
www.apress.com

M
oem

eka
 · M

oem
eka

Real W
orld W

indow
s 10 Developm

ent

Real World
Windows 10
Development

Second Edition
—
Edward Moemeka
Elizabeth Moemeka

Real World Windows 10 Development

B O O K S F O R P R O F E S S I O N A L S B Y P R O F E S S I O N A L S®

Emphasizing XAML/C#, this book provides readers with all the tools, ideas, and inspiration to
begin Windows Universal App development for Windows 10.

Real World Windows 10 Development addresses developers who want to break into this market
by providing detailed explanations of the various aspects of Universal App development. Written
by authors with deep knowledge in Windows 10 universal app development, you will learn
how to make the most of the Windows 10 SDK to build applications that can be published on
IoT devices, phones, tablets, laptops, desktops, Xbox, HoloLens, and the Surface Hub.

Readers will learn how to:

• Extend the appeal of their native, web-based, or universal apps with media,
shell integration, and inter-app communications

• Build adaptive user interfaces that scale to the screen dimensions they are displayed on

• Add monetization

• Introduce mapping

What if you already have pre-existing so� ware in the form of native win32 applications or a
website? Real World Windows 10 Development tackles this by providing detailed tutorials on
the approaches used to leverage your existing code investment.

Finally, Real World Windows 10 Development provides a step-by-step walk through of the
various approaches developers can use to distribute their universal apps.

In this book, you’ll get:

• Detailed descriptions of Windows 10 app development

• Samples emphasizing the use of XAML/C#

• Adherence to Windows 10 guidelines for successful app acceptance

9 781484 214503

55999
ISBN 978-1-4842-1450-3

US $59.99

Shelve in:
.NET

User level:
Beginning—Advanced

THE E XPER T ’S VOICE® IN W I N D O W S D E V E L O P M E N T

SOURCE CODE ONLINE

Real World Windows 10
Development

Second Edition

Edward Moemeka

Elizabeth Moemeka

Real World Windows 10 Development

Copyright © 2015 by Edward Moemeka and Elizabeth Moemeka

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1450-3

ISBN-13 (electronic): 978-1-4842-1449-7

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: James DeWolf
Technical Reviewer: Fabio Cladio Ferracchiati
Editorial Board: Steve Anglin, Pramila Balen, Louise Corrigan, Jim DeWolf, Jonathan Gennick,

Robert Hutchinson, Celestin Suresh John, Michelle Lowman, James Markham, Susan McDermott,
Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Melissa Maldonado
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springer.com. Apress Media, LLC is a California LLC and the
sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

This book is dedicated to my father, Professor Andrew Azukaego Moemeka,
who has been my greatest inspiration.

—Edward Moemeka

We also both dedicate this book, in loving memory, to William “Bill” Brown.

v

Contents at a Glance

About the Authors ��xv

About the Technical Reviewers ���xvii

Acknowledgments ��xix

Introduction ��xxi

 ■Chapter 1: The Windows 10 Ethos and Environment ��� 1

 ■Chapter 2: Basic Controls �� 53

 ■Chapter 3: Data Controls ��� 101

 ■Chapter 4: Layout and Custom Controls �� 135

 ■Chapter 5: Building an Adaptive Experience ��� 179

 ■Chapter 6: File IO ��� 209

 ■Chapter 7: Working with Media ��� 257

 ■Chapter 8: Location and Mapping �� 305

 ■Chapter 9: Background Tasks �� 343

 ■Chapter 10: Shell Integration��� 377

 ■Chapter 11: Communicating Between Apps �� 419

 ■Chapter 12: Leveraging Cortana and Speech �� 471

 ■Chapter 13: App Monetization ��� 521

 ■Chapter 14: Leveraging Existing Code ��� 543

 ■Chapter 15: Distributing Universal Apps ��� 565

Index ��� 599

vii

Contents

About the Authors ��xv

About the Technical Reviewers ���xvii

Acknowledgments ��xix

Introduction ��xxi

 ■Chapter 1: The Windows 10 Ethos and Environment ��� 1

RIP Windows 8 �� 1

Hello, Windows 10 �� 3

A Not-So-Brief Introduction �� 7

The New All-New Taskbar �� 12

Building Windows 10 UWP Apps ��� 15

Supported Languages ��� 17

Developing for Windows 10 UWP Apps �� 20

Setting Up Your Environment �� 20

The Visual Studio IDE �� 20

Creating Your First Project �� 24

Sidebar: Exploring the App Manifest ��� 26

Back to Your First Project ��� 31

Notes on XAML ��� 38

Summary �� 51

viii

■ Contents

 ■Chapter 2: Basic Controls �� 53

Setting Up a Project �� 53

So Just What Are Controls? �� 59

Incorporating Controls �� 59

Window ��� 61

Frame ��� 63

Page �� 64

Button ��� 65

CalendarDatePicker �� 69

TimePicker �� 71

AutoSuggestBox ��� 72

CommandBar �� 75

AppBarButton ��� 77

DatePicker �� 79

MenuFlyout ��� 80

TextBox ��� 83

PasswordBox �� 84

ComboBox �� 86

Slider �� 87

Image �� 88

WebView ��� 92

Noteworthy Mentions ��� 94

Summary �� 98

 ■Chapter 3: Data Controls ��� 101

Modifying the Project ��� 101

Creating a Control Corral Model ��� 101

Persisting to the File System �� 107

Setting Up the Pages �� 110

ix

■ Contents

Listing Reservations with ListBox �� 114

Viewing Individual Reservations with FlipView �� 117

Revisiting AutoSuggestBox �� 122

Revisiting ComboBox�� 124

Showing Customers with GridView �� 126

Displaying Today’s Reservations with ListView �� 130

Summary �� 133

 ■Chapter 4: Layout and Custom Controls �� 135

Layout Controls �� 135

Understanding the Layout System �� 136

Alignment, Margins, and Padding ��� 137

The Layout Controls �� 141

Building Your Own Controls �� 168

User Controls �� 168

Templated Controls ��� 172

Your Own Layout Controls��� 175

Summary �� 177

 ■Chapter 5: Building an Adaptive Experience ��� 179

Device Families �� 180

Adapting the User Interface�� 183

Triggered States ��� 183

Visual States ��� 194

XAML Views �� 196

Adapting the Code �� 203

The ApiInformation Class �� 204

Summary �� 206

x

■ Contents

 ■Chapter 6: File IO ��� 209

Creating the ResumeManager Project ��� 209

Files �� 211

Storage Folders �� 215

The Package Install Location �� 215

The Isolated Storage Area ��� 219

RoamingFolder ��� 224

TemporaryFolder ��� 231

The User’s Known Folders �� 231

External Known Folders �� 235

The Downloads Folder �� 236

Final Thoughts on Storage via the ApplicationData Class ��� 238

Using Pickers �� 238

Sharing Files with Custom Pickers ��� 242

Summary �� 256

 ■Chapter 7: Working with Media ��� 257

Creating a New Project ��� 257

Visualizing Media ��� 260

Images �� 260

Audio��� 287

Video ��� 296

Background Audio �� 300

Using WebView to Display Render Media ��� 303

Summary �� 304

 ■Chapter 8: Location and Mapping �� 305

Location Awareness ��� 305

Enabling Location Functionality �� 306

Requesting Access to Location Data �� 307

Getting the Current Location ��� 311

More on Permissions �� 314

xi

■ Contents

Responding to Location Updates �� 316

Geofencing �� 316

Mapping ��� 323
Launching Maps via URI ��� 324

Adding Maps into Your App ��� 325

Displaying Streetside Views ��� 330

Handling Events, User Interaction, and Changes �� 331

Working with POIs (Points of Interest) �� 332

Geocoding ��� 335

Displaying Directions �� 336

Displaying Routes ��� 339

Summary �� 341

 ■Chapter 9: Background Tasks �� 343

Before You Begin �� 344

Running in the Background �� 350
Defining a Task to Run in the Background �� 353

Registering a Background Task �� 354

Implementing Triggers �� 357

Reporting Progress ��� 363

Conditions ��� 365

More on Triggers ��� 366

Revisiting Background Audio �� 368

Monitoring the Contact Store �� 372

Background Transfers �� 376

Summary �� 376

 ■Chapter 10: Shell Integration��� 377

Launch Conditions �� 377

Windowing�� 381

Opening New Windows ��� 382

Sizing Windows �� 386

TitleBar ��� 388

xii

■ Contents

Lock Screen �� 393

The Notification Process �� 395

Toast Notifications �� 396

Generating Toast Notifications �� 397

Adding Images to Toasts ��� 400

Adding Sound to Toasts �� 401

Scheduling Toasts ��� 403

Responding to Toast Notification Events �� 403

Adaptive Toasts ��� 405

Tile Notifications ��� 411

Generating Tile Notifications ��� 412

Presenting Text Content with a Heading ��� 414

Text-Only Content ��� 414

Templates for Summaries ��� 415

Creating a Cleaner Template ��� 415

Adding Images to Tile Notifications �� 416

Scheduling Tile Notifications �� 416

Summary �� 417

 ■Chapter 11: Communicating Between Apps �� 419

Before You Get Started ��� 419

Changing the Object Model �� 420

Applying SplitView to ApplicationHostPage �� 425

Communicating Through URI Launching �� 434

Launching a Specific App ��� 438

Launching a URI and Waiting for Results �� 440

Querying URI Support ��� 443

File Launching �� 444

Communicating Through Sharing Files (Shared Storage) �� 448

Application Services ��� 453

Sharing Data Between the Apps You Created ��� 459

xiii

■ Contents

Sharing Contracts ��� 461

Sharing as a Source ��� 462

Sharing as a Target ��� 465

Summary �� 469

 ■Chapter 12: Leveraging Cortana and Speech �� 471

Making Your Program Speak �� 472

Using SSML �� 474

Recognizing Speech ��� 477

Constraints and Grammars ��� 480

Using Cortana ��� 483

Setting Up for Cortana �� 484

Launching Your App in the Foreground with Cortana ��� 496

Launching Your App in the Background with Cortana �� 502

State Management ��� 506

Deep Linking �� 508

Prompting the User �� 513

Multi-Command Interactions �� 515

The Final Command ��� 519

Summary �� 519

 ■Chapter 13: App Monetization ��� 521

Selling Your App ��� 522

App Trial Mode �� 524

Licensing Your App (Trial Mode) �� 525

Purchasing the App ��� 532

Selling Within an App ��� 533

Adding In-App Purchasing to an App �� 534

Implementing In-App Purchasing ��� 535

Summary �� 542

xiv

■ Contents

 ■Chapter 14: Leveraging Existing Code ��� 543

Sharing Code �� 544

Portable Class Libraries (PCL) �� 553

Creating a PCL �� 553

Localhost Access �� 557

Summary �� 562

 ■Chapter 15: Distributing Universal Apps ��� 565

Registering with the Dev Center �� 565

Creating an App Package ��� 568

Side Loading ��� 569

Windows Store Distribution �� 571

Verifying Your App Package �� 576

Submitting Your App ��� 577

Naming Your App �� 584

Selling Details ��� 586

Advanced Properties ��� 588

Uploading Your App �� 590

Description ��� 591

Notes to Testers �� 594

Getting Your App Certified �� 595

Updating Your App �� 596

Summary �� 597

Index ��� 599

xv

About the Authors

Edward Moemeka is an enterprise architect with a career spanning
two decades. His experience in building, integrating, and delivering
high-profile, large-scale applications for clients has made him a known
commodity in the technology field. He is the Principal Architect at
e-builder, a class leader in project management software for large-scale
capital projects. Follow Edward at Twitter handle @moemeka, on YouTube
at www.youtube.com/user/sineofreason, and on Facebook at
www.facebook.com/edwardmoemeka.

Elizabeth Moemeka is a communications specialist whose experience
spans writing, marketing, and project support. She has used her creative
expertise towards designing Windows apps. She blogs on technology and
other subjects of personal interest. She has spent time in many parts of the
United States and currently lives with her husband, two sons, and cat in
Connecticut.

www.youtube.com/user/sineofreason
www.facebook.com/edwardmoemeka

xvii

About the Technical Reviewers

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using Microsoft
technologies. He works for Blu Arancio (www.bluarancio.com). He is a Microsoft Certified Solution
Developer for .NET, a Microsoft Certified Application Developer for .NET, a Microsoft Certified Professional,
and a prolific author and technical reviewer. Over the past ten years, he’s written articles for Italian and
international magazines and co-authored more than ten books on a variety of computer topics.

Damien Foggon is a developer, writer, and technical reviewer of cutting-edge technologies and has
contributed to more than 50 books on .NET, C#, Visual Basic, and ASP.NET. He is the co-founder of the
Newcastle-based user group NEBytes (online at www.nebytes.net), is a multiple MCPD in .NET 2.0 onwards,
and can be found online at http://blog.fasm.co.uk.

www.bluarancio.com
www.nebytes.net
http://blog.fasm.co.uk

xix

Acknowledgments

We would like to thank Nick Spano, Mike Soranno, John Leum, and Jonner Londono for their help and
support. We would also like to thank the staff at Apress for this opportunity and for putting their faith
in us, with special thanks to Melissa Maldonado, Damien Foggon, and Fabio Claudio Ferracchiati for their
involvement in this process.

xxi

Introduction

Welcome to Real World App Development for Windows 10, your step-by-step, one-stop guide to going from a
great idea to a published app in the Windows desktop and mobile platforms. Windows 10, already a hugely
successful implementation of the venerable Microsoft operating system, offers great potential for effective
and innovative apps.

Who This Book Is For
Maybe you’ve been a lifelong fan and follower of Microsoft. Maybe you’re taking a look at the Windows OS
for the first time. Either way, Windows 10 and, specifically, its dynamic environment for app inclusion in the
overlapping spheres of desktop and mobile, lends itself to an expansive environment, replete with creative
potential for developers and practical potential for users.

If you have a passion for cutting-edge technology, a working knowledge of HTML, and creative
ideas about how we can better interface with technological tools daily in our lives, this book is for you.
The following chapters hold a rich store of knowledge to get you on your way creating, developing, and
publishing apps in the Windows 10 platform. The approach of this book is to lay out the steps towards app
publication clearly, concisely, and systematically to make the process as simple as possible.

What This Book Covers
While this book covers an end-to-end explanation of app development in the Windows 10 environment,
its reach is more comprehensive than this. First, we begin with a thorough introduction to the Windows 10
environment. Following the app development process, we expand into the ins and outs of the submission
process, even touching on monetizing your app and making you app successful in other respects as well. As
the book takes you through app development, instruction is given for every step of the process. In addition,
the instruction relies heavily upon samples in which you are also given the code to build, thus making the
text an interactive, hands-on process. While you can utilize this book as a desktop reference text, referring
to chapters, sections, and topics as needed, we believe it is worthwhile to read front-to-back; by building
the examples in order you’ll build a thorough knowledge of exactly how to create a fully realized app in the
Windows 10 platform in the process.

The pages ahead contain a comprehensive curriculum that, with a solid foundation in technology and
a working knowledge of Windows 10, will answer all the questions you will come across as your build you
own Windows app. So sit back, crack open the book, and get on your way to creating your very own Windows
platform application!

All content for this book can be downloaded from www.apress.com/9781484214503?gtmf=s.

www.apress.com/9781484214503?gtmf=s

1

Chapter 1

The Windows 10 Ethos and
Environment

RIP Windows 8
In July, 2013, Windows 8, an operating system as innovative as it is disjointed, turned the computing
world upside down with a boldly reimagined user experience that focused on touch as a first-class citizen.
Windows 8 introduced us to the start screen, the charms bar, tiles, and dedicated full screen applications.
For many, this was a dream come true, a fast and fluid version of Windows with far fewer hardware
requirements, a beautiful touch-first user interface complete with fluid, intuitive edge-driven interaction
patterns, and access to the legacy desktop when needed for running old-school Win32 applications. Despite
the forward progress Microsoft made with Windows 8, however, it was widely panned as an operating system
fit only for the schizophrenic; see Figure 1-1.

Figure 1-1. Windows 8 Start screen

Chapter 1 ■ the WindoWs 10 ethos and environment

2

Many found that although it offered great innovations, the lack of consistency between the two
operating environments running within the overarching OS made using it quite confusing at times. Users
would open files that would launch them into a full screen experience in one situation, while other file
types would jarringly bring them out of the full screen immersive experience into the desktop! The touch-
first nature of Windows 8 was another common complaint, as it appeared that Microsoft had foregone any
consideration for users working with a mouse and keyboard. Indeed, what seemed easy to do with the finger
proved laborious when working with a Windows 8 device that had no touch interface included. Finally, and
probably most importantly, the choice to do away from the Start menu proved to be too much of a deviation
from what users were comfortable with.

■ Note there are some third-party applications that can be purchased to enhance the Windows 8 experience
with a start menu, such as start8 from stardock.

The arguments from all sides were the same. Customers wanted input into the decision-making process
for features of the Microsoft operating system; they had largely been shunned by Microsoft all through the
Windows 8 development cycle despite months of clamoring for the inclusion of a Start menu feature and
windowed Modern apps running on the desktop (after all, the OS *was* called “Windows”). Despite all the
metrics Microsoft consistently threw at Windows 7 users who wanted to see a Start menu, customers still felt
quite strongly that a Start menu was needed–or they at least wanted the freedom to pick one option (having
a Start menu) versus the other (using the Start screen).

Windowed applications were also a critical ask from customers and a reason behind Windows 8 not
being fully embraced. The shift to full screen applications that Windows 8 introduced seemed to most
like a gigantic step backwards from all the innovations of the Windows-of-old genre. Microsoft, it seemed,
had ventured too far towards the tablet world for really no reason at all. Tablet operating systems had that
limitation because the hardware they ran on (screen, chip, memory) had that limitation, not because it was
an innovation on user experience. It worked for phones because the screens were too small for multitasking.
It worked for tablets because there was hardly enough stored energy, memory, and processing power to keep
things running the way windowed applications required them to be kept running. Full-fledged workstations
and laptops had no such constraints: they had large enough screens to do multiple things at one time, they
had plenty of processing power, and they were not intended to be used in full fidelity mobility scenarios like
tablets and phones are.

What Microsoft needed with its next operating system endeavor was an OS that continued with the
powerful new innovations they had introduced with Windows 8 while dialing down the tablet-focused
mindset. They needed an operating system that was able to smoothly merge both operating environments:
the modern, touch-friendly, secure operating environment with the legacy tools and features of the
Windows 7 paradigm. Windows 10 unites these two worlds seamlessly into one while continuing on the path
of innovation that Windows 8 began.

■ Note microsoft published a comprehensive blog outlining the details or the rationale behind many of the
Windows 8 features. one blog post highlights the complex research that led microsoft to using the start screen
in Windows 8 in favor of the old start menu. if you would like to find out more about this, head to the Building
Windows 8 blog at http://blogs.msdn.com/b/b8/. the specific blog post that walks through the evolution of
the Windows start screen can be found at http://blogs.msdn.com/b/b8/archive/2011/10/03/
evolving-the-start-menu.aspx.

http://blogs.msdn.com/b/b8/
http://blogs.msdn.com/b/b8/archive/2011/10/03/evolving-the-start-menu.aspx
http://blogs.msdn.com/b/b8/archive/2011/10/03/evolving-the-start-menu.aspx

Chapter 1 ■ the WindoWs 10 ethos and environment

3

Hello, Windows 10
Welcome to the brave new world of Windows 10! In this introductory chapter, you will take a walk through
yet another “new user interface” for Windows that might appear familiar to some and drastically, even
jarringly, different to others. If you are coming from Windows 7 or anything previous, Windows 10 will seem
like a major upgrade to you, but one that you will quite possibly cognitively recognize from the standpoint
of usability and user experience. Unfortunately for Windows 8/8.1 users, Windows has once again been
reimagined, but this time for the better.

An interesting thing happened between the end of development of Windows 8/8.1 and the beginning
of Windows 10 development. For whatever reason, Microsoft finally decided that perhaps their customers
knew a thing or two about how they would like to use the operating system, so Microsoft began listening!
As a result, Windows 10 reintroduces the Start menu as a combination of both the original Windows 7 Start
menu and the Windows 8 Start screen, adds support for windowed applications, merges the operating
environments, standardizing on the continued use of the desktop, and even adds back transparency, Aero
blurs, and depth to the operating system! And it doesn’t stop there. Windows 10 continues with the legacy
of innovation initiated with Windows 8/8.1 by building out a one-OS architecture which not only allows
Windows 10 to be installed on a wide variety of devices, but also allows Modern apps built to target
Windows 10 to run on any of the many devices that Windows 10 can run on. Figure 1-2 shows the
reincarnated Start menu in Windows 10.

Figure 1-2. Windows 10 Start menu

■ Note presently, Windows 10 is the only operating system that can run on an iot device, phone, tablet,
workstation, surface hub, holoLense, and even Xbox.

Chapter 1 ■ the WindoWs 10 ethos and environment

4

The new Windows 10 Start menu functions basically the same as the Start screen from Windows 8/8.1
but does not automatically take up the full screen. Note that the Start menu is transparent with a blur applied
to it, similar to the aero look from Windows Vista/7. Figure 1-2 also shows a number of Modern apps running
on the desktop. As can be seen from the image, these apps run within a Windows 10 window, meaning they
can be treated like any other system window. One of the shortcomings of Windows 8/8.1 was in the forcing
of drastic paradigm shifts onto the masses without providing many ways to fall back to previous approaches.
Indeed, this author recalls using the “Windows 2000 theme” on Windows XP for a good three years following
its release before finally making a switch to the standard XP theme. In fact, I don’t believe I would have ever
purchased a Windows XP license had the option to continue to use an old approach not been available to me.

The evidence of an awareness of this resistance to change is clear in Windows 10 in a number of ways,
but two major inclusions in the operating system drive this mindset home. Firstly, although the legacy
charms bar is not present in this release, Modern apps that were written using the Windows 8 SDK can still
access the bar through the app’s hamburger menu (located on the top left corner of the app title bar). This
allows apps that were built in the previous application development model to be available for use within
Windows 10 without the need for recompilation. Figure 1-3 shows the Windows 8 charms bar as displayed
when a user activates it by swiping in from the right edge of their tablet. From the top, the icons will invoke
the search experience, sharing, launch the Start screen, launch interactions with devices, or open the
Settings pane. Apps that were developed with Windows 8 in mind would undoubtedly be dependent on any
one of these features to function as intended. It is safe to say that making sure that all of the popular Modern
apps worked with the new OS was a good idea.

Figure 1-3. The Windows 8 charms bar in all its glory

■ Note mouse and keyboard gestures were also available for accessing the Windows 8 charms bar.
discussion on these is beyond the scope of this book but can be found in Chapter 1 of Real World Windows 8
App Development with JavaScript (apress).

http://dx.doi.org/10.1007/978-1-4842-1449-7_1

Chapter 1 ■ the WindoWs 10 ethos and environment

5

Not only would users be frustrated by the presumed failure of the operating system to run their apps,
but the developers of the given apps would be frustrated by having to, at the very least, recompile and
republish their perfectly fine Windows 8 Modern apps to the Windows 10 platform. Having the charms bar
accessible when running these apps alleviates this. It provides a stop-gap solution to the software upgrade
problem so developers can take their time and republish to the Windows 10 platform when they have the
bandwidth to so. Figure 1-4 shows a Windows 8 Modern app running on Windows 10. Note that the charms
bar now appears within the app instead of as a fly-out overlay to the right of the screen. Also note that only
three of the original five charms are available.

Figure 1-4. The Windows 8 charms bar now shows within the Windows 8 Modern app hamburger menu
when running on Windows 10

The second major evidence of an awareness of backwards compatibility is the inclusion of a “Tablet
Mode” in Windows 10 across all workstation form factors. Tablet Mode brings your Windows 10 device back
in line with the Windows 8 user experience by locking the user into the same single-full-screen-app-at-a-
time model that Windows 8/8.1 utilized. Figure 1-5 shows a desktop in Tablet Mode. Note that the taskbar
has been cleared of any running items and that no taskbar shortcuts are present. In Tablet Mode, they are
removed to streamline the user experience, but many of these behaviors can be modified through various
settings in the operating system.

Chapter 1 ■ the WindoWs 10 ethos and environment

6

Figure 1-5. Windows 10 Start screen (Tablet Mode)

Chapter 1 ■ the WindoWs 10 ethos and environment

7

In our last book, Real World Windows 8 App Development with JavaScript, we claimed that Windows 8
was a hugely significant opportunity for developers. Windows 10 is a continuation, an expansion, on this vast
realm of possibilities. Not only does Windows 10 allow you to capitalize on the billion plus devices that will
be running the operating system within the next three years, it also allows those who have built Windows 8
Modern apps to benefit from Windows 10 with literally no additional work. Windows 10 allows you to
develop for it not only using a diverse set of languages like C#, JavaScript, and C++, but also allows iOS and
Android applications to be cross-compiled to it so that they run natively in the Windows 10 environment,
no emulation needed. This book explores the languages and technologies that can be used to build modern
Windows 10 apps, and how you as a Windows 10 developer can use them to build powerful and immersive
Windows 10 applications and experiences.

A Not-So-Brief Introduction
Now that we have given a brief, high-level overview of Windows 10, its driving principles (as we understand
them to be), and how it matches up to and exceeds on the promise of Windows 8, it is important to provide
an introduction to Windows 10 from a developer’s perspective, specifically focusing on how Modern apps
work and are managed by the system. The discussion isn’t exhaustive, because the subject could probably
span multiple books, but it should provide you with a baseline of information in order to understand the
basics of Windows 10 and Windows 10 app development using the Windows SDK and Runtime.

For the purpose of explanation, let’s walk through the Windows 10 UI artifacts, not because you don’t
already understand how Windows works, but for those of you who may not yet have access to the operating
system. The Windows 10 shell has taken the Windows 8 “digital reverse mullet” theme (party time in the
front, and good old-fashioned business behind that) and converged it into a single user experience across
all application types. Whether they be legacy Win32 applications, Windows 8 Modern apps, or Windows 10
Universal Windows Platform apps, the user experience is the same, save a few nuances.

■ Note as you’ve already seen, Windows 8 modern apps running on Windows 10 have an additional title bar
item, a hamburger menu at the top left of the window can be used to access the search, share, and settings
charms, and the modern app’s command bars.

At first glimpse, in Windows 10 you should see the good old Windows desktop with what will appear
to you as a well-overdue user interface touch up. Unless you are on a device that has been specifically
earmarked by the manufacturer as a tablet, the default experience for a laptop is to take you to the desktop
once signed in. Figure 1-6 shows the default Windows 10 desktop with the Start menu activated.

Chapter 1 ■ the WindoWs 10 ethos and environment

8

The new Windows 10 Start menu, which for the most part is the Windows 8 start screen with a few
additional capabilities (first and foremost being that it no longer needs to run exclusively in full screen
mode), continues to serve as a powerful launch pad for applications. In Figure 1-6, the colored rectangles
with images in them are a combo launch-point for applications. These magical rectangular surfaces are
commonly referred to as live tiles and combine the application shortcut, particularly the version of the
shortcut you might find on your Windows desktop, with the representation of the notification mechanism
of your applications, found in the system tray area. Figure 1-7 shows two states of the Calendar application
live tile. The image to the left is the default state; when a meeting is approaching, the tile takes on a different
appearance (right).

Figure 1-6. Windows 10 Desktop with Start menu showing

Figure 1-7. Two states of a Windows 10 Modern app tile

Let’s take a real world case where live tiles can consolidate these kinds of functions. Skype, for instance,
may have a system tray icon that changes appearance when it switches from online to offline, a beautiful
shortcut on the Windows desktop. The Windows 10 live tile encapsulates those two functions in one.
Through the live tile, you can of course launch the application, but as shown in Figure 1-7 tiles can also
display notifications based on things happening in the application or even things happening while the
application is not running.

Not all tiles on the Start screen are live tiles. Legacy applications such as Visual Studio, Microsoft Word,
and Adobe Photoshop can also appear on the Start screen as tiles, but these tiles aren’t “live;” they don’t
possess the ability to present dynamic content on their surface. Legacy Windows application tiles function
more or less like the application icons of old (we say “more or less” because Windows 10 exposes some
shortcut features to these sorts of tiles that follow patterns similar to their live alternatives, such as being
able to launch in administrator mode). Applications built using the new paradigm, which can express

Chapter 1 ■ the WindoWs 10 ethos and environment

9

themselves through live tiles, are referred to by Microsoft as Universal Windows Platform (UWP) apps. For
the remainder of this book, we use this terminology to refer to them. Figure 1-8 shows the look of a launched
Windows 10 UWP application.

Figure 1-8. A Windows 10 app

Notice something? The ubiquitous close, minimize, and maximize/restore buttons are back! Unlike in
Windows 8/8.1 where apps take up the entire screen at all times, Windows 10 apps (with the exception of
when windows is in Tablet Mode) present themselves like standard windowed applications. Developers
coming from the Windows 8 paradigm will likely have questions on how to handle the various layout sizes
that windowed apps introduce. Because of the non-deterministic nature of a given app’s Window mode and
hence its size, it is important to build apps with an agnostic viewpoint on both size and layout. Even if the
plan is to build a simple utility window, you as the developer must consider how you intend to lay things out
in a manner that reduces negative space and flows in accordance with the present size (as determined by
the end user) of the app window. It’s a tough problem, compounded by the variety of screen resolutions your
application must support even when in Tablet Mode. Later chapters delve more into this as we talk about
style guidelines and how to pass certification.

Another question that might arise while looking at a launched application in Windows 10 is, how do you
close it? On the face of it, providing a close button for UWP apps gives the impression they follow the same
life cycle management strategy as legacy applications. Traditional Windows development typically delegated
application lifecycle management to the user, meaning the user had to explicitly click the close button at
the upper right to end the application process and remove it from memory. If they didn’t, the application
continued running. Applications such as Skype rely on this. Because the system provides no mechanism
for automatically closing an application that is no longer in use (or has not been in use for some time),
applications like Skype can treat a user’s close request as a hide request and continue to run with an invisible
window in the background. This wouldn’t be a problem if everyone acted with honor and compassion, but it
does create security concerns. It also consumes system resources, if not unnecessarily, then at least without
the user’s consent.

Windows 10 strives to reimagine this situation by introducing an application lifecycle management
model that takes both the user and system resources into account (see Figure 1-9).

Chapter 1 ■ the WindoWs 10 ethos and environment

10

In Windows 10, only the presently running and un-minimized UWP apps and, potentially, UWP apps
that have been chosen by the user to run in the background are guaranteed to be active at any given time.
All other UWP apps may be in the suspended state, meaning their memory is intact and in the specified
order, but no active threads are running that are owned by the UWP app. As with a saved file, a suspended
application is intact just as it was left. And also like a saved file, which can be opened at any time and
continues right where it left off, switching back to a UWP app (or launching it again from the Start menu)
takes you right back into it. Future chapters talk more about the Windows 10 app lifecycle.

■ Note a UWp application can be forcibly closed by dragging from the top of the application screen to the
bottom of the screen (“throwing it away”), by clicking the close button, using the task manager, or by using
alt+F4. mobile family apps are suspended when the user switched to another application, and desktop family
apps (apps that target a full fidelity desktop experience) are suspended when the user minimizes them (they
can also be suspended when they are no longer the active windows).

The final question one might have concerns something else missing from the app, something that
is perhaps not as ubiquitous as the close and minimize/maximize buttons, but certainly is a well-known
Windows application feature. This missing component is the main menu bar. Regardless of whether the
app takes up the full screen or not, there will continue to be a need to represent important application
commands somewhere. The obvious choice is to put it onscreen, and to be sure, many applications do
just that. But this pattern can create confusion with the user since content and control mechanisms are
presented in the same area. (The practice was, in fact, against style guidelines prescribed by Microsoft for
Windows 8/8.1 apps).

The Windows 8/8.1 system provided two areas, the bottom app bar and the top app bar, from which
application commands could be launched. Figure 1-10 shows how Windows 8/8/1 Modern apps use the
app bar concept to segregate command functionality into a central location within the app. From here, an
end user can launch searches, group recordings by category, clear their entire library, or pin the activity of
starting a recording directly to the Windows Start screen. (Pinning and the concept of secondary tiles are
discussed in more detail in Chapter 6.

Figure 1-9. A Windows 10 app’s lifecycle

http://dx.doi.org/10.1007/978-1-4842-1449-7_6

Chapter 1 ■ the WindoWs 10 ethos and environment

11

In any Windows 8 app, the bottom/top app bar could be activated (made visible) by swiping from either
the bottom or the top of the device screen upward or downward, respectively, if touch was enabled. Since
those edge gestures have been removed in Windows 10, the only access to them is by a mouse right-click or
by using the keyboard combination of the Windows logo key + Z.

■ Note not all Windows 8 devices come touch enabled–or have a mouse, for that matter–so it was important
that legacy devices continue to be usable when they upgrade to Windows 8. For this reason, Windows 8
provides mouse and keyboard support for all touch-related functions. to activate the app bar of any application
using the mouse, right-click in the application. Using the keyboard, press Windows logo key + Z.

Windows 10 refines the idea of the app bar introduced in Windows 8/8.1 Modern apps, adding two
new constructs to their presentation. Firstly, the app bar is now at least partially visible at all times. Unlike
in Windows 8/8.1 where the only way to know if an app had app bars was to attempt to invoke it with any
one of the invocation methods highlighted above, Windows 10 UWP apps let you know immediately if an
app has any app bars by showing a portion of it with an ellipses that can be used to expand the app bar
to its full height. Figures 1-11 and 1-12 show a simple UWP app with the app bars in their collapsed and
expanded states. As you can see in Figure 1-11, in the collapsed state, the app bar show a portion of its user
interface along with an ellipsis that can be used to expand it to its full height. The app bars can be expanded
independently using their individual ellipses or expanded together with the mouse right-click. Windows 10
does not respond the swipe up gestures of Windows 8/8.1, so don’t expect to use those gestures when in
Tablet Mode.

Figure 1-10. Windows 8 app with the bottom app bar enabled

Chapter 1 ■ the WindoWs 10 ethos and environment

12

The New All-New Taskbar
Windows 10 introduces two new components to its taskbar area. Using the task switching button
(or Windows logo key + Tab) gives the user access to all applications, suspended or running, across all virtual
desktops presently available. From this view the user can also add new desktops as needed (see Figure 1-13).

Figure 1-12. Windows 10 UWP app with app bars enabled

Figure 1-11. Windows 10 UWP app with new app bar UI

Chapter 1 ■ the WindoWs 10 ethos and environment

13

■ Note Yes, you guessed it: Windows 10 introduces the concept of virtual desktops to the platform! virtual
desktops allow you to segregate application windows into their own private desktops. put Facebook and the
Xbox app on one desktop and your work excel spreadsheet and visual studio on the other. You can then easily
toggle between the two whenever your boss comes around!

The other big addition to the taskbar is the all new, Halo-like, voice assistant aptly named Cortana
(Figures 1-14 and 1-15). If you have used a Windows 8.1 phone, you will already be familiar with this utility.
Cortana functions like similar voice assistant technologies such as Siri and Google Now. It can help with
appointments, reminders, changing settings on your computer, searches, and many more things beyond
the scope of this book. Depending on how the user’s taskbar is configured, Cortana may show up as a
full textbox (like Figure 1-13), just an icon, or not at all. Regardless of how Cortana is presented it can be
accessed with the keyboard combination of the Windows logo key + C.

Figure 1-13. Windows 10 task switcher

Figure 1-14. Cortana “compact UI” on Windows 10 listening for instructions

Chapter 1 ■ the WindoWs 10 ethos and environment

14

The Windows 10 Cortana feature is an extremely important innovation. It provides users with the ability
to search across all applications on the system and the Web on top of all the personal assistant functionality
inherited from its mobile version.

A developer building UWP apps must contend with various system environment changes that
applications developed using older frameworks simply don’t have to worry about. This is because
applications built using the Universal Windows Platform have a level of connectivity to the native OS that
hasn’t previously existed by default. One instance of this is with the application view state. On devices that
support rotation, UWP apps can query the current layout of the system and adjust their UI accordingly.
This way, an application can use vertical space that might not be available in landscape mode and
horizontal space that might not be available in portrait mode. This is a carry-over from the manner in
which Windows 8 functions but it has been vastly enhanced in Windows 10 to support any size. Since UWP
apps can be windowed, sizing is now no longer locked to the system but can be controlled directly by the
end user; because of this, UWP apps must be able to support multiple layouts. To help facilitate this layout
transitioning that must occur as either the user changes window sizes or a UWP app shifts from form factor
to form factor, the platform includes adaptive layout tools. The following figures show the Sports UWP app of
Windows 10 in two user-controlled sizes; Figure 1-16 is a larger width and Figure 1-17 is a smaller width.

Figure 1-15. Cortana “full UI” on Windows 10

Chapter 1 ■ the WindoWs 10 ethos and environment

15

Figure 1-16. Sports app in a larger width

Figure 1-17. Sports app in a smaller width

Building Windows 10 UWP Apps
Windows 10 apps can be built using HTML/JavaScript, .NET languages (C# and VB), or native C/C++
through an extension of C++ called C++/Cx. Regardless of the technology used to develop the application,
the Windows team has done a good job of providing a core set of APIs that are projected into each of the
target languages. Figure 1-18 provides a layered view of the Windows 10 UWP (Universal Windows Platform)
interface.

Chapter 1 ■ the WindoWs 10 ethos and environment

16

Conceptually, this is really no different than what was offered three years ago when Windows 8
launched with the Windows Runtime. Windows 10 adds to this mix by allowing applications built using
this platform to run on all windows devices moving forward, hence the “universal” in Universal Windows
Platform. The “windows” part of the name comes from the fact that once an app is built to target this
platform, it will work on all Windows devices with that platform deployed on it. Figure 1-19 illustrates the
device families and services that are exposed by the UWP. You will be hard-pressed to find a platform that
can deliver this kind of end-to-end solution to developers targeting it. If you take the other two competing
platforms (iOS and Android), you will find that neither provides the broad reach a UWP app does. Sure, you
can build an iOS app for the iPhone and iPad but such an app does not target the broader OSX workstation.
The Android world is less consistent even within the mobility device family and offers no true workstation
experience.

Figure 1-18. Window 10 app API landscape

Chapter 1 ■ the WindoWs 10 ethos and environment

17

For all UWP developers, regardless of technology or language used, applications built using these
projected APIs end up in a package containing an application’s code (in binary or text format); resources;
libraries; and a manifest that describes the app (names, logos, and so on), its capabilities (such as areas
of the file system or specific devices like cameras), and everything else that’s needed to make the app
work (such as file associations, declaration of background tasks, and so forth). The manifest describes the
application to the Windows Store and also to potential Windows clients that download it from the store. The
manifest is a critical component of the development story for Windows 10. The exact workings of the app
manifest (as it relates to publishing your application and setting up its permissions) are discussed in the
section entitled “Developing for Windows 10 UWP Apps.”

Supported Languages
Regardless of language choice, UWP development offers a great full fidelity experience that allows
developers who target a specific technology set to work in a way that is both natural to them and consistent
with the common approaches to development that those technologies provide. Native C++ development
and .NET are great platforms for building UWP apps and do offer some distinct advantages for building
Windows 10 apps; the most notable is access to a subset of legacy Win32 APIs.

Figure 1-19. Window 10 unified distribution channel and device families

Chapter 1 ■ the WindoWs 10 ethos and environment

18

■ Note Win32 is the previous programming platform for building Windows applications. programs like adobe
photoshop, microsoft Word, and internet explorer are at least partially built using this technology, and it is still
available for building Windows 10 applications that target the desktop experience alone.

It is important to note that, in contrast to JavaScript, both .NET-based and native C++/Cx applications
are compiled at build time. C++/Cx is compiled directly into processor-specific native code. (This means
that choosing to build an application using this technology requires the developer to compile a version
for every platform they intend to support. Windows 10 presently supports 64-bit (x64), 32-bit (x86), and
ARM-based processors.) .NET compiles the code into a pseudo-binary format referred to as intermediate
language (IL). IL is an intermediate state that allows the application code to be far more portable than
native code. This is because the IL is processor-architecture agnostic, so the same IL can be used on x64,
x86, and ARM processors without issue. (IL can accomplish this because it is compiled into native code on
the fly at runtime on the target platform in which it’s run.) Windows 10 apps built using JavaScript follow a
pattern similar to those built using .NET, but without the intermediate step. The HTML, CSS, and JavaScript
code in a Windows 10 JavaScript application is always parsed, compiled, and rendered at runtime, so your
application code is always transported in its entirety to every client it runs on. Furthermore, because these
file types are not directly executable, the Windows system must provide a hosting process in which to run
them (similar to how these file types are usually run in the context of a web browser). This might not seem
ideal but bear in mind that HTML offers a huge advantage in terms of reusability, given that the same app
code might well be deployed on both Windows 10 and the Web.

■ Note .net has a new native compiler that compiles the intermediate (iL) code directly to native code,
foregoing any just-in-time compilation on a client machine. all code submitted to the app store is recompiled in
this manner.

Whereas JavaScript developers use HTML and CSS to lay out the user interface for their apps, UWP apps
built using native or .NET-based technologies lay out their user interfaces and build/access system controls
using a technology called Extensible Application Markup Language (XAML for short). Listing 1-1 shows
some XAML markup.

Listing 1-1. XAML Markup

<Page x:Class="AllLearnings.Samples.ApplicationBars.AppBarSamples"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 >
 <Page.BottomAppBar>

<AppBar x:Name="appbar_bottom" VerticalAlignment="Bottom" Height="100" >

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

Chapter 1 ■ the WindoWs 10 ethos and environment

19

<Grid>
<Button x:Name="btn_bottomone" Visibility="Visible" Content="+"

AutomationProperties.Name="Add" HorizontalAlignment="Right"
VerticalAlignment="Top" Style="{StaticResource AppBarButtonStyle}"

/>
</Grid>

</AppBar>
 </Page.BottomAppBar>
 <Grid x:Name="LayoutRoot" >

<TextBlock>This sample tests the app bar functionality, right click or swipe from
the bottom to open the bottom app bar.</TextBlock>

 </Grid>
</Page>

Listing 1-2 contains the same user interface designed with HTML/CSS as the layout engine!

Listing 1-2. HTML Markup

<!DOCTYPE html>
<html>
<head>

<meta charset="utf-8" />
<title>TestAppBars</title>

<!-- WinJS references -->
<link href="WinJS/css/ui-dark.css" rel="stylesheet" />

 <script src="WinJS/js/base.js"></script>
 <script src="WinJS/js/ui.js"></script></head>
<body>

 <section aria-label="Main content" role="main" style="margin-left: 100px;">
<p>This sample tests the app bar functionality, right click or

swipe from the bottom to open the bottom app bar.</p>
 </section>
 <div data-win-control="WinJS.UI.AppBar" >

<button id="btn_bottomone" data-win-control="WinJS.UI.AppBarCommand"
data-win-options="{id:'cmdAdd',label:'Add',icon:'add',

section:'global',tooltip:'Add item'}">
</button>

</div>
</body>
</html>

Additionally, the developer is free to use whatever third-party modules desired (again, in the same
manner as is customary to an HTML/CSS/JavaScript developer). For a detailed discussion on the use of
HTML/CSS/JavaScript to build modern Windows apps, please see our previous book, Real World Windows 8
Development with JavaScript.

Chapter 1 ■ the WindoWs 10 ethos and environment

20

Developing for Windows 10 UWP Apps
Now that you have a basic introduction to Windows 10, what Windows 10 UWP apps look like, and what
technologies are out there for building Windows 10 apps, you’re ready to start building samples and getting
on your way to being the next Instagram.

Setting Up Your Environment
Before you begin, you’ll need a couple of things. First, to build Windows UWP apps and work through the
samples in this book, you will need a copy of Windows 10. You will also need the Windows 10 SDK and, at
the very least, a copy of Visual Studio Community Edition 2015. The download links for the required tools
are listed in Table 1-1. Please note that installing the Visual Studio Community Edition installs everything
you need. The other items are included in the table in case you ever need a specific component. If you have
access to an MSDN license, you can download any one of the full featured versions of Visual Studio 2015
directly from the MSDN site

Table 1-1. Baseline Windows 10 Development Environment Setup

Tool Location

Windows 10 https://www.microsoft.com/en-us/software-download/windows10

Visual Studio Community Edition https://go.microsoft.com/fwlink/?LinkId=532606&clcid=0x409

Windows 10 SDK (Standalone) https://go.microsoft.com/fwlink/p/?LinkId=619296

Of course, if you plan on using HTML/JavaScript for development, much of the layout and functionality
can potentially be achieved without any of this. If you have a simple text editor and web browser, you can
follow along to a certain extent; however, you will still need Visual Studio to package your code into a UWP
app so we recommend just downloading it; the Community Edition is free.

The Visual Studio IDE
Figure 1-20 shows the Visual Studio 2015 Enterprise Edition IDE with a C#-based UWP project loaded. There
are six primary areas that will concern you as a UWP developer, regardless of language choice: the toolbox
area, the document outline, the Solution Explorer, the design surface XAML and Design tabs, and the
Properties window.

https://www.microsoft.com/en-us/software-download/windows10
https://go.microsoft.com/fwlink/?LinkId=532606&clcid=0x409
https://go.microsoft.com/fwlink/p/?LinkId=619296

Chapter 1 ■ the WindoWs 10 ethos and environment

21

The design surface is the stage where your user interface is composed. It is broken into two parts: the
XAML tab contains the markup used to constitute the design surface while the Design tab shows a real-time
view of what the user interface will look like. The Design tab allows you to do drag-and-drop designing,
meaning you can drag items directly onto its surface and even move things around within it. Figure 1-21 shows
the design surface. Note the highlighted drop-down used to simulate various resolutions and form factors.

Figure 1-20. Visual Studio 2015 Enterprise Edition with C# Universal project loaded

Chapter 1 ■ the WindoWs 10 ethos and environment

22

To speed up this design process, the Toolbox can be used. If you have previous familiarity with Visual
Studio, especially if you have built WinForms, WPF, or Silverlight applications, the Toolbox should be
familiar to you. It principally provides an area from which controls can be dragged onto the design surface. It
doesn’t get much credit for this, but the Toolbox is also a subliminal teacher as it contains a list of all controls
that can be dropped onto a given design target. You can quickly use it to seek out controls that you might
want to use, similar to how IntelliSense is used, eventually teaching you all the controls available to you. The
document outline area presents a hierarchical outline of the controls on the given screen. Content presented
inside other content is said to be a child of that content. This relationship is represented in graphical form on
the document outline pane. Figure 1-22 shows the Toolbox and the document outline area.

Figure 1-21. XAML-based Universal project design surface

Chapter 1 ■ the WindoWs 10 ethos and environment

23

■ Note if you examine the images in Figure 1-21 and Figure 1-22 you should be able to see just how the
document outline pane works. the XamL pane of Figure 1-21 contains a document with a Grid element
inside a page element. this relationship is represented in a tree format within the document outline pane in
Figure 1-22.

Finally, on the right side of the design surface you can find the Solution Explorer and Properties
window. The Solution Explorer maintains a tree-like representation of all the files and folders that are a part
of a Universal project. In Visual Studio 2015 (as with all previous versions of Visual Studio since Visual Studio
.NET), a solution is a collection of projects. Visual Studio treats solutions as the highest organizational unit
within a given instance of the application. Projects are always represented as part of a solution and can only
be opened in the context of an overarching solution. Solutions may have virtual folders, loosely coupled
files, and projects of varying types within them. Ideally, a solution would contain the various project types:
database projects, web application projects, installation projects, Azure projects, and universal projects,
along with any build instructions and source control bindings needed to deliver a given solution to a
customer, hence the name Solution.

The Properties window works with the document outline and design surface to tweak items that have
been placed onto the design surface. Any item selected either through the document outline or directly on
the design surface will have its relevant properties displayed in the Properties window. Figure 1-23 shows the
Solution Explorer and Properties windows. You can see how the background color of an item on the design
surface might be modified using this pane.

Figure 1-22. Toolbox and Document Outline panes

Chapter 1 ■ the WindoWs 10 ethos and environment

24

Creating Your First Project
Now that you have some acclamation to the Visual Studio 2015 environment, it’s time to create your very
first project. You will be building a very simple attendance counter UWP app that can be used to keep track
of how many people have entered a space. It should have three buttons: one for incrementing the count, one
for decrementing the count, and one for resetting the count to zero. It should also have a content area where
the current count of people in attendance is presented.

(Don’t worry; the samples get more elaborate and complicated as you go along. In the beginning, it is
important to minimize complexity so we can focus on getting the primary points you need to understand
through quickly.)

Start by firing up Visual Studio 2015. This sample (along with all other samples in this book) was
developed using Visual Studio 2015 Enterprise Edition, but the Community Edition will work just as well for
any of them.

Select File ➤ New ➤ Project from the main menu to open up the Visual Studio project selection
dialog. You should now be seeing the Visual Studio project selection dialog in some form. Figure 1-24 shows
how the dialog appears on my computer. You will be using Visual C# as the language of choice for this
exercise but any one of the supported languages may be used to develop UWP apps.

Figure 1-23. Toolbox and Document Outline panes, again

Chapter 1 ■ the WindoWs 10 ethos and environment

25

■ Note presently UWp development can be divided into two layout categories, XamL and htmL. C#, visual
Basic, and C++/Cx all use the same XamL layout engine for rendering their user interfaces. Javascript uses
htmL. visual Basic and C# have near feature parity in terms of the UWp, meaning both access the same
apis and controls. C++/Cx functions differently but again accesses the same apis and controls. Because of
the difference in technology between XamL and htmL/Css there are marked differences in the approach to
development between these two technologies.

Select Blank App (Universal Windows) and give the project the name Lesson1_BouncerX and a
suitable location on your workstation. Select OK to generate the project. Once the solution and project
are loaded, use the View menu item (from the main menu) to ensure that the Toolbox, Document Outline,
Solution Explorer, and Properties window are all visible. Figure 1-25 shows the various panes that can be
enabled via the View menu item. The document outline option can be found in a sub-menu of view called
Other Windows.

Figure 1-24. Project selection dialog

Chapter 1 ■ the WindoWs 10 ethos and environment

26

Sidebar: Exploring the App Manifest
At this point, you should have a loaded project with the App.xaml.cs file open in the code window. Before
you get into the layout or coding of the app, however, you need explore some housekeeping options
regarding the type of app this will be, what it will do when installed, how it will look, and the many more
things that the manifest allows you to declare.

Look in the Solution Explorer for a file called Package.appxmanifest. This is the manifest for the app
you are presently working on, so double-click it to open it up. Hopefully the UI representation of this file
appears (in my version of Visual Studio 2015 Enterprise Edition I found that the Apache Cordova tools
interfered with the product’s ability to open this file. Once I uninstalled those specific tools I was once again
able to use the designer for manifest files.) Figure 1-26 shows the app manifest user interface that appears
when you open package.appxmanifest. The app manifest consists of six tabs grouped by the function they
serve in helping define your app to the Windows Store and end user machines that install it.

Figure 1-25. View menu item

Chapter 1 ■ the WindoWs 10 ethos and environment

27

The Application tab allows you to enter general information about your app. Table 1-2 provides a brief
description of some notable items in this tab.

Figure 1-26. App Manifest user interface

Table 1-2. Application Tab Fields

Name Description

Display Name The full name of the app. This is the name that will be displayed on the application title
bar and will serve as the “name” of the app.

Entry Point According to the documentation, this field is meant to identify the class that runs
when the application is started. In practice, we have found that regardless of the value
entered here, marking app.xaml (or the application startup XAML of your choice) as the
application definition for the app will invoke it and ignore this value.

Description Description for the app. The text here is used in the “Set Default Programs” Windows 10 UI.

Supported
Rotations

Identifies the orientations supported by an app.

The last two fields, Recurrence and URI template, are used as part of the tile update functionality (Live
tiles will be covered in greater detail in Chapter 10.) These fields allow you to specify a URI where a template
used to render a given app’s tile should be pulled from. These templates are XML snippets that the Windows
10 system uses to determine what to display on a given tile with what layout and animation. The Recurrence
field tells the system how often the URI specified in the URI Template field should be polled. It has a
minimum of every half hour and a maximum poll time of daily.

http://dx.doi.org/10.1007/978-1-4842-1449-7_10

Chapter 1 ■ the WindoWs 10 ethos and environment

28

The Visual Assets tab contains fields for populating the locations for all the standard visual assets
needed to display your application in the Store and on an end user’s device. This includes all sizes of
application logos used for the application tile and other app-specific iconography. It also includes the splash
screen image.

The next tab, Capabilities, provides you with a declarative way of identifying all the things your app can
do. Capabilities are a great way for you to tell end users upfront how your app will access resources on their
system; it allows them to make a decision on whether they want their system resources used in that manner
before installing your UWP app. This is vastly different from the approach Win32 applications took. In fact,
for the most part, when you install a Win32 application, you have absolutely no idea what the application
might possibly be doing on your system in order to deliver its purported services to you. Adobe Photoshop
could be running in the background monitoring your keystrokes, for example (I don’t believe it does that),
and you would have no way of knowing that before, during, or after installation for the product. You might
never know what a given Win32 application is doing to your system once installed and running. This is the
area of vulnerability that malware such as Trojan Horses exploit. Their developers know that once they get
on your machine as an executable, they can do just about anything, so they hide illicit functionality behind
seemingly harmless programs like download utilities and games. Once installed and run, these programs
copy malicious software onto your system folders, making it difficult to distinguish them from important
components of your operating system. Before you know it, you have a full-fledged infestation on your hands!

Capabilities, combined with the sandboxed nature of UWP apps, keeps the end user in control of
the resources apps can access. If you don’t want to install any apps that read your Documents library, you
simply check to ensure that any app you are installing does not declare this capability in its manifest. I can
even foresee a day when one can define at the Windows Store level policies on what capabilities they need
declared before an install is even possible! As a developer, capabilities are essential to your app’s ability to
access resources as well. Unless you have explicitly declared a capability in the manifest, your app will not
be able to access any APIs associated with that capability at runtime. Hence you can only use what you have
specified to your potential end users that you intend on using. At the store level, this security constraint is
also enforced. Apps deployed to the store that use undeclared APIs will fail certification and will not make it
to the Windows Store. Figure 1-27 shows the Capabilities tab.

Figure 1-27. Capabilities tab of the app manifest

Chapter 1 ■ the WindoWs 10 ethos and environment

29

Table 1-3 itemizes some of the capabilities that can be declared in a UWP app. Please go to
https://msdn.microsoft.com/en-us/library/windows/apps/Hh464936.aspx for more detailed
information on the various capabilities.

Table 1-3. Capabilities That Can Be Declared in a UWP App

Name Description

All Joyn Allows AllJoyn-enabled apps and devices on a network to discover
and interact with each other. AllJoyn is a system that allows devices to
advertise and share their abilities with other devices around them. A
simple example would be a motion sensor letting a light bulb know no
one is in the room it is lighting.

Blocked Chat Messages Allows apps to read SMS and MMS messages that have been blocked by
the Spam Filter app.

Chat Message Access Allows apps to read and delete text messages. This capability will also
allow apps to store text messages in the system data store.

Code Generation Apps that declare this capability can dynamically generate code.

Internet (Client) Allows apps to have outbound access the Internet (selected by default). If
your app uses the Internet, ensure that this capability is declared.

Internet (Client and Server) Provides both inbound and outbound access to the Internet. If you are
building a server (for instance, for peer-to-peer purposes), this capability
is a must. Note that critical ports are always blocked.

Location Provides the app with access to the GPS location information.

Microphone Provides the app with access to the microphone’s audio feed.

Music Library Provides management access to files in the Music library.

Phone Call Allows apps to access all of the phone lines on the device and perform the
following functions:

Place a call on the phone line and show the system dialer without
prompting the user.

Access line-related metadata.

Access line-related triggers.

Allows the user-selected spam filter app to set and check block list and call
origin information.

Pictures Library Provides management access to files in the Pictures library.

Proximity Allows apps to use NFC or Wi-Fi directly to APIs for connecting to other
devices.

Removable Storage Provides management access to files in removable storage media that is
connected to the device.

User Account Information Gives the app access to the current user’s name and picture.

Videos Library Provides management access to files in the Videos library.

VOIP Calling Allows the app to access the VOIP calling APIs.

Webcam Provides the app with access to the webcam’s video feed. This capability is
necessary for capturing images as well as video.

https://msdn.microsoft.com/en-us/library/windows/apps/Hh464936.aspx

Chapter 1 ■ the WindoWs 10 ethos and environment

30

Capabilities are great in some respects but limiting in others. They provide access to resources but fall
short in scenarios where further configuration is needed. This can be good in certain scenarios but lacking in
others. Take the case of access to the file system, the Music Library for example. The capability to access this
folder is only the beginning of the story; there is also the question of what file types can be accessed, perhaps
even what file sizes or file names. Declarations round out the capability story given that they are capabilities
that require further configuration for them to work. Starting in Chapter 6, you will be using declarations
extensively to enable many of the features we will be discussing.

The next tab, Content URIs, allows you to specify URIs that can use the window.external.notify
JavaScript function to send a ScriptNotify event to the app. When an app has a certain control called a
WebView (essentially a web browser hosted within the app) as part of its user interface, messages may be passed
from the web page being viewed by the WebView to the app. WebView has an event, ScriptNotify, that is fired
when window.external.notify is invoked on the web page. This can allow for instances where part (if not all)
of your app’s user interface is rendered from a web site and, when native UWP functionality is required, your app
serves as a broker to the device running it by invoking the appropriate APIs and passing the results back to the
web page being hosted. This type of application is sometimes referred to as a hybrid app. To enable this type of
interaction in UWP apps, you must declare the URIs that will be using this functionality explicitly.

The final tab, Packaging, can be used to specify the properties that identify and describe your app
package when it is deployed. Figure 1-28 shows this page.

Figure 1-28. Packaging tab of the app manifest

Table 1-4 itemizes some relevant fields on the Packaging tab of the package.appxmanifest file.

Table 1-4. Fields in The Packaging Tab

Name Description

Package Name Unique name that identifies the package on the development/test system.
This name is replaced when deployed to the Windows Store.

Package Display Name App name that appears in the Windows Store, also replaced when deployed.

Version Version string following the format <major>.<minor>.<build>.<revision>

Publisher Temporarily represents the subject field of the certificate used to sign the app
package. Replaced once the app is deployed to the Windows Store.

Publisher Display Name Name from the Publisher name of the developer web portal.

Package Family Unique name that identifies the package on the system.

http://dx.doi.org/10.1007/978-1-4842-1449-7_6

Chapter 1 ■ the WindoWs 10 ethos and environment

31

Back to Your First Project
Now that you have a decent understanding of the settings defined in the app manifest, let’s get back to
building your awesome bouncer UWP app. Close the package.appxmanifest file and open the file called
MainPage.xaml.

In the XAML tab, add the bolded sections from Listing 1-3 to the markup.

Listing 1-3. User Interface for BouncerX Attendant Counter

<Page x:Class="Lesson1_BouncerX.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Lesson1_BouncerX"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<StackPanel Orientation="Vertical"

HorizontalAlignment="Center"
VerticalAlignment="Center">

<TextBlock x:Name="txt_attendants"
HorizontalAlignment="Center"
Text="0 Attendants"
FontSize="42"
FontFamily="Segoe UI"
FontWeight="ExtraLight" />

<StackPanel Orientation="Horizontal"
Margin="0,20,0,0"
HorizontalAlignment="Center">

<Button x:Name="btn_reset"
Content="Reset Attendants"
Width="200"
Height="100"
Margin="5" />

<Button x:Name="btn_remove"
Content="Remove Attendant"
Width="200"
Height="100"
Margin="5" />

</StackPanel>
<Button x:Name="btn_add"

Content="Add Attendant"
Width="410"
Height="100"
Margin="5,50,5,5" />

</StackPanel>
 </Grid>
</Page>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

Chapter 1 ■ the WindoWs 10 ethos and environment

32

If you are familiar with Silverlight, Windows Phone development, WPF, or you’ve built some Windows 8
Modern apps, you will probably have a good understanding of what Listing 1-3 is all about. If you have not,
don’t fret; we will be getting into the controls available to UWP apps and all their uses in the next three
chapters. Don’t worry so much about what this all means right now. The important thing to note here is that
you have added the appropriate controls to the surface and identified all the controls you plan to use in an
interactive manner. At this point, the Design tab of your design surface should look something like Figure 1-29.
As mentioned, the great thing about the Visual Studio 2015 design surface is that it allows you to see (within
limits) how your app will look at runtime. I say “within limits” because this is not a true runtime view of your
application, meaning if part of your app user interface relies on data that comes from a web service, it will
not be rendered in the design surface at all. For such scenarios, you will have to run the application. Your
application stores all information in memory and really does not have much in terms of a user interface so the
design surface works fine. We have found that very elaborate user interfaces can give the design surface some
trouble, so be warned.

Figure 1-29. BouncerX design surface

Visual Studio 2015 comes with a separate tool called Microsoft Blend that can be used for designer-
specific workflows that the main IDE cannot handle. These workflows include animations, visual state
management, vector graphics drawing, and deep integration into UI styling. Blend provides a far richer
designer experience that Visual Studio; it started its life as a competitor to Adobe Flash toolset, so for
advanced layout and styling we recommend using Blend. You can use Blend to design your XAML file or
open your Visual Studio 2015 project in Blend 2015 at any time by right-clicking the specified project item
(click any XAML file in your project or the project itself) and select “Design with Blend.”

Right-click anywhere in the main content area of the design surface and select View Code to open
the code behind for this page. You should now have the file MainPage.xaml.cs open. You need to do a
couple of things in this file to enable the functionality you require. First, let’s create a centralized method
that you can use to display the number of attendants. Listing 1-4 provides the code for a DisplayAttendants
method that does just this. Add it as a method to the MainPage class.

Chapter 1 ■ the WindoWs 10 ethos and environment

33

Listing 1-4. Centralized Method for Displaying the Current Number of Attendants

private void DisplayAttendants()
{

txt_attendants.Text = $"{_attendant_count} attendants";
}

The code in Listing 1-4 is quite straightforward. Given that a class level field _attendant_count is defined,
this method will display a string in the Text property of the Textbox you previously added to MainPage using a
concatenation of the value of _attendant_count and the literal string “ attendants” (note the space).

Now define the _attendant_count variable as an integer field with a default value of zero and then add
the following lines in Listing 1-5 to the constructor of MainPage (from Listing 1-4):

Listing 1-5. Event Handler Code for MainPage.xaml.cs Constructor

this.Loaded += MainPage_Loaded;
btn_add.Click += Btn_add_Click;

Finally add the code from Listing 1-6 to MainPage.xaml.cs.

Listing 1-6. Event Handlers for the Page Load and Add Button’s Button Clicked Events

private void MainPage_Loaded(object sender, RoutedEventArgs e)
{
 DisplayAttendants();
}

private void Btn_add_Click(object sender, RoutedEventArgs e)
{
 _attendant_count++;
 DisplayAttendants();
}

The code in Listing 1-6 is also quite self-explanatory. Loaded events are fired when a page first loads;
MianPage_Loaded simply presents the current number of attendants by invoking DisplayAttendants every
time a MainPage loads. The other even handler, btn_add_Click, is called whenever the Add button is
clicked. Whenever this happens, the attendant count is incremented by one and DisplayAttendants is once
again called. Compiling and running the app at this time should yield an image similar to Figure 1-30. At the
time this screenshot was taken, the Add Attendant button had been clicked 13 times.

Chapter 1 ■ the WindoWs 10 ethos and environment

34

Let’s tackle the Remove Attendant button next. When enabling the Add Attendant functionality from
the earlier sample, you exclusively used the code behind file to programmatically attach an event handler to
the Add Attendant button. For Remove Attendants, we will show how you can accomplish connecting event
handlers to the buttons directly from the XAML. This is one of the many triumphs of flexibility that XAML
provides to developers. Close MainPage.xaml.cs and reopen MainPage.xaml. Now alter the definition for
btn_remove to match the code in Listing 1-7.

Listing 1-7. Adding Event Handling into XAML Markup

<Button x:Name="btn_remove"
Content="Remove Attendant"
Width="200"
Height="100"
Margin="5" Click="RemoveAttendant" />

Not much has changed here except for the addition of a new attribute to btn_remove. Adding this
attribute generates the same functionality as programmatically hooking into the Click event, as you did with
btn_add. You are not done, though. As it stands, the XAML is aware of the fact that btn_remove handles the
click event using the method RemoveAttendant; however, there is presently no method such as this in the
code behind file. You can, of course, open MainPage.xaml.cs and add a definition for this event but there is
an easier way to do this from here: simply right-click the text RemoveAttendant and select Go to Definition.
Doing so automatically opens MainPage.xaml.cs and adds a new method with the same name as the one
specified within the XAML Click event. Listing 1-8 provides the full implementation of the RemoveAttendant
method. Replace the generated stub with it.

Figure 1-30. BouncerX running after 13 clicks of the Add Attendant button

Chapter 1 ■ the WindoWs 10 ethos and environment

35

Listing 1-8. Event Handler for Remove Button’s Clicked Events

private void RemoveAttendant(object sender, RoutedEventArgs e)
{
if(_attendant_count > 0)

_attendant_count--;
DisplayAttendants();

}

Listing 1-8 functions similarly to the event handler for adding attendants with one minor change. Since
you are dealing with actual individuals, the attendant count can never be less than zero. Because of this, a
Boolean guard condition is used to prevent the value of _attendant_count from dropping below zero. At this
point, if you run the app, you should be able to both add and remove attendants. The basic function of the
app is complete. The final stage is providing the ability to quickly reset the counter so one does not have to
restart the app or tediously click the remove attendant button repeatedly until zero is hit. For this last bit of
functionality, you will use the design surface provided by Blend, the companion tool for Visual Studio.

Right-click MainPage.xaml and select Design in Blend to launch Blend for Visual Studio 2015.
Figure 1-31 shows the Blend for Visual Studio 2015 IDE.

Figure 1-31. BouncerX project opened in Blend for Visual Studio 2015

You won’t find much difference style-wise between Blend and Visual Studio; this is because the Blend
interface has been rebuilt from the ground up on top of the Visual Studio IDE platform. This approach is so
integrated that you can accomplish many of the same developer workflows directly in Blend! Be sure to once
again use the View main menu item to ensure the Solution Explorer, Document Outline, and Properties pane
are enabled. You will need them for this exercise.

Chapter 1 ■ the WindoWs 10 ethos and environment

36

Let’s use Blend now to attach interactivity to the last button in your user interface. Start by selecting
the button, Reset Attendants, from the Blend design surface. The Properties window should now show all the
properties associated with this control. At the top of the Properties window, to the right of the Name text box,
are two buttons, one with a wrench and the other with a lightning bolt. The wrench represents properties of
the currently selected design surface item while the lightning bolt represents events of the same item. Click
the event button to reveal a Properties pane view similar to the one in Figure 1-32. (The green arrow points
to the button to click.)

Figure 1-33. Reset Attendants markup with new event handler added automatically by the IDE

Figure 1-32. Reset Attendants button events

In the textbox next to the Click event, type in “ResetToZero” and press Enter. Notice that the IDE
automatically navigates you to the MainPage.xal.cs page with a new blank method for ResetToZero
specified. If you navigate back to the XAML tab of your design surface, you should find that the Reset
Attendants button now has a new Click attribute automatically added to it. Figure 1-33 illustrates.

■ Note Both Blend and visual studio 2015 possess the ability to use the properties window events section
to attach events to items selected in the design surface. Using this feature is a shortcut to directly adding the
events in XamL and then writing the handler in the code behind for the XamL.

Chapter 1 ■ the WindoWs 10 ethos and environment

37

Replace ResetToZero with the code in Listing 1-9 to complete the app functionality. If you build and run
this app now, you should be able to add attendants, remove them, and also reset the attendant count to zero.

Listing 1-9. Resetting Attendants to Zero

private void ResetToZero(object sender, RoutedEventArgs e)
{

_attendant_count = 0;
DisplayAttendants();

}

Listing 1-10 provides the full code for the application.

Listing 1-10. BouncerX App Code Behind

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Runtime.InteropServices.WindowsRuntime;
using Windows.Foundation;
using Windows.Foundation.Collections;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Controls.Primitives;
using Windows.UI.Xaml.Data;
using Windows.UI.Xaml.Input;
using Windows.UI.Xaml.Media;
using Windows.UI.Xaml.Navigation;

namespace Lesson1_BouncerX
{
 public sealed partial class MainPage : Page
 {

int _attendant_count = 0;
public MainPage()
{

this.InitializeComponent();
this.Loaded += MainPage_Loaded;
btn_add.Click += Btn_add_Click;

}

private void MainPage_Loaded(object sender, RoutedEventArgs e)
{

DisplayAttendants();
}
private void Btn_add_Click(object sender, RoutedEventArgs e)
{

_attendant_count++;
DisplayAttendants();

}

Chapter 1 ■ the WindoWs 10 ethos and environment

38

private void DisplayAttendants()
{

txt_attendants.Text = $"{_attendant_count} attendants";
}

private void RemoveAttendant(object sender, RoutedEventArgs e)
{

if (_attendant_count > 0)
_attendant_count--;

DisplayAttendants();
}

private void ResetToZero(object sender, RoutedEventArgs e)
{

_attendant_count = 0;
DisplayAttendants();

}
 }
}

Notes on XAML
In the previous section, we pointed out that there are two distinct layout description languages for building
UWP app user interfaces. HTML/CSS is one and XAML the other. They both serve the same purpose: giving
developers a markup-based declarative technology for representing a user interface. While HTML gives you the
best of breed in terms of interoperability and not much more beyond that, XAML offers a rational expression of
the layout innovations promised but ultimately never delivered by HTML. You can’t have your cake and eat it
too, though. While XAML is as powerful and expressive as HTML with complete predictability as far as layout
results, an app built using this technology will likely never run anywhere else unless a rewrite occurs.

■ Note don’t be too hard on htmL. Building technologies to a specification is quite difficult. Check out the
various implementations of XamL within microsoft if you doubt this point. You will find the same kind of nuanced
deviation between WpF, silverlight, and UWp apps.

Namespaces
One distinction between HTML and XAML is with the explicit reliance on XML namespaces. To see this in
action, let’s take a look at the top level page element from Listing 1-1. In Listing 1-11, we have highlighted the
relevant attributes, those specific to namespace definition.

Listing 1-11. Top-Level XAML Element with Default Namespaces Defined

<Page x:Class="Lesson1_BouncerX.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Lesson1_BouncerX"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

Chapter 1 ■ the WindoWs 10 ethos and environment

39

Two of the namespaces defined in Listing 1-11 are necessary for all XAML UI documents:
xmlns=http://schemas.microsoft.com/winfx/2006/xaml/presentation and xmlns:x="http://
schemas.microsoft.com/winfx/2006/xaml". The first of the two namespaces is the standard user interface
namespace; it contains the elements used to represent all the user interface controls that are packaged
as part of the Universal Windows Platform. XAML follows standard XML syntax, so although these are
represented here without a prefix, it is only by convention. You could apply a prefix to the xmlns=http://
schemas.microsoft.com/winfx/2006/xaml/presentation namespace but that would mean every
UI element you specify would need to use that prefix. So if xmlns=http://schemas.microsoft.com/
winfx/2006/xaml/presentation was defined as xmlns:ui=http://schemas.microsoft.com/winfx/2006/
xaml/presentation, you would have to define <Page /> as <ui:Page />.

The second default required namespace is often referred to as the XAML language namespace. It
contains keywords such as Name, Key, and Class and is used to bind a XAML document to the underlying
technology that a specific implementation represents. Unlike HTML, which is primarily used to define user
interfaces in a very specific way, XAML has been developed so that it can be used to declaratively represent
just about anything. You need look no further that the App.xaml file to see this flexibility in action. Whereas
MainPage.xaml is used to define the layout and user interface for that specific page, App.xaml is used to
define the application as a whole and is not concerned with any specific user interface at all. XAML can do
this because it has been designed such that almost anything expressed in the XAML language can also be
represented in a standard procedural language. In many cases, the XAML document is in fact first converted
to its procedural counterpart and then executed. In UWPs, XAML follows this code generation pattern such
that elements within a XAML document are instantiated into objects at runtime, with the attributes of those
elements used to set the corresponding properties of the underlying objects.

Using this approach, in most cases the Name attribute will be translated into the name of a variable
containing the instantiated object that a XAML element represents while the Class attribute maps to a
class broken into two parts. One part is system generated and contains the procedural expression of the
XAML document while the other is a user-controlled counterpart used for adding user-controlled behavior.
Listing 1-12 shows the XAML definition for MainPage.xaml once again.

■ Note the process of converting XamL documents to an object structure is far more involved than this and
well beyond the scope of this text. more importantly, because this is an abstraction technology, understanding
the inner workings of how it provides its services is far less important that understanding the services it actually
provides.

Listing 1-12. User Interface for BouncerX Attendant Counter

<Page x:Class="Lesson1_BouncerX.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Lesson1_BouncerX"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<StackPanel Orientation="Vertical"

HorizontalAlignment="Center"
VerticalAlignment="Center">

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

Chapter 1 ■ the WindoWs 10 ethos and environment

40

<TextBlock x:Name="txt_attendants"
HorizontalAlignment="Center"
Text="0 Attendants"
FontSize="42"
FontFamily="Segoe UI"
FontWeight="ExtraLight" />

<StackPanel Orientation="Horizontal"
Margin="0,20,0,0"
HorizontalAlignment="Center">

<Button x:Name="btn_reset"
Content="Reset Attendants"
Width="200"
Height="100"
Margin="5" />

<Button x:Name="btn_remove"
Content="Remove Attendant"
Width="200"
Height="100"
Margin="5" />

</StackPanel>
<Button x:Name="btn_add"

Content="Add Attendant"
Width="410"
Height="100"
Margin="5,50,5,5" />

</StackPanel>
 </Grid>
</Page>

Listing 1-12 shows the procedural expression of this XAML document in C# code. Note that each
element with an x:Name attribute defined in Listing 1-12 has a corresponding field in Listing 1-13.

Listing 1-13. Procedural Expression of MainPage.xaml in C#

namespace Lesson1_BouncerX
{
 partial class MainPage : Page
 {

[GeneratedCodeAttribute("Microsoft.Windows.UI.Xaml.Build.Tasks"," 14.0.0.0")]
private TextBlock txt_attendants;
[GeneratedCodeAttribute("Microsoft.Windows.UI.Xaml.Build.Tasks"," 14.0.0.0")]
private Button btn_add;
[GeneratedCodeAttribute("Microsoft.Windows.UI.Xaml.Build.Tasks"," 14.0.0.0")]
private Button btn_reset;
[GeneratedCodeAttribute("Microsoft.Windows.UI.Xaml.Build.Tasks"," 14.0.0.0")]
private Button btn_remove;
[GeneratedCodeAttribute("Microsoft.Windows.UI.Xaml.Build.Tasks"," 14.0.0.0")]
private bool _contentLoaded;

/// <summary>
/// InitializeComponent()
/// </summary>

Chapter 1 ■ the WindoWs 10 ethos and environment

41

[GeneratedCodeAttribute("Microsoft.Windows.UI.Xaml.Build.Tasks"," 14.0.0.0")]
[DebuggerNonUserCodeAttribute()]
public void InitializeComponent()
{

if (_contentLoaded)
return;

_contentLoaded = true;

Uri resourceLocator = new global::System.Uri("ms-appx:///MainPage.xaml");
 Application.LoadComponent(this, resourceLocator, ComponentResourceLocation.
Application);

}

 }
}

The other two namespaces are far less important. xmlns:mc="http://schemas.openxmlformats.org/
markup-compatibility/2006" is primarily used for compatibility. In the case of the document in
Listing 1-12, the mc:Ignorable="d" attribute is used to ignore any items from the xmlns:d=http://schemas.
microsoft.com/expression/blend/2008 namespace, which is a namespace for design time tools to use for
storing information in the XAML document to help with the design process.

Microsoft has done a great job of including many of the user interface elements a developer will need
to build their UWP apps but there are always instances where you want to utilize a custom component,
whether created by yourself or a third party. Since XAML elements are representations of object instances,
it calls to question how a developer might include new objects not already defined in the UWP control set
or any of the other default namespaces XAML automatically provides. As you have seen thus far, XAML
rightfully uses namespaces to achieve this for the built in controls, thus making it 100% XML compliant in
this regard. In the case of custom components, namespace takes on an additional meaning, referring here to
the actual procedural language namespace that the object is a part of. In the old days of Silverlight and WPF,
namespaces were declared into scope using the notation clr-namespace:<namespace name> so it was clear
to developers that in this case the namespace being imported was an actual CLR namespace. This changed
in Windows 8/8.1 to the more consistent using:<namespace name>, the pattern used to import namespaces
in C# and C++. This later notation is what Windows 10 UWP apps use as well. In Listing 1-12, all classes
associated with the current project’s default namespace Lesson1_BouncerX are imported into the XAML
document using the notation xmlns:local="using:Lesson1_BouncerX". If you defined a class, Bounce, as a
user interface component, you could then use it in the document as follows: <local:Bounce />.

Elements
We briefly explored the relationship between elements and the objects they represent in the last section. In
general, two key features separate element definition in XAML from the same in HTML. Firstly, an element
specified in a XAML document is functionally the same as instantiating its corresponding class by calling
that class’ default constructor. Secondly, an attribute defined on a XAML element with a value specified
is functionally the same as setting the value of the property on the corresponding object that shares its
name. The implications of this general rule are quite clear. Every element in a XAML document must have a
corresponding object that it represents. This object must have its class definition in scope in the document
through the use of the namespace import feature discussed in the previous section. Similarly, every
attribute defined in a XAML document must have a corresponding public property defined in the class its
element represents. Listing 1-14 shows the TextBlock element in Listing 1-12 and how it could be defined
programmatically.

http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.microsoft.com/expression/blend/2008
http://schemas.microsoft.com/expression/blend/2008

Chapter 1 ■ the WindoWs 10 ethos and environment

42

Listing 1-14. Programmatic Definition of a TextBlock

<TextBlock x:Name="txt_attendants"
HorizontalAlignment="Center"
Text="0 Attendants"
FontSize="42"
FontFamily="Segoe UI"
FontWeight="ExtraLight" />

TextBlock txt_attendants_prog = new TextBlock();
txt_attendants_prog.HorizontalAlignment = HorizontalAlignment.Center;
txt_attendants_prog.Text = "0 attendants";
txt_attendants_prog.FontFamily = new FontFamily("Segoe UI");
txt_attendants_prog.FontSize = 42;
txt_attendants_prog.FontWeight = Windows.UI.Text.FontWeights.ExtraLight;

Attributes are a fast and easy way of associating properties to object elements but they can be impossible
to use in scenarios where rich composition in required. Another highlight of XAML in comparison to a
technology such as WinForms is its ability to facilitate rich composition. In Listing 1-12, you saw the use of
several buttons to enable incrementing, decrementing, and resetting of the attendance counter. These buttons
express their purpose with the text content they contain. If you examine the Content property of the Button
class, however, you will note that it is of type Object, meaning any type may be set to the Content property of a
Button. Exposing the content of a Button in this manner allows the presentation of a Button to be composed
in any number of ways. You could, for instance, use an Image as the content for the button. The problem is
that Image is an element while the Content property is exposed as an attribute on the TextBlock element.

To help alleviate this, a new class of element, called a Property Element, can be used. Property Elements
have two defining characteristics. As with attributes, they represent the assignment of a value to a property
on an overarching element in a XAML document. As such, Property Elements must be contained within the
element they are representing an assignment to.

Let’s explore a scenario where this would come in handy. One major problem with the previous
implementation of BouncerX is that all the buttons look the same. This could potentially lead to any
number of hitting-the-wrong-button-at-the-wrong-instance class problems, most notably the catastrophic
instance where the Reset Attendants button is mistakenly hit. Let’s present the various buttons of the app
with a subtle distinguishing characteristic so an end user can easily tell the difference between each button.
Setting the entire background color for each button to a different value would work but would deviate too
far from the overall. An ideal compromise would be to include a color coded underline for the text in each
button. This type of addition would be impossible in WinForms without rolling you own custom button. In
XAML, with Property elements you can simply compose the content of each button such that it contains an
underlined TextBlock. Listing 1-15 shows the BouncerX user interface from Listing 1-12 expanded to use a
property element and to utilize rich composition.

Listing 1-15. Rich Composition with Property Elements

<Page x:Class="Lesson1_BouncerX.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Lesson1_BouncerX"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

Chapter 1 ■ the WindoWs 10 ethos and environment

43

 <Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<StackPanel Orientation="Vertical"

HorizontalAlignment="Center"
VerticalAlignment="Center">

<TextBlock x:Name="txt_attendants"
HorizontalAlignment="Center"
Text="0 Attendants"
FontSize="42"
FontFamily="Segoe UI"
FontWeight="ExtraLight" />

<StackPanel Orientation="Horizontal"
Margin="0,20,0,0"
HorizontalAlignment="Center">

<Button x:Name="btn_reset"
Width="200"
Height="100"
Margin="5"
Click="ResetToZero">

<Button.Content>
<Border Padding="20"

BorderThickness="0,0,0,5"
BorderBrush="Red">

<TextBlock Text="Reset Attendants" />
</Border>

</Button.Content>
</Button>
<Button x:Name="btn_remove"

Width="200"
Height="100"
Margin="5"
Click="RemoveAttendant">

<Button.Content>
<Border Padding="20"

BorderThickness="0,0,0,5"
BorderBrush="Yellow">

<TextBlock Text="Remove Attendant" />
</Border>

</Button.Content>
</Button>

</StackPanel>
<Button x:Name="btn_add"

Width="410"
Height="100"
Margin="5,50,5,5">

<Button.Content>
<Border Padding="100,20,100,20"

BorderThickness="0,0,0,5"
BorderBrush="Green">

<TextBlock Text="Add Attendant" />
</Border>

</Button.Content>

Chapter 1 ■ the WindoWs 10 ethos and environment

44

</Button>
</StackPanel>

 </Grid>
</Page>

You haven’t done anything too fancy in Listing 1-15. First, instead of setting the Content attribute on the
Button elements themselves, you use a Button.Content property element within the element’s tags. Inside
this element you then layout the new user interface for the button’s content (again, we will be going over the
various controls and how they work in Chapters 2, 3, and 4, so don’t worry if you don’t understand what these
controls do right now.) If you run the BouncerX project, you should now see a view similar to Figure 1-34.

Figure 1-34. BouncerX UWP app with rich composition applied to buttons

Binding and Value Converters
So far your BouncerX UWP is looking great, but it falls short of the mark in terms of using standard
object-oriented patterns and practices. The very critical attendance count has been left “open” within the
MainPage.xaml.cs class. MainPage should provide the functionality to increment, decrement, and reset
the attendance count but should it “know” how to do those things. If the programming logic needed to
accomplish these functions is directly embedded into your UI controller class, MainPage.xaml.cs, there
is no telling how complicated and convoluted the code base within this file might become once you begin
to enhance BouncerX. You might want to move the storage of the attendance count to a database or web
service in the future. Conventional thinking is that this kind of information, while important, is irrelevant to
MainPage.xaml.cs. Its job is to connect the user’s interactions with the components that perform the actual
actions. Let’s create a new class, Occasion, which will represent a given occasion that our end user might
be monitoring. To get started, right-click your project in Visual Studio and select Add ➤ New Item. From
the Add New Item dialog, select Class. Name the file Occasion.cs and click Add to add it to your project.
Figure 1-35 illustrates.

http://dx.doi.org/10.1007/978-1-4842-1449-7_2
http://dx.doi.org/10.1007/978-1-4842-1449-7_3
http://dx.doi.org/10.1007/978-1-4842-1449-7_4

Chapter 1 ■ the WindoWs 10 ethos and environment

45

Place the code from Listing 1-16 into the occasion file.

Listing 1-16. The Occasion Class Definition

public class Occasion
{
 public int AttendanceCount { get; private set; }

 public void Enter()
 {

AttendanceCount++;
 }

 public void Leave()
 {

if (AttendanceCount > 0)
AttendanceCount--;

 }
}

The Occasion class simply encapsulates the function of entering or leaving an event so that a consumer
of this object does not have to know anything about how attendance is internally kept. You might in the
future choose to persist the value to the file system so catastrophic failures do not wipe out your counts. This
is the business of the Occasion class, not MainPage. To fully remove all knowledge of the counts, you must
also modify MainPage.xaml.cs so that it uses the Occasion class rather than using the class level
field _attendance_count. Listing 1-17 shows the changes that need to be made.

Figure 1-35. Adding a new item to a project

Chapter 1 ■ the WindoWs 10 ethos and environment

46

Listing 1-17. Changing MainPage.xaml.cs to Use the Occasion Object

Occasion _occasion;

public MainPage()
{
 this.InitializeComponent();
 this.Loaded += MainPage_Loaded;
 btn_add.Click += Btn_add_Click;
 _occasion = new Occasion();
}

private void Btn_add_Click(object sender, RoutedEventArgs e)
{
 _occasion.Enter();
 DisplayAttendants();
}

private void RemoveAttendant(object sender, RoutedEventArgs e)
{
 _occasion.Leave();
 DisplayAttendants();
}

private void ResetToZero(object sender, RoutedEventArgs e)
{
 _occasion = new Occasion();
 DisplayAttendants();
}

In Listing 1-17, you replace the int variable _attendance_count with an Occasion variable. You
initialize _occasion in the constructor and recreate it each time ResetToZero is called. You then map
Btn_add_Click and RemoveAttendant to _occasion.Enter() and _occasion.Leave(), respectively. Looking
at this code, it is easy to see what occasion does without exposing how it does it, but you still have work to
do. DisplayAttendants needs to be modified to support this new approach. One simple change assignment
operation within this method satisfies this: txt_attendants.Text = $"{_occasion.AttendanceCount}
attendants".

It might not seem so to the “untrained eye,” but this type of explicit assignment is less than ideal. In
many cases, multiple attributes of a XAML element will need to be set to present a meaningful user interface
to the user. Exposing the values to be assigned to the code behind class file MainPage.xaml.cs would
once again break encapsulation. Even if these values are bundled into related objects (as you did with the
Occasion class), forcing MainPage to “know” what values within that object correspond to the designated
attributes in the XAML can be confusing, difficult to maintain, and prohibitive towards enhancement.
Finally, using this technique diminishes the declarative nature of XAML. A more ideal approach would be
to connect the elements themselves with an object that represents all the data the element needs to present
itself. The developer can then declaratively decide, in XAML, which attributes it wants populated with which
data values. Databinding does just that.

Data binding is a technology in XAML/UWP that allows you to connect the underlying object of a
XAML element to a generic data source, called a DataContext, such that attributes of that element can use
data from that data source to populate the underlying object’s properties. Using this technique, rather than
directly setting the value of Text on txt_attendance, you can just bind the occasion instance _occasion to
txt_attendance. Listing 1-18 shows how DisplayAttendants now looks.

Chapter 1 ■ the WindoWs 10 ethos and environment

47

Listing 1-18. DisplayAttendants Method Definition

private void DisplayAttendants()
{
 txt_attendants.DataContext = null;
 txt_attendants.DataContext = _occasion;
}

In Listing 1-14, you set the DataContext for txt_attendants to the class level instance of _occasion
immediately after setting it to null. This pattern essentially refreshes the DataContext values. The final step
to enable this change is to modify the TextBlock definition such that it enables data binding. Listing 1-19
shows the changes you make to MainPage.xaml to facilitate data binding for txt_attendants.

Listing 1-19. Enabling Data Binding on the Attendance Count Text Block

<TextBlock x:Name="txt_attendants"
HorizontalAlignment="Center"
Text="{Binding AttendanceCount}"
FontSize="42"
FontFamily="Segoe UI"
FontWeight="ExtraLight" />

You can see from Listing 1-8 and 1-18 the power in approaching attribute assignment with a declarative
mindset. Once again, MainPage.xaml.cs has been left to simply connect things. All assignment is now
happening where it should, in the XAML file itself. There is still one more problem you have to face, though.
Figure 1-36 shows the app when it is run.

Figure 1-36. BouncerX after binding is enabled

Chapter 1 ■ the WindoWs 10 ethos and environment

48

The “attendants” part of your attendants display string is now gone. This makes sense since you
were concatenating it to the attendance count previously and that bit of functionality has changed. The
encapsulation story is also yet to be fully realized. Yes, you have moved the assignment of attributes from a
procedural approach to a declarative one but the problem of having to “know” is still not solved. Looking at
Listing 1-19, you should see the problem. The property AttendantsCount is now being directly referenced
in the XAML, meaning you have now propagated the procedural-ness of the procedural part of your UWP
app onto your user interface! Value converters provide an elegant mechanism for solving both of these
problems.

XAML/UWP value converters are objects that can be called upon to perform custom conversions from
type to another. They are used in binding scenarios where the value being set does not match the type
expected by the attribute/property being bound to. Because they are applied in a declarative manner and
because they provide a mechanism to pass parameters into the converter (you can use the parameter to
conditionally perform multiple kinds of conversions within the same converter), they are an ideal final step
to create a truly code-agnostic XAML user interface. Listing 1-20 shows the code for an OccasionConverter
class. Add a new class to your project and populate it with this code.

Listing 1-20. A Simple Value Converter

public class OccasionConverter : IValueConverter
{

/// <summary>
/// For when converting the databound object into a
/// value that can be displayed
/// </summary>
/// <param name="value"></param>
/// <param name="targetType"></param>
/// <param name="parameter"></param>
/// <param name="language"></param>
/// <returns></returns>
public object Convert(object value,

Type targetType,
object parameter,
string language)

{
if (value is Occasion)
{

var occasion = value as Occasion;
var ui_command = parameter as string;
if (ui_command == "number of attendants")

return $"{occasion.AttendanceCount} attendants";
}
return "Unknown number of attendants";

}

/// <summary>
/// For when saving binding information back to
/// the databound object
/// </summary>
/// <param name="value"></param>
/// <param name="targetType"></param>
/// <param name="parameter"></param>
/// <param name="language"></param>

Chapter 1 ■ the WindoWs 10 ethos and environment

49

/// <returns></returns>
public object ConvertBack(object value,

Type targetType,
object parameter,
string language)

{
throw new NotImplementedException();

}
}

Listing 1-20 illustrates a sample implementation of a value converter. Value converters must implement
the interface IValueConverter. This interface expects instantiable classes that support it to have two
concretely functions defined: Convert and ConvertBack. Convert converts the value bound to a format that
the attribute doing the binding can support. ConvertBack does the reverse: it applies to controls that allow
user input. Convert does a number of important things: first, it checks to ensure that the value being passed
into it, the value you set DataContext to, is an instance of Occassion. If so, it casts the instance to Occassion
and also casts the parameter argument to a local string object ui_command. You do this in order to abstract
the XAML declaration away from any aspects of the data providing the object model. You now test to see
the value of ui_command and, based on that value, do a conversion based on the appropriate property of
Occassion. If it isn’t obvious yet, what you are doing here is abstracting away the need for anyone defining
this user interface to explicitly know structural details of the objects that provide it data. The other thing
happening here is the ability to format what is presented as data to the attribute doing the binding. When
you bound directly to AttendantsCount property in Occassion, you lost the ability to control how that value
was presented. Because value converters sit between the data being bound and the attribute doing the
binding, you are free to format that data as needed (or even throw it away entirely).

As you can see from Listing 1-21, by using this pattern your XAML now has no knowledge of Occassion
or any of its properties. Run this app now and it should look like Figure 1-25.

Listing 1-21. Modified MainPage.xaml. Changes Are in Bold

<Page x:Class="Lesson1_BouncerX.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Lesson1_BouncerX"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">
 <Page.Resources>

<local:OccassionConverter x:Key="attendant_ext" />
 </Page.Resources>
 <Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">

<StackPanel Orientation="Vertical"
HorizontalAlignment="Center"
VerticalAlignment="Center">

<TextBlock x:Name="txt_attendants"
HorizontalAlignment="Center"
Text="{Binding Converter={StaticResource attendant_ext},

ConverterParameter='number of attendants'}"
FontSize="42"
FontFamily="Segoe UI"
FontWeight="ExtraLight" />

<StackPanel Orientation="Horizontal"

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

Chapter 1 ■ the WindoWs 10 ethos and environment

50

Margin="0,20,0,0"
HorizontalAlignment="Center">

<Button x:Name="btn_reset"
Width="200"
Height="100"
Margin="5"
Click="ResetToZero">

<Button.Content>
<Border Padding="20"

BorderThickness="0,0,0,5"
BorderBrush="Red">

<TextBlock Text="Reset Attendants"
HorizontalAlignment="Left"
VerticalAlignment="Center" />

</Border>
</Button.Content>

</Button>
<Button x:Name="btn_remove"

Width="200"
Height="100"
Margin="5"
Click="RemoveAttendant">

<Button.Content>
<Border Padding="20"

BorderThickness="0,0,0,5"
BorderBrush="Yellow">

<TextBlock Text="Remove Attendant"
HorizontalAlignment="Left"
VerticalAlignment="Center" />

</Border>
</Button.Content>

</Button>
</StackPanel>
<Button x:Name="btn_add"

Width="410"
Height="100"
Margin="5,50,5,5">

<Button.Content>
<Border Padding="100,20,100,20"

BorderThickness="0,0,0,5"
BorderBrush="Green">

<TextBlock Text="Add Attendant" />
</Border>

</Button.Content>
</Button>

</StackPanel>
 </Grid>
</Page>

Chapter 1 ■ the WindoWs 10 ethos and environment

51

Summary
Although what you see what on the surface looks like a sensible incremental upgrade (read boring),
Windows 10 is undoubtedly a powerful, innovative platform that brings enterprises, device users, gamers,
developers, and general purpose computing lovers together in one service-centric community. Developing
for it is also somewhat so. The broad review of Windows 10 in this chapter should prepare you for the
basics covered in the next chapter and give you the foundational knowledge you need for Windows 10 app
development. You learned the following:

• The traits, features, and properties of interacting with the Windows 10 UI

• The various technologies that can be used in Windows 10 development

• Where to access the tools you need to develop for Windows 10

• How to build a Windows 10 UWP app

• What XAML is and how it is used in Windows 10 development

53

Chapter 2

Basic Controls

Modern Windows user interface programming has always involved some form of control use. Controls can
be described as reusable user interface elements that encapsulate predictable behavior in the form of user
experience. This tenet of Windows development hasn’t changed with Windows 10. In this chapter, you will
learn about the basic controls that are exposed to you as a Windows 10 UWP developer. In the next chapter,
you will focus on data controls, which are controls that represent data in a structured, meaningful way.

As stated in Chapter 1, Windows 10 UWP development can be approached using one of two user
interface rendering engines available to Windows 10 developers, HTML5 and XAML. The samples in this
chapter build on concepts introduced in Chapter 1 and will utilize XAML and C# as the main languages.
Many of them can be easily ported to any other UWP-supported language.

Setting Up a Project
Let’s start this chapter with a quick walkthrough of creating a Universal Windows Platform (UWP) project.
You will create the proverbial “Hello World” application, in this case, “Hello Windows 10!”

Although you can do most of your development and user interface layout with any XML-compatible
application (or Notepad, if you desire), you need Visual Studio 2015 to compile your app into the app
package discussed in Chapter 1. Visual Studio also provides some deployment workflow automation tools
that can be invaluable to a Windows 10 developer building apps for the Windows Store.

To start, launch Visual Studio 2015. Figure 2-1 shows how the Visual Studio 2015 IDE looks on my
machine. If you’ve changed the color scheme for Visual Studio 2015, modified your preferences, or installed
add-ins for various other technologies, you might get a different view.

http://dx.doi.org/10.1007/978-1-4842-1449-7_1
http://dx.doi.org/10.1007/978-1-4842-1449-7_1
http://dx.doi.org/10.1007/978-1-4842-1449-7_1

Chapter 2 ■ BasiC Controls

54

This chapter doesn’t spend time walking through the various pieces of the IDE; for that, please consult
Pro Visual Studio 2012 by Adam Freeman (Apress 2012). For the purpose of this exercise, the important
sections to note are the central content area, the Toolbox to the left of that, and the Solution Explorer to the
right of it. In a moment, you’ll create a new project and see how these areas on the screen “light up” when
a project is in scope. This is because they are, like many of the other views in Visual Studio 2015, context
aware. Before you move on to the next steps, take a moment to play around with the IDE layout. You can
shift, resize, detach, attach, pin, and unpin most panes in Visual Studio 2015. You can even drag the entire
content area to another screen and maximize it, effectively dedicating an entire screen to content with no
menus, toolbars, or distractions.

You can create a new project by selecting File ➤ New ➤ Project. The resulting dialog looks like Figure 2-2
on my machine.

Figure 2-1. Visual Studio 2015 Enterprise edition

Chapter 2 ■ BasiC Controls

55

■ Note the C# profile in Visual studio 2015 contains far more project types than are relevant to this text. With
C#, you can create just about anything, from a Windows device driver to Windows phone applications. these
days, companies like Xamarin have taken the C#/Visual studio 2015 platform even further with plug-ins that
allow C# developers to develop ios and android apps.

Visual Studio 2015 employs a usage profile mechanism to feature activities you are most interested
in. Depending on the initial setup of your environment, you may be locked in as a C# developer, a Web
developer, a database developer, or any number of other profile types. On my machine, C# is the default
profile I use; as a result, Visual C# projects are front and center for me to pick from when I launch the New
Project activity. If I wanted to build Visual Basic, Visual C++, or JavaScript UWP apps, I’d have to look in the
Other Languages section of the New Project dialog box. In case you were wondering, Figure 2-3 shows the
same dialog, this time with the Other Languages section expanded to reveal the project types available for
building UWP apps with JavaScript.

Figure 2-2. New Project dialog in Visual Studio 2015

Chapter 2 ■ BasiC Controls

56

■ Note the samples in this book are not designed for deployment to the Windows store. Be sure to uncheck
the checkbox labelled “show telemetry in the Windows Dev Center” to disable the app insights functionality.
You won’t need it for what you are doing.

Enter the name Lesson2_ControlCorral in the Name text field along with a location where the project
files will be stored, and then click the OK button to generate the project. Figure 2-4 shows the Solution
Explorer window after the project has been created.

Figure 2-3. New project template for JavaScript-based Windows 10 UWP app

Chapter 2 ■ BasiC Controls

57

Figure 2-4. Project items of a newly created WinJS project

As is to be expected, the project contains C# and XAML files, with image assets included to help with
default app branding. Listing 2-1 shows the contents of the default C# file, MainPage.xaml.cs.

Listing 2-1. Default C# File of the New Project

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Runtime.InteropServices.WindowsRuntime;
using Windows.Foundation;
using Windows.Foundation.Collections;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Controls.Primitives;
using Windows.UI.Xaml.Data;
using Windows.UI.Xaml.Input;
using Windows.UI.Xaml.Media;
using Windows.UI.Xaml.Navigation;

// The Blank Page item template is documented at http://go.microsoft.com/fwlink/?
LinkId=402352&clcid=0x409

http://go.microsoft.com/fwlink/?LinkId=402352&clcid=0x409
http://go.microsoft.com/fwlink/?LinkId=402352&clcid=0x409

Chapter 2 ■ BasiC Controls

58

namespace Lesson2_ControlCorral
{
 /// <summary>
 /// An empty page that can be used on its own or navigated to within a Frame.
 /// </summary>
 public sealed partial class MainPage : Page
 {

public MainPage()
{

this.InitializeComponent();
}

 }
}

Listing 2-1 shows the code file associated with MainPage.xaml. The file is blank but some items within
it are still of interest to us. Take a look at the using declarations, specifically the ones that start with
Windows.UI.Xaml. This namespace, and the namespaces beneath it, are dedicated to all the classes needed
to use XAML for defining a user interface. The associated XAML content definition for the primary user
interface of the app is shown in Listing 2-2.

Listing 2-2. Default HTML File of the New Project

<Page
 x:Class="Lesson2_ControlCorral.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Lesson2_ControlCorral"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">

 </Grid>
</Page>

In Listing 2-2, the Background property of the main grid is not set to a color string; rather it is set to a
special kind of string value used in XAML called a markup extension. A markup extension evaluates the
value contained in an attribute and returns an appropriate object instance representation of it. It functions
very similarly to the value converters discussed in Chapter 1, the difference being that markup extensions
always go from a string value to an object instance while value converters do a more general conversion
from one object instance to another. XAML already has something similar to this, something that is integral
to the ability of XAML to represent strings as object or enum values. It is what allows us to set the Background
attribute of the above grid to “Green”, for instance, and have XAML set the underlying property to new
SolidColorBrush(Windows.UI.Color.Green). To achieve this level of flexibility, XAML uses type converters.

