split(Label)

The 99th record of train set.
> length(which(mask))
[1] 99

The 51st record of test set.
> length(which(!mask))
[1] 51

Train model.
> model = LogitBoost(Data[mask,], Label[mask], nIter=10)

Prediction on classification.
> table(predict(model, Data[!mask,], nIter=2), Label[!mask])
 setosa versicolor virginica
 setosa 16 0 0
 versicolor 0 15 3
 virginica 0 1 12

> table(predict(model, Data[!mask,]), Label[!mask])
 setosa versicolor virginica
 setosa 17 0 0
 versicolor 0 16 4
 virginica 0 1 13

Take the data set datasets::BJsales.
> BJsales
Time Series:
Start = 1
End = 150
Frequency = 1
 [1] 200.1 199.5 199.4 198.9 199.0 200.2 198.6 200.0 200.3 201.2
201.6 201.5
 [13] 201.5 203.5 204.9 207.1 210.5 210.5 209.8 208.8 209.5 213.2
213.7 215.1
 [25] 218.7 219.8 220.5 223.8 222.8 223.8 221.7 222.3 220.8 219.4
220.1 220.6
 [37] 218.9 217.8 217.7 215.0 215.3 215.9 216.7 216.7 217.7 218.7
222.9 224.9

Basic R Packages ◾ 63

There are six lines in Figure 1.22. The black line is the original data, and lines in other colors
are moving averages in different units. For example, the red line represents the average of three
points, and the green line represents the average of eight points.*

* The readers may run the source code to check the color image.

 [49] 222.2 220.7 220.0 218.7 217.0 215.9 215.8 214.1 212.3 213.9
214.6 213.6
 [61] 212.1 211.4 213.1 212.9 213.3 211.5 212.3 213.0 211.0 210.7
210.1 211.4
 [73] 210.0 209.7 208.8 208.8 208.8 210.6 211.9 212.8 212.5 214.8
215.3 217.5
 [85] 218.8 220.7 222.2 226.7 228.4 233.2 235.7 237.1 240.6 243.8
245.3 246.0
 [97] 246.3 247.7 247.6 247.8 249.4 249.0 249.9 250.5 251.5 249.0
247.6 248.8
[109] 250.4 250.7 253.0 253.7 255.0 256.2 256.0 257.4 260.4 260.0
261.3 260.4
[121] 261.6 260.8 259.8 259.0 258.9 257.4 257.7 257.9 257.4 257.3
257.6 258.9
[133] 257.8 257.7 257.2 257.5 256.8 257.5 257.0 257.6 257.3 257.5
259.6 261.1
[145] 262.9 263.3 262.8 261.8 262.2 262.7

> plot(BJsales, col="black", main = "Moving Window Means")
> lines(runmean(BJsales, 3), col="red")
> lines(runmean(BJsales, 8), col="green")
> lines(runmean(BJsales,15), col="blue")
> lines(runmean(BJsales,24), col="magenta")
> lines(runmean(BJsales,50), col="cyan")

Moving window means

260

250

240

230

220

210

200

0 50 100 150
Time

BJ
sa

le
s

Figure 1.22 Moving average.

64 ◾ R for Programmers: Mastering the Tools

1.8.3.8 Combinations of Quick Calculation Tools

Extract maximum path (runmax), minimum path (runmin), mean path (runmean), and median
path (runmed) of the data set. The output is in Figure 1.23.

1.8.3.9 Exact Summation

There will be errors in all programming languages in making decimal calculations using comput-
ers. There is such a problem in R as well. First we do sum by sum().

> n=200
> x = rnorm(n,sd=30) + abs(seq(n)-n/4)
> plot(x, main = "Moving Window Analysis Functions (window
size=25)")
> lines(runmin (x,k), col="red")
> lines(runmed (x,k), col="green")
> lines(runmean(x,k), col="blue")
> lines(runmax (x,k), col="cyan")

Summation
> x = c(1, 1e20, 1e40, -1e40, -1e20, -1)
> a = sum(x); print(a)
[1] -1e+20

Exact Summation
> b = sumexact(x); print(b)
[1] 0

Moving window analysis functions (window size = 25)
200

150

100

50

0

−50

0 50 100 150 200
Index

x

Figure 1.23 Path graph.

Basic R Packages ◾ 65

If we sum the vector x, the result should be 0, but the result in sum() is –1e+20. This is because
there is a calculation error caused by the accuracy of programming. The error no longer exists after
correction by sumexact(). Then we do an accumulative sum by cumsum().

There is also an error in cumsum(), which needs to be corrected by cumsumexact().
In the end, I’d like to once again use the word peculiar to summarize this tool set. I believe

that you’ve already found its peculiarity.

Accumulative summation.
> a = cumsum(x); print(a)
[1] 1e+00 1e+20 1e+40 0e+00 -1e+20 -1e+20

Exact accumulative summation.
> b = cumsumexact(x); print(b)
[1] 1e+00 1e+20 1e+40 1e+20 1e+00 0e+00

67

Chapter 2

Basic Packages of time Series

This chapter mainly introduces three packages of R that can process time series data. It may help
readers to master the data structure and basic use of time series data.

2.1 Basic time Series Library of R: zoo
Question
How do we process time series data in R?

Time series analysis is a statistical method of dynamic data processing. Through time series analy-
sis, we can figure out what is changing in the world! R, as an effective tool for statistical analysis,
is very powerful in time series processing. A separate data class defined in R, zoo, is suitable for
time series data; it is the basic library for time series and stock analysis. This section introduces the
structure of zoo and how to use it in R.

2.1.1 Introduction to zoo

zoo is a class library of R. In the library zoo, an object of class S3 named zoo is defined, which is used
to describe regular or irregular time series data. zoo object is an independent object covering index,

68 ◾ R for Programmers: Mastering the Tools

date, and time, and depends only on the basic R environment. zooreg object extends and behaves like
zoo object, but it is used only in analysis of regular time series data. Many other packages of R for
time series analysis are based on zoo and zooreg. There are mainly six kind of API in zoo:

 1. Basic object
– zoo: ordered times series object
– zooreg: regular time series object, extending and behaving like zoo object. It is different

from zoo in that it demands that data be continuous
 2. Class conversion

– as.zoo: coercion from and to zoo
– plot.zoo: plotting method for objects of class zoo
– xyplot.zoo: plot zoo series with Lattice
– ggplot2.zoo: plot zoo objects with ggplot2

 3. Data operation
– coredata: extract/replace the core data of zoo
– index: extract/replace the index of zoo
– window.zoo: filter data by time
– merge.zoo: merge two or more zoo objects
– read.zoo: read zoo sequence from files
– aggregate.zoo: compute summary statistics of zoo objects
– rollapply: apply rolling functions
– rollmean: calculate roll mean of zoo data

 4. Processing of NA
– na.fill: fill NA
– na.locf: replace NA
– na.aggregate: replace NA by aggregation
– na.approx: replace NA using interpolation
– na.StructTS: replace NA using seasonal Kalman filter
– na.trim: filter records with NA

 5. Auxiliary tools
– is.regular: check regularity of a series
– lag.zoo: calculate lag and difference
– MATCH: value matching
– ORDER: compute ordering permutation

 6. Display control
– yearqtr: display time in year and quarter
– yearmon: display time in year and month
– xblocks: plot contiguous blocks along x-axis
– make.par.list: format conversion for plot.zoo data and xyplot.zoo data

2.1.2 Installation of zoo

System environment used in this section:

 ◾ Windows 7 64bit
 ◾ R: 3.0.1 x86_64-w64-mingw32/x64 b4bit

www.allitebooks.com

http://www.allitebooks.org

Basic Packages of Time Series ◾ 69

Note: zoo supports both Windows 7 and Linux.
The installation of zoo:

2.1.3 Use of zoo

2.1.3.1 zoo Object

There are two parts in zoo object: core data and index. First is the definition of function:

X is the core data, which allows class of vector, matrix, and factor. Order.by is the index, which
demands uniqueness of fields for ordering. Frequency is the number of observations per unit of
time displayed.

The code that follows will create a zoo object indexed by time, as in Figure 2.1. We should pay
special attention to the fact that zoo object allows discontinuous time series data.

Define a vector of discontinuous date.
> x.Date <- as.Date("2003-02-01") + c(1, 3, 7, 9, 14) - 1
> x.Date
[1] "2003-02-01" "2003-02-03" "2003-02-07" "2003-02-09" "2003-02-14"
> class(x.Date)
[1] "Date"

Define a discontinuous zoo object.
> x <- zoo(rnorm(5), x.Date)
> x
2003-02-01 2003-02-03 2003-02-07 2003-02-09 2003-02-14
0.01964254 0.03122887 0.64721059 1.47397924 1.29109889
> class(x)
[1] "zoo"

Display.
> plot(x)

Start R.
~ R

Install zoo package.
> install.packages("zoo")

Load zoo package.
> library(zoo)

zoo(x = NULL, order.by = index(x), frequency = NULL)

70 ◾ R for Programmers: Mastering the Tools

Next, we create some groups of time series data indexed by number. The following code will
create a matrix of 4 rows and 3 columns with 12 elements. Create a zoo object y indexed by num-
ber 0:10 and output y as in Figure 2.2.

2.1.3.2 zooreg Object

First is the definition of functions:

The following is the parameter description.

 ◾ Data: core data, allows class of vector, matrix, and factor.
 ◾ Start: time part, the time of starting.
 ◾ End: time part, the time of ending.
 ◾ Frequency: number of observations per each time unit displayed.
 ◾ Deltat: sampling period of continuous observation, which doesn’t appear with frequency at

the same time. For example, the value is 1/12 for data of each month.

> y <- zoo(matrix(1:12, 4, 3),0:10)
> y
0 1 5 9
1 2 6 10
2 3 7 11
3 4 8 12
4 1 5 9
5 2 6 10
6 3 7 11
7 4 8 12
8 1 5 9
9 2 6 10
10 3 7 11

Each column of the matrix is a time series graph.
> plot(y)

zooreg(data, start = 1, end = numeric(), frequency = 1,
deltat = 1, ts.eps = getOption("ts.eps"), order.by = NULL)

1.5

1.0

0.5

0.0
Feb 01 Feb 03 Feb 05 Feb 07 Feb 09 Feb 11 Feb 13

Index

x

Figure 2.1 time series graph.

Basic Packages of Time Series ◾ 71

 ◾ Ts.eps: interval of time series. If the interval of data is less than ts.eps, es.pes will be used as
the interval. It is set through getOption(‘ts.eps’), which is 12-05 in default.

 ◾ Order.by: index, which demands the uniqueness of fields for ordering. Extend and behave
like order.by of zoo.

The following code will create a zooreg object indexed by continuous year (quarter), as in
Figure 2.3.

> zooreg(1:10, frequency = 4, start = c(1959, 2))
1959(2) 1959(3) 1959(4) 1960(1) 1960(2) 1960(3) 1960(4) 1961(1)
1961(2)
 1 2 3 4 5 6 7 8 9
1961(3)
 10

> as.zoo(ts(1:10, frequency = 4, start = c(1959, 2)))
1959(2) 1959(3) 1959(4) 1960(1) 1960(2) 1960(3) 1960(4) 1961(1)
1961(2)
 1 2 3 4 5 6 7 8 9
1961(3)
 10

> zr<-zooreg(rnorm(10), frequency = 4, start = c(1959, 2))
> plot(zr)

4.0

3.0

2.0

1.0
8.0

7.0

6.0

5.0
12.0

11.0

10.0

9.0
0 2 4 6 8 10

y

Index

Se
rie

s 3
Se

rie
s 2

Se
rie

s 1

Figure 2.2 time series graphs in groups.

72 ◾ R for Programmers: Mastering the Tools

2.1.3.3 Difference between a zooreg Object and a zoo Object

The difference between a zoo object and a zooreg object lies in calculating lag and difference.

 ◾ Lag: Lag is calculated according to index in zoo, and according to value zooreg.
 ◾ Difference: Difference is calculated according to index in zoo, and according to value in

zooreg.

Here is an example of a group of discontinuous data (1,2,3,6,7,8):

> x <- c(1, 2, 3, 6, 7, 8)
> zz <- zoo(x, x)
> zr <- as.zooreg(zz)

Lag.
> lag(zz, k = -1)
2 3 6 7 8
1 2 3 6 7

> lag(zr, k = -1)
2 3 4 7 8 9
1 2 3 6 7 8

Difference.
> diff(zz)
2 3 6 7 8
1 1 3 1 1

0.5

0.0

−0.5

−1.0

−1.5

1959.5 1960.0 1960.5 1961.0 1961.5
Index

zr

Figure 2.3 time series graph of zooreg object.

Basic Packages of Time Series ◾ 73

2.1.3.4 Class Conversion of zoo Object

First the object is converted from another class to the zoo class.

Then the object is converted from the zoo class to the other class.

Convert a vector of other class to class zoo.
> as.zoo(rnorm(5))
 1 2 3 4 5
-0.4892119 0.5740950 0.7128003 0.6282868 1.0289573
> as.zoo(ts(rnorm(5), start = 1981, freq = 12))
 1981(1) 1981(2) 1981(3) 1981(4) 1981(5)
2.3198504 0.5934895 -1.9375893 -1.9888237 1.0944444

Convert a class ts to class zoo.
> x <- as.zoo(ts(rnorm(5), start = 1981, freq = 12))
> x
1981(1) 1981(2) 1981(3) 1981(4) 1981(5)
1.8822996 1.6436364 0.1260436 -2.0360960 -0.1387474

Convert class zoo to matrix.
> as.matrix(x)
 x
1981(1) 1.8822996
1981(2) 1.6436364
1981(3) 0.1260436
1981(4) -2.0360960
1981(5) -0.1387474

Convert class zoo to numeric vector.
> as.vector(x)
[1] 1.8822996 1.6436364 0.1260436 -2.0360960 -0.1387474

Convert class zoo to data frame.
> as.data.frame(x)
 x
1981(1) 1.8822996
1981(2) 1.6436364
1981(3) 0.1260436
1981(4) -2.0360960
1981(5) -0.1387474

> diff(zr)
2 3 7 8
1 1 1 1

74 ◾ R for Programmers: Mastering the Tools

2.1.3.5 Draw Time Series Graphs by ggplot2

Because ggplot doesn’t support data of the zoo class, we need to call the function zoo::fortify.zoo()
by function ggplot2::fortify(). After the conversion of the zoo class to other classes that can be
recognized by ggplot2, we can draw graphs of data of the zoo class by ggplot2. The following is
the code to draw time series graph of the zoo class using ggplot2, as in Figure 2.4.

Load ggplot2.
> library(ggplot2)
> library(scales)

Build data object.
> x.Date <- as.Date(paste(2003, 02, c(1, 3, 7, 9, 14), sep = "-"))
> x <- zoo(rnorm(5), x.Date)
> xlow <- x - runif(5)
> xhigh <- x + runif(5)
> z <- cbind(x, xlow, xhigh)

Display data set.
> z
 x xlow xhigh
2003-02-01 -0.36006612 -0.88751958 0.006247816
2003-02-03 1.35216617 0.97892538 2.076360524
2003-02-07 0.61920828 0.23746410 1.156569424
2003-02-09 0.27516116 0.09978789 0.777878867
2003-02-14 0.02510778 -0.80107410 0.541592929

Draw a graph using ggplot2.
Use fortify() to convert data of class zoo to data of data.frame.
> g<-ggplot(aes(x = Index, y = Value), data = fortify(x, melt =
TRUE))
> g<-g+geom_line()
> g<-g+geom_line(aes(x = Index, y = xlow), colour = "red", data =
fortify(xlow))
> g<-g+geom_ribbon(aes(x = Index, y = x, ymin = xlow, ymax = xhigh),
data = fortify(x), fill = "darkgray")
> g<-g+geom_line()
> g<-g+xlab("Index") + ylab("x")
> g

Convert class zoo to list.
> as.list(x)
[[1]]
 1981(1) 1981(2) 1981(3) 1981(4) 1981(5)
 1.8822996 1.6436364 0.1260436 -2.0360960 -0.1387474

Basic Packages of Time Series ◾ 75

2.1.3.6 Data Operation of zoo Object

Use the function coredata() to modify the core data of the zoo class.

> x.date <- as.Date(paste(2003, rep(1:4, 4:1), seq(1,20,2), sep =
"-"))
> x <- zoo(matrix(rnorm(20), ncol = 2), x.date)

View the core data.
> coredata(x)
 [,1] [,2]
 [1,] -1.04571765 0.92606273
 [2,] -0.89621126 0.03693769
 [3,] 1.26938716 -1.06620017
 [4,] 0.59384095 -0.23845635
 [5,] 0.77563432 1.49522344
 [6,] 1.55737038 1.17215855
 [7,] -0.36540180 -1.45770721
 [8,] 0.81655645 0.09505623
 [9,] -0.06063478 0.84766496
[10,] -0.50137832 -1.62436453

Modify the core data.
> coredata(x) <- matrix(1:20, ncol = 2)

2

1

0

–1
Feb 02 Feb 04 Feb 06 Feb 08 Feb 10 Feb 12 Feb 14

Index

x

Figure 2.4 times series graph by ggplot2.

76 ◾ R for Programmers: Mastering the Tools

Use the function index() to modify the index of the zoo class.

Use the function window.zoo() to filter data by time.

> x.date <- as.Date(paste(2003, rep(1:4, 4:1), seq(1,20,2), sep = "-"))
> x <- zoo(matrix(rnorm(20), ncol = 2), x.date)

View the index.
> index(x)
 [1] "2003-01-01" "2003-01-03" "2003-01-05" "2003-01-07"
"2003-02-09"
 [6] "2003-02-11" "2003-02-13" "2003-03-15" "2003-03-17"
"2003-04-19"

Modify the index.
> index(x) <- 1:nrow(x)

View the index after modification.
> index(x)
 [1] 1 2 3 4 5 6 7 8 9 10

> x.date <- as.Date(paste(2003, rep(1:4, 4:1), seq(1,20,2), sep = "-"))
> x <- zoo(matrix(rnorm(20), ncol = 2), x.date)

Extract the data dated from 2003-02-01 to 2003-03-01.
> window(x, start = as.Date("2003-02-01"), end = as.Date("2003-03-01"))
2003-02-09 0.7021167 -0.3073809
2003-02-11 2.5071111 0.6210542
2003-02-13 -1.8900271 0.1819022

Extract data which is dated from 2003-02-01 and has index date in
x.date[1:6].
> window(x, index = x.date[1:6], start = as.Date("2003-02-01"))
2003-02-09 0.7021167 -0.3073809
2003-02-11 2.5071111 0.6210542

View the data set after modification.
> x
2003-01-01 1 11
2003-01-03 2 12
2003-01-05 3 13
2003-01-07 4 14
2003-02-09 5 15
2003-02-11 6 16
2003-02-13 7 17
2003-03-15 8 18
2003-03-17 9 19
2003-04-19 10 20

Basic Packages of Time Series ◾ 77

Use merge.zoo() to merge multiple zoo objects.

Create two groups of zoo data.
> y1 <- zoo(matrix(1:10, ncol = 2), 1:5);y1
1 1 6
2 2 7
3 3 8
4 4 9
5 5 10

> y2 <- zoo(matrix(rnorm(10), ncol = 2), 3:7);y2
3 1.4810127 0.13575871
4 -0.3914258 0.06404148
5 0.6018237 1.85017952
6 1.2964150 -0.12927481
7 0.2211769 0.32381709

Merge the data with same index value.
> merge(y1, y2, all = FALSE)
 y1.1 y1.2 y2.1 y2.2
3 3 8 0.9514985 1.7238941
4 4 9 -1.1131230 -0.2061446
5 5 10 0.6169665 -1.3141951

Name the customized data columns.
> merge(y1, y2, all = FALSE, suffixes = c("a", "b"))
 a.1 a.2 b.1 b.2
3 3 8 0.9514985 1.7238941
4 4 9 -1.1131230 -0.2061446
5 5 10 0.6169665 -1.3141951

Merge the data set in a completed one, and fill the blank data
with NA.
> merge(y1, y2, all = TRUE)
 y1.1 y1.2 y2.1 y2.2
1 1 6 NA NA
2 2 7 NA NA
3 3 8 0.9514985 1.7238941
4 4 9 -1.1131230 -0.2061446
5 5 10 0.6169665 -1.3141951
6 NA NA 0.5134937 0.0634741
7 NA NA 0.3694591 -0.2319775

Extract the data which has index date in x.date[c(4,8,10)].
> window(x, index = x.date[c(4, 8, 10)])
2003-01-07 1.4623515 -1.198597
2003-03-15 -0.5898128 1.318401
2003-04-19 -0.4209979 -1.648222

78 ◾ R for Programmers: Mastering the Tools

Use the function aggregate.zoo() to calculate the zoo class.

2.1.3.7 Functional Processing of Data of zoo Object

Use the function rollapply() to run functional processing on zoo data.

Create a data set of class zoo, x.
> x.date <- as.Date(paste(2004, rep(1:4, 4:1), seq(1,20,2), sep = "-"))
> x <- zoo(rnorm(12), x.date); x
 2004-01-01 2004-01-03 2004-01-05 2004-01-07 2004-02-09 2004-02-11
 0.67392868 1.95642526 -0.26904101 -1.24455152 -0.39570292 0.09739665
 2004-02-13 2004-03-15 2004-03-17 2004-04-19
-0.23838695 -0.41182796 -1.57721805 -0.79727610

Create time vector, x.date2.
> x.date2 <- as.Date(paste(2004, rep(1:4, 4:1), 1, sep = "-"));
x.date2
 [1] "2004-01-01" "2004-01-01" "2004-01-01" "2004-01-01" "2004-02-01"
 [6] "2004-02-01" "2004-02-01" "2004-03-01" "2004-03-01" "2004-04-01"

Calculate mean of x under the time division rule of x.date2.
> x2 <- aggregate(x, x.date2, mean); x2
2004-01-01 2004-02-01 2004-03-01 2004-04-01
 0.2791904 -0.1788977 -0.9945230 -0.7972761

> z <- zoo(11:15, as.Date(31:35))

Calculate the mean of two continuous days from starting date.
> rollapply(z, 2, mean)
1970-02-01 1970-02-02 1970-02-03 1970-02-04
 11.5 12.5 13.5 14.5

Calculate the mean of three continuous days from starting date.
> rollapply(z, 3, mean)
1970-02-02 1970-02-03 1970-02-04
 12 13 14

Merge the data set in a completed one, and fill the blank data
with 0.
> merge(y1, y2, all = TRUE, fill = 0)
 y1.1 y1.2 y2.1 y2.2
1 1 6 0.0000000 0.0000000
2 2 7 0.0000000 0.0000000
3 3 8 0.9514985 1.7238941
4 4 9 -1.1131230 -0.2061446
5 5 10 0.6169665 -1.3141951
6 0 0 0.5134937 0.0634741
7 0 0 0.3694591 -0.2319775

Basic Packages of Time Series ◾ 79

Equivalent operation: use rollapply() to implement the operation of aggregate().

Equivalent operation: use rollapply() to implement the operation of rollmean().

2.1.3.8 Processing of NA

Use the function na.fill() to fill NA.

> z2 <- zoo(rnorm(6))
> rollapply(z2, 3, mean, by = 3) # means of nonoverlapping groups of
3
 2 5
-0.3065197 0.6350963
> aggregate(z2, c(3,3,3,6,6,6), mean) # same
 3 6
-0.3065197 0.6350963

> rollapply(z2, 3, mean) # uses rollmean which is optimized for mean
 2 3 4 5
-0.3065197 -0.7035811 -0.1672344 0.6350963
> rollmean(z2, 3) # same
 2 3 4 5
-0.3065197 -0.7035811 -0.1672344 0.6350963

Create a zoo object with NA.
> z <- zoo(c(NA, 2, NA, 3, 4, 5, 9, NA))
> z
 1 2 3 4 5 6 7 8
NA 2 NA 3 4 5 9 NA

Use extend to fill NA, i.e. fill it with the mean of the last and
next item of NA.
> na.fill(z, "extend")
 1 2 3 4 5 6 7 8
2.0 2.0 2.5 3.0 4.0 5.0 9.0 9.0

Fill NA in a customized method, i.e. fill it with circulation
–(1:3).
> na.fill(z, -(1:3))
 1 2 3 4 5 6 7 8
-1 2 -2 3 4 5 9 -3

Fill NA with a combination of extend and customized method.
> na.fill(z, c("extend", NA))
 1 2 3 4 5 6 7 8
 2 2 NA 3 4 5 9 9

80 ◾ R for Programmers: Mastering the Tools

Use the function na.locf() to replace NA.

Use the value of the statistical calculation of function na.aggregate() to replace NA.

z <- zoo(c(1, NA, 3:9),c(as.Date("2010-01-01") + 0:2,as.Date("2010-
02-01") + 0:2,as.Date("2011-01-01") + 0:2))
> z
2010-01-01 2010-01-02 2010-01-03 2010-02-01 2010-02-02 2010-02-03
 1 NA 3 4 5 6
2011-01-01 2011-01-02 2011-01-03
 7 8 9

Replace the NA of the mean of all other items except NA.
> na.aggregate(z)
2010-01-01 2010-01-02 2010-01-03 2010-02-01 2010-02-02 2010-02-03
 1.000 5.375 3.000 4.000 5.000 6.000
2011-01-01 2011-01-02 2011-01-03
 7.000 8.000 9.000

Replace NA with the mean of groups indexed by year and month.
> na.aggregate(z, as.yearmon)
2010-01-01 2010-01-02 2010-01-03 2010-02-01 2010-02-02 2010-02-03
 1 2 3 4 5 6
2011-01-01 2011-01-02 2011-01-03
 7 8 9

Replace NA with the mean of groups indexed by month.
> na.aggregate(z, months)
2010-01-01 2010-01-02 2010-01-03 2010-02-01 2010-02-02 2010-02-03
 1.0 5.6 3.0 4.0 5.0 6.0
2011-01-01 2011-01-02 2011-01-03
 7.0 8.0 9.0

> z <- zoo(c(NA, 2, NA, 3, 4, 5, 9, NA, 11));z
 1 2 3 4 5 6 7 8 9
NA 2 NA 3 4 5 9 NA 11

Replace NA with the value of its last item.
> na.locf(z)
 2 3 4 5 6 7 8 9
 2 2 3 4 5 9 9 11

Replace NA with the value of its next item.
> na.locf(z, fromLast = TRUE)
 1 2 3 4 5 6 7 8 9
 2 2 3 3 4 5 9 11 11

Basic Packages of Time Series ◾ 81

Use the function na.approx() to replace NA with interpolation.

Use the function na.StructTS() to calculate the seasonal Kalman filter to replace NA, as in
Figure 2.5.

Replace NA with the mean of groups indexed by year in regular
expression.
> na.aggregate(z, format, "%Y")
2010-01-01 2010-01-02 2010-01-03 2010-02-01 2010-02-02 2010-02-03
 1.0 3.8 3.0 4.0 5.0 6.0
2011-01-01 2011-01-02 2011-01-03
 7.0 8.0 9.0

> z <- zoo(c(2, NA, 1, 4, 5, 2), c(1, 3, 4, 6, 7, 8));z
 1 3 4 6 7 8
 2 NA 1 4 5 2

> na.approx(z)
 1 3 4 6 7 8
2.000000 1.333333 1.000000 4.000000 5.000000 2.000000

> na.approx(z, 1:6)
 1 3 4 6 7 8
2.0 1.5 1.0 4.0 5.0 2.0

45

40

35

30

25

20

15

10
2000 2001 2002 2003

Index

cb
in

d(
z,

 zo
ut

)

Figure 2.5 time series to replace nA.

82 ◾ R for Programmers: Mastering the Tools

Use the function na.trim() to remove rows with NA.

2.1.3.9 Display Format of Data

Output data in the format of “year + quarter.”

Output data in the format of “year + month.”

> xx <- zoo(matrix(c(1, 4, 6, NA, NA, 7), 3), c(2, 4, 6));xx
2 1 NA
4 4 NA
6 6 7

> na.trim(xx)
6 6 7

Output data in the default format of year and quarter.
> x <- as.yearqtr(2000 + seq(0, 7)/4)
> x
[1] "2000 Q1" "2000 Q2" "2000 Q3" "2000 Q4" "2001 Q1" "2001 Q2" "2001 Q3"
[8] "2001 Q4"

Output data in the customized format of year and quarter.
> format(x, "%Y Quarter%q")
[1] "2000 Quarter 1" "2000 Quarter 2" "2000 Quarter 3" "2000 Quarter 4"
[5] "2001 Quarter 1" "2001 Quarter 2" "2001 Quarter 3" "2001 Quarter 4"

> as.yearqtr("2001 Q2")
[1] "2001 Q2"

> as.yearqtr("2001 q2")
[1] "2001 Q2"

> as.yearqtr("2001-2")
[1] "2001 Q2"

Output in the default format of "year+month"
> x <- as.yearmon(2000 + seq(0, 23)/12)
> x
[1] "January 2000" "February 2000" "March 2000" "April 2000" "May 2000"
[6] "June 2000" "July 2000" "August 2000" "September 2000" "October 2000"
[11] "November 2000" "December 2000" "January 2001" "February 2001" "March 2001"
[16] "April 2000 2001" "May 2001" "June 2001" "July 2001" "August 2001"
[21] "September 2001" "October 2001" "November 2001" "December 2001"

> as.yearmon("mar07", "%b%y")
[1] NA

> as.yearmon("2007-03-01")
[1] "March 2007"

> as.yearmon("2007-12")
[1] "December 2007"

z <- zooreg(rep(10 * seq(4), each = 4) + rep(c(3, 1, 2, 4), times = 4),
 start = as.yearqtr(2000), freq = 4)
z[10] <- NA
zout <- na.StructTS(z);zout
plot(cbind(z, zout), screen = 1, col = 1:2, type = c("l", "p"), pch = 20)

Basic Packages of Time Series ◾ 83

2.1.3.10 Interval Division

Use the function xblock() to divide the graph in three intervals, (-Inf, 15), [15, 30], (30, Inf), as
in Figure 2.6.

2.1.3.11 Read Time Series Data from Files and Create zoo Object

First we create a file and name it read.csv:

> set.seed(0)
> flow <- ts(filter(rlnorm(200, mean = 1), 0.8, method = "r"))
> rgb <- hcl(c(0, 0, 260), c = c(100, 0, 100), l = c(50, 90, 50),
alpha = 0.3)
> plot(flow)
> xblocks(flow > 30, col = rgb[1]) ## high values red
> xblocks(flow < 15, col = rgb[3]) ## low value blue
> xblocks(flow >= 15 & flow <= 30, col = rgb[2]) ## the rest gray

~ vi read.csv

2003-01-01,1.0073644,0.05579711
2003-01-03,-0.2731580,0.06797239
2003-01-05,-1.3096795,-0.20196174
2003-01-07,0.2225738,-1.15801525
2003-02-09,1.1134332,-0.59274327
2003-02-11,0.8373944,0.76606538
2003-02-13,0.3145168,0.03892812
2003-03-15,0.2222181,0.01464681
2003-03-17,-0.8436154,-0.18631697
2003-04-19,0.4438053,1.40059083

50

Fl
ow

40

30

20

10

0 50 100 150 200
Time

Figure 2.6 time series graph with divisions.

84 ◾ R for Programmers: Mastering the Tools

Read the file and generate the zoo sequence:

We’ve fully mastered the use of zoo library and zoo object. Now we can start processing time
series data in R!

2.2 extensible time Series: xts
Question
How do we process complex time series data?

data.framedata.frame
MatrixMatrix

Vectors

List
ts

zooreg

mts tframetframe

ZOO

xtsPOSIXct

xts

Extensive time seriesExtensive time seriestsxtsxts http://blog.fens.me/r-xts/

This section continues to introduce the extended implementation of zoo. Sometimes time series data
may contain complex laws. As a basic library of time series, zoo is designed for universal problems,

Read the file in zoo format.
> r <- read.zoo(file="read.csv",sep = ",", format = "%Y-%m-%d")

View the data.
> r
 V2 V3
2003-01-01 1.0073644 0.05579711
2003-01-03 -0.2731580 0.06797239
2003-01-05 -1.3096795 -0.20196174
2003-01-07 0.2225738 -1.15801525
2003-02-09 1.1134332 -0.59274327
2003-02-11 0.8373944 0.76606538
2003-02-13 0.3145168 0.03892812
2003-03-15 0.2222181 0.01464681
2003-03-17 -0.8436154 -0.18631697
2003-04-19 0.4438053 1.40059083

View the class.
> class(r)
[1] "zoo"

Basic Packages of Time Series ◾ 85

such as defining stock data and analyzing weather data. But when it comes to other assignments,
we may need more auxiliary functions to help fulfill these assignments more efficiently. Xts, as an
extension of zoo, provides more functions for data processing and data conversion.

2.2.1 Introduction to xts

Xts, as an extension of time series data (zoo), aims to unify the operation interface of time series. In
fact, the xts class extends and behaves like the zoo class and enriches the functions for time series
data processing. Its API definition is closer to users, and more practical and simple!

2.2.1.1 Data Structure of xts

The basic extension of xts to zoo is composed of three parts, as in Figure 2.7.

 ◾ Index: vector of time/dates
 ◾ Core data: based on matrix, and supports all other types that can convert to/from matrix
 ◾ Attribute part: attachment information, including format of time zone and index of time/

dates

2.2.1.2 Introduction to API of xts

 1. Basics of xts
– xts: define the data type of xts, extending and behaving like zoo
– coredata.xts: take/replace core data of an xts object
– xtsAttributes: take and replace noncore xts attributes
– [.xts]: take subsets of xts objects
– dimnames.xts: get or set dimnames of an xts object
– sample_matrix: sample data matrix for xts example and unit testing, simulated 180

observations on 4 variables
– xtsAPI: xts C API documentation

 2. Type conversion
– as.xts: convert object to and from the xts class
– as.xts.methods: convert object to and from the xts class
– plot.xts: plotting methods for xts objects
– .parseISO8601: output character string (in ISO8601 format) in the POSIXct class,

including starting time and ending time of list object
– firstof: create a time stamp corresponding to the first observation, the POSIXct class
– lastof: create a time stamp corresponding to the last observation, the POSICXct class
– indexClass: take and replace the class of an xts object

Index

xts object

Data Attributes

Vector Matrix S3 method

+ +

Figure 2.7 Data structure of xts.

86 ◾ R for Programmers: Mastering the Tools

– .indexDate: value of date in index
– .indexday: value of date in index, same as.indexDate
– .indexyday: value of year(day) in index
– .indexmday: value of month(day) in index
– .indexwday: value of week(day) in index
– .indexweek: value of week in index
– .indexmon: value of month in index
– .indexyear: value of year in index
– .indexhour: value of hour in index
– .indexmin: value of minute in index
– .indexsec: value of second in index

 3. Data processing
– align.time: align seconds, minutes, and hours to beginning of next period
– endpoints: take index values by time
– merge.xts: merge multiple xts objects, rewriting zoo::merge.zoo function
– rbind.xts: concatenate or bind by row two or more xts objects
– split_xts: creates a list of xts objects split along time periods
– na.locf.xts: replace NA value, rewriting zoo::na.locf function

 4. Data statistics
– apply.daily: apply a specified function to each distinct period by day
– apply.weekly: apply a specified function to each distinct period by week
– apply.monthly: apply a specified function to each distinct period by month
– apply.quarterly: apply a specified function to each distinct period by quarter
– apply.yearly: apply a specified function to each distinct period by year
– to.period: convert time series data to an OHLC series
– period.apply: apply function over specified interval
– period.max: calculate max by period
– period.min: calculate min by period
– period.prod: calculate product by period
– period.sum: calculate sum by period
– nseconds: number of seconds in data
– nminutes: number of minutes in data
– nhours: number of hours in data
– ndays: number of days in data
– nweeks: number of weeks in data
– nmonths: number of months in data
– nquarters: number of quarters in data
– nyears: number of years in data
– periodicity: estimate the periodicity of a time-series-like object

 5. Auxiliary tools
– first: return the first elements of rows of a vector or two-dimensional data object
– last: return the last elements of rows of a vector or two-dimensional data object
– timeBased: check if class is time-based
– timebasedSeq: create a sequence or range of times
– diff.xts: compute lags and differences of xts objects
– isOrdered: check if a vector is ordered

Basic Packages of Time Series ◾ 87

– make.index.unique: force time to be unique
– axTicksByTimes: compute x-axis tickmark locations by time
– indexTZ: query the time zone of an xts object

2.2.2 Installation of xts

System environment used in this section:

 ◾ Windows 7 64bit
 ◾ R: 3.0.1 x86_64-w64-mingw32/x64 b4bit

Note: xts supports both Windows 7 and Linux.
Installation of xts is as follows:

2.2.3 Use of xts

2.2.3.1 Basic Operation of xts Object

View the training data set, sample_matrix, in xts.

Start R.
~ R

Install xts.
> install.packages("xts")
also installing the dependency 'zoo'

trying URL 'http://mirror.bjtu.edu.cn/cran/bin/windows/contrib/3.0/xts_0.9-7.
zip'
Content type 'application/zip' length 661664 bytes (646 Kb)
opened URL
downloaded 646 Kb

package 'zoo' successfully unpacked and MD5 sums checked
package 'xts' successfully unpacked and MD5 sums checked

Load xts.
> library(xts)

Load sample_matrix.
> data(sample_matrix)

View the first 6 records of sample_matrix.
> head(sample_matrix)
 Open High Low Close
2007-01-02 50.03978 50.11778 49.95041 50.11778
2007-01-03 50.23050 50.42188 50.23050 50.39767
2007-01-04 50.42096 50.42096 50.26414 50.33236
2007-01-05 50.37347 50.37347 50.22103 50.33459
2007-01-06 50.24433 50.24433 50.11121 50.18112
2007-01-07 50.13211 50.21561 49.99185 49.99185

88 ◾ R for Programmers: Mastering the Tools

Then define an xts object.

Query xts data through matching of character string in [].

Create an xts object
> sample.xts <- as.xts(sample_matrix, descr='my new xts object')

Xts is an object extending and behaving like zoo.
> class(sample.xts)
[1] "xts" "zoo"

Print out object structure.
> str(sample.xts)
An 'xts' object on 2007-01-02/2007-06-30 containing:
 Data: num [1:180, 1:4] 50 50.2 50.4 50.4 50.2 ...
 - attr(*, "dimnames")=List of 2
 ..$: NULL
 ..$: chr [1:4] "Open" "High" "Low" "Close"
 Indexed by objects of class: [POSIXct,POSIXt] TZ:
 xts Attributes:
List of 1
 $ descr: chr "my new xts object"

View the attribute of object descr.
> attr(sample.xts,'descr')
[1] "my new xts object"

Pick out data of 2007.
> head(sample.xts['2007'])
 Open High Low Close
2007-01-02 50.03978 50.11778 49.95041 50.11778
2007-01-03 50.23050 50.42188 50.23050 50.39767
2007-01-04 50.42096 50.42096 50.26414 50.33236
2007-01-05 50.37347 50.37347 50.22103 50.33459
2007-01-06 50.24433 50.24433 50.11121 50.18112
2007-01-07 50.13211 50.21561 49.99185 49.99185

Pick out data of March, 2007.
> head(sample.xts['2007-03/'])
 Open High Low Close
2007-03-01 50.81620 50.81620 50.56451 50.57075
2007-03-02 50.60980 50.72061 50.50808 50.61559
2007-03-03 50.73241 50.73241 50.40929 50.41033
2007-03-04 50.39273 50.40881 50.24922 50.32636
2007-03-05 50.26501 50.34050 50.26501 50.29567
2007-03-06 50.27464 50.32019 50.16380 50.16380

Pick out data from 2007-03-06 to the end of 2007.
> head(sample.xts['2007-03-06/2007'])
 Open High Low Close

Basic Packages of Time Series ◾ 89

2.2.3.2 Draw Graphics Using xts Objects

We can draw graphs (Figure 2.8) and K-line chart (Figure 2.9) using xts objects. The following is
the code of drawing graph:

Warning message prompt indicates that only univariate sequence can be drawn. Thus only the
first row, sample_matrix[,1], is drawn.

K-line chart:

> data(sample_matrix)
> plot(as.xts(sample_matrix))
Warning message:
In plot.xts(as.xts(sample_matrix)) :
 only the univariate series will be plotted

> plot(as.xts(sample_matrix), type='candles')

2007-03-06 50.27464 50.32019 50.16380 50.16380
2007-03-07 50.14458 50.20278 49.91381 49.91381
2007-03-08 49.93149 50.00364 49.84893 49.91839
2007-03-09 49.92377 49.92377 49.74242 49.80712
2007-03-10 49.79370 49.88984 49.70385 49.88698
2007-03-11 49.83062 49.88295 49.76031 49.78806

Pick out data of 2007-01-03.
> sample.xts['2007-01-03']
 Open High Low Close
2007-01-03 50.2305 50.42188 50.2305 50.39767

as.xts(sample_matrix)

51

50

49

48

Jan 02
2007

Jan 30
2007

Feb 27
2007

Mar 27
2007

Apr 24
2007

May 22
2007

Jun 19
2007

Figure 2.8 Graph drawn using xts object.

90 ◾ R for Programmers: Mastering the Tools

2.2.3.3 Class Conversion of xts Object

Create firstof() and lastof():

Create the first observation and the last observation of a time period:

First day of 2000. Omit hour, minute and second.
> firstof(2000)
[1] "2000-01-01 CST"

> firstof(2005,01,01)
[1] "2005-01-01 CST"

Last second of last day of 2000.
> lastof(2007)
[1] "2007-12-31 23:59:59.99998 CST"

> lastof(2007,10)
[1] "2007-10-31 23:59:59.99998 CST"

Create first observation and last observation of time of 2000 in
ISO8601.
> .parseISO8601('2000')
$first.time
[1] "2000-01-01 CST"

$last.time
[1] "2000-12-31 23:59:59.99998 CST"

Create a time period from 2000-05 to 2001-02 in ISO8601.
> .parseISO8601('2000-05/2001-02')
$first.time
[1] "2000-05-01 CST"

as.xts(sample_matrix)

51

50

49

48

47

Jan 02
2007

Jan 30
2007

Feb 27
2007

Mar 27
2007

Apr 24
2007

May 22
2007

Jun 19
2007

Figure 2.9 K-line chart drawn using xts object.

Basic Packages of Time Series ◾ 91

Create an xts object indexed by time.

Format the display of time index.

Create a time period of class POSIXct.
> x <- timeBasedSeq('2010-01-01/2010-01-02 12:00')
> head(x)
[1] "2010-01-01 00:00:00 CST"
[2] "2010-01-01 00:01:00 CST"
[3] "2010-01-01 00:02:00 CST"
[4] "2010-01-01 00:03:00 CST"
[5] "2010-01-01 00:04:00 CST"
[6] "2010-01-01 00:05:00 CST"
> class(x)
[1] "POSIXt" "POSIXct"

Create an xts object indexed by time.
> x <- xts(1:length(x), x)
> head(x)
 [,1]
2010-01-01 00:00:00 1
2010-01-01 00:01:00 2
2010-01-01 00:02:00 3
2010-01-01 00:03:00 4
2010-01-01 00:04:00 5
2010-01-01 00:05:00 6
> indexClass(x)
[1] "POSIXt" "POSIXct"

$last.time
[1] "2001-02-28 23:59:59.99998 CST"

> .parseISO8601('2000-01/02')
$first.time
[1] "2000-01-01 CST"

$last.time
[1] "2000-02-29 23:59:59.99998 CST"

> .parseISO8601('T08:30/T15:00')
$first.time
[1] "1970-01-01 08:30:00 CST"

$last.time
[1] "1970-12-31 15:00:59.99999 CST"

Format the display of time index by regularization.
> indexFormat(x) <- "%Y-%b-%d%H:%M:%OS3"

92 ◾ R for Programmers: Mastering the Tools

Check the time index.

2.2.3.4 Data Processing of xts Objects

Align data.

Take the time index by hour.
> .indexhour(head(x))
[1] 0 0 0 0 0 0

Take the time index by minute.
> .indexmin(head(x))
[1] 0 1 2 3 4 5

> x <- Sys.time() + 1:30
Align data every 10 seconds. The field of second is an integral
multiple of 10.
> align.time(x, 10)
 [1] "2013-11-18 15:42:30 CST" "2013-11-18 15:42:30 CST"
[3] "2013-11-18 15:42:30 CST" "2013-11-18 15:42:40 CST"
 [5] "2013-11-18 15:42:40 CST" "2013-11-18 15:42:40 CST"
 [7] "2013-11-18 15:42:40 CST" "2013-11-18 15:42:40 CST"
 [9] "2013-11-18 15:42:40 CST" "2013-11-18 15:42:40 CST"
[11] "2013-11-18 15:42:40 CST" "2013-11-18 15:42:40 CST"
[13] "2013-11-18 15:42:40 CST" "2013-11-18 15:42:50 CST"
[15] "2013-11-18 15:42:50 CST" "2013-11-18 15:42:50 CST"
[17] "2013-11-18 15:42:50 CST" "2013-11-18 15:42:50 CST"
[19] "2013-11-18 15:42:50 CST" "2013-11-18 15:42:50 CST"
[21] "2013-11-18 15:42:50 CST" "2013-11-18 15:42:50 CST"
[23] "2013-11-18 15:42:50 CST" "2013-11-18 15:43:00 CST"
[25] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
[27] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
[29] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"

Align data every 60 seconds. The field of second is 0 while the
field of minute is integer.
> align.time(x, 60)
 [1] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
 [3] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"

> head(x)
 [,1]
2010-January-01 00:00:00.000 1
2010-January-01 00:01:00.000 2
2010-January-01 00:02:00.000 3
2010-January-01 00:03:00.000 4
2010-January-01 00:04:00.000 5
2010-January-01 00:05:00.000 6

Basic Packages of Time Series ◾ 93

Divide data by time and calculate.

> xts.ts <- xts(rnorm(231),as.Date(13514:13744,origin="1970-01-01"))

Calculate mean by month and display the result by the last day of
each month.
> apply.monthly(xts.ts,mean)
 [,1]
2007-01-31 0.17699984
2007-02-28 0.30734220
2007-03-31 -0.08757189
2007-04-30 0.18734688
2007-05-31 0.04496954
2007-06-30 0.06884836
2007-07-31 0.25081814
2007-08-19 -0.28845938

Calculate the customized function (variance) and display the
result by the last day of each month.
> apply.monthly(xts.ts,function(x) var(x))
 [,1]
2007-01-31 0.9533217
2007-02-28 0.9158947
2007-03-31 1.2821450
2007-04-30 1.2805976
2007-05-31 0.9725438
2007-06-30 1.5228904
2007-07-31 0.8737030
2007-08-19 0.8490521

Calculate mean by quarter and display the result by the last day
of each quarter.
> apply.quarterly(xts.ts,mean)
 [,1]
2007-03-31 0.12642053
2007-06-30 0.09977926
2007-08-19 0.04589268

 [5] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
 [7] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
 [9] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
[11] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
[13] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
[15] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
[17] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
[19] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
[21] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
[23] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
[25] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
[27] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
[29] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"

94 ◾ R for Programmers: Mastering the Tools

Use to.period() to divide data by interval.

Use endpoints() to divide the index data by interval.

