
www.allitebooks.com

http://www.allitebooks.org

React.js Essentials

A fast-paced guide to designing and building scalable
and maintainable web apps with React.js

Artemij Fedosejev

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

React.js Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2015

Production reference: 1250815

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-162-0

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Artemij Fedosejev

Reviewers
Denis Radin

Sander Spies

Konstantin Tarkus

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Nikhil Karkal

Content Development Editor
Pooja Nair

Technical Editor
Pramod Kumavat

Copy Editor
Rashmi Sawant

Project Coordinator
Bijal Patel

Proofreader
Safis Editing

Indexer
Priya Sane

Graphics
Sheetal Aute

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

Are you tired of writing jQuery callback soup? Does your blood boil when you need
to write yet another template or configuration in your Angular app? Wondering why
your application structure is so complex? If so, React.js is what you've been looking
for. The declarative nature of React.js will help you build a UI for large applications
with data that changes over time.

As a professional iOS and JavaScript frontend consultant, I always recommend
that clients use the best technology available. With the latest push from Facebook,
React.js has proven itself to be a solid choice to build maintainable and performant
user interfaces that help our clients ship products and move fast. I was excited
the moment I heard about React.js Essentials and even more excited about getting
my hands on a copy.

Artemij Fedosejev, a veteran web developer and technical lead at a start-up company
in London, demonstrates why a declarative programming style and one-way
reactive data flow is often the best way to solve real-life programming problems.
Whether you're working with consumer-facing applications or university research,
React.js helps you build frontend UIs on both small and large scales. You'll never be
lost in code again. Learn from Artemij's real-world experience in React.js Essentials,
and you'll be creating user interfaces without increasing the complexity
of your web application in no time.

This book has everything you need to get started with React.js. It guides you from
the first steps down to the intricacies of Jest. The best way to learn is by doing, and
throughout this book, you will work on a hands-on React.js project and learn how
to build an application that receives and collects the latest photos from Twitter.

Software is constantly evolving and always moving forward. As developers, while
practicing our craft, we always reach out to new horizons that stretch and improve
our understanding of how great software should be built. Historically, software
development and architecture has gone from structured programming to imperative
programming. This made way for object-oriented programming (OOP) to become
the de facto standard of software development today. Languages such as Java, Ruby,
Objective-C, and many others have been built with the OOP paradigm in mind.

www.allitebooks.com

http://www.allitebooks.org

However, there was one rebel that embraced functional programming and it has
gone down its own evolutionary path, which is JavaScript. React.js is a manifestation
of this renewed way of thinking: "UI as a function of state." Facebook has put in a
lot of effort into making the reactive approach accessible to us through its library.
Unlike other popular frameworks that use templating systems, such as Ember.js and
Angular.js, React.js is a UI library that uses a declarative style of programming
to describe the UI state. You can think of React.js as the V in the conventional
MVC architecture pattern, but it doesn't stop there. Facebook introduced Flux,
a complementary application architecture that uses React's composable
view components.

The latest approaches to solving programming problems have come full circle and
are back to declarative programming. The rise of new paradigms, such as Reactive
Extensions (Rx), Futures, and Promises, brings us back to thinking in terms of
functions and using a declarative approach instead of OOP's imperative style.
React.js incorporates some of these paradigms and React.js Essentials is your
first step down this path, and I think you'll like where it takes you!

Alex Bush
Founder and Software Product Engineer at SmartCloud, Inc.

www.allitebooks.com

http://www.allitebooks.org

About the Author

Artemij Fedosejev is a technical lead living in London, United Kingdom. He is
a self-taught web developer who has been a web developer since the early 2000s.
Artemij earned his BSc in computer science from University College Cork, Ireland.
He participated in the IGNITE Graduate Business Innovation Programme, where he
built and launched a website that received the Most Innovative Project award.

After graduation, Artemij moved to London to help local start-up companies build
their products. He worked with JavaScript, Node.js, HTML5, CSS3, and other
modern web technologies. After gaining some experience in the start-up industry,
Artemij was presented with an opportunity to join Imperial College, London, work
on a research and development, project and take leadership in creating frontends
for a couple of web applications in the public health space. He played a key role in
creating frontend architecture using React.js and Flux for WGSA.net and Microreact.
org. Artemij created a number of open source projects such as Snapkite Engine,
Snapkite Stream Client, and other projects, which can be found on his GitHub
account at https://github.com/fedosejev. He is also the author of the
http://react.tips website.

I am deeply grateful to my family, who have always supported me
in my efforts. With their love and dedication, I have always been
able to focus on learning new things and, now, teaching them to
others. Special thanks to Alex Bush for constantly expanding the
way I think about software development. Also, this book would
have been much harder to write without the support of Dr. David
Aanensen and Mirko Menegazzo. And finally, I would like to thank
my editors and the wonderful people at Packt Publishing for giving
me the opportunity to share my knowledge and experience with
other developers around the world.

www.allitebooks.com

https://github.com/fedosejev
http://react.tips
http://www.allitebooks.org

About the Reviewers

Denis Radin is a frontend engineer working on embedded JavaScript in Liberty
Global (Ziggo, UPC). He is passionate about UI experiments and performance
optimization. He can be found launching JavaScript into space and the stratosphere
in his spare time and believes that this is the sunrise of an interactive revolution.
Denis maintains a blog at http://pixelscommander.com.

Konstantin Tarkus is a senior software engineer and technology mentor from
St. Petersburg, Russia. He specializes in developing web and cloud applications,
regularly contributes to the open source community (see the React Starter Kit
and Babel Starter Kit projects on GitHub), and enjoys learning new technologies
every day. You can find more information about him and reach out to him at
www.codementor.io/koistya.

www.allitebooks.com

http://pixelscommander.com
www.codementor.io/koistya
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Installing Powerful Tools for Your Project 1

Approaching our project 3
Installing Node.js and npm 4
Installing Git 5
Getting data from the Twitter Streaming API 5
Filtering data with Snapkite Engine 6
Creating the project structure 9
Creating package.json 10
Reusing Node.js modules 11
Building with Gulp.js 12
Creating a web page 14
Summary 15

Chapter 2: Create Your First React Element 17
Understanding the virtual DOM 18
Installing React 19
Creating React Elements with JavaScript 21

The type parameter 22
The props parameter 22
The children parameter 23

Rendering React Elements 27
Creating React Elements with JSX 28
Summary 30

Table of Contents

[ii]

Chapter 3: Create Your First React Component 31
Stateless versus stateful 31
Creating your first stateless React component 32
Creating your first stateful React component 37
Summary 43

Chapter 4: Make Your React Components Reactive 45
Solving a problem using React 45
Planning your React application 47
Creating a container React component 49
Summary 57

Chapter 5: Use Your React Components with Another Library 59
Using another library in your React component 59
Understanding React component's lifecycle methods 64

Mounting methods 67
The getInitialState method 67
The componentWillMount method 68
The componentDidMount method 70

Unmounting methods 72
The componentWillUnmount method 72

Summary 73
Chapter 6: Update Your React Components 75

Understanding component lifecycle's updating methods 76
The componentWillReceiveProps method 77
The shouldComponentUpdate method 79
The componentWillUpdate method 80
The componentDidUpdate method 80

Setting default React component properties 81
Validating React component properties 85
Creating a Collection component 87
Summary 93

Chapter 7: Build Complex React Components 95
Creating the TweetList component 95
Creating the CollectionControls component 99
Creating the CollectionRenameForm component 106
Creating the Button component 111
Creating the CollectionExportForm component 112
Summary 114

Table of Contents

[iii]

Chapter 8: Test Your React Application with Jest 115
Why write unit tests? 115
Creating test suits, specs, and expectations 116
Installing and running Jest 120
Creating multiple specs and expectations 121
Testing React components 129
Summary 135

Chapter 9: Supercharge Your React Architecture with Flux 137
Analyzing your web application's architecture 138
Understanding Flux 140
Creating a dispatcher 142
Creating an action creator 142
Creating a store 143
Summary 148

Chapter 10: Prepare Your React Application for
Painless Maintenance with Flux 149

Decoupling concerns with Flux 150
Refactoring the Stream component 153
Creating CollectionStore 159
Creating CollectionActionCreators 164
Refactoring the Application component 166
Refactoring the Collection component 168
Refactoring the CollectionControls component 171
Refactoring the CollectionRenameForm component 174
Refactoring the TweetList component 176
Refactoring the StreamTweet component 176
Build and go beyond 177

Index 179

[v]

Preface
Today, the Web is different. The way we build for the Web is different. Faced by the
challenges of dealing with unmaintainable imperative code produced by jQuery we
had to look for new ways of managing the complexity of modern user interfaces. We
needed a new user interface library that would help us build declarative, modular,
fast, and scalable frontend applications
using JavaScript.

Meet React.js—a JavaScript user interface library developed by Facebook. It brings
profound ideas on how to work with the DOM, organize your application's data
flow, and think about user interface elements as individual components. And yet,
it's only a user interface library that makes no assumptions about the rest of your
technology stack.

Combined with Flux, we get a powerful frontend architecture that makes sense
not only to experienced developers, but also to those who're just starting their
frontend journey.

Dear frontend developers of all experience levels, solving all kind of business
challenges, in teams of all sizes with deadlines of all urgency levels... welcome
to a better future!

Get ready to be surprised by the simplicity, predictability, and thoughtfulness
of React.js.

Preface

[vi]

What this book covers
Chapter 1, Installing Powerful Tools for Your Project, outlines the goal of this book and
explains what modern tools you need to install in order to build React applications
efficiently. It introduces each tool and provides step-by-step instructions on how
to install each of them. Then, it creates a structure for the project that we'll be
building in this book.

Chapter 2, Create Your First React Element, explains how to install React and introduces
virtual DOM. Then, it explains what React Element is and how to create and render
one with native JavaScript syntax. Finally, it introduces the JSX syntax and shows
how to create React Elements using JSX.

Chapter 3, Create Your First React Component, introduces React components. It explains
the difference between stateless and stateful React components and how to decide
which one to use. Then, it guides you through the process of creating both kinds.

Chapter 4, Make Your React Components Reactive, explains how to solve a problem
with React and walks you through the process of planning your React application.
It creates a React component that encapsulates the entire React application that
we build in this book. It explains the relationship between parent and child React
components.

Chapter 5, Use Your React Components with Another Library, explores how to use
third-party JavaScript libraries with your React components. It introduces React
component's lifecycle, demonstrates how to use mounting methods, and creates
new React components for our book's project.

Chapter 6, Update Your React Components, introduces React component lifecycle's
updating methods. This covers how to use CSS styles in JavaScript. It explains
how to validate and set the default component's properties.

Chapter 7, Build Complex React Components, focuses on building more complex React
components. It explores the details of how to implement different React components
and how to put them together into one coherent and fully functional React application.

Chapter 8, Test Your React Application with Jest, explains the idea of unit testing and
how to write and run your unit tests with Jest. It also demonstrates how to test your
React components. It discusses test suites, specs, expectations, and matchers.

Chapter 9, Supercharge Your React Architecture with Flux, discusses how to improve the
architecture of our React application. It introduces the Flux architecture and explains
the role of dispatcher, stores, and action creators.

Preface

[vii]

Chapter 10, Prepare Your React Application for Painless Maintenance with Flux, explains
how to decouple concerns in your React application with Flux. It refactors our React
application to allow painless maintainability in the future.

What you need for this book
First of all, you need the latest version of a modern web browser, such as Google
Chrome or Mozilla Firefox:

• Google Chrome: https://www.google.com/chrome/browser
• Mozilla Firefox: https://www.mozilla.org/en-US/firefox/new/

Second, you will need to install Git, Node.js, and npm. You will find detailed
instructions on how to install and use them in Chapter 1, Installing Powerful Tools for
Your Project.

Finally, you will need a code editor. I recommend Sublime Text (http://www.
sublimetext.com). Alternatively, you can use Atom (https://atom.io), Brackets
(http://brackets.io), Visual Studio Code (https://code.visualstudio.com), or
any other editor of your preference.

Who this book is for
This book is intended for frontend developers who want to build scalable and
maintainable user interfaces for the Web. Some core knowledge of JavaScript,
HTML, and CSS is the only thing you need to know to start benefiting from the
revolutionary ideas that React.js brings into the web development world. If you
have previous experience with jQuery or Angular.js, then you will benefit from
understanding how React.js is different and how to take advantage of integrating
different libraries with it.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The entry point to the React library is the React object."

https://www.google.com/chrome/browser
https://www.mozilla.org/en-US/firefox/new/
http://www.sublimetext.com
http://www.sublimetext.com
https://atom.io
http://brackets.io
https://code.visualstudio.com

Preface

[viii]

A block of code is set as follows:

var React = require('react');
var ReactDOM = require('react-dom');
var reactElement = React.createElement(
 'h1',
 { className: 'header' }
);
ReactDOM.render(
 reactElement,
 document.getElementById('react-application')
);

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

<!doctype html>
<html lang="en">
 <head>
 <title>Snapterest</title>
 </head>
 <body>
 <div id="react-application">
 I am about to learn the essentials of React.js.
 </div>
 <script src="./snapterest.js"></script>
 </body>
</html>

Any command-line input or output is written as follows:

cd ~

git clone https://github.com/snapkite/snapkite-engine.git

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "You
should see the following text: I am about to learn the essentials of React.js."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[ix]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

For this book, the source code files can be downloaded or forked from the following
GitHub repository as well: https://github.com/fedosejev/react-essentials

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.allitebooks.com

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/fedosejev/react-essentials
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.allitebooks.org

Preface

[x]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.
You can also create a new issue on GitHub repository for this book at
https://github.com/fedosejev/react-essentials/issues.

https://github.com/fedosejev/react-essentials/issues

[1]

Installing Powerful Tools
for Your Project

Here is a great quote by Charles F. Kettering:

My interest is in the future because I am going to spend the rest of my life there.

This brilliant inventor has left software engineers with the single most important
piece of advice way before we even started thinking how to write software. Yet,
half a century later, we're still figuring out why we end up with spaghetti code
or the "spaghetti mental model".

Have you ever been in a situation where you inherit code from a previous developer
and spend weeks trying to understand how everything works because no blueprints
were made available, and the pseudo-self-explanatory-code became too hard to
debug? Better yet, the project keeps growing and so does its complexity. Making
breaking changes is dangerous and no one wants to touch that "ugly" legacy code.
Rewriting the whole codebase is way too expensive, so the current one is supported
by introducing new bug fixes and patches every day. It is a well-known fact that the
cost of maintaining software is way higher than the original cost of developing it.

What does it mean to write software for the future, today? I think it boils down to
creating a simple mental model that doesn't change, no matter how big your project
becomes over time. When the size of your project grows, the complexity always stays
the same. This mental model is your blueprint, and once you understand it you will
understand how your whole piece of software works.

If you take a look at modern web development, and in particular, the frontend
development, you'll notice that we live in exciting times. Internet companies and
individual developers are tackling problems of speed and cost of development
versus code and user experience quality.

Installing Powerful Tools for Your Project

[2]

In 2013, Facebook released React—an open source JavaScript library for building
user interfaces. You can read more about it at http://facebook.github.io/
react/. In early 2015, Tom Occhino from Facebook summarized what makes
React so powerful:

React wraps an imperative API with a declarative one. React's real power lies in
how it makes you to write code.

Most of you know that a declarative style of programming results in less code.
It tells a computer what to do without specifying how, while an imperative style
of programming describes how to do it. JavaScript's call to the DOM API is an
example of imperative programming. jQuery is another such example.

Facebook used React in production for years, along with Instagram and other
companies. It works for small projects too; here is an example of a shopping list built
with React: http://fedosejev.github.io/shopping-list-react. I think React is
one of the best JavaScript libraries used for building user interfaces that is available
for developers today.

My goal is for you to understand the fundamental principles of React. To achieve
this, I will introduce you to one React concept at a time, explain it, and show how
you can apply it. Step by step we'll build a real-time web application, raise important
questions along the way, and discuss solutions that React provides us with.

We will learn about Flux, which implements a unidirectional flow of data. Together
with Flux and React, we'll create a predictable and manageable code base that you
will be able to expand by adding new features, without scaling its complexity. The
mental model of how your web application works will stay the same no matter how
many new features you add later on.

As with any new technology, there are things that work very differently from the
way that you're used to. React is not an exception. In fact, some of the core concepts
of React might look counter-intuitive, thought provoking, or even a step backward.
Don't rush to any conclusions. As you would expect, there are very good reasons
behind how React works, and these reasons come from experienced Facebook
engineers who build and use React in production in business-critical applications.
My advice to you is to keep your mind open while learning React, and I believe that,
at the end of this book, these new concepts will settle in and make great sense to you.

Please join me in this journey of learning React and following Charles F. Kettering's
advice. Let's take care of our future!

http://facebook.github.io/react/
http://facebook.github.io/react/
http://fedosejev.github.io/shopping-list-react

Chapter 1

[3]

Approaching our project
I firmly believe that the best motivation for learning new technology is a project that
excites you and that you can't wait to build. As an experienced developer, you've
probably already built a number of successful commercial projects that share certain
product features, design patterns, and even target audiences. In this book, I want you
to build a project that feels like a breath of fresh air. A project which you most likely
wouldn't build in your day-to-day work. It has to be a fun endeavor, which not only
educates you but also satisfies your curiosity and stretches your imagination. Yet,
guessing that you're a busy professional, this project shouldn't be a time consuming,
long-term commitment for you either.

Enter Snapterest—a web application that allows you to discover and collect public
photos posted on Twitter. Think of it as Pinterest (www.pinterest.com) with the
only source of pictures being Twitter. We will implement a fully functional website
with the following core functionalities:

• Receiving and displaying tweets in real time
• Adding and removing tweets to/from a collection
• Reviewing collected tweets
• Exporting a collection of tweets as an HTML snippet that you can share

When you start working on a new project, the very first thing that you do is you get
your tools ready. For this project, we will be using a number of tools that you might
not be familiar with, so let's discuss what they are, and how you can install and
configure them.

If you have any trouble with installing and configuring the tools and modules from
this chapter, then go to https://github.com/fedosejev/react-essentials
and create a new issue; describe what you're doing and what error message you're
getting. I will do my best to help you resolve your issue.

In this book, I'll assume that you're working on a Macintosh or Windows computer.
If you're a Unix user, then most likely you will know your package manager very
well, and it should be easy enough for you to install the tools that you will learn
about in this chapter.

Let's start with the installation of Node.js.

www.pinterest.com
https://github.com/fedosejev/react-essentials

Installing Powerful Tools for Your Project

[4]

Installing Node.js and npm
Node.js (https://nodejs.org) is a platform that allows us to write server-side
applications with a client-side language that we're all familiar with—JavaScript.
However, the real benefit of Node.js is that it uses an event-driven, non-blocking
I/O model, which is perfect for building data-intensive, real-time applications.
It means that, with Node.js, we should be able to handle an incoming stream of
tweets and process them as soon as they arrive: just what we need for our project.

Let's install Node.js. We'll be using version v0.10.40 because, at the time of writing
this book, that's the latest version of Node.js that Jest supports. Jest is a testing
framework from Facebook that you'll learn about in Chapter 8, Test Your React
Application with Jest.

Go to http://nodejs.org/dist/v0.10.40/ and download the installation package
for your OS:

• OS X: http://nodejs.org/dist/v0.10.40/node-v0.10.40.pkg
• Windows 64-bit: http://nodejs.org/dist/v0.10.40/x64/node-

v0.10.40-x64.msi

• Windows 32-bit: http://nodejs.org/dist/v0.10.40/node-
v0.10.40-x86.msi

Run it and follow the installation steps that Node.js will prompt you with. Once
finished, check whether you have successfully installed Node.js. Open Terminal/
Command Prompt, and type the following command:

node -v

The output is as follows:

v0.10.40

Node.js has a very rich ecosystem of modules that is available for us to use.
A module is a Node.js application that you can reuse in your own Node.js
application. At the time of writing, there are over 120,000 modules. How do you
manage such a wide diversity of Node.js modules? Meet npm, a package manager
that manages Node.js modules. In fact, npm is shipped together with Node.js, so
you've got it installed already. Type in your Terminal/Command Prompt:

npm -v

https://nodejs.org
http://nodejs.org/dist/v0.10.40/
http://nodejs.org/dist/v0.10.40/node-v0.10.40.pkg
http://nodejs.org/dist/v0.10.40/x64/node-v0.10.40-x64.msi
http://nodejs.org/dist/v0.10.40/x64/node-v0.10.40-x64.msi
http://nodejs.org/dist/v0.10.40/node-v0.10.40-x86.msi
http://nodejs.org/dist/v0.10.40/node-v0.10.40-x86.msi

Chapter 1

[5]

You should see the following output:

1.4.28

You can learn more about npm at www.npmjs.com. Now we are ready to start with
the installation of Node.js applications.

Installing Git
In this book, we'll be using Git to install Node.js modules. If you haven't installed Git
yet, visit https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
and follow the installation instructions for your OS.

Getting data from the Twitter
Streaming API
The data for our React application will come from Twitter. Twitter has the Streaming
API that anyone can plug into and start receiving an endless flow of public tweets in
the JSON format.

To start using the Twitter Streaming API, you'll need to perform the following steps:

1. Create a Twitter account. For this, go to https://twitter.com and sign up;
or sign in if you already have an account.

2. Create a new Twitter App by navigating to https://apps.twitter.com,
and click on Create New App. You will need to fill in the Application
Details form, agree with the Developer Agreement, and click on Create your
Twitter application. Now you should see your application's page. Switch to
the Keys and Access Tokens tab.

In the Application Settings section of this page, you'll find two vital pieces
of information:

• Consumer Key (API Key); for example, jqRDrAlKQCbCbu2o4iclpnvem
• Consumer Secret (API Secret); for example,

wJcdogJih7uLpjzcs2JtAvdSyCVlqHIRUWI70aHOAf7E3wWIgD

Take a note of them; we will need them later in this chapter.

www.npmjs.com
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://twitter.com
https://apps.twitter.com

Installing Powerful Tools for Your Project

[6]

Now we need to generate an access token. On the same page, you'll see Your Access
Token section that is empty. Click on Create my access token. It creates two pieces
of information:

• Access Token; for example,
12736172-R017ah2pE2OCtmi46IAE2n0z3u2DV6IqsEcPa0THR

• Access Token Secret; for example,
4RTJJWIezIDcs5VX1PMVZolXGZG7L3Ez7Iz1gMdZucDaM

Take a note of them too. An access token is unique to you and you should not share
it with anyone. Keep it private.

Now we have everything that we need to start using Twitter's Streaming API.

Filtering data with Snapkite Engine
The amount of tweets that you'll receive via the Twitter Streaming API is more than
you can ever consume, so we need to find a way to filter that stream of data into a
meaningful set of tweets that we can display and interact with. I recommend that
you take a quick look at the Twitter Streaming API documentation at https://
dev.twitter.com/streaming, and in particular, take a look at this page that
describes the way you can filter an incoming stream at https://dev.twitter.com/
streaming/reference/post/statuses/filter. You'll notice that Twitter provides
very few filters that we can apply, so we need to find a way to filter that stream of
data even further.

Luckily, there is a Node.js application just for this. It's called Snapkite Engine.
It connects to the Twitter Streaming API, filters it using the available filters and
according to the rules that you define, and outputs the filtered tweets to a web socket
connection. Our proposed React application can listen to the events on that socket
connection and process tweets as they arrive.

Let's install Snapkite Engine.

First, you need to clone the Snapkite Engine repository. Cloning means that you're
copying the source code from a GitHub server to your local directory. In this
book, I'll assume that your local directory is your home directory. Open Terminal/
Command Prompt and type the following commands:

cd ~

git clone https://github.com/snapkite/snapkite-engine.git

https://dev.twitter.com/streaming
https://dev.twitter.com/streaming
https://dev.twitter.com/streaming/reference/post/statuses/filter
https://dev.twitter.com/streaming/reference/post/statuses/filter

Chapter 1

[7]

This should create the ~/snapkite-engine/ folder. We're now going to install
all the other node modules that snapkite-engine depends on. One of them is
the node-gyp module. Depending on what platform you're using, Unix or
Windows, you will need to install other tools that are listed on this web
page: https://github.com/TooTallNate/node-gyp#installation.

Once you install them, you're ready to install the node-gyp module:

npm install --global node-gyp

Now navigate to the ~/snapkite-engine directory:

cd snapkite-engine/

Then run the following command:

npm install

This command will install the Node.js modules that Snapkite Engine depends on.
Now let's configure Snapkite Engine. Assuming that you're in the ~/snapkite-
engine/ directory, copy the ./example.config.json file to ./config.json by
running the following command:

cp example.config.json config.json

Or if you're using Windows, run this command:

copy example.config.json config.json

Open config.json in your favorite text editor. We will now edit the configuration
properties. Let's start with trackKeywords. This is where we will tell what keywords
we want to track. If we want to track the keyword "my", then set it as follows:

"trackKeywords": "my"

Next, we need to set our Twitter Streaming API keys. Set consumerKey,
consumerSecret, accessTokenKey, and accessTokenSecret to the keys you saved
when you created your Twitter App. Other properties can be set to their defaults.
If you're curious to learn about what they are, check out the Snapkite Engine
documentation at https://github.com/snapkite/snapkite-engine.

Our next step is to install Snapkite Filters. Snapkite Filter is a Node.js module that
validates tweets according to a set of rules. There are a number of Snapkite Filters
out there, and we can use any combination of them to filter our stream of tweets as
we like. You can find a list of all the available Snapkite Filters at https://github.
com/snapkite/snapkite-filters.

https://github.com/TooTallNate/node-gyp#installation
https://github.com/snapkite/snapkite-engine
https://github.com/snapkite/snapkite-filters
https://github.com/snapkite/snapkite-filters

Installing Powerful Tools for Your Project

[8]

In our application, we'll use the following Snapkite Filters:

• Is Possibly Sensitive: https://github.com/snapkite/snapkite-filter-
is-possibly-sensitive

• Has Mobile Photo: https://github.com/snapkite/snapkite-filter-
has-mobile-photo

• Is Retweet: https://github.com/snapkite/snapkite-filter-is-
retweet

• Has Text: https://github.com/snapkite/snapkite-filter-has-text

Let's install them. Navigate to the ~/snapkite-engine/filters/ directory:

cd ~/snapkite-engine/filters/

Then clone all Snapkite Filters by running these commands:

git clone https://github.com/snapkite/snapkite-filter-is-possibly-
sensitive.git

git clone https://github.com/snapkite/snapkite-filter-has-mobile-photo.
git

git clone https://github.com/snapkite/snapkite-filter-is-retweet.git

git clone https://github.com/snapkite/snapkite-filter-has-text.git

The next step is to configure them. In order to do so, you need to create a
configuration file for each Snapkite Filter in JSON format and define some
properties in it. Luckily, each Snapkite Filter comes with an example configuration
file that we can duplicate and edit as needed. Assuming that you're in the
~/snapkite-engine/filters/ directory, run the following commands (use
copy and replace the forward slashes with the backward slashes on Windows):

cp snapkite-filter-is-possibly-sensitive/example.config.json snapkite-
filter-is-possibly-sensitive/config.json

cp snapkite-filter-has-mobile-photo/example.config.json snapkite-filter-
has-mobile-photo/config.json

cp snapkite-filter-is-retweet/example.config.json snapkite-filter-is-
retweet/config.json

cp snapkite-filter-has-text/example.config.json snapkite-filter-has-text/
config.json

We don't need to change any of the default settings in these config.json files,
as they're already configured to fit our purposes.

https://github.com/snapkite/snapkite-filter-is-possibly-sensitive
https://github.com/snapkite/snapkite-filter-is-possibly-sensitive
https://github.com/snapkite/snapkite-filter-has-mobile-photo
https://github.com/snapkite/snapkite-filter-has-mobile-photo
https://github.com/snapkite/snapkite-filter-is-retweet
https://github.com/snapkite/snapkite-filter-is-retweet
https://github.com/snapkite/snapkite-filter-has-text

Chapter 1

[9]

Finally, we need to tell Snapkite Engine which Snapkite Filters it should use.
Open the ~/snapkite-engine/config.json file in a text editor and look for this:

"filters": []

Now replace that with the following:

"filters": [
 "snapkite-filter-is-possibly-sensitive",
 "snapkite-filter-has-mobile-photo",
 "snapkite-filter-is-retweet",
 "snapkite-filter-has-text"
]

Well done! You've successfully installed Snapkite Engine with a number of Snapkite
Filters. Now let's check if we can run it. Navigate to ~/snapkite-engine/ and run
the following command:

npm start

You should see no error messages, but if you do and you're not sure how to fix them,
then please go to https://github.com/fedosejev/react-essentials/issues,
create a new issue and copy/paste the error message that you get.

Next, let's set up our project's structure.

Creating the project structure
It's time to create our project structure. Organizing source files may sound like
a simple task, but a well-thought-out project structure organization helps us
understand the underlying architecture of our application. You'll see an example
of this later in this book, when we'll talk about the Flux application architecture.
Let's start by creating our root project directory named snapterest inside your
home directory ~/snapterest/.

Then, inside it, we will create two other directories:

• ~/snapterest/source/: Here we'll store our source JavaScript files
• ~/snapterest/build/: Here we'll put compiled JavaScript files and an

HTML file.

www.allitebooks.com

https://github.com/fedosejev/react-essentials/issues
http://www.allitebooks.org

Installing Powerful Tools for Your Project

[10]

Now, inside ~/snapterest/source/, create the components/ folder so that your
project structure would look like this:

• ~/snapterest/source/components/

• ~/snapterest/build/

Now, when we have our fundamental project structure ready, let's start populating
it with our application files. First, we need to create our main application file app.
js in the ~/snapterest/source/ directory. This file will be the entry point to our
application, ~/snapterest/source/app.js.

Leave it empty for now, as we have a more pressing matter to discuss.

Creating package.json
Have you ever heard of DRY before? It stands for Don't Repeat Yourself, and it
promotes one of the core principles in software development—code reuse. The best
code is the one that you don't need to write. In fact, one of our goals in this project is
to write as little code as possible. You might not realize this just yet, but React helps
us achieve this goal. Not only does it save us time, but if we also decide to maintain
and improve our project in future, it will save us even more time in the long run.