Type converters are the functional equivalent to markup extensions. Unlike markup extensions,
however, type converters function implicitly (there is no need to explicitly tell XAML that the string “Green”
should be converted, it just does it). In contrast, markup extensions utilize specific notation to activate their
conversion feature. There are only a handful of possible extensions presently available. In Chapter 1, you got
a taste of the Binding markup extension; there is also RelativeSource, CustomResource, StaticResource,
and ThemeResource.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006
http://dx.doi.org/10.1007/978-1-4842-1449-7_1
http://dx.doi.org/10.1007/978-1-4842-1449-7_1

Chapter 2 ■ BasiC Controls

59

The extension used in this case, ThemeResource, is a good launch point into another new feature
exposed in Listing 2-2: resources. In XAML, resources are a collection of declaratively defined elements that
can be referenced via a key. (Remember the x:Key attribute from Chapter 1? Here is where it is used.) Not
surprisingly, the collection that contains resources is called a resource dictionary.

■ Note When you think of a resource dictionary, think of it as a Dictionary object defined as follows:
Dictionary<string, object>. a resource in a resource dictionary can be the declarative representation of any
XaMl-instantiable object (for objects not in the default namespaces provided to work, they must be imported
into the resource dictionary via the using keyword).

ThemeResource, CustomResource, and StaticResource can all be used to access resources in the
resource dictionary that is currently in scope by specifying the key of the resource they are targeting. In
Listing 2-2, the value of the background color of the main grid is being read from a resource with the key
name ApplicationPageBackgroundThemeBrush. Listing 2-3 provides the definition of the resource in
question.

Listing 2-3. A SolidColorBrush Resource

<SolidColorBrush
x:Key="ApplicationPageBackgroundThemeBrush"
Color="#FFFFFFFF" />

Press F5 to run this app. The project should build successfully and, if you haven’t deviated from the
steps provided above, launch the app with a blank white screen.

Now that you’ve prepared a basic project for use in exploring what UWP has to offer in terms of controls,
let’s proceed with a brief discussion on how they work in Windows 10.

So Just What Are Controls?
If you have ever worked with HTML, WPF, WinForms, Visual Basic 6, ATL, MFC, Power Builder, or any
other user interface-driven WISYWG designer and technology, you will probably be quite familiar with the
concept of controls. Put simply, a control is an encapsulated piece of user interface that combines layout,
content, and behavior to create a distinct experience within the construct of the surface that contains it. All
controls strictly adhere to the three tenets identified in the previous statement. Regardless of their function,
they must all present a user interface that is isolated from their parent. They must all include behavior that
is again isolated from behavioral traits of their parent. And finally, they must all utilize a layout system that is
sequestered from the overarching layout system of the parent surface they reside in.

Incorporating Controls
Controls in XAML can be generally broken up into four main categories: basic controls, layout controls,
data controls, and custom controls. Basic controls can broadly be classified as controls that contribute
to the viewable content of a given screen. Buttons, checkboxes, sliders, and pickers are examples of this.
Data controls, like basic controls, are primarily meant to be part of a screen’s viewable content. However,
data controls vary from their basic counterparts in that they are specifically designed with the problem of
generically representing collections of objects in mind. Layout controls are not ideally intended to be a

http://dx.doi.org/10.1007/978-1-4842-1449-7_1

Chapter 2 ■ BasiC Controls

60

part of the viewable surface. Rather, they share the primary purpose of managing the location, position,
and dimensions of all controls. One unique feature of layout controls is that they support adding multiple
children as their content. (Some data controls theoretically can support multiple children; this is not their
intended use, however.) Almost all of the popular layout controls are completely invisible in their default
implementation. Finally, custom controls can be a combination of any of the aforementioned control
classifications. They are controls created by you.

The BouncerX sample in Chapter 1 was your first foray into the realm of controls. The app used a
TextBlock and three Button controls to compose a dashboard for maintaining a count of the number of
attendees for a given occasion. This section builds on the knowledge you acquired through that exercise,
going into more detail on the controls themselves. Over the next three chapters (this one and the next two),
you will be building out a reservation system for an imaginary massage parlor. You will use this to frame
discussions around the purpose and usage instructions of a number of important controls. The process
starts with continuing the foundational work you started earlier in this chapter. Before you begin designing
your user interface, let’s take some time to think through the requirements of such a reservation system.

In order to satisfy the base functionality of being a reservation system, your sample app must, at
a minimum, provide the ability to take and store reservations. Assuming you treat reservations like
appointments, this app will need to gather information about the date and time when a massage takes place;
expect information about the customer; and perhaps also take information about special requests a given
customer might have. Listing 2-4 contains the primary class you will use for storing this information. Create
a new C# file class named ReservationInfo and add the code here into it.

Listing 2-4. ReservationInfo Class Definition

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Lesson2_ControlCorral
{

public class ReservationInfo
{

public DateTime AppointmentDay { get; set; }

public DateTime DOB { get; set; }

public bool HasPaid { get; set; } = true;

public string Passphrase { get; set; }

public string Procedure { get; set; }

public TimeSpan AppointmentTime { get; set; }

public string CustomerName { get; set; }

public byte[] CustomerImage { get; set; }

public double MassageIntensity { get; set; }

}
}

http://dx.doi.org/10.1007/978-1-4842-1449-7_1

Chapter 2 ■ BasiC Controls

61

In Listing 2-4, you design a simple data class that can be used to store all the captured information
from your user interface. In Listing 2-5, you modify MainPage.xaml.cs to include this class. Because a user
of this system will undoubtedly be creating multiple reservations over the course of its use, you store the
reservations made in a List object. The relevant changes are in bold.

Listing 2-5. Modified MainPage.xaml.cs to Include ReservationInfo

...
 public sealed partial class MainPage : Page
 {

List<ReservationInfo> _reservations;

public MainPage()
{

this.InitializeComponent();
_reservations = new List<ReservationInfo>();

}
 }

...

As each reservation is made, you create a new instance of the ReservationInfo object, populate it with
values from the user interface, and then add it to the list _reservations. You now have everything you need
to get started.

Window
The Window object is not a control but it will be difficult to describe some controls-or fully understanding UWP
programming-without having some sort of conversation about it. In the UWP, this class is used to represent
the primary window of the current application. You can retrieve an instance to your UWP app’s Window object
through the static Current property it defines. This object instance must be used to do two things in order for
your user interface to be presented. First, you must assign a user interface object to its Content property; any
object that derives from UIElement will suffice. Second, you must call its Activate method.

In your project, open up the file App.xaml.cs and navigate to the method OnLaunched. Delete
everything in that method and run the application. You should see something close to Figure 2-5.

Chapter 2 ■ BasiC Controls

62

The grey square with the X in the middle is actually the default splash screen image for the app.
If either of the conditions specified above are not met, the system will show this image. (Try it out; add
Window.Current.Activate(); to the method and run the project again. You will still get the splash screen).
Now set the Content property as specified in Listing 2-6 and run the project.

Listing 2-6. Specifying the Content of an App’s Window

protected override void OnLaunched(LaunchActivatedEventArgs e)
{

Window.Current.Content = new Button() {
Content = "This button is the root content for this application's window",
HorizontalAlignment = HorizontalAlignment.Center };

Window.Current.Activate();
}

In the previous listing, you set the content of the app’s window to a Button object. Because UIElement
is the base class for all user interface elements, any of the controls you will talk about, and just about any
XAML element with a user interface, can be assigned to this property. Figure 2-6 shows how the app now
looks when it is run.

Figure 2-5. A window that has not been activated

Chapter 2 ■ BasiC Controls

63

Frame
Because the content of an app’s window can be changed through the lifetime of the application, you might
be tempted to use it as a mechanism for implementing screen segregation patterns like those involved in
navigation. This type of thing has been used in past frameworks to break up functionality into separate
screens that the user gains access to based on their interactions with the app. This is the very pattern that
HTML browsers use, but such an approach does not natively translate well to the use of a window’s content
as the primary navigation mechanism. History and scope come to mind as reasons to avoid this practice. All
the mechanisms used to track the history of screens navigated to and the simplicity of just “going back” is
lost when you choose to constantly set Window.Current.Content. The scope of the navigation is also always
locked to that of the entire application (meaning “navigating” will always affect the entire app and not just
portions of it).

Unlike other legacy UI technologies like WinForms and Win32 programming, XAML, like HTML, is built
with the notion of navigation in mind. The Frame control helps facilitate this by providing a way to present
the content and behavior of an otherwise external page within itself. So far, you have only had to create one
page in the apps you have been developing, but in a typical UWP application you will probably want to have
numerous pages, with each page designed to service a specific function. Frames free you to organize your
UWP apps in this manner. Using them, you can create as many different page types as needed by your app,
and then navigate to those pages by calling the Navigate method, passing in the type of the page to navigate
to. (You can optionally pass in a parameter object to initialize the page to a particular state.)

Let’s change Listing 2-6 so that it uses a Frame as the root content of the app window. Listing 2-7 shows
the code for the revamped OnLoaded method.

Figure 2-6. A UWP app window with a Button control assigned as the root content

Chapter 2 ■ BasiC Controls

64

Listing 2-7. Using a Frame as an App’s Window Content

protected override void OnLaunched(LaunchActivatedEventArgs e)
{

var frame = new Frame();
Window.Current.Content = frame;
frame.Navigate(typeof(MainPage));
Window.Current.Activate();

}

In Listing 2-7, you remove the nonsensical use of a button as the root content for your Control Corral
app, replacing it instead with a Frame object. After you set your app window’s Content property, you use
navigate to transfer the user to MainPage. The Frame control supports the ability to directly navigate to
pages as well as use a linear navigation model via the GoBack() and GoForward() methods. You can observe
the navigation activities any Frame performs by subscribing to its navigation-centric events: Navigating,
Navigated, NavigationStopped, and NavigationFailed.

By default, each navigation creates a new instance of the specified page object and disposes the
previous page instance. (This happens even when navigating backwards to a previously visited page or when
the new page type is the same as the previous page type.) To override this behavior you must set the property
NavigationCacheMode to either Enabled or Required at the page level.

Page
Although Page is a control, it is used in a special kind of way in the world of the UWP. Frames can only navigate
to Page objects, but because Page is meant to encapsulate content that the Frame control can navigate to, and
because that content will invariable be different from Page to Page, you will almost always work with pages that
are subclasses of the base Page control. It is this subclass that renders inside the Frame’s display area.

You can override the Page’s OnNavigatedTo, OnNavigatedFrom, and OnNavigationFrom methods to
perform tasks such as initializing and saving the Page state. OnNavigatingFrom can be used to cancel a
navigation by setting a Cancel property in the event data from your handler. Pages that are navigated to as
part of an activation are generally passed data from the activation. Other navigation scenarios such as search
result pages also have expectations of what info will be contained in the parameter.

Like most basic controls, the Page control is an example of what are called content controls. Content
controls have one property within them that represents the content area they are providing. Within this
property, only one element, the content of the control, can be added. Normally this would translate to
element declarations like what is shown in Listing 2-8, where a layout control (we will discuss layout controls
in Chapter 4) is placed inside the Page control’s Content property using property element syntax.

Listing 2-8. Setting the Content Property of Page Using Property Element Syntax

<Page x:Class="Lesson2_ControlCorral.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Lesson2_ControlCorral"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">
 <Page.Content>

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">

</Grid>
 </Page.Content>
</Page>

http://dx.doi.org/10.1007/978-1-4842-1449-7_4
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

Chapter 2 ■ BasiC Controls

65

XAML, however, allows for certain properties of the underlying control to be earmarked as the default
content property of the element. This allows you to use the more conventional approach to declaring an
element, the one seen in Listing 2-2 earlier.

■ Note You might have guessed this already, but you have been using page all along. it is the surface on
which the user interface of your BouncerX UWp app from Chapter 1 was built. What might come as a surprise
to you is that you have also been using Frame from the beginning. if you open the App.xaml.cs file of a new,
blank, XaMl-based UWp project and examine the OnLaunched method, you will see that a Frame is used as the
root content for the application window.

Button
The Button class is one of the most basic types of controls. In its simplest form, it represents an area that
when tapped with a finger or stylus, or when a mouse button is pressed while the mouse pointer is over this
area, raises a click event. (If a button has keyboard focus, pressing the Enter key or the Spacebar key also fires
the click event). Let’s modify Listing 2-2 to include a new button for making the actual reservation. When
this button is hit, a new ReservationInfo object should be created and added to the list of reservations
being tracked on the page. Listing 2-9 shows the new markup followed by the method that needs to be added
to the code-behind file.

Listing 2-9. Button Added to Page

<Page x:Class="Lesson2_ControlCorral.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Lesson2_ControlCorral"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<Button

Content="Reserve Room"
HorizontalAlignment="Center"
VerticalAlignment="Center"
Click="ReserveMassage" />

 </Grid>
</Page>

//code
private void ReserveMassage(object sender, RoutedEventArgs e)
{

var new_reservation = new ReservationInfo();
_reservations.Add(new_reservation);

}

http://dx.doi.org/10.1007/978-1-4842-1449-7_1
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

Chapter 2 ■ BasiC Controls

66

In Chapter 1, we talked about disconnecting the user interface from the programming logic used to
build its interactivity wherever possible. You went from a sample where procedural code was being used to
set the value of a text field to one that was almost completely disconnected from the code driving its values
to change. The sample in Listing 2-9 continues this approach by using a click event defined in the markup
instead of programmatically defining it in the code-behind file. This is a great way to shift the behavior
specification of the button to as declarative an approach as possible. Let’s take it a step further.

Command Binding
UWP command binding is a technique that allows you to essentially divorce the user interface from the
code-behind. Setting up command binding is a three-step process: first, you define the command object;
second, you set it to the DataContext of the Button being bound to (or any parent of that Button); and finally
you declaratively bind to it in your XAML. Add a new class file to your project called GenericCommand and
place the code from Listing 2-10 into it.

Listing 2-10. A Simple Command

public class GenericCommand : System.Windows.Input.ICommand
{

public event EventHandler CanExecuteChanged;
public event Action<string> DoSomething;

public bool CanExecute(object parameter)
{

return true;
}

public void Execute(object parameter)
{

var command = parameter as string;
DoSomething?.Invoke(command);

}
}

The code here does nothing but delegate the results of a command execution to anyone listening for
the DoSomething event. The next step is to modify the code-behind file to utilize this command class.
Listing 2-11 illustrates. Items marked in bold are the changes.

Listing 2-11. Applying Command to code behind

...
public sealed partial class MainPage : Page
 {

List<ReservationInfo> _reservations;
GenericCommand _command;

public MainPage()
{

this.InitializeComponent();

http://dx.doi.org/10.1007/978-1-4842-1449-7_1

Chapter 2 ■ BasiC Controls

67

_reservations = new List<ReservationInfo>();
this.Loaded += MainPage_Loaded;

_command = new GenericCommand();
_command.DoSomething += _command_DoSomething;
}

private void MainPage_Loaded(object sender, RoutedEventArgs e)
{

this.DataContext = _command;
}

async private void _command_DoSomething(string command)
{

if (command.ToLower() == "make a reservation")
{

var new_reservation = new ReservationInfo();
_reservations.Add(new_reservation);
MessageDialog md =
new MessageDialog($"{_reservations.Count} massages reserved");
await md.ShowAsync();

}
}

}
...

In Listing 2-11, you instantiate and apply the GenericCommand object to MainPage. To get commanding
to work in this example, you are data binding the command directly to the page. In real-life scenarios, the
command object would be a part of a much larger data object that the page binds to. That way, specific
controls on the page could declaratively decide which properties of the full data object to bind to. The new
method, _command_DoSomething serves as a general purpose handler for any command parameters passed
into it. Be sure to include the namespace Windows.UI.Popups.

The commands being processed in _command_DoSomething come directly from the user interface. They
are parameters declared in XAML now being passed into the binding subsystem so as to differentiate one
class of command execution from another. This is necessary since you are using a generic command object
to handle all your commands. Let’s modify MainPage.xaml so it matches Listing 2-12. Changes are in bold.

Listing 2-12. Utilizing Command Bindings in XAML

<Button Content="Reserve Room"
HorizontalAlignment="Center"
VerticalAlignment="Center"
Command="{Binding}"

CommandParameter="make a reservation"/>

Notice that the click event handler has been removed. On the face of it, this element declaration has no
idea what code is occurring in the code-behind to facilitate its functionality. All it knows is that it represents
the “make a reservation” command. This could not be said for the previous implementation, though. Assigning
to the click event means the UI has knowledge of at least one method of its corresponding code-behind class.
Figure 2-7 shows how the app looks when it is run and the Reserve Room button is clicked (in this case,
clicked a second time).

Chapter 2 ■ BasiC Controls

68

Templates
Buttons, like other UWP XAML controls, rely on templates to describe their user interface. Templates are
XAML snippets that describe how a control should be rendered. This not only includes the view of the
control, but also any animations or state change effects that the control should implement. The great thing
about XAML, something that makes it even better than HTML, is that any one of these templates can be
overridden. This means that you can create your own user interface from the ground up, even for controls
that were packaged with the UWP!

Listing 2-13 shows how the button you have been working with can be re-templated to create a rounded
rectangle button. If you run this sample, you will notice that all the mouse interaction effects have been lost.
This is because those effects are defined on the default template for Button. Play around with the template
for some time and see what kinds of buttons you can make. Once you are done, return the button code to
Listing 2-13.

Listing 2-13. Re-Templated Button Sample

<Button Content="Reserve Room"
HorizontalAlignment="Center"
VerticalAlignment="Center"
Command="{Binding}"
CommandParameter="make a reservation" >

<Button.Template>
<ControlTemplate TargetType="Button">

<Border Width="200"
Height="100"
CornerRadius="20"
Background="{TemplateBinding Background}">

Figure 2-7. Control Corral with control binding in action

Chapter 2 ■ BasiC Controls

69

 <ContentControl Content="{TemplateBinding Content}"
HorizontalAlignment="Center"
VerticalAlignment="Center" />

</Border>
</ControlTemplate>
</Button.Template>

</Button>

CalendarDatePicker
There are two date selection scenarios in general use in the computing world today. One is when you know
the exact date you are selecting, for instance if you need to select your birthdate. The other is if you don’t
and are looking for a date to select, for instance when a person is looking to select a date in an appointment
book to do something. In such a scenario, contextual information like the day of the week or fullness of the
calendar becomes very important. The CalendarDatePicker is optimized to support the latter case.

The Date property is used for retrieving or setting the selected date. End users can clear the value of this
property by clicking the selected date in the calendar view to deselect it.

Listing 2-14 shows the updated MainPage.xaml for Control Corral along with the changes that need to
be made to its code-behind in order to incorporate this control. There are changes to the layout style for the
controls, so pay close attention.

Listing 2-14. CalendarDatePicker Control in Action

<Button Content="Reserve Room"
HorizontalAlignment="Left"
VerticalAlignment="Top"
Command="{Binding}"
CommandParameter="make a reservation"
Margin="223,164,0,0">

</Button>
<CalendarDatePicker x:Name="control_calendar"

HorizontalAlignment="Left"
Margin="91,165,0,0"
VerticalAlignment="Top"

PlaceholderText="What day works for you?" />

//code
if (command.ToLower() == "make a reservation")
{

if (control_calendar.Date != null)
{

var new_reservation = new ReservationInfo()
{

AppointmentDay = control_calendar.Date.Value.Date,
};
_reservations.Add(new_reservation);
MessageDialog md =

new MessageDialog($"{_reservations.Count} massages reserved");
await md.ShowAsync();
control_calendar.Date = null;

}

Chapter 2 ■ BasiC Controls

70

else
{

MessageDialog md =
new MessageDialog("Select a day first");

await md.ShowAsync();
}

}

There are a few things worth mentioning in Listing 2-14. The alignment for the Reserve Room button is
switched to Top/Left so laying it out in the root grid would be more predictable. Since there is more than one
control, now you want to make sure that things align properly with each other. As part of this process, you’ve
also added a Margin attribute to the button. Margin can be used to set the margins on a given control. You
will find out more about margins and laying out a grid in Chapter 4.

In the code-behind, you first check to see if a date has been selected, prompting the user if this is
not the case. If a date has been selected, you set it to the AppointmentDay property of your newly created
ReservationInfo object. Figure 2-8 shows the updated app when it is run.

Figure 2-8. CalendarDatePicker in action

http://dx.doi.org/10.1007/978-1-4842-1449-7_4

Chapter 2 ■ BasiC Controls

71

TimePicker
Your requirement must also specify that you need to capture the time of day the user would like to reserve.
The TimePicker is the UWP XAML control designed to allow a user to pick a time value. Listing 2-15
shows the changes that need to be made to MainPage.xaml and its code-behind to enable the TimePicker
functionality.

Listing 2-15. Enabling the TimePicker Control

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <Button Content="Reserve Room"

HorizontalAlignment="Right"
VerticalAlignment="Bottom"
Command="{Binding}"
CommandParameter="make a reservation"
Margin="0,0,10,10"
Width="114"
Height="32">

 </Button>
 <CalendarDatePicker x:Name="control_calendar"

HorizontalAlignment="Left"
Margin="91,165,0,0"
VerticalAlignment="Top"
PlaceholderText="What day works for you?"
Width="242" />

 <TimePicker x:Name="control_time" Header="What time works for you?"
Margin="91,202,0,0"
VerticalAlignment="Top" />

</Grid>
//code
if (command.ToLower() == "make a reservation")
{

if (control_calendar.Date != null)
{

var new_reservation = new ReservationInfo()
{

AppointmentDay = control_calendar.Date.Value.Date,
AppointmentTime = control_time.Time,

};
_reservations.Add(new_reservation);
MessageDialog md =

new MessageDialog
($"{_reservations.Count} massages reserved\n" +

$"Newest is on {new_reservation.AppointmentDay.Month}/" +
$"{new_reservation.AppointmentDay.Day}/" +
$"{new_reservation.AppointmentDay.Year}" +
$" at {new_reservation.AppointmentTime}");

await md.ShowAsync();
control_calendar.Date = null;

}

Chapter 2 ■ BasiC Controls

72

else
{

MessageDialog md =
new MessageDialog("Select a day first");

await md.ShowAsync();
}

}

You are making some more changes to the layout to support new controls being added in Listing 2-15. In
the code-behind, you’ve expanded the content that the MessageDialog shows when a reservation completes.
It now not only displays how many reservations have been made, it also tells you the date and time of the
most recent reservation.

AutoSuggestBox
AutoSuggestBox gives the user a list of suggestions to select from as they type. To use it, your code needs
to handle three of its events: TextChanged, SuggestionChosen, and QuerySubmitted. The idea is to use the
TextChanged event to limit the scope of the search being performed to the items that match the current text
in the control. When a selection is made from one of the suggestions presented, SuggestionChosen can be
used to update the text box associated with this control. Finally, when the user invokes a search by either
clicking the search button associated with the control or pressing the Enter key, QuerySubmitted can be used
to run a search to determine if the search term exists. Listing 2-16 shows the updated layout for the page.
Update your page and code-behind to match.

Listing 2-16. AutoSuggestBox in Action

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <Button Content="Reserve Room"

HorizontalAlignment="Right"
VerticalAlignment="Bottom"
Command="{Binding}"
CommandParameter="make a reservation"
Margin="0,0,10,10"
Width="114"
Height="32">

 </Button>
 <CalendarDatePicker x:Name="control_calendar"

HorizontalAlignment="Left"
Margin="10,10,0,0"
VerticalAlignment="Top"
PlaceholderText="What day works for you?"
Width="242" />

 <TimePicker x:Name="control_time" Header="What time works for you?"
Margin="10,47,0,0"
VerticalAlignment="Top" />

 <AutoSuggestBox x:Name="control_name"
HorizontalAlignment="Left" Header="What's your name?"
Margin="10,112,0,0"
VerticalAlignment="Top"
Width="242" QueryIcon="Find" />

</Grid>

Chapter 2 ■ BasiC Controls

73

//code

public sealed partial class MainPage : Page
{

List<ReservationInfo> _reservations;
GenericCommand _command;
List<string> _usuals = new List<string>();

public MainPage()
{

this.InitializeComponent();
this.Loaded += MainPage_Loaded;
_reservations = new List<ReservationInfo>();
_command = new GenericCommand();
_command.DoSomething += _command_DoSomething;
control_name.QuerySubmitted += Control_name_QuerySubmitted;
control_name.TextChanged += Control_name_TextChanged;
control_name.SuggestionChosen += Control_name_SuggestionChosen;

}

private void Control_name_SuggestionChosen(AutoSuggestBox sender,
AutoSuggestBoxSuggestionChosenEventArgs args)

{
control_name.Text = args.SelectedItem as string;

}

private void Control_name_TextChanged(AutoSuggestBox sender,
AutoSuggestBoxTextChangedEventArgs args)

{
if (args.CheckCurrent())
{

var search_term = control_name.Text.ToLower();
var results = _usuals.

Where(i => i.Contains(search_term.ToLower())).ToList();
control_name.ItemsSource = results;

}
}

private void Control_name_QuerySubmitted(AutoSuggestBox sender,
AutoSuggestBoxQuerySubmittedEventArgs args)

{
var search_term = args.QueryText.ToLower();
var results = _usuals.

Where(i => i.Contains(search_term.ToLower())).ToList();
control_name.ItemsSource = results;
control_name.IsSuggestionListOpen = true;

}

Chapter 2 ■ BasiC Controls

74

private void MainPage_Loaded(object sender, RoutedEventArgs e)
{

this.DataContext = _command;
_usuals = new List<string> {"alex",

"azuka",
"elizabeth",
"ahmed","josh","allan", "john","david","chris","jack",
"bobby","ike","emeka","tobe","chidi","mason","andrew" };

control_name.ItemsSource = _usuals;
}

async private void _command_DoSomething(string command)
{

if (command.ToLower() == "make a reservation")
{

if (control_calendar.Date != null)
{

var new_reservation = new ReservationInfo()
{

AppointmentDay = control_calendar.Date.Value.Date,
AppointmentTime = control_time.Time,
CustomerName = control_name.Text,

};
_reservations.Add(new_reservation);
MessageDialog md =
new MessageDialog
($"{_reservations.Count} massages reserved\n" +
$"Newest is on {new_reservation.AppointmentDay.Month}/" +

$"{new_reservation.AppointmentDay.Day}/" +
$"{new_reservation.AppointmentDay.Year}" +
$" at {new_reservation.AppointmentTime}\n" +
$"for {new_reservation.CustomerName}");

await md.ShowAsync();
control_calendar.Date = null;

}
else
{

MessageDialog md =
new MessageDialog("Select a day first");

await md.ShowAsync();
}

}
}

}

Although there is a lot of added code, you haven’t done much in Listing 2-16. Let’s start with the
code-behind. You add a new list of strings to represent the list of usual customers, and in the loaded event, you
populate it with a generic sample list. You then databind this list to the AutoSuggestBox. This is the manner with
which suggestions are added to the drop-down list of this control. In the TextChanged and QuerySubmitted event
handlers, you query the _usuals list and retrieve the results that match to the text presently in the suggestion box.
You then simply databind the filtered results back into the AutoSuggestBox, thus creating the filtered list effect.

Chapter 2 ■ BasiC Controls

75

CommandBar
The CommandBar is used to give end users quick access to an app’s most common tasks. It is a general
purpose, flexible, lightweight control that can display complex content (such as images, progress bars, or
text blocks) and simple commands. It replaces the AppBar control from Windows 8/8.1 lore. (Even though
AppBar is still present in the UWP, it is recommended that you use CommandBar instead.)

The CommandBar is divided into four main areas. The content area is shown on the left; the More
button is shown on the right; the primary commands are shown to the left of the More button; and an
overflow menu is shown only when the CommandBar is open and contains secondary commands.

When elements are added directly to the CommandBar’s content, it essentially behaves like an
additional user interface surface that you must lay out as you see fit. In Listing 2-17, you move the Reserve
Room button out of the main page user interface and place it into a CommandBar’s content area. This
sample also shows how CommandBars are added to a page.

Listing 2-17. CommandBar in Action

<Page x:Class="Lesson2_ControlCorral.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Lesson2_ControlCorral"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">
 <Page.BottomAppBar>

<CommandBar>
<CommandBar.Content>

<StackPanel Orientation="Horizontal">
<Button Content="Reserve Room"

Command="{Binding}"
CommandParameter="make a reservation"
Width="114"
Height="32">

</Button>
</StackPanel>

</CommandBar.Content>
</CommandBar>
</Page.BottomAppBar>

...
</Page>

In Listing 2-17, a CommandBar is added to your MainPage using the BottomAppBar property via the
property element Page.BottomAppBar. Page has two areas where CommandBars can be added, the top of
the page and the bottom of the page. Can you guess what the property for adding a CommandBar to the top
of the page is? For those of you who might not be paying attention, it is TopAppBar. Figure 2-9 shows how the
app looks with the CommandBar in place.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

Chapter 2 ■ BasiC Controls

76

You can add elements as direct children of the CommandBar, but only the AppBarButton,
AppBarToggleButton, and AppBarSeparator elements are supported. This is because the default content
added to a CommandBar maps to its PrimaryCommands property, and this property as well as its counterpart,
SecondaryCommands, only support the aforementioned controls. If you need to know when your page’s
CommandBar has been opened or closed, you can handle the Opening, Opened, Closing, and Closed events.
You can programmatically set the CommandBar to either state with the IsOpen property. When open,
the primary command buttons are shown with text labels; the overflow menu is open only if secondary
commands are present.

One of the key benefits of using a CommandBar is reducing the amount of space taken up by controls
on the screen. However, at present, the Reserve Room button is still showing when the application launches.
By default, CommandBar shows in what is referred to as its Compact mode, with content, icons without
labels, and the More button. Using the property ClosedDisplayMode, you can change this behavior. You
can set the mode to Minimal to show only a thin bar that acts as the More button. (This is the behavior
an AppBar utilizes when in a closed state.) The other choice is Hidden, in which case the CommandBar
is not displayed. Modify the code in Listing 2-17 by adding the following attribute, ClosedDisplayMode =
"Minimal", to the CommandBar element and then run the same. The app should now look like Figure 2-10.

Figure 2-9. CommandBar user interface

Chapter 2 ■ BasiC Controls

77

You might have noticed that the CommandBar is automatically returned to closed state after you
interact with anything in your app (including the buttons inside it). For some apps, this might not be ideal
behavior. To prevent this from happening, set the value of the IsSticky property to true.

AppBarButton
The AppBarButton is a specialized kind of button designed to be primarily used in concert with a UWP
CommandBar (it does not need to be placed in a CommandBar, it is just designed to be used with one).
Two distinguishing characteristics of the AppBarButton are that it has a full fidelity and compact view, and
that its content is set through two properties: Label and Icon. You can set the Label property to a string to
specify the text label; however, be mindful of the fact that it will be hidden when the button is in its compact
state (accomplished by setting the IsCompact property appropriately). To ensure that a user can still derive
meaning from the button when in compact mode, be sure to define a meaningful icon. You can define the
AppBarButton icon by setting the Icon property to any element derived from the IconElement class. The
UWP provides four kinds of icon elements at the present time:

• FontIcon: The icon is based on a glyph from the specified font family.

• BitmapIcon: The icon is based on a bitmap image file with the specified URI.

• PathIcon: The icon is based on Path data.

• SymbolIcon: The icon is based on a glyph from the Segoe MDL2 Assets font as listed
in the Symbol enumeration.

You previously had the Reserve Room button designed as a standard UWP button sitting in the
CommandBar for the page. Let’s change it to an AppBarButton. Listing 2-18 shows the changes that need to
be made to the XAML to do this. No code-behind changes are necessary.

Figure 2-10. CommandBar in “Minimal” user interface

Chapter 2 ■ BasiC Controls

78

Listing 2-18. AppBarButton in Action

<Page
 x:Class="Lesson2_ControlCorral.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Lesson2_ControlCorral"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">
 <Page.BottomAppBar>

<CommandBar
ClosedDisplayMode="Compact"
IsSticky="True">

<AppBarButton
Command="{Binding}"
CommandParameter="make a reservation"
Label="Reserve"
Icon="Calendar">

</AppBarButton>
</CommandBar>

 </Page.BottomAppBar>
...
</Page>

In Listing 2-18, you convert the Button control you have been using for making reservations to an
AppBarButton control. You also move it out of the Content section of the CommandBar and into the
PrimaryCommands section. Since the Reserve Room button is now following the layout rules of the
CommandBar, you no longer need size or layout information on the button. You also no longer need to place
it inside of a layout control. If you run the app, it should now look like Figure 2-11 when the CommandBar is
expanded.

Figure 2-11. CommandBar with AppBarButton primary command

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

Chapter 2 ■ BasiC Controls

79

■ Note even though CommandBar contains a Content property, child elements of CommandBar are placed
into the primaryCommands collection by default. this is because the primaryCommands, and not Content, is the
default content property defined for CommandBar.

DatePicker
A DatePicker control is used in scenarios where your app needs to allow a user to easily enter a known
date value. The user picks the date using ComboBox selection for month, day, and year values. You can
then programmatically access the date value selected by the user through the Date property. You will use
the DatePicker to capture the date of birth of potential massage clients. Add the DatePicker control to the
Control Corral user interface and code-behind as shown in Listing 2-19.

Listing 2-19. DatePicker in Action

<Grid>
...
<DatePicker

x:Name="control_dob"
Header="When were you born?"
HorizontalAlignment="Left"
Margin="10,177,0,0"
VerticalAlignment="Top" />

...
</Grid>

//code
var new_reservation = new ReservationInfo()
{

AppointmentDay = control_calendar.Date.Value.Date,
AppointmentTime = control_time.Time,
CustomerName = control_name.Text,
DOB = control_dob.Date.Date,

};

Figure 2-12 shows how Control Corral looks on my machine when I try to enter a date of birth.

Chapter 2 ■ BasiC Controls

80

MenuFlyout
MenuFlyout functions somewhat similar to context menus. It temporarily displays a list of commands
related to what the user is currently doing. MenuFlyouts are usually set in XAML as the value of the property
Button.Flyout for all button types and FlyoutBase.AttachedFlyout for all other controls. When specified
on a button type, the MenuFlyout displays when the button is invoked. When assigned to any other UI
elements, you must call either the ShowAt method or the static ShowAttachedFlyout method to display the
flyout. Let’s do some refactoring of your app user interface to enable the flyout functionality. Listing 2-20
shows how the command bar should now be specified; the areas in bold are the changes.

Listing 2-20. MenuFlyout in Action

<Page.BottomAppBar>
 <CommandBar

ClosedDisplayMode="Minimal"
IsSticky="True">

<AppBarButton
Label="Reserve"
Icon="Calendar">
<AppBarButton.Flyout>

<MenuFlyout>
<MenuFlyoutItem

Command="{Binding}"
CommandParameter="make a reservation"
Text="Pay Now" />

<MenuFlyoutItem
Text="Pay Later"
Command="{Binding}"
CommandParameter="hold my spot" />

</MenuFlyout>

Figure 2-12. DatePicker user interface

Chapter 2 ■ BasiC Controls

81

</AppBarButton.Flyout>
</AppBarButton>

 </CommandBar>
</Page.BottomAppBar>

Notice from this sample that you have shifted the point at which a reservation happens from the
AppBarButton itself and placed it on the menu items of its MenuFlyout. The command and command
parameter property have also been shifted down to the menu items of the flyout. Now when a user clicks the
reserve button, they get two choices: they can decide to pay upfront or pay when they show up for a massage.
To support the Pay Later scenario, a new command parameter and declaration have been added to the Pay
Later menu item. The exercise of moving these properties between the three control types you have now used,
from Button to AppBarButton and now to MenuFlyoutItem, without the need to modify event handlers in the
code-behind, should highlight the benefits of using commands versus programmatically wiring interactivity.

In the code-behind, some changes must also be made. First, let’s add a new centralized location for
displaying reservation summary information. Presumably any activity that generates a reservation would
need to have a summary displayed; having one method service all these potential scenarios is far more ideal
than having multiple copies of the same basic code spread around the app. Listing 2-21 shows the code for a
ShowSummary method; add it to the MainPage class.

Listing 2-21. Centralizing the Display of Summary Information

async void ShowSummary(ReservationInfo new_reservation,
string reservation_tag = "")

{
 MessageDialog md =
 new MessageDialog

($"{_reservations.Count} massages reserved\n" +
$"Newest is {reservation_tag} on {new_reservation.AppointmentDay.Month}/" +

$"{new_reservation.AppointmentDay.Day}/" +
$"{new_reservation.AppointmentDay.Year}" +
$" at {new_reservation.AppointmentTime}\n" +
$"for {new_reservation.CustomerName}\n" +
$"born {new_reservation.DOB}");

 await md.ShowAsync();
 control_calendar.Date = null;
}

The only change to the code from its previous version is the addition of a reservation_tag value to
the summary display string. For the purposes of this sample, that value will be used to indicate what kind
of reservation has been made during summary presentation. Listing 2-22 shows the updated code for the
_command_DoSomething event handler. Modify your code base to match it.

Listing 2-22. Connecting Your New MenuFlyout

async private void _command_DoSomething(string command)
{

if (control_calendar.Date == null)
{

MessageDialog md =
new MessageDialog("Select a day first");

await md.ShowAsync();
return;

}

Chapter 2 ■ BasiC Controls

82

if (command.ToLower() == "make a reservation")
{

var new_reservation = new ReservationInfo()
{

AppointmentDay = control_calendar.Date.Value.Date,
AppointmentTime = control_time.Time,
CustomerName = control_name.Text,
DOB = control_dob.Date.Date,

};
_reservations.Add(new_reservation);
ShowSummary(new_reservation, "confirmed");

}
else if (command.ToLower() == "hold my spot")
{

var new_reservation = new ReservationInfo()
{

AppointmentDay = control_calendar.Date.Value.Date,
AppointmentTime = control_time.Time,
CustomerName = control_name.Text,
DOB = control_dob.Date.Date,
HasPaid = false,

};
_reservations.Add(new_reservation);
ShowSummary(new_reservation, "**tentatively**");

}
control_calendar.Date = null;

}

Now that you have more than one command to work with, it makes sense to start refactoring the code
base for readability and efficiency. You’ve moved the null checking for the CalendarDatePicker outside
of the logic for any one specific command as it will apply regardless of command. You are now also using
ShowSummary to present a summary of the reservation rather than have a slightly different copy of the
contents of ShowSummary present for each command implement.

Finally, you are passing a contextual string into ShowSummary so the user can tell whether it is a
confirmed reservation or a tentative one. For a confirmed reservation, you pass “confirmed” and for a
tentative one you pass “**tentative**”. This string will be combined with the summary string in ShowSummary
to present a message to the user that gives an indication of what kind of reservation has been made. An
example of a tentative summary is below.

"100 massages reserved
Newest is **tentative** on 10/15/2015 at 05:00:00
for Azuka M.
Born 7/7/1997"

Figure 2-13 shows the various states of the app now.

Chapter 2 ■ BasiC Controls

83

TextBox
The TextBox control, commonly used to accept data input, provides the ability to display and edit plain text
in single or multi-line form. You previously used a kind of TextBox called an AutoSuggestBox.

To access the contents of a textbox, use the Text property. If your code needs to be notified as text in
the textbox changes, you can handle the TextChanged event. You can restrict the number of characters the
user can type by setting the MaxLength property. However, MaxLength does not restrict the length of pasted
text. You can customize how the text is displayed in the TextBox through the standard Control properties like
FontFamily, FontSize, FontStyle, Background, Foreground, and CharacterSpacing.

To enable multi-line input, set the AcceptsReturn property to true. If multiline input is enabled, you can
enable text wrapping by setting the TextWrap property to Wrap. A multi-line TextBox will continue to grow
vertically unless it is constrained by its Height or MaxHeight property, or by a parent container. When in
multi-line mode, vertical scrollbars are not shown by default. You can show the vertical scrollbars by setting
the attached property ScrollViewer.VerticalScrollBarVisibility to Auto. You can make a TextBox read-
only by setting the IsReadOnly property to true.

Let’s use a TextBox control to capture a passphrase that can be used to identify a user when they come
for their appointment. Listing 2-23 shows the changes that need to be made to the XAML.

Listing 2-23. TextBox in Action

<TextBox
x:Name="txt_passphrase"
Header="Enter a passphrase"
HorizontalAlignment="Left"
Margin="10,242,0,0"
TextWrapping="Wrap"
PlaceholderText="keep it a secret"
VerticalAlignment="Top"
Width="296" />

In Listing 2-24, you continue your refactoring efforts by moving the reservation creation process into its
own method, MakeReservation. Add the code to the MainPage class.

Figure 2-13. MenuFlyout in action

Chapter 2 ■ BasiC Controls

84

Listing 2-24. CreateReservation Method

private ReservationInfo CreateReservation()
{

var new_reservation = new ReservationInfo()
{

AppointmentDay = control_calendar.Date.Value.Date,
AppointmentTime = control_time.Time,
CustomerName = control_name.Text,
DOB = control_dob.Date.Date,
Passphrase = txt_passphrase.Text,

};
_reservations.Add(new_reservation);
return new_reservation;

}

Note that you have added the setting of Passphrase to the method. Now modify _command_DoSomething
so that it now looks like Listing 2-25.

Listing 2-25. Refactored _command_DoSomething Event Handler

async private void _command_DoSomething(string command)
{

if (control_calendar.Date == null)
{

MessageDialog md =
new MessageDialog("Select a day first");

await md.ShowAsync();
return;

}

if (command.ToLower() == "make a reservation")
{

var new_reservation = CreateReservation();
ShowSummary(new_reservation, "confirmed");

}
else if (command.ToLower() == "hold my spot")
{

var new_reservation = CreateReservation();
ShowSummary(new_reservation, "**tentatively**");

}
control_calendar.Date = null;

}

PasswordBox
PasswordBox is basically a TextBox that lets a user enter a single line of masked, non-wrapping text into it.
It offers a more secure approach to entering content since the text entered cannot be read. Password uses a
masking character to obfuscate the text entered into it. If you don’t like the default masking character, you
can modify it by setting the PasswordChar property. To access the contents of the PasswordBox, use the
Password property.

Chapter 2 ■ BasiC Controls

85

In the previous section, you added a passphrase TextBox into your Control Corral screen. This item was
meant to capture and store a secret passphrase that will be used as an additional identification factor when
the user goes to get their massage. As you might imagine, using a TextBox to store this kind of information is
less than ideal. In Listing 2-26, you convert your user interface and code-behind to support PasswordBox.

Listing 2-26. PasswordBox in Action

<PasswordBox
x:Name="txt_passphrase"
Header="Enter a passphrase"
HorizontalAlignment="Left"
Margin="10,242,0,0"
PlaceholderText="keep it a secret"
VerticalAlignment="Top"
Width="296" />

//code
private ReservationInfo CreateReservation()
{

var new_reservation = new ReservationInfo()
{

AppointmentDay = control_calendar.Date.Value.Date,
AppointmentTime = control_time.Time,
CustomerName = control_name.Text,
DOB = control_dob.Date.Date,
Passphrase = txt_passphrase.Password,

};
_reservations.Add(new_reservation);
return new_reservation;

}

Figure 2-14 shows what it looks like when this app is run and some text is entered into the
PasswordBox field.

Chapter 2 ■ BasiC Controls

86

ComboBox
The ComboBox control is unique in that it can be thought of as a basic control but also as a data control.
This is because it is used to present a list of items that a user can select from, more specifically because this
list can be populated in one of two ways. You can manually add objects directly to the ComboBox’s Items
collection or you can use databinding. It is that latter approach that shifts the categorization of a ComboBox
away from just a simple control.

Two properties are critical to working with the ComboBox control: SelectedItem and SelectedIndex.
Using either you can get or set its currently selected item. Modify MainPage.xaml and its code-behind
incorporate ComboBox, as shown in Listing 2-27.

Listing 2-27. ComboBox in Action

<ComboBox
x:Name="control_procedure"
Header="Select a procedure"
HorizontalAlignment="Left"
Margin="10,307,0,0"
VerticalAlignment="Top"
Width="296" SelectedIndex="0">
<ComboBoxItem

Content="Swedish" />
<ComboBoxItem

Content="Hot Stone" />
<ComboBoxItem

Content="Shiatsu" />
<ComboBoxItem

Content="Deep Tissue" />

Figure 2-14. PasswordBox in action

Chapter 2 ■ BasiC Controls

87

<ComboBoxItem
Content="Trigger Point" />

<ComboBoxItem
Content="Thai" />

</ComboBox>

//code
async void ShowSummary(ReservationInfo new_reservation,

string reservation_tag = "")
{

MessageDialog md =
new MessageDialog
($"{_reservations.Count} massages reserved\n" +

$"Newest is {reservation_tag} on" +
"{new_reservation.AppointmentDay.Month}/" +
$"{new_reservation.AppointmentDay.Day}/" +
$"{new_reservation.AppointmentDay.Year}" +
$" at {new_reservation.AppointmentTime}\n" +
$"for {new_reservation.CustomerName}\n" +
$"born {new_reservation.DOB}\n" +
$"Massage Type: {new_reservation.Procedure}"
);

await md.ShowAsync();
control_calendar.Date = null;

}

private ReservationInfo CreateReservation()
{

var new_reservation = new ReservationInfo()
{

AppointmentDay = control_calendar.Date.Value.Date,
AppointmentTime = control_time.Time,
CustomerName = control_name.Text,
DOB = control_dob.Date.Date,
Passphrase = txt_passphrase.Password,
Procedure = (control_procedure.SelectedItem

as ComboBoxItem).Content as string,
};
_reservations.Add(new_reservation);
return new_reservation;

}

Slider
The Slider lets the user select from a range of values by moving a Thumb control along a track. It is a great
choice in scenarios where exact values are less useful than their visual representation. Sliders expose the
Minimum and Maximum properties to help set the range of values a user is picking from. You can use the Value
property to retrieve the currently selected value of the slider. Let’s use a slider to capture the intensity of
massage pressure a potential customer thinks they are comfortable with. Listing 2-28 shows how you can
add a slider to your app. Modify MainPage and its code-behind to match it.

Chapter 2 ■ BasiC Controls

88

Listing 2-28. Slider in Action

<Slider
 x:Name="control_intensity"
 Header="Massage Intensity"
 HorizontalAlignment="Left"
 Margin="10,375,0,0"
 VerticalAlignment="Top"
 Width="296" />

//code
private ReservationInfo CreateReservation()
{

var new_reservation = new ReservationInfo()
{

AppointmentDay = control_calendar.Date.Value.Date,
AppointmentTime = control_time.Time,
CustomerName = control_name.Text,
DOB = control_dob.Date.Date,
Passphrase = txt_passphrase.Password,
Procedure = (control_procedure.SelectedItem

as ComboBoxItem).Content as string,
MassageIntensity = control_intensity.Value,

};
_reservations.Add(new_reservation);
return new_reservation;

}

Image
The Image control can be used to display images of the following image file formats:

• Joint Photographic Experts Group (JPEG)

• Portable Network Graphics (PNG)

• Bitmap (BMP)

• Graphics Interchange Format (GIF)

• Tagged Image File Format (TIFF)

• JPEG XR

• Icons (ICO)

You can specify the source URI that an Image control displays via the Source attribute. In XAML, this
field expects an HTTP or ms-appx-based URI to the specified image resource. Typically, the images you load
are from image files included as part of your app package, but in situations where you need to get files from
an external server, the Image control has built in support for it. Listing 2-29 shows the basic use of an Image
control.

Chapter 2 ■ BasiC Controls

89

Listing 2-29. Image in Action

<Image
x:Name="control_image"
Source="/assets/storelogo.png" />

This code snippet displays an image directly from your app’s app package. When an image is referenced
in XAML, the shorthand notation used here can be utilized. The source attribute could have also been
specified as ms-appx:/assets/storelogo.png and it would be the same result.

Displaying an image file programmatically is a bit more involved. Listing 2-30 illustrates how it can be
done. It requires the using statement using Windows.UI.Xaml.Media.Imaging; for it to work.

Listing 2-30. Setting the Source to an Image Programmatically

BitmapImage image = new BitmapImage();
image.UriSource = new Uri("ms-appx:///assets/storelogo.png");
control_image.Source = image;

Your image source might also be a stream, in which case you can call the SetSourceAsync method of
BitmapImage. Using a stream for an image source is fairly common. For example, if your app enables a user
to choose an image file using a FileOpenPicker control, the object you get that represents the file the user
chose can only be opened as a stream. Let’s add a control to capture and store the user’s picture. Listing 2-31
shows the changes that need to be made to MainPage.xaml to enable displaying an image.

Listing 2-31. Image in Action

<Button
Click="ReplaceImage"
HorizontalAlignment="Left"
Height="227"
Margin="353,10,0,0"
VerticalAlignment="Top"
Width="225"
BorderThickness="1"
BorderBrush="Gray"
Background="Gainsboro">
<Image

x:Name="control_image"
Source="/alex.jpg"

/>
</Button>

As you can see, rather than simply placing an image on the screen, you are using content composition
to place the image directly inside a Button control.

This sample will utilize features you won’t be exploring until Chapter 7, but it should be straightforward
enough for you to understand. Again, if you don’t quite get anything, don’t worry; you will get into it later in
this book.

You will be using a class called the CameraCaptureUI to invoke the camera app as a dialog. You will then
be able to take a picture and have that picture sent back to your app for rendering and storing. This will all be
kicked off when the user clicks the Replace Image button.

http://dx.doi.org/10.1007/978-1-4842-1449-7_7

Chapter 2 ■ BasiC Controls

90

Open the code-behind for MainPage and define ReplaceImage as follows, making sure to add all
appropriate namespace declarations, class level fields, and modifications to CreateReservation.
Listing 2-32 illustrates.

Listing 2-32. Wiring Up the Image Control

...
CameraCaptureUI ccui = new CameraCaptureUI();
byte[] _user_image;
...
async private void ReplaceImage(object sender, RoutedEventArgs e)
{

BitmapImage image = new BitmapImage();
control_image.Source = image;

ccui.PhotoSettings.AllowCropping = true;
ccui.PhotoSettings.MaxResolution =

CameraCaptureUIMaxPhotoResolution.HighestAvailable;
var result = await ccui.CaptureFileAsync(CameraCaptureUIMode.Photo);
if (result != null)
{

var stream = await result.OpenReadAsync();
await image.SetSourceAsync(stream);

//get the image data and store it
stream.Seek(0);
BinaryReader reader = new BinaryReader(stream.AsStreamForRead());
_user_image = new byte[stream.Size];
reader.Read(_user_image, 0, _user_image.Length);

}
}

...

private ReservationInfo CreateReservation()
{

var new_reservation = new ReservationInfo()
{

AppointmentDay = control_calendar.Date.Value.Date,
AppointmentTime = control_time.Time,
CustomerName = control_name.Text,
DOB = control_dob.Date.Date,
Passphrase = txt_passphrase.Password,
Procedure = (control_procedure.SelectedItem

as ComboBoxItem).Content as string,
MassageIntensity = control_intensity.Value,
CustomerImage = _user_image,

};
_reservations.Add(new_reservation);
return new_reservation;

}

Chapter 2 ■ BasiC Controls

91

After a user takes a picture using the CameraCaptureUI class, ReplaceImage reads the image as a
stream and passes it into SetSourceAsync. This takes care of showing the image that the user has picked but
does nothing to store the information for future use. To do this, you read the stream into a buffer that you
maintain at the class level. When CreateReservation is called, this buffer is used to set the reservation’s
CustomerImage property. Figure 2-15 shows what the app looks like during the image selection process.

Figure 2-16 shows how the user interface looks after an image has been selected.

Figure 2-15. CamerCaptureUI in action

Chapter 2 ■ BasiC Controls

92

Even if you were not storing the binary data of the image in a class level field, it’s a safe bet to say that
large image files can impact performance. Images load into memory, so if you are referencing an image
file where you know that the source file is a large, high-resolution image, but your app is displaying it in a
UI region that’s smaller than the image’s natural size, you should set the DecodePixelWidth property, or
DecodePixelHeight. The DecodePixel* properties enable you to pass information directly to the format-
specific codec, and the codec can use this information to decode more efficiently and to a smaller memory
footprint. Set DecodePixelWidth to the same pixel width of the area that you want your app to actually
display. In other words, DecodePixelWidth for the BitmapImage source should be the same value as the
Width or ActualWidth of the Image control that displays that source.

WebView
The WebView control can be used to host HTML content on your screen. This content can come from the
Web, your local app package, or even a programmatically-specified string in your code-behind. There are a
number of things to keep in mind when working with the WebView. The list below highlights some notable
differences from a standard browser:

• WebView is not a control; rather, it is a UIElement.

• WebView doesn’t support most of the user input events inherited from UIElement.

• WebView always uses Internet Explorer 11 in document mode.

Figure 2-16. Image control in action

Chapter 2 ■ BasiC Controls

93

• WebView does not support any ActiveX controls or plug-ins, nor does it support
some HTML5 features including AppCache, IndexedDB, programmatic access to the
Clipboard, and geolocation.

• WebView only supports navigation with the HTTP, HTTPS, ms-appx-web, and ms-
appdata schemes.

Like the Frame control, WebView provides several APIs for basic navigation that can be used to add
typical web browsing capabilities to your app. These include: GoBack, GoForward, Stop, Refresh, CanGoBack,
and CanGoForward. To set the content of the WebView, set the Source property in XAML or use any one of the
Navigate methods in code. For more advanced navigation scenarios, like using specific VERBS as part of a
navigation request or setting headers, use the NavigateWithHttpRequestMessage method.

Loading Content

WebView supports the loading of uncompressed and unencrypted content from your app’s LocalFolder
or TemporaryFolder data stores using the ms-appdata scheme (you will discuss these folder locations in
detail in Chapter 6). To load compressed or encrypted files, use the NavigateToLocalStreamUri method
with a custom resolver. The WebView support for this scheme requires you to place your content in a
subfolder under the local or temporary folder. These subfolders are completely isolated from each other so
that hyperlinks from a page in one folder cannot take a user to a page in another folder. The following are
examples of URIs that map to these locations:

ms-appdata:///local/folder/file.html
ms-appdata:///temp/folder/file.html.

WebView also supports loading content directly from your app package. To do this, use the Navigate
method with a URI that uses the ms-appx-web scheme. This scheme follows the same format as ms-appdata.

ms-appx-web:///folder/file.html

And of course, WebView supports accessing HTML content from a remote web location using HTTP/HTTPS.

Handling Events

WebView provides several events that you can use to respond to navigation and content loading states.
These events occur in the following order for the root WebView content:

• NavigationStarting: Occurs before the WebView navigates to new
content. You can cancel navigation in the event handler by setting the
WebViewNavigationStartingEventArg parameter’s Cancel property to true.

• ContentLoading: Occurs when the WebView has started loading new content.

• DOMContentLoaded: Occurs when the WebView has finished parsing the current
HTML content.

• NavigationCompleted: Occurs when the WebView has finished loading the current
content or if navigation has failed. To determine whether navigation has failed, check
the IsSuccess property on the WebViewNavigationCompletedEventArgs parameter.

Similar events occur in the same order for each iframe loaded within the WebView content. These
events names are prefixed by the word Frame so the ContentLoading event for an iframe inside a WebView
would be FrameContentLoading.

http://dx.doi.org/10.1007/978-1-4842-1449-7_6

Chapter 2 ■ BasiC Controls

94

Interoperability with WebView Content

WebView supports the ability to programmatically interact with the content of the WebView by using the
InvokeScriptAsync method to either invoke or inject script into the WebView content. If a JavaScript
function is called, it cannot return anything but a string value. Additionally, functions that require a
secondary window to operate (for instance prompt() or alert()) cannot be successfully called.

To get information back from the HTML document in a WebView, your page code must handle the
ScriptNotify event. On the HTML side, the executing script must make a call to window.external.notify
with a string parameter to send information back to your app. This functionality must be enabled in the app
manifest for it to function. Specifically, the URI where the call to window.external.notify is coming from
must be included in the ApplicationContentUriRules section of the app manifest. This manifest requirement
does not apply to content that originates from the app package, uses an ms-local-stream schemed URI, or is
loaded using NavigateToString.

Figure 2-17 shows the app manifest configuration window for setting this value.

The URIs in this list must use HTTPS, and may contain subdomain wildcards (for example,
https://*.microsoft.com), but they cannot contain domain wildcards.

One cool feature the WebView control supports is the ability to take a snapshot of the content it is
currently presenting using the CapturePreviewToStreamAsync method. You can also enable the sharing of
WebView content using CaptureSelectedContentToDataPackageAsync method.

Noteworthy Mentions
The following controls are not very popular for every day use but do satisfy specific scenarios where their
unique features are required.

ProgressBar

The ProgressBar control visually indicates progress of an operation with one of two styles: a bar that displays
a repeating pattern (when the IsIndeterminate property is set to true), or a bar that fills based on a value.
When IsIndeterminate is false, you specify the range with the Minimum and Maximum properties. By default
Minimum is 0 and Maximum is 1. To specify the progress value, you set the Value property. You can alternatively
use a ProgressRing control to indicate indeterminate progress. A progress ring does the same thing as an
indeterminate progress bar but uses an animated ring instead of a line. See Listing 2-33 and Figure 2-18.

Figure 2-17. The Content URIs section of App manifest

https://*.microsoft.com

Chapter 2 ■ BasiC Controls

95

Listing 2-33. Defining a ProgressBar Control in XAML

<ProgressBar
HorizontalAlignment="Left"
Height="10"
Margin="754,215,0,0"
VerticalAlignment="Top"
Width="100"
Minimum="0"
Maximum="100"
Value="45" />

<ProgressRing IsActive="True" />

■ Note When the progressBar is indeterminate, the progress animation continues even if it’s not visible on
the screen, such as when the progressBar Visibility is Collapsed. this can keep the Ui thread awake, use
resources, and impair app performance. When the progressBar is not visible, you should disable the animation
by setting IsIndeterminate to False.

HyperlinkButton

One handy kind of button you will probably use as some point in your UWP app is the HyperlinkButton.
These controls are designed to open the URI specified in their NavigateUri property when a user clicks
them (the defaults defined on the machine will determine what program/app is used to handle the URI
launch request). If a NavigateUri is not specified and the Click event is, HyperlinkButton will function like a
normal button. See Listing 2-34 and Figure 2-19.

Listing 2-34. Defining a HyperlinkButton Control in XAML

<HyperlinkButton
Content="Publishers Website"
NavigateUri="http://www.thethinkmine.com"
HorizontalAlignment="Left"
Margin="353,242,0,0"
VerticalAlignment="Top" />

Figure 2-18. The ProgressBar and ProgressRing user interfaces

http://www.thethinkmine.com/

Chapter 2 ■ BasiC Controls

96

Figure 2-19. HyperlinkButton in action

CheckBox

Both CheckBox and RadioButton controls allow the user to select from a list of options. CheckBox controls
allow the user to select a combination of options. In contrast, RadioButton controls allow the user to select
from mutually exclusive options. UWP checkboxes can report an intermediate state when the property
IsThreeState is set to true. You can use the IsChecked property to determine if a given checkbox is in the
checked state. See Listing 2-35 and Figure 2-20.

Listing 2-35. Defining a Checkbox Control in XAML

<CheckBox
x:Name="checkBox"
IsChecked="True"
Content="Send me useless information"
HorizontalAlignment="Left"
Margin="10,439,0,0"
VerticalAlignment="Top" />

Figure 2-20. The Checkbox control

Chapter 2 ■ BasiC Controls

97

RadioButton

The RadioButton can be used to limit a user’s selection to a single choice within a set of related, but mutually
exclusive, choices. You group RadioButton controls by putting them inside the same parent container or by
setting the GroupName property on each RadioButton to the same value. Like a CheckBox, you can use the
IsChecked property of a RadioButton to determine if it has been selected.

A RadioButton can be cleared by clicking another RadioButton in the same group, but it cannot be
cleared by clicking it again like a checkbox can. See Listing 2-36 and Figure 2-21.

Listing 2-36. RadioButton Control in Action

<Grid
 Margin="10,483,0,0"
 Height="130" VerticalAlignment="Top"
 HorizontalAlignment="Left" Width="296">
 <Border

BorderThickness="1" BorderBrush="Black" Padding="10">
<Grid>

<RadioButton
Content="Female" HorizontalAlignment="Left"
Margin="0,31,0,0" GroupName="Gender"
VerticalAlignment="Top" Width="219" />

<RadioButton
Content="Male" HorizontalAlignment="Left"
GroupName="Gender" VerticalAlignment="Top"
Width="219" />

<RadioButton
Content="Unspecified" HorizontalAlignment="Left"
Margin="0,62,0,0" GroupName="Gender"
IsChecked="True" VerticalAlignment="Top"
Width="219" />

</Grid>
 </Border>
 <Border

HorizontalAlignment="Right" Margin="0,-10,14,0"
VerticalAlignment="Top" Background="White"
Width="63">
<TextBlock

HorizontalAlignment="Center" TextAlignment="Center"
TextWrapping="Wrap" Text="Gender"
Height="20" Width="62" />

 </Border>
</Grid>

Figure 2-21. The RadioButton controls in action

Chapter 2 ■ BasiC Controls

98

ToggleSwitch

The ToggleSwitch lets the user switch between on and off states. To determine the current state of the switch,
use the IsOn property. To know immediately when the toggle state has been modified, use the Toggled
event. See Listing 2-37 and Figure 2-22.

Listing 2-37. Defining a ToggleSwitch Control in XAML

<ToggleSwitch

Header="Make recurring appointment"
HorizontalAlignment="Left"
Margin="10,630,0,0"
VerticalAlignment="Top" />

Border

Border draws a border and or background around a single child object. You can specify basic properties of a
Border by setting its Width, Height, BorderBrush, BorderThickness, and Background color. Additionally, you
can round the border corners by setting the CornerRadius property, and you can position the object inside
the Border by setting the Padding property. You used a border object earlier in this chapter when you
re-templated a button; you also used one in Chapter 1 when you used content composition to style the
content inside your attendee counting buttons. Although this control does not technically stand alone as
screen content, it can be an invaluable asset when building UWP user interfaces.

Summary
You just completed a meaty chapter with a comprehensive and in-depth investigation into incorporating
basic controls into your UWP apps. Here’s a review of some key points:

• Controls are encapsulated pieces of user interface that combine layout, content,
and behavior to create distinct experiences within the construct of the surface that
contains them.

• The four main classes of controls are basic controls, layout controls, data controls,
and custom controls that the UWP provides.

• Controls are made up of their user interface (in the form of templates or composed
content) and the behaviors that bind their user interface in meaningful ways.

• The UWP app window has a Content property that is the primary surface upon
which XAML-based user interfaces are presented. Additionally, Frame and Page
controls facilitate navigation within a XAML-based UWP app.

Figure 2-22. The ToggleSwitch control

http://dx.doi.org/10.1007/978-1-4842-1449-7_1

Chapter 2 ■ BasiC Controls

99

• Command binding is a technique that allows us to bind behavior to abstract
commands such that the user interface declaration of a command-generating
control is not rigidly connected to the code-behind that implements that behavior.

• Controls can be re-templated to enable a more tailored user experiences.

• You learned how to use many of the major controls exposed by the UWP platform.

• Custom controls give you the ability to create reusable user interfaces. This allows
you to use controls that have the same layout and behavior in repeated instances.

101

Chapter 3

Data Controls

In the previous chapter, you learned about the basic controls available to a developer. This chapter continues
the control discussion with data controls. Data controls, like basic controls, are designed with presentation
and interaction with the end user in mind. They are meant to be seen by the end user. What separates
data controls from basic controls is that data controls are tailored to present sets of data to the user in an
optimized manner, while most basic controls are meant to either take input from the user or present scalar
information to the user.

As you did in the previous chapter, you will be using the UWP app you are building for the Control
Corral imaginary business to frame the conversation. Chapter 2’s implementation of the Control Corral app
was a great start on a useful massage reservation system, but it lacked a number of key features. To get it to
the next level, reservations and their associated information need to be properly persisted so that all the data
captured isn’t lost once the app is closed. The app also needs more screens. Most applications that work with
data expose SCRUD interfaces to the end user (SCRUD stands for Search, Create, Read, Update, and Delete.)
Right now the app only has the ability to capture and store reservations, satisfying the “Create” part of
SCRUD. You must add new pages to the app to support the various other activities that must be performed
on the captured data. Let’s get started with changing the persistence model

Modifying the Project
You’ll need to do some initial project setup that has little to do with data controls to get your environment in
place to properly add functionality. One of the first activities is to change the persistence model that Control
Corral uses.

Creating a Control Corral Model
You are going to be navigating between multiple pages in this example, using the same data to present
different views to the user based on the page. This means that a primitive approach of storing the
reservations in a class level field will no longer suffice. Instead, you will need a global location where the
data can be accessed. You also need to expand the definition of the data and make it more normalized.
Normalizing the data minimizes the amount of data that must be stored. If you consider that ReservationInfo
stores the Name and Image of a customer and that a customer might make multiple appointments, you
begin to see the problem. As it stands, the same customer would be represented for each appointment,
with an image buffer for each one. Yikes! Let’s create a CustomerInfo class with CustomerName, DOB,
CustomerImage, and MassageIntensity preference properties. Listing 3-1 does this.

http://dx.doi.org/10.1007/978-1-4842-1449-7_2

Chapter 3 ■ Data Controls

102

Listing 3-1. CustomerInfo Class Definition

namespace Lesson2_ControlCorral
{

public class CustomerInfo
{

public string CustomerName { get; set; }
public byte[] CustomerImage { get; set; }
public double MassageIntensity { get; set; }
public DateTime DOB { get; set; }

}
}

Because you are now using CustomerInfo to store the customer-related data, ReservationInfo must
be changed to reference this class rather than directly storing the customer field within it. Keep the massage
intensity value here as well so that the user has the choice to override the value they might have specified as
a preference. See Listing 3-2.

Listing 3-2. ReservationInfo Class Definition

public class ReservationInfo
{

public DateTime AppointmentDay { get; set; }
public TimeSpan AppointmentTime { get; set; }
public bool HasPaid { get; set; } = true;
public string Passphrase { get; set; }
public string Procedure { get; set; }
public double MassageIntensity { get; set; }
public CustomerInfo Customer { get; set; }

}

Next, you define a class MassageType that can be used to store a list of the types of massages offered.
Presently the list of massage types is hard-coded into the UI, a bad practice. Using this type allows a user to
add or remove massage types as needed. See Listing 3-3.

Listing 3-3. MassageType Class Definition

namespace Lesson2_ControlCorral
{

public class MassageType
{

public string Name { get; set; }
public string Description { get; set; }

}
}

The system now has three data lists that it needs to track: the list of reservations, the list of known
customers, and the list of massage types that the business supports. One good practice in developing with
data is to encapsulate the various data sets your application uses into a single model or data context object
so that that there is a single point of access to all data being used by the system. To do so, create a new class
ControlCorralModel as shown in Listing 3-4.

Chapter 3 ■ Data Controls

103

Listing 3-4. ControlCorralModel Class Definition

namespace Lesson2_ControlCorral
{

public class ControlCorralModel
{

 public List<CustomerInfo> Customers { get; set; } = new
List<CustomerInfo>();
 public List<ReservationInfo> Reservations { get; set; } = new
List<ReservationInfo>();
 public List<MassageType> MassageTypes { get; set; } = new
List<MassageType>();

}
}

In Listing 3-4, you add the various data lists being tracked by the app as properties in the
ControlCorralModel class. You now have a central place where application data is defined, so let’s connect
that class with the app. Because you know that this app will have multiple pages which will need access
to the model, you will use the Application object as the location for this instance (the application object
is available to all pages in a UWP app). Add the code in Listing 3-5 to the app object’s OnLaunched event
handler in App.xaml.cs. The new code is highlighted in bold.

Listing 3-5. Implementing the Model

public static ControlCorralModel Model { get; set; }

protected override void OnLaunched(LaunchActivatedEventArgs e)
{

//instantiate model
Model = new ControlCorralModel();

//add default massage types
Model.MassageTypes.AddRange(

new List<string>
{

"Swedish","Hot Stone",
"Shiatsu","Deep Tissue",
"Trigger Point","Thai",

}.Select(i => new MassageType
{

Name = i,
}).ToList());

//add sample customers
Model.Customers.AddRange(

new List<string> {"alex",
"azuka",
"elizabeth",
"ahmed","josh","allan", "john","david",
"chris","jack","bobby","ike","emeka",

Chapter 3 ■ Data Controls

104

"tobe","chidi","mason","andrew" }.
Select(i => new CustomerInfo
{

CustomerName = i,
}).ToList());

var frame = new Frame();
Window.Current.Content = frame;
frame.Navigate(typeof(MainPage));
Window.Current.Activate();

}

In Listing 3-5, you instantiate the app’s model and populate it with the same default values you used in
the previous chapter. Rather than add these values one item at a time, you use LINQ to query into a string list
you create and project out the collection of objects you are interested in using. This is a great technique to
quickly create a collection of objects from a list of strings (it saves you the trouble of manually creating each
object in code).

Now that you have this configured, you can go back to MainPage and modify it to use the new storage
paradigm. First, you modify the OnLoad event for the MainPage so that it uses the data from your model and
not data created here. See Listing 3-6.

Listing 3-6. DataBinding to Model

//MainPage Load event
private void MainPage_Loaded(object sender, RoutedEventArgs e)
{

this.DataContext = _command;
control_name.ItemsSource = App.Model.Customers;

}

Using the data from the model means you no longer need the _usuals field, so let’s remove it from the
class by modifying the AutoSuggestBox event handlers used to filter the user list. They should now also point
to the model. See Listing 3-7.

Listing 3-7. Changing AutoSuggestBox to Use Model

private void Control_name_TextChanged(AutoSuggestBox sender,
AutoSuggestBoxTextChangedEventArgs args)

{
if (args.CheckCurrent())
{

var search_term = control_name.Text.ToLower();
var results = App.Model.Customers

.Where(i => i.CustomerName.ToLower()

.Contains(search_term.ToLower())).ToList();
control_name.ItemsSource = results;

}
}

Chapter 3 ■ Data Controls

105

private void Control_name_QuerySubmitted(AutoSuggestBox sender,
AutoSuggestBoxQuerySubmittedEventArgs args)

{
var search_term = args.QueryText.ToLower();
var results = App.Model.Customers

.Where(i => i.CustomerName

.Contains(search_term.ToLower())).ToList();
control_name.ItemsSource = results;
control_name.IsSuggestionListOpen = true;

}

private void Control_name_SuggestionChosen(AutoSuggestBox sender,
AutoSuggestBoxSuggestionChosenEventArgs args)

{
control_name.Text = (args.SelectedItem as CustomerInfo).CustomerName;

}

In Listing 3-7, the AutoSuggestBox event handlers are modified to use your app’s model rather than a
local one. Because the type of your app model is CustomerInfo and not just a generic string, you also make
some changes to the where clause used.

You next modify CreateReservation so that it is using the new paradigm. The older ReservationInfo
object had customer-related properties that were used elsewhere (in display, for instance). In an effort
to encapsulate this data in its relevant containing types, the properties were moved to CustomerInfo. All
previous references to these fields through the ReservationInfo class will now have to change. You start
with the reservation creation process.

Because you are now tracking customers in their own list (and because you want to reuse the same
customer instance for multiple reservations if needed) this method will now create new customers if and
only if they do not already exist in the model. Listing 3-8 illustrates.

Listing 3-8. Updating Reservation Creation to Use Model

private ReservationInfo CreateReservation()
{

var customer = App.Model.Customers
.Where(i =>
i.CustomerName.ToLower() == control_name.Text.ToLower())
.FirstOrDefault();

if (customer == null)
{

//create and add a new customer if
//none exist with that name
customer = new CustomerInfo
{

CustomerName = control_name.Text,
DOB = control_dob.Date.Date,
MassageIntensity = control_intensity.Value,
CustomerImage = _user_image,

};
App.Model.Customers.Add(customer);

}

Chapter 3 ■ Data Controls

106

var new_reservation = new ReservationInfo()
{

AppointmentDay = control_calendar.Date.Value.Date,
AppointmentTime = control_time.Time,
Passphrase = txt_passphrase.Password,
Procedure = (control_procedure.SelectedItem

as ComboBoxItem).Content as string,
MassageIntensity = control_intensity.Value,
Customer = customer, //connect the customer

};
_reservations.Add(new_reservation);
return new_reservation;

}

The next step is to change ShowSummary to support using the Customer property on ReservationInfo to
access the customer’s name and date of birth. See Listing 3-9.

Listing 3-9. Updating Summary Dialog to Use Model

async void ShowSummary(ReservationInfo new_reservation,
string reservation_tag = "")

{
MessageDialog md =

new MessageDialog
($"{_reservations.Count} massages reserved\n" +

$"Newest is {reservation_tag} on" +
$"{new_reservation.AppointmentDay.Month}/" +
$"{new_reservation.AppointmentDay.Day}/" +
$"{new_reservation.AppointmentDay.Year}" +
$" at {new_reservation.AppointmentTime}\n" +
$"for {new_reservation.Customer.CustomerName}\n" +
$"born {new_reservation.Customer.DOB}\n" +
$"Massage Type: {new_reservation.Procedure}"
);

await md.ShowAsync();
control_calendar.Date = null;
Frame.GoBack();

}

You then modify _command_DoSomething to store the created reservations to your model. Later, you
will create the implementations for the SaveModelAsync method. For now, just add it (you know it won’t
compile). Listing 3-10 illustrates.

Listing 3-10. Updating Command Handler to Use Model

async private void _command_DoSomething(string command)
{

if (control_calendar.Date == null)
{

MessageDialog md =
new MessageDialog("Select a day first");

await md.ShowAsync();
return;

}

Chapter 3 ■ Data Controls

107

if (command.ToLower() == "make a reservation")
{

var new_reservation = CreateReservation();
App.Model.Reservations.Add(new_reservation);
await App.SaveModelAsync();
ShowSummary(new_reservation, "confirmed");

}
else if (command.ToLower() == "hold my spot")
{

var new_reservation = CreateReservation();
App.Model.Reservations.Add(new_reservation);
await App.SaveModelAsync();
ShowSummary(new_reservation, "**tentatively**");

}
control_calendar.Date = null;

}

Finally, you must modify the user interface for MainPage.xaml so that the AutoSuggestBox is properly
connected to the back-end data that it displays. Previously this control directly bound to a list of users
(as a string). With this new change, customers are no longer stored as a string, rather as a rich set of
properties represent the massage parlor’s data. Listing 3-11 shows the changes that must be made to the
AutoSuggestBox to complete reservations.

Listing 3-11. AutoSuggestBox Modifications (in Bold)

<AutoSuggestBox
x:Name="control_name"
HorizontalAlignment="Left"
Header="What's your name?"
DisplayMemberPath="CustomerName"
Margin="10,112,0,0"
VerticalAlignment="Top"
Width="242"
QueryIcon="Find" />

DisplayMemberPath is used to identify to the data binding runtime what property of the underlying
bound object instance to display. The line in Listing 3-9 highlighted in bold means that the CustomerName
property of your CustomerInfo object it is bound to is displayed.

Persisting to the File System
You haven’t yet solved the persistence problem introduced in the version of Control Corral from Chapter 2;
you’ve merely propagated it to the next level. Shifting the storage of the control corral data model items from
MainPage to the application object allows you to access the model from any page in the application. But
what happens if the app crashes?

Because the model is presently stored in memory, any changes to it will be lost once the memory is
reclaimed by the system (when the application is closed). This means that every time you close and reopen
the app, you are starting from scratch. This is not ideal. One solution is to maintain the model information
outside of the app itself. When the app starts, you read the data from the external store and populate your
in-memory model with that information. While the app is running you maintain a copy of the model data
in memory but also push changes down to the external store as they happen. This way the external store is
always up to date, thus preventing data loss as a result of catastrophic failure.

http://dx.doi.org/10.1007/978-1-4842-1449-7_2

Chapter 3 ■ Data Controls

108

This process can be accomplished in two steps. You start by writing the contents of the app’s model
to an external store, specifically the file system. You use the app’s local storage area, accessed via the
Windows.ApplicationData.LocalFolder property, and two classes, StorageFolder and StorageFile, to
accomplish the persistence model. You saw StorageFile in action in the previous chapter. When you read
the contents of an image taken by the user, it was a StorageFile you were working with. In general, these
classes can be thought of as representations of a File and Folder. (These topics will be covered in greater
detail in Chapter 5; for now, just go with it.)

The sample relies on serialization as a means to convert an instance of the model into text that can be
stored in the file system. This approach is a shortcut that prevents you from having to manually copy the data
over and back. Add the static function SaveModelAsync to the App class. For the code destined for App.xaml.cs
to work, a few namespace declarations must be added to the file. Listing 3-12 illustrates.

Listing 3-12. Implementing Persistent Save Method

async public static Task SaveModelAsync()
{

//serialize the model object to a memory stream
DataContractSerializer dcs = new DataContractSerializer(Model.GetType());

//write model string to file
var file = await ApplicationData.Current

.LocalFolder

.CreateFileAsync("corralmodel.xml",
CreationCollisionOption.OpenIfExists);

var transaction = await file.OpenTransactedWriteAsync();
var opn = transaction.Stream;
var ostream = opn.GetOutputStreamAt(0);
var stream = ostream.AsStreamForWrite();
dcs.WriteObject(stream, Model);
stream.Flush();
stream.Dispose();
await transaction.CommitAsync();
transaction.Dispose();

}

Basically, Listing 3-12 uses the built-in DataContractSerializer class to write the state of your model
to a stream.

Now modify the Create reservation part so that it calls SaveModelAsync after adding a new reservation.
Open and run the app, create a new reservation, and then close the app. You should now have one
reservation stored in your model. Let’s see if you can load it back into the app. Add a new static method
called LoadModelAsync to the App class that follows Listing 3-13.

Listing 3-13. Implementing Load Model That Loads from Persistent Store

async public static Task<ControlCorralModel> LoadModelAsync()
{

//read the target file's text
try
{

var file = await ApplicationData
.Current
.LocalFolder.GetFileAsync("corralmodel.xml");

http://dx.doi.org/10.1007/978-1-4842-1449-7_5

Chapter 3 ■ Data Controls

109

var opn = await file
.OpenAsync(Windows.Storage.FileAccessMode.Read);

var stream = opn.GetInputStreamAt(0);
var reader = new DataReader(stream);
var size = (await file

.GetBasicPropertiesAsync()).Size;
await reader.LoadAsync((uint)size);
var model_text = reader.ReadString((uint)size);

//before attempting deserialize, ensure the string is valid
if (string.IsNullOrWhiteSpace(model_text))

return null;

//deserialize the text
var ms = new MemoryStream(Encoding

.UTF8.GetBytes(model_text));
var dsc =

new DataContractSerializer(typeof(ControlCorralModel));
var ret_val = dsc.ReadObject(ms) as ControlCorralModel;
return ret_val;

}
catch (Exception ex)
{

return null;
}

}

In Listing 3-13, you are doing the reverse of Listing 3-12. You read the contents of corralmodel.xml into
a string and use that string to construct a stream, which you can then use to deserialize your model back into
its object form. You must now modify the instantiation of your model object so that it tries to load from the
file system each time the application starts. Let’s modify OnLaunched so it is like Listing 3-14. The relevant
change is highlighted in bold.

Listing 3-14. Updating App Launch to Use Persistence

async protected override void OnLaunched(LaunchActivatedEventArgs e)
{

//instantiate model
Model = await LoadModelAsync();
if (Model == null)
{

Model = new ControlCorralModel();

//add default massage types
Model.MassageTypes.AddRange(

new List<string>
{
"Swedish","Hot Stone",
"Shiatsu","Deep Tissue",
"Trigger Point","Thai",
}.Select(i => new MassageType

Chapter 3 ■ Data Controls

110

{
Name = i,

}).ToList());
}

var frame = new Frame();
Window.Current.Content = frame;
frame.Navigate(typeof(MainPage));
Window.Current.Activate();

}

Place a breakpoint on the line right after your model object is created and run the app. You should see
that the Model property has been correctly populated with the one reservation. Figure 3-1 shows this.

Setting Up the Pages
As it stands, the Control Corral app is made up of just one page, MainPage.xaml. Although it is technically
feasible to do in one page, the various actions that need to be performed in order to satisfy the SCRUD
requirements make splitting the app up into multiple pages more sensible. The list below outlines the new
pages you will be adding to the app, mapping them to the SCRUD-based requirement they satisfy. Add each
item as a page to your project.

• Dashboard.xaml

• ListReservations.xaml

• ManageReservation.xaml

• ManageCustomer.xaml

• RootHost.xaml

Once added, your project files should look like Figure 3-2.

Figure 3-1. Persistent storage in action

Chapter 3 ■ Data Controls

111

You now need to go back into the app’s App object and modify the first page launched by the app.
Presently the root frame for the app initially navigates to MainPage, which–despite its name–is used solely
for creating new ReservationInfo objects. First, to help with encapsulating navigation functionality, replace
the use of a Frame as the main content with a RootHost instance. Listing 3-15 shows how OnLaunched should
now look.

Listing 3-15. Changing Root Host for App

async protected override void OnLaunched(LaunchActivatedEventArgs e)
{

//instantiate model
Model = await LoadModelAsync();
if (Model == null)
{

Model = new ControlCorralModel();

//add default massage types
Model.MassageTypes.AddRange(

new List<string>
{

"Swedish","Hot Stone",
"Shiatsu","Deep Tissue",
"Trigger Point","Thai",

}.Select(i => new MassageType
{

Name = i,
}).ToList());

}

var root_host = new RootHost();
Window.Current.Content = root_host;
Window.Current.Activate();

}

Figure 3-2. Project files

Chapter 3 ■ Data Controls

112

RootHost serves as a proxy to a frame object so you have some visibility into the inner workings of your
Frame host. It also gives you the ability to overlay content on top of any of the windows in your application.
Listing 3-16 shows the contents of RootHost.xaml and its associated code-behind.

Listing 3-16. RootHost XAML Definition and Code-Behind

<Page
 x:Class="Lesson2_ControlCorral.RootHost"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Lesson2_ControlCorral"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Frame x:Name="rootframe" />
</Page>

namespace Lesson2_ControlCorral
{

/// <summary>
/// An empty page that can be used on its own or navigated to within a Frame.
/// </summary>
public sealed partial class RootHost : Page
{

public RootHost()
{

this.InitializeComponent();
SystemNavigationManager

.GetForCurrentView()

.AppViewBackButtonVisibility
= AppViewBackButtonVisibility.Visible;

SystemNavigationManager
.GetForCurrentView()
.BackRequested += RootHost_BackRequested;

this.Loaded += RootHost_Loaded;
}

private void RootHost_Loaded(object sender, RoutedEventArgs e)
{

rootframe.Navigate(typeof(Dashboard));
}

private void RootHost_BackRequested(object sender,
BackRequestedEventArgs e)

{
if (rootframe.CanGoBack)
{
 e.Handled = true;

rootframe.GoBack();
}

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

Chapter 3 ■ Data Controls

113

else
e.Handled = false;

}
}

}

Note the use of the SystemNavigationManager in the constructor of this class. SystemNavigationManager
will present a global back button on Windows 10 UWP app’s title bar when AppViewBackButtonVisibility is
set to Visible. The code-behind also navigates the user directly to Dashboard. This way the dashboard is the
first thing a user sees when they start the application.

Now open Dashboard.xaml and add a new button to it. Then set its content to “New Reservation”. This
button will be used to navigate from the Dashboard to the MainPage. Listing 3-17 shows the layout for the
new button and the code-behind for it.

Listing 3-17. New Reservation Button Implementation

<Button
Content="New Reservation"
HorizontalAlignment="Left"
Height="55"
Margin="10,10,0,0"
VerticalAlignment="Top"
Click="OnReservation" />

namespace Lesson2_ControlCorral
{

public sealed partial class Dashboard : Page
{

public Dashboard()
{

this.InitializeComponent();
this.Loaded += Dashboard_Loaded;

}

private void Dashboard_Loaded
(object sender, RoutedEventArgs e)

{

}

private void OnReservation(object sender, RoutedEventArgs e)
{

this.Frame.Navigate(typeof(MainPage));
}

}
}

Use F5 to fire up the application, and you should now see the dashboard. Clicking the New Reservation
button should now take you to the same screen you used in Chapter 2: the MainPage screen. You should
also now be able to use the global back button on the title bar for the UWP to navigate backwards (if the
navigation stack has items to navigate backwards to).

http://dx.doi.org/10.1007/978-1-4842-1449-7_2

Chapter 3 ■ Data Controls

114

At this point, you have all you need to begin learning about data controls. The remainder of this chapter
will focus on introducing the various data controls available to the UWP with a focus on using each control
to satisfy the SCRUD requirements outlined earlier.

Listing Reservations with ListBox
Like a ComboBox, a ListBox is used to present a list of items that a user can select from. Unlike a ComboBox,
a ListBox can display, and allow the selection of, more than one item at a time. To populate a ListBox, you
can either manually add items its Items collection or use data binding to bind to its ItemSource property.
Selections made by a user can be retrieved via the SelectedIndex, SelectedItem, or SelectedValue
properties. When multiple selection is enabled, SelectedItems must be used to iterate through the user’s
selections. (Multiple selection is not enabled by default; to enable it, use the SelectionMode property.)

The ListBox control has quite a few similarities with two other controls you will be exploring in this
chapter, ListView and GridView. They share some functionality but ultimately the ListBox, like ComboBox, is
best for general UI composition, while those other controls are best for data binding.

You will be using a ListBox to populate the ListReservations page. Open ListReservations and rewrite
the main grid as follows in Listing 3-18.

Listing 3-18. ListReservations XAML Layout

<Grid
Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<TextBlock

Text="List Reservations"
HorizontalAlignment="Left"
FontSize="40"
FontWeight="ExtraLight"
VerticalAlignment="Top"
Margin="20,0,0,0" />

<ListBox
x:Name="list_reservations"
Margin="20,58,20,20"
ItemsSource="{Binding}">
<ListBox.ItemTemplate>

<DataTemplate>
<StackPanel

Orientation="Horizontal">
<TextBlock

Text="{Binding Procedure}"
Margin="0,0,10,0" />

<TextBlock
Text="{Binding AppointmentDay.Month}" />

<TextBlock
Text="/" />

<TextBlock
Text="{Binding AppointmentDay.Day}"
Margin="0,0,10,0" />

<TextBlock
Text="{Binding AppointmentTime}"
Margin="0,0,10,0" />

Chapter 3 ■ Data Controls

115

<TextBlock
Text="{Binding Customer.CustomerName}"
Margin="0,0,10,0" />

</StackPanel>
</DataTemplate>

</ListBox.ItemTemplate>
</ListBox>

 </Grid>

The ListBox is using a special kind of template called a DataTemplate to define its contents. We
identified templates in the previous chapter as user interfaces that can be applied to controls. When dealing
with plain old objects bound to data controls, templates can be used to define the user interface of each
item. In the case of Listing 3-18, you have defined an item template for the ListBox that will be used to
render each ReservationInfo object in the collection it represents. When a given item in the list comes into
view, the template is used to render the user interface for the item, with each {Binding} defined serving as a
placeholder for the content that should be there at runtime. Add the code-behind that populates the ListBox
as follows in Listing 3-19.

Listing 3-19. ListReservations Code-Behind

namespace Lesson2_ControlCorral
{

public sealed partial class ListReservations : Page
{

List<ReservationInfo> _current_list;
public ListReservations()
{

this.InitializeComponent();
this.Loaded += ListReservations_Loaded;

}

private void ListReservations_Loaded(object sender,
RoutedEventArgs e)

{
list_reservations.DataContext = _current_list;

}

protected override void OnNavigatedTo(NavigationEventArgs e)
{

var list = e.Parameter as List<ReservationInfo>;
if (list != null)

_current_list = list;
}

}
}

The important thing to note in this code-behind sample is that you are not directly pulling the list of
reservations from your model; rather you are expecting it to be passed in through the Parameter property
of OnNavigatedTo. The value proposition here is flexibility. Using this pattern makes this page a general
purpose view for ReservationInfo lists rather than just a view of one specific class of ReservationInfo lists,

Chapter 3 ■ Data Controls

116

the “all” class. You will see this at work later in the chapter when you explore displaying specific views on
the ReservationInfo list (like just seeing the reservations slated for the current day). For now, let’s open up
the Dashboard.xaml file and add an All Reservations button to it. The layout and code-behind are shown in
Listing 3-20.

Listing 3-20. Incorporating ListReservations

<Button
Content="List Reservations"
HorizontalAlignment="Left"
Height="55"
Margin="10,70,0,0"
VerticalAlignment="Top"
Click="ListReservations" />

private void ListReservations(object sender,
RoutedEventArgs e)

{
this.Frame.Navigate(typeof(ListReservations),

App.Model.Reservations);
}

Running the app and clicking the All Reservations button should product a screen like Figure 3-3.

Figure 3-3. Reservation list page in action

Chapter 3 ■ Data Controls

117

Viewing Individual Reservations with FlipView
A FlipView presents a collection of items that the user views sequentially, one at a time. It’s useful for displaying
a gallery of images or the pages of a magazine. In your app, you will use it to display the detail information
for the reservation list, allowing users to quickly go from one reservation to the next. You will be adding a
view button to the template you created in the previous section and wiring it up. Listing 3-21 shows how the
DataTemplate for your list_reservations ListBox should now look. The new parts are highlighted in bold.

Listing 3-21. DataTemplate for the list_reservations ListBox

<DataTemplate>
 <StackPanel

Orientation="Horizontal">
<TextBlock

Text="{Binding Procedure}"
Margin="0,0,10,0" />

<TextBlock
Text="{Binding AppointmentDay.Month}" />

<TextBlock
Text="/" />

<TextBlock
Text="{Binding AppointmentDay.Day}"
Margin="0,0,10,0" />

<TextBlock
Text="{Binding AppointmentTime}"
Margin="0,0,10,0" />

<TextBlock
Text="{Binding Customer.CustomerName}"
Margin="0,0,10,0" />

<Button
Content="View Reservation"
Margin="0,0,10,0"
Click="ViewReservation" />

 </StackPanel>
</DataTemplate>

You now update the click event for that button so that it points you to the ManageReservation page you
previously created. Listing 3-22 shows the code for this.

Listing 3-22. Updating the Click Event

private void ViewReservation(object sender, RoutedEventArgs e)
{

var control = sender as FrameworkElement;
var reservation_info = control.DataContext as ReservationInfo;

Frame.Navigate(typeof(ManageReservation), new
{

Selection = reservation_info,
List = _current_list,

});
}

Chapter 3 ■ Data Controls

118

In Listing 3-22 you once again see the pattern of passing parameters into the Navigate method. Again,
this is so the page being navigated to has some context on what to present. In this case, you pass in an
anonymous object with two properties, one for storing the selection the user made and the other for storing
the list that was selected from (as discussed in the previous section, this list can change depending on the
situation). Because FlipView shows items one at a time, you will use the selection value to indicate which
item in the list should be displayed first; however, you will still allow users to navigate to the other items in
the list on an item-by-item basis. Listing 3-23 shows the ManageReservation layout.

Listing 3-23. ManageReservation XAML Layout

<Grid
Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<FlipView

x:Name="flipview_reservations"
ItemsSource="{Binding}">
<FlipView.ItemTemplate>

<DataTemplate>
<Grid>

<TextBlock
Loaded="MassageDateLoaded"
HorizontalAlignment="Left"
Margin="10,10,0,0"
FontSize="30"
VerticalAlignment="Top" />

<TextBlock
HorizontalAlignment="Left"
Text="{Binding Customer.CustomerName}"
Margin="10,55,0,0"
FontWeight="Bold"
VerticalAlignment="Top"
Width="242" />

<DatePicker
Header="DOB:"
HorizontalAlignment="Left"
Margin="10,80,0,0"
Date="{Binding Customer.DOB}"
VerticalAlignment="Top"
IsEnabled="False" />

<TextBlock
HorizontalAlignment="Left"
Margin="10,145,0,0"
Text="{Binding Passphrase}"
VerticalAlignment="Top"
Width="296"
Foreground="Red" />

<TextBlock
HorizontalAlignment="Left"
Margin="10,237,0,0"
VerticalAlignment="Top"
Width="296"
Text="{Binding Procedure}" />

Chapter 3 ■ Data Controls

119

<Slider
Header="Massage Intensity"
HorizontalAlignment="Left"
Loaded="MassageIntensityLoaded"
Minimum="20"
Maximum="100"
Margin="10,173,0,0"
VerticalAlignment="Top"
IsEnabled="True"
Width="296" />

<Border
HorizontalAlignment="Left"
Height="227"
Margin="353,10,0,0"
VerticalAlignment="Top"
Width="225"
BorderThickness="1"
BorderBrush="Gray"
Background="Gainsboro">
<Image

Loaded="CustomerImageLoaded" />
</Border>
<Button

Content="Cancel Reservation"
HorizontalAlignment="Left"
Margin="353,242,0,0"
VerticalAlignment="Top" />

</Grid>
</DataTemplate>

</FlipView.ItemTemplate>
</FlipView>

 </Grid>

There is nothing too unique here. You implement a DataTemplate for the FlipView that you use to lay
out each individual presentation of a reservation using binding in some cases and code-behind in others.
For controls like an image, there is no direct binding to a byte array or memory buffer, so you need to handle
the specific control’s Loaded event, and in that event perform whatever gymnastics are necessary to present
to the user. When laid out, the user interface should look something like Figure 3-4. To get to the template
designer in Visual Studio 2015, right-click the control of interest from the document outline pane and select
Edit Addition Templates ➤ Edit Generated Items (Item Template) ➤ Edit Current. This option is only visible
to you if a template has already been defined. Otherwise, you can use this context menu to create an empty
template or edit a copy of a template.

Chapter 3 ■ Data Controls

120

The code-behind for ManageReservation starts with adding class level fields for maintaining the values
passed in from the previous page:

List<ReservationInfo> _current_list;
ReservationInfo _selected_reservation;

Listing 3-24 shows the implementation of the OnNavigated method.

Listing 3-24. ManageReservation OnNavigated Method

protected override void OnNavigatedTo(NavigationEventArgs e)
{

dynamic param = e.Parameter;
if (param != null)
{

_current_list = param.List;
_selected_reservation = param.Selection;

}
}

Listing 3-24 uses a dynamic object to capture the value of the parameter passed into the page and
then assigns the individual values from that parameter to the field level values _current_list and
_selected_reservation.

The next step is to add the event handlers for the various controls defined in your DataTemplate.
Listing 3-25 shows the implementation of these methods.

Listing 3-25. Implementing ManageReservation Event Handlers

private void MassageDateLoaded(object sender, RoutedEventArgs e)
{

var txt_date = sender as TextBlock;
var reservation_info = txt_date.DataContext as ReservationInfo;

txt_date.Text = $"{reservation_info.AppointmentDay.Month}/" +
$"{reservation_info.AppointmentDay.Day}/" +
$"{reservation_info.AppointmentDay.Year}" +
$" at {reservation_info.AppointmentTime}";

}

Figure 3-4. Template designer in Visual Studio 2015

Chapter 3 ■ Data Controls

121

async private void CustomerImageLoaded(object sender,
RoutedEventArgs e)

{
var control_image = sender as Image;
var reservation_info = control_image.DataContext as ReservationInfo;

if (reservation_info.Customer.CustomerImage != null)
{

BitmapImage image = new BitmapImage();
control_image.Source = image;
MemoryStream stream =

new MemoryStream(reservation_info.Customer.CustomerImage);
await image.SetSourceAsync(stream.AsRandomAccessStream());

}
}

private void MassageIntensityLoaded(object sender,
RoutedEventArgs e)

{
var control_slider = sender as Slider;
var reservation_info = control_slider.DataContext as ReservationInfo;
control_slider.Value = reservation_info.MassageIntensity;

}

The event handler methods in Listing 3-25 follow the same basic pattern. The sender is cast back to
the control that fired it, the DataContext for that control is read and casts the ReservationInfo object, and
finally some specific behavior is implemented. The conclusion to be drawn from this pattern (particularly
the retrieval of the given control’s DataContext) is that whereas the list as a whole was applied to the
data control, each element in the list has as its DataContext the object it represents. The remainder of
ManageReservation code-behind is implemented in Listing 3-26.

Listing 3-26. Implementing Constructor and Loaded Event Handler

public ManageReservation()
{

this.InitializeComponent();
this.Loaded += ManageReservation_Loaded;

}

private void ManageReservation_Loaded(object sender, RoutedEventArgs e)
{

flipview_reservations.DataContext = _current_list;
flipview_reservations.SelectedItem = _selected_reservation;

}

Your ManageReservation screen should look something like Figure 3-5 when you run the app.

Chapter 3 ■ Data Controls

122

The final step is to implement the Cancel Reservation button. Clicking this button should delete the
reservation but keep the associated customer information. Listing 3-27 shows the layout and code-behind for this.

Listing 3-27. Cancel Reservation Button Definition and Implementation

<Button
Content="Cancel Reservation"

Click="CancelReservation"
HorizontalAlignment="Left"
Margin="353,242,0,0"
VerticalAlignment="Top" />

async private void CancelReservation(object sender, RoutedEventArgs e)
{

App.Model.Reservations.Remove(_selected_reservation);
await App.SaveModelAsync();
Frame.GoBack();

}

Revisiting AutoSuggestBox
When you first looked at the AutoSuggestBox, you used a statically created a list to populate it. Now that you
are storing actual users, let’s go back and update it to use values from the Users collection. You previously
used databinding with the DisplayMemberPath property of this control to display just the customer’s name
on the control’s search result list. But you can do better. The ListBox section introduced you to databinding
and DataTemplates. Using this feature set, you can now make the reservation screen a tad more user friendly
and slick by adding the user’s picture to the drop-down that appears when AutoSuggestBox utilized. Open
MainPage and apply the following changes highlighted in Listing 3-28. Note that since you are using a data
template, you no longer need to have DisplayMemberPath set (both cannot be set at the same time).

Listing 3-28. Modernizing AutoSuggestBox

<AutoSuggestBox
x:Name="control_name"
HorizontalAlignment="Left"
Header="What's your name?"
Margin="10,112,0,0"

Figure 3-5. FlipView control in action

Chapter 3 ■ Data Controls

123

VerticalAlignment="Top"
Width="242"
QueryIcon="Find">
<AutoSuggestBox.ItemTemplate>

<DataTemplate>
<StackPanel

Orientation="Horizontal">
<Border

HorizontalAlignment="Left"
Height="100"
Margin="5"
Width="100"
BorderThickness="1"
BorderBrush="Gray"
Background="Gainsboro">
<Image

Loaded="CustomerImageLoaded" />
</Border>
<TextBlock

Text="{Binding CustomerName}"
VerticalAlignment="Center" />

</StackPanel>
</DataTemplate>

</AutoSuggestBox.ItemTemplate>
</AutoSuggestBox>

DisplayMemberPath has been removed and a full scale item template has been added instead. Now
the user interface for the drop-down can be completely customized. In this case, you use a simple panel to
arrange an image and a textbox horizontally from left to right. You will learn more about the StackPanel and
all the other powerful layout controls in the next chapter.

To enable the image load functionality, you must now implement the code-behind. The code here
follows the identical pattern to what you did for your ManageReservation sample with one exception.
ManageReservation binds to a list of ReservationInfo objects, meaning that within the loaded even a
ReservationInfo object is the DataContext. This control binds to a list of CustomerInfo objects, meaning
that a CustomerInfo is the result of control_image.DataContext. Listing 3-29 illustrates.

Listing 3-29. CustomerImageLoaded Event Handler

async private void CustomerImageLoaded(object sender,
RoutedEventArgs e)

{
var control_image = sender as Image;
var customer_info = control_image.DataContext as CustomerInfo;

if (customer_info.CustomerImage != null)
{

BitmapImage image = new BitmapImage();
control_image.Source = image;
MemoryStream stream =

new MemoryStream(customer_info.CustomerImage);
await image.SetSourceAsync(stream.AsRandomAccessStream());

}
}

Chapter 3 ■ Data Controls

124

Figure 3-6 shows how the AutoSuggestBox looks based on the information I entered in my instance of
the Control Corral app.

Revisiting ComboBox
While you are revisiting previous controls that can be classified as both data and basic, let’s take a second
look at the ComboBox. In the previous approach to designing MainPage, the contents of the MassageType
ComboBox were not only hard-coded, but specified in the XAML! Since the object defines text primarily,
let’s change this to use the DisplayMemberPath property of the ComboBox to show this information.

When you first looked at the AutoSuggestBox, you used a statically created list to populate it. Now that
you are storing actual users, let’s go back and update it to use values from the Users collection. You will add
the user’s picture to the drop-down that appears when AutoSuggestBox is hit. Open MainPage and apply
the following changes. Listing 3-30 shows the changes that must be made to the layout and code-behind
methods MainPage_Loaded and CreateReservation to do this.