> data(sample_matrix)

Divide by month.
> endpoints(sample_matrix)
[1] 0 30 58 89 119 150 180

Divide by every 7 days.
> endpoints(sample_matrix, 'days',k=7)
 [1] 0 6 13 20 27 34 41 48 55 62 69 76 83 90 97 104
111 118 125
[20] 132 139 146 153 160 167 174 180

Divide by week.
> endpoints(sample_matrix, 'weeks')
 [1] 0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105
112 119 126
[20] 133 140 147 154 161 168 175 180

Calculate mean by year and display the result by the last day of
each year.
> apply.yearly(xts.ts,mean)
 [,1]
2007-08-19 0.09849522

> data(sample_matrix)
Divide the matrix data by month.
> to.period(sample_matrix)
 sample_matrix.Open sample_matrix.High sample_matrix.Low sample_
matrix.Close
2007-01-31 50.03978 50.77336 49.76308 50.22578
2007-02-28 50.22448 51.32342 50.19101 50.77091
2007-03-31 50.81620 50.81620 48.23648 48.97490
2007-04-30 48.94407 50.33781 48.80962 49.33974
2007-05-31 49.34572 49.69097 47.51796 47.73780
2007-06-30 47.74432 47.94127 47.09144 47.76719
> class(to.period(sample_matrix))
[1] "matrix"

Divide data of class xts by month.
> samplexts <- as.xts(sample_matrix)
> to.period(samplexts)
 samplexts.Open samplexts.High samplexts.Low samplexts.Close
2007-01-31 50.03978 50.77336 49.76308 50.22578
2007-02-28 50.22448 51.32342 50.19101 50.77091
2007-03-31 50.81620 50.81620 48.23648 48.97490
2007-04-30 48.94407 50.33781 48.80962 49.33974
2007-05-31 49.34572 49.69097 47.51796 47.73780
2007-06-30 47.74432 47.94127 47.09144 47.76719
> class(to.period(samplexts))
[1] "xts" "zoo"

Basic Packages of Time Series ◾ 95

Use merge() to merge data by column.

Create 2 data sets of xts.
> (x <- xts(4:10, Sys.Date()+4:10))
 [,1]
2013-11-22 4
2013-11-23 5
2013-11-24 6
2013-11-25 7
2013-11-26 8
2013-11-27 9
2013-11-28 10
> (y <- xts(1:6, Sys.Date()+1:6))
 [,1]
2013-11-19 1
2013-11-20 2
2013-11-21 3
2013-11-22 4
2013-11-23 5
2013-11-24 6

Merge data by columns and fill NA with the blanks.
> merge(x,y)
 x y
2013-11-19 NA 1
2013-11-20 NA 2
2013-11-21 NA 3
2013-11-22 4 4
2013-11-23 5 5
2013-11-24 6 6
2013-11-25 7 NA
2013-11-26 8 NA
2013-11-27 9 NA
2013-11-28 10 NA

Merge data by index.
> merge(x,y, join='inner')
 x y
2013-11-22 4 4
2013-11-23 5 5
2013-11-24 6 6

Merge data by the left side.
> merge(x,y, join='left')
 x y
2013-11-22 4 4
2013-11-23 5 5

Divide by month.
> endpoints(sample_matrix, 'months')
[1] 0 30 58 89 119 150 180

96 ◾ R for Programmers: Mastering the Tools

Use rbind() to merge data by row.

Use split() to split data by row.

> x <- xts(1:3, Sys.Date()+1:3)

Merge data by row.
> rbind(x,x)
 [,1]
2013-11-19 1
2013-11-19 1
2013-11-20 2
2013-11-20 2
2013-11-21 3
2013-11-21 3

> data(sample_matrix)
> x <- as.xts(sample_matrix)

Split by month, and print out the data of first month.
> split(x)[[1]]
 Open High Low Close
2007-01-02 50.03978 50.11778 49.95041 50.11778
2007-01-03 50.23050 50.42188 50.23050 50.39767
2007-01-04 50.42096 50.42096 50.26414 50.33236
2007-01-05 50.37347 50.37347 50.22103 50.33459
2007-01-06 50.24433 50.24433 50.11121 50.18112
2007-01-07 50.13211 50.21561 49.99185 49.99185
2007-01-08 50.03555 50.10363 49.96971 49.98806
2007-01-09 49.99489 49.99489 49.80454 49.91333
2007-01-10 49.91228 50.13053 49.91228 49.97246
2007-01-11 49.88529 50.23910 49.88529 50.23910
2007-01-12 50.21258 50.35980 50.17176 50.28519
2007-01-13 50.32385 50.48000 50.32385 50.41286
2007-01-14 50.46359 50.62395 50.46359 50.60145
2007-01-15 50.61724 50.68583 50.47359 50.48912
2007-01-16 50.62024 50.73731 50.56627 50.67835
2007-01-17 50.74150 50.77336 50.44932 50.48644
2007-01-18 50.48051 50.60712 50.40269 50.57632
2007-01-19 50.41381 50.55627 50.41278 50.41278
2007-01-20 50.35323 50.35323 50.02142 50.02142
2007-01-21 50.16188 50.42090 50.16044 50.42090
2007-01-22 50.36008 50.43875 50.21129 50.21129
2007-01-23 50.03966 50.16961 50.03670 50.16961

2013-11-24 6 6
2013-11-25 7 NA
2013-11-26 8 NA
2013-11-27 9 NA
2013-11-28 10 NA

Basic Packages of Time Series ◾ 97

Processing of NA.

2007-01-24 50.10953 50.26942 50.06387 50.23145
2007-01-25 50.20738 50.28268 50.12913 50.24334
2007-01-26 50.16008 50.16008 49.94052 50.07024
2007-01-27 50.06041 50.09777 49.97267 50.01091
2007-01-28 49.96586 50.00217 49.87468 49.88096
2007-01-29 49.85624 49.93038 49.76308 49.91875
2007-01-30 49.85477 50.02180 49.77242 50.02180
2007-01-31 50.07049 50.22578 50.07049 50.22578

Split by week, and print out the data of first two weeks.
> split(x, f="weeks")[[1]]
 Open High Low Close
2007-01-02 50.03978 50.11778 49.95041 50.11778
2007-01-03 50.23050 50.42188 50.23050 50.39767
2007-01-04 50.42096 50.42096 50.26414 50.33236
2007-01-05 50.37347 50.37347 50.22103 50.33459
2007-01-06 50.24433 50.24433 50.11121 50.18112
2007-01-07 50.13211 50.21561 49.99185 49.99185
2007-01-08 50.03555 50.10363 49.96971 49.98806
> split(x, f="weeks")[[2]]
 Open High Low Close
2007-01-09 49.99489 49.99489 49.80454 49.91333
2007-01-10 49.91228 50.13053 49.91228 49.97246
2007-01-11 49.88529 50.23910 49.88529 50.23910
2007-01-12 50.21258 50.35980 50.17176 50.28519
2007-01-13 50.32385 50.48000 50.32385 50.41286
2007-01-14 50.46359 50.62395 50.46359 50.60145
2007-01-15 50.61724 50.68583 50.47359 50.48912

x <- xts(1:10, Sys.Date()+1:10)
> x[c(1,2,5,9,10)] <- NA
> x
 [,1]
2013-11-19 NA
2013-11-20 NA
2013-11-21 3
2013-11-22 4
2013-11-23 NA
2013-11-24 6
2013-11-25 7
2013-11-26 8
2013-11-27 NA
2013-11-28 NA

Replace NA with the prior observation of NA.
> na.locf(x)
 [,1]
2013-11-19 NA
2013-11-20 NA
2013-11-21 3

98 ◾ R for Programmers: Mastering the Tools

2.2.3.5 Statistical Calculation of xts Objects

We can run statistical calculation on xts objects, like take starting time and ending time, calculate
time interval, and calculate statistical indicators by time period.

 1. Take the starting time and ending time of xts objects:

 2. Calculate time interval:

> xts.ts <- xts(rnorm(231),as.Date(13514:13744,origin="1970-01-01"))

Take starting time.
> start(xts.ts)
[1] "2007-01-01"

Take ending time.
> end(xts.ts)
[1] "2007-08-19"

Print out starting time and ending time in the unit of day.
> periodicity(xts.ts)
Daily periodicity from 2007-01-01 to 2007-08-19

2013-11-22 4
2013-11-23 4
2013-11-24 6
2013-11-25 7
2013-11-26 8
2013-11-27 8
2013-11-28 8

Replace NA with the next observation of NA.
> na.locf(x, fromLast=TRUE)
 [,1]
2013-11-19 3
2013-11-20 3
2013-11-21 3
2013-11-22 4
2013-11-23 6
2013-11-24 6
2013-11-25 7
2013-11-26 8
2013-11-27 NA
2013-11-28 NA

> data(sample_matrix)

Calculate the number of days.
> ndays(sample_matrix)
[1] 180

Basic Packages of Time Series ◾ 99

 3. Calculate statistical indicators by time period:

> zoo.data <- zoo(rnorm(31)+10,as.Date(13514:13744,ori
gin="1970-01-01"))

Take index of time period by week.
> ep <- endpoints(zoo.data,'weeks')
> ep
 [1] 0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105
112 119
[19] 126 133 140 147 154 161 168 175 182 189 196 203 210 217 224 231

Calculate mean by week.
> period.apply(zoo.data, INDEX=ep, FUN=function(x) mean(x))
2007-01-07 2007-01-14 2007-01-21 2007-01-28 2007-02-04 2007-02-11
 10.200488 9.649387 10.304151 9.864847 10.382943 9.660175
2007-02-18 2007-02-25 2007-03-04 2007-03-11 2007-03-18 2007-03-25
 9.857894 10.495037 9.569531 10.292899 9.651616 10.089103
2007-04-01 2007-04-08 2007-04-15 2007-04-22 2007-04-29 2007-05-06
 9.961048 10.304860 9.658432 9.887531 10.608082 9.747787
2007-05-13 2007-05-20 2007-05-27 2007-06-03 2007-06-10 2007-06-17
 10.052955 9.625730 10.430030 9.814703 10.224869 9.509881
2007-06-24 2007-07-01 2007-07-08 2007-07-15 2007-07-22 2007-07-29
 10.187905 10.229310 10.261725 9.855776 9.445072 10.482020
2007-08-05 2007-08-12 2007-08-19
 9.844531 10.200488 9.649387

Calculate max by week.
> head(period.max(zoo.data, INDEX=ep))
 [,1]
2007-01-07 12.05912
2007-01-14 10.79286
2007-01-21 11.60658
2007-01-28 11.63455
2007-02-04 12.05912
2007-02-11 10.67887

Calculate the number of weeks.
> nweeks(sample_matrix)
[1] 26

Calculate the number of months.
> nmonths(sample_matrix)
[1] 6

Calculate the number of quarters.
> nquarters(sample_matrix)
[1] 2

Calculate the number of years.
> nyears(sample_matrix)
[1] 1

100 ◾ R for Programmers: Mastering the Tools

2.2.3.6 Time Series Operations of xts Objects

Check the class of time.

Use timeBasedSeq() to create time series.

Sys.time() is class POSIXct.
> class(Sys.time());timeBased(Sys.time())
[1] "POSIXct" "POSIXt"
[1] TRUE

Sys.Date() is class Date.
> class(Sys.Date());timeBased(Sys.Date())
[1] "Date"
[1] TRUE

20070101 is not a class of time.
> class(20070101);timeBased(20070101)
[1] "numeric"
[1] FALSE

By year.
> timeBasedSeq('1999/2008')
 [1] "1999-01-01" "2000-01-01" "2001-01-01" "2002-01-01"
"2003-01-01"
 [6] "2004-01-01" "2005-01-01" "2006-01-01" "2007-01-01"
"2008-01-01"

Calculate min by week.
> head(period.min(zoo.data, INDEX=ep))
 [,1]
2007-01-07 8.874509
2007-01-14 8.534655
2007-01-21 9.069773
2007-01-28 8.461555
2007-02-04 9.421085
2007-02-11 8.534655

Calculate the index value by week.
> head(period.prod(zoo.data, INDEX=ep))
 [,1]
2007-01-07 11140398
2007-01-14 7582350
2007-01-21 11930334
2007-01-28 8658933
2007-02-04 12702505
2007-02-11 7702767

Basic Packages of Time Series ◾ 101

Take data by index using first() and last()

By month.
> head(timeBasedSeq('199901/2008'))
[1] "December 1998" "January 1999" "February 1999" "March
1999" "April 1999"
[6] "May 1999"

By day.
> head(timeBasedSeq('199901/2008/d'),40)
 [1] "December 1998" "January 1999" "January 1999" "January
1999" "January 1999"
 [6] "January 1999" "January 1999" "January 1999" "January
1999" "January 1999"
[11] "January 1999" "January 1999" "January 1999" "January
1999" "January 1999"
[16] "January 1999" "January 1999" "January 1999" "January
1999" "January 1999"
[21] "January 1999" "January 1999" "January 1999" "January
1999" "January 1999"
[26] "January 1999" "January 1999" "January 1999" "January
1999" "January 1999"
[31] "January 1999" "January 1999" "February 1999" "February
1999" "February 1999"
[36] "February 1999" "February 1999" "February 1999" "February
1999" "February 1999"

Create a data set of 100 minutes by quantity.
> timeBasedSeq('20080101 0830',length=100)
$from
[1] "2008-01-01 08:30:00 CST"
$to
[1] NA
$by
[1] "mins"
$length.out
[1] 100

> x <- xts(1:100, Sys.Date()+1:100)
> head(x)
 [,1]
2013-11-19 1
2013-11-20 2
2013-11-21 3
2013-11-22 4
2013-11-23 5
2013-11-24 6

Take the first 10 pieces of data.
> first(x, 10)
 [,1]

102 ◾ R for Programmers: Mastering the Tools

Calculate lags and differences by lag() and diff().

> x <- xts(1:5, Sys.Date()+1:5)

Set the lag to 1.
> lag(x)
 [,1]
2013-11-19 NA
2013-11-20 1
2013-11-21 2
2013-11-22 3
2013-11-23 4

Set lag to -1 and remove NA.
> lag(x, k=-1, na.pad=FALSE)
 [,1]
2013-11-19 2
2013-11-20 3
2013-11-21 4
2013-11-22 5

First order difference.
> diff(x)
 [,1]
2013-11-19 NA
2013-11-20 1

2013-11-19 1
2013-11-20 2
2013-11-21 3
2013-11-22 4
2013-11-23 5
2013-11-24 6
2013-11-25 7
2013-11-26 8
h
2013-11-27 9
2013-11-28 10

Take the data of the first day.
> first(x, '1 day')
 [,1]
2013-11-19 1

Take the data of the last week.
> last(x, '1 weeks')
 [,1]
2014-02-24 98
2014-02-25 99
2014-02-26 100

Basic Packages of Time Series ◾ 103

Use isOrdered() to check if the vector is ordered.

Use make.index.unique() to force unique index.

> isOrdered(1:10, increasing=TRUE)
[1] TRUE

> isOrdered(1:10, increasing=FALSE)
[1] FALSE

> isOrdered(c(1,1:10), increasing=TRUE)
[1] FALSE

> isOrdered(c(1,1:10), increasing=TRUE, strictly=FALSE)
[1] TRUE

2013-11-21 1
2013-11-22 1
2013-11-23 1

Second order difference.
> diff(x, lag=2)
 [,1]
2013-11-19 NA
2013-11-20 NA
2013-11-21 2
2013-11-22 2
2013-11-23 2

> x <- xts(1:5, as.POSIXct("2011-01-21") + c(1,1,1,2,3)/1e3)
> x
 [,1]
2011-01-21 00:00:00.000 1
2011-01-21 00:00:00.000 2
2011-01-21 00:00:00.000 3
2011-01-21 00:00:00.002 4
2011-01-21 00:00:00.003 5

Guarantee the uniqueness of index by adding millisecond precision.
> make.index.unique(x)
 [,1]
2011-01-21 00:00:00.000999 1
2011-01-21 00:00:00.001000 2
2011-01-21 00:00:00.001001 3
2011-01-21 00:00:00.002000 4
2011-01-21 00:00:00.003000 5

104 ◾ R for Programmers: Mastering the Tools

Query time zone of xts objects.

xts provides more API support than time series of the zoo class. Thus we possess a more con-
venient tool to make conversion and deformation of time series data.

2.3 Visualization of time Series: plot.xts
Question
How do we visualize time series data?

zoo
ts
xts
xtsExtra

Visualization of time series
http://blog.fens.me/r-xts-xtsextra/

plot.xts
A blog post of r-bloggers, plot.xts is wonderful!, gave me great motivation to continue to explore
the power of xts (http://www.r-bloggers.com/plot-xts-is-wonderful/). xts extends the basic data
structure of zoo, and provides richer functions. xtsExtra library provides a simple but effective
graphic function plot.xts from the perspective of visualization. This section shows how to visualize
time-series-like xts objects by plot.xts.

2.3.1 Introduction to xtsExtra

xtsExtra is a supplementary package of xts. xtsExtra was first published in Google Summer of
Code 2012. Plot.xts() is a main function provided by xtsExtra. There is a difference between
xts:plot.xts() and xtsExtra::plot.xts(), which is discussed in this section.

> x <- xts(1:10, Sys.Date()+1:10)

Query time zone.
> indexTZ(x)
[1] "UTC"
> tzone(x)
[1] "UTC"

> str(x)
An 'xts' object on 2013-11-19/2013-11-28 containing:
 Data: int [1:10, 1] 1 2 3 4 5 6 7 8 9 10
 Indexed by objects of class: [Date] TZ: UTC
 xts Attributes:
NULL

http://www.r-bloggers.com

Basic Packages of Time Series ◾ 105

2.3.2 Installation of xtsExtra

System environment used in this section:

 ◾ Windows 7 64bit
 ◾ R: 3.0.1 x86_64-w64-mingw32/x64 b4bit

Note: xtsExtra supports both Windows 7 and Linux. Since xtsExtra isn’t published in CRAN,
we need to download it in R-Forge.

XtsExtra::plot.xts() has covered xts::plot.xts().

2.3.3 Use of xtsExtra

The parameter list of plot.xts() is as follows:

We draw a simple graph of time series, as in Figure 2.10.

It can be seen from Figure 2.10 that xtsExtra::plot.xts() achieves a different effect from
xts::plot.xts(). Next, we’ll draw some more complex graphs.

Start R.
~ R

Download xtsExtra from R-Forge.
>install.packages("xtsExtra",repos="http://R-Forge.R-project.org")

Load xtsExtra.
> library(xtsExtra)

> names(formals(plot.xts))
 [1] "x" "y" "screens" "layout.screens"
"..."
 [6] "yax.loc" "auto.grid" "major.ticks" "minor.ticks"
"major.format"
[11] "bar.col.up" "bar.col.dn" "candle.col" "xy.labels" "xy.
lines"
[16] "ylim" "panel" "auto.legend" "legend.names"
"legend.loc"
[21] "legend.pars" "events" "blocks" "nc"
"nr"

> data(sample_matrix)
> sample_xts <- as.xts(sample_matrix)
> plot(sample_xts[,1])
> class(sample_xts[,1])
[1] "xts" "zoo"

106 ◾ R for Programmers: Mastering the Tools

2.3.3.1 K-Line Chart

We’ll use gray and white as the default colors when we draw the K-line chart, as in Figure 2.11.

K-line chart in customized colors: Figure 2.12.

> plot(sample_xts[1:30,], type = "candles")

> plot(sample_xts[1:30,], type = "candles", bar.col.up = "blue",
bar.col.dn = "violet", candle.col = "green4")

sample_xts[, 1]

51

50

49

48

Jan 02
2007

Jan 30
2007

Feb 27
2007

Mar 27
2007

Apr 24
2007

May 22
2007

Jun 19
2007

Figure 2.10 time series.

sample_xts[1:30,]

50.6

50.2

49.8

Jan 02
2007

Jan 09
2007

Jan 16
2007

Jan 23
2007

Jan 30
2007

Figure 2.11 K-line chart drawn using xtsextra.

Basic Packages of Time Series ◾ 107

2.3.3.2 Configuration on Panel

Draw a basic panel, as in Figure 2.13.

Draw a multirow panel, as in Figure 2.14.

> plot(sample_xts[,1:2])

> plot(sample_xts[,rep(1:4, each = 3)])

sample_xts[1:30,]

50.6

50.2

49.8

Jan 02
2007

Jan 09
2007

Jan 16
2007

Jan 23
2007

Jan 30
2007

Figure 2.12 K-line chart in customized colors.

sample_xts[, 1:2]

51

50

49

48

50

48

Jan 02
2007

Jan 30
2007

Feb 27
2007

Mar 27
2007

Apr 24
2007

May 22
2007

Jun 19
2007

Figure 2.13 Basic panel.

108 ◾ R for Programmers: Mastering the Tools

Draw a panel of free combination, as in Figure 2.15.

Through drawing these graphs, we may find that plot.xts() provides various parameter con-
figurations to help us achieve richer forms of expression in visualizing time series.

2.3.3.3 Configuration on Screens

Draw a graph display by double screen, with two lines in each screen as in Figure 2.16.

Draw a graph displayed by a double screen and assign the screen and color of each line, as in
Figure 2.17.

> plot(sample_xts[,1:4], layout.screens = matrix(c(1,1,1,1,2,3,4,4),
ncol = 2, byrow = TRUE))

> plot(sample_xts, screens = 1:2)

> plot(sample_xts, screens = c(1,2,1,2), col = c(1,3,2,2))

51

48
51

48
51

48
51

48
51

48

48

51

50

47
50

47
50

47
50

47
50

47
50

Jan 02
2007

Jan 16
2007

Jan 30
2007

Feb 13
2007

Feb 27
2007

Mar 13
2007

Mar 27
2007

Apr 10
2007

Apr 24
2007

May 08
2007

May 22
2007

Jun 05
2007

Jun 19
2007

Jun 30
2007

sample_xts[, rep(1:4, each = 3)]

47

Figure 2.14 Multirow panel.

Basic Packages of Time Series ◾ 109

51

50

49

48

51

49

47

50

48

Jan 02
2007

Jan 16
2007

Jan 30
2007

Feb 13
2007

Feb 27
2007

Mar 13
2007

Mar 27
2007

Apr 10
2007

Apr 24
2007

May 08
2007

May 22
2007

Jun 05
2007

Jun 19
2007

Jun 30
2007

Jan 02
2007

Jan 02
2007

Jan 16
2007

Jan 30
2007

Feb 13
2007

Feb 27
2007

Mar 13
2007

Mar 27
2007

Apr 10
2007

Apr 24
2007

May 08
2007

May 22
2007

Jun 05
2007

Jun 19
2007

Jun 30
2007

Jan 23
2007

Feb 13
2007

Mar 06
2007

Mar 27
2007

Apr 17
2007

May 08
2007

May 29
2007

Jun 19
2007

Jan 02
2007

Jan 23
2007

Feb 13
2007

Mar 06
2007

Mar 27
2007

Apr 17
2007

May 08
2007

May 29
2007

Jun 19
2007

sample_xts[, 1:4]

Figure 2.15 Panel of free combination.

sample_xts

51

50

49

48

51

49

47

47

Jan 02
2007

Jan 30
2007

Feb 27
2007

Mar 27
2007

Apr 24
2007

May 22
2007

Jun 19
2007

Figure 2.16 Double screen display.

110 ◾ R for Programmers: Mastering the Tools

Draw a graph displayed by a double screen and assign different coordinates, as in Figure 2.18.

Draw a graph displayed by a double screen and assign a different type of output, as in
Figure 2.19.

Draw a graph displayed by multiple screens and set them in different groups as in Figure 2.20.

2.3.3.4 Configuration on Events

Draw a dividing line of basic events, as in Figure 2.21.

plot(sample_xts[,c(1:4, 3:4)], layout =
matrix(c(1,1,1,1,2,2,3,4,5,6), ncol = 2, byrow = TRUE), yax.loc =
"left")

> plot(sample_xts[,c(1:4, 3:4)], layout =
matrix(c(1,1,1,1,2,2,3,4,5,6), ncol = 2, byrow = TRUE), yax.loc =
"left")

> plot(10^sample_xts, screens = 1:2, log=c("","y"))

> plot(sample_xts[,1], events = list(time = c("2007-03-15","2007-05-
01"), label = "bad days"), blocks = list(start.time = c("2007-03-
05", "2007-04-15"), end.time = c("2007-03-20","2007-05-30"), col =
c("lightblue1", "lightgreen")))

sample_xts

51

50

49

48

51

49

47

47
Jan 02
2007

Jan 30
2007

Feb 27
2007

Mar 27
2007

Apr 24
2007

May 22
2007

Jun 19
2007

Figure 2.17 Double screen display with customized colors.

Basic Packages of Time Series ◾ 111

10^sample_xts
2.0e+51

1.0e+51

0.0e+00
1.0e+51

1.0e+49

1.0e+47
Jan 02
2007

Jan 23
2007

Feb 13
2007

Mar 06
2007

Mar 27
2007

Apr 17
2007

May 08
2007

May 29
2007

Jun 19
2007

Figure 2.18 Double screen display with different coordinates.

0.0

0.0

‒1.0

‒1.0

Jan 02
2007

Jan 16
2007

Jan 30
2007

Feb 13
2007

Feb 27
2007

Mar 13
2007

sample_xts[1:75, 1:2]-50.5

Figure 2.19 Double screen display with a different type of output.

112 ◾ R for Programmers: Mastering the Tools

Ba
d

da
ys

Ba
d

da
ys

sample_xts[, 1]

51

50

49

48

Jan 02
2007

Jan 30
2007

Feb 27
2007

Mar 27
2007

Apr 24
2007

May 22
2007

Jun 19
2007

Figure 2.21 Dividing line of events.

51

50

49

48

50

48

51
50
49
48
4751

49

47

O
pe

n
H

ig
h

Lo
w

Lo
w

Jan 02
2007

Jan 30
2007

Feb 27
2007

Mar 27
2007

Apr 24
2007

May 22
2007

Jun 19
2007

Jan 02
2007

Jan 30
2007

Feb 27
2007

Mar 27
2007

Apr 24
2007

May 22
2007

Jun 19
2007

Jan 02
2007

Jan 16
2007

Jan 30
2007

Feb 13
2007

Feb 27
2007

Mar 13
2007

Mar 27
2007

Apr 10
2007

Apr 24
2007

May 08
2007

May 22
2007

Jun 05
2007

Jun 19
2007

51
50
49
48
4751

49

47

Cl
os

e
Cl

os
e

sample_xts[, c(1:4, 3:4)]

Figure 2.20 Multiple screen display in different groups.

Basic Packages of Time Series ◾ 113

2.3.3.5 Time Series of Double Coordinates

Draw a view of double coordinates, as in Figure 2.22.

Draw a gradient view of double coordinates, as in Figure 2.23.

> plot(sample_xts[,1],sample_xts[,2])

> cr <- colorRampPalette(c("#00FF00","#FF0000"))
> plot(sample_xts[,1],sample_xts[,2], xy.labels = FALSE, xy.lines =
TRUE, col = cr(NROW(sample_xts)), type = "l")

51

50

49

48sa
m

pl
e_

xt
s[

, 2
]

sample_xts[, 1]

sample_xts[, 1] vs. sample_xts[, 2]

48 49 50 51

Figure 2.22 Double coordinates view.

51

50

49

48

sa
m

pl
e_

xt
s[

, 2
]

sample_xts[, 1]

sample_xts[, 1] vs. sample_xts[, 2]

48 49 50 51

Figure 2.23 Gradient view of double coordinates.

114 ◾ R for Programmers: Mastering the Tools

2.3.3.6 Convert the xts Class and Draw Graphics

Draw a graph of data of the ts class, as in Figure 2.24.

Draw a graph of the xts class and add background coordinate lines automatically, as in Figure 2.25.

> plot.xts(tser)

> tser <- ts(cumsum(rnorm(50, 0.05, 0.15)), start = 2007, frequency
= 12)
> class(tser)
[1] "ts"
> plot(tser)

1.5

1.0

0.5

0.0

–0.5

–1.0

2007 2008 2009 2010 2011
Time

ts
er

Figure 2.24 Graphic of data of the ts class.

1.5

1.0

0.5

0.0

−0.5

−1.0

Jan
2007

Jul
2007

Jan
2008

Jul
2008

Jan
2009

Jul
2009

Jan
2010

Jul
2010

tser

Figure 2.25 Graph of the xts class.

Basic Packages of Time Series ◾ 115

2.3.3.7 Draw Graphs by Barplot

Use barplot() to draw a bar chart, as in Figure 2.26.

We’ve seen the powerful drawing function of xtsExtra::plot.xts. It’s easy to use to make graph-
ics of time series with rich elements!

> x <- xts(matrix(abs(rnorm(72)), ncol = 6), Sys.Date() + 1:12)
> colnames(x) <- LETTERS[1:6]
> barplot(x)

5

4

3

2

1

0
Mar 19

2015
Mar 21

2015
Mar 23

2015
Mar 25

2015
Mar 27

2015
Mar 29

2015

Va
lu

e

A
B

C
D

E
F

Figure 2.26 Bar chart.

117

Chapter 3

Performance Monitoring
Packages of R

This chapter mainly introduces three tool packages related to the performance of R, which may
help readers find bottlenecks of performance in programs.

3.1 Local Cache tool of R: memoise
Question
How do we strengthen the performance of R?

The caching technique is widely applied in computer systems. For applications of high concur-
rency access, it is the best solution to strengthen performance considering price effectiveness.
Especially for repetitive calculation, cache can save a large amount of time for central processing
unit (CPU), even up to 99%. Optimization is being conducted and changes have started. R lead-
ers, represented by Hadley Wickham, are making R much faster.

118 ◾ R for Programmers: Mastering the Tools

3.1.1 Introduction to memoise

memoise is a simple cache package. Based on local cache, memoise reduces the repetitive calcula-
tion of a single computer and indirectly raises the CPU performance of a single computer. When
we run a second calculation on a same function with the same parameters, it’ll save CPU a great
deal of time if we simply use the result of the first calculation as the result of the second calculation
instead of running the calculation again.

The API of memoise is quite simple and contains only two functions.

 ◾ memoise: define memoised function, i.e., load the result of function calculation into local
cache

 ◾ forget: forget past results; resets the cache of a memoised function

3.1.2 Installation of memoise

System environment used in this section:

 ◾ Windows 7 64bit
 ◾ R: 3.0.1 x86_64-w64-mingw32/x64 b4bit

Note: Installation of memoise supports both Windows 7 and Linux.
Installation of memoise is as follows:

3.1.3 Use of memoise

Now we run a cache experiment. Suppose the running of a function costs 1 second of CPU.

Start R.
~ R

Install memoise.
> install.packages("memoise")
trying URL 'http://mirror.bjtu.edu.cn/cran/bin/windows/contrib/3.0/
memoise_0.1.zip'
Content type 'application/zip' length 10816 bytes (10 Kb)
opened URL
downloaded 10 Kb

package 'memoise' successfully unpacked and MD5 sums checked

Load memoise.
> library(memoise

Define memoised function. Time stops for 1 second when the
function is ran.
> fun <- memoise(function(x) {Sys.sleep(1); runif(1)})

Performance Monitoring Packages of R ◾ 119

The preceding execution process can be described as follows:

 1. Create a memoised function fun() using memoise().
 2. First execution of fun(). The process costs 1 second.
 3. Second execution of fun(). The process is completed immediately when the result is loaded

from the cache.
 4. Clear the result of fun() in the cache by forget().
 5. Third execution of fun(). Because the result of fun() has been cleared, so the process costs

1 second again.
 6. Fourth execution of fun(). The process is completed immediately when the result is loaded

from the cache.

3.1.4 Source Code Analysis of memoise()

The memoise project is a typical R project achieved by object-oriented programming. Object-
oriented programming of R will be introduced in detail in the next book of this series, R for
Programmers: Advanced Techniques. The source code of memoise can be found in Github at https://
www .github .com/hadley/memoise.

First execution of fun(). The process costs 1 second.
> system.time(print(fun()))
[1] 0.05983416
User System Passing
 0 0 1

Second execution of fun(). The process is being completed
immediately when result is loaded from cache.
> system.time(print(fun()))
[1] 0.05983416
User System Passing
 0 0 0

Reset memoised function.
> forget(fun)
[1] TRUE

Thrid execution of fun(). The process costs 1 second.
> system.time(print(fun()))
[1] 0.6001663
User System Passing
 0 0 1

Fourth execution of fun(). The process is being completed
immediately when result is loaded from cache.
> system.time(print(fun()))
[1] 0.6001663
User System Passing
 0 0 0

https://www.github.com
https://www.github.com

120 ◾ R for Programmers: Mastering the Tools

3.1.4.1 Source Code of memoise()

Next we’ll analyze the source code of memoise(). It mainly consists of three parts.

 1. New_cache() creates new cache space for f().
 2. Generate hash value of f() as key.
 3. Return f() after caching.

3.1.4.2 Source Code of forget()

The source code of forget() mainly consists of two parts.

 1. Check if f() is cached in the environment.
 2. If there exists a cache of f(), then clear the cache value of f().

Define memoise and memoize.
memoise <- memoize <- function(f) {

 # Create new cache space.
 cache <- new_cache()

 # Generate hash value.
 memo_f <- function(...) {
 hash <- digest(list(...))

 if (cache$has_key(hash)) {
 cache$get(hash)
 } else {
 res <- f(...)
 cache$set(hash, res)
 res
 }
 }
 attr(memo_f, "memoised") <- TRUE
 return(memo_f)
}

forget <- function(f) {

 # Check if function is cached.
 if (!is.function(f)) return(FALSE)

 env <- environment(f)
 if (!exists("cache", env, inherits = FALSE)) return(FALSE)

 # Clear the cache value of function.
 cache <- get("cache", env)
 cache$reset()

 TRUE
}

Performance Monitoring Packages of R ◾ 121

3.1.4.3 Private Function: Source Code of new_cache()

new_cache() mainly consists of three parts.

 1. Define the cache object in new_cache() and save it in env.
 2. Construct an object of class list by new_cache(), by measures including reset, set, get, has_

key, keys.
 3. Access the cache object by the list object.

From the source code we not only can appreciate the design philosophy of memoise, but also
gain a deep understanding of the writer of memoise on R. With a concise and effective code,
memoise is worthwhile to learn.

new_cache <- function() {

 # Define cache object.
 cache <- NULL

 # Define cache reset function.
 cache_reset <- function() {
 cache <<- new.env(TRUE, emptyenv())
 }

 # Define cache set function.
 cache_set <- function(key, value) {
 assign(key, value, env = cache)
 }

 # Define cache get function.
 cache_get <- function(key) {
 get(key, env = cache, inherits = FALSE)
 }

 # Check if cache exists.
 cache_has_key <- function(key) {
 exists(key, env = cache, inherits = FALSE)
 }

 # Clear cache.
 cache_reset()

 # reture the object of cache.
 list(
 reset = cache_reset,
 set = cache_set,
 get = cache_get,
 has_key = cache_has_key,
 keys = function() ls(cache)
)
}

122 ◾ R for Programmers: Mastering the Tools

3.2 Performance Monitoring tool of R: Rprof
Question
How do we find bottlenecks of performance?

As R becomes more and more widely used, its problem of calculation performance attracts increas-
ing attention. How to get the cost of time of an algorithm on CPU clearly would be a key element
to optimize performance. It’s fortunate that the basic library of R has provided us with such a
function for performance monitoring, Rprof().

3.2.1 Introduction to Rprof()

Rprof() is a log function of performance data of the core packages of R. It can print out the call
relation of functions and the data of CPU cost of time. Then summaryRprof() will analyze the log
data generated by Rprof() and produce a performance report. Finally, plot() in the profr library
will visualize the report.

3.2.2 Definition of Rprof()

The system environment used in this section is

 ◾ Windows 7 64bit
 ◾ R: 3.0.1 x86_64-w64-mingw32/x64 b4bit

Note: Rprof and profr support both Windows 7 and Linux.
Rprof() is defined in the basic package utils. It can be directly used, without installation. Now

view the definition of Rprof().

Start R.
~ R

View the definition of Rprof().
> Rprof
function (filename = "Rprof.out", append = FALSE, interval = 0.02,
memory.profiling = FALSE, gc.profiling = FALSE, line.profiling = FALSE,
numfiles = 100L, bufsize = 10000L)
{

Performance Monitoring Packages of R ◾ 123

Rprof() is used to generate a log file to record performance indicators. Normally we just need
to assign the filename.

3.2.3 Use of Rprof(): A Case Study of Stock Data Analysis

Consider stock data of Section 6.6 of this book as the test set. The data file is 000000_0.txt,
1.38MB. It can be found in the code files of this book. This section only serves as a performance
test. The business implication of the data are explained further in Section 6.6.

Detailed explanation of fields: bidpx1 is the price of the best bid. Bidsize1 is the size of the best
bid. Offerpx1 is the price of the best offer. Offersize1 is the size of the best offer.

Task of calculation: divide the data into groups by securityid and calculate the mean of the
price of the best bid and the total amount of the size of the best bid.

if (is.null(filename))
filename <- ""
invisible(.External(C_Rprof, filename, append, interval,
memory.profiling, gc.profiling, line.profiling, numfiles,
bufsize))
}
<bytecode: 0x000000000d8efda8>

> bidpx1<-read.csv(file="000000_0.txt",header=FALSE)
> names(bidpx1)<-c("tradedate","tradetime","securityid","bidpx1","bi
dsize1","offerpx1","offersize1")
> bidpx1$securityid<-as.factor(bidpx1$securityid)

> head(bidpx1)
 tradedate tradetime securityid bidpx1 bidsize1 offerpx1 offersize1
1 20130724 145004 131810 2.620 6960 2.630 13000
2 20130724 145101 131810 2.860 13880 2.890 6270
3 20130724 145128 131810 2.850 327400 2.851 1500
4 20130724 145143 131810 2.603 44630 2.800 10650
5 20130724 144831 131810 2.890 11400 3.000 77990
6 20130724 145222 131810 2.600 1071370 2.601 35750

> object.size(bidpx1)
1299920 bytes

Load plyr package for data processing.
> library(plyr)

Encapsulate the data processing to fun1().
> fun1<-function(){
+ datehour<-paste(bidpx1$tradedate,substr(bidpx1$tradetime,1,2),
sep="")
+ df<-cbind(datehour,bidpx1[,3:5])

124 ◾ R for Programmers: Mastering the Tools

Check the running time of fun1 by system.time(). Run the operation twice, we may find that
the time cost of the system is similar and that there is no cache for the second operation.

Use Rprof() to record data of performance indicators and output it to file.

Check the generated file of performance indicators: fun1_rprof.out.

+ ddply(bidpx1,.(securityid,datehour),summarize,price=mean(bi
dpx1), size=sum(bidsize1))
+ }

> head(fun1())
 securityid datehour price size
1 131810 2013072210 3.445549 189670150
2 131810 2013072211 3.437179 131948670
3 131810 2013072212 3.421000 920
4 131810 2013072213 3.509442 299554430
5 131810 2013072214 3.578667 195130420
6 131810 2013072215 1.833000 718940

> system.time(fun1())
User System Passing
0.08 0.00 0.07

> system.time(fun1())
User System Passing
0.06 0.00 0.06

Define the position of output of performance log.
> file<-"fun1_rprof.out"

Start performance monitoring.
> Rprof(file)

Execute the function of calculation.
> fun1()

Stop performance monitoring and output the result to file.
> Rprof(NULL)

~ vi fun1_rprof.out

sample.interval=20000
"substr" "paste" "fun1"
"paste" "fun1"
"structure" "splitter_d" "ddply" "fun1"

Performance Monitoring Packages of R ◾ 125

In fact, we cannot understand this log. So we need to use summaryRprof() to explain this log.
Check the statistical report by summaryRprof().

Explanation of data:

 ◾ $by.self: cost of time of current function. Self.time is the time of actual running, and total.time
is the accumulated time of running.

 ◾ $by.total: overall situation of function call. Self.time is the time of actual running, and total.time
is the accumulated time of running.

".fun" "" ".Call" "loop_apply" "llply" "ldply" "ddply" "fun1"
".fun" "" ".Call" "loop_apply" "llply" "ldply" "ddply" "fun1"
".fun" "" ".Call" "loop_apply" "llply" "ldply" "ddply" "fun1"
"[[" "rbind.fill" "list_to_dataframe" "ldply" "ddply" "fun1"

Load the file.
> summaryRprof(file)
$by.self
 self.time self.pct total.time total.pct
".fun" 0.06 42.86 0.06 42.86
"paste" 0.02 14.29 0.04 28.57
"[[" 0.02 14.29 0.02 14.29
"structure" 0.02 14.29 0.02 14.29
"substr" 0.02 14.29 0.02 14.29

$by.total
 total.time total.pct self.time self.pct
"fun1" 0.14 100.00 0.00 0.00
"ddply" 0.10 71.43 0.00 0.00
"ldply" 0.08 57.14 0.00 0.00
".fun" 0.06 42.86 0.06 42.86
".Call" 0.06 42.86 0.00 0.00
"" 0.06 42.86 0.00 0.00
"llply" 0.06 42.86 0.00 0.00
"loop_apply" 0.06 42.86 0.00 0.00
"paste" 0.04 28.57 0.02 14.29
"[[" 0.02 14.29 0.02 14.29
"structure" 0.02 14.29 0.02 14.29
"substr" 0.02 14.29 0.02 14.29
"list_to_dataframe" 0.02 14.29 0.00 0.00
"rbind.fill" 0.02 14.29 0.00 0.00
"splitter_d" 0.02 14.29 0.00 0.00

$sample.interval
[1] 0.02

$sampling.time
[1] 0.14

126 ◾ R for Programmers: Mastering the Tools

We can find from $by.self that most of the time is spent on .fun.

 ◾ .fun: the time of actual running is 0.06, accounting for 42.86% of the time of current function
 ◾ Paste: the time of actual running is 0.02, accounting for 14.29% of the time of current

function
 ◾ “[[”: the time of actual running is 0.02, accounting for 13.29% of the time of current function
 ◾ “structure”: the time of actual running is 0.02, accounting for 14.29% of the time of current

function
 ◾ “substr”: the time of actual running is 0.02, accounting for 14.29% of the time of current function

In $by.total, the result is ordered sequence of execution

 ◾ 4 fun1: the accumulated time of running is 0.14, accounting for 100% of total accumulated
time of running. The time of actual running is 0.00.

 ◾ 3.fun: the accumulated time of running is 0.06, accounting for 42.86% of total accumu-
lated time of running. The time of actual running is 0.06.

 ◾ 2 paste: the accumulated time of running is 0.04, accounting for 28.57% of total accumu-
lated time of running. The time of actual running is 0.02.

 ◾ 1 splitter_d: the accumulated time of running is 0.02, accounting for 14.297% of total
accumulated time of running. The time of actual running is 0.00.

Now we know the CPU time of every function called. To optimize performance, we’ll start
from the function that cost the most time.

3.2.4 Use of Rprof(): A Case Study of Data Download

First, we need to install the stockPortfolio package and download stock data through stockPortfolio.
Then we use Rprof() to monitor the cost of time of the downloading.

Install stockPortfolio.
> install.packages("stockPortfolio")

Load stockPortfolio.
> library(stockPortfolio)
> fileName <- "Rprof2.log"

Start performance monitoring.
> Rprof(fileName)

Download the stock data of Google, Microsoft and IBM.
> gr <- getReturns(c("GOOG", "MSFT", "IBM"), freq="week")
> gr
Time Scale: week
Average Return
 GOOG MSFT IBM
0.004871890 0.001270758 0.001851121

Finish performance monitoring.
> Rprof(NULL)

Performance Monitoring Packages of R ◾ 127

From the eight printed records that cost the most time, we can see that most of the time of
actual running (self.time) is spent on file:2.02, scan:4.64.

3.2.5 To Visualize Performance Indicators Using Profr Package

Profr package provides a function of visualized display on the performance report output by
Rprof(). It is more user-friendly and easier to read than the pure-text report of summaryRprof().
First, we need to install profr.

The first case of data visualization is stock data analysis. The following code will generate
Figures 3.1 and 3.2.

The second case of data visualization is data download. The following code will generate
Figures 3.3 and 3.4.

Check performance report.
> summaryRprof(fileName)$by.total[1:8,]
 total.time total.pct self.time self.pct
"getReturns" 6.76 100.00 0.00 0.00
"read.delim" 6.66 98.52 0.00 0.00
"read.table" 6.66 98.52 0.00 0.00
"scan" 4.64 68.64 4.64 68.64
"file" 2.02 29.88 2.02 29.88
"as.Date" 0.08 1.18 0.02 0.30
"strptime" 0.06 0.89 0.06 0.89
"as.Date.character" 0.06 0.89 0.00 0.00

Install profr.
> install.packages("profr")

Load profr.
> library(profr)

Use ggplot2 to draw graphics.
Load ggplot2.
> library(ggplot2)

> file<-"fun1_rprof.out"

Graphic by plot.
> plot(parse_rprof(file))

Graphic by ggplot2.
> ggplot(parse_rprof(file))

> fileName <- "Rprof2.log"
> plot(parse_rprof(fileName))
> ggplot(parse_rprof(fileName))

128 ◾ R for Programmers: Mastering the Tools

sys.parent

sys.call

match.call

stopifnot

quickdf

<Anonymous>FUN

.funmatch

.Calllapply

loop_apply%*%rev

llplyid print.default

ldplysplitter_dsubstr print

printfun1

print.data.frameddplypaste

13

12

11

10

9

8

7

6

5

4

3

2

1

0.00 0.05 0.10

Le
ve

l

Time

Figure 3.2 Graphic generated by ggplot2.

sys.parent
sys.call
match.call
stopifnot
quickdf
.fun
<Anonymous>
.Call

match
FUN
lapply
rev
id

substr
paste
fun1 print

ddply print.data.fram
splitter_d ldply print

llply print.default
loop_apply%*%

14

12

10

8

6

4

2

0
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Time

Le
ve

l

Figure 3.1 Graphic generated by the plot.

www.allitebooks.com

http://www.allitebooks.org

Performance Monitoring Packages of R ◾ 129

8

6

4

2

0 1 2 3 4 5 6 7
Time

Le
ve

l
strptime

charToDate

as.Date.character

file filescan

read.table

read.delim

getReturns

read.delim read.delim

read.table read.table

scan scan

Figure 3.3 Graphic drawn by the plot.

strptime

charToDate

as.Date.character

file scan scan scanfile

read.table read.table read.table

read.delim read.delim read.delim

getReturns

8

7

6

5

4

3

2

1

0 2 4 6
Time

Le
ve

l

Figure 3.4 Graphic drawn by ggplot2.

130 ◾ R for Programmers: Mastering the Tools

3.2.6 Use of Command Line of Rprof

The command line of Rprof can be used to check log files conveniently.

3.2.6.1 Check the Help File of Command Line of Rprof

3.2.6.2 Use of Command Line of Rprof

Here is the completed report:

~ D:\workspace\R\preforemence\Rprof>R CMD Rprof —help
Usage: R CMD Rprof [options] [file]

Post-process profiling information in file generated by Rprof().

Options:
 -h, —help print short help message and exit
 -v, —version print version info and exit
 —lines print line information
 —total print only by total
 —self print only by self
 —linesonly print only by line (implies —lines)
 —min%total= minimum% to print for 'by total'
 —min%self= minimum% to print for 'by self'

If 'file' is omitted 'Rprof.out' is used

Report bugs at bugs.r-project.org.

~ D:\workspace\R\preforemence\Rprof>R CMD Rprof fun1_rprof.out

Each sample represents 0.02 seconds.
Total run time: 0.14 seconds.

Total seconds: time spent in function and callees.
Self seconds: time spent in function alone.

 % total % self
 total seconds self seconds name
 100.0 0.14 0.0 0.00 "fun1"
 71.4 0.10 0.0 0.00 "ddply"
 57.1 0.08 0.0 0.00 "ldply"
 42.9 0.06 42.9 0.06 ".fun"
 42.9 0.06 0.0 0.00 ".Call"
 42.9 0.06 0.0 0.00 ""
 42.9 0.06 0.0 0.00 "llply"
 42.9 0.06 0.0 0.00 "loop_apply"
 28.6 0.04 14.3 0.02 "paste"
 14.3 0.02 14.3 0.02 "[["
 14.3 0.02 14.3 0.02 "structure"
 14.3 0.02 14.3 0.02 "substr"
 14.3 0.02 0.0 0.00 "list_to_dataframe"

Performance Monitoring Packages of R ◾ 131

Here is the report that displays only the parts in which indicator total accounts for more than
50% of the time.

We can optimize the performance of code by using Rprof, and the computing power will no
longer be the bottleneck.

3.3 Performance Visualization tool of R: lineprof
Question
Is there a visualization performance monitoring tool?

 14.3 0.02 0.0 0.00 "rbind.fill"
 14.3 0.02 0.0 0.00 "splitter_d"

 % self % total
 self seconds total seconds name
 42.9 0.06 42.9 0.06 ".fun"
 14.3 0.02 28.6 0.04 "paste"
 14.3 0.02 14.3 0.02 "[["
 14.3 0.02 14.3 0.02 "structure"
 14.3 0.02 14.3 0.02 "substr"

~ D:\workspace\R\preforemence\Rprof>R CMD Rprof —total —min%total=50
fun1_rprof.out

Each sample represents 0.02 seconds.
Total run time: 0.14 seconds.