When it comes to not writing code, we can apply the following strategies:

• Writing our code in a declarative programming style
• Reusing the code written by someone else

In this project, we'll be using both these techniques. The first one is covered by React
itself. React leaves us no choice but to write our JavaScript code in a declarative style.
This means that instead of telling our web browser how to do what we want (like we
do in jQuery), we just tell it what we want it to do and the how part is explained by
React. That's a win for us.

Node.js and npm cover the second technique. I've mentioned earlier in this chapter
that there are a hundred thousand different Node.js applications available for us to
use. This means that most likely someone has already implemented the functionality
that our application depends on.

The question is how do you know from where to get all these Node.js applications
that we want to reuse. We can install them via the npm install <package-name>
command. In the npm context, a Node.js application is called a package, and each
npm package has a package.json file that describes the metadata associated with
that package. You can learn more about what fields are stored in package.json at
https://docs.npmjs.com/files/package.json.

https://docs.npmjs.com/files/package.json

Chapter 1

[11]

Before we install our dependency packages, we will initialize a package for our own
project. Normally, package.json is only required when you want to submit your
package to the npm registry so that others can reuse your Node.js application. We're
not going to build a Node.js application, and we're not going to submit our project to
npm. Remember that package.json is technically only a metadata file that the npm
command understands, and as such, we can use it to store a list of dependencies that
our application requires. Once we store a list of dependencies in package.json, we
can easily install them anytime with the npm install command; npm will figure out
from where to get them automatically.

How do we create the package.json file for our own application? Luckily, npm
comes with an interactive tool that asks us a bunch of questions and then, based on
our answers, creates package.json for our project.

Make sure that you're located in the ~/snapterest/ directory. On the Terminal/
Command Prompt run the following command:
npm init

The first question it will ask you is your package name. It will suggest a default name
that is the directory name you're located in. It should suggest name: (snapterest)
in our case. Press Enter to accept the proposed default name (snapterest). The next
question is the version of your package, that is, version: (1.0.0). Press Enter.
These two would be the most important fields if we were planning to submit our
package to npm for others to reuse. Because we're not going to submit it to npm, we
can confidently accept defaults for all the questions that we are asked. Keep pressing
Enter until npm init completes its execution and exits. Then, if you go to your
~/snapterest/ directory, you will find a new file there, package.json.

Now we're ready to install other Node.js applications that we're going to reuse.
An application that is built of multiple individual applications is called modular,
whereas individual applications are called modules. This is what we'll call our
Node.js dependencies from now on—Node.js modules.

Reusing Node.js modules
As I mentioned earlier, there will be a step in our development process called
building. During this step, our build script will take our source files and all our
Node.js dependency packages, and transform them into a single file that web
browsers can successfully execute. The most important part of this building process
is called packaging. But what do we need to package and why? Let's think about it.
I briefly mentioned earlier that we're not creating a Node.js application, but yet
we're talking about reusing Node.js modules. Does this mean that we'll be reusing
Node.js modules in a non-Node.js application? Is that even possible? Turns out,
there is a way of doing that.

Installing Powerful Tools for Your Project

[12]

Browserify is a tool used for bundling all your dependency files together in such a
way that you can reuse Node.js modules in client-side JavaScript applications. You
can learn more about Browserify at http://browserify.org. To install Browserify,
run the following command from inside the ~/snapterest/ directory:

npm install --save-dev browserify

Notice the --save-dev flag. It tells npm to add Browserify to our package.json as
a development dependency. Adding a module name to our package.json file as a
dependency allows us to record what dependencies we're using, and we can easily
install them later with the npm install command, if needed. There is a distinction
between dependencies that are required to run your application and the ones that
are required to develop your application. Browserify is used at build time, and not at
runtime, so it's a development dependency. Hence the use of the --save-dev flag.
If you check the content of your package.json file now, you'll see this:

"devDependencies": {
 "browserify": "^11.0.1"
}

Notice that npm created a new folder in your ~/snapterest/ directory called
node_modules. This is the place where it puts all your local dependency modules.

Congrats on installing your first Node.js module! Browserify will allow us to use
Node.js modules in our client-side JavaScript applications. It will be a part of our
build process. Speaking of which, I think it's a good time to introduce you to our
build tools.

Building with Gulp.js
Today, any modern client-side application represents a mix of many concerns
that are addressed individually by various technologies. Addressing each concern
individually simplifies the overall process of managing the project's complexity.
The downside of this approach is that at some point in your project, you need to put
together all the individual parts into one coherent application. Just like the robots
in an automotive factory that assemble cars from individual parts, developers have
something called build-tools that assemble their projects from individual modules.
This process is called the build process and, depending on the size and complexity
of your project, it can take anywhere from milliseconds to hours to build.

The Node.js ecosystem has a great tool for automating our build process, Gulp.js.
You can learn more about Gulp.js at http://gulpjs.com. Let's install it:

npm install --save-dev gulp

http://browserify.org
http://gulpjs.com

Chapter 1

[13]

Once again, we need this module for developing, but not running, our application.
Only this time we also want to install our module globally:

npm install --global gulp

This would allow us to run it from the Terminal/Command Prompt. To check
whether you have Gulp.js installed, run this command:

gulp

You should see the following output:

No gulpfile found

This means that you have successfully installed Gulp.js.

What is this gulpfile anyway? It's a file where we describe our build process. Create
gulpfile.js in your ~/snapterest/ directory and add the following content to it:

var gulp = require('gulp');

gulp.task('default', function() {
 console.log('I am about to learn the essentials of React.js');
});

Now if you run the gulp command, you will see output that looks like this:

Using gulpfile ~/snapterest/gulpfile.js

Starting 'default'...

I am about to learn the essentials of React.js

Finished 'default' after 62 μs

By default, when you run gulp, it executes a task called (no surprise here)
default. Well done! You now have a working Gulp.js build system. Let's create
a task that will package our source and dependency modules using Browserify.

Replace the content of your gulpfile.js with the following code:

var gulp = require('gulp');
var browserify = require('browserify');
var babelify = require('babelify');
var source = require('vinyl-source-stream');

gulp.task('default', function () {
 return browserify('./source/app.js')
 .transform(babelify)

Installing Powerful Tools for Your Project

[14]

 .bundle()
 .pipe(source('snapterest.js'))
 .pipe(gulp.dest('./build/'));
});

As you can see, we will use the require() function to import three new dependency
modules: browserify, babelify, and vinyl-source-stream. We have already
installed the browserify module, so now let's install the babelify module:

npm install --save-dev babelify

The babelify module allows us to write the JSX syntax that we'll introduce in the
next chapter.

Why do we need the vinyl-source-stream module? In a nutshell, it allows us to
use Browserify and Gulp together. If you're interested in more details on why this
works, go to https://www.npmjs.com/package/vinyl-source-stream. Let's
install our vinyl-source-stream dependency module:

npm install --save-dev vinyl-source-stream

Now we're ready to test our default task. Run this command:

gulp

The output should look something like this:

Using gulpfile ~/snapterest/gulpfile.js

Starting 'default'...

Finished 'default' after 48 ms

More importantly, if you check your project's ~/snapterest/build/ directory,
you'll notice that it now has the snapterest.js file with some code already inside
it—that's our (empty) JavaScript application with some Node.js modules that are
ready to run in a web browser!

Creating a web page
If you're starving for some React goodness, then I have great news for you!
We're almost there. All that's left to do is to create index.html with a link to
our snapterest.js script.

https://www.npmjs.com/package/vinyl-source-stream

Chapter 1

[15]

Create the index.html file in the ~/snapterest/build/ directory. Add the
following HTML markup to it:

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <meta http-equiv="x-ua-compatible" content="ie=edge, chrome=1" />
 <title>Snapterest</title>
 <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/
bootstrap/3.3.5/css/bootstrap.min.css">
 </head>
 <body>
 <div id="react-application">
 I am about to learn the essentials of React.js.
 </div>
 <script src="./snapterest.js"></script>
 </body>
</html>

Open ~/snapterest/build/index.html in a web browser. You should see the
following text: I am about to learn the essentials of React.js. That's right, we have
finished setting up our project, and it's time to get to know React!

Summary
In this chapter, we learned why we should use React to build user interfaces for
modern web applications. Then, we discussed the project that we'll be building in
this book. Finally, we installed all the right tools and created the project's structure.
In the next chapter, we'll install React, take a closer look at how React works, and
create our first React Element.

[17]

Create Your First
React Element

As many of you know, creating a simple web application today involves writing the
HTML, CSS, and JavaScript code. The reason we use three different technologies is
because we want to separate three different concerns:

• Content (HTML)
• Styling (CSS)
• Logic (JavaScript)

This separation works great for creating a web page because, traditionally,
we had different people working on different parts of our web page: one person
structured the content using HTML and styled it using CSS, and then another
person implemented the dynamic behavior of various elements on that web
page using JavaScript. It was a content-centric approach.

Today, we mostly don't think of a website as a collection of web pages anymore.
Instead, we build web applications that might have only one web page, and that
web page does not represent the layout for our content—it represents a container
for our web application. Such a web application with a single web page is called
(unsurprisingly) a Single Page Application (SPA). You might be wondering, how do
we represent the rest of the content in a SPA? Surely, we need to create an additional
layout using HTML tags? Otherwise, how does a web browser know what to render?

Create Your First React Element

[18]

These are all valid questions. Let's take a look at how it works. Once you load your
web page in a web browser, it creates a Document Object Model (DOM) of that
web page. A DOM represents your web page in a tree structure, and at this point, it
reflects the structure of the layout that you created with only HTML tags. This is what
happens regardless of whether you're building a traditional web page or a SPA. The
difference between the two is what happens next. If you are building a traditional
web page, then you would finish creating your web page's layout. On the other hand,
if you are building a SPA, then you would need to start creating additional elements
by manipulating the DOM with JavaScript. A web browser provides you with the
JavaScript DOM API to do this. You can learn more about it at https://developer.
mozilla.org/en-US/docs/Web/API/Document_Object_Model.

However, manipulating (or mutating) the DOM with JavaScript has two issues:

• Your programming style will be imperative if you decide to use the
JavaScript DOM API directly. As we discussed in the previous chapter,
this programming style leads to a code base that is harder to maintain.

• DOM mutations are slow because they cannot be optimized for speed,
unlike other JavaScript code.

Luckily, React solves both these problems for us.

Understanding the virtual DOM
Why do we need to manipulate the DOM in the first place? Because our web
applications are not static. They have a state represented by the user interface (UI)
that a web browser renders, and that state can be changed when an event occurs.
What kind of events are we talking about? There are two types of events that we're
interested in:

• User events: When a user types, clicks, scrolls, resizes, and so on
• Server events: When an application receives data or an error from a server,

among others

What happens while handling these events? Usually, we update the data that our
application depends on, and that data represents a state of our data model. In turn,
when a state of our data model changes, we might want to reflect this change by
updating a state of our UI. Looks like what we want is a way of syncing two different
states: the UI state and the data model state. We want one to react to the changes in
the other and vice versa. How can we achieve this?

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

Chapter 2

[19]

One of the ways to sync your application's UI state with an underlying data model's
state is two-way data binding. There are different types of two-way data binding.
One of them is key-value observing (KVO), which is used in Ember.js, Knockout,
Backbone, and iOS, among others. Another one is dirty checking, which is used
in Angular.

Instead of two-way data binding, React offers a different solution called the virtual
DOM. The virtual DOM is a fast, in-memory representation of the real DOM, and it's
an abstraction that allows us to treat JavaScript and DOM as if they were reactive.
Let's take a look at how it works:

1. Whenever the state of your data model changes, the virtual DOM and React
will rerender your UI to a virtual DOM representation.

2. React then calculates the difference between the two virtual DOM
representations: the previous virtual DOM representation that was computed
before the data was changed and the current virtual DOM representation that
was computed after the data was changed. This difference between the two
virtual DOM representations is what actually needs to be changed in the
real DOM.

3. React updates only what needs to be updated in the real DOM.

The process of finding a difference between the two representations of the virtual
DOM and rerendering only the updated patches in a real DOM is fast. Also, the best
part is, as a React developer, that you don't need to worry about what actually needs
to be rerendered. React allows you to write your code as if you were rerendering the
entire DOM every time your application's state changes.

If you would like to learn more about the virtual DOM, the rationale behind it,
and how it can be compared to data binding, then I would strongly recommend
that you watch this very informative talk by Pete Hunt from Facebook at
https://www.youtube.com/watch?v=-DX3vJiqxm4.

Now that we've learnt about the virtual DOM, let's mutate a real DOM by installing
React and creating our first React element.

Installing React
To start using the React library, we need to first install it. I am going to show you two
ways of doing this: the simplest one and the one using the npm install command.

https://www.youtube.com/watch?v=-DX3vJiqxm4

Create Your First React Element

[20]

The simplest way is to add the <script> tag to our ~/snapterest/build/index.
html file:

• For the development version of React, add the following command:
<script src="https://cdnjs.cloudflare.com/ajax/libs/react/0.14.0-
beta3/react.js"></script>

• For the production version version of React, add the following command:

<script src="https://cdnjs.cloudflare.com/ajax/libs/react/0.14.0-
beta3/react.min.js"></script>

There is a difference between the two that we'll learn about in the later chapters of
this book. For our project, we'll be using the development version of React.

At the time of writing, the latest version of React library is 0.14.0-beta3. Over time,
React gets updated, so make sure you use the latest version that is available to you,
unless it introduces breaking changes that are incompatible with the code samples
provided in this book. Visit https://github.com/fedosejev/react-essentials
to learn about any compatibility issues between the code samples and the latest
version of React.

In Chapter 1, Installing Powerful Tools for Your Project, I introduced you to Browserify
that allows us to import all the dependency modules for our application using the
require() function. We'll be using require() to import the React library as well,
which means that, instead of adding a <script> tag to our index.html, we'll be
using the npm install command to install React:

1. Navigate to the ~/snapterest/ directory and run this command:
npm install --save react@0.14.0-beta3 react-dom@0.14.0-beta3

2. Then, open the ~/snapterest/source/app.js file in your text editor
and import the React and ReactDOM libraries to the React and ReactDOM
variables, respectively:

var React = require('react');
var ReactDOM = require('react-dom');

The react package contains methods that are concerned with the key idea behind
React, that is, describing what you want to render in a declarative way. On the other
hand, the react-dom package offers methods that are responsible for rendering to
the DOM. You can read more about why developers at Facebook think it's a good
idea to separate the React library into two packages at https://facebook.github.
io/react/blog/2015/07/03/react-v0.14-beta-1.html#two-packages.

https://github.com/fedosejev/react-essentials
https://facebook.github.io/react/blog/2015/07/03/react-v0.14-beta-1.html#two-packages
https://facebook.github.io/react/blog/2015/07/03/react-v0.14-beta-1.html#two-packages

Chapter 2

[21]

Now we're ready to start using the React library in our project. Next, let's create our
first React Element!

Creating React Elements with JavaScript
We'll start by familiarizing ourselves with a fundamental React terminology. It will
help us build a clear picture of what the React library is made of. This terminology
will most likely update over time, so keep an eye on the official documentation at
http://facebook.github.io/react/docs/glossary.html.

Just like the DOM is a tree of nodes, React's virtual DOM is a tree of React nodes.
One of the core types in React is called ReactNode. It's a building block for a virtual
DOM, and it can be any one of these core types:

• ReactElement: This is the primary type in React. It's a light, stateless,
immutable, virtual representation of a DOM Element.

• ReactText: This is a string or a number. It represents textual content and it's
a virtual representation of a Text Node in the DOM.

ReactElements and ReactTexts are ReactNodes. An array of ReactNodes is called a
ReactFragment. You will see examples of all of these in this chapter.

Let's start with an example of a ReactElement:

1. Add the following code to your ~/snapterest/source/app.js file:
var reactElement = React.createElement('h1');
ReactDOM.render(reactElement, document.getElementById('react-
application'));

2. Now your app.js file should look exactly like this:
var React = require('react');
var ReactDOM = require('react-dom');
var reactElement = React.createElement('h1');
ReactDOM.render(reactElement, document.getElementById('react-
application'));

3. Navigate to the ~/snapterest/ directory and run Gulp's default task:
gulp

You will see the following output:

Starting 'default'...

Finished 'default' after 1.73 s

http://facebook.github.io/react/docs/glossary.html

Create Your First React Element

[22]

4. Navigate to the ~/snapterest/build/ directory, and open index.html in a
web browser. You will see a blank web page. Open Developer Tools in your
web browser and inspect the HTML markup for your blank web page. You
should see this line, among others:

<h1 data-reactid=".0"></h1>

Well done! We've just created your first React element. Let's see exactly how we
did it.

The entry point to the React library is the React object. This object has a method
called createElement() that takes three parameters: type, props, and children:

React.createElement(type, props, children);

Let's take a look at each parameter in more detail.

The type parameter
The type parameter can be either a string or a ReactClass:

• A string could be an HTML tag name such as 'div', 'p', 'h1', and so on.
React supports all the common HTML tags and attributes. For a complete
list of HTML tags and attributes supported by React, you can refer to
http://facebook.github.io/react/docs/tags-and-attributes.html.

• A ReactClass is created via the React.createClass() method. I'll
introduce this in more detail in Chapter 3, Create Your First React Component.

The type parameter describes how an HTML tag or a ReactClass is going to be
rendered. In our example, we're rendering the h1 HTML tag.

The props parameter
The props parameter is a JavaScript object passed from a parent element to a child
element (and not the other way around) with some properties that are considered
immutable, that is, those that should not be changed.

While creating DOM elements with React, we can pass the props object with
properties that represent the HTML attributes such as class, style, and so on.
For example, run the following commands:

var React = require('react');
var ReactDOM = require('react-dom');
var reactElement = React.createElement('h1', { className: 'header' });
ReactDOM.render(reactElement, document.getElementById('react-
application'));

http://facebook.github.io/react/docs/tags-and-attributes.html

Chapter 2

[23]

The preceding code will create an h1 HTML element with a class attribute set
to header:

<h1 class="header" data-reactid=".0"></h1>

Notice that we name our property className rather than class. The reason is that
the class keyword is reserved in JavaScript. If you use class as a property name, it
will be ignored by React, and a helpful warning message will be printed on the web
browser's console:

Warning: Unknown DOM property class. Did you mean className?

Use className instead.

You might be wondering what this data-reactid=".0" attribute is doing in our
h1 tag? We didn't pass it to our props object, so where did it come from? It is added
and used by React to track the DOM nodes; it might be removed in a future version
of React.

The children parameter
The children parameter describes what child elements this element should have,
if any. A child element can be any type of ReactNode: a virtual DOM element
represented by a ReactElement, a string or a number represented by a ReactText,
or an array of other ReactNodes, which is also called ReactFragment.

Let's take a look at this example:

var React = require('react');
var ReactDOM = require('react-dom');
var reactElement = React.createElement('h1', { className: 'header' },
'This is React');
ReactDOM.render(reactElement, document.getElementById('react-
application'));

The following code will create an h1 HTML element with a class attribute and a text
node, This is React:

<h1 class="header" data-reactid=".0">This is React</h1>

The h1 tag is represented by a ReactElement, while the This is React string is
represented by a ReactText.

Create Your First React Element

[24]

Next, let's create a React element with a number of other React elements as
it's children:

var React = require('react');
var ReactDOM = require('react-dom');

var h1 = React.createElement('h1', { className: 'header', key:
'header' }, 'This is React');
var p = React.createElement('p', { className: 'content', key:
'content' }, "And that's how it works.");
var reactFragment = [h1, p];
var section = React.createElement('section', { className: 'container'
}, reactFragment);

ReactDOM.render(section, document.getElementById('react-
application'));

We've created three React elements: h1, p, and section. h1 and p both have child
text nodes, "This is React" and "And that's how it works.", respectively.
The section has a child that is an array of two ReactElements, h1 and p, called
reactFragment. This is also an array of ReactNodes. Each ReactElement in the
reactFragment array must have a key property that helps React to identify that
ReactElement. As a result, we get the following HTML markup:

<section class="container" data-reactid=".0">
 <h1 class="header" data-reactid=".0.$header">This is React</h1>
 <p class="content" data-reactid=".0.$content">And that's how it
works.</p>
</section>

Now we understand how to create React elements. What if we want to create a
number of React elements of the same type? Does it mean that we need to call
React.createElement('type') over and over again for each element of the same
type? We can, but we don't need to because React provides us with a factory function
called React.createFactory(). A factory function is a function that creates other
functions. This is exactly what React.createFactory(type) does: it creates a
function that produces a ReactElement of a given type.

Consider the following example:

var React = require('react');
var ReactDOM = require('react-dom');

var listItemElement1 = React.createElement('li', { className: 'item-
1', key: 'item-1' }, 'Item 1');

Chapter 2

[25]

var listItemElement2 = React.createElement('li', { className: 'item-
2', key: 'item-2' }, 'Item 2');
var listItemElement3 = React.createElement('li', { className: 'item-
3', key: 'item-3' }, 'Item 3');

var reactFragment = [listItemElement1, listItemElement2,
listItemElement3];
var listOfItems = React.createElement('ul', { className: 'list-of-
items' }, reactFragment);

ReactDOM.render(listOfItems, document.getElementById('react-
application'));

The preceding example produces this HTML:

<ul class="list-of-items" data-reactid=".0">
 <li class="item-1" data-reactid=".0.$item-1">Item 1
 <li class="item-2" data-reactid=".0.$item-2">Item 2
 <li class="item-3" data-reactid=".0.$item-3">Item 3

We can simplify it by first creating a factory function:

var React = require('react');
var ReactDOM = require('react-dom');

var createListItemElement = React.createFactory('li');

var listItemElement1 = createListItemElement({ className: 'item-1',
key: 'item-1' }, 'Item 1');
var listItemElement2 = createListItemElement({ className: 'item-2',
key: 'item-2' }, 'Item 2');
var listItemElement3 = createListItemElement({ className: 'item-3',
key: 'item-3' }, 'Item 3');

var reactFragment = [listItemElement1, listItemElement2,
listItemElement3];
var listOfItems = React.createElement('ul', { className: 'list-of-
items' }, reactFragment);

ReactDOM.render(listOfItems, document.getElementById('react-
application'));

Create Your First React Element

[26]

In the preceding example, we're first calling the React.createFactory()
function and passing a li HTML tag name as a type parameter. Then, the React.
createFactory() function returns a new function that we can use as a convenient
shorthand to create elements of type li. We store a reference to this function in a
variable called createListItemElement. Then, we call this function three times,
and each time we only pass the props and children parameters, which are
unique for each element. Notice that React.createElement() and React.
createFactory() both expect the HTML tag name string (such as li) or the
ReactClass object as a type parameter.

React provides us with a number of built-in factory functions to create the common
HTML tags. You can call them from the React.DOM object; for example, React.DOM.
ul(), React.DOM.li(), React.DOM.div(), and so on. Using them, we can simplify
our previous example even further:

var React = require('react');
var ReactDOM = require('react-dom');

var listItemElement1 = React.DOM.li({ className: 'item-1', key: 'item-
1' }, 'Item 1');
var listItemElement2 = React.DOM.li({ className: 'item-2', key: 'item-
2' }, 'Item 2');
var listItemElement3 = React.DOM.li({ className: 'item-3', key: 'item-
3' }, 'Item 3');

var reactFragment = [listItemElement1, listItemElement2,
listItemElement3];
var listOfItems = React.DOM.ul({ className: 'list-of-items' },
reactFragment);

ReactDOM.render(listOfItems, document.getElementById('react-
application'));

Now we know how to create a tree of ReactNodes. However, there is one important
line of code that we need to discuss before we can progress further:

ReactDOM.render(listOfItems, document.getElementById('react-
application'));

As you might have already guessed, it renders our ReactNode tree to the DOM.
Let's take a closer look at how it works.

Chapter 2

[27]

Rendering React Elements
The ReactDOM.render() method takes three parameters: ReactElement, a regular
DOMElement, and a callback function:

ReactDOM.render(ReactElement, DOMElement, callback);

ReactElement is a root element in the tree of ReactNodes that you've created.
A regular DOMElement is a container DOM node for that tree. The callback is
a function executed after the tree is rendered or updated. It's important to note
that if this ReactElement was previously rendered to a parent DOM Element,
then ReactDOM.render() will perform an update on the already rendered DOM
tree and only mutate the DOM as it is necessary to reflect the latest version of the
ReactElement. This is why a virtual DOM requires fewer DOM mutations.

So far, we've assumed that we're always creating our virtual DOM in a web browser.
This is understandable because, after all, React is a user interface library, and all
the user interfaces are rendered in a web browser. Can you think of a case when
rendering a user interface on a client would be slow? Some of you might have
already guessed that I am talking about the initial page load. The problem with the
initial page load is the one I mentioned at the beginning of this chapter—we're not
creating static web pages anymore. Instead, when a web browser loads our web
application, it receives only the bare minimum HTML markup that is usually used
as a container or a parent element for our web application. Then, our JavaScript
code creates the rest of the DOM, but in order for it to do so it often needs to request
extra data from the server. However, getting this data takes time. Once this data
is received, our JavaScript code starts to mutate the DOM. We know that DOM
mutations are slow. How can we solve this problem?

The solution is somewhat unexpected. Instead of mutating the DOM in a web
browser, we mutate it on a server. Just like we would with our static web pages.
A web browser will then receive an HTML that fully represents a user interface
of our web application at the time of the initial page load. Sounds simple, but we
can't mutate the DOM on a server because it doesn't exist outside a web browser.
Or can we?

We have a virtual DOM that is just a JavaScript, and as you know using Node.js,
we can run JavaScript on a server. So technically, we can use the React library on a
server, and we can create our ReactNode tree on a server. The question is how can
we render it to a string that we can send to a client?

Create Your First React Element

[28]

React has a method called ReactDOMServer.renderToString() just to do this:

var ReactDOMServer = require('react-dom/server');
ReactDOMServer.renderToString(ReactElement);

It takes a ReactElement as a parameter and renders it to its initial HTML.
Not only is this faster than mutating a DOM on a client, but it also improves
the Search Engine Optimization (SEO) of your web application.

Speaking of generating static web pages, we can do this too with React:

var ReactDOMServer = require('react-dom/server');
ReactDOM.renderToStaticMarkup(ReactElement);

Similar to ReactDOM.renderToString(), this method also takes a ReactElement as
a parameter and outputs an HTML string. However, it doesn't create the extra DOM
attributes that React uses internally, it produces shorter HTML strings that we can
transfer to the wire quickly.

Now you know not only how to create a virtual DOM tree using React elements,
but you also know how to render it to a client and server. Our next question is
whether we can do it quickly and in a more visual manner.

Creating React Elements with JSX
When we build our virtual DOM by constantly calling the React.createElement()
method, it becomes quite hard to visually translate these multiple function calls
into a hierarchy of HTML tags. Don't forget that, even though we're working with a
virtual DOM, we're still creating a structure layout for our content and user interface.
Wouldn't it be great to be able to visualize that layout easily by simply looking at our
React code?

JSX is an optional HTML-like syntax that allows us to create a virtual DOM tree
without using the React.createElement() method.

Let's take a look at the previous example that we created without JSX:

var React = require('react');
var ReactDOM = require('react-dom');

var listItemElement1 = React.DOM.li({ className: 'item-1', key: 'item-
1' }, 'Item 1');
var listItemElement2 = React.DOM.li({ className: 'item-2', key: 'item-
2' }, 'Item 2');

Chapter 2

[29]

var listItemElement3 = React.DOM.li({ className: 'item-3', key: 'item-
3' }, 'Item 3');

var reactFragment = [listItemElement1, listItemElement2,
listItemElement3];
var listOfItems = React.DOM.ul({ className: 'list-of-items' },
reactFragment);

ReactDOM.render(listOfItems, document.getElementById('react-
application'));

Translate this to the one with JSX:

var React = require('react');
var ReactDOM = require('react-dom');

var listOfItems = <ul className="list-of-items">
 <li className="item-1">Item 1
 <li className="item-2">Item 2
 <li className="item-3">Item 3
 ;

ReactDOM.render(listOfItems, document.getElementById('react-
application'));

As you can see, JSX allows us to write HTML-like syntax in our JavaScript code.
More importantly, we can now clearly see what our HTML layout will look like
once it's rendered. JSX is a convenience tool and it comes with a price in the form
of an additional transformation step. Transformation of the JSX syntax into valid
JavaScript syntax must happen before our "invalid" JavaScript code is interpreted.

In our previous chapter, we installed the babely module that transforms our JSX
syntax into a JavaScript one. This transformation happens every time we run our
default task from gulpfile.js:

gulp.task('default', function () {
 return browserify('./source/app.js')
 .transform(babelify)
 .bundle()
 .pipe(source('snapterest.js'))
 .pipe(gulp.dest('./build/'));
});

As you can see, the .transform(babelify) function call transforms JSX into
JavaScript before bundling it with the other JavaScript code.

www.allitebooks.com

http://www.allitebooks.org

Create Your First React Element

[30]

To test our transformation, run this command:

gulp

Then, navigate to the ~/snapterest/build/ directory, and open index.html in a
web browser. You will see a list of three items.

The React team has built an online JSX Compiler that you can use to test your
understanding of how JSX works at http://facebook.github.io/react/jsx-
compiler.html.

Using JSX, you might feel very unusual in the beginning, but it can become a very
intuitive and convenient tool to use. The best part is that you can choose whether to
use it or not. I found that JSX saves me development time, so I chose to use it in this
project that we're building, and in the code samples I will be sharing with you in this
book. If you choose to not use it, then I believe that you have learned enough in this
chapter to be able to translate the JSX syntax into a JavaScript code with the React.
createElement() function calls.

If you have a question about what we have discussed in this chapter, then you
can refer to https://github.com/fedosejev/react-essentials and create
a new issue.

Summary
We started this chapter by discussing the issues with single web page applications
and how they can be addressed. Then, we learned what a virtual DOM is and
how React allows us to build it. We also installed React and created our first React
element using only JavaScript. Then, we also learned how to render React elements
in a web browser and on a server. Finally, we looked at a simpler way of creating
React elements with JSX.

In the next chapter, we'll dive deeper into the world of React components.

http://facebook.github.io/react/jsx-compiler.html
http://facebook.github.io/react/jsx-compiler.html
https://github.com/fedosejev/react-essentials

[31]

Create Your First React
Component

In the previous chapter, we learned how to create React elements and how to use
them to render the HTML markup. You've seen how easy it is to produce React
elements using JSX. At this point, you know enough about React in order to create
the static web pages that we discussed in Chapter 2, Create Your First React Element.
However, I bet that's not the reason why you've decided to learn React. You don't
want to just build websites made of static HTML elements. You want to build
interactive user interfaces that react to user and server events. What does it mean to
react to an event? How can a static HTML element react? How can a React element
react? In this chapter, we'll answer these questions and many other questions while
introducing ourselves to React components.