Listing 3-30. Updating ComboBox

<ComboBox
x:Name="control_procedure"
Header="Select a procedure"
HorizontalAlignment="Left"
Margin="10,307,0,0"
VerticalAlignment="Top"
Width="296"
ItemsSource="{Binding}"
DisplayMemberPath="Name"
/>

Figure 3-6. The re-templated AutoSuggestBox in action

Chapter 3 ■ Data Controls

125

private void MainPage_Loaded(object sender, RoutedEventArgs e)
{

this.DataContext = _command;
control_name.ItemsSource = App.Model.Customers;
control_procedure.DataContext = App.Model.MassageTypes;

}

private ReservationInfo CreateReservation()
{

var customer = App.Model.Customers
.Where(i =>
i.CustomerName.ToLower() == control_name.Text.ToLower())
.FirstOrDefault();

if (customer == null)
{

//create and add a new customer if
//none exist with that name
customer = new CustomerInfo
{

CustomerName = control_name.Text,
DOB = control_dob.Date.Date,
MassageIntensity = control_intensity.Value,
CustomerImage = _user_image,

};
App.Model.Customers.Add(customer);

}

var new_reservation = new ReservationInfo()
{

AppointmentDay = control_calendar.Date.Value.Date,
AppointmentTime = control_time.Time,
Passphrase = txt_passphrase.Password,
Procedure = (control_procedure.SelectedItem

as MassageType).Name as string,
MassageIntensity = control_intensity.Value,
Customer = customer, //connect the customer

};
_reservations.Add(new_reservation);
return new_reservation;

}

In Listing 3-30, you remove all of the ComboBoxItems from the ComboBox. Since you will now be
using databinding to populate it, you set the ItemSource to binding and also set what property you want the
framework to use for displaying content for each line item in the underlying list.

In the Loaded code-behind method, you now simply set the DataContext for the ComboBox. Finally,
because you are no longer using ComboBoxItems explicitly, the SelectedItem property will map to the
instance of the object being presented at a given time in the ComboBox. Because you have bound to a list
of MassageType objects, this will always be a MassageType object. You cast SelectedItem to this and set the
value of procedure using the Name property of this object.

Chapter 3 ■ Data Controls

126

Showing Customers with GridView
The GridView control is used to display a collection of data in rows and columns that can scroll vertically.
Like the ListBox and every other ItemsControl, it represents a collection of items of any type and is most
often used to display multiple items at a time.

By default, a user can select a single item in a GridView. You can set the SelectionMode property to a
ListViewSelectionMode enumeration value to allow multi-selection or to disable selection. You can also
change the GridView interaction mode to make items respond to a user clicks—like a button. This requires
setting the IsItemClickable property to true.

You will be using this control to display a list of customers with some summary info. You will be using
the same template you used in the previous sample, just to illustrate the reusability of templates. As long
as the type being bound to is the same and the control displaying the template has the available space, a
template can be used anywhere binding occurs. Listing 3-31 shows the user list implementation on the
Dashboard page.

Listing 3-31. GridView XAML Layout

<Border
 Margin="156,54,10,0"
 Height="184" BorderThickness="0,2,0,1"

BorderBrush="Gray"
 VerticalAlignment="Top">
 <GridView

x:Name="gridview_customers"
SelectionMode="Single"
ItemsSource="{Binding}"
ItemClick="CustomerSelected"
IsItemClickEnabled="True">
<GridView.ItemTemplate>

<DataTemplate>
<StackPanel

Orientation="Horizontal">
<Border

HorizontalAlignment="Left"
Height="75"
Margin="5,5,10,5"
Width="100"
BorderThickness="1"
BorderBrush="Gray"
Background="Gainsboro">
<Image

Stretch="Fill"
Loaded="CustomerImageLoaded" />

</Border>
<TextBlock

Text="{Binding CustomerName}"
FontSize="24"
FontWeight="ExtraLight"
VerticalAlignment="Center" />

</StackPanel>
</DataTemplate>

Chapter 3 ■ Data Controls

127

</GridView.ItemTemplate>
 </GridView>
</Border>
<TextBlock Text="Customers"
 HorizontalAlignment="Right"
 FontSize="40"
 FontWeight="ExtraLight"
 VerticalAlignment="Top" />
...

Now open Dashboard.xaml.cs and add Listing 3-32 to the Dashboard class.

Listing 3-32. GridView Code-Behind Event Handlers

async private void CustomerImageLoaded(object sender, RoutedEventArgs e)
{

var control_image = sender as Image;
var customer_info = control_image.DataContext as CustomerInfo;

if (customer_info.CustomerImage != null)
{

BitmapImage image = new BitmapImage();
control_image.Source = image;
MemoryStream stream =

new MemoryStream(customer_info.CustomerImage);
await image.SetSourceAsync(stream.AsRandomAccessStream());

}
}

private void CustomerSelected(object sender, ItemClickEventArgs e)
{

var selected_customer = e.ClickedItem as CustomerInfo;
Frame.Navigate(typeof(ManageCustomer), selected_customer);

}

Implementing ManageCustomer should be a piece of cake at this point, given that the same patterns
you have been utilizing will be once again used. Listing 3-33 shows the layout page.

Listing 3-33. ManageCustomer Layout

<Page
 x:Class="Lesson2_ControlCorral.ManageCustomer"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Lesson2_ControlCorral"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

Chapter 3 ■ Data Controls

128

 <ScrollViewer>
<StackPanel Margin="20"

Orientation="Vertical"
Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<TextBlock

HorizontalAlignment="Left"
Text="{Binding CustomerName}"
Margin="10,10,0,10"
FontWeight="Bold"
VerticalAlignment="Top"
Width="225"
Height="22" />

<Button
Click="ReplaceImage"
HorizontalAlignment="Left"
Height="227"
Margin="10"
VerticalAlignment="Top"
Width="225"
BorderThickness="1"
BorderBrush="Gray"
Background="Gainsboro">
<Image

x:Name="control_image"
Source="/alex.jpg" />

</Button>
<Slider

x:Name="control_intensity"
Header="Massage Intensity"
HorizontalAlignment="Left"
Minimum="20"
Maximum="100"
Margin="10,10,0,10"
VerticalAlignment="Top"
Width="225" />

<DatePicker
x:Name="control_dob"
Header="When were you born?"
HorizontalAlignment="Left"
VerticalAlignment="Top" />

<Button
Margin="0,05,0,0"
Content="Save"
Click="SaveCustomer" />

</StackPanel>
 </ScrollViewer>

</Page>

Chapter 3 ■ Data Controls

129

The two points of difference, highlighted in bold, are the use of a StackPanel rather than a grid and
the introduction of a new control type, the ScrollViewer. ScrollViewer is another example of the power and
flexibility of layout controls (see Chapter 4). The code-behind for this file is in Listing 3-34.

Listing 3-34. ManageCustomer Code-Behind

public sealed partial class ManageCustomer : Page
{

CameraCaptureUI ccui = new CameraCaptureUI();
CustomerInfo _customer;
public ManageCustomer()
{

this.InitializeComponent();
this.Loaded += ManageCustomer_Loaded;

}

async private void ManageCustomer_Loaded(object sender, RoutedEventArgs e)
{

if (_customer.CustomerImage != null)
{

BitmapImage image = new BitmapImage();
control_image.Source = image;
MemoryStream stream =

new MemoryStream(_customer.CustomerImage);
await image.SetSourceAsync(stream.AsRandomAccessStream());

}
this.DataContext = _customer;
control_intensity.Value = _customer.MassageIntensity;
control_dob.Date = _customer.DOB;

}

async private void SaveCustomer(object sender, RoutedEventArgs e)
{

_customer.MassageIntensity = control_intensity.Value;
_customer.DOB = control_dob.Date.Date;
await App.SaveModelAsync();
Frame.GoBack();

}

protected override void OnNavigatedTo(NavigationEventArgs e)
{

_customer = e.Parameter as CustomerInfo;
}

async private void ReplaceImage(object sender, RoutedEventArgs e)
{

BitmapImage image = new BitmapImage();
control_image.Source = image;

ccui.PhotoSettings.AllowCropping = true;
ccui.PhotoSettings.MaxResolution =

CameraCaptureUIMaxPhotoResolution.HighestAvailable;

http://dx.doi.org/10.1007/978-1-4842-1449-7_4

Chapter 3 ■ Data Controls

130

var result =
await ccui.CaptureFileAsync(CameraCaptureUIMode.Photo);

if (result != null)
{

var stream = await result.OpenReadAsync();
await image.SetSourceAsync(stream);

//get the image data and store it
stream.Seek(0);
BinaryReader reader =

new BinaryReader(stream.AsStreamForRead());
_customer.CustomerImage = new byte[stream.Size];
reader.Read(_customer.CustomerImage,

0,
_customer.CustomerImage.Length);

}
}

}

Displaying Today’s Reservations with ListView
Like a GridView, ListView is used to display a collection of items, in this case stacked vertically. Beyond this
difference, the two controls are virtually identical.

The final sample you will create will use the ListView to list out the reservations for the day. You’ll place
it in the dashboard so users can see what reservations still need to be completed for a given day. As with the
previous reservations, you will link this back to the reservation view. In this case, however, the reservation
view will be limited to the items from this list, not the entire list of reservations. This illustrates how passing
the list to be presented in a list presentation page like ListReservations is superior to locking a page to a
single list. Let’s examine the layout changes in Listing 3-35. Add the code to the main grid view.

Listing 3-35. ListView XAML Definition

<Border
Margin="156,296,10,-120"
Height="184"
BorderThickness="0,2,0,1"
BorderBrush="Gray"
VerticalAlignment="Top">
<ListView

x:Name="listview_reservations"
SelectionMode="Single"
ItemsSource="{Binding}"
IsItemClickEnabled="True"
ItemClick="ReservationSelected">
<ListView.ItemTemplate>

<DataTemplate>
<StackPanel

Orientation="Horizontal">
<TextBlock

Text="{Binding Procedure}"
Margin="0,0,10,0" />

Chapter 3 ■ Data Controls

131

<TextBlock
Text="{Binding AppointmentDay.Month}" />

<TextBlock
Text="/" />

<TextBlock
Text="{Binding AppointmentDay.Day}"
Margin="0,0,10,0" />

<TextBlock
Text="{Binding AppointmentTime}"
Margin="0,0,10,0" />

<TextBlock
Text="{Binding Customer.CustomerName}"
Margin="0,0,10,0" />

</StackPanel>
</DataTemplate>

</ListView.ItemTemplate>
</ListView>

</Border>
<TextBlock

Text="Today's Appointments"
HorizontalAlignment="Left"
FontSize="40"
FontWeight="ExtraLight"
VerticalAlignment="Top"
Margin="156,243,0,0" />

The code-behind for this is in Listing 3-36 with additions highlighted in bold.

Listing 3-36. Updated Dashboard Code-Behind

public sealed partial class Dashboard : Page
{

public Dashboard()
{

this.InitializeComponent();
this.Loaded += Dashboard_Loaded;

}

private void Dashboard_Loaded
(object sender, RoutedEventArgs e)

{
gridview_customers.DataContext = App.Model.Customers;
listview_reservations.DataContext =

App.Model.Reservations
.Where(i => i.AppointmentDay.Date == DateTime.Now.Date)
.ToList();

}

Chapter 3 ■ Data Controls

132

private void OnReservation(object sender, RoutedEventArgs e)
{

this.Frame.Navigate(typeof(MainPage));
}

private void ListReservations(object sender,
RoutedEventArgs e)

{
this.Frame.Navigate(typeof(ListReservations),

App.Model.Reservations);
}

async private void CustomerImageLoaded
(object sender, RoutedEventArgs e)

{
var control_image = sender as Image;
var customer_info = control_image

.DataContext as CustomerInfo;

if (customer_info.CustomerImage != null)
{

BitmapImage image = new BitmapImage();
control_image.Source = image;
MemoryStream stream =

new MemoryStream(customer_info.CustomerImage);
await image.SetSourceAsync(stream.AsRandomAccessStream());

}
}

private void CustomerSelected(object sender, ItemClickEventArgs e)
{

var selected_customer = e.ClickedItem as CustomerInfo;
Frame.Navigate(typeof(ManageCustomer), selected_customer);

}

private void ReservationSelected(object sender, ItemClickEventArgs e)
{

var selected_reservation = e.ClickedItem as ReservationInfo;
this.Frame.Navigate(typeof(ManageReservation),

new
{

List = listview_reservations.DataContext,
Selection = selected_reservation,

});
}

}

Listing 3-36 finishes off this discussion on data controls with the final feature set Control Corral
requires: a list of today’s reservations so the user can quickly see how busy a given day might be.
The loaded method is updated to include a databinding the ListView to a filtered list of reservations.
ReservationSelected is called when the user clicks any of the reservations on in this list. Using the same

Chapter 3 ■ Data Controls

133

pattern established previously, you make a call directly to ManageReservation, this time passing in just
the filtered list of today’s reservations along with the reservation presently selected. A user clicking any
reservation item from the “Today” list will not only see the detail of that specific reservation but can also
go through each of the reservations for that day. On my machine, after spending some time populating my
instance of Control Corral with all the names of my wonderful niece and nephews, the dashboard page looks
like Figure 3-7.

Summary
Controls are encapsulated pieces of user interface that combine layout, content, and behavior to create
distinct experiences within the construct of the surface that contains them, creating a tailored user
experience. In this chapter, you covered data controls. These controls, tailored to show sets of data to the
user in an optimized manner, were presented in this chapter. With this information on data controls, you
increase your ability to present data collections to the user in various modes. Here are some important
points to remember:

• SCRUD (Search, Create, Read, Update, Delete) operations are exposed by most
applications that work with data that interfaces to the end user. The UWP app
window has a Content property that is the primary surface upon which XAML-
based user interfaces are presented. Additionally, Frame and Page controls facilitate
navigation within a XAML based UWP app.

• A ListBox is used to present a list of items that a user can select from. A ListBox can
display and allow a selection of multiple items at a time.

• Several data controls are available to the UWP to satisfy the SCRUD requirements.
ListView, FlipView, and GridView are controls used to display a collection of data.
ListView displays data in rows and columns that can scroll horizontally. GridView is
used to display a collection of items vertically. FlipView presents a collection of items
sequentially, one at a time, as would be used for an image gallery.

Figure 3-7. Control Corral user interface

135

Chapter 4

Layout and Custom Controls

So far you have looked at controls that serve as content for entering data and controls that are primarily
designed for viewing data (either in individual form or as a list). In this chapter, you will learn about the last
two classes of controls: layout controls and custom controls.

You’ve been using layout controls all along. In fact, there is very little that can be done in terms of
working with multiple controls without the use of layout controls. In the past few chapters, you utilized both
the Grid and the StackPanel to lay out some of the samples we discussed. In this chapter, we will go into
greater detail on many of the layout controls you can use for building your UWP apps.

Layout Controls
The first thing you should be asking yourself before getting into a discussion about layout controls is, what
do we mean when we say layout? By layout, we mean basically mean the location and display characteristics
of a control. Layout is used to structure a user interface such that it has some intended meaning. Layout
controls affect the location on the screen where the controls they directly contain appear.

So why encapsulate the layout of controls into a set of controls themselves? Previous technologies
have traditionally locked the developer into one primary layout engine. WinForms used a Cartesian style
coordinate system that required developers to position controls based on X and Y coordinates, with the
point of origin at the top left corner. This worked well in certain respects but lacked flexibility in scenarios
where controls needed to be laid out in a non-traditional manner (for instance, if a control needed to be
pinned to the bottom right of the screen, a great deal of measurement needed to happen to determine the
necessary X and Y coordinates).

In WinForms and any coordinate system like that, the layout of controls is essentially delegated to the
developer. You as the developer decide where you want controls to sit and must refine that location based on
environmental changes like the window resizing. If no coordinate information is provided, the controls fall back
to being positioned at location (0, 0), the top left corner. Arranging controls based on fixed pixel coordinates may
work for a limited environment, but as soon as you want to use different screen resolutions or different font sizes,
it will fail. The UWP provides a rich set of built-in layout panels that help you avoid common pitfalls.

Thankfully, HTML shifted away from this model, opting instead for flow layout as the default layout
experience. In HTML, unless otherwise specified, controls are laid out from left to right until they reach the
full width of the page. At this point, they are wrapped to the next line and continue moving from left to right.
Simple and elegant. HTML also retains the ability to explicitly lay out controls based on X and Y coordinates
among other coordinate systems.

The problem with the approach of baking the layout into a user interface framework is that it loses
extensibility over time. As technology changes and the needs it fulfills shift, it is important that the
frameworks used to deliver user experiences have the requisite flexibility to continue to deliver engaging UIs
without the need to dramatically refactor. Encapsulating layout into controls not only allows for flexibility
within the framework but also provides future developers the ability to add new layout engines to the UWP
by building their own layout controls.

Chapter 4 ■ Layout and Custom ControLs

136

Understanding the Layout System
UWP layout, like HTML, is flow-based by default, and utilizes a recursive and iterative process to render
content. At its simplest, layout describes the process of measuring and arranging the members of a
container’s children (stored in the container’s Children property). UWP apps support resizing and
repositioning of controls if the user changes screen resolution, or resizes the window containing controls, or
adds or removes controls at runtime. As you will see in this chapter, this allows for UWP user interfaces to be
resolution and size independent. Each time that a child UIElement changes its position, it has the potential
to trigger a new pass by the layout system. The following describes the process that occurs when the layout
system is invoked.

• A child UIElement begins the layout process by first having its core properties
measured.

• Sizing properties defined on FrameworkElement are evaluated, such as Width,
Height, and Margin.

• Panel-specific logic is applied, such as stacking orientation.

• Content is arranged after all children have been measured.

• The Children collection is drawn on the screen.

As you saw in all of the previous samples, UWP apps are predominantly navigation-based and as such
rely heavily on Frames and Pages. You have seen that Pages, which are content elements, contain one child
that will almost always be a layout control, commonly referred to as a container. (In the samples from
previous chapters this has, thus far, been a Grid control.) All containers derive from the Windows.UI.Xaml.
Controls.Panel class, a base class designed with the ability to contain control and, optionally, other
containers.

Containers plug into the layout rendering system of the UWP, which makes two passes before drawing
an element. In the Measure pass, the runtime queries each element to determine the element’s size and
location based on how the element was declared. In the Arrange pass, the runtime determines the actual
size and position for each element based on modifications that have been made by its parent. The layout
system determines the actual size of an element by taking into account the available screen space; the size
of any constraints (such as maximum or minimum height or width); layout-specific properties such as
alignment, margins, or padding; and the behavior of the element’s parent container. Based on these factors,
elements may or may not be sized and located where they requested. In fact, the layout system can shrink,
grow, or move elements in a container. Take, for instance, an element at the bottom of a StackPanel that
is itself within a ScrollViewer. Depending on the number of elements in that StackPanel, the element in
question may not even be displayed.

Figure 4-1 illustrates this situation. In it, Child 3 and Child 4 are not displayed until they scroll into view.
Until then, the layout engine ignores them. Although they are not displayed, they still possess the same
attributes as Child 1 and Child 2. The difference is that they have been determined to be outside the visible
area during the processing phases.

■ Note Keep in mind as you design your apps that with uWp, the entire layout process occurs each time the
user resizes the window or your code adds or removes elements.

Chapter 4 ■ Layout and Custom ControLs

137

Alignment, Margins, and Padding
When being rendered, each element in the UWP is surrounded by a bounding box, as shown in Figure 4-2.

This represents the space allocated to an element within its parent. All elements have four properties that
work in concert with this box to determine the final view of a given user interface element. These properties are
HorizontalAlignment, VerticalAlignment, Margin, and Padding. You’ve been using alignment extensively to
set the position of the controls you’ve been playing around with but have not properly explained it.

Alignment refers to how child elements should be positioned within a parent element’s allocated layout
space (the bounding box). The HorizontalAlignment property determines how an element is positioned
horizontally within a container. The possible values for this property are Left, Right, Center, and Stretch.
When this property is set to Stretch, which is the default, the control will expand to its maximum available
width. Figure 4-3 shows a button in a grid with the alignment set to each of the four values.

Figure 4-1. Control layout in a ScrollViewer

Figure 4-2. A control’s bounding box

Chapter 4 ■ Layout and Custom ControLs

138

VerticalAlignment determines how an element is positioned vertically within a container. The
possible values for this property are Top, Bottom, Center, and Stretch. Just like with HorizontalAlignment,
setting the value to Stretch expands it to take up all available vertical space. Figure 4-4 shows this.

Listing 4-1 shows the XAML used to render the user interfaces from both Figure 4-2 and Figure 4-3.

Listing 4-1. Alignment in Action

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <Grid.ColumnDefinitions>

<ColumnDefinition />
<ColumnDefinition />
<ColumnDefinition />
<ColumnDefinition />

 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>

<RowDefinition />
<RowDefinition />
<RowDefinition />
<RowDefinition />

 </Grid.RowDefinitions>

 <!-- horizontal alignment -->
 <Border BorderThickness=".5" BorderBrush="Black" Grid.Column="0">

<Button Content="Left" HorizontalAlignment="Left" />
 </Border>

Figure 4-3. HorizontalAlignment types

Figure 4-4. VerticalAlignment types

Chapter 4 ■ Layout and Custom ControLs

139

 <Border BorderThickness=".5" BorderBrush="Black" Grid.Column="1">
<Button Content="Right" HorizontalAlignment="Right" Width="56" />

 </Border>
 <Border BorderThickness=".5" BorderBrush="Black" Grid.Column="2">

<Button Content="Centered" HorizontalAlignment="Center" />
 </Border>
 <Border BorderThickness=".5" BorderBrush="Black" Grid.Column="3">

<Button Content="Stretch" HorizontalAlignment="Stretch" />
 </Border>

 <!-- vertical alignment -->
 <Border BorderThickness=".5" BorderBrush="Black"

Grid.Column="0" Grid.Row="1">
<Button Content="Top"

HorizontalAlignment="Center" VerticalAlignment="Top" />
 </Border>
 <Border BorderThickness=".5" BorderBrush="Black"

Grid.Column="1" Grid.Row="1">
<Button Content="Bottom" HorizontalAlignment="Center"

VerticalAlignment="Bottom" />
 </Border>
 <Border BorderThickness=".5" BorderBrush="Black"

Grid.Column="2" Grid.Row="1">
<Button Content="Centered"

HorizontalAlignment="Center" VerticalAlignment="Center" />
 </Border>
 <Border BorderThickness=".5" BorderBrush="Black"

Grid.Column="3" Grid.Row="1">
<Button Content="Stretch" HorizontalAlignment="Center"

VerticalAlignment="Stretch" />
 </Border>

</Grid>

The best way to describe the Margin property is as a value used to specify the offset distance between
an element and its bounding box. This property consists of four parts: the left margin, the top margin, the
right margin, and the bottom margin. Margin values are depicted in XAML as a comma-delimited string
of decimal values. From left, these values are left margin, top margin, right margin, and bottom margin.
Examine the following button definitions in Listing 4-2.

Listing 4-2. Using Margins

<Border BorderThickness=".5" BorderBrush="Black" Grid.Column="1" Grid.Row="2">
 <Button Margin="10,5,15,0" Content="Margin"

HorizontalAlignment="Left" VerticalAlignment="Top" />
</Border>
<Border BorderThickness=".5" BorderBrush="Black" Grid.Column="0" Grid.Row="2">
 <Button Content="Margin"

HorizontalAlignment="Left" VerticalAlignment="Top" />
</Border>

Chapter 4 ■ Layout and Custom ControLs

140

In Listing 4-2, the button that would normally be positioned at the top left corner of the border is now
shifted to the left 10 pixels, from the top 5 pixels, from the right 15 pixels, and from the bottom 0 pixels.
Figure 4-5 illustrates the difference applying a margin makes.

More specifically, the margins are applied against the element’s bounding box in the manner depicted
in Figure 4-6.

This is an important point to stress because your decisions when working with margins may have an
effect on the visible area of the control you want displayed, especially if values like Width or Height are
explicitly set. Remember that your controls can possess attributes that may be set but are not relevant to the
issue of whether or not they display. And even if they do display, how much of their content area is visible?
In Listing 4-2, you set a right margin of 15 pixels, and when you ran it, everything worked fine because at
runtime there was plenty of space to the right of your button. Let’s change things up a bit and see what
happens. Start by modifying the second column definition element, as shown in Listing 4-3.

Listing 4-3. Specifying the Width of a Grid Column

<Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition Width="80" />
 <ColumnDefinition />
 <ColumnDefinition />
</Grid.ColumnDefinitions>

You’ve added a width to the column so that the particular column will now no longer take on all
available space but will instead be fixed to that size. Run the app. See Figure 4-7. Notice that the button has
now been clipped! Instead of presenting the full text margin, only a portion of it is displayed. This is because
the button render area is being pushed back 15 pixels to account for the margin being set.

Figure 4-5. Margins in action

Figure 4-6. Impact of a margin on a bounding box

Chapter 4 ■ Layout and Custom ControLs

141

If you want the same margin on all four sides, you only need to specify one value. The following XAML
sets the margin to 5 on all sides:

<Button Margin="5"...

If you want the same margin applied to top/bottom and left/right you can use just two values separated
by a comma.

<Button Margin="9,3"...

This notation means that both left and right margins will be set to 9 pixels while both top and bottom
margins will be set to 3 pixels.

Like the Margin property, padding is used to add offset space to the normal positioning of a control.
Unlike Margin, padding is applied to the space between the inner edge of a given control and its content.
Figure 4-8 illustrates.

Padding can only be applied on certain controls, including Border, Button, and TextBlock.

Figure 4-7. Example of clipping that might occur when margin value is too high

Figure 4-8. Spatial structure of a XAML control

The Layout Controls
Now let’s explore the various layout controls.

Canvas
The Canvas is a layout panel that supports absolute positioning of child elements relative to the top left
corner of the canvas. It is the most efficient of the layout controls because it requires the least amount of
special processing to evaluate the layout of its children.

Chapter 4 ■ Layout and Custom ControLs

142

You control the positioning of elements inside the Canvas by specifying X and Y coordinates in pixels.
The X and Y coordinates are often specified by using the Canvas.Left and Canvas.Top attached properties.
Canvas.Left specifies the object’s distance from the left side of the containing Canvas (the x-coordinate),
and Canvas.Top specifies the object’s distance from the top of the containing Canvas (the y-coordinate).

■ Note absolute positioning does not take into account the size of the app window, scaling, or other
user-selected sizing. using a container element that adapts to different orientations and screen settings, such
as Grid or stackpanel, is often a better choice than using Canvas.

You can nest Canvas objects. When you nest objects, the coordinates used by each object are relative to
its immediate containing Canvas.

Canvas is the host service class for several XAML attached properties. The purpose of these attached
properties is to enable child elements in layout to report how they should be positioned in a Canvas parent.

These XAML attached properties are supported by Canvas:

• Canvas.Left

• Canvas.Top

• Canvas.ZIndex

There is almost always a better solution to using the Canvas as your layout control. It certainly makes
little sense to do so now that an app is guaranteed to have multiple sizes during its run duration because
there is no way to accurately predict positioning for the elements that have been placed in a Canvas.

You will be using Canvas for what it’s good for: absolute positioning. This means that its purpose must
be resolution- and size-dependent, which excludes using it for standard control layout. In your case, you will
utilize the canvas as a surface for animating movement.

Control Corral, the project you started in Chapter 2 and continued in Chapter 3, still has some
pieces missing from it. You’ve got most of the functionality in place but you are still lacking in the layout
department. The controls we introduce and discuss later in this chapter will address that. What you want to
do now is add some security to the platform to help protect the customer. Since the massages are therapy,
they technically fall into the “medical” category. As such, proper precautions must be taken to ensure that
when the app is open and not being used, the screen is disabled and cannot be read. That being said, we still
want the app to look attractive and engaging for customers walking around your spa who might glance at it.

To accomplish this, you will build a screen-saver style screen that appears when the app has not been
interacted with for 30 seconds. Let’s get started.

Because the core functionality you are trying to implement affects every page in your app, you have two
choices to make. You can either build it into every single page or expose some kind of application-level user
interface that is always ready to be loaded. Fortunately, you designed the app with an app-wide page called
RootHost that can serve this purpose. As a reminder, you added RootHost to host the app-wide Frame that
normally is set to your Windows’s content. At the time it might not have made sense, but building extensibility
points into your app design is always a good thing because it minimizes the amount of refactoring you will
have to do. You first implement the timer functionality in RootHost.xaml.cs. Listing 4-4 shows this.

http://dx.doi.org/10.1007/978-1-4842-1449-7_2
http://dx.doi.org/10.1007/978-1-4842-1449-7_3

Chapter 4 ■ Layout and Custom ControLs

143

Listing 4-4. Security Timer Enabled on RootHost

...
DispatcherTimer _security_timer;
public RootHost()
{

this.InitializeComponent();
SystemNavigationManager

.GetForCurrentView()

.AppViewBackButtonVisibility
= AppViewBackButtonVisibility.Visible;

SystemNavigationManager
.GetForCurrentView()
.BackRequested += RootHost_BackRequested;

this.Loaded += RootHost_Loaded;
_security_timer = new DispatcherTimer();
_security_timer.Interval = TimeSpan.FromSeconds(30);
_security_timer.Tick += async (a, b) =>

{
_security_timer.Stop();
var msg = new MessageDialog("Secure", "Locked");
await msg.ShowAsync();
_security_timer.Start();

};
}

private void RootHost_Loaded(object sender, RoutedEventArgs e)
{

rootframe.Navigate(typeof(Dashboard));
_security_timer.Start();

}
...

Listing 4-4 uses a DispatcherTimer object to trigger a message dialog every 30 seconds. You will next
need to implement something to reset the timer so that it starts from scratch when a user interacts with it.
Add the code in Listing 4-5 to do this.

Listing 4-5. Event Handlers for Handling User Input and Resetting the Timer

private void ResetTimer()
{

_security_timer.Stop();
_security_timer.Start();

}

protected override void OnKeyDown(KeyRoutedEventArgs e)
{

base.OnKeyDown(e);
ResetTimer();

}

Chapter 4 ■ Layout and Custom ControLs

144

protected override void OnPointerMoved(PointerRoutedEventArgs e)
{

base.OnPointerMoved(e);
ResetTimer();

}

Now the timer will be restarted whenever the user moves their finger or mouse, or presses a key on the
keyboard. Run the app now to test this functionality. The final step is to implement the animation. Let’s start
by laying out the page. Listing 4-6 shows how the layout for RootHost should be set up.

Listing 4-6. New RootHost Page Layout

<Page
 x:Class="Lesson2_ControlCorral.RootHost"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Lesson2_ControlCorral"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Grid>
<Frame x:Name="rootframe" />
<Canvas x:Name="animation_root" Background="Black" Visibility="Collapsed"/>

 </Grid>

</Page>

At present, the canvas is collapsed. When the security timer runs out, it will be displayed. Refactor the
code-behind so that it has the changes specified in bold in Listing 4-7.

Listing 4-7. Modifications to Display Animation When the Screen Times Out

...
public RootHost()
{

this.InitializeComponent();
SystemNavigationManager

.GetForCurrentView()

.AppViewBackButtonVisibility
= AppViewBackButtonVisibility.Visible;

SystemNavigationManager
.GetForCurrentView()
.BackRequested += RootHost_BackRequested;

this.Loaded += RootHost_Loaded;
_security_timer = new DispatcherTimer();
_security_timer.Interval = TimeSpan.FromSeconds(30);

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

Chapter 4 ■ Layout and Custom ControLs

145

_security_timer.Tick += (a, b) =>
{

_security_timer.Stop();
animation_root.Visibility = Visibility.Visible;
_security_timer.Start();

};
}

private void ResetTimer()
{

_security_timer.Stop();
_security_timer.Start();
animation_root.Visibility = Visibility.Collapsed;

}
...

Run the code once again to test this new functionality. The final step is now to implement the animation
logic. First, you implement the logic for displaying the circles. Listing 4-8 shows the code logic.

Listing 4-8. Animation Logic

private void DisplayCircle(Storyboard sb, DoubleAnimation motion_x, DoubleAnimation
motion_y,

DoubleAnimationUsingKeyFrames opacity,
int x, int y, int height, int width, Color color, bool fill,
double duration, int range_x, int range_y, Ellipse circle = null)

{
if (circle == null)
{

circle = new Ellipse();
animation_root.Children.Add(circle);

}

circle.Width = width;
circle.Height = height;
circle.SetValue(Canvas.LeftProperty, x);
circle.SetValue(Canvas.TopProperty, y);
circle.Stroke = new SolidColorBrush(color);
if (fill)

circle.Fill = new SolidColorBrush(color);
circle.StrokeThickness = 1;
circle.Opacity = 0;

Storyboard.SetTarget(motion_x, circle);
Storyboard.SetTarget(motion_y, circle);

motion_x.To = range_x;
motion_y.To = range_y;
motion_x.Duration = new Duration(TimeSpan.FromSeconds(duration));
motion_y.Duration = new Duration(TimeSpan.FromSeconds(duration));

Chapter 4 ■ Layout and Custom ControLs

146

Storyboard.SetTarget(opacity, circle);
Storyboard.SetTargetName(opacity, circle.Name);
Storyboard.SetTargetProperty(opacity, "Opacity");

opacity.Completed += (a, b) =>
{

#region body
Storyboard sb2 = new Storyboard();
Random size_random = new Random();
Random left_random = new Random();
var bounds = Window.Current.Bounds;

int size = size_random.Next(10, 500);
int left = left_random.Next((int)bounds.Width);
int top = left_random.Next((int)bounds.Height);
int temp_range_x = left_random.Next((int)bounds.Width);
int temp_range_y = left_random.Next((int)bounds.Height);
int temp_duration = left_random.Next(5, 10);

byte a2 = (byte)left_random.Next(0, 255);
byte r2 = (byte)left_random.Next(0, 255);
byte g2 = (byte)left_random.Next(0, 255);
byte b2 = (byte)left_random.Next(0, 255);
Color color2 = Color.FromArgb(a2, r2, g2, b2);

DoubleAnimation motion_x2 = new DoubleAnimation();
Storyboard.SetTargetProperty(motion_x2, "(Canvas.Left)");

DoubleAnimation motion_y2 = new DoubleAnimation();
Storyboard.SetTargetProperty(motion_y2, "(Canvas.Top)");

DoubleAnimationUsingKeyFrames opacity2 =
new DoubleAnimationUsingKeyFrames();

LinearDoubleKeyFrame ld = new LinearDoubleKeyFrame();
ld.KeyTime = KeyTime

.FromTimeSpan(TimeSpan.FromSeconds(duration / 2.0));
ld.Value = 1;
LinearDoubleKeyFrame ld2 = new LinearDoubleKeyFrame();
ld2.KeyTime = KeyTime

.FromTimeSpan(TimeSpan.FromSeconds(duration));
ld2.Value = 0;
opacity2.KeyFrames.Add(ld);
opacity2.KeyFrames.Add(ld2);

DisplayCircle(sb2, motion_x2, motion_y2, opacity2, left, top,
size, size, color2, fill, temp_duration,
temp_range_x, temp_range_y, circle);

sb2.Children.Add(motion_x2);
sb2.Children.Add(motion_y2);

Chapter 4 ■ Layout and Custom ControLs

147

sb2.Children.Add(opacity2);
sb2.Begin();
#endregion

};
}

Listing 4-8 is used to create a circle of a certain size with a random fill color. Once created, it is used
as the target of a storyboard animation. An event handler handles the Completed event for the animation
associated with the circle’s opacity. When the value hits zero (when the animation is finished), a new
storyboard animation is spawned that recursively calls this method. We will discuss animations in more
detail in Chapter 7. For now, you can just copy the code here verbatim.

Now create a new method called StartScreenHider where the logic to start hiding the control corral
screen will be implemented. See Listing 4-9.

Listing 4-9. StartScreenHider Method

void StartScreenHider()
{

animation_root.Visibility = Visibility.Visible;
animation_root.Children.Clear();
Random position_random = new Random();
Color color = Colors.Gray;

foreach (var i in Enumerable.Range(1, 50))
{

Storyboard sb = new Storyboard();

#region code
int size = position_random.Next(10, 500);
int left = position_random.Next((int)this.ActualWidth);
int top = position_random.Next((int)this.ActualHeight);
int range_x = position_random.Next((int)this.ActualWidth);
int range_y = position_random.Next((int)this.ActualHeight);

int min_duration = 5, max_duration = 10;

int duration = position_random.Next(min_duration, max_duration);

byte a = (byte)position_random.Next(0, 255);
byte r = (byte)position_random.Next(0, 255);
byte g = (byte)position_random.Next(0, 255);
byte b = (byte)position_random.Next(0, 255);

DoubleAnimation motion_x = new DoubleAnimation();
Storyboard.SetTargetProperty(motion_x, "(Canvas.Left)");

DoubleAnimation motion_y = new DoubleAnimation();
Storyboard.SetTargetProperty(motion_y, "(Canvas.Top)");

DoubleAnimationUsingKeyFrames opacity =
new DoubleAnimationUsingKeyFrames();

LinearDoubleKeyFrame ld = new LinearDoubleKeyFrame();

http://dx.doi.org/10.1007/978-1-4842-1449-7_7

Chapter 4 ■ Layout and Custom ControLs

148

ld.KeyTime = KeyTime
.FromTimeSpan(TimeSpan.FromSeconds(duration / 2.0));

ld.Value = 1;
LinearDoubleKeyFrame ld2 = new LinearDoubleKeyFrame();
ld2.KeyTime = KeyTime

.FromTimeSpan(TimeSpan.FromSeconds(duration));
ld2.Value = 0;
opacity.KeyFrames.Add(ld);
opacity.KeyFrames.Add(ld2);

DisplayCircle(sb, motion_x, motion_y, opacity,
left, top, size, size, color, true,
duration, range_x, range_y);

sb.Children.Add(motion_x);
sb.Children.Add(motion_y);
sb.Children.Add(opacity);
#endregion
sb.Begin();

}

}

Listing 4-9 is called whenever the security timer runs out. Once called, it instantiates a storyboard,
creates the animations you need to run that storyboard, and then calls the DisplayCircle method, passing
in all appropriate parameters. Finally, you change the security timer’s tick event handler to call this method
instead of just making the animation panel visible. Listing 4-10 illustrates.

Listing 4-10. Updated Tick Event Handler

_security_timer.Tick += (a, b) =>
{

_security_timer.Stop();
StartScreenHider();
_security_timer.Start();

};

When this is run (and you wait around 30 seconds), you should see the security screen appear with the
animations running. On my machine, this looks like Figure 4-9.

Chapter 4 ■ Layout and Custom ControLs

149

StackPanel
The StackPanel is a layout panel that arranges child elements into a single line that can be oriented
horizontally or vertically. StackPanel defines border attached properties: StackPanel.BorderBrush,
StackPanel.BorderThickness, StackPanel.CornerRadius, and StackPanel.Padding to help with drawing a
border around the StackPanel without using an additional Border element.

Now that you have a clearer understanding of StackPanels, let’s modify some of your pages to utilize
them. You will start with the Dashboard. Listing 4-11 illustrates; please note that portions of the code have
been left out.

Listing 4-11. Using StackPanel

<Grid Background="White">
<StackPanel Orientation="Vertical"

Background="SlateGray"
Width="100"
HorizontalAlignment="Left">

<AppBarButton Icon="Calendar"
HorizontalAlignment="Center"
Label="New Reservation"
RequestedTheme="Dark"
Margin="5"
Click="OnReservation" />

<AppBarButton Icon="List"
HorizontalAlignment="Center"
Label="List Reservations"
RequestedTheme="Dark"
Margin="5"
Click="ListReservations" />

</StackPanel>
<Grid Margin="110,0,0,0">

Figure 4-9. Animations running

Chapter 4 ■ Layout and Custom ControLs

150

<Border Margin="0,53,10,0"
Height="184"
BorderThickness="0,2,0,1"
BorderBrush="Gray"
VerticalAlignment="Top">

...
</Border>
...

<Border Margin="0,295,10,0" Height="184"
BorderThickness="0,2,0,1"
BorderBrush="Gray"
VerticalAlignment="Top">

...
</Border>
...

</Grid>
 </Grid>

Running this sample produces the page shown in Figure 4-10.

Grid
The Grid is a layout panel that supports arranging child elements in rows and columns. You typically define
layout behavior for a Grid in XAML by providing one or more RowDefinition elements as the value of
Grid.RowDefinitions, and one or more ColumnDefinition elements as the value of Grid.ColumnDefinitions.
Then, you apply the Grid.Row and Grid.Column attached properties to each of the element children of the
Grid, to indicate which row/column combination is used to position that element within the parent Grid.
You saw this in Listing 4-2. The width of columns or height of rows can also be set using the Width property

Figure 4-10. StackPanel in action

Chapter 4 ■ Layout and Custom ControLs

151

on a RowDefinition element or the Height property on a ColumnDefinition element. By default, a Grid
contains one row and one column.

By default, each row or column divides layout space equally. Figure 4-11 shows the layout of two
buttons when no sizing is provided.

You can change this behavior either by providing absolute pixel values, or by using Star sizing to divide
the available space using a weighted factor. When the size of a row or column is defined explicitly, the other
row/columns will once again fall back to dividing the remaining space evenly. In Figure 4-12, the left column
has been modified to define a width of 50 pixels.

When Star sizing is used, ratios are applied to each of the columns/rows to produce the size for that row.
For instance, if you want left to be twice as large as right, you specify left as 2* and right as 1* (not specifying
a width value automatically means 1*, so in this case, it would not be necessary to specify the right column’s
width attribute). Figure 4-13 shows what this would look like.

Figure 4-11. Grid with two columns

Figure 4-12. Grid with two columns, one set to a fixed width

Chapter 4 ■ Layout and Custom ControLs

152

Using star sizing is not unlike using percentages in HTML but offers superior functionality because you
are not locked into a scale with which to define your ratios. With HTML you are always viewing sizes in terms
of 100% and have to do your own calculations to determine the values specific rations might mean in terms
of a percentage. With XAML star sizing, you can just specify the ratio.

To indicate that an element child should span multiple rows or multiple columns in the Grid, you can
apply the Grid.RowSpan or Grid.ColumnSpan attached properties to child elements of a Grid.

As discussed earlier, you can precisely position child elements of a Grid by using a combination of the
Margin property and alignment properties.

Now you’ll use your newfound understanding of the Grid layout control to add a simple point-of-sale
terminal to your application. In this sample, you will be using a new style of binding called compiled binding.
In the three previous chapters, we introduced and used binding to help deliver the samples, so you should
have a good understanding of how to use it to connect an underlying data model with what’s being displayed
on the screen. What is a point of concern with traditional binding is the lack of compile-time validation
(each of the paths in the data binding expression are string literals). Combined with the fact that the data
binding framework does not bubble up exceptions, it can be difficult to know when something has gone
wrong with your code, and what that something is. Additionally, traditional binding can be quite expensive
because of its reliance on reflection to pull values from. Compiled binding enhances the databinding
experience by offering compile-time validation of binding paths. This means that the binding expression is
statically linked to a specific type in the procedural part of a page.

In fact, for compiled bindings the DataContext is the object represented by the x:Class declaration
in the XAML. To enable compiled binding, use the x:Bind markup extension. This markup extension
effectively exposes the fields and properties of a code-behind class to the XAML. You can use x:Bind in any
situation where traditional bindings are used, but in all cases x:Bind will require a code-behind file (as this
is what is actually being bound to). This means that when you use x:Bind within a resource dictionary you
must specify a code-behind for that resource dictionary (using x:Class notation). When x:Bind is used in
template definitions, a type must be specified.

You start by adding a new page to your app called POS. Now navigate to your dashboard page and add
a new AppBarButton to your navigation StackPanel. Use the calculator icon and label it POS. Set the click
event to say OpenPOS, and then right-click and select Go To Definition to implement it. Your new app bar
button should look like Listing 4-12.

Figure 4-13. Grid with two columns using star sizing

Chapter 4 ■ Layout and Custom ControLs

153

Listing 4-12. POS Button Declaration

<AppBarButton Icon="Calculator"
HorizontalAlignment="Center"
Label="POS"
RequestedTheme="Dark"
Margin="5"
Click="OpenPOS" />

In the code-behind method called OpenPOS, navigate to the POS page using the following code:
Frame.Navigate(typeof(POS)). Run the sample and ensure that it is properly navigating to the desired page.

You will be using all the tricks of the trade from your Grid sample to implement the POS page. For now,
it will use the column and row layout functionality that Grids provide to structure the user interface of the
price entry panel. The POS page will also have a receipt panel that gives a real-time totaling (including taxes)
of the items that have been purchased. In this implementation, no information about the purchase item will
be presented. As you move through the various topics in this chapter, you will have an opportunity to revisit
this feature and add more functionality to it; specifically, you will be adding support to pull the item being
purchased directly from a catalog of potential items. Figure 4-14 shows the desired layout of the POS page.

Based on the diagram in Figure 4-14, the POS page can be created with a five-column, five-row grid.
Listing 4-13 shows the layout structure in XAML, with ColumnSpan values applied as needed to align the user
interface with what you had in your sample file.

Listing 4-13. XAML to Layout POS

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <Grid.ColumnDefinitions>

<ColumnDefinition />
<ColumnDefinition />
<ColumnDefinition />
<ColumnDefinition />
<ColumnDefinition Width="350" />

 </Grid.ColumnDefinitions>

Figure 4-14. Desired POS layout

Chapter 4 ■ Layout and Custom ControLs

154

 <Grid.RowDefinitions>
<RowDefinition />
<RowDefinition />
<RowDefinition />
<RowDefinition />
<RowDefinition />

 </Grid.RowDefinitions>
 <Border BorderBrush="Gray" BorderThickness="1"

Margin="5" Grid.ColumnSpan="4">
<TextBlock x:Name="txt_currentamount" Text="0"

FontFamily="segoe ui" FontWeight="ExtraBlack" FontSize="35"
VerticalAlignment="Center" HorizontalAlignment="Right"/>

 </Border>

<Button Tag="1"
Content="1"
Click="NumberClicked"
HorizontalAlignment="Stretch"
VerticalAlignment="Stretch"
Grid.Row="1"
Grid.Column="0"
Margin="5" />

<Button Tag="2"
Content="2"
Click="NumberClicked"
HorizontalAlignment="Stretch"
VerticalAlignment="Stretch"
Grid.Row="1"
Grid.Column="1"
Margin="5" />

<Button Tag="3"
Content="3"
Click="NumberClicked"
HorizontalAlignment="Stretch"
VerticalAlignment="Stretch"
Grid.Row="1"
Grid.Column="2"
Margin="5" />

<Button Tag="4"
Content="4"
Click="NumberClicked"
HorizontalAlignment="Stretch"
VerticalAlignment="Stretch"
Grid.Row="2"
Grid.Column="0"
Margin="5" />

<Button Tag="5"
Content="5"
Click="NumberClicked"
HorizontalAlignment="Stretch"

Chapter 4 ■ Layout and Custom ControLs

155

VerticalAlignment="Stretch"
Grid.Row="2"
Grid.Column="1"
Margin="5" />

<Button Tag="6"
Content="6"
Click="NumberClicked"
HorizontalAlignment="Stretch"
VerticalAlignment="Stretch"
Grid.Row="2"
Grid.Column="2"
Margin="5" />

<Button Tag="7"
Content="7"
Click="NumberClicked"
HorizontalAlignment="Stretch"
VerticalAlignment="Stretch"
Grid.Row="3"
Grid.Column="0"
Margin="5" />

<Button Tag="8"
Content="8"
Click="NumberClicked"
HorizontalAlignment="Stretch"
VerticalAlignment="Stretch"
Grid.Row="3"
Grid.Column="1"
Margin="5" />

<Button Tag="9"
Content="9"
Click="NumberClicked"
HorizontalAlignment="Stretch"
VerticalAlignment="Stretch"
Grid.Row="3"
Grid.Column="2"
Margin="5" />

<Button Content="."
Click="DotClicked"
HorizontalAlignment="Stretch"
VerticalAlignment="Stretch"
Grid.Row="4"
Grid.Column="0"
Margin="5" />

<Button Tag="0"
Content="0"
Click="NumberClicked"
HorizontalAlignment="Stretch"
VerticalAlignment="Stretch"
Grid.Row="4"

Chapter 4 ■ Layout and Custom ControLs

156

Grid.Column="1"
Grid.ColumnSpan="2"
Margin="5" />

<Button Content="+"
Click="AddItemClicked"
HorizontalAlignment="Stretch"
VerticalAlignment="Stretch"
Grid.Row="2"
Grid.Column="3"
Margin="5" />

<Button Content="PAY"
Click="PayClicked"
HorizontalAlignment="Stretch"
VerticalAlignment="Stretch"
Grid.Row="3"
Grid.RowSpan="2"
Grid.Column="3"
Margin="5" />

<Button Content="<"
Click="DeleteClicked"
HorizontalAlignment="Stretch"
VerticalAlignment="Stretch"
Grid.Row="1"
Grid.Column="3"
Margin="5" />

<StackPanel x:Name="reciept" BorderThickness="1" BorderBrush="Gray"
HorizontalAlignment="Stretch"
VerticalAlignment="Stretch"

Grid.RowSpan="5" Grid.Row="0"
Grid.Column="4" Margin="5">

</StackPanel>
</Grid>

Listing 4-13 contains a layout that should be relatively straightforward to understand. Besides the
TextBlock, which is named, there are no named elements here; instead you’re using event handlers declared
in XAML and expressed in the code-behind. The numbered buttons all define a Tag attribute, which you
use to store the number they represent. They all also use the same event handler to handle their clicked
event. The plan is to implement this as a catch-all handler that will apply that tag value to the display area
when any of those buttons are clicked. The other three event handlers, DeleteClicked, PayClicked, and
DotClicked, are used to handle those individual cases.

The XAML from Listing 4-13 will lay out in the design surface as shown in Figure 4-15.

Chapter 4 ■ Layout and Custom ControLs

157

Before moving on with the next steps, let’s add some classes to represent the activities involved in a
point-of-sale interaction. You need a management class to use as the control class for interacting with the
user interface. This class when instantiated will be the code version of the UI. You also need a class that
represents each line item in a receipt. Every time a product is scanned or a price is typed in, a new entry is
made to the receipt for that transaction; this class needs to encapsulate all the data stored in that entry.
You will start with this class. Create a new class in your project called ReceiptItem and place the code in
Listing 4-14 into it.

Listing 4-14. ReceiptItem Class Definition

public class ReceiptItem
{

public Guid ItemID { get; set; }
public string ItemName { get; set; }
public double Price { get; set; }
public double Tax { get; set; }

}

You next implement the management class we discussed earlier. Create another class in your project
called POSTransaction. As stated previously, this class should encompass all activities necessary to perform
your POS function. Listing 4-15 shows the code you should add to this class.

Listing 4-15. POSTransaction Class Definition

public class POSTransaction
{

List<ReceiptItem> Items { get; } = new List<ReceiptItem>();

public double DefaultTaxAmount { get; set; }

Figure 4-15. POS layout in design window

Chapter 4 ■ Layout and Custom ControLs

158

public double SubTotal
{

get
{

return Items.Select(i => i.Price).Sum();
}

}

public double TotalTax
{

get
{

return Items.Select(i => i.Tax).Sum();
}

}

public void AddItemByPrice(double price)
{

var tax_amount = price * DefaultTaxAmount;
Items.Add(
new ReceiptItem
{

ItemID = Guid.NewGuid(),
ItemName = "",
Price = price,
Tax = tax_amount,

});
}
public void RemoveItem(ReceiptItem item)
{

Items.Remove(item);
}

public void ClearItems()
{

Items.Clear();
}

}

POSTransaction will be used to track a given point-of-sale transaction. For the purposes of this case study,
a transaction will start when the user clicks the POS button and is navigated to the POS page. A transaction
ends when a sale is made or the transaction is cancelled by either navigating away or paying. AddItemByPrice
is the primary method of interest here. Given a price, this method will calculate the appropriate tax and add it,
along with a GUID to identify the specific line item, as well as an empty item name string, to the list of receipt
items being tracked by this class. You can now wire up the code-behind file, POS.xaml.cs. Listing 4-16 shows
all the methods that must be added to the POS class to enable the POS functionality.

Chapter 4 ■ Layout and Custom ControLs

159

Listing 4-16. Additions to POS Class

POSTransaction Transaction { get; set; } = new POSTransaction();

private void NumberClicked(object sender, RoutedEventArgs e)
{

if (txt_currentamount.Text.Trim() == "0")
txt_currentamount.Text = "";

//test to see if two decimal places have already been specified
var parts = txt_currentamount.Text.Split('.');
if (parts.Length > 1)
{

if (parts[1].Length >= 2)
return;

}
Button target = sender as Button;
var number = target.Tag as string;
txt_currentamount.Text += number;

}

private void DotClicked(object sender, RoutedEventArgs e)
{

if (txt_currentamount.Text.Contains(".") == false)
txt_currentamount.Text += ".";

}

private void AddItemClicked(object sender, RoutedEventArgs e)
{

Transaction.AddItemByPrice(double.Parse(txt_currentamount.Text));

//add a reciept line item as a textblock
TextBlock txt_item = new TextBlock();
txt_item.Text = txt_currentamount.Text;
reciept.Children.Insert(0, txt_item);

txt_currentamount.Text = "0";
}

private void DeleteClicked(object sender, RoutedEventArgs e)
{

if (txt_currentamount.Text.Length > 0)
txt_currentamount.Text = txt_currentamount.Text

.Remove(txt_currentamount.Text.Length - 1);
if (txt_currentamount.Text.Length == 0)

txt_currentamount.Text = "0";
}

private void PayClicked(object sender, RoutedEventArgs e)
{

}

Chapter 4 ■ Layout and Custom ControLs

160

The first thing you need to do in Listing 4-16 is create a property that represents the transaction that
will occur while on the POS page. The Transaction property represents this. You instantiate it for each
new POS page that is created. You next implement the various event handlers needed to facilitate the POS
functionality. In NumberClicked, you first do some cosmetic homework, removing the 0 that is automatically
placed when no value is in the TextBlock. The next lines of code, outlined below, are there to prevent more
than two decimal places being inputted into the POS console:

//test to see if two decimal places have already been specified
var parts = txt_currentamount.Text.Split('.');
if (parts.Length > 1)
{

if (parts[1].Length >= 2)
return;

}

You split the string by the dot (DotClicked ensures that there can only be one dot in the number string)
and if the string to the right of the dot has two characters already ignore the entry. AddItemClicked takes
the string value presently in the TextBlock, converts it to a double, and adds it to the transaction as a receipt
line item. It then adds a TextBlock set to the display the value of the current entry to the receipt StackPanel.
Note that you use Children.Insert as opposed to Children.Add here. You will be adding another control
to this StackPanel to represent the total amount spent and you want this to always show at the bottom
of the StackPanel. Using Insert allows you to place other controls above this control, so that the receipt
user interface resembles that of a paper receipt. DeleteClicked deleted the last character inputted. If no
characters are left, it shows a zero. Run the sample and ensure that it works.

Now let’s add the code in Listing 4-17 into the StackPanel you are calling receipt. This TextBlock will
be used to represent the sub-total value of the current transaction, which is the total cost without tax. In
your POS transaction class, you have a property that maps to it called SubTotal so you x:Bind to it. Because
compiled binding is always bound to the code-behind class, all you need to do here is specify the x-bind.
There’s no need to set DataContext.

Listing 4-17. Control to Display Total in Receipt StackPanel

<Border Margin="5" BorderThickness="0,1,0,0" BorderBrush="Black" Padding="5">
 <TextBlock Text="{x:Bind Path='Transaction.SubTotal', Mode=OneWay}" />
</Border>

Run this code and you will notice that although items are being added, the total amount is not being
updated. We have deliberately left something out to help illustrate its value to the binding framework.
When the page is first loaded, the binding mechanism is loaded, but it is never run automatically again.
Given this, how does the binding framework know that values have changed so as to update the item being
bound to? The answer can be found in the INotifyPropertyChanged interface. This interface serves two
purposes. First, it serves as a marker to let the binding framework know that the object being bound is one
that can change values during the runtime of the app. This is an important optimization technique. Second,
it provides a PropertyChanged event that the runtime can subscribe to and use to update its bindings.
You must modify POSTransaction to implement this interface if you want your TextBlock to be notified of
the change when SubTotal is modified. Listing 4-18 shows the changes that need to be made, which are
highlighted in bold.

Chapter 4 ■ Layout and Custom ControLs

161

Listing 4-18. Applying INotifyPropertyChanged to POSTransaction

public class POSTransaction : INotifyPropertyChanged
{

public event PropertyChangedEventHandler PropertyChanged;

...

public void AddItemByPrice(double price)
{

var tax_amount = price * DefaultTaxAmount;
Items.Add(
new ReceiptItem
{

ItemID = Guid.NewGuid(),
ItemName = "",
Price = price,
Tax = tax_amount,

});
PropertyChanged?

.Invoke(this,
new PropertyChangedEventArgs("SubTotal"));

PropertyChanged?
.Invoke(this,
new PropertyChangedEventArgs("TotalTax"));

}

...
}

Run the sample now and you should see that the total TextBlock is updating properly.

RelativePanel
The RelativePanel is a layout container that is useful for creating UIs that do not have a clear linear
pattern–that is, layouts that are not fundamentally stacked, wrapped, or tabular, where you might naturally
use a StackPanel or Grid. It allows you to decide on the fly the spatial relationship that any two items within
it share. If you want to define two StackPanels side by side, you might handle it as shown in Listing 4-19.

Listing 4-19. Laying Out Two Stack Panels Side by Side with Just a Grid

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <Grid.ColumnDefinitions>

<ColumnDefinition Width="Auto" />
<ColumnDefinition Width="Auto" />

 </Grid.ColumnDefinitions>
 <StackPanel >

<Button Content="1" />
<Button Content="2" />
<Button Content="3" />

 </StackPanel>

Chapter 4 ■ Layout and Custom ControLs

162

 <StackPanel Grid.Column="1">
<Button Content="4" />
<Button Content="5" />
<Button Content="6" />

 </StackPanel>
</Grid>

This will produce a user interface like the one in Figure 4-16 when run (this figure is from the
XAML designer).

Using a StackPanel you might find this to be somewhat easier but you would lose the ability to predict
the width of your content. Listing 4-20 illustrates.

Listing 4-20. Laying Out Two StackPanels Side by Side with Just a StackPanel

<StackPanel Orientation="Horizontal" >
 <StackPanel >

<Button Content="1" />
<Button Content="2" />
<Button Content="3" />

 </StackPanel>
 <StackPanel >

<Button Content="4" />
<Button Content="5" />
<Button Content="6" />

 </StackPanel>
</StackPanel>

This XAML would produce the same result as Figure 4-16 but at the cost of locking you into a layout
structured around the StackPanel. The RelativePanel can be used to do things like this quickly (and without
losing the flexibility to “fill” when needed). Listing 4-21 explains.

Figure 4-16. Two StackPanels side by side (grid version)

Chapter 4 ■ Layout and Custom ControLs

163

Listing 4-21. Laying Out Two StackPanels Side by Side with Just a RelativePanel

<RelativePanel >
 <StackPanel x:Name="stack_left" >

<Button Content="1" />
<Button Content="2" />
<Button Content="3" />

 </StackPanel>
 <StackPanel RelativePanel.RightOf="stack_left">

<Button Content="4" />
<Button Content="5" />
<Button Content="6" />

 </StackPanel>
</RelativePanel>

Listing 4-21 will once again produce the same results as Figure 4-15, but with no commitments made on
the future layout of the screen.

Now what if you tried to add another StackPanel to the right of these two controls, which takes up the
remaining space? To do this with the Grid, you would have to add a new column, then add the StackPanel,
then define it as being in that column. Tedious, but it can be done.

With the StackPanel solution, you could add the new column but because of the way the StackPanel
works (your main StackPanel is oriented horizontally, and it will grow horizontally only based on the total
width of elements it contains, so there is no way to make a StackPanel “fill” the remaining available space), it
cannot be made to take up the remaining space.

Listing 4-22 shows how it would look with a RelativePanel.

Listing 4-22. Laying Out with Just a RelativePanel

<RelativePanel >
 <StackPanel x:Name="stack_left" Orientation="Vertical">

<Button Content="1" />
<Button Content="2" />
<Button Content="3" />

 </StackPanel>
 <StackPanel x:Name="stack_right" RelativePanel.RightOf="stack_left">

<Button Content="4" />
<Button Content="5" />
<Button Content="6" />

 </StackPanel>
 <StackPanel RelativePanel.RightOf="stack_right"

RelativePanel.AlignRightWithPanel="True">
<Button Content="7" HorizontalAlignment="Stretch" />
<Button Content="8" HorizontalAlignment="Stretch" />
<Button Content="9" HorizontalAlignment="Stretch" />

 </StackPanel>
</RelativePanel>

Finally, what if you need to change the way these items lay out so that the last StackPanel you added was
now underneath the other two StackPanels? And what if this needs to happen at runtime based on some
user-driven event like the size of the windows changing? Although possible with the Grid, it would require so
much code that it would be prohibitive. Listing 4-23 shows the code that would be needed to accomplish this.

Chapter 4 ■ Layout and Custom ControLs

164

Listing 4-23. Changing Layout in Code-Behind Using RelativePanel

stack_bottom.SetValue(RelativePanel.BelowProperty, stack_left);
stack_bottom.SetValue(RelativePanel.AlignLeftWithPanelProperty, true);
stack_bottom.SetValue(RelativePanel.AlignRightWithPanelProperty, true);

Like all the panels discussed thus far, RelativePanel defines attached properties that let you draw
a border around the RelativePanel without using an additional Border element. The properties are
RelativePanel.BorderBrush, RelativePanel.BorderThickness, RelativePanel.CornerRadius, and
RelativePanel.Padding. In the next chapter, you will learn more about how the RelativePanel is used.

Let’s update your POS sample to use a relative panel. Along the way, you will also make some
improvements to it. First, let’s add a Total property to your POSTransaction object to represent the total of
the tax and subtotal. You will be binding to this property, so while you are modifying POSTransaction, you
should also add the necessary event firing so that the binding system is aware each time the property value
changes. Listing 4-24 provides the code.

Listing 4-24. POSTransaction.Total Property Definition

...
public double Total
{

get
{

return SubTotal + TotalTax;
}

}
...
public void AddItemByPrice(double price)
{

var tax_amount = price * DefaultTaxAmount;
Items.Add(
new ReceiptItem
{

ItemID = Guid.NewGuid(),
ItemName = "",
Price = price,
Tax = tax_amount,

});
PropertyChanged?

.Invoke(this,
new PropertyChangedEventArgs("SubTotal"));

PropertyChanged?
.Invoke(this,
new PropertyChangedEventArgs("TotalTax"));

PropertyChanged?
.Invoke(this,
new PropertyChangedEventArgs("Total"));

}
...

Chapter 4 ■ Layout and Custom ControLs

165

Next, you need to update the constructor for the code-behind file to set a value for POSTransaction’s
DefaultTaxAmount property. As you have seen from the definition of AddItemByPrice, this property is used
to calculate the tax on each item that is added to the customer’s transaction. In the previous section, you
were not displaying the total amount taxed so it did not matter; now that you are, you should make sure
there is a value assigned to this property. Listing 4-25 sets in the constructor for the POS code-behind class,
the default amount taxed (the sales tax) to 15% of the product’s value.

Listing 4-25. Setting DefaultTaxAmount

...
public POS()
{

this.InitializeComponent();

Transaction.DefaultTaxAmount = .15;
}
...

Finally, you modify the totals section of the receipt stack panel to include all the totals, not just the
SubTotal. You do this using the RelativePanel to illustrate the power and flexibility of the layout control. No
other layout control would allow you to do this without the need of other layout controls within it to help lay
out each individual control. RelativePanel brings with it the power to function like every other control on a
case by case basis. Replace the Border from Listing 4-17 with the code in Listing 4-26.

Listing 4-26. Totals Section Using RelativePanel

<Border Margin="5"
BorderThickness="0,1,0,0"
BorderBrush="Black"
Padding="5">

 <RelativePanel>
<TextBlock x:Name="txt_subtotal_label"

Text="Sub Total:" />
<TextBlock x:Name="txt_tax_label"

Text="Tax Total:"
RelativePanel.Below="txt_subtotal" />

<TextBlock x:Name="txt_total_label"
Text="Total:"
RelativePanel.Below="txt_tax_label" />

<TextBlock x:Name="txt_subtotal"
Text="{x:Bind Path='Transaction.SubTotal', Mode=OneWay}"
RelativePanel.AlignRightWithPanel="True" />

<TextBlock x:Name="txt_tax"
Text="{x:Bind Path='Transaction.TotalTax', Mode=OneWay}"
RelativePanel.Below="txt_subtotal"
RelativePanel.AlignRightWithPanel="True" />

<TextBlock x:Name="txt_total"
Text="{x:Bind Path='Transaction.Total', Mode=OneWay}"
RelativePanel.Below="txt_tax"
RelativePanel.AlignRightWithPanel="True" />

 </RelativePanel>
</Border>

Chapter 4 ■ Layout and Custom ControLs

166

Figure 4-17 shows the new look of the POS interface when run.

You will be revisiting this POS sample later on in this chapter when we discuss controls that you create
yourself.

VariableSizedWrapGrid
The VariableSizedWrapGrid arranges elements in rows or columns just like Grid, but with this control, child
elements will automatically wrap to a new row or column when the MaximumRowsOrColumns value is reached.
The Orientation property specifies whether the grid adds its items in rows or columns before wrapping.
When the value is Vertical, the grid adds items in columns from top to bottom, then wraps from left to
right. When the value is Horizontal, the grid adds items in rows from left to right, then wraps from top to
bottom. You can make items different sizes in the grid by making them span multiple rows and columns
using the VariableSizedWrapGrid.RowSpan and VariableSizedWrapGrid.ColumnSpan attached properties.

SplitView
The SplitView control presents two areas of content: a Pane, which can exist in two possible widths (a narrow
summary view, and a wider full view), and a Content area, which may also have two widths that it is presented in.

To open the Pane (to show it in its wider form), set the IsPaneOpen property. You can specify the length
of the opened pane by setting the OpenPaneLength property. You can also specify whether you want to pane
to appear on the left or right of the content area; to do so, use the PanePlacement property. Finally, you can
change the default background color of the Pane by setting the PaneBackground.

By default, the Pane overlays the Content and disappears completely when closed. Setting the DislayMode
on the SplitView allows you to specify one of several ways the Pane will behave when closed. The options are
as follows:

• Overlay: The pane covers the content when it’s open and does not take up space in
the control layout. The pane closes when the user taps outside of it.

• Inline: The pane is shown side by side with the content and takes up space in the
control layout. The pane does not close when the user taps outside of it.

Figure 4-17. POS in action

Chapter 4 ■ Layout and Custom ControLs

167

• CompactOverlay: The amount of the pane defined by the CompactPaneLength
property is shown side by side with the content and takes up space in the control
layout. The remaining part of the pane covers the content when it’s open and does
not take up space in the control layout. The pane closes when the user taps outside
of it.

• CompactInline: The amount of the pane defined by the CompactPaneLength property
is shown side by side with the content and takes up space in the control layout. The
remaining part of the pane pushes the content to the side when it’s open and takes up
space in the control layout. The pane does not close when the user taps outside of it.

■ Note For some bizarre reason, the splitView does not include a built-in control for users to toggle the state
of the pane. all the samples from microsoft use a “hamburger button” individually created for the scenario.
no such button exists as part of the splitView. you must provide this affordance and the code to toggle the
IsPaneOpen property yourself!

The SplitView content area is always present and can contain a single child element (similar to Page,
Border, or any other content control), which is typically a Panel-derived container that contains additional
child elements.

The obvious choice for a location to place a SplitView control in your sample UWP app is the dashboard.
You previously used a StackPanel pinned to the left edge of the page to control navigation. You will continue
to use the StackPanel, but will wrap it as the Pane portion of a SplitView. Listing 4-27 shows the changes that
need to be made to Dashboard.xaml to implement this.

Listing 4-27. Dashboard.xaml with SplitView

<Page x:Class="Lesson2_ControlCorral.Dashboard"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Lesson2_ControlCorral"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <SplitView Background="White"
PaneBackground="SlateGray"
DisplayMode="Inline"
IsPaneOpen="True"
OpenPaneLength="100">

<SplitView.Pane>
<StackPanel Orientation="Vertical"

HorizontalAlignment="Center">

<AppBarButton Icon="Calendar"
HorizontalAlignment="Center"
Label="New Reservation"
RequestedTheme="Dark"
Margin="5"
Click="OnReservation" />

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

Chapter 4 ■ Layout and Custom ControLs

168

<AppBarButton Icon="List"
HorizontalAlignment="Center"
Label="List Reservations"
RequestedTheme="Dark"
Margin="5"
Click="ListReservations" />

<AppBarButton Icon="Calculator"
HorizontalAlignment="Center"
Label="POS"
RequestedTheme="Dark"
Margin="5"
Click="OpenPOS" />

</StackPanel>
</SplitView.Pane>

<Grid Margin="10,10">

...

</Grid>
 </SplitView>
</Page>

In Listing 4-27, you replace the dashboard page’s root Grid with a SplitView and move the StackPanel
that was previously pinned to the left into the Pane element. Running the sample should produce the
same basic layout as before. There is really no change to the UI, but switching to use the SplitView sets the
foundation for future user interface optimizations. You will see many examples in the next chapter.

Building Your Own Controls
The UWP does a great job of providing many controls that can be used to perform the basic functions a
developer might want. You saw many of them in the last two chapters and even more in this chapter. For
many of you out there, what the UWP offers will be enough. To support scenarios where a developer needs
to create their own controls, the platform provides two approaches. You can build templated controls or you
can build user controls.

User Controls
User Controls are the easier of the two custom control technologies provided by the UWP. In scenarios where
you need more logic and interactivity than a template can provide, where templating is not supported,
or where the logic and layout of a particular interface must function together in unison to deliver a
transportable functionality, User Controls are a safe bet. They are controls with a fixed template that are
composed of other controls interacting together to provide functionality. They can be used anywhere a
standard control is used, including as part of a template. A typical use of UserControls is to encapsulate
functionality as described above for the purpose of consistency and transportability.

Many developers build User Control libraries that they then use from project to project and even sell
on the open market. The great thing about them is that they come with designer support, so building a User
Control is no different than building a Page.

Chapter 4 ■ Layout and Custom ControLs

169

In the POS example you have been working on, a User Control would be a great tool to spruce up
the display shown to the user when a line item is added to the transaction. Presently you are dynamically
adding a TextBlock to represent the cost of the item, but the amount taxed on that item should also be
displayed. Doing this on the fly in code can be error-prone and time-consuming because there is now a
design-time element in the process. You can alternatively use a template stored in a resource and wire up the
interactivity yourself but it would be laborious to do so since you must account for elements in the template
not being there. This kind of scenario is where User Controls really shine because they provide a means of
encapsulating layout and behavior in one package.

Let’s add this to your project and start using it. Add a new User Control to your project by right-clicking
the project file and selecting Add ➤ New Item and then picking User Control from the Add New Item dialog.
Call the control ReceiptLineItem. Replace the Grid within the User Control element with the code from
Listing 4-28.

Listing 4-28. ReceiptLineItem Layout

<UserControl.Resources>
 <local:DoubleToCurrencyConverter x:Key="double_to_currency" />
</UserControl.Resources>
<RelativePanel Padding="10">
 <TextBlock x:Name="txt_amount"

Text="{x:Bind Item.Price,Converter={StaticResource double_to_currency}}"
RelativePanel.AlignBottomWithPanel="True"
RelativePanel.AlignTopWithPanel="True"
VerticalAlignment="Center" />

 <TextBlock Text=" tax-"
RelativePanel.LeftOf="txt_tax" Margin="0,0,5,0"
RelativePanel.AlignVerticalCenterWithPanel="True" />

 <TextBlock x:Name="txt_tax"
Text="{x:Bind Item.Tax, Converter={StaticResource double_to_currency}}"
VerticalAlignment="Center"
RelativePanel.AlignRightWithPanel="True"
RelativePanel.AlignBottomWithPanel="True"
RelativePanel.AlignTopWithPanel="True" />

</RelativePanel>

Using the RelativePanel you have once again created a layout that would have required several
controls nested together to create otherwise. The code layout is using compiled binding to connect to some
properties on the code-behind class and even specifies a converter called DoubleToCurrencyConverter.
Obviously at this point the code will not work, so let’s create the converter first and then circle back and
add all the appropriate code to ReceiptLineItem.xaml.cs. Create a new class in your project entitled
DoubleToCurrencyConverter and populate it as shown in Listing 4-29.

Listing 4-29. DoubleToCurrencyConverter Class Definition

public class DoubleToCurrencyConverter : IValueConverter
{

public object Convert(object value, Type targetType,
object parameter, string language)

{
return $"{value:C}";

}

Chapter 4 ■ Layout and Custom ControLs

170

public object ConvertBack(object value, Type targetType,
object parameter, string language)

{
throw new NotImplementedException();

}
}

You’ve worked with converters before (in Chapter 1) so nothing here should be too surprising to you. In
this case, all your converter is actually doing is formatting the double as currency. This is accomplished in
the string formatting notation with a colon-C, as you see in the sample: $"{value:C}";

Now look at your ReceiptLineItem control in the code-behind. Open ReceiptLineItem.xaml.cs and
add the code in bold to the ReceiptLineItem class definition. Listing 4-30 illustrates.

Listing 4-30. ReceiptLineItem Definition

public sealed partial class ReceiptLineItem : UserControl
{

public ReceiptItem Item { get; private set; }

public ReceiptLineItem()
{

this.InitializeComponent();
}

public void AddItem(ReceiptItem item)
{

Item = item;
}

}

As you can see, there is not much to the code-behind file beyond specifying an Item property
and setting its value when AddItem is called. To close out the loop, you must now modify the method
AddItemClicked in POSTransaction to support using this control over TextBlock. Before you can do this,
you need to modify your POS transaction class a bit. You see presently there is no easy way to retrieve the
ReceiptItem object that is created when AddItemByPrice is called. In the new version of this method shown
in Listing 4-31 it is now returning the created ReceiptItem.

Listing 4-31. New AddItemByPrice Definition

public ReceiptItem AddItemByPrice(double price)
{

var tax_amount = price * DefaultTaxAmount;
var item = new ReceiptItem
{

ItemID = Guid.NewGuid(),
ItemName = "",
Price = price,
Tax = tax_amount,

};
Items.Add(item);
PropertyChanged?

.Invoke(this,
new PropertyChangedEventArgs("SubTotal"));

http://dx.doi.org/10.1007/978-1-4842-1449-7_1

Chapter 4 ■ Layout and Custom ControLs

171

PropertyChanged?
.Invoke(this,
new PropertyChangedEventArgs("TotalTax"));

PropertyChanged?
.Invoke(this,
new PropertyChangedEventArgs("Total"));

return item;
}

You can now go back to POS.xaml.cs and redefine AddItemClicked as follows in Listing 4-32.

Listing 4-32. New AddItemClicked Definition

private void AddItemClicked(object sender, RoutedEventArgs e)
{

var reciept_item = Transaction
.AddItemByPrice(double.Parse(txt_currentamount.Text));

//add a reciept line item as a ReceiptLineItem
ReceiptLineItem line_item = new ReceiptLineItem();
line_item.AddItem(reciept_item);

reciept.Children.Insert(0, line_item);

txt_currentamount.Text = "0";
}

As a final step, apply the DoubeToCurrencyConverter to the various bindings in the receipt StackPanel.
Figure 4-18 illustrates how this page might now look when being used.

Figure 4-18. POS in action

Chapter 4 ■ Layout and Custom ControLs

172

Templated Controls
Templated controls are quite a bit more sophisticated than User Controls, but in return for your investment
in time, they offer quite a bit more functionality than can be had from the basic User Control pattern. As with
User Controls, they encapsulate functionality and user interface layout into a single package that can then
be transported between projects. They come with the added benefit of downstream users being able to re-
template them as needed (much like you do with the built-in controls).

Take your ReceiptLineItem control, for instance. In its present state, it works well, but if a different
individual wanted to consume in a different layout (with the tax display showing directly below the price
display), they would have to create a whole new control. With templated controls this is not the case. Let’s
create a new ReceiptLineItem templated control to illustrate how easy it is to do. Add a new templated
control to the project by right clicking and selecting Add ➤ New Item ➤ Templated Control. Call the new
control TemplatedReceiptLineItem.

■ Note you can do this all by yourself without the help of Visual studio 2015. templated controls are simply
class files that inherit directly from Control.

Visual Studio 2015 will create a new folder called Themes and place a file called Generic.xaml into it. In
a templated control, the user interface for the control is only loosely bound to the control itself. It is stored as
a template in a special file called generic.xaml. Listing 4-33 shows the contents of generic.xaml; the parts
relevant to your control are highlighted in bold.

Listing 4-33. TemplatedReceiptLineItem Initial Template in Generic.xaml

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Lesson2_ControlCorral">

 <Style TargetType="local:TemplatedReceiptLineItem" >
<Setter Property="Template">

<Setter.Value>
<ControlTemplate TargetType="local:TemplatedReceiptLineItem">

<Border
Background="{TemplateBinding Background}"
BorderBrush="{TemplateBinding BorderBrush}"
BorderThickness="{TemplateBinding BorderThickness}">

</Border>
</ControlTemplate>

</Setter.Value>
</Setter>

 </Style>
</ResourceDictionary>

The user interface for a given control is indicated by setting the TargetType attribute to the control type.
In this case, Visual Studio has set it to TemplatedReceiptLineItem, which means that the style identified by
this key maps to your control class. The value of TargetType is treated like a key in the resource dictionary
so only one style can be defined for a given type. Right now your user interface is just an empty border. Let’s
update it to look like the ReceiptLineItem control. Listing 4-34 shows the new structure.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Chapter 4 ■ Layout and Custom ControLs

173

Listing 4-34. TemplatedReceiptLineItem Template in generic.xaml

<Style TargetType="local:TemplatedReceiptLineItem">
 <Setter Property="Template">

<Setter.Value>
<ControlTemplate TargetType="local:TemplatedReceiptLineItem">

<RelativePanel Padding="10">
<TextBlock x:Name="PART_Price"

RelativePanel.AlignBottomWithPanel="True"
RelativePanel.AlignTopWithPanel="True" />

<TextBlock x:Name="PART_Tax"
VerticalAlignment="Center"
RelativePanel.AlignRightWithPanel="True"
RelativePanel.AlignBottomWithPanel="True"
RelativePanel.AlignTopWithPanel="True" />

</RelativePanel>
</ControlTemplate>

</Setter.Value>
 </Setter>
</Style>

In Listing 4-34, you remove the Border control and replace it instead with the same RelativePanel
control you used in the ReceiptLineItem user control. You make some changes to it to support it being
used in a template. First, you remove the x-bind statements and don’t use the technique. X-binding is not
supported in styles; it is supported in templates but requires a code-behind file to be added to the
generic.xaml file, which is disruptive towards re-templating the control.

Note that you gave each TextBlock a name that starts with PART. This is a convention is used to identify
the portions of a templated control’s template that are required for the template to function properly.
Because you use these two TextBlocks to store price and tax information, your code-behind expects them
to be there with the specified names and to also be of the specified type. Finally, you remove the static
TextBlock that simply served as a label for the tax TextBlock. You will be using the code–behind file to set
these control’s Text properties and can apply labeling directly to the strings you set these properties to, so
there is no need for this TextBlock anymore. The code for TemplatedReceiptLineItem is in Listing 4-35.

Listing 4-35. TemplatedReceiptLineItem Definition

[
TemplatePart(Name ="PART_Price",Type =typeof(TextBlock)),
TemplatePart(Name = "PART_Tax", Type = typeof(TextBlock))

]
public sealed class TemplatedReceiptLineItem : Control
{

TextBlock PART_Tax, PART_Price;
public ReceiptItem Item { get; private set; }

public TemplatedReceiptLineItem()
{

this.DefaultStyleKey = typeof(TemplatedReceiptLineItem);
}

Chapter 4 ■ Layout and Custom ControLs

174

protected override void OnApplyTemplate()
{

PART_Price = this.GetTemplateChild("PART_Price") as TextBlock;
PART_Tax = this.GetTemplateChild("PART_Tax") as TextBlock;

//set the values
if (PART_Price != null && PART_Tax != null)
{

PART_Price.Text = $"{Item.Price:C}";
PART_Tax.Text = $"tax - {Item.Tax:C}";

}
}

public void AddItem(ReceiptItem item)
{

Item = item;
}

}

In the constructor of Listing 4-35 you set the DefaultStyleKey property to the current type. This lets
the framework know that this control supports templating and also identifies the key (the short name of
the class) that will be used to find the user interface (style) for this control. You override OnApplyTemplate
and in it use the GetTemplateChild helper method to retrieve the instantiated control represented by the
name you specify. This maps to the names identified in the control’s template. You make sure to test to see
if GetTemplateChild returns null. Since the control template can be overwritten, there is no guarantee that
these parts will be available with the same names. If they are there, you set the Text property on each of
them to the appropriate value from the ReceiptItem object.

At the top of the class, two attributes help to declare to downstream users that the specified parts of
the control’s template are needed for proper operation. The TemplatePart attribute allows you to specify
the name and type of any parts of your templated control that you expect to be available for the control to
function properly. Finally, you simply need to update AddItemClicked in the POS page to use your new
templated controls. Listing 4-36 does this.

Listing 4-36. AddItemClicked Modifications

private void AddItemClicked(object sender, RoutedEventArgs e)
{

var reciept_item = Transaction
.AddItemByPrice(double.Parse(txt_currentamount.Text));

//add a reciept line item as a textblock
TemplatedReceiptLineItem line_item = new TemplatedReceiptLineItem();
line_item.AddItem(reciept_item);

reciept.Children.Insert(0, line_item);

txt_currentamount.Text = "0";
}

Running the sample now should result in a user interface like Figure 4-16.

Chapter 4 ■ Layout and Custom ControLs

175

Your Own Layout Controls
Building your own layout control is as simple as overriding the measure and arrange functions to lay your
items out as you see fit. In this sample, you will be creating a CirclePanel control that will display its contents
in a circular manner. See Listing 4-37.

Listing 4-37. CirclePanel Definition

public class CirclePanel : Panel
{

public double Radius { get; set; }

protected override Size MeasureOverride(Size availableSize)
{

Size s = base.MeasureOverride(availableSize);

foreach (UIElement element in this.Children)
element.Measure(availableSize);

return s;
}
protected override Size ArrangeOverride(Size finalSize)
{

// Clip to ensure items dont override container
this.Clip =

new RectangleGeometry
{ Rect = new Rect(0, 0, finalSize.Width, finalSize.Height) };

// Size and position the child elements
int i = 0;
double degreesOffset = 360.0 / this.Children.Count;

foreach (FrameworkElement element in this.Children)
{

double centerX = element.DesiredSize.Width / 2.0;
double centerY = element.DesiredSize.Height / 2.0;

// calculate angle
double degreesAngle = degreesOffset * i++;

RotateTransform transform = new RotateTransform();
transform.CenterX = centerX;
transform.CenterY = centerY;

transform.Angle = degreesAngle;
element.RenderTransform = transform;

// calculate radian
var radianAngle = (Math.PI * degreesAngle) / 180.0;

Chapter 4 ■ Layout and Custom ControLs

176

// get x and y
double x = this.Radius * Math.Cos(radianAngle);
double y = this.Radius * Math.Sin(radianAngle);

// get real X and Y
var rectX = x + (finalSize.Width / 2.0) - centerX;
var rectY = y + (finalSize.Height / 2.0) - centerY;

// arrange element
element.Arrange(new

Rect(rectX, rectY,
element.DesiredSize.Width,
element.DesiredSize.Height));

}
return finalSize;

}
}

Add this code to your project and try it out. In my project, I created a sample page and added the code
in Listing 4-38 to it.

Listing 4-38. Using CirclePanel

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <local:CirclePanel Radius="100"

Margin="20">
<Button Content="Button1"

HorizontalAlignment="Left"
VerticalAlignment="Top" />

<Button Content="Button2"
HorizontalAlignment="Left"
VerticalAlignment="Top" />

<Button Content="Button3"
HorizontalAlignment="Left"
VerticalAlignment="Top" />

<Button Content="Button4"
HorizontalAlignment="Left"
VerticalAlignment="Top" />

<Button Content="Button5"
HorizontalAlignment="Left"
VerticalAlignment="Top" />

 </local:CirclePanel>
</Grid>

In the design surface, this layout displays as illustrated in Figure 4-19.

Chapter 4 ■ Layout and Custom ControLs

177

Figure 4-19. CirclePanel in action

Summary
Layout controls are a powerful way to encapsulate the manner in which the controls you use (or create)
will be displayed on screen. In this chapter, you learned about how to use layout controls to structure the
manner in which content is positioned and presented to a user. With this information on layout controls, you
increase your ability to present powerful, flexible, and useable user interfaces to the user.

The layout system follows these specified steps to render content to the user:

• A child UIElement begins the layout process by first having its core properties
measured.

• Sizing properties defined on FrameworkElement are evaluated, such as Width,
Height, and Margin.

• Panel-specific logic is applied, such as stacking orientation.

• Content is arranged after all children have been measured.

• The Children collection is drawn on the screen.

• Alignment, Margin, and Padding can be used to shift a control’s default position.

• The Canvas control supports absolute positioning of child elements relative to the
top left corner of the canvas.

• The StackPanel arranges child elements into a single line that can be oriented
horizontally or vertically.

• The Grid supports arranging child elements in rows and columns.

• The RelativePanel is useful for creating UIs that do not have a clear linear pattern.

• The VariableSizedWrapGrid arranges elements in rows or columns just like Grid, but
with the added bonus that child elements will automatically wrap to a new row or
column when the MaximumRowsOrColumns value is reached.

Chapter 4 ■ Layout and Custom ControLs

178

• The SplitView presents two areas of content: a Pane, which can exist in two possible
widths (a narrow summary view and a wider full view), and a Content area.

• User Controls are controls with a fixed template that are composed of other controls
interacting together to provide functionality. They should be used in scenarios where
you need more logic and interactivity than a template can provide, where templating
is not supported, or where the logic and layout of a particular interface must function
together in unison to deliver a transportable functionality.

• Templated Controls are controls that come with the added benefit of downstream
users being able to re-template them as needed.

• Compiled binding is a technique that allows you to statically bind to the code-
behind class.

179

Chapter 5

Building an Adaptive Experience

Building with an adaptive user experience in mind is a critical tenet of Windows 10 development. In Chapter 1,
you got a brief look at how Windows 10 was designed with multiple devices and form-factors in mind. The
notion of writing code against a uniform API set that opaquely translates into executable code that can
run on myriad device choices, technological capabilities, and resolution constraints is difficult to fathom
without keeping adaptation in mind. Otherwise, how would a UWP app designed for the Surface Hub run
on a mobile, how would an API call on the Xbox work when on a Raspberry Pi device, and how would a
HoloLense app work when running on a laptop? The answer to these questions is through the adaptive
experience mechanisms baked into Windows 10 programming with UWP. Given that the goal was to develop
a Lord of the Rings-style operating system (one OS to rule them all), it makes sense that the programming
interface exposed to developers extends this universality in both the programming model and layout for
developers targeting the Windows 10 platform; this is in fact where the term “universal” comes from. In this
chapter, you will be applying these adaptive layout techniques to your Control Corral sample so that your
app runs smoothly on the various platform targets that Windows 10 supports. Here you go!

■ Note A common denominator among the various implementations of Windows 10 running on the many
devices supported by the platform is the Windows 10 unified core. As part of the evolution of the programming
paradigm of Windows 8/8.1, Microsoft has encapsulated the unified core into a programming interface that
developers can leverage in a consistent manner, allowing them to target WinRT, Win32, and .NET APIs that are
common across all devices. This means you can create a single app package that can be installed onto a wide
range of devices. And, with that single app package, the Windows Store provides a unified distribution channel
to reach all the device types upon which your app can run.

The POS page you created in the last chapter looked fine on a PC but if you were to view that same page
on a mobile device, you would find that many parts of the user interface might not appear. Visual Studio
provides the ability to view your apps in different resolutions and orientations so you can get a sense of how
your user interface will lay out when run on certain screen configurations. Figure 5-1 illustrates.

http://dx.doi.org/10.1007/978-1-4842-1449-7_1

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

180

In Figure 5-1, you can see that several elements of the user interface do not show up when viewing
the POS page on a small screen. The receipt area is the problem. To counteract this, you might be forced to
design the page with the smallest screen in mind, such that the receipt area is navigated to only after the
user pays; this way the basic POS functionality remains intact. The problem with this approach is that on a
larger screen it makes the user interface look empty and disconnected. It also introduces an unnecessary
navigation to view the receipt, since there is more than enough room to display the receipt on the main
POS page when viewed on a larger screen. This is one example where building apps in an adaptive manner
makes sense because it allows you to make the most use of available space.

Input optimization goes hand in hand with available space as another key reason to adapt a UWP app to
the appropriate context it is being accessed through. It should be easy to see how a mobile device optimized
for touch would have a different interaction pattern than the Raspberry Pi version, which users might only
be able to interact with through the sensors on the device.

Finally, utilizing adaptation is a great idea when you need your UWP apps to take advantage of the
devices’ capabilities. Obviously, each device class and type offers its own set of unique features not found
elsewhere. The approach to handling this in UWP allows developers to conditionally utilize APIs that make
sense for their device families along with the APIs guaranteed to be available for all UWP apps.

We’ve written at length about adapting to various device types. Now we’ll define the various types of
devices and how they are classified in the UWP.

Device Families
A device family is a set of APIs collected together and given a name and a version number. It identifies the
APIs, system characteristics, and behaviors that you can expect across devices within the device family, and
it determines the set of devices on which your app can be installed from the Store. As of this writing, the
available Windows 10 device families are

• Universal

• Desktop

• Mobile

Figure 5-1. Control Corral on small screen

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

181

• IoT

• IoT headless

• Surface Hub

■ Note Before you go any further, know that Windows doesn’t provide a way for your app to detect the
specific device your app is running on. It can tell you the device family (mobile, desktop, etc.) the app is running
on, the effective resolution, and the amount of screen space available to the app (the size of the app’s window),
but it can’t tell you if it is a lumia 950 or Surface 3.

It is easy to see from the device family names that the device family maps to the device-specific version
of Windows being used by that device type. Laptops and tablets use the desktop version of Windows so
they map to the Desktop device family. Cell phones and some tablets use the mobile version of Windows so
they map to the Mobile device family. See Figure 5-2.

If you have done object-oriented design using a CASE tool like Rational Rose, you will be very familiar
with the relationships depicted in Figure 5-2. Like inheritance, each child inherits the set of APIs that the
base (in this case, the Universal device family) has and then adds its own APIs to them. Unlike the other
device families, the Universal device family is not directly mapped to any device type. It is instead mapped
to the Windows Core, the portion of Windows 10 upon which every device-specific implementation of the
OS is built. Since each of the other device families inherit APIs from Universal, the Universal device family
APIs are guaranteed to be present in every OS and consequently on every device. The resulting union of APIs
in any of the given child device families of Universal and OS-specific device family APIs is guaranteed to be
present in the OS based on that device family, and consequently on every device running that OS.

By default, Microsoft Visual Studio 2015 specifies Windows.Universal as the target device family in the
app package manifest file. To specify the device family or device families that your app is offered to from within
the Store, manually configure the TargetDeviceFamily element in your Package.appxmanifest file. Listing 5-1
shows an app manifest for your app. In it, you tell the OS that this particular UWP is meant to run on only on
the Windows desktop and Xbox. If you try to deploy this app on your phone or the Mobile Emulator, it will fail.

Listing 5-1. Specifying the Device Family

<?xml version="1.0" encoding="utf-8"?>

<Package
 xmlns="http://schemas.microsoft.com/appx/manifest/foundation/windows10"
 xmlns:mp="http://schemas.microsoft.com/appx/2014/phone/manifest"
 xmlns:uap="http://schemas.microsoft.com/appx/manifest/uap/windows10"
 IgnorableNamespaces="uap mp">

Figure 5-2. Windows 10 device families

http://schemas.microsoft.com/appx/manifest/foundation/windows10
http://schemas.microsoft.com/appx/2014/phone/manifest
http://schemas.microsoft.com/appx/manifest/uap/windows10

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

182

 <Identity
 Name="452940da-819a-4072-b3c9-04ac3093c6f4"
 Publisher="CN=Me"
 Version="1.0.0.0" />

 <mp:PhoneIdentity PhoneProductId="452940da-819a-4072-b3c9-04ac3093c6f4"
PhonePublisherId="00000000-0000-0000-0000-000000000000"/>

 <Properties>
 <DisplayName>Lesson2_ControlCorral</DisplayName>
 <PublisherDisplayName>Me</PublisherDisplayName>
 <Logo>Assets\StoreLogo.png</Logo>
 </Properties>

 <Dependencies>
 <TargetDeviceFamily Name="Windows.Desktop"

MinVersion="10.0.0.0" MaxVersionTested="10.0.0.0" />
 <TargetDeviceFamily Name="Windows.Xbox"

MinVersion="10.0.0.0" MaxVersionTested="10.0.0.0" />
 </Dependencies>

 <Resources>
 <Resource Language="x-generate"/>
 </Resources>

 <Applications>
 <Application Id="App"
 Executable="$targetnametoken$.exe"
 EntryPoint="Lesson2_ControlCorral.App">
 <uap:VisualElements

DisplayName="Lesson2_ControlCorral"
Square150x150Logo="Assets\Square150x150Logo.png"
Square44x44Logo="Assets\Square44x44Logo.png"
Description="Lesson2_ControlCorral"
BackgroundColor="transparent">
<uap:DefaultTile Wide310x150Logo="Assets\Wide310x150Logo.png"/>
<uap:SplashScreen Image="Assets\SplashScreen.png" />

 </uap:VisualElements>
 </Application>
 </Applications>

 <Capabilities>
 <Capability Name="internetClient" />
 </Capabilities>
</Package>

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

183

Adapting the User Interface
Windows 10 helps you target your UI to multiple devices with common input handling, adaptive scaling, and
built-in controls that automatically adapt across device families and input modes. Common input handling
allows you to receive input through touch, a pen, a mouse, a keyboard, or a controller such as a Microsoft
Xbox controller; adaptive scaling adjusts to resolution and DPI differences across devices; and controls help
to optimize your user interface for the device specific screen resolution your app might be in.

Triggered States
From the last chapter you learned that layout panels give size and position to their children, depending
on available space. For example, in the POS sample you used a StackPanel to order receipt line items
sequentially and vertically. You learned how to build layout panels by measuring the available space and
then arranging the controls that need to be displayed based on these measurements. Layout panels share
a similar set of problems and, consequently, solutions, as can be found when attempting to design with
an adaptive UI in mind. In both cases, the available space needs to be measured, and the layout of the
user interface (even the look and feel in some cases) is affected by the measurement result. The canonical
way to build for an adaptive user interface is to figure out the dimensions of the window your content is in
and make layout decisions based on the size of that window. Listing 5-2 contains a simple window with a
StackPanel oriented horizontally.

Listing 5-2. Simple Window Layout with StackPanel

<Page x:Class="Lesson5_SimpleAdaptiveLayout.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Lesson5_SimpleAdaptiveLayout"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

<StackPanel x:Name="stack" BorderBrush="Black" BorderThickness="2"
Background="{ThemeResource ApplicationPageBackgroundThemeBrush}"
Orientation="Horizontal"
HorizontalAlignment="Left">

 <Button Content="Button 1"
Margin="5" />

 <Button Content="Button 2"
Margin="5" />

 <Button Content="Button 3"
Margin="5" />

 <Button Content="Button 4" />
 <Button Content="Button 5"

Margin="5" />
 <Button Content="Button 6"

Margin="5" />
 <Button Content="Button 7"

Margin="5" />
 <Button Content="Button 8"

Margin="5" />

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

184

 <Button Content="Button 9" />
 <Button Content="Button 10"

Margin="5" />
</StackPanel>
</Page>

This StackPanel has 10 items in it. If you want to implement logic that will ensure that the panel is never
clipped horizontally, you can use the code in Listing 5-3.

Listing 5-3. Adapting Layout Based on Screen Size

namespace Lesson5_SimpleAdaptiveLayout
{

/// <summary>
/// An empty page that can be used on its own or navigated to within a Frame.
/// </summary>
public sealed partial class MainPage : Page
{

public MainPage()
{

this.InitializeComponent();
this.Loaded += MainPage_Loaded;

}

private void MainPage_Loaded(object sender, RoutedEventArgs e)
{

if (stack.ActualWidth >= this.ActualWidth)
{

stack.Orientation = Orientation.Vertical;
}
else
{

stack.Orientation = Orientation.Horizontal;
}

}

}
}

The code sample is quite simple but illustrates the general pattern for adapting the visual state of
your app based on how much space your app has to render. In the loaded event, you measure the page
dimensions and, based on that, make your determination about what orientation the StackPanel should be
placed in. Figure 5-3 shows how the app would look upon startup on a Windows desktop.

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

185

Figure 5-4 shows how the app would look upon startup on a Windows Mobile Emulator. Note that the
Windows Phone Emulator is not installed by default with Visual Studio 2015. You must explicitly select it
as part of the installation process. To access it, set the processor type to ARM and then select one of the
emulator choices from the Run menu.

One problem with just setting this in one place is that it does not change when the app is resized. Apps
may be resized based on numerous conditions.

Obviously, on a desktop the user can just manually change sizes, but pinning and orientation changes
can also affect it; because of this, a much better approach is to handle the SizeChanged event. In fact,
because the SizeChanged event is called once an app opens, you can completely remove the code in your
Loaded event. Listing 5-4 illustrates.

Figure 5-3. App layout on a desktop

Figure 5-4. App layout on the Mobile Emulator

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

186

Listing 5-4. Using SizeChanged to Handle

public sealed partial class MainPage : Page
{

double _threshold = 0;

public MainPage()
{

this.InitializeComponent();
this.SizeChanged += WindowSizeChanged;

}

private void WindowSizeChanged(object sender, SizeChangedEventArgs e)
{

if (stack.ActualWidth >= e.NewSize.Width)
{

stack.Orientation = Orientation.Vertical;
_threshold = e.NewSize.Width;

}
else
{

if (e.NewSize.Width > _threshold)
stack.Orientation = Orientation.Horizontal;

}
}

}

When you run this sample, you will see the app resize once it hits the right border of your StackPanel.
The pattern of restructuring the layout of a page based on the size of the window really begins to pop

when you use it in tandem with some of the more sophisticated layout controls. If you remember, your
dashboard page used a SplitView to handle navigation. The Pane property in this sample, which ranges from
not showing at all through to a compact size and then finally ending at the full layout, was initially locked to
the Compact setting. Using the adaptation technique you just learned, let’s modify it so that it changes width
as the screen width gets bigger. On a small screen, you can set it to totally disappear unless opened in overlay
mode with a button on the page. On a large screen, you can show it inline with the Content. Let’s put this
into play now and clean up the UI of the dashboard in process.

Open up the Control Corral project and open the Dashboard page. If the Document Outline window
isn’t open, then open it and right-click any one of the AppBarButtons in the Pane section of the page. Then
select Edit Template ➤ Edit Copy. Figure 5-5 illustrates.

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

187

When the Create Style Resource dialog appears, set the name to PageNavButton and the “Define In”
radio button to “This Document.” The template is created as a page resource at the top of the XAML page.
Replace the StackPanel named ContentRoot with the code from Listing 5-5.

Listing 5-5. Modifying AppBarButton Template

<RelativePanel x:Name="ContentRoot"
Margin="10"
HorizontalAlignment="Stretch"
MinHeight="{ThemeResource AppBarThemeCompactHeight}">

 <ContentPresenter x:Name="Content"
RelativePanel.AlignLeftWithPanel="True"
AutomationProperties.AccessibilityView="Raw"
Content="{TemplateBinding Icon}"
Foreground="{TemplateBinding Foreground}"
HorizontalAlignment="Stretch"
Height="20"
Margin="0,14,0,4" />

 <TextBlock x:Name="TextLabel"
RelativePanel.AlignVerticalCenterWithPanel="True"
RelativePanel.AlignRightWithPanel="True"
Foreground="{TemplateBinding Foreground}"
FontSize="12"
FontFamily="{TemplateBinding FontFamily}"

Figure 5-5. Creating a copy of a control’s template

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

188

Margin="0,0,0,0"
TextAlignment="Left"
TextWrapping="NoWrap"
VerticalAlignment="Center"
Text="{TemplateBinding Label}" />

</RelativePanel>

Now create a new Grid underneath the SplitView, copy the SplitView into the newly created Grid, and
change the SplitView definition to the code in Listing 5-6.

Listing 5-6. Changing SplitView Pane Properties

<SplitView x:Name="split"
Background="White"
PaneBackground="SlateGray"
DisplayMode="CompactInline"
IsPaneOpen="False"
CompactPaneLength="48"
OpenPaneLength="150">

Add a new AppBarButton directly to the new root Grid (make sure to add it at the bottom of the XAML
page and not before the SplitView definition). The lower the XAML, the higher the resulting control is in the
parent’s z-index. See Listing 5-7.

Listing 5-7. Adding a Toggle Button to Open the SplitView Pane

<AppBarButton HorizontalAlignment="Left"
Icon="DockLeft"
Width="48"
RequestedTheme="Light"
Click="OnPaneOpened"
Style="{StaticResource PageNavButton}" />

You now have a button at the top left corner of the screen so you need to move the TextBlocks used to
label the two data controls you have on the page. Listing 5-8 illustrates.