Total seconds: time spent in function and callees.
Self seconds: time spent in function alone.

 % total % self
 total seconds self seconds name
 100.0 0.14 0.0 0.00 "fun1"
 71.4 0.10 0.0 0.00 "ddply"
 57.1 0.08 0.0 0.00 "ldply"

132 ◾ R for Programmers: Mastering the Tools

More and more people are starting to explore the field of data visualization. Images can be more
expressive than words, and interactive images based on HTML offer better visualization than static
PNG images. R has been fully prepared for data visualization. There are packages of image visualiza-
tion, ggplot2; packages of world map visualization, ggmap; packages of stock visualization, quant-
mod; and packages of interactive visualization based on HTML, googleVis in R. We can turn data
into images and even make the image dynamic by just entering a few lines of code. The performance
report will be used as an entry point to introduce a visualization package of R, lineprof.

3.3.1 Introduction to lineprof

lineprof is a project of data visualization, aiming at visualizing the effect of performance monitor-
ing in a more user-friendly way. Section 3.2 contains an output of the performance data in the
form of graphs by using profr, but the graphs are all static. lineprof can do better than that: it will
generate interactive webpage based on shiny and let users find problems by themselves.

lineprof is also a work of Hadley Wick. Now the project is published only on Github, at
https://www.github.com/hadley/lineprof. There are two main categories of functions in the API
of lineprof.

 1. Performance function:
 a. focus: set the zoom of display height
 b. auto_focus: set the zoom of display height automatically
 c. lineprof: record the occupation of CPU and RAM
 d. shine: output by shiny
 2. Inner function: ancillary function
 a. align: align the source code
 b. find_ex: load demo
 c. line_profile: output of formatted data of performance monitoring (Rprof)
 d. parse_prof: formatted output
 e. reduce_depth: set the depth of output

3.3.2 Installation of lineprof

System environment used in this section:

 ◾ Linux: Ubuntu Server 12.04.2 LTS 64bit
 ◾ R: 3.0.1 x86_64-pc-linux-gnu
 ◾ IP: 192.168.1.201

Note: lineprof only supports Linux.
Because lineprof hasn’t been published on CRAN, we can only install lineprof from Github.
We need to use devtools package to install projects of R from Github.

Start R.
~ R

Load devtools.
> library(devtools)

https://www.github.com

Performance Monitoring Packages of R ◾ 133

3.3.3 Use of lineprof

We use the official case to introduce the use of lineprof.

In the resource of this case, read-delim.r is the script file of objective function, wine.csv is the
test set, and x:lineprof is the data report generated.

Check read-delim.r.

Install lineprof through devtools.
> install_github("lineprof")

Install customized console of shiny.
> install_github("shiny-slickgrid", "wch")

Load lineprof.
> library(lineprof)

Load script file, read-delim.r.
> source(find_ex("read-delim.r"))

Load test set.
> wine <- find_ex("wine.csv")

Execute read_delim algorithm, and record performance indicators
through lineprof.
> x <- lineprof(read_delim(wine, sep = ","), torture = TRUE)
Zooming to read-delim.r (97% of total time)

 function(file, header = TRUE, sep = ",", stringsAsFactors = TRUE)
{
 # Determine number of fields by reading first line
 first <- scan(file, what = character(1), nlines = 1, sep = sep,
quiet = TRUE)
 p <- length(first)

 # Load all fields
 all <- scan(file, what = as.list(rep("character", p)), sep = sep,
 skip = if (header) 1 else 0, quiet = TRUE)

 # Convert from strings to appropriate types
 all[] <- lapply(all, type.convert, as.is = !stringsAsFactors)

 # Set column names
 if (header) {
 names(all) <- first
 rm(first)
 } else {
 names(all) <- paste0("V", seq_along(all))
 }

134 ◾ R for Programmers: Mastering the Tools

Load wine.csv.

X object: data report generated by lineprof.

 # Convert list into data frame
 class(all) <- "data.frame"
 attr(all, "row.names") <- c(NA_integer_, -length(all[[1]]))

 all
}

> df<-read.csv(file=wine)

Size of the dataset.
> object.size(df)
20440 bytes

Display the first 3 rows of data.
> head(df, 3)
 type alcohol malic ash alcalinity magnesium phenols flavanoids
nonflavanoids proanthocyanins color hue dilution proline
1 A 14.23 1.71 2.43 15.6 127 2.80 3.06

0.28 2.29 5.64 1.04 3.92 1065
2 A 13.20 1.78 2.14 11.2 100 2.65 2.76

0.26 1.28 4.38 1.05 3.40 1050
3 A 13.16 2.36 2.67 18.6 101 2.80 3.24

0.30 2.81 5.68 1.03 3.17 1185

Object to record performance indicators.
> x
Reducing depth to 2 (from 8)
Common path:
 time alloc release dups ref src
1 0.002 0.001 0.000 0 #3 read_delim
2 0.049 0.009 0.003 11 #3 read_delim/scan
3 0.026 0.001 0.008 0 #4 read_delim
4 0.379 0.072 0.006 14 #7 read_delim/scan
5 0.003 0.000 0.000 0 #11 read_delim
6 0.106 0.015 0.030 3 #11 read_delim/lapply
7 0.008 0.004 0.000 3 #11 read_delim
8 0.210 0.028 0.077 36 #16 read_delim/rm
9 0.004 0.001 0.000 1 #22 read_delim
10 0.035 0.005 0.004 8 #23 read_delim/[[
11 0.002 0.000 0.000 1 #23 read_delim/length
12 0.001 0.000 0.000 1 #23 read_delim/c
13 0.006 0.004 0.000 1 #23 read_delim
14 0.001 0.000 0.000 0 #23 read_delim/attr<-

Performance Monitoring Packages of R ◾ 135

Use shinySlickgrid to visualize data of performance indicators and output the result in the
form of a webpage.

Shiny will open a Web server in the background. The default access port of Web is 6742.
Remote access is available through browser. Open browser and type in http://192.168.1.201:6742
as in Figure 3.5.

Load shinySlickgrid.
> library(shinySlickgrid)

Start shiny.
> shine(x)
Loading required package: shiny
Shiny URLs starting with/lineprof will mapped to/home/conan/R/
x86_64-pc-linux-gnu-library/3.0/lineprof/www
Shiny URLs starting with/slickgrid will mapped to/home/conan/R/
x86_64-pc-linux-gnu-library/3.0/shinySlickgrid/slickgrid

Listening on port 6742

Figure 3.5 Visualization performance monitoring.

http://192.168.1.201:6742

136 ◾ R for Programmers: Mastering the Tools

There are six rows in the table of webpage in Figure 3.5. # is the number of row, source code is
the source code of monitored objective function, t is the total time (second) of the current executed
row, r is the memory released, a is the memory allocated, and d is the times of duplicates. The fol-
lowing is the explanation of function performance data.

 ◾ #6: used for loading data. Total time: 0.309s. Memory allocated: 0.064mb. Times of dupli-
cates: 14

 ◾ #15: used for clearing data. Total time: 0.179s. Memory allocated: 0.065mb. Times of dupli-
cates: 37

By using the visualization tool, lineporf, we can produce more flexible, more intuitive, and
better-looking reports, or even interactive reports of Web version. If you compare the effect with
that of Section 3.2, you will likely be surprised by how powerful R is and how rapidly R can pro-
gress. R has nearly infinite potential, but it still needs more people to push forward its progress. I
hope that you can also make contributions to the progress of R.

iiR SeRVeR

139

Chapter 4

Cross-Platform
Communication of R

This chapter mainly introduces four tool packages of cross-platform communication of R. It will
help readers implement the communication between R, Java, and JavaScript.

4.1 Cross-Platform Communication between Rserve and Java
Question
How to call R in Java?

The current mainstream heterogeneous cross-platform communication component, Apache
Thrift, has been widely adopted all over the world. It supports 15 programming languages,
but R is not within the range. If we need to implement cross-platform communication of R,
we need to find solutions from the official R community CRAN. Solutions of combining two
languages, including rJava, Rcpp, and rpy, all choose to load an engine of R into the mem-
ory environment of other languages. The strength of such solutions is their high efficiency,
while their weaknesses include tight coupling, limited extension, and nonreusable interface
programs.

140 ◾ R for Programmers: Mastering the Tools

Rserve provides us with a new choice. It is an abstract network interface of R. It implements the
communication of languages based on Transmission Control Protocol/Internet Protocol (TCP/IP)
agreement. Through the program call of the Client/Server (C/S) structure, Rserve supports the
communication between R and other languages including C/C++, Java, PHP, Python, Ruby, and
Node.js. Rserve supports many functions including remote connection, user authentication, and
file transfer. We can use R as the background service engine to process tasks including statistical
modeling, data analysis, and plotting. We explore the cross-platform communication between
Rserve and Java in this section.

4.1.1 Installation of Rserve

System environment used in this section:

 ◾ Linux Ubuntu 12.04.2 LTS 64bit server
 ◾ R: 3.0.1 x86_64-pc-linux-gnu
 ◾ IP: 192.168.1.201

Note: Rserve supports both Windows 7 and Linux. Because Rserve is mainly used as a com-
munication server, Linux is recommended.

The installation of Rserve is as follows:

Start R.
~ R

Install Rserve.
> install.packages("Rserve")
installing via 'install.libs.R' to/usr/local/lib/R/site-library/
Rserve
** R
** inst
** preparing package for lazy loading
** help
*** installing help indices
** building package indices
** testing if installed package can be loaded
* DONE (Rserve)

Start Rserve.
~ R CMD Rserve
R version 3.0.1 (2013-05-16) — "Good Sport"
Copyright (C) 2013 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

 Natural language support but running in an English locale

Cross-Platform Communication of R ◾ 141

Here the server of Rserve has been started, with port 6311. 127.0.0.1 indicates that only local
application access is available. If we want to access Rserve remotely, we need to open remote mode
by adding parameter –RS-enable-remote to the startup command.

0.0.0.0 indicates that restriction on IP access is lifted and we can access Rserve remotely from
now on.

4.1.2 Remote Connection between Rserve and Java

Java is run directly in Windows 7 through EclipseIDE, which helps Java connect the Rserve server
of Linux remotely. The Windows 7 environment is as follows:

 ◾ JAVA: Oracle SUN JDK 1.6.0_45 64bit
 ◾ Eclipse: Juno Service Release 2
 ◾ IP: 192.168.1.13

The IP of Linux server of Rserve is 192.168.1.201.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

Rserv started in daemon mode.

Check the process.
~ ps -aux|grep Rserve
conan 7142 0.0 1.2 116296 25240 ? Ss 09:13 0:00/usr
/ lib/R/bin/Rserve

Check the port.
~ netstat -nltp|grep Rserve
tcp 0 0 127.0.0.1:6311 0.0.0.0:*
LISTEN 7142/Rserve

Kill the daemon process of Rserve.
~ kill -9 7142

Start Rserve by remote mode.
~ R CMD Rserve —RS-enable-remote

Check the port.
~ netstat -nltp|grep Rserve
tcp 0 0 0.0.0.0:6311 0.0.0.0:* LISTEN
7173/Rserve

142 ◾ R for Programmers: Mastering the Tools

4.1.2.1 Download JAR Package of Java Client

We can download the JAR package of Java client, REngine.jar and RserveEngine.jar, through
http://www.rforge.net/Rserve/files/. By using these two Jar packages, we can implement the com-
munication between Java and Rserve.

 ◾ REngine.jar: used for mapping between data of class R and data of class Java
 ◾ RserveEngine.jar: used in communication program of Rserve

We can check the help files of these two libraries in the official file javadoc at http://rforge.net
/org/doc/. These two JAR packages are binary files compiled by Java, and there is no source code
file available.

4.1.2.2 Create Java Project in Eclipse

Create a new Java project in Eclipse and load Jar package, as in Figure 4.1.

4.1.2.3 Implementation of Java Programming

Then we write a Java file, Demo1.java. There are two ways to call Rserve server remotely using Java
in Demo1.java.

 ◾ Main(): This is an entrance to start Java, by instantiating a demo object and calling
callRserve().

 ◾ callRserve(): Create a socket link to access Rserve remotely and send two sentences of R to
Rserve server in the form of character string. Then run calculation on Rserve, return the
result and output it in Java.

The code of Demo1.java is as follows.

package org.conan.r.rserve;
import org.rosuda.REngine.REXP;
import org.rosuda.REngine.REXPMismatchException;
import org.rosuda.REngine.Rserve.RConnection;
import org.rosuda.REngine.Rserve.RserveException;

public class Demo1 {

 /**
 * Start Java by Main.
 */
 public static void main(String[] args) throws RserveException,
REXPMismatchException {
 Demo1 demo = new Demo1();
 demo.callRserve();
 }

http://www.rforge.net
http://rforge.net
http://rforge.net

Cross-Platform Communication of R ◾ 143

The result of running is as follows:

Thus we’ve implemented the communication between Java and R through Rserve easily. To
speak more precisely, we’ve implemented a communication based on TCP/IP by using Java to
access the Rserve server. After we solve the problem of communication, we may make full use of
our imagination to apply R in more fields. This section is only a simple introduction on the instal-
lation and launch of Rserve. For the detailed use and configuration of Rserve server, please check
Section 6.1.

 /**
 * Access Rserve.
 */
 public void callRserve() throws RserveException,
REXPMismatchException {
 //Create access connect.
 RConnection c = new RConnection("192.168.1.201");
 //Run a R sentence.
 REXP x = c.eval("R.version.string");
 //Print outthe result in Java.
 System.out.println(x.asString());
 //Run rnorm(10).
 double[] arr = c.eval("rnorm(10)").asDoubles();
 //Print out the result in loop.
 for (double a: arr) {
 System.out.print(a + ",");
 }
 }
}

R version 3.0.1 (2013-05-16)
1.7695224124757984,-0.29753038160770323,0.26596993631142246,
1.4027325257239547,-0.30663565983302676,-0.17594309812158912,
0.10071253841443684, 0.9365455161259986,0.11272119436439701,
0.5766373030674361,

Figure 4.1 Java project in eclipse.

144 ◾ R for Programmers: Mastering the Tools

4.2 Rsession Makes it easier for Java to Call R
Question
Is there an easier way for Java to call R?

Rserve, as an important communication interface of R, has become an important channel for the
extension of R. But as Rserve is based on underlying structure, it is rather difficult to call the API
interface of Rserve using Java. Such a circumstance leads to the creation of Rsession. Rsession,
being an encapsulation of Rserve, provides higher API interfaces, including Rserve server control
and multisession mechanism, and supports Windows. Rsession makes it easier for Java to call API
of Rserve and provides a simpler way for Java to access remote or local Rserve instances, whereas
the other library for communication between R and Java, JRI, does not support a multisession
mechanism. We introduce JRI in the next section.

4.2.1 Download of Rsession

System environment used in this section:

 ◾ Windows 7 64bit
 ◾ R: 3.0.1 x86_64-w64-mingw32/x64 b4bit

Note: Rsession supports both Windows 7 and Linux.

4.2.1.1 Download the Distribution Directly

Rsession includes three jar packages: REngine.jar, Rserve.jar and Rsession.jar. We can down-
load the distribution through http://rsession.googlecode.com/svn/trunk/Rsession/. It can be used
directly after uncompress.

4.2.1.2 Download the Source Code and Compile Distribution

We can download Rsession using source code. The SVN address of Rsession is http://rsession
.googlecode.com/svn/trunk/Rsession/. The following is the operation to download SVN from
Rsession.

http://rsession.googlecode.com
http://rsession.googlecode.com
http://rsession.googlecode.com

Cross-Platform Communication of R ◾ 145

Rsession, constructed by Ant, can be compiled and packaged by us. Ant is an automatic con-
structing tool of Java.

Enter local directory.
~ cd d:\workspace\java

Download through SVN.
~ svn checkout http://rsession.googlecode.com/svn/trunk/
rsession-read-only

Change the name of directory.
~ mv rsession-read-only rsession

Run directory of Rsession code.
~ cd rsession\Rsession

Use ant to construct project.
~ ant
Buildfile: d:\workspace\java\rsession\Rsession\build.xml

clean:

clean-dist:

init:
 [mkdir] Created dir: d:\workspace\java\rsession\Rsession\build
 [mkdir] Created dir: d:\workspace\java\rsession\Rsession\dist\lib

resource:
 [copy] Copying 28 files to d:\workspace\java\rsession\Rsession\
dist\lib
 [copy] Copied 12 empty directories to 1 empty directory under
d:\workspace\java\rsession\Rsession\dist\lib

compile:
 [javac] d:\workspace\java\rsession\Rsession\build.xml:33:
warning: 'includeantruntime' was not set, defaulting to bu
ild.sysclasspath=last; set to false for repeatable builds
 [javac] Compiling 10 source files to d:\workspace\java\rsession\
Rsession\build

dist:
 [jar] Building jar: d:\workspace\java\rsession\Rsession\dist\
lib\Rsession.jar
 [zip] Building zip: d:\workspace\java\rsession\Rsession\dist\
libRsession.zip

BUILD SUCCESSFUL
Total time: 2 seconds

146 ◾ R for Programmers: Mastering the Tools

By running the ant commands given in the preceding, we can generate a distribution,
libRsession.zip, in d:\workspace\java\rsession\Rsession\dist\. There is a jmatharray.jar in the
manually compiled distribution, which does not exist in the direct downloaded distribution.
I think this jar file might be a dependent package needed in the compiling process. It’s not
needed in the running, and will not impact the running process.

4.2.2 Construct Rsession Projects Using Eclipse

Copy the directory document Rsession\dist\ to the project, and load the project to environment
variable, as in Figure 4.2.

4.2.3 API Introduction of Rsession

Check the class library Rsession.jar as in Figure 4.3. All the API of Rsession, including interface,
function, and auxiliary, can be found in it. Here is an introduction to each kind.

 1. Interface
– BusyListener: to listen the condition of R engine
– EvalListener: to listen the running of R script of R engine
– Logger: for journal output
– UpdateObjectsListener: to listen the changes of environment when R is run

Figure 4.2 Construct a Rsession project using eclipse.

Cross-Platform Communication of R ◾ 147

 2. Function
– Rdaemon: daemon process of RServe
– RLogPanel: display the space of R journal
– RObjectsPanel: a control to display R variables
– RserverConf: connect configuration documents of Rserve instances
– Rsession: connect Rserve instances
– StartRserve: start local Rserve

4.2.4 Use of Rsession

Then we use Rsession to remotely access the server of Rserve.

4.2.4.1 Server Environment of Rserve

System environment for remote server:

 ◾ Linux: Ubuntu 12.04.2 LTS 64bit
 ◾ R: 3.0.1 x86_64-pc-linux-gnu

Remote Rserve environment:

 ◾ Rserve: Rserve v1.7-1
 ◾ IP: 192.168.1.201, allows remote access
 ◾ Interface: 6311
 ◾ Login authentication: username:conan, password:conan
 ◾ Character encoding: utf-8

The environment configuration of the server of Rserve is the same as that of RScilent of Rserve
in Section 5.2.

Figure 4.3 File structure of Rsession.jar.

148 ◾ R for Programmers: Mastering the Tools

4.2.4.2 Java Code

Then we’ll write a class of Java to call the remote Rserve server.
Java code: RsessionDemo.java

package org.conan.r.rsession;

import java.io.File;
import java.util.Properties;

import org.math.R.RserverConf;
import org.math.R.Rsession;
import org.rosuda.REngine.REXPMismatchException;

public class RsessionDemo {

 /**
 * "Main" to start java.
 */
 public static void main(String args[]) throws
REXPMismatchException {

 //Establish remote connection.
 RserverConf rconf = new RserverConf("192.168.1.201", 6311,
"conan", "conan", new Properties());
 Rsession s = Rsession.newInstanceTry(System.out, rconf);

 //Run R script.
 double[] rand = s.eval("rnorm(5)").asDoubles();
 System.out.println(rand);
 // Create an R object.
 s.set("demo", Math.random());
 s.eval("ls()");

 // Save the running condition of R to file.
 s.save(new File("./output/save.Rdata"), "demo");

 // Delete demo.
 s.rm("demo");
 s.eval("ls()");

 // Load R environment from file.
 s.load(new File("./output/save.Rdata"));
 s.eval("ls()");
 s.eval("print(demo)");

 //Create a data.frame object.
 s.set("df", new double[][] {{1, 2, 3}, {4, 5, 6}, {7, 8, 9},
{10, 11, 12}}, "x1", "x2", "x3");
 double df$x1_3 = s.eval("df$x1[3]").asDouble();
 System.out.println(df$x1_3);

 s.rm("df");

Cross-Platform Communication of R ◾ 149

4.2.4.3 Run Journal Output

I’ll display the related Java program with the journal together for the convenience of reading. First
run the R script.

Then create an R object and save the R environment.

 //Generate an image file.
 s.eval("getwd()");
 s.toJPEG(new File("./output/plot.png"), 400, 400,
"plot(rnorm(10))");

 //Output in the form of HTML.
 String html = s.asHTML("summary(rnorm(100))");
 System.out.println(html);

 // Output in the form of text.
 String txt = s.asString("summary(rnorm(100))");
 System.out.println(txt);

 // Install new class library.
 System.out.println(s.installPackage("sensitivity", true));

 s.end();
 }
}

// Run R script.
double[] rand = s.eval("rnorm(5)").asDoubles();
for(double ran:rand){
 System.out.print(ran+",");
}

// Journal output.
[eval] rnorm(5)

 org.rosuda.REngine.REXPDouble@5f934ad[5]
{0.08779203903807914,0.039929482749452114,-0.8788534039223883,
-0.8875740206608903,-0.8493446334021442}
0.08779203903807914,0.039929482749452114,-0.8788534039223883,
-0.8875740206608903,-0.8493446334021442

// Create an R object.
s.set("demo", Math.random());
s.eval("ls()");

// Save the R environment to local file.
s.save(new File("./output/save.Rdata"), "demo");

150 ◾ R for Programmers: Mastering the Tools

Create a data.frame object.

Generate a local image file, as in Figure 4.4.

// Delete demo.
s.rm("demo");
s.eval("ls()");

// Load R environment from file.
s.load(new File("./output/save.Rdata"));
s.eval("ls()");
s.eval("print(demo)");

// Journal output.
[set] demo

s.set("df", new double[][] {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11,
12}}, "x1", "x2", "x3");
double df$x1_3 = s.eval("df$x1[3]").asDouble();
System.out.println(df$x1_3);
s.rm("df");
// Journal output
[set] df

2.0

1.5

1.0

0.5

0.0

–0.5

–1.0

2 4 6 8 10
Index

rn
or

m
(1

0)

Figure 4.4 toJePG image.

Cross-Platform Communication of R ◾ 151

Output in the form of HTML.

Output in the form of text.

Install a new class library.

It turns out that Rsession is more user-friendly when compared to the JavaAPI of Rserve in
Section 5.1. Rsession encapsulated the process of Java calling R, which will make it easier for those
with a Java background to get started and master statistical calculation with Java application. Let’s
be creative!

s.toJPEG(new File("./output/plot.png"), 400, 400, "plot(rnorm(10))");
// Journal Output
[set] plotfile_1100539400

String html = s.asHTML("summary(rnorm(100))");
System.out.println(html);

// Journal output.
<html> Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.332000 -0.659900 0.036920 0.004485 0.665800 2.517000 </html>

String txt = s.asString("summary(rnorm(100))");//format in text
System.out.println(txt);

// Journal output.
 Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.19700 -0.65330 -0.09893 -0.07190 0.53300 2.29000

// Install new class library.
System.out.println(s.installPackage("sensitivity", true));

// Journal output.
 trying to load package sensitivity
 package sensitivity is not installed.
 package sensitivity not yet installed.
[eval] install.packages('sensitivity',repos='http://cran.cict.
fr/',dependencies=TRUE)
 org.rosuda.REngine.REXPNull@4d47c5fc
 request package sensitivity install...
 package sensitivity is not installed.
! package sensitivity installation failed.
Impossible to install package sensitivity !

152 ◾ R for Programmers: Mastering the Tools

4.3 High-Speed Channel between R and rJava
Question
Is there a two-way channel between Java and R?

Java has dominated the industry for quite a long time. Java syntax, JVM, JDK, and Java open
source libraries have all gained explosive growth and covered almost all fields of application devel-
opment. As Java covers more fields, problems also occur. It is becoming more and more difficult
to learn Java as the syntax is getting more complex and similar projects are created every day. It is
even harder for statistical practitioners without an IT background to learn to use Java.

R has always been an outstanding language in statistics as it has a simple syntax and moderate
learning curve. It will be very useful to combine the universality of Java with the professionalism
of R. This section will introduce the high-speed channel, rJava, to connect R and Java and realize
two-way communication.

4.3.1 Introduction to RJava

RJava is a communication channel for R and Java. It allows R to directly call the objects and meth-
ods of Java through underlying JNI. RJava also provides the function for Java to call R, which
is implemented through JRI(Java/R/Interface). JRI has now been implanted in the packages of
rJava, and now we can try this function alone. RJava has now been a basic function component for
many R packages based on Java.

RJava, being an underlying interface and using JNI as calling interface, is very efficient. In the
program of JRI, JVM directly loads the calculation engine of R through memory, which means
that the whole process of calling doesn’t lose any performance. Thus rJava is a very efficient chan-
nel between R and Java and becomes the first priority for developers.

4.3.2 Installation of RJava

Linux environment used in this section:

 ◾ Linux: Ubuntu 12.04.2 LTS 64bit
 ◾ R: 3.0.1 x86_64-pc-linux-gnu
 ◾ Java: Oracle SUN 1.6.0_29 64bit

Note: rJava supports both Windows 7 and Linux.

Cross-Platform Communication of R ◾ 153

I suggest using root authority to install rJava. Because rJava is a basic package for cross- platform
calling, we can reduce errors in the authority check of Linux when cross-platform programs are
called by using root authority.

We assume that the Java environment is already installed before we install rJava. For the instal-
lation of the Java environment, please refer to Appendix A.

4.3.3 Implement R Calling Java Using RJava

Use rJava to program in the R environment.

Configure rJava environment using root authority.
~ sudo R CMD javareconf

Start R using root authority.
~ sudo R

Install rJava.
> install.packages("rJava")
installing via 'install.libs.R' to/usr/local/lib/R/site-library/rJava
** R
** inst
** preparing package for lazy loading
** help
*** installing help indices
** building package indices
** testing if installed package can be loaded
* DONE (rJava)

The downloaded source packages are in
 '/tmp/RtmpiZyCE7/downloaded_packages'

Load rJava.
> library(rJava)

Check the loaded packages of current environment.
> search()
 [1] ".GlobalEnv" "package:rJava" "package:stats"
 [4] "package:graphics" "package:grDevices" "package:utils"
 [7] "package:datasets" "package:methods" "Autoloads"
[10] "package:base"

Start JVM.
> .jinit()

Declare and assign to character string.
> s <- .jnew("java/lang/String", "Hello World!")
> s
[1] "Java-Object{Hello World!}"

154 ◾ R for Programmers: Mastering the Tools

Use $ to call method optimized by rJava.

4.3.4 Implement Java Calling R Using RJava(JRI) (Windows 7)

Install rJava in Windows 7.
System environment used in this section:

 ◾ Windows 7: x86_64-w64-mingw32/x64 (64-bit)
 ◾ R: version 3.0.1
 ◾ Java: Oracle SUN JDK 1.6.0_45 64bit

Configure environment variables.

Check the length of character string.
> .jcall(s,"I","length")
[1] 12

Index the position of "World".
> .jcall(s,"I","indexOf","World")
[1] 6

View the method declaration of method "concat".
> .jmethods(s,"concat")
[1] "public java.lang.String java.lang.String.concat(java.lang.String)"

Use method "concat" to connect character string.
> .jcall(s,"Ljava/lang/String;","concat",s)
[1] "Hello World!Hello World!"

Print character string object.
> print(s)
[1] "Java-Object{Hello World!}"

Print the value of character string.
> .jstrVal(s)
[1] "Hello World!"

Same to jcall(s,"I","length").
> s$length()
[1] 12

Same to.jcall(s,"I","indexOf","World").
> s$indexOf("World")
[1] 6

PATH: C:\Program Files\R\R-3.0.1\bin\x64;D:\toolkit\java\jdk6\bin;;
D:\toolkit\java\jdk6\jre\bin\server
JAVA_HOME: D:\toolkit\java\jdk6
CLASSPATH: C:\Program Files\R\R-3.0.1\library\rJava\jri

Cross-Platform Communication of R ◾ 155

Install rJava in R.

Start Eclipse to write programs, as in Figure 4.5.
Then let’s write a class of Java to finish the implementation of calling.

 ◾ Method main(): the entrance of the start of program. Instantiate a demo object and call
method callRJava().

 ◾ Method callRJava(): create an Rengine object and start R engine in JVM. Transfer two
statements of R to R engine in the form of character string and output the result in Java.

Start R.
~ R

Install rJava.
> install.packages("rJava")

Load rJava.
> library(rJava)
> .jinit()

Test of R calling Java variables.
> s <-.jnew("java/lang/String", "Hello World!")
> s
[1] "Java-Object{Hello World!}"

Figure 4.5 Create Rserve projects in eclipse.

156 ◾ R for Programmers: Mastering the Tools

Create Java program file DemoRJava.java.

Configure startup parameters of VM in Eclipse, as in Figure 4.6.

Run result:

Package DemoRJava.jar in Eclipse and upload it to Linux to continue the test.

package org.conan.r.rjava;

import org.rosuda.JRI.Rengine;

public class DemoRJava {

 /**
 * Method main for starting Java applications.
 */
 public static void main(String[] args) {
 DemoRJava demo = new DemoRJava();
 demo.callRJava();
 }

 public void callRJava() {
 Rengine re = new Rengine(new String[] {"—vanilla"}, false,
null);//Instantiate Rengine object and start R engine.
 if (!re.waitForR()) {
 System.out.println("Cannot load R");
 return;
 }
 //Execute a statement.
 String version = re.eval("R.version.string").asString();
 System.out.println(version);//Print the result.

 //Print the array repeatedly.
 double[] arr = re.eval("rnorm(10)").asDoubleArray();
 for (double a: arr) {
 System.out.print(a + ",");
 }
 re.end();//Close R engine.
 }
}

Djava.library.path="C:\Program Files\R\R-3.0.1\library\rJava\jri\x64"

R version 3.0.1 (2013-05-16)
0.04051018703700011,-0.3321596519938258,0.45642459001166913,
-1.1907153494936031,1.5872266854172385,1.3639721994863943,
-0.6309712627586983,-1.5226698569087498,-1.0416402147174952,
0.4864034017637044,

Cross-Platform Communication of R ◾ 157

4.3.5 Implement Java Calling R Using RJava(JRI) (Ubuntu)

Create a directory DemoRJava and upload DemoRJava.jar to DemoRJava. The following is the
Shell command.

Run the Jar package.

~ mkdir/home/conan/R/DemoRJava
~ cd/home/conan/R/DemoRJava
~ ls -l
-rw-r—r— 1 conan conan 1328 Aug 8 2013 DemoRJava.jar

~ export R_HOME=/usr/lib/R
~ java -Djava.library.path=/usr/local/lib/R/site-library/rJava/jri
-cp/usr/local/lib/R/site-library/rJava/jri/JRI.jar:/home/conan/R/
DemoRJava/DemoRJava.jar org.conan.r.rjava.DemoRJava

Figure 4.6 Configure the startup parameters of eclipse.

158 ◾ R for Programmers: Mastering the Tools

Run the result.

Thus we’ve achieved two-way calling between R and Java using rJava and JRI in both Windows 7
and Linux Ubuntu.

4.4 Cross-Platform Communication between node.js and R
Question
How do we call R in Node.js?

Programmers who do not use Nodejs in Web development may have fallen a little bit behind.
Nodejs is a development platform of background programs based on JavaScript. In terms of my
personal experience, it’s more efficient in development than PHP. Though completely adopting
asynchronous loading, Node.js still has great potential to surpass PHP in performance.

HTML5, as a Web front end that uses JavaScript a lot, has an abundance of beautiful effects.
If we use HTML5 to re-render the images of R and add communication and user interaction parts
to them, the results will be a combination of the advantages of both languages and surely will
be amazing. The following is an introduction to cross-platform communication between R and
Node.js.

4.4.1 Introduction to Node.js

Node.js is a platform based on Chrome’s JavaScript runtime, which can be used to quickly con-
struct Web services and applications. In other words, Node,js encapsulates the V8 engine of
Google (used on Google Chrome). The speed of the V8 engine in running JavaScript is very fast,
and the performance is also very good. Node.js optimizes some special cases and provides alterna-
tive API, which ensures a good performance of V8 in a non-browser environment.

R version 3.0.1 (2013-05-16)
0.6374494596732511,1.3413824702002808,0.04573045670001342,
-0.6885617932810327,0.14970067632722675,-0.3989493870007832,
-0.6148250252955993,0.40132038323714453,
-0.5385260423222166,0.3459850956295771,

Cross-Platform Communication of R ◾ 159

4.4.2 Environment Configuration of R

For the cross-platform communication between R and Node.js in this section, the support library
of R is Rserve. The communication is achieved through a TCP/IP communication protocol of R
provided by Rserve. I’ve already finished the configuration of the Rserve environment of Linux
Ubuntu. The system environment used in this section is as follows:

 ◾ Linux: Ubuntu 12.04.2 LTS 64bit
 ◾ R: 3.0.1 x86_64-pc-linux-gnu
 ◾ IP: 192.168.1.201

Rserve environment: Rserve v1.7-1. Interface: 6311, remote access allowed. View the process
of Rserve:

4.4.3 Environment Configuration of Node.js

The Node.js environment is a Web framework based on Express3. Library rio is the dependent
library of the communication between Node.js and Rserve. If you are a beginner in Node.js and
plan to learn it from the very beginning, please refer to the author’s blog, Learning Node.js from the
very beginning series. If you only need to build a test environment of Node.js, please refer to the
author’s article Preparing the Development Environment Ubuntu of Node.js.

Development environment of Windows 7:

 ◾ Node: v0.10.5
 ◾ NPM: 1.2.19
 ◾ IP: 192.168.1.13
 ◾ Express: 3.2.2

We’ve created Express3 project in Windows 7. The following is the project directory:
D:\ workspace\project\investment\webui.

~ ps -aux|grep Rserve
conan 9736 0.0 1.2 116288 25440 ? Ss 13:11 0:01/
usr/lib/R/bin/Rserve -- RS-enable-remote

~ netstat -nltp|grep Rserve
tcp 0 0 0.0.0.0:6311
0.0.0.0:* LISTEN 9736/Rserve

~ D:\workspace\project\investment\webui>ls
README.md app.js models node-rio-dump.bin node_modules package.
json public routes views

160 ◾ R for Programmers: Mastering the Tools

Install library rio.

4.4.4 Cross-Platform Communication between Node.js and R

Now let’s write Node.js program to achieve cross-platform communication. First, add a routing
path in the configuration file app.js.

Add a routing file in the routing directory/routes.

Through the preceding codes, we achieved the remote connection of rio and Rserve. Transfer
the statement (pi/2*2*2), as a parameter, to a remote Rserve server in the form of characters, and
get the return value through the callback method.

~ D:\workspace\project\investment\webui>npm install rio
rio@0.9.0 node_modules\rio
├── hexy@0.2.5
└── binary@0.3.0 (buffers@0.1.1, chainsaw@0.1.0)

~ vi app.js
// Omit.
var vis = require('./routes/vis')
app.get('/vis/rio',vis.rio);

~ vi /routes/vis.js

var rio = require("rio");
exports.rio = function(req, res){
 options = {
 //Address of remote Rserve server.
 host: "192.168.1.201",
 //Interface of remote Rserve server.
 port : 6311,
 // Callback function of computed result.
 callback: function (err, val) {
 // Normal return.
 if (!err) {
 console.log("RETURN:"+val);
 // Transfer the result to interface.
 return res.send({'success':true,'res':val});

 } else { // Error return.
 console.log("ERROR:Rserve call failed")
 return res.send({'success':false});
 }
 },
 }
 rio.enableDebug(true); //Start debug mode.
 rio.evaluate("pi/2 * 2 * 2",options); //Run R codes.
};

Cross-Platform Communication of R ◾ 161

Open a browser(http://localhost:3000/vis/rio). It can be seen from the Web interface that the
computed result of (pi/2*2*2) is 6.283185307179586. The structure return value in the browser
is a JSON object.

Output the command line log.

I can see the communication situation between Node.js and Rserve: the response value is
6.283185307179586, which is the same with the display on the page. Then let’s modify the run-
ning script of R. Rnorm(10) is to take 10 random numbers of standard normal distribution,
N(0,1).

The JSON object of the computed result returned by the browser.

{
 "success": true,
 "res": 6.283185307179586
}

Connected to Rserve
Supported capabilities --------------

Sending command to Rserve
00000000: 0300 0000 1400 0000 0000 0000 0000 0000
00000010: 0410 0000 7069 202f 2032 202a 2032 202a pi./.2.*.2.*
00000020: 2032 0001 .2..

Data packet
00000000: 2108 0000 182d 4454 fb21 1940 !....-DT{!.@

Type SEXP 33
Response value: 6.283185307179586
RETURN:6.283185307179586
GET/vis/rio 200 33ms - 49b
Disconnected from Rserve
Closed from Rserve

rio.evaluate("rnorm(10)",options);//Run R codes.

{
 "success": true,
 "res": [
 -0.011531884725262991,
 0.5106443501593562,
 -0.05216533321965309,

http://localhost:3000

162 ◾ R for Programmers: Mastering the Tools

Command line log.

Thus we’ve achieved the cross-platform communication between R and Node.js, which seems
similar to the concept of “getting to a new level” in Chinese Kung-fu.

Connected to Rserve
Supported capabilities --------------

Sending command to Rserve
00000000: 0300 0000 1000 0000 0000 0000 0000 0000
00000010: 040c 0000 726e 6f72 6d28 3130 2900 0101 rnorm(10)...

Data packet
00000000: 2150 0000 f6ca 0c5e 079e 87bf 9b4a fad1 !P..vJ.^...?.JzQ
00000010: 3257 e03f eda2 5320 6ab5 aabf 2b25 bdb4 2W`?m"S.j5*?+%=4
00000020: 52c1 fe3f ebba ce8d 21a8 e03f bc17 92b7 RA~?k:N.!(`?<..7
00000030: 5cf6 d4bf ca9f 4642 94dd b0bf 1be3 e485 \vT?J.FB.]0?.cd.
00000040: 1ba8 f83f 5a94 2293 43ee f43f 1724 4e9e .(x?Z.".Cnt?.$N.
00000050: 34a9 743f 4)t?

Type SEXP 33
Response value: -0.011531884725262991,0.5106443501593562,
-0.05216533321965309,1.9221980152236238,0.5205238122633465,
-0.3275367539102907,-0.06588102930129405,1.5410418730008988,
1.308169913050071,0.005044179478212583
RETURN:-0.011531884725262991,0.5106443501593562,
-0.05216533321965309,1.9221980152236238,0.5205238122633465,
-0.3275367539102907,-0.06588102930129405,1.5410418730008988,
1.308169913050071,0.005044179478212583
GET/vis/rio 200 30ms - 285b
Disconnected from Rserve
Closed from Rserve

 1.9221980152236238,
 0.5205238122633465,
 -0.3275367539102907,
 -0.06588102930129405,
 1.5410418730008988,
 1.308169913050071,
 0.005044179478212583
]
}

163

Chapter 5

Server implementation of R

This chapter mainly introduces four tool packages of the R server, which may help readers to use
R to create the running environment of Socket server, Web server, and WebSocket server.

5.1 A Detailed elaboration of the Server Program of R: Rserve
Question
How do we use Rserve?

We’ve met Rserve for the connection between R and Java in Section 4.1. Now let’s learn more
details of Rserve.

Many projects depend on Rserve, as a communication Transmission Control Protocol/Internet
Protocol (TCP/IP) interface between R and many other languages. The server configuration and
operation of Rserve is very easy to learn, and its client is implemented by many languages includ-
ing C/C++, Java, and so forth. R has its own client to implement the RSclient project, which will
be introduced in the next section. This section provides a detailed discussion of the configuration
and use of Rserve as a server application.

164 ◾ R for Programmers: Mastering the Tools

5.1.1 Start of Rserve

System environment used in this section:

 ◾ Linux: Ubuntu 12.04.2 LTS 64bit
 ◾ R: 3.0.1 x86_64-pc-linux-gnu

Note: Rserve supports both Windows 7 and Linux. Because Rserve is mainly used as a communi-
cation server, Linux is recommended more.

The following is the installation of Rserve:

There are two ways to start the Rserve server: starting the Rserve server in R and starting the
Rserve server in the command line. To start the Rserve server in R, we may need the functions of
Rserve.

 ◾ Rserve(): start a daemon process as Rserve instance alone
 ◾ run.Rserve(): start Rserve instance in the current process
 ◾ self(): mainly used for the program interaction with the Rserve server in the current process,

including four functions: self.ctrlEval(), self.ctrlSource(), self.oobSend(), self.oobMessage()

5.1.1.1 Start the Rserve Server in the Program

View the Rserve process.

Start R.
~ R

Install Rserve.
> install.packages("Rserve")

Load Rserve.
> library(Rserve)

> library(Rserve)

Start a daemon process as Rserve instance alone.
> Rserve()
Starting Rserve:
 /usr/lib/R/bin/R CMD/home/conan/R/x86_64-pc-linux-gnu-library/3.0/
Rserve/libs//Rserve

~ ps aux | grep R
conan 8799 0.1 1.5 121748 32088 pts/0 S+ 22:30 0:00
/usr/lib/R/bin/exec/R
conan 8830 0.0 1.2 116336 25044 ? Ss 06:46 0:00
/home/conan/R/x86_64-pc-linux-gnu-library/3.0/Rserve/libs//Rserve

Server Implementation of R ◾ 165

In this circumstance, the current R environment is not interrupted. Instead, an Rserve instance
is started alone in the system background, and using run.Rserve() is to start Rserve in the current
R environment.

5.1.1.2 Start the Rserve Server in the Command Line

First, view the command line help of Rserve.

Start Rserve in the command line and open the remote access mode.

~ netstat -nltp|grep Rserve
tcp 0 0 127.0.0.1:6311 0.0.0.0:*
LISTEN 8830/Rserve

Start Rserve instance in the current process.
> run.Rserve()
-- running Rserve in this R session (pid=30664), 1 server(s) --
(This session will block until Rserve is shut down)

View the R process.
~ ps aux|grep R
30664 pts/0 00:00:00 R

~ netstat -nltp|grep R
tcp 0 0 127.0.0.1:6311 0.0.0.0:*
LISTEN 30664/R

~ R CMD Rserve --help
Usage: R CMD Rserve []

Options: --help this help screen
 --version prints Rserve version (also passed to R)
 --RS-port listen on the specified TCP port
 --RS-socket use specified local (unix) socket instead of TCP/IP.
 --RS-workdir use specified working directory root for connections.
 --RS-encoding set default server string encoding to.
 --RS-conf load additional config file.
 --RS-settings dumps current settings of the Rserve
 --RS-source source the specified file on startup.
 --RS-enable-control enable control commands
 --RS-enable-remote enable remote connections

All other options are passed to the R engine.

~ R CMD Rserve --RS-enable-remote

R version 3.0.1 (2013-05-16) — "Good Sport"

166 ◾ R for Programmers: Mastering the Tools

View the Rserve process.

5.1.2 Advanced Use of Rserve: Rserve Configuration Management

We can manage the Rserve server and define the starting script of server through the configuration
file Rserv.conf. View the default configuration information of Rserve server through the following
command.

Copyright (C) 2013 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

 Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

Rserv started in daemon mode.

~ ps -aux|grep Rserve
conan 27639 0.0 1.2 116288 25236 ? Ss 20:41 0:00
/usr/lib/R/bin/Rserve --RS-enable-remote

~ netstat -nltp|grep Rserve
tcp 0 0 0.0.0.0:6311 0.0.0.0:*
LISTEN 27639/Rserve

~ R CMD Rserve --RS-settings
Rserve v1.7-1

config file:/etc/Rserv.conf
working root: /tmp/Rserv
port: 6311
local socket: [none, TCP/IP used]
authorization required: no
plain text password: not allowedv
passwords file: [none]
allow I/O: yes
allow remote access: no
control commands: no
interactive: yes
max.input buffer size: 262144 kB

Server Implementation of R ◾ 167

Configuration instruction of the current Rserve server:

 ◾ config file: system will skip this item if there is no/etc/Rserve.conf in local file
 ◾ working root: working directory/tmp/Rserv when R is run
 ◾ port: communication port 6311
 ◾ local socket: TCP/IP protocol
 ◾ authorization: authorization is not started
 ◾ plain text password: plain text password is not allowed
 ◾ password file: password file, not specified
 ◾ allow I/O: allow IO operation
 ◾ allow remote access: remote access is not started
 ◾ control commands: control command is not started
 ◾ interactive: communication is allowed
 ◾ max.input buffer size: uploading file size limits, 262 mb

Modify default configuration, add remote access and set loading script. Create new file
/ etc/ Rserv.conf.

The option “source” is used for configuring the loaded file when the Rserve server is started,
including initializing system variables and system functions, and so forth. The option “eval” is
used to define environment variables.

Add the initialized starting script of the Rserve server.

View the server configuration again.

~ sudo vi /etc/Rserv.conf

workdir /tmp/Rserv
remote enable
fileio enable
interactive yes
port 6311
maxinbuf 262144
encoding utf8
control enable
source /home/conan/R/RServe/source.R
eval xx=1

~ vi /home/conan/R/RServe/source.R

cat("This is my Rserve!!")
print(paste("Server start at",Sys.time()))

~ R CMD Rserve --RS-settings
Rserve v1.7-1
config file: /etc/Rserv.conf
working root: /tmp/Rserv
port: 6311

168 ◾ R for Programmers: Mastering the Tools

Restart the Rserve server.

View the log: source.R is executed when started.

View the process.

0.0.0.0 indicates that remote access is allowed and IP is not restricted.

local socket: [none, TCP/IP used]
authorization required: yes
plain text password: allowed
passwords file: [none]
allow I/O: yes
allow remote access: yes
control commands: yes
interactive: yes
max.input buffer size: 262144 kB

~ R CMD Rserve
R version 3.0.1 (2013-05-16) -- "Good Sport"
Copyright (C) 2013 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

 Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

This is my Rserve!![1] "Server start at 2013-10-30 22:38:10"
Rserv started in daemon mode.

"This is my Rserve!![1] "Server start at 2013-10-30 22:38:10""

~ ps -aux|grep Rserve
conan 28339 0.0 1.2 116292 25240 ? Ss 22:31 0:00/
usr/lib/R/bin/Rserve

~ netstat -ntlp|grep Rserve
tcp 0 0 0.0.0.0:6311 0.0.0.0:*
LISTEN 28339/Rserve

Server Implementation of R ◾ 169

5.1.3 Advanced Use of Rserve: Users’ Login Authentication

Use RSclient to access Rserve in the current environment without authentication. For the use of
RSclient, please refer to Section 5.2

Modify the configuration, add users’ login authentication, and permit plain text password.
Modify the file /etc/Rserv.conf.

Authentication reports an error when using RSclient again to access Rserve direct.

Use RSclient to log in and connect.