Stateless versus stateful
To react means to switch from one state to another. This means that you need to
have a state in the first place and the ability to change that state. Have we mentioned
a state or the ability to change that state in React elements? No. They are stateless.
Their sole purpose is to construct and render virtual DOM elements. In fact, we want
them to render in the exact same way, given that we provide them the exact same
set of parameters. We want them to be consistent because it makes it easy for us to
reason about them. That's one of the key benefits of using the React library—the ease
of reasoning how our web application works.

How can we add a state to our stateless React elements? If we can't encapsulate a
state in React elements, then we should encapsulate React elements in something that
already has a state. Think of a simple state machine that represents a user interface.
Every user action triggers a change of a state in that state machine. Every state is
represented by a different React element. In the React library, this state machine is
called a React Component.

Create Your First React Component

[32]

Creating your first stateless React
component
Let's take a look at the following example of how to create a React component:

var React = require('react');
var ReactDOM = require('react-dom');

var ReactClass = React.createClass({
 render: function () {
 return React.createElement('h1', { className: 'header' }, 'React
Component');
 }
});
var reactComponentElement = React.createElement(ReactClass);
var reactComponent = ReactDOM.render(reactComponentElement, document.
getElementById('react-application'));

Some of the preceding code should already look familiar to you, and the rest can be
broken down into three simple steps:

1. Creating a React class.
2. Creating a React component element.
3. Creating a React component.

Let's take a closer look at how we can create a React component:

1. Create a ReactClass by calling the React.createClass() function and
providing a specification object as its parameter. In this chapter, we'll focus
on learning about the specification objects in more detail.

2. Create a ReactComponentElement by calling the React.createElement()
function and providing our ReactClass as its type parameter. In Chapter 2,
Create Your First React Element, we learned that the type parameter can be
either a string or a ReactClass. In this chapter, you'll learn more about the
latter one.

3. Create a ReactComponent by calling the ReactDOM.render() function and
providing our ReactComponentElement as its element parameter.

The specification object that you pass as a parameter to React.createClass() is
where your component's look and feel is defined. Specification is the definition of
your React component. From now on, in this chapter, we'll refer to a specification
object as a React component, and in the rest of the chapter we will learn about this
very important concept.

Chapter 3

[33]

The specification object encapsulates a component's state and describes how a
component is rendered. At the very minimum, the React component needs to have
a render() method so that it returns at least null or false. Here is an example of a
specification object in its simplest form:

{
 render: function () {
 return null;
 }
}

As you can guess, the render() function is responsible for telling React how to
render your React component. It can return null, as in the preceding example, and
nothing will be rendered. Or it can return a ReactElement that we learned how to
create in Chapter 2, Create Your First React Element:

{
 render: function () {
 return React.createElement('h1', { className: 'header' }, 'React
Component');
 }
}

This example shows how we can encapsulate our React element inside our React
component. We create a ReactElement of type h1 with the properties object and a
ReactText as its only child. Then, we return it when the render()method of our
React component is called. The fact that we encapsulated our React element inside a
React component doesn't affect how it will be rendered:

<h1 class="header" data-reactid=".0">React Component</h1>

As you can see, the produced HTML markup is identical to the one we created in
Chapter 2, Create Your First React Element, without using the React component. In this
case, you might be wondering what's the benefit of having a render() function if we
can render the exact same markup without it?

The advantage of having a render() function is that, as with any other function,
before it returns a value, it can choose what value to return. So far, you've seen two
examples of the render() function: one that returns null and one that returns a
React element. We can merge the two and add a condition that decides what
to render:

{
 render: function () {
 var elementState = {
 isHidden: true

Create Your First React Component

[34]

 };

 if (elementState.isHidden) {
 return null;
 }

 return React.createElement('h1', { className: 'header' }, 'React
Component');
 }
}

In this example, we created the elementState variable that references an object with
a single isHidden property. This object acts as a state for our React element. If we
want to hide our React element, then we need to set the value of elementState.
isHidden to true, and our render function will return null. In this case, React will
render nothing. Logically, by setting elementState.isHidden to false, will return
our React element and the expected HTML markup will be rendered. The question
you might ask is: how do we set the value of elementState.isHidden to false?
Or to true? Or how do we change it in general?

Let's think of scenarios in which we might want to change that state. One of them
is when a user interacts with our user interface. Another one is when a server
sends data. Or when a certain amount of time passes and then we want to render
something else. Our render() function is not aware of all these events and it
shouldn't be because its sole purpose is to return a React element based on the
data that we pass to it. How do we pass data to it?

There are two ways to pass data to a render() function using the React API:

• this.props

• this.state

this.props should look familiar to you. In Chapter 2, Create Your First React
Element, we learned that the React.createElement() function accepts the props
parameter. We used it to pass attributes to our HTML elements, but we didn't
discuss what happens behind the scene and why attributes passed to the props
object get rendered.

Any data that you put in the props object and pass to the React.createElement()
function can be accessed inside the render() function of ReactComponent via this.
props. Once you have accessed data from this.props, you can render it:

{
 render: function () {
 var elementState = {

Chapter 3

[35]

 isHidden: true
 };

 if (elementState.isHidden) {
 return null;
 }

 return React.createElement('h1', { className: 'header' }, this.
props.header);
 }
}

In this example, we're using this.props inside our render() function to access
the header property. We're then passing this.props.header directly to the
React.createElement() function as a child string element.

In the preceding example, we can pass the value of isHidden as another property of
the this.props object:

{
 render: function () {
 if (this.props.isHidden) {
 return null;
 }

 return React.createElement('h1', { className: 'header' }, this.
props.header);
 }
}

We can also use this.props to compute data that needs to be rendered:

{
 render: function () {
 if (this.props.isHidden) {
 return null;
 }

 var header = this.props.tweets.length + ' Latest Tweets';
 return React.createElement('h1', { className: 'header' }, header);
 }
}

Create Your First React Component

[36]

As you can see, we're accessing an array of tweets via this.props.tweets and
getting its length property. Then, we're concatenating a string ' Latest Tweets'
to it. The resulting string is stored in a header variable, and this is our computed
child string element that we're passing to the React.createElement() function.

Notice that in our previous example, instead of storing isHidden in a render()
function, we're passing it via this.props. We removed our elementState object
from it because we don't need to worry about the state in our render() function.
It's a pure function, which means that it shouldn't mutate the state or access the real
DOM, or otherwise interact with a web browser. Remember that we might want to
use React on a server, where we have no web browser, and we should expect the
render() function to produce the same result regardless of the environment.

If our render() function doesn't manage the state, then how do we manage it?
How do we set the state, and how do we update it while handling user or browser
events in React?

Earlier in this chapter, we learned that in React we can represent a user interface with
React components. There are two types of React components:

• With a state
• Without a state

Hold on, didn't we say that React components are state machines? Surely, every state
machine needs to have a state. You're correct; however, it's a good practice to keep as
many React components stateless as possible.

React components are composable. As a result, we can have a hierarchy of React
components. Imagine that we have a parent React component that has two child
components, and each of them in turn has another two child components. All the
components are stateful and they can manage their own state:

Chapter 3

[37]

How easy will it be to figure out what the last child component in the hierarchy will
render if the top component in the hierarchy updates its state? Not easy. There is
a design pattern that removes this unnecessary complexity. The idea is to separate
your components into two concerns: how to handle the user interface interaction
logic and how to render data.

• The minority of your React components are stateful. They should be at the
top of your components' hierarchy. They encapsulate all of the interaction
logic, manage the user interface state, and pass that state down the hierarchy
to stateless components, using props.

• The majority of your React components are stateless. They receive the state
data from their parent components via this.props and render that data
accordingly.

In our previous example, we received the isHidden state data via this.props and
then we rendered that data. Our component was stateless.

Next, let's create our first stateful component.

Creating your first stateful React
component
Stateful components are the most appropriate place for your application to handle
the interaction logic and manage the state. They make it easier for you to reason
out how your application works. This reasoning plays a key role in building
maintainable web applications.

React stores the component's state in this.state, and it sets the initial value of
this.state to the value returned by the getInitialState() function. However,
it's up to us to tell React what the getInitialState() function will return.
Let's add this function to our React component:

{
 getInitialState: function () {
 return {
 isHidden: false
 };
 },

 render: function () {
 if (this.state.isHidden) {

Create Your First React Component

[38]

 return null;
 }

 return React.createElement('h1', { className: 'header' }, 'React
Component');
 }
}

In this example, our getInitialState() function returns an object with a
single isHidden property that is set to false. This is the initial state of our React
component and our user interface. Notice that in our render() function, we're now
referring to this.state.isHidden instead of this.props.isHidden.

Earlier in this chapter, you learned that we can pass data to the component's
render() function via this.props or this.state. So, what is the difference
between the two?

• this.props stores read-only data that is passed from the parent. It belongs
to the parent and cannot be changed by its children. This data should be
considered immutable.

• this.state stores data that is private to the component. It can be changed
by the component. The component will rerender itself when the state
is updated.

How do we update a component's state? There is a common way of informing
React of a state change using setState(data, callback). This function takes
two parameters:

• The data function that represents the next state
• The callback function, which you will rarely need to use because React

keeps your user interface up to date for you

How does React keep your user interface up to date? It calls the component's
render() function every time you update the component's state, including any
child components which are rerendered as well. In fact, it rerenders the entire
virtual DOM every time our render() function is called.

When you call the this.setState() function and pass it a data object that
represents the next state, React will merge that next state with the current state.
During the merge, React will overwrite the current state with the next state.
The current state that is not overwritten by the next state will become part of
the next state.

Chapter 3

[39]

Imagine that this is our current state:

{
 isHidden: true,
 title: 'Stateful React Component'
}

We call this.setState(nextState) where nextState is as follows:

{
 isHidden: false
}

React will merge the two states into a new one:

{
 isHidden: false,
 title: 'Stateful React Component'
}

The isHidden property is updated and the title property is not deleted or updated
in any way.

Now that we know how to update our component's state, let's create a stateful
component that reacts to a user event:

{
 getInitialState: function () {
 return {
 isHeaderHidden: false,
 title: 'Stateful React Component'
 };
 },

 handleClick: function () {
 this.setState({
 isHeaderHidden: !this.state.isHeaderHidden
 });
 },

 render: function () {
 var headerElement = React.createElement('h1', { className:
'header', key: 'header' }, this.state.title);
 var buttonElement = React.createElement('button', { className:
'btn btn-default', onClick: this.handleClick, key: 'button' }, 'Toggle
header');

Create Your First React Component

[40]

 if (this.state.isHeaderHidden) {
 return React.createElement('div', null, [buttonElement]);
 }

 return React.createElement('div', null, [buttonElement,
headerElement]);
 }
}

In this example, we're creating a toggle button that shows and hides a header.
The first thing we do is set our initial state object by returning it to the
getInitialState() function. Our initial state has two properties: isHeaderHidden
that is set to false and title that is set to 'Stateful React Component'.
Now we can access this state object in our render() function via this.state.
Inside our render() function, we create three React elements: h1, button, and
div. Our div element acts as a parent element for our h1 and button elements.
However, in one case we create our div element with two children, headerElement
and buttonElement, and in the other case we create it with only one child,
buttonElement. The case we choose depends on the value of this.state.
isHeaderHidden. The current state of our component directly affects what the
render() function will render. While this should look familiar to you, there is
something new in this example that we haven't seen before.

Notice that we introduced a new property on our ReactComponent object, called
handleClick(), which is a function that has no special meaning to React. It's part of
our application logic, and we use it to handle the onClick events. You can add your
own properties to the ReactComponent object. All of these will be available via a
this reference, which you can access from any other function that itself is a property
of the component object. For example, we are accessing a state object via this.state
in both the render() and handleClick() functions.

What does our handleClick() function do? It updates our component's state by
setting the new value of the isHeaderHidden property to the opposite of the existing
one that it accesses via this.state.isHeaderHidden:

this.setState({
 isHeaderHidden: !this.state.isHeaderHidden
});

Our handleClick() function reacts to a user interaction with our user interface.
Our user interface is a button element that a user can click on, and we can attach
an event handler to it. In React, you can attach event handlers to a React element by
passing them to the props parameter in the createElement() function:

React.createElement('button', { className: 'btn btn-default', onClick:
this.handleClick }, 'Toggle header');

Chapter 3

[41]

React uses the CamelCase naming convention for event handlers; for example,
onClick. You can find a list of all the supported events at http://facebook.
github.io/react/docs/events.html#supported-events.

By default, React triggers the event handlers in the bubble phase, but you can tell
React to trigger them in the capture phase by appending Capture to the event name;
for example, onClickCapture.

React wraps a browser's native events into the SyntheticEvent object to ensure that
all the supported events behave identically in Internet Explorer 8 and above.

The SyntheticEvent object provides the same API as the native browser's event,
which means that you can use the stopPropagation() and preventDefault()
methods as usual. If for some reason, you need to access that native browser's event,
then you can do this via the nativeEvent property. To enable touch-event handling,
simply call React.initializeTouchEvents(true).

Notice that passing the onClick property to our createElement() function in
the previous example does not create an inline event handler in the rendered
HTML markup:

<button class="btn btn-default" data-reactid=".0.$button">Toggle
header</button>

This is because React doesn't actually attach event handlers to the DOM nodes
themselves. Instead, React listens for all the events at the top level using a single
event listener, and delegates them to their appropriate event handlers.

In the previous example, you learned how to create a stateful React component that a
user can interact with and change its state. We created and attached an event handler
to the click event that updates the value of the isHeaderHidden property. But have
you noticed that the user interaction does not update the value of another property
that we store in our state, title? Does that seem odd to you? We have data in our
state that doesn't ever get changed. This observation raises an important question;
what should we not put in our state?

Ask yourself a question: what data can I remove from a component's state and still
keep its user interface always up to date? Keep asking and keep removing that data
until you're absolutely certain that there is nothing left to remove without breaking
your user interface.

http://facebook.github.io/react/docs/events.html#supported-events
http://facebook.github.io/react/docs/events.html#supported-events

Create Your First React Component

[42]

In our example, we have the title property in our state object that we can move
to our render() function without breaking the interactivity of our toggle button.
The component will still work as expected:

{
 getInitialState: function () {
 return {
 isHeaderHidden: false
 };
 },

 handleClick: function () {
 this.setState({
 isHeaderHidden: !this.state.isHeaderHidden
 });
 },

 render: function () {
 var title = 'Stateful React Component';

 var headerElement = React.createElement('h1', { className:
'header', key: 'header' }, title);
 var buttonElement = React.createElement('button', { className:
'btn btn-default', onClick: this.handleClick, key: 'button' }, 'Toggle
header');

 if (this.state.isHeaderHidden) {
 return React.createElement('div', null, [buttonElement]);
 }

 return React.createElement('div', null, [buttonElement,
headerElement]);
 }
}

On the other hand, if we move the isHeaderHidden property out of a state object,
then we'll break the interactivity of our component because our render() function
will not be triggered automatically by React every time a user clicks on our button.
This is an example of broken interactivity:

{
 getInitialState: function () {
 return {};
 },

Chapter 3

[43]

 isHeaderHidden: false,

 handleClick: function () {
 this.isHeaderHidden = !this.isHeaderHidden;
 },

 render: function () {
 var title = 'Stateful React Component';

 var headerElement = React.createElement('h1', { className:
'header', key: 'header' }, title);
 var buttonElement = React.createElement('button', { className:
'btn btn-default', onClick: this.handleClick, key: 'button' }, 'Toggle
header');

 if (this.state.isHeaderHidden) {
 return React.createElement('div', null, [buttonElement]);
 }

 return React.createElement('div', null, [buttonElement,
headerElement]);
 }
}

This is an anti-pattern.

Remember this rule of thumb: a component's state should store data that a
component's event handlers may change over time in order to rerender a component's
user interface and keep it up to date. Keep the minimal possible representation of a
component's state in a state object, and compute the rest of the data based on what's
in state and props inside a component's render() function. Anything that you put
in state, you'll need to update yourself. Anything that you put in render() will
automatically get updated by React. Take advantage of React.

Summary
In this chapter, we reached an important milestone: we learned how to encapsulate
a state and create interactive user interfaces by creating React components.
We discussed stateless and stateful React components, and the difference between
them. We talked about the browser events and how to handle them in React.

In the next chapter, we'll be planning our Snapterest web application. You'll learn
how to solve a problem with React and how to create composable React components.

[45]

Make Your React
Components Reactive

Now that you know how to create React components with and without a state,
we can start composing React components together and build more complex
user interfaces. In fact, it's time for us to start building our web application,
called Snapterest, that we discussed in Chapter 1, Installing Powerful Tools for
Your Project. While doing this, we'll learn how to plan your React application
and create composable React components. Let's begin.

Solving a problem using React
Before you start writing code for your web application, you need to think about
the problems that your web application is going to solve. It's very important to
understand that defining the problem as clearly and as early as possible is the
most important step toward a successful solution—a useful web application. If
you fail to define your problem early in your development process, or you define
it inaccurately, then later on you'll have to stop, rethink about what you're doing,
throw away a piece of the code that you have already written, and write a new one.
This is a wasteful approach, and as a professional software developer your time
is very valuable, not only to you but also to your organization, so it's in your best
interests to invest it wisely. Earlier in this book, I stressed on the fact that one of the
benefits of using React is code reuse, which means that you'll be able to do more in
less time. However, before we take a look at the React code, let's first discuss the
problem, keeping React in mind.

Make Your React Components Reactive

[46]

We'll be building Snapterest—a web application that receives tweets from a Snapkite
Engine server in a real-time manner and displays them one at a time to a user.
We don't actually know when Snapterest will receive a new tweet, but when it does,
it will display that new tweet for at least 1.5 seconds so that the user has enough
time to take a look at it and click on it. Clicking on a tweet will add it to an existing
collection of tweets or create a new one. Finally, users will be able to export their
collection to an HTML markup code.

This is a very high-level description of what we're going to build. Let's break it down
into a list of smaller tasks:

1. Receive tweets from the Snapkite Engine server in real time.
2. Display one tweet at a time for at least 1.5 seconds.
3. Add tweets to a collection on a user click event.
4. Display a list of tweets in a collection.
5. Create an HTML markup code for a collection and export it.
6. Remove tweets from a collection on a user click event.

Chapter 4

[47]

Can you identify which tasks can be solved using React? Remember that React is a
user interface library, so anything that describes the user interface and interactions
with that user interface can be addressed with React. In the preceding list, React can
take care of all the tasks except for the first one because it describes data fetching
and not the user interface in any way. Task 1 will be solved with another library that
we'll discuss in the next chapter. Tasks 2 and 4 describe something that needs to be
displayed. They are perfect candidates for React components. Tasks 3 and 6 describe
the user events, and as we've seen in Chapter 3, Create Your First React Component,
user events handling can be encapsulated in React components as well. Can you
think of how task 5 can be solved with React? Remember in Chapter 2, Create Your
First React Element, we discussed the ReactDOMServer.renderToStaticMarkup()
method that renders the React element to a static HTML markup string. That's
exactly what we need in order to solve task 5.

Now that we've identified a potential solution for each individual task, let's
think about how are we going to put them together and create a fully functional
web application.

There are two ways to build composable React applications:

• You can start by building individual React components and then
compose them together into higher-level React components, moving
up the component hierarchy.

• You can start from the topmost React element and then implement its child
components, moving down the component hierarchy.

The second strategy has the advantage of seeing and understanding the big
picture of your application's architecture. I think it's important to understand how
everything fits together before we can think of how individual pieces of functionality
are implemented.

Planning your React application
There are two simple guidelines we need to follow when planning your
React application:

• Each React component should represent a single user interface element in
your web application. It should encapsulate the smallest element possible
that can potentially be reused.

Make Your React Components Reactive

[48]

• Multiple React components should be composed into a single React
component. Ultimately, your entire user interface should be encapsulated
in one React component.

Diagram of our React components hierarchy

We'll begin with our topmost React component, Application. It will encapsulate
our entire React application, and it will have two child components: the Stream
and Collection components. The Stream component will be responsible for
connecting to a stream of tweets, and receiving and displaying the latest tweet.
The Stream component will have two child components: StreamTweet and Header.
The StreamTweet component will be responsible for displaying the latest tweet. It
will be composed of the Header and Tweet components. A Header component will
render a header. It will have no child components. A Tweet component will render
an image from a tweet. Notice how we're planning to reuse the Header component
twice already.

Chapter 4

[49]

The Collection component will be responsible for displaying the collection controls
and a list of tweets. It will have two child components: CollectionControls
and TweetList. The CollectionControls will have two child components: the
CollectionRenameForm component that will render a form to rename a collection,
and the CollectionExportForm component that will render a form to export a
collection to a service called CodePen, which is an HTML, CSS, and JavaScript
playground website. You can learn more about CodePen at http://codepen.io.
As you might have noticed, we'll reuse the Header and Button components in the
CollectionRenameForm and CollectionControls components. Our TweetList
component will render a list of tweets. Each tweet will be rendered by a Tweet
component. We'll be reusing the Header component once again in our Collection
component. In fact, in total, we'll be reusing the Header component five times. That's
a win for us. As we discussed in the previous chapter, we should keep as many React
components stateless as possible. So only 5 out of 11 components will store the state,
which are:

• Application

• CollectionControls

• CollectionRenameForm

• Stream

• StreamTweet

Now that we have a plan, we can start implementing it.

Creating a container React component
Let's start by editing our application's main JavaScript file. Replace the contents of
the ~/snapterest/source/app.js file with the following code snippet:

var React = require('react');
var ReactDOM = require('react-dom');
var Application = require('./components/Application.react');

ReactDOM.render(<Application />, document.getElementById('react-
application'));

There are only four lines of code in this file, and as you can guess, they provide
document.getElementById('react-application') as a deployment target for
the <Application /> component and render <Application /> to the DOM. The
whole user interface for our web application will be encapsulated in one React
component, Application.

http://codepen.io

Make Your React Components Reactive

[50]

Next, navigate to ~/snapterest/source/components/ and create the
Application.react.js file inside this directory. All of our React components
will have their filenames ending with react.js. This convention allows us to
easily distinguish between React and non-React source JavaScript files.

Let's take a look at the contents of the Application.react.js file:

var React = require('react');
var Stream = require('./Stream.react');
var Collection = require('./Collection.react');

var Application = React.createClass({

 getInitialState: function () {
 return {
 collectionTweets: {}
 };
 },

 addTweetToCollection: function (tweet) {
 var collectionTweets = this.state.collectionTweets;

 collectionTweets[tweet.id] = tweet;

 this.setState({
 collectionTweets: collectionTweets
 });
 },

 removeTweetFromCollection: function (tweet) {
 var collectionTweets = this.state.collectionTweets;

 delete collectionTweets[tweet.id];

 this.setState({
 collectionTweets: collectionTweets
 });
 },

 removeAllTweetsFromCollection: function () {
 this.setState({
 collectionTweets: {}
 });
 },

 render: function () {
 return (
 <div className="container-fluid">

Chapter 4

[51]

 <div className="row">
 <div className="col-md-4 text-center">

 <Stream onAddTweetToCollection={this.addTweetToCollection}
/>

 </div>
 <div className="col-md-8">

 <Collection
 tweets={this.state.collectionTweets}
 onRemoveTweetFromCollection={this.
removeTweetFromCollection}
 onRemoveAllTweetsFromCollection={this.
removeAllTweetsFromCollection} />

 </div>
 </div>

 </div>
);
 }
});

module.exports = Application;

This component has significantly more code than our app.js file, but this code can
be easily divided into three logical parts:

• Importing dependency modules
• Defining React components
• Exporting a React component as a module

You will see this logical separation in most of our React components because they are
wrapped into the CommonJS module pattern that allows us to easily require them
with Browserify. In fact, the first and the third parts of this source file are related to
how CommonJS works and have nothing to do with how React works. The purpose
of using this module pattern is to break our application into modules that can be
easily reused. Because the React component and CommonJS module pattern both
encapsulate the code and make it portable, they naturally work great together. So,
we end up encapsulating our user interface logic in a React component and then
encapsulate that React component in the CommonJS module. It then can be used in
any other module that wants to reuse this encapsulated React component.

Make Your React Components Reactive

[52]

In our first logical part of the Application.react.js file, we're importing the
dependency modules using the require() function:

var React = require('react');
var Stream = require('./Stream.react');
var Collection = require('./Collection.react');

Our Application component will have two child components that we need
to import:

• The Stream component will render a stream section of our user interface
• The Collection component will render a collection section of our

user interface

We also need to import the React library as another module. Notice that this code is
still part of the CommonJS module pattern, not React.

The second logical part of the Application.react.js file creates the React
Application component with the following methods:

• getInitialState()

• addTweetToCollection()

• removeTweetFromCollection()

• removeAllTweetsFromCollection()

• render()

Only the getInitialState() and render() methods are part of the React API. All
the other methods are part of our application logic that this component encapsulates.
We'll take a closer look at each of them right after we discuss what this component
renders inside its render() function:

render: function () {
 return (
 <div className="container-fluid">

 <div className="row">
 <div className="col-md-4 text-center">

 <Stream onAddTweetToCollection={this.addTweetToCollection}
/>

 </div>
 <div className="col-md-8">

Chapter 4

[53]

 <Collection
 tweets={this.state.collectionTweets}
 onRemoveTweetFromCollection={this.
removeTweetFromCollection}
 onRemoveAllTweetsFromCollection={this.
removeAllTweetsFromCollection} />

 </div>
 </div>

 </div>
);
}

As you can see, it defines the layout of our web page using the Bootstrap
framework. If you're not familiar with Bootstrap, I strongly recommend that you
visit http://getbootstrap.com and read the documentation. Learning this
framework will empower you to prototype user interfaces in a fast and easy way.
Even if you don't know Bootstrap, it's quite easy to understand what's going on.
We're dividing our web page into two columns: a smaller one and a larger one. The
smaller one contains our Stream React component and the larger one contains our
Collection component. You can imagine that our web page is divided into two
unequal parts and both of them contain the React components.

This is how we're using our Stream component:

<Stream onAddTweetToCollection={this.addTweetToCollection} />

The Stream component has an onAddTweetToCollection property, and our
Application component passes its own addTweetToCollection() function as a
value for this property. addTweetToCollection()adds a tweet to a collection. It's
one of the custom methods that we define in our Application component, and we
can refer to it using this keyword.

Let's take a look at what the addTweetToCollection() function does:

addTweetToCollection: function (tweet) {
 var collectionTweets = this.state.collectionTweets;

 collectionTweets[tweet.id] = tweet;

 this.setState({
 collectionTweets: collectionTweets
 });
},

http://getbootstrap.com

Make Your React Components Reactive

[54]

This function references CollectionTweets that are stored in the current state,
adds a new tweet to a collectionTweets object, and updates the state by calling
the setState() function. A new tweet is passed as an argument when the
addTweetToCollection() function is called inside a Stream component. This
is an example of how a child component can update its parent component's state.

This an important mechanism in React and it works as follows:

1. A parent component passes a callback function as a property to its child
component. A child component can access this callback function via the
this.props variable.

2. Whenever a child component wants to update the parent component's state,
it calls that callback function and passes all the necessary data to a new
parent component's state.

3. A parent component updates its state, and as you already know, this state
updates and triggers the render() function that re-renders all the child
components, as necessary.

This is how a child component interacts with a parent component. This interaction
allows a child component to delegate the application's state management to its
parent component, and it is only concerned with how to render itself. Now, when
you've learned this pattern, you will be using it again and again because most of
your React components should stay stateless. Only a few parent components should
store and manage your application's state. This best practice allows us to logically
group React components by the two different concerns that they address:

• Manage the application's state and render
• Only render and delegate the application's state management to a

parent component

Our Application component has a second child component, Collection:

<Collection
 tweets={this.state.collectionTweets}
 onRemoveTweetFromCollection={this.removeTweetFromCollection}
onRemoveAllTweetsFromCollection={this.removeAllTweetsFromCollection}
/>

Chapter 4

[55]

This component has a number of properties:

• tweets: This refers to our current collection of tweets
• onRemoveTweetFromCollection: This refers to a function that removes a

particular tweet from our collection
• onRemoveAllTweetsFromCollection: This refers to a function that removes

all the tweets from our collection

You can see that the Collection component's properties are only concerned about
how to:

• Access the application's state
• Mutate the application's state

As you can guess, the onRemoveTweetFromCollection and
onRemoveAllTweetsFromCollection functions allow the Collection component to
mutate the Application component's state. On the other hand, the tweets property
propagates the Application component's state to the Collection component so
that it can gain a read-only access to that state.

Can you recognize the single direction of data flow between the Application and
Collection components? Here's how it works:

1. The collectionTweets data is initialized in the Application component's
getInitialState() method.

2. The collectionTweets data is passed to the Collection component as the
tweets property.

3. The Collection component calls the removeTweetFromCollection
and removeAllTweetsFromCollection functions that update the
collectionTweets data in the Application component, and the
cycle starts again.

Notice that the Collection component cannot directly mutate the
Application component's state. The Collection component has read-
only access to that state via this.props object, and the only way to update
the parent component's state is to call the callback functions that are passed
by the parent component. In the Collection component, these callback
functions are this.props.onRemoveTweetFromCollection and this.props.
onRemoveAllTweetsFromCollection.

Make Your React Components Reactive

[56]

This simple mental model of how data flows in our React component hierarchy
will help us increase the number of components we use, without increasing the
complexity of how our user interface works. For example, it can have 10 levels of
nested React components, as follows:

If Component G wants to mutate the state of root Component A, it would do it in the
exact same way that Component B, or Component F, or any other component in this
hierarchy would. However, in React, you shouldn't pass data from Component A
directly to Component G. Instead, you should first pass it to Component B, then to
Component C, then to Component D, and so on until you finally reach Component G.
Component B to Component F will have to carry some "transit" properties that are
actually only meant for Component G. This might look like a waste of time, but this
design makes it easy for us to debug our application and be able to reason out how it
works. There are always strategies to optimize your application's architecture. One of
them is to use Flux, which we'll discuss later in this book.