Listing 5-8. Repositioning Dashboard Labels

...
<TextBlock Text="Customers"

HorizontalAlignment="Right"
FontSize="40"
FontWeight="ExtraLight"
VerticalAlignment="Top" />

...
<TextBlock Text="Today's Appointments"

HorizontalAlignment="Right"
FontSize="40"
FontWeight="ExtraLight"
VerticalAlignment="Top"
Margin="0,242,0,0" />

...

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

189

You will also need to shift the navigation controls you have in the Pane section of the SplitView down a
bit so that they do not overlap with the toggle button you just added. To make the area look cleaner, you also
need to stretch the controls inside the Pane (presently they are all centered). Listing 5-9 illustrates.

Listing 5-9. Modifications to Navigation Pane Content

<StackPanel Orientation="Vertical"
HorizontalAlignment="Stretch">

 <AppBarButton HorizontalAlignment="Stretch"
Icon="Calendar"
Margin="0,50,0,0"
Label="New Reservation"
RequestedTheme="Dark"
Click="OnReservation"
Style="{StaticResource PageNavButton}"
Width="Auto">

 </AppBarButton>
 <AppBarButton Icon="List"

HorizontalAlignment="Stretch"
Label="List Reservations"
RequestedTheme="Dark"
Width="Auto"
Style="{StaticResource PageNavButton}"
Click="ListReservations" />

 <AppBarButton Icon="Calculator"
HorizontalAlignment="Stretch"
Label="POS"
RequestedTheme="Dark"
Width="Auto"
Style="{StaticResource PageNavButton}"
Click="OpenPOS" />

</StackPanel>

In Listing 5-9, you apply a Stretch HorizontalAlignment to the StackPanel and all the controls within
it. You have also added a margin of 50 to the first AppBarButton in the StackPanel. Since the StackPanel is
oriented vertically, all controls underneath it will be shifted down as well.

Let’s go to the definition for the AppBarButton you just created (the one for toggling the SplitView states)
and implement the code in Listing 5-10 to toggle the Pane part of your SplitView showing.

Listing 5-10. Implementing SplitView Pane Toggling

private void OnPaneOpened(object sender, RoutedEventArgs e)
{

if (split.IsPaneOpen)
split.IsPaneOpen = false;

else
split.IsPaneOpen = true;

}

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

190

Now run the app and you should have something that looks like Figure 5-6 when normal.

It looks like Figure 5-7 when your button is clicked.

Figure 5-7. Dashboard with pane activated via toggle button

Figure 5-6. Dashboard with collapsed pane toggle button

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

191

You can now sling some code to set up your adaptation pattern. Before you get started however,
open RootHost and add the following line to the constructor of RootHost: ApplicationView.
GetForCurrentView().SetPreferredMinSize(new Size(300, 500)); This line is used to set the preferred
minimum size of your windows. It is set on a page-by-page basis because each page may have its own
minimums. You are adding it to RootHost so it affects all the pages in your app. Now let’s go back to
Dashboard and add the code from Listing 5-11.

Listing 5-11. Implementing an Adaptive UI with SplitView

public Dashboard()
{

this.InitializeComponent();
this.Loaded += Dashboard_Loaded;
this.SizeChanged += Dashboard_SizeChanged;

}

private void Dashboard_SizeChanged(object sender, SizeChangedEventArgs e)
{

if (e.NewSize.Width <= 320)
{

split.DisplayMode = SplitViewDisplayMode.Overlay;
split.IsPaneOpen = false;

}
else if (e.NewSize.Width > 320 && e.NewSize.Width <= 720)
{

split.DisplayMode = SplitViewDisplayMode.CompactInline;
split.IsPaneOpen = false;

}
else
{

split.DisplayMode = SplitViewDisplayMode.Inline;
split.IsPaneOpen = true;

}
}

Like the StackPanel example earlier, this code simply sets some properties based on the size of the page
on a control (or set of controls) you target. When the page width is less than 320, it displays no visible pane;
when it is between 320 and 720, it displays the compact pane; and for any other width, it is displayed in full.
The running app should now look like Figure 5-8.

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

192

Let’s retarget this for the Windows 10 Mobile Emulator and run it once again. To do this, select one of
the mobile emulators from the run-target drop-down menu (Figure 5-9 illustrates). Note that when the app
starts on mobile, it will be blank (meaning none of the data from before will be available here because it is
reading data from a different source than your desktop). If you have not already done so, you will have to
create some new appointments in order to see everything properly.

In this form factor, the app window is automatically laid out as less than 320 since you are on the Mobile
Emulator. Figure 5-10 illustrates.

Figure 5-9. Choices of where to deploy the app

Figure 5-8. SplitView in various states based on app width

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

193

Because your pattern is based on the window width and not the specific device, Figure 5-11 shows how
the same app looks running on the 1080p emulator.

Figure 5-10. Control Corral on mobile emulator

Figure 5-11. Control Corral on larger screen mobile emulator

Note that the Pane is showing in compact mode by default. Cool, right?

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

194

Visual States
From Figure 5-8 it can be seen that the app view is being placed into different visual states based on the size
available to it. When the screen is less than 320 pixels, you enter one state; when it is between 320 and 1024 pixels,
you are in another state; and finally when it goes above 1024 pixels, you are in the last of the possible states. In
Listing 5-10, you used the code-behind to manually set the appropriate properties for the appropriate controls
in order to create the appearance for each of the states. This approach is not ideal for a number of reasons, most
notably because it removes the design and layout facility from XAML and puts it into the code. The visual states
of the app should understandably be in the purview of the designer of the app and not in the implementation of
its functionality. The approach you initially used clutters the code-behind with UI and layout-related logic that
can grow exponentially as states change. A more appropriate solution is to have a means to specify these states in
XAML. Fortunately, XAML provides this very ability with the visual state management elements.

The visual state element in XAML can be used to represent the visual appearance of user interface
elements when they are in a specific state. Visual states can be applied to any FrameworkElement and are
used to represent the state of the element or of any child contained within the element. Let’s take a look at
how the same sample from above would work if using visual states. Place the code from Listing 5-12 below the
first element inside the root Grid. For reasons beyond the scope of this book, it is best for this to be declared
under the first child of the root. We encourage you to research the details of visual state management on
MSDN for more detailed information. You can find this on MSDN at https://msdn.microsoft.com/library/
windows/apps/windows.ui.xaml.visualstatemanager.aspx.

Listing 5-12. Implementing VisualStateManager

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup>

<VisualState x:Name="Normal" />
<VisualState x:Name="state_320">

<VisualState.Setters>
<Setter Target="split.DisplayMode"

Value="Overlay" />
<Setter Target="split.IsPaneOpen"

Value="False" />
</VisualState.Setters>

</VisualState>
<VisualState x:Name="state_btw_320_1024">

<VisualState.Setters>
<Setter Target="split.DisplayMode"

Value="CompactInline" />
<Setter Target="split.IsPaneOpen"

Value="False" />
</VisualState.Setters>

</VisualState>
<VisualState x:Name="state_gt_1024">

<VisualState.Setters>
<Setter Target="split.DisplayMode"

Value="Inline" />
<Setter Target="split.IsPaneOpen"

Value="True" />
</VisualState.Setters>

</VisualState>
 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

https://msdn.microsoft.com/library/windows/apps/windows.ui.xaml.visualstatemanager.aspx
https://msdn.microsoft.com/library/windows/apps/windows.ui.xaml.visualstatemanager.aspx

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

195

This code simply takes the property setting logic out of the code-behind file and places into the XAML
where it belongs. This way a XAML designer can change the appearance of each state without affecting
the backed procedural code. To access states in the scope of a given control, use the static method call
VisualStateManager.GoToState(<control instance>, <state name>, <use transitions>). Rewrite the
SizeChanged event handler to utilize your defined visual states, as shown in Listing 5-13.

Listing 5-13. Activating States Using VisualStateManager in Code-Behind

private void Dashboard_SizeChanged(object sender, SizeChangedEventArgs e)
{

if (e.NewSize.Width <= 320)
{

VisualStateManager.GoToState(this, "state_320", false);
}
else if (e.NewSize.Width > 320 && e.NewSize.Width <= 1024)
{

VisualStateManager.GoToState(this, "state_btw_320_1024", false);
}
else
{

VisualStateManager.GoToState(this, "state_gt_1024", false);
}

}

Run the app and you should see the same results as before. You’ve now used visual states to abstract
away from code the details of what it means to be in a given state. It can be argued, though, that the
adaptation of the app’s appearance based on the size of the windows is also a designer-only concern and
should be abstracted away from the code in the same manner. The visual state management framework
provides the ability to enable given states based on triggers so that there is no need to programmatically
call VisualStateManager.GoToState. In the case of responding to size changes, a trigger aptly called
AdaptiveTrigger can be used. Let’s modify the dashboard to use this. Start by removing all the adaptation
code you have added. Get rid of the SizeChanged event hander and the handler subscription code in the
constructor. You should have no trace of anything related to size changes in Dashboard.xaml.cs at this
point. Now modify the visual state manager declaration as shown (new items in bold) in Listing 5-14.

Listing 5-14. Using AdaptiveTrigger with VisualStateManager

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup>

<VisualState x:Name="Normal" />
<VisualState x:Name="state_320">

<VisualState.StateTriggers>
<AdaptiveTrigger MinWindowWidth="0" />

</VisualState.StateTriggers>
<VisualState.Setters>

<Setter Target="split.DisplayMode"
Value="Overlay" />

<Setter Target="split.IsPaneOpen"
Value="False" />

</VisualState.Setters>
</VisualState>

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

196

<VisualState x:Name="state_btw_320_1024">
<VisualState.StateTriggers>

<AdaptiveTrigger MinWindowWidth="720" />
</VisualState.StateTriggers>
<VisualState.Setters>

<Setter Target="split.DisplayMode"
Value="CompactInline" />

<Setter Target="split.IsPaneOpen"
Value="False" />

</VisualState.Setters>
</VisualState>
<VisualState x:Name="state_gt_1024">

<VisualState.StateTriggers>
<AdaptiveTrigger MinWindowWidth="1024" />

</VisualState.StateTriggers>
<VisualState.Setters>

<Setter Target="split.DisplayMode"
Value="Inline" />

<Setter Target="split.IsPaneOpen"
Value="True" />

</VisualState.Setters>
</VisualState>

 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

In Listing 5-14, the adaptive trigger defines a threshold at which the VisualState is activated. And as
you saw in the previous samples, once activated, it sets the layout properties as appropriate. For adaptive
triggers, that threshold is always identified by the minimum value for the state to remain active. This is why
in the first state the minimum width is set to 0. Each subsequent state in the sample simply overrides the
previous state. Running the app should once again yield the same result as Figure 5-7.

■ Note The number of device targets and screen sizes across the Windows 10 ecosystem is too great to
worry about optimizing your uI for each one. Instead, we recommended designing for a few key widths (also
called “breakpoints”): 320, 720, and 1024.

When designing for specific breakpoints, design for the amount of screen space available to your app (the app’s
window). When the app is running full-screen, the app window is the same size of the screen, but in other
cases, it’s smaller.

XAML Views
For most cases, shifting things around on screen to allow for them to fit nicely is a viable approach to dealing
with the changing screen sizes and resolution problem. Sometimes, however, this kind of solution does not
work. Sometimes a particular page, or the app as a whole, needs to be dramatically redesigned in order to make
sense on a different device footprint rather than just because the screen is larger. A user interface might need
to go from using a Grid to lay out the page on a desktop to using a Pivot or FlipView to lay out the page on a
mobile device. This kind of change cannot be accommodated by the visual state system or by simply handling
SizeChanged events because the requirements for the change might go beyond the size of the screen.

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

197

For instance, if you want the mobile version of your app to have a trimmed down “mobile experience”
with some features not even visible, using the size of the screen to determine that your app is running
on mobile will not work. As you saw in the previous sample, some mobile devices will have resolution
requirements to appear as tablets or even desktops. Conversely, reducing the size of your app window when
on a desktop should not remove functionality that makes sense on a desktop (as it would if you used size to
judge device family). In these kinds of scenarios, device family-specific XAML views can be used.

Device family-specific views allow developers to define specific XAML views for specific device families
while maintaining a single code-behind file. There are two primary ways to incorporate XAML views into
your app. You can do it by adding a device family-specific folder into your project in the form DeviceFamily-
<type> (where type is the name of the device family you are targeting). Within this folder, you add a XAML
view with the same name as the XAML page you want to get a device-specific version. This approach is the
most preferable because it allows you to organize your views into folders that clearly indicate their purpose.
Alternatively, you can simply add a XAML view file with the same name as the XAML page you want a
device-specific version of, but with the extension. DeviceFamily-<Type>.xaml where <Type> is the name of
the device family you are targeting.

In the next sample, you will use a device-specific XAML view to override the appearance of your Create
Reservation page. Presently, the page displays as a non-scrollable Grid on desktop devices. Let’s first update
the user interface so that at any size your user interface elements show properly. Open MainPage.xaml and
modify it to add the code from Listing 5-15.

Listing 5-15. Using Scrollbar to Scroll Horizontally on a Small Screen

<ScrollViewer HorizontalScrollBarVisibility="Auto" HorizontalScrollMode="Auto">
<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">

...
</Grid>

</ScrollViewer>

You now have a Create Reservation page that scrolls horizontally so that users can add pictures to a
reservation as needed. Next, let’s add a new folder to the project for the mobile device family. Name the
folder DeviceFamily-Mobile.

You can add a new XAML view to this page by right-clicking the newly created folder and selecting
Add ➤ New Item and picking XAML View from the Add New Item dialog that appears. In Visual Studio 2015
enterprise, XAML View is the first choice that appears in the list of possible project items (when Sort By is
set to Default). Select this choice and specify the name MainPage.xaml, and then click Add to add it to your
project. Note that MainPage.xaml is added to the project as a XAML file with no code-behind associated with
it. This is because the code-behind for this particular instance of MainPage.xaml is the same for all instances.
They all share the same code-behind, MainPage.xaml.cs. You should now have a project structure that looks
like Figure 5-12.

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

198

As an experiment, target the Windows mobile emulator and run the app once more. Once the app
starts, navigate to the Create New Reservation page. You should get an exception thrown by the app when
you do this that looks like Figure 5-13.

Figure 5-12. Device-specific folder added to project

Figure 5-13. Exception thrown when using XAML view with none of the expected UI controls that the
code-behind expects

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

199

You are getting this error because the mobile version of MainPage.xaml does not have any controls
defined in it, but the code-behind is expecting a control called control_name (from the desktop version of
the page) to be there. This highlights two things that are important to note. First, it emphasizes the fact
that both copies of MainPage.xaml are using the same code-behind file. Second, it illustrates once again
the perils of embedding user interface logic that relies on named elements in your code-behind file.
MainPage.xaml.cs is littered with instances where this is happening. However, when working with XAML
views, it is important that the separation between the XAML and the code-behind is maintained. To make
the mobile version work, you need for all the controls named in the code-behind to be available in the
XAML as well. You will add them in a moment; first let’s set up the new layout you will be using for the
mobile version of the page. Open the mobile version of MainPage.xaml and add a new Pivot to it, as shown
in Listing 5-16.

Listing 5-16. Layout of MainPage Mobile XAML View

<Page
 x:Class="Lesson2_ControlCorral.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Lesson2_ControlCorral"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Pivot Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<PivotItem Header="Customer">

<StackPanel></StackPanel>
</PivotItem>
<PivotItem Header="Appointment">

<StackPanel></StackPanel>
</PivotItem>

 </Pivot>
</Page>

As you might have already guessed from this sample, you will be using the Pivot control to delineate
the various controls that capture information necessary for you to make a reservation with your system.
You can now open the other MainPage.xaml and copy the controls over that you are interested in. Note
that the various PivotItems are using a StackPanel instead of a Grid as the root layout control. Now that you
have a clearer understanding of the layout panels, it should be clear to you why this is a better choice in this
scenario. Listing 5-17 shows the full layout of the mobile friendly MainPage.xaml page.

Listing 5-17. Full Layout of MainPage Mobile XAML View

<Page
 x:Class="Lesson2_ControlCorral.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Lesson2_ControlCorral"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

200

 <Page.BottomAppBar>
<CommandBar ClosedDisplayMode="Minimal"

IsSticky="True">
<AppBarButton Label="Reserve"

Icon="Calendar">
<AppBarButton.Flyout>

<MenuFlyout>
<MenuFlyoutItem Command="{Binding}"

CommandParameter="make a reservation"
Text="Pay Now" />

<MenuFlyoutItem Text="Pay Later"
Command="{Binding}"
CommandParameter="hold my spot" />

</MenuFlyout>
</AppBarButton.Flyout>

</AppBarButton>
</CommandBar>

 </Page.BottomAppBar>
 <Pivot Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">

<PivotItem Header="Customer">
<StackPanel>

<Button Click="ReplaceImage"
HorizontalAlignment="Stretch"
Height="166"
Margin="10,10,10,0"
VerticalAlignment="Top"
BorderThickness="1"
BorderBrush="Gray"
Background="Black">

<Image x:Name="control_image"
Source="/alex.jpg" />

</Button>
<AutoSuggestBox x:Name="control_name"

HorizontalAlignment="Stretch"
Header="What's your name?"
Margin="10,10,10,0"
VerticalAlignment="Top"

QueryIcon="Find">
<AutoSuggestBox.ItemTemplate>

<DataTemplate>
<StackPanel Orientation="Horizontal">

<Border HorizontalAlignment="Left"
Height="75"
Margin="5,5,10,5"
Width="100"
BorderThickness="1"
BorderBrush="Gray"
Background="Gainsboro">

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

201

<Image Stretch="Fill"
Loaded="CustomerImageLoaded" />

</Border>
<TextBlock Text="{Binding CustomerName}"

FontSize="24"
FontWeight="ExtraLight"
VerticalAlignment="Center" />

</StackPanel>
</DataTemplate>

</AutoSuggestBox.ItemTemplate>
</AutoSuggestBox>
<DatePicker x:Name="control_dob"

Header="When were you born?"
HorizontalAlignment="Stretch"
Margin="10,10,10,0"
VerticalAlignment="Top" />

<PasswordBox x:Name="txt_passphrase"
Header="Enter a passphrase"
HorizontalAlignment="Stretch"
Margin="10,10,10,0"
PlaceholderText="keep it a secret"
VerticalAlignment="Top"
/>

</StackPanel>
</PivotItem>

<PivotItem Header="Appointment">
<StackPanel>

<CalendarDatePicker x:Name="control_calendar"
HorizontalAlignment="Stretch"
Margin="10,10,10,0"
VerticalAlignment="Top"
PlaceholderText="What day works for you?"
/>

<TimePicker x:Name="control_time"
Header="What time works for you?"
Margin="10,10,10,0" HorizontalAlignment="Stretch"
VerticalAlignment="Top" />

<ComboBox x:Name="control_procedure"
Header="Select a procedure"
HorizontalAlignment="Stretch"
Margin="10,10,10,0"
VerticalAlignment="Top"

ItemsSource="{Binding}"
DisplayMemberPath="Name" />

<Slider x:Name="control_intensity"
Header="Massage Intensity"
HorizontalAlignment="Stretch"
Minimum="20"

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

202

Maximum="100"
Margin="10,10,10,0"
VerticalAlignment="Top"
/>

</StackPanel>
 </PivotItem>
 </Pivot>
</Page>

Run this sample in the Mobile Emulator, navigate to the New Reservation page, and you should now see
a user interface similar to Figure 5-13. Figure 5-14 shows the Control Corral desktop app running side by side
with the mobile version.

The following six rules are a good general practice to follow when designing UWP apps to be adaptive.
They are borrowed from the rules for building responsive HTML pages.

1. Reposition: You can alter the location and position of app UI elements to get the
most out of each device.

2. Resize: You can optimize the frame size by adjusting the margins and size of
UI elements. This can allow you to augment the reading experience on a larger
screen by simply growing the content frame.

Figure 5-14. Control Corral dashboard running on the Mobile Emulator and the desktop

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

203

3. Reflow: By changing the flow of UI elements based on device and orientation,
your app can offer an optimal display of content.

4. Reveal: You can reveal UI based on screen real estate, or when the device
supports additional functionality, specific situations, or preferred screen
orientations.

5. Replace: This technique lets you switch the user interface for a specific device
size class or orientation.

6. Re-architect: You can collapse or fork the architecture of your app to better target
specific devices.

Adapting the Code
Much of the code written for UWP apps will be universal and as such will run the same way on all Windows
devices. For code tailored to particular device families however, you have the option to use adaptive code.

As you would expect, whenever you want to call an API that is specific to a given device family, you need
to know whether the API is implemented by the device family that your app is targeting. Be sure to use the
API reference documentation found on https://dev.windows.com/en-us/develop. Figure 5-15 shows the
typical requirements section for a UWP class, in this case the CalendarDatePicker. As you can see, the Device
family is specified.

It is a good idea to further confirm that the class members that you want to call are also within your
target, so you now know that the APIs are guaranteed to be present on every device that your app can be
installed on.

■ Note visual Studio’s IntelliSense will not recognize APIs unless they are implemented by your app’s target
device family or any extension SdKs that you have referenced.

Figure 5-15. Requirements section of API documentation

https://dev.windows.com/en-us/develop

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

204

The ApiInformation Class
There are two steps to writing adaptive code. The first step is to make the APIs that you want to access
available to your project. To do so, add a reference to the extension SDK that represents the device family that
owns the APIs that you want to conditionally call. You can access the list of available extensions through the
Add Reference dialog (right-click the Reference node in project and select Add Reference). In the Reference
Manager dialog, select Universal Windows, and then select Extensions. If you have multiple versions of the
UWP installed on your machine, you will see the same extensions listed multiple times, one for each version
of the UWP you have installed. Figure 5-16 shows the list of extensions available on my machine.

The second step is to use the Windows.Foundation.Metadata.ApiInformation class in a condition in
your code to test for the presence of the API you want to call. You can think of the evaluating ApiInformation
like a runtime version of the #define #if pattern. The condition is evaluated wherever your app runs, but
it evaluates to true only on devices where the API is present and therefore available to call. You can test out
a typical usage scenario with yours Control Corral app. Suppose you want to let a user know that hitting the
back button with no page left to navigate back to will close the application on phones. You can test for the
back button BackRequested availability as follows in Listing 5-18. Add this code to RootHost.xaml.cs to see
it at work.

Listing 5-18. Using APIs in an Adaptive Manner

public RootHost()
{

...

if (ApiInformation.IsEventPresent(typeof(HardwareButtons).FullName, "BackPressed"))
HardwareButtons.BackPressed += HardwareButtons_BackPressed;

}

Figure 5-16. Reference manager dialog for selecting extension SDKs

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

205

async private void HardwareButtons_BackPressed(object sender, BackPressedEventArgs e)
{
 e.Handled = true;

MessageDialog dialog =
 new MessageDialog("This action will close Control Corral", "Close
Application?");

dialog.Commands.Add(new UICommand("Yes"));
dialog.Commands.Add(new UICommand("No"));
var result = await dialog.ShowAsync();
if (result.Label == "Yes")

Application.Current.Exit();
}

Listing 5-18 will compile on all versions of Windows but will only run on Windows Mobile 10 devices
(perhaps in the future on other devices that have a hardware back button). To even get this to show up as a
real type in Visual Studio, you must add a reference to the Microsoft Mobile Extensions SDK.

You can alternatively use the ApiInformation.IsTypePresent method to check if an entire type is
available; the problem with doing this is that it assumes that the presence of a type means the presence
of all its members. This is not always the case. Established classes may have new members added to
their definition over time. Doing these sorts of tests on a case by case basis will quickly get laborious.
ApiInformation provides another method that can be used to test for the presence of a large number of
APIs that all exist in the same version. Device families are further broken down into subdivisions known
as API contracts which represent the full set of APIs that can be used to program against them. The
ApiInformation.IsApiContractPresent method can be used to test for availability of an API set at that
level. Changing the code from Listing 5-18 to Listing 5-19 will produce the same results as before.

Listing 5-19. Querying to See If an API Contract Is Available

if (ApiInformation.IsApiContractPresent("Windows.Phone.PhoneContract", 1))
HardwareButtons.BackPressed += HardwareButtons_BackPressed;

There is no easy way to determine what contracts are available to you or what version numbers they
are on at the time of this writing. The Object Explorer exposes contract as top level node on the tree
(see Figure 5-17), and of course Microsoft documentation will have the list of contracts available to you.

Figure 5-17. Using Object Explorer to determine API contract names and version numbers

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

206

A Universal Windows app allows you to take advantage of the unique capabilities of the device on
which it is running. Your app can make use of all of the power of a desktop device, the natural interaction of
direct manipulation on a tablet (including touch and pen input), the portability and convenience of mobile
devices, and the collaborative power of Surface Hub.

Good design is the process of deciding how users will interact with your app, as well as how it will look
and function. User experience plays a huge part in determining how happy people will be with your app, so
don’t skimp on this step.

In addition to interaction on different devices, you should plan for your app to embrace the benefits of
working across multiple devices. The following considerations should be taken into account when building a
UWP app:

• Consider whether there are features of your app that don’t make sense on a small
mobile screen. There may also be areas that don’t make sense on a stationary
desktop machine and require a mobile device to light up.

• Consider how you’ll accommodate multiple input modalities.

• Lay out your user interface for a specific window size, not for the available resolution.

• When the system scales your UI, it does so by multiples of 4. To ensure a crisp
appearance, snap your designs to the 4x4 pixel grid: make margins, sizes, and
positions of UI elements, and the position (but not the size because text can be
any size) of text a multiple of 4 effective pixels. When your app runs on a Windows-
powered device, the system uses an algorithm to normalize the way controls,
fonts, and other UI elements display on the screen. This scaling algorithm takes
into account viewing distance and screen density (pixels per inch) to optimize for
perceived size (rather than physical size). The scaling algorithm ensures that a
24 pixel font on Surface Hub 10 feet away is just as legible to the user as a 24 pixel
font on 5-inch phone that’s a few inches away. The resulting pixel value is referred to
as effective pixels.

• Design your workflow using navigation design basics in order to accommodate
mobile, small-screen, and large-screen devices.

• You can ignore the pixel density and the actual screen resolution when designing.
Instead, design for the effective resolution (the resolution in effective pixels) for a
size class.

Summary
Universal app solutions produce one binary, an APPX package, that runs on any UWP device family it
declaratively specifies. Since a UI that looks good on a mobile device probably won’t look good on a 30-inch
desktop monitor (and vice versa), it’s incumbent upon you to learn how to write adaptive UIs. The notion
of writing code against a uniform API set that opaquely translates into executable code that can run on the
myriad of device choice, technological capabilities, and resolution constraints is difficult to fathom without
keeping adaptation in mind. In this chapter, you learned the key features the UWP introduces to help
develop adaptive user interfaces and applications. The key points to remember are as follows:

• There are presently five device families you can develop UWP apps for: Universal,
Desktop, Mobile, IoT, and Surface Hub.

• Windows 10 helps you target your UI to multiple devices with common input
handling, adaptive scaling, and built-in controls that automatically adapt across
device families and input modes.

ChAPTER 5 ■ BuIldINg AN AdAPTIvE ExPERIENCE

207

• The SizeChanged event can be used as means to modify the layout of a page to suit
various resolutions.

• ApplicationView.GetForCurrentView() can be used to manage the starting
dimensions of your windows (on a desktop).

• The visual state element in XAML can be used to represent the visual appearance
of a user interface elements when they are in a specific state. Visual states can be
applied to any FrameworkElement and used to represent the state of the element or
of any child contained within the element.

• Adaptive triggers define a threshold at which the visual state is activated. They can
be used to implement layout changes based on size in a declarative manner.

• Device family-specific views allow developers to define specific XAML views for
specific device families while maintaining a single code-behind file.

• Apply the following six rules when building an adaptive user interface:

• Reposition: You can alter the location and position of app UI elements to get the
most out of each device.

• Resize: You can optimize the frame size by adjusting the margins and size of
UI elements. This can allow you to augment the reading experience on a larger
screen by simply growing the content frame.

• Reflow: By changing the flow of UI elements based on device and orientation,
your app can offer an optimal display of content.

• Reveal: You can reveal an UI based on screen real estate, or when the device
supports additional functionality, specific situations, or preferred screen
orientations.

• Replace: This technique lets you switch the user interface for a specific device
size-class or orientation.

• Re-architect: You can collapse or fork the architecture of your app to better
target specific devices.

• Effective pixels enable you to focus on the actual perceived size of a UI element
without having to worry about the pixel density or viewing distance of different
devices. For example, when you design a 1-inch by 1-inch element, that element
will appear to be approximately 1 inches on all devices. On a very large screen with
a high pixel density, the element might be 200 by 200 physical pixels, while on a
smaller device like a phone, it might be 100 by 100 physical pixels.

209

Chapter 6

File IO

There are certain basic developer workflows to which you must become accustomed if you intend to build
Windows 10 UWP apps, regardless of the technology stack you choose to use. At a fundamental level,
having a good understanding of how to access the exposed file system is, if not critical, quite important to
development in a given system. Indeed, the usefulness of your Control Corral samples would be limited
if you did not provide a way to store information so that you could read it at a later time. This chapter
introduces the various mechanisms the UWP provides for interacting with files and folders by exposing you
to the APIs used to work with them. Detailed examples are provided to help you work through how these
APIs function. By the end of this chapter, you should understand how to perform basic file access; how to
use the built-in pickers to read and write to locations outside the isolated file system; how to configure your
app to access user folders such as Music, Pictures, and Videos; how to access external storage; and how to
expose files to other apps through shared storage, and customized pickers and choosers.

Developers who have built server-side style code or even desktop clients are probably very familiar with
the general patterns of file access. If you’ve been building HTML user experiences, you might be at a slight
disadvantage, but only a minor one. The truth is, we’ve all worked with files while working with computers,
and we all certainly understand their nature. They can be opened, edited, closed, deleted, listed, searched,
copied, and moved.

Although logically similar (if not the same), this discussion is broken into five core areas. First, the
chapter talks about storage locations (meaning the places where files are stored). This conversation is
important because it has a huge impact on how your app is built, delivered, and ultimately deployed to
the Windows Store. You then get into the nitty-gritty of actually working with files. This is done second
because the approach to accessing files through the UWP requires you to understand the meaning of storage
locations first. Without that core understanding, you’ll most likely be pulling your hair out wondering why
a given piece of functionality seems to be inexplicably failing with completely useless and cryptic errors.
Next, we discuss using dialogs to read and write files from and to protected locations. We then discuss two
approaches of sharing: via shared storage and via your own custom pickers and choosers.

To help with this exercise, you will be creating a new project called Resume that is a resume
management system. Resume will rely extensively on using the file system to store and manage a user’s
resume on their local machine.

Creating the ResumeManager Project
Let’s start by setting up the ResumeManager project. You’ve done this several times so you should now
be very comfortable with creating a blank UWP app. Use File > New > Project to create a one. Figure 6-1
illustrates.

Chapter 6 ■ File iO

210

Your ResumeManager project will use the navigation pattern you established in the previous chapter:
it will have a root page with a Frame in it which acts as the host for the entire application. Using a page like
this allows you the freedom to utilize app-wide user experience constructs like overlays. For now, you will be
using it as a basic replacement for the default Frame that the app uses. Add a new blank page to the project
called ApplicationHost and configure your app to use it as the main content for your application window.
Your app’s OnLaunched event should look like the code in Listing 6-1.

Listing 6-1. OnLaunched Event

protected override void OnLaunched(LaunchActivatedEventArgs e)
{

// Place the frame in the current Window
Window.Current.Content = new ApplicationHost();

// Ensure the current window is active
Window.Current.Activate();

}

Delete MainPage.xaml and add a new page to the project called LandingPage. Your project file should
now have three XAML pages: App.xaml, LandingPage.xaml, and of course your root application host page,
ApplicationHost.xaml. Your project file should look Figure 6-2.

Figure 6-1. New project dialog

Chapter 6 ■ File iO

211

The final step to setting up your environment is to wire up ApplicationHost so that it points to
LandingPage.xaml by default. Listing 6-2 illustrates.

Listing 6-2. ApplicationHost UI

<Page
 x:Class="ResumeManager.ApplicationHost"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:ResumeManager"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<Frame x:Name="root_frame" SourcePageType="local:LandingPage" />

 </Grid>
</Page>

In Listing 6-2, you add a root frame to ApplicationHost which is used to navigate to LandingPage. In
previous examples, you typically performed the navigation using the code-behind file. In this example, you
use the SourcePageType attribute on the Frame element in XAML rather than do anything in code. Both
approaches result in the same thing, but doing it this way offers flexibility and separation between the code
parts of your app and the layout and design parts.

Files
File access in Windows 10 is accomplished through a new set of APIs originally introduced in Windows 8.
These APIs are all accessed through the symbolic representation of the file to the platform, the StorageFile
class. In Windows 10 (and 8 as well), a file, regardless of where it exists, is represented through the Storage
File infrastructure. Since files can be anywhere from a local machine to OneDrive, the complexity to access
files changes when using the UWP infrastructure.

Figure 6-2. ResumeManager project setup

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

Chapter 6 ■ File iO

212

StorageFile provides information about a given file and its contents, and it exposes ways of manipulating
the underlying file. As you’ve seen in the previous chapters, it works in concert with the StorageFolder class
as a tool to create, modify, move, copy, or delete files. Some of the things you can get about a file through
the StorageFile class are the content type, file type (extension), the date the file was created, the file name
(without extension), the location of the file, and whether it is available (in instances where the file is remote).
In Chapter 3, you saw how StorageFile works. Listing 6-3 shows saving data to a file. It shows how many
steps are required to actually write content to a file (particularly when serilization is required). We first need to
instantiate the serializer, then create a file, open a transaction for writing to the file, get the stream associated
with that transaction, then get the OutputStream associated with that stream. With that stream in hand we
can then write the object instance we need serialized to the stream using the DataContractSerializer. Once
completed, we commit and dispose of both the transaction and the underlying streams.

using Windows.Storage;
using Windows.Storage.Streams;
using System.Threading.Tasks;
using System.Runtime.Serialization;

Listing 6-3. Implementing a Persistent Save Method

async public static Task SaveModelAsync()
{

//serialize the model object to a memory stream
DataContractSerializer dcs = new DataContractSerializer(Model.GetType());

//write model string to file
var file = await ApplicationData.Current

.LocalFolder

.CreateFileAsync("corralmodel.xml",
CreationCollisionOption.OpenIfExists);

var transaction = await file.OpenTransactedWriteAsync();
var opn = transaction.Stream;
var ostream = opn.GetOutputStreamAt(0);
var stream = ostream.AsStreamForWrite();
dcs.WriteObject(stream, Model);
stream.Flush();
stream.Dispose();
await transaction.CommitAsync();
transaction.Dispose();

}

Listing 6-4 shows the convoluted process of reading a file.

Listing 6-4. LoadModelAsync Method

async public static Task<ControlCorralModel> LoadModelAsync()
{

//read the target file's text
try
{

var file = await ApplicationData
.Current
.LocalFolder.GetFileAsync("corralmodel.xml");

http://dx.doi.org/10.1007/978-1-4842-1449-7_3

Chapter 6 ■ File iO

213

var opn = await file
.OpenAsync(Windows.Storage.FileAccessMode.Read);

var stream = opn.GetInputStreamAt(0);
var reader = new DataReader(stream);
var size = (await file

.GetBasicPropertiesAsync()).Size;
await reader.LoadAsync((uint)size);
var model_text = reader.ReadString((uint)size);

//before attempting deserialize, ensure the string is valid
if (string.IsNullOrWhiteSpace(model_text))

return null;

//deserialize the text
var ms = new MemoryStream(Encoding

.UTF8.GetBytes(model_text));
var dsc =

new DataContractSerializer(typeof(ControlCorralModel));
var ret_val = dsc.ReadObject(ms) as ControlCorralModel;
return ret_val;

}
catch (Exception ex)
{

return null;
}

}

The approach taken to read and write to a file can be quite convoluted for good reason. Unlike a local
file that is always there and accessible, a “file” in Windows 10 can actually be just a placeholder. If you are not
comfortable with the “safe” approach (as it accounts for where the file might be located) and you are sure that
the files your app uses will always be local, you can opt for using the good, old fashioned System.IO.File static
class for performing file IO. These APIs give free reign to the developer with regards to the location where files
are created or read from, but be careful. Windows 10 restricts the locations where file access is allowed without
user authorization. Later in this chapter, you will see how the File class can be used interchangeably with
StorageFile to access files in an app’s isolated storage. We don’t recommend doing this ever, though.

A much better and much safer approach to accessing files is to use the FileIO static class. FileIO is
great because it provides many of the same easy-to-use, straightforward, and quick methods as File but
with the added benefit of being safe, asynchronous, and utilizing StorageFile. The connection of FileIO
to StorageFile is so great in fact that it is hard to understand why its methods were not implemented as
extension methods on StorageFile. Let’s add a new class to your project called StorageFileExtensions
and do just this.

Start by creating a new folder called Library and then within this folder add StorageFileExtensions.
In the new class, change the namespace to Windows.Storage instead of ResumeManager.Library. Now
modify the class definition so that it is a static class. Listing 6-5 shows the full contents of this class.

Chapter 6 ■ File iO

214

Listing 6-5. StorageFile Extension Methods

namespace Windows.Storage
{

static class StorageFileExtensions
{

async public static Task AppendLinesAsync(this StorageFile file,
IEnumerable<string> lines)
{

await FileIO.AppendLinesAsync(file, lines);
}

 async public static Task AppendTextAsync(this StorageFile file, string
contents)
{

await FileIO.AppendTextAsync(file, contents);
}

async public static Task<IBuffer> ReadBufferAsync(this StorageFile file)
{

return await FileIO.ReadBufferAsync(file);
}

async public static Task<IList<string>> ReadLinesAsync(this StorageFile file)
{

return await FileIO.ReadLinesAsync(file);
}

async public static Task<string> ReadTextAsync(this StorageFile file)
{

return await FileIO.ReadTextAsync(file);
}

 async public static Task WriteBufferAsync(this StorageFile file, IBuffer
buffer)
{

await FileIO.WriteBufferAsync(file, buffer);
}

 async public static Task WriteBytesAsync(this StorageFile file, byte[] buffer)
{

await FileIO.WriteBytesAsync(file, buffer);
}

 async public static Task WriteLinesAsync(this StorageFile file,
IEnumerable<string> lines)
{

await FileIO.WriteLinesAsync(file, lines);
}

Chapter 6 ■ File iO

215

 async public static Task WriteTextAsync(this StorageFile file, string
contents)
{

await FileIO.WriteTextAsync(file, contents);
}

}
}

In Listing 6-5, you simply take the default static methods on the FileIO class and created extension
methods on StorageFile that pass the calls into these FileIO methods. The net result of this is that you can
directly call these methods on any instance of StorageFile, which is a much faster and human readable
approach than the alternative.

Storage Folders
A Windows 10 file can be resident in any number of places: on a physical machine, a thumb drive, a file
share, or the cloud, just to name a few possible places. The StorageFolder class represents this general
sense of a storage location. An application you develop has access to these locations either intrinsically or
by declaring permissions in the UWP app’s manifest. Some storage locations to which your app has intrinsic
access include the app’s package install location and the designated isolated storage area for the app. These
storage locations are discussed in more detail in the following sections.

The Package Install Location
When your app is unpacked (installed) onto a user’s machine, the package install location is the storage
location where it is placed. It contains all the files and folders you created as part of your app project
(any folders in your project that contain items that have a Build Action of “Content” will be created by
Windows on a user’s machine when the app is installed). Because this folder is completely deleted and
recreated each time your app is installed (or updated), modifications made to the app’s package install
location are wiped away when a new update to your application is installed. You access this folder using the
Windows.ApplicationModel.Package class. Package contains a property called InstalledLocation that
returns a reference to a StorageFolder that represents the location on the end user’s computer where the
app was unpacked.

Given the volatility of this folder, one might be hard pressed to find a reason to use it. As a place to write
information to, you would agree that there are better places to look (in fact, this is no longer allowed with
Windows 10), but as a place to read data from, particularly initialization data, setup instructions, or data that
simply needs to be copied from this location into the app’s isolated storage, there is no better source.

This is because the Package Install location contains a kind of storage state that no other storage
location exposed through the UWP has. It has storage state that originates at the app developer’s UWP
project. Let’s illustrate this with a simple example of loading development-time data into your app. Add a
new folder called Data in your project (the choice of name is not mandatory to UWP). In this folder, add a
new text file and call it initData.txt. Your project file should now look like Figure 6-3.

Chapter 6 ■ File iO

216

Open the initData.txt file and add some text to it. In my case, I added the following text “this is a
test of reading data from app init folder.” Now modify LandingPage with the code in Listing 6-6.

Listing 6-6. Implementing INotifyPropertyChanged

public sealed partial class LandingPage : Page, INotifyPropertyChanged
{

public event PropertyChangedEventHandler PropertyChanged;

string InitialMessage { get; set; }

public LandingPage()
{

this.InitializeComponent();
this.Loaded += LandingPage_Loaded;

}

async private void LandingPage_Loaded(object sender, RoutedEventArgs e)
{

var file = await Windows.ApplicationModel.
Package.Current.InstalledLocation
.GetFileAsync(@"data\initdata.txt");

var text = await file.ReadTextAsync();
InitialMessage = text;
PropertyChanged?.Invoke(this,

new PropertyChangedEventArgs("InitialMessage"));
}

}

Figure 6-3. Install directory data

Chapter 6 ■ File iO

217

In Listing 6-6, you change LandingPage so that it implements INotifyPropertyChanged. If you have
been paying attention, you will know that this is because you plan to use it in binding in some way. As
you saw from the previous chapter, code-behind files are used for databinding when compiled binding
is being used (it is the only object supported). In the Loaded event, you are simply reading from the app’s
installed location and storing it to a variable that you can bind to in your XAML. Notice that the relative
path to initData.txt matches the relative path (from project root) to initData.txt in your project. Place a
breakpoint just after the file is retrieved and run the example. Figure 6-4 illustrates what you should see.

Figure 6-4. Relative path of install directory items

If you look at the Path property of the StorageFile instance you retrieved from your initial call to GetFile,
you should see that the relative path to the file is maintained.

Listing 6-7 completes the example with the XAML layout used to render Landing. Replace the main grid
in LayoutPage.xaml with this code.

Listing 6-7. LandingPage UI

...
<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock x:Name="txt_message"

HorizontalAlignment="Center"
VerticalAlignment="Center"
Text="{x:Bind InitialMessage, Mode=TwoWay}" />

</Grid>
...

As can be seen from the above code, binding is indeed used to separate the code-behind from the
XAML layout. Because you are using compiled binding in this instance, you are forced to specify the mode of
the binding (compiled bindings default to OneTime if no mode is explicitly specified).

A more practical use of the app install location is in carrying information that is static but used to classify
things. In the Control Corral samples from the previous chapter, you maintained a list of massage types that was
essentially hard coded into the app in one form or another. A more elegant approach would be to continue to
read it from this folder location. The next sample expands on what you have created thus far. Start by deleting the
initData.txt file and in its place add a file titled Industries.txt. In this folder, write out as many industries as
you can think of (each industry in the same line). Figure 6-5 shows some of the industries I have listed.

Chapter 6 ■ File iO

218

To test this, you must make some temporary modifications to your code base. First, you need to change
the InitialMessage property to a list and also give it a name that is more appropriate to what it stores. You
must also modify the name of the file being read and you must change the approach to reading the file to
simply return a list of strings corresponding to each line of the document. Listing 6-8 illustrates.

Listing 6-8. Loading Data from Package Installed Location

List<string> IndustryList { get; set; }

async private void LandingPage_Loaded(object sender, RoutedEventArgs e)
{

var file = await Windows.ApplicationModel.
Package.Current.InstalledLocation
.GetFileAsync(@"data\industries.txt");

var industry_list = await file.ReadLinesAsync();
IndustryList = industry_list.ToList();
PropertyChanged?.Invoke(this, new PropertyChangedEventArgs("IndustryList"));

}

Figure 6-5. Install directory data loaded

Chapter 6 ■ File iO

219

In your XAML, a ListBox would be a great way to present this information. Replace the TextBlock in
LandingPage.xaml with the code in Listing 6-9.

Listing 6-9. ListBox Bound to IndustryList

<ListBox ItemsSource="{x:Bind IndustryList, Mode=OneWay}"
HorizontalAlignment="Center"
VerticalAlignment="Center" />

Running the app should produce the list of industries that was passed into it via the install folder. In
the coming sections, you will be using this and other static data as part of ResumeManager. In XAML, you
can access files in your package install location in a number of ways, some of which you have previously
seen when pointing to images files in your package. One approach is to use the forward slash (/). The
forward slash is used to refer to the package root. To access Industries.txt in XAML, you would use /data/
industries.txt. You can also use the ms-appx protocol. Ms-appx is a protocol used to access items that
are a part of your app package. It follows the format ms-appx://<package-name>/<resource-path>. You are
allowed to omit the <package-name> part of the URI (but not the slash associated with it). So you can access
a package resource as follows: ms-appx:///<resource-path> (ms-appx:///data/industries.txt).

The Isolated Storage Area
An app’s isolated storage area is an unpublished location on the Windows 10 system partitioned specifically
for the app. It serves as a cache for the app to read from and write to. Changes made to the isolated storage
area through files being added or deleted, folders being created, and so on, are persisted across updates to
your app. This is the principle difference between this area and the package install location discussed in the
previous section.

You can access the isolated storage location for your using ApplicationData.Current.LocalFolder
property. ApplicationData can be found in the Windows.Storage namespace. Like the Control Corral
sample, your app will be using serialization (specifically the DataContractSerializer class) to convert
an object model representation of a user’s resume into XML. You will then store it directly in the app’s
isolated storage so you can use it as needed. Let’s start by defining your resume in object terms. A resume is
basically a list of work experiences that you define as follows. Create a new file in the Library folder named
ResumeInfo.cs and add the contents of Listing 6-10. Note that since there is not a lot of complexity to the
resume structure, you will use this file to place all the objects that make up your resume.

Listing 6-10. WorkExperience and Technology Class Definitions

public class WorkExperience
{

public DateTime StartDate { get; set; }
public DateTime? EndDate { get; set; }
public string Company { get; set; }
public string Title { get; set; }
public List<Technology> TechnologiesUsed { get; set; }

}

public class Technology
{

public string Name { get; set; }
}

Chapter 6 ■ File iO

220

A resume will typically also have information about an individual’s education and any certifications or
professional licenses they have. Add the two class definitions from Listing 6-11 to the resume file.

Listing 6-11. Certification and Education Class Definitions

public class Certification
{

public string CertificationName { get; set; }

public DateTime AcquisitionDate { get; set; }

public string TechSponsor { get; set; }
}

public class Education
{

public string SchoolName { get; set; }
public string SchoolAddress { get; set; }
public string Degree { get; set; }
public DateTime StartDate { get; set; }
public DateTime EndDate { get; set; }
public string EducationLevel { get; set; }

}

Of course, you should also have an overarching resume object that contains these various work
experiences. This object also needs the information to help present the resume. Listing 6-12 illustrates.

Listing 6-12. Resume Class Definition

public class Resume
{

public string Name { get; set; }
public DateTime CreateDate{get;set;}
public DateTime LastUpdateDate{get;set;}
public string EmailAddress { get; set; }
public string PhoneNumber { get; set; }
public string ProfileSummary { get; set; }

public List<Certification> Certifications { get; set; }

public List<Education> EductionHistory { get; set; }
public List<WorkExperience> WorkHistory { get; set; }

}

Finally, you need a construct above this that does all the resume management for you. To reduce the
memory impact on the system (particularly if a user ends up with lots of resumes), you won’t use an object
here. Instead you will maintain each resume object as its own file. Regardless of your approach, one key
activity that needs to happen with the resume object is for it to be serialized to a string. Let’s modify Resume
to include this ability. Listing 6-13 illustrates. Add it to the definition of resume. DataContractSerializer
requires the System.Runtime.Serialization namespace.

Chapter 6 ■ File iO

221

Listing 6-13. AsSerializedString Method

public string AsSerializedString()
{

DataContractSerializer dcs = new DataContractSerializer(typeof(Resume));
MemoryStream ms = new MemoryStream();
dcs.WriteObject(ms, this);
ms.Seek(0, SeekOrigin.Begin);
byte[] buffer = new byte[ms.Length];
ms.Read(buffer, 0, buffer.Length);
string serialized_object = Encoding.ASCII.GetString(buffer);
return serialized_object;

}

To come full circle, resume objects must also provide a means for reading and instantiating themselves
from a serialized XML form. Listing 6-14 shows the implementation of this feature to also be added to the
Resume class.

Listing 6-14. FromSerializedString Method

public static Resume FromSerializedString(string resume_string)
{

try
{

var buffer = Encoding.ASCII.GetBytes(resume_string);
MemoryStream ms = new MemoryStream(buffer);
DataContractSerializer dcs = new DataContractSerializer(typeof(Resume));
var retval = dcs.ReadObject(ms);
return retval as Resume;

}
catch (Exception ex)
{

return null;
}

}

Now that you have your object model and the means to serialize it, let’s build in the facilities you
need to store it in isolated storage. As mentioned above, all apps have access to this location through the
LocalFolder property of ApplicationData. Rather than place your resumes in the root folder, however, you
will create a new subfolder that you expect to be there called resumes. This can’t be done anywhere but
in the code because there is no mechanism available for structuring the isolated storage of downstream
clients. Add a new file to your project (in the Library folder) called AppStorageManager and add the
implementation code from Listing 6-15.

Listing 6-15. AppStorageManager Class Definition

public static class AppStorageManager
{

async public static Task<StorageFolder> CreateOrOpenFolder(string folder_name)
{

if (!string.IsNullOrWhiteSpace(folder_name))
return await ApplicationData.Current

Chapter 6 ■ File iO

222

.LocalFolder

.CreateFolderAsync(folder_name, CreationCollisionOption.OpenIfExists);

return null;
}

async public static Task SaveResumeAsync(Resume resume)
{

await CreateOrOpenFolder("resumes");

if (resume.Name != null)
{

//write model string to file
var file = await ApplicationData.Current

.LocalFolder

.CreateFileAsync($"resumes\\{resume.Name}.xml",
 CreationCollisionOption.
OpenIfExists);

await file.WriteTextAsync(resume.AsSerializedString());
}
else

throw new Exception("Resume objects require a name.");
}

async public static Task<Resume> LoadResumeAsync(string resume_name)
{

try
{

if (!string.IsNullOrWhiteSpace(resume_name))
{

var file = await ApplicationData.Current
.LocalFolder

.GetFileAsync($"resumes\\{resume_name}.xml");
var resume_xml = await file.ReadTextAsync();
var resume = Resume.FromSerializedString(resume_xml);
return resume;

}
}
catch (Exception ex)
{

}
return null;

}

async public static Task<bool> DeleteResume(string resume_name)
{

try
{

var resume = await ApplicationData.Current
.LocalFolder

Chapter 6 ■ File iO

223

 .GetFileAsync($"resumes\\{resume_name}.xml");
await resume.DeleteAsync(StorageDeleteOption.PermanentDelete);
return true;

}
catch (Exception ex)
{

return false;
}

}

async public static Task<List<string>> ListResumes()
{

var folder = await CreateOrOpenFolder("resumes");
var files = await folder.GetFilesAsync();
 return files.OrderByDescending(i => i.DateCreated).Select(i =>
i.DisplayName).ToList();

}
}

In Listing 6-15, the CreateOrOpenFolder method shows how to create a folder in isolated storage using
the Windows.Storage.ApplicationData.Current.LocalFolder.CreateFolder function. The version
of this function that you call expects two parameters: one that represents the folder name and one calls
Windows.Storage.CreationCollisionOption to determine what to do when the folder you want created
has the same name as a folder already present. There are two versions of this function: one expects a single
parameter passed in (the folder name), and the other also expects the CreationCollisionOption to be
included. When you use the first version, the failIfExists CreationCollisionOption is automatically
used. CreationCollisionOption applies to both files and folders. In the function SaveResumeAsync you see
it being used during the file creation process. Table 6-1 shows all the possible options of Windows.Storage.
CreationCollisionOption.

Table 6-1. Windows.Storage.CreationCollisionOption Members

Member Value Description

GenerateUniqueName 0 Creates the new file or folder with the desired name, and
automatically appends a number if a file or folder already exists
with that name

ReplaceExisting 1 Creates the new file or folder with the desired name, and replaces
any file or folder that already exists with that name

FailIfExists 2 Creates the new file or folder with the desired name, or returns an
error if a file or folder already exists with that name

OpenIfExists 3 Creates the new file or folder with the desired name, or returns an
existing item if a file or folder already exists with that name

ListResumes returns the list of files in the resumes folder while LoadResumeAsync reads the text from a
given resume file and deserializes it into a Resume object. This method does this in three steps.

1. It generates a relative file path based on the name passed into it.

2. It opens the file and read the contents of it.

3. It deserializes the content using the DataContractSerializer.

Chapter 6 ■ File iO

224

Finally, in Listing 6-15, DeleteResume is used to remove the resume files from the user’s Isolated Storage
area. You can test how well this works by adding some test code anywhere in your project. In Listing 6-16, you
add some code to test the file access and serialization functionality to your ApplicationHost’s Loaded event.

Listing 6-16. ApplicationHost Loaded Event Handler

async private void ApplicationHost_Loaded(object sender, RoutedEventArgs e)
{

await AppStorageManager.
SaveResumeAsync(new Resume() { Name = "resume one" });

await AppStorageManager.
SaveResumeAsync(new Resume() { Name = "resume two" });

var resume = await AppStorageManager.LoadResumeAsync("resume one");
var resume_list = await AppStorageManager.ListResumes();
foreach (var resume_name in resume_list)
{

await AppStorageManager.DeleteResume(resume_name);
}

}

Listing 6-16 simply creates two resume objects and simultaneously saves them to isolated storage.
You then list the resumes and, looping through each resume name retrieved, delete each one. If you put a
breakpoint on the foreach statement, every time you run the app and it breaks there you should note that
resume_list contains exactly two items. You can access files in this folder in XAML using the URI scheme
ms-appdata:///local/<file-path>. The ms-appdata protocol is used to access files in your ApplicationData
storage area.

■ Note to request that Windows index your app data for search, create a folder named Indexed under
this folder and store the files that you want indexed there. Windows indexes the file content and metadata
(properties) in this Indexed folder and all its subfolders.

RoamingFolder
The problem with your app so far is that each installed instance of it will have resume data that is tied to
the specific machine that the app is installed on. Isolated storage works great in instances where a user will
be using your app on one and only one device. However, you know from the first chapter of this book that
this is far less of a reality with Windows 10 than ever before. Most likely a user will have access to your app
on a wide range of devices, and you as the developer must tailored the experience of using the app to those
device classes as needed. One of the main problems with having your product reach across multiple devices,
though, is managing state. If the resume app was relying on a back-end service to store all the resume
information, this would not be a problem. Regardless of the device a user is on, your app would simply
connect to the back-end service (like Azure) and pull down all the appropriate information necessary to
present a seamless experience to the user.

In your case, however, you are presently relying on files and folders to manager your user’s resume
information. Files and folders are located on the user’s current machine and nowhere else. Remove the code
to delete the resumes from ApplicationHost and run the app two more times, once using your location
machine and the other using any one of the Windows 10 Mobile Emulators. If you place a breakpoint at the
same place as you previously did, you will notice that although the code shows as having two resumes on

Chapter 6 ■ File iO

225

your local machine, it shows as no resumes on the emulator. Roaming folders can be a possible solution
for these kinds of scenarios (although the ideal approach is to use a service-based back end). They not only
synchronize the files stored to it across Windows devices, they also associate those files to the presently
logged-in user and not the machine. The great thing about this approach is that it allows users of your app to
flow seamlessly across devices without you needing to explicitly synchronize their state back to a server. You
simply store content in the folder, and let Windows 10 take care of the rest! You can access the folder location
through the RoamingFolder property of ApplicationData. To access the contents of this folder through
XAML, use the URI scheme ms-appdata:///roaming/<file-path>.

■ Note For files to properly roam, the files and folders you specify must also contain no leading white spaces.

There are restrictions on the total storage quota that can be roamed. You can use the
RoamingStorageQuota property of ApplicationData to check to see how much space (measured in KB) is
allotted to your app for roaming purposes. If the amount of data stored in your app’s RoamingFolder location
exceeds this value amount, synchronization will be paused until the value goes below the threshold.

In Listing 6-17, you make some changes to AppStorageManager. Since RoamingFolder behaves like a local
folder when the total storage exceeds the allotted quota, you switch over to using it instead of LocalFolder.
Your app will continue to work as normal and will roam the resume files until it hits the quota. At that point,
you will notify your user that their quota has been hit and synchronization across devices has stopped. To
accomplish this, you add a new method to AppStorageManager that measures the current size of the app’s
Roaming folder. You also modify the methods for saving and deleting resumes to check the current size of this
folder and return an enum value that indicates whether the quota is in excess of its allotment. The new enum
type ResumeOperationResult provides this flag. Listing 6-17 illustrates; changes are highlighted in bold.

Listing 6-17. AppStorageManager and ResumeOperationResult Definitions

public enum ResumeOperationResult
{

Success,
SuccessOverLimit,
Failure,

}

public static class AppStorageManager
{

async public static Task<StorageFolder> CreateOrOpenFolder(string folder_name)
{

if (!string.IsNullOrWhiteSpace(folder_name))
return await ApplicationData.Current

.RoamingFolder

.CreateFolderAsync(folder_name,
CreationCollisionOption.OpenIfExists);

return null;
}

Chapter 6 ■ File iO

226

async public static Task<ResumeOperationResult> SaveResumeAsync(Resume resume)
{

await CreateOrOpenFolder("resumes");

ResumeOperationResult result = ResumeOperationResult.Success;

if (resume.Name != null)
{

//write model string to file
var file = await ApplicationData.Current

.RoamingFolder
 .CreateFileAsync($"resumes\\
{resume.Name}.xml",
CreationCollisionOption.OpenIfExists);

await file.WriteTextAsync(resume.AsSerializedString());

var total_storage = await AppStorageManager.GetTotalStorage();
if (total_storage > ApplicationData.Current.RoamingStorageQuota)
{

result = ResumeOperationResult.SuccessOverLimit;
}

}
else
{

throw new Exception("Resume objects require a name.");
}

return result;
}

async public static Task<Resume> LoadResumeAsync(string resume_name)
{

try
{

if (!string.IsNullOrWhiteSpace(resume_name))
{

var file = await ApplicationData.Current
.RoamingFolder
.GetFileAsync($"resumes\\{resume_name}.xml");

var resume_xml = await file.ReadTextAsync();
var resume = Resume.FromSerializedString(resume_xml);
return resume;

}
}
catch (Exception ex)
{

}
return null;

}

Chapter 6 ■ File iO

227

async public static Task<ResumeOperationResult> DeleteResume(string resume_name)
{

ResumeOperationResult result = ResumeOperationResult.Success;

try
{

var resume = await ApplicationData.Current
.RoamingFolder
.GetFileAsync($"resumes\\{resume_name}.xml");

await resume.DeleteAsync(StorageDeleteOption.PermanentDelete);

var total_storage = await AppStorageManager.GetTotalStorage();
if (total_storage > ApplicationData.Current.RoamingStorageQuota)
{

result = ResumeOperationResult.SuccessOverLimit;
}

}
catch (Exception ex)
{

result = ResumeOperationResult.Failure;
}
return result;

}

async public static Task<List<string>> ListResumes()
{

var folder = await CreateOrOpenFolder("resumes");
var files = await folder.GetFilesAsync();
 return files.OrderByDescending(i => i.DateCreated).Select(i =>
i.DisplayName).ToList();

}

async public static Task<ulong> GetTotalStorage()
{

var folder = await CreateOrOpenFolder("resumes");
var files = await folder.GetFilesAsync();
ulong accumulator = 0;
foreach (var file in files)
{

accumulator += (await file.GetBasicPropertiesAsync()).Size;
}
return accumulator / 1024;

}

async public static Task<ResumeOperationResult> CheckStorage()
{

ResumeOperationResult result = ResumeOperationResult.Success;
var total_storage = await AppStorageManager.GetTotalStorage();
if (total_storage > ApplicationData.Current.RoamingStorageQuota)

Chapter 6 ■ File iO

228

{
result = ResumeOperationResult.SuccessOverLimit;

}
return result;

}
}

To test this out, you will do some cleanup on ApplicationHost and LandingPage. In the code-behind
for ApplicationHost, remove the LocalFolder test code you previously added. In LandingPage, remove the
code you added to test your binding. Don’t worry; you will be revisiting these subjects later in this chapter.
For now you need a clean page to perform your tests so you don’t get too confused with what is going on.
ApplicationHost should now look like Listing 6-18.

Listing 6-18. ApplicationHost Class Definition

public sealed partial class ApplicationHost : Page
{

public static ApplicationHost Current { get; private set; }
public ApplicationHost()
{

this.InitializeComponent();
Current = this;

}

}
Replace the contents of LandingPage.xaml with the code in Listing 6-19.

Listing 6-19. LandingPage UI

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <StackPanel HorizontalAlignment="Center"

VerticalAlignment="Center">
<Button Click="AddResume"

HorizontalAlignment="Stretch"
Margin="5"
Content="Test Roaming Storage - Add" />

<Button Click="RemoveResume"
Margin="5"
HorizontalAlignment="Stretch"
Content="Test Roaming Storage - Remove" />

 </StackPanel>

</Grid>

Now change the code-behind for LandingPage so that it looks like Listing 6-20.

Chapter 6 ■ File iO

229

Listing 6-20. LandingPage Code-Behind

public sealed partial class LandingPage : Page
{

int _count = 0;

public LandingPage()
{

this.InitializeComponent();
this.Loaded += LandingPage_Loaded;

}

async private void LandingPage_Loaded(object sender, RoutedEventArgs e)
{

var app_view = ApplicationView.GetForCurrentView();
_count = (await AppStorageManager.ListResumes()).Count;
 app_view.Title = $"{_count} resumes, {(await AppStorageManager.
GetTotalStorage())}

KB, QUOTA={ApplicationData.Current.RoamingStorageQuota} KB";
if ((await AppStorageManager.CheckStorage()) ==

ResumeOperationResult.SuccessOverLimit)
{

app_view.TitleBar.BackgroundColor = Windows.UI.Colors.Red;
}

}

async private void RemoveResume(object sender, RoutedEventArgs e)
{

var app_view = ApplicationView.GetForCurrentView();
var resume_list = await AppStorageManager.ListResumes();
var oldest_resume = resume_list.LastOrDefault();

var result = await AppStorageManager.
DeleteResume(oldest_resume);

_count--;
if (result == ResumeOperationResult.SuccessOverLimit)
{

app_view.TitleBar.BackgroundColor = Windows.UI.Colors.Red;
}
else if (result == ResumeOperationResult.Success)

app_view.TitleBar.BackgroundColor = Windows.UI.Colors.Transparent;

app_view.Title = $"{(await AppStorageManager.ListResumes()).Count} resumes,
{(await AppStorageManager.GetTotalStorage())} KB,
QUOTA={ApplicationData.Current.RoamingStorageQuota} KB";

}

Chapter 6 ■ File iO

230

async private void AddResume(object sender, RoutedEventArgs e)
{

var app_view = ApplicationView.GetForCurrentView();
var result = await AppStorageManager.

SaveResumeAsync(new Resume() { Name = $"resume {_count}" });
if (result == ResumeOperationResult.SuccessOverLimit)
{

app_view.TitleBar.BackgroundColor = Windows.UI.Colors.Red;
}
var resume = await AppStorageManager.LoadResumeAsync($"resume {_count}");
var resume_list = await AppStorageManager.ListResumes();
app_view.Title = $"{resume_list.Count} resumes, {(await

AppStorageManager.GetTotalStorage())} KB,
QUOTA={ApplicationData.Current.RoamingStorageQuota} KB";

_count++;
}

}

In Listing 6-19 and Listing 6-20 you add two buttons to LandingPage, one for adding resumes and one
for removing them. The Add button obviously adds resumes to your resume library (stored in the user’s
roaming storage folder) while the Delete button does the opposite. With each addition or removal you
inspect the resulting ResumeOperationResult enum to see if the quota has been exceeded. If it has, you
turn the title bar for the app red; otherwise, it remains null. You also check the size of your roaming storage
using the CheckStorage method on page load. CheckStorage allows you to test for storage quota violations
without performing any additions to or removals from the resume library. In each case, you display the app’s
quota and the current size (in KB) of storage in the roaming folder on the title bar. Figure 6-6 illustrates.

Figure 6-6. Reading roaming folder quota

Chapter 6 ■ File iO

231

TemporaryFolder
The temporary store for your application is even more volatile than the package storage. Items stored in this
location are only guaranteed to last as long as the currently running session of the app. Files here can be
deleted by the system at any time and may even be manually removed by the user using the Disk Cleanup
tool. Hence, the ideal usage of this location is as an in-application session cache, or not at all.

The User’s Known Folders
Your app isn’t limited to working with files in the application’s isolated data store, package-install location,
or the local/roaming/temporary locations just discussed. Apps built using the UWP can also access folders
through the Windows.Storage.KnownFolders class. Table 6-2 lists some of the important KnownFolders
properties exposed for accessing the underlying folders they represent. You can find the full list at
https://msdn.microsoft.com/library/windows/apps/windows.storage.knownfolders.aspx.

Table 6-2. KnownFolders Properties

Property Description

DocumentsLibrary Gets the Documents library

HomeGroup Gets the HomeGroup folder

MediaServerDevices Gets the Media Server Devices (Digital Living Network Alliance [DLNA]) folder

MusicLibrary Gets the Music library

PicturesLibrary Gets the Pictures library

RemovableDevices Gets the Removable Devices folder

VideosLibrary Gets the Videos library

In order for an app to access these folders, it needs to ask the user by declaratively indicating that it
intends to use a storage location other than the private ones automatically accessible to it, the app’s isolated
storage and package install location. In Windows 10, this is a two-step process. First, you enable the target
Windows 10 library that you want access to as a capability your application is declaring that it uses. You can
do this via the Capabilities section of the application manifest. In a standard UWP Windows 10 app, the
app’s manifest is located in the project’s root folder with the name package.appxmanifest (see Figure 6-7).

https://msdn.microsoft.com/library/windows/apps/windows.storage.knownfolders.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.knownfolders.documentslibrary
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.knownfolders.homegroup
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.knownfolders.mediaserverdevices
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.knownfolders.musiclibrary
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.knownfolders.pictureslibrary
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.knownfolders.removabledevices
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.knownfolders.videoslibrary

Chapter 6 ■ File iO

232

When you open this file, you should see six tabs. Selecting the Capabilities tab opens the screen shown
in Figure 6-8.

Figure 6-7. Application manifest’s location in the project structure

Chapter 6 ■ File iO

233

Selecting any one of the library capabilities (Music, Pictures, or Videos) enables access to the
associated storage location through the appropriate KnownFolder property. The “External Known Folders”
section discusses how to enable capabilities for the other three KnownFolders properties (HomeGroup,
MediaServerDevices, and RemovableDevices).

■ Note DocumentsLibrary is a special capability that is actually available to you but is not listed through
this user interface. to access it, right-click the package.appxmanifest file and select View Code. this should
open up the file in its raw XMl form. You can then manually add this capability to the capabilities section of the
file. although available, this capability is not meant for normal use. in most scenarios, a file picker will be ideal
(and will provide a user with the choice of location where they want any app-generated files stored). Use the
DocumentsLibrary capability to facilitate cross-platform, offline access to specific OneDrive content using valid
OneDrive Urls or to save open files to the user’s OneDrive automatically while offline. Figure 6-9 shows the
XMl for the package.appxmanifest and where to place the DocumentsLibrary capability for your app.

Figure 6-8. Capabilities tab

Chapter 6 ■ File iO

234

Next, you must explicitly declare which file types your application reads from and writes to. You do so
through the Declarations tab of the app’s manifest (see Figure 6-10).

Figure 6-9. DocumentsLibrary capability

Chapter 6 ■ File iO

235

You need to add a new file-type association to your app. An association must include the file extension
(with the extension dot preceding it) and can optionally provide a MIME type. Additionally, the file-type
association itself must have a name associated with it. Figure 6-10 shows adding a file association for
text files (.txt) and image files (.png). You can read and write files of any kind that are associated to your
application through this interface (as long as your application has access to that folder).

External Known Folders
If you request the Documents Library, Pictures Library, Music Library, or Videos Library, you can also access
files on any connected media server as a storage location by using the MediaServerDevices property of
KnownFolders. Note that the files you see on the device are scoped based on the capabilities you specify,
meaning that if you only declare Music Library capabilities, you will see only music files on the media server
to which you connect. Also note that, regardless of the capabilities you specify, you won’t see documents in
the Documents Library of the server you’re connected to.

You can also treat your HomeGroup as a storage location. As with the results of MediaServerDevices, your
app can only see the libraries declared in its manifest as capabilities. This also doesn’t provide access to the
HomeGroup Documents Library.

Figure 6-10. Declarations tab

Chapter 6 ■ File iO

236

Finally, your application has access to files stored in removable media through the RemovableDevices
property of KnownFolders. RemovableDevices requires your application to have capabilities defined for
it explicitly, and the application can only see files in this location that have been declared as supported
file-type associations in its manifest in the Declarations section shown earlier.

The Downloads Folder
The Downloads folder is a special case; it provides its own class as a peer of KnownFolders for write-only
access. Table 6-3 describes the static functions of DownloadsFolder.

Table 6-3. DownloadsFolder Methods

Method Description

CreateFileAsync(String) Creates a new file in the Downloads folder

CreateFileAsync(String,
CreationCollisionOption)

Creates a new file in the Downloads folder, and specifies what to do if a
file with the same name already exists in the folder

CreateFolderAsync(String) Creates a new subfolder in the Downloads folder

CreateFolderAsync(String,
CreationCollisionOption)

Creates a new subfolder in the Downloads folder, and specifies what to do
if a subfolder with the same name already exists in the folder

Unlike the locations in the KnownFolders class, all applications can access the user’s Downloads folder
(meaning there is no need to explicitly define a capability to use it), but as you can see in Table 2-5, they only
have write access. Also note that files written to this folder aren’t written directly to the Downloads folder root
of an end user’s machine. Rather, they’re scoped to a folder that is created directly for the application that
created the file or folder. As such, the folder name is the name of the application.

Let’s take a look at the Downloads folder in action. Modify the contents of the root Grid in
LandingPage.xaml so that it matches Listing 6-21.

Listing 6-21. LandingPage UI Modifications

<StackPanel HorizontalAlignment="Center"
VerticalAlignment="Center">

 <ListView x:Name="list_resumes"
ItemsSource="{x:Bind Resumes,Mode=OneWay}"
HorizontalAlignment="Stretch"
Height="200" />

 <Button Click="AddResume"
HorizontalAlignment="Stretch"
Margin="5"
Content="Test Roaming Storage - Add" />

 <Button Click="RemoveResume"
Margin="5"
HorizontalAlignment="Stretch"
Content="Test Roaming Storage - Remove" />

 <Button Click="DownloadResume"
Margin="5"
HorizontalAlignment="Stretch"
Content="Download Resume" />

</StackPanel>

http://msdn.microsoft.com/en-us/library/windows/apps/br241633.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh996762.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh996762.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br241634.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh996764.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh996764.aspx

Chapter 6 ■ File iO

237

In this code, you add two new controls to the mix: a ListView that lists the resumes in your library and
a button that you can use to download any selected resume. As you might imagine, the Download resume
button uses the Downloads as a storage location to write the contents of the selected resume to. The code-
behind adds a number of changes to LandingPage. First, you obviously need a list called Resumes (since it is
the name used in the ListView declaration). Second, since you are once again utilizing databinding, you will
apply the INotifyPropertyChanged interface. Finally, in the Loaded event you set the value of Resumes to the
result of calling ListResumes. Listing 6-22 illustrates.

Listing 6-22. LandingPage Code-Behind Modifications

public sealed partial class LandingPage : Page, INotifyPropertyChanged
{

...
List<string> Resumes { get; set; }
public event PropertyChangedEventHandler PropertyChanged;

...
async private void LandingPage_Loaded(object sender, RoutedEventArgs e)
{

Resumes = await AppStorageManager.ListResumes();
...

}
...
async private void DownloadResume(object sender, RoutedEventArgs e)
{

var selected_resume_name = list_resumes.SelectedItem as string;
if (selected_resume_name != null)
{

var resume = await AppStorageManager
.LoadResumeAsync(selected_resume_name);

var downloaded_file = await Windows.Storage.DownloadsFolder
.CreateFileAsync($"{selected_resume_name}.resume");

await downloaded_file.WriteTextAsync(resume.AsSerializedString());
}

}
...

}

Clicking the Download resume button when a resume named resume 87 is selected creates a file at
the following location on my machine: C:\Users\Edward Moemeka\Downloads\ResumeManager\resume
87.resume (see Figure 6-11).

Chapter 6 ■ File iO

238

■ Note the folder location ResumeManager is an alias for the actual folder name. You can see the actual
folder path on the title bar of Windows explorer above.

Final Thoughts on Storage via the ApplicationData Class
Regardless of what store you use for your file I/O functions, the ApplicationData object offers additional
services that can help manage it. For instance, ApplicationData.SetVersionAsync allows you to change the
application data format used in a future release of your app without causing compatibility problems with
previous releases of the app.

You can also use ApplicationData to clear your Windows cache by calling ApplicationData.
ClearAsync(). Note that this function clears the data from all storage locations associated with the
application. An overloaded method exists for this function that targets a specified location.

Using Pickers
Dialogs are a mainstay in the pantheon of Windows applications. They provide a simple, elegant, yet
powerful alternative to launching full-blown windows. Dialogs are typically used to prompt the user for
some action, but in cases where you wish to save a file to or load a file from a user-defined location they
are invaluable. The great thing about using dialogs in this way is that they allow you to access locations
ordinarily impossible to reach using the UWP.

Figure 6-11. Downloads folder root for the ResumeManager application

Chapter 6 ■ File iO

239

In the previous section, you used the user’s Downloads folder to store a resume that they selected.
There are certainly reasons why this might be the choice you make as an app developer but in general this
would probably not be the best user experience when simply trying to provide the user with a way to access
the content they have created through your app. You simply cannot expect your users to continually go to
the Downloads folder in order to get documents exported from your app. A better is to provide them with a
means to decide where they want the file stored and even what name they want to give the file.

Windows.Storage.Pickers.FileSavePicker provides this functionality in UWP apps. Like the
SaveFileDialog of old, it allows the user to select the folder where they want a file saved, pick file types that
will be allowed, and even provide a suggested name for the file. In Listing 6-23, you enhance your Download
button to use FileSavePicker.

Listing 6-23. DownloadResume Event Handler

async private void DownloadResume(object sender, RoutedEventArgs e)
{

var selected_resume_name = list_resumes.SelectedItem as string;
if (selected_resume_name != null)
{

var resume = await AppStorageManager.
LoadResumeAsync(selected_resume_name);

FileSavePicker saver = new FileSavePicker();
saver.DefaultFileExtension = ".resume";
saver.SuggestedFileName = "my file";
saver.FileTypeChoices.Add("ResumeManager File",

new List<string>() { ".resume" });

var new_file = await saver.PickSaveFileAsync();
if (new_file != null)
{

await new_file.WriteTextAsync(resume.AsSerializedString());
}

}
}

Conversely, the FileOpenPicker class (found in the same namespace as FileSavePicker) can be used
to read files from locations your app would normally not have any access to. Like FileSavePicker, it is a
user prompt. You will use this dialog to implement an Import Resume feature in your app. For this feature to
work, it will need to

• Read the file being imported

• Attempt to deserialize it to a resume (if this fails let the user know (with a message
dialog)

• Use the save resume functionality to save the item

• Refresh the Resumes list with the new list of resumes controlled by the app

• Once saved, notify the databinding framework of the change to the Resumes list

You start by adding a new button to LandingPage that users will use to trigger this functionality. The
code in Listing 6-24 should be added to the Add Resume button.

Chapter 6 ■ File iO

240

Listing 6-24. ImportResume Button UI

<Button Click="ImportResume"
Margin="5"
HorizontalAlignment="Stretch"
Content="Import Resume" />

The code-behind for this button is shown in Listing 6-25.

Listing 6-25. ImportResume Event Handler

async private void ImportResume(object sender, RoutedEventArgs e)
{

var app_view = ApplicationView.GetForCurrentView();

FileOpenPicker opener = new FileOpenPicker();
opener.ViewMode = PickerViewMode.Thumbnail;
opener.SuggestedStartLocation = PickerLocationId.Desktop;
opener.CommitButtonText = "Import the resume";
opener.FileTypeFilter.Add(".resume");
var selected_file = await opener.PickSingleFileAsync();
if (selected_file != null)
{

//read and deserialize resume
var file_text = await selected_file.ReadTextAsync();
var resume = Resume.FromSerializedString(file_text);

if (resume == null)
{

MessageDialog md = new MessageDialog("Cannot read resume data.");
await md.ShowAsync();
return;

}

//name resume
int current_storage_count = (await AppStorageManager.ListResumes()).Count;
resume.Name = $"resume [{Guid.NewGuid()}]";
Resumes = await AppStorageManager.ListResumes();
PropertyChanged?.Invoke(this, new PropertyChangedEventArgs("Resumes"));

//now store the resume in AppData
var result = await AppStorageManager.
SaveResumeAsync(resume, CreationCollisionOption.GenerateUniqueName);
if (result == ResumeOperationResult.SuccessOverLimit)
{

app_view.TitleBar.BackgroundColor = Windows.UI.Colors.Red;
}
var resume_list = await AppStorageManager.ListResumes();
app_view.Title = $"{resume_list.Count} resumes, {(await

AppStorageManager.GetTotalStorage())} KB,
QUOTA={ApplicationData.Current.RoamingStorageQuota} KB";

}
}

Chapter 6 ■ File iO

241

Note that you also modify the SaveResume method to accept CreationCollisionOption as an optional
parameter into the method. The new method definition is shown in Listing 6-26.

Listing 6-26. SaveResume Method Declaration Changes

async public static Task<ResumeOperationResult> SaveResumeAsync(Resume resume,
 CreationCollisionOption creation_option = CreationCollisionOption.
OpenIfExists)

Finally, let’s add the lines highlighted in Listing 6-26 to the other state-changing functions in
AppStorageManager (the methods for saving and deleting resumes) so that the ListView always reflects an
accurate list of resumes being managed by the app. The new add and remove event handlers are shown in
Listing 6-27.

Listing 6-27. RemoveResume Event Handler

async private void RemoveResume(object sender, RoutedEventArgs e)
{

var app_view = ApplicationView.GetForCurrentView();
var resume_list = await AppStorageManager.ListResumes();
var oldest_resume = resume_list.LastOrDefault();

var result = await AppStorageManager.
DeleteResume(oldest_resume);

Resumes = await AppStorageManager.ListResumes();
PropertyChanged?.Invoke(this, new PropertyChangedEventArgs("Resumes"));
_count--;
if (result == ResumeOperationResult.SuccessOverLimit)
{

app_view.TitleBar.BackgroundColor = Windows.UI.Colors.Red;
}
else if (result == ResumeOperationResult.Success)

app_view.TitleBar.BackgroundColor = null;

app_view.Title = $"{(await AppStorageManager.ListResumes()).Count}
resumes, {(await AppStorageManager.GetTotalStorage())} KB,
QUOTA={ApplicationData.Current.RoamingStorageQuota} KB";

}

async private void AddResume(object sender, RoutedEventArgs e)
{

var app_view = ApplicationView.GetForCurrentView();
var result = await AppStorageManager.

SaveResumeAsync(new Resume() { Name = $"resume {_count}" });
Resumes = await AppStorageManager.ListResumes();
PropertyChanged?.Invoke(this, new PropertyChangedEventArgs("Resumes"));
if (result == ResumeOperationResult.SuccessOverLimit)
{

app_view.TitleBar.BackgroundColor = Windows.UI.Colors.Red;
}
var resume = await AppStorageManager.LoadResumeAsync($"resume {_count}");
var resume_list = await AppStorageManager.ListResumes();

Chapter 6 ■ File iO

242

app_view.Title = $"{resume_list.Count} resumes,
{(await AppStorageManager.GetTotalStorage())} KB,
QUOTA={ApplicationData.Current.RoamingStorageQuota} KB";

_count++;
}

The UWP also allows you to select folders where you can store items using the FolderPicker class
(in the same namespace). Given that these files and folders being exposed by the user to your app are not
normally available to the user, the UWP provides a mechanism to allow you to access them directly without
user prompting once a user has given the initial access (by selecting the storage item through the dialog
system). Any storage item you need access to beyond the initial interaction provided through the pickers
we discussed can be made available to you if you add them to the future access list. This list simply tells
Windows that you will need to access the file/folder at a later time. As long as you have an instance of a
storage file or storage folder, it can be added to this list using the following: Windows.Storage.AccessCache.
StorageApplicationPermissions.FutureAccessList. The class also provides mechanisms to manage the list.

Sharing Files with Custom Pickers
Occasionally you might want to manage the manner in which files exposed by your app are accessed. It
might not make sense to force a user to export items one by one to a certain location and might make less
sense to simply copy your app contents away in an unmanaged manner. In such cases, your app might
benefit from exposing itself as a picker, such that other apps will see a customized view of the contents in the
app and be able to save or open content in a way that appears as native as the pickers you have been using
thus far. The Windows 10 UWP introduces a means of doing this with the open and save file picker contracts.
These constructs allow you to expose your internal file system to other apps on the system such that your
app appears embedded in the standard Windows save and open dialogs, right alongside other folders and
apps in the system. The one caveat to doing this is that it only works within the modern UWP app world.
Native win32 apps are not exposed to this sharing feature inherently. In Chapter 11, we will talk more about
communicating between apps.

In the following section, you will modify the code base you have created so far to allow for extending
your local storage out to other apps on the system. As part of this exercise, you will clean up some of
the classes you created. The first thing you need to do before that, however, is to declaratively notify the
platform that your app will be providing a file save and file open dialog. You accomplish this through the app
manifest.

Open up your project’s app manifest and navigate to the Declarations tab. Use the Available
Declarations drop-down to add File Open Picker and File Save Picker to the list of declarations your app
makes. For each, ensure that the checkbox labeled “Supports any file type” is unchecked then add a new
supported file type called “.resume”. Figure 6-12 shows a portion of the declarations tab with a supported file
type declared.

http://dx.doi.org/10.1007/978-1-4842-1449-7_11

Chapter 6 ■ File iO

243

You have been using the standard .xml file type to describe your resumes up to this point (mostly
because the data contract serializer converts your resume object into an XML document). It is fine to
continue to use XML as the underlying storage format but you need a way to distinguish your specific
resume XML from just any old XML. This is very important when you start integrating yourself into an OS.
You would not want to attempt to open and read just any XML; conversely, you would not want a program
expecting XML to unpack and damage your well-defined resume format. For this reason, you will use a
custom file format “.resume” as the file type (read file extension) for your resume files. While you are in
the app manifest, add a file type association to the .resume file type as well. Once complete, your file type
associations declaration should have the three items shown in Figure 6-13.

Figure 6-12. File Open Picker declaration

Figure 6-13. “.resume” file type association

Chapter 6 ■ File iO

244

You are now done with configuring the app through the manifest and can focus on implementation.
To that end, you now need to go back to your AppStorageManager class and ensure that it is storing all your
resume objects with the .resume file extension. Before doing that, though, you have some tidying up to do
in the Resume class. So far, you have been using the name of the resume to identify it. This can obviously
become error prone so you will change it to use a unique identifier. In the interest of encapsulation and
having clean code that is easy to read, you should also move some of the resume-specific file access
functionality out of AppStorageManager and directly into the Resume class. Your app so far has been relying
on the resume names for finding the resume; this will not always hold true. A better approach is to store
a compact form of the resume, and when detailed information is needed, expand that smaller version
into the full blown version you expect. At this juncture, you have not gotten to the point where you are
even populating the resumes, so for now you can still get away with simply loading the entire resume into
memory for each resume file. With that in mind, there are several changes you need to make to the class to
accommodate the approach. Listing 6-28 shows the new ResumeInfo.cs with only the methods that have
been modified in some way (or are new).

Listing 6-28. ResumeInfo.cs Changes

public class Resume
{

public string ResumeID { get; set; } = Guid.NewGuid().ToString();
StorageFile File { get; set; }

...

public StorageFile GetFile()
{

return File;
}

async public Task DeleteAsync()
{

await File.DeleteAsync(StorageDeleteOption.PermanentDelete);
}

...

async public static Task<Resume> FromStorageFileAsync(StorageFile file)
{

var resume = FromSerializedString(await file.ReadTextAsync());
resume.File = file;
return resume;

}
}

You haven’t made much of a change, but the impact of the subtle shift from resume name to a uniquely
identifiable id, allowing the resume to essentially delete itself, and allowing a resume to be created directly
from a storage file will make a huge difference in readability.

Next, you move onto the AppStorageManager to modify it so it utilizes the changes you just
implemented in Resume. The principal change here is the shift from having all state (except the resume
name) read directly from the file system to using an in-memory store that is backed by the file system. Listing
6-29 highlights the new or modified pieces of AppStorageManager.

Chapter 6 ■ File iO

245

Listing 6-29. SaveResumeAsync Changes

async public static Task<ResumeOperationResult> SaveResumeAsync(Resume resume,
CreationCollisionOption creation_option = CreationCollisionOption.OpenIfExists)

{
await CreateOrOpenFolder("resumes");
ResumeOperationResult result = ResumeOperationResult.Success;

if (resume.Name != null)
{

//write model string to file
var file = await ApplicationData.Current

.RoamingFolder
.CreateFileAsync

($"resumes\\{resume.ResumeID}.resume",
creation_option);

await file.WriteTextAsync(resume.AsSerializedString());

var total_storage = await AppStorageManager.GetTotalStorage();
if (total_storage > ApplicationData.Current.RoamingStorageQuota)
{

result = ResumeOperationResult.SuccessOverLimit;
}

}
else
{

throw new Exception("Resume objects require a name.");
}
return result;

}

async public static Task<Resume> LoadResumeAsync(string resume_id)
{

try
{

if (!string.IsNullOrWhiteSpace(resume_id))
{

var file = await ApplicationData.Current
.RoamingFolder

 .GetFileAsync($"resumes\\{resume_id}.resume");
var resume_xml = await file.ReadTextAsync();
var resume = Resume.FromSerializedString(resume_xml);
return resume;

}
}
catch (Exception ex)
{

}
return null;

}

Chapter 6 ■ File iO

246

async public static Task<StorageFile> GetResumeFileAsync(string resume_id)
{

try
{

if (!string.IsNullOrWhiteSpace(resume_id))
{

var file = await ApplicationData.Current
.RoamingFolder
 .GetFileAsync($"resumes\\{resume_id}.
resume");

return file;
}

}
catch (Exception ex)
{

}
return null;

}

async public static Task<ResumeOperationResult> DeleteResume(Resume resume)
{

ResumeOperationResult result = ResumeOperationResult.Success;
try
{

await resume.DeleteAsync();
var total_storage = await AppStorageManager.GetTotalStorage();
if (total_storage > ApplicationData.Current.RoamingStorageQuota)
{

result = ResumeOperationResult.SuccessOverLimit;
}

}
catch (Exception ex)
{

result = ResumeOperationResult.Failure;
}
return result;

}

async public static Task<List<Resume>> ListResumes()
{

var folder = await CreateOrOpenFolder("resumes");
var files = await folder.GetFilesAsync();

List<Resume> resumes = new List<Resume>();
foreach (var file in files)
{

try
{

var resume = await Resume.FromStorageFileAsync(file);
resumes.Add(resume);

}

Chapter 6 ■ File iO

247

catch { }
}
return resumes;

}

async public static Task ClearStorageAsync()
{

var folder = await CreateOrOpenFolder("resumes");
var files = await folder.GetFilesAsync();
foreach (var file in files)
{

await file.DeleteAsync();
}

}

Again, the changes here are quite minor. In most of the methods you have merely changed the file extension
used for the resume files from .xml to .resume. In DeleteResume, you are now using the resume instance’s
DeleteAsync call instead of explicitly deleting the file within the method. Finally, to help with debugging and file
management you have added a ClearStorageAsync method that does what the name implies.

The file dialogs work like controls in that they are embedded into another user interface rather than
having their own windowing infrastructure. In Figure 6-14, you see the standard File Open dialog we all
know and love. At the bottom there is a tree node for your UWP app, ResumeManager. When your app
declares the File Open and File Save contracts, an icon for your app will be available to select from the file
picker dialog, just like this.

Figure 6-14. File Open Picker with custom picker for ResumeManager

Chapter 6 ■ File iO

248

When this item is clicked, the content area to the right of this navigation tree will be used to present the
custom user interface you want to use for representing the files that the user can pick. This user interface
must be rendered by the app that declared itself a custom picker. Let’s create a user interface for your picker.

Start by adding a new page to the ResumeManager project called ResumeFilePicker and replace the
contents of the XAML view associated with this class with the code from Listing 6-30.

Listing 6-30. ResumeFilePicker UI

<Grid>
 <ListView Margin="10,0"

DisplayMemberPath="Name"
ItemsSource="{x:Bind Resumes, Mode=OneWay}"
SelectionChanged="ResumeListSelectionChanged"
SelectionMode="Single" />

</Grid>

Pretty simple, huh? But if you think about it a little, you will find that it makes very good sense. Open
up Explorer and examine the content area; you will find a simple user interface designed specifically for
selection and hierarchical navigation. It’s perfect, so why spoil it? When you build custom pickers like this,
you must bear in mind that users may not have a deep understanding of your specific app. Contracts such
as this exist in the “public” area of a person’s computer. Doing crazy things within your app is one thing, but
behaving badly out there will get you uninstalled and ranked low very quickly!

The code-behind for ResumeFilePicker is where all the magic happens. As always, you need a place
to store the data being databound through compiled binding. You should know by now from the XAML
definition must be called Resumes. You will most likely define it as follows: List<Resume> Resumes
{ get; set; }. Again, as part of the databinding spiel, ResumeFilePicker will need to implement
INotifyPropertyChanged, which means an event called PropertyChanged. Listing 6-31 shows the full code
for ResumeFilePicker.

Listing 6-31. ResumeFilePicker Code-Behind

public sealed partial class ResumeFilePicker : Page, INotifyPropertyChanged
{

FileOpenPickerUI _open_basket;
FileSavePickerUI _save_basket;
bool _saving;
string _previous_id = null;
public event PropertyChangedEventHandler PropertyChanged;

List<Resume> Resumes { get; set; }

public ResumeFilePicker()
{

this.InitializeComponent();
this.Loaded += ResumeFilePicker_Loaded;

}

Chapter 6 ■ File iO

249

async private void ResumeFilePicker_Loaded(object sender, RoutedEventArgs e)
{

Resumes = await AppStorageManager.ListResumes();
PropertyChanged?.Invoke(this, new PropertyChangedEventArgs("Resumes"));

}

public void Activate(FileOpenPickerActivatedEventArgs args)
{

_saving = false;
_open_basket = args.FileOpenPickerUI;
Window.Current.Content = this;
Window.Current.Activate();

}

public void Activate(FileSavePickerActivatedEventArgs args)
{

_saving = true;
_save_basket = args.FileSavePickerUI;
_save_basket.TargetFileRequested += _save_basket_TargetFileRequested;
Window.Current.Content = this;
Window.Current.Activate();

}

async void _save_basket_TargetFileRequested(FileSavePickerUI sender,
TargetFileRequestedEventArgs args)

{
var deferral = args.Request.GetDeferral();
args.Request.TargetFile = await ApplicationData.Current

.RoamingFolder
.CreateFileAsync

($"resumes\\{_save_basket.FileName}",
CreationCollisionOption.GenerateUniqueName);

deferral.Complete();
}

 async private void ResumeListSelectionChanged(object sender,
SelectionChangedEventArgs e)
{

if (!_saving)
{

var grid_view = sender as ListView;
var resume = grid_view.SelectedItem as Resume;
var resume_file = resume?.GetFile();
if (resume_file != null)
{

if (_previous_id != null)
_open_basket.RemoveFile(_previous_id);

Chapter 6 ■ File iO

250

_open_basket.AddFile(resume.ResumeID, resume_file);
_open_basket.Title = $"{resume.Name} selected";
_previous_id = resume.ResumeID;

}
else

await new MessageDialog("Resume is null").ShowAsync();
}

}

}

The logic here is one you will find used a lot for this kind of thing. In your case, you are using one class
to serve as the user interface and controller for two distinct activities: saving a file and opening a file. The
Boolean value _saving is used to delineate that distinction. When the file picker is activated, the argument
passed into your app will determine which version of your Activate methods is executed. All the Activate
method does is store an instance of the user interface object associated with the activation locally and
then set ResumeFilePicker as the main content for the current window. This window is not the one we
were previously discussing. You can think of this window as being essentially that content area to the right
of your navigation menu from Figure 6-16. For file saving there’s an additional event that you subscribe
to that simply creates a file in your store and returns it to the calling app so it can use it to write content to
your storage area. When an item in the ListView is selected, you retrieve the associated resume, get the file
associated with that resume (through the GetFile function), and write that file back into the Open file dialog
UI. A consuming app can then take that file and read its contents.

To enable the Activate methods to be called you must override some methods your app class. Open
App.xaml.cs and add the code from Listing 6-32.

Listing 6-32. File Picker Activation Overrides in App.xaml.cs

protected override void OnFileOpenPickerActivated
(FileOpenPickerActivatedEventArgs args)

{
new ResumeFilePicker().Activate(args);

}

protected override void OnFileSavePickerActivated
(FileSavePickerActivatedEventArgs args)

{
new ResumeFilePicker().Activate(args);

}

When the icon for your app is pressed in the Open or Save dialog, the app does not start in a normal
manner. It is not “launched;” it is “activated.” Because of this, for these special cases OnLaunched is not called;
rather (based on the type of activation that occurred), the appropriate override is called directly. Just as you
do when launching the app as a whole, you must instantiate what will be the root user interface object for
your app. In your case, you are using ResumeFilePicker.

At this point, you are basically done as far as implementing a file dialog. If you have any Modern apps
on your system (apps based on WinRT/UWP) that have open file pickers, you should see the node for
ResumeManager on your file picker user interface. Note that this will NOT show up for non-UWP apps at the
time of this writing.

Chapter 6 ■ File iO

251

As a final step, you need to modify your landing page to utilize some of the changes you made to the
object model of the app. Listing 6-33 shows the revised user interface for LandingPage.

Listing 6-33. LandingPage UI Changes

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <ScrollViewer VerticalScrollBarVisibility="Auto"

VerticalScrollMode="Auto">
<StackPanel HorizontalAlignment="Stretch"

VerticalAlignment="Center">
<ListView x:Name="list_resumes"

ItemsSource="{x:Bind Resumes,Mode=OneWay}"
DisplayMemberPath="Name"
HorizontalAlignment="Stretch"
Height="300"
Margin="100,10,100,10" />

<StackPanel Width="300">
<Button Click="AddResume"

HorizontalAlignment="Stretch"
Margin="5"
Content="Test Roaming Storage - Add" />

<Button Click="ImportResume"
Margin="5"
HorizontalAlignment="Stretch"
Content="Import Resume" />

<Button Click="RemoveResume"
Margin="5"
HorizontalAlignment="Stretch"
Content="Test Roaming Storage - Remove" />

<Button Click="ExportResume"
Margin="5"
HorizontalAlignment="Stretch"
Content="Save Resume" />

<Button Click="ClearLibrary"
Margin="5"
HorizontalAlignment="Stretch"
Content="Clear Library" />

<Button Click="SelectLibrary"
Margin="5,5,5,50"
HorizontalAlignment="Stretch"
Content="Select Library" />

</StackPanel>

</StackPanel>
 </ScrollViewer>

</Grid>

You’ve streamlined and cleaned up the code-behind with a tweak here and there to enhance
readability. Listing 6-34 illustrates.

Chapter 6 ■ File iO

252

Listing 6-34. LandingPage Code-Behind Changes

public sealed partial class LandingPage : Page, INotifyPropertyChanged
{

StorageFolder _library_folder;
int _count = 0;
List<Resume> Resumes { get; set; }

public event PropertyChangedEventHandler PropertyChanged;

public LandingPage()
{

this.InitializeComponent();
this.Loaded += LandingPage_Loaded;

}

async private void LandingPage_Loaded(object sender, RoutedEventArgs e)
{

_count = (await AppStorageManager.ListResumes()).Count;
await RefreshUIAsync();

}

async Task RefreshUIAsync(ResumeOperationResult? result = null)
{

var app_view = ApplicationView.GetForCurrentView();
var resume_list = await AppStorageManager.ListResumes();
app_view.Title = $"{resume_list.Count} resumes, {(await

AppStorageManager.GetTotalStorage())} KB,
QUOTA={ApplicationData.Current.RoamingStorageQuota} KB";

Resumes = resume_list;
PropertyChanged?.Invoke(this, new PropertyChangedEventArgs("Resumes"));

if (result != null)
{

if (result == ResumeOperationResult.SuccessOverLimit)
{

app_view.TitleBar.BackgroundColor = Windows.UI.Colors.Red;
}
else

app_view.TitleBar.BackgroundColor = null;
}

}

async private void AddResume(object sender, RoutedEventArgs e)
{

var result = await AppStorageManager.
SaveResumeAsync(new Resume() { Name = $"Resume {_count}" });

_count++;

await RefreshUIAsync(result);
}

Chapter 6 ■ File iO

253

async private void RemoveResume(object sender, RoutedEventArgs e)
{

var resume_list = await AppStorageManager.ListResumes();
var oldest_resume = resume_list.LastOrDefault();

var result = await AppStorageManager.
DeleteResume(oldest_resume);

_count--;
await RefreshUIAsync(result);

}

async private void ExportResume(object sender, RoutedEventArgs e)
{

var app_view = ApplicationView.GetForCurrentView();
var selected_resume = list_resumes.SelectedItem as Resume;
if (selected_resume != null)
{

var resume = selected_resume;

FileSavePicker saver = new FileSavePicker();
saver.DefaultFileExtension = ".resume";
saver.SuggestedFileName = "my file";
saver.FileTypeChoices

.Add("ResumeManager File", new List<string>() { ".resume"
});

var new_file = await saver.PickSaveFileAsync();
if (new_file != null)
{

var new_resume_id = Guid.NewGuid().ToString();
resume.Name = $"resume import [{new_resume_id}]";
resume.ResumeID = new_resume_id;
await new_file.WriteTextAsync(resume.AsSerializedString());
await RefreshUIAsync();

}
}
else
{

await new MessageDialog("Select a resume first").ShowAsync();
}

}

async private void ImportResume(object sender, RoutedEventArgs e)
{

var app_view = ApplicationView.GetForCurrentView();

FileOpenPicker opener = new FileOpenPicker();
opener.ViewMode = PickerViewMode.Thumbnail;
opener.SuggestedStartLocation = PickerLocationId.Desktop;
opener.CommitButtonText = "Import the resume";

Chapter 6 ■ File iO

254

opener.FileTypeFilter.Add(".resume");
var selected_file = await opener.PickSingleFileAsync();
if (selected_file != null)
{

//read and deserialize resume
var resume = await Resume.FromStorageFileAsync(selected_file);

if (resume == null)
{

 MessageDialog md = new MessageDialog("Cannot read resume
data.");
await md.ShowAsync();
return;

}

//name resume
var new_resume_id = Guid.NewGuid().ToString();

 int current_storage_count = (await AppStorageManager.
ListResumes()).Count;

resume.Name = $"resume import [{new_resume_id}]";
resume.ResumeID = new_resume_id;

//now store the resume in AppData
var result = await AppStorageManager.
SaveResumeAsync(resume, CreationCollisionOption.GenerateUniqueName);
await RefreshUIAsync(result);

}
}

async private void SelectLibrary(object sender, RoutedEventArgs e)
{

FolderPicker picker = new FolderPicker();
picker.ViewMode = PickerViewMode.Thumbnail;
picker.SuggestedStartLocation = PickerLocationId.Desktop;
picker.CommitButtonText = "Select this location";
picker.FileTypeFilter.Add(".resume");
_library_folder = await picker.PickSingleFolderAsync();
if (_library_folder != null)
{

Windows.Storage.AccessCache
.StorageApplicationPermissions
.FutureAccessList.Add(_library_folder);

}
}

async private void ClearLibrary(object sender, RoutedEventArgs e)
{

await AppStorageManager.ClearStorageAsync();
await RefreshUIAsync();

}
}

Chapter 6 ■ File iO

255

When this app is run (note that it cannot be run in debug mode) and you use the pickers to pick items,
you should see windows in the open picker similar to Figures 6-15 and 6-16.

Figure 6-15. Custom file open picker for ResumeManager

Chapter 6 ■ File iO

256

Figure 6-16. Custom file save picker for ResumeManager

Summary
This chapter went through some core IO workflows that a developer must master when developing Windows
10 apps. You should have gained an understanding of reading from and writing to the file system as well as
what storage locations are. Here is an overview of what you learned in Chapter 6:

• The role of storage locations, and that certain locations are available to an
application by default and other locations require you to explicitly declare
capabilities through the application manifest.