~ R
> library(RSclient) # Load RSclient.
> conn<-RS.connect()
> RS.eval(conn,rnorm(10))
 [1] 0.03230305 0.95710725 -0.33416069 -0.37440009 -1.95515719
-0.22895924
 [7] 0.39591984 1.67898842 -0.01666688 -0.26877775

~ sudo vi /etc/Rserv.conf

workdir /tmp/Rserv
remote enable
fileio enable
interactive yes
port 6311
maxinbuf 262144
encoding utf8
control enable
source /home/conan/R/RServe/source.R
eval xx=1
auth required
plaintext enable

> library(RSclient)
> conn<-RS.connect()
> RS.eval(conn,rnorm(10))
Error in RS.eval(conn, rnorm(10)) :
 command failed with status code 0x41: authentication failed

> library(RSclient)
> conn<-RS.connect()
> RS.login(conn,"conan","conan",authkey=RS.authkey(conn))
[1] TRUE
> RS.eval(conn,rnorm(5))
[1] -1.19827684 0.72164617 0.22225934 0.09901505 -1.54661436

170 ◾ R for Programmers: Mastering the Tools

The users’ login authentication here is the binding operating system users. We could also
specify the uid and gid parameter in Rserve.conf to control the server permissions on a more
detailed level.

This section gives a detailed introduction to the installation, start, configuration, and use of
Rserve. With this knowledge, we can now use Rserve to construct enterprise online applications.

5.2 Client of Rserve in R: RSclient
Question
How do we access Rserve using native R?

RSclient is a client program of R to implement the communication of Rserve. Such communica-
tion is of great help to the real application structure, as it will not only unify the interface of Rserve
but also implement the cross virtual machine step-by-step program design of R.

We’ve previously discussed that Rserve is a network communication server program based on
TCP/IP protocol between R and other languages based on a Client/Server (C/S) structure. So how
do we implement the communication between R and Rserve server? RSclient is the solution to this
question and makes it possible for R to access the Rserve server instance. Thus R gains its basis of
step-by-step program calling.

5.2.1 Configuration of the Rserve Server

System environment used in this section:

 ◾ Linux: Ubuntu 12.04.2 LTS 64bit
 ◾ R: 3.0.1 x86_64-pc-linux-gnu
 ◾ Rserve: Rserve v1.7-1

Note: Rserve supports both Windows 7 and Linux. Because Rserve is mainly used as a com-
munication server, Linux is recommended more.

Start the Rserve server.

Server Implementation of R ◾ 171

Rserve environment:

 ◾ IP: 192.168.1.201, allows remote access
 ◾ Port: 6311
 ◾ Login authentication: username: conan, password: conan
 ◾ Character encoding: utf-8

After Rserve is started, we’ll use RSclient to access the Rserve server.

5.2.2 Installation of RSclient

Because the communication between RSclient and Rserve can be done through remote access, we
use Windows 7 to install RSclient. System environment of RSclient:

 ◾ Windows 7 64bit
 ◾ R: 3.0.1 x86_64-w64-mingw32/x64 b4bit

Installation and loading of RSclient.

Start Rserve through command line.
~ R CMD Rserve

~ ps -aux|grep Rserve
conan 28339 0.0 1.2 116292 25240 ? Ss 22:31 0:00
/usr/lib/R/bin/Rserve

~ netstat -ntlp|grep Rserve
tcp 0 0 0.0.0.0:6311 0.0.0.0:*
LISTEN 28339/Rserve

View the configuration of Rserve server.
~ R CMD Rserve --RS-settings
Rserve v1.7-1
config file: /etc/Rserv.conf
working root: /tmp/Rserv
port: 6311
local socket: [none, TCP/IP used]
authorization required: yes
plain text password: allowed
passwords file: [none]
allow I/O: yes
allow remote access: yes
control commands: yes
interactive: yes
max.input buffer size: 262144 kB

Start R.
~ R

172 ◾ R for Programmers: Mastering the Tools

5.2.3 API of RSclient

The API of RSclient can be divided into two groups: Rclient (the old version) and RCC (the new
version). The API function name of Rclient is as follows.

API function name of the new version RCC is splited by “.”, as follows.

This section mainly introduces the use of API in the new version. The folllowing is the operat-
ing function of client:

 ◾ RS.connect: create the connection with Rserve
 ◾ RS.close: close the connection with Rserve
 ◾ RS.login: login authentication
 ◾ RS.authkey: set the encryption algorithm in authentication
 ◾ RS.eval: run R statements remotely in Rserve
 ◾ RS.eval.qap: run R statements remotely and use serialized Rserve QAP objects to replace

local objects
 ◾ RS.collect: wait for the asynchronous execution eval result and return
 ◾ RS.assign: execute assignment remotely
 ◾ RS.oobCallbacks: callback function, executed through OOB_SEND function and OOB_MSG

function

Server management functions (need to set –RS-enable-control when Rserve is started) are as
follows:

 ◾ RS.server.eval: server control function, execute script
 ◾ RS.server.shutdown: server control function, close server
 ◾ RS.server.source: server control function, execute local file in the server

Install RSclient.
> install.packages("RSclient")

Load RSclient.
> library(RSclient)

RSassign RSattach RSclose
RSconnect RSdetach RSeval RSevalDetach
RShowDoc RSiteSearch RSlogin RSserverEval
RSserverSource RSshutdown RSclient

RS.assign RS.authkey RS.close RS.collect
RS.connect RS.eval RS.eval.qap RS.login
RS.oobCallbacks RS.server.eval RS.server.shutdown RS.server.
source
RS.switch

Server Implementation of R ◾ 173

5.2.4 Use of RSclient

5.2.5 Simultaneous Access of Two Clients

Operation of client A.

> library(RSclient)

Create remote connection
> conn<-RS.connect(host="192.168.1.201")
> conn
 Rserve QAP1 connection 0x000000000445cd60 (socket 308, queue length
0)

Sign in Rserve server and finish authentication check.
> RS.login(conn,"conan","conan",authkey=RS.authkey(conn))
[1] TRUE

Run script.
> RS.eval(conn,rnorm(5))
[1] -2.6762608 1.4435144 -0.4298395 -0.7046573 -1.4056073

Set variables.
> RS.assign(conn,"xx",99)
raw(0)
> RS.eval(conn,xx-55)
[1] 44

Synchronous execution.
> RS.eval(conn,head(rnorm(10000000)),wait=TRUE)
[1] -4.20217390 0.22353317 -1.70256992 0.30053213 -0.01427486
-0.70522254

Asynchronous execution. The result should be taken again through
RS.collect().
> RS.eval(conn,head(rnorm(10000000)),wait=FALSE)
NULL
> RS.collect(conn)
[1] -0.2814752 0.3215521 -1.0978825 -0.8534461 -0.2459560
-0.4804882

Close connection.
> RS.close(conn)
NULL
> conn
 Closed Rserve connection 0x000000000445cc80

~ R
> library(RSclient)
> conn<-RS.connect(host="192.168.1.201")

174 ◾ R for Programmers: Mastering the Tools

Operation of client B.

We can see that after the ports of client A and client B are created, Rserve on the server side
will be operated in two separate spaces. Therefore the accesses of client A and client B are separate.
So how could we test the communication between two clients? The answer is through global vari-
ables. Set global variables in Rserve server. The code is as follows.

Error of “access rejected” is reported. Though we have opened –RS-enable-control, there is still
an error. We don’t know whether it’s a bug of Rserve, but we would know that global variables
have proved to be impracticable. Then we could use intermediate variables to achieve an interac-
tion between two clients indirectly and to store the data needed to be interacted into MySQL and
Redis.

We’ve achieved the remote connection between Rserve server and R through RSclient. If we
expand our thought further, we could construct a step-by-step computing environment through
Rserve and RSclient. With other open source technique as assistance, R can also reach the stan-
dard of an online application.

> RS.login(conn,"conan","conan",authkey=RS.authkey(conn))
> RS.assign(conn,"A",1234)

> RS.eval(conn,A)
[1] 1234

> RS.eval(conn,getwd())
[1] "/tmp/Rserv/conn29039"

~ R
> library(RSclient)
> conn<-RS.connect(host="192.168.1.201")
> RS.login(conn,"conan","conan",authkey=RS.authkey(conn))
> RS.assign(conn,"B",5678)

> RS.eval(conn,B)
[1] 5678
> RS.eval(conn,ls())
[1] "B"
> RS.eval(conn,getwd())
[1] "/tmp/Rserv/conn29040"

> RS.server.eval(conn, "G<-999"):
command failed with status code 0x48: access denied

Server Implementation of R ◾ 175

5.3 An R Program Running on the Web: FastRWeb
Question
How do we display the image made by R on the Web?

R has long been used in a client program based on personal computers. We are familiar with the
whole process: downloading installation package, installing on desktop, writing algorithm, and run-
ning the codes. Then we publish our work in the form of either images or documents. But if we can
run R on the server side and publish the result on the Web, we will be working in an Internet style!
FastRWeb provides us a way to implement an R application of a Browser/Server (B/S) structure.

5.3.1 Introduction to FastRWeb

FastRWeb is a basic architecture environment. It allows R script to run on any Web servers to dis-
play data and images. Users can communicate and interact through URL addresses and R script.
FastRWeb can construct a Web environment of R very fast. FastRWeb is based on a CGI program,
which means that all Web servers supporting a CGI program can run FastRWeb. Now, I’ll take
Rserve as an example to deploy FastRWeb and implement Web application of R.

The architecture of R can be seen in Figure 5.1, where we can find the architecture principle.
(1) Browser accesses the Web server through an http request. (2) The Web server sends the request
to the Rserver server through a socket. (3) Rserve calls FastRWeb, runs R script, and returns data
and images. (4) Browser gets the result and displays it on the Web.

Browser RserveHTTP Proxy
Web

server

R object

HTML/CSS/
JS

run() PNG

R runtime engine

Figure 5.1 Architecture of FastRWeb.

176 ◾ R for Programmers: Mastering the Tools

5.3.2 Installation of FastRWeb

System environment used in this section:

 ◾ Linux: Ubuntu 12.04.2 LTS 64bit
 ◾ R: 3.0.1 x86_64-pc-linux-gnu
 ◾ IP: 192.168.1.201

Note: FastRWeb only supports a Linux environment.
Installation of FastRWeb is as follows.

Because FastRWeb depends on Cairo, Cairo will be installed on the local library of Linux.
Please refer to Section 1.7 for this part. Now let’s install Rserve. For the installation and use of
Rserve, please refer to Section 5.1.

Create Rserve environment of FastRWeb based on Rserve.

View the generated directory,/var/FastRWeb/code/.

README is the help file, rserve.conf is the starting parameter of Rserve, rserve.R is the start-
ing script of Rserve, and start is the command.

~ R
> install.packages("FastRWeb")

> install.packages("Rserve")

Enter the installation directory of FastRWeb.
~ cd/home/conan/R/x86_64-pc-linux-gnu-library/3.0/FastRWeb

Run installation script.
~ sudo ./install.sh
Done.
Please check files in/var/FastRWeb/code
If they match tour setup, you can start Rserve using
/var/FastRWeb/code/start

~ cd/var/FastRWeb/code/

~ ls -l
-rw-r--r-- 1 conan conan 1210 Oct 29 16:07 README
-rw-r--r-- 1 conan conan 79 Oct 29 17:50 rserve.conf
-rw-r--r-- 1 conan conan 2169 Oct 29 17:51 rserve.R
-rwxr-xr-x 1 conan conan 457 Oct 29 17:35 start

Server Implementation of R ◾ 177

Modify the configuration file rserve.conf of starting Rserve.

By default, Rserve provides socket communication interface. For the convenience of the Web
test, we’ll use an http communication interface instead. Modify the file rserve.R and add two lines
of codes to the top.

Now we’ve completed the modification to use http protocol as the communication interface.

5.3.3 Use of FastRWeb

Start the FastRWeb service.

We can see from the startup log that XML, Cairo, Matrix, FastRWeb, and Rserve have all
been loaded and run normally. View the system process and port:

~ vi rserve.conf

http.port 8888
remote enable
source /var/FastRWeb/code/rserve.R
control enable

~ vi rserve.R

Content added.
library(FastRWeb)
.http.request <- FastRWeb:::.http.request

~ sudo ./start
R CMD Rserve --RS-conf/var/FastRWeb/code/rserve.conf --vanilla
--no-save
--RS-enable-remote

R version 3.0.1 (2013-05-16) -- "Good Sport"
Copyright (C) 2013 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

Starting Rserve on conan
Loading packages...
XML: TRUE
Cairo: TRUE
Matrix: TRUE
FastRWeb: TRUE
Rserv started in daemon mode.

178 ◾ R for Programmers: Mastering the Tools

Two ports have been opened: one is the socket port of Rserve 6311, and the other is the http
port 8888. Open http://192.168.1.201:8888/example1.png with browser and access through Web,
as in Figure 5.2.

The corresponding file of R code of Figure 5.2 is/var/FastRWeb/web.R/example1.png.R.

Modify the file var/FastRWeb/web.R/example1.png.R and refresh in the browser. The result
is in Figure 5.3.

Thus we’ve achieved running R script through the Web and drawing graphics on the Web.
There are some other examples in the directory/var/FastRWeb/web.R/. You can take them as refer-
ences and modify your own R script.

~ ps -aux|grep Rserve
conan 23739 0.0 1.4 120140 28916 ? Ss 16:47 0:00

/usr/lib/R/bin/Rserve --RS-conf/var/FastRWeb/code/rserve.conf
--vanilla --no-save --RS-enable-remote

~ sudo netstat -nltp|grep Rserve
tcp 0 0 0.0.0.0:8888 0.0.0.0:*
LISTEN 25778/Rserve
tcp 0 0 0.0.0.0:6311 0.0.0.0:*
LISTEN 25778/Rserve

~ vi/var/FastRWeb/web.R/example1.png.R

run <- function(...) {
 p <- WebPlot(600, 600)
 plot(rnorm(100), rnorm(100), pch = 19, col = 2)
 p
}

~ vi/var/FastRWeb/web.R/example1.png.R

run <- function(...) {
 p <- WebPlot(600, 600)
 plot(rnorm(400), rnorm(400), pch = 20, col = 3)
 p
}

http://192.168.1.201:8888

Server Implementation of R ◾ 179

The R script file example2.R allows transferring parameters on pages.

~ ls -l/var/FastRWeb/web.R
total 32
-rw-r--r-- 1 conan conan 790 Oct 29 16:07 common.R
-rw-r--r-- 1 conan conan 316 Oct 29 20:01 example1.png.R
-rw-r--r-- 1 conan conan 520 Oct 29 16:07 example2.R
-rw-r--r-- 1 conan conan 174 Oct 29 16:07 index.R
-rw-r--r-- 1 conan conan 215 Oct 29 16:07 info.R
-rw-r--r-- 1 conan conan 64 Oct 29 16:07 main.R
-rw-r--r-- 1 conan conan 167 Oct 29 16:07 README
-rw-r--r-- 1 conan conan 214 Oct 29 16:07 tmp.R

2

1

0

‒1

‒2

‒2 ‒1 0 1 2

rn
or

m
 (1

00
)

Figure 5.2 Visualized image of rnorm(100) on the Web.

180 ◾ R for Programmers: Mastering the Tools

According to the description of FastRWeb, it can communicate with any WebServer through
CGI. In this way, we can employ R script on servers of advanced languages such as PHP, Python,
Ruby, Java, and so forth. There is an article on R-bloggers discussing how to employ FastRWeb on
XAMPP based on Apache (http://www.r-bloggers.com/setting-up-fastrweb-on-mac-os-x/). If you
are interested in this, give it a try!

5.4 Building a WebSocket Server by R
Question
How do we implement WebSocket by R?

3

2

1

0

‒1

‒2

‒2 ‒1 0 1 2 3

rn
or

m
(4

00
)

rnorm(400)

Figure 5.3 Visualized image of rnorm(400) on the Web.

http://www.r-bloggers.com

Server Implementation of R ◾ 181

R has developed from a statistical language to an industrialized language. It not only sup-
ports the basic operation and visualization of the Web, but it also supports WebSocket. Our
Internet application now can interact with R directly through the WebSocket protocol with-
out using Rserve. R has undergone a technological revolution and become more advanced
and convenient.

5.4.1 Introduction to WebSocket

WebSocket is a protocol based on HTML5 to implement the communication between clients
and servers on browsers. WebSocket has four main advantages: (1) it decreases network overhead
greatly; (2) it reduces the processing overhead of servers; (3) it simplifies the rapid asynchronous
update of the Web client; and (4) it also simplifies the coupling status between servers and clients.

websockets is a class library of the WebSocket port of R. Through websockets, we can eas-
ily use R to construct a WebSocket server instance. The following is an introduction to API of
websockets.

 ◾ create_server: create a WebSocket server instance and bind port
 ◾ daemonize: bond the daemon process of the WebSocket server instance to the console of R;

it does not support Windows
 ◾ http_response: send http response request to socket
 ◾ http_vars: parse the parameter list of http GET/POST
 ◾ service: register the service queue of WebSocket instance
 ◾ set_callback: define R functions in WebSocket instance
 ◾ static_file_service: static file
 ◾ static_text_service: static text
 ◾ webSocket: create a WebSocket client instance
 ◾ webSocket_broadcast: issue broadcast to all clients registered in the same WebSocket server

instance
 ◾ webSocket_close: close client connection
 ◾ webSocket_write: transfer data through WebSocket

182 ◾ R for Programmers: Mastering the Tools

5.4.2 Installation of websockets

System environment used in this section:

 ◾ Linux: Ubuntu Server 12.04.2 LTS 64bit
 ◾ R: 3.0.1 x86_64-pc-linux-gnu
 ◾ IP: 192.168.1.201

Note: websockets only supports Linux.
Installation of websockets.

websockets depends on caTools, which is a tool set. Please refer to Section 1.8 for more infor-
mation about CaTools.

The author found on June, 2015 that websockets had been from the CRAN library on March
2, 2014 and taken over and maintained again by Joe Cheng from RStudio. The address is http://
cran.r-project.org/web/packages/websockets/index.html.

Thus when we install websockets, functions through install.packages() will report an error.

Start R.
~ R

Install websockets.
> install.packages("websockets")

Load websockets.
> library(websockets)
'websockets'R3.0.2

Package 'websockets' was removed from the CRAN repository.

Formerly available versions can be obtained from the archive.

Archived on 2014-03-02 at the request of the maintainer.

> install.packages("websockets")
Installing package into '/home/conan/R/
x86_64-pc-linux-gnu-library/3.0'
(as 'lib' is unspecified)
Warning:
package 'websockets' is not available (for R version 3.0.1)

http://cran.r-project.org
http://cran.r-project.org

Server Implementation of R ◾ 183

We need to download the installation package and install it manually.

Errors are reported during the installation. It warns of a lack of the dependent packages caTools
and digest, so we need to install these two packages first.

Download the latest websockets.
~ wget http://cran.r-project.org/src/contrib/Archive/websockets/
websockets _1.1.7.tar.gz

Install websockets in the current directory.
~ R CMD INSTALL websockets_1.1.7.tar.gz
* installing to library '/home/conan/R/
x86_64-pc-linux-gnu-library/3.0'
ERROR: dependencies 'caTools', 'digest' are not available for
package 'websockets'
* removing '/home/conan/R/x86_64-pc-linux-gnu-library/3.0/websockets'

Start R.
~ R

Install dependent packages.
> install.packages("caTools")
> install.packages("digest")

Return to command line and re-install websockets. Succeeded.
~ R CMD INSTALL websockets_1.1.7.tar.gz
* installing to library '/home/conan/R/
x86_64-pc-linux-gnu-library/3.0'
* installing *source* package 'websockets'...
** Unpack websockets package successfully, md5 encryption and check.
** libs
gcc -std=gnu99 -I/usr/share/R/include -DNDEBUG -DLWS_NO_FORK
-fpic -O3 -pipe -g -c libsock.c -o libsock.o
gcc -std=gnu99 -shared -o websockets.so libsock.o -L/usr/lib/R/lib
-lR
installing to/home/conan/R/x86_64-pc-linux-gnu-library/3.0/
websockets/libs
** R
** demo
** inst
** preparing package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
'websockets.Rnw'
** testing if installed package can be loaded
* DONE (websockets)

184 ◾ R for Programmers: Mastering the Tools

Now we’ve installed websockets manually.

5.4.3 Quickly Start the WebSockets Server Demo

websockets provides a demo. Through demo(websockets), we can start a simple WebSocket server
directly.

View the process of the server.

If you open the page http://192.168.1.201:7681 in your browser and you can see the demo
application implemented by websockets, as in Figure 5.4. Please note that the browser must sup-
port HTML5, so we recommend Chrome.

Output the log of the server:

> library(websockets)
'websockets'R3.0.2

Start demo.
> demo(websockets)

~ netstat -nltp|grep r

Proto Recv-Q Send-Q Local Address Foreign Address
State PID/Program name
tcp 0 0 0.0.0.0:7681 0.0.0.0:*
LISTEN 2231/rsession

Start R.
~ R

Load websockets.
> library(websockets)

Websocket client socket 20 has closed.
Websocket client socket 8 has been established.
Websocket client socket 21 has closed.

http://192.168.1.201:7681

Server Implementation of R ◾ 185

5.4.4 Create a WebSocket Server Instance Using R

Next, we create a customized WebSocket server application.

Open a new R program.
~ R

Load class library.
> library(websockets)

Figure 5.4 Demo application of websockets.

186 ◾ R for Programmers: Mastering the Tools

Now we’ve create the server part of the WebSocket server.

5.4.5 Create a WebSocket Client Connection Using R

Then we create the server part of WebSocket application using R and communicate using the
WebSocket server. First, create a new file client.r in Linux.

~ vi client.r

Load class library.
library(websockets)

Create client instance.
client = websocket("ws://192.168.1.201",port=7681)

Listen "receive".
rece<-function(DATA, WS, HEADER) {

HTTP output of browser.
> text = "<html><body><h1>Hello world</h1></body></html>"

Create service instance.
> w = create_server(port=7681,webpage=static_text_service(text))

Listen "receive".
> recv = function(DATA, WS,...){
+ cat("Receive callback\n")
+ D = ""
+ if(is.raw(DATA)){D = rawToChar(DATA)}
+
+ cat("Callback:You sent",D,"\n")
+ websocket_write(DATA=paste("You sent",D,"\n",collapse=" "),WS=WS)
+}
> set_callback('receive',recv,w)

Listen "closed".
> cl = function(WS){
+ cat("Websocket client socket ",WS$socket," has closed.\n")
+ }
> set_callback('closed',cl,w)

Connection established
> es = function(WS){
+ cat("Websocket client socket ",WS$socket," has been
established.\n")
+}
> set_callback('established',es,w)

Listen all connections
> while(TRUE) service(w)

Server Implementation of R ◾ 187

Run the client program.

It can be seen from the output that we’ve achieved the communication process between the
client and the server.

5.4.6 Achieve Client Connection through HTML5 Native API of Browsers

Next, we write JavaScript code in the Chrome browser and call native HTML5 API to access
WebSocket server. Open the page http://192.168.1.201:7681, press F12 to open developer tool, and
switch to the Console of JavaScript. Write JavaScript code in Console, as in Figure 5.5.

Native HTML5 program:

> library(websockets)
> client = websocket("ws://192.168.1.201",port=7681)
> rece<-function(DATA, WS, HEADER) {
+ D=''
+ if(is.raw(DATA)){
+ cat("raw data")
+ D=rawToChar(DATA)
+ }
+ cat("==>",D,"\n")
+}
> set_callback("receive",rece, client)
> websocket_write("2222", client)
[1] 1

> service(client)
raw data ==> You sent 2222

> websocket_close(client)
Client socket 3 was closed.

 D=''
 if(is.raw(DATA)){
 cat("raw data")
 D = rawToChar(DATA)
 }
 cat("==>",D,"\n")
}
set_callback("receive",rece, client)

Send request to server.
websocket_write("2222", client)

Output the return value to server.
service(client)

Close connection.
websocket_close(client)

http://192.168.1.201:7681,

188 ◾ R for Programmers: Mastering the Tools

Now we’ve finished the WebSocket server test constructed by R and opened a more convenient
channel for R and other languages.

var ws = new WebSocket("ws://192.168.1.201:7681");
ws.onopen = function(){
console.log("connecting");
};
ws.onmessage = function(message){
console.log(message.data);
console.log(message);
};
function postToServer(msg){
ws.send(msg);
}
function closeConnect(){
ws.close();
console.log("closed");
}

postToServer('browser');
closeConnect();

Figure 5.5 Use native JavaScript to access WebSocket server communication.

iiiDAtABASe AnD
BiG DAtA

191

Chapter 6

Database and noSQL

This chapter mainly introduces five tool packages of R accessing databases, which may help read-
ers to connect R with MySQL, MongoDB, Redis, Cassandra, and Hive. The last section of this
chapter introduces a case of financial big data based on Hive.

6.1 Programming Guidance for the RMySQL Database
Question
How do we use R to access MySQL?

MySQL is the most commonly used open source database software. It’s simple to install (for the
installation and configuration of MySQL, please refer to Appendix B) and stable in operation,
which makes it very suitable for small and medium size data storage. R, as a data analysis tool,
should certainly support a database driver interface. Great energy will be created if we combine R
with MySQL.

192 ◾ R for Programmers: Mastering the Tools

6.1.1 Installation of RMySQL in Linux

Linux system environment:

 ◾ Linux: Ubuntu 12.04.2 LTS 64bit server
 ◾ Linux character set: en_US.UTF-8
 ◾ R: 3.0.1, x86_64-pc-linux-gnu (64-bit)
 ◾ MySQL: Ver 14.14 Distrib 5.5.29 64bit server
 ◾ MySQL character set: utf8

6.1.1.1 View the System Environment of Linux

Linux kernel.
~ uname -a
Linux conan 3.5.0-23-generic #35~precise1-Ubuntu SMP Fri Jan 25
17:13:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux

Linux version.
~ cat /etc/issue
Ubuntu 12.04.2 LTS \n \l

Linux system language.
~ locale
LANG=en_US.UTF-8
LANGUAGE=
LC_CTYPE="en_US.UTF-8"
LC_NUMERIC="en_US.UTF-8"
LC_TIME="en_US.UTF-8"
LC_COLLATE="en_US.UTF-8"
LC_MONETARY="en_US.UTF-8"
LC_MESSAGES="en_US.UTF-8"
LC_PAPER="en_US.UTF-8"
LC_NAME="en_US.UTF-8"
LC_ADDRESS="en_US.UTF-8"
LC_TELEPHONE="en_US.UTF-8"
LC_MEASUREMENT="en_US.UTF-8"
LC_IDENTIFICATION="en_US.UTF-8"
LC_ALL=en_US.UTF-8

View the version of MySQL.
~ mysql --version
mysql Ver 14.14 Distrib 5.5.29, for debian-linux-gnu (x86_64) using
readline 6.2

View the character set of MySQL.
mysql> show variables like '%char%';
+--------------------------+----------------------------+
| Variable_name | Value |
+--------------------------+----------------------------+
| character_set_client | utf8 |
| character_set_connection | utf8 |

Database and NoSQL ◾ 193

6.1.1.2 Install RMySQL in R

character_set_database	utf8
character_set_filesystem	binary
character_set_results	utf8
character_set_server	utf8
character_set_system	utf8
character_sets_dir	/usr/share/mysql/charsets/
+--------------------------+----------------------------+
8 rows in set (0.00 sec)

Start R.
~ R

Install RMySQL.
> install.packages('RMySQL')

Omit parts of the output.

trying URL 'http://cran.dataguru.cn/src/contrib/DBI_0.2-7.tar.gz'
Content type 'application/x-gzip' length 194699 bytes (190 Kb)
opened URL
==
downloaded 190 Kb

trying URL 'http://cran.dataguru.cn/src/contrib/RMySQL_0.9-3.tar.gz'
Content type 'application/x-gzip' length 165363 bytes (161 Kb)
opened URL
==
downloaded 161 Kb

...

Configuration error:
 could not find the MySQL installation include and/or library
 directories. Manually specify the location of the MySQL
 libraries and the header files and re-run R CMD INSTALL.

INSTRUCTIONS:

1. Define and export the 2 shell variables PKG_CPPFLAGS and
 PKG_LIBS to include the directory for header files (*.h)
 and libraries, for example (using Bourne shell syntax):

 export PKG_CPPFLAGS="-I"
 export PKG_LIBS="-L -lmysqlclient"

 Re-run the R INSTALL command:

 R CMD INSTALL RMySQL_.tar.gz

194 ◾ R for Programmers: Mastering the Tools

The installation process reported errors and prompted that we should add the configuration
parameter –with-mysql-dir to the installation directory of MySQL. Then let’s solve the error.

2. Alternatively, you may pass the configure arguments
 --with-mysql-dir= (distribution directory)
 or
 --with-mysql-inc= (where MySQL header files reside)
 --with-mysql-lib= (where MySQL libraries reside)
 in the call to R INSTALL --configure-args='...'

 R CMD INSTALL --configure-args='--with-mysql-dir=DIR' RMySQL
_.tar.gz

ERROR: configuration failed for package 'RMySQL'
* removing '/home/conan/R/x86_64-pc-linux-gnu-library/3.0/RMySQL'

The downloaded source packages are in
 '/tmp/Rtmpu0Gn88/downloaded_packages'
Warning message:
In install.packages("RMySQL") :
 installation of package 'RMySQL' had non-zero exit status

Install MySQL class library.
~ sudo apt-get install libdbd-mysql libmysqlclient-dev

Find the installation directory of MySQL.
~ whereis mysql
mysql:/usr/bin/mysql/etc/mysql/usr/lib/mysql/usr/bin/X11/mysql/usr/
share /mysql/usr/share/man/man1/mysql.1.gz

Find the downloaded file, RMySQL_.tar.gz.
~ ls/tmp/Rtmpu0Gn88/downloaded_packages
DBI_0.2-7.tar.gz RMySQL_0.9-3.tar.gz

Re-install RMySQL through command line.
~ R CMD INSTALL --configure-args = '--with-mysql-dir=/usr/lib/
mysql'/tmp /Rtmpu0Gn88/downloaded_packages/RMySQL_0.9-3.tar.gz

* installing to library '/home/conan/R/
x86_64-pc-linux-gnu-library/3.0'
* installing *source* package 'RMySQL'...
** package 'RMySQL' successfully unpacked and MD5 sums checked

Omit some of the output
installing to/home/conan/R/x86_64-pc-linux-gnu-library/3.0/RMySQL/
libs
** R
** inst

Database and NoSQL ◾ 195

RMySQL is now successfully installed.

6.1.1.3 Create Library and Table in MySQL

** preparing package for lazy loading
Creating a generic function for 'format' from package 'base' in
package 'RMySQL'
Creating a generic function for 'print' from package 'base' in
package 'RMySQL'
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded
* DONE (RMySQL)

Log in local MySQL through MySQL command line client.

~ mysql -uroot -p

Create a database, named rmysql.
mysql> create database rmysql;
Query OK, 1 row affected (0.00 sec)

Create a user, username rmysql, password rmysql. Authorize this
user to operate RMySQL library remotely.
mysql> grant all on rmysql.* to rmysql@'%' identified by 'rmysql';
Query OK, 0 rows affected (0.00 sec)

Authorize RMySQL user to operate RMySQL locally.
mysql> grant all on rmysql.* to rmysql@localhost identified by
'rmysql';
Query OK, 0 rows affected (0.00 sec)

Switch to RMySQL library.
mysql> use rmysql
Database changed

Create a table, t_user.
mysql> CREATE TABLE t_user(
 -> id INT PRIMARY KEY AUTO_INCREMENT,
 -> user varchar(12) NOT NULL UNIQUE
 ->)ENGINE=INNODB DEFAULT CHARSET=utf8;
Query OK, 0 rows affected (0.07 sec)

Insert 3 items.
mysql> INSERT INTO t_user(user) values('A1'),('AB'),('fens.me');
Query OK, 3 rows affected (0.04 sec)
Records: 3 Duplicates: 0 Warnings: 0

196 ◾ R for Programmers: Mastering the Tools

6.1.1.4 Read MySQL Data through R

Now we’ve achieved the connection between R and MySQL in Linux Ubuntu.

6.1.2 Installation of RMySQL in Windows 7

Windows system environment:

 ◾ Windows 7 64 bit
 ◾ Windows character set: gbk, utf8
 ◾ R: 3.0.1, x86_64-w64-mingw32/x64 (64-bit)
 ◾ MySQL: mysql Ver 14.14 Distrib 5.6.11, for Win64 (x86_64)

Check the data.
mysql> SELECT * FROM t_user;
+----+---------+
| id | user |
+----+---------+
1	A1
2	AB
3	fens.me
+----+---------+
3 rows in set (0.00 sec)

Start R.
~ R

Load RMySQL.
> library(RMySQL)
Loading required package: DBI

Create Connection.
> conn <- dbConnect(MySQL(), dbname = "rmysql", username="rmysql",
password="rmysql")

Run SQL.
> users = dbGetQuery(conn, "SELECT * FROM t_user")

View data.
> users
 id user
1 1 A1
2 2 AB
3 3 fens.me

Disconnect.
> dbDisconnect(conn)
[1] TRUE

Database and NoSQL ◾ 197

6.1.2.1 View the System Environment of Windows 7

6.1.2.2 Installation of RMySQL in R

Here we have again met errors. It prompted that there was no corresponding version of
RMySQL. Because RMySQL does not provide the distribution of Windows version, we have to
compile the package of RMySQL manually in Windows and install it.

~ R --version
R version 3.0.1 (2013-05-16) -- "Good Sport"
Copyright (C) 2013 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under the terms of the
GNU General Public License versions 2 or 3.
For more information about these matters see

http://www.gnu.org/licenses/.

MySQL version.
~ mysql --version
mysql Ver 14.14 Distrib 5.6.11, for Win64 (x86_64)

MySQL character set.
mysql> show variables like '%char%';
+--------------------------+------------------------------------+
| Variable_name | Value |
+--------------------------+------------------------------------+
character_set_client	gbk
character_set_connection	gbk
character_set_database	utf8
character_set_filesystem	binary
character_set_results	gbk
character_set_server	utf8
character_set_system	utf8
character_sets_dir	D:\toolkit\mysql56\share\charsets\
+--------------------------+------------------------------------+
8 rows in set (0.07 sec)

Start R.
~ R

Install RMySQL.
> install.packages('RMySQl')
package 'RMySQl' is not available (for R version 3.0.1)

198 ◾ R for Programmers: Mastering the Tools

Find the source code package RMySQL_0.9-3.tar.gz.

Install it through source code.

There is an error again. We need to set the environment variables of MYSQL_HOME.

Note: we suggest that MYSQL_HOME be set in the system environment variables.
Install RMySQL again.

Download the source code package of RMySQL.
> install.packages("RMySQL", type="source")
URLhttp://cran.dataguru.cn/src/contrib/RMySQL_0.9-3.tar.gz'
Content type 'application/x-gzip' length 165363 bytes (161 Kb)
URL
downloaded 161 Kb

~ dir C:\Users\Administrator\AppData\Local\Temp\RtmpsfqQjK\
downloaded_packages
2013-09-24 13:16 165,363 RMySQL_0.9-3.tar.gz

~ D:\workspace\R\mysql>R CMD INSTALL C:\Users\Administrator\AppData\
Local\Temp\RtmpsfqQjK\downloaded_packages\RMySQL_0.9-3.tar.gz
* installing to library 'C:/Program Files/R/R-3.0.1/library'
* installing *source* package 'RMySQL' ...
** 'RMySQL'MD5
checking for $MYSQL_HOME... not found... searching registry...

Omit parts of the output.
 MS-DOS style path detected: C:/PROGRA~1/R/R-30~1.1/bin/x64/Rscript
 Preferred POSIX equivalent is: /cygdrive/c/PROGRA~1/R/R-30~1.1/
bin/x64/Rscript
 CYGWIN environment variable option "nodosfilewarning" turns off
this warning.
 Consult the user's guide for more details about POSIX paths:

http://cygwin.com/cygwin-ug-net/using.html#using-pathnames

readRegistry("SOFTWARE\\MySQL AB", hive = "HLM", maxdepth = 2) :
 Registry key 'SOFTWARE\MySQL AB' not found

ERROR: configuration failed for package 'RMySQL'
* removing 'C:/Program Files/R/R-3.0.1/library/RMySQL'

set MYSQL_HOME = D:\toolkit\mysql56

Database and NoSQL ◾ 199

Then there is another error. This time it prompted that there was no dynamic linked library file
D:\toolkit\mysql56/bin/libmySQL.dll.

Install RMySQL again.

The installation is finally successful!

6.1.2.3 Create Libraries and Tables in MySQL

D:\workspace\R\mysql>R CMD INSTALL C:\Users\Administrator\AppData\
Local\Temp\RtmpsfqQjK\downloaded_packages\RMySQL_0.9-3
.tar.gz
Omit some output.
cc.exe: error: D:\toolkit\mysql56/bin/libmySQL.dll: No such file or
directory
ERROR: compilation failed for package 'RMySQL'
* removing 'C:/Program Files/R/R-3.0.1/library/RMySQL'

Copy dynamic linked library libmySQL.dll.
cp D:\toolkit\mysql56\lib\libmysql.dll D:\toolkit\mysql56\bin\
mv D:\toolkit\mysql56\bin\libmysql.dll D:\toolkit\mysql56\bin\
libmySQL.dll

~ D:\workspace\R\mysql>R CMD INSTALL C:\Users\Administrator\AppData\
Local\Temp\RtmpsfqQjK\downloaded_packages\RMySQL_0.9-3
.tar.gz
Omit some output.
installing to C:/Program Files/R/R-3.0.1/library/RMySQL/libs/x64
** R
** inst
** preparing package for lazy loading
Creating a generic function for 'format' from package 'base' in
package 'RMySQL'
Creating a generic function for 'print' from package 'base' in
package 'RMySQL'
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded
MYSQL_HOME defined as D:\toolkit\mysql56
* DONE (RMySQL)

~ mysql -uroot -p
mysql> create database rmysql;
Query OK, 1 row affected (0.04 sec)

200 ◾ R for Programmers: Mastering the Tools

The process is in accordance with that of Linux.

mysql> grant all on rmysql.* to rmysql@'%' identified by 'rmysql';
Query OK, 0 rows affected (0.00 sec)

mysql> grant all on rmysql.* to rmysql@localhost identified by
'rmysql';
Query OK, 0 rows affected (0.00 sec)

mysql> use rmysql
Database changed
mysql> CREATE TABLE t_user(
 -> id INT PRIMARY KEY AUTO_INCREMENT,
 -> user varchar(12) NOT NULL UNIQUE
 ->)ENGINE=INNODB DEFAULT CHARSET=utf8;
Query OK, 0 rows affected (1.01 sec)

mysql> INSERT INTO t_user(user) values('A1'),('AB'),('fens.me');
Query OK, 3 rows affected (0.05 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM t_user;
+----+---------+
| id | user |
+----+---------+
1	A1
2	AB
3	fens.me
+----+---------+
3 rows in set (0.03 sec)

~ mysql -uroot -p
mysql> create database rmysql;
Query OK, 1 row affected (0.04 sec)

mysql> grant all on rmysql.* to rmysql@'%' identified by 'rmysql';
Query OK, 0 rows affected (0.00 sec)

mysql> grant all on rmysql.* to rmysql@localhost identified by
'rmysql';
Query OK, 0 rows affected (0.00 sec)

mysql> use rmysql
Database changed
mysql> CREATE TABLE t_user(
 -> id INT PRIMARY KEY AUTO_INCREMENT,
 -> user varchar(12) NOT NULL UNIQUE
 ->)ENGINE=INNODB DEFAULT CHARSET=utf8;
Query OK, 0 rows affected (1.01 sec)

mysql> INSERT INTO t_user(user) values('A1'),('AB'),('fens.me');

Database and NoSQL ◾ 201

6.1.2.4 Read MySQL Data through R

If you haven’t written the MYSQL_HOME variables in the environment configuration, you need
to set the variable every time you start R.

We have now achieved the connection between R and MySQL in Windows.

Query OK, 3 rows affected (0.05 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM t_user;
+----+---------+
| id | user |
+----+---------+
1	A1
2	AB
3	fens.me
+----+---------+
3 rows in set (0.03 sec)

Set the environment variable in the current environment.
~ set MYSQL_HOME=D:\toolkit\mysql56

Start R.
~ R

Load RMySQL.
> library(RMySQL)
DBI
MYSQL_HOME defined as D:\toolkit\mysql56

Create connection.
> conn <- dbConnect(MySQL(), dbname = "rmysql", username="rmysql",
password="rmysql")

Run SQL.
> users = dbGetQuery(conn, "SELECT * FROM t_user")
> users
 id user
1 1 A1
2 2 AB
3 3 fens.me

Disconnect.
> dbDisconnect(conn)
[1] TRUE

202 ◾ R for Programmers: Mastering the Tools

6.1.3 Use of RMySQL Functions

After the environment is installed, let’s begin to use the RMySQL package. This section mainly
introduces the auxiliary operation, database operation, and character set configuration of RMy
SQL in Windows.

6.1.3.1 Auxiliary Function of RMySQL

Create local connection.
> conn <- dbConnect(MySQL(), dbname = "rmysql", username="rmysql",
password="rmysql",client.flag=CLIENT_MULTI_STATEMENTS)

Create remote connection.
> conn <- dbConnect(MySQL(), dbname = "rmysql", username="rmysql",
password="rmysql",host="192.168.1.201",port=3306)

Close connection.
> dbDisconnect(conn)

View all the tables in the database.
> dbListTables(conn)
[1] "t_user"

View the field of table.
> dbListFields(conn, "t_user")
[1] "id" "user"

Check the MySQL information.
> summary(MySQL(), verbose = TRUE)
<MySQLDriver:(23864)>
 Driver name: MySQL
 Max connections: 16
 Conn. processed: 3
 Default records per fetch: 500
 DBI API version:

Information of MySQL connection instance.
> summary(conn, verbose = TRUE)
<MySQLConnection:(23864,2)>
 User: root
 Host: localhost
 Dbname: rmysql
 Connection type: localhost via TCP/IP
 MySQL server version: 5.6.11
 MySQL client version: 5.6.11
 MySQL protocol version: 10
 MySQL server thread id: 35
 No resultSet available

Information of MySQL connection.
> dbListConnections(MySQL())
[[1]]
<MySQLConnection:(23864,2)>

Database and NoSQL ◾ 203

6.1.3.2 Operation of RMySQL Database

Create table and insert data.
> t_demo<-data.frame(
 a=seq(1:10),
 b=letters[1:10],
 c=rnorm(10)
)
> dbWriteTable(conn, "t_demo", t_demo)

Acquire the data of the whole table.
> dbReadTable(conn, "t_demo")
 a b c
1 1 a 0.98868164
2 2 b -0.66935770
3 3 c 0.27703638
4 4 d 1.36137156
5 5 e -0.70291017
6 6 f 1.61235088
7 7 g 0.17616068
8 8 h 0.29700017
9 9 i 0.19032719
10 10 j -0.06222173

Insert new data.
> dbWriteTable(conn, "t_demo", t_demo, append=TRUE)
> dbReadTable(conn, "t_demo")
 row_names a b c
1 1 1 a 0.98868164
2 2 2 b -0.66935770
3 3 3 c 0.27703638
4 4 4 d 1.36137156
5 5 5 e -0.70291017
6 6 6 f 1.61235088
7 7 7 g 0.17616068
8 8 8 h 0.29700017
9 9 9 i 0.19032719
10 10 10 j -0.06222173
11 1 1 a 0.98868164
12 2 2 b -0.66935770
13 3 3 c 0.27703638
14 4 4 d 1.36137156
15 5 5 e -0.70291017
16 6 6 f 1.61235088
17 7 7 g 0.17616068
18 8 8 h 0.29700017
19 9 9 i 0.19032719
20 10 10 j -0.06222173

Cover the data of the old table.
> dbWriteTable(conn, "t_demo", t_demo, overwrite=TRUE)

Query of data.

204 ◾ R for Programmers: Mastering the Tools

> d0 <- dbGetQuery(conn, "SELECT * FROM t_demo where c>0")
> class(d0)
[1] "data.frame"

> d0
 row_names a b c
1 1 1 a 0.9886816
2 3 3 c 0.2770364
3 4 4 d 1.3613716
4 6 6 f 1.6123509
5 7 7 g 0.1761607
6 8 8 h 0.2970002
7 9 9 i 0.1903272

Run SQL script query and make paging.
> rs <- dbSendQuery(conn, "SELECT * FROM t_demo where c>0")
> class(rs)
[1] "MySQLResult"
attr(,"package")
[1] "RMySQL"
> mysqlCloseResult(rs)
[1] TRUE

> d1 <- fetch(rs, n = 3)
> d1
 row_names a b c
1 1 1 a 0.9886816
2 3 3 c 0.2770364
3 4 4 d 1.3613716

View the statistical information of the set.
> summary(rs, verbose = TRUE)
 row_names a b c
 Length:7 Min. :1.000 Length:7 Min. :0.1762
 Class :character 1st Qu.:3.500 Class :character 1st Qu.:0.2337
 Mode :character Median :6.000 Mode :character Median :0.2970
 Mean :5.429 Mean :0.7004
 3rd Qu.:7.500 3rd Qu.:1.1750
 Max. :9.000 Max. :1.6124

Not insert row.names field.
> dbWriteTable(conn, "t_demo", t_demo,row.names=FALSE,overwrite=TRUE)
> dbGetQuery(conn, "SELECT * FROM t_demo where c>0")
 a b c
1 1 a 0.9886816
2 3 c 0.2770364
3 4 d 1.3613716
4 6 f 1.6123509
5 7 g 0.1761607

Database and NoSQL ◾ 205

Special tip: Try not to use dbWriteTable(), as it will delete the original table structure, create a
new table structure, and insert data.

6.1.3.3 Character Set Configuration of Windows

When we insert Chinese characters in MySQL in Windows 7, there will be garbled words as the
character encoding is GBK. Here is the way to insert Chinese characters through the MySQL
command line client.

6 8 h 0.2970002
7 9 i 0.1903272

Delete table.
> if(dbExistsTable(conn,'t_demo')){
+ dbRemoveTable(conn, "t_demo")
+ }
[1] TRUE

Run SQL statement, dbSendQuery.
> query<-dbSendQuery(conn, "show tables")
> data <- fetch(query, n = -1)
> data
 Tables_in_rmysql
1 t_demo
2 t_user
> mysqlCloseResult(query)
[1] TRUE

Insert data of Chinese characters.
mysql> INSERT INTO t_user(user) values('小朋友'),('你好'),('正确了');
Query OK, 3 rows affected (0.07 sec)
Records: 3 Duplicates: 0 Warnings: 0

The Chinese characters are displayed correctly.
mysql> select * from t_user;
+----+---------+
| id | user |
+----+---------+
1	A1
2	AB
3	fens.me
5	你好
4	小朋友
6	正确了
+----+---------+
6 rows in set (0.07 sec)

206 ◾ R for Programmers: Mastering the Tools

Query the data through RMySQL.

Then, set the GBK character set in the API of R.

6.1.4 Case Practice of RMySQL

Next, let’s practice a case of a remote database connection. Use RMySQL client in Windows to
connect the MySQL database server in Linux remotely.

6.1.4.1 Create Tables in a Remote Database

Create a new table of primary key index or unique key index, t_blog, in MySQL using an SQL
statement. Here is the statement.

The Chinese characters are garbled.
> dbGetQuery(conn, "SELECT * FROM t_user")
 id user
1 1 A1
2 2 AB
3 3 fens.me
4 5 ??
5 4 ???
6 6 ???