Chapter 4

[57]

Before we finish discussing our Application component, let's take a look at the two
methods that mutate its state:

removeTweetFromCollection: function (tweet) {
 var collectionTweets = this.state.collectionTweets;

 delete collectionTweets[tweet.id];

 this.setState({
 collectionTweets: collectionTweets
 });
},

The removeTweetFromCollection() method removes a tweet from a collection
of tweets that we store in the Application component's state. It takes the current
collectionTweets object from the component's state, deletes a tweet with a
given ID from that object, and updates the component's state with an updated
collectionTweets object.

On the other hand, the removeAllTweetsFromCollection() method removes all
the tweets from the component's state:

removeAllTweetsFromCollection: function () {
 this.setState({
 collectionTweets: {}
 });
},

Both of these methods are called from a child's Collection component because that
component has no other way to mutate the Application component's state.

Summary
In this chapter, we learned how to solve a problem with React. We started
by breaking down the problem into smaller individual problems and then
discussed how we can address them using React. Then, we created a list of React
components that we needed to implement. Finally, we created our first composable
React component and learned how a parent component interacts with its child
components. In the next chapter, we'll implement our child components and learn
about React's lifecycle methods.

[59]

Use Your React Components
with Another Library

React is a great library used for building user interfaces. What if we want to integrate
it with another library that is responsible for receiving data? In the previous chapter,
we outlined five tasks that our Snapterest web application should be able to perform.
We decided that four of them were related to the user interface, but one of them was
all about receiving data; receive tweets from the Snapkite Engine server in real time.

In this chapter, we'll learn how to integrate React with the external JavaScript
library and what React component lifecycle methods are, all while solving the
very important task of receiving data.

Using another library in your React
component
As we discussed earlier in this book, our Snapterest web application will consume
a live stream of tweets. In Chapter 1, Installing Powerful Tools for Your Project, you
installed the Snapkite Engine library that connects to the Twitter Streaming API,
filters the incoming tweets, and sends them to our client application. In turn, our
client application needs a way of connecting to that live stream and listening for
the new tweets.

Luckily, we don't need to implement this functionality ourselves because we can
reuse another Snapkite module called snapkite-stream-client. Let's install
this module.

Use Your React Components with Another Library

[60]

Navigate to the ~/snapterest directory and run the following command:

npm install --save snapkite-stream-client

It will install the snapkite-stream-client module, and add it to package.json as
a dependency.

Now we're ready to reuse the snapkite-stream-client module in one of our
React components.

In the previous chapter, we created the Application component with two
child components: Stream and Collection. In this chapter, we'll create our
Stream component.

Let's start by creating the ~/snapterest/source/components/Stream.react.js
file:

var React = require('react');
var SnapkiteStreamClient = require('snapkite-stream-client');
var StreamTweet = require('./StreamTweet.react');
var Header = require('./Header.react');

var Stream = React.createClass({

 getInitialState: function () {
 return {
 tweet: null
 }
 },

 componentDidMount: function () {
 SnapkiteStreamClient.initializeStream(this.handleNewTweet);
 },

 componentWillUnmount: function () {
 SnapkiteStreamClient.destroyStream();
 },

 handleNewTweet: function (tweet) {
 this.setState({
 tweet: tweet
 });
 },

 render: function () {

Chapter 5

[61]

 var tweet = this.state.tweet;

 if (tweet) {
 return (
 <StreamTweet
 tweet={tweet}
 onAddTweetToCollection={this.props.onAddTweetToCollection} />
);
 }

 return (
 <Header text="Waiting for public photos from Twitter..." />
);
 }
});

module.exports = Stream;

First, we will import the following modules that our Stream component depends on:

• React: This is a React library
• StreamTweet and Header: These are React components
• snapkite-stream-client: This is a utility library

Then, we will define our React component. Let's take a look at the methods that our
Stream component implements:

• getInitialState()

• componentDidMount()

• componentWillUnmount()

• handleNewTweet()

• render()

We're already familiar with the getInitialState() and render() methods;
they are part of React's API. You already know that any React component must
implement at least the render() method. Let's take a look at the render() method
of our Stream component:

render: function () {
 var tweet = this.state.tweet;

 if (tweet) {
 return (

Use Your React Components with Another Library

[62]

 <StreamTweet
 tweet={tweet}
 onAddTweetToCollection={this.props.onAddTweetToCollection} />
);
 }

 return (
 <Header text="Waiting for public photos from Twitter..." />
);
}

As you can see, we created a new tweet variable that references the tweet property,
which is part of a component's state object. We then check whether that variable has
a reference to an actual tweet object, and if it does, our render() method returns the
StreamTweet component, or else, it returns the Header component.

The StreamTweet component renders a header and the latest tweet from a stream,
whereas the Header component renders only a header.

Have you noticed that our Stream component doesn't render anything itself, but
rather returns one of the two other components that do the actual rendering?
The purpose of a Stream component is to encapsulate our application's logic and
delegate rendering to the other React components. In React, you should have at
least one component that encapsulates your application's logic, stores, and manages
your application's state. This is usually a root component or one of the high-level
components in your component hierarchy. All the other child React components
should have no state if possible. If you think of all the React components as Views,
then our Stream component is a ControllerView.

Now that we know what a Stream component renders, let's discuss it in the
other methods:

getInitialState: function () {
 return {
 tweet: null
 }
},

Chapter 5

[63]

The getInitialState() method returns the initial state object with a tweet
property, which is set to null. Our Stream component will receive an endless
stream of new tweets, and it needs to re-render its child components every time a
new tweet is received. In order to achieve this, we need to store the current tweet in
the component's state. Once we update its state, React will call its render() method
and re-render all of its child components. For this purpose, we will implement the
handleNewTweet() method:

handleNewTweet: function (tweet) {
 this.setState({
 tweet: tweet
 });
},

The handleNewTweet() method takes a tweet object, and sets it as a new value for
the component state's tweet property.

Where does that new tweet come from and when does it come? Let's take a look at
our componentDidMount() method:

componentDidMount: function () {
 SnapkiteStreamClient.initializeStream(this.handleNewTweet);
},

This function calls the initializeStream() method of the SnapkiteStreamClient
object, and passes a this.handleNewTweet callback function as its argument.
SnapkiteStreamClient is an external library with an API that we're using to
initialize a stream of tweets. The this.handleNewTweet function will be called
for every tweet that SnapkiteStreamClient receives.

Why did we name this method componentDidMount()? We didn't. React did. In
fact, the componentDidMount() method is part of React's API. It's one of the React
component's lifecycle methods. It's called only once, immediately after React has
finished the initial rendering of our component. At this point, React has created a
DOM tree, which is represented by our component, and now we can access that
DOM with another JavaScript library.

componentDidMount() is a perfect place for integrating React with another
JavaScript library. This is where we connect to a stream of tweets using the
external SnapkiteStreamClient library.

Use Your React Components with Another Library

[64]

Now we know when to initialize the external JavaScript libraries in our React
components, but what about the reverse process—when should we uninitialize
and clean up everything that we've done in the componentDidMount() method?
It's a good idea to clean up everything before we unmount our components.
For this purpose, React API offers us another component lifecycle method—
componentWillUnmount():

componentWillUnmount: function () {
 SnapkiteStreamClient.destroyStream();
},

The componentWillUnmount() method is called by React just before React
unmounts the component. As you can see in the componentWillUnmount() method,
you're calling the destroyStream()method of the SnapkiteStreamClient object.
destroyStream() cleans up our connection to SnapkiteStreamClient, and we can
safely unmount our Stream component.

You might be wondering what are the component lifecycle methods and why do we
need them?

Understanding React component's
lifecycle methods
Think about what a React component does. It describes what to render. We know
that it uses the render() method for this. However, sometimes, having only the
render() method is not enough because what if we want to do something before or
after the component has rendered? What if we want to be able to decide whether a
component's render() method should be called at all?

Looks like what we're describing is a process during which the React component is
rendered. This process has various stages, for example, before render, render, after
render, and so on. In React, this process is called the component's lifecycle. Each
React component goes through this process. What we want is a way to hook into
that process, and call our own functions at different stages of that process in order to
have a greater control over it. For this purpose, React provides a number of methods
that we can use to get notified when a certain stage in a component's lifecycle process
occurs. These methods are called the component's lifecycle methods. They are called
in a predictable order.

Chapter 5

[65]

All the React component's lifecycle methods can be grouped into three phases:

• Mounting: This phase occurs when a component is being inserted into
the DOM

• Updating: This phase occurs when a component is being re-rendered into
a virtual DOM to figure out if the actual DOM needs to be updated

• Unmounting: This phase occurs when a component is being removed from
the DOM

In React's terminology, inserting a component into the DOM is called "mounting",
whereas removing a component from the DOM is called "unmounting".

The best way to learn about the React component's lifecycle methods is to see them
in action. Let's create our StreamTweet component that we discussed earlier in this
chapter. This component will implement most of React's lifecycle methods.

Navigate to ~/snapterest/source/components/ and create the StreamTweet.
react.js file:

var React = require('react');
var ReactDOM = require('react-dom');
var Header = require('./Header.react');
var Tweet = require('./Tweet.react');

var StreamTweet = React.createClass({

Use Your React Components with Another Library

[66]

 // define other component lifecycle methods here

 render: function () {
 console.log('[Snapterest] StreamTweet: Running render()');

 return (
 <section>
 <Header text={this.state.headerText} />
 <Tweet
 tweet={this.props.tweet}
 onImageClick={this.props.onAddTweetToCollection} />
 </section>
);
 }
});

module.exports = StreamTweet;

As you can see, the StreamTweet component has no lifecycle methods yet, other than
render(). We'll create and discuss them one by one as we move ahead.

The four methods are called during a component's mounting phase, as shown in the
following phase:

Chapter 5

[67]

As you can see from the preceding figure, the methods called are as follows:

• getInitialState()

• componentWillMount()

• render()

• componentDidMount()

In this chapter, we'll discuss three of these four methods (except render()). They are
called only once when the component is inserted into the DOM. Let's take a closer
look at each of them.

Mounting methods
Now let's check out some of the useful mounting methods.

The getInitialState method
The getInitialState() method is invoked first. It is invoked before React inserts a
component into the DOM. If you want your component to have a state, then use this
method to return the initial component's state. In your StreamTweet component,
replace this line:

// define other component lifecycle methods here

Replace the preceding line with the following code:

getInitialState: function () {
 console.log('[Snapterest] StreamTweet: 1. Running
getInitialState()');

 return {
 numberOfCharactersIsIncreasing: null,
 headerText: null
 };
},

In our StreamTweet component's getInitialState() method, we will perform the
following steps:

1. Log the following message in a web browser's console:
[Snapterest] StreamTweet: 1. Running getInitialState().

2. Return an object with the numberOfCharactersIsIncreasing and
headerText properties set to null.

Use Your React Components with Another Library

[68]

numberOfCharactersIsIncreasing will keep track of whether a tweet that will
be displayed next has more characters in its text than a currently displayed tweet.
We'll set it to a Boolean value in our next component lifecycle method.

The headerText will store the text for the Header component that StreamTweet
renders.

As with all the mounting methods, getInitialState() will be called only once.

The componentWillMount method
The componentWillMount() method is invoked second. It is invoked immediately
before React inserts a component into the DOM. Add this code right after the
getInitialState() method in your StreamTweet component:

componentWillMount: function () {
 console.log('[Snapterest] StreamTweet: 2. Running
componentWillMount()');

 this.setState({
 numberOfCharactersIsIncreasing: true,
 headerText: 'Latest public photo from Twitter'
 });

 window.snapterest = {
 numberOfReceivedTweets: 1,
 numberOfDisplayedTweets: 1
 };
},

We do a number of things in this method. First, we log the fact that this method is
being invoked. In fact, for the purpose of demonstration, we'll log every component
lifecycle method of this component. When you run this code in a web browser, you
should be able to open the JavaScript console, and see these log messages printed in
the expected ascending order.

Next, we update the component's state using the this.setState() method:

• Set the numberOfCharactersIsIncreasing property to true
• Set the headerText property to 'Latest public photo from Twitter'

Because this is the very first tweet that this component will render, we know that
the number of characters is definitely increasing from nothing to the number of
characters in that first tweet. Hence, we set it to true. We also assign the default
text to our header, 'Latest public photo from Twitter'.

Chapter 5

[69]

As you know, calling the this.setState() method should trigger the component's
render() method, so it seems like render() will be called twice during the
component's mounting phase. However, in this case, React knows that nothing
has been rendered yet, so it will call the render() method only once.

Finally, in this method, we define a snapterest global object with the following
two properties:

• numberOfReceivedTweets: This property counts the number of all the
received tweets

• numberOfDisplayedTweets This property counts the number of only the
displayed tweets

We set numberOfReceivedTweets to 1 because we know that the
componentWillMount() method is called only once when the very first tweet is
received. We also know that our render() method will be called for this very first
tweet, so we set numberOfDisplayedTweets to 1 as well:

window.snapterest = {
 numberOfReceivedTweets: 1,
 numberOfDisplayedTweets: 1
};

This global object is not part of React or our web application's logic; we can remove
it and everything will still work as expected. window.snapterest is a convenience
tool used to keep track of how many tweets we've processed at any point of time.
We use the global window.snapterest object for demonstration purposes only. I
would strongly advise you against adding your own properties to a global object
in real life projects because you might overwrite the existing properties and/or
your properties might be overwritten later by some other JavaScript code that you
don't own. Later on, if you decide to deploy Snapterest in production, then make
sure to remove the global window.snapterest object and the related code from the
StreamTweet component.

After running Snapterest in a web browser for a few minutes, you can open the
JavaScript console and type the snapterest.numberOfReceivedTweets and
snapterest.numberOfDisplayedTweets commands. These commands will output
the numbers that will help you get a better understanding of how fast the new tweets
are coming, and how many of them are not being displayed. In our next component
lifecycle method, we'll add more properties to our window.snapterest object.

www.allitebooks.com

http://www.allitebooks.org

Use Your React Components with Another Library

[70]

The componentDidMount method
The componentDidMount() method is invoked third. It is invoked immediately after
React inserts a component into the DOM. The updated DOM is now available for
access, which means that this method is the best place for initializing other JavaScript
libraries that need access to that DOM.

Earlier in this chapter, we created our Stream component with the
componentDidMount() method that initializes the external snapkite-stream-
client JavaScript library.

Let's take a look at this component's componentDidMount() method. Add the
following code to your StreamTweet component after the componentWillMount()
method:

componentDidMount: function () {
 console.log('[Snapterest] StreamTweet: 3. Running
componentDidMount()');

 var componentDOMRepresentation = ReactDOM.findDOMNode(this);

 window.snapterest.headerHtml = componentDOMRepresentation.
children[0].outerHTML;
 window.snapterest.tweetHtml = componentDOMRepresentation.
children[1].outerHTML;
},

Here, we're referencing the DOM that represents our StreamTweet component using
the ReactDOM.findDOMNode() method. We pass this parameter that references the
current component (in this case, StreamTweet). The componentDOMRepresentation
variable references the DOM tree that we can traverse and access its various
properties. To get a good understanding of how this DOM tree looks like, let's
take a closer look at the render() method of our StreamTweet component:

render: function () {
 console.log('[Snapterest] StreamTweet: Running render()');

 return (
 <section>
 <Header text={this.state.headerText} />
 <Tweet
 tweet={this.props.tweet}
 onImageClick={this.props.onAddTweetToCollection} />
 </section>
);
}

Chapter 5

[71]

One of the greatest benefits of using JSX is that we can easily identify how many
child elements our component will have just by looking at the component's
render() method. Here, we can see that a parent <section> element has two
child components: <Header /> and <Tweet />.

So when we traverse the resulting DOM tree using the DOM API children property,
we can be sure that it will have two child elements as well:

• componentDOMRepresentation.children[0]: This is our <Header />
component's DOM representation

• componentDOMRepresentation.children[1]: This is our <Tweet />
component's DOM representation

The outerHTML attribute of each element gets the HTML string that represents
the DOM tree of each element. We reference this HTML string in our global
window.snapterest object for convenience, as discussed earlier in this chapter.

If you are using another JavaScript library such as jQuery, along with React, then
use the componentDidMount() method as an opportunity to integrate the two.
If you want to send an AJAX request or set timers using the setTimeout() or
setInterval() functions, then you can do that in this method as well. In general,
componentDidMount() should be your preferred component lifecycle method for
integrating the React library with non-React libraries and APIs.

So far, in this chapter, we've learned about the fundamental mounting methods
that the React component provides us with. We used all the three of them in
our StreamTweet component. We also discussed the StreamTweet's render()
method. This is all that we need to know to understand how React will render the
StreamTweet component initially. On its very first render, React will execute the
following sequence of methods:

1. getInitialState()

2. componentWillMount()

3. render()

4. componentDidMount()

This is called the React component's mounting phase. It's executed only once, unless
we unmount a component and mount it again.

Next, let's discuss the React component's unmounting phase.

Use Your React Components with Another Library

[72]

Unmounting methods
Let's now take a look at one of the popular unmounting methods.

The componentWillUnmount method
React offers only one method for this phase, that is, componentWillUnmount().
It is invoked immediately before React removes a component from the DOM and
destroys it. This method is useful for cleaning up any data that is created during
the component's mounting or updating phases. That's exactly what we do in our
StreamTweet component. Add this code to your StreamTweet component after the
componentDidMount() method:

componentWillUnmount: function () {
 console.log('[Snapterest] StreamTweet: 8. Running
componentWillUnmount()');

 delete window.snapterest;
},

In the componentWillUnmount() method, we delete our global window.snapterest
object using the delete operator:

delete window.snapterest;

Removing window.snapterest will keep our global object clean. If you've created
any additional DOM elements in the componentDidMount() method, then the
componentWillUnmount() method is a good place to remove them. You can think
of the componentDidMount() and componentWillUnmount() methods as a two-step
mechanism for integrating the React component with another JavaScript API:

1. Initialize it in the componentDidMount() method
2. Terminate it in the componentWillUnmount() method

This way your external JavaScript libraries that need to work with the DOM will stay
in sync with the DOM rendered by React.

That's all we need to know to efficiently unmount React components.

Chapter 5

[73]

Summary
In this chapter, we created our Stream component and learned how to integrate
a React component with the external JavaScript library. We also learned about
the React component's lifecycle methods. We also focused on and discussed the
mounting and unmounting methods in detail and started implementing the
StreamTweet component.

In our next chapter, we'll take a look at the component lifecycle's updating methods.
We'll also implement our Header and Tweet components, and learn how to set the
component's default properties.

[75]

Update Your React
Components

In the previous chapter, we learned that a React component can go through
three phases:

• Mounting
• Updating
• Unmounting

We've already discussed the mounting and unmounting phases. In this chapter,
we're going to focus on the updating phase. During this phase, a React component
is already inserted into the DOM. This DOM represents a component's current state,
and when that state changes, React needs to evaluate how a new state is going to
mutate the previously rendered DOM.

React provides us with methods to influence what is going to be rendered during
an update as well as to make us aware of when an update happens. These methods
allow us to control the transition from the current component's state to the
next component's state. Let's learn more about the powerful nature of the
React component's updating methods.

Update Your React Components

[76]

Understanding component lifecycle's
updating methods
A React component has five lifecycle methods that belong to a component's
updating phase:

• componentWillReceiveProps()

• shouldComponentUpdate()

• componentWillUpdate()

• render()

• componentDidUpdate()

See the following figure for a better view:

We're already familiar with the render() method. Now let's discuss the other
four methods.

Chapter 6

[77]

The componentWillReceiveProps method
We'll start with the componentWillReceiveProps() method in the StreamTweet
component. Add the following code after the componentDidMount() method in the
StreamTweet.react.js file:

componentWillReceiveProps: function (nextProps) {
 console.log('[Snapterest] StreamTweet: 4. Running
componentWillReceiveProps()');

 var currentTweetLength = this.props.tweet.text.length;
 var nextTweetLength = nextProps.tweet.text.length;
 var isNumberOfCharactersIncreasing = (nextTweetLength >
currentTweetLength);
 var headerText;

 this.setState({
 numberOfCharactersIsIncreasing: isNumberOfCharactersIncreasing
 });

 if (isNumberOfCharactersIncreasing) {
 headerText = 'Number of characters is increasing';
 } else {
 headerText = 'Latest public photo from Twitter';
 }

 this.setState({
 headerText: headerText
 });

 window.snapterest.numberOfReceivedTweets++;
},

This method is invoked first in the component lifecycle's updating phase. It is called
when a component receives new properties from its parent component.

This method is an opportunity for us to compare the current component's
properties using the this.props object with the next component's properties
using the nextProps object. Based on this comparison, we can choose to update
the component's state using the this.setState() function, which will not trigger
an additional render in this scenario.

Update Your React Components

[78]

Let's see that in action:

var currentTweetLength = this.props.tweet.text.length;
var nextTweetLength = nextProps.tweet.text.length;
var isNumberOfCharactersIncreasing = (nextTweetLength >
currentTweetLength);
var headerText;

this.setState({
 numberOfCharactersIsIncreasing: isNumberOfCharactersIncreasing
});

We first get the lengths of the current tweet and the next tweet. The current
one is available via this.props.tweet and the next one via nextProps.
tweet. We then compare their lengths by checking whether the next tweet
is longer than the current one. The result of the comparison is stored in the
isNumberOfCharactersIncreasing variable. Finally, we update the component's
state by setting the numberOfCharactersIsIncreasing property to the value of our
isNumberOfCharactersIncreasing variable.

We then set our header text as follows:

if (isNumberOfCharactersIncreasing) {
 headerText = 'Number of characters is increasing';
} else {
 headerText = 'Latest public photo from Twitter';
}

this.setState({
 headerText: headerText
});

If the next tweet is longer, we set the header text to 'Number of characters is
increasing', or else, we set it to 'Latest public photo from Twitter'. We then
update our component's state once more by setting the headerText property to the
value of our headerText variable.

Notice that we call the this.setState() function twice in our
componentWillReceiveProps() method. This is to illustrate the point that no matter
how many times you call this.setState() in the componentWillReceiveProps()
method, it won't trigger any additional renders of that component. React does an
internal optimization where it batches the state updates together.

Chapter 6

[79]

Since the componentWillReceiveProps() method will be called once for each new
tweet that our StreamTweet component will receive, it makes it a good place to
count the total number of the received tweets:

window.snapterest.numberOfReceivedTweets++;

Now we know how to check whether the next tweet is longer than the tweet we're
currently displaying, but how can we choose not to render the next tweet at all?

The shouldComponentUpdate method
The shouldComponentUpdate() method allows us to decide whether the next
component's state should trigger the component's re-rendering or not. This method
returns a Boolean value, which by default is true, but you can return false, and the
following component methods won't be called:

• componentWillUpdate()

• render()

• componentDidUpdate()

Skipping a call to the component's render() method will prevent that component
from re-rendering which in turn will improve your application's performance,
since no additional DOM mutations will be made.

This method is invoked second in the component lifecycle's updating phase.

This method is a great place for us to prevent the next tweet with one or less
characters from being displayed. Add this code to the StreamTweet component
after the componentWillReceiveProps() method:

shouldComponentUpdate: function (nextProps, nextState) {
 console.log('[Snapterest] StreamTweet: 5. Running
shouldComponentUpdate()');

 return (nextProps.tweet.text.length > 1);
},

If the next tweet's length is greater than 1, then shouldComponentUpdate() returns
true, and the StreamTweet component renders the next tweet. Or else, it returns
false, and the StreamTweet component doesn't render the next state.

Update Your React Components

[80]

The componentWillUpdate method
The componentWillUpdate() method is called immediately before React updates the
DOM. It gets the following two arguments:

• nextProps: The next properties object
• nextState: The next state object

You can use these arguments to prepare for the DOM update. However, you cannot
use this.setState() in the componentWillUpdate() method. If you want to
update the component's state in response to its properties change, then do that in the
componentWillReceiveProps() method, which will be called by React when the
properties change.

To demonstrate when the componentWillUpdate() method is called,
we need to log it in the StreamTweet component. Add this code after the
shouldComponentUpdate() method:

componentWillUpdate: function (nextProps, nextState) {
 console.log('[Snapterest] StreamTweet: 6. Running
componentWillUpdate()');
},

After calling the componentWillUpdate() method, React invokes the render()
method that performs the DOM update. Then, the componentDidUpdate() method
is called.

The componentDidUpdate method
The componentDidUpdate() method is called immediately after React updates the
DOM. It gets these two arguments:

• prevProps: The previous properties object
• prevState: The previous state object

We will use this method to interact with the updated DOM or perform
any post-render operations. In our StreamTweet component, we'll use
componentDidUpdate() to increment the number of displayed tweets
in our global object. Add this code after the componentWillUpdate() method:

componentDidUpdate: function (prevProps, prevState) {
 console.log('[Snapterest] StreamTweet: 7. Running
componentDidUpdate()');

 window.snapterest.numberOfDisplayedTweets++;
},

Chapter 6

[81]

After componentDidUpdate() is called, the updating cycle ends. A new cycle is
started when a component's state is updated or a parent component passes new
properties. Or when you call the forceUpdate() method, it triggers a new updating
cycle, but skips the shouldComponentUpdate() method on a component that
triggered the update. However, shouldComponentUpdate() is called on all the child
components as per the usual updating phase. Try to avoid using the forceUpdate()
method as much as possible; this will promote your application's maintainability.

That concludes our discussion of React component lifecycle methods.

Setting default React component
properties
As you know from the previous chapter, our StreamTweet component renders two
child components: Header and Tweet.

Let's create these components. Navigate to ~/snapterest/source/components/
and create the Header.react.js file:

var React = require('react');

var headerStyle = {
 fontSize: '16px',
 fontWeight: '300',
 display: 'inline-block',
 margin: '20px 10px'
};

var Header = React.createClass({

 getDefaultProps: function () {
 return {
 text: 'Default header'
 };
 },

 render: function () {
 return (
 <h2 style={headerStyle}>{this.props.text}</h2>
);
 }
});

module.exports = Header;

Update Your React Components

[82]

As you can see, our Header component is a stateless component that renders the h2
element. The header text is passed from a parent component as a this.props.text
property, which makes this component flexible, that allows us to reuse it anywhere
where we need a header. We'll reuse this component again later in this book.

Notice that the h2 element has a style property.

In React, we can define the CSS rules in a JavaScript object, and then pass that object
as a value to the React element's style property. For example, in this component,
we define the headerStyle variable that references an object where:

• Each object key is a CSS property
• Each object value is a CSS value

The CSS properties that contain a hyphen in their names should be converted to
the CamelCase style; for example, font-size becomes fontSize, font-weight
becomes fontWeight, and so on.

The advantages of defining your CSS rules inside a React component are as follows:

• Portability: You can easily share a component together with its styling, all in
one JavaScript file

• Encapsulation: Making styles inline allows you to limit the scope they affect
• Flexibility: The CSS rules can be calculated using the power of JavaScript

The significant disadvantage of using this technique is the fact that Content Security
Policies (CSP) can block inline styling from having any effect. You can learn more
about CSP at https://developer.mozilla.org/en-US/docs/Web/Security/CSP/
Introducing_Content_Security_Policy.

Our Header component has one method that we haven't discussed yet, that is,
getDefaultProps(). What if you forget to pass a property that a React component
depends on? In that case, a component can set the default properties using the
getDefaultProps() method, for example:

getDefaultProps: function () {
 return {
 text: 'Default header'
 };
},

In this example, we're setting a default value of 'Default header' to our text
property. If a parent component passes the this.props.text property, then it
will overwrite the default one.

https://developer.mozilla.org/en-US/docs/Web/Security/CSP/Introducing_Content_Security_Policy
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/Introducing_Content_Security_Policy

Chapter 6

[83]

Next, let's create our Tweet component. Navigate to ~/snapterest/source/
components/ and create the Tweet.react.js file:

var React = require('react');

var tweetStyle = {
 position: 'relative',
 display: 'inline-block',
 width: '300px',
 height: '400px',
 margin: '10px'
};

var imageStyle = {
 maxHeight: '400px',
 boxShadow: '0px 1px 1px 0px #aaa',
 border: '1px solid #fff'
};

var Tweet = React.createClass({

 propTypes: {

 tweet: function(properties, propertyName, componentName) {

 var tweet = properties[propertyName];

 if (! tweet) {
 return new Error('Tweet must be set.');
 }

 if (! tweet.media) {
 return new Error('Tweet must have an image.');
 }
 },

 onImageClick: React.PropTypes.func
 },

 handleImageClick: function () {
 var tweet = this.props.tweet;
 var onImageClick = this.props.onImageClick;

Update Your React Components

[84]

 if (onImageClick) {
 onImageClick(tweet);
 }
 },

 render: function () {
 var tweet = this.props.tweet;
 var tweetMediaUrl = tweet.media[0].url;

 return (
 <div style={tweetStyle}>
 <img src={tweetMediaUrl} onClick={this.handleImageClick}
style={imageStyle} />
 </div>
);
 }
});

module.exports = Tweet;

This component renders a <div> element with a child element. Both the
elements have inline styles, and the element has a click event handler,
that is, this.handleImageClick:

handleImageClick: function () {
 var tweet = this.props.tweet;
 var onImageClick = this.props.onImageClick;

 if (onImageClick) {
 onImageClick(tweet);
 }
},

When a user clicks on a tweet's image, the Tweet component checks whether a
parent component has passed a this.props.onImageClick callback function as a
property and calls that function. this.props.onImageClick is an optional Tweet
component's property, so we need to check whether it was passed before we can use
it. On the other hand, tweet is a required property.

How can we ensure that a component receives all the required properties?

Chapter 6

[85]

Validating React component properties
In React, there is a way to validate the component properties using the component's
propTypes object:

propTypes: {
 propertyName: validator
}

In this object, you need to specify a property name and a validator function that
will determine whether a property is valid or not. React provides some predefined
validators for you to reuse. They are all available in the React.PropTypes object:

• React.PropTypes.number: This will validate whether a property is a
number or not

• React.PropTypes.string: This will validate whether a property is a string
or not

• React.PropTypes.bool: This will validate whether a property is a Boolean
or not

• React.PropTypes.object: This will validate whether a property is an object
or not

• React.PropTypes.element: This will validate whether a property is a React
element or not

For a complete list of the React.PropTypes validators, you can check the docs at
https://facebook.github.io/react/docs/reusable-components.html#prop-
validation.