• File pickers for saving files and opening files. You also learned the value of using
pickers when you need to access locations normally unavailable to your app.

• Custom file picker dialogs, how they work in Windows 10, and when to use and not
use such devices in your applications.

• Folder pickers and how to maintain access to a folder location that has been granted
to you by the user.

• How to create a ResumeManager project.

http://dx.doi.org/10.1007/978-1-4842-1449-7_6

257

Chapter 7

Working with Media

Media experiences have long been a weakness in Microsoft platforms, but not because those features aren’t
inherently available in the system. Windows provides a wide spectrum of built-in playback and management
features. The area in which the platform has fallen short is in the exposing of media content-creation and
-management facilities to the developers in an experience consistent with the programming paradigms they
have marketed to us over the years. If you know DirectX or any of the low-level APIs, then you’re good to go
as far as this. But the reach of such technologies has traditionally not fallen far from organizations with the
funding to hire resources with that knowledge.

Microsoft continues the strides introduced with Windows 8 with the release of Windows 10 through
Windows Store apps, which have a programming interface that has been designed to ensure the delivery
of modern, fast, and fluid applications. As a full-spectrum content-creation and -consumption platform,
Windows 10 rises above the rest with its broad range of media support capabilities exposed to developers
through the UWP. In this chapter, you will explore the many ways that you as a developer can incorporate
media into your app. You will explore rendering and playing back media, and you’ll be introduced to the
numerous ways that media can be captured through your UWP app.

Creating a New Project
To help highlight the media features available to UWP developers, your next project will be for an
entertainment company. Big Mountain Xochials (pronounced “socials”) Theater Company is a small,
traveling media and entertainment group focused on live entertainment experiences on the go. They feature
comedians, stage acting, singers, poets, and live music. They are interested in generating interest in their
performances by building a Windows 10 app that shows highlights of previous shows, gives users the ability
to order full recorded shows, buy tickets to upcoming shows, view their calendar, and much more. They
expect this app to provide a full multimedia experience to their end user.

Open Visual Studio 2015 and select File ➤ New ➤ Project. Select Blank App (Universal Windows) from
the New Project dialog that appears. Call the project BigMountainX and click Ok. You are going to use this
project in this chapter as a platform to explore the many things you can do with the various media-driven
components of the UWP. You won’t be implementing all the functionality at first, but over time you will start
adding features to the app. Figure 7-1 shows the New Project dialog on my computer (it may appear different
on yours based on the way you have configured the IDE).

Chapter 7 ■ Working With Media

258

Once the project is created, delete MainPage.xaml and add a new XAML page to it called TestPage.
You will use TestPage to do the testing and showcasing of the controls you utilize, and then add them to the
solution as needed to fullfull the product requirements. Since MainPage was deleted, you need to open up
the App.xaml.cs file and modify the initial page navigated to from MainPage to TestPage. Listing 7-1 shows
new code for the OnLaunched event handler.

Listing 7-1. Default OnLaunched Event Handler

protected override void OnLaunched(LaunchActivatedEventArgs e)
{

#if DEBUG
 if (System.Diagnostics.Debugger.IsAttached)
 {

this.DebugSettings.EnableFrameRateCounter = true;
 }
#endif

 Frame rootFrame = Window.Current.Content as Frame;

 // Do not repeat app initialization when the Window already has content,
 // just ensure that the window is active
 if (rootFrame == null)

Figure 7-1. New project dialog

Chapter 7 ■ Working With Media

259

 {
// Create a Frame to act as the navigation context and navigate to the first page
rootFrame = new Frame();

rootFrame.NavigationFailed += OnNavigationFailed;

if (e.PreviousExecutionState == ApplicationExecutionState.Terminated)
{

//TODO: Load state from previously suspended application
}

// Place the frame in the current Window
Window.Current.Content = rootFrame;

 }

 if (rootFrame.Content == null)
 {

// When the navigation stack isn't restored navigate to the first page,
// configuring the new page by passing required information as a navigation
// parameter
rootFrame.Navigate(typeof(TestPage), e.Arguments);

 }
 // Ensure the current window is active
 Window.Current.Activate();
}

As you can see, the only change is modifying the page to which the window’s root content, which in this
case is a Frame, navigates. Your project should now look like Figure 7-2.

Figure 7-2. Project structure

Chapter 7 ■ Working With Media

260

Visualizing Media
It might be hard to comprehend in this modern world of real-time video communication and online
gameplay on MMPGs like World of Warcraft, but there was a time not too long ago (and by that I mean the
early 1990s, not 1800s) when seeing an image on screen was considered flashy. In the world you live in now,
media content (especially in the form of images) is so prevalent that you may forget that images are in fact
a type of media. UWP apps have a rich set of APIs for working with images locally and on the Web. You can
even render your own images if you so desire. No matter how you get it, there are two places where an image
will ultimately be displayed: the image control or an image brush.

Images
In Chapter 2, we introduced the image control and showed how it can be used to render an image coming
from your app’s package install location. Listing 7-2 shows how easy it is to add an image to a XAML page.
Add it to the TestPage.xaml.

Listing 7-2. Adding an Image

<Image
x:Name="control_image"
Source="/assets/storelogo.png" />

As we mentioned back in Chapter 2, the notation used to specify the source attribute is based on the
relative location of the image in the app package. Not surprisingly, images can also be rendered direct from
the Web if you specify a URL instead. You will be targeting content located at www.bigbuckbunny.org for
the remainder of this section on media visualization. In Listing 7-3, you display the image located at the
following URL: https://peach.blender.org/wp-content/uploads/bbb-splash.png.

Listing 7-3. Image Source

<Image Source="https://peach.blender.org/wp-content/uploads/bbb-splash.png"
HorizontalAlignment="Center"
VerticalAlignment="Center" />

Figure 7-3 shows how this content renders when the app is run.

http://dx.doi.org/10.1007/978-1-4842-1449-7_2
http://dx.doi.org/10.1007/978-1-4842-1449-7_2
http://www.bigbuckbunny.org/
https://peach.blender.org/wp-content/uploads/bbb-splash.png
https://peach.blender.org/wp-content/uploads/bbb-splash.png

Chapter 7 ■ Working With Media

261

Figure 7-3. Image in action

Image contains a property, stretch, which can be used to determine the proportions the internal image
will take in relation to the image control that renders it. With None, the image is shown in its full native size
and aspect ratio. With Uniform and UniformToFill, the image will always maintain the native aspect ratio
of the underlying image. UniformToFill will show as much of the image as is possible in as large a size as
possible while still maintaining the proper aspect ratio, while Uniform will try to show the entire image in its
largest possible size while still maintaining the correct aspect ratio. Fill will stretch to fill the available space
(most likely distorting it in some way). Add the code from Listing 7-4 to TestPage and run the app.

Listing 7-4. Specifying Stretch Values

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <Grid.ColumnDefinitions>

<ColumnDefinition />
<ColumnDefinition />
<ColumnDefinition />
<ColumnDefinition />

 </Grid.ColumnDefinitions>
 <Image Source="https://peach.blender.org/wp-content/uploads/bbb-splash.png"

Stretch="None" />
 <Image Source="https://peach.blender.org/wp-content/uploads/bbb-splash.png"

Grid.Column="1"
Stretch="Uniform" />

https://peach.blender.org/wp-content/uploads/bbb-splash.png
https://peach.blender.org/wp-content/uploads/bbb-splash.png

Chapter 7 ■ Working With Media

262

 <Image Source="https://peach.blender.org/wp-content/uploads/bbb-splash.png"
Grid.Column="2"
Stretch="UniformToFill" />

 <Image Source="https://peach.blender.org/wp-content/uploads/bbb-splash.png"
Grid.Column="3"
Stretch="Fill" />

</Grid>

As you change the size of the window, you should see the difference between the various stretch
settings. Figure 7-4 illustrates.

Figure 7-4. Various Stretch values in action

Updating the Project

Big Mountain events are social events that typically draw a crowd that includes the same people showing
up over and over again, so the company would like to have their app reflect that social experience. One
way to do this is to allow users to store a profile about themselves. The profile information need not be too
sophisticated; it really only needs to store the user’s basic identification information (like their first and last
name) and information that can be used to contect them. Create a new folder called Library and in this
folder add a class file called BMXProfile. Visual Studio 2015 treats items in subfolders as having their own
namespace by default, and there seems to be no way of altering that default behavior. Be sure to remove the
Library part of the new class’ namespace declaration so that it remains in the BigMountainX namespace.
Listing 7-5 shows the new class.

https://peach.blender.org/wp-content/uploads/bbb-splash.png
https://peach.blender.org/wp-content/uploads/bbb-splash.png

Chapter 7 ■ Working With Media

263

Listing 7-5. BMXProfile Class

namespace BigMountainX
{

public enum GenderCode
{

Male = 0,
Female = 1,

}

public class BMXProfile
{

public string FirstName { get; set; }
public string LastName { get; set; }
public string Email { get; set; }
public string ContactNumber { get; set; }
public string ImageLocation{get;set;}
public DateTime? DOB{get;set;}
public GenderCode? Gender{get;set;}

}
}

You also need a class to represent the app settings as a whole. The class will contain the user profile as
well as other important information about the app. For now, this class will only have one property in it, the
user’s profile. Over time you will add other properties as they are needed. Add a new class to the Library
folder called AppState and add the definition from Listing 7-6.

Listing 7-6. AppState Class

namespace BigMountainX
{

public class AppState
{

public BMXProfile UserProfile { get; set; }
}

}

Using the same patterns you have utilized in the past, you must now create methods for serializing and
deserializing this object so that it can be written to the file system and read from it as well. This ensures that
state is maintained across multiple runs of the app. Add the coded from Listing 7-7 to AppState.

Listing 7-7. Serialization Methods

public string AsSerializedString()
{

DataContractSerializer dcs = new DataContractSerializer(typeof(AppState));
MemoryStream ms = new MemoryStream();
dcs.WriteObject(ms, this);
ms.Seek(0, SeekOrigin.Begin);
byte[] buffer = new byte[ms.Length];
ms.Read(buffer, 0, buffer.Length);

Chapter 7 ■ Working With Media

264

string serialized_object = Encoding.ASCII.GetString(buffer);
return serialized_object;

}

async public Task ToStorageFileAsync(StorageFile file)
{

var serialized = this.AsSerializedString();
await file.WriteTextAsync(serialized);

}

public static AppState FromSerializedString(string resume_string)
{

try
{

var buffer = Encoding.ASCII.GetBytes(resume_string);
MemoryStream ms = new MemoryStream(buffer);
DataContractSerializer dcs = new DataContractSerializer(typeof(AppState));
var retval = dcs.ReadObject(ms);
var app_state = retval as AppState;
return app_state;

}
catch
{

return null;
}

}

async public static Task<AppState> FromStorageFileAsync(StorageFile file)
{

var app_state = FromSerializedString(await file.ReadTextAsync());
return app_state;

}

Of course, because you are using the extension methods ReadTextAsync and WriteTextAsyc, which
you created in Chapter 6, you need to add the file StorageFileExtensions.cs to this project. Right-click
the Library folder of your project and select click Add ➤ Existing item. Now browse to the Library folder of
your ResumeManager project, and select StorageFileExtensions.cs, and click Add. Figure 7-5 illustrates.

http://dx.doi.org/10.1007/978-1-4842-1449-7_6

Chapter 7 ■ Working With Media

265

Build the solution to ensure that everything is working as it should.
By now you might have noticed a recurring pattern in your samples. You typically use an object to store

your application state, which at this point is read and written to a storage location in app storage. An ideal
solution to prevent constant reuse by copying is to place this functionality into a base class that any state-
aware classes can simply inherit from. For this approach to be transportable, you need to place it into a
library that can then simply be referenced from any projects you chose.

Add a new library project (use the Universal Windows Class Library, not the standard class library
project) to the solution called General.UWP.Library. This library will contain any general types that you
expect to use across projects that you create. For now, you will be adding the base class for all app state
management to the library such that you can redesign all your previous state management code to leverage
this class by inheriting from it. The net result of this process should have no direct effect on app functionality
because the actual code being executed has not changed. It is just for organizational purposes. Figure 7-6
shows the Add New Project dialog with the Class Library project template selected.

Figure 7-5. Incorporating StorageFileExtensions

Chapter 7 ■ Working With Media

266

Open up StateAwareObject’s definition. You need to move all the state management code, the code
from Listing 7-7, into this class so that future classes that inherit from this base class need not implement
the same thing over and over again. Because the code uses serialization, however, it will not be as simple
a process as simply copying the code over. You need to change the behavior of the serialization and
deserialization methods such that the type you use for the process is generic, meaning parameterize the
process of seriazation and de-serialization. Listing 7-8 illustrates.

Figure 7-7. General library project structure

Figure 7-6. The Add New Project dialog

In the library project, delete Class1 (the default class that is added by Visual Studio 2015 when a library
project is created) and add a new class called StateAwareObject. Also, draw StorageFileExtensions.cs
from the Library folder of BigMountainX to the root of General.UWP.Library. The library project should look
like Figure 7-7.

Chapter 7 ■ Working With Media

267

Listing 7-8. StateAwareObject Class

public class StateAwareObject<T> where T : StateAwareObject<T>, new()
{

StorageFolder _folder;
StorageFile _file;
string _file_name;

public string AsSerializedString()
{

DataContractSerializer dcs = new DataContractSerializer(typeof(T));
MemoryStream ms = new MemoryStream();
dcs.WriteObject(ms, this);
ms.Seek(0, SeekOrigin.Begin);
byte[] buffer = new byte[ms.Length];
ms.Read(buffer, 0, buffer.Length);
string serialized_object = Encoding.ASCII.GetString(buffer);
return serialized_object;

}

async public Task SaveAsync()
{

StorageFile file = _file;
if (file == null)
{

file = await _folder.CreateFileAsync(_file_name,
CreationCollisionOption.ReplaceExisting);

}

var serialized = this.AsSerializedString();
await file.WriteTextAsync(serialized);

}

async public Task DeleteAsync()
{

StorageFile file = _file;
if (file != null)
{

await file.DeleteAsync(StorageDeleteOption.PermanentDelete);
}

}

public static T FromSerializedString(string resume_string)
{

try
{

var buffer = Encoding.ASCII.GetBytes(resume_string);
MemoryStream ms = new MemoryStream(buffer);
DataContractSerializer dcs = new DataContractSerializer(typeof(T));
var retval = dcs.ReadObject(ms);
var app_state = retval as T;
return app_state;

}

Chapter 7 ■ Working With Media

268

catch
{

return null;
}

}

async public static Task<T> FromStorageFileAsync(StorageFile file)
{

var app_state = FromSerializedString(await file.ReadTextAsync());
if (app_state == null)

app_state = new T();
app_state._folder = await file.GetParentAsync();
app_state._file = file;
app_state._file_name = file.Name;
return app_state;

}

 async public static Task<T> FromStorageFileAsync(StorageFolder folder,
string file_name)
{

var file = (await folder.TryGetItemAsync(file_name)) as StorageFile;
if (file == null)
{

var retval = new T();
retval._folder = folder;
retval._file_name = file_name;
return retval;

}
else

return await FromStorageFileAsync(file as StorageFile);
}

}

In Listing 7-8, you construct StateAwareObject as a generic class expecting a type parameter T, which
must be a reference type. T in the case represents the type of any state management class you create in the
future that inherits from this base class. New overloads to FromStorageFileAsync and StorageAsync have
been introduced to streamline the process of serialization. Other than this change, the flow of the code is
essentially the same as before. Let’s take a look at how AppState now changes to utilize this base class. To
use this class, you must first add a reference to the General.UWP.Library project. Right-click the References
folder of BigMountainX and select Add Reference. Select Projects from the tree on the left of the Reference
Manager screen (this represents locations where libraries might exist). Select Solution, and then pick
General.UWP.Library. Figure 7-8 illustrates.

Chapter 7 ■ Working With Media

269

With your library now in scope, you declare the namespace that contains your base class and add it as a
base class to AppState, as shown in Listing 7-9.

Listing 7-9. AppState Modifications

public class AppState : StateAwareObject<AppState>
{

public BMXProfile UserProfile { get; set; }
}

You now have your general state management in place. With any luck, you won’t have to go through the
process of creating a state management pattern anymore. Let’s move on to the next task, which is building
out the framework for navigation in your app. Presently, the app follows the default pattern of utilizing a
frame as the root content for the app window. As you have done in previous chapters, you will augment
this by wrapping that root frame in a Page, which gives you the flexibility to create overlays and also a place
to host app-wide functionality that can impact the user UI. Add a new page to the BigMountainX project
called ApplicationHostPage. Within this page add a Frame element. Add the code from Listing 7-10 to the
ApplicationHostPage.xaml file.

Listing 7-10. ApplicationHostPage Modifications

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<Frame x:Name="root_frame" SourcePageType="local:LandingPage" />

</Grid>

Figure 7-8. Referencing the general library

Chapter 7 ■ Working With Media

270

Now add another new page to BigMountainX called LandingPage to represent the default page that
is displayed when the app starts. As you can see from Listing 7-10, this is the page that the Frame control
in your application host navigates to when it starts up. The final step is to modify App.xaml.cs so that it
attempts to load state when the app is loaded. You add a new static property to App for storing the global
AppState object as well. Listing 7-11 illustrates what host App.xaml.cs should look. We have removed all
extraneous code from the file and recommend that you do the same.

Listing 7-11. Application Class Modifications

sealed partial class App : Application
{

public static AppState State { get; private set; }

public App()
{

this.InitializeComponent();
}

async protected override void OnLaunched(LaunchActivatedEventArgs e)
{

State = await AppState.FromStorageFileAsync(
ApplicationData.Current.RoamingFolder,
"state.xml");

Window.Current.Content = new ApplicationHostPage();

Window.Current.Activate();
}

}

Incorporating Image into BigMountainX

Your application will require two kinds of images to be rendered: static images that cannot be modified by
the user (like app-related artwork and images of users you have no control over), and dynamic images that
the user has the ability to modify by either selecting a file on their computer or using the device’s camera
(if available). For static images, the normal Image control will suffice. For dynamic images, you need to build
in additional functionality to get the Image control to work as expected. This is a great scenario to build a
UserControl and, given that it is a UserControl, an opportunity to add more functionality to your general
UWP library.

Right-click the General.UWP.Library project and select Add ➤ New Item. From the Add New Item
dialog, select User Control, and name the new control ImageViewerControl. Press the Enter key to add it to
your project. Your new UserControl will need to do three primary things for the user: display an image, give
the user the ability to select an image from their file system, and give the user the ability to take a picture
using the device’s camera and use it as the image to display. From this, it is plain to see that there are two
interaction points for this control: browsing for and selecting pictures, and using the camera. You will use a
MenuFlyout control to expose those two options so that when a user clicks on the image, they will be given
two choices: browse or take a picture. In the next section when we discuss image capture, you will delve into
the “take a picture” scenario, but for now you will focus on browsing for and displaying pictures from the
user’s device. Listing 7-12 shows the user interface layout for ImageViewerControl.

Chapter 7 ■ Working With Media

271

Listing 7-12. ImageViewerControl User Interface

<Grid Background="Gray"
BorderBrush="Black"
BorderThickness="1"
PointerPressed="PointerPressedHandler">

 <Image x:Name="img_control"
Stretch="Uniform"
ImageOpened="OnImageOpened"
HorizontalAlignment="Stretch"
VerticalAlignment="Stretch">

<FlyoutBase.AttachedFlyout>
<MenuFlyout Placement="Bottom">

<MenuFlyoutItem Text="Browse ..."
Click="BrowseImageClicked" />

<MenuFlyoutItem Text="Take Picture"
Click="TakePictureClicked" />

</MenuFlyout>
</FlyoutBase.AttachedFlyout>

 </Image>
 <SymbolIcon x:Name="symbol_camera"

Symbol="Camera"
HorizontalAlignment="Center"
VerticalAlignment="Center" />

</Grid>

Your UI consists of an image and a SymbolIcon inside a grid. The image has a flyout with two menu
items than can be used to initiate either file search or the device’s camera. Let’s look at the code-behind for
this control. Listing 7-13 shows the ImageViewerControl class.

Listing 7-13. ImageViewerControl Code-Behind

public sealed partial class ImageViewerControl : UserControl
{

public event Action<ImageViewerControl> ImageSelected;
public StorageFile ImageFile { get; set; }
public ImageViewerControl()
{

this.InitializeComponent();

}

async public Task LoadImageAsync(StorageFolder folder, string image_file_path)
{

var image_file = await folder.GetFileAsync(image_file_path);
await InternalLoadImageAsync(image_file);

}

Chapter 7 ■ Working With Media

272

private void TakePictureClicked(object sender, RoutedEventArgs e)
{

}

async private void BrowseImageClicked(object sender, RoutedEventArgs e)
{

FileOpenPicker opener = new FileOpenPicker();
opener.ViewMode = PickerViewMode.Thumbnail;
opener.SuggestedStartLocation = PickerLocationId.PicturesLibrary;
opener.CommitButtonText = "Select Picture";
opener.FileTypeFilter.Add(".png");
opener.FileTypeFilter.Add(".jpg");
var selected_file = await opener.PickSingleFileAsync();
if (selected_file != null)
{

await InternalLoadImageAsync(selected_file);
ImageSelected?.Invoke(this);

}
}

private async Task InternalLoadImageAsync(StorageFile selected_file)
{

ImageFile = selected_file;

//display the image
BitmapImage image = new BitmapImage();
img_control.Source = image;
var stream = await selected_file.OpenReadAsync();
await image.SetSourceAsync(stream);

}

private void PointerPressedHandler(object sender, PointerRoutedEventArgs e)
{

FlyoutBase.ShowAttachedFlyout(img_control);
}

private void OnImageOpened(object sender, RoutedEventArgs e)
{

symbol_camera.Visibility = Visibility.Collapsed;
}

}

In Listing 7-13, LoadImageAsync is called whenever a consumer of this control needs to display
an image (from a storage folder somewhere). TakePictureClicked is deliberately left blank for
now. InternalLoadImageAsync is a catch-all method for taking a storage file and rendering the
image it represents. It is used throughout the class for this purpose. The main interactivity point,
BrowseImageClicked, is called when the Browse button is clicked, and it simply opens a file picker to find
and load the image file a user wanted to use. The Pointer Pressed handler is used to basically cause the flyout
to display (only buttons display them by default). Finally, OnImageOpened (which is fired only if the image
loaded successfully) is handled so that the SymbolIcon can be hidden if an image has successfully loaded.

Chapter 7 ■ Working With Media

273

Tying It All Together

You have your state management set up, and you have your profile class, and you even have an image
control ready to go, but how do you tie all this loose functionality into a cohesive experience? Let’s start with
the profile; presumably many of the events a user will see will depend on who they are. Consequently, your
app must know some things about the user before it is usable. Let’s add some code to your application host
to test to see if the user already has a profile defined. If this is the case, then you start the app by navigating to
the landing page; otherwise, you navigate the user to the profile creation page. Before you get started, add a
new page to the BigMountainX project entitled UserIntroPage. This will be the page where a user can enter
their profile information in order to start the app.

Once completed, add the code from Listing 7-14 to ApplicationHostPage.xaml.cs.

Listing 7-14. ApplicationHostPage Modifications

public sealed partial class ApplicationHostPage : Page
{

public ApplicationHostPage()
{

this.InitializeComponent();
this.Loaded += ApplicationHostPage_Loaded;

}

private void ApplicationHostPage_Loaded(object sender, RoutedEventArgs e)
{

if (App.State.UserProfile == null)
root_frame.Navigate(typeof(UserIntroPage));

else
root_frame.Navigate(typeof(LandingPage));

}
}

The code in Listing 7-14 is straightforward. You basically check the State object to see if UserProfile
is null (it will be null until a new BMXProfile instance is set to it). If null, you navigate to a page where the
object can be filled in; otherwise, you start the app. UserIntroPage basically provides a UI for an uninitiated
user to enter some profile information so you can build a profile for them. Listing 7-15 shows the layout for
the page.

Listing 7-15. Incorporating ImageViewerControl

<ScrollViewer VerticalScrollBarVisibility="Auto"
VerticalScrollMode="Auto">

 <StackPanel Orientation="Vertical">
<lib:ImageViewerControl HorizontalAlignment="Left"

Margin="10"
Height="200"
Width="200"
ImageSelected="OnImageSelected" />

Chapter 7 ■ Working With Media

274

<StackPanel Width="400"
HorizontalAlignment="Left">

<TextBox Header="First Name"
Margin="10"
Text="{x:Bind Profile.FirstName, Mode=TwoWay}" />

<TextBox Header="Last Name"
Margin="10"
Text="{x:Bind Profile.LastName, Mode=TwoWay}" />

<TextBox Header="Email Address"
Margin="10"
Text="{x:Bind Profile.Email, Mode=TwoWay}" />

<TextBox Header="Contact Number"
Margin="10"
Text="{x:Bind Profile.ContactNumber, Mode=TwoWay}" />

</StackPanel>

<DatePicker x:Name="control_dob"
Header="When were you born?"
HorizontalAlignment="Left"
Margin="10"
DateChanged="OnDOBSelected"
VerticalAlignment="Top" />

<ComboBox x:Name="control_procedure"
Header="Gender"
HorizontalAlignment="Left"
Margin="10"
SelectionChanged="OnGenderSelected"
VerticalAlignment="Top"
Width="296"
ItemsSource="{x:Bind Genders, Mode=OneWay}" />

<Button Content="Continue"
Click="OnContinue" Margin="10" />

 </StackPanel>

</ScrollViewer>

Note the element in bold, an ImageViewControl element. To incorporate this element properly,
a XAML namespace declaration, xmlns:lib="using:General.UWP.Library", must be added the page
definition. The code-behind for Listing 7-15 is shown in Listing 7-16.

Listing 7-16. UserIntroPage Modifications

public sealed partial class UserIntroPage : Page, INotifyPropertyChanged
{

public event PropertyChangedEventHandler PropertyChanged;

BMXProfile Profile { get; set; }
List<string> Genders { get; set; }

Chapter 7 ■ Working With Media

275

public UserIntroPage()
{

this.InitializeComponent();
Profile = new BMXProfile();
this.Loaded += UserIntroPage_Loaded;

}

private void UserIntroPage_Loaded(object sender, RoutedEventArgs e)
{

Genders = Enum.GetValues(typeof(GenderCode))
.Cast<GenderCode>()
.Select(i => i.ToString()).ToList();

PropertyChanged?.Invoke(this, new PropertyChangedEventArgs("Genders"));

}

async private void OnContinue(object sender, RoutedEventArgs e)
{

if (Profile.Gender != null
&& Profile.DOB != null
&& !string.IsNullOrWhiteSpace(Profile.FirstName)
&& !string.IsNullOrWhiteSpace(Profile.LastName)
&& !string.IsNullOrWhiteSpace(Profile.ContactNumber)
&& !string.IsNullOrWhiteSpace(Profile.Email)
&& !string.IsNullOrWhiteSpace(Profile.ImageLocation))

{
App.State.UserProfile = Profile;
await App.State.SaveAsync();
Frame.Navigate(typeof(LandingPage));

}
else

await new MessageDialog("Please enter all fields").ShowAsync();
}

private void OnGenderSelected(object sender, SelectionChangedEventArgs e)
{

ComboBox combo = sender as ComboBox;
var selection = combo.SelectedItem as string;
var gender_code = (GenderCode)Enum.Parse(typeof(GenderCode), selection);
Profile.Gender = gender_code;

}

private void OnDOBSelected(object sender, DatePickerValueChangedEventArgs e)
{

DatePicker date = sender as DatePicker;
var selection = date.Date.Date;
Profile.DOB = selection;

}

Chapter 7 ■ Working With Media

276

async private void OnImageSelected(ImageViewerControl sender)
{

await sender.ImageFile.CopyAsync(ApplicationData.Current.LocalFolder);
Profile.ImageLocation = sender.ImageFile.Name;

}
}

Listing 7-16 starts by declaring some class-level properties that will be used for databinding purposes.
Remember that you are using compiled bindings in your UI layout so these properties are made visible to
the XAML. You don’t directly connect to the global application state; instead you create an instance of the
BMXProfile for use in this class. If the data entered passes all the criteria you specify, you copy it to the
App.State.UserProfile property, but until then you keep it in the local Profile property. In the
constructor, you instantiate Profile and also connect to the Page’s Loaded event.

The Loaded event does two things. First, it enumerates the values of the GenderCode enum, converting
them to string values in the process. It then fires the PropertyChanged event to notify the binding subsystem
that the value of Genders property has changed. Like all the previous examples that rely on binding,
UserIntroPage implements INotifyPropertyChanged, the event this is acquired from.

Two event handler methods, OnGenderSelected and OnDOBSelected, are used to pass the gender and
date selection into Profile. OnImageSelected does the same with ImageLocation. It then copies the file
over to the app’s LocalFolder. You use the LocalFolder here instead of RoamingFolder because the quota
for roaming folder is so low that it would never actually roam.

The final method, OnContinue, is fired when the Continue button is clicked. All this method does is
ensure that none of the properties in Profile have a+ null or empty string value. If all values are valid, the
Profile is saved to the global state and the global state is then saved. Otherwise, the user is prompted.

You will also be using your ImageViewerControl for viewing a user’s profile image. On the landing page,
let’s add the control to the XAML. Listing 7-17 illustrates.

Listing 7-17. Declaring ImageViewerControl Event Handlers

<lib:ImageViewerControl HorizontalAlignment="Left"
VerticalAlignment="Top"
Margin="10"
Height="200"
Width="200"
Loaded="OnImageViewerLoaded"
ImageSelected="OnImageSelected" />

This version of the image viewer will need to both render the image and provide a means to change the
value of the image. In the code-behind of LandingPage, implement the methods from Listing 7-18 to fulfill
this requirement.

Listing 7-18. Implementing Event Handlers

async private void OnImageViewerLoaded(object sender, RoutedEventArgs e)
{

if (!string.IsNullOrWhiteSpace(App.State.UserProfile?.ImageLocation))
{

var image_viewer = sender as ImageViewerControl;
await image_viewer

.LoadImageAsync(Windows.Storage.ApplicationData.Current.LocalFolder,
App.State.UserProfile?.ImageLocation);

}
}

Chapter 7 ■ Working With Media

277

async private void OnImageSelected(ImageViewerControl sender)
{

await sender.ImageFile.CopyAsync(Windows.Storage.ApplicationData.Current.LocalFolder);
App.State.UserProfile.ImageLocation = sender.ImageFile.Name;
await App.State.SaveAsync();

}

ImageBrush

In the previous section, you created a user control, ImageViewerControl, which was based on an underlying
Image control. An Image control in UWP is used to display images. Although this works well in most cases,
there are scenarios where utilizing an image might not be desired. One such case is in scenarios where an
image needs to be rendered in a non-rectangular way. Typically, an image is basically displayed within the
bounds of a rectangular shape, so if you wanted to place an image within a circle, using the Image control
would obviously not be ideal. In such cases, use the ImageBrush feature to satisfy your requirement.

An ImageBrush is a type of TileBrush that defines its content as an image, which is specified by
its ImageSource property. You can control how the image is stretched, aligned, and tiled, enabling you
to produce patterns and other effects. An ImageBrush can paint shapes, controls, text, and more. If you
define an ImageBrush using code, use the default constructor, and then set ImageBrush.ImageSource. This
requires a BitmapImage (not a URI) in code. If your source is a stream, use the SetSourceAsync method
to initialize the value. If your source is a URI, which includes content in your app that uses the ms-appx or
ms-resource schemes, use the BitmapImage constructor that takes a URI. You might also consider handling
the ImageOpened event if there are any timing issues with retrieving or decoding the image source where you
might need alternate content to display until the image source is available.

The Stretch property is important for how the image is applied when used as a brush. Some images
look good when stretched as applied to a particular Brush property with the Fill behavior, whereas other
images do not stretch or scale well and might require a value of None or Uniform for Stretch. Also, some
images are designed to tile whereas some are not. Experiment with different values for Stretch to see which
behavior looks best when applied to the UI.

Open up Landing.xaml and add the XAML from Listing 7-19 right underneath your ImageViewControl
definition.

Listing 7-19. Ellipse with ImageBrush

<Ellipse Width="722"
Height="604"
VerticalAlignment="Bottom"
Margin="0,0,10,10">

 <Ellipse.Fill>
<ImageBrush
 Stretch="Fill" ImageSource="https://peach.blender.org/wp-content/uploads/
bbb-splash.png" />

 </Ellipse.Fill>
</Ellipse>

In Listing 7-19, you define an ellipse and, rather than give it a fill (background color) that is based on a
solid color, you use an ImageBrush to fill the shape. The view in Visual Studio 2015 design should look like
Figure 7-9.

https://peach.blender.org/wp-content/uploads/bbb-splash.png
https://peach.blender.org/wp-content/uploads/bbb-splash.png

Chapter 7 ■ Working With Media

278

An ImageBrush can also be set programmatically. As with the Image control, it requires the use of an
ImageSource (in this case a BitmapImage object). Listing 7-20 illustrates, so add it below your previous ellipse
declaration.

Listing 7-20. Ellipse

<Ellipse HorizontalAlignment="Left"
Width="489"
Height="429"
VerticalAlignment="Bottom"
Margin="10,0,0,10"
Loaded="LoadImageForEllipse">

</Ellipse>

The event handler for LoadImageForEllipse is shown in Listing 7-21.

Listing 7-21. Loading ImageBrush Programmatically

private void LoadImageForEllipse(object sender, RoutedEventArgs e)
{

Ellipse ellipse = sender as Ellipse;
BitmapImage img = new BitmapImage();
img.UriSource = new Uri("https://peach.blender.org/wp-content/uploads/bbb-splash.png");
ImageBrush brush = new ImageBrush();
brush.ImageSource = img;
ellipse.Fill = brush;

}

Figure 7-9. ImageBrush in action

https://peach.blender.org/wp-content/uploads/bbb-splash.png

Chapter 7 ■ Working With Media

279

When the app is run, you should see something that looks like Figure 7-10. (Obviously your profile
picture should be different.)

Figure 7-10. Loading ImageBrush programmatically

Let’s apply this newfound ability to your Big Mountain X app. You will create a new, reusable control in
your general library that you will then utilize on your landing page. Add a new UserControl to the General.
UWP.Library project called ImageBannerControl. Once created, build the project, and then right-click the
newly created file, ImageBannerControl.xaml, and selected “Design in Blend” from the context menu that
appears. For many of the samples you will be working on, Visual Studio will be more than enough, but in this
instance you will be creating something called a path, which is a shape type similar to ellipse and rectangle
that defines a general shape to be drawn. You can use XAML to specify the data for a path you want drawn
or you can explicitly draw the path, using a tool like Blend, and have the data for your drawing subsequently
filled in for you. Figure 7-11 points out the menu item you will need to select in order to fire up Blend. As
stated earlier, be sure to build the project first before attempting this connection. In most cases, Visual
Studio 2015 and Blend play nicely together, but there are instances where they are not in sync.

Chapter 7 ■ Working With Media

280

Use the pen tool to draw a shape similar to the image in Figure 7-13. If you don’t want to draw the image
yourself, you can simply copy the code from Listing 7-22.

Figure 7-12. Blend’s Pen tool

Figure 7-11. Designing in Blend

In Blend, select the Pen tool, as indicated in Figure 7-12.

Chapter 7 ■ Working With Media

281

Listing 7-22. Path Data for Image Banner

<Path Data="M-19.1464,-17.9973 L420.5,-18.5 L420.5,248.5 L379.998,248.597 L359.834,231.537
L339.838,248.694 L-21.1464,248.503 z"

Margin="-21.646,-19,-21,19.782"
Stretch="Fill"
Stroke="Black"
UseLayoutRounding="False"
d:LayoutOverrides="LeftPosition, RightPosition, TopPosition, BottomPosition" />

Specifying an image brush as the background for this path is as simple as applying the ImageBrush to
the Fill property of the path. Listing 7-23 illustrates.

Listing 7-23. Applying ImageBrush to Path

<Path Data="M-19.1464,-17.9973 L420.5,-18.5 L420.5,248.5 L379.998,248.597 L359.834,231.537
L339.838,248.694 L-21.1464,248.503 z"

Margin="-21.646,-19,-21,19.782"
Stretch="Fill"
Stroke="Black"
UseLayoutRounding="False"
d:LayoutOverrides="LeftPosition, RightPosition, TopPosition, BottomPosition">

 <Path.Fill>
<ImageBrush x:Name="img_brush"

Stretch="UniformToFill" />
 </Path.Fill>
</Path>

Now add a new public method to the code-behind for this control. Listing 7-24 illustrates.

Figure 7-13. Pen-defined Path object

Chapter 7 ■ Working With Media

282

Listing 7-24. Generic SetImage Method

public void SetImage(string url)
{

var image = new BitmapImage();
image.UriSource = new Uri(url);
img_brush.ImageSource = image;

}

Listing 7-24 simply creates a new bitmap image and sets its source to whatever is passed in by the caller
of this method.

To complete the process, you now need to modify your landing page to use this control. Remember that
the images you use here are sample images and not necessarily in the spirit of the app you are working on.

Add the new control just above the definition for your ImageViewerControl. Doing so ensures that the
profile picture of the user is displayed above this banner. Listing 7-25 shows the code to be added.

Listing 7-25. ImageBannerControl

<lib:ImageBannerControl x:Name="img_banner"
Margin="0,0,0,305" />

Now remove the previous ellipse controls you added to show how ImageBrush works. You must now
modify the code behind for LandingPage as shown in Listing 7-26.

Listing 7-26. Implementing LandingPage Banner

public sealed partial class LandingPage : Page
{

DispatcherTimer _timer;
List<string> _images = new List<string>
{

"https://peach.blender.org/wp-content/uploads/bbb-splash.png",
"https://peach.blender.org/wp-content/uploads/rodents.png",
"https://peach.blender.org/wp-content/uploads/evil-frank.png",
"https://peach.blender.org/wp-content/uploads/bunny-bow.png",
"https://peach.blender.org/wp-content/uploads/rinkysplash.jpg",
"https://peach.blender.org/wp-content/uploads/its-a-trap.png"

};
int _image_index = 0;
public LandingPage()
{

this.InitializeComponent();
this.Loaded += LandingPage_Loaded;
_timer = new DispatcherTimer();
_timer.Interval = TimeSpan.FromSeconds(5);
_timer.Tick += _timer_Tick;

}

private void _timer_Tick(object sender, object e)
{

img_banner.SetImage(_images[_image_index]);
_image_index++;

https://peach.blender.org/wp-content/uploads/bbb-splash.png
https://peach.blender.org/wp-content/uploads/rodents.png
https://peach.blender.org/wp-content/uploads/evil-frank.png
https://peach.blender.org/wp-content/uploads/bunny-bow.png
https://peach.blender.org/wp-content/uploads/rinkysplash.jpg
https://peach.blender.org/wp-content/uploads/its-a-trap.png

Chapter 7 ■ Working With Media

283

if (_image_index >= _images.Count)
_image_index = 0;

}

private void LandingPage_Loaded(object sender, RoutedEventArgs e)
{

_timer.Start();
img_banner.SetImage(_images[_image_index]);
_image_index++;

}
...

}

In Listing 7-26, you start by defining a set of images you want to display with the banner. In this
particular case, you want to make your banner scroll through images every 5 seconds, so you use a
DispatcherTimer set to fire every 5 seconds to achieve this. You also need a numeric value to represent the
index of the image (in the list of images) you are presently showing in your banner. When the page loads, you
start the timer and display the first image in the list (the image at index 0), and then you increment the value
of _image_index. Every 5 seconds you display the image at the new index and then increment the value once
again. If the index value is ever larger than the number of items in the list of images, you cycle back to the
beginning by setting the index back to 0 again. Figure 7-14 shows how the app looks when run.

Figure 7-14. Path with ImageBrush in action

Chapter 7 ■ Working With Media

284

Capturing Images

In this section, you will use the image capturing APIs to complete the functionality of ImageViewerControl.
If you remember, you used a flyout to represent the possible actions that can be taken on a dynamic image
when the user clicks in one. In the last section, you implemented browsing for an image on the user’s file
system. In this section, we will show how to do the same thing via the camera capture mechanisms the UWP
provides. Before you get started, be sure to add the appropriate permissions to your project for capture to
work. In this case, and for video capture, you need the webcam and microphone capabilities enabled.

There are presently two main ways to capture images from one of the cameras attached to a user’s
device: using the CameraCaptureUI or using the MediaCapture class. CameraCaptureUI, the simpler of the two,
provides a full window UI experience for capturing video and images. It provides controls for setting a time
delay on photo captures, trimming video, and for adjusting the camera’s settings such as video resolution,
the audio device, brightness, and contrast. You have already seen CameraCaptureUI at work. You previously
used it in the Control Corral sample from Chapter 2 to do the same sort of thing as you are doing with it now:
capturing an image to be used as part of a user’s profile. To launch the UI, call CaptureFileAsync, passing in a
CameraCaptureUIMode value to indicate whether the user will be able to capture a picture, a video, or either a
picture or video. This method returns a StorageFile object that represents the content captured. Listing 7-27
shows integrated camera capture into your ImageViewerControl.

Listing 7-27. CameraCaptureUI in Action

CameraCaptureUI _capture_ui;
...

public ImageViewerControl()
{

this.InitializeComponent();
_capture_ui = new CameraCaptureUI();

}

...

async private void TakePictureClicked(object sender, RoutedEventArgs e)
{

_capture_ui.PhotoSettings.AllowCropping = true;
 _capture_ui.PhotoSettings.MaxResolution = CameraCaptureUIMaxPhotoResolution.
HighestAvailable;
var captured_image = await _capture_ui.CaptureFileAsync(CameraCaptureUIMode.Photo);
if (captured_image != null)
{

await InternalLoadImageAsync(captured_image);
ImageSelected?.Invoke(this);

}
}

The other method of capturing images, the MediaCapture class, is also used to capture audio, video,
and images from the device’s camera, but provides more options to configure the device hardware. Unlike
CameraCaptureUI, which provides a built-in user interface for the actual capturing of the content (complete
with a preview surface to see what is being captured), MediaCapture works with the stream and devices
alone. Consequently, any user interface required to convey to the user that a media capture is occurring
must be created by you. To that end, an accompanying CaptureElement control is often used in conjunction
with the media capture API. CaptureElement renders the UI portion of the stream being captured through
the MediaCapture class. It is used to render the stream from the associated device.

http://dx.doi.org/10.1007/978-1-4842-1449-7_2

Chapter 7 ■ Working With Media

285

To get started, you must call the InitializeAsync method, which initializes the capture device.
InitializeAsync will launch a consent prompt to get the user’s permission for the app to access the
microphone or camera. In C# or C++ apps, the first use of the MediaCapture object to call InitializeAsync
should be on something called an STA thread; it just so happens that the main UI of your app uses this
thread. The recommendation is to call from there.

MediaCapture contains many options. For instance, it allows you to take single pictures or take pictures
in burst mode. To do this, use the method PrepareLowLagPhotoSequenceCaptureAsync, which takes a rapid
sequence of photos.

The VideoDeviceController property can be used to interact with the capture device when finer
grained control is required. (You can use TorchControl and FlashControl properties to set the LED and
flash on the device, for instance). The number of properties and features of this class are well beyond the
scope of this book, so play around with them to see what they do. As you might imagine, the hardware
associated with a particular feature might be available on one device and not another. Because of this, each
control property provides a Supported property to determine if the device hardware supports it, so be sure to
test against that property before using the feature.

To look at MediaCapture at work, you will modify the code for ImageViewerControl a bit. Listing 7-28
shows the changes you need to make to the layout, with the new additions in bold.

Listing 7-28. Using CaptureElement

<Grid Background="Gray"
BorderBrush="Black"
BorderThickness="1"
PointerPressed="PointerPressedHandler">

 <Grid >
<CaptureElement x:Name="capture_element" />
<Button HorizontalAlignment="Right"

VerticalAlignment="Bottom"
Margin="10"
Background="Gray"
Content="Take Picture"
Click="OnTakeMediaCapturePicture" />

 </Grid>

 <Image x:Name="img_control"
Stretch="Uniform"
ImageOpened="OnImageOpened"
HorizontalAlignment="Stretch"
VerticalAlignment="Stretch">

<FlyoutBase.AttachedFlyout>
<MenuFlyout Placement="Bottom">

<MenuFlyoutItem Text="Browse ..."
Click="BrowseImageClicked" />

<MenuFlyoutItem Text="Take Picture"
Click="TakePictureClicked" />

</MenuFlyout>
</FlyoutBase.AttachedFlyout>

 </Image>

Chapter 7 ■ Working With Media

286

 <SymbolIcon x:Name="symbol_camera"
Symbol="Camera"
HorizontalAlignment="Center"
VerticalAlignment="Center" />

</Grid>

Because you are no longer using the default user interface provided by CameraCaptureUI, you need
to build one out that contains both a viewfinder and a button for actually capturing your image. The grid
specified here does just that. The idea here is that when the Take Picture menu item is selected, you hide the
image currently being shown so that this user interface now appears. In OnTakeMediaCapturePicture, you
will do all the MediaCapture stuff and then once again show the image. Listing 7-29 illustrates.

Listing 7-29. Using MediaCapture and CaptureElement

public sealed partial class ImageViewerControl : UserControl
{

MediaCapture _capture;
...

public ImageViewerControl()
{

this.InitializeComponent();
_capture = new MediaCapture();
this.Loaded += ImageViewerControl_Loaded;

}

async private void ImageViewerControl_Loaded(object sender, RoutedEventArgs e)
{

//initialize capture
await _capture.InitializeAsync();

}

...

async private void TakePictureClicked(object sender, RoutedEventArgs e)
{

symbol_camera.Visibility = Visibility.Visible;
img_control.Visibility = Visibility.Collapsed;

//start previewing
capture_element.Source = _capture;
await _capture.StartPreviewAsync();

}

...

async private void OnTakeMediaCapturePicture(object sender, RoutedEventArgs e)
{

//set properties of image
ImageEncodingProperties image_props = new ImageEncodingProperties();
image_props.Height = (uint)this.ActualHeight;

Chapter 7 ■ Working With Media

287

image_props.Width = (uint)this.ActualWidth;
image_props.Subtype = "PNG";

//specify where image will be stored
var captured_image = await ApplicationData.Current.TemporaryFolder

.CreateFileAsync("temp.png",
CreationCollisionOption.GenerateUniqueName);

//capture to file
await _capture.CapturePhotoToStorageFileAsync(image_props, captured_image);
img_control.Visibility = Visibility.Visible;
await _capture.StopPreviewAsync();

await InternalLoadImageAsync(captured_image);
ImageSelected?.Invoke(this);

}
}

The two important parts of Listing 7-29 are the TakePictureClicked and OnTakeMediaCapturePicture
event handlers. In the first, you simply instantiate preview of the media capture using the CaptureElement
control as the target where the stream should display. You can set what source you want to display in a
CaptureElement using its Source property. In OnTakeMediaCapturePicture, you apply some specifications
for the size and width of the picture you want taken using the ImageEncodingProperties class. You then
create a location where you want the image stored (in this case you use the temp folder as the spot since this
image will only be there for a very short time). Finally, you capture the image to the temp file and stop the
CaptureElement’s previewing. Since you now have a StorageFile that represents an image, you can use
the same mechanisms as before to display the image on screen and notify all subscribers to the
ImageSelected event.

Audio
Audio playback for UWP apps can be achieved in a number of ways. In this book, you will focus on two
approaches: audio playback using the MediaElement control, and low-latency audio playback using the
AudioGraph class. Later in the chapter, we will also discuss how another powerful control exposed to
developers by the UWP, the WebView control, can be used to play audio located either on the Web or in your
app package/isolated storage.

MediaElement

The easiest way to play audio in your UWP app is using the MediaElement control. You can use this control
to play audio locally using any one of the ms- uris or point it to a location on the Web. To play media from
the Web, set the Source property to the URI where the audio is stored. To play from your local repository,
you can either set the URI to that local file (isolated storage or your app package) or use the programmatic
approach of calling the SetSource method. Your app will play a sound in the background when the
application starts, in this case the iconic windows “tada” sound.

Let’s set up your project to do so. Start by creating a folder on the root of the project called Media
and within that folder creating another folder called Audio. Within the Audio folder, right-click and select
Add ➤ Existing Item, and then navigate to the location of tada.wav (on our machine, at C:\Windows\Media).
Your project should now look like Figure 7-15.

Chapter 7 ■ Working With Media

288

In the LandingPage XAML layout, add the declaration from Listing 7-30 just above your
ImageBannerControl declaration.

Listing 7-30. Audio-Only Media Element

<MediaElement x:Name="media" Source="ms-appx:///media/audio/tada.wav" AutoPlay="True" />

Run the app now. When it starts, the “tada” sound should play. Listing 7-31 shows the equivalent of this
done programmatically in the Loaded event of LandingPage.

Listing 7-31. Loading Media from App Package

var file = await Windows.ApplicationModel.Package.Current.InstalledLocation
.GetFileAsync("media\\audio\\tada.wav");

var raf_stream = await file.OpenReadAsync();
media.SetSource(raf_stream, "");
media.Play();

AudioGraph

MediaElement sits atop the stack of technologies that make up the Windows 10 audio features exposed to
developers. This technology starts from the hardware, through the various drivers that interact with that
hardware, through the audio engine that manipulates those drivers, and into the actual application-level APIs
that utilize the audio engine. If you previously worked with Silverlight for Windows Phone, you might already
be familiar with one of those APIs, the SoundEffect class. The SoundEffect class provided an easy way to play
short audio clips by interacting directly with WASAPI, the low-level programming platform used to interact
with the Windows Audio Engine. WASAPI, which stands for Windows Audio Session API, enables client
applications to manage the flow of audio data between the application and an audio endpoint device. Within

Figure 7-15. Project structure

Chapter 7 ■ Working With Media

289

an app, WASAPI (and the MIDI control mechanisms) sit at the lowest level. Above that is the Windows Media
Foundation, XAudio2 (a DirectX based audio technology), and finally a new API called the AudioGraph API.
The following list described the two other low level technologies that interact with the WASAPI:

• XAudio2: Provides a signal processing and mixing foundation for games that is
similar to its predecessors, DirectSound and XAudio.

• Windows Media Foundation: Underlying next-generation multimedia platform for
Windows featuring enhanced robustness, quality, and interoperability.

Figure 7-16 illustrates the Windows 10 audio stack.

Figure 7-16. Windows 10 audio stack

To help process audio content in the appropriate manner, Windows 10 defines 10 categories for audio
stream classification. You’ve already seen one of them in the previous section: using the MediaElement
control you are working in what is tantamount to the Game Media category. It is designed to be played from
start to finish and not to overlay itself of any other sound in the app.

Let’s change the code in Listing 7-30 so that it tries to work more like a game effect that basic media.
To do so, include a new button that you can click to start playing the “tada” sound. Listing 7-32 illustrates.
Add the code in bold right before the ImageViewControl element.

Chapter 7 ■ Working With Media

290

Listing 7-32. The Play Sound of the Day Button

...
<MediaElement ... />
...
<Button Content="Play Sound of the Day"

Margin="10,0,0,10"
Height="63"
Width="203"
Click="OnPlayAudioClicked"
VerticalAlignment="Bottom" />

<lib:ImageViewerControl HorizontalAlignment="Left"... />
...

The code behind for the OnPlayAudioClicked follows in Listing 7-33.

Listing 7-33. Implementing OnPlayAudioClicked Event Handler

async private void OnPlayAudioClicked(object sender, RoutedEventArgs e)
{

var file = await Windows.ApplicationModel.Package.Current
.InstalledLocation.GetFileAsync("media\\audio\\tada.wav");

var raf_stream = await file.OpenReadAsync();
media.SetSource(raf_stream, "");
media.Play();

}

In Listings 7-32 and 7-33, you add a new button called “Play Sound of the Day” and move all the
audio-playing code from the Loaded event into the Click event handler for this button. When you run
this app and start pressing the “Play Sound of the Day” button, the limitations of the media element are
immediately clear. First, it has no fire-and-forget functionality. Each time the button is clicked, the audio
stream is restarted. Secondly, there is a non-deterministic, unacceptable, audible clicking/popping sound
that follows the ending of one tada sound and the beginning when the sound is not allowed to play till
completion. When working with general purpose apps such as the Big Mountain X app, this might not be
an issue, but if you were to develop a game, you would quickly find that the MediaElement control is an
unacceptable approach playing game audio.

Let’s change Listing 7-33 to use the AudioGraph class instead. The AudioGraph class encapsulates all
the functionality of the Windows 10 Audio Graph feature set which, if you remember from Figure 7-16, lies
beneath the layer where MediaElement is exposed. Listing 7-34 illustrates.

Listing 7-34. Modifying OnPlayAudioClicked to Use AudioGraph

async private void OnPlayAudioClicked(object sender, RoutedEventArgs e)
{

var file = await Windows.ApplicationModel.Package.Current
.InstalledLocation.GetFileAsync("media\\audio\\tada.wav");

AudioGraphSettings settings = new AudioGraphSettings(AudioRenderCategory.Media);
var result = await AudioGraph.CreateAsync(settings);

Chapter 7 ■ Working With Media

291

if (result.Status == AudioGraphCreationStatus.Success)
{

var graph = result.Graph;
var output = await graph.CreateDeviceOutputNodeAsync();
var input = await graph.CreateFileInputNodeAsync(file);
input.FileInputNode.AddOutgoingConnection(output.DeviceOutputNode);
graph.Start();

}
else

await new MessageDialog("Not created").ShowAsync();
}

Run this app; now the audio is played each time the button is clicked regardless of whether it is
already playing. The audio will in fact overlay any previously playing audio from the app. As easy to use as
MediaElement is, it cannot fully satisfy the requirements of apps like games and audio mixers. AudioGraph
introduces a mechanism to achieve this low latency (~10ms) goal, fire-and-forget audio playback. Table 7-1
shows the various audio stream categories exposed by Windows 10.

Table 7-1. Audio Stream Categories

Category Description

Movie Replaces ForegroundOnlyMedia. Movies, video with dialog

Media Replaces BackgroundCapableMedia. Default category for media playback

Game chat New category. In-game communication between users

Speech New category. Speech input (e.g., personal assistant) and output (e.g., navigation apps)

Communications VOIP, real-time chat

Alerts Alarm, ringtone, notifications

Sound effects Beeps, dings, etc.

Game media In-game music

Game effects Balls bouncing, car engine sounds, bullets, etc.

Other Uncategorized streams

The audio graph is made up of input nodes (sources) and output nodes (sinks), and sub-mix nodes. An
input or output node can represent either a pulse code modulation (PCM) buffer or an audio device, such as
a capture device. There are no limits on the number of sources and sinks for an audio graph. The graph uses
an audio connection that allows the same source node to provide output to different downstream nodes at
different volumes. The entire audio graph must operate at the same sample rate. Sources can have different
sample rates, but are resampled immediately. The most basic audio graph scenario consists of one input
node, one output node, and playback. Effects can be added to any node in the graph. The graph processes
them in the order in which they are added.

Chapter 7 ■ Working With Media

292

Audio Capture

Suppose you want to add a feature to the Big Mountain X app that allows users to send audio feedback to
actors involved in each skit. How would you go about doing this? You’ve already seen how images can be
captured using either the CameraCaptureUI or the MediaCapture class, so you should be somewhat familiar
now with media capture in general. In addition to providing a mechanism for previewing and capturing
images, the MediaCapture class also provides a way to capture audio to a file. To illustrate the audio
capturing features of Windows 10, let’s add a new toggle button called Audio Message that when toggled on
will allow the user to record audio and when toggled off will store that audio in a new app data folder called
AudioFeedback. Listing 7-35 shows the code. You make some modifications to the class (highlighted in bold)
for readability and to encapsulate the audio playback functionality so it can be used to play any storage file
passed into it.

Listing 7-35. Implementing Audio Feedback Using MediaCapture

MediaCapture _capture = null;
AudioGraph _graph_record;
StorageFile _target_file = null;

...

async private void OnPlayAudioClicked(object sender, RoutedEventArgs e)
{

var file = await Windows.ApplicationModel.Package.Current
.InstalledLocation.GetFileAsync("media\\audio\\tada.wav");

await PlayAudio(file);
}

private static async Task PlayAudio(StorageFile file)
{

AudioGraphSettings settings = new AudioGraphSettings(AudioRenderCategory.Media);
var result = await AudioGraph.CreateAsync(settings);

if (result.Status == AudioGraphCreationStatus.Success)
{

var graph = result.Graph;
var output = await graph.CreateDeviceOutputNodeAsync();
var input = await graph.CreateFileInputNodeAsync(file);
input.FileInputNode.AddOutgoingConnection(output.DeviceOutputNode);
graph.Start();

}
else

await new MessageDialog("Not created").ShowAsync();
}

async private Task RecordAsync(ToggleButton btn_record_audio)
{
 MediaCaptureInitializationSettings settings = new MediaCaptureInitializationSettings();
 settings.StreamingCaptureMode = StreamingCaptureMode.Audio;

Chapter 7 ■ Working With Media

293

 _capture = new MediaCapture();
 await _capture.InitializeAsync(settings);
 var profile = MediaEncodingProfile.CreateMp3(AudioEncodingQuality.High);
 var local_folder = ApplicationData.Current.LocalFolder;
 var feedback_folder = await local_folder.CreateFolderAsync("AudioFeedback"

 ,CreationCollisionOption.
OpenIfExists);

 _target_file = await feedback_folder.CreateFileAsync("audio message.mp3",
CreationCollisionOption.GenerateUniqueName);

 await _capture.StartRecordToStorageFileAsync(profile, _target_file);

}

async private Task StopRecordingAsync()
{

await _capture.StopRecordAsync();
await PlayAudio(_target_file);

}

async private void ToggleRecord(object sender, RoutedEventArgs e)
{

var btn_record_audio = sender as ToggleButton;
if (btn_record_audio.IsChecked == false)
{

await StopRecordingAsync();
}
else
{

await RecordAsync(btn_record_audio);
}

}

In Listing 7-35, you start by initializing a new AudioGraphSettings object to Media. The value passed
in here represents the class of audio being created for the AudioGraph. You went through the various media
types in Table 7-1. Next, you create a new AudioGraph using the settings you specified. Then you test to
see if this works and, if so, use it to create a DeviceOutputNode. As discussed earlier, you can think of an
AudioGraph as a network of nodes working together to deliver the final audio that the user hears. Input
nodes accept input from some source; this can be a file or an audio capture device. Output nodes send
the audio stream that has passed through the graph out to some target. Again, this can be a device (like a
speaker, midi, etc.), or it can be a file. In between this, submixing and effects may occur. In the case of this
sample, your input node is the file you are planning to play and your output node is the audio device that
will be playing the audio in the file. Once you have the graph fully connected, you use the Start method to
execute it. This should play the file.

Next, modify the layout for your Landing page to add the new ToggleButton. Once again, the user
interface has been cleaned up somewhat to allow for future modifications. Listing 7-36 shows the
new layout.

Chapter 7 ■ Working With Media

294

Listing 7-36. UI Changes for Audio Capture

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
...
<StackPanel Margin="10,0,0,10"

VerticalAlignment="Bottom"
HorizontalAlignment="Left"
Orientation="Horizontal">

 <Button Content="Play Sound of the Day"
Height="63"
Width="203"
Click="OnPlayAudioClicked"
VerticalAlignment="Bottom"
Margin="5" />

 <ToggleButton Content="Audio Message"
Height="63"
Width="203"
Click="ToggleRecord"
VerticalAlignment="Bottom"
Margin="5" />

</StackPanel>
<lib:ImageViewerControl HorizontalAlignment="Left"

VerticalAlignment="Top"
Margin="10"
Height="100"
Width="100"
Loaded="OnImageViewerLoaded"
ImageSelected="OnImageSelected" />

</Grid>

In Listing 7-36, a new horizontally-oriented StackPanel has been added to the Landing page, and within
it you add both buttons.

Audio can also be captured using the low latency APIs exposed through the AudioGraph class. As stated
in the previous section, an audio graph is made up of input nodes and output nodes. Input nodes can be
any PCM buffer but can also be an audio capture device (like the microphone). In Listing 7-37, you add a
different event hander to the Audio Message function which uses the AudioGraph class to capture audio.

Listing 7-37. Using AudioGraph for Audio Capture

async private void ToggleRecord2(object sender, RoutedEventArgs e)
{

var btn_record_audio = sender as ToggleButton;
if (btn_record_audio.IsChecked == false)
{

_graph_record.Stop();
_graph_record.Dispose();
await PlayAudio(_target_file);

}
else
{

Chapter 7 ■ Working With Media

295

//initialize the audio graph for recording and then start recording
AudioGraphSettings settings = new AudioGraphSettings(AudioRenderCategory.Media);
settings.QuantumSizeSelectionMode = QuantumSizeSelectionMode.LowestLatency;

CreateAudioGraphResult result = await AudioGraph.CreateAsync(settings);
if (result.Status == AudioGraphCreationStatus.Success)
{

_graph_record = result.Graph;

//setup the input
var input_node = (await _graph_record
.CreateDeviceInputNodeAsync(Windows.Media.Capture
.MediaCategory.Other)).DeviceInputNode;

//setup the output (place where audio will be recorded to)
var feedback_folder = await ApplicationData.Current.LocalFolder
.CreateFolderAsync("AudioFeedback",

CreationCollisionOption.OpenIfExists);
 _target_file = await feedback_folder.CreateFileAsync("audio
message.mp3", CreationCollisionOption.GenerateUniqueName);

 var profile = MediaEncodingProfile.CreateMp3(AudioEncodingQuality.High);
var file_output_node = (await _graph_record

.CreateFileOutputNodeAsync(_target_file, profile))
.FileOutputNode;

//direct the input to the output
input_node.AddOutgoingConnection(file_output_node);
_graph_record.Start();

}
else

await new MessageDialog("Could not initialize recorder").ShowAsync();

}
}

In Listing 7-37, you use the AudioGraph to capture audio from the default audio capture device on the
user’s computer. If the previous example and subsequent explanation did not make clear the power and
flexibility of the AudioGraph class, this sample should. All you do here is reverse the direction of audio flow.
In your AudioGraph-based audio playback example, you read from a file and published the data to an output
device. In this example, you read from an audio input device and publish the stream data to a file. To utilize
this code, change the Click event handler for the Audio Message ToggleButton from using ToggleRecord to
using ToggleRecord2.

Chapter 7 ■ Working With Media

296

Video
Video playback for UWP apps works that same as audio playback; it follows the pattern of using the familiar
MediaElement tag. As discussed in the Audio section, in UWP apps, media for playback can come from one
of two places (in general): it can be local to the machine, or it can be streamed/progressively-downloaded
from some remote source on the Web. Local media is placed in the project structure in the same manner as
XAML content (and any other kind of content that needs to be referenced in your application); as such, the
impact to your overall app deployment size is affected. Such content is accessed using the ms-appx notation
but can also be access programmatically using the techniques outlined in Chapter 6.

You will be placing the video content you plan to play within your Big Mountain X project structure
initially and you will also see how easy it is to stream that content using the MediaElement. You can directly
download a copy of the recording from http://download.blender.org/peach/bigbuckbunny_movies/
BigBuckBunny_320x180.mp4. Once downloaded, create a new folder in the Media subfolder of your project
by right-clicking the Media folder and selecting Add ➤ New Folder. Call the new folder Video. Next, right-click
the newly created folder and select Add ➤ Existing Item and add the downloaded media content to your project.

Now change your Landing page to show the MediaElement completely (in the sample you will also
shift the position and size of the media element you use). Previously, it functioned as a control for enabling
background audio; since you can use the AudioGraph to do this, you will repurpose it as a video preview
area for the most recent event that the Big Mountain folks have put on. Change the definition of the
MediaElement to that in Listing 7-38. Then move the MediaElement so that is the last element in the Grid
(it should show up as the lowest element in the XAML for the Grid).

Listing 7-38. Simple MediaElement

<MediaElement x:Name="media"
Visibility="Visible"
Width="500"
Height="400"
Margin="0,109,22,0"
AutoPlay="True"
VerticalAlignment="Top"

Source="media/video/BigBuckBunny_320x180.mp4"
HorizontalAlignment="Right" />

When you run the app, the landing page should now look like Figure 7-17.

http://dx.doi.org/10.1007/978-1-4842-1449-7_6
http://download.blender.org/peach/bigbuckbunny_movies/BigBuckBunny_320x180.mp4
http://download.blender.org/peach/bigbuckbunny_movies/BigBuckBunny_320x180.mp4

Chapter 7 ■ Working With Media

297

Figure 7-17. Landing Page user interface

As in the audio section, playback starts immediately here because the AutoPlay attribute is set to true.
You can delegate playback control to the user by making the playback controls visible as shown in
Listing 7-39.

Listing 7-39. Video Playback Controls

<MediaElement x:Name="media"
...

AreTransportControlsEnabled="True"
 ...
 />

Of course, you can also control playback programmatically using the Play, Pause, and Stop methods.
In addition to AutoPlay and AreTransportControlsEnabled, you can apply various other attributes to

the MediaElement tag. These include but are of course not limited to the following:

• IsMuted: Tells the video control to mute audio.

• PosterSource: Allows you to specify a URL that points to an image that is displayed
while the video isn’t playing. It can be quite useful for depicting the content of the
video before the user decides to play it.

• IsLooping: Tells the video control to restart the video after it has completed.

Chapter 7 ■ Working With Media

298

Using the MediaElement tag, you can also play back media directly from a backend web server.
For this to work, you have to add the Internet Client capabilities to your application manifest as described in
Chapter 1. Internet Client grants a Windows 10 app permission to access the Internet. Without it, you can’t
connect to any cloud-based resource through any API. Fortunately, it is currently added by default by Visual
Studio 2015.

Video Capture

Like audio capture, video capture uses the MediaCapture class to accomplish its task. As you saw earlier in
the Images section, capturing using the MediaCapture class allows you to use a CaptureElement control to
render a preview of the stream being presently captured. You can think of the CaptureElement control like
a view finder on a camera (particularly when used for video capture). Listing 7-40 adds a video feedback
button to the landing page for users who chose to leave video-based comments for the Big Mountain X crew.

Listing 7-40. Preparing UI for Video Capture

<StackPanel ...>
...
<Button Content="Video Message"

Height="63"
Width="203"
Click="ToggleRecordVideo"
VerticalAlignment="Bottom"
Margin="5">

 <FlyoutBase.AttachedFlyout>
<Flyout x:Name="flyout_videomessage"

Placement="Top">
<Grid Width="300"

Height="200"
Background="Yellow">

<Grid.RowDefinitions>
<RowDefinition Height="80*" />
<RowDefinition Height="20*" />

</Grid.RowDefinitions>

<CaptureElement x:Name="capture_element"
Margin="2.5"
HorizontalAlignment="Stretch" />

<Button x:Name="stop_recording"
Height="50"
Content="Stop Recording"
Margin="2.5"
HorizontalAlignment="Stretch"
Grid.Row="1"
Click="OnStopVideoCapture" />

<MediaElement x:Name="media_message"
Grid.Row="0"
Grid.RowSpan="2"
Width="300"
AutoPlay="False"

http://dx.doi.org/10.1007/978-1-4842-1449-7_1

Chapter 7 ■ Working With Media

299

Height="200"
Visibility="Visible"
MediaOpened="OnVideoMessageRecordingReady"
MediaEnded="OnVideoMessagePlaybackCompleted" />

</Grid>
</Flyout>

 </FlyoutBase.AttachedFlyout>
</Button>
</StackPanel>

The button from Listing 7-40 defines a flyout that contains the user interface for showing the recording
preview as well as the actual recording that was made. When it is clicked, the flyout is displayed. When the
Stop recording button is clicked, the video recording is stopped and played back to the user. At some point
when the recording is completed, the flyout is forcibly closed. Listing 7-41 below shows the code-behind that
enables this functionality. Add it to Landing to enable video messages be captured and stored to the user’s
app data folder.

Listing 7-41. Video Capture Using MediaCapture Class

async private void ToggleRecordVideo(object sender, RoutedEventArgs e)
{

//initialize capture
MediaCaptureInitializationSettings settings = new MediaCaptureInitializationSettings();
settings.StreamingCaptureMode = StreamingCaptureMode.AudioAndVideo;
_capture = new MediaCapture();
await _capture.InitializeAsync(settings);

//start preview
capture_element.Source = _capture;
await _capture.StartPreviewAsync();

//start capturing media
var profile = MediaEncodingProfile.CreateMp4(VideoEncodingQuality.Vga);
var feedback_folder = await Windows.Storage.ApplicationData
 .Current.LocalFolder.CreateFolderAsync("VideoFeedback", CreationCollisionOption.
OpenIfExists);

_target_file = await feedback_folder.CreateFileAsync("video message.mp4",
 CreationCollisionOption.GenerateUniqueName);

await _capture.StartRecordToStorageFileAsync(profile, _target_file);

//show the flyout menu
media_message.Visibility = Visibility.Collapsed;
media.Stop(); //stop playback since you are recording
FlyoutBase.ShowAttachedFlyout(sender as FrameworkElement);

}

Chapter 7 ■ Working With Media

300

async private void OnStopVideoCapture(object sender, RoutedEventArgs e)
{

await _capture.StopRecordAsync();
await _capture.StopPreviewAsync();

media_message.Visibility = Visibility.Visible;
var raf_stream = await _target_file.OpenReadAsync();
media_message.SetSource(raf_stream, "video/mp4");

}

private void OnVideoMessageRecordingReady(object sender, RoutedEventArgs e)
{

media_message.Play();
}

private void OnVideoMessagePlaybackCompleted(object sender, RoutedEventArgs e)
{

flyout_videomessage.Hide();
}

In Listing 7-41, ToggleRecordVideo uses the familiar MediaCapture class to enable the video capture
functionality. The only real difference between the code here and the code used in the audio capture
samples is that the encoding profile is mapped to a video file format (in this case mp4). This choice is also
reflected in the file extension used.

Background Audio
The previous section started delving into the intricacies of MediaElement. You saw how it can be used to
play audio data located on the user’s machine or from a remote server. When these audio files play, however,
they are designed by default to only play in the foreground. In the world of Windows 10, this means once you
switch away from your app (minimize on the desktop), the sound stops. You can try this now with the app
at this point. Start it and the Big Buck Bunny begins to play, minimize it (or navigate away from it on your
Windows 10 mobile device/emulator) and the sound stops. Navigate back to the application, and the audio
starts again. If you paid close attention to the playback time of the media when you navigated away, notice
that it has increased in value from the point at which you navigated away (and also notice that the media is
playing from a later position). This is because the audio has been playing while the app was shifted to the
background. However, because audio configured in this manner can’t be heard when the app hosting it is no
longer visible to the user, you hear nothing when you switch to a different app.

Enabling background playback requires three steps. First, you need to declaratively tell Windows that
the MediaElement is designed for background audio playback. You then need to inform Windows of your
intent to have the application running in the background (for the purpose of playing the audio). Finally, you
need to hook your application up to the background audio playback infrastructure so that a user can use
the Windows media playback controls to control the background audio. Let’s get started. Let’s implement
background media playback for the video playing when the app starts (your “most recent event” video).

In the MediaElement tag, you assign a value to the AudioCategory property. The system uses this
property to identify and manage the performance and integration of audio. When the value is set to
BackgroundCapableMedia, it earmarks audio being played through the MediaElement as available to the
background audio player.

Chapter 7 ■ Working With Media

301

The next step is to add a new declaration in the Declarations tab of the project’s package.appxmanifest
configuration file. A background task must be implemented within a Windows Runtime Component, a kind
of class library that can be interacted with from within any of the supported UWP languages. Right-click
the Solution Explorer and add a new project to the solution entitled BMX.BackgroundTasks. Once created,
remove the default class that is added (class1.cs) and add a new class called AudioPlayback. (Note that we
will delve into background tasks in more detail in Chapter 9. For now you will mainly be working with the
background audio piece of the much larger subject.) Add the class definition for the AudioPlayback class
shown in Listing 7-42.

Listing 7-42. Implementing a Simple Background Audio Task

sealed public class AudioPlayback : IBackgroundTask
{

private BackgroundTaskDeferral _deferral;
public void Run(IBackgroundTaskInstance taskInstance)
{

_deferral = taskInstance.GetDeferral();
taskInstance.Task.Completed += TaskCompleted;

}

void TaskCompleted(BackgroundTaskRegistration sender,
BackgroundTaskCompletedEventArgs args)

{
_deferral.Complete();

}
}

The important thing to note here is the use of the BackgroundTaskDefferal object. A deferral is used
to prevent the closing of an activity; in this case once you have the deferral, the background task will be kept
alive until you call complete. Build the solution and add the newly created library as a reference to your
main BigMountainX app using the Add Reference feature.

You now need to register the class you created as being the background audio manager for your app.
You add a new Background Task declaration that supports audio tasks and specify your newly created class
as the entry point for the task. Open the package manifest and add a new background task declaration as
Figure 7-18 illustrates.

http://dx.doi.org/10.1007/978-1-4842-1449-7_9

Chapter 7 ■ Working With Media

302

At this point you are basically ready to go, but when you run your app once again and minimize it,
you should note that the audio for the movie is also lost. The reason for this is simple: although you have
configured your background task, you have not started it.

The easiest way to start a background task such as this is to simply send a message to it. Doing so
obviously causes it to be activated by the system, and since you have a deferral that keeps it from being
closed until you are done with it, causes it to live until the foreground piece of your app exits. Add the code in
Listing 7-43 to the Loaded event of LandingPage.

Listing 7-43. Starting Your Background Audio Task

await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
{

BackgroundMediaPlayer.SendMessageToBackground(new ValueSet());
});

Listing 7-43 uses the BackgroundMediaPlayer class to send a message to the background audio task
associated with your app. A background audio task must be configured for this code to function properly.
The runtime expects that a class that inherits from IBackgroundTask has been defined and that your
manifest declares that class as being a background audio task. Run the app now and you will note that the
audio for your Big Buck Bunny video continues to play even when minimized. In Chapter 9, when you get
into more details on background tasks, you will revisit the background media player and learn how to create
background playlists that an end user can skip through and even control using the system-wide media
control buttons.

Figure 7-18. Background audio declaration

http://dx.doi.org/10.1007/978-1-4842-1449-7_9

Chapter 7 ■ Working With Media

303

Figure 7-19. WebView rendering YouTube video

Using WebView to Display Render Media
So far, you have seen the many ways that media can be utilized in a UWP app. You walked through displaying
and capturing images, audio, and video using not only the high-level controls and helper classes but also
low-level APIs. As you went through the tutorial, we discussed the many media formats that are available
to Windows 10 developers targeting UWP apps. But what if a media format is not available to you or you
don’t have direct access to the media files? In edge cases where no APIs are exposed to render or utilize
a particular media format, embedding a web browser in your app might be the answer. In the following
example, you will add a WebView to the app which points you to a video hosted on YouTube. YouTube video
streams are notoriously difficult to access directly, but because WebView is essentially a web browser, it is
possible to use it in this case like a media presentation control. Listing 7-44 illustrates.

Listing 7-44. Using WebView to Stream YouTube

...
<WebView x:Name="browser" HorizontalAlignment="Right" VerticalAlignment="Bottom"

Margin="0,0,10,10"
Source="http://www.youtube.com/embed/QKYuTuVqpW0?autoplay=1"
Height="300" Width="400" />

<lib:ImageViewerControl ... />

When run, the app should now look like Figure 7-19.

http://www.youtube.com/embed/QKYuTuVqpW0?autoplay=1

Chapter 7 ■ Working With Media

304

Summary
In this chapter, you learned about the many ways media can be used in your application. The findings in this
chapter include the following:

• The integration of media playback into your app from local sources as well as remote
websites

• Media capture and the many approaches you can take to facilitate it in your
application, and the multitude of things you can do using the CameraCaptureUI

• The more powerful MediaCapture class, which provides functionality to capture
audio and create custom viewfinders for capturing video

• Using the MediaCapture API in scenarios when it’s important to stay in your
application’s user interface (and, of course, in advanced scenarios when you need
lower-level refinement of the capture pipeline)

• Using the AudioGraph API in situations where low level access to audio streams with
submixing is needed

• Using the WebView control as a fallback to access media that is not directly
supported through the API set

• Background audio and how to implement a background audio task in your app so
that when the app is minimized the audio continues to play

305

Chapter 8

Location and Mapping

In this chapter, you will examine the use of the device’s location sensors to retrieve location data and enable
UWP apps that are location aware. Location awareness is a component of an overarching technology set
commonly referred to as presence technology, which is used to deliver information about a given device’s
physical location to apps that support reading this data. A device’s location is usually determined by one of
three methods: via GPS satellite tracking, cellular tower triangulation, or by the device’s MAC address on a
network. The accuracy of the location information depends on the source. The latitude and longitude may
vary within the following ranges:

• GPS: Within approximately 10 meters (~33 feet)

• Wi-Fi: Between approximately 30 meters and 500 meters (between 98 and 1,640 feet)

• Cell towers: Between approximately 300 meters and 3,000 meters (between 984 feet
and 2 miles)

• IP address: Between approximately 1,000 meters and 5,000 meters (between .5 and
3 miles)

The applications for this kind of telemetry information are endless. For instance, location-aware
technology uses include the following:

1. Multi-factor security for ATM sign-in

2. GPS systems in vehicles

3. Auto-tagging of pictures with location data

4. Supply chain management

Mapping extends the power of location awareness by allowing you to place location data onto the map
surface so as to give a visual representation of the location of the device. Additionally, because mapping data
contains actual physical addresses, mapping can be used translate longitude/latitude information into more
meaningful information like the city that encompasses the point and the address closest to the given point.

In this chapter, you will take an in-depth look at using these two technologies, mapping and location
services, together to create engaging experiences for the user. You will extend the functionality currently
present in your Big Mountain X app to now include the power of location awareness and mapping.

Location Awareness
Before a UWP app can access location data through the location-sensitive component on a user’s device,
location services must be enabled explicitly by the user on the device. To do this, open the Settings section
and navigate to Privacy ➤ Location. On the details page, click the Change button under “Location for this

Chapter 8 ■ LoCation and Mapping

306

device” and set the toggle button to On. As is explained on the page, setting this value to On enables each
person who signs onto the device to change their own location settings. If the value is Off, then location is
turned off for everyone who signs in.

Next, set the Location toggle button to On. Finally, check to see if the given app is listed in the section
entitled “Choose apps that can use your location” and set the value for the app to On (if not already set).
Doing this indicates to the system that the app is allowed to use location services.

This would be a laborious process if a user had to follow this process every time a new app that accessed
locations was installed. Fortunately, there is a mechanism that can be used in-app to add an app to the list
and set its location access value to true. We will be discussing the approach to building a location-aware app
in the next section. Figure 8-1 shows the location privacy settings.

Enabling Location Functionality
The approach identified above works in a situation where your app has been downloaded by an end user
and the user wants to configure location awareness for it, but how do you as a developer declare that your
app requires location services to begin with? The answer is to use the package.appxmanifest file.

Open the BigMountainX project that you started in Chapter 7. Once open, double-click
package.appxmanifest in Solution Explorer to open the application manifest file. As with the other
permissions discussed in previous chapters, enabling features requires declaring to the user that your app
uses the corresponding UWP capability. You did this in Chapter 6 with the file permissions and you will be
doing it in this chapter with location.

The UWP exposes one capability for enabling location services in your app, and that capability is
the Location capability. Navigate to the Capabilities tab and check the Location checkbox in the list of
capabilities. Figure 8-2 shows what your BigMountainX app manifest file should now look like with this
capability enabled.

Figure 8-1. Location setting screen

http://dx.doi.org/10.1007/978-1-4842-1449-7_7
http://dx.doi.org/10.1007/978-1-4842-1449-7_6

Chapter 8 ■ LoCation and Mapping

307

Now, create a new folder in the root of the BigMountainX project called Data. Next, download the
project files for this chapter from this book's download site. Once downloaded, copy the file cities.csv
(located in the same Data folder in the sample project) to your local project’s Data folder.

Requesting Access to Location Data
Much of the functionality related to location services (all of the functionality we will discuss in this book)
is encapsulated in the Geolocator class (found in the Windows.Devices.Geolocation namespace). The
first step to using any of the location services APIs is to request access to the user’s location using the
RequestAccessAsync method of Geolocator. For RequestAccessAsync to work, the app from which it is
called must be in the foreground and RequestAccessAsync must be called from the UI thread. This method
prompts the user for permission to access their location once (per app). The result of this method is an entry
into the list of apps that are a part of the Choose apps that can access your location section of the location
privacy settings, as discussed earlier. If the user denies permission location, data cannot be accessed and the
toggle button from this app is set to Off. If the user grants access, the toggle button is set to On (and of course
location data can be accessed). RequestAccessAsync respects the settings defined in this list and uses them
to determine the result of the method call going forward. This means that, after the very first call, you can
freely call this method and it will always return with the present access permission granted by the user for
location data.

To be clear, the process is as follows.

1. RequestAccessAsync is called.

2. The method checks to see if there is an entry in the list.

3. If there is an entry, it returns the result of that entry.

Figure 8-2. Location capability in app manifest

Chapter 8 ■ LoCation and Mapping

308

4. If there is no entry, the user is prompted to choose if they want location
awareness enabled for that app.

5. The result of that user choice is used to create a new entry in the list.

In Listing 8-1, you add the location awareness request to the BigMountainX app as well as a user
interface element to let the user know if the permission to read location data is presently granted.

Listing 8-1. Requesting Access to Location Information

async private void LandingPage_Loaded(object sender, RoutedEventArgs e)
{

_timer.Start();
img_banner.SetImage(_images[_image_index]);
_image_index++;

//initialize the background audio task
this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
{

BackgroundMediaPlayer.SendMessageToBackground(new ValueSet());
});

var access_status = await Geolocator.RequestAccessAsync();
switch (access_status)
{

case GeolocationAccessStatus.Allowed:
break;

case GeolocationAccessStatus.Denied:
break;

case GeolocationAccessStatus.Unspecified:
break;

}
}

In Listing 8-1, you add the location access request to the Loaded event of the page so that it is one of the
first things checked by the app. You set the result to a value that you then use as the condition of a switch
statement. RequestAccessAsync returns an enum of type GeolocationAccessStatus, which at present can
be of value Allowed, Denied, or Unspecified. Build and run this app, and you will be prompted once the app
loads to allow BigMountainX to access your location. Figure 8-3 illustrates.

Chapter 8 ■ LoCation and Mapping

309

Make your choice (it does not have to be yes at the moment). Open Privacy ➤ Location and scroll down;
you should now see your app present in the list with the selection you made. In our case, we selected No.
Figure 8-4 shows the relevant section of the app location access list on our machine.

Run the app now and you will notice that you are no longer prompted.
Because all future permission must be granted using the settings page for location privacy, we

recommend providing a link to this page so that the user can quickly navigate to that setting and toggle
permissions as they see fit. Settings pages have specific URIs that can be used to access them, identified by
the protocol ms-settings. For the location privacy settings page, the URI is ms-settings:privacy-location.
For a full listing of the URIs to all the various settings, go to https://msdn.microsoft.com/en-us/library/
windows/apps/mt228342.aspx.

In Listing 8-2, you add a new page, NoLocationPage, which you will configure to display when your app
starts and location awareness has been disabled by the user.

Listing 8-2. NoLocationPage Page Definition

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<Grid Height="105"

Width="400"
HorizontalAlignment="Center"
VerticalAlignment="Center">

<TextBlock TextWrapping="WrapWholeWords"
 Margin="0">Location services must be enabled for this app to
function propertly. Use the link below to do so.

</TextBlock>

Figure 8-3. Location access user prompt

Figure 8-4. Location access toggle

https://msdn.microsoft.com/en-us/library/windows/apps/mt228342.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/mt228342.aspx

Chapter 8 ■ LoCation and Mapping

310

<StackPanel HorizontalAlignment="Right"
VerticalAlignment="Bottom">

<Button HorizontalAlignment="Right"
Click="RefreshClicked">

<SymbolIcon Symbol="Refresh"></SymbolIcon>
</Button>
<HyperlinkButton NavigateUri="ms-settings:privacy-location"

Content="Location Settings" />

</StackPanel>

</Grid>

</Grid>

Listing 8-2 configures your new page to display some basic text that tells the user that location services
are needed. A link is provided which points the user to the location privacy settings page when clicked.
A button is also present on the page with a click event handler. This button is used to requery the location
infrastructure when clicked. The idea here is that the user first navigates to the settings page, changes the
setting to enable location awareness, and then goes back into the app to click the button to once again test to
see if location awareness has been enabled. If enabled, it navigates to your landing page. The code-behind in
Listing 8-3 illustrates.

Listing 8-3. NoLocationPage Code-Behind

public sealed partial class NoLocationPage : Page
{

public NoLocationPage()
{

this.InitializeComponent();
}

async private void RefreshClicked(object sender, RoutedEventArgs e)
{

var access_status = await Geolocator.RequestAccessAsync();
switch (access_status)
{

case GeolocationAccessStatus.Allowed:
Frame.Navigate(typeof(LandingPage));
break;

case GeolocationAccessStatus.Denied:

break;
case GeolocationAccessStatus.Unspecified:

break;
}

}
}

Chapter 8 ■ LoCation and Mapping

311

Although the landing page is a fine place to put the code, it is less than ideal. Presumably there might be
calls to perform actions like data binding; there might even be external web services calls taking place in the
landing page (some of the code might even execute outside of the loaded event). A better location for code
like this is in the ApplicationHostPage, which is used to host the root frame that the app runs within. Modify
ApplicationHostPage’s loaded event as follows to enable the functionality. Listing 8-4 illustrates (new code is
highlighted in bold).

Listing 8-4. Modifications to ApplicationHostPage’s Loaded Event

async private void ApplicationHostPage_Loaded(object sender, RoutedEventArgs e)
{

if (App.State.UserProfile == null)
root_frame.Navigate(typeof(UserIntroPage));

else
{

var access_status = await Geolocator.RequestAccessAsync();
switch (access_status)
{

case GeolocationAccessStatus.Allowed:
root_frame.Navigate(typeof(LandingPage));
break;

case GeolocationAccessStatus.Denied:
root_frame.Navigate(typeof(NoLocationPage));
break;

case GeolocationAccessStatus.Unspecified:
break;

}

}
}

To ensure that users cannot navigate to NoLocationPage (or any other page in the app) from
LandingPage using the back-stack (by click the back button), add the following code to the loaded event of
LandingPage:

Frame.BackStack.Clear();

Run the app and test the behavior based when location awareness in enabled and disabled.

Getting the Current Location
To access the user’s position, use the GetGeopositionAsync method. GetGeopositionAsync performs a
one-time reading of the current location. Unlike requesting access to the location data, GetGeopositionAsync
requires an instance of the Geolocation object to be created. Listing 8-5 adds code to retrieve the location
of the user’s device and stores it in a global variable that can be accessed throughout the BigMountainX app.
New code is highlighted in bold.

Chapter 8 ■ LoCation and Mapping

312

Listing 8-5. Modifications to ApplicationHostPage

Geolocator _geolocator;
public Geoposition CurrentLocation;
public static ApplicationHostPage Host { get; private set; }

public ApplicationHostPage()
{

this.InitializeComponent();
this.Loaded += ApplicationHostPage_Loaded;
Host = this;
_geolocator = new Geolocator();

}

async private void ApplicationHostPage_Loaded(object sender, RoutedEventArgs e)
{

if (App.State.UserProfile == null)
root_frame.Navigate(typeof(UserIntroPage));

else
{

var access_status = await Geolocator.RequestAccessAsync();
switch (access_status)
{

case GeolocationAccessStatus.Allowed:

root_frame.Navigate(typeof(LandingPage));
CurrentLocation = await _geolocator.GetGeopositionAsync();

break;
case GeolocationAccessStatus.Denied:

root_frame.Navigate(typeof(NoLocationPage));
break;

case GeolocationAccessStatus.Unspecified:
break;

}

}
}

If you tried to use the value of CurrentLocation in LandingPage you might find that it is null at this
point. This is understandable since the call to get the position is asynchronous. In Listing 8-6, you modify the
code from Listing 8-5 to support reading the values in a safe manner. In Listing 8-6, the values are requested
in ApplicationHostPage but used in the LandingPage.

Listing 8-6. Adding GetLocationChanged Event Handler

...

public event Action<Geopoint> GeoLocationChanged;
...

Chapter 8 ■ LoCation and Mapping

313

public ApplicationHostPage()
{

...
}

async private void ApplicationHostPage_Loaded(object sender, RoutedEventArgs e)
{

if (App.State.UserProfile == null)
root_frame.Navigate(typeof(UserIntroPage));

else
{

var access_status = await Geolocator.RequestAccessAsync();
switch (access_status)
{

case GeolocationAccessStatus.Allowed:
root_frame.Navigate(typeof(LandingPage));
CurrentLocation = await _geolocator.GetGeopositionAsync();
 GeoLocationChanged?.Invoke(CurrentLocation.Coordinate.
Point);

break;
case GeolocationAccessStatus.Denied:

root_frame.Navigate(typeof(NoLocationPage));
break;

case GeolocationAccessStatus.Unspecified:
break;

}

}
}

Now open LandingPage and add the code highlighted in bold in Listing 8-7 to the grid.

Listing 8-7. Adding txt_location TextBlock

...
<Grid>

<Grid.RowDefinitions>
<RowDefinition Height="40*" />
<RowDefinition Height="60*" />

</Grid.RowDefinitions>
<lib:ImageBannerControl x:Name="img_banner" />
<MediaElement x:Name="media"

AudioCategory="BackgroundCapableMedia"
Visibility="Visible"
Stretch="Fill"
Width="400"
Margin="0,10,10,50"
AutoPlay="True"
AreTransportControlsEnabled="True"
VerticalAlignment="Stretch"
Source="media/video/BigBuckBunny_320x180.mp4"
HorizontalAlignment="Right" />

Chapter 8 ■ LoCation and Mapping

314

<TextBlock x:Name="txt_location"
Grid.Row="1"
HorizontalAlignment="Left"
VerticalAlignment="Top"
Margin="5"
Text="retrieving ..." />

</Grid>
...

In Listing 8-8, you modify LandingPage’s code-behind to support it displaying the location information
acquired from the location sensors.

Listing 8-8. Modifications to LandingPage

public LandingPage()
{

this.InitializeComponent();
this.Loaded += LandingPage_Loaded;
_timer = new DispatcherTimer();
_timer.Interval = TimeSpan.FromSeconds(5);
_timer.Tick += _timer_Tick;
_media_control = Windows.Media.SystemMediaTransportControls.GetForCurrentView();
if (ApplicationHostPage.Host != null)

ApplicationHostPage.Host.GeoLocationChanged += Host_GeoLocationChanged;
}

private void Host_GeoLocationChanged(Geopoint obj)
{

var point = ApplicationHostPage.Host.CurrentLocation.Coordinate.Point;
var location = $"LAT:{point.Position.Latitude}, ";
location += $"LONG:{point.Position.Longitude}";
txt_location.Text = location;

}

Run the sample now and you should note that the location is displayed on LandingPage once it is
available to the app.

More on Permissions
In the “Requesting Access to Location Data” section, you learned how to use the RequestAccessAsync
method to ask the user for permission to read location data. Using this method, you devised a technique
to test to ensure location data was allowed and, if so, to present the user interface. If location data was not
allowed for the app, you presented a page that notified the user of the app’s dependency on location data
(with a link to the settings where location could be enabled).

The pattern worked fine except for one thing: once the user made a change to the location privacy
setting, she then had to navigate back to the app and click a refresh button to test for location data access once
again (in this case, because the user had just changed the setting, it would work). Although this approach
works, it can be jarring to a user to have to go back to the app to see if the setting change has been applied.
A better approach is for the app to be notified of the change to the setting and refresh itself. Geolocator has a
special event, StatusChanged, which does just that. Let’s modify your app to use this feature.

Chapter 8 ■ LoCation and Mapping

315

First, you can remove the button and associated even handler from NoLocationPage. The new user
interface should look like Listing 8-9.

Listing 8-9. Changes to NoLocationPage

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<Grid Height="105"

Width="400"
HorizontalAlignment="Center"
VerticalAlignment="Center">

<TextBlock TextWrapping="WrapWholeWords"
 Margin="0">Location services must be enabled for
this app to function propertly. Use the link below
to do so.</TextBlock>

<HyperlinkButton NavigateUri="ms-settings:privacy-location"
Content="Location Settings"
HorizontalAlignment="Right"
VerticalAlignment="Bottom" />

</Grid>

</Grid>

Next, modify ApplicationHostPage as shown in Listing 8-10 to include code that handles the StatusChanged
event and performs all the navigation for all pages in the app when navigation is lost (or regained).

Listing 8-10. Modifications to ApplicationHostPage

Type _last_page_before_nav_lost = typeof(LandingPage);
...
public ApplicationHostPage()
{

this.InitializeComponent();
this.Loaded += ApplicationHostPage_Loaded;
Host = this;
_geolocator = new Geolocator();
_geolocator.StatusChanged += _geolocator_StatusChanged;

}

async private void _geolocator_StatusChanged(Geolocator sender, StatusChangedEventArgs args)
{
 await this.Dispatcher.RunAsync(Windows.UI.Core.CoreDispatcherPriority.Normal, async () =>
 {

var current_view = ApplicationView.GetForCurrentView();
var status = args.Status;
switch (status)
{

case PositionStatus.Disabled:
_last_page_before_nav_lost = root_frame.CurrentSourcePageType;
root_frame.Navigate(typeof(NoLocationPage));
break;

Chapter 8 ■ LoCation and Mapping

316

case PositionStatus.Ready:
current_view.TitleBar.BackgroundColor = Colors.Transparent;
root_frame.Navigate(_last_page_before_nav_lost);
CurrentLocation = await _geolocator.GetGeopositionAsync();

 GeoLocationChanged?.Invoke(CurrentLocation.
Coordinate.Point);

break;
case PositionStatus.Initializing:

current_view.TitleBar.BackgroundColor = Colors.Yellow;
break;

default:
current_view.TitleBar.BackgroundColor = Colors.Red;
break;

}
 });

}

In Listing 8-10, you use the StatusChanged event to decide where to send the app’s root frame. The
args.Status property returns a PositionStatus enum that can be used to determine the status of location
awareness. If location awareness is disabled, you store the current page being viewed and navigate to
NoLocationPage. If it is ready (or turns ready), you navigate to the page type stored in _last_page_before_
nav_lost. By default, this is LandingPage. You also use the ApplicationView class to set the background
color of the title bar based on whether navigation is initializing or not. If location services are unavailable
(but enabled by the user), it displays a red title bar.

Run the app and open up the location privacy settings page. Now toggle the switch for turning location
awareness on or off in your app. Notice that the app automatically navigates to the appropriate page without
any user input. This is the ideal approach to handling permission changes in UWP apps.

Responding to Location Updates
In most cases, location information will not be static, meaning that it will change either over time or as the
user moves the device. Geolocator provides a PositionChanged event handler that apps can subscribe
to. PositionChanged is triggered by either a change in position or at a pre-determined time interval.
Triggering a change event based on movement is referred to as distance-based tracking. It is enabled by
setting the MovementThreshold property on Geolocator. MovementThreshold, measured in meters, is the
minimum distance from the previous registered position that the device must move in order to trigger
PositionChanged. Conversely, triggering on based on time is called periodic-based tracking. It is enabled
by setting the ReportInterval, the minimum amount of time between calls to trigger the PositionChanged
event property on Geolocator. ReportInterval in measured in milliseconds.

Geofencing
For those of you that might not be familiar with the concept, geofencing is a feature in a software program
that uses the global positioning system (GPS) or radio frequency identification (RFID) to define geographical
boundaries. As such, a geofence is a virtual perimeter for a real-world geographic area. In general, a
geofence can be dynamically generated, as in a radius around a store or point location, or it can be a
predefined set of boundaries, like school attendance zones or neighborhood boundaries.

Chapter 8 ■ LoCation and Mapping

317

Setting Up a Geofence
For UWP apps, creating and monitoring geofences is managed through the GeofenceMonitor class. The code
in Listing 8-11 uses this class to create a new geofence around a specific point. In this case, it is the location
of the next Big Mountain Xocial event. Before you get started, let’s add a new data class to your project for
storing event information. In the Library folder, add a new class called BMXEvent with the definition from
Listing 8-11. Be sure to set the class’s namespace to BigMountainX.

Listing 8-11. BMXEvent Class Definition

public class BMXEvent
{

public Guid EventID { get; set; }

public string EventTitle { get; set; }

public string Description { get; set; }

public DateTime StartDateTime { get; set; }

public TimeSpan Duration { get; set; }

public string Address { get; set; }

public double? Latitude { get; set; }

public double? Longitude { get; set; }

public DateTime CreateDate { get; set; }

}

You now need to modify your AppState class to include this property. Listing 8-12 illustrates.

Listing 8-12. Modification to AppState

public class AppState : StateAwareObject<AppState>
{

public BMXProfile UserProfile { get; set; }

public BMXEvent NextEvent { get; set; }

}

Next, you need to instantiate the NextEvent property with a new BMXEvent object. You do this in the
App.OnLaunched event. Listing 8-13 illustrates with changes highlighted in bold.

Chapter 8 ■ LoCation and Mapping

318

Listing 8-13. Modifications to OnLaunched

async protected override void OnLaunched(LaunchActivatedEventArgs e)
{

var roaming_folder = Windows.Storage.ApplicationData.Current.RoamingFolder;
State = await AppState.FromStorageFileAsync(roaming_folder, "state.xml");

if (State.NextEvent == null)
{

State.NextEvent = new BMXEvent
{

EventID = Guid.NewGuid(),
Address = "350 5th Ave, New York, NY 10118",
Latitude = 40.7484,
Longitude = -73.9857,
CreateDate = DateTime.Now,
Description = "A night of wine and comedy",
EventTitle = "Comedy Night at the Empire State",
Duration = TimeSpan.FromHours(4),
StartDateTime = new DateTime(2015, 12, 1, 20, 0, 0),

};
await State.SaveAsync();

}

// Place the frame in the current Window
Window.Current.Content = new ApplicationHostPage();

Window.Current.Activate();
}

In Listing 8-13, you check to see if the instantiated AppState object has a value for NextEvent. If it
does not have a value (which it won’t the first time this app is run), you instantiate the property with a new
BMXEvent that represents a party taking place at the Empire State Building at 8pm for 4 hours. You can now
create a new Geofence object and add it to the list of geofences associated with the app. Modify the loaded
event of ApplicationHostPage so that it follows Listing 8-14 (changes are highlighted in bold).

Listing 8-14. Changes to ApplicationHostPage Loaded Event Handler

async private void ApplicationHostPage_Loaded(object sender, RoutedEventArgs e)
{
 if (App.State.UserProfile == null)

root_frame.Navigate(typeof(UserIntroPage));
 else
 {

var access_status = await Geolocator.RequestAccessAsync();
switch (access_status)
{

case GeolocationAccessStatus.Allowed:
root_frame.Navigate(typeof(LandingPage));
CurrentLocation = await _geolocator.GetGeopositionAsync();
GeoLocationChanged?.Invoke(CurrentLocation.Coordinate.Point);

Chapter 8 ■ LoCation and Mapping

319

var fence_id = App.State.NextEvent.EventID.ToString();
var fences = GeofenceMonitor.Current.Geofences;
var fence = fences.Where(i => i.Id == fence_id).FirstOrDefault();
if (fence == null)
{

Geocircle event_radius = new Geocircle(new BasicGeoposition
{

Latitude = App.State.NextEvent.Latitude.Value,
Longitude = App.State.NextEvent.Longitude.Value,

}, 30); //30 represents the radius

fence = new Geofence(fence_id, event_radius);

//add a geofence
GeofenceMonitor.Current.Geofences.Add(fence);

}

break;
case GeolocationAccessStatus.Denied:

root_frame.Navigate(typeof(NoLocationPage));
break;

case GeolocationAccessStatus.Unspecified:
break;

}

 }
}

In Listing 8-14, you start by setting the id for the Geofence you are about to create to the id of the
BMXEvent stored in your app state’s NextEvent property. The ID property of Geofence allows you to be able
to identify one geofence from another. Because of this, geofences associated to an app must have IDs that
are unique to them (within the given app). This is why in the next line you use LINQ to query the list of
geofences presently associated with the app and attempt to return a fence with the ID you just assigned. If
a fence with that ID does not exist, you create a new geofence using that ID and a geocircle that represents
the area you are fencing. Once the fence is created, you assign it to the list of geofences stored in the app’s
GeofenceMonitor.

You can fine-tune a geofence further by using one of the other constructors. The following items can be
passed into the Geofence constructor to help refine how the fence works:

• MonitoredStates: Indicates what geofence events you want to receive notifications
for, such as entering the defined region, leaving the defined region, or removal of the
geofence.

• SingleUse: Removes the geofence once all the states the geofence is being
monitored for have been met.

• DwellTime: Indicates how long the user must be in or out of the defined area before
the enter/exit events are triggered.

• StartTime: Indicates when to start monitoring the geofence.