> dbDisconnect(conn)
> conn <- dbConnect(MySQL(), dbname = "rmysql", username="root",
password="",client.flag=CLIENT_MULTI_STATEMENTS)

Set the GBK character set.
> dbSendQuery(conn,'SET NAMES gbk')

Query the data.
> query<-dbSendQuery(conn, "SELECT * FROM t_user")
> data <- fetch(query, n = -1)
> mysqlCloseResult(query)
[1] TRUE

Chinese characters are displayed correctly now.
> data
 id user
1 1 A1
2 2 AB
3 3 fens.me
4 5 你好
5 4 小朋友
6 6 正确了

Database and NoSQL ◾ 207

Create table.
mysql> CREATE TABLE t_blog(
id INT PRIMARY KEY AUTO_INCREMENT,
title varchar(12) NOT NULL UNIQUE,
author varchar(12) NOT NULL,
length int NOT NULL,
create_date timestamp NOT NULL DEFAULT now()
)ENGINE=INNODB DEFAULT CHARSET=UTF8;

View the table structure.
mysql> desc t_blog;
+-------------+-------------+------+-----+-------------------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-------------+------+-----+-------------------+----------------+
id	int(11)	NO	PRI	NULL	auto_increment
title	varchar(12)	NO	UNI	NULL	
author	varchar(12)	NO		NULL	
length	int(11)	NO		NULL	
create_date	timestamp	NO		CURRENT_TIMESTAMP	
+-------------+-------------+------+-----+-------------------+----------------+
5 rows in set (0.00 sec)

View table index.
mysql> show indexes from t_blog;
+--------+------------+----------+--------------+-------------+-----------+-------
------+----------+--------+------+------------+---------+---------------+---------
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation
| Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+--------+------------+----------+--------------+-------------+-----------+--
-----------+----------+--------+------+------------+---------+--------------+
| t_blog | 0 | PRIMARY | 1 | id | A | 3 | NULL | NULL | | BTREE |
| |
| t_blog | 0 | title | 1 | title | A | 3 | NULL | NULL | | BTREE |
| |
+--------+------------+----------+--------------+-------------+-----------+-------
------+----------+--------+------+------------+---------+---------------+---------
2 rows in set (0.00 sec)

Insert data.
mysql> INSERT INTO t_blog(title,author,length) values('Hello, this is the
first article','Conan',20),('Coding of RMySQL','Conan',99),('R for
Programmers series','Conan',15);

Query table.
mysql> select * from t_blog;
+----+------------------------------+--------+--------+---------------------+
| id | title | author | length | create_date |
+----+------------------------------+--------+--------+---------------------+
1	Hello, this is the first article	Conan	20	2013-08-15 00:13:13
2	Coding of RMySQL	Conan	99	2013-08-15 00:13:13
3	R for Programmers series	Conan	15	2013-08-15 00:13:13
+----+------------------------------+--------+--------+---------------------+
3 rows in set (0.00 sec)

208 ◾ R for Programmers: Mastering the Tools

6.1.4.2 Use RMySQL to Access MySQL Remotely

Use RMySQL to access the database remotely. Insert data and take data.

We can reduce the error and increase working efficiency by mastering all the techniques of
RMySQL and understanding the principle.

> library(RMySQL)

Create remote connection.
> conn <- dbConnect(MySQL(), dbname = "rmysql",
username="rmysql", password= "rmysql",host="192.168.1.201",port=3306)

Set the GBK character encoding.
> dbSendQuery(conn,'SET NAMES gbk')

Run SQL.
> dbSendQuery(conn,"INSERT INTO t_blog(title,author,length) values
('Insert new article in R','Conan',50)");

Query data.
> query<-dbSendQuery(conn, "SELECT * FROM t_blog")
Warning message:
In mysqlExecStatement(conn, statement, ...) :
 RS-DBI driver warning: (unrecognized MySQL field type 7 in column 4 imported
as character)

Query data.
> data <- fetch(query, n = -1)
> mysqlCloseResult(query)
[1] TRUE

Display is normal.
> print(data)
 id title author length create_date
1 1 Hello, this is the first article Conan 20 2013-08-15 00:13:13
2 2 Coding of RMySQL Conan 99 2013-08-15 00:13:13
3 3 R for Programmers series Conan 15 2013-08-15 00:13:13
4 4 Insert new article in R Conan 50 2013-08-15 00:29:45

> dbDisconnect(conn)
[1] TRUE

Database and NoSQL ◾ 209

6.2 Connecting R with noSQL: MongoDB
Question
How do we use R to connect MongoDB?

MongoDB, as a documental NoSQL database, is very flexible in use. It avoids the complex data-
base design of relational database in the early stage. The storage of MongoDB is based on JSON,
and adopts JavaScript as an operating language, which gives the user infinite space for imagina-
tion. We can solve some really complex questions of criteria query by coding in MongoDB server.
This section will introduce how to connect R with MongoDB through rmongodb.

6.2.1 Environment Preparation of MongoDB

For environment preparation, I choose Linux® Ubuntu here. You may choose other types of Linux
according to your preference.

 ◾ Linux: Ubuntu 12.04.2 LTS 64bit server
 ◾ MongoDB: v2.4.9
 ◾ IP: 192.168.1.199

About the installation and configuration of MongoDB, please refer to Appendix D. Then let’s
view the server environment of MongoDB. Use command/etc/init.d/mongodb to start Mongo
DB. The default port is 27017.

Start mongodb.
~ sudo /etc/init.d/mongodb start
Rather than invoking init scripts through /etc/init.d, use the service(8)
utility, e.g. service mongodb start

Since the script you are attempting to invoke has been converted to an
Upstart job, you may also use the start(8) utility, e.g. start mongodb
mongodb start/running, process 1878

View the system process.
~ ps -aux|grep mongo
mongodb 1878 3.3 0.4 348168 37488 ? Ssl 10:19 0:01 /usr/bin/
mongod --config /etc/mongodb.conf

View the starting log.
~ cat /var/log/mongodb/mongodb.log

210 ◾ R for Programmers: Mastering the Tools

Configuration of MongoDB at runtime:

 ◾ Process number: pid = 1878
 ◾ Port: port = 27017
 ◾ Data file directory: dbpath =/var/lib/mongodb
 ◾ Host name: host = rbook
 ◾ IP: 192.168.1.199

Use the command line client program of MongoDB, mongo, to open Mongo Shell. Some
simple operations of Mongo Shell include viewing the database, switching the database, and view-
ing the data set.

Mon Mar 31 10:19:28.764 [initandlisten] MongoDB starting : pid=1878
port=27017 dbpath=/var/lib/mongodb 64-bit host=rbook
Mon Mar 31 10:19:28.764 [initandlisten] db version v2.4.9
Mon Mar 31 10:19:28.764 [initandlisten] git version:
52fe0d21959e32a5bdbecdc62057db386e4e029c
Mon Mar 31 10:19:28.764 [initandlisten] build info: Linux ip-10-2-29-40
2.6.21.7-2.ec2.v1.2.fc8xen #1 SMP Fri Nov 20 17:48:28 EST 2009 x86_64
BOOST_LIB_VERSION=1_49
Mon Mar 31 10:19:28.764 [initandlisten] allocator: tcmalloc
Mon Mar 31 10:19:28.764 [initandlisten] options: { config: "/etc/mongodb.
conf", dbpath: "/var/lib/mongodb", logappend: "true", logpath: "/var/log/
mongodb/mongodb.log" }
Mon Mar 31 10:19:28.853 [initandlisten] journal dir=/var/lib/mongodb/journal
Mon Mar 31 10:19:28.853 [initandlisten] recover : no journal files present,
no recovery needed
Mon Mar 31 10:19:28.872 [initandlisten] waiting for connections on port 27017
Mon Mar 31 10:19:28.872 [websvr] admin web console waiting for connections on
port 28017

Open mongo shell.
~ mongo
MongoDB shell version: 2.0.6
connecting to: test

Enter mongo shell. Database displayed in a list.
> show dbs
db 0.0625GB
feed 0.0625GB
foobar 0.0625GB
local (empty)

Switch database.
> use foobar
switched to db foobar

Data set displayed in a list.
> show collections
blog
system.indexes

Database and NoSQL ◾ 211

Then, we’ll use MongoDB client of R, rmongodb, to access the MongoDB server remotely to make a
test.

6.2.2 Rmongodb Function Library

Rmongodb is a client communication interface program for R to access MongoDB. Rmongodb
provides 153 functions, corresponding to different operations of MongoDB. Compared to other
NoSQL packages, this project is really large. Though the amount is large, the use of these func-
tions is rather simple. They are flexible in supporting R and concise in codes. I’ll not list all of
the 153 functions, but only select some commonly used functions to introduce. Readers who are
interested in them can find all the functions in the official documents of rmongodb.

Add element to object class.

Add element to array class.

Close element of array class.

Take out cache data.

Create mongo connection.
mongo<-mongo.create()
Check whether the connection is normal.
mongo.is.connected(mongo)
Create a BSON object chache.
buf <- mongo.bson.buffer.create()
Add element to object buf.
mongo.bson.buffer.append(buf, "name", "Echo")

score <- c(5, 3.5, 4)
names(score) <- c("Mike", "Jimmy", "Ann")
mongo.bson.buffer.append(buf, "score", score)

mongo.bson.buffer.start.array(buf, "comments")
mongo.bson.buffer.append(buf, "0", "a1")
mongo.bson.buffer.append(buf, "1", "a2")
mongo.bson.buffer.append(buf, "2", "a3")

mongo.bson.buffer.finish.object(buf)

b <- mongo.bson.from.buffer(buf)

212 ◾ R for Programmers: Mastering the Tools

Database and data set.

Insert a record.

Create query object.

Create query return value object.

Perform query of single record.

Perform query of list record.

ns = "db.blog"

mongo.insert(mongo,ns,b)

#mongo shell:(Not Run)
db.blog.insert(b)

buf <- mongo.bson.buffer.create()
mongo.bson.buffer.append(buf, "name", "Echo")
query <- mongo.bson.from.buffer(buf)

buf <- mongo.bson.buffer.create()
mongo.bson.buffer.append(buf, "name", 1)
fields <- mongo.bson.from.buffer(buf)

mongo.find.one(mongo, ns, query, fields)
#mongo shell:(Not Run)
db.blog.findOne({query},{fields})

mongo.find(mongo, ns, query, fields)

#mongo shell:(Not Run)
db.blog.find({query},{fields})

Database and NoSQL ◾ 213

Create the modifier object objNew.

Perform the modification operation.

Modification of the single line of code.

Delete the selected object.

Destroy the mongo connection.

6.2.3 Basic Operation of Rmongodb

Client environment of R:

 ◾ Win7 64bit
 ◾ R: 3.0.1 x86_64-w64-mingw32/x64 b4bit

Section 6.2.2 introduced some basic functions of rmongodb function library, but we have not
installed the class library of rmongodb.

buf <- mongo.bson.buffer.create()
mongo.bson.buffer.start.object(buf, "$inc")
mongo.bson.buffer.append(buf, "age", 1L)
mongo.bson.buffer.finish.object(buf)
objNew <- mongo.bson.from.buffer(buf)

mongo.update(mongo, ns, query, objNew)

#mongo shell:(Not Run)
db.blog.update({query},{objNew})

mongo.update(mongo, ns, query, list(name="Echo", age=25))

#mongo shell:(Not Run)
db.blog.update({query},{objNew})

mongo.remove(mongo, ns, query)

#mongo shell:(Not Run)
db.blog.remove({query},{objNew})

mongo.destroy(mongo)

214 ◾ R for Programmers: Mastering the Tools

Then, use mongo.create() to create a connection with MongoDB server. If it’s a local connec-
tion, mongo.create() won’t need parameters. The next example uses remote connection. It’ll add
host parameters to specify the IP address of the MongoDB server.

Use mongo.is.connected() to check whether the connection is normal. This statement will be used
a great deal in development. If the object or function reports an error in R modeling, the connection
will be closed automatically. It will not prompt disconnection because of the abnormal mechanism
of MongoDB. We need to use this command to test whether the connection is normal manually.

Next, define two variables, db and ns. db is the database we use, and ns is the database plus data set.

Next, we create a JSON object and save it to MongoDB.

Start R.
~ R

Install rmongodb.
> install.packages("rmongodb")

Load class library.
> library(rmongodb)

Connect mongodb server remotely.
> mongo<-mongo.create(host="192.168.1.199")

Check whether the connection is normal.
> print(mongo.is.connected(mongo))
[1] TRUE

Define db.
> db<-"foobar"

Define db.collection.
> ns<-"foobar.blog"

{
 "_id" : ObjectId("51663e14da2c51b1e8bc62eb"),
 "name" : "Echo",
 "age" : 22,
 "gender" : "Male",
 "score" : {
 "Mike" : 5,
 "Jimmy" : 3.5,
 "Ann" : 4
 },

Database and NoSQL ◾ 215

Organize class BSON data.

Object class.

Array class.

Display single inserted data.

Then, use the modifiers $inc, $set, and $push to operate. First use $inc to add 1 to age.

> buf <- mongo.bson.buffer.create()
> mongo.bson.buffer.append(buf, "name", "Echo")
> mongo.bson.buffer.append(buf, "age", 22L)
> mongo.bson.buffer.append(buf, "gender", 'Male')

> score <- c(5, 3.5, 4)
> names(score) <- c("Mike", "Jimmy", "Ann")
> mongo.bson.buffer.append(buf, "score", score)

 "comments" : [
 "a1",
 "a2",
 "a3"
]
}

> mongo.bson.buffer.start.array(buf, "comments")
> mongo.bson.buffer.append(buf, "0", "a1")
> mongo.bson.buffer.append(buf, "1", "a2")
> mongo.bson.buffer.append(buf, "2", "a3")
> mongo.bson.buffer.finish.object(buf)
> b <- mongo.bson.from.buffer(buf) # Insert to mongodb.
> mongo.insert(mongo,ns,b)

> buf <- mongo.bson.buffer.create()
> mongo.bson.buffer.append(buf, "name", "Echo")
> query <- mongo.bson.from.buffer(buf)
> print(mongo.find.one(mongo, ns, query))

> buf <- mongo.bson.buffer.create()
> mongo.bson.buffer.start.object(buf, "$inc")
> mongo.bson.buffer.append(buf, "age", 1L)
> mongo.bson.buffer.finish.object(buf)
> objNew <- mongo.bson.from.buffer(buf)
> mongo.update(mongo, ns, query, objNew)
> print(mongo.find.one(mongo, ns, query))

216 ◾ R for Programmers: Mastering the Tools

Use $set to set age = 1.

Use $push to add “Orange” data to the comments array.

Use simplified statements to reassign value to the object.

Last, delete object and disconnect.

6.2.4 A Case of Performance Test of Rmongodb

Now that we’ve understood the use of rmongodb, let’s run a case of performance test: insert data
in batch, use a modifier to modify data in batch, and compare the speed of the three modifiers.
First, insert data functions in batch.

> buf <- mongo.bson.buffer.create()
> mongo.bson.buffer.start.object(buf, "$set")
> mongo.bson.buffer.append(buf, "age", 1L)
> mongo.bson.buffer.finish.object(buf)
> objNew <- mongo.bson.from.buffer(buf)
> mongo.update(mongo, ns, query, objNew)
> print(mongo.find.one(mongo, ns, query))

> buf <- mongo.bson.buffer.create()
> mongo.bson.buffer.start.object(buf, "$push")
> mongo.bson.buffer.append(buf, "comments", "Orange")
> mongo.bson.buffer.finish.object(buf)
> objNew <- mongo.bson.from.buffer(buf)
> mongo.update(mongo, ns, query, objNew)
> print(mongo.find.one(mongo, ns, query))

> mongo.update(mongo, ns, query, list(name="Echo", age=25))
> print(mongo.find.one(mongo, ns, query))

Delete object.
> mongo.remove(mongo, ns, query)
Destroy mongo connection.
> mongo.destroy(mongo)

Load stringr to achieve character string operation.
> library(stringr)
Insert data in batch.
> batch_insert<-function(arr=1:10,ns){

Database and NoSQL ◾ 217

Modification in batch of modifier function: $inc.

Modification in batch of modifier function: $set.

> batch_inc<-function(data,ns){
+ for(i in data){
+ buf <- mongo.bson.buffer.create()
+ mongo.bson.buffer.append(buf, "name", str_c("Dave",i))
+ criteria <- mongo.bson.from.buffer(buf)
+ buf <- mongo.bson.buffer.create()
+ mongo.bson.buffer.start.object(buf, "$inc")
+ mongo.bson.buffer.append(buf, "age", 1L)
+ mongo.bson.buffer.finish.object(buf)
+ objNew <- mongo.bson.from.buffer(buf)
+ mongo.update(mongo, ns, criteria, objNew)
+ }
+}

+ mongo_insert<-function(x){
+ buf <- mongo.bson.buffer.create()
+ mongo.bson.buffer.append(buf, "name", str_c("Dave",x))
+ mongo.bson.buffer.append(buf, "age", x)
+ mongo.bson.buffer.start.array(buf, "comments")
+ mongo.bson.buffer.append(buf, "0", "a1")
+ mongo.bson.buffer.append(buf, "1", "a2")
+ mongo.bson.buffer.append(buf, "2", "a3")
+ mongo.bson.buffer.finish.object(buf)
+ return(mongo.bson.from.buffer(buf))
+ }
+ mongo.insert.batch(mongo, ns, lapply(arr,mongo_insert))
+}

> batch_set<-function(data,ns){
+ for(i in data){
+ buf <- mongo.bson.buffer.create()
+ mongo.bson.buffer.append(buf, "name", str_c("Dave",i))
+ criteria <- mongo.bson.from.buffer(buf)
+ buf <- mongo.bson.buffer.create()
+ mongo.bson.buffer.start.object(buf, "$set")
+ mongo.bson.buffer.append(buf, "age", 1L)
+ mongo.bson.buffer.finish.object(buf)
+ objNew <- mongo.bson.from.buffer(buf)
+ mongo.update(mongo, ns, criteria, objNew)
+ }
+ }

218 ◾ R for Programmers: Mastering the Tools

Modification in batch of modifier function: $push.

All of the three aforementioned modifier programs use for loop in statements, so their perfor-
mance loss in for loop should be the same. Thus we’ll not take this factor into consideration. Now
let’s write the execution program and compare the speed of these three modifiers.

> batch_push<-function(data,ns){
+ for(i in data){
+ buf <- mongo.bson.buffer.create()
+ mongo.bson.buffer.append(buf, "name", str_c("Dave",i))
+ criteria <- mongo.bson.from.buffer(buf)
+ buf <- mongo.bson.buffer.create()
+ mongo.bson.buffer.start.object(buf, "$push")
+ mongo.bson.buffer.append(buf, "comments", "Orange")
+ mongo.bson.buffer.finish.object(buf)
+ objNew <- mongo.bson.from.buffer(buf)
+ mongo.update(mongo, ns, criteria, objNew)
+ }
+}

Assign the table.
> ns="foobar.blog"

Time of loop.
> data=1:1000

Clear data.
> mongo.remove(mongo, ns)
[1] TRUE

Insert in batch.
> system.time(batch_insert(data, ns))
user system elapsed
0.25 0.00 0.28

Modifier $inc.
> system.time(batch_inc(data, ns))
user system elapsed
0.47 0.27 2.50

Modifier $se.
> system.time(batch_set(data, ns))
user system elapsed
0.77 0.48 3.17

Modifier $push.
> system.time(batch_push(data, ns))
user system elapsed
0.81 0.41 4.23

Database and NoSQL ◾ 219

The speed of these three modifiers is: $push > $set > $inc. Because each of these three modi-
fiers operates on a different class, $push on array, $set on any value and $inc on numbers, all the
test results will only serve as a reference.

We introduced how to use R to access JSON data in Section 1.6, and now we’ve successfully
connected R with MongoDB. As the data storage type of MongoDB is JSON, the semistructured
data processing basis of JSON is completed, and R will also play an important role in the area of
semistructured data processing.

6.3 Connecting R with noSQL: Redis
Question
How do we use R to connect Redis?

Redis is a Key-Value database based on RAM. It’s more advanced than Memcache as it supports
many data structures and it’s efficient and fast. Redis can easily solve the problem of high concur-
rency data access. And it also performs well in real-time data storage. This section introduces how
to connect Redis using R.

6.3.1 Environment Preparation of Redis

For environment preparation, I choose Linux Ubuntu here. You may choose other types of Linux
according to your preference.

 ◾ Linux: Ubuntu 12.04.2 LTS 64bit server
 ◾ MongoDB: 2.2.12
 ◾ IP: 192.168.1.101

For information on the installation and configuration of Redis, please refer to Appendix C.
Use command/etc/init.d/redis-server to start redis-server to view the server environment of Redis.
The default port is 6379.

Start redis.
~ /etc/init.d/redis-server start
Starting redis-server: redis-server.

View system process.
~ ps -aux|grep redis

220 ◾ R for Programmers: Mastering the Tools

Use the command line client program of Redis, redis-cli, to open Redis Shell. The simple
operation of Redis Shell includes inserting a record and querying records.

Then, let’s use the Redis cliet of R, rredis, to access the Redis server remotely to run the
test.

6.3.2 Function Library of rredis

rredis is a client communication interface program for R to access Redis. It provides 100
functions, corresponding to different operations of Redis. Though the amount is rather large,
the use of these functions is relatively simple. They are rather flexible in supporting R and
concise in codes. I won’t list all the 100 rredis functions but only select some frequently used

redis 20128 0.0 0.0 10676 1428 ? Ss 16:39 0:00 /
usr/bin/redis-server /etc/redis/redis.conf

View starting log.
~ cat /var/log/redis/redis-server.log

[20128] 14 Apr 16:39:43 * Server started, Redis version 2.2.12
[20128] 14 Apr 16:39:43 # WARNING overcommit_memory is set to 0!
Background save may fail under low memory condition. To fix this
issue add 'vm.overcommit_memory = 1' to /etc/sysctl.conf and then
reboot or run the command 'sysctl vm.overcommit_memory=1' for this
to take effect.

Open Redis Shell.
~ redis-cli

View the use of set command.
redis 127.0.0.1:6379> help set

 SET key value
 summary: Set the string value of a key
 since: 0.07
 group: string

Insert a record, key = a, value = 178
redis 127.0.0.1:6379> set a 178
OK
View the record.
redis 127.0.0.1:6379> get a
"178"

Database and NoSQL ◾ 221

functions to introduce. If you are interested in those functions, you may find them in the
official documents of rredis.

6.3.3 Basic Operation of rredis

Client environment of R:

 ◾ Win7 64bit
 ◾ R: 3.0.1 x86_64-w64-mingw32/x64 b4bit

Now I’ll provide an introduction according to the following five operation types.

 ◾ Basic operation of redis: create connection, switch database, display all KEY value in list,
clear the data of current database, close connection

 ◾ Operation of class string: insert, read, delete, insert and set expiration time, operation in batch
 ◾ Operation of class list: insert, read, pop
 ◾ Operation of class set: insert, read, different set, intersection, union
 ◾ Interactive operation between rredis and redis-cli

Create connection, close connection.
redisConnect() , redisClose()
Flush the current/all data of database.
redisFlushDB() , redisFlushAll()
List all the key value and number of keys.
redisKeys(), redisDBSize()
Select database: 0 is the default database.
redisSelect(0)
#Insert string object, insert in batch.
redisSet('x',runif(5)), redisMSet(list(x=pi,y=runif(5),z=sqrt(2)))
Read string object, read inbatch.
redisGet('x'), redisMGet(c('x','y','z'))
Delete object.
redisDelete('x')
Insert array object in the left, insert array object in the right.
redisLPush('a',1), redisRPush('a','A')
Pop an array object in the left, pop an array object in the right.
redisLPop('a'), redisRPop('a')
#Display the array objects list from left.
redisLRange('a',0,-1)
Insert object of class set.
redisSAdd('A',runif(2))
Display the number of elements of set object, display the set
object elements in list.
redisSCard('A'), redisSMembers('A')
Display the different set, intersection and union of two set
objects.
redisSDiff(c('A','B')),redisSInter(c('A','B')),redisSUnion(c('A',
'B'))

222 ◾ R for Programmers: Mastering the Tools

6.3.3.1 Basic Operation of Redis

Create a connection with the Redis server through redisConnect(). If it’s a local connection,
redisConnect() won’t need parameters. The following example uses a remote connection. Add the
host parameter and configure the IP address redisConnect(host = "192.168.1.101",port = 6379).

Install rredis.
> install.packages("rredis")

Load rredis class library.
> library(rredis)

Connect redis server remotely.
> redisConnect(host="192.168.1.101",port=6379)

List all the keys.
> redisKeys()
[1] "x" "data"

Display the number of keys.
> redisDBSize()
[1] 2

Switch to database1.
> redisSelect(1)
[1] "OK"
> redisKeys()
NULL

Switch to database0.
> redisSelect(0)
[1] "OK"
> redisKeys()
[1] "x" "data"

Clear the data of current database.
> redisFlushDB()
[1] "OK"

Clear the data of all databases.
> redisFlushAll()
[1] "OK"

Close connection.
> redisClose()

Database and NoSQL ◾ 223

6.3.3.2 Operation of Class String

6.3.3.3 Operation of Class List

Insert object.
> redisSet('x',runif(5))
[1] "OK"

Read object.
> redisGet('x')
[1] 0.67616159 0.06358643 0.07478021 0.32129140 0.16264615

Set the expiration time of data.
> redisExpire('x',1)
Sys.sleep(1)
> redisGet('x')
NULL

Insert in batch.
> redisMSet(list(x=pi,y=runif(5),z=sqrt(2)))
[1] TRUE

Read in batch.
> redisMGet(c('x','y','z'))
$x
[1] 3.141593
$y
[1] 0.9249501 0.3444994 0.6477250 0.1681421 0.2646853
$z
[1] 1.414214

Delete data.
> redisDelete('x')
[1] 1
> redisGet('x')
NULL

Insert data from the left of array.
> redisLPush('a',1)
> redisLPush('a',2)
> redisLPush('a',3)

Display data of 0~2 from the left of array.
> redisLRange('a',0,2)
[[1]]
[1] 3
[[2]]
[1] 2
[[3]]
[1] 1

224 ◾ R for Programmers: Mastering the Tools

6.3.3.4 Operation of Class Set

> redisSAdd('A',runif(2))
> redisSAdd('A',55)

Display the number of elements of object.
> redisSCard('A')
 [1] 2

Display the set object elements in list.
> redisSMembers('A')
[[1]]
[1] 55
[[2]]
[1] 0.6494041 0.3181108

Pop a data from the left of data.
> redisLPop('a')
[1] 3

Display the data of 0~(-1) from the left of array.
> redisLRange('a',0,-1)
[[1]]
[1] 2
[[2]]
[1] 1

Insert data from the right of array.
> redisRPush('a','A')
> redisRPush('a','B')

Display the data of 0~(-1) from the left of array.
> redisLRange('a',0,-1)
[[1]]
[1] 2
[[2]]
[1] 1
[[3]]
[1] "A"
[[4]]
[1] "B"

Pop a data from the right of data.
> redisRPop('a')

Database and NoSQL ◾ 225

6.3.3.5 Interaction between rredis and Redis-cli

Insert data from Redis client and read data using rredis.

> redisSAdd('B',55)
> redisSAdd('B',rnorm(3))

Display the number of elements of object.
> redisSCard('B')
[1] 2

Display the set object elements in list.
> redisSMembers('B')
[[1]]
[1] 55
[[2]]
[1] 0.1074787 1.3111006 0.8223434

Different set.
> redisSDiff(c('A','B'))
[[1]]
[1] 0.6494041 0.3181108

Intersection.
> redisSInter(c('A','B'))
[[1]]
[1] 55

Union.
> redisSUnion(c('A','B'))
[[1]]
[1] 55
[[2]]
[1] 0.1074787 1.3111006 0.8223434
[[3]]
[1] 0.6494041 0.3181108

Open redis client.
~ redis-cli
redis 127.0.0.1:6379> set shell "Greetings, R client!"
OK

Read data.
> redisGet('shell')
[1] "Greetings, R client!"

226 ◾ R for Programmers: Mastering the Tools

Use rredis to insert data and use Redis client to read data.

Solve the problem of gibberish by transferring the data in array of Raw(charToRaw).

6.3.4 Test Case of rredis

As we’ve demonstrated the use of rredis, now let’s run a test case. Read a data file. The file includes
three items, user id, password and E-mail from left to right. Create a suitable data model in Redis
for storage and query. First, define the data model.

KEY:
– Users: user id

VALUE:
– Id: user id
– Pw: password
– Email: E-mail address

Data file: data5.txt.

> redisSet('R', charToRaw('Greetings, shell client!'))
[1] TRUE

Load the data normally.
redis 127.0.0.1:6379> get R
"Greetings, shell client!"

wolys # wolysopen111 # wolys@21cn.com
coralshanshan # 601601601 # zss1984@126.com
pengfeihuchao # woaidami # 294522652@qq.com
simulategirl # @#$9608125 # simulateboy@163.com
daisypp # 12345678 # zhoushigang_123@163.com
sirenxing424 # tfiloveyou # sirenxing424@126.com
raininglxy # 1901061139 # lixinyu23@qq.com
leochenlei # leichenlei # chenlei1201@gmail.com
z370433835 # lkp145566 # 370433835@qq.com
cxx0409 # 12345678 # cxx0409@126.com
xldq_l # 061222ll # viv093@sina.com

Insert data.
> redisSet('R', 'Greetings, shell client!')
[1] "OK"

Read data(gibberish).
redis 127.0.0.1:6379> get R
"X\\x00\x00\x00\x02\x00\x02\x0f\x00\x00\x02\x03\x00\x00\x00\x00\x10\
x00\x00\x00\x01\x00\x04\x00\\x00\x00\x00\x18Greetings, shell
client!"

Database and NoSQL ◾ 227

Then, read the data file to memory. Create a Redis connection, insert the data to Redis in the
form of loop, and output corresponding VALVE value using sers:wolys as KEY.

Read data.
> data<-scan(file="data5.txt",what=character(),sep=" ")
> data<-data[which(data!='#')]

> data
[1] "wolys" "wolysopen111" "wolys@21cn.com"
[4] "coralshanshan" "601601601" "zss1984@126.com"
[7] "pengfeihuchao" "woaidami" "294522652@qq.com"
[10] "simulategirl" "@#$9608125" "simulateboy@163.
com"
[13] "daisypp" "12345678" "zhoushigang_123@163.
com"
[16] "sirenxing424" "tfiloveyou" "sirenxing424@126.
com"
[19] "raininglxy" "1901061139" "lixinyu23@qq.com"
[22] "leochenlei" "leichenlei" "chenlei1201@gmail.
com"
[25] "z370433835" "lkp145566" "370433835@qq.com"
[28] "cxx0409" "12345678" "cxx0409@126.com"
[31] "xldq_l" "061222ll" "viv093@sina.com"

Connect redis.
> redisConnect(host="192.168.1.101",port=6379)
> redisFlushAll()
> redisKeys()

Insert data in loop.
> id<-NULL
> for(i in 1:length(data)){
+ if(i %% 3 == 1) {
+ id<-data[i]
+ redisSAdd(paste("users:",id,sep=""),paste("id:",id,sep=""))
+ } else if(i %% 3 == 2) {
+ redisSAdd(paste("users:",id,sep=""),paste("pw:",data[i],sep=""))
+ } else {
+ redisSAdd(paste("users:",id,sep=""),paste("email:",data[i],
sep=""))
+ }
+}

List all the KEY.
> redisKeys()
[1] "users:cxx0409" "users:sirenxing424" "users:simulategirl"
"users:xldq_l"
[5] "users:coralshanshan" "users:raininglxy" "users:pengfeihuchao"
"users:leochenlei"
[9] "users:daisypp" "users:wolys" "users:z370433835"

Query VALUE through KEY.
> redisSMembers("users:wolys")

228 ◾ R for Programmers: Mastering the Tools

Thus we’ve finished the whole test case. Redis is a very efficient in-memory database. By com-
bining R with Redis, we can construct a powerful real-time computing application.

6.4 Connecting R with noSQL: Cassandra
Question
How do we use R to connect Cassandra?

Cassandra is an open source distributed database management system designed to handle large
amounts of data across many commodity servers. Some techniques of Cassandra, including mul-
tiple datacenters, consistent hashing, and BlomFilter, provide new design ideas for the following
NoSQL products. This section introduces RCassandra to connect R with Cassandra.

6.4.1 Environment Preparation of Cassandra

The name Cassandra comes from Greek mythology. It’s the name of a tragic prophetess of Troy, so
the logo of this project is a sparkling eye. The data of Cassandra will be written in multiple nodes
to guarantee the reliability of data. In the compromise of consistency, availability, and partition
tolerance (CAP), Cassandra is quite flexible. It allows users the options of demanding all the copies
be consistent (high consistency), or one copy would be enough (high availability), or most copies
would need to be consistent decided by vote (compromise) in reading. Thus Cassandra is suitable
in all the nodes, in the environment of network failure or in the setting of a multidata center.

[[1]]
[1] "pw:wolysopen111"

[[2]]
[1] "email:wolys@21cn.com"

[[3]]
[1] "id:wolys"

Close redis connection.
> redisClose()

Database and NoSQL ◾ 229

For environment preparation, I choose Linux Ubuntu here. You may choose other types of
Linux according to your preference. The server environment of Cassandra is:

 ◾ Linux Ubuntu 12.04.2 LTS 64bit server
 ◾ Java JDK 1.6.0_45
 ◾ Cassandra 1.2.15

For information on the installation and configuration of Cassandra, please refer to Appendix
E. Start the Cassandra server and use the command bin/cassandra.

6.4.2 Function Library of RCassandra

RCassandra supports only 17 functions. Compared to rredis and rmongodb, the functions of
RCassandra are relatively fewer. The 17 functions of RCassandra cannot even cover all the opera-
tions of Cassandra. In this case, some of the basic operations do not have the support of functions,
so we need to handle those in the command line. I hope that RCassandra can be further developed
to improve its function.

6.4.2.1 17 Functions

The following are the 17 functions and their comparison to the command of Cassandra.

Enter the installation directory of Cassandra.
~cd /home/conan/tookit/cassandra1215

Start Cassandra.
~ bin/cassandra

View the system process.
~ ps -aux|grep cassandra

View the starting log.
~ cat /var/log/cassandra/system.log |less
INFO [main] 2014-03-22 06:28:08,777 CassandraDaemon.java (line 119)
Logging initialized
INFO [main] 2014-03-22 06:28:08,795 CassandraDaemon.java (line 144)
JVM vendor/version: Java HotSpot(TM) 64-Bit Server VM/1.6.0_45
INFO [main] 2014-03-22 06:28:08,799 CassandraDaemon.java (line 182)
Heap size: 2051014656/2051014656

RC.close RC.insert
RC.cluster.name RC.login
RC.connect RC.mget.range
RC.consistency RC.mutate
RC.describe.keyspace RC.read.table
RC.describe.keyspaces RC.use
RC.get RC.version
RC.get.range RC.write.table
RC.get.range.slices

230 ◾ R for Programmers: Mastering the Tools

6.4.2.2 Comparison of Basic Operations
between Cassandra and RCassandra

 1. Connect to cluster.

 2. View the name of the current cluster.

 3. List all the keyspaces of the current cluster.

 4. View the keyspace of DEMO.

 5. Select the keyspace of DEMO.

Cassandra:
connect 192.168.1.200/9160;

RCassandra:
conn<-RC.connect(host="192.168.1.200",port=9160)

Cassandra:
show cluster name;

RCassandra:
RC.cluster.name(conn)

Cassandra:
show keyspaces;

RCassandra:
RC.describe.keyspaces(conn)

Cassandra:
show schema DEMO;

RCassandra:
RC.describe.keyspace(conn,'DEMO')

Cassandra:
use DEMO;

RCassandra:
RC.use(conn,'DEMO')

Database and NoSQL ◾ 231

 6. Set the consistency level.

 7. Insert data.

 8. Insert database.

 9. Read all the data of the column family.

 10. Read data.

Cassandra:
consistencylevel as ONE;

RCassandra:
RC.consistency(conn,level="one")

Cassandra:
set Users[1][name] = scott;

RCassandra:
RC.insert(conn,'Users','1', 'name', 'scott')

Cassandra:
NA

RCassandra:
RC.write.table(conn, "Users", df)

Cassandra:
list Users;

RCassandra:
RC.read.table(conn,"Users")

Cassandra:
get Users[1]['name'];

RCassandra:
RC.get(conn,'Users','1', c('name'))

232 ◾ R for Programmers: Mastering the Tools

 11. Quit the connection.

6.4.3 Basic Operations of RCassandra

We use RCassandra for all the basic function operations and take the iris data set in R as an exam-
ple to introduce how to use RCassandra to operate the Cassandra database. Use the RCassandra
client of R to access the Cassandra server remotely for the test.

Client environment:

 ◾ Linux: Ubuntu 12.04.2 LTS 64bit server
 ◾ R: 3.0.1, x86_64-pc-linux-gnu (64-bit)

First, start R, install RCassandra package and create a server connection.

Keyspaces operation:

Cassandra:
exit; quit;

RCassandra:
RC.close(conn)

Start R.
~ R

Install RCassandra.
> install.packages('RCassandra')

Load RCassandra class library.
> library(RCassandra)
Create server connection.
> conn<-RC.connect(host="192.168.1.200")

The name of current cluster(the name of cluster of 2 nodes).
> RC.cluster.name(conn)
[1] "case1"

Version of current protocol.
> RC.version(conn)
[1] "19.36.0"

List all the configuration information of keyspaces.
> RC.describe.keyspaces(conn)

List all the configuration information of keyspaces named DEMO.
> RC.describe.keyspace(conn, "DEMO")

Database and NoSQL ◾ 233

Then there is the operation of data. We should note that we cannot create a column family in
RCassandra, so we need to create a column family through Cassandra commands.

Insert iris data.
> head(iris)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

iris is a data.frame.
> RC.write.table(conn, "iris", iris)
attr(,"class")
[1] "CassandraConnection"

View the value of the first row, Sepal.Length column.
> RC.get(conn, "iris", "1", c("Sepal.Length", "Species"))
 key value ts
1 Sepal.Length 5.1 1.372881e+15
2 Species setosa 1.372881e+15
Note: ts is timestamp.

View the first row.
> RC.get.range(conn, "iris", "1")
 key value ts
1 Petal.Length 1.4 1.372881e+15
2 Petal.Width 0.2 1.372881e+15
3 Sepal.Length 5.1 1.372881e+15
4 Sepal.Width 3.5 1.372881e+15
5 Species setosa 1.372881e+15

View the data set.
> r <- RC.get.range.slices(conn, "iris")
class(r)
[1] "list"

> r[[1]]
 key value ts
1 Petal.Length 1.7 1.372881e+15
2 Petal.Width 0.4 1.372881e+15
3 Sepal.Length 5.4 1.372881e+15
4 Sepal.Width 3.9 1.372881e+15
5 Species setosa 1.372881e+15

> rk <- RC.get.range.slices(conn, "iris", limit=0)
> y <- RC.read.table(conn, "iris")
> y <- y[order(as.integer(row.names(y))),]

234 ◾ R for Programmers: Mastering the Tools

Some commonly used operations that are not supported:

 ◾ Create keyspaces, delete keyspaces.
 ◾ Create column family, delete column family.
 ◾ Delete a certain row.
 ◾ Delete the data of certain columns in a certain row.

6.4.4 A Case Using RCassandra

Here is a case of business demand to help us deepen our understanding of RCassandra. This is a
very simple business scene. The demand is as follows: (1) Create a Users column family, including
two rows: name, password. (2) Add a new column age when data already exist. First let's create a
Users column family in the command line.

Insert data in RCassandra, including two columns: name and password.

> head(y)
 Petal.Length Petal.Width Sepal.Length Sepal.Width Species
1 1.4 0.2 5.1 3.5 setosa
2 1.4 0.2 4.9 3.0 setosa
3 1.3 0.2 4.7 3.2 setosa
4 1.5 0.2 4.6 3.1 setosa
5 1.4 0.2 5.0 3.6 setosa

[default@DEMO] create column family Users
... with key_validation_class = 'UTF8Type'
... and comparator = 'UTF8Type'
... and default_validation_class = 'UTF8Type';
89a2fb75-f7d0-399e-b017-30a974b19f4a

> df<-data.frame(name=c('a1','a2'),password=c('a1','a2')) >
print(df)
 name password
1 a1 a1
2 a2 a2

Insert data.
> RC.write.table(conn, "Users", df)
attr(,"class")
[1] "CassandraConnection"

View the data.
> RC.read.table(conn,"Users")
 name password
2 a2 a2
1 a1 a1

Database and NoSQL ◾ 235

Insert a new line KEY = 1234, and add column age.

Modify the row of KEY = 1: name = a11, age = 12.

6.4.5 Decline of Cassandra

As Hadoop rises and HBase, a family product of Hadoop, is becoming widely used, more and
more applications constructed on Cassandra are now transferred to HBase. We may find some of
the reasons for the decline of Cassandra on a technical level.

 1. Poor performance in reading
 The decentralized design determines that Cassandra runs calculations through anti-entropy.

This will cost performance greatly, and even severely affect the running of the server.
 2. Slow data synchronization (final consistency delay may be very large)

 Decentralized design needs all the nodes to pass information and send a notice informing
of the status. If there are multiple replica sets and circumstances of nodes going down, the
delay of data consistency would be very large and the efficiency would be very low.

 3. It is very inflexible to replace query with insert and update. All the queries demand to be
defined in advance.

 In contrast with the fact that many databases choose to optimize for reading, Cassandra
pays great attention in optimizing writing. So it’s very suitable for streaming data storage,
especially for those whose writing loads are higher than their reading load. Compared with
HBase, Cassandra is higher in random access performance, but not as good in interval scan-
ning. So Cassandra can serve as a real-time query cache of HBase, where HBase runs a big
data process in batch and Cassandra provides an interface for random access.

> RC.insert(conn,'Users','1234', 'name', 'scott')
> RC.insert(conn,'Users','1234', 'password', 'tiger')
> RC.insert(conn,'Users','1234', 'age', '20')

View the data.
> RC.read.table(conn,"Users")
 age name password
1234 20 scott tiger
2 NA a2 a2
1 NA a1 a1

> RC.insert(conn,'Users','1', 'name', 'a11')
> RC.insert(conn,'Users','1', 'age', '12')

View the data.
> RC.read.table(conn,"Users")
 age name password
1234 20 scott tiger
2 NA a2 a2
1 12 a11 a1

236 ◾ R for Programmers: Mastering the Tools

 4. Cassandra doesn’t support Hadoop and can’t implement MapReduce.
 Today, Hadoop has become the synonym for big data. As a frame of big data, Cassandra

will be replaced one day if it continues its condition of not supporting Hadoop and
MapReduce unless it positions itself in a different area or provides a solution for big data.
DataStax is now reconstructing the file system of HDFS using Cassandra. We don’t know
whether they can succeed, but let’s expect the further development of Cassandra!

6.5 Connecting R with noSQL: Hive
Question
How do we connect Hive using R?

Hive is a program interface of Hadoop. It adopts SQL-like syntax, which makes it a relatively easy
task for a data analyst to master it quickly. Hive has made the world of Java simpler and lighter and
helps Hadoop to be accepted by nonprogrammers. Starting with Hive, an analyst can master big
data too. This section introduces how to use RHive to help R connect Hive.

6.5.1 Environment Preparation of Hive

Hive is a data warehouse infrastructure based on Hadoop, which provides a series of tools for the
extract, transform, and load of data (ETL). ETL is a big data mechanism for storing, querying,
and analyzing data in Hadoop. Hive has defined a simple SQL-like query language, called HQL.
It allows users familiar SQL to query data. Hive doesn’t have a specific format of data, so it can be
worked well on Thrift. Hive controls separator and allows users to assign data format.

The difference between Hive and relational databases are as follows:

 ◾ Different data storage: Hive is based on HDFS of Hadoop, while relational databases are
based on a local file system.

 ◾ Different computing model: Hive is based on the MapReduce of Hadoop, while relational
databases are based on a memory computing model of indexes.

 ◾ Different application scene: The OLAP data warehouse system provides a big data query
for Hive, with a poor real-time performance, while the OLTP transactional system serves
relational databases in real-time query businesses.

Database and NoSQL ◾ 237

 ◾ Different expansibility: It’s very easy to increase distributional storage capacity and comput-
ing power in Hive as it is based on Hadoop; and it’s rather difficult to make horizontal scal-
ing in relational databases. We need to increase serial performance consistently.

Hive is a data warehouse product based on Hadoop, so we need to have a Hadoop environ-
ment. For the installation and configuration of Hadoop, please refer to Appendix G. For environ-
ment preparation, I choose Linux Ubuntu here. You may choose other types of Linux according
to your preference.

 ◾ Linux Ubuntu 12.04.2 LTS 64bit server
 ◾ Java JDK 1.6.0_45
 ◾ Hadoop 1.1.2
 ◾ hive 0.9.0
 ◾ IP: 192.168.1.210

After Hive is installed, start the serve of hiveserver.
Simple operation of Hive Shell:

Start hiveserver serve in the background through nohup.
~ nohup hive --service hiveserver &
Starting Hive Thrift Server

Open hive shell.
~ hive shell
Logging initialized using configuration in file:/home/conan/hadoop/
hive-0.9.0/conf/hive-log4j.properties
Hive history file=/tmp/conan/hive_job_log_
conan_201306261459_153868095.txt

View the tables of hive.
hive> show tables;
hive_algo_t_account
o_account
r_t_account
Time taken: 2.12 seconds

View the data of table o_account.
hive> select * from o_account;
1 abc@163.com 2013-04-22 12:21:39
2 dedac@163.com 2013-04-22 12:21:39
3 qq8fed@163.com 2013-04-22 12:21:39
4 qw1@163.com 2013-04-22 12:21:39
5 af3d@163.com 2013-04-22 12:21:39
6 ab34@163.com 2013-04-22 12:21:39

238 ◾ R for Programmers: Mastering the Tools

6.5.2 Installation of RHive

Then, let’s install RHive in a computer with a Hive environment. The client environment is as
follows.

 ◾ Linux: Ubuntu 12.04.2 LTS 64bit server
 ◾ R: 3.0.1, x86_64-pc-linux-gnu (64-bit)

Note: RHive only supports Linux.
First, install the dependent Library of R, rJava.

When loading RHive, the environment variables of local Hive will be loaded in the environ-
ment of R automatically.

6.5.3 Function Library of RHive

RHive provides 52 functions, corresponding to different operations of Hive. We will not list the
entire RHive function library but only select some commonly used functions to compare with the
operation of Hive. If you are interested in other functions, you may check the official documents
of RHive. Here is the comparison of basic operations between RHive and Hive.

Recommend that root privilege be used to install rJava.
~ sudo R CMD javareconf

Start R.
~ sudo R
> install.packages("rJava")

Install RHive.
> install.packages("RHive")

Load RHive.
> library(RHive)
Loading required package: rJava
Loading required package: Rserve
This is RHive 0.0-7. For overview type '?RHive'.
HIVE_HOME=/home/conan/hadoop/hive-0.9.0
call rhive.init() because HIVE_HOME is set.

7 q8d1@gmail.com 2013-04-23 09:21:24
8 conan@gmail.com 2013-04-23 09:21:24
9 adeg@sohu.com 2013-04-23 09:21:24
10 ade121@sohu.com 2013-04-23 09:21:24
11 addde@sohu.com 2013-04-23 09:21:24
Time taken: 0.469 seconds

Database and NoSQL ◾ 239

 1. Connect to Hive.

 2. List all the tables of Hive.

View the table structure.

Run the HQL query.

Hive:
hive shell

RHive:
rhive.connect("192.168.1.210")

Hive:
show tables;

RHive:
rhive.list.tables()

Hive:
desc o_account;

RHive:
rhive.desc.table('o_account')
rhive.desc.table('o_account',TRUE)

Hive:
select * from o_account;

RHive:
rhive.query('select * from o_account')

View the HDFS directory.

Hive:
dfs -ls /;

RHive:
rhive.hdfs.ls()

240 ◾ R for Programmers: Mastering the Tools

View the file contents of HDFS.

Disconnect.