By default, all the properties that you validate with the React.PropTypes validators
are optional. You can chain any of them with isRequired to make sure that a
warning message is displayed on a JavaScript console when a property is missing:

propTypes: {
 propertyName: React.PropTypes.number.isRequired
}

You can also specify your own custom validator function that should return an
Error object if the validation fails:

propTypes: {
 propertyName: function (properties, propertyName, componentName) {
 // ... validation failed
 return new Error('A property is not valid.');
 }
}

https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation

Update Your React Components

[86]

Let's take a look at the propTypes object in our Tweet component:

propTypes: {

 tweet: function(properties, propertyName, componentName) {

 var tweet = properties[propertyName];

 if (! tweet) {
 return new Error('Tweet must be set.');
 }

 if (! tweet.media) {
 return new Error('Tweet must have an image.');
 }
 },

 onImageClick: React.PropTypes.func
},

As you can see, we're validating two Tweet component properties: tweet and
onImageClick.

We use the custom validator function to validate the tweet property. React passes
three parameters to this function:

• properties: This is the component properties object
• propertyName: This is the name of the property that we're validating
• componentName: This is the name of the component

We first check whether our Tweet component received the tweet property:

var tweet = properties[propertyName];

if (! tweet) {
 return new Error('Tweet must be set.');
}

Then, we assume that the tweet property is an object, and check whether that object
has no media property:

if (! tweet.media) {
 return new Error('Tweet must have an image.');
}

Chapter 6

[87]

Both of these checks return an Error object that will be logged in a
JavaScript console.

Another Tweet component's property that we will validate is onImageClick:

onImageClick: React.PropTypes.func

We validate that the value of the onImageClick property is a function. In this case,
we reuse a validator function provided by the React.PropTypes object. As you can
see, onImageClick is an optional property because we didn't add isRequired.

Finally, for performance reasons, propTypes is only checked in the development
version of React.

Creating a Collection component
You might recall that our topmost hierarchy Application component has two child
components: Stream and Collection.

So far, we've discussed and implemented our Stream component and its child
components. Next, we're going to focus on our Collection component.

Create the ~/snapterest/source/components/Collection.react.js file:

var React = require('react');
var ReactDOMServer = require('react-dom/server');
var CollectionControls = require('./CollectionControls.react');
var TweetList = require('./TweetList.react');
var Header = require('./Header.react');

var Collection = React.createClass({

 createHtmlMarkupStringOfTweetList: function () {
 var htmlString = ReactDOMServer.renderToStaticMarkup(
 <TweetList tweets={this.props.tweets} />
);

 var htmlMarkup = {
 html: htmlString
 };

 return JSON.stringify(htmlMarkup);
 },
 getListOfTweetIds: function () {
 return Object.keys(this.props.tweets);

Update Your React Components

[88]

 },

 getNumberOfTweetsInCollection: function () {
 return this.getListOfTweetIds().length;
 },

 render: function () {
 var numberOfTweetsInCollection = this.
getNumberOfTweetsInCollection();

 if (numberOfTweetsInCollection > 0) {

 var tweets = this.props.tweets;
 var htmlMarkup = this.createHtmlMarkupStringOfTweetList();
 var removeAllTweetsFromCollection = this.props.
onRemoveAllTweetsFromCollection;
 var handleRemoveTweetFromCollection = this.props.
onRemoveTweetFromCollection;

 return (
 <div>

 <CollectionControls
 numberOfTweetsInCollection={numberOfTweetsInCollection}
 htmlMarkup={htmlMarkup}
onRemoveAllTweetsFromCollection={removeAllTweetsFromCollection} />

 <TweetList
 tweets={tweets}
 onRemoveTweetFromCollection={handleRemoveTweetFromCollect
ion} />

 </div>
);
 }

 return <Header text="Your collection is empty" />;
 }
});

module.exports = Collection;

Chapter 6

[89]

Our Collection component is responsible for rendering two things:

• Tweets that a user has collected
• User interface control elements for manipulating that collection

Let's take a look at the component's render() method:

render: function () {
 var numberOfTweetsInCollection = this.
getNumberOfTweetsInCollection();

 if (numberOfTweetsInCollection > 0) {

 var tweets = this.props.tweets;
 var htmlMarkup = this.createHtmlMarkupStringOfTweetList();
 var removeAllTweetsFromCollection = this.props.
onRemoveAllTweetsFromCollection;
 var handleRemoveTweetFromCollection = this.props.
onRemoveTweetFromCollection;

 return (
 <div>

 <CollectionControls
 numberOfTweetsInCollection={numberOfTweetsInCollection}
 htmlMarkup={htmlMarkup}
 onRemoveAllTweetsFromCollection={removeAllTweetsFromCollect
ion} />

 <TweetList
 tweets={tweets}
 onRemoveTweetFromCollection={handleRemoveTweetFromCollecti
on} />

 </div>
);
 }

 return <Header text="Your collection is empty" />;
}

Update Your React Components

[90]

We first get a number of tweets in the collection using the this.
getNumberOfTweetsInCollection() method:

getNumberOfTweetsInCollection: function () {
 return this.getListOfTweetIds().length;
},

This method in turn uses another method to get a list of tweet IDs:

getListOfTweetIds: function () {
 return Object.keys(this.props.tweets);
},

The this.getListOfTweetIds() function call returns an array of tweet IDs,
and then this.getNumberOfTweetsInCollection() returns a length of that array.

In our render() method, once we know the number of tweets in our collection,
we have to make a choice:

• If the collection is not empty, then render the CollectionControls and
TweetList components

• Otherwise, render the Header component

What do all these components render?

• The CollectionControls component renders a header with a collection
name and a set of buttons that allow users to rename, empty, and export
a collection

• The TweetList component renders a list of tweets
• The Header component simply renders a header with a message that the

collection is empty

The idea is to only show a collection when it's not empty. In that case, we're creating
four variables:

var tweets = this.props.tweets;
var htmlMarkup = this.createHtmlMarkupStringOfTweetList();
var removeAllTweetsFromCollection = this.props.
onRemoveAllTweetsFromCollection;
var handleRemoveTweetFromCollection = this.props.
onRemoveTweetFromCollection;

• The tweets variable references our tweets property that is passed from a
parent component

Chapter 6

[91]

• The htmlMarkup variable references a string that is returned by the
component's this.createHtmlMarkupStringOfTweetList() method

• The removeAllTweetsFromCollection and
handleRemoveTweetFromCollection variables reference
functions that are passed from a parent component

As the name suggests, the this.createHtmlMarkupStringOfTweetList()
method creates a string that represents the HTML markup created by rendering
the TweetList component:

createHtmlMarkupStringOfTweetList: function () {
 var htmlString = ReactDOMServer.renderToStaticMarkup(
 <TweetList tweets={this.props.tweets} />
);

 var htmlMarkup = {
 html: htmlString
 };

 return JSON.stringify(htmlMarkup);
},

The createHtmlMarkupStringOfTweetList() function uses the ReactDOMServer.
renderToStaticMarkup() method that we discussed in Chapter 2, Create Your First
React Element. We pass the TweetList component as its argument:

var htmlString = ReactDOMServer.renderToStaticMarkup(
 <TweetList tweets={this.props.tweets} />
);

This TweetList component has a tweets property that references the tweets
property passed by a parent component.

The resulting HTML string produced by the ReactDOMServer.
renderToStaticMarkup() function is stored in the htmlString variable. Then,
we create a new htmlMarkup object with the html property that references our
htmlString variable. Finally, we use the JSON.stringify() function to convert
our htmlMarkup JavaScript object to a JSON string. The result of the JSON.
stringify(htmlMarkup) call is what our createHtmlMarkupStringOfTweetList()
function returns.

This method demonstrates how flexible React components are; you can use the same
React components to render the DOM elements as well as produce a string of HTML
markup that can be passed to a third-party API.

Update Your React Components

[92]

Another interesting observation that one can make is the use of JSX syntax outside
a render() method. In fact, you can use JSX anywhere in your source file, even
outside the React.createClass() function.

Let's take a closer look at what the Collection component returns when our
collection is not empty:

return (
 <div>

 <CollectionControls
 numberOfTweetsInCollection={numberOfTweetsInCollection}
 htmlMarkup={htmlMarkup}
onRemoveAllTweetsFromCollection={removeAllTweetsFromCollection} />

 <TweetList
 tweets={tweets}
 onRemoveTweetFromCollection={handleRemoveTweetFromCollection} />

 </div>
);

We wrap the CollectionControls and TweetList components in the <div>
element because React allows only one root element. Let's take a look at each
component and discuss its properties.

We pass the following three properties to the CollectionControls component:

• The numberOfTweetsInCollection property references the current number
of tweets in our collection.

• The htmlMarkup property references a string of HTML
markup that we produce in this component using the
createHtmlMarkupStringOfTweetList() method.

• The onRemoveAllTweetsFromCollection property references a function
that removes all the tweets from our collection. This function is implemented
in the Application component as discussed in Chapter 4, Make Your React
Components Reactive.

Chapter 6

[93]

We pass these two properties to the TweetList component:

• The tweets property references tweets passed from a parent Application
component.

• The onRemoveTweetFromCollection property references a function that
removes a tweet from a collection of tweets that we store in the Application
component's state. We've already discussed this function in Chapter 4, Make
Your React Components Reactive.

That's our Collection component.

Summary
In this chapter, we learned about a component's lifecycle updating methods. We also
discussed how to validate the component properties and set the default properties.
We also made good progress with our Snapterest application; we created and
discussed the Header, Tweet, and Collection components.

In the next chapter, we'll focus on building more complex React components and
finish building our Snapterest application!

[95]

Build Complex React
Components

In this chapter, we'll put everything we learned so far about React components in
action by building the most complex components in our application, that is, child
components of our Collection component. Our aim in this chapter is to gain a
solid React experience and grow our React muscle. Let's get started!

Creating the TweetList component
As you know, our Collection component has two child components:
CollectionControls and TweetList.

We'll first build the TweetList component. Create the following ~/snapterest/
source/components/TweetList.react.js file:

var React = require('react');
var Tweet = require('./Tweet.react.js');

var listStyle = {
 padding: '0'
};

var listItemStyle = {
 display: 'inline-block',
 listStyle: 'none'
};

var TweetList = React.createClass({

Build Complex React Components

[96]

 getListOfTweetIds: function () {
 return Object.keys(this.props.tweets);
 },

 getTweetElement: function (tweetId) {
 var tweet = this.props.tweets[tweetId];
 var handleRemoveTweetFromCollection = this.props.
onRemoveTweetFromCollection;
 var tweetElement;

 if (handleRemoveTweetFromCollection) {
 tweetElement = (
 <Tweet
 tweet={tweet}
 onImageClick={handleRemoveTweetFromCollection} />
);
 } else {
 tweetElement = <Tweet tweet={tweet} />;
 }

 return <li style={listItemStyle} key={tweet.id}>{tweetElement}</
li>;
 },

 render: function () {
 var tweetElements = this.getListOfTweetIds().map(this.
getTweetElement);

 return (
 <ul style={listStyle}>
 {tweetElements}

);
 }
});

module.exports = TweetList;

The TweetList component renders a list of tweets using the render function:

render: function () {
 var tweetElements = this.getListOfTweetIds().map(this.
getTweetElement);

 return (

Chapter 7

[97]

 <ul style={listStyle}>
 {tweetElements}

);
}

First, we create a list of Tweet elements:

var tweetElements = this.getListOfTweetIds().map(this.
getTweetElement);

The this.getListOfTweetIds() method returns an array of tweet IDs:

getListOfTweetIds: function () {
 return Object.keys(this.props.tweets);
},

Then, for each tweet ID in that array, we create a Tweet component. For
this, we will call the map() method on our array of tweet IDs and pass the
this.getTweetElement method as a callback function:

getTweetElement: function (tweetId) {
 var tweet = this.props.tweets[tweetId];
 var handleRemoveTweetFromCollection = this.props.
onRemoveTweetFromCollection;
 var tweetElement;

 if (handleRemoveTweetFromCollection) {
 tweetElement = (
 <Tweet
 tweet={tweet}
 onImageClick={handleRemoveTweetFromCollection} />
);
 } else {
 tweetElement = <Tweet tweet={tweet} />;
 }

 return <li style={listItemStyle} key={tweet.id}>{tweetElement};
},

The getTweetElement() method returns a Tweet element wrapped in the
 element. As we already know that the Tweet component has an optional
onImageClick property. When do we want to provide this optional property
and when don't we?

Build Complex React Components

[98]

There are two scenarios. In the first scenario, the user will click on a tweet image to
remove it from a collection of tweets. In this scenario, our Tweet component will
react to a click event, so we need to provide the onImageClick property. In the
second scenario, the user will export a static collection of tweets that has no user
interaction. In this scenario, we don't need to provide the onImageClick property.

That's exactly what we do in our getTweetElement() method:

var tweet = this.props.tweets[tweetId];
var handleRemoveTweetFromCollection = this.props.
onRemoveTweetFromCollection;
var tweetElement;

if (handleRemoveTweetFromCollection) {
 tweetElement = (
 <Tweet
 tweet={tweet}
 onImageClick={handleRemoveTweetFromCollection} />
);
} else {
 tweetElement = <Tweet tweet={tweet} />;
}

We create a tweet variable that stores a tweet with an ID that is provided by
the tweetId argument. Then, we create a variable that stores a this.props.
onRemoveTweetFromCollection property that is passed by a parent
Collection component.

Next, we check whether the this.props.onRemoveTweetFromCollection property
is provided by a Collection component. If it is, then we create a Tweet component
with an onImageClick property:

tweetElement = (
 <Tweet
 tweet={tweet}
 onImageClick={handleRemoveTweetFromCollection} />
);

If it isn't provided, then we create a Tweet component without a handleImageClick
property:

tweetElement = <Tweet tweet={tweet} />;

Chapter 7

[99]

We use the TweetList component in the following two cases:

• This component is used when rendering a collection of tweets in the
Collection component. In this case, the onRemoveTweetFromCollection
property is provided.

• This component is used when rendering a string of HTML markup that
represents a collection of tweets in the Collection component. In this case,
the onRemoveTweetFromCollection property is not provided.

Once we create our Tweet element, and put it into the tweetElement variable,
we return the element with an inline style:

return <li style={listItemStyle} key={tweet.id}>{tweetElement};

Besides the style property, our element has a key property. It is used by React
to identify each child element that is created dynamically. I recommend that you
read more about dynamic children at https://facebook.github.io/react/docs/
multiple-components.html#dynamic-children.

That's how the getTweetElement() method works. As a result, the TweetList
component returns an unordered list of Tweet elements:

return (
 <ul style={listStyle}>
 {tweetElements}

);

Creating the CollectionControls
component
Now, when we understand what the Collection component renders, let's discuss
its child components. We'll start with CollectionControls. Create the following
~/snapterest/source/components/CollectionControls.react.js file:

var React = require('react');
var Header = require('./Header.react');
var Button = require('./Button.react');
var CollectionRenameForm = require('./CollectionRenameForm.react');
var CollectionExportForm = require('./CollectionExportForm.react');

var CollectionControls = React.createClass({

https://facebook.github.io/react/docs/multiple-components.html#dynamic-children
https://facebook.github.io/react/docs/multiple-components.html#dynamic-children

Build Complex React Components

[100]

 getInitialState: function () {
 return {
 name: 'new',
 isEditingName: false
 };
 },

 getHeaderText: function () {
 var numberOfTweetsInCollection = this.props.
numberOfTweetsInCollection;
 var text = numberOfTweetsInCollection;

 if (numberOfTweetsInCollection === 1) {
 text = text + ' tweet in your';
 } else {
 text = text + ' tweets in your';
 }

 return (

 {text} {this.state.name} collection

);
 },

 toggleEditCollectionName: function () {
 this.setState({
 isEditingName: !this.state.isEditingName
 });
 },

 setCollectionName: function (name) {
 this.setState({
 name: name,
 isEditingName: false
 });
 },

 render: function () {

 if (this.state.isEditingName) {
 return (
 <CollectionRenameForm
 name={this.state.name}

Chapter 7

[101]

 onChangeCollectionName={this.setCollectionName}
 onCancelCollectionNameChange={this.toggleEditCollectionName}
/>
);
 }

 return (
 <div>
 <Header text={this.getHeaderText()} />

 <Button
 label="Rename collection"
 handleClick={this.toggleEditCollectionName} />

 <Button
 label="Empty collection"
 handleClick={this.props.onRemoveAllTweetsFromCollection} />

 <CollectionExportForm htmlMarkup={this.props.htmlMarkup} />
 </div>
);
 }
});

module.exports = CollectionControls;

The CollectionControls component, as the name suggests, renders a user interface
to control a collection. These controls allow the user to:

• Rename a collection
• Empty a collection
• Export a collection

A collection has a name. By default, this name is new and users can change
it. A collection name is displayed in a header that is rendered by the
CollectionControls component. This component is a perfect candidate
for storing the collection's name, and since changing a name will require a
component re-render, we'll store that name in the component's state object:

getInitialState: function () {
 return {
 name: 'new',
 isEditingName: false
 };
},

Build Complex React Components

[102]

The CollectionControls component can render either collection control elements
or a form to change the collection name. A user can switch between the two. We need
a way to represent these two states—we'll use the isEditingName property for that
purpose. By default, isEditingName is set to false; and therefore, users won't see
a form to change the collection name, when the CollectionControls component is
mounted. Let's take a look at its render() method:

render: function () {

 if (this.state.isEditingName) {
 return (
 <CollectionRenameForm
 name={this.state.name}
 onChangeCollectionName={this.setCollectionName}
 onCancelCollectionNameChange={this.toggleEditCollectionName}
/>
);
 }

 return (
 <div>
 <Header text={this.getHeaderText()} />

 <Button
 label="Rename collection"
 handleClick={this.toggleEditCollectionName} />

 <Button
 label="Empty collection"
 handleClick={this.props.onRemoveAllTweetsFromCollection} />

 <CollectionExportForm htmlMarkup={this.props.htmlMarkup} />
 </div>
);
}

First, we check whether the component state's property this.state.isEditingName
is set to true. If it is, then the CollectionControls component returns the
CollectionRenameForm component that renders a form to change the
collection name:

<CollectionRenameForm
 name={this.state.name}
 onChangeCollectionName={this.setCollectionName}
 onCancelCollectionNameChange={this.toggleEditCollectionName} />

Chapter 7

[103]

The CollectionRenameForm component renders a form to change the collection
name. It receives three properties:

• The name property references the current collection name
• The onChangeCollectionName and onCancelCollectionNameChange

properties reference the component's methods

We'll implement the CollectionRenameForm component later in this chapter.
Now let's take a closer look at the setCollectionName method:

setCollectionName: function (name) {
 this.setState({
 name: name,
 isEditingName: false
 });
},

The setCollectionName() function updates the collection's name and hides a form
to edit the collection name by updating the component's state. We'll call this method
when the user submits a new collection name.

Now, let's take a look at the toggleEditCollectionName() method:

toggleEditCollectionName: function () {
 this.setState({
 isEditingName: !this.state.isEditingName
 });
},

It shows or hides the collection's name editing form by setting the isEditingName
property to the opposite of its current Boolean value using the ! operator. We'll call
this method when the user clicks on the Rename collection or Cancel buttons,
that is, show or hide the collection name change form.

If the CollectionControls component state's property this.state.
isEditingName is set to false, then it returns collection controls:

return (
 <div>
 <Header text={this.getHeaderText()} />

 <Button
 label="Rename collection"
 handleClick={this.toggleEditCollectionName} />

Build Complex React Components

[104]

 <Button
 label="Empty collection"
 handleClick={this.props.onRemoveAllTweetsFromCollection} />

 <CollectionExportForm htmlMarkup={this.props.htmlMarkup} />
 </div>
);

We wrap the Header component, two Button components, and the
CollectionExportForm component in a div element. You're already familiar
with a Header component from the previous chapter. It receives a text property
that references a string. However, in this case, we do not directly pass a string,
but rather a call to the this.getHeaderText() function:

<Header text={this.getHeaderText()} />

In turn, this.getHeaderText() returns a string. Let's take a closer look at
this.getHeaderText():

getHeaderText: function () {
 var numberOfTweetsInCollection = this.props.
numberOfTweetsInCollection;
 var text = numberOfTweetsInCollection;

 if (numberOfTweetsInCollection === 1) {
 text = text + ' tweet in your';
 } else {
 text = text + ' tweets in your';
 }

 return (

 {text} {this.state.name} collection

);
},

This method generates a string for a header based on the number of tweets in our
collection. The important feature of this method is that it returns not only a string,
but rather a tree of React elements that encapsulate that string. First, we create the
numberOfTweetsInCollection variable. It stores a number of tweets in a collection.
We then create a text variable and assign it a number of tweets in a collection. At
this point, the text variable stores an integer value. Our next task is to concatenate
the right string to it based on what that integer value is:

• If numberOfTweetsInCollection is 1, then we need to concatenate ' tweet
in your'

• Otherwise, we need to concatenate ' tweets in your'

Chapter 7

[105]

Once the header string is created, then we return the following elements:

return (

 {text} {this.state.name} collection

);

The final string encapsulated inside a element consists of a value of a text
variable, a collection name, and the collection keyword. For example, run the
following command:

1 tweet in your new collection.

Once this string is returned by the getHeaderText() method, it is then passed
as a property to a Header component. Our next collection control element in the
CollectionControls's render() method is Button:

<Button
 label="Rename collection"
 handleClick={this.toggleEditCollectionName} />

We pass the Rename collection string to its label property and the this.
toggleEditCollectionName method to its handleClick property. As a result, this
button will have the Rename collection label, and it will toggle a form to change
the collection name.

The next collection control element is our second Button:

<Button
 label="Empty collection"
 handleClick={this.props.onRemoveAllTweetsFromCollection} />

As you can guess, it will have an Empty collection label, and it will remove all the
tweets from a collection.

Our final collection control element is CollectionExportForm:

<CollectionExportForm htmlMarkup={this.props.htmlMarkup} />

It receives an HTML markup string that represents our collection, and it will render
a button. We'll create this component later in this chapter.

Now, when we understand what the CollectionControls component will
render, let's take a closer look at its child components. We'll start with the
CollectionRenameForm component.

Build Complex React Components

[106]

Creating the CollectionRenameForm
component
First, let's create the ~/snapterest/source/components/CollectionRenameForm.
react.js file:

var React = require('react');
var ReactDOM = require('react-dom');
var Header = require('./Header.react');
var Button = require('./Button.react');

var inputStyle = {
 marginRight: '5px'
};

var CollectionRenameForm = React.createClass({

 getInitialState: function() {
 return {
 inputValue: this.props.name
 };
 },

 setInputValue: function (inputValue) {
 this.setState({
 inputValue: inputValue
 });
 },

 handleInputValueChange: function (event) {
 var inputValue = event.target.value;
 this.setInputValue(inputValue);
 },

 handleFormSubmit: function (event) {
 event.preventDefault();

 var collectionName = this.state.inputValue;
 this.props.onChangeCollectionName(collectionName);
 },

 handleFormCancel: function (event) {
 event.preventDefault();

Chapter 7

[107]

 var collectionName = this.props.name;
 this.setInputValue(collectionName);
 this.props.onCancelCollectionNameChange();
 },

 componentDidMount: function () {
 this.refs.collectionName.focus();
 },

 render: function () {
 return (
 <form className="form-inline" onSubmit={this.handleSubmit}>

 <Header text="Collection name:" />

 <div className="form-group">
 <input
 className="form-control"
 style={inputStyle}
 onChange={this.handleInputValueChange}
 value={this.state.inputValue}
 ref="collectionName" />
 </div>

 <Button label="Change" handleClick={this.handleFormSubmit} />
 <Button label="Cancel" handleClick={this.handleFormCancel} />
 </form>
);
 }
});

module.exports = CollectionRenameForm;

This component renders a form to change the collection name:

render: function () {
 return (
 <form className="form-inline" onSubmit={this.handleSubmit}>

 <Header text="Collection name:" />

 <div className="form-group">
 <input
 className="form-control"
 style={inputStyle}

Build Complex React Components

[108]

 onChange={this.handleInputValueChange}
 value={this.state.inputValue}
 ref="collectionName" />
 </div>

 <Button label="Change" handleClick={this.handleFormSubmit} />
 <Button label="Cancel" handleClick={this.handleFormCancel} />
 </form>
);
}

Our <form> element wraps four elements, which are as follows:

• One Header component
• One <input> element
• Two Button components

The Header component renders the 'Collection name:' string. The <input>
element is wrapped inside a <div> element with a className property set to
form-group. This name is part of the Bootstrap framework that we discussed in
Chapter 4, Make Your React Components Reactive. It's used for layout and styling
and it's not part of our React application's logic.

The <input> element has quite a few properties. Let's take a closer look at it:

<input
 className="form-control"
 style={inputStyle}
 onChange={this.handleInputValueChange}
 value={this.state.inputValue}
 ref="collectionName" />

• The className property is set to form-control. It is another class
name, which is part of the Bootstrap framework. We will use this for
styling purposes.

• In addition, we apply our own style to this input element using the style
property that references the inputStyle object with a single style rule,
that is, marginRight.

• The value property is set to a current value stored in the component's state,
this.state.inputValue.

• The onChange property references a this.handleInputValueChange
method that is an onchange event handler.

Chapter 7

[109]

• ref is a special React property that you can attach to any component that
is returned by a render() method. It allows you to refer to that component
outside a render() method. Shortly, we'll see an example of this.

I would like you to focus on the last three properties: value, onChange, and ref. The
value property is set to the component state's property, and the only way to change
that value is to update its state. On the other hand, we know that a user can interact
with an input field and change its value. Will this behavior apply to our component?
No. Whenever a user types, our input field's value won't change. This is because
a component is in control of <input>, not a user. In our CollectionRenameForm
component, the value of the <input> always reflects the value of the this.state.
inputValue property, regardless of what the user types. The user is not in control,
but the CollectionRenameForm component is.

Then, how can we make sure that our input field reacts to a user input? We need
to listen to a user input, and update the state of the CollectionRenameForm
component, which in turn will re-render the input field with an updated value.
Doing so on every input's change event will make our input look like it works as
usual, and the user can freely change its value.

For this, we provide our <input> element with the onChange property that
references the component's this.handleInputValueChange method:

handleInputValueChange: function (event) {
 var inputValue = event.target.value;
 this.setInputValue(inputValue);
},

As we discussed in Chapter 3, Create Your First React Component, React passes
instances of SyntheticEvent to event handlers. The handleInputValueChange()
method receives an event object with a target property that has a value property.
This value property stores a string that a user has typed in our input field. We pass
that string into our this.setInputValue() method:

setInputValue: function (inputValue) {
 this.setState({
 inputValue: inputValue
 });
},

setInputValue() is a convenient method that updates the component's state with
a new input value. In turn, this update will re-render the <input> element with an
updated value.

Build Complex React Components

[110]

What's the initial input's value when the CollectionRenameForm component is
mounted? Let's take a look at this:

getInitialState: function() {
 return {
 inputValue: this.props.name
 };
},

As you can see, we pass the collection's name from a parent component, and we use
it to set our initial input value.

After we mount this component, we want to set focus on the input field so that
the user can start editing the collection's name straightaway. We know that once a
component is inserted into the DOM, React calls its componentDidMount() method.
This method is our best opportunity to set focus:

 componentDidMount: function () {
 this.refs.collectionName.focus();
 },

To do this, we get our input element and call the focus() function on it.

How can we reference an element inside the componentDidMount() method? We can
use the this.refs object to refer to our input element. Because we provided our
input element with a ref property, which is set to collectionName, we can refer to
it via this.refs.collectionName.

Finally, let's discuss our two form buttons:

• The Change button submits the form and changes the collection name
• The Cancel button submits the form but doesn't change the collection name

We'll start with a Change button:

<Button label="Change" handleClick={this.handleFormSubmit} />

When a user clicks on it, the this.handleFormSubmit method is called:

handleFormSubmit: function (event) {
 event.preventDefault();

 var collectionName = this.state.inputValue;
 this.props.onChangeCollectionName(collectionName);
},

Chapter 7

[111]

We cancel the submit event, then get the collection name from the component's
state, and pass it to the this.props.onChangeCollectionName() function call.
The onChangeCollectionName function is passed by a parent CollectionControls
component. Calling this function will change our collection's name.

Now let's discuss our second form button:

<Button label="Cancel" handleClick={this.handleFormCancel} />

When a user clicks on it, the this.handleFormCancel method is called:

handleFormCancel: function (event) {
 event.preventDefault();

 var collectionName = this.props.name;
 this.setInputValue(collectionName);
 this.props.onCancelCollectionNameChange();
},

Once again, we cancel a submit event, then get the original collection name
that is passed as a property by a parent CollectionControls component, and
pass it to our this.setInputValue() function. Then, we call the this.props.
onCancelCollectionNameChange() function that hides the collection controls.

That's our CollectionRenameForm component. Next, let's create our Button
component that we reused twice in our CollectionRenameForm component.

Creating the Button component
Create the following ~/snapterest/source/components/Button.react.js file:

var React = require('react');

var buttonStyle = {
 margin: '10px 10px 10px 0'
};

var Button = React.createClass({
 render: function () {
 return (
 <button
 className="btn btn-default"
 style={buttonStyle}
 onClick={this.props.handleClick}>{this.props.label}</button>
);

Build Complex React Components

[112]

 }
});

module.exports = Button;

The Button component renders a button. You might be wondering what's the benefit
of creating a dedicated component for a button if you could just use the <button>
element? Think of a component as a wrapper for a <button> element and something
else that comes with it. In our case, most <button> elements come with the same
style, so it makes sense to encapsulate both the <button> and style objects inside a
component, and reuse that component. Hence, the Button component. It expects to
receive two properties from a parent component:

• The label property is a label for a button
• The handleClick property is a callback function that is called when a user

clicks on this button

Now, it's time to create our CollectionExportForm component.

Creating the CollectionExportForm
component
The CollectionExportForm component is responsible for exporting a collection to a
third-party website (http://CodePen.io). Once your collection is on CodePen, you
can save it and share it with your friends. Let's take a look at how this can be done.