• Duration: Specifies how long to monitor the geofence.

Chapter 8 ■ LoCation and Mapping

320

Foreground Notifications
A geofence would not be of much use if it just sat there in the ether doing nothing. The value of such an
artifact is in comparing the location of a device relative to the geofences that have been defined for it. Once
you have defined the area you are “fencing-in,” you can then be notified when the user’s device enters or
leaves that area. The GeofenceState enum is used to indicate these states, as well as when the geofence itself
is removed. Listening to these events can happen in two ways. You can listen for events directly from your
app when it is running or register for a background task so that you receive a background notification when
an event occurs (even if your app is not running). We will discuss background tasks in Chapter 9. For now,
you will use the app itself to listen for events by subscribing to the GeofenceStateChange event.

■ Note although geofence events can be handled in a background task, this only applies to the entered and
left events. the background app is not activated for the removal event.

Big Mountain Theatre Company would like to determine when users who have their app (which serves
as a VIP pass) arrive at an event location and when they leave. You can easily achieve this by creating a
geofence around the event location and listening for the entered and exited events of the fence. In the
previous section, you created a 30-meter geofence that surrounded the location of an event. Listing 8-15
continues the exercise by using the GeofenceStateChange event to listen for these events.

Listing 8-15. Modifications to ApplicationHostPage

...
public event Action<int> AttendanceChanged;
...
public ApplicationHostPage()
{
 this.InitializeComponent();
 this.Loaded += ApplicationHostPage_Loaded;
 Host = this;
 _geolocator = new Geolocator();
 _geolocator.StatusChanged += _geolocator_StatusChanged;

 GeofenceMonitor.Current.GeofenceStateChanged += Current_GeofenceStateChanged;
}

private void Current_GeofenceStateChanged(GeofenceMonitor sender, object args)
{
 var change_reports = sender.ReadReports();
 foreach (var change_report in change_reports)
 {

var new_state = change_report.NewState;
if (new_state == GeofenceState.Entered)
{

AttendanceChanged?.Invoke(1);
}

http://dx.doi.org/10.1007/978-1-4842-1449-7_9

Chapter 8 ■ LoCation and Mapping

321

else if (new_state == GeofenceState.Exited)
{

AttendanceChanged?.Invoke(-1);
}

 }
}
...

In Listing 8-15, you add a new event to the ApplicationHostPage class called AttendanceChanged.
You also add a new entry to the class’ constructor for handling the GeofenceStatusChanged event.
The event handler for this event first makes a call to ReadReports. ReadReports retrieves a list of
GeofenceChangeReport objects associated with the GeofenceMonitor that triggered the notification. Each
report object is tied to one of the geofences that are stored in the triggering GeofenceMonitor. They can be
used to retrieve the new state of their associated Geofence. For each of the reports you retrieve from the
change report list, you get the new state of the associated Geofence; based on the state, you can invoke the
AttendanceChanged event with either a 1 or a -1.

Run the app in the Mobile Emulator and use the Map section to change the location of the device, as
shown in Figure 8-5. You should note that once you set the phone to a location within the range of your
geofence, the event is fired. It is also fired when the location of the phone is moved outside the fence.

Let’s close out the sample by modifying LandingPage such that it subscribes to the AttendanceChanged
event and displays the count of users in attendance to the next Big Mountain Xocial event. Start the process
by modifying the LandingPage UI slightly so that it has a place to store the count of attendees. Listing 8-16
illustrates. Modifications are highlighted in bold.

Figure 8-5. Testing Geofencing using Windows 10 Mobile Emulator

Chapter 8 ■ LoCation and Mapping

322

Listing 8-16. Modifications to LandingPage

...
<Grid>
 <Grid.RowDefinitions>

<RowDefinition Height="40*" />
<RowDefinition Height="60*" />

 </Grid.RowDefinitions>
 <lib:ImageBannerControl x:Name="img_banner" />
 <MediaElement x:Name="media"

AudioCategory="BackgroundCapableMedia"
Visibility="Visible"
Stretch="Fill"
Width="400"
Margin="0,10,10,50"
AutoPlay="True"
AreTransportControlsEnabled="True"
VerticalAlignment="Stretch"
Source="media/video/BigBuckBunny_320x180.mp4"
HorizontalAlignment="Right" />

 <StackPanel Grid.Row="1"
HorizontalAlignment="Left"
VerticalAlignment="Top"
Margin="5">

<TextBlock x:Name="txt_location"
Margin="5"
Text="retrieving ..." />

<TextBlock Text="{x:Bind Path=NextEventAttendanceCount, Mode=OneWay}"
Margin="5" />

 </StackPanel>
</Grid>
...

Next, in the code-behind you implement INotifyPropertyChanged (remember from Listing 8-16 that
the new TextBlock you added is using binding). Listing 8-17 illustrates.

Listing 8-17. Modifications to LandingPage Code-Behind

public sealed partial class LandingPage : Page, INotifyPropertyChanged{
...
public event PropertyChangedEventHandler PropertyChanged;
public int NextEventAttendanceCount { get; private set; }
public LandingPage()
{
 this.InitializeComponent();
 this.Loaded += LandingPage_Loaded;
 _timer = new DispatcherTimer();
 _timer.Interval = TimeSpan.FromSeconds(5);
 _timer.Tick += _timer_Tick;
 _media_control = Windows.Media.SystemMediaTransportControls.GetForCurrentView();

Chapter 8 ■ LoCation and Mapping

323

 if (ApplicationHostPage.Host != null)
 {

ApplicationHostPage.Host.GeoLocationChanged += Host_GeoLocationChanged;
ApplicationHostPage.Host.AttendanceChanged += Host_AttendanceChanged;

 }
}

async private void Host_AttendanceChanged(int increment)
{
 //increment this value every time the next event changes
 NextEventAttendanceCount += increment;

 //tell the binding system
 await this.Dispatcher.RunAsync(Windows.UI.Core.CoreDispatcherPriority.Normal, () =>
 {

PropertyChanged?.Invoke(this, new PropertyChangedEventArgs("NextEventAttendanceCount"));
 });
}
...

Run the app again in the emulator and try out the geofencing functionality. The attendance count
should rise each time a user enters the geofence and drop each time they leave.

Mapping
Windows 10 offers a slew of new features for mapping, all of which are available to you as a developer for
integration into your UWP apps. The following list highlights some of the new features:

• Offline maps: Starting with Windows 10, offline maps are available not just for
phones but for desktops, laptops, tablets, etc. Users can visit the Settings window and
download all necessary maps there. Once the maps are downloaded, the existing
map control will use them by default.

• Unified platform: In the past, you had to go to various different services to
accomplish different components of the mapping feature set (Here, Bing Maps, etc.).
With Windows 10, all services are available under the same umbrella and can be
used for any UWP applications.

• Adaptive interface: Works fine on all devices. You can use touch, pen, or mouse, and
different screen sizes.

• 2D view with business and traffic information: Support for all common features
for 2D maps like different views, traffic information (which you can turn on or off),
information about business locations, and transit.

• Location: Integrates with location APIs.

• External elements: Developers can place their own icons, rectangles, polygons,
and even XAML controls on maps. It allows for customization of existing maps and
extends the number of possible scenarios.

• Routing: Developers can use Maps services to calculate routes to selected
destinations. This feature now supports multiple modes of transportation
(driving, walking, etc.).

Chapter 8 ■ LoCation and Mapping

324

• StreetSide: A very useful feature for users who want to know what a selected area
looks like, StreetSide provides a street view of a location using images of the
selected area.

• 3D views: Show maps not just in 2D but in 3D view modes.

There are two ways to implement mapping in a UWP app. You can leverage the existing Maps
application by redirecting to it using either a HyperlinkButton or the Launcher.LaunchUriAsync method.
Alternatively, you can directly embed the mapping functionality into your UWP app using MapControl,
which is a new control for displaying and interacting with maps and locations.

Launching Maps via URI
The Maps application on a user’s Windows 10 device has the protocols bingmaps, ms-drive-to, and ms-walk-to
registered to it. Any URI on a Windows 10 system specified with this protocol will launch the Maps application.
Opening Microsoft Edge and entering the URI bingmaps into the address bar will immediately launch the
Maps application. This process is called protocol activation and it can be leveraged by any app built using
the UWP. Using this mechanism, you can launch Maps from your UWP app. Of course, simply launching the
Maps app will most likely not be enough; most apps will launch Maps for the purpose of displaying a map of
something. The bingmaps URI scheme takes the form bingmaps://?<query> where query is a series of name/
value pairs separated by an ampersand like the following: param1=value1¶m2=value2.

For the purposes of this exercise, you will use two parameters, cp and where. You can find the full list of
possible parameters to pass at https://msdn.microsoft.com/en-us/library/windows/apps/mt228341.aspx.

The cp parameter, short for center point, is used to define the center point of the map displayed by the
Maps app. It takes the format cp=<lat>~<long>. The following URI will open maps with New York City as the
center point: cp=40.726966~-74.006076.

The where parameter works like a search applied to the map as a whole (like when you type in a search
on the Bing maps website). When where is used, the value can be a location, landmark, or place. The
following use of where will center the map on the White House: bingmaps://?where=the white house.
Because the value passed into where is a search term, you may get a list of results back, in which case they
will all be displayed on the map.

In the BigMountainX app, you are interested in using the Maps app to display the location of the next
Big Mountain Xocial event, located at the Empire State Building, 350 5th Ave, New York, NY 10118. To do
this, you have three choices: you can pass the geoposition (the latitude and longitude) of the event, pass the
address for the Empire State Building, or just pass in the term “Empire State Building.” Add a new button to
LandingPage called Next Event Map. When this button is clicked, you will user the Launcher class to navigate
to the following URI: bingmaps://?where= 350 5th Ave, New York, NY 10118. Listing 8-18 illustrates.
This sample adds the Button control to the StackPanel created in Listing 8-16.

Listing 8-18. Modifications to LandingPage

...
<StackPanel Grid.Row="1"

HorizontalAlignment="Left"
VerticalAlignment="Top"
Margin="5">

 <TextBlock x:Name="txt_location"
Margin="5"
Text="retrieving ..." />

https://msdn.microsoft.com/en-us/library/windows/apps/mt228341.aspx

Chapter 8 ■ LoCation and Mapping

325

 <TextBlock Text="{x:Bind Path=NextEventAttendanceCount, Mode=OneWay}"
Margin="5" />

 <Button Content="Next Event Map" Click="OnClickNextEvent" Width="200" Margin="5" />
</StackPanel>
...

Listing 8-19 implements the event handler for this button. It uses the Launcher.LaunchUriAsync to
carry out its function.

Listing 8-19. Implementing OnClickNextEvent Handler

async private void OnClickNextEvent(object sender, RoutedEventArgs e)
{
 var uri = new Uri($"bingmaps://?where={App.State.NextEvent.Address}");
 await Launcher.LaunchUriAsync(uri);
}

In Listing 8-19 you construct a URI based on the address of the next Big Mountain Xocial event. Once
constructed, you pass it into the LaunchUriAsync method of the Launcher class. Clicking this link should
launch the Maps app, as shown in Figure 8-6.

Adding Maps into Your App
For basic scenarios like locating a place on the map or providing directions, linking to and instrumenting
the Maps application is more than adequate, the only non-ideal side-effect being that it opens the map in
a different app. Whether or not this is an actual pitfall will depend on the app being developed. When your

Figure 8-6. Launching Maps from BigMountainX

Chapter 8 ■ LoCation and Mapping

326

app needs just a quick view of the map to be displayed (without forcing the user to navigate to another app),
customize the look and feel of the map, or just constrain the view of it in some way, using the Maps app starts
to fall short. For those scenarios, the MapControl can be used. MapControl embeds the entirety of the map
view into its control surface so that it can be placed into other UWP apps.

In the previous section, you provided a button that contained the address of the next event Big Mountain
Theater Company is hosting. Clicking the link opened the Maps app and showed the location. This approach
is not ideal for the BigMountainX app. What you want instead is to place the map where the button is so that
the user can get a quick interactive view of the event location. MapControl is perfect for this type of scenario.

In order to start working with maps in your application you need to get an “access key” by visiting Maps
Dev Center (www.bingmapsportal.com/). When an access key is not provided, you will see the message
that MapServiceToken is not specified and you cannot publish your application without MapServiceToken.
Listing 8-20 shows the key for mapping.

Listing 8-20. Sample of Application Key from bingmapsportal.com

xVw4m3LWqMqNhkkV6iTs~8xCzHMDnuTdugl7qS-7lQA~AgsDbT7TRxvrwzPA2TyPwbZnYKpauH3Ke4kgOl2W5M4VOs
IPXIF4Ir6oiAGjrNye

In Listing 8-21, you add a basic map control to LandingPage and configure it to display the zoom and
tilt controls in addition to accepting touch inputs. The control uses the key you acquired from the Bing maps
development portal. Let’s take this opportunity to restyle LandingPage so it aligns more to a dark theme. The
listing contains the XAML (part of the Page tag is shown here to illustrate how to reference the map control)
for the modified page.

Listing 8-21. Modifications to LandingPage

<Page ...
xmlns:Maps="using:Windows.UI.Xaml.Controls.Maps"
...>

<Grid>

 <Grid Background="#FF6A6A6A">
<Grid.RowDefinitions>

<RowDefinition Height="40*" />
<RowDefinition Height="60*" />

</Grid.RowDefinitions>

<RelativePanel Grid.Row="1"
Margin="0,-25,0,0" Width="500"
HorizontalAlignment="Left"
VerticalAlignment="Stretch"
Background="#FF444141">

<Maps:MapControl x:Name="map"
Height="300"
Width="500"
Margin="0"
ZoomInteractionMode="GestureAndControl"
PanInteractionMode="Auto"
TiltInteractionMode="GestureAndControl"
MapServiceToken="abcd"
/>

www.bingmapsportal.com/

Chapter 8 ■ LoCation and Mapping

327

<Button Content="More ..."
Click="OnClickNextEvent"
Width="200"
Background="Gray"
RelativePanel.Below="map"
RelativePanel.AlignRightWithPanel="True"
Margin="5" />

<TextBlock x:Name="txt_location"
Margin="5"
Text="retrieving location..."
RelativePanel.AlignBottomWithPanel="True"/>

<TextBlock Text="{x:Bind Mode=OneWay, Path=NextEventAttendanceCount}"
Margin="5"
HorizontalAlignment="Right"
RelativePanel.AlignRightWithPanel="True"
RelativePanel.AlignBottomWithPanel="True"
RelativePanel.RightOf="txt_location" />

</RelativePanel>
 <StackPanel Grid.Row="1"

Margin="10,0,0,10"
VerticalAlignment="Top"
HorizontalAlignment="Right"
Orientation="Horizontal"
Height="50">

<Button Content="Play Sound of the Day"
Width="180" Background="Gray"
Click="OnPlayAudioClicked"
Margin="2.5" />

<ToggleButton Content="Audio Message"
Width="180"
Background="Gray"
Click="ToggleRecord"
Margin="2.5" />

<Button Content="Video Message"
Width="180"
Background="Gray"
Click="ToggleRecordVideo"
Margin="2.5">

...
</Button>

</StackPanel>
...
<lib:ImageBannerControl x:Name="img_banner" />
<MediaElement x:Name="media"

AudioCategory="BackgroundCapableMedia"
Visibility="Visible"
Stretch="Fill"
Width="400"
Margin="0,10,10,50"
AutoPlay="True"

Chapter 8 ■ LoCation and Mapping

328

AreTransportControlsEnabled="True"
VerticalAlignment="Stretch"
Source="media/video/BigBuckBunny_320x180.mp4"
HorizontalAlignment="Right" />

 </Grid>

 <lib:ImageViewerControl HorizontalAlignment="Left"
VerticalAlignment="Top"
Margin="10"
Height="100"
Width="100"
Loaded="OnImageViewerLoaded"
ImageSelected="OnImageSelected" />

</Grid>
</Page>

In Listing 8-21, you replace the StackPanel used for laying out the geo-location TextBlocks and Button
with a RelativePanel. Also, the ImageBannerControl and the MediaElement are moved to the bottom of
the Grid that contains them. This is so they will show above any other items in the Grid. Colors for all the
controls have been modified to various shades of gray and the background for the buttons on the screen
have been changed to gray. In the MapControl, you have explicitly set the MapServiceToken to the key you
retrieved earlier from the Bing development portal. You have also set some properties on the MapControl to
allow for using either gestures or controls on map itself to interact with it.

Listing 8-22 shows the changes to be made in the code-behind for LandingPage. Essentially you
explicitly set the background color for the title bar of the app in the constructor.

Listing 8-22. Styling the Title Bar in LandingPage Code-Behind

public LandingPage()
{
 ...
 //set the application title bar look
 var current_view = ApplicationView.GetForCurrentView();
 var titlebar_color = Color.FromArgb(0xFF, 0x6A, 0x6A, 0x6A);
 current_view.TitleBar.BackgroundColor = titlebar_color; //Colors.DarkGray;
 current_view.TitleBar.InactiveBackgroundColor = titlebar_color;
 current_view.TitleBar.ButtonBackgroundColor = titlebar_color;
 current_view.TitleBar.ButtonInactiveBackgroundColor = titlebar_color;
}

To complete the transition to a dark them, open App.xaml and change the RequestedTheme attribute to
Dark. Listing 8-23 illustrates.

Listing 8-23. Configuring the App to Expect a Dark Theme

<Application
 x:Class="BigMountainX.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:BigMountainX"
 RequestedTheme="Dark">

</Application>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Chapter 8 ■ LoCation and Mapping

329

Modifying this attribute changes the text across the app to a light coloring (since the expectation is
that your color choices for backgrounds will be darker). Finally, modify ImageBannerControl as shown in
Listing 8-24.

Listing 8-24. Modifications to ImageBannerControl

<Path Data="M-19.1464,-17.9973 L420.5,-18.5 L420.5,248.5 L379.998,248.597 L359.834,231.537
L339.838,248.694 L-21.1464,248.503 z"

Margin="-21.646,-19,-21,19.782"
Stretch="Fill"
StrokeThickness="5"
UseLayoutRounding="False"
d:LayoutOverrides="LeftPosition, RightPosition, TopPosition, BottomPosition">

 <Path.Fill>
<ImageBrush x:Name="img_brush"

Stretch="UniformToFill" />
 </Path.Fill>
 <Path.Stroke>

<SolidColorBrush Color="DarkGray" />
 </Path.Stroke>
</Path>

This change merely adds some thickness to the line that borders the path visual used in
ImageBannerControl. When you run the app now, it should look like Figure 8-7.

Figure 8-7. New BigMountainX user interface

Chapter 8 ■ LoCation and Mapping

330

The following properties can be used to further configure the appearance of the MapControl:

• Center: Sets a starting geographic position at the center of the map.

• ZoomLevel: Determines how zoomed in the map is. Set to a value between 1 and 20.

• Heading: Sets the rotation of the map where 0 or 360 degrees = North, 90 = East,
180 = South, and 270 = West.

• DesiredPitch: Sets the tilt of the map to a value between 0 and 65 degrees.

• MapStyle: Specifies the type of map, such as a road map or an aerial map.

• ColorScheme: Sets the color scheme of the map to either light or dark.

• LandmarksVisible: Displays buildings and landmarks on the map.

• PedestrianFeaturesVisible: Displays pedestrian features such as public stairs.

• TrafficFlowVisible: Displays traffic on the map.

• WatermarkMode: Specifies whether the watermark is displayed (the “Bing” label).

In Listing 8-25, you modify the loaded event of LandingPage by setting the Center property to start the
MapControl at the location of the next event.

Listing 8-25. Modifications to LandingPage Loaded Event

async private void LandingPage_Loaded(object sender, RoutedEventArgs e)
{
 ...

 //set the starting point of the map
 map.Center = new Geopoint(new BasicGeoposition
 {

Latitude = App.State.NextEvent.Latitude.Value,
Longitude = App.State.NextEvent.Longitude.Value,

 });
 map.ZoomLevel = 17.5;

 //
 //clear the backstack so that you cannot navigate back from
 //this page
 Frame.BackStack.Clear();
}

Displaying Streetside Views
A streetside view is a street-level perspective of a location that appears on top of the map control. The
experience once the user enters the Streetside view is separate from the map originally displayed in the
map control. For instance, changing the location in the Streetside view has no effect on the location or
appearance of the underlying map. After you close the Streetside view, the original map remains unchanged.
Not all devices support the Streetside view feature. You can use the IsStreetsideSupported property
on MapControl to determine whether it is currently supported. If supported, call FindNearbyAsync to
create a StreetsidePanorama object near the specified location. To activate the view, you must assign
an instance of StreetsideExperience to MapControl’s CustomExperience property. The constructor of
StreetsideExperience accepts a StreetsidePanorama object.

Chapter 8 ■ LoCation and Mapping

331

In Listing 8-26, you modify the More button in LandingPage by adding a flyout menu that can be used
to accomplish a number of tasks related to the next event’s location. You will add two menu items to the
flyout, one for linking to the Maps application like before, and the other for enabling Streetside view on the
MapControl.

Listing 8-26. Adding FlyoutMenu to the More button

<Button Content="More ..."
Width="200"
Background="Gray"
RelativePanel.Below="map"
RelativePanel.AlignRightWithPanel="True"
Margin="5">

 <Button.Flyout>
<MenuFlyout>

<MenuFlyoutItem Click="OnShowStreetView"
Text="Show Streetview" />

<MenuFlyoutItem Click="OnClickNextEvent"
Text="Open in Maps" />

</MenuFlyout>
 </Button.Flyout>
</Button>

The code-behind for LandingPage now adds a new method, the event handler OnShowStreetView.
Listing 8-27 illustrates.

Listing 8-27. Implementing OnShowStreetView

async private void OnShowStreetView(object sender, RoutedEventArgs e)
{
 if (map.IsStreetsideSupported)
 {

var street_panorama = await StreetsidePanorama.FindNearbyAsync(map.Center);
StreetsideExperience street_exp = new StreetsideExperience(street_panorama);
map.CustomExperience = street_exp;

 }
}

Listing 8-27 implements the functionality of the Show Streetview menu item, which basically launches
the street view of the map so that a user can explore how to get to the location of the next event.

Handling Events, User Interaction, and Changes
You can handle user input gestures on the map by handling the MapTapped, MapDoubleTapped, and
MapHolding events of the MapControl. The MapInputEventArgs passed into the event handlers for these
events has a Location and Position property that can be used to get information about the geographic
location on the map and the physical position in the viewport where the gesture occurred.

Chapter 8 ■ LoCation and Mapping

332

The following events can be used to listen for when the user or the app changes the settings of the map.
The event names are self-explanatory.

• CenterChanged

• HeadingChanged

• PitchChanged

• ZoomLevelChanged

Working with POIs (Points of Interest)
Another area where embedding MapControl into your app excels is when it comes to POIs. With the Maps
application, POIs are already built in and cannot be altered from an external app. There is no way of adding
new POIs that might be needed to illustrate some feature of the app. Using the MapControl, you can add
pushpins, images, and shapes on the map by adding the MapIcon, MapPolygon, and MapPolyline objects to
the MapElements collection using data binding or by adding the items programmatically. You also have the
ability of embedding XAML control directly into the map, complete with any feature, animation, and built-in
interactivity that they utilize.

Adding MapIcons
MapIcon is used to display an image such a pushpin, with optional text, on the map surface. MapIcon allows
you to optionally set a title and image associated with the icon. When an image is not provided, a default
image is used. In Listing 8-28, you place a MapIcon at the location of the next Big Mountain Xocial event.
This allows it to be easily seen on the map.

Listing 8-28. Modifications to LandingPage Loaded Event Handler

async private void LandingPage_Loaded(object sender, RoutedEventArgs e)
{
 ...

 //set the starting point of the map
 map.Center = new Geopoint(new BasicGeoposition
 {

Latitude = App.State.NextEvent.Latitude.Value,
Longitude = App.State.NextEvent.Longitude.Value,

 });
 map.ZoomLevel = 17.5;
 MapIcon map_icon = new MapIcon();
 map_icon.Title = App.State.NextEvent.EventTitle;
 map_icon.Location = map.Center;
 map.MapElements.Add(map_icon);

 //
 //clear the backstack so that you cannot navigate back from
 //this page
 Frame.BackStack.Clear();
}

Chapter 8 ■ LoCation and Mapping

333

Figure 8-8 shows how the app looks when run.

Figure 8-8. Showing MapIcon on the map

Keep the following considerations in mind when working with the MapIcon class:

• The Image property supports a maximum image size of 2048 x 2048 pixels.

• By default, the map icon’s image is not guaranteed to be shown. It may be hidden
when it obscures other elements or labels on the map. To keep it visible, set the map
icon's CollisionBehaviorDesired property to MapElementCollisionBehavior.
RemainVisible.

• The optional title of the MapIcon is not guaranteed to be shown. If you don’t see the
text, zoom out by decreasing the value of the ZoomLevel property of the MapControl.

Adding XAML Controls to Map
When a simple image is not enough, you can use XAML to display custom UI elements on the map. XAML
controls are added to the map much the same way as they are added to any layout control, by adding an
instance of the control to the Children collection of the map. MapControl requires an additional step to
display the control properly, however. Once the control is added, call SetLocation to positon the XAML
control geographically on the map surface. Listing 8-29 replaces the use of the MapIcon with a SymbolIcon
XAML control.

Chapter 8 ■ LoCation and Mapping

334

Listing 8-29. Modifications to the LandingPage Loaded Event Handler

async private void LandingPage_Loaded(object sender, RoutedEventArgs e)
{
 ...

 //set the starting point of the map
 map.Center = new Geopoint(new BasicGeoposition
 {

Latitude = App.State.NextEvent.Latitude.Value,
Longitude = App.State.NextEvent.Longitude.Value,

 });
 map.ZoomLevel = 17.5;

 //add a XAML control to the map
 SymbolIcon symbol = new SymbolIcon(Symbol.Favorite);
 map.Children.Add(symbol);
 MapControl.SetLocation(symbol, map.Center);

 //clear the backstack so that you cannot navigate back from
 //this page
 Frame.BackStack.Clear();
}

Run the app and it should now look something like Figure 8-9.

Figure 8-9. Showing the XAML control on the map

Chapter 8 ■ LoCation and Mapping

335

Geocoding
Using the Geocoding functionality built into the mapping APIs, it is easy to extend into UWP apps the ability
to convert addresses to geographic locations (geocoding) and vice versa (reverse geocoding). Geocoding is
achieved through the MapLocationFinder class in the Windows.Services.Maps namespace.

Reverse Geocoding: Getting an Address
MapLocationFinder finder contains a FindLocationsAtAsync method that can be used to convert
a geographic location to an address (reverse geocoding). FindLocationsAtAsync returns a
MapLocationFinderResult object that exposes a Locations property which represents the collection of
matching MapLocation objects returned by the query. Each MapLocation contains an Address property
of type MapAddress that represents the address matched to that location. In Listing 8-30, you replace the
location text displayed in LandingPage with a string that displays the city and state the user accessing
the app is in. You do this by performing a reverse geocode on the Geopoint passed into LandingPage’s
GeoLocationChanged event handler.

Listing 8-30. Modifications to GeoLocationChanged Event Handler

public LandingPage()
{
 ...
 if (ApplicationHostPage.Host != null)
 {

ApplicationHostPage.Host.GeoLocationChanged += Host_GeoLocationChanged;
...

 }
...
}

async private void Host_GeoLocationChanged(Geopoint obj)
{

 await this.Dispatcher.RunAsync(Windows.UI.Core.CoreDispatcherPriority.Normal, async () =>
 {

var point = obj;
var location = $"LAT:{point.Position.Latitude}, ";
location += $"LONG:{point.Position.Longitude}";

txt_location.Text = "searching ... ";
try
{

var location_results = await MapLocationFinder.FindLocationsAtAsync(point);

//since we are only interested in city and state info
//we only need the first item from the list
var location_result = location_results.Locations.FirstOrDefault();

Chapter 8 ■ LoCation and Mapping

336

if (location_result != null)
{

 txt_location.Text = $"{location_result.Address.Town}, {location_result.
Address.Region}";

}
}
catch
{

txt_location.Text = "Location unknown";
}

 });
}

Run the sample now and you should see that the textbox now displays the city and state where you are
located instead of the latitude/longitude data.

Geocode: Getting a Location from an Address
You can alternatively convert an address or the name of a place to a geographic location (geocoding)
using the FindLocationsAsync method of MapLocationFinder. FindLocationsAsync also returns a
MapLocationFinderResult containing a collection of matching MapLocation objects that can be accessed
through the Locations property. Another property of MapLocation, Point, can be used to get the Geopoint
associated with the address/place that was searched for. Geocoding is ideal for converting addresses or
point of interest inputted as text into locations on a map. It is the kind of thing that the Map application does
when you type in “Empire State Building” or enter the address “350 5th Ave, New York, NY 10118” instead of
entering the exact geocoordinates to that location.

Displaying Directions
Displaying directions can be achieved using the MapRouteFinder class. Calling either GetDrivingRouteAsync
or GetWalkingRouteAsync can be used to retrieve a MapRouteFinderResult object that represents the route
to the geoposition you specify. You can use the Legs collection to retrieve the list of legs tied to this route.
Each leg, represented by a MapRouteLeg object, contains a Maneuvers property that is itself a collection
of MapRouteManeuver objects. MapRouteManeuver contains an InstructionText property that provides
the actual instruction in text format. For each route leg, you must iterate through the list of maneuvers
associated with the leg, and for each of those, display the Instruction text it contains.

Add a new page to the BigMountainX project called DirectionsPage and populate its XAML as shown in
Listing 8-31.

Listing 8-31. DirectionsPage Layout

<Page ...>
<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <ScrollViewer VerticalScrollBarVisibility="Auto"

VerticalScrollMode="Auto">
<StackPanel x:Name="spanel_directions"

Orientation="Vertical"
Margin="10,50,10,50">

</StackPanel>
 </ScrollViewer>

Chapter 8 ■ LoCation and Mapping

337

 <ProgressRing x:Name="progress"
IsActive="True"
Width="100"
Height="100" />

</Grid>
</Page>

In LandingPage, add a new MenuFlyoutItem to the More button as shown in Listing 8-32.

Listing 8-32. Adding a MenuFlyoutItem to the More Button

<Button Content="More ..."
Width="200"
Background="Gray"
RelativePanel.Below="map"
RelativePanel.AlignRightWithPanel="True"
Margin="5">

 <Button.Flyout>
<MenuFlyout>

<MenuFlyoutItem Click="OnShowStreetView"
Text="Show Streetview" />

<MenuFlyoutItem Click="OnClickNextEvent"
Text="Open in Maps" />

<MenuFlyoutItem Click="OnDirectionsClicked"
Text="Directions" />

</MenuFlyout>
 </Button.Flyout>
</Button>

In the code-behind for LandingPage, implement OnDirectionsClicked as shown in Listing 8-33.

Listing 8-33. Implementing the OnDirectionsClicked Event Handler

private void OnDirectionsClicked(object sender, RoutedEventArgs e)
{
 Frame.Navigate(typeof(DirectionsPage), map.Center);
}

All this method does is navigate to the DirectionsPage, passing in the center point of the map (which
should be the location of the next event being held). Finally, in Listing 8-34, you implement the code-behind
for DirectionsPage.

Listing 8-34. Implementing the DirectionsPage Code-Behind

public sealed partial class DirectionsPage : Page
{
 Geopoint _center;
 public DirectionsPage()
 {

this.InitializeComponent();
this.Loaded += DirectionsPage_Loaded;

 }

Chapter 8 ■ LoCation and Mapping

338

 async private void DirectionsPage_Loaded(object sender, RoutedEventArgs e)
 {

var start = ApplicationHostPage.Host.CurrentLocation.Coordinate;
var result = await MapRouteFinder.GetDrivingRouteAsync(start.Point,_center);
progress.IsActive = false;
progress.Visibility = Visibility.Collapsed;
foreach (var leg in result.Route.Legs)
{

SymbolIcon leg_symbol = new SymbolIcon(Symbol.Refresh);
leg_symbol.HorizontalAlignment = HorizontalAlignment.Center;
leg_symbol.Margin = new Thickness(5);
StackPanel stack_leg = new StackPanel();
stack_leg.HorizontalAlignment = HorizontalAlignment.Center;
foreach (var manuever in leg.Maneuvers)
{

TextBlock txt_instruction = new TextBlock();
txt_instruction.Margin = new Thickness(5);
txt_instruction.Text = manuever.InstructionText;
stack_leg.Children.Add(txt_instruction);

}

spanel_directions.Children.Add(leg_symbol);
spanel_directions.Children.Add(stack_leg);

}
 }

 protected override void OnNavigatedTo(NavigationEventArgs e)
 {

_center = e.Parameter as Geopoint;

base.OnNavigatedTo(e);
 }
}

In Listing 8-34, you save the parameter passed in from LandingPage, the Geopoint corresponding to
the location of the next Big Mountain Xocial event, to a field on the class after casting it back to its type.
This point will serve as the end point to which you want your user to navigate. In the loaded event, you first
retrieve the user’s current location (this will serve as the start point for the driving directions). You then use
it to call GetDrivingRouteAsync. Once that call returns (it may take a while), you deactivate and hide the
ProgressRing control you use to let the user know that a long running activity is occurring. You then iterate
through the various collections of the resulting objects, creating controls to represent each line item in the
associated lists. At the end of it, all these controls are added to the Children collection of their parent. When
you run BigMountainX now and click the Get Directions menu item, your app should look like Figure 8-10.

Chapter 8 ■ LoCation and Mapping

339

Displaying Routes
You can display the route returned from the call to get driving directions on the embedded MapControl
using the MapRouteView class. A MapRouteView is constructed by passing in a MapRoute (the object you
get as part of the driving directions query) into its constructor. MapControl exposes a list of routes that
MapRouteViews can be added to. In Listing 8-35, you modify DirectionsPage to display a map on it. You also
created a higher level StackPanel that contains both the MapControl and spanel_directions.

Listing 8-35. Modifying DirectionsPage

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <ScrollViewer VerticalScrollBarVisibility="Auto"

VerticalScrollMode="Auto">
<StackPanel>

<Maps:MapControl x:Name="map"
Height="400"
Margin="0"
ZoomLevel="12"
HorizontalAlignment="Stretch"
ZoomInteractionMode="GestureAndControl"
PanInteractionMode="Auto"
TiltInteractionMode="GestureAndControl"
 MapServiceToken="xVw4m3LWqMqNhkkV6iTs~8xCzHMDnu
Tdugl7qS-7lQA~AgsDbT7TRxvrwzPA2TyPwbZnYKpauH3Ke4kgOl2
W5M4VOsIPXIF4Ir6ofAGjrNye" />

<StackPanel x:Name="spanel_directions"
Orientation="Vertical"
Margin="10,50,10,50">

</StackPanel>

Figure 8-10. DirectionsPage in action

Chapter 8 ■ LoCation and Mapping

340

</StackPanel>
 </ScrollViewer>
 <ProgressRing x:Name="progress"

IsActive="True"
Width="100"
Height="100" />

</Grid>

Listing 8-36 shows the modified loaded event for the DirectionsPage code-behind.

Listing 8-36. Modifications to DirectionsPage Loaded Event Handler

async private void DirectionsPage_Loaded(object sender, RoutedEventArgs e)
{
 var start = ApplicationHostPage.Host.CurrentLocation.Coordinate;
 var result = await MapRouteFinder.GetDrivingRouteAsync(start.Point, _center);

 progress.IsActive = false;
 map.Center = start.Point;

 SymbolIcon symbol_start = new SymbolIcon(Symbol.Favorite);
 map.Children.Add(symbol_start);
 MapControl.SetLocation(symbol_start, start.Point);

 SymbolIcon symbol_end = new SymbolIcon(Symbol.Favorite);
 map.Children.Add(symbol_end);
 MapControl.SetLocation(symbol_end, _center);

 MapRouteView route_view = new MapRouteView(result.Route);
 map.Routes.Add(route_view);
 await map.TrySetViewBoundsAsync(route_view.Route.BoundingBox,null,MapAnimationKind.Default);

 progress.Visibility = Visibility.Collapsed;
 foreach (var leg in result.Route.Legs)
 {

SymbolIcon leg_symbol = new SymbolIcon(Symbol.Refresh);
leg_symbol.HorizontalAlignment = HorizontalAlignment.Center;
leg_symbol.Margin = new Thickness(5);
StackPanel stack_leg = new StackPanel();
stack_leg.HorizontalAlignment = HorizontalAlignment.Center;
foreach (var manuever in leg.Maneuvers)
{

TextBlock txt_instruction = new TextBlock();
txt_instruction.Margin = new Thickness(5);
txt_instruction.Text = manuever.InstructionText;
stack_leg.Children.Add(txt_instruction);

}

spanel_directions.Children.Add(leg_symbol);
spanel_directions.Children.Add(stack_leg);

 }
}

Chapter 8 ■ LoCation and Mapping

341

In Listing 8-35, you see the use of the MapRouteView to encapsulate a MapRoute for the purpose of being
displayed on the map. You also add two XAML controls to the map, one to indicate the start position of the
route and the other to show where it ends. Finally, the call to TrySetViewBoundsAsync is used to center the
map around the directions you have, so that both points can be seen clearly. Running the app and selecting
Get Directions should show a page similar to Figure 8-11.

Figure 8-11. Modifications to DirectionsPage in action

Summary
In this chapter, you learned the many ways that location and mapping can be used in your application.
The findings in this chapter include the following:

• How to enable location functionality in a UWP app.

• How to gain access to location data, and how to react to access being changed.

• How to retrieve the current location of a device.

• How to navigate to the Settings application.

• How to handle location updates.

• How to implement geofencing in a UWP app and monitor for entering and exiting
the fenced area from the foreground.

• How to launch the Maps application and instrument it to display specific locations,
groups of locations, points of interests, and many more things.

• How to embed mapping into UWP apps using the MapControl.

• How to display a Streetside view for a point on the MapControl surface.

Chapter 8 ■ LoCation and Mapping

342

• How to add MapIcons to the MapControl map surface.

• How to add XAML controls to the MapControl map surface.

• How to geocode and reverse geocode.

• How to get driving directions based on a start and end point.

• How to display routes on the MapControl.

343

Chapter 9

Background Tasks

It should come as no surprise to anyone that the term Windows as defined, coined, and trademarked by
Microsoft relates to the computing feature whereby the functioning area of an application can be partitioned
to a corner of the screen, moved around, and maximized to take up the entire screen surface area. In short,
Windows allows you a “window” into a running application. Through the years, that ability to display an
application evolved into being able to run and use multiple applications, complete with window overlap, fast
task switching, and many more delightful features we have all come to know, love, and expect from a self-
respecting operating environment like Windows, Mac OS, and even from the Linux and Unix tree of products.

So we were all completely surprised when Windows 8 balked at all the beautiful innovations we’ve come
to love. All the features that had naturally evolved over years and years of user feedback, trial and error, and
functional adjustment were mostly tossed to the side in favor of a random and seemingly undercooked
re-invention of the product. This chapter focuses on a tenet of Windows that has survived what we like to call
the “great purge:” background processing in its many forms. In previous versions of Windows, applications
ran in the background through a myriad of mechanisms. Simply switching away from one application to
another essentially put the first app into the background (although in previous versions of Windows, it
continued to run as though in the foreground). This provided the ultimate flexibility for both the user and
developer but, as a downside, introduced incredible complexity into their work streams. As a user, it was
difficult to know exactly what was running on your machine at any given time without breaking out all the
super user tools. As a developer, it was nearly impossible to predict how other applications would react to
and treat yours, and compatibility issues between your application and another were invariably tied to your
application as bugs.

Because Windows 8 introduced a new approach to application behavior, one in which the app user
interface always takes up the entire screen surface area, the foreground app is assumed to be the most
important to the user. In this paradigm, the foreground application receives all the system resources, and
apps that aren’t visible to the user enter into a suspended state in which they are no longer executing. While
Windows 10 has since reverted back to the line of thought that being able to do more than one thing at a
time is generally good, many of the same rules related to app behavior still apply, the caveat being that the
behaviors related to suspension will largely be dependent on the device family your app is running on. With
Windows 10, now more than ever the question of maintaining consistent functionality across a vast set of
hardware specifications and classifications falls not just to Microsoft but also to app developers targeting
this platform. How else do you provide the same experience: application switching, background processing,
windowing, and so on, while maintaining a new paradigm which allows Windows to run on anything from
an ARM-based device (the type you might find on an iPhone) to the full-fledged Windows experience?

Let’s get started.

Chapter 9 ■ BaCkground tasks

344

Before You Begin
Before you get started with this chapter, let’s take some time to clean up and optimize the code you have
created thus far. Many of the things you have added to your app, although interesting in terms of showing
you how the related functionality works, are really not needed and only add complexity to the mix. One
such thing is the revolving background image used by the ImageBannerControl you have on LandingPage.
Let’s remove the code associated with it. Open the BigMountainX project and open LandingPage. Listing 9-1
shows all the code you need to get rid of in order to achieve this.

Listing 9-1. Code to Delete

//the image list
List<string> _images = new List<string>
{

...
};

//the image counter
int _image_index = 0;

//the timer used to determine when to switch images
_timer = new DispatcherTimer();
_timer.Interval = TimeSpan.FromSeconds(5);
_timer.Tick += _timer_Tick;

//the timer ticked event handler
private void _timer_Tick(object sender, object e)
{
 img_banner.SetImage(_images[_image_index]);
 _image_index++;
 if (_image_index >= _images.Count)

_image_index = 0;
}

//the code to initialize the timer (inside Loaded event handler)
async private void LandingPage_Loaded(object sender, RoutedEventArgs e)
{
 _timer.Start();
 img_banner.SetImage(_images[_image_index]);
 _image_index++;

You will now set an image to the ImageBannerControl for the page. Rather than doing this in the
Loaded event like you did previously, you will set the value during object construction. This prevents any lag
that might occur while loading the image because it will already be loaded by the time the loaded event is
triggered. Add the line from Listing 9-2 as the last line in LandingPage’s constructor.

Listing 9-2. Setting the ImageBannerControl Image

img_banner.SetImage("ms-appx:///media/images/club1.jpg");

Chapter 9 ■ BaCkground tasks

345

You have one more thing to do on LandingPage. In the XAML definition, wrap the MediaElement in a
border and move that border (along with the MediaElement itself) into the Grid rpanel_right. Listing 9-3
shows the new layout for the Border.

Listing 9-3. New Layout of Border

...
<Border BorderThickness="1"

Background="Black"
Width="400"
BorderBrush="LightGray"
Height="250"
Margin="10,10,0,0"
VerticalAlignment="Top"
HorizontalAlignment="Left">

 <MediaElement x:Name="media"
AudioCategory="BackgroundCapableMedia"
Visibility="Visible"
Stretch="Fill"
AutoPlay="True"
AreTransportControlsEnabled="True"
Source="media/video/black.mp4" />

</Border>
</Grid>

The MediaElement should now be position at the top left corner of your main content area, but when
you run the app you will note that the video does not play. This is, of course, because you have not added
it. Download the packet for this chapter and from it copy the video called black.mp4 to the project folder
Media/Video. Run it now and you should see the video of the Middle Eastern dancer playing.

Another piece of the app you don’t need is the Sound of the Day button. Remove it and its associated
event handler, and then move the StackPanel that contains the remaining buttons underneath the
MediaElement, and then wrap the entire structure in a Border for good measure. Listing 9-4 shows how the
Grid rpanel_right should now be laid out.

Listing 9-4. Grid rpanel_right Layout

<Grid x:Name="rpanel_right"
RelativePanel.AlignRightWithPanel="True"
RelativePanel.RightOf="rpanel_left"
RelativePanel.AlignTopWithPanel="True"
RelativePanel.AlignBottomWithPanel="True">

 <Border Margin="10,10,30,0"
BorderThickness="0,0,0,1"
BorderBrush="LightGray"
Padding="0,0,0,25"
MaxHeight="400"
VerticalAlignment="Top">

Chapter 9 ■ BaCkground tasks

346

<Grid>
<StackPanel Margin="0,250,0,0"

VerticalAlignment="Top"
HorizontalAlignment="Left"
Orientation="Horizontal"
Height="50">

<ToggleButton Content="Audio Message"
Background="Gray"
Click="ToggleRecord"
Margin="0,2.5,2.5,2.5" />

<Button Content="Video Message"
Background="Gray"
Click="ToggleRecordVideo"
Margin="2.5">

<FlyoutBase.AttachedFlyout>
<Flyout x:Name="flyout_videomessage"

Placement="Top">
<Grid Width="300"

Height="200"
Background="Gray">

<Grid.RowDefinitions>
<RowDefinition Height="80*" />
<RowDefinition Height="20*" />

</Grid.RowDefinitions>

<CaptureElement x:Name="capture_element"
Margin="2.5"
HorizontalAlignment="Stretch" />

<Button x:Name="stop_recording"
Height="50"
Content="Stop Recording"
Margin="2.5"
HorizontalAlignment="Stretch"
Grid.Row="1"
Click="OnStopVideoCapture" />

<MediaElement x:Name="media_message"
Grid.Row="0"
Grid.RowSpan="2"
Width="300"
AutoPlay="False"
Height="200"
Visibility="Visible"
MediaOpened="OnVideoMessageRecordingReady"
MediaEnded="OnVideoMessagePlaybackCompleted" />

</Grid>
</Flyout>

</FlyoutBase.AttachedFlyout>
</Button>

</StackPanel>

Chapter 9 ■ BaCkground tasks

347

<Border BorderThickness="1"
Background="Black"
Width="400"
BorderBrush="LightGray"
Height="250"
VerticalAlignment="Top"
HorizontalAlignment="Left">

<MediaElement x:Name="media"
AudioCategory="BackgroundCapableMedia"
Visibility="Visible"
Stretch="Fill"
AutoPlay="True"
AreTransportControlsEnabled="True"
Source="media/video/black.mp4" />

</Border>
<ScrollViewer Margin="405,0,0,0"

VerticalScrollBarVisibility="Auto"
VerticalScrollMode="Auto">

<TextBlock FontFamily="verdana"
FontSize="12"
FontWeight="ExtraLight"
Text="{x:Bind Feature.BIO, Mode=OneWay}"
TextWrapping="Wrap" />

</ScrollViewer>

</Grid>
 </Border>
</Grid>

The code in Listing 9-4 has a TextBlock that uses binding to pull data from a field called BIO. This is
part of some new types that you will be adding to the data model, so before you get into some more user
interface changes, let’s do that. For each event there will typically be a featured performer the Big Mountain
group markets heavily in the weeks leading to the occasion. Let’s create a new type to house the data for this
individual. Create a new class in the Library folder called BMXFeaturedPerformer and add the contents
from Listing 9-5 to it.

Listing 9-5. BMXFeaturedPerformer Class Definition

public class BMXFeaturedPerformer
{
 public string Name { get; set; }
 public string BIO { get; set; }
 public string VideoUri { get; set; }
 public string ImageUri { get; set; }
}

This class is attached to the data model through a property in the BMXEvent class called Feature. Add
a new property to BMXEvent of type BMXFeaturedPerformer called Feature. Next, modify LandingPage to
connect the changes to the data model. This will require adding a new property to the class called Feature.
You set this property in the constructor for LandingPage so that you don’t have to fire the PropertyChanged
event. Listing 9-6 illustrates.

Chapter 9 ■ BaCkground tasks

348

Listing 9-6. BMXFeaturedPerformer Class Definition

BMXFeaturedPerformer Feature { get; set; }
...
public LandingPage()
{
 this.InitializeComponent();
 this.Loaded += LandingPage_Loaded;

 ...
Feature = App.State.NextEvent.Feature;
...

 }
 ...

The media packet for Chapter 9 should include a text file called ArtistBio.txt. Copy it into a new
folder you add underneath the Media folder called Text. Now open App.xaml.cs and modify the OnLaunched
event handler as shown in Listing 9-7.

Listing 9-7. Modified Application OnLaunched Event

async protected override void OnLaunched(LaunchActivatedEventArgs e)
{
 var bio_path = "media\\text\\artistbio.txt";
 var bio = await Package.Current.InstalledLocation.GetFileAsync(bio_path);
 var roaming_folder = ApplicationData.Current.RoamingFolder;
 State = await AppState.FromStorageFileAsync(roaming_folder, "state.xml");
 State.NextEvent = null;
 if (State.NextEvent == null)
 {

State.NextEvent = new BMXEvent
{

EventID = Guid.NewGuid(),
Address = "350 5th Ave, New York, NY 10118",
Latitude = 40.7484,
Longitude = -73.9857,
CreateDate = DateTime.Now,
Description = "A night of wine and comedy",
EventTitle = "Comedy Night at the Empire State",
Duration = TimeSpan.FromHours(4),
StartDateTime = new DateTime(2015, 12, 1, 20, 0, 0),
Feature = new BMXFeaturedPerformer
{

BIO = await bio.ReadTextAsync(),
},

};
await State.SaveAsync();

 }

Chapter 9 ■ BaCkground tasks

349

 // Place the frame in the current Window
 Window.Current.Content = new ApplicationHostPage();

 Window.Current.Activate();
}

Note that the line where you set NextEvent to null is only there so that you can generate a new BMXEvent
which includes the new BMXFeaturedPerformer instance. Once you run the app once you can delete that line.

Continuing with the cleanup, move the title bar styling code from LandingPage into the
ApplicationHostPage constructor (and add new color settings, as shown in Listing 9-8).

Listing 9-8. New Color Settings for Title Bar

//set the application titlebar look
Var titlebar_color = Color.FromArgb(0xFF, 0x6A, 0x6A, 0x6A);
current_view.TitleBar.BackgroundColor = titlebar_color; //Colors.DarkGray;
current_view.TitleBar.InactiveBackgroundColor = titlebar_color;
current_view.TitleBar.ButtonBackgroundColor = titlebar_color;
current_view.TitleBar.ButtonInactiveBackgroundColor = titlebar_color;
current_view.TitleBar.InactiveBackgroundColor = titlebar_color;
current_view.TitleBar.ForegroundColor = Colors.White;
current_view.TitleBar.InactiveForegroundColor = Colors.White;
current_view.TitleBar.ButtonForegroundColor = Colors.White;
current_view.TitleBar.ButtonInactiveForegroundColor = Colors.White;

Also, while working on the title bar, go to the _geolocator_StatusChanged event handler and, within
that method, remove all instances where the title bar color is modified. You are almost done with your
cleanup at this point.

Go to the XAML definition for ImageBannerControl (in the General.UWP.Library project) and change
the stroke thickness for the Path object you use here to 2. Also modify the Stroke value (which indicated the
stroke color) to “LightGray”.

Finally, you need to modify the look and feel of UserIntroPage, the page that the user sees when a
profile cannot be found for them, so that it is in line with your shift to using the dark theme. Presently, if you
navigate to that page, the layout is aligned right and it is hard to see the controls on it. Let’s clean it up a bit.
Listing 9-9 shows the changes to make.

Listing 9-9. Changes Made to UserIntroPage Layout

<ScrollViewer VerticalScrollBarVisibility="Auto"
VerticalScrollMode="Auto"
Background="#FF6A6A6A">

 <StackPanel Orientation="Vertical"
HorizontalAlignment="Center">

...
 </StackPanel>

</ScrollViewer>

To get this page to show, you may need to set State.UserProfile to null (as you did with NextEvent).
Once you have tested it to your satisfaction, remove the line, and then build and run the app. Figure 9-1
shows how it looks on our machine.

Chapter 9 ■ BaCkground tasks

350

You are now ready to move forward with applying background execution to BigMountainX. Let’s get started.

Running in the Background
Windows 10 apps use background tasks to provide functionality that runs regardless of whether the
underlying app is presently running. When registered, background tasks are initiated by external events
called triggers and are allowed to start based on a number of criteria called conditions, all of which must be
true in order for the background task to run. This is true even if the trigger event is fired. A triggering event
for background tasks might be time, or some system event like the completion of a software installation or
system update.

Because of the requirements around speed and fluidity, it is important that background tasks don’t
run rampant, slowing down the system without the user’s knowledge. So tasks are executed through a
resource-managed environment that provides only a limited amount of time to the background task to be
used to run its arbitrary code. To that end, the following rules associated with processing are enforced by
the system:

• Background tasks have no CPU time quota.

• Background tasks have a guarantee of only 10% of CPU.

• Background tasks have a wall clock quota of 25 second, plus 5 seconds for
cancellation. The only exception to this rule is with long-running tasks.

• Background tasks have a memory quota for a minimum of 16MB (the ceiling on the
actual amount is variable by device).

• As with memory, background tasks have a network quota which is also variable
by device.

Figure 9-1. New look for BigMountainX

Chapter 9 ■ BaCkground tasks

351

Given that Windows UWP 10 apps function in this manner, the question is what an app can do while
not in the foreground. Windows 10 provides a number of features to give an app the opportunity to execute
from a not-running state, execute from the background, or continue to execute when switched from the
foreground. The execution mechanisms, even though they aren’t in the foreground, are optimized for system
performance and longer battery life. Some scenarios where Windows 10 allows this are as follows:

• To perform a task at a timed interval.

• To continue the background transferring of data after an app is closed.

• To continue the playback of audio after an app is closed (which you saw in
Chapter 7)

• To perform a task when a system event occurs.

Before you can begin using a background task, you have to request permission from the user to do so.
This step is similar to the one that you took in Chapter 8 before being allowed to access the user’s location
data. In that case, the concern was primarily privacy (but also battery life to a lesser extent). In this case,
the concern is primarily device performance. As stated earlier, the choice of whether your app runs in the
background is a choice that the user, not you, makes. To request access to create and run background tasks,
use the BackgroundExecutionManager class. This class has a method RequestAccessAsync that is used to
request permission from the user. This request must be made each time you need to start a task because the
permission to do so may be disabled by the user at any point in time.

In the next example, you will create a generic method for requesting access to the background task
engine and executing the task creation code. Using a pattern like this alleviates the effort of constantly calling
RequestAccessAsync and testing for the results of that call. Open ApplicationHostPage.cs and modify it as
shown in Listing 9-10. Changes are in bold.

Listing 9-10. Changes to ApplicationHostPage

async private void ApplicationHostPage_Loaded(object sender, RoutedEventArgs e)
{
 if (App.State.UserProfile == null)

root_frame.Navigate(typeof(UserIntroPage));
 else
 {

var access_status = await Geolocator.RequestAccessAsync();
switch (access_status)
{

case GeolocationAccessStatus.Allowed:
root_frame.Navigate(typeof(LandingPage));
await InitializeApplication();
break;

case GeolocationAccessStatus.Denied:
root_frame.Navigate(typeof(NoLocationPage));
break;

case GeolocationAccessStatus.Unspecified:
break;

}

 }
}

Chapter 9 ■ BaCkground tasks

352

private async Task InitializeApplication()
{
 await InitializeLocation();
}

private async Task InitializeLocation()
{
 CurrentLocation = await _geolocator.GetGeopositionAsync();
 GeoLocationChanged?.Invoke(CurrentLocation.Coordinate.Point);
 var fence_id = App.State.NextEvent.EventID.ToString();
 var fences = GeofenceMonitor.Current.Geofences;
 var fence = fences.Where(i => i.Id == fence_id).FirstOrDefault();
 if (fence == null)
 {

Geocircle event_radius = new Geocircle(new BasicGeoposition
{

Latitude = App.State.NextEvent.Latitude.Value,
Longitude = App.State.NextEvent.Longitude.Value,

}, 100);

fence = new Geofence(fence_id, event_radius);

//add a geofence
GeofenceMonitor.Current.Geofences.Add(fence);

 }
}

public async Task StartBackgroundTaskAsync(Action create_task_action, string error_message)
{
 var status = await BackgroundExecutionManager.RequestAccessAsync();
 switch (status)
 {

case BackgroundAccessStatus.AllowedMayUseActiveRealTimeConnectivity:
case BackgroundAccessStatus.AllowedWithAlwaysOnRealTimeConnectivity:

create_task_action();
break;

case BackgroundAccessStatus.Denied:
await new MessageDialog(error_message).ShowAsync();
break;

 }
}

In Listing 9-10, you extract the location activation code into its own method called InitializeLocation
and call it from a new method you add to the class, InitializeApplication. You also modify the page loaded
event to call InitializeApplication when location is available and the app is about to navigate to LandingPage.
This is all cleanup stuff, though. The real change is in adding the method StartBackgroudTaskAsync, which
accepts a delegate that represents the action that occurs if the background task is allowed to run. If background
task execution is not allowed, a pop-up is presented to the user, letting them know the situation. The second
argument of the method is an error message that is passed into this dialog.

Chapter 9 ■ BaCkground tasks

353

Defining a Task to Run in the Background
In Chapter 7, you created a background task that you used to keep music playing in the background when
your app was minimized. To do that, you had to create a new library called a Windows Runtime Component.
For a quick refresher, see the section on playing audio in the background from that chapter.

In the BMX.BackgroundTasks project, right-click the project node in Solution Explorer and add a new
class called WallpaperSwitcherTask. Modify the code in this class to match Listing 9-11.

Listing 9-11. WallpaperSwitcherTask Background Task Definition

sealed public class WallpaperSwitcherTask : IBackgroundTask
{
 public void Run(IBackgroundTaskInstance taskInstance)
 {

 }
}

Listing 9-11 represents the base amount of code that is needed to create a background task.
All background tasks must be defined within a Windows Runtime Component library like BMX.
BackgroundTasks and must implement the interface IBackgroundTask. This task defines a method, Run,
which represents the method that is called when the background task is triggered. This is the method you
use to do the work of the background task. When a background task is triggered to run, the system will create
an instance of this task and an interface to this instance will be passed in as a parameter to the Run method.
IBackgroundTaskInstance represents this interface. It defines a method, GetDeferral, which informs that
system that the task might continue to perform work after the Run method ends. It also defines the following
properties:

• InstanceId: Gets the instance ID of the background task instance.

• Progress: Gets or sets progress status for a background task instance.

• SuspendedCount: Gets the number of times the resource management policy caused
the background task to be suspended.

• Task: Gets access to the registered background task for this background task
instance.

• TriggerDetails: Gets additional information associated with a background
task instance.

An important mindset to maintain while creating background tasks, particularly if you are targeting
the Windows ecosystem at large, is that Windows may be operating on devices that have processing and
memory constraints. Background tasks are not windows services or daemons that run in the background
indefinitely. They are designed at present to come alive, do some work, and disappear. Four key issues
should be examined, and addressed if necessary, in every background task you create:

• The cost to the system in memory usage and CPU time

• How task cancelation is handled

• Running in deferral

• Progress feedback

Chapter 9 ■ BaCkground tasks

354

To identify the cost to the system of running a given background task, use the BackgroundWorkCost
class. This class has a property named CurrentBackgroundWorkCost which returns an enum called
BackgroundWorkCostValue. To report progress, you can use the Progress property on the supplied
taskInstance object. For cancellation, the CancellationTokenSource object (part of System.Threading)
can be utilized. Listing 9-12 adds code to your background task that utilizes these classes and properties.

Listing 9-12. Implementation of Wallpaper Switcher Background Task

sealed public class WallpaperSwitcherTask : IBackgroundTask
{
 public void Run(IBackgroundTaskInstance taskInstance)
 {

//cost
var cost = BackgroundWorkCost.CurrentBackgroundWorkCost;
if (cost == BackgroundWorkCostValue.High)

return;

//handle cancelation if needed
var cancel = new CancellationTokenSource();
taskInstance.Canceled += (s, e) =>

{
cancel.Cancel();
cancel.Dispose();

};

//progress
taskInstance.Progress = 0;

 }
}

In Listing 9-12, you add some boilerplate code to handle cancelation, task progress, and to examine
the system impact on the task running. For the use of deferrals in a background task, see the discussion on
background audio from Chapter 7.

Registering a Background Task
Once you have a background task defined, registering it in your foreground app is relatively straightforward.
Although it is not necessary for all background tasks (audio background tasks require it), it is a good idea to
add the Windows Runtime Component library as a reference to your foreground app project. In your case,
you have already added BMX.BackgroundTasks as a reference to the BigMountainX project, so there is no
need to perform this step. The next step is to declare it in the app’s manifest so that it is clear to the system
that your app uses this kind of feature. This chapter began by talking about some of the disadvantages of
traditional applications as they relate to the use of system resources. Again, given that legacy applications
can run in the background without user notification or involvement (beyond starting them), the system as
a whole may suffer from perceived laggy-ness. It’s not that there is anything inherently wrong with running
applications in the background, but the impact of such activity is scarcely communicated to the user. You
would be surprised how many foreground applications on your system have one or more background tasks
running, even when the app isn’t running!

Chapter 9 ■ BaCkground tasks

355

Following the overarching theme of Windows 10, decisions like this aren’t left to the application
developer but are delegated to the user. It’s up to the user to pick which applications should run in the
background. To help facilitate this, Modern Windows 10 apps seeking to use background tasks must
explicitly declare themselves as such and specifically indicate which types of background tasks they expose.

Open BigMountainX’s package.appxmanifest and in the Declarations tab add a new background
task declaration. In the supported task types section, check Timer. Now set the entry point for this
new declaration to the fully qualified type name of WallpaperSwitcherTask (BMX.BackgroundTasks.
WallpaperSwitcherTask). Figure 9-2 shows the declaration.

In Figure 9-2, the entry point field represents the fully qualified type name of the class that contains
an implementation of the background task. It should be used in scenarios where your background task has
been developed using C# or C++/Cx. If the background task is defined in the hosting JavaScript application,
the start page field should be populated with the path to the dedicated worker file. If you were to create the
background task and attempt to register it without declaring it in this manner, the app would fail with an
Access Denied error.

Now that you have the background task declared in the manifest and have the runtime component
that contains your background task properly referenced, you can use the BackgroundTaskBuilder class to
construct your background task. In the BigMountainX app, let’s add a should-have-been-there feature that
takes images of the fun people are having at Big Mountain Xocial events and sets them as the background on
the user’s desktop or phone every few minutes. This is a feature that Windows contains but has to date been
completely missing from Windows Phone. To do this, you add a context menu to the ImageBannerControl
instance on LandingPage with a menu item that, when clicked, initializes your WallpaperSwitcherTask class
as a background task. Listing 9-13 illustrates. Changes are in bold.

Figure 9-2. Declaring wallpaper switcher as background task in app manifest

Chapter 9 ■ BaCkground tasks

356

Listing 9-13. Implementing a Context Menu on the ImageBannerControl Instance

...
PopupMenu image_banner_menu;

public LandingPage()
{
 ...

 image_banner_menu = new PopupMenu();

 image_banner_menu.Commands.Add(new UICommand("Start wallpaper", (ui_command) =>
 {

var task_name = "should-have-been-there";
var previous_task_list = BackgroundTaskRegistration.AllTasks.Values;
var registered = previous_task_list.Where(i => i.Name == task_name).FirstOrDefault();

if (registered == null)
{

var task = new BackgroundTaskBuilder();
task.Name = task_name;
task.TaskEntryPoint = typeof(BMX.BackgroundTasks.WallpaperSwitcherTask).ToString();
task.Register();
ui_command.Label = "Stop wallpaper switcher";

}
else
{

//unregister if button is clicked again
registered.Unregister(true);
ui_command.Label = "Start wallpaper";

}
 }));
}

async private void Img_banner_PointerPressed(object sender, PointerRoutedEventArgs e)
{
 await image_banner_menu.ShowAsync(e.GetCurrentPoint(this).Position);
}
...

In Listing 9-13, you modify LandingPage by adding a PopupMenu field called image_banner_menu.
This field is instantiated in the constructor for LandingPage and then a single command is added to it.
Commands, of type UICommand, are essentially the menu items that are displayed when the pop-up menu
shows. Each UICommand is made up of a label that displays when the pop-up is shown and a delegate that
is fired when the associated label is clicked. In this case, the command “Start Wallpaper” is instantiated with
a label of the same name and a delegate that represents attempts to define and register the background task.

To register the background task, you first query to see if a task by the specified name has already been
defined; two tasks with the same name cannot be defined in a system. If the task has not been registered
(if you do not find it in the list of registered tasks), you create a new one using the BackgroundTaskBuilder
class. BackgroundTaskBuilder represents a background task to be registered with the system. In order for it
to function properly, it expects two critical values to be set: a Name uniquely identifies the task in the system
while TaskEntryPoint essentially indicates to the system which class will serve as the object to load and

Chapter 9 ■ BaCkground tasks

357

call Run on. It goes without saying that the fully qualified type name you specify here must point to a type
that is in a Windows Runtime Component, and that implements IBackgroundTask. It will also need to be
referenced for the background task to work.

Once the task is properly configured, you call the register method to register it and finally update the
associated UICommand’s label to indicate that the wallpaper switcher task has started and can now only be
stopped. The alternative case is that the task has previously been registered, in which case you unregister it
and update the label to the UICommand to indicate that the user can now start the wallpaper switcher.

Run the code now and you should note that the app crashes with an error when you click the menu item
to start the wallpaper switcher. You may experience a situation where the context menu events are not being
fired at certain areas of the ImageBannerControl. If you are having this issue, open ImageBannerControl’s
XAML layout and add a background color to the root Grid of the control. Use the color #FF6A6A6A so that the
control continues to blend well with the page it is currently on (LandingPage). This is to be expected based
on what you have done so far. In the next section, you will get into the missing piece the puzzle that, when left
out, will cause this error–the last thing you need to add before registration of the background task will work.

Implementing Triggers
The background task processing system requires at least two bits of information in order to start a
background task up and call the Run method on it. It needs to know the task that intends to run; the
background task definition discussed in the previous section takes care of this bit. It also needs to have a
triggering event associated with the background task specified so that when the targeted trigger is observed
by the system, it in turn triggers the task. Triggers indicate when a task should run and provide a set of
conditions that must be true for the task to run. When a trigger is fired, the underlying task infrastructure
launches the class and calls the method associated with the trigger. This is done whether the app is
presently running, suspended, or completely removed from memory. Without a trigger associated with the
background task you created in the previous section, the task would never be run, hence the error message
(rather than you pulling your hair out trying to figure out why the task in not firing). The complete list of
triggers available to apply to a background task is beyond the scope of this book, but many of them can be
found on MSDN at https://msdn.microsoft.com/en-us/library/windows/apps/br229871.aspx.

For the purposes of this example, you will be working with a trigger called TimeTrigger which, as
you might image, triggers the associated background task once a redefined period of time has passed.
TimeTrigger takes two arguments in its constructor. The first argument, freshnessTime, is a uint that defines
the length of time (in minutes) between attempts to activate the task. For TimeTrigger this value can be no
less than 15. The second argument, oneShot, tells the system if this particular task will be run just once (true)
or indefinitely. Listing 9-14 rewrites the delegate definition from Listing 9-13 to include a TimeTrigger.

Listing 9-14. Adding TimeTrigger to the Background Task Definition

var task_name = "should-have-been-there";
var previous_task_list = BackgroundTaskRegistration.AllTasks.Values;
var registered = previous_task_list.Where(i => i.Name == task_name).FirstOrDefault();

if (registered == null)
{
 var task = new BackgroundTaskBuilder();
 task.Name = task_name;
 task.TaskEntryPoint = typeof(BMX.BackgroundTasks.WallpaperSwitcherTask).ToString();
 TimeTrigger timer = new TimeTrigger(20, false);
 task.SetTrigger(timer);
 task.Register();
 ui_command.Label = "Stop wallpaper switcher";
}

https://msdn.microsoft.com/en-us/library/windows/apps/br229871.aspx

Chapter 9 ■ BaCkground tasks

358

else
{
 //unregister if button is clicked again
 registered.Unregister(true);
 ui_command.Label = "Start wallpaper switcher";
}

In Listing 9-14, you add a new time trigger that is run every 20 minutes.

Implementing Wallpaper Switching
Your wallpaper changing functionality relies on the class UserProfilePersonalizationSettings, which
can be used to either attempt to change a user’s wallpaper or their lock screen image. Unlike many of the
system-wide, user-impacting features available to UWP developers, this feature does not require user
permissions to enable it; it does, however, need to be tested for because the feature set is not available on all
Windows platforms. You won’t add the wallpaper changing feature directly to the WallpaperSwitcherTask
class; rather you will use this opportunity to highlight how both the foreground and background apps
can access the same code base. You will do this by adding this code to your General.UWP.Library project
and then referencing that project in BMX.BackgroundTasks so that both the app in the foreground and
WallpaperSwitcherTask running in the background have the ability to change the wallpaper. Let’s start by
copying the images from your install location to the user’s app data folder. Listing 9-15 illustrates by adding
some new functionality to the InitializeApplication function of ApplicationHostPage.

Listing 9-15. Adding Functionality to InitializeApplication

private async Task InitializeApplication()
{
 //copy images to appdata
 var local_folder = Windows.Storage.ApplicationData.Current.LocalFolder;
 var install_path = Windows.ApplicationModel.Package.Current.InstalledLocation;
 var media_path = await install_path.GetFolderAsync("media\\images");
 var images = await media_path.GetFilesAsync();
 foreach (var image in images)
 {

try
{

await local_folder.GetFileAsync(image.Name);
continue;

}
catch { }
await image.CopyAsync(local_folder, image.Name, ReplaceExisting);

 }

 //initialize location
 await InitializeLocation();
}

The new code simply reads all the image files in the Media/Images folder of your install location and
writes them to the root of the user’s local app data folder. The following namespace declaration must be
added to the class for the use of ReplaceExisting to work:

using static Windows.Storage.NameCollisionOption;

Chapter 9 ■ BaCkground tasks

359

Be sure to also change the Loaded event handler of this page so that InitializeApplication is now
called before LandingPage is navigated to. Listing 9-16 illustrates.

Listing 9-16. Modifications to ApplicationHostPage Loaded Handler

async private void ApplicationHostPage_Loaded(object sender, RoutedEventArgs e)
{
 if (App.State.UserProfile == null)

root_frame.Navigate(typeof(UserIntroPage));
 else
 {

var access_status = await Geolocator.RequestAccessAsync();
switch (access_status)
{

case GeolocationAccessStatus.Allowed:
await InitializeApplication();
var root_frame_type = root_frame.Content?.GetType();
if (root_frame_type != typeof(LandingPage))

root_frame.Navigate(typeof(LandingPage));

break;
case GeolocationAccessStatus.Denied:

root_frame.Navigate(typeof(NoLocationPage));
break;

case GeolocationAccessStatus.Unspecified:
break;

}

 }
}

The way the app is approached at this point will require that it is fully initialized before LandingPage is
displayed to the user. This is because you are depending on files later in the app that only become available
after InitializeApplication is completed.

Now you get to the good part. Add a new class to General.UWP.Library called UserSettings and
implement it as shown in Listing 9-17.

Listing 9-17. UserSettings Class Definition

...
using static Windows.Storage.CreationCollisionOption;
using profile = Windows.System.UserProfile.UserProfilePersonalizationSettings;
public static class UserSettings
{
 async public static Task<uint> ChangeWallpaperAsync()
 {

if (UserProfilePersonalizationSettings.IsSupported())
{

//open file
var local_folder = Windows.Storage.ApplicationData.Current.LocalFolder;
var file = await local_folder.CreateFileAsync("marker.txt", OpenIfExists);

Chapter 9 ■ BaCkground tasks

360

//read and convert value of file
var value = await file.ReadTextAsync();
var current_index = uint.Parse(value);

//get file for index
var image_path = $"ms-appdata:///local/club{current_index}.jpg";
var image_uri = new Uri(image_path);
var image_file = await StorageFile.GetFileFromApplicationUriAsync(image_uri);

//display image file
var was_set = await profile.Current.TrySetWallpaperImageAsync(image_file);

if (was_set)
{

//increment index and store in file
current_index++;
if (current_index > 7)

current_index = 1;

await file.WriteTextAsync(current_index.ToString());
}
return current_index;

}
return 0;

 }
}

Listing 9-17 defines the static class UserSettings, which at present defines a single static method
ChangeWallpaper. ChangeWallpaper reads a numeric value from marker.txt (you will see more of this
in a minute) and uses it to generate a file path that points to one of the seven images the app provides.
(If you have not done this thus far, download the resource packet for this chapter. In it you will find the seven
images we are discussing here, club1 through club7. Copy them to the folder Media/Images and you will be
all set). From the file path you get the actual file using StorageFile.GetFileFromApplicationUirAsync;
you then use that file to set the wallpaper on the next line. If the wallpaper sets correctly, you increment the
index read from your marker text file and write the new value back to the file so that the next time you read
the file it will provide that incremented value. If the value of current index is greater than seven, you simply
restart the count by setting its value to one.

Now head over to the LandingPage constructor and modify the code to initialize the pop-up context
menu as shown in Listing 9-18.

Listing 9-18. Modifications to LandingPage Constructor

//place in namespace declaration area
using static Windows.Storage.CreationCollisionOption;

//change to context menu
image_banner_menu.Commands.Add(new UICommand("Start wallpaper switcher", async (ui_command) =>
{

 var task_name = "should-have-been-there";
 var previous_task_list = BackgroundTaskRegistration.AllTasks.Values;
 var registered = previous_task_list.Where(i => i.Name == task_name).FirstOrDefault();

Chapter 9 ■ BaCkground tasks

361

 if (registered == null)
 {

var local_folder = Windows.Storage.ApplicationData.Current.LocalFolder;
var file = await local_folder.CreateFileAsync("marker.txt", OpenIfExists);
await file.WriteTextAsync("1");

var task = new BackgroundTaskBuilder();
task.Name = task_name;
task.TaskEntryPoint = typeof(BMX.BackgroundTasks.WallpaperSwitcherTask).ToString();
TimeTrigger timer = new TimeTrigger(20, false);
task.SetTrigger(timer);
task.Register();
ui_command.Label = "Stop wallpaper switcher";

 }
 else
 {

//unregister if button is clicked again
registered.Unregister(true);
ui_command.Label = "Start wallpaper switcher";

 }

}));

image_banner_menu.Commands.Add(new UICommand("Next Wallpaper", async (ui_command) =>
 {

await UserSettings.ChangeWallpaperAsync();
 }));

In Listing 9-18, you add a new menu item to the ImageBanner’s context menu. Now users of the app
can explicitly change the wallpaper in real time. You also made a modification to the code that runs when
the background wallpaper switcher is started. Now before starting the process of registering the task, you
create the marker file and set its initial value to 1. WallpaperSwitcherTask uses ChangeWallpaper in much
the same way. The difference in implementation here is that you set the response of the call, the value of the
current index, as the value of Progress. Listing 9-19 illustrates.

Listing 9-19. Integrating ChangeWallpaperAsync

async public void Run(IBackgroundTaskInstance taskInstance)
{
 //cost
 var cost = BackgroundWorkCost.CurrentBackgroundWorkCost;
 if (cost == BackgroundWorkCostValue.High)

return;

 //handle cancelation if needed
 var cancel = new CancellationTokenSource();
 taskInstance.Canceled += (s, e) =>

Chapter 9 ■ BaCkground tasks

362

{
cancel.Cancel();
cancel.Dispose();

};

 //progress
 taskInstance.Progress = await UserSettings.ChangeWallpaperAsync();
}

Add a reference to General.UWP.Library to BMX.BackgroundTasks and then run and use the Next
Wallpaper button. You should see your desktop wallpaper toggle between images, as shown in Figure 9-3.

Before you can finish this app, you still need to make one quick modification to the code base. If you run
the app now and start the wallpaper switching, you might notice that the wallpaper never actually switches.
This is not because you have a bug in your code or something has been done wrong; the problem on your
system might be that the Run method exits before the ChangeWallpaperAsync method is done. To prevent
this from happening (since it might take a moment to load up these large images), you apply the deferral
pattern to the background task. Listing 9-20 shows the modifications to be made (highlighted in bold).

Listing 9-20. Applying Task Deferral to Wallpaper Switcher Background Task

private BackgroundTaskDeferral _deferral; // Used to keep task alive
async public void Run(IBackgroundTaskInstance taskInstance)
{

 //cost
 var cost = BackgroundWorkCost.CurrentBackgroundWorkCost;
 if (cost == BackgroundWorkCostValue.High)

return;

Figure 9-3. The Next Wallpaper button in action

Chapter 9 ■ BaCkground tasks

363

 //handle cancelation if needed
 var cancel = new CancellationTokenSource();
 taskInstance.Canceled += (s, e) =>

{
cancel.Cancel();
cancel.Dispose();

};

 //get deferral
 _deferral = taskInstance.GetDeferral();

 try
 {

//progress
var result = await UserSettings.ChangeWallpaperAsync();
taskInstance.Progress = result;

 }
 catch (Exception ex)
 {

_deferral.Complete();
 }
}

In Listing 9-20, you simply make a call to the task instance’s GetDefferal method. This lets the system
know that the task should be kept running even after the Run method exits.

Reporting Progress
To report progress to the app (when the app is running in the foreground while the background
task is executing), BackgroundTaskRegistration provides the Progress event handlers.
BackgroundTaskRegistration also provides a Completed event that apps can use to be notified when the
background task has completed. The completion status or any exception thrown while the task ran is passed
to any completion handlers in the foreground app as an input parameter of the event handler. If the app is
suspended when the task is completed, it receives the completion notification the next time it’s resumed;
however, in cases where the app is terminated, it doesn’t receive the completion notification. In such cases,
it’s up to the app developer to persist any completion state information in a store that can also be accessed
by the foreground app.

Because your background task for wallpaper changing is basically endless, you won’t need the
Completed event. You will, however, use the Progress event to indicate to the user which image is being
displayed. In a real app, this would probably not be very relevant information; for us, though, it highlights
the use of the Progress event to communicate information back to the foreground app. Listing 9-21 modifies
the constructor for ApplicationHostPage to account for progress.

Listing 9-21. Adding Progress Checking to the Foreground App

var task_name = "should-have-been-there";
var previous_task_list = BackgroundTaskRegistration.AllTasks.Values;
var reg_task = previous_task_list.Where(i => i.Name == task_name).FirstOrDefault();
image_banner_menu.Commands.Add(new UICommand($"{(reg_task== null ? "Start" : "Stop")}
wallpaper switcher", async (ui_command) =>

Chapter 9 ■ BaCkground tasks

364

 {
previous_task_list = BackgroundTaskRegistration.AllTasks.Values;
var registered = previous_task_list.Where(i => i.Name == task_name).FirstOrDefault();
if (registered == null)
{

var local_folder = Windows.Storage.ApplicationData.Current.LocalFolder;
var file = await local_folder.CreateFileAsync("marker.txt", OpenIfExists);
await file.WriteTextAsync("1");

var task = new BackgroundTaskBuilder();

task.Name = task_name;
task.TaskEntryPoint = typeof(BMX.BackgroundTasks.WallpaperSwitcherTask).ToString();
TimeTrigger timer = new TimeTrigger(20, false);
task.SetTrigger(timer);
registered = task.Register();
registered.Progress += async (s, args) =>
{

await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 ApplicationView.GetForCurrentView().Title = $"Showing Image
{args.Progress}");

};

ui_command.Label = "Stop wallpaper switcher";
}
else
{

//unregister if button is clicked again
registered.Unregister(true);
ui_command.Label = "Start wallpaper switcher";

}

 }));

Listing 9-21 starts moving the code to check for task registration, along with task naming, out of the
UICommand delegate. The reason for this is that the use of Start or Stop in the menu item depends on the
whether the background task is registered. Previously, when this was inside the delegate, the app always
started with the menu item using the “Start” terminology. This was incorrect since when the app starts
after a background task has been registered, the user should initially have the option to stop the task. The
Progress event handler does not do much here. You only use it to display a string on the app’s title bar
indicating which image will be displayed next.

Now that you have all the pieces of the background task puzzle in place, the final step is to transition
the code inside your UICommand event handler from not making the call to RequestAccessAsync to doing so.
RequestAccessAsync must be called (in Windows 10) before the TimeTrigger will be allowed to trigger a
background task. Listing 9-22 modifies this class to do this.

Chapter 9 ■ BaCkground tasks

365

Listing 9-22. Applying Generic RequestAccessAsync Check

if (registered == null)
{
 var local_folder = Windows.Storage.ApplicationData.Current.LocalFolder;
 var file = await local_folder.CreateFileAsync("marker.txt", OpenIfExists);
 await file.WriteTextAsync("1");

 await ApplicationHostPage.Host.StartBackgroundTaskAsync(() =>
 {

var task = new BackgroundTaskBuilder();

task.Name = task_name;
task.TaskEntryPoint = typeof(BMX.BackgroundTasks.WallpaperSwitcherTask).ToString();
TimeTrigger timer = new TimeTrigger(20, false);
task.SetTrigger(timer);
registered = task.Register();
registered.Progress += async (s, args) =>
{

await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
ApplicationView.GetForCurrentView().Title = $"Showing Image {args.Progress}");

};

ui_command.Label = "Stop wallpaper switcher";
 }, "Cant do this now");

}
else
{
 //unregister if button is clicked again
 registered.Unregister(true);
 ui_command.Label = "Start wallpaper switcher";
}

Conditions
Background tasks can also have conditions associated with them. You can add these using the AddCondition
method of BackgroundTaskBuilder. Conditions applied to a background task must all evaluate to true for
the task to execute. For example, if you want the background task from Listing 9-22 to execute only if an
Internet connection is available, adding the snippet from Listing 9-23 after the call to SetTrigger activates
the condition.

Listing 9-23. Adding Conditions to a Background Task

...
task.SetTrigger(timer);
task.AddCondition(new Background.SystemCondition
 (Background.SystemConditionType.InternetAvailable));
...

Chapter 9 ■ BaCkground tasks

366

Table 9-1 lists the possible condition types.

More on Triggers
As you can imagine, the timer-based background task isn’t the only type of background task that an
application can use. Like conditions, background tasks can be launched based on system events that occur
during a user’s session. Up to this point, you’ve been using the TimeTrigger class to trigger a background
task; this trigger executes the background task at a given time interval. Table 9-2 provides a list of some of the
possible triggers that can be used to initiate background tasks. Many trigger types follow a similar pattern, so
this section focuses on common maintenance and system triggers.

Table 9-1. Conditions Types

Member Description

UserPresent Specifies that the background task can only run when the user is present.
If a background task with the UserPresent condition is triggered, and the
user is away, the task won’t run until the user is present.

UserNotPresent Specifies that background task can only run when the user isn’t present.
If a background task with the UserNotPresent condition is triggered, and
the user is present, the task won’t run until the user becomes inactive.

InternetAvailable Specifies that the background task can only run when the Internet is
available. If a background task with the InternetAvailable condition
is triggered, and the Internet isn’t available, the task won’t run until the
Internet is available again.

InternetNotAvailable Specifies that the background task can only run when the Internet isn’t
available. If a background task with the InternetNotAvailable condition is
triggered, and the Internet is available, the task won’t run until the Internet
is unavailable.

SessionConnected Specifies that the background task can only run when the user’s session is
connected. If a background task with the SessionConnected condition is
triggered, and the user session isn’t logged in, the task will run when the user
logs in.

SessionDisconnected Specifies that the background task can only run when the user’s session
is disconnected. If a background task with the SessionDisconnected
condition is triggered, and the user is logged in, the task will run when the
user logs out.

Chapter 9 ■ BaCkground tasks

367

For applications that require code to execute when a system event beyond the scope of time and AC
power occurs, the SystemTrigger class is the catch-all alternative. SystemTrigger is instantiated with an
enumeration that identifies which system event triggers the underlying background task. Listing 9-24 creates
a system trigger that is fired when the device gains Internet connectivity.

Listing 9-24. System Trigger

var task = new Background.BackgroundTaskBuilder();
var internet_available = new Background.SystemTrigger(Background.SystemTriggerType.
InternetAvailable, false);

...
task.SetTrigger(internet_available);
background_task = task.Register();

Table 9-3 lists the available system trigger types.

Table 9-2. Background Task Trigger Types

Trigger Name Description

Time trigger Windows.ApplicationModel.Background.TimeTrigger represents a time event
that triggers a background task to run.

System trigger Windows.ApplicationModel.Background.SystemTrigger represents a system
event that triggers a background task to run. Examples of system events are
network loss, network access, and the user signing in or signing out.

Push notification trigger Windows.ApplicationModel.Background.PushNotificationTrigger
represents an object that invokes a background work item on the app in
response to the receipt of a raw notification. Push notification is beyond the
scope of this book; for more information on setting up push notification services
for your Windows 10 app, go to the Windows 10 App Dev Center.

Maintenance trigger Windows.ApplicationModel.Background.MaintenanceTrigger represents a
maintenance trigger. Like TimeTrigger, MaintenanceTrigger is executed at the
end of a time interval (it can be configured to execute only once), but the device
must be connected to power for tasks that specify the trigger be valid.

Chapter 9 ■ BaCkground tasks

368

Revisiting Background Audio
An app performing background playback consists of two processes. The first process is the main app, which
contains the app UI and client logic, running in the foreground. The second process is the background
playback task, which implements IBackgroundTask like all UWP app background tasks. The background
task contains the audio playback logic and background services. The background task communicates with
the system through the System Media Transport Controls.

The lifetime of an audio background task is closely tied to your app's current playback status. For
example, when the user pauses audio playback, the system may terminate or cancel your app depending on
the circumstances. After a period of time without audio playback, the system may automatically shut down
the background task.

The IBackgroundTask.Run method is called the first time your app accesses either
BackgroundMediaPlayer.Current from code running in the foreground app or when you register a handler
for the MessageReceivedFromBackground event, whichever occurs first. Because there is no telling what will
happen inside of Run (meaning the background task may attempt to notify the foreground once called), we
recommended registering for the message received handler before calling BackgroundMediaPlayer.Current
for the first time. You won’t hit an error or anything, but you just might miss an important notification
coming from the background audio task.

Table 9-3. Some System Trigger Types

Trigger Type Description

SmsReceived The background task is triggered when a new SMS message is received
by an installed mobile broadband device.

UserPresent The background task is triggered when the user becomes present.
Note: An app must be placed on the lock screen before it can
successfully register background tasks using this trigger type.

UserAway The background task is triggered when the user becomes absent. Note:
An app must be placed on the lock screen before it can successfully
register background tasks using this trigger type.

NetworkStateChange The background task is triggered when a network change occurs, such
as a change in cost or connectivity.

InternetAvailable The background task is triggered when the Internet becomes available.

SessionConnected The background task is triggered when the session is connected. Note:
An app must be placed on the lock screen before it can successfully
register background tasks using this trigger type.

ServicingComplete The background task is triggered when the system has finished
updating an app.

LockScreenApplicationAdded The background task is triggered when a tile is added to the lock screen.

LockScreenApplicationRemoved The background task is triggered when a tile is removed from the lock
screen.

TimeZoneChange The background task is triggered when the time zone changes on the
device (for example, when the system adjusts the clock for Daylight
Saving Time).

OnlineIdConnectedStateChange The background task is triggered when the Microsoft account
connected to the account changes.

Chapter 9 ■ BaCkground tasks

369

As discussed earlier in this chapter, a background task will run its course and end once control leaves
the Run method, causing the Completed event to be raised. To keep the background task alive, your app must
request a BackgroundTaskDeferral from within the Run method. Once the task instance completes or is
cancelled, these tasks must call BackgroundTaskDeferral.Complete. In some cases, when your app gets the
Canceled event, it can be also followed by the Completed event. Also, your task may receive a Canceled event
while Run is executing, so be sure to manage this potential concurrence.

Let’s modify the audio background task you created in Chapter 7 so that it now illustrates
communication between the background and foreground of the app. For your Big Mountain X app, you will
be adding transport controls to the task bar icon for the app so that a user can use those controls to control
the playback of songs associated with the featured performer. When the user clicks one of these buttons, the
video playback in the foreground app stops and the background audio task takes over by playing the audio
in the background. All media audio playback in this sample happens in the background task even though all
control events are handled in the foreground. Listing 9-25 shows the changes to LandingPage.

Listing 9-25. Adding Media Transport Control Handling to Foreground Media Player

SystemMediaTransportControls _media_control;
...
public LandingPage(){
...
 //initializes the background audio task
 BackgroundMediaPlayer.MessageReceivedFromBackground += BackgroundMessageRecieved;
 _media_control = SystemMediaTransportControls.GetForCurrentView();
 _media_control.ButtonPressed += _media_control_ButtonPressed;

 _media_control.IsPreviousEnabled = true;
 _media_control.IsNextEnabled = true;
}

async private void BackgroundMessageRecieved(object sender, MediaPlayerDataReceivedEventArgs e)
{
 await this.Dispatcher.RunAsync(Windows.UI.Core.CoreDispatcherPriority.Normal, () =>
 {

media.Stop();
 });
}

private void _media_control_ButtonPressed(SystemMediaTransportControls sender,
SystemMediaTransportControlsButtonPressedEventArgs args)

{
 //send the a message to the background to handle the action
 BackgroundMediaPlayer.SendMessageToBackground(new ValueSet
 {

{"action",args.Button.ToString() }
 });
}

In Listing 9-25, you add a new SystemMediaTransportControls field to the LandingPage. You set the
properties for the controls you want shown in task bar media transport controls list. As it stands, it will show
the previous and next buttons with the play button greyed out. You can actually build and run the app at
this point to see how it displays on the taskbar. Because this encompasses not just the buttons found here

Chapter 9 ■ BaCkground tasks

370

but also any hardware buttons on your device, and even media transport control buttons on an attached
headset, this is a very powerful and versatile feature. Figure 9-4 illustrates how the controls look on the
Windows 10 task bar.

The background task also handles two events, BackgroundMessageReceived and ButtonPressed. In order
for the media transport controls to show in an enabled state (as you see in Figure 9-4), there must be an event
hander associated with ButtonPressed. The other event handler, BackgroundMessageReceived, is a generic
handler for any messages sent from the associated audio background task. In this case, the only things you want
the app to do if it gets a message from the background task is to stop playing audio. It goes without saying that in
the real world scenario you would most certainly be expecting the intent of a call from your audio background
task to be for more than just one action. As this sample deals primarily with controlling background audio from
the foreground, it is not necessary here. The real meat of the app is in the background task.

Open AudioPlayback.cs and modify the class definition as shown in Listing 9-26.

Listing 9-26. Implementing Background Audio Handling of Foreground Events

private BackgroundTaskDeferral _deferral; // Used to keep task alive
MediaPlayer _player;
public void Run(IBackgroundTaskInstance taskInstance)
{
 _deferral = taskInstance.GetDeferral();

 //declare controls for background task handling
 _player = BackgroundMediaPlayer.Current;
 _player.SystemMediaTransportControls.IsPreviousEnabled = true;
 _player.SystemMediaTransportControls.IsNextEnabled = true;

 //handle events
 BackgroundMediaPlayer.MessageReceivedFromForeground += ForegroundMessageReceived;
 _player.SystemMediaTransportControls.ButtonPressed += MediaButtonPressed;

 taskInstance.Task.Completed += (s, args) => _deferral.Complete();
}

Figure 9-4. Task bar media transport controls in action

Chapter 9 ■ BaCkground tasks

371

async private void ForegroundMessageReceived(object sender, ReceivedArgs e)
{
 if (e.Data.ContainsKey("action"))
 {

var button_string = e.Data["action"] as string;
var button_type = typeof(MediaButton);
var button = (MediaButton)Enum.Parse(button_type, button_string);
await Play(button);

 }
}

async private void MediaButtonPressed(SystemMediaTransportControls sender, ButtonArgs args)
{
 await Play(args.Button);
}

async Task Play(MediaButton button)
{
 switch (button)
 {

case MediaButton.Play:
_player.Play();
break;

case MediaButton.Pause:
_player.Pause();
break;

case MediaButton.Previous:
{

SendMessage("action", "stop");
var file_path = "ms-appx:///media/video/zaharat.mp4";
 var file = await StorageFile.GetFileFromApplicationUriAsync(new
Uri(file_path));
_player.SetFileSource(file);

}
break;

case MediaButton.Next:
{

SendMessage("action", "stop");
var file_path = "ms-appx:///media/video/black.mp4";
 var file = await StorageFile.GetFileFromApplicationUriAsync(new
Uri(file_path));
_player.SetFileSource(file);

}
break;

 }
}

Chapter 9 ■ BaCkground tasks

372

void SendMessage(string key, string value)
{
 BackgroundMediaPlayer.SendMessageToForeground(new ValueSet

{
{ key,value}

 });
}

For the code above to run, the namespace declarations in Listing 9-27 must be added (to shorten the
names of very long types).

Listing 9-27. Required Namespaces for Listing 9-26

using MediaButton = Windows.Media.SystemMediaTransportControlsButton;
using ButtonArgs = Windows.Media.SystemMediaTransportControlsButtonPressedEventArgs;
using ReceivedArgs = Windows.Media.Playback.MediaPlayerDataReceivedEventArgs;

Run the app now and test out the use of the transport controls to change the audio for your videos.

Monitoring the Contact Store
This final example will show the power and flexibility of background tasks in tandem with triggers and
conditions. One thing the Big Mountain folks you’ve been working with are mindful of is their mailing list.
It’s a critical component of their business (and one of the principal ways they get the word out about their
events). They would like to implement a feature that will give users of their app an opportunity to share
contact information for any new contact that gets added to the user’s machine with their app. In exchange
for this, they are offering a free drink for each 10 users added.

This kind of system event triggering based on criteria is one of the cool things about background tasks. For
this example, you will create a new background task that will handle each instance when a contact is added to
the contact store (by adding a user to the People Hub). Once your background task is triggered, it will utilize a
feature you will learn about in Chapter 10 to trigger a toast notification that will not only prompt the user to add
the contact, but also stay present in the notification center. Let’s get started by adding a new class to your BMX.
BackgroundTasks project called ContactsWatcher and then define is as shown in Listing 9-28.

Listing 9-28. Implementing ContactsWatcher

private BackgroundTaskDeferral _deferral; // Used to keep task alive
public void Run(IBackgroundTaskInstance taskInstance)
{
 //cost
 var cost = BackgroundWorkCost.CurrentBackgroundWorkCost;
 if (cost == BackgroundWorkCostValue.High)

return;

 _deferral = taskInstance.GetDeferral();
 Toast("Forward us that contact for a free drink!");
 _deferral.Complete();
}

Chapter 9 ■ BaCkground tasks

373

void Toast(string toast_message)
{
 try
 {

 var xml = ToastNotificationManager.GetTemplateContent(ToastTemplateType.
ToastImageAndText01);
var texts = xml.DocumentElement.GetElementsByTagName("text");
var text_node = texts.FirstOrDefault() as XmlElement;
text_node.AppendChild(xml.CreateTextNode(toast_message));

ToastNotification toast = new ToastNotification(toast_xml);
var notifier = ToastNotificationManager.CreateToastNotifier();
notifier.Show(toast);

 }
 catch (Exception ex)
 {

 }
}

The code in Listing 9-28 defines a Toast method that is called from the background task’s Run. If you
don’t recognize any of the types defined here, it’s because we haven’t discussed them at all. In the Chapter 10,
we will go into detail on how to create toast notifications. For now, just type it in.

The code to initialize the background task could probably be triggered by a checkbox in a user
preferences page to prevent the app from becoming annoying (so that it can be toggled on and off as needed
by the user), but for this demo you will keep it in ApplicationHostPage. As this is essentially a background
watcher that requires little in the way of permissions, placing it here is fine. You’ll tackle the other side of this
when the user clicks the tile notification. Listing 9-29 adds the code to the ApplicationInitialized method
of ApplicationHostPage.

Listing 9-29. Initializing ContactsWatcher

private async Task InitializeApplication()
{
 ...

 //initialize contacts watcher
 await StartBackgroundTaskAsync(() =>
 {

var task_name = "contacts-watcher";
var previous_task_list = BackgroundTaskRegistration.AllTasks.Values;
var registered = previous_task_list.Where(i => i.Name == task_name).FirstOrDefault();
registered?.Unregister(true);
registered = null;
if (registered == null)
{

BackgroundTaskBuilder task_builder = new BackgroundTaskBuilder();
task_builder.Name = task_name;
task_builder.TaskEntryPoint = typeof(ContactsWatcher).ToString();
 ContactStoreNotificationTrigger contact_trigger = new
ContactStoreNotificationTrigger();

Chapter 9 ■ BaCkground tasks

374

task_builder.SetTrigger(contact_trigger);
task_builder.Register();

}
 });

 //initialize location
 await InitializeLocation();
}

In Listing 9-29, you create the new task with a trigger of type ContactStoreNotificationTrigger. This
trigger is used to connect a background task to activities by the user that modifies the contact store. The final
step to activating this background task is to declare it in the application’s manifest. For tasks of this type you
can use the General task type. Figure 9-5 shows how to configure ContactsWatcher.

Run the app and then close it immediately. Now fire up the People app and add a new contact. Figure 9-6
shows what you should see.

Figure 9-5. Declaring ContactsWatcher

Chapter 9 ■ BaCkground tasks

375

That’s not all, though. If you look at the tray menu icon for the Action Center, you will notice that it now
has a solid white color (which indicates that there are unread notifications awaiting your evaluation). The
great thing about toast notifications is that they not only give the user an immediate prompt but are also
stored in the Action Center so that they can be evaluated at a later time.

Figure 9-7 shows the Action Center with the toasts you just received waiting to be evaluated.

Figure 9-7. Toast notifications in the Action Center

Figure 9-6. ContactsWatcher in action

Chapter 9 ■ BaCkground tasks

376

Background Transfers
Moving files over a network is a common activity in this modern age of computing. Whether you're uploading
video, audio, or images to a social networking site or downloading movies from a media catalog, there is a
fundamental need for this functionality. If the target file is very small, this is usually as simple as making a
connection to the content provider and pulling down (or pushing up) the desired content. But what happens
when the content is very large? Given that Windows 10 has been designed to be fast and fluid, allowing users
to quickly and seamlessly switch between applications, how do applications handle situations where long-
running network data-transfer activities are in progress, and the user moves the app out of the foreground
state? Surely the solution isn’t to tell the user, “Warning: don’t leave the app until the download is complete!”

The folks at Microsoft have this use case covered with the BackgroundTransfer functionality. Using
BackgroundDownloader, an application can schedule the download (or upload, using BackgroundUploader)
of content such that even if the application is suspended or terminated by the user, the download/upload
continues in the background. Listing 9-30 shows a simple example of using the BackgroundDownloader class
to pull down a large file from a remote resource. You might have code like this in the event handler for a user
interaction control (like a button) to pull down a given file.

Listing 9-30. BackgroundDownloader at Work

var uri = "http://download.blender.org/peach/bigbuckbunny_movies/BigBuckBunny_320x180.mp4";
var result_file = await Windows.Storage.KnownFolders.VideosLibrary.
CreateFileAsync("bigbunny.wmv");

var downloader = new BackgroundDownloader();
await downloader.CreateDownload(new Uri(uri), result_file).StartAsync();

Listing 9-30 shows sample code that might run in the event handler for a button that, when clicked,
initiates the download of a large file from a remote resource. For this example to run, you must add the Video
Library capability to the target application’s manifest, because that is the location to which the remote file is
downloaded. Once the button is clicked and the download begins, the user can switch away from the target
app or even stop it, and the download will still complete.

Summary
Now that you’ve completed your exploration of the ways in which to keep apps running in the background in
the Windows 10 ethos, let’s review some key points this chapter covered:

• You learned about the various types of triggers. For applications that require code
to execute even when a system is beyond the scope of time and AC power, the
SystemTrigger class is the catch-all alternative.

• Background tasks are meant to be quick-in-and-out, short-lived work units that
consume very little system resources. CPU and network usage constraints
apply to them.

• Using the BackgroundTransfer functionality, BackgroundDownloader is a class that
can schedule a download (or upload, using BackgroundUploader) of content so that
even if the application is suspended or terminated by the user, the download/upload
will continue in the background.

• Background tasks execute in either a system-provided host executable or in the
app process.

http://download.blender.org/peach/bigbuckbunny_movies/BigBuckBunny_320x180.mp4

377

Chapter 10

Shell Integration

The discussion in the previous chapter ended with a sample that used a background task to send a toast
notification to the user whenever a contact was added to the user’s contacts store. Before you get into
notifications, you will be looking at some lesser known integration points between UWP apps and the
Windows System they reside on. Specifically, your focus in this chapter will be on the approach to windowing,
working with title bars (which you used to style Big Mountain X in the last chapter), wallpapers and lock
screens, and how UWP apps have the ability to modify the images they display. (You used the user profile APIs
in the last chapter when you built a background task that was able to change the user’s desktop wallpaper.)

Launch Conditions
You’ve been using the Application class since you started creating UWP samples. In essence, it
encapsulates an app, providing it with unhandled exception detection, application scoped resources,
lifetime management, and an entry point. Like the approach you take when creating pages, the Application
object associated with a particular app is defined in two layers, XAML and an associated code-behind file
that derives from a base Application class. Listing 10-1 shows the basic XAML for an application.

Listing 10-1. Basic XAML

<Application
 x:Class="BigMountainX.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:BigMountainX"
 RequestedTheme="Dark">

</Application>

Like Page (and UserControl), the XAML for defining an application specifies the base class as the
root element of the XAML document. In this case, you can assume that the actual class definition for the
application will derive from Application. The XAML element for Application also defines an x:Class
attribute that can be used to identify the object instance that will serve as the code-behind. Because of
its position in the application model, code generation, and activation sequence, Application has some
restrictions on its XAML usage:

• Other than the xmlns declarations, RequestedTheme, and x:Class, no other
attributes can appear on the Application root tag.