6.5.4 Basic Operations of RHive

Hive:
dfs -cat /user/hive/warehouse/o_account/part-m-00000;

RHive:
rhive.hdfs.cat('/user/hive/warehouse/o_account/part-m-00000')

Hive:
quit;

RHive:
rhive.close()

Initialization.
> rhive.init()

Connect to hive.
> rhive.connect("192.168.1.210")

View all the tables.
> rhive.list.tables()
 tab_name
1 hive_algo_t_account
2 o_account
3 r_t_account

View table structure.
> rhive.desc.table('o_account');
 col_name data_type comment
1 id int
2 email string
3 create_date string

Run HQL query.
> rhive.query("select * from o_account");
 id email create_date
1 1 abc@163.com 2013-04-22 12:21:39
2 2 dedac@163.com 2013-04-22 12:21:39
3 3 qq8fed@163.com 2013-04-22 12:21:39
4 4 qw1@163.com 2013-04-22 12:21:39

Database and NoSQL ◾ 241

5 5 af3d@163.com 2013-04-22 12:21:39
6 6 ab34@163.com 2013-04-22 12:21:39
7 7 q8d1@gmail.com 2013-04-23 09:21:24
8 8 conan@gmail.com 2013-04-23 09:21:24
9 9 adeg@sohu.com 2013-04-23 09:21:24
10 10 ade121@sohu.com 2013-04-23 09:21:24
11 11 addde@sohu.com 2013-04-23 09:21:24

Close connection.
> rhive.close()
[1] TRUE

Create temporary tables.
> rhive.block.sample('o_account', subset="id<5")
[1] "rhive_sblk_1372238856"

> rhive.query("select * from rhive_sblk_1372238856");
 id email create_date
1 1 abc@163.com 2013-04-22 12:21:39
2 2 dedac@163.com 2013-04-22 12:21:39
3 3 qq8fed@163.com 2013-04-22 12:21:39
4 4 qw1@163.com 2013-04-22 12:21:39

View hdfs files.
> rhive.hdfs.ls('/user/hive/warehouse/rhive_sblk_1372238856/')
 permission owner group length modify-time
1 rw-r--r-- conan supergroup 141 2013-06-26 17:28
 file
1 /user/hive/warehouse/rhive_sblk_1372238856/000000_0

rhive.hdfs.cat('/user/hive/warehouse/
rhive_sblk_1372238856/000000_0')
1abc@163.com2013-04-22 12:21:39
2dedac@163.com2013-04-22 12:21:39
3qq8fed@163.com2013-04-22 12:21:39
4qw1@163.com2013-04-22 12:21:39

Separate field data according to range.
> rhive.basic.cut('o_account','id',breaks='0:100:3')
[1] "rhive_result_20130626173626"
attr(,"result:size")
[1] 443

> rhive.query("select * from rhive_result_20130626173626");
 email create_date id
1 abc@163.com 2013-04-22 12:21:39 (0,3]
2 dedac@163.com 2013-04-22 12:21:39 (0,3]
3 qq8fed@163.com 2013-04-22 12:21:39 (0,3]
4 qw1@163.com 2013-04-22 12:21:39 (3,6]
5 af3d@163.com 2013-04-22 12:21:39 (3,6]
6 ab34@163.com 2013-04-22 12:21:39 (3,6]
7 q8d1@gmail.com 2013-04-23 09:21:24 (6,9]

242 ◾ R for Programmers: Mastering the Tools

Operate HDFS through Hive.

We’ve now connected the data channel between R and Hive using RHive and started to
achieve big data operation based on the Hive system using R. In the next section, I introduce a
RHive case of big data within a financial area.

6.6 extract Reverse Repurchase information
from Historical Data Using RHive

Question
How do we perform financial data analysis using RHive?

I’ve been in the area of finance for a relatively short time, and reverse repurchase is the first product
that I’ve operated. Reverse repurchase is possibly a new word for most of us, or even for the expe-
rienced stock market participant. China’s banking system experienced a severe lack of liquidity

8 conan@gmail.com 2013-04-23 09:21:24 (6,9]
9 adeg@sohu.com 2013-04-23 09:21:24 (6,9]
10 ade121@sohu.com 2013-04-23 09:21:24 (9,12]
11 addde@sohu.com 2013-04-23 09:21:24 (9,12]

View the file directory of hdfs.
> rhive.hdfs.ls()
 permission owner group length modify-time file
1 rwxr-xr-x conan supergroup 0 2013-04-24 01:52 /hbase
2 rwxr-xr-x conan supergroup 0 2013-06-23 10:59 /home
3 rwxr-xr-x conan supergroup 0 2013-06-26 11:18 /rhive
4 rwxr-xr-x conan supergroup 0 2013-06-23 13:27 /tmp
5 rwxr-xr-x conan supergroup 0 2013-04-24 19:28 /user

View the file contents of hdfs.
> rhive.hdfs.cat('/user/hive/warehouse/o_account/part-m-00000')
1abc@163.com2013-04-22 12:21:39
2dedac@163.com2013-04-22 12:21:39
3qq8fed@163.com2013-04-22 12:21:39

Database and NoSQL ◾ 243

in July 2013. The overnight interbanking borrowing rate reached 30% at that time. When the
banking system lacks liquidity and short-term interest rates rise much higher, other financial insti-
tutions sell their stocks and bonds to lend money to the banks.

6.6.1 Introduction of Reverse Repurchase

To put it simply, pledge-style bond repurchase is a short-term capital lending transaction in which
both sides use bonds as pledges. The bond holder (repurchase party) pledges his bonds to get the right
to use capital and pays a certain amount of interest in an appointed time to repurchase the bonds.
And the capital holder (reverse repurchase party) is the transaction counterparty. In real practice, the
bond is pledged to a third party institution, which makes the transaction safer and more convenient.

Bonds that can be repurchased include national bonds, most of the corporate bonds, and the
bond part of the separate bonds. The stock exchange will publish the discount rate of the bonds
that can be repurchased regularly. The discount rate refers to the ratio of the money that bond
holders can get to the face value of bonds.

6.6.2 Storage Structure of Historical Data

System environment used in this section:

 ◾ Linux: Ubuntu 12.04.2 LTS 64bit
 ◾ R: 3.0.1 x86_64-pc-linux-gnu
 ◾ Domain name of the internal network: c1.wtmart.com

Table structure in Hive:

6.6.3 Extract Data Using RHive

Log in the c1.wtmart.com server and open R client.

> rhive.desc.table('t_reverse_repurchase')
 col_name data_type
1 tradedate string
2 tradetime string
3 securityid string
4 bidpx1 double
5 bidsize1 double
6 offerpx1 double
7 offersize1 double

Start R.
~ R

Load RHive.
> library(RHive)

Initialization.
> rhive.init()

244 ◾ R for Programmers: Mastering the Tools

View the historical data fragmentation of all stocks: the test data are from June 27, 2013 to
July 26, 2014.

Extract the data of “One Day Reverse Repurchase of Shanghai Stock Exchange” (204001) and
“One Day Reverse Repurchase of Shenzhen Stock Exchange” (131810).

View the fragmentation of table t_hft_day.
> rhive.query("SHOW PARTITIONS t_hft_day");
 partition
1 tradedate=20130627
2 tradedate=20130628
3 tradedate=20130701
4 tradedate=20130702
5 tradedate=20130703
6 tradedate=20130704
7 tradedate=20130705
8 tradedate=20130708
9 tradedate=20130709
10 tradedate=20130710
11 tradedate=20130712
12 tradedate=20130715
13 tradedate=20130716
14 tradedate=20130719
15 tradedate=20130722
16 tradedate=20130723
17 tradedate=20130724
18 tradedate=20130725
19 tradedate=20130726

Connect to Hive cluster.
> rhive.connect("c1.wtmart.com")
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/home/cos/toolkit/hive-0.9.0/lib/
slf4j-log4j12-1.6.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/home/cos/toolkit/hadoop-1.0.3/
lib/slf4j-log4j12-1.4.3.jar!/org/slf4j/impl/StaticLoggerBinder.
class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an
explanation.

View the current table.
> rhive.list.tables()
 tab_name
1 t_hft_day // Historical data table.
2 t_hft_tmp // Temporary table.
4 t_reverse_repurchase // Reverse repurchase table.

Database and NoSQL ◾ 245

Load it to the memory of R.

Use ggplot2 draw the trend of these two products in one week, as in Figure 6.1.

Delete reverse repurchase table.
> rhive.drop.table("t_reverse_repurchase")

Create reverse repurchase table and insert data.
> rhive.query("CREATE TABLE t_reverse_repurchase AS SELECT tradedate
,tradetime,securityid,bidpx1,bidsize1,offerpx1,offersize1 FROM t_
hft_day where tradedate>=20130722 and securityid in
(131810,204001)");

View the data result set.
> rhive.query("SELECT securityid,count(1) FROM t_reverse_repurchase
group by securityid");
 securityid X_c1
1 131810 17061
2 204001 12441

Query data from Hive, and assign the value to bidpx1 in R.
> bidpx1<-rhive.query("SELECT securityid,concat(tradedate,tradetime)
as tradetime,bidpx1 FROM t_reverse_repurchase"); #查看记录条数 >
nrow(bidpx1)
[1] 29502

View the data.
> head(bidpx1)
 securityid tradetime bidpx1
1 131810 20130724145004 2.620
2 131810 20130724145101 2.860
3 131810 20130724145128 2.850
4 131810 20130724145143 2.603
5 131810 20130724144831 2.890
6 131810 20130724145222 2.600

Load ggplot2.
> library(ggplot2)
> g<-ggplot(data=bidpx1, aes(x=as.POSIXct(tradetime,format="%Y%m%d%H
%M%S"), y=bidpx1))
> g<-g+geom_line(aes(group=securityid,colour=securityid))
> g<-g+xlab('tradetime')+ylab('bidpx1')

Output the image to file.
> ggsave(g,file="01.png",width=12,height=8)

246 ◾ R for Programmers: Mastering the Tools

securityid
131810
204001

12.5

10.0

7.5

5.0

2.5

0.0

10:00 11:00 12:00 13:00 14:00 15:00
Tradetime

bi
dp

x1

Figure 6.2 trend in one day.

12.5

10.0

7.5

5.0

2.5

0.0

bi
dp

x1

Jul 23 Jul 24 Jul 25
Tradetime

Jul 26

securityid
131810
204001

Figure 6.1 trend in one week.

Database and NoSQL ◾ 247

Then the trend in one day, July 26, 2013, is as in Figure 6.2.

6.6.4 Strategy Model and Its Implementation

Print out the two images of the two curves. We can see that 131810 has always followed the trend
204001 and was lower than 204001 most of the time. Here is a simple strategy analysis to decide
when to sell 131810 according to the change of 204001.

 1. Standardize 131810 and 204001 to each minute.
 2. Take it as selling signal when 131810 and 204001 cross.
 3. When the offer1 price of the latter cross of 131810 and 204001 is 10% higher than the offer1

price of the former cross, set the latter cross as a local optimal sell signal.

Extract the data of 131810 and 204001, and store them to table t_reverse_repurchase.

> bidpx1<-rhive.query("SELECT securityid,concat(tradedate,tradetime)
as tradetime,bidpx1 FROM t_reverse_repurchase WHERE
tradedate=20130726");
> g<-ggplot(data=bidpx1, aes(x=as.POSIXct(tradetime,format="%Y%m%d%H
%M%S"), y=bidpx1))
> g<-g+geom_line(aes(group=securityid,colour=securityid))
> g<-g+xlab('tradetime')+ylab('bidpx1')
> ggsave(g,file="02.png",width=12,height=8)

Sign in R.
> library(RHive)
> rhive.init()
> rhive.connect("c1.wtmart.com")

Extract data of 131810 and 204001.
> rhive.drop.table("t_reverse_repurchase")
> rhive.query("CREATE TABLE t_reverse_repurchase AS SELECT tradedate
,tradetime,securityid,bidpx1,bidsize1,offerpx1,offersize1 FROM t_
hft_day where securityid in (131810,204001)");

View the data set.
> rhive.query("select count(1),tradedate from t_reverse_repurchase
group by tradedate")
 X_c0 tradedate
1 4840 20130627
2 4792 20130628

248 ◾ R for Programmers: Mastering the Tools

Acquire the data of one day and make ETL. First load the package:

Load the data of one week to memory:

Load the data of one day and make ETL:

3 4677 20130701
4 3124 20130702
5 2328 20130703
6 3787 20130704
7 4294 20130705
8 4977 20130708
9 4568 20130709
10 6619 20130710
11 5633 20130712
12 6159 20130715
13 5918 20130716
14 6200 20130719
15 6074 20130722
16 5991 20130723
17 5899 20130724
18 5346 20130725
19 6192 20130726

> library(ggplot2)
> library(scales)
> library(plyr)

> bidpx1<-rhive.query(paste("SELECT
securityid,tradedate,tradetime,bidpx1 FROM t_reverse_repurchase
WHERE tradedate>=20130722"));

> oneDay<-function(date){
+ d1<-bidpx1[which(bidpx1$tradedate==date),]
+ d1$tradetime2<-round(as.numeric(as.character(d1$tradetime))/100)*100
+ d1$tradetime2[which(d1$tradetime2<100000)] <- paste(0,d1$tradetime2
[which(d1$tradetime2<100000)],sep="")
+ d1$tradetime2[which(d1$tradetime2=='1e+05')]='100000'
+ d1$tradetime2[which(d1$tradetime2=='096000')]='100000'
+ d1$tradetime2[which(d1$tradetime2=='106000')]='110000'
+ d1$tradetime2[which(d1$tradetime2=='126000')]='130000'
+ d1$tradetime2[which(d1$tradetime2=='136000')]='140000'
+ d1$tradetime2[which(d1$tradetime2=='146000')]='150000'
+ d1
+ }

Database and NoSQL ◾ 249

Standardize the data through averages:

> meanScale<-function(d1){
+ ddply(d1, .(securityid,tradetime2), summarize, bidpx1=mean(bidpx1))
+ }

> findPoint<-function(a1,a2){
+ bigger_point<-function(a1,a2){
+ idx<-c()
+ for(i in intersect(a1$tradetime2,a2$tradetime2)){
+ i1<-which(a1$tradetime2==i)
+ i2<-which(a2$tradetime2==i)
+ if(a1$bidpx1[i1]-a2$bidpx1[i2]>=-0.02){
+ idx<-c(idx,i1)
+ }
+ }
+ idx
+ }
+ remove_continuous_point<-function(idx){
+ idx[-which(idx-c(NA,rev(rev(idx)[-1]))==1)]
+ }
+ idx<-bigger_point(a1,a2)
+ remove_continuous_point(idx)
+ }

> bigger_point<-function(a1,a2){
+ idx<-c()
+ for(i in intersect(a1$tradetime2,a2$tradetime2)){
+ i1<-which(a1$tradetime2==i)
+ i2<-which(a2$tradetime2==i)
+ if(a1$bidpx1[i1]-a2$bidpx1[i2]>=-0.02){
+ idx<-c(idx,i1)
+ }
+ }
+ idx
+ }

> remove_continuous_point<-function(idx){
+ idx[-which(idx-c(NA,rev(rev(idx)[-1]))==1)]
+ }

+ idx<-bigger_point(a1,a2)
+ remove_continuous_point(idx)
+ }

> findOptimize<-function(d3){
+
 idx2<-which((d3$bidpx1-c(NA,rev(rev(d3$bidpx1)[-1])))/d3$bidpx1>0.1)
+ if(length(idx2)<1)
+ print("No Optimize point")
+ d3[idx2,]
+ }

250 ◾ R for Programmers: Mastering the Tools

> draw<-function(d2,d3,d4,date,png=FALSE){
+ g<-ggplot(data=d2, aes(x=strptime(paste(date,tradetime2,sep=""),
format="%Y%m%d%H%M%S"), y=bidpx1))
+ g<-g+geom_line(aes(group=securityid,colour=securityid))
+ g<-g+geom_point(data=d3,aes(size=1.5,colour=securityid))
+if(nrow(d4)>0){
+ g<-g+geom_text(data=d4,aes(label= format(d4$bidpx1,digits=4)),
colour="blue",hjust=0, vjust=0)
+ }
+ g<-g+xlab('tradetime')+ylab('bidpx1')
+ if(png){
+ ggsave(g,file=paste(date,".png",sep=""),width=12,height=8)
+ }else{
+ g
+ }
+ }

> date<-20130722
> d1<-oneDay(date)
> d2<-meanScale(d1)
> a1<-d2[which(d2$securityid==131810),]
> a2<-d2[which(d2$securityid==204001),]
> d3<-d2[findPoint(a1,a2),]
> d4<-findOptimize(d3)
> draw(d2,d3,d4,as.character(date),TRUE)

securityid
131810
204001

1.5
1.5

4

3

2

1

09:00 10:00 11:00 12:00 13:00 14:00 15:00
Tradetime

bi
dp

x1

3.474

Figure 6.3 Strategy visualization on July 22, 2013.

Database and NoSQL ◾ 251

Generate five images corresponding to five days of a week (Figures 6.3 to 6.7). The back-test
of the data shows that the signals given by the programmatic strategy are all good selling points.
Their performance is better than my manual operation.

Through the comparison of the data in a week, we find that this simple strategy can bring us
some benefits. It’s better than the man-made decision

securityid
131810
204001

1.5
1.5

4

3

2

10:00 11:00 12:00 13:00 14:00 15:00
Tradetime

bi
dp

x1

4.314

Figure 6.4 Strategy visualization on July 23, 2013.

securityid
131810
204001

1.5
1.5

4

3

2

10:00 11:00 12:00 13:00 14:00 15:00
Tradetime

bi
dp

x1

Figure 6.5 Strategy visualization on July 24, 2013.

252 ◾ R for Programmers: Mastering the Tools

securityid
131810
204001

1.5
1.5

11

10

9

10:00 11:00 12:00 13:00 14:00 15:00
Tradetime

bi
dp

x1
11.54

Figure 6.6 Strategy visualization on July 25, 2013.

securityid
131810
204001

1.5
1.5

7.163

9.630

12

10

8

6

10:00 11:00 12:00 13:00 14:00 15:00
Tradetime

bi
dp

x1

Figure 6.7 Strategy visualization on July 26, 2013.

253

Chapter 7

RHadoop

This chapter mainly introduces how to use R to access a Hadoop cluster through a RHadoop tool,
help readers to manage HDFS using R, develop MapReduce programs, and access HBase access.
This chapter uses R to implement MapReduce program cases based on a collaborative filtering
algorithm. It’s more concise than Java.

7.1 R Has injected Statistical elements into Hadoop
Question
Why should we combine R with Hadoop?

R has injected statistical elements

into Hadoop

http://blog.fens.me/r-hadoop-intro/

R and Hadoop belong to two different disciplines. They have different user groups, they are based
on two different knowledge systems, and they do different things. But data, as their intersection,
have made the combination with R and Hadoop an interdisciplinary choice, a tool to mine the
value of data.

254 ◾ R for Programmers: Mastering the Tools

7.1.1 Introduction to Hadoop

For people in the IT world, Hadoop is a rather familiar technique. Hadoop is a distributed
systematic basic construction, managed by Apache Fund. Users can develop distributional pro-
grams even if they know little about underlying details of distributed construction, and make
full use of the high-speed calculation and storage of clusters. Hadoop has implemented a dis-
tributed file system (Hadoop Distributed File System, HDFS). HDFS is high in fault tolerance
and designed to be deployed in low-cost hardware. In addition, it provides high throughput
to access the data of applications, which makes it suitable for the statistical analysis of data
warehouses.

Hadoop has many family members, including Hive, HBase, Zookeeper, Avro, Pig, Ambari,
Sqoop, Mahout and Chukwa, and so forth. I’ll provide a brief introduction to these.

 ◾ Hive is a data warehouse tool based on Hadoop. It can map the structured data file to a data-
base table and quickly achieve simple MapReduce statistics through SQL-like statements. It
is very suitable for statistical analysis for data warehouses because it doesn’t need to develop
special MapReduce applications.

 ◾ Pig is big data analysis tool based on Hadoop. It provides SQL-like language, Pig Latin. Pig
Latin will transform the SQL-like data analysis request to a series of optimized MapReduce
calculations.

 ◾ HBase is a highly reliable, high-performance, column-oriented, and scalable distributed
storage system. We can construct massive structured storage clusters on a low-cost PC Server
using HBase.

 ◾ Sqoop is a tool to transfer data between Hadoop and relational database. We can transfer
the data of relational database(MySQL, Oracle, Postgres, etc.) to Hadoop and vice versa.

 ◾ Zookeeper is a distributed open source coordination service designed for distributed appli-
cations. It’s mainly used for solving the data management problems occurring in distrib-
uted applications, simplifying the difficulty of coordination and management of distributed
applications, and increasing the performance of a distributed service.

 ◾ Mahout is a distributed framework based on the machine learning and data mining of
Hadoop. It uses MapReduce to achieve some of its data mining algorithm and solve the
problem of parallel mining.

 ◾ Avro is a data serialization system designed for data-intensive applications with massive data
exchange. Avro is a new data serialization format and transfer facility, and it will replace the
original IPC mechanism of Hadoop.

 ◾ Ambari, based on the Web, supports the supply, management, and monitoring of Hadoop
clusters.

 ◾ Chukwa is an open source data collection system used for monitoring large distributed
systems. It can collect all kinds of data, transform them into a file suited to be processed by
Hadoop, and store them in HDFS for Hadoop to perform MapReduce operations.

Hadoop started to develop independently with MapReduce and HDFS in 2006. The
Hadoop family has now been incubating several top Apache projects. Especially in recent years,
the development of Hadoop has grown much faster. It integrates many new techniques with it,
such as YARN, Hcatalog, Oozie, and Cassandra, which makes it very hard to follow. For more
introductory information, please refer to the series of articles in the author’s blog about the
Hadoop family.

RHadoop ◾ 255

7.1.2 Why Should We Combine R with Hadoop?

R and Hadoop are all-stars playing important roles in their own fields. When speaking of combin-
ing R with Hadoop, many software developers will look at it from the perspective of computing.
Here are two questions.

 ◾ Question 1: Why should we combine R with Hadoop as the Hadoop family is already so
powerful?

 ◾ Question 2: Mahout can also perform data mining and machine learning. So what’s the
difference between R and Mahout?

Here is my answer to these two questions.

7.1.2.1 Why Should We Combine R with Hadoop When the Hadoop
Family Is Already So Powerful?

 1. The power of the Hadoop family lies in its processing of big data. Hadoop makes it possible
to perform the calculation of data at the GB, TB, or even PB level.

 2. The power of R lies in its performance in statistical analysis. Before Hadoop was developed,
the processing of big data included sampling, hypothesis testing, and regression analysis was
almost exclusively performed by statisticians and R.

 3. From the aforementioned two points, we may find that the focus of Hadoop is total data
analysis, while the focus of R is sample data analysis. So combining the two techniques is
very complementary!

Now, let’s simulate a scene: analyze the access log of a news website of 1PB and predict the
change in flow in the future. The specific process can be divided into four steps.

 ◾ Use R to perform data analysis, a construct regression model on the business object, and
define indicators.

 ◾ Use Hadoop to extract total indicator data from the massive log data.
 ◾ Use R to verify and optimize the indicator data.
 ◾ Use the distributed algorithm of Hadoop to rewrite the R model and deploy it online.

In this scene, R and Hadoop both play important roles. If we adopt the thinking pattern of pro-
grammers and use only Hadoop in the whole process, there will be no data modeling and process
of proving, and the forecasting results will also be problematic. If we adopt the thinking pattern
of statisticians and use only R, the forecasting result of sampling will also be biased. So combining
R with Hadoop is an inevitable orientation of the industry. The intersection of the industry with
academia has provided infinite space for the imagination of researchers in interdisciplinary studies.

7.1.2.2 Mahout Can Also Perform Data Mining and Machine Learning.
So What’s the Difference between R and Mahout?

 1. Mahout is an algorithm framework of data mining and machine learning based on Hadoop.
The focus of Mahout is to solve the computing problems of big data.

 2. An algorithm supported by Mahout includes collaborative filtering, recommended algo-
rithm, clustering algorithm, sorting algorithm, linear discriminant analysis (LDA), naïve

256 ◾ R for Programmers: Mastering the Tools

Bayes, random forest, and so forth. Most of the algorithms in Mahout are based on distance.
After matrix decomposition, they make full use of the parallel computing framework of
MapReduce and accomplish their computing tasks efficiently.

 3. Many of the data mining algorithms of Mahout cannot be paralleled by MapReduce.
Besides, all the current models of Mahout are general computing models. If we apply these
models in projects directly, the computing result will be only a little better than the random
result. The secondary development of Mahout requires profound technical basis of Java and
Hadoop, or even basic knowledge of linear algebra, probability statistics, and introduction
to algorithms. So it’s not easy to master Mahout.

 4. R provides most of the algorithms supported by Mahout. It also provides many algorithms
that are not supported by Mahout. In addition, the growth of algorithms in R is faster than
in Mahout, and it’s simple in development and flexible in parameter configuration. R is also
very fast in small data cluster computing.

Though Mahout can also perform well in data mining and machine learning, its strong field
doesn’t overlap with R. Only by combining the advantages of all sides and choosing the right
technique in suitable fields can we truly guarantee the quality of programs we make.

7.1.3 How to Combine Hadoop with R

From the preceding introduction we find that R and Hadoop are complementary. But in the
application of enterprises, R and Hadoop are still used individually. The demand of the market
will naturally guide some of the experts to fill in the blank. So how do we combine Hadoop with
R? Here I give five ways of combining.

7.1.3.1 RHadoop

RHadoop is a product that combines Hadoop and R. It was developed by RevolutionAnalytics,
and its code is published in Github. RHadoop includes three R packages (rmr, rhdfs, and
rHBase), each corresponding to the three parts of Hadoop system construction: MapReduce,
HDFS, and HBase. This chapter gives a detailed introduction to the installation and use of
RHadoop.

7.1.3.2 RHive

RHive, developed by the Korean company NexR, is a tool package to access Hive directly through
R. Sections 6.5 and 6.6 have provided information on the installation and use of RHive.

7.1.3.3 Rewrite Mahout

Using R to rewrite Mahout is also a way of combining Hadoop with R. I’ve made some attempts on
this, and they will be introduced in the next book of this series, R for Geeks: Advanced Development.

7.1.3.4 Use Hadoop to Call R

All of the preceding paragraphs discuss how to use R to call Hadoop. Of course we can reverse the
operation: connect Java with R and use Hadoop to call R.

RHadoop ◾ 257

I’ve written three examples of using Java to call R. You can refer to Sections 4.1, 4.2, and 4.3
to try to make your own combination and create some unique applications.

7.1.3.5 R and Hadoop in Real Practice

The technical threshold of combining R and Hadoop is rather high. It requires the programmer
not only to master Linux, Java, Hadoop, and R, but also to have the basic knowledge of software
development, algorithms, probability statistics, linear algebra, data visualization, and industry
background. It demands the coordination of multiple departments and a variety of talents if a
company needs to deploy this environment. So cases of combining R with Hadoop in Hadoop
operation and maintenance, Hadoop algorithm development, R modeling, MapReduce develop-
ment in R, and software testing are very rare. This book displays three projects of my attempts and
efforts in Sections 6.6, 7.3, and 7.4.

7.1.4 Outlook for the Future

There will be a burst of growth in the combination of R and Hadoop in the near future. But
restricted by the technical barrier of interdisciplinary knowledge, there will be fewer talents in this
area compared to the market demand. So more and more big data tools will be developed!

7.2 installation and Use of RHadoop
Question
How do we use R to connect Hadoop?

RHadoop series

Hadoop R RHadoop

�e installation and use of RHadoop
http://blog.fens.me/rhadoop-rhadoop/

RHadoop is the first product to achieve the combination of R and Hadoop and the big data analy-
sis based on it. Hadoop is used for big data storage, and R is used to replace Java to finish the
MapReduce algorithms. With the help of RHadoop, R developers now have a powerful tool to
process big data at 10G, 100G, TB, or even PB levels. The performance problem of a single machine
is perfectly solved. But it’s not so easy for R, Java, and Hadoop users to master all the knowledge.

7.2.1 Environment Preparation

For environment preparation, I choose Linux Ubuntu® here. You may choose other types of Linux
according to your preferences.

258 ◾ R for Programmers: Mastering the Tools

It’s important to use the official version Java (JDK) of Oracle SUN and download from the
official website (http://www.oracle.com/technetwork/java/javase/downloads/index.html). Linux
Ubuntu’s own Java (JDK) may have many incompatibility problems. And for JDK, please choose
the 1.6.x version, as version 1.7 also has an incompatibility problem. For the R environment, please
install version 2.15.3, as version 2.14 and versions above 3.0 do not support RHadoop. System
environment in this section is as follows:

 ◾ Linux Ubuntu 12.04.2 LTS 64bit server
 ◾ R 2.15.3 64bit
 ◾ Java JDK 1.6.x
 ◾ Hadoop 1.1.2
 ◾ IP: 192.168.1.243

Note: RHadoop only supports Linux.
Please refer to Appendix F for information about the installation and configuration of Hadoop.

7.2.2 Installation of RHadoop

RHadoop includes three R packages: rmr, hdfs, and rHBase. Because these three libraries cannot
be found in CRAN, we need to download them from other places.

7.2.2.1 Download the Three Relevant Packages of RHadoop

The three packages are rmr-2.1.0, rhdfs-1.0.5, and rHBase-1.1. The address for downloading is
https://github.com/RevolutionAnalytics/RHadoop/wiki/Downloads. Though RHadoop has launched
rhdfs and rmr2 for Windows version, I still recommend Linux for Hadoop.

7.2.2.2 For the Installation of RHadoop, the Root
Authority Operation Is Recommended

Then, we need to install the dependant library of these three libraries.

7.2.2.3 Installation of the Dependent Library

Because a RHadoop project depends on Java, we need to install rJava first, which has been
explained in Section 4.3.

Switch to root user.
~ sudo -i
~ whoami
root

Copy the program package to /root/R.
~ mv rmr-2.1.0.tar.gz /root/R
~ mv rhdfs-1.0.5.tar.gz /root/R
~ mv rhbase-1.1.tar.gz /root/R

http://www.oracle.com
https://github.com

RHadoop ◾ 259

Then, we need to install some other dependent libraries directly through install.packages(),
including reshape2, Repp, iterators, itertools, digest, RJSONlO, and functional.

7.2.2.4 Install the rhdfs Library

Use the command export to add HADOOP_CMD and HADOOP_STREAMING to environ-
ment variables in the current window. But for the convenience of use, it’s good to add the variables
to the system environment variable file/etc/environment. Then use R CMD INSTALL command
to install rhdfs.

Configure the environment variables in the current environment.

Write the environment variables to/etc/environment.

Configure Java environment variables in R.
~ R CMD javareconf
Start R.
~ R

Install rJava.
> install.packages("rJava")

> install.packages("reshape2")
> install.packages("Rcpp")
> install.packages("iterators")
> install.packages("itertools")
> install.packages("digest")
> install.packages("RJSONIO")
> install.packages("functional")

~ export HADOOP_CMD=/root/hadoop/hadoop-1.1.2/bin/hadoop
~ export HADOOP_STREAMING=/root/hadoop/hadoop-1.1.2/contrib/
streaming/hadoop-streaming-1.1.2.jar

~ sudo vi /etc/environment

HADOOP_CMD=/root/hadoop/hadoop-1.1.2/bin/hadoop
HADOOP_STREAMING=/root/hadoop/hadoop-1.1.2/contrib/streaming/
hadoop-streaming-1.1.2.jar

Make the environment variables effective.
~ . /etc/environment

Install rhdfs.
~ R CMD INSTALL /root/R/rhdfs_1.0.5.tar.gz

260 ◾ R for Programmers: Mastering the Tools

7.2.2.5 Install the rmr Library

Use the R CMD INSTALL command to install rmr library.

7.2.2.6 Install the rHBase Library

This is introduced in Section 7.5.

7.2.2.7 List All the Packages of RHadoop

We can check what libraries have been installed in RHadoop.

Because my hard disk is external and has a mounted directory of R class libraries using mount
and symlink(ln –s), my R class libraries are all under the directory/disk1/system. Normal class
libraries are in the directory of R is/usr/lib/R/site-library or/usr/local/lib/R/site-library, so you can
use them where there is an R command to query the position of R class libraries in your computer.

7.2.3 Program Development of RHadoop

After installing rhdfs and rmr2, we can use R to try some Hadoop operations.

7.2.3.1 Basic Operations of rhdfs

Use of rhdfs.

Compare the Hadoop commands with RHadoop functions.

 1. View the file directory of hdfs.
 a. Hadoop command: Hadoop fs –ls.user
 b. R function: hdfs.ls(“/user/”)

~ R CMD INSTALL rmr2_2.1.0.tar.gz

~ ls /disk1/system/usr/local/lib/R/site-library/
digest functional iterators itertools plyr Rcpp reshape2
rhdfs rJava RJSONIO rmr2 stringr

Load rhdfs.
> library(rhdfs)

Loading required package: rJava
HADOOP_CMD=/root/hadoop/hadoop-1.1.2/bin/hadoop
Be sure to run hdfs.init()

Initialize R and connect with Hadoop.
> hdfs.init()

RHadoop ◾ 261

 Use the Hadoop command to view the Hadoop directory.

 Use the rhdfs function to view the Hadoop directory.

 2. View the data file of Hadoop.
 a. Hadoop command: hadoop fs -cat/user/hdfs/o_same_school/part-m-00000
 b. R function: hdfs.cat(“/user/hdfs/o_same_school/part-m-00000”)

 Use the Hadoop command to view the Hadoop data file.

 Use rhdfs to view the Hadoop data file.

~ hadoop fs -ls /user

Found 4 items
drwxr-xr-x - root supergroup 0 2013-02-01 12:15 /user/conan
drwxr-xr-x - root supergroup 0 2013-03-06 17:24 /user/hdfs
drwxr-xr-x - root supergroup 0 2013-02-26 16:51 /user/hive
drwxr-xr-x - root supergroup 0 2013-03-06 17:21 /user/root

> hdfs.ls("/user/")

 permission owner group size modtime file
1 drwxr-xr-x root supergroup 0 2013-02-01 12:15 /user/conan
2 drwxr-xr-x root supergroup 0 2013-03-06 17:24 /user/hdfs
3 drwxr-xr-x root supergroup 0 2013-02-26 16:51 /user/hive
4 drwxr-xr-x root supergroup 0 2013-03-06 17:21 /user/root

~ hadoop fs -cat /user/hdfs/o_same_school/part-m-00000
10,3,tsinghua university,2004-05-26 15:21:00.0
23,4007,Beijing No.171 Middle School,2004-05-31 06:51:53.0
51,4016,Dalian University of Technology,2004-05-27 09:38:31.0
89,4017,Amherst College,2004-06-01 16:18:56.0
92,4017,Stanford University,2012-11-28 10:33:25.0
99,4017,Stanford University Graduate School of Business,2013-02-19
12:17:15.0

> hdfs.cat("/user/hdfs/o_same_school/part-m-00000")
[1] "10,3,tsinghua university,2004-05-26 15:21:00.0"
[2] "23,4007,Beijing No.171 Middle School,2004-05-31 06:51:53.0"
[3] "51,4016,Dalian University of Technology,2004-05-27 09:38:31.0"
[4] "89,4017,Amherst College,2004-06-01 16:18:56.0"
[5] "92,4017,Stanford University,2012-11-28 10:33:25.0"
[6] "99,4017,Stanford University Graduate School of
Business,2013-02-19 12:17:15.0"

262 ◾ R for Programmers: Mastering the Tools

7.2.3.2 Task of the rmr Algorithm

The following is an introduction to rmr2 and a comparison of normal R and R based on Hadoop.

Normal R:

R based on Hadoop:

Load rmr2.
> library(rmr2)

Loading required package: Rcpp
Loading required package: RJSONIO
Loading required package: digest
Loading required package: functional
Loading required package: stringr
Loading required package: plyr
Loading required package: reshape2

> small.ints = 1:10
> sapply(small.ints, function(x) x^2)

[1] 1 4 9 16 25 36 49 64 81 100

> small.ints = to.dfs(1:10)

13/03/07 12:12:55 INFO util.NativeCodeLoader: Loaded the native-
hadoop library
13/03/07 12:12:55 INFO zlib.ZlibFactory: Successfully loaded &
initialized native-zlib library
13/03/07 12:12:55 INFO compress.CodecPool: Got brand-new compressor

Execute map task.
> mapreduce(input = small.ints, map = function(k, v) cbind(v, v^2))

packageJobJar: [/tmp/RtmpWnzxl4/rmr-local-env5deb2b300d03, /tmp/
RtmpWnzxl4/rmr-global-env5deb398a522b, /tmp/RtmpWnzxl4/rmr-
streaming-map5deb1552172d, /root/hadoop/tmp/hadoop-
unjar7838617732558795635/] [] /tmp/streamjob4380275136001813619.jar
tmpDir=null
13/03/07 12:12:59 INFO mapred.FileInputFormat: Total input paths to
process : 1
13/03/07 12:12:59 INFO streaming.StreamJob: getLocalDirs(): [/root/
hadoop/tmp/mapred/local]
13/03/07 12:12:59 INFO streaming.StreamJob: Running job:
job_201302261738_0293
13/03/07 12:12:59 INFO streaming.StreamJob: To kill this job, run:
13/03/07 12:12:59 INFO streaming.StreamJob: /disk1/hadoop/hadoop-1.1.2/
libexec/../bin/hadoop job -Dmapred.job.tracker=hdfs://192.168.1.243:9001
-kill job_201302261738_0293

RHadoop ◾ 263

Because MapReduce can only access the HDFS file system, we need to use to.dfs() to store
data toe HDFS system, and then use from.dfs() to extract the computing result of MapReduce
from the HDFS file system.

7.2.3.3 Wordcount Task of the rmr Algorithm

Use rmr2 to achieve wordcount task, counting the word in files.
I’ve placed a data file/user/hdfs/o_same_school/part-m-00000 in HDFS in advance. Execute

wordcount(), and use from.dfs() to get the result from HDFS.

13/03/07 12:12:59 INFO streaming.StreamJob: Tracking URL:
http://192.168.1.243:50030/jobdetails.jsp?jobid=job_201302261738_0293
13/03/07 12:13:00 INFO streaming.StreamJob: map 0% reduce 0%
13/03/07 12:13:15 INFO streaming.StreamJob: map 100% reduce 0%
13/03/07 12:13:21 INFO streaming.StreamJob: map 100% reduce 100%
13/03/07 12:13:21 INFO streaming.StreamJob: Job complete:
job_201302261738_0293
13/03/07 12:13:21 INFO streaming.StreamJob: Output: /tmp/RtmpWnzxl4/
file5deb791fcbd5

View the output result of hdfs.
> from.dfs("/tmp/RtmpWnzxl4/file5deb791fcbd5")
$key
NULL

$val
 v
 [1,] 1 1
 [2,] 2 4
 [3,] 3 9
 [4,] 4 16
 [5,] 5 25
 [6,] 6 36
 [7,] 7 49
 [8,] 8 64
 [9,] 9 81
[10,] 10 100

Define the position of data file in Hadoop.
> input<- '/user/hdfs/o_same_school/part-m-00000'
wordcount algorithm function
> wordcount = function(input, output = NULL, pattern = " "){
 # map function
 wc.map = function(., lines) {
 keyval(unlist(strsplit(x = lines,split = pattern)),1)
 }

 # reduce function
 wc.reduce =function(word, counts) {
 keyval(word, sum(counts))
 }

264 ◾ R for Programmers: Mastering the Tools

 # mapreduce function
 mapreduce(input = input ,output = output, input.format = "text",
 map = wc.map, reduce = wc.reduce,combine = T)
}

run wordcount task
> wordcount(input)

packageJobJar: [/tmp/RtmpfZUFEa/rmr-local-env6cac64020a8f, /tmp/
RtmpfZUFEa/rmr-global-env6cac73016df3, /tmp/RtmpfZUFEa/rmr-streaming-
map6cac7f145e02, /tmp/RtmpfZUFEa/rmr-streaming-reduce6cac238dbcf, /tmp/
RtmpfZUFEa/rmr-streaming-combine6cac2b9098d4, /root/hadoop/tmp/hadoop-
unjar6584585621285839347/] [] /tmp/streamjob9195921761644130661.jar
tmpDir=null
13/03/07 12:34:41 INFO util.NativeCodeLoader: Loaded the native-hadoop
library
13/03/07 12:34:41 WARN snappy.LoadSnappy: Snappy native library not
loaded
13/03/07 12:34:41 INFO mapred.FileInputFormat: Total input paths to
process : 1
13/03/07 12:34:41 INFO streaming.StreamJob: getLocalDirs(): [/root/
hadoop/tmp/mapred/local]
13/03/07 12:34:41 INFO streaming.StreamJob: Running job:
job_201302261738_0296
13/03/07 12:34:41 INFO streaming.StreamJob: To kill this job, run:
13/03/07 12:34:41 INFO streaming.StreamJob: /disk1/hadoop/hadoop-1.1.2/
libexec/../bin/hadoop job -Dmapred.job.tracker=hdfs://192.168.1.243:9001
-kill job_201302261738_0296
13/03/07 12:34:41 INFO streaming.StreamJob: Tracking URL:
http://192.168.1.243:50030/jobdetails.jsp?jobid=job_201302261738_0296
13/03/07 12:34:42 INFO streaming.StreamJob: map 0% reduce 0%
13/03/07 12:34:59 INFO streaming.StreamJob: map 100% reduce 0%
13/03/07 12:35:08 INFO streaming.StreamJob: map 100% reduce 17%
13/03/07 12:35:14 INFO streaming.StreamJob: map 100% reduce 100%
13/03/07 12:35:20 INFO streaming.StreamJob: Job complete:
job_201302261738_0296
13/03/07 12:35:20 INFO streaming.StreamJob: Output: /tmp/RtmpfZUFEa/
file6cac626aa4a7

View the result of output of hdfs
> from.dfs("/tmp/RtmpfZUFEa/file6cac626aa4a7")

$key
[1] "-"
 [2] "04:42:37.0"
 [3] "06:51:53.0"
 [4] "07:10:24.0"
 [5] "09:38:31.0"
 [6] "10:33:25.0"
 [7] "10,3,tsinghua"
 [8] "10:42:10.0"
 [9] "113,4017,Stanford"
[10] "12:00:38.0"

RHadoop ◾ 265

Thus we’ve finished the installation and use of rhdfs and rmr2 in RHadoop. Though it’s a little
tedious, it’s still worth it to refine the code of MapReduce in R.

7.3 RHadoop experiment: Count the times of the Appearance
of Certain e-Mail Addresses

Question
How do we use RHadoop?

RHadoop experiment

Count the times of the appearance
of certain e-mail addresses
http://blog.fens.me/rhadoop-demo-email/

We can use R to implement MapReduce development through RHadoop. The R codes are much
more concise than the Java codes. This section introduces a case of statistical demand.

7.3.1 Demand Description

System environment used in this section:

 ◾ Linux Ubuntu 12.04.2 LTS 64bit server
 ◾ R 2.15.3 64bit
 ◾ Java JDK 1.6.x
 ◾ Hadoop 1.0.3

According to the experimental data, calculate how many times the E-mail addresses appear.
Then sort the E-mail addresses by their times of appearance. Use RHadoop to implement the
MapReduce algorithm. The experimental data are hadoop15.txt.

$val
 [1] 1 2 1 2 1 1 1 4 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1
[39] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

wolys@21cn.com
zss1984@126.com
294522652@qq.com
simulateboy@163.com
zhoushigang_123@163.com

266 ◾ R for Programmers: Mastering the Tools

Output the calculation result as the format below.

7.3.2 Algorithm Implementation

7.3.2.1 Calculate How Many Times the E-Mail Addresses Appear

163.com,14
sohu.com,2

Start R.
~ R

sirenxing424@126.com
lixinyu23@qq.com
chenlei1201@gmail.com
370433835@qq.com
cxx0409@126.com
viv093@sina.com
q62148830@163.com
65993266@qq.com
summeredison@sohu.com
zhangbao-autumn@163.com
diduo_007@yahoo.com.cn
fxh852@163.com
weiyang1128@163.com
licaijun007@163.com
junhongshouji@126.com
wuxiaohong11111@163.com
fennal@sina.com
li_dao888@163.com
bokil.xu@163.com
362212053@qq.com
youloveyingying@yahoo.cn
boiny@126.com
linlixian200606@126.com
alex126126@126.com
654468252@qq.com
huangdaqiao@yahoo.com.cn
kitty12502@163.com
xl200811@sohu.com
ysjd8@163.com
851627938@qq.com
wubo_1225@163.com
kangtezc@163.com
xiao2018@126.com
121641873@qq.com
296489419@qq.com
beibeilong012@126.com

RHadoop ◾ 267

> library(rhdfs)
> library(rmr2)

Load the data to memory from local environment.
> data<-read.table(file="hadoop15.txt")

Upload the data to hdfs from memory.
> d0<-to.dfs(keyval(1, data))

View the d0 data on hdfs.
> from.dfs(d0)

$key
[1] 1
1 1 1 1 1 1
[39] 1 1 1

$val
V1
1 wolys@21cn.com
2 zss1984@126.com
3 294522652@qq.com
4 simulateboy@163.com
5 zhoushigang_123@163.com
6 sirenxing424@126.com
7 lixinyu23@qq.com
8 chenlei1201@gmail.com
9 370433835@qq.com
10 cxx0409@126.com
11 viv093@sina.com
12 q62148830@163.com
13 65993266@qq.com
14 summeredison@sohu.com
15 zhangbao-autumn@163.com
16 diduo_007@yahoo.com.cn
17 fxh852@163.com
18 weiyang1128@163.com
19 licaijun007@163.com
20 junhongshouji@126.com
21 wuxiaohong11111@163.com
22 fennal@sina.com
23 li_dao888@163.com
24 bokil.xu@163.com
25 362212053@qq.com
26 youloveyingying@yahoo.cn
27 boiny@126.com
28 linlixian200606@126.com
29 alex126126@126.com
30 654468252@qq.com
31 huangdaqiao@yahoo.com.cn
32 kitty12502@163.com
33 xl200811@sohu.com

268 ◾ R for Programmers: Mastering the Tools

Customize mr() to calculate how many times the E-mail addresses appear.

7.3.2.2 Sort the E-Mail Addresses by Their Times of Appearance

Customize sort() to sort the E-mail addresses by their times of appearance.

Create mr().
> mr<-function(input=d0){
+ map<-function(k,v){
+ # Intercept the part of character string after @.
+ keyval(word(as.character(v$V1), 2, sep = fixed('@')),1)
+ }
+ reduce =function(k, v) {
+ # Sum the same E-mail addresses.
+ keyval(k, sum(v))
+ }
+ d1<-mapreduce(input=input,map=map,reduce=reduce,combine=TRUE)
+ }

Run mr().
> d1<-mr(d0)

View the d0 data on hdfs.
> from.dfs(d1)

$key
[1] "126.com" "163.com" "21cn.com" "gmail.com" "qq.com"
[6] "sina.com" "sohu.com" "yahoo.cn" "yahoo.com.cn"

$val
[1] 9 14 1 1 9 2 2 1 2

Create sort().
> sort<-function(input=d1){
+ map<-function(k,v){
+ # Format the result set of d1.
+ keyval(1,data.frame(k,v))
+ }
+ reduce<-function(k,v){

34 ysjd8@163.com
35 851627938@qq.com
36 wubo_1225@163.com
37 kangtezc@163.com
38 xiao2018@126.com
39 121641873@qq.com
40 296489419@qq.com
41 beibeilong012@126.com

RHadoop ◾ 269

Please note that this section uses statements based on a single node in the reduce process of the
second step. It requires more opimization when we deal with big data. We can achieve our objects
by just a few lines of code, which is much better than when using Java!

7.4 implement the Collaborative Filtering Algorithm
by RHadoop Based on MapReduce

Question
How do we use RHadoop to implement collaborative filtering algorithm based on MapReduce?

RHadoop series

Collaborative filtering algorithm

http://blog.fens.me/rhadoop-mapreduce-rmr/
by RHadoop based on MapReduce

1 0
0 1

Because of the particularity of the operation of RHadoop’s rmr2 package on Hadoop, it is rather
difficult to implement the codes. If you need to learn it in depth, please try and think more about
the design of key/value of the MapReduce algorithm.

+ # Rank the data set.
+ v2<-v[order(as.integer(v$v),decreasing=TRUE),]
+ keyval(1,v2)
+ }
+ d2<-mapreduce(input=input,map=map,reduce=reduce,combine=TRUE)
+ }
Sort.
> d2<-sort(d1)
Load the result from HDFS to memory.
> result<-from.dfs(d2)

Output the result of sorting.
> result$val

k v
2 163.com 14
1 126.com 9
5 qq.com 9
6 sina.com 2
7 sohu.com 2
9 yahoo.com.cn 2
3 21cn.com 1
4 gmail.com 1
8 yahoo.cn 1

270 ◾ R for Programmers: Mastering the Tools

7.4.1 Introduction to the Collaborative Filtering
Algorithm Based on Item Recommendation

More and more Internet applications now design their own recommendation systems. The recom-
mendation system mainly uses a collaborative filtering algorithm. It can be divided into an algorithm
based on users and based on items according to the activity level of users and popularity of items.