Create the ~/snapterest/source/components/CollectionExportForm.react.js
file:

var React = require('react');

var formStyle = {
 display: 'inline-block'
};

var CollectionExportForm = React.createClass({
 render: function () {
 return (
 <form action="http://codepen.io/pen/define" method="POST"
target="_blank" style={formStyle}>
 <input type="hidden" name="data" value={this.props.htmlMarkup}
/>

http://CodePen.io

Chapter 7

[113]

 <button type="submit" className="btn btn-default">Export as
HTML</button>
 </form>
);
 }
});

module.exports = CollectionExportForm;

The CollectionExportForm component renders a form with the <input> and
<button> elements. The <input> element is hidden, and its value is set to an HTML
markup string that is passed by a parent component. The <button> element is the
only element in this form that is visible to a user. When a user clicks on the Export
as HTML button, a collection is submitted to CodePen.io that is opened in a new
window. A user can then modify and share that collection.

Congratulations! At this point, we've built a fully functional web application with
React. Let's see how it works.

First, make sure that the Snapkite Engine that we installed and configured in
Chapter 1, Installing Powerful Tools for Your Project, is running. Navigate to
~/snapkite-engine/ and run the following command:

npm start

Then, open a new Terminal window, navigate to ~/snapterest/, and run
this command:

gulp

Now open ~/snapterest/build/index.html in your web browser. You will see
new tweets appear. Click on them to add them to your collection. Click on them
again to remove individual tweets from the collection. Click on the Empty collection
button to remove all the tweets from your collection. Click on the Rename collection
button, type a new collection name, and click on the Change button. Finally, click
on the Export as HTML button to export your collection to CodePen.io. If you have
any trouble with this chapter or previous chapters, then go to https://github.com/
fedosejev/react-essentials and create a new issue.

https://github.com/fedosejev/react-essentials
https://github.com/fedosejev/react-essentials

Build Complex React Components

[114]

Summary
In this chapter, you created the TweetList, CollectionControls,
CollectionRenameForm, CollectionExportForm, and Button components.
You completed building a fully functional React application. In our next chapters,
we'll test it with Jest and enhance it with Flux.

[115]

Test Your React Application
with Jest

By now, you must have created a number of React components. Some of them are
quite straightforward, but some are sophisticated enough. Having built both, you
might have gained a certain confidence, which makes you believe that no matter
how complex the user interface is you can build it with React, without any major
pitfalls. This is a good confidence to have. After all that's why we're investing time
in learning React. However, there is a trap that many confident React developers fall
into; the act of not writing unit tests.

What is a unit test? As the name suggests, it's a test for a single unit of your
application. A single unit in your application is often a function, which suggests
that writing unit tests means writing tests for your functions.

Why write unit tests?
You might be wondering why you should write unit tests? Let me tell you a story
from my personal experience. I had a release of a new website that I built recently.
A few days later, my colleague who was using the website sent me an e-mail
with a few files that the website would reject. I closely examined the files, and the
requirement of having the IDs matched in both of them was met. However, the files
were still rejected, and the error message said that the IDs didn't match. Can you
guess what the problem was?

I wrote a function that will check whether the IDs from the two files match. The
function checked both the value and the type of an ID, so even if the values were the
same and the types were different, it would return no match. Turns out, that was
exactly the case with the files from my colleague. The important question is how could
I prevent this from happening? The answer is a number of unit tests for my function.

Test Your React Application with Jest

[116]

Creating test suits, specs, and
expectations
How does one write a test for JavaScript functions? You need a testing framework,
and luckily, Facebook has built its own unit test framework for JavaScript called
Jest. It is built on top of Jasmine; another well-known JavaScript test framework.
Those of you who are familiar with Jasmine will find Jest's approach to testing very
similar. However, I'll make no assumptions about your prior experience with testing
frameworks and discuss the basics first.

The fundamental idea of unit testing is that you test only one piece of functionality in
your application that usually is implemented by one function. You test it in isolation,
which means that all the other parts of your application that the function depends
on are not used by your tests. Instead, they are imitated by your tests. To imitate a
JavaScript object is to create a fake one that simulates the behavior of the real
object. In unit testing, the fake object is called mock and the process of creating
it is called mocking.

Jest automatically mocks the dependencies when you're running your tests.
It automatically finds tests to be executed in your repository. Let's take a look
at the following example.

First, create the ~/snapterest/source/utils/ directory. Then, create a new
TweetUtils.js file in it:

function getListOfTweetIds(tweets) {
 return Object.keys(tweets);
}

module.exports.getListOfTweetIds = getListOfTweetIds;

The TweetUtils.js file is a module with the getListOfTweetIds() utility function
for our application to use. Given an object with tweets, getListOfTweetIds()
returns an array of tweet IDs. Using the CommonJS module pattern, we will export
this function:

module.exports.getListOfTweetIds = getListOfTweetIds;

Now let's write our first unit test with Jest. We'll test our getListOfTweetIds()
function.

Create a new directory: ~/snapterest/source/utils/__tests__/. Jest will run
any tests in any __tests__ directories that it will find in your project structure. So,
it's important to name your directories with __tests__.

Chapter 8

[117]

Create a TweetUtils-test.js file inside __tests__:

jest.dontMock('../TweetUtils');

describe('Tweet utilities module', function () {

 it('returns an array of tweet ids', function () {

 var TweetUtils = require('../TweetUtils');
 var tweetsMock = {
 tweet1: {},
 tweet2: {},
 tweet3: {}
 };
 var expectedListOfTweetIds = ['tweet1', 'tweet2', 'tweet3'];
 var actualListOfTweetIds = TweetUtils.
getListOfTweetIds(tweetsMock);

 expect(actualListOfTweetIds).toEqual(expectedListOfTweetIds);
 });
});

First, we tell Jest not to mock our TweetUtils module:

jest.dontMock('../TweetUtils');

We need to do this because Jest will automatically mock modules returned by the
require() function. In our test, we require the TweetUtils module:

var TweetUtils = require('../TweetUtils');

Without the jest.dontMock('../TweetUtils') call, Jest would return an imitation
of our TweetUtils module, instead of the real one. In this case, we actually need the
real TweetUtils module because that's what we're testing.

Next, we call a global describe()Jest function. It's important to understand the
concept behind it. In our TweetUtils-test.js file, we're not just creating a single
test, instead we're creating a suit of tests. A suit is a collection of tests that collectively
tests a bigger unit of functionality. For example, a suit can have multiple tests,
which tests all the individual parts of a larger module. In our example, we have a
TweetUtils module with potentially a number of utility functions. In this situation,
we would create a suit for the TweetUtils module, and then create tests for each
individual utility function, such as getListOfTweetIds().

Test Your React Application with Jest

[118]

The describe function defines a suit and takes these two parameters:

• Suit name: This is the title that describes what is being tested by this 'Tweet
utilities module' suit

• Suit implementation: This is the function that implements this suit

In our example, the suit is as follows:

describe('Tweet utilities module', function () {
 // Suit implementation goes here...
});

How do you create an individual test? In Jest, individual tests are called specs.
They are defined by calling another global it() Jest function. Just like describe(),
the it() function takes two parameters:

• Spec name: This is the title that describes what is being tested by this
'returns an array of tweet ids' spec

• Spec implementation: This is the function that implements this spec

In our example, the spec is as follows:

it('returns an array of tweet ids', function () {
 // Spec implementation goes here...
});

Let's take a closer look at the implementation of our spec:

var TweetUtils = require('../TweetUtils');
var tweetsMock = {
 tweet1: {},
 tweet2: {},
 tweet3: {}
};
var expectedListOfTweetIds = ['tweet1', 'tweet2', 'tweet3'];
var actualListOfTweetIds = TweetUtils.getListOfTweetIds(tweetsMock);

expect(actualListOfTweetIds).toEqual(expectedListOfTweetIds);

This spec tests whether the getListOfTweetIds() method of our TweetUtils
module returns an array of tweet IDs, when given an object with tweets.

First, we will import the TweetUtils module:

var TweetUtils = require('../TweetUtils');

Chapter 8

[119]

Then, we will create a mock object that simulates the real tweets object:

var tweetsMock = {
 tweet1: {},
 tweet2: {},
 tweet3: {}
};

The only requirement for this mock object is to have tweet IDs as object keys. The
values are not important, so we need to choose empty objects. The key names are
not important as well, so we choose to name them tweet1, tweet2, and tweet3.
This mock object doesn't fully simulate the real tweet object. Its sole purpose is to
simulate the fact that its keys are tweet IDs.

The next step is to create an expected list of tweet IDs:

var expectedListOfTweetIds = ['tweet1', 'tweet2', 'tweet3'];

We know what tweet IDs to expect because we've mocked the tweets object with the
same IDs.

The next step is to extract the actual tweet IDs from our mocked tweets object. For
this, we use the getListOfTweetIds() method that takes the tweets object and
returns an array of tweet IDs:

var actualListOfTweetIds = TweetUtils.getListOfTweetIds(tweetsMock);

We pass the tweetsMock object to that method and store the results in the
actualListOfTweetIds variable. The reason it's named actualListOfTweetIds
is because this list of tweet IDs is produced by the actual getListOfTweetIds()
function that we're testing.

The final step will introduce us to a new important concept:

expect(actualListOfTweetIds).toEqual(expectedListOfTweetIds);

Let's think about the process of testing. We need to take an actual value produced
by the method that we're testing, that is, getListOfTweetIds(), and match it to the
expected value that we know in advance. The result of that match will determine
whether our test has passed or failed.

The reason why we can guess what getListOfTweetIds() will return in advance is
because we've prepared the input for it; that's our mock object:

var tweetsMock = {
 tweet1: {},
 tweet2: {},
 tweet3: {}
};

Test Your React Application with Jest

[120]

So, we can expect the following output by calling TweetUtils.
getListOfTweetIds(tweetsMock):

['tweet1', 'tweet2', 'tweet3']

Because something can go wrong inside getListOfTweetIds(), we cannot
guarantee this result; we can only expect it.

That's why we need to create an expectation. In Jest, an expectation is built
using the expect() function, which takes an actual value, for example,
actualListOfTweetIds object: expect(actualListOfTweetIds).

Then, we chain it with a matcher function that compares the actual value with the
expected value and tells Jest whether the expectation was met or not:

expect(actualListOfTweetIds).toEqual(expectedListOfTweetIds);

In our example, we use the toEqual() matcher function to compare the
two arrays. You can find a list of all the built-in matcher functions in Jest at
https://facebook.github.io/jest/docs/api.html#expect-value.

This is how you create a spec. A spec contains one or more expectations. Each
expectation tests the state of your code. A spec can be either a passing spec or
a failing spec. A spec is a passing spec only when all the expectations are met,
otherwise it's a failing spec.

Well done, you've written your first testing suit with a single spec that has one
expectation. How can you run it?

Installing and running Jest
First, let's install the Jest command-line interface (Jest CLI):

npm install –-save-dev jest-cli

This command installs the Jest CLI, and adds it as a development dependency
to our ~/snapterest/package.json file. Next, let's edit the package.json file.
We'll replace the existing "script" object:

"scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
},

Replace the preceding object with the following one:

"scripts": {
 "test": "jest"
},

https://facebook.github.io/jest/docs/api.html#expect-value

Chapter 8

[121]

Now we're ready to run our test suit. Navigate to the ~/snapterest/ directory,
and run the following command:

npm test

You should see the following message in your Terminal:

Using Jest CLI v0.4.18

 PASS source/utils/__tests__/TweetUtils-test.js (0.065s)

1 test passed (1 total)

Run time: 0.295s

As you can see, I am using Version 0.4.18 of the Jest CLI. When you run your test,
the Jest version is likely to be higher than this.

The key line in this message is as follows:

PASS source/utils/__tests__/TweetUtils-test.js (0.065s)

• PASS: This tells you that your test has passed
• source/utils/__tests__/TweetUtils-test.js: This tells you what test it

was running
• (0.065s): This tells how long it took to run the test

That's all it takes to write and test a tiny unit test. Now, let's create another one!

Creating multiple specs and expectations
This time, we'll create and test the collection utility module. Create the
CollectionUtils.js file in the ~/snapterest/source/utils/ directory:

function getNumberOfTweetsInCollection(collection) {
 var TweetUtils = require('./TweetUtils');
 var listOfCollectionTweetIds = TweetUtils.
getListOfTweetIds(collection);

 return listOfCollectionTweetIds.length;
}

function isEmptyCollection(collection) {
 return (getNumberOfTweetsInCollection(collection) === 0);
}

Test Your React Application with Jest

[122]

module.exports = {
 getNumberOfTweetsInCollection: getNumberOfTweetsInCollection,
 isEmptyCollection: isEmptyCollection
};

The CollectionUtils module has two methods:
getNumberOfTweetsInCollection() and isEmptyCollection().

First, let's discuss getNumberOfTweetsInCollection():

function getNumberOfTweetsInCollection(collection) {
 var TweetUtils = require('./TweetUtils');
 var listOfCollectionTweetIds = TweetUtils.
getListOfTweetIds(collection);

 return listOfCollectionTweetIds.length;
}

As you can see, this function requires the TweetUtils module as a dependency.
It then calls the getListOfTweetIds() method and passes the collection
object as a parameter. The result returned by getListOfTweetIds() is
stored in the listOfCollectionTweetIds variable, and since it's an array,
getNumberOfTweetsInCollection() returns a length property of that array.

Now, let's take a look at the isEmptyCollection() method:

function isEmptyCollection(collection) {
 return (getNumberOfTweetsInCollection(collection) === 0);
}

It reuses the getNumberOfTweetsInCollection() method that we just discussed. It
checks whether the result returned by a call to getNumberOfTweetsInCollection()
is equal to zero. Then, it returns the result of that check, which is either true
or false.

Finally, we export both the methods from this module:

module.exports = {
 getNumberOfTweetsInCollection: getNumberOfTweetsInCollection,
 isEmptyCollection: isEmptyCollection
};

We just created our CollectionUtils module. Our next task is to test it.

Chapter 8

[123]

Inside the ~/snapterest/source/utils/__tests__/ directory, create the following
CollectionUtils-test.js file:

jest.autoMockOff();

describe('Collection utilities module', function () {

 var CollectionUtils = require('../CollectionUtils');

 var collectionTweetsMock = {
 collectionTweet7: {},
 collectionTweet8: {},
 collectionTweet9: {}
 };

 it('returns a number of tweets in collection', function
getNumberOfTweetsInCollection() {

 var actualNumberOfTweetsInCollection = CollectionUtils.getNumberOf
TweetsInCollection(collectionTweetsMock);
 var expectedNumberOfTweetsInCollection = 3;

 expect(actualNumberOfTweetsInCollection).toBe(expectedNumberOfTwee
tsInCollection);

 });

 it('checks if collection is not empty', function
isNotEmptyCollection() {

 var actualIsEmptyCollectionValue = CollectionUtils.isEmptyCollecti
on(collectionTweetsMock);

 expect(actualIsEmptyCollectionValue).toBeDefined();
 expect(actualIsEmptyCollectionValue).toBe(false);
 expect(actualIsEmptyCollectionValue).not.toBe(true);

 });

});

The CollectionUtils-test.js is a bigger test suit than the one we created earlier.
There are quite a few things to learn from it. Let's discuss it in detail.

Test Your React Application with Jest

[124]

The very first thing that we need to do is to tell Jest not to mock automatically:

jest.autoMockOff();

What does it mean to mock automatically? In the testing environment, Jest replaces
your usual require() function with its own version. Jest's version of require()
function loads the real module and replaces that module with its mock version. As
a result, none of the require() function calls will work as expected in our testing
environment. Not even the ones that are used to import the dependency modules
inside a module that we're testing. This means that for the module that we want the
test to work, we need to call jest.dontMock() for that module, and then for each
module that it depends on. There can be a large number of dependency modules. So
instead of calling jest.dontMock() too many times, we can reverse the situation by
calling the jest.autoMockOff() method. Now Jest won't mock by default, which
means that we will need to explicitly call the jest.mock() method for each module
that we want to mock.

In CollectionUtils-test.js, we only import the two modules: CollectionUtils
and its dependency module TweetUtils. So a less efficient alternative to jest.
autoMockOff() would be as follows:

jest.dontMock('../CollectionUtils');
jest.dontMock('../TweetUtils');

Once you call jest.autoMockOff() to turn the automatic mocking off, you can then
call jest.autoMockOn()to turn it back on later in your code.

After taking care of turning off the automatic mocking, we define our test suit:

describe('Collection utilities module', function () {

 var CollectionUtils = require('../CollectionUtils');

 var collectionTweetsMock = {
 collectionTweet7: {},
 collectionTweet8: {},
 collectionTweet9: {}
 };

 // Specs go here...
});

Chapter 8

[125]

We give it a name Collection utilities module, since it describes exactly what
module we're testing. Now let's take a look at the implementation of this test suit.
Instead of immediately defining specs like we did in our previous test suit, we're
importing the CollectionUtils module and creating the collectionTweetsMock
object. So, are we allowed to do that? Absolutely. The test suite implementation
function is just another JavaScript function, where we can do some work before we
define our test specs.

This test suit will implement more than one spec. All of them will use the
collectionTweetsMock object, so it makes sense to define it outside the specs'
scope and reuse it inside the specs. As you might have already guessed, the
collectionTweetsMock object imitates a collection of tweets.

Now let's implement the individual specs.

Our first spec tests whether the CollectionUtils module returns a number of
tweets in the collection:

it('returns a number of tweets in collection', function
getNumberOfTweetsInCollection() {

 var actualNumberOfTweetsInCollection = CollectionUtils.getNumberOfTw
eetsInCollection(collectionTweetsMock);
 var expectedNumberOfTweetsInCollection = 3;

 expect(actualNumberOfTweetsInCollection).toBe(expectedNumberOfTweets
InCollection);

});

We first get the actual number of tweets in our mock collection:

var actualNumberOfTweetsInCollection = CollectionUtils.getNumberOfTwee
tsInCollection(collectionTweetsMock);

For this, we call the getNumberOfTweetsInCollection() method and pass the
collectionTweetsMock object to it. Then, we define the number of expected tweets
in our mock collection:

var expectedNumberOfTweetsInCollection = 3;

Finally, we call the expect() global function to create an expectation:

expect(actualNumberOfTweetsInCollection).toBe(expectedNumberOfTweetsI
nCollection);

Test Your React Application with Jest

[126]

We use the toBe() matcher function to match the actual value and the expected one.

If you now run the npm test command, you will see that both the test suits pass:

Using Jest CLI v0.4.18

 PASS source/utils/__tests__/TweetUtils-test.js (0.094s)

 PASS source/utils/__tests__/CollectionUtils-test.js (0.104s)

2 tests passed (2 total)

Run time: 1.297s

Remember that for a test suit to pass, it must have only the passing specs. For a spec
to be passing, it must have all its expectations to be met. That's the case so far.

How about running a little evil experiment?

Open your ~/snapterest/source/utils/CollectionUtils.js file, and inside the
getNumberOfTweetsInCollection() function, go to the following line of code:

return listOfCollectionTweetIds.length;

Now change it to this:

return listOfCollectionTweetIds.length + 1;

What this tiny update will do is return an incorrect number of tweets in any given
collection. Now run npm test one more time. You should see that all your specs in
CollectionUtils-test.js have failed. Here is the one we're interested in:

FAIL source/utils/__tests__/CollectionUtils-test.js (0.12s)

Collection utilities module › it returns a number of tweets in collection

 - Expected: 4 toBe: 3

 at Spec.getNumberOfTweetsInCollection (/Users/artemij/snapterest/
source/utils/__tests__/CollectionUtils-test.js:18:46)

 at Timer.listOnTimeout [as ontimeout] (timers.js:112:15)

...

We haven't seen a failing test before, so let's take a closer look at what it's trying to
tell us.

First, it gives us the bad news that the CollectionUtils-test.js test has failed:

FAIL source/utils/__tests__/CollectionUtils-test.js (0.12s)

Then, it tells us in a human-friendly manner what we were testing:

Collection utilities module › it returns a number of tweets in collection

Chapter 8

[127]

Then, what went wrong; the unexpected test result:

- Expected: 4 toBe: 3

Finally, Jest prints a stack trace that should give us enough technical details to
quickly identify what part of our code has produced the unexpected result:

at Spec.getNumberOfTweetsInCollection (/Users/artemij/snapterest/source/
utils/__tests__/CollectionUtils-test.js:18:46)

at Timer.listOnTimeout [as ontimeout] (timers.js:112:15)

Notice that it says at which spec an expectation wasn't met:

at Spec.getNumberOfTweetsInCollection

The getNumberOfTweetsInCollection function is the name of the function that
implements that spec:

it('returns a number of tweets in collection', function
getNumberOfTweetsInCollection() {

 // Spec implementation goes here...

});

Choosing to name the function that implements your spec proves to be very helpful
in the case where it fails.

Alright! Enough of failing our tests on purpose. Let's revert our ~/snapterest/
source/utils/CollectionUtils.js file as follows:

return listOfCollectionTweetIds.length;

The distinct difference between our previous test suit and CollectionUtils-test.
js is the number of specs. A test suit in Jest can have many specs that test different
methods of a single module.

Our CollectionUtils module has two methods. Our test suit for it will have three
specs. Let's discuss the other two.

Our next spec in CollectionUtils-test.js checks whether the collection is
not empty:

it('checks if collection is not empty', function
isNotEmptyCollection() {

 var actualIsEmptyCollectionValue = CollectionUtils.isEmptyCollection
(collectionTweetsMock);

Test Your React Application with Jest

[128]

 expect(actualIsEmptyCollectionValue).toBeDefined();
 expect(actualIsEmptyCollectionValue).toBe(false);
 expect(actualIsEmptyCollectionValue).not.toBe(true);

});

First, we call the isEmptyCollection() method and pass the
collectionTweetsMock object to it. We store the result in the
actualIsEmptyCollectionValue variable. Notice how we're reusing
the same collectionTweetsMock object, as in our previous spec.

Next, we create not one but three expectations:

expect(actualIsEmptyCollectionValue).toBeDefined();
expect(actualIsEmptyCollectionValue).toBe(false);
expect(actualIsEmptyCollectionValue).not.toBe(true);

You might have already guessed what we're expecting from our
actualIsEmptyCollectionValue:

We expect it to be defined as follows:

expect(actualIsEmptyCollectionValue).toBeDefined();

This means that the isEmptyCollection() function must return something other
than undefined.

We expect its value to be false:

expect(actualIsEmptyCollectionValue).toBe(false);

Earlier, we used the toEqual() matcher function to compare the arrays. toEqual()
does a deep comparison, which is perfect for comparing arrays, but it is an overkill
for primitive values, such as false.

Finally, we expect actualIsEmptyCollectionValue not to be true:

expect(actualIsEmptyCollectionValue).not.toBe(true);

The .not inverses the next comparison. It matches the expectation with the inverse
of toBe(true) with false.

Notice that toBe(false) and not.toBe(true) produce the same result.

Only when all the three expectations are met, then this spec is passing.

So far, we've tested the utility modules, but how do you test the React components
with Jest? Let's find this out next.

Chapter 8

[129]

Testing React components
Just like with utility modules, creating tests for React components starts with
creating the __tests__ directory. Navigate to ~/snapterest/source/components/
and create the __tests__ directory.

The first React component that we'll test will be our Header component. Create
Header-test.js in the ~/snapterest/source/components/__tests__ directory:

jest.dontMock('../Header.react');

describe('Header component', function () {

 it('renders provided header text', function () {

 var React = require('react');
 var ReactDOM = require('react-dom');
 var TestUtils = require('react-addons-test-utils');
 var Header = require('../Header.react');

 var header = TestUtils.renderIntoDocument(
 <Header text="Testing..." />
);

 var actualHeaderText = ReactDOM.findDOMNode(header).textContent;

 expect(actualHeaderText).toBe('Testing...');

 var defaultHeader = TestUtils.renderIntoDocument(
 <Header />
);

 var actualDefaultHeaderText = ReactDOM.findDOMNode(defaultHeader).
textContent;

 expect(actualDefaultHeaderText).toBe('Default header');
 });
});

By now, you can recognize the structure of our test files. First, we tell Jest not to
mock the Header component. Then, we define our test suit, and we give it a name,
'Header component'. Our test suit has one spec named, renders provided
header text. As the name suggests, it tests whether our Header component renders
the provided header text. The implementation of that spec has a number of new
things that we'll discuss. Let's take a closer look at them.

www.allitebooks.com

http://www.allitebooks.org

Test Your React Application with Jest

[130]

First, we import React and ReactDOM:

var React = require('react');
var ReactDOM = require('react-dom');

Then, we import one of the React add-ons:

var TestUtils = require('react-addons-test-utils');

TestUtils helps you test the React components with any test framework that you
choose. Naturally, it works great with Jest. Let's install it:

npm install --save-dev react-addons-test-utils

Next, in order to test our Header component, we need to import it:

var Header = require('../Header.react');

Our next task is to render the Header component to the DOM. The TestUtils add-
on has a helper renderIntoDocument() function that does exactly this:

var header = TestUtils.renderIntoDocument(
 <Header text="Testing..." />
);

We pass the React <Header text="Testing..." /> component instance to the
renderIntoDocument() function as a parameter. Notice that in this case, our
Header component instance has a text property. renderIntoDocument() returns a
reference to that component.

Now, we have a reference to our Header component that is rendered to the DOM.
Our next task is to check what header text did it render. This means that we need to
perform the following steps:

1. Find the component's DOM node.
2. Get the DOM node's text content.

Do you remember what method React provides us to find the component's DOM
node? Did you say ReactDOM.findDOMNode()?

ReactDOM.findDOMNode(header)

We pass header to ReactDOM.findDOMNode() as a parameter. As a result,
ReactDOM.findDOMNode() returns a DOM node element. Now we can access its
textContent property:

ReactDOM.findDOMNode(header).textContent;

Chapter 8

[131]

The value of the textContent property becomes the actual header text:

var actualHeaderText = ReactDOM.findDOMNode(header).textContent;

The final step is to create an expectation and match it with the expected text:

expect(actualHeaderText).toBe('Testing...');

As you can tell, we're expecting Testing... to be rendered as a DOM node text.

Great! Now we can test that the provided header text to the Header component
instance is rendered to the DOM.

What happens when we create the Header component instance without providing
any header text?

Let's find this out by rendering another instance of the Header component to
the DOM:

var defaultHeader = TestUtils.renderIntoDocument(
 <Header />
);

Only this time, it has no text property. We'll call this component reference
defaultHeader. Let's find the defaultHeader component's DOM node element
and access its textContent property:

var actualDefaultHeaderText = ReactDOM.findDOMNode(defaultHeader).
textContent;

This will be our actual header text rendered by default by a Header component.
Finally, we create an expectation and match this with the expected text:

expect(actualDefaultHeaderText).toBe('Default header');

In this case, actualDefaultHeaderText must be equal to Default header.

This is how you test what your React component renders. You might be wondering
how do you test the behavior of your React component?

That's what we'll discuss next!

Create the Button-test.js file in the ~/snapterest/source/components/__
tests__/ directory:

jest.dontMock('../Button.react');

describe('Button component', function () {

Test Your React Application with Jest

[132]

 it('calls handler function on click', function () {

 var React = require('react');
 var TestUtils = require('react-addons-test-utils');
 var Button = require('../Button.react');
 var handleClick = jest.genMockFunction();

 var button = TestUtils.renderIntoDocument(
 <Button handleClick={handleClick} />
);

 var buttonInstance = TestUtils.findRenderedDOMComponentWithTag(but
ton, 'button');

 TestUtils.Simulate.click(buttonInstance);

 expect(handleClick).toBeCalled();

 var numberOfCallsMadeIntoMockFunction = handleClick.mock.calls.
length;

 expect(numberOfCallsMadeIntoMockFunction).toBe(1);
 });
});

The Button-test.js file will test our Button component, and specifically, check
whether it triggers the event handler function when you click on it. Without further
ado, let's focus on the 'calls handler function on click' spec implementation:

var React = require('react/addons');
var TestUtils = require('react-addons-test-utils');
var Button = require('../Button.react');
var handleClick = jest.genMockFunction();

var button = TestUtils.renderIntoDocument(
 <Button handleClick={handleClick} />
);

var buttonInstance = TestUtils.findRenderedDOMComponentWithTag(button,
'button');

TestUtils.Simulate.click(buttonInstance);

Chapter 8

[133]

expect(handleClick).toBeCalled();

var numberOfCallsMadeIntoMockFunction = handleClick.mock.calls.length;

expect(numberOfCallsMadeIntoMockFunction).toBe(1);

First, we're importing React with the add-ons module and our Button component.
As usual, we tell Jest not to mock the Button component.

Before we continue with implementing our spec, let's talk about how we're going to
implement it. The plan is to:

1. Generate a mock function.
2. Render the Button component instance with our mock function that imitates

a click handler.
3. Find the instance of our rendered Button component.
4. Simulate a click event on that component instance.
5. Check whether a click event handler function was triggered.
6. Check whether our mock function was called exactly once.

Let's generate a mock function:

var handleClick = jest.genMockFunction();

The jest.genMockFunction() function returns the newly generated Jest mock
function ; we name it handleClick.

Next, we render the instance of our Button component to the DOM:

var button = TestUtils.renderIntoDocument(
 <Button handleClick={handleClick} />
);

This Button component instance receives our mock handleClick function
as a property.

Then, we find the Button component instance rendered to the DOM:

var buttonInstance = TestUtils.findRenderedDOMComponentWithTag(button,
'button');

The TestUtils.findRenderedDOMComponentWithTag() method finds one instance
of the Button component that is rendered as a button tag. We store that instance in
the buttonInstance variable.

Test Your React Application with Jest

[134]

Next, we simulate a click on that component instance:

TestUtils.Simulate.click(buttonInstance);

TestUtils.Simulate simulates an event dispatch on a DOM node. For our
purposes, we need to simulate a click event dispatch. For this, we need to call the
TestUtils.Simulate.click() method and pass buttonInstance as a DOM node
element. TestUtils.Simulate provides an event method such as click() for all
events supported by React.

Finally, we create an expectation:

expect(handleClick).toBeCalled();

As you might have guessed, we expect our handleClick mock function to be called
at least once during our test.

What we also want to check is whether it's called exactly once. How do we check
the number of calls made into our handleClick mock function? All the Jest mock
functions have a special .mock property that stores all the data about how the mock
function was called. We'll take a look at our handleClick mock function's .mock
property to find out how many times handleClick was called:

var numberOfCallsMadeIntoMockFunction = handleClick.mock.calls.length;

The .mock property has the .calls property, which is an array, that represents
all the calls that have been made into our handleClick mock function. The length
of that array will be the number of calls made into handleClick. We store this
number in the numberOfCallsMadeIntoMockFunction variable and then create
another expectation:

expect(numberOfCallsMadeIntoMockFunction).toBe(1);

We expect the number of calls made into our mock function to be exactly 1.