• Don’t attempt to change x:Class values that come from the project template
App.xaml pages; there are additional dependencies on using that naming scheme
that exist in the build actions.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Chapter 10 ■ Shell IntegratIon

378

• Don’t wire the Application event handlers in XAML. All event wiring should
be done in code (usually in the constructor). Also, you should generally use
method overrides rather than event syntax for an event (for example, you override
OnActivated to respond to that phase of the application life cycle.)

• The only allowed properties in an Application instance in XAML are the set of
elements to populate the Application.Resources property, using a XAML property
element usage.

The default project templates in Visual Studio generate an App class that derives from Application
and provides an entry point where you can add initialization code. Using the default template, the code-
behind subclass will always be named App (in Visual Studio 2015). The App class associates itself with the
corresponding XAML by calling the generated InitializeComponent method in its constructor. You can
add additional initialization code to the App constructor, but you will typically only add code to associate
handlers to Application events. For other initialization code, you should override one or more initialization
methods such as OnLaunched.

The system handles app lifetime by suspending your app whenever the user switches to another app or
to the desktop, and resuming your app whenever the user switches back to it. However, the system can also
terminate your app while it is suspended in order to free up resources. You should handle the Suspending
event to save your app state in case of termination, and override the OnLaunched method to restore your app
state. You should handle the Resuming event only if you need to refresh any displayed content that might
have changed while the app is suspended. You do not need to restore other app state when the app resumes.

The application object doesn’t just expose methods that are called by the system at various points
through the lifecycle of the app; it also exposes data about the nature of the associated activation scenario.
When an application is activated, the system notes the context under which it was launched. Using the
Application object, you can override various methods to enable distinct behavior for those specific
scenarios. It is this kind of targeted behavior based on activation context that is exploited in shell integration
scenarios like file pickers, contact pickers, and protocol/file activation.

Let’s look at a very simple example of this: protocol activation. If you remember, you saw this at work
in Chapter 8 when you performed integration with the Maps app. If you recall, you were able to launch the
Maps app by specifying a URI in Microsoft Edge that conformed to a protocol Maps supported: bingmaps://.
With protocol activation, an app registers as the default hander for a particular protocol. Each time that
protocol is used to open a resource, the system fires up the default handler for that protocol, passing it the
URI to help handle the request.

Open the app manifest for BigMountainX and add a new declaration for specifying protocols. Figure 10-1
shows the declarations tab of the package.appxmanifest file of the project.

http://dx.doi.org/10.1007/978-1-4842-1449-7_8

Chapter 10 ■ Shell IntegratIon

379

The name specified will correspond to the protocol name (so to access a resource using this protocol,
you would specify bmx://test/test or something of the sort). Build and deploy the app, and the open Edge
and attempt to navigate to bmx://hello world. Figure 10-2 should be what you see.

Figure 10-1. Protocol declaration in app manifest

Figure 10-2. App window without content

Chapter 10 ■ Shell IntegratIon

380

BigMountainX has been activated by the system but with no content specified. This should highlight
one important aspect of activation: activation is not launching. This means that the OnLaunched event is not
called when the app is activated. What is called is OnActivated. Listing 10-2 adds an override to OnActivated
to App.xaml.cs. Assume an InitializeAppAsync method that contains all the necessary app initialization
for BigMountainX (like a profile).

Listing 10-2. OnActivated Event Handler

async protected override void OnActivated(IActivatedEventArgs args)
{
 if (args.Kind == ActivationKind.Protocol)
 {

var protocol_args = args as ProtocolActivatedEventArgs;
var path = protocol_args.Uri.Host.ToLower();
await InitializeAppAsync();

if (path == "street")
{

StreetSideViewPage street_view = new StreetSideViewPage();
var center_point = new Geopoint(new BasicGeoposition
{

Latitude = App.State.NextEvent.Latitude.Value,
Longitude = App.State.NextEvent.Longitude.Value,

});
await street_view.InitializeAsync(center_point);
Window.Current.Content = street_view;

}
else
{

Window.Current.Content = new ApplicationHostPage();
}
Window.Current.Activate();

 }
}

In Listing 10-2, you use the Kind property of IActivateEventArgs to determine the kind of
activation that has occurred. Based on that, you convert the interface instance back to its concrete type,
ProtocolActivatedEventArgs. This class has properties that can be used to retrieve the URI that was used
to activate the app. Based on the URI value, you pull out the host and make a decision on what user interface
to present based on the value. If the value of host is the string “street”, you display the StreetSide view map as
the default content for the app; otherwise, you set an instance of ApplicationHostPage as the main window
content. This is, of course, a very simplified view of what can be done with protocol activation, but it does hit
all the main steps to utilizing the feature.

As can be seen from Listing 10-2, the use of the Application object for the purposes of shell integration
comes to light when you begin to consider application activation beyond just normal launching. Many of
the activation kinds have virtual methods that have been abstracted out of OnActivated. These convenience
methods allow you to separate the code out for those specific scenarios without having to manage the
control flow associated the scenario. If, for instance, you want to create a file picker, you can find method
overrides for handling those particular launch conditions. Figure 10-3 shows what the app looks like when
launched directly from the Microsoft Edge browser. You will add the page StreetsideViewPage to your app

Chapter 10 ■ Shell IntegratIon

381

a little bit later on in the chapter, so hold tight. To get the app to compile and run for now, add a new page
to the project entitled StreetSideViewPage with a function IntializeAsync that accepts a Geopoint as its
parameter. The page does not need to do anything for now.

Windowing
This might come as a surprise to you, but windowing features, the cornerstone of what makes Windows
“Windows,” are new to the UWP platform. If you ever had the chance to work with a Windows 8 desktop, you
will know why. With Windows 8, much was made of the intellectually sound choice to go back to single-page,
full-screen apps that offered very little in the form of multitasking. Because of this, the normal windowing
features you might be used to if you came from the world of WinForms or WPF did not exist. Although
Windows 10 UWP apps targeting at the desktop offer this feature now, it must be with an air of caution. If you
have been paying attention, you will remember that Windows 10 is a platform that can target anything from
an IoT device like a low-level controller to a surface hub. Neither of these would seem like good targets for
apps that utilizes windowing heavily. Because of this shift from the primarily desktop-oriented computing
world to the new one where mobility is essential and devices encircle the user rather than the opposite, the
approach to windowing has changed drastically in terms of the API.

Figure 10-3. StreetSide view window protocol activated

Chapter 10 ■ Shell IntegratIon

382

Opening New Windows
To open new windows, and also to work with the initial window that is opened by the system, there are a
number of important types that you will need to get comfortable with, the most important of which it the
CoreApplication class. CoreApplication is the low-level representation of the running app. Created by
the system as a singleton, this object enables apps to handle state changes, manage windows, and integrate
with a variety of UI frameworks. By calling the CreateNewView function, this class can be used to create
new application views (which correspond to a window if you are on a desktop). CreateNewView returns an
instance of a CoreApplicationView that represents a window and its associated UI thread. Because this
class provides access to the UI thread for the view, exposed via the Dispatcher property, you can use it
to inject code that will run within the context of that particular user interface. Another critical class is the
ApplicationViewSwitcher, which defines an important static method called TryShowAsStandaloneAsync
for displaying views in their own window. TryShowAsStandaloneAsync takes as an argument the id of the
view to be displayed. Acquiring this id can be somewhat tricky. We will get into the steps to do this in more
detail in a moment. First, let’s look at a third important class for enabling and managing application views,
the ApplicationView class. An application view (window) is the displayed portion of a UWP app. The
application view is not the same thing as the current page of the application. It is better thought of as the
container of the pages. On Windows, a user’s screen can have up to four windows of variable width displayed
simultaneously.

Presently, when a user wants to see the street view of the map on LandingPage, it appears directly
within the bounds of the MapControl on that page. You can improve usability by opening up the
street view of the map in a new window. Open LandingPage and replace the code in the event handler
OnShowStreetView with the code from Listing 10-3.

Listing 10-3. Creating an Application View

var view = CoreApplication.CreateNewView();
var view_id = 0;
var supported = true;
var center_point = map.Center;

await view.Dispatcher.RunAsync(Windows.UI.Core.CoreDispatcherPriority.Normal, async () =>
{
 view_id = ApplicationView.GetForCurrentView().Id;

 MapControl streetview_map = new MapControl();
 streetview_map.MapServiceToken = "<your map token>";
 streetview_map.PanInteractionMode = MapPanInteractionMode.Disabled;
 streetview_map.TiltInteractionMode = MapInteractionMode.Disabled;
 streetview_map.ZoomInteractionMode = MapInteractionMode.Disabled;
 streetview_map.CustomExperienceChanged += (s, args) =>
 {

if (streetview_map.CustomExperience == null)
{

view.CoreWindow.Close();
}

 };

Chapter 10 ■ Shell IntegratIon

383

 streetview_map.Center = center_point;
 if (streetview_map.IsStreetsideSupported)
 {

var street_panorama = await StreetsidePanorama.FindNearbyAsync(streetview_map.Center);
var street_exp = new StreetsideExperience(street_panorama);
street_exp.OverviewMapVisible = true;
streetview_map.CustomExperience = street_exp;

Window.Current.Content = streetview_map;
Window.Current.Activate();

 }
 else
 {

supported = false;
 }

});

if (supported)
{
 await ApplicationViewSwitcher.TryShowAsStandaloneAsync(view_id);
}
else
{
 await new MessageDialog("StreetSide View is not supported.").ShowAsync();
}

In Listing 10-3, you use CoreApplication to create a new view for the app. You then insert a delegate
into that view’s dispatcher (so that it will be run in the context of that view’s thread/message pump). Within
the delegate, you create a new MapControl that points to the same location as the one on LandingPage, set
it to be in Streetside view by default, and then set it as the content to the view’s primary Window. Note that
in this case calling Window.Current does not map to the main window; instead it maps to the window that
the system has created for this particular application view. Before doing this you capture the id of the current
view you are working in. Remember, calls like Window.Current or Application.GetForCurrentView()
as they are used here apply to the CoreApplicationView under which the code is running. When your
app is created by the system, there is only one of these and you are automatically in it (I’m sure the
code used by the system is somewhat similar to what you see here). In this case, you are creating a new
CoreApplicationView along with its associated thread and then running this code within that thread. To
help highlight the distinction between the contexts, add the code (highlighted in bold) in Listing 10-4 to the
OnShowStreetView method.

Listing 10-4. Testing Dispatcher Hash Code Values

async private void OnShowStreetView(object sender, RoutedEventArgs e)
{
 var view = CoreApplication.CreateNewView();
 var view_id = 0;
 var supported = true;
 var center_point = map.Center;

Chapter 10 ■ Shell IntegratIon

384

 //access the base view context
 var disp1 = Window.Current.CoreWindow.Dispatcher.GetHashCode();
 var disp2 = CoreApplication.MainView.Dispatcher.GetHashCode();
 var disp3 = CoreWindow.GetForCurrentThread().Dispatcher.GetHashCode();
 var new_disp = view.Dispatcher.GetHashCode();

 await view.Dispatcher.RunAsync(Windows.UI.Core.CoreDispatcherPriority.Normal, async () =>
 {

//within created view context
var disp4 = Window.Current.CoreWindow.Dispatcher.GetHashCode();
var disp5 = CoreWindow.GetForCurrentThread().Dispatcher.GetHashCode();

if (disp1 != disp4 &&
disp2 != new_disp &&
disp3 != disp5)
{

//control logic should enter here
}

view_id = ApplicationView.GetForCurrentView().Id; //place breakpoint here
...

 }
 ...
}

Once you have done this, place a breakpoint on the line that is indicated in the sample and run the
app. When you invoke this page and mouse over the various disp values, you should note that disp1, disp2,
and disp3 all have the same hash code, meaning that they are all pointing to the same instance, and that
the value does not match with the value of new_disp. Two things should be clear from this first discovery.
Firstly, it should be clear that regardless of how you access the dispatcher (whether through CoreWindow
or through CoreApplicationView) you are accessing the same object. Secondly, it should be clear that the
CoreApplicationView returned from calling CoreApplication.CreateNewView() has a different dispatcher
associated with it.

When you mouse over disp4 and disp5, you should note that these two share the same value but that
this value is different from the value of disp1, disp2, and disp3. You should also observe that this value is the
same the value of new_disp, meaning that the dispatcher object created with the call to CreateNewView is the
same object that is available for use within the delegate.

Continuing with the explanation of Listing 10-4, a new addition to the mix here is handling the
CustomExperienceChanged event. You do this so you can test to see if there is a CustomExperience associated
with the map. The purpose of the larger map is to display street view data; if the user closes StreetSide view,
you want the entire window to close. The code here tests for this eventuality and closes the windows when it
happens.

If you run the app at this point, you will notice two immediate issues with the sample. First, the window
that is opened is quite large. While the purpose of the secondary windows is to give the user a larger size to
browse with, making the window too large hides the actual app that launched it (or at least deters from it
to an unacceptable extent). The second issue is that there is no test to see if the Streetside view window is
already open before creating a new one. A more ideal approach is to test to see if the window is created and
open; if neither is the case, then you create it. Otherwise, you simply hide and show the previously created
window. Figure 10-4 illustrates the problem.

Chapter 10 ■ Shell IntegratIon

385

You will solve the later of the problems in this section and save the former for the next section.
Listing 10-5 shows the modified OnShowStreetView event handler code. Changes are highlighted in bold.
Before you begin modifying this method, add the following as a class-level field:

CoreApplicationView _core_streetside_view;

Listing 10-5. Showing Streetside View One at a Time

var view_id = 0;
var supported = true;
var center_point = map.Center;

if (_core_streetside_view != null)
{
 await _core_streetside_view.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 {

_core_streetside_view.CoreWindow.Close();
 });
}

_core_streetside_view = CoreApplication.CreateNewView();
await _core_streetside_view.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, async () =>
{

 view_id = ApplicationView.GetForCurrentView().Id;

 MapControl streetview_map = new MapControl();
 streetview_map.MapServiceToken = "<map token>";
 streetview_map.PanInteractionMode = MapPanInteractionMode.Disabled;

Figure 10-4. Multiple windows being displayed

Chapter 10 ■ Shell IntegratIon

386

 streetview_map.TiltInteractionMode = MapInteractionMode.Disabled;
 streetview_map.ZoomInteractionMode = MapInteractionMode.Disabled;
 streetview_map.CustomExperienceChanged += (s, args) =>
 {

if (streetview_map.CustomExperience == null)
{

_core_streetside_view.CoreWindow.Close();
_core_streetside_view = null;

}
 };
 streetview_map.Center = center_point;
 if (streetview_map.IsStreetsideSupported)
 {

var street_panorama = await StreetsidePanorama.FindNearbyAsync(streetview_map.Center);
var street_exp = new StreetsideExperience(street_panorama);
street_exp.OverviewMapVisible = true;
streetview_map.CustomExperience = street_exp;

Window.Current.Content = streetview_map;
Window.Current.Activate();

 }
 else
 {

supported = false;
 }
});

if (supported)
{
 await ApplicationViewSwitcher.TryShowAsStandaloneAsync(view_id);
}
else
{
 await new MessageDialog("StreetSide View is not supported.").ShowAsync();
}

In Listing 10-5, you move the variable used to store the newly created CoreApplicationView
instance into class scope so that you can determine if a window has already been created. If the value is
not null, meaning a view has been created and is presently showing, you close it and recreate a new one;
otherwise, you just create it as you previously did. For this to work, you also need to add a new line to the
CustomExperienceChanged event handler which sets the value of _core_streetside_view to null. Running
the code now, you should note that only one Streetside view window is shown at a time. If a window is
already open, it is closed first before a new window is created.

Sizing Windows
Whereas CoreApplicationView gives you access to the threading infrastructure in order to inject
functionality into a new window, ApplicationView provides you with the means to manipulate that window.
Using ApplicationView, you can set the initial size of a window, the minimum size of a window, and even
try resizing a window. Listing 10-6 modifies BigMountainX to utilize this. Add the using declaration to
enable the use of the window mode moniker. Then add the code in Listing 10-7.

Chapter 10 ■ Shell IntegratIon

387

Listing 10-6. Enabling Moniker

using windowmode = Windows.UI.ViewManagement.ApplicationViewWindowingMode;

Listing 10-7. Setting Size Preferences

...
await _core_streetside_view.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, async () =>
{
 var app_view = ApplicationView.GetForCurrentView();
 view_id = app_view.Id;

 //size the window
 app_view.SetPreferredMinSize(new Size(500, 400));
 ApplicationView.PreferredLaunchWindowingMode = windowmode.PreferredLaunchViewSize;
 ApplicationView.PreferredLaunchViewSize = new Size(500, 400);
 app_view.Title = $"Help me find \"{App.State.NextEvent.EventTitle}\"";

 MapControl streetview_map = new MapControl();
 streetview_map.MapServiceToken = "<your token here>";
 streetview_map.PanInteractionMode = MapPanInteractionMode.Disabled;
 streetview_map.TiltInteractionMode = MapInteractionMode.Disabled;
 streetview_map.ZoomInteractionMode = MapInteractionMode.Disabled;
 streetview_map.CustomExperienceChanged += (s, args) =>
 {

if (streetview_map.CustomExperience == null)
{

_core_streetside_view.CoreWindow.Close();
_core_streetside_view = null;

}
 };
 streetview_map.Center = center_point;
 if (streetview_map.IsStreetsideSupported)
 {

var street_panorama = await StreetsidePanorama.FindNearbyAsync(streetview_map.Center);
var street_exp = new StreetsideExperience(street_panorama);
street_exp.OverviewMapVisible = true;
streetview_map.CustomExperience = street_exp;

Window.Current.Content = streetview_map;
Window.Current.Activate();

 }
 else
 {

supported = false;
 }
});
...

Chapter 10 ■ Shell IntegratIon

388

In Listing 10-7, you add code to set the preferred minimum size of the window. You also specify that
you want the windows launched using the size value that comes from PreferredLaunchViewSize, a static
property of the ApplicationView class, and then set the value of that property (PreferredLaunchViewSize)
as well. You will find when you launch your app and access the Streetside view at least once that your entire
app will now start launching at that size. This is because this particular property is application-wide. It was
added here to illustrate the functionality but cannot simply be removed now. To get rid of the annoying
behavior, delete the two lines associated with preferred size from the delegate and add the following line to
the constructor of ApplicationHostPage (remember to add the using declaration for windowmode):

ApplicationView.PreferredLaunchWindowingMode = windowmode.Auto;

Another option is to use the TryResize method of an ApplicationView instance. This will work generally,
but be wary of the fact that there is a bug in this current version of the UWP APIs (as of September 2015). If an
activated window is not available to resize, it will resize the main window of the app.

TitleBar
In UWP, for the first time ever, Microsoft has exposed detailed programmability into the application title bar
through the ApplicationViewTitleBar and CoreApplicationViewTitleBar classes. You’ve already seen
the ApplicationViewTitleBar in action. In the Chapter 9, you modified the color scheme of the app’s title
bar to match the color scheme of the app. Using the TitleBar property of ApplicationView, you can set the
foreground and background colors of any items that appear in the title bar. Using the Title property of the
same class you can set the text that appears on the title bar. You saw this in Listing 10-7 where you used the
line app_view.Title = $"Help me find {App.State.NextEvent.EventTitle}"; to set the text that shows
on your Streetside view window. CoreApplicationViewTitleBar provides some added functionality beyond
basic styling; most notably it lets you extend the content of the view so that it overlays the title bar using the
property ExtendViewIntoTitleBar. When the view is extended in this manner, the title bar functionality
remains (meaning you can still use that area of the app to drag the application around). Add the code
highlighted in bold in Listing 10-8 to your code.

Listing 10-8. Setting Title Bar Preferences

await _core_streetside_view.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, async () =>
{

...

app_view.Title = $"Help me find \"{App.State.NextEvent.EventTitle}\"";
app_view.TitleBar.ButtonBackgroundColor = Colors.Transparent;
app_view.TitleBar.ButtonForegroundColor = Colors.White;
_core_streetside_view.TitleBar.ExtendViewIntoTitleBar = true;

In Listing 10-8, you set the button background colors of the task bar to transparent and set their
foreground color to white. You then use the ExtendViewIntoTitleBar to essentially make the title bar of the
app transparent. This way the user sees only the content of the app window. Figure 10-5 shows how it looks.
Using a technique such as this one, you can create what appears to the user to be custom task bars, but are
really just sections of the app’s view area that have been strategically placed such that they appear to be a
customized title bar. If you open up Microsoft Edge, you can see an example of this kind of approach at work.

http://dx.doi.org/10.1007/978-1-4842-1449-7_9

Chapter 10 ■ Shell IntegratIon

389

That area at the top of the Edge browser (Figure 10-6) might appear to be a customized title bar that
allows for tabbed buttons to be added but it is most likely just a control strategically placed in that location.

To test this concept out, let’s complete the definition for StreetSideViewPage. Listing 10-9 shows the
layout for this new page.

Figure 10-5. Extending the title bar

Figure 10-6. Microsoft edge title bar

Chapter 10 ■ Shell IntegratIon

390

Listing 10-9. StreetSideViewPage Layout

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>

<RowDefinition x:Name="row_titlebar"
Height="100" />

<RowDefinition />
 </Grid.RowDefinitions>
 <Grid Grid.Row="0" HorizontalAlignment="Stretch" >

<Rectangle x:Name="rect_titlebar" />
<StackPanel Orientation="Horizontal">

<Button x:Name="btn_one"
Content="Button 1"
Margin="5"
VerticalAlignment="Stretch" />

<Button x:Name="btn_two"
Margin="5"
Content="Button 2"
VerticalAlignment="Stretch" />

<Button x:Name="btn_three"
Margin="5"
Content="Button 3"
VerticalAlignment="Stretch" />

</StackPanel>
 </Grid>

 <Maps:MapControl x:Name="streetview_map"
Margin="0"
Grid.Row="1"
ZoomInteractionMode="GestureAndControl"
PanInteractionMode="Auto"
TiltInteractionMode="GestureAndControl"
MapServiceToken=”<your token>" />

</Grid>

Listing 10-9 lays out the page in a two-row grid. In row 1, you maintain all the title bar UI and you place
the map in row 2. The code-behind for this XAML is shown in Listing 10-10.

Listing 10-10. StreetSideViewPage Code-Behind

public event Action Close, NotSupported;
public Geopoint Center { get; private set; }
ApplicationView _appview;
CoreApplicationView _core_appview;
Color TitlebarColor { get; } = Color.FromArgb(0xFF, 0x6A, 0x6A, 0x6A);
public StreetSideViewPage()
{
 this.InitializeComponent();
 _appview = ApplicationView.GetForCurrentView();
 _core_appview = CoreApplication.GetCurrentView();

Chapter 10 ■ Shell IntegratIon

391

 this.Loaded += StreetSideViewPage_Loaded;
 streetview_map.CustomExperienceChanged += (s, args) =>
 {

if (streetview_map.CustomExperience == null)
{

Close?.Invoke();
}

 };
}

async public Task InitializeAsync(Geopoint center)
{
 Center = center;
 streetview_map.Center = Center;
 if (streetview_map.IsStreetsideSupported)
 {

var street_panorama = await StreetsidePanorama.FindNearbyAsync(streetview_map.Center);
var street_exp = new StreetsideExperience(street_panorama);
street_exp.OverviewMapVisible = true;
streetview_map.CustomExperience = street_exp;

 }
 else
 {

NotSupported?.Invoke();
 }
 _core_appview.TitleBar.ExtendViewIntoTitleBar = true;

 //size the window
 _appview.SetPreferredMinSize(new Size(500, 400));

 //set background
 _appview.TitleBar.ButtonBackgroundColor = Colors.Transparent;
 _appview.TitleBar.ButtonForegroundColor = Colors.White;
 _appview.TitleBar.ButtonInactiveBackgroundColor = Colors.Transparent;
 _appview.TitleBar.ButtonInactiveForegroundColor = Colors.White;

 rect_titlebar.Fill = new SolidColorBrush(TitlebarColor);

}

private void StreetSideViewPage_Loaded(object sender, RoutedEventArgs e)
{

}

In Listing 10-10, you essentially take the functionality previously provided in the delegate you passed
into your CoreApplicationView instance (from LandingPage) and move it here. This approach is far more
standard than instantiating content on the fly. OnShowStreetView should now look like the following
from Listing 10-11.

Chapter 10 ■ Shell IntegratIon

392

Listing 10-11. OnShowStreetView Modifications

var view_id = 0;
var supported = true;
var center_point = map.Center;

if (_core_streetside_view != null)
{
 await _core_streetside_view.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 {

_core_streetside_view.CoreWindow.Close();
 });
}

_core_streetside_view = CoreApplication.CreateNewView();
await _core_streetside_view.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
{
 var app_view = ApplicationView.GetForCurrentView();
 view_id = app_view.Id;

 StreetSideViewPage street_view = new StreetSideViewPage();
 await street_view.InitializeAsync(center_point);

 street_view.Close += () =>
 {

_core_streetside_view.CoreWindow.Close();
_core_streetside_view = null;

 };
 street_view.NotSupported += () => supported = false;

 Window.Current.Content = street_view;
 Window.Current.Activate();
});

if (supported)
{
 await ApplicationViewSwitcher.TryShowAsStandaloneAsync(view_id);
}
else
{
 await new MessageDialog("StreetSide View is not supported.").ShowAsync();
}

In Listing 10-11, you remove pretty much all the windowing code and now simply instantiate a new
StreetSideViewPage object, call its InitializeAsync function, and then set it as the content for the current
window. Run the app and activate the StreetSide view; you should see a window similar to Figure 10-7.

Chapter 10 ■ Shell IntegratIon

393

The problem with this approach will become instantly obvious to you once you start playing around
with the example (especially if you try clicking the buttons). The problem is that the title bar, though
transparent, is still very much present and as such continues to intercept user input. This is by design; there
would, for example, be no way to move the map in your previous sample if the title bar were not still present
in some form. As long as the area you are interacting with is below the bounds of the title bar, everything
works as expected. However, once you cross into title bar vicinity, you immediately lose the ability to interact
with any controls from your view. Another problem is that, in this sample, the title bar is 200 pixels tall.
However, because the title bar is still set at its default height, the ability to drag the window is unavailable for
any areas of your custom title bar not within those bounds.

You can address both of these issues using a method on the Window class. Add Window.Current.
SetTitleBar(rect_titlebar); to the InitializeAsync method and the problem is solved. SetTitleBar
allows you to define a UIElement to serve as the custom title bar for a window. In this case, you are specifying
that the Rectangle within the Grid on the top row of your page will serve as the window’s taskbar. This allows
you to use any part of the surface of the Rectangle to move the window. The pattern you have utilized is
also a key component of this working. The title bar itself will continue to have no interactivity built into it;
however, because you have placed controls in front of the title bar, they will continue to have interactivity.
Using this technique, you can build cool user interfaces like you see on Microsoft Edge or Word Mobile.

Lock Screen
In Chapter 9, you saw the APIs that can be used to modify a user’s desktop wallpaper. The API for
changing the lock screen is through the same class, UserProfilePersonalizationSettings. By calling
TrySetLockScreenImageAsync, you can modify the background image of a lock screen. Listing 10-12 adds a
new method to your UserSettings class (found in General.UWP.Library) for doing this.

Figure 10-7. StreetView page with custom title bar

http://dx.doi.org/10.1007/978-1-4842-1449-7_9

Chapter 10 ■ Shell IntegratIon

394

Listing 10-12. Changing Lock Screen Background Image

async public static Task<uint> ChangeLockScreenAsync()
{
 if (UserProfilePersonalizationSettings.IsSupported())
 {

//open file
var local_folder = Windows.Storage.ApplicationData.Current.LocalFolder;
var file = await local_folder.CreateFileAsync("marker_lock.txt", OpenIfExists);
//read and convert value of file
var value = await file.ReadTextAsync();
var current_index = uint.Parse(value);

//get file for index
var image_path = $"ms-appdata:///local/club{current_index}.jpg";
var image_uri = new Uri(image_path);
var image_file = await StorageFile.GetFileFromApplicationUriAsync(image_uri);

bool was_set = false;
try
{

//display image file
was_set = await profile.Current.TrySetLockScreenImageAsync(image_file);

}
catch (Exception ex)
{

was_set = false;
}

if (was_set)
{

//increment index and store in file
current_index++;
if (current_index > 7)

current_index = 1;

await file.WriteTextAsync(current_index.ToString());
}
return current_index;

 }
 return 0;
}

Like the ChangeWallpaperAsync, ChangeLockScreenAsync reads a numeric value from marker_lock.txt
(you will see more of this in a minute) and uses it to generate a file path that points to one of the seven
images the app provides. (If you have not done this thus far, download the resource packet for this chapter.
In it you will find the seven images we are discussing here, club1 through club7. Copy them to the folder
Media/Images and you will be all set). From the file path you get the actual file using StorageFile.GetFile
FromApplicationUirAsync. You then use that file to set the lock screen image on the next line. If the lock
screen image sets correctly, you increment the index read from your marker_lock text file and write the new
value back to the file so that the next time you read the file it will provide you that incremented value. If the
value of the current index is greater than seven, you simply restart the count by setting its value to one.

Chapter 10 ■ Shell IntegratIon

395

To ensure that there is a value to be read the first time a user wants to change the lock screen image,
open App.xaml.cs and add the lines of code from Listing 10-13 just at the end of InitializeAsync.

Listing 10-13. Setting Initial Values for marker.txt and marker_lock.txt

//set the value of marker and marker lock
var local_folder = Windows.Storage.ApplicationData.Current.LocalFolder;
var file_marker = await local_folder.CreateFileAsync("marker.txt", OpenIfExists);
await file_marker.WriteTextAsync("1");
var file_marker_lock = await local_folder.CreateFileAsync("marker_lock.txt", OpenIfExists);
await file_marker_lock.WriteTextAsync("1");

All this code does is create/open the files indicated and set an initial value of 1 in each of them.
Next, you need to add a new context menu item to the ImageBannerControl context menu in

LandingPage. Open LandingPage and add the menu item from Listing 10-14.

Listing 10-14. New Context Menu for ImageBannerControl

...
image_banner_menu.Commands.Add(new UICommand("Next Lock Screen", async (ui_command) =>
{
 await UserSettings.ChangeLockScreenAsync();
}));
...

Run the sample and test out switching the lock screen image. It should all work fine.

The Notification Process
Let’s start by defining what notifications are in the context of Modern Windows 10 applications. A notification
is a message that goes out to your app’s end user and provides meaningful information about the use of your
application. It could be letting the user know that their password is invalid, that they don’t have access to
certain content in your application, that they have been idle for some time and their session is about to time
out, or that there was an error in the application.

This type of general-purpose notification isn’t what this section discusses. Rather, you will focus on a
class of notifications that previously had no official (and ubiquitous) representation in the API landscape of
Windows development: notifications that occur while an application is out of focus.

Take Microsoft Office’s Outlook mail client, for example. If you have toast notifications enabled in Outlook,
a small borderless window appears above the system tray area every time you receive a new email message.
Clicking this toast window immediately launches the full Outlook client and allows you to view the message.
Sound great, but unfortunately a pattern like this isn’t baked into legacy Windows application development as
a whole. Each developer must create a distinct implementation of this functionality using hidden windows and
system-tray icons. Most important, because the operating system doesn’t provide any mechanisms to support
it, any application wishing to use this mechanism must project the illusion of not running by either hiding
itself when closed or having a separate executable (a daemon) that owns the notification process and also is in
charge of launching the primary app when a user interacts with the toast window. Windows 10 takes the notion
of notification and bakes it into the operating system so that all Windows 10 apps use the same mechanism,
one that is instantly recognizable to all users and is uniform across all applications.

As a Windows 10 developer building applications that target the Modern app platform, you can use
four key mechanisms to provide notifications to your users: toast notifications, tile notifications, badge
notifications, and push notifications. Toast, tile, and badge notifications typically require the application to

Chapter 10 ■ Shell IntegratIon

396

be running (if not in focus), whereas push notifications represent a new class of notification in which the app
doesn’t need to be running on the client.

As stated earlier, part of the problem statement of notifications that Windows 10 attempts to solve is that
of uniformity. If every application had to create its own notification framework, as legacy applications do, it
would be difficult for a user to easily ascertain not just whether a user interface element is a notification but also
what type of notification it is and what interaction patterns it exposes. Internet Explorer 10, for example, uses
notifications. When a download is complete, the taskbar icon flashes to notify the user. To a trained eye, this
makes sense. But a novice user might not understand the implication, particularly because not every application
functions this way. It was important when designing the Windows 10 API landscape to create a stronger sense
of uniformity with regard to notifications. Toward that end, rather than just expose a user interface surface in
which applications present their notifications, the Windows API designers chose to use a predefined set of
templates. These templates ensure that all notifications follow a standardized presentation format that remains
consistent across applications, preventing a fractured or inconsistent experience for the user. The following
sections talk more about these templates during the discussion of the toast and tile notification types.

Toast Notifications
Toast notifications function similarly to the notifications discussed in the previous section. Whereas legacy
Windows toast notifications are an interaction pattern that applications follow, the toast notification
mechanism exposed to Modern Windows 10 apps is baked into the operating system and API surface area.
This means all that Modern applications can use them through a common set of APIs and that the user is
presented with an interaction pattern that is similar regardless of the notifier. This is consistent with the
overarching Windows 10 paradigm: the primary differentiating factor between applications is the content. Of
course, applications can differ in design, but generally speaking content is king and takes precedence over
chrome in Modern Windows 10 applications.

Figure 10-8 shows how a toast notification looks when displayed while the user is on the Windows 10
Start screen. It appears, as you can see, in the lower-right corner of the screen.

Figure 10-8. Example of a toast notification

Chapter 10 ■ Shell IntegratIon

397

No matter where you are or what you’re doing in the operating system, a toast notification always
appears in the lower-right corner and gradually fades when the user doesn’t interact with it. Unlike in
Windows 8 where multiple notifications where shown below one another, Windows 10 keeps only one
notification visible at a time. Any other notifications coming from a given app are displayed in the Action
Center. The Windows Action Center aggregates notifications across all the apps deployed to a Windows 10
system that utilize the notification framework to communicate with the user. Figure 10-9 shows how
multiple toast notifications appear on a user’s screen.

Figure 10-9. Multiple toast notifications on screen

Generating Toast Notifications
Toasts can be sent locally or via push notification. A user can select the toast by touching or clicking it in
order to launch the associated app. Because these notifications are designed to be context aware, the context
of the toast notification can be handled in the launched application such that it presents a detailed view of
the notification content.

Listing 10-15 shows a very simple example of a local toast notification. The user clicks a button
(btn_toast), and in the event handler you present a toast notification using a call to the show method.

Chapter 10 ■ Shell IntegratIon

398

Listing 10-15. Local Toast Notification

int _count = 0; //field level variable
void btn_toasttext01_Click(object sender, RoutedEventArgs e)
{
 XmlDocument toast_xml = ToastNotificationManager

.GetTemplateContent(ToastTemplateType.ToastText01);
 var text_nodes = toast_xml.DocumentElement.GetElementsByTagName("text");
 var text_node = text_nodes.FirstOrDefault() as XmlElement;
 text_node.AppendChild(toast_xml.CreateTextNode($"toast number {_count++}"));

 ToastNotification toast = new ToastNotification(toast_xml);
 var notifier = ToastNotificationManager.CreateToastNotifier();
 notifier.Show(toast);
}

The example is relatively straightforward. First, you establish a variable count that represents the
number of times the toast button is clicked. Each time btn_toast is clicked, you increment count and
then generate a new toast notification that incorporates the new count into its message. As you can see
from the listing, generating a toast is as simple as getting access to an XML document, manipulating the
content in this document, and then passing the completed document as an argument into an instance of the
ToastNotificationManager class. ToastNotificationManager then uses this to construct the appropriate
ToastNotifier.

The XML document used to start the process, the one returned from GetTemplateContent, is referred
to as a template and is exposed through the enumeration ToastTemplateType. Templates allow developers
to present toast notifications in a variety of predetermined ways. With templates you are not locked into
presenting in just one way no matter the circumstance but it is also not such a complete free-for-all that users
find it hard to recognize notifications as notifications. In this example, you will present a text-only notification.
Windows 10 provides eight templates: four that are text-only and four that use both images and text.

The following section walks through the various toast notification formats in greater detail. Note that for
all instances, overrun text is trimmed and invalid images are treated as though no image was specified.

ToastText01
ToastText01 is the most basic form of text toast. This template presents a single string wrapped across
a maximum of three lines of text. Listing 10-2 shows the XML for this template type. The node in bold
represents the area to be targeted based on the pattern illustrated in Listing 10-16.

Listing 10-16. ToastText01 Template Definition

<toast>
 <visual>

<binding template="ToastText01">
<text id="1">bodyText</text>

</binding>
 </visual>
</toast>

Chapter 10 ■ Shell IntegratIon

399

ToastText02
The ToastText02 template presents one string in bold text on the first line and one string of regular text wrapped
across the second and third lines. Listing 10-17 shows the XML for this template type. The node in bold
represents the area to be targeted based on the pattern illustrated in Listing 10-15. Note that in Listing 10-15
you targeted one node by using FirstOrDefault. In this case, the call to GetElementsByTagName will return
two entries, so using FirstOrDefault will not fully populate the toast. For these scenarios, use standard XML
parsing technigues such as the following pattern:

var text_nodes = toast_xml.DocumentElement.GetElementsByTagName("text");
text_nodes[0].AppendChild(toast_xml.CreateTextNode("this is the headline text"));
text_nodes[1].AppendChild(toast_xml.CreateTextNode("this is the body text"));

Listing 10-17. ToastText02 Template Definition

<toast>
 <visual>

<binding template="ToastText02">
<text id="1">headlineText</text>
<text id="2">bodyText</text>

</binding>
 </visual>
</toast>

ToastText03
A variation of the design from ToastText02, the ToastText03 template presents one string in bold text across
the first and second lines with one string of regular text on the third line. Listing 10-18 shows the XML for
this template type. Notice that the only distinction between this and Listing 10-3 is the template name. The
node in bold represents the area to be targeted.

Listing 10-18. ToastText03 Template Definition

<toast>
 <visual>

<binding template="ToastText03">
<text id="1">headlineText</text>
<text id="2">bodyText</text>

</binding>
 </visual>
</toast>

ToastText04
The ToastText04 template presents one string in bold text on the first line and one string of regular text on
each subsequent line (note that there is no wrapping; each line has its own unique string). Listing 10-19
shows the XML for this template type. The node in bold represents the area to be targeted based on the
pattern illustrated in Listing 10-19.

Chapter 10 ■ Shell IntegratIon

400

Listing 10-19. ToastText04 Template Definition

<toast>
 <visual>

<binding template="ToastText04">
<text id="1">headlineText</text>
<text id="2">bodyText1</text>
<text id="3">bodyText2</text>

</binding>
 </visual>
</toast>

Adding Images to Toasts
Toast notifications may also include images. Figure 10-10 shows the modified toast notification, now
programmed to support an image.

To accomplish this, you only need to change the template being used and insert the appropriate content
into the appropriate node of the underlying document. Listing 10-20 shows the code used to generate the
toast notification in Figure 10-10.

Listing 10-20. Toast Notification with an Image

XmlDocument toast_xml = ToastNotificationManager
.GetTemplateContent(ToastTemplateType.ToastImageAndText03);

var text_nodes = toast_xml.DocumentElement.GetElementsByTagName("text");
text_nodes[0].AppendChild(toast_xml.CreateTextNode("demo message"));
text_nodes[1].AppendChild(toast_xml.CreateTextNode($"toast number {_count++}"));

//image MUST be smaller than 800x800 and less than 256kb
//app data can be reached with ms-appdata:/// protocol (this is isolated storage for the
most part)
var image_node = toast_xml.DocumentElement.GetElementsByTagName("image")[0] as XmlElement;
image_node.SetAttribute("src", "ms-appx:///assets/tile-square.png");

ToastNotification toast = new ToastNotification(toast_xml);
var notifier = ToastNotificationManager.CreateToastNotifier();
notifier.Show(toast);

Notice the use of the protocol ms-appx when specifying the source of the image to use. You can use this
protocol to retrieve content from the application’s deployment package. The API also supports http/https
to retrieve web-based images and ms-appdata:///local/ to pull images from local storage.

Figure 10-10. Toast notification with an image

Chapter 10 ■ Shell IntegratIon

401

Listing 10-21 shows all the document template types exposed for toast notifications with images.
They mirror the same documents exposed for plain-text toast notifications (with the exception of the added
image element), so there is no need for further explanation.

Listing 10-21. Image-Based Toast Notification Document Types

<toast>
 <visual>

<binding template="ToastImageAndText01">
<image id="1" src="image1" alt="image1"/>
<text id="1">bodyText</text>

</binding>
 </visual>
</toast>

<toast>
 <visual>

<binding template="ToastImageAndText02">
<image id="1" src="image1" alt="image1"/>
<text id="1">headlineText</text>
<text id="2">bodyText</text>

</binding>
 </visual>
</toast>

<toast>
 <visual>

<binding template="ToastImageAndText03">
<image id="1" src="image1" alt="image1"/>
<text id="1">headlineText</text>
<text id="2">bodyText</text>

</binding>
 </visual>
</toast>

<toast>
 <visual>

<binding template="ToastImageAndText04">
<image id="1" src="image1" alt="image1"/>
<text id="1">headlineText</text>
<text id="2">bodyText1</text>
<text id="3">bodyText2</text>

</binding>
 </visual>
</toast>

Adding Sound to Toasts
Toast notifications may also have sounds associated with them. Imagine a scenario in which a VoIP-style
application like Skype is receiving an incoming call. Just popping up a notification might not be enough
(particularly if the user isn’t presently working on the computer!). In this area, the API designers again

Chapter 10 ■ Shell IntegratIon

402

chose uniformity over ultimate flexibility by allowing only a prescribed set of sounds to be used in concert
with toast notifications. Windows 10 provides eight sounds in all: four that can be looped (like a phone call
sound) and four that can’t. Additionally, you can specify that a toast notification be silent. Listing 10-22
shows the audio node in full.

Listing 10-22. Audio Node

<audio src="ms-winsoundevent:Notification.Mail" loop="false" silent="false"/>

You can add toast notification audio to any of the aforementioned templates by adding the audio tag
as a direct child of the top-level toast element. (Remember that everything else you’ve looked at thus far has
been tied to the visual representation of the toast. It wouldn’t make much sense for the audio element to be
a child of the visual node.) In Listing 10-23, you add a looping sound to the existing example.

Listing 10-23. Toast Notification with Audio

XmlDocument toast_xml = ToastNotificationManager
.GetTemplateContent(ToastTemplateType.ToastText01);

var text_node = toast_xml.DocumentElement.GetElementsByTagName("text")
.FirstOrDefault() as XmlElement;

text_node.AppendChild(toast_xml.CreateTextNode("custom sound notification"));

//add a custom audio sound to the notification (in this case it is the new mail sound)
/**

* it can also be:
* ms-winsoundevent:Notification.Default
* ms-winsoundevent:Notification.SMS
* ms-winsoundevent:Notification.IM
* ms-winsoundevent:Notification.Reminder
* Silent
*

 * */
var audio_node = toast_xml.CreateElement("audio");
audio_node.SetAttribute("src", "ms-winsoundevent:Notification.Looping.IM");
audio_node.SetAttribute("loop", "true");
IXmlNode toastNode = toast_xml.SelectSingleNode("/toast");
toastNode.AppendChild(audio_node);

ToastNotification toast = new ToastNotification(toast_xml);
var notifier = ToastNotificationManager.CreateToastNotifier();
notifier.Show(toast);

As you can see, to add sound to a toast notification you create the audio node, populate the appropriate
attributes, and add it to the XML document the template represents, and you’re done.

Your top-level element may add a duration attribute, which can be set to long. This can be used in all
toast notifications to create persistent toasts. Persistent toasts remain visible longer. For a full list of sounds
that can be played in a notification, go to https://msdn.microsoft.com/en-us/library/windows/apps/
br230842.aspx. To explore the schema hierarchy for toast notifications go to https://msdn.microsoft.com/
en-us/library/windows/apps/br230846.aspx.

https://msdn.microsoft.com/en-us/library/windows/apps/br230842.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/br230842.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/br230846.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/br230846.aspx

Chapter 10 ■ Shell IntegratIon

403

Scheduling Toasts
In certain scenarios, it might be more appropriate to schedule a toast to happen at some point in the future
(or perhaps happen in a recurring manner) than to have the notification fired off as soon as the command to
show it is executed. In such scenarios, you can use a specialized class called ScheduledToastNotification.
ScheduledToastNotification provides a constructor that accepts not only the XML template for the
notification but also a date when the notification should be displayed, a sleep time for the notification
(in scenarios where the notification repeats over a period of time), and a number that indicates the
maximum number of times the notification will sleep before finally terminating. Listing 10-24 shows the use
of this type of toast notification. When the user clicks the toast button, you schedule a notification for ten
seconds into the future and repreated every minute (repeated 5 times in all).

Listing 10-24. Toasting the End of the World

XmlDocument toast_xml = ToastNotificationManager
.GetTemplateContent(ToastTemplateType.ToastText01);

var text_node = toast_xml.DocumentElement.GetElementsByTagName("text")
.FirstOrDefault() as XmlElement;

text_node.AppendChild(toast_xml.CreateTextNode("scheduled toast!"));

ToastNotification toast = new ToastNotification(toast_xml);

ScheduledToastNotification stoast = new ScheduledToastNotification(toast_xml,
 DateTime.Now.AddSeconds(10),
 TimeSpan.FromMinutes(1), 5);

stoast.Id = "hello";
var notifier = ToastNotificationManager.CreateToastNotifier();
notifier.AddToSchedule(stoast);

Note the use of AddToSchedule instead of Show. As the name implies, AddToSchedule will queue the
toast notification request and, at the point when the date specified is hit, display the toast.

Responding to Toast Notification Events
Earlier, you learned that one of the cool things about toast notifications—something that makes them
different from the other types of notifications discussed in this chapter—is that they’re context aware. This
means your application can react in unique and context-specific ways to toast notifications activated or
dismissed by the user. UWP exposes events on the ToastNotification class to handle this scenario.
See Listing 10-25.

Listing 10-25. Using the Events of the ToastNotification Class

XmlDocument toast_xml = ToastNotificationManager
.GetTemplateContent(ToastTemplateType.ToastImageAndText03);

var text_nodes = toast_xml.DocumentElement.GetElementsByTagName("text");
text_nodes[0].AppendChild(toast_xml.CreateTextNode("demo message"));
text_nodes[1].AppendChild(toast_xml.CreateTextNode($"toast number {_count++}"));

Chapter 10 ■ Shell IntegratIon

404

//image MUST be smaller than 800x800 and less than 256kb
//app data can be reached with ms-appdata:/// protocol (this is isolated storage for the
most part)
var image_node = toast_xml.DocumentElement.GetElementsByTagName("image")[0] as XmlElement;
image_node.SetAttribute("src", "ms-appx:///assets/tile-square.png");

var audio_node = toast_xml.CreateElement("audio");
audio_node.SetAttribute("src", "ms-winsoundevent:Notification.IM");
audio_node.SetAttribute("loop", "true");
IXmlNode toastNode = toast_xml.SelectSingleNode("/toast");
toastNode.AppendChild(audio_node);

ToastNotification toast = new ToastNotification(toast_xml);
toast.Failed += async (a, b) =>
{
 if (b.ErrorCode != null)
 {

await new MessageDialog("Failed!").ShowAsync();
 }
};
toast.Activated += async delegate (ToastNotification n, object s)
{
 await Dispatcher.RunAsync(Windows.UI.Core.CoreDispatcherPriority.Normal, async () =>
 {

await new MessageDialog("Activated!").ShowAsync();
 });

};
toast.Dismissed += async delegate (ToastNotification a, ToastDismissedEventArgs b)
{
 await Dispatcher.RunAsync(Windows.UI.Core.CoreDispatcherPriority.Normal, async () =>
 {

await new MessageDialog("Dismissed!").ShowAsync();
 });
};
var notifier = ToastNotificationManager.CreateToastNotifier();
notifier.Show(toast);

In this example, you use a MessageDialog to display the disposition of your toast notifications by the
user. If the user activates a toast by clicking or tapping, you display the message “Activated!”; if the user
cancels it, you display the message “Dismissed!”.

You’ve tried the code from the various samples in TestPage. Figure 10-11 shows the app in action after a
toast notification is used to active it.

Chapter 10 ■ Shell IntegratIon

405

Adaptive Toasts
Windows 10 introduces another way of presenting toast notification to the user: adaptive toasts. Adaptive
and interactive toast notifications are a new feature in Windows 10. They allow you to

• Create flexible toast notifications with more content and optional inline images
without being limited to the existing restricted “toast template catalog.”

• Create actionable toast notifications that enable user interaction.

Uisng this new paradigm you now have the ability to

• Be creative for specific scenarios, including alarm, reminder, and incoming call.

• Providing three different activation types for the main toast notification and for each
action.

• Include custom actions and system actions in the payload.

In Windows 10, developers construct a toast notification using XML, which should typically contain the
following key elements:

• <visual />, which covers the content available for the users to visually see,
including text and images.

• <actions />, which contains the custom interactions the developer wants to add
inside the notification.

Figure 10-11. Toast notification handling events

Chapter 10 ■ Shell IntegratIon

406

• <audio />, which specifies an in-box or custom sound to be played along with the
notification when it pops, and other sound-related properties. The mechanisms for
implementing audio have already been discussed, so they will not be touched on any
further.

The <visual /> Element
It is required to have a binding element that contains the visual template information and the visual contents
of the toast. Unlike tile notifications, which support multiple templates based on different tile sizes, toast
notifications for Windows 10 UWP apps only have one template name, ToastGeneric. This has several advantages
over the legacy template model which was a set of restricted templates. For one thing, developers can change
the content of the toast, such as by adding another line of text, adding an optional inline image, or change the
thumbnail image from displaying an application icon to something else, without worrying about changing the
entire template or creating an invalid payload due to template-name/content mismatch. You can also use the
same code to construct the same payload for the toast notification that targets different types of Windows devices,
such as phone, tablet, desktop PC, or even Xbox; the different devices will accept the notification, and display it to
the user under their own UI policies with appropriate visual affordance and interaction model.

The <action /> Element
In Windows 10 UWP apps, developers can add custom interactions to their toast notification to empower
the users to do more outside the app. There are two types of elements you can specify: action elements and
input elements. You can specify up to three custom or system actions inside a toast notification using action.
With input, you can enable users to provide input to an app via a toast notification.

When an action is taken by the user, you can choose to do one of the following by specifying the
activationType attribute inside of <action />:

• Activate the app in the foreground, with an action-specific argument that can be
used to navigate to a specific page/context.

• Activate the app’s background task without affecting the user.

• Activate another app via protocol.

• Specify a system action to perform. The current available system actions are
snoozing and dismissing scheduled alarm/reminder, which will be further explained
in a section below.

The other big distinction between the legacy method of defining toast templates and the new adaptive
model is that tile content can be read from any source that can be accessed via URI. This allows the
developer to modify the content of the template as needed without having to rely on XML documents. Add
a new XML document to the project under the Data folder called AdaptiveToast and copy the content from
Listing 10-26 into it.

Listing 10-26. Adaptivetoast XML Definition

<?xml version="1.0" encoding="utf-8" ?>
<toast version="3">
 <visual>
 <binding template="ToastGeneric">
 <text hint-style="body">Big Mountain X</text>
 <text hint-wrap="true" hint-style="captionsubtle">Want a free drink?</text>

Chapter 10 ■ Shell IntegratIon

407

 <text hint-wrap="true" hint-style="captionsubtle">Enter the email address of a contact
to get a free drink at your next event.</text>

 <image placement="AppLogoOverride" src="ms-appx:///assets/tile-square.png" />
 </binding>
 </visual>
</toast>

Listing 10-26 shows a basic adaptive tile notification. The template can be used in your app using the
code in Listing 10-27.

Listing 10-27. Using adaptivetoast XML

var uri = new Uri("ms-appx:///data/adaptivetoast.xml");
var adaptive_template = await StorageFile.GetFileFromApplicationUriAsync(uri);

XmlDocument tile_xml:doc = await XmlDocument.LoadFromFileAsync(adaptive_template);
var toast = new ToastNotification(tile_xml:doc);
var toast_notifier = ToastNotificationManager.CreateToastNotifier();
toast_notifier.Show(toast);

Using this new paradigm, you will extend the contact store notification sample you created in the last
chapter with an interactive toast notification that updates the application without ever opening it. You start
by modifying the AppState class so that it now has a property for storing emails associated with the app’s
mailing list. Listing 10-28 illustrates.

Listing 10-28. AppState Modifications

public class AppState : StateAwareObject<AppState>
{
 public BMXProfile UserProfile { get; set; }

 public BMXEvent NextEvent { get; set; }

 public List<string> MailingList { get; set; } = new List<string>();

}

Next, you must modify the content of your adaptive template. Listing 10-29 adds some actions to the mix.

Listing 10-29. AdaptiveToast Modifications (Adding Interactivity)

<?xml version="1.0" encoding="utf-8" ?>
<toast version="3">
 <visual>

<binding template="ToastGeneric">
<text hint-style="body">Big Mountain X</text>
<text hint-wrap="true" hint-style="captionsubtle">Want a free drink?</text>
 <text hint-wrap="true" hint-style="captionsubtle">Enter the email address of a
contact to get a free drink at your next event.</text>
<image placement="AppLogoOverride" src="ms-appx:///assets/tile-square.png" />

</binding>
 </visual>

Chapter 10 ■ Shell IntegratIon

408

 <actions>
<input title="Enter contact email" id="txt_email" type="text" />
 <action activationType="background" arguments="test background" content="Add
Contact" />

 </actions>
</toast>

In Listing 10-29, you add two actions to the toast notification template. One is an input that allows the
user to enter some information; the other is a button that when clicked will send the user data to a background
task associated with the app to process. All this happens without the app starting in the foreground.

You must next open ContactsWatcher and modify it to use this new template you defined. Listing 10-30
shows the modifications to the code in bold.

Listing 10-30. ContactsWatcher Modifications

private BackgroundTaskDeferral _deferral; // Used to keep task alive
async public void Run(IBackgroundTaskInstance taskInstance)
{
 //cost
 var cost = BackgroundWorkCost.CurrentBackgroundWorkCost;
 if (cost == BackgroundWorkCostValue.High)

return;

 _deferral = taskInstance.GetDeferral();
 await ToastAsync("Forward us that contact for a free drink!");
 _deferral.Complete();
}

async Task ToastAsync(string toast_message)
{
 try
 {

var uri = new Uri("ms-appx:///data/adaptivetoast.xml");
var adaptive_template = await StorageFile.GetFileFromApplicationUriAsync(uri);

XmlDocument tile_xml:doc = await XmlDocument.LoadFromFileAsync(adaptive_template);
var toast = new ToastNotification(tile_xml:doc);
var toast_notifier = ToastNotificationManager.CreateToastNotifier();
toast_notifier.Show(toast);

 }
 catch (Exception ex)
 {

 }
}

The major change here is the need to load the template file from a storage lcoation. Because you are
using file access (which is awaitable), you must now extend the async nature out to all calling methods.
Hence Toast is now ToastAsync and the Run method is now classified as async. Figure 10-12 shows what
happens when a new contact is added now.

Chapter 10 ■ Shell IntegratIon

409

Since you would like this toast notification to not open up your app while processing the user’s input,
you need to create a new background task that will handle reading input from the user and storing it.
Create a new class in the BMX.BackgroundTasks project called ActionableToastServer. Add the code from
Listing 10-31 to it. To get this to work, you need to move the Library folder from your BigMountainX project
into General.UWP.Library. This way the code for reading the AppState object can be accessed within your
background task library.

Listing 10-31. ActionableToastServer Implementation

async public void Run(IBackgroundTaskInstance taskInstance)
{
 var deferral = taskInstance.GetDeferral();
 var details = taskInstance.TriggerDetails as ToastNotificationActionTriggerDetail;
 if (details != null)
 {

var roaming_folder = ApplicationData.Current.RoamingFolder;
var state = await AppState.FromStorageFileAsync(roaming_folder, "state.xml");

object value;
details.UserInput.TryGetValue("txt_email", out value);
if (value != null)
{

state.MailingList.Add(value as string);
await state.SaveAsync();

}

 }
 deferral.Complete();
}

Figure 10-12. New contact watch notification

Chapter 10 ■ Shell IntegratIon

410

Listing 10-31 converts the trigger details associated with the task into its concrete type, in this case
ToastNotificationActionTriggerDetail. You use the UserInput property to read the value entered by the
user. Note the name queried for in the call to TryGetValue. The name specified here is “txt_email”. It is not
coincidence that this value is the same as is used in the template; naming the input element allows you to
read the value from them at a latter point.

The final step is to register the background task with the system. Open ApplicationHostPage and add
the code from Listing 10-32 to the InitializeApplication method.

Listing 10-32. Registering ActionableToastServer Background Task

//initialize actionable toast server
await StartBackgroundTaskAsync(() =>
{
 var task_name = "contacts-toast-server";
 var previous_task_list = BackgroundTaskRegistration.AllTasks.Values;
 var registered = previous_task_list.Where(i => i.Name == task_name).FirstOrDefault();
 registered?.Unregister(true);
 registered = null;
 if (registered == null)
 {

BackgroundTaskBuilder task_builder = new BackgroundTaskBuilder();
task_builder.Name = task_name;
task_builder.TaskEntryPoint = typeof(ActionableToastServer).ToString();
ToastNotificationActionTrigger toast_trigger = new ToastNotificationActionTrigger();
task_builder.SetTrigger(toast_trigger);
task_builder.Register();

 }
});

You should be fairly familiar with what is going on in Listing 10-32. To complete the process, add
a new background task decalration to your app manifest. The task types should be specified as system
event and the entry point should be the type BMX.BackgroundTasks.ActionableToastServer. To enable
the background task, you must also run the app at least once. Now your app is ready to process actions
generated from the toast that pops up every time a new contact is added to your contact store. You can test
this out by using the People app. Add a new contact and the toast notification should pop up. Once it does,
enter a value for the email address and click the Add Contact button.

To see if any modifications have been made, open the app and put a breakpoint in the
IntializeAppAsync method. Run the app and, once it breaks at your breakpoint, advance the break step by
step until you have the value of State read into memory. Inspect that value to determine if the contacts you
entered are now stored. Figure 10-13 illustrates.

Chapter 10 ■ Shell IntegratIon

411

Tile Notifications
Remember the overview discussion of Windows 10 from Chapter 1? It talked about the rectangular shapes
on the Start menu that combine the functionality of the quick launch area with an application’s launch
shortcut, with the representation of an application on the taskbar. As mentioned in Chapter 1, these
rectangular shapes are known as live tiles. The great thing about their “live-ness” is that it turns these tiles
into yet another surface upon which applications can present notifications to users. Tile notifications differ
from toast notifications in many ways.

First, they’re really a pattern of application behavior layered on top of the notion of live tiles. You could
argue that they aren’t notifications at all. Many applications, such as Travel, employ the live-tile functionality
without informing the user of anything. (Travel shows pictures of different places in the world, which is
markedly different than the Mail app’s use of tiles.) Second, because this style of notification uses a given
application’s tile, it can be limited in a number of ways. For one thing, if the tile isn’t on the Windows Start
screen, there is no notification (and no indication from the application that a notification hasn’t happened).
Yet another problem is that this type of notification is localized to the Windows Start screen; depending on
where the tile sits on a user’s Start screen, it may not be visible. Finally, and most important, the application’s
live tile is primarily designed for non-intrusive glance-and-go information. It isn’t meant to be a dialog or
message box; it’s meant to present quick tidbits of information to the user that might entice them to click the
tile and get more information.

Keep this functionality in perspective as you work through this section. Because the use of the term
notification here is somewhat misleading (particularly when juxtaposed against its counterparts in this
section), you might be tempted to limit your use of live tiles to presenting messages to the user. Doing
so would grossly underuse the power of this technology. Figure 10-14 shows the live tiles of a number of
popular Windows 10 apps.

Figure 10-13. Checking for changes from ActionableToastServer

http://dx.doi.org/10.1007/978-1-4842-1449-7_1
http://dx.doi.org/10.1007/978-1-4842-1449-7_1

Chapter 10 ■ Shell IntegratIon

412

Tile notifications can be text only, text with an image, all image, or a combination of images, or they
can encompass another class of notifications called badge notifications. Unlike toast notifications, which as
mentioned earlier should mainly be used to alert the user about actions or information they need to act on
relatively quickly, tile notifications focus on presenting notification content that is more persistent and less
intrusive. Think of the distinction between toast notifications and tile notifications (as far as the content they
should present) in this way: live tiles present content and represent events the user could be interested in,
whereas toast notifications present content and represent events the user should be interested in.

Leaving aside what a powerful notification mechanism an app’s live tile is, there are benefits to using
the live-tile infrastructure to present notifications to the user. For one thing, because a live tile is about
enticing the user, it can be used as an alert or update—something to grab the user’s attention. You can find a
comprehensive list of all tile templates, complete with images of the final tile layout, on the Microsoft MSDN
site at http://msdn.microsoft.com/en-us/library/windows/apps/hh761491.aspx. This can be used as a
reference to get a sense of what you can and can’t do with live tiles.

Generating Tile Notifications
Like toast notifications, tile notifications can be sent locally or via push notification. Unlike toasts, there is no
separate interaction pattern for the notifications that target an application’s tile. They’re simply presented on
the tile, and it’s left to the user to decide whether to launch the application or not. Listing 10-33 shows a very
simple example of local tile notification.

Figure 10-14. Live tiles for some Modern Windows 10 apps

http://msdn.microsoft.com/en-us/library/windows/apps/hh761491.aspx

Chapter 10 ■ Shell IntegratIon

413

Listing 10-33. Simple Tile Notification

var tile_xml = TileUpdateManager.GetTemplateContent(TileTemplateType.TileWide310x150Text04);

var text_nodes = tile_xml.DocumentElement.GetElementsByTagName("text");
text_nodes[0].AppendChild(tile_xml.CreateTextNode("simple demo message"));

var tile = new TileNotification(tile_xml);

var tile_updater = TileUpdateManager.CreateTileUpdaterForApplication();
tile_updater.Update(tile);

If you read the entire previous section, then you should notice something here. The development
pattern for creating tile notifications is similar to the approach used for creating toast notifications. It starts
with selecting an appropriate template (which maps to an XML document). Once you retrieve the template,
you find the sections of the document in which you need to place content. You then place content in those
elements/attributes, use the created document to generate the appropriate tile-notification object, and
pass the object to the TileUpdateManager. It’s the job of the TileUpdateManager to update the actual tile.
What you can surmise from this is that once again, Microsoft has chosen uniformity and a template-driven
approach to provide a surface on which developers can place one-off presentations of application-specific
notifications. The example in Listing 10-33 produces the result shown in Figure 10-15 when the associated
button is clicked.

Because tile presentation is significantly more complex than the simple examples you saw when working
with toast notifications, it follows that the templates exposed to tiles are also different and varied. In all, there
are 79 templates to choose from! They range from simple text, as shown in Figure 10-15, to arrays of images
with no text. The templates also encompass the two possible tile types available to Modern Windows 10
applications: square tiles and wide (rectangular) tiles. Square tiles come in varing sizes (small, medium, and
large). You saw rectangular tiles in Figures 10-14 and 10-15. Square tiles function in a similar manner but
take up less space on the Windows 10 Start screen.

In general, tile templates take six forms: text only, image only, image and text, peeking images and
text, peeking images, and peeking image collection. You might have seen the peeking phenomena on your
Windows Start screen with the People app. The tile update appears from the bottom of the tile as if peeking
and then slides back down. Within a few seconds, it slides up and overlays the previous tile content.

This discussion focuses exclusively on wide tile templates. The development and interaction patterns
for both are the same, so it should be no trouble to apply the concepts outlined in the following sections
to square app tiles. Also, rather than discuss all the wide template types, this chapter focuses on a few
interesting ones that you may find helpful in presenting content to the user.

Figure 10-15. Updated live tile

Chapter 10 ■ Shell IntegratIon

414

Presenting Text Content with a Heading
TileWide310x150Text09 is the mainstay for presenting simple text content to the user. It uses the first text
element as the header and a second element wrapped across the remaining four lines as text content.
Listing 10-34 shows the template definition for this template type.

Listing 10-34. TileWide310x150Text09 Template Definition

<tile>
 <visual>
 <binding template="TileWide310x150Text09">
 <text id="1">Message : 1</text>
 <text id="2">1 quick brown fox jumped over a lazy dog!</text>
 </binding>
 </visual>
</tile>

This is a great template for presenting text because it allows you to wrap the content area across
multiple lines. Almost all the other template types require you to enter text into each line separately, which
forces you to monitor the length of your notification strings. If you don’t need line breaks in your content
area, this approach is recommended. Figure 10-16 illustrates.

Text-Only Content
In situations when you need to present text-only content with no heading (for instance, headlines for
news-type applications), TileWide310x150Text04 is a great template. It removes the heading and gives
the application one line of text wrapped across all five lines of the tile. Listing 10-35 shows the template
definition for this template.

Listing 10-35. Template Definition for TileWide310x150Text04

<tile>
 <visual>
 <binding template="TileWide310x150Text04">
 <text id="1">Text Field 1</text>
 </binding>
 </visual>
</tile>

Figure 10-16. View of a tile template

Chapter 10 ■ Shell IntegratIon

415

Templates for Summaries
Finally, if an application needs to present summary information in a text-only list format,
TileWide310x150Text02 and TileWide310x150Text01 are good templates to use. Listing 10-12 used
TileWide310x150Text01 to present some simple text on screen. It lists text lines individually with a header
above them, as you saw in Figure 10-6. TileWideText02 follows this same format, with one key distinction:
the text is displays in two columns, each containing four rows of text. Listing 10-36 shows the template
definition for TileWide310x150Text02.

Listing 10-36. Template Definition for TileWide310x150Text02

<tile>
 <visual>
 <binding template="TileWide310x150Text02">
 <text id="1">Text Header Field 1</text>
 <text id="2">Text Field 2</text>
 <text id="3">Text Field 3</text>
 <text id="4">Text Field 4</text>
 <text id="5">Text Field 5</text>
 <text id="6">Text Field 6</text>
 <text id="7">Text Field 7</text>
 <text id="8">Text Field 8</text>
 <text id="9">Text Field 9</text>
 </binding>
 </visual>
</tile>

When this application runs and the user clicks, the tile looks like Figure 10-17.

Creating a Cleaner Template
TileWide310x150Text02 does a good job but suffers from a disjointed aesthetic in my opinion. If the
notification’s look and feel are of paramount importance, then you can use a cleaner template like
TileWide310x150BlockAndText01. This template renders as four strings of unwrapped text on the left and
a large block of text over a single short string of bold text on the right. You lose the columns but can use the
free text on the left to display both numbers and text, as shown in Figure 10-18.

Figure 10-17. Using TileWide310x150Text02

Chapter 10 ■ Shell IntegratIon

416

Figure 10-18. Using TileWide310x150BlockAndText01

This notification was achieved by applying the template definition outlined in Listing 10-37.

Listing 10-37. TileWide310x150BlockAndText01 Template Definition

<tile>
 <visual>
 <binding template="TileWide310x150BlockAndText01">
 <text id="1">1 dogs</text>
 <text id="2">2 cats</text>
 <text id="3">3 bunnies</text>
 <text id="4">4 fish</text>
 <text id="5">10</text>
 <text id="6">House Pets</text>
 </binding>
 </visual>
</tile>

Adding Images to Tile Notifications
As with toast notifications, images can be applied to tile notifications to improve the overall aesthetic of
the tile. In extreme scenarios when you’re unsatisfied with any of the 45 possible template types provided
by Microsoft, you can use one of the image-only notification templates and generate your own notification
layout through dynamic image generation. At present, UWP doesn’t provide a means to create images from
user interface elements, but in future releases this may become a possibility. Also, nothing prevents you from
doing this through a web service call. The various forms of tile notifications as they relate to images are too
many and too similar in utilization to go into further in this book.

Scheduling Tile Notifications
Like toast notifications, tile notifications can be scheduled to run at a predetermined time. As stated
previously, in certain scenarios it’s more appropriate to schedule a tile update to happen at some point in
the future rather than have the notification fired off as soon as the command to do so is executed. In such
scenarios, you can use ScheduledTileNotification. Its constructor accepts not only the XML template for
the notification but also a date when the notification should be displayed.

Chapter 10 ■ Shell IntegratIon

417

Summary
I hope you’ve found this thorough explanation of toast and tile notifications informative and beneficial for
your future app development. To review, the discussion included generating toast and tile notifications,
adding images and sound, scheduling, and responding to notifications. With the rules and forms covered
in this chapter, Windows 10 again creates uniformity for the user, in this case, through notifications. As a
Windows 10 developer, you now have the tools and real-world examples to use these notifications for tile
design and lock-screen interaction. The following are some points to remember from this chapter:

• Launch conditions

• Windowing

• Lock screen background changing

• Toast and tile notifications can be sent locally.

• Toast notifications are context aware. An application can react uniquely and in a
contextually specific manner to toast notifications that are activated or dismissed by
the user.

• Tile notifications are essentially a pattern above the notion of live tiles. If a tile isn’t
on the Windows Start screen, there is no notification.

• Tile notifications can be text-only, text with images, all images, or a combination of
images. Toast notifications can be text-only or text with images.

• Toast and tile notifications can serve as dynamic tools for grabbing the user’s
attention in a variety of ways.

419

Chapter 11

Communicating Between Apps

You’ve already seen a number of ways that apps can communicate with each other. In Chapter 6, you used
FileOpenPicker and FileSavePicker to share resume data between UWP apps. In Chapters 8 and 10,
you used the URI launcher to launch a completely separate application. In the case of the Maps app from
Chapter 8 you learned how parameters can be passed from the calling app and utilized in the receiving app.
This chapter continues the notion of app-to-app communication by introducing a number of new ways in
which apps can communicate with one another. You will also be revisiting the aforementioned approaches.
The primary ways that data can be shared between apps are

• URI launching with custom parameters

• File launching where the file being launched contains the data that will be used by
the receiving app

• Through the Open file dialog

• Through the Save file dialog

• Through share contracts

• Through shared files

• Through a special kind of background task called app services

Using any number of these technologies together you can create sophisticated applications in such a
way that, even local to the user’s desktop, they become an ecosystem of publishers and subscribers that can
be used to accomplish much more than each member app ever intended. We call it windows app synergy.

Before You Get Started
Before you get started with the lessons of this chapter, let’s unify some of the apps you have been creating
thus far under one umbrella. If you recall your samples from Chapters 1 and 2, you worked on an app that
could be used by bouncers to track how many users entered and exited an event. An app like this would
work quite well as an alternative to the geofencing technique introduced in Chapter 8. While geofencing
works well for users who have Windows devices that are mobile enough to carry around, users with iPhone-
or Android-based devices are left to the wind in the current implementation. For those patrons of Big
Mountain events, the people counter features of your initial app work well.

http://dx.doi.org/10.1007/978-1-4842-1449-7_6
http://dx.doi.org/10.1007/978-1-4842-1449-7_8
http://dx.doi.org/10.1007/978-1-4842-1449-7_10
http://dx.doi.org/10.1007/978-1-4842-1449-7_8
http://dx.doi.org/10.1007/978-1-4842-1449-7_1
http://dx.doi.org/10.1007/978-1-4842-1449-7_2
http://dx.doi.org/10.1007/978-1-4842-1449-7_8

Chapter 11 ■ CommuniCating Between apps

420

You also worked on a customer management app for a health spa. This app had three primary parts to it:

• A scheduling system that was used to schedule massages for customer

• A customer management system that was used to manage the various customers of
the business

• A point-of-sale system for handing retail transactions

The point-of-sale and customer management systems can most likely be transferred without much
modification, as the needs they address translate quite nicely to the Big Mountain X app. The scheduling
piece will need to be modified slightly.

One part of the Big Mountain Xocial events we have not discussed so far is the format of the show.
During every event they throw, one hour is spent showcasing local talent in an all-out open mic. The
winner of this contest is incorporated into the show as a “special guest” and gets a couple of free drinks
to boot! Doing something like this in real-time while the show is going on can be a disjointed experience
with unpredictability built in. Although the segment of the show is open mic, the Big Mountain guys still
want some measure of curation in place so as not to bore their patrons. Because of this, they would like
potential performers to use their app to submit a request to perform. This request would, of course, require
the potential performers to include a video, image, and contact information. Those chosen are also notified
through the app. Despite the difference in data captured, these two screens are essentially the same. They
can be used to input events into an underlying schedule. So you will add a new Open Mic Signup page,
which will use the Massage Appointment creation page as a foundation to build from. Let’s get started by
modifying the object model to account for these changes.

Changing the Object Model
Add a new class in the Library folder of General.UWP.Library called BMXOccasion. This class is a copy of
the Occasion class you created in Chapter 1, with some additions to fit into the current app. Listing 11-1
illustrates. The namespace for this class should be BigMountainX.

Listing 11-1. BMXOccasion Class Definition

[DataContract]
public class BMXOccasion
{
 public Guid OccasionID { get; private set; }
 public int AttendanceCount { get; private set; }

 public BMXOccasion(BMXEvent bmx_event)
 {

OccasionID = bmx_event.EventID;
 }

 public void Enter()
 {

AttendanceCount++;
 }

http://dx.doi.org/10.1007/978-1-4842-1449-7_1

Chapter 11 ■ CommuniCating Between apps

421

 public void Leave()
 {

if (AttendanceCount > 0)
AttendanceCount--;

 }
}

In Listing 11-1, you add an OccasionID property and a constructor that accepts a BMXEvent object and
sets the OccasionID for the BMXOccasion to the EventID of the BMXEvent. This way you are always able to get
the event that served as the baseline for a given occasion. Why not just store the attendance information
in the BMXEvent object? Event and Occasion have a classification/instance relationship. An occasion is an
instance of an event. There might be multiple instances of the same event and you will need to track the
attendance of each instance individually. To connect this class to the overarching object model, add the
following line to BMXEvent:

public List<BMXOccasion> Occasions {get; set;}

Add another class to the Library folder called BMXCustomerInfo and use the content in Listing 11-2 to
populate it.

Listing 11-2. BMXCustomerInfo Class Definition

public class BMXCustomerInfo
{
 public Guid CustomerID { get; set; }
 public string CustomerName { get; set; }
 public byte[] CustomerImage { get; set; }
 public string Email { get; set; }
 public DateTime DOB { get; set; }
}

This class maps directly to the CustomerInfo class from Chapter 5 with two modifications: you add a
way to identify the customer (CustomerID) and an email address field as well.

You’ve got some more stuff to add. Create another class in the General.UWP.Library’s Library folder
called ReceiptItem. In it, place the code outlined in Listing 11-3.

Listing 11-3. ReceiptItem Class Definition

public class ReceiptItem
{
 public Guid ItemID { get; set; } public string ItemName { get; set; }
 public double Price { get; set; }
 public double Tax { get; set; }
}

In the same project folder location, also add an item called POSTransaction. This will be a direct
representation of the POSTransaction class from Chapter 5. Listing 11-4 illustrates.

http://dx.doi.org/10.1007/978-1-4842-1449-7_5
http://dx.doi.org/10.1007/978-1-4842-1449-7_5

Chapter 11 ■ CommuniCating Between apps

422

Listing 11-4. POSTransaction Class Definition

public class POSTransaction : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;

 List<ReceiptItem> Items { get; } = new List<ReceiptItem>();
 public double DefaultTaxAmount { get; set; }
 public double SubTotal
 {

get
{

var total = Items.Select(i => i.Price).Sum();
return total;

}
 }
 public double TotalTax
 {

get
{

return Items.Select(i => i.Tax).Sum();
}

 }

 public double Total
 {

get
{

return SubTotal + TotalTax;
}

 }

 public ReceiptItem AddItemByPrice(double price)
 {

var tax_amount = price * DefaultTaxAmount;
var item = new ReceiptItem
{

ItemID = Guid.NewGuid(),
ItemName = "",
Price = price,
Tax = tax_amount,

};
Items.Add(item);
PropertyChanged?

.Invoke(this,
new PropertyChangedEventArgs("SubTotal"));

PropertyChanged?
.Invoke(this,
new PropertyChangedEventArgs("TotalTax"));

Chapter 11 ■ CommuniCating Between apps

423

PropertyChanged?
.Invoke(this,
new PropertyChangedEventArgs("Total"));

return item;
 }
 public void RemoveItem(ReceiptItem item)
 {

Items.Remove(item);
 }

 public void ClearItems()
 {

Items.Clear();
 }
}

Point-of-sale transactions will be tracked by occasion so you need to open BMXOccasion and add a link
to this class as follows:

public List<POSTransaction> Transactions { get; set; }

The final change that needs to be made to the object model involves converting the ReservationInfo
class from Chapter 5 (the one that was used to store information about the reservation a customer made)
to an OpenMicRequest class, used to store reservations the customers make to compete in the open mic
challenge. Add a class by that name to the general library’s Library folder (as with the other types you have
been adding) and implement it as shown in Listing 11-5.

Listing 11-5. OpenMicRequest Class Definition

public class OpenMicRequest
{
 public string AdditionalInfo { get; set; }
 public BMXCustomerInfo Customer { get; set; }
}

You’ve reduced the properties in the class quite a bit. You now only care about the person that made
the request and any additional information they might have that would be relevant to the Big Mountain
folks. Because this does not apply directly to the customer or even to an event, you need to create a top-level
property AppState to store it as follows:

public List<OpenMicRequest> OpenMicRequests { get; set; }

There is one more thing to do. So far your app has been working based on an object model that has
now been modified quite drastically. You need to clear the contents of your appdata folder by calling the
ClearAsync method on the ApplicationData object right before you attempt to retrieve the app state
from your AppState object. While you are at it, let’s also switch from using the roaming folder to using the
local one. Your app data is now far too large for it to ever get synced across devices. Listing 11-6 shows the
modifications that must be made to InitializeAppAsync with changes in bold.

http://dx.doi.org/10.1007/978-1-4842-1449-7_5

Chapter 11 ■ CommuniCating Between apps

424

Listing 11-6. InitializeAppAsync Modifications

private static async Task InitializeAppAsync()
{
 var bio_path = "\\media\\text\\artistbio.txt";
 var bio = await Package.Current.InstalledLocation.GetFileAsync(bio_path);
 var appdata_folder = ApplicationData.Current.LocalFolder;
 await ApplicationData.Current.ClearAsync();
 State = await AppState.FromStorageFileAsync(appdata_folder, "state.xml");
 ...
}

The second line in bold is temporary. After running the app once, be sure to comment it out. Not doing
so would consistently clear all your local content, effectively removing any changes you made while running
the app.

One more item you need in your object model is a converter that will present an occasion in text form
(as a string that indicates how many patrons have entered a given event). You created this converter in
Chapter 1; it was called OccasionConverter. Create a new class in the General.UWP.Library project called
BMXOccasionConverter, which contains the definition highlighted in Listing 11-7.

Listing 11-7. BMXOccasionConverter Class Definition

public class BMXOccasionConverter : IValueConverter
{
 public object Convert(object value,

Type targetType,
object parameter,
string language)

 {
if (value is BMXOccasion)
{

var occasion = value as BMXOccasion;
var ui_command = parameter as string;
if (ui_command == "number of attendants")

return $"{occasion.AttendanceCount} attendants";
}
return "Unknown number of attendants";

 }

 public object ConvertBack(object value,
Type targetType,
object parameter,
string language)

 {
throw new NotImplementedException();

 }
}

As was shown in Chapter 1, this class simply displays a text string that represents a given occasion.

http://dx.doi.org/10.1007/978-1-4842-1449-7_1
http://dx.doi.org/10.1007/978-1-4842-1449-7_1

Chapter 11 ■ CommuniCating Between apps

425

Applying SplitView to ApplicationHostPage
Now that your object model has been modified to support all the changes coming to BigMountainX, you can
start modifying the user interface to reflect some of those changes. You can start by adding a SplitView to the
root application page so that users can easily navigate between the customer-facing view of the page and
some of the employee-centric views (like the point-of-sale and patron counters). Listing 11-8 illustrates.

Listing 11-8. ApplicationHostPage Layout Modifications

<Grid Background="#FF6A6A6A">

 <Rectangle x:Name="rect_titlebar"
Height="50"
Fill="#FF6A6A6A"
VerticalAlignment="Top" />

 <SplitView x:Name="panel_splitter"
IsPaneOpen="False"
DisplayMode="CompactInline"
CompactPaneLength="40"
OpenPaneLength="200"
Margin="0">

<SplitView.Pane>

<Grid Background="#AA6A6A6A">
<StackPanel Orientation="Vertical"

Margin="0,50,0,0"
VerticalAlignment="Top"
HorizontalAlignment="Stretch">

<Button HorizontalAlignment="Stretch"
HorizontalContentAlignment="Left"
Margin="0,5,0,0"
Click="OnDashboardClicked"
Background="Transparent">

<StackPanel Orientation="Horizontal">
<SymbolIcon Symbol="GoToStart"

Margin="0,0,20,0" />
<TextBlock Text="Dashboard" />

</StackPanel>
</Button>
<Button HorizontalAlignment="Stretch"

HorizontalContentAlignment="Left"
Margin="0,5,0,0"
Click="OnManageProfileClicked"
Background="Transparent">

<StackPanel Orientation="Horizontal">
<SymbolIcon Symbol="Contact2"

Margin="0,0,20,0" />
<TextBlock Text="Manage Profile" />

</StackPanel>
</Button>

Chapter 11 ■ CommuniCating Between apps

426

<Button HorizontalAlignment="Stretch"
HorizontalContentAlignment="Left"
Margin="0,5,0,0"
Click="OnOpenMicClicked"
Background="Transparent">

<StackPanel Orientation="Horizontal">
<SymbolIcon Symbol="Calendar"

Margin="0,0,20,0" />
<TextBlock Text="Schedule Open Mic" />

</StackPanel>
</Button>

</StackPanel>
<StackPanel Orientation="Vertical"

HorizontalAlignment="Stretch"
VerticalAlignment="Bottom"
Margin="0,0,0,20">

<Button HorizontalAlignment="Stretch"
HorizontalContentAlignment="Left"
Margin="0,5,0,0"
Click="OnPatronCounterClicked"
Background="Transparent">

<StackPanel Orientation="Horizontal">
<SymbolIcon Symbol="AddFriend"

Margin="0,0,20,0" />
<TextBlock Text="Patron Counter" />

</StackPanel>
</Button>

<Button HorizontalAlignment="Stretch"
HorizontalContentAlignment="Left"
Margin="0,5,0,0"
Click="OnManageContactsClicked"
Background="Transparent">

<StackPanel Orientation="Horizontal">
<SymbolIcon Symbol="ContactInfo"

Margin="0,0,20,0" />
<TextBlock Text="Manage Contacts" />

</StackPanel>
</Button>
<Button HorizontalAlignment="Stretch"

HorizontalContentAlignment="Left"
Margin="0,5,0,0"
Click="OnPOS"
Background="Transparent">

<StackPanel Orientation="Horizontal">
<SymbolIcon Symbol="Calculator"

Margin="0,0,20,0" />
<TextBlock Text="POS" />

</StackPanel>
</Button>

</StackPanel>

Chapter 11 ■ CommuniCating Between apps

427

</Grid>
</SplitView.Pane>
<Grid>

<Frame x:Name="root_frame"
Margin="0,50,0,0"
SourcePageType="local:LandingPage" />

</Grid>
 </SplitView>
 <StackPanel Width="40"

Orientation="Vertical"
HorizontalAlignment="Left"
VerticalAlignment="Top">

<Button Height="50"
Background="Transparent"
Click="OnPaneOpened">

<SymbolIcon Symbol="DockLeft" />
</Button>
<Rectangle Stroke="Gray"

StrokeThickness=".5"
Margin="5,0,5,0"
Height=".5"
HorizontalAlignment="Stretch" />

 </StackPanel>

</Grid>

In Listing 11-8, you employ the SplitView control to partition the ApplicationHostPage into an area
where the content is displayed and one where the user can navigate between content areas. To complete this
step, modify the constructor for ApplicationHostPage as indicated in Listing 11-9.

Listing 11-9. ApplicationHostPage Code Modifications

public ApplicationHostPage()
{
 ...

 CoreApplication.GetCurrentView().TitleBar.ExtendViewIntoTitleBar = true;
 Window.Current.SetTitleBar(rect_titlebar);
}
...
private void OnPaneOpened(object sender, RoutedEventArgs e)
{
 panel_splitter.IsPaneOpen = !panel_splitter.IsPaneOpen;
}

If you try to compile the code now, you should receive an error. This is because each of the buttons
shown in the compact view needs to have their event handler implemented. If you haven’t done so yet, take
the time to right-click each of the button’s Click attributes and select “Go to Definition” from the context
menu that appears. This action creates a stub of the event handler to which you can add code. Now add a
new page to the project called PatronCounter and add the XAML from Listing 11-10 to it.

Chapter 11 ■ CommuniCating Between apps

428

Listing 11-10. PatronCounter Layout

<Page.Resources>
 <local:BMXOccasionConverter x:Key="attendant_ext" />
</Page.Resources>
<Grid>
 <StackPanel Orientation="Vertical"

HorizontalAlignment="Center"
VerticalAlignment="Center">

<TextBlock x:Name="txt_attendants"
HorizontalAlignment="Center"
Text="{Binding Converter={StaticResource attendant_ext},

ConverterParameter='number of attendants'}"
FontSize="42"
FontFamily="Segoe UI"
FontWeight="ExtraLight" />

<StackPanel Orientation="Horizontal"
Margin="0,20,0,0"
HorizontalAlignment="Center">

<Button x:Name="btn_reset"
Width="200"
Height="100"
Margin="5"
Click="ResetToZero">

<Button.Content>
<Border Padding="20"

BorderThickness="0,0,0,5"
BorderBrush="Red">

<TextBlock Text="Reset Attendants"
HorizontalAlignment="Left"
VerticalAlignment="Center" />

</Border>
</Button.Content>

</Button>
<Button x:Name="btn_remove"

Width="200"
Height="100"
Margin="5"
Click="RemoveAttendant">

<Button.Content>
<Border Padding="20"

BorderThickness="0,0,0,5"
BorderBrush="Yellow">

<TextBlock Text="Remove Attendant"
HorizontalAlignment="Left"
VerticalAlignment="Center" />

</Border>
</Button.Content>

</Button>
</StackPanel>

Chapter 11 ■ CommuniCating Between apps

429

<Button x:Name="btn_add"
Width="410"
Height="100"
Margin="5,50,5,5">

<Button.Content>
<Border Padding="100,20,100,20"

BorderThickness="0,0,0,5"
BorderBrush="Green">

<TextBlock Text="Add Attendant" />
</Border>

</Button.Content>
</Button>

 </StackPanel>
</Grid>

The XAML here is a copy from the example in Chapter 1 and serves the same function. The code-
behind for this XAML is shown in Listing 11-11.

Listing 11-11. Patron Counter Code

public sealed partial class PatronCounter : Page
{
 BMXOccasion _occasion;
 BMXEvent _event;
 public PatronCounter()
 {

this.InitializeComponent();
this.Loaded += PatronCounter_Loaded;
_event = new BMXEvent();
_occasion = new BMXOccasion(_event);

btn_add.Click += Btn_add_Click;
 }

 private void PatronCounter_Loaded(object sender, RoutedEventArgs e)
 {

DisplayAttendants();
 }

 private void MainPage_Loaded(object sender, RoutedEventArgs e)
 {

 }

 void UseProgrammaticallyCreatedTextblocl()
 {

 }

TextBlock txt_attendants_prog = new TextBlock();
txt_attendants_prog.HorizontalAlignment = HorizontalAlignment.Center;
txt_attendants_prog.Text = "0 attendants";
txt_attendants_prog.FontFamily = new FontFamily("Segoe UI");
txt_attendants_prog.FontSize = 42;
txt_attendants_prog.FontWeight = Windows.UI.Text.FontWeights.ExtraLight;

http://dx.doi.org/10.1007/978-1-4842-1449-7_1

Chapter 11 ■ CommuniCating Between apps

430

 private void DisplayAttendants()
 {

txt_attendants.DataContext = null;
txt_attendants.DataContext = _occasion;

 }

 private void Btn_add_Click(object sender, RoutedEventArgs e)
 {

_occasion.Enter();
DisplayAttendants();

 }

 private void RemoveAttendant(object sender, RoutedEventArgs e)
 {

_occasion.Leave();
DisplayAttendants();

 }

 private void ResetToZero(object sender, RoutedEventArgs e)
 {

_occasion = new BMXOccasion(_event);
DisplayAttendants();

 }
}

The only change to the example is to change the name of the class Occasion to the class BMXOccasion.
Other than that, the code functions the same.

Your next step is to create a Sign in page for the portions of the app that are admin/employee-centric.
Add a new page to the project called EmployeeSignIn and place the XAML in Listing 11-12 into it.

Listing 11-12. EmployeeSignIn Layout

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <StackPanel Width="300"

HorizontalAlignment="Center"
VerticalAlignment="Center">

<PasswordBox x:Name="txt_employeecode"
Header="Enter Passcode" />

<Button Content="Sign In"
Margin="0,10,0,0"
Click="OnSignInRequested"
HorizontalAlignment="Right" />

 </StackPanel>
</Grid>

Now implement the code-behind for this page as shown in Listing 11-13.

Chapter 11 ■ CommuniCating Between apps

431

Listing 11-13. EmployeeSignIn Code

public sealed partial class EmployeeSignIn : Page
{
 Type _target_type;
 public EmployeeSignIn()
 {

this.InitializeComponent();
 }

 private void OnSignInRequested(object sender, RoutedEventArgs e)
 {

if (txt_employeecode.Password == "employee")
Frame.Navigate(_target_type);

 }

 protected override void OnNavigatedTo(NavigationEventArgs e)
 {

_target_type = e.Parameter as Type;
base.OnNavigatedTo(e);

 }
}

In Listing 11-13, the sign-in page expects a parameter passed into it that represents the page to which
the user expects to be navigated. Once the sign-in occurs, this value is used to navigate the user as expected.
Once you have created the appropriate pages, you will be able to use this page to perform the necessary
authentication before navigating the current user to them. Now open up ApplicationHostPage and modify
the definition of OnPatronCounterClicked to the following from Listing 11-14.

Listing 11-14. Event Handler

private void OnPatronCounterClicked(object sender, RoutedEventArgs e)
{
 root_frame.Navigate(typeof(EmployeeSignIn),typeof(PatronCounter));
}

This completes the process of calling any one of the admin pages. In the example, you navigate to
EmployeeSignIn, passing as a parameter to that page the type of the page you really want to navigate to,
PatronCounter. From Listing 11-14, you should know what happens next. Run the example now and test
the code. The user interface of Big Mountain X should now look like Figure 11-1. If you don’t get this view,
immediately reset the profile by calling await ApplicationData.Current.ClearAsync() before the call to
InitializeAppAsync (in the OnLaunched event handler of app.xaml.cs).

Chapter 11 ■ CommuniCating Between apps

432

The image shows the app as it is when it is first opened (with no profile associated with it yet). This is
because you completely clear the profile as one of the first actions the app takes in the Launching event.
If you have successfully run the app at least one time in this manner, switch back to the code and remove
the line await ApplicationData.Current.ClearAsync(); from the InitializeAppAsync method of your
application class. You can find this method in App.xaml.cs.

Let’s take the time to implement some measure of functionality for the other buttons you have in the
navigation area. Although you do not have pages defined for them yet, you can create a page that serves as
an indication to the user that those pages are not available (so they know that the buttons work properly).
First, you must create a page to convey this message to the user. Add a new page to the BigMountainX project
titled PageNotFound and implement the XAML within this page as follows from Listing 11-15.

Listing 11-15. XAML Layout

<Grid>
 <Border HorizontalAlignment="Center"

Width="500" Padding="50" Background="Gray"
VerticalAlignment="Center">

<TextBlock TextWrapping="Wrap"
FontSize="40" Foreground="White"
Height="213">

Figure 11-1. New Big Mountain X UI

Chapter 11 ■ CommuniCating Between apps

433

 <Run Text="The functionality you are requesting is not available yet. Please try
again later." />
</TextBlock>

 </Border>
</Grid>

Continue the process by adding code to handle the events raised by the buttons on
ApplicationHostPage. Listing 11-16 adds this code.

Listing 11-16. Event Handlers

...
private void OnDashboardClicked(object sender, RoutedEventArgs e)
{
 root_frame.Navigate(typeof(EmployeeSignIn), typeof(PageNotFound));
}

private void OnPOS(object sender, RoutedEventArgs e)
{
 root_frame.Navigate(typeof(EmployeeSignIn), typeof(PageNotFound));
}

private void OnManageContactsClicked(object sender, RoutedEventArgs e)
{
 root_frame.Navigate(typeof(EmployeeSignIn), typeof(PageNotFound));
}

private void OnOpenMicClicked(object sender, RoutedEventArgs e)
{
 root_frame.Navigate(typeof(EmployeeSignIn), typeof(PageNotFound));
}

private void OnManageProfileClicked(object sender, RoutedEventArgs e)
{
 root_frame.Navigate(typeof(EmployeeSignIn), typeof(PageNotFound));
}
...

Finally, create a new project in the solution called TestHarnessApp. In the MainPage for this app, add
the code from Listing 11-17.

Listing 11-17. XAML Layout

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <StackPanel Orientation="Vertical"

HorizontalAlignment="Center"
VerticalAlignment="Center"
Width="400">

 </StackPanel>
</Grid>

Chapter 11 ■ CommuniCating Between apps

434

Now that you have all the pieces you need, let’s go through each of the ways that apps can communicate
with each other and apply the principles of each approach to BigMountainX. There are various cross-
functional classes of communication that can occur between UWP apps. For example, some communication
methods follow a publish/subscribe model. In this type of data transfer, the app that is sending the
information is unaware of who will receive the data or how the data will be used. Also, the choice of what
app will be used, or of whether an app exists on the system in the first place, may not fall on the user, and
may be an inadvertent one. An example of this already exists in Windows systems today. When you double-
click a file to open it, a program on your system is used to do so. If that program were to be deleted, any
attempt to open the file now brings up a dialog saying that you must select a program to use. The Windows
10 UWP supports this as well as the ability to target specific apps. Let’s explore this further.

Communicating Through URI Launching
You saw this type of communication in Chapter 8 and 10. With URI launching, you basically use the
Launcher class to launch a URI, causing any app that can handle that URI to be launched. When using
URI launching, note that the entire URI is sent to the app and handled through the OnActivated event
handler. The URI used must be a valid URI and, in order to pass parameters in a manner that the URI
object understands, should use the question mark character before the parameter section of the string
begins. As an example, to pass the name of john as a parameter, you use bmx:?name=john. The system will
activate your app based on the URI you entered, passing it a ProtocolActivatedEventArgs object instance
through an IActivatedEventArgs interface. Within OnActivated, you must convert this back into a strongly
typed instance so that you can operate on it in a meaningful manner. For URI activation you need it to be
converted to this type so you can get access to the URI that was used to activate your app. In Listing 11-18,
you create a new type called QueryReader that can be used to read values out of a well-formed query string
(that uses commas as the delimiter). Add this to General.UWP.Library.

Listing 11-18. QueryReader Definition

public class QueryReader
{
 Dictionary<string, string> _values;

 public string this[string name]
 {

get
{

if (_values.ContainsKey(name))
return _values[name];

else
return null;

}
 }
 public static QueryReader Load(string query_string)
 {

var reader = new QueryReader();
reader._values = new Dictionary<string, string>();
if (query_string.StartsWith("?"))
{

query_string = query_string.TrimStart('?');
var parts = query_string.ToLower().Split(',');
foreach (var query_item in parts)

http://dx.doi.org/10.1007/978-1-4842-1449-7_8
http://dx.doi.org/10.1007/978-1-4842-1449-7_10

Chapter 11 ■ CommuniCating Between apps

435

{
var key_value = query_item.Split('=');
if (key_value.Length == 2)

reader._values.Add(key_value[0], key_value[1]);
}

}
return reader;

 }
}

Now that you have this, you can use it to read parameters that are passed into your activation target
easily. Listing 11-19 modifies your OnActivated event to open either TestPage, PatronCounter, or
PageNotFound based on the parameters passed in.

Listing 11-19. OnActivated Method

async protected override void OnActivated(IActivatedEventArgs args)
{
 if (args.Kind == ActivationKind.Protocol)
 {

var protocol_args = args as ProtocolActivatedEventArgs;
var query = protocol_args.Uri.Query.ToLower();
var reader = QueryReader.Load(query);

await InitializeAppAsync();

var target_page = reader["page"];

if (target_page == "street")
{

StreetSideViewPage street_view = new StreetSideViewPage();
var center_point = new Geopoint(new BasicGeoposition
{

Latitude = App.State.NextEvent.Latitude.Value,
Longitude = App.State.NextEvent.Longitude.Value,

});
await street_view.InitializeAsync(center_point);
Window.Current.Content = street_view;

}
else if (target_page == "main")
{

Window.Current.Content = new ApplicationHostPage();
}
else if (target_page == "counter")
{

Window.Current.Content = new PatronCounter();
}
else if (target_page == "test")
{

Window.Current.Content = new TestPage();
}

Chapter 11 ■ CommuniCating Between apps

436

else
{

Window.Current.Content = new PageNotFound();
}
Window.Current.Activate();

 }
}

In Chapter 10 you added URI launching to BigMountainX so you won’t have to do any declaration in
the app manifest of the project. Based on that chapter’s use of URI launching you should be able to test
this out using Microsoft Edge by placing an address that starts with bmx: into it. Let’s test this out more
formally through the TestHarnessApp project. To get started, right-click it and set it as the start project for the
solution. This targets a particular project as the target to be started and debugged. Next, open the XAML for
MainPage and modify it as indicated in Listing 11-20. Changes are in bold.

Listing 11-20. MainPage Layout Modifications

<Grid Backound="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <StackPanel Orientation="Vertical"

HorizontalAlignment="Center"
VerticalAlignment="Center"
Width="400">

<StackPanel Orientation="Horizontal">
<TextBox x:Name="txt_page"

Width="200"
Margin="5" />

<Button Content="Launch a Uri"
Margin="5"
HorizontalAlignment="Stretch"
Click="TestUriLaunch1" />

</StackPanel>
 </StackPanel>
</Grid>

There is not much to write home about in Listing 11-20. You add a TextBox and Button to the main
StackPanel of the test harness app. The code-behind for this is where all the fun happens; in it you use the
Launcher class to start BigMountainX. Listing 11-21 illustrates.

Listing 11-21. TestUriLaunch1

async private void TestUriLaunch1(object sender, RoutedEventArgs e)
{
 await Launcher.LaunchUriAsync(new Uri($"bmx:?page={txt_page.Text}"));
}

Listing 11-21 is quite straightforward in what it does. You basically attempt to launch the specified URI,
which is dynamically created to include the value of text the user enters as the page parameter. Run the app
and test it by typing in values that correspond to the values expected at the other end by BigMountainX. Be
sure to use Visual Studio 2015 to deploy BigMountainX first (using the project context menu). You should
note that all the appropriate pages are launching as expected. Also, try launching the using values that
BigMountainX is not expecting; the PageNotFound screen should be displayed. Figure 11-2 shows what you
would see if “street” were typed in.

http://dx.doi.org/10.1007/978-1-4842-1449-7_10

Chapter 11 ■ CommuniCating Between apps

437

When no app exists in the system to handle the user interface, the app picker dialog typically pops up.
Open the app manifest of BigMountainX and remove the protocol declaration, and then run the test harness
app again. This time you should see something like Figure 11-3.

Figure 11-2. Protocol activation direct to StreetView

Figure 11-3. Protocol activation prompt when an app exists to handle a protocol

Chapter 11 ■ CommuniCating Between apps

438

You can force this behavior even when an app exists that has the protocol by applying some options
to the launch request. This is accomplished using the LauncherOptions class. Listing 11-22 modifies the
event handler for the “Launch a URI” button so that it explicitly forces the application picker dialog even
if an app exists that can do the job. To test this properly, re-declare the protocol that you just erased (in
BigMountainX), and then build and deploy it. It is important that you remember to deploy in this case,
since you are not debugging this particular project at this time, so your changes will not automatically be
deployed.

Listing 11-22. TestUriLaunch1

async private void TestUriLaunch1(object sender, RoutedEventArgs e)
{
 LauncherOptions options = new LauncherOptions();
 options.DisplayApplicationPicker = true;
 await Launcher.LaunchUriAsync(new Uri($"bmx:?page={txt_page.Text}"), options);
}

Launching a Specific App
Create a new UWP project in the solution you have been working with called CompetingBMXApp. In the
app manifest for this project, add a protocol that is also called bmx. In your test harness project, remove the
line where you force the display of the application picker, and then run the app and click the “Launch a URI”
button. You should now see something like Figure 11-4.