 ◾ A collaborative filtering algorithm based on users recommends user items appreciated by
other users sharing a similar interest.

 ◾ A collaborative filtering algorithm based on items recommends user items similar to other
items users showed interest in previously.

A collaborative filtering algorithm based on items is more widely used and recommended.
Many Internet companies are now using it, including Netflix, YouTube, Amazon, and so forth.
There are two main steps in designing the recommendation algorithm:

 1. Calculate the similarity between items.
 2. Generate a recommendation list according to the similarity of items and historical behavior

of users.

To introduce the algorithm model, we select a small group of data as the test set. The data set is
taken from the book Mahout in Action, p. 49, line 8. The eighth line of original data “3, 101, 2.5”
is changed to “3, 101, 2.0”. The three fields of each row are user ID, item ID, and rating of item.
Create the data file small.csv on server.

Use vi to edit data file.
~ vi small.csv

1,101,5.0
1,102,3.0
1,103,2.5
2,101,2.0
2,102,2.5
2,103,5.0
2,104,2.0
3,101,2.0
3,104,4.0
3,105,4.5
3,107,5.0
4,101,5.0
4,103,3.0
4,104,4.5
4,106,4.0
5,101,4.0
5,102,3.0
5,103,2.0
5,104,4.0
5,105,3.5
5,106,4.0

RHadoop ◾ 271

7.4.2 Implementation of a Local Program of R

First, compare the collaborative filtering algorithm based on items by R with that by RHadoop.
Here I use the step-by-step algorithm of Mahout in Action, Chapter 6. The algorithm is imple-
mented through three steps. First, create a co-occurrence matrix of items; second, create a
rating matrix of users on times; and last, calculate the recommendation result through the
matrix.

7.4.2.1 Create a Co-Occurrence Matrix of Items

Find the items chosen by each user, and count the times of individual appearance and appearance
in pairs. For example, the user of user ID “3” has rated the four items 101, 104, 105, and 107.

 1. (101,101), (104,104), (105,105), (107,107), where each individual appearance counts as 1.
 2. (101,104), (101,105), (101,107), (104,105), (104,107), (105,107), where each appearance in

pairs counts as 1.
 3. Sum the results of all users and generate a triangle matrix. Completing the triangle matrix

and create the co-occurrence matrix as follows:

7.4.2.2 Create a Rating Matrix of Users on Items

Find all the items and their rating of each user. For example, the user of user ID “3” has rated the
four items (3,101,2.0), (3,104,4.0), (3,105,4.5), (3,107,5.0).

 1. Find the rating of (3,101,2.0), (3,104,4.0), (3,105,4.5), (3,107,5.0).
 2. Create a rating matrix of users on items.

 [101] [102] [103] [104] [105] [106] [107]
[101] 5 3 4 4 2 2 1
[102] 3 3 3 2 1 1 0
[103] 4 3 4 3 1 2 0
[104] 4 2 3 4 2 2 1
[105] 2 1 1 2 2 1 1
[106] 2 1 2 2 1 2 0
[107] 1 0 0 1 1 0 1

 U3
[101] 2.0
[102] 0.0
[103] 0.0
[104] 4.0
[105] 4.5
[106] 0.0
[107] 5.0

272 ◾ R for Programmers: Mastering the Tools

7.4.2.3 Calculate the Recommendation Result through a Matrix

Co-occurrence * rating matrix = recommendation result, as in Figure 7.1. The result recommended
to user “3” is (103,24.5), (102,18.5), (106,16.5).

We implement the aforementioned process using R.

Load plyr.
> library(plyr)
Load the data set.
> train<-read.csv(file="small.csv",header=FALSE)
> names(train)<-c("user","item","pref")
View train data set.
> train
 user item pref
1 1 101 5.0
2 1 102 3.0
3 1 103 2.5
4 2 101 2.0
5 2 102 2.5
6 2 103 5.0
7 2 104 2.0
8 3 101 2.0
9 3 104 4.0
10 3 105 4.5
11 3 107 5.0
12 4 101 5.0
13 4 103 3.0
14 4 104 4.5

101

101 102 103 104 105 106 107 U3 R

102

103

104

105

106

107

5

3 3 3 2 1 1 0 0.0 18.5

4 3 4 3 1 2 0 0.0 24.5

3 4 4 2 2 1 2.0 40.0

4 2 3 4 2 2 1 4.0 40.0

2 1 1 2 2 1 1 4.5 26.0

1 0 0 1 1 0 1 5.0 15.5

2 1 2 2 1 2 0 0.0 16.5

× =

Figure 7.1 Matrix multiplication. (excerpted from Mahout in Action.)

RHadoop ◾ 273

15 4 106 4.0
16 5 101 4.0
17 5 102 3.0
18 5 103 2.0
19 5 104 4.0
20 5 105 3.5
21 5 106 4.0
Method of calculating user list.
> usersUnique<-function(){
+ users<-unique(train$user)
+ users[order(users)]
+ }
Method of calculating items list.
> itemsUnique<-function(){
+ items<-unique(train$item)
+ items[order(items)]
+ }
User list.
> users<-usersUnique()
> users
[1] 1 2 3 4 5
Items list.
> items<-itemsUnique()
> items
[1] 101 102 103 104 105 106 107
Create item list index.
> index<-function(x) which(items %in% x)
> data<-ddply(train,.(user,item,pref),summarize,idx=index(item))
> data
 user item pref idx
1 1 101 5.0 1
2 1 102 3.0 2
3 1 103 2.5 3
4 2 101 2.0 1
5 2 102 2.5 2
6 2 103 5.0 3
7 2 104 2.0 4
8 3 101 2.0 1
9 3 104 4.0 4
10 3 105 4.5 5
11 3 107 5.0 7
12 4 101 5.0 1
13 4 103 3.0 3
14 4 104 4.5 4
15 4 106 4.0 6
16 5 101 4.0 1
17 5 102 3.0 2
18 5 103 2.0 3

274 ◾ R for Programmers: Mastering the Tools

19 5 104 4.0 4
20 5 105 3.5 5
21 5 106 4.0 6
Co-occurrence matrix.
> cooccurrence<-function(data){
+ n<-length(items)
+ co<-matrix(rep(0,n*n),nrow=n)
+ for(u in users){
+ idx<-index(data$item[which(data$user==u)])
+ m<-merge(idx,idx)
+ for(i in 1:nrow(m)){
+ co[m$x[i],m$y[i]]=co[m$x[i],m$y[i]]+1
+ }
+ }
+ return(co)
+ }
Recommendation algorithm.
> recommend<-function(udata=udata,co=coMatrix,num=0){
+ n<-length(items)
+
+ # all of pref
+ pref<-rep(0,n)
+ pref[udata$idx]<-udata$pref
+
+ # User rating matrix.
+ userx<-matrix(pref,nrow=n)
+
+ # Co-occurrence matrix * rating matrix.
+ r<-co %*% userx
+
+ # Rank the recommendation result.
+ r[udata$idx]<-0
+ idx<-order(r,decreasing=TRUE)
+ topn<-data.frame(user=rep(udata$user[1],length(idx)),item=
items[idx],val=r[idx])
+ topn<-topn[which(topn$val>0),]
+
+ # Take the first "num" items of result.
+ if(num>0){
+ topn<-head(topn,num)
+ }
+
+ # Return the result.
+ return(topn)
+ }
Generate co-occurrence matrix.
> co<-cooccurrence(data)
> co

RHadoop ◾ 275

7.4.3 Implement a Distributed Program by R Based on Hadoop

We can use data objects based on R to implement the MapReduce algorithm instead of using file
storage as in Java. The pattern of this algorithm is similar to that in R but is more complicated.

 1. Create a co-occurrence matrix. First, get the combination list of all items according to user
groups; then count the item combination list and create a co-occurrence matrix of items.

 2. Create rating matrix of users on items.
 3. Merge the co-occurrence matrix and the rating matrix.
 4. Calculate the recommendation result list.
 5. In MapReduce implementation, all the operations should be completed by using Map and

Reduce tasks. The process has changed slightly, as in Figure 7.2. The following are the five
steps of matrix analysis.

 [,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 5 3 4 4 2 2 1
[2,] 3 3 3 2 1 1 0
[3,] 4 3 4 3 1 2 0
[4,] 4 2 3 4 2 2 1
[5,] 2 1 1 2 2 1 1
[6,] 2 1 2 2 1 2 0
[7,] 1 0 0 1 1 0 1
Calculate recommendation result.
> recommendation<-data.frame()
> for(i in 1:length(users)){
+ udata<-data[which(data$user==users[i]),]
+ recommendation<-rbind(recommendation,recommend(udata,co,0))
+ }
Output recommendation result.
> recommendation
 user item val
1 1 104 33.5
2 1 106 18.0
3 1 105 15.5
4 1 107 5.0
5 2 106 20.5
6 2 105 15.5
7 2 107 4.0
8 3 103 24.5
9 3 102 18.5
10 3 106 16.5
11 4 102 37.0
12 4 105 26.0
13 4 107 9.5
14 5 107 11.5

276 ◾ R for Programmers: Mastering the Tools

7.4.3.1 Create a Co-Occurrence Matrix of Items

 1. Get the combination list of all items according to user groups.
 a. Key: vector of item list
 b. Val: vector of item combination

$key
[1] 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 102 102
102 102
[20] 102 102 102 103 103 103 103 103 103 103 103 103 103 103 104 104 104
104 104
[39] 104 104 104 104 104 104 104 105 105 105 105 106 106 106 106 107 107
107 107
[58] 101 101 101 101 101 101 102 102 102 102 102 102 103 103 103 103 103
103 104
[77] 104 104 104 104 104 105 105 105 105 105 105 106 106 106 106 106 106

Recommender job

HDFS

Preference
values

User preference
vectors

Co-occurrence
matrix

Pre-partial-product
vectors

Partial products

Recommendations

Partial multiply
mapper

To Item Preference
Mapper

To User
Vector Reducer

User Vector To
Co-occurrence Mapper

User Vector
Splitter Mapper

Co-occurrence column
wrapper mapper

Co-occurrence
combiner

User Vector To
Co-occurrence Reducer

Aggregate
combiner

To vector and pref
reducer

Aggregate and
recommend reducer

Hadoop

Figure 7.2 Distributed program design. (excerpted from Mahout in Action.)

RHadoop ◾ 277

 2. Count the item combination list and create co-occurrence matrix of items.
 a. Key: vector of item list
 b. Val: value of data frame of co-occurrence matrix(item, item, Freq)

 The format of the matrix should be the same as the format that follows in Section 7.4.3.2.
Merge the two heterogeneous data sources into one, laying the foundation for data in
Section 7.4.3.3.

$key
[1] 101 101 101 101 101 101 101 102 102 102 102 102 102 103 103 103 103
103 103
[20] 104 104 104 104 104 104 104 105 105 105 105 105 105 105 106 106 106
106 106
[39] 106 107 107 107 107

$val
k v freq
1 101 101 5
2 101 102 3
3 101 103 4
4 101 104 4
5 101 105 2
6 101 106 2
7 101 107 1
8 102 101 3
9 102 102 3
10 102 103 3
11 102 104 2
12 102 105 1
13 102 106 1
14 103 101 4
15 103 102 3
16 103 103 4
17 103 104 3
18 103 105 1
19 103 106 2
20 104 101 4
21 104 102 2
22 104 103 3
23 104 104 4

$val
[1] 101 102 103 101 102 103 104 101 104 105 107 101 103 104 106 101 102
103 101
[20] 102 103 104 101 102 103 101 102 103 104 101 103 104 106 101 102 103
104 101
[39] 104 105 107 101 103 104 106 101 104 105 107 101 103 104 106 101 104
105 107
[58] 101 102 103 104 105 106 101 102 103 104 105 106 101 102 103 104 105
106 101
[77] 102 103 104 105 106 101 102 103 104 105 106 101 102 103 104 105 106

278 ◾ R for Programmers: Mastering the Tools

7.4.3.2 Create a Rating Matrix of Users on Items

 ◾ Key: item list
 ◾ Val: rating matrix of user on item

24 104 105 2
25 104 106 2
26 104 107 1
27 105 101 2
28 105 102 1
29 105 103 1
30 105 104 2
31 105 105 2
32 105 106 1
33 105 107 1
34 106 101 2
35 106 102 1
36 106 103 2
37 106 104 2
38 106 105 1
39 106 106 2
40 107 101 1
41 107 104 1
42 107 105 1
43 107 107 1

$key
[1] 101 101 101 101 101 102 102 102 103 103 103 103 104 104 104 104
105 105 106
[20] 106 107

$val
item user pref
1 101 1 5.0
2 101 2 2.0
3 101 3 2.0
4 101 4 5.0
5 101 5 4.0
6 102 1 3.0
7 102 2 2.5
8 102 5 3.0
9 103 1 2.5
10 103 2 5.0
11 103 4 3.0
12 103 5 2.0
13 104 2 2.0
14 104 3 4.0
15 104 4 4.5
16 104 5 4.0
17 105 3 4.5
18 105 5 3.5

RHadoop ◾ 279

7.4.3.3 Merge the Co-Occurrence Matrix and the Rating Matrix

This step is a special operation for MapReduce. We need to process the two heterogeneous data
sources for the operation of MapReduce. We’ve merged the two formats in the second step, and
now we use functions in rmr2 to merge matrixes.

 ◾ Key: NULL
 ◾ Val: merged database

7.4.3.4 Calculate the Recommendation Result List

Calculate the matrix in the third step and get the recommendation result list.

 ◾ Key: item list
 ◾ Val: data frame of recommendation result

$key
NULL

$val
k.l v.l freq.l item.r user.r pref.r
1 103 101 4 103 1 2.5
2 103 102 3 103 1 2.5
3 103 103 4 103 1 2.5
4 103 104 3 103 1 2.5
5 103 105 1 103 1 2.5
6 103 106 2 103 1 2.5
7 103 101 4 103 2 5.0
8 103 102 3 103 2 5.0
9 103 103 4 103 2 5.0
10 103 104 3 103 2 5.0
11 103 105 1 103 2 5.0
12 103 106 2 103 2 5.0
13 103 101 4 103 4 3.0

$key
[1] 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101
101 101
[19] 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101
101 102
[37] 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102
102 103
[55] 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103
103 103

19 106 4 4.0
20 106 5 4.0
21 107 3 5.0

280 ◾ R for Programmers: Mastering the Tools

7.4.3.5 Get the Recommendation Rating List in Output Format

Sort the recommendation result list and output the result.

 ◾ Key: user ID
 ◾ Val: data frame of recommendation result

[73] 103 103 103 103 103 104 104 104 104 104 104 104 104 104 104 104
104 104
[91] 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 105
105 105
[109] 105 105 105 105 105 105 105 105 105 105 105 106 106 106 106
106 106 106
[127] 106 106 106 106 106 107 107 107 107

$val
k.l v.l user.r v
1 101 101 1 25.0
2 101 101 2 10.0
3 101 101 3 10.0
4 101 101 4 25.0
5 101 101 5 20.0
6 101 102 1 15.0
7 101 102 2 6.0
8 101 102 3 6.0
9 101 102 4 15.0
10 101 102 5 12.0
11 101 103 1 20.0
12 101 103 2 8.0
13 101 103 3 8.0
14 101 103 4 20.0
15 101 103 5 16.0
16 101 104 1 20.0
17 101 104 2 8.0
18 101 104 3 8.0

$key
[1] 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5
5 5 5

$val
user item pref
1 1 101 44.0
2 1 103 39.0
3 1 104 33.5
4 1 102 31.5
5 1 106 18.0
6 1 105 15.5
7 1 107 5.0
8 2 101 45.5
9 2 103 41.5

RHadoop ◾ 281

7.4.3.6 Tips for Using rmr2

 1. rmr.options(backend = ‘hadoop’)
 There are two values in “backend” here, “hadoop” and “local.” “Hadoop,” using a Hadoop

environment to run the program, is the default value. “Local” is a configuration for a local
test, and it is not recommended now. I’ve tried “local” in my development. The speed is very
fast, and it simulates the running environment of Hadoop. But codes in local mode aren’t com-
patible with Hadoop, and they are often changed, so I don’t recommend using “local” here.

 2. equijoin(…,outer = c(‘left’))
 “Outer” here includes four values: c(“”,“left”, “right”, “full”). It’s very much like the “join”

operation in database.
 3. keyval(k,v)

 We need to store key and valve data in MapReduce operations. If we output the result
directly or output the result without adding key, there will be a warning: Converting to.dfs
argument to keyval with a NULL key. The example of rmr2 in the last section has a similar
circumstance, please note to modify the codes.

10 2 104 36.0
11 2 102 32.5
12 2 106 20.5
13 2 105 15.5
14 2 107 4.0
15 3 101 40.0
16 3 104 38.0
17 3 105 26.0
18 3 103 24.5
19 3 102 18.5
20 3 106 16.5
21 3 107 15.5
22 4 101 63.0
23 4 104 55.0
24 4 103 53.5
25 4 102 37.0
26 4 106 33.0
27 4 105 26.0
28 4 107 9.5
29 5 101 68.0
30 5 104 59.0
31 5 103 56.5
32 5 102 42.5
33 5 106 34.5
34 5 105 32.0
35 5 107 11.5

> to.dfs(1:10)

Warning message:
In to.dfs(1:10) : Converting to.dfs argument to keyval with a NULL key

282 ◾ R for Programmers: Mastering the Tools

Here is the completed code:

Load rmr2.
> library(rmr2)

Input data file.
> train<-read.csv(file="small.csv",header=FALSE)
> names(train)<-c("user","item","pref")
Use the format of Hadoop in rmr. Hadoop is the default configuration.
 > rmr.options(backend = 'hadoop')
Store the data set in HDFS.
> train.hdfs = to.dfs(keyval(train$user,train))

Print the result
> from.dfs(train.hdfs)
13/04/07 14:35:44 INFO util.NativeCodeLoader: Loaded the native-hadoop
library
13/04/07 14:35:44 INFO zlib.ZlibFactory: Successfully loaded &
initialized native-zlib library
13/04/07 14:35:44 INFO compress.CodecPool: Got brand-new decompressor

$key
 [1] 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 5 5

$val
 user item pref
1 1 101 5.0
2 1 102 3.0
3 1 103 2.5
4 2 101 2.0
5 2 102 2.5
6 2 103 5.0
7 2 104 2.0
8 3 101 2.0
9 3 104 4.0
10 3 105 4.5
11 3 107 5.0
12 4 101 5.0
13 4 103 3.0
14 4 104 4.5
15 4 106 4.0
16 5 101 4.0
17 5 102 3.0
18 5 103 2.0
19 5 104 4.0
20 5 105 3.5
21 5 106 4.0

STEP 1, Create co-occurrence matrix of items.
1) get the combination list of all items according to user groups.
> train.mr<-mapreduce(
+ train.hdfs,
+ map = function(k, v) {
+ keyval(k,v$item)
+ }

RHadoop ◾ 283

+ ,reduce=function(k,v){
+ m<-merge(v,v)
+ keyval(mx,my)
+ }
+)

> from.dfs(train.mr)

$key
 [1] 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 102
102 102 102
[20] 102 102 102 103 103 103 103 103 103 103 103 103 103 103 104 104
104 104 104
[39] 104 104 104 104 104 104 104 105 105 105 105 106 106 106 106 107
107 107 107
[58] 101 101 101 101 101 101 102 102 102 102 102 102 103 103 103 103
103 103 104
[77] 104 104 104 104 104 105 105 105 105 105 105 106 106 106 106 106 106

$val
 [1] 101 102 103 101 102 103 104 101 104 105 107 101 103 104 106 101
102 103 101
[20] 102 103 104 101 102 103 101 102 103 104 101 103 104 106 101 102
103 104 101
[39] 104 105 107 101 103 104 106 101 104 105 107 101 103 104 106 101
104 105 107
[58] 101 102 103 104 105 106 101 102 103 104 105 106 101 102 103 104
105 106 101
[77] 102 103 104 105 106 101 102 103 104 105 106 101 102 103 104 105 106

2) count the item combination list and create co-occurrence matrix
of items.
> step2.mr<-mapreduce(
+ train.mr,
+ map = function(k, v) {
+ d<-data.frame(k,v)
+ d2<-ddply(d,.(k,v),count)
+
+ key<-d2$k
+ val<-d2
+ keyval(key,val)
+ }
+)

> from.dfs(step2.mr)

$key
 [1] 101 101 101 101 101 101 101 102 102 102 102 102 102 103 103 103
103 103 103
[20] 104 104 104 104 104 104 104 105 105 105 105 105 105 105 106 106
106 106 106
[39] 106 107 107 107 107

284 ◾ R for Programmers: Mastering the Tools

$val
 k v freq
1 101 101 5
2 101 102 3
3 101 103 4
4 101 104 4
5 101 105 2
6 101 106 2
7 101 107 1
8 102 101 3
9 102 102 3
10 102 103 3
11 102 104 2
12 102 105 1
13 102 106 1
14 103 101 4
15 103 102 3
16 103 103 4
17 103 104 3
18 103 105 1
19 103 106 2
20 104 101 4
21 104 102 2
22 104 103 3
23 104 104 4
24 104 105 2
25 104 106 2
26 104 107 1
27 105 101 2
28 105 102 1
29 105 103 1
30 105 104 2
31 105 105 2
32 105 106 1
33 105 107 1
34 106 101 2
35 106 102 1
36 106 103 2
37 106 104 2
38 106 105 1
39 106 106 2
40 107 101 1
41 107 104 1
42 107 105 1
43 107 107 1

2. Create rating matrix of users on items.
> train2.mr<-mapreduce(
+ train.hdfs,
+ map = function(k, v) {
+ #df<-v[which(v$user==3),]
+ df<-v
+ key<-df$item

RHadoop ◾ 285

+ val<-data.frame(item=df$item,user=df$user,pref=df$pref)
+ keyval(key,val)
+ }
+)

> from.dfs(train2.mr)

$key
 [1] 101 101 101 101 101 102 102 102 103 103 103 103 104 104 104 104
105 105 106
[20] 106 107

$val
 item user pref
1 101 1 5.0
2 101 2 2.0
3 101 3 2.0
4 101 4 5.0
5 101 5 4.0
6 102 1 3.0
7 102 2 2.5
8 102 5 3.0
9 103 1 2.5
10 103 2 5.0
11 103 4 3.0
12 103 5 2.0
13 104 2 2.0
14 104 3 4.0
15 104 4 4.5
16 104 5 4.0
17 105 3 4.5
18 105 5 3.5
19 106 4 4.0
20 106 5 4.0
21 107 3 5.0

#3. Merge the co-occurrence matrix and the rating matrix.
> eq.hdfs<-equijoin(
+ left.input=step2.mr,
+ right.input=train2.mr,
+ map.left=function(k,v){
+ keyval(k,v)
+ },
+ map.right=function(k,v){
+ keyval(k,v)
+ },
+ outer = c("left")
+)

> from.dfs(eq.hdfs)

$key
NULL

286 ◾ R for Programmers: Mastering the Tools

$val
 k.l v.l freq.l item.r user.r pref.r
1 103 101 4 103 1 2.5
2 103 102 3 103 1 2.5
3 103 103 4 103 1 2.5
4 103 104 3 103 1 2.5
5 103 105 1 103 1 2.5
6 103 106 2 103 1 2.5
7 103 101 4 103 2 5.0
8 103 102 3 103 2 5.0
9 103 103 4 103 2 5.0
10 103 104 3 103 2 5.0
11 103 105 1 103 2 5.0
12 103 106 2 103 2 5.0
13 103 101 4 103 4 3.0
14 103 102 3 103 4 3.0
15 103 103 4 103 4 3.0
16 103 104 3 103 4 3.0
17 103 105 1 103 4 3.0
18 103 106 2 103 4 3.0
19 103 101 4 103 5 2.0
20 103 102 3 103 5 2.0

Omit some output.

4. Calculate the recommendation result list.
> cal.mr<-mapreduce(
+ input=eq.hdfs,
+ map=function(k,v){
+ val<-v
+ na<-is.na(v$user.r)
+ if(length(which(na))>0) val<-v[-which(is.na(v$user.r)),]
+ keyval(val$k.l,val)
+ }
+ ,reduce=function(k,v){
+ val<-ddply(v,.(k.l,v.l,user.r),summarize,v=freq.l*pref.r)
+ keyval(val$k.l,val)
+ }
+)

> from.dfs(cal.mr)

$key
 [1] 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101
101 101 101
 [19] 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101
101 101 102
 [37] 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102
102 102 103
 [55] 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103
103 103 103

RHadoop ◾ 287

 [73] 103 103 103 103 103 104 104 104 104 104 104 104 104 104 104
104 104 104
 [91] 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104
105 105 105
[109] 105 105 105 105 105 105 105 105 105 105 105 106 106 106 106
106 106 106
[127] 106 106 106 106 106 107 107 107 107

$val
 k.l v.l user.r v
1 101 101 1 25.0
2 101 101 2 10.0
3 101 101 3 10.0
4 101 101 4 25.0
5 101 101 5 20.0
6 101 102 1 15.0
7 101 102 2 6.0
8 101 102 3 6.0
9 101 102 4 15.0
10 101 102 5 12.0
11 101 103 1 20.0
12 101 103 2 8.0
13 101 103 3 8.0
14 101 103 4 20.0
15 101 103 5 16.0
16 101 104 1 20.0
17 101 104 2 8.0
18 101 104 3 8.0
19 101 104 4 20.0
20 101 104 5 16.0

Omit some output.

5. Get the recommendation rating list in the format of input.
> result.mr<-mapreduce(
+ input=cal.mr,
+ map=function(k,v){
+ keyval(v$user.r,v)
+ }
+ ,reduce=function(k,v){
+ val<-ddply(v,.(user.r,v.l),summarize,v=sum(v))
+ val2<-val[order(val$v,decreasing=TRUE),]
+ names(val2)<-c("user","item","pref")
+ keyval(val2$user,val2)
+ }
+)

Print the result
> from.dfs(result.mr)

$key
 [1] 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5
5 5 5

288 ◾ R for Programmers: Mastering the Tools

This section provides a method of using R to implement a collaborative filtering algorithm
based on MapReduce. The algorithm might not be optimal, so I hope you can write a better one!
With the development of R and Hadoop, I believe that there will be more and more algorithms
using this method.

If you want to compare this with the collaborative filtering algorithm based on MapReduce of
Java, please refer to the author’s blog “Use Hadoop to Construct File Recommendation System” and
“Step-by-Step Program Development of Mahout: Collaborative Filtering ItemCF Based on Items.”

7.5 installation and Use of RHBase
Question
How do we use R to access HBase?

$val
 user item pref
1 1 101 44.0
2 1 103 39.0
3 1 104 33.5
4 1 102 31.5
5 1 106 18.0
6 1 105 15.5
7 1 107 5.0
8 2 101 45.5
9 2 103 41.5
10 2 104 36.0
11 2 102 32.5
12 2 106 20.5
13 2 105 15.5
14 2 107 4.0
15 3 101 40.0
16 3 104 38.0
17 3 105 26.0
18 3 103 24.5
19 3 102 18.5
20 3 106 16.5
21 3 107 15.5
22 4 101 63.0
23 4 104 55.0
24 4 103 53.5
25 4 102 37.0
26 4 106 33.0
27 4 105 26.0
28 4 107 9.5
29 5 101 68.0
30 5 104 59.0
31 5 103 56.5
32 5 102 42.5
33 5 106 34.5
34 5 105 32.0
35 5 107 11.5

RHadoop ◾ 289

Installation and use of RHBase
http://blog.fens.me/rhadoop-hbase-rhase/

RHadoop series

HBase is a distributed database product of the Hadoop family. It has many advantages, including
supporting high-concurrency reading and writing, column-style data storage, efficient index, auto-
sharing, and auto region migration. It has become more and more accepted and used in industry.

7.5.1 Environment Preparation of HBase

Here we continue to use the environment in Section 7.2.

 ◾ Linux Ubuntu 12.04.2 LTS 64bit server
 ◾ Java JDK 1.6.0_45
 ◾ Hadoop 1.1.2
 ◾ HBase-0.94.2
 ◾ thrift-0.8.0

For information on the installation and configuration of HBase, please refer to Appendix H.
View the server environment of HBase. Use command bin/start-hbase.sh to start HBase server.
The default port is port = 60000.

Start Hadoop.
~ /home/conan/hadoop/hadoop-1.1.2/bin/start-all.sh
Start HBase.
~ /home/conan/hadoop/hbase-0.94.2/bin/start-hbase.sh
Start Thrift service of HBase.
~ /home/conan/hadoop/hbase-0.94.2/bin/hbase-daemon.sh start thrift
View HBase process.
~ jps
12041 HMaster
12209 HRegionServer
13222 ThriftServer
31734 TaskTracker
31343 DataNode
31499 SecondaryNameNode
13328 Jps
31596 JobTracker
11916 HQuorumPeer
31216 NameNode

290 ◾ R for Programmers: Mastering the Tools

7.5.2 Installation of rHBase

We downloaded rHBase-1.1.tar.gz in Section 7.2, so I’ll skip the introduction to rHBase. We need
only one line of command to finish the installation of rHBase.

7.5.3 Function Library of rHBase

RHBase supports 16 functions to implement operations of HBase.

7.5.3.1 16 Functions of rHBase

The following are the 16 functions and their comparison with those in HBase.

7.5.3.2 Basic Operations between HBase and rHBase

~ R CMD INSTALL rhbase_1.1.1.tar.gz

hb.compact.table hb.describe.table hb.insert hb.regions.table
hb.defaults hb.get hb.insert. data.frame hb.scan

hb.delete hb.get.data.frame hb.list.tables hb.scan.ex
hb.delete.table hb.init hb.new.table hb.set.table.mode

Create table.
HBase Shell:
create 'student_shell','info'
rhbase:
hb.new.table("student_rhbase","info")
List all the tables.
HBase Shell:
list
rhbase:
hb.list.tables()
Display table structure.
HBase Shell:
describe 'student_shell'
rhbase:
hb.describe.table("student_rhbase")
Insert a piece of data.
HBase Shell:
put 'student_shell','mary','info:age','19'
rhbase:
hb.insert("student_rhbase",list(list("mary","info:age", "24")))
Load data.
HBase Shell:
get 'student_shell','mary'

RHadoop ◾ 291

7.5.3.3 Execute Base Operations of HBase

We use HBase Shell and rHBase to execute basic function operations on HBase. First is HBase
Shell.

Then use rHBase to perform the same operations.

rhbase:
hb.get('student_rhbase','mary')
Delete table(We need two commands to delete table in HBase, and
only one in rHBase).
HBase Shell:
disable 'student_shell'
drop 'student_shell'
rhbase:
hb.delete.table('student_rhbase')

Start HBase Shell.
~ /home/conan/hadoop/hbase-0.94.18/bin/hbase shell
Create table.
> create 'student_shell','info'
> list
TABLE
student_shell
Display table structure.
> describe 'student_shell'
DESCRIPTION
ENABLED
{NAME => 'student_shell', FAMILIES => [{NAME => 'info', DATA_BLOCK_
true
ENCODING => 'NONE', BLOOMFILTER => 'NONE', REPLICATION_SCOPE => '0'
, VERSIONS => '3', COMPRESSION => 'NONE', MIN_VERSIONS => '0', TTL
=> '2147483647', KEEP_DELETED_CELLS => 'false', BLOCKSIZE => '65536
', IN_MEMORY => 'false', ENCODE_ON_DISK => 'true', BLOCKCACHE =>
'true'}]}
Insert a piece of data.
> put 'student_shell','mary','info:age','19'
View data.
> get 'student_shell','mary'
COLUMN CELL
info:age timestamp=1365414964962, value=19
Delete table.
> disable 'student_shell'
> drop 'student_shell'

Start R.
~ R

292 ◾ R for Programmers: Mastering the Tools

Now we’ve accessed HBase using R.

Load rHBase.
> library(rhbase)
Initialize HBase in R.
> hb.init()
<pointer: 0x16494a0>
attr(,"class")
[1] "hb.client.connection"

Create table.
> hb.new.table("student_rhbase","info",opts=list(maxversions=5,x=
list(maxversions=1L,compression='GZ',inmemory=TRUE)))
[1] TRUE
View all the tables.
> hb.list.tables()
$student_rhbase
 maxversions compression inmemory bloomfiltertype bloomfiltervecsize
info: 5 NONE FALSE NONE
0
 bloomfilternbhashes blockcache timetolive
info: 0 FALSE -1
View table structure.
> hb.describe.table("student_rhbase")
 maxversions compression inmemory bloomfiltertype
bloomfiltervecsize
info: 5 NONE FALSE NONE
0
 bloomfilternbhashes blockcache timetolive
info: 0 FALSE -1

Insert one piece of data.
> hb.insert("student_rhbase",list(list("mary","info:age", "24")))
[1] TRUE

Query data.
> hb.get('student_rhbase','mary')
[[1]]
[[1]][[1]]
[1] "mary"

[[1]][[2]]
[1] "info:age"

[[1]][[3]]
[[1]][[3]][[1]]
[1] "24"

Delete table.
> hb.delete.table('student_rhbase')
[1] TRUE

RHadoop ◾ 293

7.6 Solve the installation error of RHadoop
PipeMapRed.waitoutputthreads()

Question
In the installation process of RHadoop, we may meet the error PipeMapRed.waitOutputThreads().
How do we solve the error?

RHadoop series

http://blog.fens.me/rhadoo-rmr2-pipemapred/

PipeMapRed.waitOutput�reads () : subprocess failed with code 1

Solve the installation error of RHadoop

When we use the rmr2 package in RHadoop, we may meet the error PipeMapRed.waitOutput
Threads(): subprocess failed with code 1. This error may have troubled many users. What’s the
reason for this error? And how do we solve it? This section gives you the answers.

The code for possible error is as follows.

7.6.1 Error Log of rmr2

System environment in this section:

 ◾ Linux Ubuntu 12.04.2 LTS 64bit server
 ◾ R 2.15.3 64bit
 ◾ Java JDK 1.6.x
 ◾ Hadoop 1.1.2
 ◾ IP: 192.168.1.243

Error log in R:

packageJobJar: [/tmp/Rtmpdf7egm/rmr-local-env3cbb70983, /tmp/
Rtmpdf7egm/rmr-global-env3cbb654b85fe,/tmp/Rtmpdf7egm/rmr-streaming-
map3cbba213f2e, /home/conan/hadoop/tmp/

> small.ints = to.dfs(1:10)
> mapreduce(input = small.ints, map = function(k, v) cbind(v, v^2))
> from.dfs("/tmp/RtmpWnzxl4/file5deb791fcbd5")

294 ◾ R for Programmers: Mastering the Tools

We can’t find the actual error of Hadoop only from the log above.

7.6.2 Locate the Error in the Hadoop Log

Then we need to locate the position of the error. To query the log conveniently, open the console
jobtracker (http://192.168.1.210:50030/jobtracker.jsp) and find the webpage location of the log of
error, as in Figure 7.3.

View the error of map. Now it has a clear definition.

hadoop-unjar1697638502297829404/] [] /tmp/
streamjob4620072667602885650.jar tmpDir=null
13/06/23 10:44:25 INFO mapred.FileInputFormat: Total input paths to
process : 1
13/06/23 10:44:25 INFO streaming.StreamJob: getLocalDirs(): [/home/
conan/hadoop/tmp/mapred/local]
13/06/23 10:44:25 INFO streaming.StreamJob: Running job:
job_201306231032_0001
13/06/23 10:44:25 INFO streaming.StreamJob: To kill this job, run:
13/06/23 10:44:25 INFO streaming.StreamJob: /home/conan/hadoop/
hadoop-1.1.2/libexec/../bin/hadoop job -Dmapred.job.tracker=hdfs://
master:9001 -kill job_201306231032_0001
13/06/23 10:44:25 INFO streaming.StreamJob: Tracking URL: http://
master:50030/jobdetails.jsp?jobid=job_201306231032_0001
13/06/23 10:44:26 INFO streaming.StreamJob: map 0% reduce 0%
13/06/23 10:45:04 INFO streaming.StreamJob: map 100% reduce 100%
13/06/23 10:45:04 INFO streaming.StreamJob: To kill this job, run:
13/06/23 10:45:04 INFO streaming.StreamJob: /home/conan/hadoop/
hadoop-1.1.2/libexec/../bin/hadoop job -Dmapred.job.tracker=hdfs://
master:9001 -kill job_201306231032_0001
13/06/23 10:45:04 INFO streaming.StreamJob: Tracking URL: http://
master:50030/jobdetails.jsp?jobid=job_201306231032_0001
13/06/23 10:45:04 ERROR streaming.StreamJob: Job not successful.
Error: # of failed Map Tasks exceeded allowed limit. FailedCount: 1.
LastFailedTask: task_201306231032_0001_m_000000
13/06/23 10:45:04 INFO streaming.StreamJob: killJob...
Streaming Command Failed!
Error in mr(map = map, reduce = reduce, combine = combine,
vectorized.reduce, :
 hadoop streaming failed with error code 1

Running a job using hadoop streaming and mrjob: PipeMapRed.
waitOutputThreads(): subprocess failed with code 1
java.lang.RuntimeException: PipeMapRed.waitOutputThreads():
subprocess failed with code 1 at
org.apache.hadoop.streaming.PipeMapRed.waitOutputThreads(PipeMapRed.
java:362) at

http://192.168.1.210:50030

RHadoop ◾ 295

Then we use two methods to troubleshoot and solve the error.

org.apache.hadoop.streaming.PipeMapRed.mapRedFinished(PipeMapRed.
java:576) at
org.apache.hadoop.streaming.PipeMapper.close(PipeMapper.java:135) at
org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:57) at
org.apache.hadoop.streaming.PipeMapRunner.run(PipeMapRunner.java:36) at
org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:436) at
org.apache.hadoop.mapred.MapTask.run(MapTask.java:372) at
org.apache.hadoop.mapred.Child$4.run(Child.java:255) at
java.security.AccessController.doPrivileged(Native Method) at
javax.security.auth.Subject.doAs(Subject.java:396) at
org.apache.hadoop.security.UserGroupInformation.
doAs(UserGroupInformation.java:1121) at
org.apache.hadoop.mapred.Child.main(Child.java:249)

Figure 7.3 Console of Jobtracker.

296 ◾ R for Programmers: Mastering the Tools

7.6.3 Find Solutions in Hadoop: Failed

View the error list of Hadoop: error of code 1.

From its description, we may find that this is an error of authority. Let’s make an analysis of
the authority of users and user groups in RHadoop environment.

 ◾ Initiating user of Hadoop: user: conan, user group: conan
 ◾ Initiating user of R: user: conan, user group: conan

The users have the same authority, so why would an error appear? I’ve run another test in
Hadoop using the root authority, where no error is reported.

Now because the problem is quite specific, let’s look for the reason for this error on the Internet.
Search “org.apache.hadoop.security.AccessControlException” on Google. According to the search
result on the Internet, adjust the configuration of Hadoop: add the definition of dfs.permissions
.superusergroup in hdfs-site.xml. We can check the default value of the configuration of super-
usergroup in the system.

The default name of the group is now supergourp. Modify hdfs-site.xml and add the definition
of dfs.permissions.superusergroup.

Restart the Hadoop cluster and R, and run rmr2 script. But the error is still not solved.

~ vi $HADOOP_HOME/conf/hdfs-site.xml

<configuration>
 <property>
 <name>dfs.data.dir</name>
 <value>/home/conan/hadoop/data</value>
 </property>
 <property>
 <name>dfs.replication</name>
 <value>1</value>
 </property>
 <property>
 <name>dfs.permissions</name>
 <value>false</value>
 </property>
 <property>
 <name>dfs.permissions.superusergroup</name>
 <value>supergroup</value>
 </property>
</configuration>

"OS error code 1: Operation not permitted""OS error code 2: No such
file or directory"

RHadoop ◾ 297

7.6.4 Find Solutions in RHadoop: Succeeded

Looking at the issue 122 of RHadoop on Github (https://github.com/RevolutionAnalytics
/RHadoop/issues/122), we find that others also face similar problems. But the issue is closed now,
indicating that this problem has been solved according to the answer, “The problem was indeed
that the rmr package (and other dependent packages) needed to be installed in the system direc-
tory rather than the user specific directory.” In my own environment, the configuration is the same
as the preceding description.

I find that all the class libraries in my environment are under the directory/home/conan. And
there is none under the directory/usr/local/lib/R/site-library. So we reinstall the RHadoop using
root authority according to the direction of the author of RHadoop.

Start R.
~ R

View the installation directory of R packages.
> .libPaths()
[1] "/home/conan/R/x86_64-pc-linux-gnu-library/2.15"
[2] "/usr/local/lib/R/site-library"
[3] "/usr/lib/R/site-library"
[4] "/usr/lib/R/library"

View the R packages using commands.
~ ls /home/conan/R/x86_64-pc-linux-gnu-library/2.15
colorspace functional iterators munsell RColorBrewer rhdfs
rmr2
dichromat ggplot2 itertools plyr Rcpp rJava
scales
digest gtable labeling proto reshape2 RJSONIO
stringr

/usr/local is empty.
~ ls /usr/local/lib/R/site-library

Switch to root.
~ sudo -i
View the path of class libraries of R.
~ R
> .libPaths()
[1] "/usr/local/lib/R/site-library" "/usr/lib/R/site-library"
[3] "/usr/lib/R/library"
Install under root authority.
~ R CMD javareconf
~ R

https://github.com
https://github.com

298 ◾ R for Programmers: Mastering the Tools

The dependent packages are installed under/usr/local/lib/R/site-library. Quit root user and
restart R to test.

Quit root user.
~ exit
~ whoami
conan

Restart R.
~ R
> library(rmr2)
Loading required package: Rcpp
Loading required package: RJSONIO
Loading required package: digest
Loading required package: functional
Loading required package: stringr
Loading required package: plyr
Loading required package: reshape

Run rmr2.
> small.ints = to.dfs(1:10)
> mapreduce(input = small.ints, map = function(k, v) cbind(v, v^2))

packageJobJar: [/tmp/RtmpM87JEc/rmr-local-env1c7588ca7ed, /tmp/
RtmpM87JEc/rmr-global-env1c77fdcab5f, /tmp/RtmpM87JEc/rmr-streaming-
map1c76a4ddf6e, /home/conan/hadoop/tmp/hadoop-
unjar6992113986427459004/] [] /tmp/streamjob2762947354578034435.jar
tmpDir=null
13/06/23 13:27:36 INFO mapred.FileInputFormat: Total input paths to
process : 1
13/06/23 13:27:36 INFO streaming.StreamJob: getLocalDirs(): [/home/
conan/hadoop/tmp/mapred/local]

Start R.
> install.packages("rJava")
> install.packages("reshape2")
> install.packages("Rcpp")
> install.packages("iterators")
> install.packages("itertools")
> install.packages("digest")
> install.packages("RJSONIO")
> install.packages("functional")

~ cd /home/conan/R
~ R CMD INSTALL rmr2_2.1.0.tar.gz

There are R packages under /usr/local.
~ ls /usr/local/lib/R/site-library
digest functional iterators itertools plyr Rcpp reshape2
rJava RJSONIO rmr2 stringr

RHadoop ◾ 299

The problem is finally solved!
This section has solved the aforementioned problem in four steps: finding the error, locating

the error, finding the reason, and solving the error. I hope that this section will not only help you
with this problem, but also provide you with some ideas to improve your ability to solve other
problems on your own!

The body of this book is now finished. Thanks for reading. I hope that this book may open a
new door for further study. The next book of this series, R for Geeks: Advanced Development, will
introduce more content for learning R. I hope that readers can develop some interesting applica-
tions using the tools and techniques introduced in this book.

13/06/23 13:27:36 INFO streaming.StreamJob: Running job:
job_201306231141_0007
13/06/23 13:27:36 INFO streaming.StreamJob: To kill this job, run:
13/06/23 13:27:36 INFO streaming.StreamJob: /home/conan/hadoop/
hadoop-1.1.2/libexec/../bin/hadoop job -Dmapred.job.tracker=hdfs://
master:9001 -kill job_201306231141_0007
13/06/23 13:27:36 INFO streaming.StreamJob: Tracking URL: http://
master:50030/jobdetails.jsp?jobid=job_201306231141_0007
13/06/23 13:27:37 INFO streaming.StreamJob: map 0% reduce 0%
13/06/23 13:27:51 INFO streaming.StreamJob: map 100% reduce 0%
13/06/23 13:27:58 INFO streaming.StreamJob: map 100% reduce 100%
13/06/23 13:27:58 INFO streaming.StreamJob: Job complete:
job_201306231141_0007
13/06/23 13:27:58 INFO streaming.StreamJob: Output: /tmp/RtmpM87JEc/
file1c722c5c6ae

iVAPPenDiXeS

303

Appendix A: installation
of Java environment

A.1 installation of Java in Windows®

Installation of Java environment refers to the installation of a Java development environment,
including the installation of JDK and environment configuration of Java. Many Java applications
can be run through JRE in Windows. But Java developers should install JDK officially published
by Oracle SUN.

It’s very simple to install JDK in Windows by downloading and running the exe file, available
from http://www.oracle.com/technetwork/java/javase/downloads/index.html. We can download
the latest version Java SE 8, or the earlier JDK versions. JDK version 1.6.0_45 is used in this book,
installed in the directory D:\toolkit\java\jdk6. After installation, we should start the environment
variables configuration, as in Figure A.1. Select Control Panel → System and Security → System
Attribute → Advanced → Environment Variables.

Note: If the PATH variable already exists, we should add the path of JDK to the last and sepa-
rate it from the last configuration with a semicolon(;).

After saving the result, open a new CMD window and test the command line operation of Java.

Create JAVA_HOME variable.
JAVA_HOME=D:\toolkit\java\jdk6

Create PATH Variable.
PATH=D:\toolkit\java\jdk6\bin

Check the version of Java.
~ C:\Users\Administrator>java -version
java version "1.6.0_45"
Java(TM) SE Runtime Environment (build 1.6.0_45-b06)
Java HotSpot(TM) 64-Bit Server VM (build 20.45-b01, mixed mode)

http://www.oracle.com

304 ◾ Appendix A

Test Java command.
~ C:\Users\Administrator>java
Usage: java [-options] class [args...]
 (to execute a class)
 or java [-options] -jar jarfile [args...]
 (to execute a jar file)
where options include:
 -server to select the "server" VM
 -hotspot is a synonym for the "server" VM [deprecated]
 The default VM is server.
 -cp <class search path of directories and zip/jar files>
 -classpath <class search path of directories and zip/jar files>
 A ; separated list of directories, JAR archives,
 and ZIP archives to search for class files.
 -D<name>=<value>
 set a system property
 -verbose[:class|gc|jni]
 enable verbose output
 -version print product version and exit
 -version:<value>
 require the specified version to run
 -showversion print product version and continue
 -jre-restrict-search | -jre-no-restrict-search
 include/exclude user private JREs in the version
search
 -? -help print this help message
 -X print help on non-standard options
 -ea[:<packagename>...|:<classname>]
 -enableassertions[:<packagename>...|:<classname>]
 enable assertions
 -da[:<packagename>...|:<classname>]
 -disableassertions[:<packagename>...|:<classname>]
 disable assertions
 -esa | -enablesystemassertions
 enable system assertions
 -dsa | -disablesystemassertions
 disable system assertions
 -agentlib:<libname>[=<options>]
 load native agent library <libname>, e.g.
-agentlib:hprof
 see also, -agentlib:jdwp=help and
-agentlib:hprof=help
 -agentpath:<pathname>[=<options>]
 load native agent library by full pathname
 -javaagent:<jarpath>[=<options>]
 load Java programming language agent, see java.
lang.instrument
 -splash:<imagepath>
 show splash screen with specified image

Test Javac command.
~ C:\Users\Administrator>javac

Appendix A ◾ 305

Thus the Java environment configuration of Java in Windows is completed.