Right now, we've finished creating our tests. However, we can't run them yet; can
you guess why? Let's think about it. We're testing the React components written in
the JSX syntax, but Jest doesn't understand the JSX syntax. So, if you run npm test
now, both the component tests will fail and report SyntaxError.

What we need to do is to configure Jest in order to use a preprocessor provided by
the babel-jest module. Add the jest property to your ~/snapterest/package.
json file:

"jest": {
 "scriptPreprocessor": "<rootDir>/node_modules/babel-jest",
 "testFileExtensions": ["es6", "js"],
 "unmockedModulePathPatterns": [

Chapter 8

[135]

 "<rootDir>/node_modules/react"
]
}

Install babel-jest:

npm install --save-dev babel-jest

If you're curious about what unmockedModulePathPatterns does, then
go to https://facebook.github.io/jest/docs/api.html#config-
unmockedmodulepathpatterns-array-string.

Now it's time to run all our tests.

Navigate to ~/snapterest/ and run this command:

npm test

All your test suits should PASS:

PASS source/utils/__tests__/TweetUtils-test.js (0.134s)

PASS source/utils/__tests__/CollectionUtils-test.js (0.146s)

PASS source/components/__tests__/Button-test.js (2.802s)

PASS source/components/__tests__/Header-test.js (2.877s)

4 tests passed (4 total)

Run time: 4.728s

Log messages, such as these, will help you sleep well at night and go on holidays,
without the need to constantly check your work e-mails.

Summary
Now you know how to create the React components and unit test them.

In this chapter, you learned the essentials of Jest; the unit testing framework from
Facebook that works well with React. We discussed the test suits, specs, expectations,
and matchers. We created mocks and simulated click events.

In the next chapter, we'll learn the essentials of the Flux architecture, and how to
improve the maintainability of our React application.

https://facebook.github.io/jest/docs/api.html#config-unmockedmodulepathpatterns-array-string
https://facebook.github.io/jest/docs/api.html#config-unmockedmodulepathpatterns-array-string

[137]

Supercharge Your React
Architecture with Flux

The process of building a web application has one quality that somewhat mirrors the
process of evolution of life itself; it never ends. Unlike building a bridge, building
a web application has no natural state that represents the end of the development
process. It's up to you or your team to decide when you should stop the development
process and release what you've already built.

In this book, we reached that point at which we can stop developing Snapterest.
Right now, we have a small React.js application with a basic functionality that
simply works.

Isn't that enough?

Not exactly. Earlier in this book, we discussed how the process of maintaining your
web application is much more expensive in terms of time and effort than the process
of developing it. If we choose to finish developing Snapterest at its current state,
we'll also choose to start the process of maintaining it.

Are we ready for maintaining Snapterest? Do we know if its current state will allow
us to introduce a new functionality later on without any significant code refactoring?

Supercharge Your React Architecture with Flux

[138]

Analyzing your web application's
architecture
To answer these questions, let's zoom away from the implementation details and
explore our application's architecture:

• The app.js file renders our Application component
• The Application component manages a collection of tweets and renders our

Stream and Collection components
• The Stream component receives the new tweets from the

SnapkiteStreamClient library and renders the StreamTweet
and Header components

• The Collection component renders the CollectionControls and
TweetList components

Stop right there. Can you tell how data flows inside our application? Do you know
where it enters our application? How does a new tweet end up in our collection?
Let's examine our data flow more closely:

1. We use the SnapkiteStreamClient library to receive a new tweet inside a
Stream component.

2. This new tweet is then passed from Stream to the StreamTweet component.
3. The StreamTweet component passes it to the Tweet component, which

renders the tweet image.
4. A user clicks on that tweet image to add it to its collection.
5. The Tweet component passes the tweet object to the StreamTweet

component via the handleImageClick(tweet) callback function.
6. The StreamTweet component passes that tweet object to the Stream

component via the onAddTweetToCollection(tweet) callback function.
7. The Stream component passes that tweet object to the Application

component via the onAddTweetToCollection(tweet) callback function.
8. The Application component adds tweet to the collectionTweets object

and updates its state.
9. The state update triggers the Application component to re-render, which

in turn re-renders the Collection component with an updated collection
of tweets.

10. Then, the child components of the Collection component can mutate our
collection of tweets as well.

Chapter 9

[139]

Do you feel already confused? Can you rely on this architecture in the long run?
Do you think it's easily maintainable? I don't think so.

Let's identify the key problems with our current architecture. We can see that the
new data enters our React application via the Stream component. It then travels all
the way down to the Tweet component in the component hierarchy. Then, it travels
all the way up to the Application component, where it's stored and managed.

Why do we store and manage our collection tweets in the Application component?
Because Application is a parent component for two other components: Stream and
Collection. Both of them need to be able to mutate our collection tweets. In order to
accommodate this, our Application component needs to pass callback functions to
both the components:

• The Stream component:
<Stream onAddTweetToCollection={this.addTweetToCollection} />

• The Collection component:

<Collection
 tweets={this.state.collectionTweets}
 onRemoveTweetFromCollection={this.removeTweetFromCollection}
 onRemoveAllTweetsFromCollection={this.
removeAllTweetsFromCollection} />

The Stream component gets the onAddTweetToCollection() function
to add a tweet to the collection. The Collection component gets the
onRemoveTweetFromCollection() function to remove a tweet from the collection,
and the onRemoveAllTweetsFromCollection() function to remove all the tweets
from the collection.

These callback functions are then propagated down to the component hierarchy
until they reach some component that actually calls them. In our application, the
onAddTweetToCollection() function is only called in the Tweet component. Let's
take a look at how many times it needs to be passed from one component to another
before it can be called in a Tweet component:

Application > Stream > StreamTweet > Tweet

onAddTweetToCollection() is not used in the Stream and StreamTweet
components, yet both of them get it as a property for the purpose of passing
it down to their child components.

Supercharge Your React Architecture with Flux

[140]

Snapterest is a small React application, so this problem is rather an inconvenience,
but later on, if you decide to add new features, this inconvenience will quickly
become a maintenance nightmare:

Application > ComponentA > ComponentB > ComponentC > ComponentD >
ComponentE > ComponentF > ComponentG > Tweet

To prevent this from happening, we're going to solve two problems:

• We'll change how the new data enters our application
• We'll change how the components get and set data

We'll rethink of how data flows inside our application with the help of Flux.

Understanding Flux
Flux is the application architecture from Facebook that complements React. It's not
a framework or a library, but rather a solution to a common problem; how to build
scalable client-side applications.

With the Flux architecture, we can rethink how data flows inside our application.
Flux makes sure that all our data flows only in a single direction. This helps
us reason about how our application works, regardless of how small or large
it is. With Flux, we can add a new functionality without exploding our
application's complexity.

You might have noticed that both React and Flux share the same core concept; one-
way data flow. That's why they naturally work well together. We know how data
flows inside a React component, but how does Flux implement the one-way
data flow?

With Flux, we separate the concerns of our application into four logical entities:

• Actions
• Dispatcher
• Stores
• Views

Chapter 9

[141]

Actions are objects that we create when our application's state changes. For example,
when our application receives a new tweet, we create a new action. An action object
has a type property that identifies what action it is and any other properties that our
application needs to transition to a new state. Here is an example of an action object:

var action = {
 type: 'receive_tweet',
 tweet: tweet
};

As you can see, this is an action of type receive_tweet, and it has the tweet
property, which is a new tweet object that our application has received. You can
guess in which case this action is created by looking at its type. For each new tweet
that our application receives, it creates a receive_tweet action.

Where does this action go? What part of our application gets this action? Actions are
dispatched to stores.

Stores are responsible for managing your application's data. They provide methods
for accessing that data, but not for changing it. If you want to change data in stores,
you have to create and dispatch an action.

We know how to create an action, but how do you dispatch it? As the name suggests,
you can use a dispatcher for this.

The dispatcher is responsible for dispatching all the actions to all stores:

• It stores register with a dispatcher. They provide a callback function.
• All actions are dispatched by a dispatcher to all the stores that are registered

with it.

This is how our data flow looks like:

Actions > Dispatcher > Stores

You can see that the dispatcher plays a role of a central element in our data flow.
All actions are dispatched by it. Stores register with it. All the actions are dispatched
synchronously. You can't dispatch an action in the middle of the previous action
dispatch. No action can skip the dispatcher in the Flux architecture.

Supercharge Your React Architecture with Flux

[142]

Creating a dispatcher
Now let's implement this data flow. We'll start by creating a dispatcher first.
Facebook offers us its implementation of a dispatcher that we can reuse.
Let's take advantage of this.

1. Navigate to the ~/snapterest directory and run the following command:
npm install --save flux

The flux module comes with a Dispatcher function that we'll be reusing.

2. Next, create a new folder called dispatcher in our project's ~/snapterest/
source/dispatcher directory. Now create the AppDispatcher.js file in it:

var Dispatcher = require('flux').Dispatcher;
module.exports = new Dispatcher();

First, we import Dispatcher provided by Facebook, then create, and export a new
instance of it. Now we can use this instance in our application.

Next, we need a convenient way of creating and dispatching actions. For each action,
let's create a function that creates and dispatches that action. These functions will be
our action creators.

Creating an action creator
Let's create a new folder called actions in our project's ~/snapterest/source/
actions directory. Then, create the TweetActionCreators.js file in it:

var AppDispatcher = require('../dispatcher/AppDispatcher');

function receiveTweet(tweet) {

 var action = {
 type: 'receive_tweet',
 tweet: tweet
 };

 AppDispatcher.dispatch(action);
}

module.exports = {
 receiveTweet: receiveTweet
};

Chapter 9

[143]

Our action creators will need a dispatcher to dispatch the actions. We will import
AppDispatcher that we created previously:

var AppDispatcher = require('../dispatcher/AppDispatcher');

Then, we create our first action creator receiveTweet():

function receiveTweet(tweet) {

 var action = {
 type: 'receive_tweet',
 tweet: tweet
 };

 AppDispatcher.dispatch(action);
}

The receiveTweet() function takes the tweet object as an argument, and creates
the action object with a type property set to receive_tweet. It also adds the tweet
object to our action object, and now every store will receive this tweet object.

Finally, the receiveTweet() action creator dispatches our action object by calling
the dispatch() method on the AppDispatcher object:

AppDispatcher.dispatch(action);

The dispatch() method dispatches the action object to all the stores registered
with the AppDispatcher dispatcher.

So far, we've created AppDispatcher and TweetActionCreators. Next, let's create
our first store.

Creating a store
As we learned earlier, stores manage data in your Flux architecture. They provide
that data to the React components. We're going to create a simple store that manages
a new tweet that our application receives from Twitter.

Create new folder called stores in our project's ~/snapterest/source/stores
directory. Then, create the TweetStore.js file in it:

var AppDispatcher = require('../dispatcher/AppDispatcher');
var EventEmitter = require('events').EventEmitter;
var assign = require('object-assign');

Supercharge Your React Architecture with Flux

[144]

var tweet = null;

function setTweet(receivedTweet) {
 tweet = receivedTweet;
}

function emitChange() {
 TweetStore.emit('change');
}

var TweetStore = assign({}, EventEmitter.prototype, {

 addChangeListener: function (callback) {
 this.on('change', callback);
 },

 removeChangeListener: function (callback) {
 this.removeListener('change', callback);
 },

 getTweet: function () {
 return tweet;
 }

});

function handleAction(action) {
 if (action.type === 'receive_tweet') {
 setTweet(action.tweet);
 emitChange();
 }
}

TweetStore.dispatchToken = AppDispatcher.register(handleAction);

module.exports = TweetStore;

The TweetStore.js file implements a simple store. We can break it into four
logical parts:

• Importing dependency modules and creating private data and methods
• Creating the TweetStore object with public methods
• Creating an action handler and registering a store with a dispatcher
• Assigning dispatchToken to our TweetStore object and exporting it

Chapter 9

[145]

In the first logical part of our store, we're simply importing the dependency modules
that our store needs:

var AppDispatcher = require('../dispatcher/AppDispatcher');
var EventEmitter = require('events').EventEmitter;
var assign = require('object-assign');

Because our store will need to register with a dispatcher, we import the
AppDispatcher module. Next, we import the EventEmitter class to be
able to add and remove event listeners from our store:

var EventEmitter = require('events').EventEmitter;

Finally, we import the object-assign module that copies the properties from
multiple source objects to a single target object:

var assign = require('object-assign');

Let's install this module:

npm install --save object-assign

Once we import all the dependencies, we then define the data that our
store manages:

var tweet = null;

TweetStore manages a simple tweet object that we initially set to null to identify
that we didn't receive the new tweet yet.

Next, let's create the two private methods:

function setTweet(receivedTweet) {
 tweet = receivedTweet;
}

function emitChange() {
 TweetStore.emit('change');
}

The setTweet() function updates tweet with a receiveTweet object. The
emitChange function emits the change event on the TweetStore object. These
methods are private to the TweetStore module and not accessible outside it.

Supercharge Your React Architecture with Flux

[146]

The second logical part of the TweetStore.js file is creating the TweetStore object:

var TweetStore = assign({}, EventEmitter.prototype, {

 addChangeListener: function (callback) {
 this.on('change', callback);
 },

 removeChangeListener: function (callback) {
 this.removeListener('change', callback);
 },

 getTweet: function () {
 return tweet;
 }

});

We want our store to be able to notify other parts of our application when it changes
its data. We'll use events for this. Whenever our store updates its data, it emits
the change event. Anyone interested in data changes can listen to this change
event. They need to add their event listener function that our store will trigger
on every change event. For this, our store defines the addChangeListener()
method that adds the event listener, which listens to the change event, and the
removeChangeListener() method that removes the change event listener.
However, addChangeListener() and removeChangeListener() depend on
methods provided by the EventEmitter.prototype object. So we need to copy
the methods from the EventEmitter.prototype object to our TweetStore object.
That's what the assign() function does:

targetObject = assign(targetObject, sourceObject1, sourceObject2);

It copies the properties owned by sourceObject1 and sourceObject2 to
targetObject and then it returns targetObject. In our case, sourceObject1 is
EventEmitter.prototype, and sourceObject2 is an object literal that defines our
store's methods:

{

 addChangeListener: function (callback) {
 this.on('change', callback);
 },

 removeChangeListener: function (callback) {
 this.removeListener('change', callback);
 },

 getTweet: function () {

Chapter 9

[147]

 return tweet;
 }

}

assign() returns targetObject with the properties copied from all the source
objects. That's what our TweetStore object is.

Have you noticed that we define the getTweet() function as a method of our
TweetStore object, whereas we don't do that with the setTweet() function.
Why is that?

Later on, we'll export the TweetStore object, which means that all its properties will
be available for other parts of our application to use. We want them to be able to get
the data from TweetStore, but not update that data directly by calling setTweet().
Instead, the only way to update data in any store is to create an action and dispatch it
using a dispatcher to stores that has registered with that dispatcher. When the store
gets that action, it can decide how to update its data.

This is a very important aspect of the Flux architecture. Stores are in full control of
managing their data. They only allow other parts in our application to read that data,
but never write to it directly. Only actions should mutate data in the stores.

The third logical part of the TweetStore.js file is creating an action handler and
registering the store with a dispatcher.

First, we create the action handler function:

function handleAction(action) {
 if (action.type === 'receive_tweet') {
 setTweet(action.tweet);
 emitChange();
 }
}

The handleAction() function takes an action object as a parameter and checks its
type property. In Flux, all stores get all the actions, but not all stores are interested
in all the actions, so each store must decide what actions it's interested in. For this, a
store must check for the action type. In our TweetStore store, we check whether the
action type is receive_tweet, which means that our application has received a new
tweet. If that's the case, then our TweetStore calls its private setTweet() function
to update the tweet object with a new one that comes from the action object, that
is, action.tweet. When the store changes its data, it needs to tell everyone who is
interested in the data change. For this, it calls its private emitChange() function that
emits the change event and triggers all the event listeners created by other parts in
our application.

Supercharge Your React Architecture with Flux

[148]

Our next task is to register the TweetStore store with a dispatcher. To register a
store with a dispatcher, you need to call a dispatcher's register() method and
pass the store's action handler function to it as a callback function. Whenever
the dispatcher dispatches an action, it calls that callback function and passes the
action object to it.

Let's take a look at our example:

TweetStore.dispatchToken = AppDispatcher.register(handleAction);

We call the register() method of AppDispatcher, and we pass the handleAction
function to that method. The register() method returns a token that identifies
TweetStore, and we can use it in other methods of AppDispatcher. We also save
that token as a property of our TweetStore object.

The fourth logical part of the TweetStore.js file is exporting the TweetStore object:

module.exports = TweetStore;

That's how you create a simple store. Now, when we have implemented our first
action creator, dispatcher, and store, let's revisit the Flux architecture and take a
look at a bigger picture of how it works:

1. The stores register themselves with a dispatcher.
2. Action creators create and dispatch actions to the stores via a dispatcher.
3. Stores check for relevant actions and change their data accordingly.
4. Stores notify everyone who is listening about the data change.

Well that makes sense, you may say, but what triggers action creators? Who is
listening to store updates? These are very good questions to ask. And the answers
are awaiting you in our next chapter.

Summary
In this chapter, we analyzed our React application's architecture. We learned about
the core concepts behind the Flux architecture, and implemented a dispatcher,
action creator, and a store. In the next chapter, we'll integrate them into our React
application and get its architecture ready for a maintenance paradise.

[149]

Prepare Your React
Application for Painless
Maintenance with Flux

The reason why we decided to implement the Flux architecture in our React
application is that we wanted to have a data flow that is easier to maintain. In the
previous chapter, we implemented AppDispatcher, TweetActionCreators, and
TweetStore. Let's quickly re-cap what they are used for:

• TweetActionCreators creates and dispatches the actions
• AppDispatcher dispatches all the actions to all stores
• TweetStore stores and manages the application data

The only missing parts in our data flow are bits of functionality that are as follows:

• Use TweetActionCreators to create the actions and start the data flowing
• Use TweetStore to get data

Here are some important questions to ask: Where in our application does the data
flow start? What is our data? If we answer these questions, we will understand
where to start refactoring our application to adapt to the Flux architecture.

Prepare Your React Application for Painless Maintenance with Flux

[150]

Snapterest allows users to receive and collect the latest tweets. The only data that our
application is concerned with is tweets, so our data flow begins with receiving the
new tweets. At the moment, what part of our application is responsible for receiving
the new tweets? You might remember that our Stream component has the following
componentDidMount() method:

componentDidMount: function () {
 SnapkiteStreamClient.initializeStream(this.handleNewTweet);
}

Yes, currently, we initiate a stream of new tweets after we render the Stream
component. "Wait," you might say, "didn't we learn that React components should
only be concerned with rendering the user interface?" You're correct. Unfortunately,
at the moment, the Stream component is responsible for two different things:

• Rendering the StreamTweet component
• Initiating the data flow

Clearly, it will be a potential maintenance issue the in future. Let's decouple these
two different concerns with the help of Flux.

Decoupling concerns with Flux
First, we'll create a new utility module called WebAPIUtils. Create WebAPIUtils.js
in the ~/snapterest/source/utils/ directory:

var SnapkiteStreamClient = require('snapkite-stream-client');
var TweetActionCreators = require('../actions/TweetActionCreators');

function initializeStreamOfTweets() { SnapkiteStreamClient.initiali
zeStream(TweetActionCreators.receiveTweet);
}

module.exports = {
 initializeStreamOfTweets: initializeStreamOfTweets
};

In this utility module, we first import the SnapkiteStreamClient library and
TweetActionCreators. Then, we create the initializeStreamOfTweets() function
that initializes a stream of new tweets, just like in the componentDidMount()
method of the Stream component, except with one key difference: whenever
SnapkiteStreamClient receives a new tweet, it calls the TweetActionCreators.
receiveTweet method that passes a new tweet to it as an argument:

SnapkiteStreamClient.initializeStream(TweetActionCreators.
receiveTweet);

Chapter 10

[151]

Remember that the TweetActionCreators.receiveTweet function expects to
receive a tweet argument:

function receiveTweet(tweet) {
 // ... create and dispatch 'receive_tweet' action
}

This tweet will then be dispatched as a property of a new action object that the
receiveTweet() function creates.

Then, the WebAPIUtils module exports our initializeStreamOfTweets() method:

module.exports = {
 initializeStreamOfTweets: initializeStreamOfTweets
};

Now we have a module with a method that initiates the data flow in our Flux
architecture. Where should we import and call it? Since it's decoupled from the
Stream component, and in fact, it doesn't depend on any React component at all,
we can use it even before React renders anything. Let's use it in our app.js file:

var React = require('react');
var ReactDOM = require('react-dom');
var Application = require('./components/Application.react');
var WebAPIUtils = require('./utils/WebAPIUtils');

WebAPIUtils.initializeStreamOfTweets();

ReactDOM.render(<Application />, document.getElementById('react-
application'));

As you can see, all that we need to do is import it and call the
initializeStreamOfTweets() method:

var WebAPIUtils = require('./utils/WebAPIUtils');

WebAPIUtils.initializeStreamOfTweets();

We do this before calling React's render() method:

ReactDOM.render(<Application />, document.getElementById('react-
application'));

Prepare Your React Application for Painless Maintenance with Flux

[152]

In fact, for the purpose of experimentation, you can remove the ReactDOM.render()
line of code altogether and put a log statement in the TweetActionCreators.
receiveTweet function. For example, run the following code:

function receiveTweet(tweet) {

 console.log("I've received a new tweet and now will dispatch it
together with a new action.");

 var action = {
 type: 'receive_tweet',
 tweet: tweet
 };

 AppDispatcher.dispatch(action);
}

Don't forget to run the gulp command. Then, in your web browser, you will see the
following output:

I am about to learn the essentials of React.js.

While on your web browser's console, you will see this output:

[Snapkite Stream Client] Socket connected
I've received a new tweet and now will dispatch it together with a new
action.

This log message will be printed out for each new tweet that our application
receives. Even though we didn't render any React component, our Flux
architecture is still there:

1. Our application receives a new tweet.
2. It creates and dispatches a new action.
3. No stores have registered with the dispatcher, so there is no one to receive

the new action; hence, nothing is happening.

Now you can clearly see how React and Flux are two separate things that don't
depend on each other at all.

We do want to render our React components. After all, we've put so much effort
into creating them over the course of the last nine chapters! For this, we need to put
our TweetStore into action. Can you tell where should we use it? We should use
it in a React component that needs a tweet to render itself; our good old Stream
component.

Chapter 10

[153]

Refactoring the Stream component
Now, with the Flux architecture in place, we will rethink how our React components
get the data that they need to render. As you know, there are usually two sources of
data for a React component:

• Calling another library; for example, in our case, calling the jQuery.ajax()
method or SnapkiteStreamClient.initializeStream()

• Receiving data from a parent React component via the props object

We want our React components not to use any external libraries to receive data.
Instead, from now on, they will get that same data from stores. Keeping this plan
in mind, let's refactor our Stream component.

Here is how it looks now:

var React = require('react');
var SnapkiteStreamClient = require('snapkite-stream-client');
var StreamTweet = require('./StreamTweet.react');
var Header = require('./Header.react');

var Stream = React.createClass({

 getInitialState: function () {
 return {
 tweet: null
 }
 },

 componentDidMount: function () {
 SnapkiteStreamClient.initializeStream(this.handleNewTweet);
 },

 componentWillUnmount: function () {
 SnapkiteStreamClient.destroyStream();
 },

 handleNewTweet: function (tweet) {
 this.setState({
 tweet: tweet
 });
 },

Prepare Your React Application for Painless Maintenance with Flux

[154]

 render: function () {
 var tweet = this.state.tweet;

 if (tweet) {
 return (
 <StreamTweet
 tweet={tweet}
 onAddTweetToCollection={this.props.onAddTweetToCollection} />
);
 }

 return (
 <Header text="Waiting for public photos from Twitter..." />
);
 }
});

module.exports = Stream;

First, let's get rid of the componentDidMount(), componentWillUnmount(),
and handleNewTweet() methods, and import the TweetStore store:

var React = require('react');
var StreamTweet = require('./StreamTweet.react');
var Header = require('./Header.react');
var TweetStore = require('../stores/TweetStore');

var Stream = React.createClass({

 getInitialState: function () {
 return {
 tweet: null
 }
 },

 render: function () {
 var tweet = this.state.tweet;

 if (tweet) {
 return (
 <StreamTweet
 tweet={tweet}
 onAddTweetToCollection={this.props.onAddTweetToCollection} />

Chapter 10

[155]

);
 }

 return (
 <Header text="Waiting for public photos from Twitter..." />
);
 }
});

module.exports = Stream;

There is also no need to "require" the snapkite-stream-client module anymore.
Next, we need to change how the Stream component gets its initial tweet.
Let's update its getInitialState() method:

getInitialState: function () {
 return {
 tweet: TweetStore.getTweet()
 }
},

Code-wise, this might look like a small change, but it's a significant architectural
improvement. We are now using the getTweet() method to get data from the
TweetStore store. In the previous chapter, we discussed how stores expose the
public methods in Flux in order to allow other parts of our application to get data
from them. getTweet() is an example of one of these public methods, which are
called getters.

You can get data from a store, but you can't set data on a store directly just like
that. Stores have no public setter methods. They are purposely designed with this
limitation in mind so that when you write your application with Flux, your data can
only flow in one direction. This will benefit you hugely down the road, when you'll
need to maintain your Flux application.

Now we know how to get our initial tweet, but how do we get all the other new
tweets that will arrive later? We can create a timer and call TweetStore.getTweet()
repeatedly; however, this is not the best solution, because it assumes that we don't
know when TweetStore updates its tweet with a new one. However, we do
know that.

Prepare Your React Application for Painless Maintenance with Flux

[156]

How? Remember that, in the previous chapter, we implemented the following public
method on the TweetStore object; that is, the addChangeListener()method:

addChangeListener: function (callback) {
 this.on('change', callback);
}

We implemented the removeChangeListener()method as well:

removeChangeListener: function (callback) {
 this.removeListener('change', callback);
}

That's right. We can ask TweetStore to tell us when it changes its data. For this,
we need to call its addChangeListener() method and pass it a callback function
that TweetStore will call for each new tweet. The question is this: in our Stream
component, where do we call the TweetStore.addChangeListener() method?

Since we need to add the change event listener to TweetStore only once per
component lifecycle, it makes componentDidMount() a perfect candidate.
Add the following componentDidMount() method to the Stream component:

componentDidMount: function () {
 TweetStore.addChangeListener(this.onTweetChange);
},

We add our own change event listener, this.onTweetChange, to TweetStore. Now
when TweetStore changes its data, it will trigger our this.onTweetChange method.
We will create this method shortly.

Don't forget that we need to remove any event listeners before we unmount our
React component. To do this, add the following componentWillUnmount() method
to the Stream component:

componentWillUnmount: function () {
 TweetStore.removeChangeListener(this.onTweetChange);
},

Removing an event listener is very similar to adding it. We call the TweetStore.
removeChangeListener() method and pass our this.onTweetChange method as
an argument.

It's time to create the onTweetChange method in our Stream component:

onTweetChange: function () {
 this.setState({
 tweet: TweetStore.getTweet()
 });
},

Chapter 10

[157]

As you can see, it updates the component's state with a new tweet stored in
TweetStore by using the TweetStore.getTweet() method.

There is one final change that we need to make to our Stream component. Later
in this chapter, you'll learn that our StreamTweet component doesn't need the
handleAddTweetToCollection() callback function anymore; therefore, in this
component, we're going to change the following code snippet:

return (
 <StreamTweet
 tweet={tweet}
 onAddTweetToCollection={this.props.onAddTweetToCollection} />
);

Replace it with the following code:

return (<StreamTweet tweet={tweet} />);

Now let's take a look at our newly refactored Stream component:

var React = require('react');
var StreamTweet = require('./StreamTweet.react');
var Header = require('./Header.react');
var TweetStore = require('../stores/TweetStore');

var Stream = React.createClass({

 getInitialState: function () {
 return {
 tweet: TweetStore.getTweet()
 }
 },

 componentDidMount: function () {
 TweetStore.addChangeListener(this.onTweetChange);
 },

 componentWillUnmount: function () {
 TweetStore.removeChangeListener(this.onTweetChange);
 },

 onTweetChange: function () {
 this.setState({
 tweet: TweetStore.getTweet()

Prepare Your React Application for Painless Maintenance with Flux

[158]

 });
 },

 render: function () {
 var tweet = this.state.tweet;

 if (tweet) {
 return (
 <StreamTweet tweet={tweet} />
);
 }

 return (
 <Header text="Waiting for public photos from Twitter..." />
);
 }
});

module.exports = Stream;

Let's recap to see how our Stream component always has the latest tweet:

1. We set the component's initial tweet to the latest tweet that we get from
TweetStore by using the getTweet() method.

2. Then, we listen to changes in TweetStore.
3. When TweetStore changes its tweet, we update the component's state to the

latest tweet that we get from TweetStore by using the getTweet() method.
4. When the component is about to unmount, we stop listening to the changes

in TweetStore.

That's how a React component interacts with a Flux store.

Before we move on to making the rest of our application Flux-strong, let's take a look
at our current data flow:

• app.js: This receives the new tweets and calls TweetActionCreators for
each tweet

• TweetActionCreators: This creates and dispatches a new action with a
new tweet

• AppDispatcher: This dispatches all the actions to all stores
• TweetStore: This registers with a dispatcher and emits the change event on

every new action received from a dispatcher
• Stream: This listens to changes in TweetStore, gets a new tweet from

TweetStore, updates the state with a new tweet, and re-renders

Chapter 10

[159]

Can you see how we can now scale the number of React components, action creators,
and stores, and still be able to maintain Snapterest? With Flux, it will always be a
one-way data flow. It will be the same mental model regardless of how many new
features we implement. We will benefit hugely in the long run when we need to
maintain our app.

Did I mention that we're going to adapt Flux in our application even more? Next,
let's do exactly that.

Creating CollectionStore
Not only does Snapterest store the latest tweet, but it also stores a collection of tweets
that the user creates. Let's refactor this feature with Flux.