A.2 installation of Java in Linux Ubuntu®

The installation of Java here refers to installing the official JDK software packages of Oracle SUN,
not installing OpenJDK through apt-get in Linux Ubuntu. I choose to install the 64-bit version
Java, Java SE 1.6.45, in Linux Ubuntu. Please pay attention to the version number and use the
official JDK software package of Oracle SUN.

A.2.1 Download JDK

Now we need to sign into the official website of Oracle to download JDK. We cannot download
JDK by directly using the wget command. Here are two solutions: (1) Sign in and download JDK
in your browser, and then upload it to the Linux server. (2) Use the wget command to perform
simulate signing in through user cookies, and then download. A further explanation of the second
solution is available on the author’s blog, http://blog.fens.me/linux-java-install.

Figure A.1 Configuration of Java environment variables.

http://blog.fens.me

306 ◾ Appendix A

A.2.2 Install JDK

Install JDK through the Shell command.

A.2.3 Set the Environment Variables of Java

Edit the environment variable file/etc/environment using vi.

Check the configuration of environment variables.

Install JDK.
~ sh ./jdk-6u45-linux-x64.bin
~ pwd
/home/conan/tookit

Check the directory after installation.
~ tree -L 2
.
├── jdk1.6.0_45
│ ├── bin
│ ├── COPYRIGHT
│ ├── db
│ ├── include
│ ├── jre
│ ├── lib
│ ├── LICENSE
│ ├── man
│ ├── README.html
│ ├── src.zip
│ └── THIRDPARTYLICENSEREADME.txt
└── jdk-6u45-linux-x64.bin

Take the environment variables into effect.
~ . /etc/environment

Check the environment variables.
~ export|grep jdk
declare -x OLDPWD="/home/conan/tookit/jdk1.6.0_45"
declare -x

~ sudo vi /etc/environment

PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/
usr/games:/home/conan/tookit/jdk1.6.0_45/bin"
JAVA_HOME=/home/conan/tookit/jdk1.6.0_45

Appendix A ◾ 307

Run the Java command.

~ java -version
java version "1.6.0_45"
Java(TM) SE Runtime Environment (build 1.6.0_45-b06)
Java HotSpot(TM) 64-Bit Server VM (build 20.45-b01, mixed mode)
~ java
Usage: java [-options] class [args...]
 (to execute a class)
 or java [-options] -jar jarfile [args...]
 (to execute a jar file)
where options include:
 -d32 use a 32-bit data model if available
 -d64 use a 64-bit data model if available
 -server to select the "server" VM
 The default VM is server.
 -cp
 -classpath
 A : separated list of directories, JAR archives,
 and ZIP archives to search for class files.
 -D=
 set a system property
 -verbose[:class|gc|jni]
 enable verbose output
 -version print product version and exit
 -version:
 require the specified version to run
 -showversion print product version and continue
 -jre-restrict-search | -jre-no-restrict-search
 include/exclude user private JREs in the version

search
 -? -help print this help message
 -X print help on non-standard options
 -ea[:...|:]
 -enableassertions[:...|:]
 enable assertions
 -da[:...|:]
 -disableassertions[:...|:]
 disable assertions
 -esa | -enablesystemassertions
 enable system assertions
 -dsa | -disablesystemassertions
 disable system assertions

PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/
usr/games:/home/conan/tookit/jdk1.6.0_45/bin"

~ echo $JAVA_HOME
/home/conan/tookit/jdk1.6.0_45

308 ◾ Appendix A

After all of the preceding operations, the installation of a Java environment in Linux Ubuntu
is completed.

 -agentlib:[=]
 load native agent library, e.g. -agentlib:hprof
 see also, -agentlib:jdwp=help and

-agentlib:hprof=help
 -agentpath:[=]
 load native agent library by full pathname
 -javaagent:[=]
 load Java programming language agent, see java.

lang.instrument
 -splash:
 show splash screen with specified image

309

Appendix B: installation
of MySQL

B.1 installation of MySQL in Windows®

It’s very simple to install MySQL in Windows by downloading and decompressing the package.
The address is http://dev.mysql.com/downloads/mysql/.

 ◾ Command for Running of MySQL server: installation directory of MySQL/bin/mysqld.exe
 ◾ Command for Running of MySQL client: installation directory of MySQL/bin/mysql.exe

B.2 installation of MySQL in Linux Ubuntu®

This book uses Linux Ubuntu 12.04.2 LTS 64bit. The installation of MySQL package can be
implemented through apt-get. First install MySQL in Linux Ubuntu.

During the process we need to input the password of the root user. I choose mysql as my pass-
word. After installation, the MySQL server will start automatically and we can check the program
of the MySQL server.

Install MySQL server.
~ sudo apt-get install mysql-server

Check the system process of MySQL server.
~ ps -aux|grep mysql
mysql 3205 2.0 0.5 549896 44092 ? Ssl 20:10 0:00 /usr/
sbin/mysqld
conan 3360 0.0 0.0 11064 928 pts/0 S+ 20:10 0:00 grep
-- color=auto mysql

Check the port used in the MySQL server.
~ netstat -nlt|grep 3306
tcp 0 0 127.0.0.1:3306 0.0.0.0:*
LISTEN

http://dev.mysql.com

310 ◾ Appendix B

B.3 Access MySQL through the Command Line Client
The client program of the MySQL command line will be installed automatically with MySQL
server. Input mysql command to start the client program to access the MySQL server.

Input the username and password to login to the server.

Check the state of MySQL server through start command.
~ sudo /etc/init.d/mysql status
Rather than invoking init scripts through /etc/init.d, use the
service(8)
utility, e.g. service mysql status
Since the script you are attempting to invoke has been converted to an
Upstart job, you may also use the status(8) utility, e.g. status mysql
mysql start/running, process 3205

Check the sate of MySQL server through system service command.
~ service mysql status
mysql start/running, process 3205

~ mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 42
Server version: 5.5.35-0ubuntu0.12.04.2 (Ubuntu)

Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights
reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

mysql>

~ mysql -uroot -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 37
Server version: 5.5.35-0ubuntu0.12.04.2 (Ubuntu)

Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights
reserved.

Appendix B ◾ 311

The following is a simple command operation of MySQL.

B.4 Modify the Configuration of MySQL Server
We need to modify the configuration to make MySQL adapted to the demand of development.

B.4.1 Set the Character Encoding to UTF-8

As the default character set of MySQL is latin1, Chinese characters would be turned to garbled
words when they are stored. So we need to change the character set to UTF-8.

Use vi to open the configuration file, my.cnf, of MySQL server.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

mysql>

View all the databases.
mysql> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| test |
+--------------------+
View the character set encoding of database.
mysql> show variables like '%char%';
+--------------------------+----------------------------+
| Variable_name | Value |
+--------------------------+----------------------------+
character_set_client	utf8
character_set_connection	utf8
character_set_database	utf8
character_set_filesystem	binary
character_set_results	utf8
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/usr/share/mysql/charsets/
+--------------------------+----------------------------+
8 rows in set (0.00 sec)

~ sudo vi /etc/mysql/my.cnf

Add the character encoding of client under the label [client].
[client]
default-character-set=utf8

312 ◾ Appendix B

B.4.2 Permit MySQL Server to Be Accessed Remotely

By default, the MySQL server can be accessed only locally but not remotely. So we need to change
the option of remote access. Open the configuration file of MySQL server, my.cnf, using vi.

Restart the MySQL server after modification.

Re-login to the server.

Add the character encoding of client under the label [mysqld].
[mysqld]
character-set-server=utf8
collation-server=utf8_general_ci

~ sudo vi /etc/mysql/my.cnf

#bind-address = 127.0.0.1

~ sudo /etc/init.d/mysql restart
Rather than invoking init scripts through /etc/init.d, use the
service(8)
utility, e.g. service mysql restart

Since the script you are attempting to invoke has been converted to an
Upstart job, you may also use the stop(8) and then start(8)
utilities,
e.g. stop mysql ; start mysql. The restart(8) utility is also
available.
mysql start/running, process 3577

~ mysql -uroot -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 37
Server version: 5.5.35-0ubuntu0.12.04.2 (Ubuntu)

Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights
reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

Appendix B ◾ 313

Check the network monitoring port of MySQL.

We can see that the network monitoring is transformed to 0 0.0.0.0.0:3306 from 127.0.0.1:3306,
which indicates that MySQL can be accessed remotely now.

Now the MySQL server is installed in Linux Ubuntu.

View the character set encoding again.
mysql> show variables like '%char%';
+--------------------------+----------------------------+
| Variable_name | Value |
+--------------------------+----------------------------+
character_set_client	utf8
character_set_connection	utf8
character_set_database	utf8
character_set_filesystem	binary
character_set_results	utf8
character_set_server	utf8
character_set_system	utf8
character_sets_dir	/usr/share/mysql/charsets/
+--------------------------+----------------------------+
8 rows in set (0.00 sec)

Check the port used in MySQL server.
~ netstat -nlt|grep 3306
 tcp 0 0 0.0.0.0:3306 0.0.0.0:*
LISTEN

315

Appendix C: installation
of Redis

C.1 installation of Redis in Windows®

It’s very simple to install Redis in Windows by downloading and running the exe file available
from https://github.com/rgl/redis/downloads.

 ◾ Command for running of Redis server: installation directory of Redis/redis-server.exe
 ◾ Command for running of Redis client: installation directory of Redis/redis-cli.exe

C.2 installation of Redis in Linux Ubuntu®

This book uses Linux Ubuntu 12.04.2 LTS 64bit. The installation of Redis packages can be
achieved through apt-get.

After the installation, Redis server will start automatically. Now let’s check the program of the
Redis server.

Install Redis server.
~ sudo apt-get install redis-server

Check the system process of Redis server.
~ ps -aux|grep redis
redis 4162 0.1 0.0 10676 1420 ? Ss 23:24 0:00 /
usr/bin/ redis-server /etc/redis/redis.conf
conan 4172 0.0 0.0 11064 924 pts/0 S+ 23:26 0:00
grep -- color=auto redis

Check the condition of Redis server through start command.
~ netstat -nlt|grep 6379
tcp 0 0 127.0.0.1:6379 0.0.0.0:*
LISTEN

https://github.com

316 ◾ Appendix C

C.3 Access Redis through the Command Line Client
The program of the command line client of Redis will be installed automatically with the Redis
server. Input the command redis-cli and the client program will access the Redis server.

C.4 Modify the Configuration of Redis
C.4.1 Use the Access Account of Redis

By default, we don’t need login authentication to access Redis server. To increase the security level,
we can set an access password of the Redis server, redisredis as in this case.

Open the configuration file of Redis server, redis.conf, using vi.

C.4.2 Permit Redis Server to Be Accessed Remotely

By default, the Redis server can be accessed only locally but not remotely. So we need to change
the option of remote access. Open the configuration file of Redis server, my.cnf, using vi.

Check the condition of Redis server through start command.
~ sudo /etc/init.d/redis-server status
redis-server is running

Start Redis command line client.
~ redis-cli
redis 127.0.0.1:6379>

Help of command line.
redis 127.0.0.1:6379> help
redis-cli 2.2.12
Type: "help @" to get a list of commands in
 "help " for help on
 "help " to get a list of possible help topics
 "quit" to exit

View the table of all keys.
redis 127.0.0.1:6379> keys *
(empty list or set)

~ sudo vi /etc/redis/redis.conf

Cancel the comment "requirepass". The access password is redisredis.

~ sudo vi /etc/redis/redis.conf

#bind 127.0.0.1

Appendix C ◾ 317

Restart the Redis server after modification.

Sign into the Redis server without using a password.

We can sign into the server but can’t run a command. We then sign into the Redis server and
input a password.

Everything goes well this time. Check the network monitoring port of Redis.

We can see that the network monitoring is transformed to 0 0.0.0.0.0:3306 from 127.0.0.1:3306,
which indicates that Redis can be accessed remotely now. We can access the Redis server remotely
from another Linux.

Remote access is successful. Now the Redis server is installed in Linux Ubuntu.

~ sudo /etc/init.d/redis-server restart
Stopping redis-server: redis-server.
Starting redis-server: redis-server.

~ redis-cli

redis 127.0.0.1:6379> keys *
(error) ERR operation not permitted

~ redis-cli -a redisredis

redis 127.0.0.1:6379> keys *
1) "key2"
2) "key3"
3) "key4"

Check the port used in Redis server.
~ netstat -nlt|grep 6379
tcp 0 0 0.0.0.0:6379 0.0.0.0:* LISTEN

~ redis-cli -a redisredis -h 192.168.1.199

redis 192.168.1.199:6379> keys *
1) "key2"
2) "key3"
3) "key4"

319

Appendix D: installation
of MongoDB

D.1 installation of MongoDB in Windows®

It’s very easy to install MongoDB in Windows: download the executable file and install it directly.
The address for downloadinbg is http://www.mongodb.org/downloads.

 ◾ Running command of MongoDB server: installation directory/bin/mongod.exe
 ◾ Running command of MongoDB client: installation directory/bin/mongo.exe

D.2 installation of MongoDB in Linux Ubuntu®

This book uses Linux Ubuntu 12.04.2 LTS 64bit. We can install MongoDB using apt-get, but we need
to download the software source of MongoDB from the official website, https://www.mongodb .org
/downloads. First, we need to modify the file source.list of apt-get and add the configuration of 10gen.

Download key file.
~ sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 7F0CEB10
Executing: gpg --ignore-time-conflict --no-options --no-default-
keyring --secret-keyring /tmp/tmp.kVFab9XYw0 --trustdb-name /etc/apt/
trustdb.gpg --keyring /etc/apt/trusted.gpg --primary-keyring /etc/apt/
trusted.gpg --keyserver hkp://keyserver.ubuntu.com:80 --recv 7F0CEB10
gpg: Download key '7F0CEB10' from hkp server keyserver.ubuntu.com
gpg: Key 7F0CEB10: public key "Richard Kreuter" has been imported.
gpg: No key of absolute trust is found.
gpg: The number of processed: 1
gpg: Number of imported: 1 (RSA: 1)

Add the configuration of software source of MongoDB in source.list.
~ echo 'deb http://downloads-distro.mongodb.org/repo/ubuntu-upstart
dist 10gen' | sudo tee /etc/apt/sources.list.d/mongodb.list
deb http://downloads-distro.mongodb.org/repo/ubuntu-upstart dist 10gen

Update the list of software source.
~ sudo apt-get update

http://www.mongodb.org
https://www.mongodb.org
https://www.mongodb.org

320 ◾ Appendix D

Install MongoDB in Linux Ubuntu.

After installation, MongoDB will be started automatically. Let’s check the program of the
MongoDB server.

Check the status of the MongoDB server through the console of Web. Enter http://ip:28017 in
the browser and open the console of the Web, as in Figure D.1.

D.3 Access MongoDB through the Command Line Client
The client program of the MongoDB command line will be installed automatically with the
MongoDB server. Enter the command mongo and the client program will be started to access the
MongoDB server.

Install MongoDB server.
~ sudo apt-get install mongodb-10gen

Check the system process of MongoDB server.
~ ps -aux|grep mongo
mongodb 6870 3.7 0.4 349208 39740 ? Ssl 10:27 2:23 /
usr/bin/mongod --config /etc/mongodb.conf

Check the status of MongoDB server through start-up command.
~ netstat -nlt|grep 27017
tcp 0 0 0.0.0.0:27017 0.0.0.0:* LISTEN

Check the status of MongoDB server through start-up command.
~ sudo /etc/init.d/mongodb status
Rather than invoking init scripts through /etc/init.d, use the service(8)
utility, e.g. service mongodb status

Since the script you are attempting to invoke has been converted to an
Upstart job, you may also use the status(8) utility, e.g. status mongodb
mongodb start/running, process 6870

Check the status of MongoDB server through system service.
~ sudo service mongodb status
mongodb start/running, process 6870

http://ip:28017

Appendix D ◾ 321

The MongoDB server allows external access by default. Such single-node MongoDB is success-
fully installed in Linux Ubuntu.

Start MongoDB client.
~ mongo
MongoDB shell version: 2.4.9
connecting to: test
Welcome to the MongoDB shell.
For interactive help, type "help".
For more comprehensive documentation, see

http://docs.mongodb.org/

Questions? Try the support group

http://groups.google.com/group/mongodb-user

View the help information of command line.
> help

db.help() help on db methods
db.mycoll.help() help on collection methods
sh.help() sharding helpers
rs.help() replica set helpers
help admin administrative help
help connect connecting to a db help
help keys key shortcuts
help misc misc things to know
help mr mapreduce

show dbs show database names
show collections show collections in current database
show users show users in current database
show profile show most recent system.profile entries
with time >= 1ms
show logs show the accessible logger names
show log [name] prints out the last segment of log in
memory, 'global' is default
use set current database
db.foo.find() list objects in collection foo
db.foo.find({ a : 1 }) list objects in foo where a == 1
it result of the last line evaluated; use
to further iterate
DBQuery.shellBatchSize = x set default number of items to display
on shell
exit quit the mongo shell

322 ◾ Appendix D

Figure D.1 Web console of MongoDB.

323

Appendix e: installation
of Cassandra

e.1 environment Preparation of Ubuntu®

Cassandra, based on Java, is an NoSQL software. It doesn’t provide a Windows® version, so I’ll
just introduce the installation of Cassandra in Linux Ubuntu. As Cassandra is developed by Java,
we need to install a Java environment first (please refer to Appendix A).

Cassandra doesn’t provide the software source of apt-get for installation, so we need to down-
load the Cassandra package on the official website, http://cassandra.apache.org/download/. This
section uses version 1.2.15 as an example and performs the installation and configuration. Please
find the corresponding version and download it.

System environment:

 ◾ Linux Ubuntu 12.04.2 LTS 64bit server
 ◾ Java JDK 1.6.0_45

e.2 Download the Cassandra Package
Download Cassandra:

Download the version 1.2.15.
~ wget http://apache.dataguru.cn/cassandra/1.2.15/apache
-cassandra-1.2.15 -bin.tar.gz

Decompress the package.
~ tar xvf apache-cassandra-1.2.15-bin.tar.gz

View the file and the directory.
~ tree -L 2
.

http://cassandra.apache.org

324 ◾ Appendix E

e.3 Configure Cassandra
Configure the data directory of Cassandra.

 ◾ Data_file_directories: data file directory
 ◾ Commitlog_directory: log file directory
 ◾ Saved_caches_directory: cache file directory

Use vi open the configuration file cassandra.yaml of Cassandra.

Make sure that all these directories have been created in the operating system and the directory
/var/log/Cassandra is writable by users.

.
├── apache-cassandra-1.2.15
│ ├── bin
│ ├── CHANGES.txt
│ ├── conf
│ ├── interface
│ ├── javadoc
│ ├── lib
│ ├── LICENSE.txt
│ ├── NEWS.txt
│ ├── NOTICE.txt
│ ├── pylib
│ ├── README.txt
│ └── tools
├── apache-cassandra-1.2.15-bin.tar.gz

Change the name of the decompressed directory.
~ mv apache-cassandra-1.2.15/ cassandra1215

Enter the directory.
~ cd cassandra1215/

~ vi conf/cassandra.yaml

data_file_directories:
 - /var/lib/cassandra/data
commitlog_directory: /var/lib/cassandra/commitlog
saved_caches_directory: /var/lib/cassandra/saved_caches

Create directory.
~ sudo mkdir -p /var/lib/cassandra/data
~ sudo mkdir -p /var/lib/cassandra/saved_caches
~ sudo mkdir -p /var/lib/cassandra/commitlog
~ sudo mkdir -p /var/log/cassandra/

Appendix E ◾ 325

e.4 Set the environment Variables

e.5 Start the Cassandra Server
Start the Cassandra server through commands.

e.6 Use Client to Access Cassandra
Use the client program to access Cassandra server.

Assign the directories to users.
~ sudo chown -R conan:conan /var/lib/cassandra
~ sudo chown -R conan:conan /var/log/cassandra/

View the directory authority.
~ ll /var/lib/cassandra
drwxr-xr-x 2 conan conan 4096 3月 22 06:23 commitlog/
drwxr-xr-x 2 conan conan 4096 3月 22 06:23 data/
drwxr-xr-x 2 conan conan 4096 3月 22 06:23 saved_caches/

~ sudo vi /etc/environment
CASSANDRA_HOME=/home/conan/toolkit/cassandra1215

Take the environment variables into effect.
~ . /etc/environment

View the environment variables.
~ echo $CASSANDRA_HOME
/home/conan/toolkit/cassandra1215

The parameter –f is to bind to console. If there is no –f, then it
will be started in the background.
~ bin/cassandra

View the system process of Cassandra.
~ ps -axu|grep cassandra

View the system port.
~ netstat -nlt|grep 9160
tcp 0 0 127.0.0.1:9160 0.0.0.0:* LISTEN

~ bin/cassandra-cli
Connected to: "Test Cluster" on 127.0.0.1/9160
Welcome to Cassandra CLI version 1.2.15

326 ◾ Appendix E

Now single-node Cassandra is installed in the Linux Ubuntu system.

Type 'help;' or '?' for help.
Type 'quit;' or 'exit;' to quit.

View the help information of command line.
[default@unknown] ?

327

Appendix F: installation
of Hadoop

F.1 environment Preparation of Ubuntu
Hadoop supports the development on Linux®, Windows®, and Mac, but it cannot be deployed in
Windows and Mac on a large scale, so I’ll focus on the installation and use of Hadoop in Linux
Ubuntu.

Because Hadoop is developed by Java, we need to install a Java environment first. For the
installation of Java, please refer to Appendix A. Hadoop doesn’t provide an apt-get software source
for installation, so we need to download the Hadoop package from the official website, http://
hadoop .apache.org/#Download+Hadoop.

System environment:

 ◾ Linux Ubuntu 12.04.2 LTS 64bit server
 ◾ Java JDK 1.6.0_45

F.2 Find the Historical Version of Hadoop
Here we need version 1.1.2 of Hadoop. Open the page for downloading Hadoop, http://www
.apache.org/dyn/closer.cgi/hadoop/common/. We can’t find version 1.1.2 in those download mir-
rors, as in Figure F.1.

Then check the distribution source of Hadoop on Github, as in Figure F.2. Find release 1.1.2.

Use the Linux command wget to download the source code.

https://github.com/apache/hadoop-common/releases/tag/release-1.1.2

~ wget https://github.com/apache/hadoop-common/archive/release-
1.1.2.tar.gz

http://hadoop.apache.org
http://hadoop.apache.org
http://www.apache.org
http://www.apache.org

328 ◾ Appendix F

Figure F.1 Hadoop mirror.

Figure F.2 Hadoop distribution source.

Appendix F ◾ 329

Check branch-1.1 on Github.

F.3 Use the Source Code to Construct the Hadoop environment
Linux system environment:

 ◾ Linux Ubuntu 64bit Server 12.04.2 LTS
 ◾ Java 1.6.0_29
 ◾ Ant 1.8.4

Note: The structure of latest hadoop-3.0.0-SNAPSHOT on Github is completely changed. Use
Maven to replace the construction process of Ant + Ivy.

F.3.1 Install Hadoop

View the Hadoop directory.

There is no all kinds of class libraries of Hadoop-*.jar or dependent library under the root directory.

https://github.com/apache/hadoop-common/tree/branch-1.1

~ tar xvf release-1.1.2.tar.gz
~ mkdir/home/conan/hadoop/
~ mv hadoop-common-release-1.1.2/home/conan/hadoop/
~ cd/home/conan/hadoop/
~ mv hadoop-common-release-1.1.2/hadoop-1.1.2

~ cd hadoop-1.1.2

~ ls -l
total 648
drwxrwxr-x 2 conan conan 4096 Mar 6 2013 bin
-rw-rw-r-- 1 conan conan 120025 Mar 6 2013 build.xml
-rw-rw-r-- 1 conan conan 467130 Mar 6 2013 CHANGES.txt
drwxrwxr-x 2 conan conan 4096 Oct 3 02:31 conf
drwxrwxr-x 2 conan conan 4096 Oct 3 02:28 ivy
-rw-rw-r-- 1 conan conan 10525 Mar 6 2013 ivy.xml
drwxrwxr-x 4 conan conan 4096 Mar 6 2013 lib
-rw-rw-r-- 1 conan conan 13366 Mar 6 2013 LICENSE.txt
drwxrwxr-x 2 conan conan 4096 Oct 3 03:35 logs
-rw-rw-r-- 1 conan conan 101 Mar 6 2013 NOTICE.txt
-rw-rw-r-- 1 conan conan 1366 Mar 6 2013 README.txt
-rw-rw-r-- 1 conan conan 7815 Mar 6 2013 sample-conf.tgz
drwxrwxr-x 16 conan conan 4096 Mar 6 2013 src

330 ◾ Appendix F

F.3.2 Use Ant to Compile

Download Ant from the official website (http://ant.apache.org/bindownload.cgi).

Set Ant to environment variable.

Use Ant to compile Hadoop.

We should wait several minutes to build successfully. Then check the build directory generated.

~ wget http://archive.apache.org/dist/ant/binaries/apache-ant-1.8.4-
bin.tar.gz
~ tar xvf apache-ant-1.8.4-bin.tar.gz
~ mkdir/home/conan/toolkit/
~ mv apache-ant-1.8.4/home/conan/toolkit/
~ cd/home/conan/toolkit/
~ mv apache-ant-1.8.4 ant184

Edit environment file.
~ sudo vi /etc/environment

PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/
usr/games:/home/conan/toolkit/jdk16/bin:/home/conan/toolkit/ant184/bin"

JAVA_HOME=/home/conan/toolkit/jdk16
ANT_HOME=/home/conan/toolkit/ant184

Take the environment variable into effect.
~ . /etc/environment

Run Ant command to check whether the environment variable is configured.
~ ant
Buildfile: build.xml does not exist!
Build failed

Install the library for compiling.
~ sudo apt-get install autoconf
~ sudo apt-get install libtool

Use Ant to compile Hadoop.
~ cd /home/conan/hadoop/hadoop-1.1.2/
~ ant

~ ls -l build
drwxrwxr-x 3 conan conan 4096 Oct 3 04:06 ant
drwxrwxr-x 2 conan conan 4096 Oct 3 04:02 c++

http://ant.apache.org

Appendix F ◾ 331

I find that Hadoop-.jar all end with hadoop—1.1.3-SNAPSHOT.jar. The possible explanation
is that the release of the last version is the SNAPSHOT of the next version. Modify the 31st line
of build.xml and make the value of attribute version 1.1.2. Thus the name of packages generated
will be hadoop-*-1.1.2.jar. Restart Ant.

Now we’ve installed the Hadoop environment.

F.4 Configure the environment Script of Hadoop Quickly
Perform the configuration following the next seven steps: configure environment variables, set the
three configuration files of Hadoop, create the Hadoop directory, configure the hostname and
hosts, generate the SSH login-free key, format HDFS, and start the Hadoop service.

 1. Configure the system environment variables.

drwxrwxr-x 3 conan conan 4096 Oct 3 04:05 classes
drwxrwxr-x 13 conan conan 4096 Oct 3 04:06 contrib
drwxrwxr-x 2 conan conan 4096 Oct 3 04:05 empty
drwxrwxr-x 2 conan conan 4096 Oct 3 04:02 examples
-rw-rw-r-- 1 conan conan 423 Oct 3 04:05 hadoop-client-1.1.3-
SNAPSHOT.jar
-rw-rw-r-- 1 conan conan 4035744 Oct 3 04:05 hadoop-core-1.1.3-
SNAPSHOT.jar
-rw-rw-r-- 1 conan conan 426 Oct 3 04:05 hadoop-minicluster-
1.1.3-SNAPSHOT.jar
-rw-rw-r-- 1 conan conan 306827 Oct 3 04:05 hadoop-tools-1.1.3-
SNAPSHOT.jar
drwxrwxr-x 4 conan conan 4096 Oct 3 04:02 ivy
drwxrwxr-x 3 conan conan 4096 Oct 3 04:02 src
drwxrwxr-x 6 conan conan 4096 Oct 3 04:02 test
drwxrwxr-x 3 conan conan 4096 Oct 3 04:05 tools
drwxrwxr-x 9 conan conan 4096 Oct 3 04:02 webapps

~ vi build.xml

<property name = "version" value = "1.1.2"/>

~ rm -rf build
~ ant

~ sudo vi /etc/environment

PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/
usr/games:/home/conan/toolkit/jdk16/bin:/home/conan/toolkit/ant184/
bin:/home/conan/toolkit/maven3/bin:/home/conan/toolkit/tomcat7/bin:/
home/conan/hadoop/hadoop-1.1.2/bin"

332 ◾ Appendix F

 2. Set the three configuration files of Hadoop.

JAVA_HOME=/home/conan/toolkit/jdk16
ANT_HOME=/home/conan/toolkit/ant184
MAVEN_HOME=/home/conan/toolkit/maven3
HADOOP_HOME=/home/conan/hadoop/hadoop-1.1.2
HADOOP_CMD=/home/conan/hadoop/hadoop-1.1.2/bin/hadoop
HADOOP_STREAMING=/home/conan/hadoop/hadoop-1.1.2/contrib/streaming/
hadoop-streaming-1.1.2.jar

Take the environment variables into effect.
~ . /etc/environment

#core-site.xml
~ vi conf/core-site.xml
<configuration>
<property>
<name>fs.default.name</name>
<value>hdfs://master:9000</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/home/conan/hadoop/tmp</value>
</property>
<property>
<name>io.sort.mb</name>
<value>256</value>
</property>
</configuration>

#hdfs-site.xml
~ vi conf/hdfs-site.xml
<configuration>
<property>
<name>dfs.data.dir</name>
<value>/home/conan/hadoop/data</value>
</property>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
<property>
<name>dfs.permissions</name>
<value>false</value>
</property>
</configuration>

#mapred-site.xml
~ vi conf/mapred-site.xml
<configuration>

Appendix F ◾ 333

 3. Create a Hadoop directory.

 4. Configure the hostname and hosts.

 5. Generate an SSH login-free key.

 6. Format HDFS.

 7. Start the Hadoop service.

Check the running status of Hadoop.

<property>
<name>mapred.job.tracker</name>
<value>hdfs://master:9001</value>
</property>
</configuration>

~ mkdir /home/conan/hadoop/data
~ mkdir /home/conan/hadoop/tmp
~ sudo chmod 755 /home/conan/hadoop/data/
~ sudo chmod 755 /home/conan/hadoop/tmp/

~ sudo hostname master
~ sudo vi /etc/hosts
192.168.1.210 master
127.0.0.1 localhost

~ ssh-keygen -t rsa
~ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

~ bin/hadoop namenode -format

~ bin/start-all.sh

~ jps
15574 DataNode
16324 Jps
15858 SecondaryNameNode

334 ◾ Appendix F

Check the running status of Hadoop nodes.

F.5 Compile hadoop-core.jar for a Windows environment
In a Windows environment, we would often meet an exception indicating a wrong authority
check. We need to modify line 688 to line 693 of comments in FileUtil.java.

After using Ant to repack, hadoop-core-1.1.2.jar that can be run in Windows is generated!
We’ve installed single-node Hadoop in Linux Ubuntu.

16241 TaskTracker
15283 NameNode
15942 JobTracker

~ bin/hadoop dfsadmin -report

~ vi src/core/org/apache/hadoop/fs/FileUtil.java

685 private static void checkReturnValue(boolean rv, File p,
686 FsPermission permission
687) throws IOException {
688 /* if (!rv) {
689 throw new IOException("Failed to set permissions of path: " + p +
690 " to " +
691 String.format("%04o", permission.
toShort()));
692 }
693 */
694 }

335

Appendix G: installation
of the Hive environment

G.1 installation of Hive
After installing the Hadoop environment, we can install Hive on namenode. For the environment
configuration of Hadoop, please refer to Appendix F. For the installation of Hive, first download
hive-0.9.0.tar.gz, then decompress to/home/cos/toolkit/hive-0.9.0, enter hive directory, and create
configuration file.

Modify the configuration file hive-site.xml to sotreo metadata of Hive to MySQL.

~ cd/home/cos/toolkit/hive-0.9.0

Copy the configuration file.
~ cp hive-default.xml.template hive-site.xml

Copy the log file.
~ cp hive-log4j.properties.template hive-log4j.properties

~ vi conf/hive-site.xml

<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://localhost:3306/hive_metadata?createDatabaseIfNot
Exist =
true</value>
<description>JDBC connect string for a JDBC metastore</description>
</property>

<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
<description>Driver class name for a JDBC metastore</description>
</property>

336 ◾ Appendix G

Modify the log file hive-log4j.properties.

Set the environment variables.

<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>hive</value>
<description>username to use against metastore database</description>
</property>

<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>hive</value>
<description>password to use against metastore database</description>
</property>

<property>
<name>hive.metastore.warehouse.dir</name>
<value>/user/hive/warehouse</value>
<description>location of default database for the warehouse</
description>
</property>

#log4j.appender.EventCounter = org.apache.hadoop.metrics.jvm.
EventCounter
log4j.appender.EventCounter = org.apache.hadoop.log.metrics.
EventCounter

~ sudo vi/etc/environment

PATH = "/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/
usr/games:/usr/local/games:/home/cos/toolkit/ant184/bin:/home/cos/
toolkit/jdk16/bin:/home/cos/toolkit/maven3/bin:/home/cos/toolkit/
hadoop-1.0.3/bin:/home/cos/toolkit/hive-0.9.0/bin"

JAVA_HOME =/home/cos/toolkit/jdk16
ANT_HOME =/home/cos/toolkit/ant184
MAVEN_HOME =/home/cos/toolkit/maven3

HADOOP_HOME =/home/cos/toolkit/hadoop-1.0.3
HIVE_HOME =/home/cos/toolkit/hive-0.9.0

HADOOP_STREAMING =/home/conan/hadoop/hadoop-1.0.3/contrib/streaming/
hadoop-streaming-1.0.3.jar
CLASSPATH =/home/cos/toolkit/jdk16/lib/dt.jar:/home/cos/toolkit/
jdk16/lib/tools.jar

Appendix G ◾ 337

Create Hive directory on hdfs.

Create a database in MySQL.

Upload the jdbc library of MySQL to hive/lib manually.

Start the Hive server.

Now we’ve finished the installation of Hive on Linux Ubuntu®.

$HADOOP_HOME/bin/hadoop fs -mkidr/tmp
$HADOOP_HOME/bin/hadoop fs -mkidr/user/hive/warehouse
$HADOOP_HOME/bin/hadoop fs -chmod g+w/tmp
$HADOOP_HOME/bin/hadoop fs -chmod g+w/user/hive/warehouse

create database hive_metadata;
grant all on hive_metadata.* to hive@'%' identified by 'hive';
grant all on hive_metadata.* to hive@localhost identified by 'hive';
ALTER DATABASE hive_metadata CHARACTER SET latin1;

~ ls/home/cos/toolkit/hive-0.9.0/lib
mysql-connector-java-5.1.22-bin.jar

Start metastore service.
~ bin/hive --service metastore &
Starting Hive Metastore Server

Start HiveServer service.
~ bin/hive --service hiveserver &
Starting Hive Thrift Server

Start Hive client.
~ bin/hive shell
Logging initialized using configuration in file:/root/hive-0.9.0/
conf/hive-log4j.properties
Hive history file =/tmp/root/hive_job_log_root_201211141845_1864939641.
txt

hive> show tables
OK

339

Appendix H: installation
of HBase

H.1 environment Preparation of Ubuntu
HBase is distributed NoSQL database software based on Java and run on Hadoop. Because
HBase doesn’t provide a Windows® version, I’ll just introduce the installation of HBase in Linux
Ubuntu®.

HBase is run on Hadoop, so we need to install the Hadoop environment first. For the instal-
lation of Hadoop, please refer to Appendix F. Hbase doesn’t provide an apt-get software source
for installation, so we need to download the HBase package on the official website, http://www
.apache.org/dyn/closer.cgi/hbase/.

System environment:

 ◾ Linux Ubuntu 12.04.2 LTS 64bit server
 ◾ Java JDK 1.6.0_45
 ◾ Hadoop 1.1.2

H.2 installation of HBase
H.2.1 Download HBase

Download through wget command.
~ wget http://www.gaidso.com/apache/hbase/stable/hbase-0.94.18.tar.gz

Decompress HBase.
~ tar xvf hbase-0.94.18.tar.gz

Move HBase directory to folder.
~ mv hbase-0.94.18//home/conan/hadoop/

Enter the directory.
~ cd/home/conan/hadoop/hbase-0.94.18

http://www.apache.org
http://www.apache.org

340 ◾ Appendix H

H.2.2 Configure HBase

Modify the start-up file hbase-env.sh.

Modify the configuration file hbase-site.xml.

~ vi conf/hbase-env.sh

Open the comment.
export JAVA_HOME =/home/conan/toolkit/jdk16
export HBASE_CLASSPATH =/home/conan/hadoop/hadoop-1.1.2/conf
export HBASE_MANAGES_ZK = true

~ vi conf/hbase-site.xml

<configuration>
 <property>
 <name>hbase.rootdir</name>
 <value>hdfs://master:9000/hbase</value>
 </property>

 <property>
 <name>hbase.cluster.distributed</name>
 <value>true</value>
 </property>

 <property>
 <name>dfs.replication</name>
 <value>1</value>
 </property>

 <property>
 <name>hbase.zookeeper.quorum</name>
 <value>master</value>
 </property>

 <property>
 <name>hbase.zookeeper.property.clientPort</name>
 <value>2181</value>
 </property>

 <property>
 <name>hbase.zookeeper.property.dataDir</name>
 <value>/home/conan/hadoop/hdata</value>
 </property>
</configuration>

Appendix H ◾ 341

Copy the configuration file and class library of the Hadoop environment.

H.2.3 Start Hadoop and the HBase Server

H.2.4 Open the HBase Command Line Client to Access HBase

H.3 installation of thrift
After we installed HBase, we also need to install Thrift because other languages need to use
Thrift to call HBase. Thrift needs to be compiled locally, and the official website doesn’t provide
a binary package, so we need to download thrift-0.9.1, which is available at http://thrift.apache
.org/download.

~ cp ~/hadoop/hadoop-1.1.2/conf/hdfs-site.xml conf/
~ cp ~/hadoop/hadoop-1.1.2/hadoop-core-1.1.2.jar lib/
~ mkdir/home/conan/hadoop/hdata

~/home/conan/hadoop/hadoop-1.1.2/bin/start-all.sh
~/home/conan/hadoop/hbase-0.94.18/bin/start-hbase.sh

View HBase process.
~ jps
13838 TaskTracker
13541 JobTracker
15946 HMaster
16756 Jps
12851 NameNode
13450 SecondaryNameNode
13133 DataNode
15817 HQuorumPeer
16283 HRegionServer

~ bin/hbase shell
HBase Shell; enter 'help<RETURN>' for list of supported commands.
Type "exit<RETURN>" to leave the HBase Shell
Version 0.94.18, r1577788, Sat Mar 15 04:46:47 UTC 2014
hbase(main):002:0> help # View the help information of HBase command
line.

http://thrift.apache.org
http://thrift.apache.org

342 ◾ Appendix H

H.3.1 Download Thrift

There are two ways of downloading Thrift: download directly or download the source code through
Git. The first choice is to download the source code distribution thrift-0.9.1.tar.gz directly.

Note: All the errors below are caused by this distribution, so it is not recommended.

The second is downloading source code through Git.

To avoid all kinds of errors, we suggest that the second way be used.

H.3.2 Install Thrift through Git Source Code

Thrift needs to be compiled locally.
Run installation commands.

~ wget http://apache.fayea.com/apache-mirror/thrift/0.9.1/thrift-
0.9.1.tar.gz
~ tar xvf thrift-0.9.1.tar.gz
~ mv thrift-0.9.1//home/conan/hadoop/
~ cd/home/conan/hadoop/

~ git clone https://git-wip-us.apache.org/repos/asf/thrift.git
thrift-git
~ mv thrift-git//home/conan/hadoop/
~ cd/home/conan/hadoop/

Enter thrift-git directory.
~ cd/home/conan/hadoop/thrift-git

Copy 0.9.1 label to new branch thrift-0.9.1.
~ git checkout -b thrift-0.9.1 0.9.1

Generate configuration script.
~./bootstrap.sh

Generate configuration information.
~./configure

Compile Thrift.
~ make

Install Thrift.
~ sudo make install

Appendix H ◾ 343

Thrift is now installed through the Git source code version. Then view the Thrift version.

Next, start the Thrift server of HBase.

Thrift is started, and now we can use various languages to access HBase through Thrift.

~ thrift -version
Thrift version 0.9.1

Start Thrift Server of HBase.
~/home/conan/hadoop/hbase-0.94.18/bin/hbase-daemon.sh start thrift
starting thrift, logging to/home/conan/hadoop/hbase-0.94.18/bin/../
logs/hbase-conan-thrift-master.out

Check system process.
~ jps
13838 TaskTracker
13541 JobTracker
15946 HMaster
32120 Jps
12851 NameNode
13450 SecondaryNameNode
13133 DataNode
32001 ThriftServer
15817 HQuorumPeer
16283 HRegionServer

345

Bibliography

Couture-Beil, Alex (2014). “Package rjson Reference manual,” available at http://cran.r-project.org /web
/packages/rjson/rjson.pdf.

Lewis, Bart W. (2014). “Package rredis Reference manual,” available at http://cran.r-project.org/web /packages
/rredis/rredis.pdf.

Lewis, Bart W. (2014). “The rredis Package,” available at http://cran.r-project.org/web/packages/rredis
/vignettes/rredis.pdf.

Ooms, Jeroen (2014). “Package RMySQL Reference manual,” available at http://cran.r-project.org /web
/packages /RMySQL/RMySQL.pdf.

Owen, Sean, Robin Anil, Ted Dunning, Ellen Friedman (2014). “Mahout in Action,” Beijing, Post &
Telecom Press, pp. 91–114.

RevolutionAnalytics (2012). “RHadoop,” available at https://github.com/RevolutionAnalytics /RHadoop /wiki.
RForge.net. “Examples for Rserve,” available at http://rforge.net/Rserve/example.html.
Richet, Yann (2014). “Rsession: R sessions wrapping for Java,” available at https://github.com/yann richet

/rsession.
Ryan, Jeffrey A. (2014). “Working with xts and quantmod Leveraging R with xts and quantmod for Quanti-

tative Trading,” available at http://www.rinfinance.com/RinFinance2009/presentations/xts_quantmod
_workshop.pdf.

Ryan, Jeffrey A., Joshua M. Ulrich (2014). “Package xts Reference manual,” available at http://cran.r
-project.org/web/packages/xts/xts.pdf.

Ryan, Jeffrey A., Joshua M. Ulrich (2014). “xts: Extensible Time Series,” available at http://cran.r -project
.org/web/packages/xts/vignettes/xts.pdf.

Santini, Alberto. “RIO,” available at https://github.com/albertosantini/node-rio.
Selivanov, Dmitriy (2014). “Package rmongodb Reference manual,” available at http://cran.r-project .org

/web/packages/rmongodb/rmongodb.pdf.
Shin, Bruce (2014). “Package RHive Reference manual,” available at http://cran.r-project.org/web /packages

/RHive/RHive.pdf.
Temple Lang, Duncan (2014). “Package RJSONIO Reference manual,” available at http://cran.r-project .org

/web/packages/RJSONIO/RJSONIO.pdf.
Tuszynski, Jarek (2014). “Package caTools Reference manual,” available at http://cran.r-project.org /web

/packages/caTools/caTools.pdf.
Urbanek, Simon (2008). “FastRWeb: Fast Interactive Web Framework for Data Mining Using R,” available

at http://urbanek.info/research/pub/urbanek-iasc08.pdf.
Urbanek, Simon (2014). “Package RCassandra Reference manual,” available at http://cran.r-project .org/web

/packages/RCassandra/RCassandra.pdf.
Urbanek, Simon (2014). “Package rJava Reference manual,” available at http://cran.r-project.org/web/packages

/rJava/rJava.pdf.
Urbanek, Simon (2014). “Package RSclient Reference manual,” available at http://cran.r-project.org/web

/packages/RSclient/RSclient.pdf.
Urbanek, Simon (2014). “Package Rserve Reference manual,” Chapter 4.1, available at http://cran.r -project

.org/web/packages/Rserve/Rserve.pdf.

http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
https://github.com
http://rforge.net
https://github.com
https://github.com
http://www.rinfinance.com
http://www.rinfinance.com
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
https://github.com
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
http://urbanek.info
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org

346 ◾ Bibliography

Urbanek, Simon, Jeffrey Horner (2014). “Package Cairo Reference manual,” available at http://cran.r
-project.org/web/packages/Cairo/Cairo.pdf.

Urbanek, Simon, Jeffrey Horner (2014). “Package FastRWeb Reference manual,” available at http://cran.r
-project.org/web/packages/FastRWeb/FastRWeb.pdf.

Wickham, Hadley (2014). “Package memoise Reference manual,” available at http://cran.r-project .org/web
/packages/memoise/memoise.pdf.

Wickham, Hadley (2014). “Package profr Reference manual,” available at http://cran.r-project.org /web
/packages/profr/profr.pdf.

Wikipedia. “Base64,” available at http://en.wikipedia.org/wiki/Base64.
Wikipedia. “ROC Curve,” available at http://en.wikipedia.org/wiki/Receiver_operating_characteristic.
Xie, Yihui (2014). “Package formatR Reference manual,” available at http://cran.r-project.org/web /packages

/formatR/formatR.pdf.
Zeileis, Achim (2014). “Package fortunes Reference manual,” available at http://cran.r-project.org /web

/packages/fortunes/fortunes.pdf.
Zeileis, Achim (2014). “Package zoo Reference manual,” available at http://cran.r-project.org/web /packages

/zoo/zoo.pdf.
Zeileis, Achim, Gabor Grothendieck (2014). “zoo: An S3 Class and Methods for Indexed Totally Ordered

Observations,” available at http://cran.r-project.org/web/packages/zoo/vignettes/zoo.pdf.

http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
http://en.wikipedia.org
http://en.wikipedia.org
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org

Information Technology

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

Unlike other books about R, written from the perspective of statistics, R for

Programmers: Mastering the Tools is written from the perspective of program-

mers, providing a channel for programmers with expertise in other programming

languages to quickly understand R. The contents are divided into four sections.

The first section consists of the basics of R, explaining the advantages of using

R, the installation of different versions of R, and the 12 frequently used packages

of R. This will help you understand the tool packages, time series packages, and

performance monitoring packages of R quickly.

The second section discusses the server of R, examining the communication

between R and other programming languages and the application of R as servers.

This will help you integrate R with other programming languages and implement

the server application of R. The third section discusses databases and big data,

covering the communication between R and various databases, as well as R’s

integration with Hadoop. This will help you integrate R with the underlying level of

other databases and implement the processing of big data by R, based on Hadoop.

The fourth section comprises the appendices, introducing the installation of Java,

various databases, and Hadoop. Because this is a reference book, there is no special

sequence for reading all the chapters. You can choose the chapters in which you

have an interest. If you are new to R, and you wish to master R comprehensively,

simply follow the chapters in sequence.

ISBN: 978-1-4987-3681-7

9 781498 736817

90000

K26506

w w w . c r c p r e s s . c o m

R for Programmers
Mastering the Tools

Dan Zhang

R
 for Program

m
ers

Z
h

a
n

g

K26506 cvr mech.indd 1 11/24/15 10:00 AM

	Front Cover
	Contents
	Preface
	About the Translator
	Acknowledgments
	Chapter 1: Basic R Packages
	Chapter 2: Basic Packages of Time Series
	Chapter 3: Performance Monitoring Packages of R
	Chapter 4: Cross-Platform Communication of R
	Chapter 5: Server Implementation of R
	Chapter 6: Database and NoSQL
	Chapter 7: RHadoop
	Appendix A: Installation of Java Environment
	Appendix B: Installation of MySQL
	Appendix C: Installation of Redis
	Appendix D: Installation of MongoDB
	Appendix E: Installation of Cassandra
	Appendix F: Installation of Hadoop
	Appendix G: Installation of the Hive Environment
	Appendix H: Installation of HBase
	Bibliography
	Back Cover

		2016-01-10T06:28:22+0000
	Preflight Ticket Signature