First, let's create a collection store. Navigate to the ~/snapterest/source/stores/
directory and create the CollectionStore.js file:

var AppDispatcher = require('../dispatcher/AppDispatcher');
var EventEmitter = require('events').EventEmitter;
var assign = require('object-assign');

var CHANGE_EVENT = 'change';

var collectionTweets = {};
var collectionName = 'new';

function addTweetToCollection(tweet) {
 collectionTweets[tweet.id] = tweet;
}

function removeTweetFromCollection(tweetId) {
 delete collectionTweets[tweetId];
}

function removeAllTweetsFromCollection() {
 collectionTweets = {};
}

function setCollectionName(name) {
 collectionName = name;
}

Prepare Your React Application for Painless Maintenance with Flux

[160]

function emitChange() {
 CollectionStore.emit(CHANGE_EVENT);
}

var CollectionStore = assign({}, EventEmitter.prototype, {

 addChangeListener: function (callback) {
 this.on(CHANGE_EVENT, callback);
 },

 removeChangeListener: function (callback) {
 this.removeListener(CHANGE_EVENT, callback);
 },

 getCollectionTweets: function () {
 return collectionTweets;
 },

 getCollectionName: function() {
 return collectionName;
 }

});

function handleAction(action) {

 switch (action.type) {

 case 'add_tweet_to_collection':
 addTweetToCollection(action.tweet);
 emitChange();
 break;

 case 'remove_tweet_from_collection':
 removeTweetFromCollection(action.tweetId);
 emitChange();
 break;

 case 'remove_all_tweets_from_collection':
 removeAllTweetsFromCollection();
 emitChange();
 break;

Chapter 10

[161]

 case 'set_collection_name':
 setCollectionName(action.collectionName);
 emitChange();
 break;

 default: // ... do nothing

 }
}

CollectionStore.dispatchToken = AppDispatcher.register(handleAction);

module.exports = CollectionStore;

The CollectionStore is a bigger store, but it has the same structure as TweetStore.
First, we import the dependencies and assign a change event name to the
CHANGE_EVENT variable:

var AppDispatcher = require('../dispatcher/AppDispatcher');
var EventEmitter = require('events').EventEmitter;
var assign = require('object-assign');

var CHANGE_EVENT = 'change';

Then, we define our data and the four private methods that mutate this data:

var collectionTweets = {};
var collectionName = 'new';

function addTweetToCollection(tweet) {
 collectionTweets[tweet.id] = tweet;
}

function removeTweetFromCollection(tweetId) {
 delete collectionTweets[tweetId];
}

function removeAllTweetsFromCollection() {
 collectionTweets = {};
}

function setCollectionName(name) {
 collectionName = name;
}

Prepare Your React Application for Painless Maintenance with Flux

[162]

As you can see, we store a collection of tweets in an object that is initially empty,
and we also store the collection name that is initially set to new. Then, we create
three private functions that mutate collectionTweets:

• addTweetToCollection(), as the name suggests, adds the tweet object to
the collectionTweets object

• removeTweetFromCollection() removes the tweet object from the
collectionTweets object

• removeAllTweetsFromCollection() removes all the tweet objects from
collectionTweets by setting it to an empty object

Next, we define one private function that mutates collectionName (called
setCollectionName), which changes the existing collection name to a new one.

These functions are regarded as private because they are not accessible outside
CollectionStore; that is, you can't access them like that:

CollectionStore.setCollectionName('impossible');

As we discussed earlier, this is done on purpose to enforce a one-way data flow in
your application.

We create the emitChange() method that emits the change event.

Then, we create the CollectionStore object:

var CollectionStore = assign({}, EventEmitter.prototype, {

 addChangeListener: function (callback) {
 this.on(CHANGE_EVENT, callback);
 },

 removeChangeListener: function (callback) {
 this.removeListener(CHANGE_EVENT, callback);
 },

 getCollectionTweets: function () {
 return collectionTweets;
 },

 getCollectionName: function() {
 return collectionName;
 }

});

Chapter 10

[163]

This is very similar to the TweetStore object, except for two methods:

• getCollectionTweets() returns a collection of tweets
• getCollectionName() returns the collection name

These methods are accessible outside the CollectionStore.js file, and should be
used in React components to get data from CollectionStore.

Next, we create the handleAction() function:

function handleAction(action) {

 switch (action.type) {

 case 'add_tweet_to_collection':
 addTweetToCollection(action.tweet);
 emitChange();
 break;

 case 'remove_tweet_from_collection':
 removeTweetFromCollection(action.tweetId);
 emitChange();
 break;

 case 'remove_all_tweets_from_collection':
 removeAllTweetsFromCollection();
 emitChange();
 break;

 case 'set_collection_name':
 setCollectionName(action.collectionName);
 emitChange();
 break;

 default: // ... do nothing

 }
}

Prepare Your React Application for Painless Maintenance with Flux

[164]

This function handles the actions that are dispatched by AppDispatcher, but unlike
TweetStore in our CollectionStore, we can handle more than one action. In fact,
we can handle the four actions that are related to the collection of tweets:

• add_tweet_to_collection adds a tweet to a collection
• remove_tweet_from_collection removes a tweet from a collection
• remove_all_tweets_from_collection removes all the tweets from

a collection
• set_collection_name sets a collection name

Remember that all the stores receive all the actions, so CollectionStore will receive
the receive_tweet action as well, but we simply ignore it in this store, just like
TweetStore ignores add_tweet_to_collection, remove_tweet_from_collection,
remove_all_tweets_from_collection, and set_collection_name.

Next, we register the handleAction callback with AppDispatcher, and save
dispatchToken in the CollectionStore object:

CollectionStore.dispatchToken = AppDispatcher.register(handleAction);

Finally, we export CollectionStore as a module:

module.exports = CollectionStore;

Now that we have the collection store ready, let's create action creator functions next.

Creating CollectionActionCreators
Navigate to ~/snapterest/source/actions/ and create the
CollectionActionCreators.js file:

var AppDispatcher = require('../dispatcher/AppDispatcher');

module.exports = {

 addTweetToCollection: function (tweet) {

 var action = {
 type: 'add_tweet_to_collection',
 tweet: tweet
 };

Chapter 10

[165]

 AppDispatcher.dispatch(action);
 },

 removeTweetFromCollection: function (tweetId) {

 var action = {
 type: 'remove_tweet_from_collection',
 tweetId: tweetId
 };

 AppDispatcher.dispatch(action);
 },

 removeAllTweetsFromCollection: function () {

 var action = {
 type: 'remove_all_tweets_from_collection'
 };

 AppDispatcher.dispatch(action);
 },

 setCollectionName: function (collectionName) {

 var action = {
 type: 'set_collection_name',
 collectionName: collectionName
 };

 AppDispatcher.dispatch(action);
 }

};

For each action that we handle in CollectionStore, we have an action
creator function:

• addTweetToCollection() creates and dispatches the add_tweet_to_
collection action with a new tweet

• removeTweetFromCollection() creates and dispatches the remove_tweet_
from_collection action with the ID of the tweet that must be removed from
the collection

Prepare Your React Application for Painless Maintenance with Flux

[166]

• removeAllTweetsFromCollection() creates and dispatches the
remove_all_tweets_from_collection action

• setCollectionName() creates and dispatches the set_collection_name
action with a new collection name

Now that we've created both the CollectionStore and
CollectionActionCreators modules, we can start refactoring our
React components to adopt the Flux architecture.

Refactoring the Application component
Where do we start refactoring our React components? Let's start with the uppermost
React component in our components hierarchy, Application.

At the moment, our Application component stores and manages the
collection of tweets. Let's remove this functionality, as it's now managed by the
collection store. Remove the getInitialState(), addTweetToCollection(),
removeTweetFromCollection(), and removeAllTweetsFromCollection()
methods from the Application component:

var React = require('react');
var Stream = require('./Stream.react');
var Collection = require('./Collection.react');

var Application = React.createClass({
 render: function () {
 return (
 <div className="container-fluid">

 <div className="row">
 <div className="col-md-4 text-center">

 <Stream onAddTweetToCollection={this.addTweetToCollection}
/>

 </div>
 <div className="col-md-8">

 <Collection
 tweets={this.state.collectionTweets}
 onRemoveTweetFromCollection={this.
removeTweetFromCollection}

Chapter 10

[167]

 onRemoveAllTweetsFromCollection={this.
removeAllTweetsFromCollection} />

 </div>
 </div>

 </div>
);
 }
});

module.exports = Application;

Now the Application component has only the render() method that renders
the Stream and Collection components. Since it doesn't manage the collection
of tweets any more, we also don't need to pass any properties to the Stream and
Collection components as well.

Update the Application component's render() function as follows:

render: function () {
 return (
 <div className="container-fluid">

 <div className="row">
 <div className="col-md-4 text-center">

 <Stream />

 </div>
 <div className="col-md-8">

 <Collection />

 </div>
 </div>

 </div>
);
}

Prepare Your React Application for Painless Maintenance with Flux

[168]

The adoption of the Flux architecture allows the Stream component to manage the
latest tweet, and the Collection component to manage the collection of tweets,
whereas the Application component doesn't need to manage anything any more,
so it becomes a container component that wraps the Stream and Collection
components in the additional HTML markup. The Application component has
become much simpler, and its markup, visually, looks much cleaner now. This
improves the maintainability.

Refactoring the Collection component
Next, let's refactor our Collection component. Replace the existing Collection
component with an updated one:

var React = require('react');
var ReactDOMServer = require('react-dom/server');
var CollectionControls = require('./CollectionControls.react');
var TweetList = require('./TweetList.react');
var Header = require('./Header.react');
var CollectionUtils = require('../utils/CollectionUtils');
var CollectionStore = require('../stores/CollectionStore');

var Collection = React.createClass({

 getInitialState: function () {
 return {
 collectionTweets: CollectionStore.getCollectionTweets()
 }
 },

 componentDidMount: function () {
 CollectionStore.addChangeListener(this.onCollectionChange);
 },

 componentWillUnmount: function () {
 CollectionStore.removeChangeListener(this.onCollectionChange);
 },

 onCollectionChange: function () {
 this.setState({
 collectionTweets: CollectionStore.getCollectionTweets()
 });
 },

Chapter 10

[169]

 createHtmlMarkupStringOfTweetList: function () {
 var htmlString = ReactDOMServer.renderToStaticMarkup(
 <TweetList tweets={this.state.collectionTweets} />
);

 var htmlMarkup = {
 html: htmlString
 };

 return JSON.stringify(htmlMarkup);
 },

 render: function () {
 var collectionTweets = this.state.collectionTweets;
 var numberOfTweetsInCollection = CollectionUtils.getNumberOfTweets
InCollection(collectionTweets);
 var htmlMarkup;

 if (numberOfTweetsInCollection > 0) {

 htmlMarkup = this.createHtmlMarkupStringOfTweetList();

 return (
 <div>

 <CollectionControls
 numberOfTweetsInCollection={numberOfTweetsInCollection}
 htmlMarkup={htmlMarkup} />

 <TweetList tweets={collectionTweets} />

 </div>
);
 }

 return <Header text="Your collection is empty" />;
 }
});

module.exports = Collection;

Prepare Your React Application for Painless Maintenance with Flux

[170]

What did we change here ? A few things. First, we imported two new modules:

var CollectionUtils = require('../utils/CollectionUtils');
var CollectionStore = require('../stores/CollectionStore');

We created the CollectionUtils module in Chapter 8, Test Your React Application
with Jest, and in this chapter, we're using it. CollectionStore is where we get our
data from.

Next, you should be able to spot the familiar pattern of the four methods:

• In the getInitialState() method, we set the collection of tweets to
what is stored in CollectionStore at that moment. As you may recall
that CollectionStore provides the getCollectionTweets() method
to get the data from it.

• In the componentDidMount() method, we add the change event listener,
this.onCollectionChange, to CollectionStore. Whenever the
collection of tweets is updated, CollectionStore will call our
this.onCollectionChange callback function to notify the
Collection component of that change.

• In the componentWillUnmount() method, we remove the change event
listener that we added to the componentDidMount() method.

• In the onCollectionChange() method, we set the component's state to
whatever is stored in CollectionStore at that moment in time. Updating
the component's state triggers re-rendering.

The Collection component's render() method is now simpler and cleaner:

render: function () {
 var collectionTweets = this.state.collectionTweets;
 var numberOfTweetsInCollection = CollectionUtils.getNumberOfTweetsIn
Collection(collectionTweets);
 var htmlMarkup;

 if (numberOfTweetsInCollection > 0) {

 htmlMarkup = this.createHtmlMarkupStringOfTweetList();

 return (
 <div>

 <CollectionControls
 numberOfTweetsInCollection={numberOfTweetsInCollection}

Chapter 10

[171]

 htmlMarkup={htmlMarkup} />

 <TweetList tweets={collectionTweets} />

 </div>
);
 }

 return <Header text="Your collection is empty" />;
}

We use the CollectionUtils module to get a number of tweets in the collection,
and we pass fewer properties to the child components: CollectionControls
and TweetList.

Refactoring the CollectionControls
component
The CollectionControls component gets some major improvements as well.
Let's take a look at the refactored version first, and then discuss what was
updated and why:

var React = require('react');
var Header = require('./Header.react');
var Button = require('./Button.react');
var CollectionRenameForm = require('./CollectionRenameForm.react');
var CollectionExportForm = require('./CollectionExportForm.react');
var CollectionActionCreators = require('../actions/
CollectionActionCreators');
var CollectionStore = require('../stores/CollectionStore');

var CollectionControls = React.createClass({

 getInitialState: function () {
 return {
 isEditingName: false
 };
 },

 getHeaderText: function () {
 var numberOfTweetsInCollection = this.props.
numberOfTweetsInCollection;
 var text = numberOfTweetsInCollection;

Prepare Your React Application for Painless Maintenance with Flux

[172]

 var name = CollectionStore.getCollectionName();

 if (numberOfTweetsInCollection === 1) {
 text = text + ' tweet in your';
 } else {
 text = text + ' tweets in your';
 }

 return (

 {text} {name} collection

);
 },

 toggleEditCollectionName: function () {
 this.setState({
 isEditingName: !this.state.isEditingName
 });
 },

 removeAllTweetsFromCollection: function () {
 CollectionActionCreators.removeAllTweetsFromCollection();
 },

 render: function () {

 if (this.state.isEditingName) {
 return (
 <CollectionRenameForm
 onCancelCollectionNameChange={this.toggleEditCollectionName}
/>
);
 }

 return (
 <div>
 <Header text={this.getHeaderText()} />

 <Button
 label="Rename collection"
 handleClick={this.toggleEditCollectionName} />

Chapter 10

[173]

 <Button
 label="Empty collection"
 handleClick={this.removeAllTweetsFromCollection} />

 <CollectionExportForm htmlMarkup={this.props.htmlMarkup} />
 </div>
);
 }
});

module.exports = CollectionControls;

First, we import the two additional modules:

var CollectionActionCreators = require('../actions/
CollectionActionCreators');
var CollectionStore = require('../stores/CollectionStore');

Notice that we don't manage the collection name in this component any more.
Instead, we get it from our CollectionStore:

var name = CollectionStore.getCollectionName();

Then, we make one of the key changes. We replace the
handleChangeCollectionName() method with a new one,
removeAllTweetsFromCollection():

removeAllTweetsFromCollection: function () {
 CollectionActionCreators.removeAllTweetsFromCollection();
}

The removeAllTweetsFromCollection() method is called when a user
clicks on the Empty Collection button. This user action triggers the
removeAllTweetsFromCollection() action creator function that creates and
dispatches the action to stores. In turn, CollectionStore removes all the tweets
from the collection and emits the change event.

Next, let's refactor our CollectionRenameForm component.

Prepare Your React Application for Painless Maintenance with Flux

[174]

Refactoring the CollectionRenameForm
component
CollectionRenameForm is a controlled form component. This means that its input
value is stored in the component's state, and the only way to update that value
is to update the component's state. It has the initial value that it should get from
CollectionStore, so let's make that happen.

First, we need to import the CollectionActionCreators and CollectionStore
modules:

var CollectionActionCreators = require('../actions/
CollectionActionCreators');
var CollectionStore = require('../stores/CollectionStore');

Now, we need to update the getInitialState() method as follows:

getInitialState: function() {
 return {
 inputValue: this.props.name
 };
},

Now we change it to this code snippet:

getInitialState: function() {
 return {
 inputValue: CollectionStore.getCollectionName()
 };
},

As you can see, the only difference is that now we get the initial inputValue from
CollectionStore.

Next, let's update the handleFormSubmit() method by using the following code:

handleFormSubmit: function (event) {
 event.preventDefault();

 var collectionName = this.state.inputValue;
 this.props.onChangeCollectionName(collectionName);
},

Chapter 10

[175]

We change it to this code snippet:

handleFormSubmit: function (event) {
 event.preventDefault();

 var collectionName = this.state.inputValue;
 CollectionActionCreators.setCollectionName(collectionName);
 this.props.onCancelCollectionNameChange();
},

The important difference here is that when a user submits a form, we create a new
action that sets a new name in our collection store:

CollectionActionCreators.setCollectionName(collectionName);

Finally, we need to change the source of the collection name in the
handleFormCancel() method:

handleFormCancel: function (event) {
 event.preventDefault();

 var collectionName = this.props.name;
 this.setInputValue(collectionName);
 this.props.onCancelCollectionNameChange();
}

We change it to the following code:

handleFormCancel: function (event) {
 event.preventDefault();

 var collectionName = CollectionStore.getCollectionName();
 this.setInputValue(collectionName);
 this.props.onCancelCollectionNameChange();
}

Once again, we get the collection name from a collection store:

var collectionName = CollectionStore.getCollectionName();

That's all we need to change in the CollectionRenameForm component.
Let's refactor the TweetList component next.

Prepare Your React Application for Painless Maintenance with Flux

[176]

Refactoring the TweetList component
The TweetList component renders a list of tweets. Each tweet is a Tweet component
that a user can click on to remove it from a collection. Does it sound like it could
make use of CollectionActionCreators to you?

That's right, let's add the CollectionActionCreators module to it:

var CollectionActionCreators = require('../actions/
CollectionActionCreators');

Then, we create the removeTweetFromCollection() callback function that will be
called when a user clicks on a tweet image:

removeTweetFromCollection: function (tweet) {
 CollectionActionCreators.removeTweetFromCollection(tweet.id);
},

As you can see, it creates a new action through the removeTweetFromCollection()
function by passing the tweet ID to it as an argument.

Finally, we need to make sure that removeTweetFromCollection() is actually
called. In the getTweetElement() method, we check the following line:

var handleRemoveTweetFromCollection = this.props.
onRemoveTweetFromCollection;

Now, we replace it with the following code:

var handleRemoveTweetFromCollection = this.removeTweetFromCollection;

We're all done for this component. StreamTweet is next in our refactoring journey.

Refactoring the StreamTweet component
StreamTweet renders a tweet image that a user can click on to add it to a collection
of tweets. You might have already guessed that we're going to create and dispatch a
new action when a user clicks on that tweet image.

First, we import the CollectionActionCreators module to the StreamTweet
component:

var CollectionActionCreators = require('../actions/
CollectionActionCreators');

Chapter 10

[177]

Then, we add a new addTweetToCollection() method to it:

addTweetToCollection: function (tweet) {
 CollectionActionCreators.addTweetToCollection(tweet);
},

The addTweetToCollection() is a callback function that should be invoked when a
user clicks on a tweet image. Let's take a look at this line in the render() method:

<Tweet tweet={tweet} onImageClick={this.props.onAddTweetToCollection}
/>

We replace it with this line of code:

<Tweet tweet={tweet} onImageClick={this.addTweetToCollection} />

The StreamTweet component is done.

Build and go beyond
That's all the effort that is needed to integrate the Flux architecture into a React
application. If you compare your React application without Flux and with Flux,
you'll quickly see how much easier it is to understand how your application works
when Flux is part of it. I highly encourage you to visit the Flux official website and
learn more about it at https://facebook.github.io/flux/.

I think it's a good time to check that everything is in perfect working order.
Let's build and run Snapterest!

Navigate to ~/snapterest and run the following command in your terminal:

gulp

You should see an output similar to this:

Finished 'default' after 2.42 s

Make sure that you're running the Snapkite Engine application that we installed
and configured in Chapter 1, Installing Powerful Tools for Your Project. Now, open
the ~/snapterest/build/index.html file in your web browser. You should see
the new tweets appearing on the left-hand side. Click on a tweet to add it to the
collection that appears on the right-hand side.

https://facebook.github.io/flux/

Prepare Your React Application for Painless Maintenance with Flux

[178]

Does it work? Check your web browser's console for any errors. No errors?
Congratulations!

This is the end of our journey in learning the essentials of React.js. I am very grateful
to you for investing your time and money in this book. I hope it helped you become
a better React developer, and I am sure your investment will pay off very soon!

Wait, let's not stop here; let's continue with our conversation. If you have any
questions left unanswered; any doubts, suggestions, ideas, or comments, or if you
want to showcase your Snapterest application, then go to https://github.com/
fedosejev/react-essentials/issues and create an issue. I'll do my best to get
back to you as soon as I can.

Enjoy your React experience!

[179]

Index
Symbols
<form> element

elements 108
<input> element

properties 108

A
action creator

creating 142, 143
actions 141
Application component

refactoring 166, 167
architecture, web application

analyzing 138, 139
arguments, componentDidUpdate method

defining 80
arguments, componentWillUpdate method

defining 80

B
Bootstrap framework

URL 53
Browserify

about 12
URL 12

build process 12
Button component

creating 111

C
CamelCase naming convention

using 41
CamelCase style 82
CodePen

about 49
URL 49

CollectionActionCreators
creating 164-166

Collection component
creating 87-93
refactoring 168-170

CollectionControls component
creating 99-105
refactoring 171-173

CollectionExportForm component
creating 112, 113

CollectionRenameForm component
creating 106-111
refactoring 174, 175

CollectionStore
creating 159-164

CommonJS module pattern 51
component lifecycle updating methods

componentDidUpdate method 80
componentWillReceiveProps method 77, 78
componentWillUpdate method 80
defining 76
shouldComponentUpdate method 79

container React component
creating 49-57

[180]

Content Security Policies (CSP)
about 82
URL 82

CSS rules
advantages 82
disadvantages 82

D
data

filtering, with Snapkite Engine 6-8
obtaining, from Twitter Streaming API 5

default React component properties
setting 81-84

dispatcher
about 141
creating 142

DOM
manipulating, with JavaScript 18

Don't Repeat Yourself (DRY) 10
Dynamic Children

URL 99

E
error messages, fixing

URL 9
events

server events 18
user events 18

expectation
building 120
creating 116-120

F
failing spec 120
filter

URL 6
Flux

concerns, decoupling with 150-152
defining 140, 141
logical entities 140
URL 177
using 56

Flux architecture
working 148

G
Git

installing 5
URL 5

Gulp.js
building with 12-14
URL 12

H
HTML tags and attributes, React

URL 22

I
installation package, OS

references 4

J
Jasmine 116
JavaScript

React Elements, creating with 21
JavaScript DOM API

URL 18
Jest

about 116
installing 120, 121
running 120, 121

Jest command-line interface (Jest CLI) 120
jQuery 71
JSON format 8
JSX

about 28
React Elements, creating with 28-30
URL 30

L
lifecycle methods, React component

defining 64-66
mounting methods 65-67
unmounting methods 65, 72
updating phase 65

[181]

M
matcher function

about 120
URL 120

methods, mounting phase 66, 67
mock 116
mocking 116
mounting 65
mounting methods

about 67
componentDidMount method 70, 71
componentWillMount method 68, 69
getInitialState method 67

mounting phase 71
multiple expectations

creating 121-128
multiple specs

creating 121-128

N
node-gyp module

URL 7
Node.js

about 4
installing 4

Node.js modules
reusing 11

npm
about 4
installing 4
URL 5

npm package 10

P
package 10
package.json

creating 10, 11
URL 10

parameters, React
children parameter 23-26
props parameter 22, 23
type parameter 22

passing spec 120
Pinterest

URL 3
predefined validators

using 85
predictable order 64
project

working on 3
project structure

creating 9, 10
properties, Application component 55
properties, snapterest global object 69
properties, to CollectionControls

component
defining 92

properties, to TweetList component
defining 93

R
React

about 59
installing 19, 20
methods, executing 71
parameters 86
URL 2
used, for solving problem 45-47
working 54

React API
used, for render() function 34

React application
planning 47, 48

React component
another library, using 59-63
properties, validating 85, 86
testing 129-135

React Elements
creating, with JavaScript 21
creating, with JSX 28-30
rendering 27, 28

React essentials
URL 20

React library
URL 20

[182]

ReactNode
about 21
ReactElement 21
ReactText 21

React.PropTypes validators
URL 85

S
Single Page Application (SPA) 17
Snapkite Engine

about 6
data, filtering with 6-8
installing 6
URL 7

Snapkite Engine library 59
Snapkite Filter

about 7
Has Mobile Photo, URL 8
Has Text, URL 8
Is Possibly Sensitive, URL 8
Is Retweet, URL 8
URL 7

Snapterest
about 3, 45, 150
building 177, 178

Snapterest application
URL 178

specification object 32
specs

creating 116-120
stateful

versus stateless 31
stateful React component

creating 37-43
stateless React component

creating 32-37
store

creating 143-148
Stream component

defining 150
implementing 61

refactoring 153-159
Streaming API 5
StreamTweet component

refactoring 176, 177
supported events

URL 41

T
test suits

creating 116-120
this.props

about 38
and this.state, comparing 38

TweetList component
creating 95-99
refactoring 176
using 99

Twitter account
URL 5

Twitter App
URL 5

Twitter Streaming API
data, obtaining from 5
URL 6

U
unit tests

defining 115
writing 115

unmockedModulePathPatterns
URL 135

unmounting 65
unmounting methods

about 72
componentWillUnmount method 72

unmounting phase 71
user interface (UI) 18

[183]

V
vinyl-source-stream dependency module

URL 14
virtual DOM

about 19
defining 18, 19
URL 19
working 19

W
web application

building 137
web page

creating 14, 15

Thank you for buying
React.js Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Less Web Development Essentials
Second Edition
ISBN: 9978-1-78355-407-2 Paperback: 270 pages

Leverage the features of Less to write better, reusable,
and maintainable CSS code

1. Meet the DRY (Don’t Repeat Yourself) principle
of software coding for your web development
projects by avoiding code duplication.

2. Shorten the debugging time of complex
CSS code with Less for specific devices
and browsers.

3. A comprehensive, fast-paced guide that covers
the essential concepts of Less through practical
and well-explained code.

Mastering AngularJS for .NET
Developers
ISBN: 978-1-78355-398-3 Paperback: 214 pages

Master the art of developing applications using
AngularJS, ASP.NET Web API 2, and Visual
Studio 2013

1. Learn how to utilize the robust features of the
AngularJS framework.

2. Explore the opportunity to develop client-side
applications for cross-platforms such as web
and mobile.

3. Step-by-step guide with detailed instructions
on how to develop and use the ASP.Net Web
API with AngularJS.

Please check www.PacktPub.com for information on our titles

Backbone.js Patterns and Best
Practices
ISBN: 978-1-78328-357-6 Paperback: 174 pages

A one-stop guide to best practices and design patterns
when building applications using Backbone.js

1. Offers solutions to common Backbone.js related
problems that most developers face.

2. Shows you how to use custom widgets, plugins,
and mixins to make your code reusable.

3. Describes patterns and best practices for large
scale JavaScript application architecture and
unit testing applications with QUnit and
SinonJS frameworks.

Learning Meteor Application
Development [Video]
ISBN: 978-1-78439-358-8 Duration: 01:52 hours

An informative walkthrough for creating a complete,
multi-tier Meteor application from the ground up

1. Master the fundamentals for delivering clean,
concise Meteor applications with this friendly,
informative guide.

2. Implement repeatable, effective setup and
configuration processes and maximize your
development efficiency on every project.

3. Utilize cutting-edge techniques and templates
to reduce the complexity of your applications
and create concise, reusable components.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing Powerful Tools for Your Project
	Approaching our project
	Installing Node.js and npm
	Installing Git
	Getting data from the Twitter
Streaming API
	Filtering data with Snapkite Engine
	Creating the project structure
	Creating package.json
	Reusing Node.js modules
	Building with Gulp.js
	Creating a web page
	Summary

	Chapter 2: Create Your First React Element
	Understanding the virtual DOM
	Installing React
	Creating React Elements with JavaScript
	The type parameter
	The props parameter
	The children parameter

	Rendering React Elements
	Creating React Elements with JSX
	Summary

	Chapter 3: Create Your First React Component
	Stateless versus stateful
	Creating your first stateless React component
	Creating your first stateful React component
	Summary

	Chapter 4: Make Your React Components Reactive
	Solving a problem using React
	Planning your React application
	Creating a container React component
	Summary

	Chapter 5: Use Your React Components with Another Library
	Using another library in your React component
	Understanding React component's lifecycle methods
	Mounting methods
	The getInitialState method
	The componentWillMount method
	The componentDidMount method

	Unmounting methods
	The componentWillUnmount method

	Summary

	Chapter 6: Update Your React Components
	Understanding component lifecycle's updating methods
	The componentWillReceiveProps method
	The shouldComponentUpdate method
	The componentWillUpdate method
	The componentDidUpdate method

	Setting default React component properties
	Validating React component properties
	Creating a Collection component
	Summary

	Chapter 7 : Build Complex React Components
	Creating the TweetList component
	Creating the CollectionControls component
	Creating the CollectionRenameForm component
	Creating the Button component
	Creating the CollectionExportForm component
	Summary

	Chapter 8: Test Your React Application with Jest
	Why write unit tests?
	Creating test suits, specs, and expectations
	Installing and running Jest
	Creating multiple specs and expectations
	Testing React components
	Summary

	Chapter 9: Supercharge Your React Architecture with Flux
	Analyzing your web application's architecture
	Understanding Flux
	Creating a dispatcher
	Creating an action creator
	Creating a store
	Summary

	Chapter 10: Prepare Your React Application for Painless Maintenance with Flux
	Decoupling concerns with Flux
	Refactoring the Stream component
	Creating CollectionStore
	Creating CollectionActionCreators
	Refactoring the Application component
	Refactoring the Collection component
	Refactoring the CollectionControls component
	Refactoring the CollectionRenameForm component
	Refactoring the TweetList component
	Refactoring the StreamTweet component
	Build and go beyond

	Index