Figure 11-4. Protocol activation when multiple apps support the protocol

Chapter 11 ■ CommuniCating Between apps

439

Because you now have two apps that share this protocol, the system has no idea which of the two apps
it should launch, so it delegates the resolution of this problem to the user. The problem with this is that
the user may not know the intentions of the developer and how those intentions (and the expectations
they depend on) are realized in the inner workings of the app. If the user picks CompetingBMXApp here,
none of the functionality you expect to be presented to the user will occur, since that app does not have the
behavior you are expecting it to have. To make matters worse, it might have a completely different behavior
altogether! Up to this point the apps that are receiving the data you are sending are unknown to you at
development time. As you just saw, if another app exists on the system that can handle the URI scheme you
have specified, the user is given the choice to pick which app they want to use. But what if the requirement
is to have a specific app handle it? Using the LauncherOptions, you can also use this functionality to launch
specific apps on the system. To do this, however, you must know the package family name of the app you are
targeting. Listing 11-23 shows how you can use the TargetApplicationFamilyName of LauncherOptions to
achieve this.

Listing 11-23. TestUriLaunch1

async private void TestUriLaunch1(object sender, RoutedEventArgs e)
{
 LauncherOptions options = new LauncherOptions();
 options.TargetApplicationPackageFamilyName = "<package family name>";
 await Launcher.LaunchUriAsync(new Uri($"bmx:?page={txt_page.Text}"), options);
}

In Listing 11-23, you explicitly identify the app you would like to use to handle the launch request
by specifying the package family name for that app. The package family name for an app is private to the
developer of the target app and must be acquired from them. For debugging purposes only, you can find it in
the Packaging section of your app manifest, as shown in Figure 11-5.

Figure 11-5. Package family name location

Chapter 11 ■ CommuniCating Between apps

440

Launching a URI and Waiting for Results
In certain cases, you will want to get a response back from launching an app (assuming the app has been
written with this in mind). To do this, use the LaunchUriForResults method. In the following example, you
utilize LaunchUriForResults to send messages between BigMountainX and TestHarnessApp. You start by
modifying the MainPage XAML of TestHarnessApp as follows in Listing 11-24.

Listing 11-24. MainPage Modifications

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <StackPanel Orientation="Vertical"

HorizontalAlignment="Center"
VerticalAlignment="Center"
Width="400">

<Border Background="Gray">
<TextBlock x:Name="txt_message"

Height="30" />
</Border>
<StackPanel Orientation="Horizontal">

<TextBox x:Name="txt_page"
Width="200"
Margin="5" />

<Button Content="Launch a Uri"
Margin="5"
HorizontalAlignment="Stretch"
Click="TestUriLaunch1" />

</StackPanel>
 </StackPanel>
</Grid>

The newly added TextBlock is used to display messages that come from BigMountainX. Listing 11-25
illustrates the modified event handler for the “Launch a URI” button.

Listing 11-25. TestUriLaunch1 Modified

async private void TestUriLaunch1(object sender, RoutedEventArgs e)
{
 LauncherOptions options = new LauncherOptions();
 ValueSet data = new ValueSet();
 data.Add("request", txt_page.Text);
 options.TargetApplicationPackageFamilyName = "<Package family name>";
 var result = await Launcher.LaunchUriForResultsAsync(new Uri("bmx:"), options, data);
 var response = result.Result?["response"] as string;
 txt_message.Text = $"response is \"{ response}\"";
}

In Listing 11-25, you store the value of txt_page in a ValueSet object (a kind of key value pair) that
you then pass into a call to LaunchUriForResultsAsyc. This method treats the launched app like a model
dialog that will take additional information from the user, perform some action, and then return some
result set back to the calling app. You might imagine an app like PayPal being used in this manner to check
out. For this and all the other aforementioned reasons (predictability, consistency), you cannot perform
a launch for the results type operation without knowing the app that will be returning the results to you.

Chapter 11 ■ CommuniCating Between apps

441

Hence TargetApplicationPackageFamilyName must be set before the launch request is made. When the
request returns, you read the value of a key value pair in it (response) and display it in the TextBlock you just
added to the XAML. Note from the code that you have removed the URI parameters from the call to launch
BigMountainX. URI parameters are needed in the generic use of protocol activation; in this more advanced
version where the app is known and you are passing in parameters through the ValueSet data container,
there is no need to pass values as query string parameters.

To facilitate this functionality in BigMountainX, you create a new page to represent the app in a modal
dialog state. Add a new page to the BigMountainX project called LaunchResponsePage and define its XAML
as follows from Listing 11-26.

Listing 11-26. LaunchResponsePage

<Grid Background="#FF6A6A6A">
 <StackPanel Orientation="Vertical"

HorizontalAlignment="Center"
VerticalAlignment="Center"
Width="500">

<Border Background="Gray">
<TextBlock x:Name="txt_message"

Height="30" />
</Border>
<StackPanel Orientation="Horizontal">

<TextBox x:Name="txt_page"
Width="250"
Margin="5" />

<Button Content="Respond"
Margin="5"
Width="150"
HorizontalAlignment="Stretch"
Click="ResponseClicked" />

</StackPanel>
 </StackPanel>
</Grid>

The layout of this page should be familiar to you; it is the same exact layout as that of the MainPage from
TestHarnessApp. Define the code-behind for this page as shown in Listing 11-27.

Listing 11-27. LaunchResponsePage Code-Behind

public sealed partial class LaunchResponsePage : Page
{
 ProtocolForResultsActivatedEventArgs _args;

 public LaunchResponsePage(ProtocolForResultsActivatedEventArgs args)
 {

this.InitializeComponent();
_args = args;
var request = _args.Data["request"] as string;
txt_message.Text = $"request is \"{ request}\"";

 }

Chapter 11 ■ CommuniCating Between apps

442

 private void ResponseClicked(object sender, RoutedEventArgs e)
 {

ValueSet response_data = new ValueSet();
response_data.Add("response", txt_page.Text);
_args.ProtocolForResultsOperation.ReportCompleted(response_data);

 }
}

This page is created when a ProtocolForResultsActivatedEventArgs object is passed into it. It stores
in it a class field and then reads the value of “request” from its Data property and sets it to the text of the
TextBlock txt_message. The “request” value read here is the same value that you passed in in Listing 11-25.
This is how values can be passed to the target of a launch operation. In the event handler for the Respond
button, ResponseClicked, you create a new ValueSet and store a value in a “response” key-value pair that
will be sent back to the caller. To close the called app and return the value back to the caller, you use the
instruction _args.ProtocolForResultsOperation.ReportCompleted(response_data);. This method
requires a ValueSet.

The final step to enabling this functionality must be done in BigMountainX’s App.xaml.cs file. When an
app in launched in this manner, it is treated by the system as a different kind of activation. So far, you have
worked with the generic Protocol activation. When you use LaunchUriForResultsAsyc, your activation type
will be ProtocolForResults. Listing 11-28 shows the modified OnActivated event handler.

Listing 11-28. OnActivated Event Handler

async protected override void OnActivated(IActivatedEventArgs args)
{
 await InitializeAppAsync();
 if (args.Kind == ActivationKind.Protocol)
 {

...

 }
 else if (args.Kind == ActivationKind.ProtocolForResults)
 {

var protocol_args = args as ProtocolForResultsActivatedEventArgs;
Window.Current.Content = new LaunchResponsePage(protocol_args);

 }
 Window.Current.Activate();
}

As in the use of standard protocol activation, you first convert the generic args parameter into its
concrete type (so that you can operate on it as needed). Once you have the type, you pass it as an argument
into the constructor for your LaunchResponsePage class, all the while setting it as the root content for the
app. Build and run the app now, and test out sending messages between the two apps. The user interface
should look like Figure 11-6.

Chapter 11 ■ CommuniCating Between apps

443

Querying URI Support
It is a good idea to check to see if the system supports a given URI before blasting out a message to handle it.
And in scenarios where you need a specific app to be available, it is also a good idea to be able to check for
that app in the process. The QueryUriSupportAsync method allows you to do this. Add the code from
Listing 11-29 to MainPage. It should be added as the last item to the main StackPanel on the page.

Listing 11-29. MainPage Modifications

...
 <StackPanel Orientation="Horizontal">
 <TextBox x:Name="txt_uri"

Width="200"
Margin="5" />

 <Button Content="Query Uri"
Margin="5"
HorizontalAlignment="Stretch"
Click="OnQueryUri" />

 </StackPanel>
 </StackPanel>
</Grid>

Implement the OnQueryUri event handler as shown in Listing 11-30.

Figure 11-6. Sharing data between apps

Chapter 11 ■ CommuniCating Between apps

444

Listing 11-30. OnQueryUri Event Handler

async private void OnQueryUri(object sender, RoutedEventArgs e)
{
 var button = sender as Button;
 var result = await Launcher.QueryUriSupportAsync(new Uri($"{txt_uri.Text}:"),

LaunchQuerySupportType.Uri);
 button.Content = result.ToString();
}

The example is relatively straightforward. The value entered into the textbox is used to check for
protocol support using a call to QueryUriSupportAsync.

File Launching
You can also perform activation using files. A file is passed to the app and handled through the OnActivated
event handler. As with protocol activation, the system will activate the targeted app and pass it an event args
object that is specific to the type of activation that occurred–in this case, file activation. Within OnActivated you
must convert the event args back into a strongly typed instance so that you can operate on it in that manner.

For file activation to work, a file association must be declared in the target app’s manifest. Like
protocols, file associations can be used to determine which apps have the ability to handle the appropriate
files. You will start the example for this project by adding a new file association to the BigMountainX project.
Figure 11-7 illustrates the process once again.

Figure 11-7. File type association declaration

Chapter 11 ■ CommuniCating Between apps

445

Deploy the project once you are done. Now that BigMountainX has been configured to handle this file
type, you should notice a few things. First, if you right-click any text file in the system and select “Open with”
from the context menu, BigMountainX should now be one of the apps that shows up. Second, you should
be able to open any text file in the system using this app by double-clicking it. Let’s test this out by creating a
text file with the contents from Listing 11-31 in it.

Listing 11-31. Query String

?page=counter

Save this file wherever you would like it to be saved and call it whatever name makes sense to you (make
sure it has the .txt file extension, however). Now open BigMountainX’s App.xaml.cs file and implement the
OnFileActivated handler as shown in Listing 11-32.

Listing 11-32. OnFileActivated

async protected override void OnFileActivated(FileActivatedEventArgs args)
{
 var target_file = args.Files.FirstOrDefault() as StorageFile;
 var query = await target_file.ReadTextAsync();
 var reader = QueryReader.Load(query);
 var target_page = reader["page"];
 if (target_page == "street")
 {

StreetSideViewPage street_view = new StreetSideViewPage();
var center_point = new Geopoint(new BasicGeoposition
{

Latitude = App.State.NextEvent.Latitude.Value,
Longitude = App.State.NextEvent.Longitude.Value,

});
await street_view.InitializeAsync(center_point);
Window.Current.Content = street_view;

 }
 else if (target_page == "main")
 {

Window.Current.Content = new ApplicationHostPage();
 }
 else if (target_page == "counter")
 {

Window.Current.Content = new PatronCounter();
 }
 else if (target_page == "test")
 {

Window.Current.Content = new TestPage();
 }
 else
 {

Window.Current.Content = new PageNotFound();
 }
 Window.Current.Activate();
}

Chapter 11 ■ CommuniCating Between apps

446

Listing 11-32 simply reuses the same logic as the basic URI activation example you worked on earlier in
the chapter. The only difference between the two is that this version reads the parameters from a file while
the other reads them from a query string. Right-click the text file you previously created and selection Open
with ➤ BigMountainX from the context menu. Figure 11-8 shows what you should see when the app opens.

Figure 11-8. Attendee Counter UI

Now that you have established the file activation algorithm, you can implement the sharing of data
from TestHarnessApp. Start by adding a new button to the bottom of the main stack panel as shown in
Listing 11-33.

Listing 11-33. MainPage Modifications

<Button Content="File Activate"
Margin="5"
HorizontalAlignment="Stretch"
Click="OnFileActivate" />

Chapter 11 ■ CommuniCating Between apps

447

Now implement OnFileActivate as shown in Listing 11-34.

Listing 11-34. OnFileActivate

async private void OnFileActivate(object sender, RoutedEventArgs e)
{
 var folder = ApplicationData.Current.LocalFolder;
 var file = await folder.CreateFileAsync("test.txt", CreationCollisionOption.
OpenIfExists);
 await file.AppendTextAsync("?page=street");
 await Launcher.LaunchFileAsync(file);
}

The code in Listing 11-34 does essentially the same thing as you did manually with the text file. It
dynamically creates a file and populates it with the parameters you want sent to BigMountainX. It then uses
the function LauncFileAsync to launch the file. Figure 11-9 shows what happens if you build and run this
app now.

Figure 11-9. App Picker UI

With files more than anything you will find that numerous apps will intrinsically have the ability
to handle the file types you declare. There is simply no telling what app might be out there that is
built to handle files that end with a certain file extension. Because of this, when using file launching
to communicate, it is imperative that you explicitly target the app you are communicating with using
LaunchOptions and the package family name, just as you did with URI launching.

Chapter 11 ■ CommuniCating Between apps

448

Communicating Through Sharing Files (Shared Storage)
All the approaches you explored so far have required both apps to be up and running at the same time, meaning
you have, for the most part, needed to launch the app you were sending information into and pass it the
parameters needed at launch time. The solutions you have specified up to this point have also actively sent data
between the two participating apps (at least in concept). Another alternative, shared storage, accomplishes
the same task by simply exposing a file such that another app in the system can operate on it. This is a stark
departure from one of the primary tenets of UWP development, complete app isolation. To help reconcile
this, access to the file is not directly granted; rather a token is generated that can then be shared between
participating apps and used to access the file in order to operate on it. Step-wise, the process is as follows:

• Add the file to the shared storage. This process uses the class
SharedStorageAccessManager and returns a token that represents the permission to
access that file.

• Send the token to another application. This can use any of the methods utilized but
does not have to.

• From the other app, use the token to retrieve the file using a call to
RedeemTokenForFileAsync.

In Listing 11-35, you add a new button to your user interface and a textbox to go along with that button.
When the button is clicked, you generate a new storage file in your local storage and add this file to shared
storage. You then display the token string in the textbox.

Listing 11-35. MainPage Modifications

<StackPanel Orientation="Horizontal">
 <TextBox x:Name="txt_token”

Width="200"
Margin="5" />

 <Button Content="Shared File"
Margin="5"
HorizontalAlignment="Stretch"
Click="OnShareFile />

</StackPanel>

And the event handler for this button in Listing 11-36.

Listing 11-36. OnShareFile Event Handler

async private void OnShareFile(object sender, RoutedEventArgs e)
{
 //create or replace the file
 var folder = ApplicationData.Current.LocalFolder;
 var file = await folder.CreateFileAsync("customer.xml", CreationCollisionOption.

ReplaceExisting);

 //write the message
 var xml = @"<customer>

<name>john</name>
<dob>10/19/1990</dob>
<email>john@test.com</email>

</customer>";
 await file.AppendTextAsync(xml);

Chapter 11 ■ CommuniCating Between apps

449

 //share the file
 var token = SharedStorageAccessManager.AddFile(file);
 txt_token.Text = token;
}

In the BigMountainX project, create a new page called ManageCustomer with a layout as shown in
Listing 11-37.

Listing 11-37. ManageCustomer Layout

<Grid Background="#FF6A6A6A">
 <ScrollViewer>

<StackPanel Margin="20"
Orientation="Vertical">

<Button Click="ReplaceImage"
HorizontalAlignment="Left"
Height="227"
Margin="10"
VerticalAlignment="Top"
Width="225"
BorderThickness="1"
BorderBrush="Gray"
Background="Gainsboro">

<Image x:Name="control_image"
Source="/alex.jpg" />

</Button>
<TextBox x:Name="txt_name"

Header="Name"
Margin="10"
Width="225"
HorizontalAlignment="Left" />

<TextBox x:Name="txt_email"
Header="Email Address"
Margin="10"
Width="225"
HorizontalAlignment="Left" />

<DatePicker Margin="10"
x:Name="control_dob"
Header="When were you born?"
HorizontalAlignment="Left"
VerticalAlignment="Top" />

<StackPanel Orientation="Horizontal">
<Button Margin="10"

Content="Save"
Width="100"
Click="SaveCustomer" />

<Button Margin="10"
Width="100"
Content="Cancel"
Click="CancelCustomer" />

</StackPanel>
</StackPanel>

 </ScrollViewer>

Chapter 11 ■ CommuniCating Between apps

450

 <Grid x:Name="grid_overlay" Background="Gray">
<StackPanel HorizontalAlignment="Center" VerticalAlignment="Center">

<TextBox x:Name="txt_token"
Header="Token ID"
Margin="10"
Width="225"
HorizontalAlignment="Left" />

<Button Margin="10"
Content="Load Customer"
Width="150"
Click="LoadToken" />

<Button Margin="10"
Content="New Customer"
Width="150"
Click="CreateNew" />

</StackPanel>
 </Grid>
</Grid>

You will be populating the controls on this page with the content that was created in TestHarnessApp.
The most interesting aspects of this code used to run this page can be found in the LoadToken event handler
in Listing 11-38.

Listing 11-38. LoadToken Event Handler

async private void LoadToken(object sender, RoutedEventArgs e)
 {

var token = txt_token.Text;
var file = await SharedStorageAccessManager.RedeemTokenForFileAsync(token);
if (file != null)
{

//initialize customer
_customer = new BMXCustomerInfo
{

CustomerID = Guid.NewGuid(),
};

//load xml
var xml:text = await file.ReadTextAsync();
var xml = XElement.Parse(xml:text);

//red xml into local values
var customer_name = xml.Element("name").Value;
var customer_email = xml.Element("email").Value;
var customer_dob = xml.Element("dob").Value;
var dob = DateTime.Parse(customer_dob);

//set values of controls
txt_name.Text = customer_name;
txt_email.Text = customer_email;
control_dob.Date = dob;

Chapter 11 ■ CommuniCating Between apps

451

//hide overlay
grid_overlay.Visibility = Visibility.Collapsed;

}

Here you see the other end of SharedStorageAccessManager. Calling RedeeemTokenForFileAsync here
and passing the token you generated from the TestHarnessApp project should retrieve the XML file you
created there. Once you have this shared file, you simply read its values and use those values to populate the
controls on the page. The full code-behind for ManageCustomer is shown in Listing 11-39. You will need to
add the following property to your AppState class:

public List<BMXCustomerInfo> Customers { get; set; } = new List<BMXCustomerInfo>();

Listing 11-39. ManageCustomer Code-Behind

public sealed partial class ManageCustomer : Page
{
 CameraCaptureUI ccui = new CameraCaptureUI();
 BMXCustomerInfo _customer;

 public ManageCustomer()
 {

this.InitializeComponent();
 }

 async private void ReplaceImage(object sender, RoutedEventArgs e)
 {

BitmapImage image = new BitmapImage();
control_image.Source = image;

ccui.PhotoSettings.AllowCropping = true;
ccui.PhotoSettings.MaxResolution =

CameraCaptureUIMaxPhotoResolution.HighestAvailable;
var result = await ccui.CaptureFileAsync(CameraCaptureUIMode.Photo);
if (result != null)
{

var stream = await result.OpenReadAsync();
await image.SetSourceAsync(stream);

//get the image data and store it
stream.Seek(0);
BinaryReader reader =

new BinaryReader(stream.AsStreamForRead());
_customer.CustomerImage = new byte[stream.Size];
reader.Read(_customer.CustomerImage, 0,_customer.CustomerImage.Length);

}
 }

 private void CancelCustomer(object sender, RoutedEventArgs e)
 {

Frame.GoBack();
 }

Chapter 11 ■ CommuniCating Between apps

452

 async private void SaveCustomer(object sender, RoutedEventArgs e)
 {

_customer.CustomerName = txt_name.Text;
_customer.Email = txt_email.Text;
_customer.DOB = control_dob.Date.Date;
App.State.Customers.Add(_customer);
await App.State.SaveAsync();
Frame.GoBack();

 }

 private void CreateNew(object sender, RoutedEventArgs e)
 {

grid_overlay.Visibility = Visibility.Collapsed;
_customer = new BMXCustomerInfo
{

CustomerID = Guid.NewGuid(),
};

 }

 async private void LoadToken(object sender, RoutedEventArgs e)
 {

var token = txt_token.Text;
var file = await SharedStorageAccessManager.RedeemTokenForFileAsync(token);
if (file != null)
{

//initialize customer
_customer = new BMXCustomerInfo
{

CustomerID = Guid.NewGuid(),
};

//load xml
var xml:text = await file.ReadTextAsync();
var xml = XElement.Parse(xml:text);

//red xml into local values
var customer_name = xml.Element("name").Value;
var customer_email = xml.Element("email").Value;
var customer_dob = xml.Element("dob").Value;
var dob = DateTime.Parse(customer_dob);

//set values of controls
txt_name.Text = customer_name;
txt_email.Text = customer_email;
control_dob.Date = dob;

//hide overlay
grid_overlay.Visibility = Visibility.Collapsed;

}
 }
}

Chapter 11 ■ CommuniCating Between apps

453

Finally, open ApplicationHostPage and connect this page to the navigation structure by modifying
OnManageContactsClicked as shown in Listing 11-40.

Listing 11-40. Modifying OnManageContactsClicked

private void OnManageContactsClicked(object sender, RoutedEventArgs e)
{
 root_frame.Navigate(typeof(EmployeeSignIn), typeof(ManageCustomer));
}

Application Services
In the previous section, you saw sharing between two apps in a manner in which the receiving app was not
necessarily aware of the intention to share until much later (when it came time to retrieve the file that it
needed). This is a departure from the approach to sharing you have practiced up to this point. For the most
part, all the other forms of sharing we have discussed have actively forced the app being shared with to open.
You saw this with both forms of URI launching and with the file launcher.

In contrast to this approach, application services extend the notion of sharing in a manner that does not
require the other participant to be opened. Application services allow you to do this by exposing a background
task to any apps that want to send data directly to it. In this case, the data is passed to the background task and
would ideally be stored in a location that allows the foreground app to load it when it starts. You will use this
method to improve on the design of the ManageCustomer example from the previous section.

The process starts with the TestHarnessApp project. In it, you need to add a new button to the button of
MainPage’s primary StackPanel as you have been doing thus far. Listing 11-41 illustrates.

Listing 11-41. MainPage Modifications

<Button Content="App Service Shared File"
Margin="5"
HorizontalAlignment="Stretch"
Click="OnAppServiceShareFile" />

Now you must implement the handler OnAppServiceShareFile. This handler will function the same as
OnShareFile in that it will use the SharedStorageAccessManager class to add a file to shared storage. The
change here is in what happens to the token that is returned from this call. Previously, you stored the token
in a TextBox, with the expectation that the user would copy that token into a participating app whenever
it needed to retrieve the created file. You will do things differently here. With the token in hand, you will
send it as a message to the application service of an app you expect to be running on the system. Because
application services run in the background, the message will be delivered without the app opening. Listing
11-42 illustrates the handler for OnAppServiceShareFile.

Listing 11-42. OnAppServiceShareFile

int _name_count = 0;
async private void OnAppServiceShareFile(object sender, RoutedEventArgs e)
{
 //used to randomize names
 _name_count++;

Chapter 11 ■ CommuniCating Between apps

454

 //create or replace the file
 var folder = ApplicationData.Current.LocalFolder;
 var file = await folder.CreateFileAsync("customer.xml", CreationCollisionOption.

ReplaceExisting);

 //write the message
 var xml = $"<customer><name>john_{_name_count}</name>"

+ @"<dob>10/19/1990</dob>
<email>john@test.com</email>

</customer>";
 await file.AppendTextAsync(xml);

 //share the file
 var token = SharedStorageAccessManager.AddFile(file);

 AppServiceConnection connection = new AppServiceConnection();
 connection.AppServiceName = "bmx-service";
 connection.PackageFamilyName = "<package family>";

 AppServiceConnectionStatus status = await connection.OpenAsync();
 if (status == AppServiceConnectionStatus.Success)
 {

//Send data to the service _
var message = new ValueSet();
message.Add("command", "customer-file-share");
message.Add("token", token);

//Send message and wait for response _
AppServiceResponse response = await connection.SendMessageAsync(message);
if (response.Status == AppServiceResponseStatus.Success)
{

await new MessageDialog("sent").ShowAsync();
}
else

await new MessageDialog("Failed when sending message to app").ShowAsync();
 }
 else
 {

await new MessageDialog(status.ToString()).ShowAsync();
 }
 connection.Dispose();
}

In Listing 11-42, you create, populate, and eventually store the customer XML file in shared storage and
then attempt to send the token to an application service associated with the Big Mountain X app. Application
services utilize the AppServiceConnection object to identify the service being requested, open a connection
to that service, and then ultimately send messages to it (using the ValueSet object). To begin sending
messages, you must first call OpenAsync on the AppServiceConnection object. This tells you whether the
service is available or not. If the result returns as a success, you proceed with sending the messages using the
SendMessageAsync method. If it fails, you prompt the user with the status of the connection and then dispose
of the connection. Run the app now and click the associated button; you should get the error prompt shown
in Figure 11-10.

Chapter 11 ■ CommuniCating Between apps

455

The service is failing at present because you have obviously not created it. To do so, you must add a new
background task to Big Mountain X and then register that task in the manifest.

To get going, add a new class to the BMX.BackgroundTasks called BMXAppServices. This class will
be used to encapsulate all the application services that the BMX app exposes. In app service, add code to
read the token values passed into it, retrieve the associated file from shared storage, and copy that file to a
location within the Big Mountain X app so that it can be used locally the next time the app is run. Listing 11-43
illustrates.

Listing 11-43. BMXAppServices Class Definition

sealed public class BMXAppServices : IBackgroundTask
{
 AppState State { get; set; }
 BackgroundTaskDeferral _deferral;

 async public void Run(IBackgroundTaskInstance taskInstance)
 {

_deferral = taskInstance.GetDeferral();
var local = ApplicationData.Current.LocalFolder;
State = await AppState.FromStorageFileAsync(local, "state.xml");
var details = taskInstance.TriggerDetails as AppServiceTriggerDetails;

Figure 11-10. Application service-based sharing error

Chapter 11 ■ CommuniCating Between apps

456

if (details.Name == "bmx-service")
{

HandleBMXServiceRequests(details);
}

 }

 private void HandleBMXServiceRequests(AppServiceTriggerDetails details)
 {

var retval = new ValueSet();

details.AppServiceConnection.RequestReceived += async (sender, args) =>
{

var message = args.Request.Message;
var command = message["command"] as string;
if (command == "customer-file-share")
{

var token = message["token"] as string;
var file = await SharedStorageAccessManager.RedeemTokenForFileAsync(token);
if (file != null)
{

var xml:text = await file.ReadTextAsync();
var xml = XElement.Parse(xml:text);

var customer = new BMXCustomerInfo
{

CustomerID = Guid.NewGuid(),
CustomerName = xml.Element("name").Value,
Email = xml.Element("email").Value,
DOB = DateTime.Parse(xml.Element("dob").Value)

};

State.Customers.Add(customer);
await State.SaveAsync();

retval.Add("result", "File was copied");
}
else
{

retval.Add("result", "Could not retrieve file");
}
await args.Request.SendResponseAsync(retval);

}
_deferral.Complete();

};
 }
}

Listing 11-43 defines a new background task that will serve as the application service that receives
the message from TestHarnessApp. In the Run method for this class, you first get a deferral and then you
load the AppState object into memory. AppState is the global application state you have been using in

Chapter 11 ■ CommuniCating Between apps

457

the foreground portion of BigMountainX so far. Because you are dynamically loading customers into
your data store, you need this object. Next, you convert the trigger details object into the concrete type
AppServiceTriggerDetails so that you can work with it as an app service trigger, and gain access to the
functionality defined for those kinds of background tasks. Once you have this instance, you use it to filter
functionality to the name of the service being requested. One app service class may handle multiple app
service declarations (each with its own set of functionality). Testing for the service being called ensures that
the app service is doing what it is supposed to do. You then call HandeBMXServiceRequests, the request
handler you have defined for handling requests for any request for an app service named bmx-service
(the kind TestHarnessApp requests). In this method you listen for the details.AppServiceConnection.
RequestReceived event to be fired and handle it as needed. The critical thing you are doing here is reading
the shared file and using it to create an XML document that you can then populate a customer object with.
Once you have created an instance of BMXCustomerInfo from the data you received, you add that instance to
the Customers list of your AppState object and then call SaveAsync to save it. You then notify the caller that
the load was successful (or not if it failed). Figure 11-11 shows how this must be set up in the app manifest
for the service to work. Once you have it properly configured, publish BigMountainX.

Figure 11-11. Configuring application service

You can now run TestHarnessApp and use the App Service Shared File button to send many customer
files to BigMountainX. Figure 11-12 illustrates.

Chapter 11 ■ CommuniCating Between apps

458

Note that there is no indication to the user that any other app is involved in the process. Everything
happens in the background. To test if the customer list is being updated, place a breakpoint in
InitializeAppAsync right after the State property of your App class is initialized. Once you have done this,
run the app and inspect the value of the Customers property. You should see that the list has now increased.
Figure 11-13 shows what you see for your implementation.

Figure 11-12. Sending data using application service

Chapter 11 ■ CommuniCating Between apps

459

Sharing Data Between the Apps You Created
Another way of communicating between apps (in scenarios where you published each app) is to simply
use some predefined shared storage location. In Windows 10 UWP, it is possible for apps from the
same publisher to share a common storage area using publisher cache functionality. This allows you to
maintain some measure of continuity across the suite of products you utilize. You can store the EULA
(end user license agreement) text for all your apps in this location for instance, or perhaps any suite-wide
logos and logo text. If you expect your applications to work together, this might also be a great place to
get that done quickly. ApplicationData exposes two methods for working with the publisher cache:
GetPublisherCacheFolder can be used to retrieve the folders you have specified as a publisher cache folder
while ClearPublisherCacheFolderAsync can be used to clear the contents of the publisher cache folder
you specify. As with many of the features exposed through the UWP, the process of enabling publisher cache
folders starts in the app’s manifest file. Unfortunately, there is presently no user interface to modify this, so
you will have to open the manifest by right-clicking and selecting View Code.

For this feature to work across your apps, each app that you want to have access to this cache must
explicitly declare access to the folder. Access to this folder means access to any subfolders of it as well.
You do this in both BigMountainX and TestHarnessApp by adding the XML from Listing 11-44 to the app
manifest, at the package level.

Figure 11-13. Testing customer creation

Chapter 11 ■ CommuniCating Between apps

460

Listing 11-44. Adding Publisher Cache Folder Support to the App Manifest

<Package ...>
...
<Extensions>
 <Extension Category="windows.publisherCacheFolders">

<PublisherCacheFolders>
<Folder Name="bmx_shared_state"/>

</PublisherCacheFolders>
 </Extension>
</Extensions>
</Package>

It is important to note that although this is an extension, it is an extension applied to the package and
not any of the applications within the package (like the other extensions you have been working with). Since
you have the manifest open in its XML form, take the time to look through and note the distinction. The
PublisherCacheFolders node can contain multiple Folder elements, each corresponding to a folder that
will be provided by the system.

Next, you add another button to MainPage in the same manner as you have been doing. Listing 11-45
shows the XAML for the button.

Listing 11-45. New Button in MainPage

<Button Content="Write to Publisher Cache"
Margin="5"
HorizontalAlignment="Stretch"
Click="OnWriteToPublisherCache" />

And finally you implement the OnWriteToPublisherCache method as shown in Listing 11-46.

Listing 11-46. OnWriteToPublicherCache

async private void OnWriteToPublisherCache(object sender, RoutedEventArgs e)
{
 var folder = ApplicationData.Current.GetPublisherCacheFolder("bmx_shared_state");
 var file = await folder.CreateFileAsync("customer.xml", CreationCollisionOption.
ReplaceExisting);

 //write the message
 var xml = $"<customer><name>james_{_name_count}</name>"

+ @"<dob>10/19/1990</dob>
<email>john@test.com</email>

 </customer>";
 await file.AppendTextAsync(xml);
}

In Listing 11-46, you use the publisher cache folder you declared in the manifest to store a customer
XML file. When you call GetPublisherCacheFolder, the name specified must match a name declared in
the manifest for one of the publisher cache folders. Once you have the storage folder corresponding to this
location, it is business as usual as far as interacting with it.

To test this functionality, in BigMountainX open the ManageCustomer XAML and add the following
button to the StackPanel inside grid_overlay. Listing 11-47 illustrates.

Chapter 11 ■ CommuniCating Between apps

461

Listing 11-47. New button in MainPage

<Button Margin="10"
Content="Load Cached Customer"
Width="150"
Click="OnLoadCachedCustomer" />

Implement OnLoadCachedCustomer as follows (Listing 11-48).

Listing 11-48. OnLoadCachedCustomer

async private void OnLoadCachedCustomer(object sender, RoutedEventArgs e)
{
 var folder = ApplicationData.Current.GetPublisherCacheFolder("bxm_shared_state");
 var file = await folder.GetFileAsync("customer.xml");
 //initialize customer
 _customer = new BMXCustomerInfo
 {

CustomerID = Guid.NewGuid(),
 };

 //load xml
 var xml:text = await file.ReadTextAsync();
 var xml = XElement.Parse(xml:text);

 //red xml into local values
 var customer_name = xml.Element("name").Value;
 var customer_email = xml.Element("email").Value;
 var customer_dob = xml.Element("dob").Value;
 var dob = DateTime.Parse(customer_dob);

 //set values of controls
 txt_name.Text = customer_name;
 txt_email.Text = customer_email;
 control_dob.Date = dob;

 //hide overlay
 grid_overlay.Visibility = Visibility.Collapsed;
}

In Listing 11-48, you get the customer.xml file that was created in your publisher cache folder and use
it to populate the fields of this page. Run this example and note that you are able to create and read files in
your publisher cache as easily as anywhere else. For collaborating apps, publisher cache is a powerful was of
sharing state.

Sharing Contracts
Sharing using contracts is the most prominent means of sharing between apps. It’s specifically designed
for such functionality and in that way is the resident first-class inter-app communication mechanism for
Windows 10. When an application subscribes to the sharing experience, it can send and receive content in
various forms ranging from plain text and HTML content to complex structures.

Chapter 11 ■ CommuniCating Between apps

462

Sharing follows a pattern similar to protocols, file type association, pickers, and all the other declaration
types when it comes to permissions. In the case of sharing, the Share Target declaration is required. As with
other declarations, when a declaration is required for an app to run, it is surfaced as a permission that the
user is aware of before install. When deciding whether to download and install your apps, the declarations
you require will undoubtedly have an impact. Should they miss this out of sheer excitement, they need only
use the various settings app to access the same list of permissions required for a given app to run.

Sharing supports two types of contracts: essentially, one for giving content and one for receiving
content. Because the giving side of the equation can only ever be activated by the end user through
performing some interactive action on the app, there is no requirement to explicitly define anything to get it
going. We will discuss this approach first.

Sharing as a Source
As far as a UWP app is concerned, it can always share content that it deems meaningful to share. However,
like protocol and file activation, the type of content being shared is an important part of what apps on your
system will be available to share with. The process of sharing begins when a call to DataTransferManager.
ShowShareUI() is made. Calling this method triggers the system to ask your app for the type of content
being shared. This is surfaced in your app as the DataRequested event of DataTransferManager. If this
event goes unhandled, the system will share a screenshot of your app. Depending on what data you chose
to share when handling the event, the system will determine the appropriate apps that have the ability to
handle that content type. These apps will be listed in the Sharing Pane (which appears as a slide-out on
the right of the user’s screen). To get access to an instance of DataTransferManager, call the static method
GetForCurrentView. In the next example, you modify MainPage of TestHarnessApp to use sharing to publish
the customer XML you have been generating and storing to a file. You will be sharing it as text. To start, you
must add a new button to your page (within the StackPanel you have been placing them in). Listing 11-49
illustrates.

Listing 11-49. New Button in MainPage

<Button Content="Share Customer"
Margin="5"
HorizontalAlignment="Stretch"
Click="OnShareCustomer" />

Next, in the code-behind you must modify the constructor to specify a handler for the DataRequested
event and also implement OnShareCustomer. Listing 11-50 illustrates.

Listing 11-50. Changes to MainPage

public sealed partial class MainPage : Page
{
 int _name_count = 0;
 public MainPage()
 {

this.InitializeComponent();
DataTransferManager.GetForCurrentView().DataRequested += MainPage_DataRequested;

 }
 ...
 private void OnShareCustomer(object sender, RoutedEventArgs e)
 {

DataTransferManager.ShowShareUI();
 }

Chapter 11 ■ CommuniCating Between apps

463

 private void MainPage_DataRequested(DataTransferManager sender,
DataRequestedEventArgs args)

 {
_name_count++;
var xml = $"<customer><name>james_{_name_count}</name>"

+ @"<dob>10/19/1990</dob>
 <email>john@test.com</email>
 </customer>";

args.Request.Data.Properties.Title = "New Customer";
args.Request.Data.Properties.Description = "Create a new Customer";
args.Request.Data.SetText(xml);

 }
}

In Listing 11-50, you specify two methods: OnShareCustomer simply invokes the Sharing pane while
MainPage_DataRequested handles the DataRequested event. In this event handler, you create the customer
XML and publish it to the sharing framework as text. You also set a title and description to the data you are
sharing (so the user has some context they can use in making the choice of which app to use). Run this app
now and click the Share Customer button and you should see a share pane similar to Figure 11-14. Please
note that the apps that appear will differ based on the system this code is run on.

Figure 11-14. Sharing pane

Chapter 11 ■ CommuniCating Between apps

464

Note that the title and description show that based on the content type, four apps are available to share
(on your system). Clicking any of these apps will take the user to a secondary screen where they can visualize
the data to be shared between the apps. Figure 11-15 shows the next screen that appears when OneNote is
the app selected.

Figure 11-15. Sharing view

When one of the applications is selected, that application is launched in a share view, and the user is
given the option to make last-minute edits and complete the share procedure.

What you can see from this example is that sharing follows an event subscription model to connect.
This is because, as stated, sharing happens exclusively through the Windows 10 share experience. The event
handler OnDataRequested is called any time the user exposes the share pane. It gives the application an
opportunity to load any information into the sharing context.

The giving end of the share relationship is accomplished via three main classes: DataTransferManager,
DataRequest, and DataPackage. DataTransferManager is used to hook into the sharing context to
listen for the launching of the Share pane. DataRequest encapsulates the request for data initiated
by Windows 10 in response to the user starting the share experience, exposed through the Request
property of DataRequestedEventArgs. It’s passed into the application through the event handler for the
OnDataRequested event. DataPackage represents the conceptual package of data that is transferred between
the sharing applications; hence it controls the actual reading and writing of data. It is exposed through the
Data property of DataRequest. Table 11-1 lists some of the methods of the DataPackage class.

Chapter 11 ■ CommuniCating Between apps

465

DataPackage also exposes a property of type DataPackagePropertySet through its properties
property, which you can use to apply metadata to the content being shared. It contains Title and
Description properties but is also a property bag that can be used to store additional properties in name/
value format.

Listing 11-50 sends data between applications using one of the standard formats provided through the
data package classes: Text. As you saw from Table 11-1, in addition to this you can also send images, RTF
content, HTML content, and even raw data (using SetData) across applications.

Sharing as a Target
Each application has a set of content types that it supports (some public and some private). The Windows
Mail application, for instance, can accept HTML for use in rendering a message being generated from
a “giving” application. For the content to render properly, the message must follow a specific format
(controlled by Microsoft, in this case). The moral of the story is that content format is less of a concern
than specific application requirements as defined by documentation received directly from the application
authors.

Receiving content through the share contract is far more involved than sending. For starters, unlike
sending content to other applications, receiving content requires an application to be registered as a target
for the type of content being shared. This makes sense because you wouldn’t want every application that
can possible share presented in the listing of share targets when the user wishes to transfer content that is
unrelated to many of them. Instead, Windows 10 filters the list of applications that appear when the user
clicks the Share button to include only those applications that can consume content in the format being
shared. It isn’t difficult to see why applications that want to register as share targets need to declare the type
of content they can handle.

Table 11-1. DataPackage Methods

Name Description

GetView Returns a DataPackageView object. This object is a read-only copy of the
DataPackage object.

SetBitmap Sets the bitmap image contained in the DataPackage.

SetData Sets the data contained in the DataPackage in a RandomAccessStream
format.

SetDataProvider Sets a delegate to handle requests from the target app.

SetHtmlFormat Adds HTML content to the DataPackage.

SetRtf Sets the Rich Text Format (RTF) content that is contained in a
DataPackage.

SetStorageItems
(IIterable(IStorageItem))

Sets the files and folders contained in a DataPackage.

SetStorageItems(IIterable
(IStorageItem), Boolean)

Adds files and folders to a DataPackage.

SetText Sets the text that a DataPackage contains.

SetUri Sets the Uniform Resource Identifier (URI) that is contained in the
DataPackage.

http://msdn.microsoft.com/en-US/library/windows/apps/windows.applicationmodel.datatransfer.datapackage.getview.aspx
http://msdn.microsoft.com/en-US/library/windows/apps/hh738426.aspx
http://msdn.microsoft.com/en-US/library/windows/apps/hh738427.aspx
http://msdn.microsoft.com/en-US/library/windows/apps/windows.applicationmodel.datatransfer.datapackage.setdataprovider.aspx
http://msdn.microsoft.com/en-US/library/windows/apps/windows.applicationmodel.datatransfer.datapackage.sethtmlformat.aspx
http://msdn.microsoft.com/en-US/library/windows/apps/windows.applicationmodel.datatransfer.datapackage.setrtf.aspx
http://msdn.microsoft.com/en-US/library/windows/apps/br205913.aspx
http://msdn.microsoft.com/en-US/library/windows/apps/br205913.aspx
http://msdn.microsoft.com/en-US/library/windows/apps/hh738430.aspx
http://msdn.microsoft.com/en-US/library/windows/apps/hh738430.aspx
http://msdn.microsoft.com/en-US/library/windows/apps/br205916.aspx
http://msdn.microsoft.com/en-US/library/windows/apps/windows.applicationmodel.datatransfer.datapackage.seturi.aspx

Chapter 11 ■ CommuniCating Between apps

466

Not surprisingly, the pattern for doing this is similar to the manner in which background tasks,
pickers, and protocols are registered and processed. First, you must add the Share Target capability to the
application’s manifest. Open BigMountainX and add the Share Target declaration, specifying that the app
can receive text content. Figure 11-16 illustrates.

Figure 11-16. Configuring a share target

In the image, the text data format has been added as the primary format that the application supports.
You add data formats by specifying the format moniker for the format type. In this case, the application
can handle text of any kind. You can also use file-type associations to enable sharing. Doing so allows the
application to use nonstandard formats to share data through the StorageItems property of DataPackage. If
a file format is used that matches the data formats specified, it’s treated as such; otherwise, the share source
must use the args.Request.Data.SetStorageItems method to add the nonstandard format (as a storage
file) to the sharing context.

Once you have declared the app as being a share target, you must do two things. First, you must
override the OnShareTargetActivated method of the App class in order to handle when the app is activated
in this manner. Listing 11-51 shows how it should be implemented for BigMountainX.

Chapter 11 ■ CommuniCating Between apps

467

Listing 11-51. OnShareTargetActivated

async protected override void OnShareTargetActivated(ShareTargetActivatedEventArgs args)
{
 await InitializeAppAsync();
 ManageCustomer cust = new ManageCustomer();
 await cust.Activated(args);
}

The second thing that needs to happen is that a user interface needs to be created to display in the
Share pane when your app is selected. You saw this UI in your share source example when you selected
OneNote. In this exercise, you will be using ManageCustomer as the user interface (you might have figured
this out based on the last code listing). You probably noticed the red squiggly underneath the call to
Activated. The OnShareTargetActivated method makes a call to an Activated method on ManageCustomer
that presently does not exist. Listing 11-52 shows the modifications to ManageCustomer to add this method
and also to enable it to function as a share target.

Listing 11-52. Modifications to ManageCustomer

public sealed partial class ManageCustomer : Page
{
 ...
 bool _share_activated = false;
 ShareOperation _share;

 public ManageCustomer()
 {

...
 }

 async public Task Activated(ShareTargetActivatedEventArgs args)
 {

_share = args.ShareOperation;
var xml:text = await args.ShareOperation.Data.GetTextAsync();
var xml = XElement.Parse(xml:text);

_customer = new BMXCustomerInfo
{

CustomerID = Guid.NewGuid(),
};

//red xml into local values
var customer_name = xml.Element("name").Value;
var customer_email = xml.Element("email").Value;
var customer_dob = xml.Element("dob").Value;
var dob = DateTime.Parse(customer_dob);

//set values of controls
txt_name.Text = customer_name;
txt_email.Text = customer_email;
control_dob.Date = dob;
grid_overlay.Visibility = Visibility.Collapsed;

Chapter 11 ■ CommuniCating Between apps

468

_share_activated = true;
//set this as the window
Window.Current.Content = this;
Window.Current.Activate();

 }

 ...

 async private void SaveCustomer(object sender, RoutedEventArgs e)
 {

_customer.CustomerName = txt_name.Text;
_customer.Email = txt_email.Text;
_customer.DOB = control_dob.Date.Date;
App.State.Customers.Add(_customer);
await App.State.SaveAsync();

if (_share_activated)
_share.ReportCompleted();

else
Frame.GoBack();

 }
 ...
}

In Listing 11-52, you first retrieve the share-specific object instance from the args object and save it to
the field variable _share. Next, you use the appropriate method to retrieve the shared content (in this case,
GetTextAsync). Finally, you use this text to load an XML document which you then read values from and use
to populate the fields on the page, as you have been doing all chapter long. Figure 11-17 shows how the app
looks when selected from the sharing pane.

Chapter 11 ■ CommuniCating Between apps

469

Figure 11-17. BigMountainX sharing view

One thing to note is that share targets don’t have the same width as normal applications. The layout of
the share view must account for this, or the user experience suffers. Navigating the user to a standard page
with normal dimensions (which is pixel or margin positioned) may make sharing impossible for the user.

Summary
You just completed a meaty chapter with a comprehensive and in-depth investigation into incorporating
communication and data exchange between apps. With the close of this chapter, you should feel well on
your way toward gaining more in-depth knowledge of the Windows 10 ethos and environment to serve
you as you forge ahead into development for the platform. Through the use of contracts, interoperability
between applications can be enhanced further. The following are some key points:

• Share contract is the most prominent means of sharing between applications. When
an application subscribes to the sharing experience, it can send and receive content
in various forms ranging from simple to complex structures.

• Protocol activation uses the Launcher class to launch a URI, causing any app that
can handle that URI to be launched. It can be used to launch apps generally, launch
specific apps, and even to launch apps for the purpose of returning results.

• QueryUriSupportAsync allow you to check to see if the system supports a given URI
before blasting out a message to handle it.

Chapter 11 ■ CommuniCating Between apps

470

• File activation, like protocols, can be used to determine which apps have the ability
to handle appropriate files.

• SharedStorageAccessManager exposes files in such a way that other apps in the
system can operate on them. To help reconcile the security concerns, access to the
exposed file is not directly granted; rather a token is generated that can then be
shared between participating apps and used to access the file.

• In Windows 10 UWP, it is possible for apps from the same publisher to share a
common storage area using publisher cache functionality.

• Application services extend the notion of sharing in a manner that does not require
the other participant to be open. App services allow you to do this by exposing a
background task to any apps that want to send data directly to it.

471

Chapter 12

Leveraging Cortana and Speech

In light of the developments we have seen in the world of mobile computing with regard to personal
assistant software, it would not be hyperbole to say that speech will be a major part of the future of
computing. The truth is that more and more, natural user interfaces will take computing further and
further away from the ones and zeros of the digital age to a more user-centric, service-oriented world where
intention masks the underlying technology used to create a digital experience. For Microsoft, products like
Kinect and HoloLense exemplify this shift in interaction patterns from the old guard of mouse and keyboard
to new natural ones. Search, speech, and to a greater extent Cortana sit at the center of this drive towards
alternative ways of interacting with your PCs. Cortana has the following advantages:

• The world’s most personal digital assistant helps you get things done throughout
the day.

• A whole new natural, way of interacting with your PC.

• Available to millions of users across Windows 10 PCs, tablets, and phones.

• Integrated search across device, the Web, and personal and professional clouds.

As it is a built-in part of the search and “assistant” functionality in every Windows 10 installation,
integrating into this feature set, and exposing aspects of your app through it, represents a powerful way of
surfacing your apps to the user. If you are considering supporting speech interactions in your app, here are
some things to consider:

• What actions can be taken through speech? Can a user navigate between pages,
invoke commands, or enter data as text fields, brief notes, or long messages?

• Is speech input a good option for completing a task?

• How does a user know when speech input is available?

• Is the app always listening, or does the user need to take an action for the app to
enter listening mode?

• What phrases initiate an action or behavior? Do the phrases and actions need to be
enumerated on screen?

• Are prompt, confirmation, and disambiguation screens or TTS (text-to-speech)
required?

• What is the interaction dialog between app and user?

• Is a custom or constrained vocabulary required (such as medicine, science, or
locale) for the context of your app?

• Is network connectivity required?

Chapter 12 ■ Leveraging Cortana and SpeeCh

472

In this chapter, you will learn how you can use Cortana within your apps and how you can extend the
services Cortana provides through your app. Finally, you will learn how users can interact with your app
through the Cortana interface without your app even running. Let’s get started.

Making Your Program Speak
Text-to-speech, commonly referred to as TTS, uses a speech synthesis engine (voice) to convert a text string
into spoken words. The simplest form of this takes as input the text you actually want the engine to utter.
A more complex approach uses Speech Synthesis Markup Language (SSML). SSML provides a standard
way to control characteristics of speech output, such as pronunciation, volume, pitch, rate or speed, and
emphasis. To enable TTS in your apps, use the SpeechSynthesizer class. Speech requires at a minimum a
MediaElement to use for playing the audio stream generated by the speech synthesizing engine. In Listing 12-1,
you use TTS to add a measure of security to the employee sign-in page of Big Mountain X. Presently a
passphrase is required to enter the system in this mode. You will accompany this by requiring the user to
type in the text for a random phrase generated by this page, thus eliminating automated brute force attacks
on the system. You start by opening EmployeeSignIn and modifying the XAML layout as follows.

Listing 12-1. Employee Sign-In XAML

<Grid Background="#FF6A6A6A">
 <MediaElement x:Name="speech_player" />
 <StackPanel Width="300"

HorizontalAlignment="Center"
VerticalAlignment="Center">

<StackPanel Margin="0,0,0,5" BorderThickness="0,0,0,1" BorderBrush="Gray">
<TextBox x:Name="txt_passphrase"

PlaceholderText="Click speak and enter the text you hear"
Header="Passphrase" />

<Button Content="Speak" Margin="0,5,0,10" Click="OnPlayPassphrase" />
</StackPanel>

<PasswordBox x:Name="txt_employeecode"
Header="Enter Passcode" />

<Button Content="Sign In"
Margin="0,10,0,0"
Click="OnSignInRequested"
HorizontalAlignment="Right" />

 </StackPanel>
</Grid>

The code-behind for EmployeeSignIn is as shown in Listing 12-2.

Listing 12-2. Employee Sign-In Code-Behind

public sealed partial class EmployeeSignIn : Page
{
 List<string> passphrases = new List<string>
 {

"the quick brown fox jumped over the lazy dogs",
"it's not you its me",

Chapter 12 ■ Leveraging Cortana and SpeeCh

473

"be the spoon",
"don't worry be happy"

 };
 string _passphrase;
 Type _target_type;
 public EmployeeSignIn()
 {

this.InitializeComponent();
 }

 async private void OnSignInRequested(object sender, RoutedEventArgs e)
 {

bool failed_signin = true;
if (!string.IsNullOrWhiteSpace(_passphrase)

&& !string.IsNullOrWhiteSpace(txt_passphrase.Text))
{

if (txt_employeecode.Password == "employee"
&& txt_passphrase.Text.ToLower() == _passphrase.ToLower())

{
failed_signin = false;
Frame.Navigate(_target_type);

}
}

if (failed_signin)
{

await new MessageDialog("Login Failed").ShowAsync();
}

 }

 protected override void OnNavigatedTo(NavigationEventArgs e)
 {

_target_type = e.Parameter as Type;
base.OnNavigatedTo(e);

 }

 async private void OnPlayPassphrase(object sender, RoutedEventArgs e)
 {

//select a random item
Random random = new Random();
int seed_value = random.Next(0, 1000);
int selection = seed_value % 4;
_passphrase = passphrases[selection];

//initalize the synthesizer
var speech = new SpeechSynthesizer();

//create an audio stream of the text
var speech_stream = await speech.SynthesizeTextToStreamAsync(_passphrase);

Chapter 12 ■ Leveraging Cortana and SpeeCh

474

//set the stream
speech_player.SetSource(speech_stream, speech_stream.ContentType);

 }
}

In Listing 12-2, you first add two new fields to the class, one that contains the list of possible passphrases
that the sign-in screen uses to prompt employees and the other a variable for storing the currently active
prompt. When the Play button is clicked, you generate a random number and use it to pick which of the
phrases will be used for validation. You then generate a stream of the synthesized audio for that text using
SynthesizeTextToStreamAsync and then play it in the MediaElement using the SetSource function of the
control. Finally, you modify the sign-in handler to ensure that the text entered into the passphrase field
matches the currently selected passphrase. If so, the user is signed in.

Using SSML
For straightforward situations like the scenario just described, passing a text string directly into the speech
synthesizer works fine. But what if you want to apply emphasis to certain words, or pause between saying
one word and another? SSML can be used to describe the manner in which you want a speech synthesis
engine to read text that is inputted into it. The structure of SSML documents is beyond the scope of this text
but you can find out about it at www.w3.org/TR/speech-synthesis/. In the following example, you will use
four different SSML documents to present the same content as you did before. From this you should begin to
get a sense of the power of utilizing this technique. You start by defining the markup for the speaking, create
four XML documents in the Media/Audio folder called phrase1, phrase2, phrase3, and phrase4 and define
each as shown in Listing 12-3.

Listing 12-3. SSML File

Phrase 1
<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis" xml:lang="en-us">

 The quick brown fox jumped over the

 <prosody duration="1000ms" contour="(0%,+20Hz) (10%,+30%) (40%,+10Hz)">Lazy</prosody>
dogs.

</speak>

Phrase 2
<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis" xml:lang="en-us">
 It's not you
 <break time="1000ms" />
 It's me
</speak>

Phrase 3
<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis" xml:lang="en-us">
 <prosody contour="(0%,+80Hz) (10%,+80%) (40%,+80Hz)">Be the spoon</prosody>
</speak>

http://www.w3.org/TR/speech-synthesis/
http://www.w3.org/2001/10/synthesis
http://www.w3.org/2001/10/synthesis
http://www.w3.org/2001/10/synthesis

Chapter 12 ■ Leveraging Cortana and SpeeCh

475

Phrase 4
<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis" xml:lang="en-us">
 Dont worry
 <break time="500ms" />
 be happy
</speak>

With these files defined, you must now modify the code base for EmployeeSignIn to allow
for them to be used. When synthesizing speech using unadorned text, you used the function
SynthesizeTextToStreamAsync. For synthesizing speech based on an SSML file, you use
SynthesizeSsmlToStreamAsync. Listing 12-4 shows the changes to be made.

Listing 12-4. Employee Sign-In

public sealed partial class EmployeeSignIn : Page
{
 List<dynamic> passphrases = new List<dynamic>
 {

new {Phrase= "the quick brown fox jumped over the lazy dogs",File="phrase1.xml" },
new { Phrase="it's not you its me",File="phrase2.xml" },
new { Phrase="be the spoon",File="phrase3.xml" },
new { Phrase="don't worry be happy",File="phrase4.xml" }

 };

 string _passphrase;
 Type _target_type;
 public EmployeeSignIn()
 {

this.InitializeComponent();
 }

 async private void OnSignInRequested(object sender, RoutedEventArgs e)
 {

bool failed_signin = true;
if (!string.IsNullOrWhiteSpace(_passphrase)

&& !string.IsNullOrWhiteSpace(txt_passphrase.Text))
{

if (txt_employeecode.Password == "employee"
&& txt_passphrase.Text.ToLower() == _passphrase.ToLower())

{
failed_signin = false;
Frame.Navigate(_target_type);

}
}

if (failed_signin)
{

await new MessageDialog("Login Failed").ShowAsync();
}

 }

http://www.w3.org/2001/10/synthesis

Chapter 12 ■ Leveraging Cortana and SpeeCh

476

 protected override void OnNavigatedTo(NavigationEventArgs e)
 {

_target_type = e.Parameter as Type;
base.OnNavigatedTo(e);

 }

 async private void OnPlayPassphrase(object sender, RoutedEventArgs e)
 {

//select a random item
Random random = new Random();
int seed_value = random.Next(0, 1000);
int selection = seed_value % 4;
var tuple = passphrases[selection];

_passphrase = tuple.Phrase;

var ssml_path = $"ms-appx:///media/audio/{tuple.File}";
var ssml_uri = new Uri(ssml_path);
var ssml_file = await StorageFile.GetFileFromApplicationUriAsync(ssml_uri);
var ssml_string = await ssml_file.ReadTextAsync();

//initalize the synthesizer
var speech = new SpeechSynthesizer();

//create an audio stream of the text
var speech_stream = await speech.SynthesizeSsmlToStreamAsync(ssml_string);

//set the stream
speech_player.SetSource(speech_stream, speech_stream.ContentType);

 }
}

In Listing 12-4, you modify the code-behind for EmployeeSignIn such that it uses an SSML file instead
of unadorned text to present an audio prompt to the user. The key change in the code base is modifying
the list of passphrases from being a list of strings to a list of dynamic objects that have a Phrase and File
property. Phrase continues to represent the passphrase while File points to the location where the SSML
for that passphrase is stored. When an item is selected from the list, you use the Phrase portion of the item
to store the value you will eventually use to test against the user’s input. You use the other value, File, to
generate a path to the SSML file bearing that name. You then read the file and use the adorned string that is
returned to call SynthesizeSsmlToStreamAsync.

Be mindful of the user experience when designing your apps to use speech synthesis. You should have
a clear sense of the use cases where speech provides an additive element to the experience, such as reading
a text message out to the user. You should consider whether you should read long strings of text. It's one
thing to listen to a text message, but quite another to listen to a long list of search results that are difficult to
remember. Also, try to design prompts that are polite and encouraging. If you believe the audio might be on
the long side, you should provide media controls to let users pause, or stop, TTS. You should listen to all TTS
strings to ensure they are intelligible and sound natural. Stringing together an unusual sequence of words or
speaking part numbers or punctuation might cause a phrase to become unintelligible.

Chapter 12 ■ Leveraging Cortana and SpeeCh

477

Recognizing Speech
Speech recognition does the exact opposite of what speech synthesizing does. It converts words spoken by the
user into text, which ultimately can be used for form input, for text dictation, to specify an action or command,
and to accomplish tasks. In Windows 10, both predefined grammars for free-text dictation and web search, and
custom grammars authored using Speech Recognition Grammar Specification (SRGS) are supported.

Speech recognition is made up of a speech runtime, recognition APIs for programming the runtime,
ready-to-use grammars for dictation and web search, and a default system UI that helps users discover and
use speech recognition features. Speech for text input can range from short form (single word or phrase)
to long form (continuous dictation). Short form input must be less than 10 seconds in length, while long
form input session can be up to two minutes in length. (Long form input can be restarted without user
intervention to give the impression of continuous dictation.) Take note of the following guidelines when
implementing speech recognition in your apps:

• Always provide a visual cue to indicate that speech recognition is supported and
available to the user and whether the user needs to turn it on.

• Provide ongoing recognition feedback to minimize any apparent lack of response
while recognition is being performed.

• Let users revise recognition text using keyboard input, disambiguation prompts,
suggestions, or additional speech recognition.

• Stop recognition if input is detected from a device other than speech recognition,
such as touch or keyboard. This probably indicates that the user has moved onto
another task, such as correcting the recognition text or interacting with other form
fields.

• Specify the length of time for which no speech input indicates that recognition is
over. Do not automatically restart recognition after this period of time because it
typically indicates the user has stopped engaging with your app.

• Disable all continuous recognition UI and terminate the recognition session if a
network connection is not available. Continuous recognition requires a network
connection.

In the example to follow, you will be using speech recognition as an alternative authentication
mechanism on the EmployeeSignIn page. If the user does not want to type in the text that they are prompted
with, they can alternatively speak a written prompt in order to gain access to the employee portal area of the
app. To get started, be sure to add the Microphone capability to the app (it should already be added from
your work in Chapter 7). In Listing 12-5, you modify the layout of EmployeeSignIn to include the section for
using a verbal phrase to authenticate.

Listing 12-5. Modified Employee SignIn

<Grid Background="#FF6A6A6A">
 <MediaElement x:Name="speech_player" />
 <StackPanel Width="300"

HorizontalAlignment="Center"
VerticalAlignment="Center">

<StackPanel Margin="0,0,0,5"
BorderThickness="0,0,0,1"
BorderBrush="Gray">

http://dx.doi.org/10.1007/978-1-4842-1449-7_7

Chapter 12 ■ Leveraging Cortana and SpeeCh

478

<PasswordBox x:Name="txt_employeecode2"
PlaceholderText="Enter passcode"
Header="Voice Authentication" />

<Button Content="Voice Sign In"
HorizontalAlignment="Right"
Margin="0,5,0,10"
Click="OnSayPrompt" />

</StackPanel>
<StackPanel Margin="0,0,0,5"

BorderThickness="0,0,0,1"
BorderBrush="Gray">

<TextBox x:Name="txt_passphrase"
PlaceholderText="Click speak and enter the text you hear"
Header="Listen Authentication" />

<Button Content="Listen"
Margin="0,5,0,10"
Click="OnPlayPassphrase" />

</StackPanel>

<PasswordBox x:Name="txt_employeecode"
PlaceholderText="Enter passcode"
Header="Just enter passcode" />

<Button Content="Sign In"
Margin="0,10,0,0"
Click="OnSignInRequested"
HorizontalAlignment="Right" />

 </StackPanel>
</Grid>

In Listing 12-5 you add a new StackPanel that contains a PasswordBox/Button combo. This time,
instead of simply testing the value entered into the PasswordBox, you also test to ensure that the user utters a
certain passphrase. If there is no match between what is said and what is expected, the sign-in will not occur.
Listing 12-6 shows the code-behind.

Listing 12-6. Employee SignIn Code-Behind

public sealed partial class EmployeeSignIn : Page
{
 List<dynamic> passphrases = new List<dynamic>
 {

new {Phrase= "the quick brown fox jumped over the lazy dogs",File="phrase1.xml" },
new { Phrase="it's not you it's me",File="phrase2.xml" },
new { Phrase="be the spoon",File="phrase3.xml" },
new { Phrase="don't worry be happy",File="phrase4.xml" }

 };

 string _passphrase;
 Type _target_type;

 ...

Chapter 12 ■ Leveraging Cortana and SpeeCh

479

 async private void OnSayPrompt(object sender, RoutedEventArgs e)
 {

try
{

var button = sender as Button;
button.Content = "…";
bool failed_signin = true;
Random random = new Random();
int seed_value = random.Next(0, 1000);
int selection = seed_value % 4;
var tuple = passphrases[selection];

var prompt = (string)tuple.Phrase;

//general dictation
var recognizer = new SpeechRecognizer();

recognizer.UIOptions.ExampleText = $"Repeat the phrase '{prompt}'";
await recognizer.CompileConstraintsAsync();
var result = await recognizer.RecognizeWithUIAsync();
if (result.Status == SpeechRecognitionResultStatus.Success)
{

if (result.Text.ToLower() == prompt.ToLower())
{

if (txt_employeecode2.Password == "employee")
{

failed_signin = false;
Frame.Navigate(_target_type);

}
}

}

if (failed_signin)
{

button.Content = "Failed connection";
}

}
catch (Exception ex)
{

await new MessageDialog(ex.Message).ShowAsync();
}

 }

}

Listing 12-6 uses the SpeechRecognizer class to call the function RecorgnizeWithUIAsync. This
function displays a modal dialog that indicates to the user that speech recognition is happening. Figure 12-1
shows how the app looks when run and speech recognition is enabled through the “Voice Sign In” button.

Chapter 12 ■ Leveraging Cortana and SpeeCh

480

With the passcode entered, pressing this button opens up the system-wide voice recognition dialog. In
your example, you present the user with the term you want them to say within this dialog. You can also set
a number of other values regarding the way the dialog appear (or even if it appears at all) through the many
properties of this class.

Constraints and Grammars
By default, when nothing more is done with the SpeechRecognizer instance beyond initializing it, compiling
its constraints, and begin recognizing, the framework is in dictation mode. In this mode, it will listen to
whatever is said by the user and try it’s best to translate that to text verbatim. If this basic functionality is
less than ideal for your scenario, then you can use constraints to extend what the recognizer listens for. A
constraint defines the words and phrases (vocabulary) that an app recognizes in speech input. They are at
the core of speech recognition and give your app great influence over the accuracy of speech recognition.
Constraints are applied using predefined grammars, which provide speech recognition for your app without
requiring you to author a grammar. When using these grammars, speech recognition is performed by a
remote web service and the results are returned to the device. (A grammar can be thought of as a list of
words indexed by the words that map to them.)

Because predefined dictation and web-search grammars can be large, and because they are online (not
on the device), performance might not be as fast as with a custom grammar installed on the device. They
can be used to recognize up to 10 seconds of speech input and require no authoring effort on your part.
However, they do require connection to a network.

As stated, the default free-text dictation grammar can recognize most words and phrases that a user can
say in a particular language, and is optimized to recognize short phrases. The predefined dictation grammar
is used if you don't specify any constraints for your SpeechRecognizer object. Free-text dictation is useful
when you don't want to limit the kinds of things a user can say. You use this in your example.

Figure 12-1. Voice command pop-up UI

Chapter 12 ■ Leveraging Cortana and SpeeCh

481

SpeechRecognitionListConstraint
Programmatic list constraints provide a lightweight approach to creating simple grammars using a list of
words or phrases. A list constraint works well for recognizing short, distinct phrases. Explicitly specifying all
words in a grammar also improves recognition accuracy because the speech recognition engine must only
process speech to confirm a match. The list can also be programmatically updated. List constraints consist
of an array of strings that represents speech input that your app will accept for a recognition operation. You
can create a list constraint in your app by creating a speech-recognition list-constraint object and passing an
array of strings. Then add that object to the constraints collection of the recognizer. Recognition is successful
when the speech recognizer recognizes any one of the strings in the array. In Listing 12-7, you change your
example to use a list constraint instead of the generic grammar.

Listing 12-7. OnSayPrompt Method

async private void OnSayPrompt(object sender, RoutedEventArgs e)
{
 try
 {

var button = sender as Button;
button.Content = "...";
bool failed_signin = true;
Random random = new Random();
int seed_value = random.Next(0, 1000);
int selection = seed_value % 4;
var tuple = passphrases[selection];

var prompt = (string)tuple.Phrase;
//general dictation
var recognizer = new SpeechRecognizer();
var phrases = passphrases.Select(i => (string)i.Phrase).ToList();

var list_constraint = new SpeechRecognitionListConstraint(phrases);
recognizer.Constraints.Add(list_constraint);

recognizer.UIOptions.ExampleText = $"Repeat the phrase '{prompt}'";
await recognizer.CompileConstraintsAsync();
var result = await recognizer.RecognizeWithUIAsync();
if (result.Status == SpeechRecognitionResultStatus.Success)
{

if (result.Text.ToLower() == prompt.ToLower())
{

if (txt_employeecode2.Password == "employee")
{

failed_signin = false;
Frame.Navigate(_target_type);

}
}

}

Chapter 12 ■ Leveraging Cortana and SpeeCh

482

if (failed_signin)
{

button.Content = "Failed connection";
}

 }
 catch (Exception ex)
 {

await new MessageDialog(ex.Message).ShowAsync();
 }
}

The only change needed to implement this approach is creating the constraint and adding it to the list
of constraints available to the recognizer. To get the list of phrases your recognizer supports, you use a LINQ
expression to extract just the phrase part of your phrase list into a list of strings. Using this approach, you
should notice that the process of recognizing is much faster. This is because there is no need to go out to the
Internet. The recognizer waits until it hears the targeted words in the prescribed order and only marks the
input text as recognized when this happens.

You can perform voice recognition without the user interface altogether, and even perform continuous
speech recognition if needed. Listing 12-8 shows how continuous integration in an app might work. When
using continuous recognition, be sure to stop recognizing when done.

Listing 12-8. OnContinuousRecognize Method

async private void OnContinuousRecognize(object sender, RoutedEventArgs e)
{
 var recognizer = new SpeechRecognizer();
 await recognizer.CompileConstraintsAsync();
 recognizer.ContinuousRecognitionSession.ResultGenerated += async (s, args) =>
 {

await txt_dictation.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
{

txt_dictation.Text += args.Result.Text;
});

 };
 await recognizer.ContinuousRecognitionSession.StartAsync(SpeechContinuousRecognitionMo
de.Default);
}

The code in Listing 12-9 shows some of the properties that can be set on the recognizer user interface to
customize it to your liking.

Listing 12-9. SpeechRecognizer Properties

var recognizer = new SpeechRecognizer();
recognizer.UIOptions.ExampleText = "You can say 'Something'";
recognizer.UIOptions.AudiblePrompt = "Say something I'm giving up on you.";
recognizer.UIOptions.IsReadBackEnabled = true;
recognizer.UIOptions.ShowConfirmation = true;

Listing 12-10 shows how recognition can be done without launching the default recognition dialog. This
can be useful in scenarios where the developer would like to use their own user interface.

Chapter 12 ■ Leveraging Cortana and SpeeCh

483

Listing 12-10. Using SpeechRecognizer

var recognizer = new SpeechRecognizer();
var topic = new SpeechRecognitionTopicConstraint(SpeechRecognitionScenario.WebSearch,
"webSearch");
recognizer.Constraints.Add(topic);
await recognizer.CompileConstraintsAsync();
var result = await recognizer.RecognizeAsync();
txt_dictation.Text = result.Text;

Using Cortana
The easiest way to use Cortana is to click the Cortana button on your system task bar. Your system
settings may have Cortana set up in its mini form, as the full text box on the taskbar, or not showing at all.
Additionally, you may be able to access Cortana by simply saying “Hey, Cortana.” This particular form of
activating Cortana only works when you have configured it to be activated in this manner. Figure 12-2 shows
the basic user interface for the feature.

Figure 12-2. Cortana UI

Chapter 12 ■ Leveraging Cortana and SpeeCh

484

Figure 12-3 shows the settings pane for Cortana. Unlike the other settings on Windows 10 systems, the
Cortana settings area shows up within the Cortana interface rather than the settings app. You can still use
the Settings app to activate that view directly.

Figure 12-3. Cortana settings UI

Setting Up for Cortana
Incorporating sound into your app is a great way to introduce voice interactivity for your users. With the
voice interactivity you have examined thus far, your app must be running in order for it to be utilized. With
Cortana integration, this is does not have to be the case. The UWP allows for you to use Cortana to launch
your UWP apps as though they were commands intrinsically built into the tool. The user’s voice input is
interpreted and then used to start the app that corresponds to the alias provided by the user. It is passed into
the app as a parameter of the OnActivated method. Apps launched in this manner are launched into the
foreground, meaning that the app takes focus and Cortana is dismissed. In general, this type of interactivity
is best for commands that require additional context or user input.

Chapter 12 ■ Leveraging Cortana and SpeeCh

485

In the following example, you will be adding some functionality to Cortana that enables the user to find
the upcoming events that the Big Mountain Theater company is putting on. To get the processing going,
however, you will need to add a few new pages to the mix. The first page will be for creating events; you will
need this so you can populate the system with events. The second will be an events list page which you will
use to list events that fit a given search criterion (by default this page will return all appointments). You start
the process with a bit of homework in the AppState object. Add a new property to represent the list of events
available at a given time. Listing 12-11 illustrates.

Listing 12-11. Events List

public List<BMXEvent> Events { get; set; } = new List<BMXEvent>();

Now open ApplicationHostPage and add a new button to the SplitView for accessing the event
management functionality. Add this to the “Manage Contacts” button as shown in Listing 12-12.

Listing 12-12. Manage Events Button

...
<Button HorizontalAlignment="Stretch"

HorizontalContentAlignment="Left"
Margin="0,5,0,0"
Click="OnPatronCounterClicked"
Background="Transparent">

 <StackPanel Orientation="Horizontal">
<SymbolIcon Symbol="AddFriend"

Margin="0,0,20,0" />
<TextBlock Text="Patron Counter" />

 </StackPanel>
</Button>
<Button HorizontalAlignment="Stretch"

HorizontalContentAlignment="Left"
Margin="0,5,0,0"
Click="OnManageEventsClicked"
Background="Transparent">

 <StackPanel Orientation="Horizontal">
<SymbolIcon Symbol="CalendarDay"

Margin="0,0,20,0" />
<TextBlock Text="Manage Events" />

 </StackPanel>
</Button>
 <Button HorizontalAlignment="Stretch"

HorizontalContentAlignment="Left"
Margin="0,5,0,0"
Click="OnManageContactsClicked"
Background="Transparent">

<StackPanel Orientation="Horizontal">
<SymbolIcon Symbol="ContactInfo"

Margin="0,0,20,0" />
<TextBlock Text="Manage Contacts" />

</StackPanel>
 </Button>
...

Chapter 12 ■ Leveraging Cortana and SpeeCh

486

Before moving forward, add a new page to the project called ManageEventsPage with the default layout
provided by Visual Studio. You’ll get to it in a moment; for now, create an OnManageEventsClicked event
handler to match the event exposed by the Manage Events button in ApplicationHostPage. Implement is as
shown in Listing 12-13.

Listing 12-13. Manage Events Handler

private void OnManageEventsClicked(object sender, RoutedEventArgs e)
{
 root_frame.Navigate(typeof(EmployeeSignIn), typeof(ManageEventsPage));
}

As with all the other employee-facing screens in the app, clicking Manage Events navigates the user to
EmployeeSignIn where they must enter credentials in one of the ways you have previously specified.

The next step is to implement the code for actually creating events. For good measure, you will also add
a page for listing all events currently planned. This is the page where the command to create a new event will
reside. Listing 12-14 shows the modified XAML layout for the page ManageEventsPage. Add it as shown.

Listing 12-14. ManageEventPage XAML

<Grid Background="#FF6A6A6A">
 <ListView x:Name="gridview_events"

SelectionMode="Single"
ItemsSource="{x:Bind Events, Mode=OneWay}"
IsItemClickEnabled="True"
ItemClick="EventSelected">

<ListView.ItemTemplate>
<DataTemplate>

<StackPanel Orientation="Vertical">
<Border HorizontalAlignment="Stretch"

Height="15"
Margin="5,5,10,5"
Width="Auto"
BorderThickness="0"
BorderBrush="Gray"
Background="Gainsboro">

</Border>
<TextBlock Text="{Binding EventTitle}"

FontSize="24"
FontWeight="ExtraLight"
VerticalAlignment="Center" />

<TextBlock Text="{Binding StartDateTime.Date}"
FontSize="24"
FontWeight="ExtraLight"
VerticalAlignment="Center" />

<TextBlock Text="{Binding StartDateTime.TimeOfDay}"
FontSize="24"
FontWeight="ExtraLight"
VerticalAlignment="Center" />

<TextBlock Text="{Binding Address}"
FontSize="12" TextWrapping="Wrap"

Chapter 12 ■ Leveraging Cortana and SpeeCh

487

FontWeight="ExtraLight"
VerticalAlignment="Center" />

</StackPanel>
</DataTemplate>

</ListView.ItemTemplate>
 </ListView>
</Grid>

ManageEventsPage uses the familiar compiled binding pattern you have been utilizing since its
introduction. The OneNewEventClicked event opens a new page called CreateEventPage. (Take the time to
add a new page to the project with this name.) Implement the code-behind for ManageEventsPage as shown
in Listing 12-15.

Listing 12-15. ManageEventsPage Code-Behind

public sealed partial class ManageEventsPage : Page, INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;
 List<BMXEvent> Events { get; set; }

 public ManageEventsPage()
 {

this.InitializeComponent();
this.Loaded += ManageEventsPage_Loaded;

 }

 private void ManageEventsPage_Loaded(object sender, RoutedEventArgs e)
 {

Events = App.State.Events;
PropertyChanged?.Invoke(this, new PropertyChangedEventArgs("Events"));

 }

 private void OnNewEventClicked(object sender, RoutedEventArgs e)
 {

Frame.Navigate(typeof(CreateEventPage),null);
 }

 private void EventSelected(object sender, ItemClickEventArgs e)
 {

Frame.Navigate(typeof(CreateEventPage), e.ClickedItem);
 }
}

The interesting thing about this page is that when CreateEventPage is navigated to it passes either a null
(for a new event being created), or an event instance selected from the list being displayed on the page. Now
add the CreateEventPage to the project and implement its XAML layout as shown in Listing 12-16.

Chapter 12 ■ Leveraging Cortana and SpeeCh

488

Listing 12-16. CreateEventPage XAML

<ScrollViewer HorizontalScrollBarVisibility="Auto"
HorizontalScrollMode="Auto">

 <StackPanel Orientation="Vertical"
Width="350"
Background="#FF6A6A6A"
HorizontalAlignment="Center">

<TextBox x:Name="txt_eventtitle"
Header="Event Title"
Margin="10"
HorizontalAlignment="Stretch" />

<TextBox x:Name="txt_eventdescription"
Header="Event Description"
Margin="10"
AcceptsReturn="True"
Height="200"
HorizontalAlignment="Stretch" />

<TextBox x:Name="txt_address"
Header="Event Address"
Margin="10"
HorizontalAlignment="Stretch" />

<CalendarDatePicker x:Name="control_calendar"
HorizontalAlignment="Stretch"
Margin="10"
Header="Event Day"
VerticalAlignment="Top"
PlaceholderText="What day will it be held?"

/>
<TimePicker x:Name="control_time"

Header="What time will it be held?"
Margin="10"
HorizontalAlignment="Stretch"
VerticalAlignment="Top" />

<Slider x:Name="slider_duration"
Header="Event Duration"
HorizontalAlignment="Stretch"
Minimum="1"
Maximum="24"
Margin="10"
VerticalAlignment="Top" />

<StackPanel Orientation="Horizontal">
<Button Margin="10"

Content="Save"
Width="100"
Click="SaveEvent" />

Chapter 12 ■ Leveraging Cortana and SpeeCh

489

<Button Margin="10"
Width="100"
Content="Cancel"
Click="CancelEvent" />

</StackPanel>
 </StackPanel>

</ScrollViewer>

In Listing 12-16, the user interface elements on the page are meant to basically capture the fields of the
BMXEvent class so that you can either create a new one, or edit one that has already been created and passed
in. Listing 12-17 shows the code-behind for this page.

Listing 12-17. CreateEventPage Code-Behind

public sealed partial class CreateEventPage : Page
{
 BMXEvent CurrentEvent;

 public CreateEventPage()
 {

this.InitializeComponent();
 }

 async private void SaveEvent(object sender, RoutedEventArgs e)
 {

var default_position = new BasicGeoposition
{

Latitude = 40.7484,
Longitude = -73.9857,

};
Geopoint point = new Geopoint(default_position);
var lat = default_position.Latitude;
var lon = default_position.Longitude;

if (CurrentEvent == null)
{

CurrentEvent = new BMXEvent
{

EventID = Guid.NewGuid(),
EventTitle = txt_eventtitle.Text,
Description = txt_eventdescription.Text,
Address = txt_address.Text,
Longitude = lon,
Latitude = lat,
CreateDate = DateTime.Now,
Duration = TimeSpan.FromHours(slider_duration.Value),
StartDateTime = control_calendar.Date.Value.Date.Add(control_time.Time),

};
}

Chapter 12 ■ Leveraging Cortana and SpeeCh

490

else
{

CurrentEvent.EventTitle = txt_eventtitle.Text;
CurrentEvent.Description = txt_eventdescription.Text;
CurrentEvent.Address = txt_address.Text;
CurrentEvent.Longitude = lon;
CurrentEvent.Latitude = lat;
CurrentEvent.CreateDate = DateTime.Now;
CurrentEvent.Duration = TimeSpan.FromHours(slider_duration.Value);
 CurrentEvent.StartDateTime = control_calendar.Date.Value.Date.Add
(control_time.Time);

}

App.State.Events.Add(CurrentEvent);
await App.State.SaveAsync();
Frame.GoBack();

 }

 private void CancelEvent(object sender, RoutedEventArgs e)
 {

Frame.GoBack();
 }

 protected override void OnNavigatedTo(NavigationEventArgs e)
 {

if (e.Parameter != null)
{

CurrentEvent = e.Parameter as BMXEvent;

//brute force populate fields
txt_eventtitle.Text = CurrentEvent.EventTitle;
txt_eventdescription.Text = CurrentEvent.Description;
txt_address.Text = CurrentEvent.Address;
control_calendar.Date = CurrentEvent.StartDateTime;
slider_duration.Value = CurrentEvent.Duration.Hours;

}

 }
}

Let’s start the examination of Listing 12-17 with the OnNavigatedTo handler. In it, you test the Parameter
property to see if it is null. If there is a value passed in through this property, you use its state to initialize all
the fields on the page.

When the Save button is clicked, SaveEvent is called to handle it. For the purposes of this
example, we have set up this page so that every event will be geographically located at the Empire State
Building, regardless of the actual address. When you implement this yourself, you may want to use
MapLocationFinder.FindLocationsAsync to retrieve a meaningful geoposition based on the address the
user enters. After the first part of the function does this, you test to see if CurrentEvent has a value associated
with it. If it does, you can skip any initialization code; just set the values of the object based on the values
specified in fields. Otherwise, you initialize the object first, and then set its values. Run the code and add a
good number of events into the system. You should have enough events with varying start times, durations,
and addresses to allow for meaningful queries to be performed on the data you provide.

Chapter 12 ■ Leveraging Cortana and SpeeCh

491

Be sure to have different values in each of the fields from entry to entry. It won’t break your code to
ignore this request but it will make it harder to identify the different events you have created.

In the next part of this section, you will write search methods that can be used to query and retrieve the
list of events based on the criteria you have outlines here. Figure 12-4 shows how ManageEventPage looks on
your machine. Note that a ListView is used here and not a GridView so the items appear vertically from top
to bottom.

Figure 12-4. Manage events view

When the plus button at the bottom right of the page is clicked, the CreateEventPage will be initialized.
That page should look like Figure 12-5.

Chapter 12 ■ Leveraging Cortana and SpeeCh

492

If you use the edit functionality you will notice that there is a little surprise “bug” in the mix to help with
quickly populating events. In case you didn’t catch it, the App.State.Events.Add(CurrentEvent) should
only be called when a new BMXEvent is created; right now it is being called regardless of whether an item
is created or edited. I used this technique to quickly create copies of the same basic event with different
locations. Once you feel you have enough, be sure to move that line to the right location.

There are two more steps you need to take before you begin your Cortana integration example.
First, you need to create a new page, ListEventsPage that essentially mirrors ManageEventsPage in XAML
layout with one exception. This page will use a GridView instead of a ListView control. Add the page and
implement it as shown in Listing 12-18.

Listing 12-18. ListEventsPage XAML

<Grid Background="#FF6A6A6A">
 <GridView x:Name="gridview_events"

SelectionMode="Single"
Margin="0,0,0,50"
ItemsSource="{x:Bind Events, Mode=OneWay}"
IsItemClickEnabled="True"
ItemClick="EventSelected">

<GridView.ItemTemplate>
<DataTemplate>

Figure 12-5. Create Events view

Chapter 12 ■ Leveraging Cortana and SpeeCh

493

<StackPanel Orientation="Vertical">
<Border HorizontalAlignment="Stretch"

Height="15"
Margin="5,5,10,5"
Width="Auto"
BorderThickness="0"
BorderBrush="Gray"
Background="Gainsboro">

</Border>
<TextBlock Text="{Binding EventTitle}"

FontSize="24"
FontWeight="ExtraLight"
VerticalAlignment="Center" />

<TextBlock Text="{Binding StartDateTime.Date}"
FontSize="24"
FontWeight="ExtraLight"
VerticalAlignment="Center" />

<TextBlock Text="{Binding StartDateTime.TimeOfDay}"
FontSize="24"
FontWeight="ExtraLight"
VerticalAlignment="Center" />

<TextBlock Text="{Binding Address}"
FontSize="12"
TextWrapping="Wrap"
FontWeight="ExtraLight"
VerticalAlignment="Center" />

</StackPanel>
</DataTemplate>

</GridView.ItemTemplate>
 </GridView>
 <Button Margin="5" HorizontalAlignment="Left" VerticalAlignment="Bottom"

Content="Done"
Width="100"
Click="CompletedEvent" />

</Grid>

Besides changing the root data control that will present the list of events to the user, this page also
removes the Add button from the button right corner of the page and replaces it with a Done button. Later in
this section, when you add the code-behind for this class, you will see the significance of this button.

You also need to add a new page for displaying event information. This page defers from the
CreateEventPage in that it is a read-only view of event information. Add a new page to the project called
ViewEventPage and implement the layout for this page as shown in Listing 12-19.

Listing 12-19. ViewEventPage XAML

<ScrollViewer HorizontalScrollBarVisibility="Auto"
HorizontalScrollMode="Auto" >

 <StackPanel Orientation="Vertical"
Width="350"
Background="#FF6A6A6A"
HorizontalAlignment="Center">

Chapter 12 ■ Leveraging Cortana and SpeeCh

494

<TextBox x:Name="txt_eventtitle"
Header="Event Title"
Margin="10" IsReadOnly="True"
HorizontalAlignment="Stretch" />

<TextBox x:Name="txt_eventdescription"
Header="Event Description"
Margin="10"
IsReadOnly="True"
AcceptsReturn="True"
Height="200"
HorizontalAlignment="Stretch" />

<TextBox x:Name="txt_address"
IsReadOnly="True"
Header="Event Address"
Margin="10"
HorizontalAlignment="Stretch" />

<CalendarDatePicker x:Name="control_calendar"
HorizontalAlignment="Stretch"
Margin="10"
IsEnabled="False"
Header="Event Day"
VerticalAlignment="Top"
PlaceholderText="What day will it be held?" />

<TimePicker x:Name="control_time"
Header="What time will it be held?"
Margin="10" IsEnabled="True"
HorizontalAlignment="Stretch"
VerticalAlignment="Top" />

<Slider x:Name="slider_duration" IsEnabled="False"
Header="Event Duration"
HorizontalAlignment="Stretch"
Minimum="1"
Maximum="24"
Margin="10"
VerticalAlignment="Top" />

<StackPanel Orientation="Horizontal">

<Button Margin="10"
Width="100"
Content="Done"
Click="CompletedEvent" />

</StackPanel>
 </StackPanel>

</ScrollViewer>

Take a look at Listing 12-19 and you will notice that the controls on the page are either disabled or set as
read-only. Unlike its counterpart, this page is the designed to display information, not edit it.

You now go back to ListEventsPage and show the implementation of its code-behind. Listing 12-20
illustrates.

Chapter 12 ■ Leveraging Cortana and SpeeCh

495

Listing 12-20. ListEventsPage Code

public sealed partial class ListEventsPage : Page
{
 List<BMXEvent> Events { get; set; }

 public ListEventsPage(List<BMXEvent> events)
 {

Events = events;
this.InitializeComponent();

 }

 private void EventSelected(object sender, ItemClickEventArgs e)
 {

Window.Current.Content = new ViewEventPage(Events, e.ClickedItem as BMXEvent);
 }

 private void CompletedEvent(object sender, RoutedEventArgs e)
 {

Window.Current.Content = new ApplicationHostPage();
 }
}

In Listing 12-20, you implement the EventSelected handler and in it navigated the user to the
ViewEventPage, passing in the item that was selected and the entire search result list. You also implement
the CompletedEvent handler, which also navigates to ApplicationHostPage in the same manner (by
switching the primary content of the window). This should give you a clue as to the nature of this page. If
it is a peer to ApplicationHostPage, then it is itself a top level page of the app. Notice also that the Loaded
event handler of ManageEventsPage is missing here; instead the content for the page, a list of events, is
loaded through the page’s constructor. Because the page data is loaded in this manner you will not need to
use the INotifyPropertyChanged pattern you have been utilizing up to this point. Listing 12-21 shows the
implementation of ViewEventPage.

Listing 12-21. ViewEventPage Code

public sealed partial class ViewEventPage : Page
{
 BMXEvent CurrentEvent { get; set; }
 List<BMXEvent> Events { get; set; }

 public ViewEventPage(List<BMXEvent> events, BMXEvent current_event)
 {

this.InitializeComponent();

Events = events;
CurrentEvent = current_event;
txt_eventtitle.Text = CurrentEvent.EventTitle;
txt_eventdescription.Text = CurrentEvent.Description;
txt_address.Text = CurrentEvent.Address;
control_calendar.Date = CurrentEvent.StartDateTime;
slider_duration.Value = CurrentEvent.Duration.Hours;

 }

Chapter 12 ■ Leveraging Cortana and SpeeCh

496

 private void CompletedEvent(object sender, RoutedEventArgs e)
 {

Window.Current.Content = new ListEventsPage(Events);
 }
}

Like its counterpart, Listing 12-21 takes an event object and uses it to populate the state of its fields. You
should be all set to implement the speech integration now. Now that you have an adequate list of events, you
can see how your app can be used to extend the feature set Cortana offer.

Launching Your App in the Foreground with Cortana
In addition to using voice commands within Cortana to access search, personal assistant, and system
features, you can also extend Cortana with features and functionality from any app that supports it. This
is done using voice commands that specify an action or command to execute within the app. A voice
command is a single utterance with a specific intent, defined in a Voice Command Definition (VCD) file,
and directed at an installed app through Cortana. A voice command definition can vary in complexity. It
can support anything from a single, constrained utterance to a collection of more flexible, natural language
utterances, all denoting the same intent. VCD files define one or more of these voice commands, each with a
unique intent. The steps to enabling this functionality are as follows.

1. Create a VCD file. This is an XML document that defines all the spoken
commands that the user can say to initiate actions or invoke commands when
activating your app.

2. Register the command sets in the VCD file when the app is launched.

3. Handle the foreground activation of the app through the OnActivated handler.
As part of the launch parameters you will have access to the command that was
triggered by Cortana and the text of the words that were uttered.

The owners of Big Mountain X want to apply these features to their app so that their users will have the
ability to interact with their app in this compelling manner. The following list highlights the functionality
they would like enabled:

• Tell users what is happening today

• Tell users what is happening tomorrow

• Tell users what is happening this week

• Tell users what is happening this month

• Buy tickets

Using the approach outlined earlier, the first thing you need to do in order to enable this kind of
interaction is create a VCD file. Create a new file in your Media/Audio folder called VoiceCommands_1.xml
and add the markup from Listing 12-22; the contents should work for all the items in your requirements list.

Listing 12-22. VCD File

<?xml version="1.0" encoding="utf-8"?>
<VoiceCommands xmlns="http://schemas.microsoft.com/voicecommands/1.1">
 <CommandSet xml:lang="en-us" Name="en-us-CommandSet">

<CommandPrefix>Big Mountain,</CommandPrefix>
<Example> Show me what's happening /Example>

http://schemas.microsoft.com/voicecommands/1.1

Chapter 12 ■ Leveraging Cortana and SpeeCh

497

<Command Name="show-events-today">
<Example>what's happening today in New York</Example>
<ListenFor>what's happening today in {location}</ListenFor>
<Feedback> here is what's happening today in {location}</Feedback>
<Navigate/>

</Command>
<Command Name="show-events-tomorrow">

<Example>what's happening tomorrow in New York</Example>
<ListenFor>what's happening tomorrow in {location}</ListenFor>
<Feedback> here is what's happening tomorrow in {location}</Feedback>
<Navigate/>

</Command>
<Command Name="show-events-thisweek">

<Example>find me upcoming shows in New York this week</Example>
<ListenFor>find me upcoming shows in {location} this week</ListenFor>
<Feedback>Finding this week's shows in {location}</Feedback>
<Navigate/>

</Command>
<Command Name="show-events-thismonth">

<Example>find me this weekend's shows in New York</Example>
<ListenFor>find me this weekend's shows in {location}</ListenFor>
<Feedback>Finding shows for this weekend in {location}</Feedback>
<Navigate/>

</Command>
<PhraseList Label="location">

<Item>Miami</Item>
<Item>Boston</Item>
<Item>New York</Item>
<Item>Chicago</Item>

</PhraseList>
 </CommandSet>
</VoiceCommands>

What follows is by no means an exhaustive exploration of what VCD files have to offer but should give
you a good foundation of what is going on in order to enable basic app launching through Cortana. At the
highest level of a VCD file (after the XML declaration of course) is the VoiceCommands node. This basically
encapsulates a set of Command specifications that represent the commands Cortana listens to for a match.
Within each Command node is a Name attribute to uniquely identify that command (this will come into play
later when it is time to figure out which command activated the control). Within the command node are four
children:

• Example: A hint to the user on the kind of phrase Cortana will understand.

• ListenFor: The phrase that Cortana is listening for in that context. When this phrase
is heard, the associated command will be sent as part of the startup arguments for
the targeted app.

• Feedback: The message that Cortana sends to the user.

• Navigate: This tells Cortana to navigate to the app that registered the command.

Chapter 12 ■ Leveraging Cortana and SpeeCh

498

Within the nodes ListenFor and Feedback you might have noticed the use of a wild-card label “location”
as shown:

<ListenFor>find me this weekend's shows in {location}</ListenFor>.

The wild-card part of the phrase Cortana listens for must map to one of the values identified in the
PhraseList node. This allows some variability to what the user says while still letting it match to a specific
command. For instance, based on the VCD defined the following phrases will all match to the same
command “show-events-today”:

"what's happening today in Miami"
"what's happening today in Boston"
"what's happening today in Chicago"

The following phrase will not match:

"what's happening today in Detroit"

As you might imagine, this can raise concerns when you start thinking about matching large data sets.
For instance, if you want Big Mountain X to match against every city in the United States, the file could become
very large. In a little while we will show you how easy it is to resolve this issue. For now, let’s take the next
step in the process outlined earlier and register the VCD when the app is launched. Open up App.xaml.cs
and add the code from Listing 12-23 to the bottom of InitializeAppAsync.

Listing 12-23. InitializeAppAsync Changes

private static async Task InitializeAppAsync()
{
 ...

 //launch cortana integration (foreground)
 var vcd_path = "ms-appx:///media/audio/voicecommands_1.xml";
 var vcd_uri = new Uri(vcd_path);
 var vcd_file = await StorageFile.GetFileFromApplicationUriAsync(vcd_uri);
 await VoiceCommandDefinitionManager.InstallCommandDefinitionsFromStorageFileAsync

(vcd_file);
}

In Listing 12-23, you load the VCD file and, once loaded, call VoiceCommandDefinitionManager.
InstallCommandDefinitionsFromStorageFileAsync to register it with the system. Believe it or not, that’s
all it takes to get Cortana integration going. Build and run the app now and say any one of the legal phrases
(start by saying “Big Mountain” to identify your app as the target of the query). The app should launch and
display a screen like Figure 12-6.

Chapter 12 ■ Leveraging Cortana and SpeeCh

499

It should be obvious to you that this is not ideal. The app is launching but it is doing so in a manner that
implies the main content has not been set for the window. This highlights one of the important realizations
you must come to when working with UWP apps: OnLaunched is not connected to OnActivated. In fact,
when explicitly available to the developer, each entry point into a Windows 10 app is solely meant for the
activation pattern it is designed for. The only exception to this is OnActivated but only for activation types
with no explicit handler override. Files will be activated only through OnFileActivated, share contracts only
through their activation hander, and so on.

Because your OnActivated event has only been designed up to this point to listen for URI-based
activation, the content for the window is never set. Let’s add logic into the method to enable Cortana
scenarios. Add another else-if clause to the giant if statement in this function. Listing 12-24 makes the
adjustment.

Listing 12-24. Voice Command URI Activation

else if (args.Kind == ActivationKind.VoiceCommand)
{
 var command_args = args as VoiceCommandActivatedEventArgs;
 if (command_args != null)
 {

var rule_path = command_args.Result.RulePath[0];
 var location = command_args.Result.SemanticInterpretation.Properties["location"][0].
ToLower();

var events = App.State.Events;

switch (rule_path)
{

case "show-events-today":
{

var today = DateTime.Now.Date;
events = (from evt in events

Figure 12-6. Window with no content

Chapter 12 ■ Leveraging Cortana and SpeeCh

500

where evt.StartDateTime.Date == today
&& evt.Address.ToLower().Contains(location)
select evt).ToList();

}
break;

case "show-events-tomorrow":
{

var tomorrow = DateTime.Now.Date.Add(TimeSpan.FromDays(1));
events = (from evt in events

where evt.StartDateTime.Date == tomorrow
&& evt.Address.ToLower().Contains(location)
select evt).ToList();

}
break;

case "show-events-thisweek":
{

var today = DateTime.Now.Date;
 var week_starting = today.Subtract(TimeSpan.FromDays((int)today.DayOfWeek));
var week = Math.Floor(week_starting.DayOfYear / 7.0);

events = (from evt in events
let evt_day = evt.StartDateTime
let evt_dow = (int)evt_day.DayOfWeek
let days_to_subtract = TimeSpan.FromDays(evt_dow)
let evt_week_starting = evt_day.Subtract(days_to_subtract)
let evt_week = Math.Floor(evt_week_starting.DayOfYear / 7.0)
where week == evt_week
&& evt.Address.ToLower().Contains(location)
select evt).ToList();

}
break;

case "show-events-thismonth":
{

var today = DateTime.Now;
events = (from evt in events

where evt.StartDateTime.Month == today.Month
&& evt.Address.ToLower().Contains(location)
select evt).ToList();

}
break;

}
Window.Current.Content = new ListEventsPage(events);

 }
}

Create some events that start at different points times within the current month you are in. Have some
start on the same day, others the next day, and others within the same week. Finally, add a few events that
map to the month you are in. Run the example and test this result. Figure 12-7 shows what I get when I ask
Cortana to “find me this month's shows in Boston.”

Chapter 12 ■ Leveraging Cortana and SpeeCh

501

As discussed earlier, the use of the PhraseList can be limiting. In the scenario shown, if the user
were to ask for San Antonio, the command would not be recognized. This is because the list of phrases
is defined ahead of time in the VCD XML. This does not need to be the case, however. You can use the
InstalledCommandDefinitions indexer of VoiceCommandDefinitionManager to gain access to the command
definitions you have specified in your VCD and then set the Phrase List you want associated with that
phrase list. For this to work, you must have at least an empty phrase list with a name specified on it in the
VCD. From code, you can then set what you want that phrase list to be. Be careful, though; you cannot add
to the phrase list. You can only set it, which means that if you set a phrase list in the VCD file and then use
SetPhraseList in your code, the VCD phrase list will be overwritten. In Listing 12-25, you modify the phrase
list you previously created to just be empty.

Listing 12-25. Location Phrase List

<PhraseList Label="location" />

You can then use InitializeAsync as shown in Listing 12-26.

Listing 12-26. InitializeAsync Changes

...
//set the value of marker and marker lock
var local_folder = Windows.Storage.ApplicationData.Current.LocalFolder;
var file_marker = await local_folder.CreateFileAsync("marker_.txt", OpenIfExists);
await file_marker.WriteTextAsync("1");
var file_marker_lock = await local_folder.CreateFileAsync("marker_lock.txt", OpenIfExists);
await file_marker_lock.WriteTextAsync("1");

//launch cortana integration (foreground)
var vcd_path = "ms-appx:///media/audio/voicecommands_1.xml";
var vcd_uri = new Uri(vcd_path);
var vcd_file = await StorageFile.GetFileFromApplicationUriAsync(vcd_uri);
await VoiceCommandDefinitionManager.InstallCommandDefinitionsFromStorageFileAsync(vcd_file);

Figure 12-7. List Events view

Chapter 12 ■ Leveraging Cortana and SpeeCh

502

//modifying phrase list programmatically (for more dynamic interactions)
VoiceCommandDefinition command_set = VoiceCommandDefinitionManager.
InstalledCommandDefinitions["en-us-CommandSet"];
await command_set.SetPhraseListAsync("location", new string[]

{ "London",
"Dallas",
"Maine",
"Phoenix",
"Miami",
"Boston",
"Chicago",
"New York"

});
...

One can imagine pulling the values for a phrase list from a database or external service. Remember that
the phrase is just that, a phrase. This means that it does not have to be limited to just a word. Try it out: add a
new location term “my regular spot.”

Launching Your App in the Background with Cortana
The power of what you have accomplished up to this point goes without saying. Being able to surface your
app’s functionality via Cortana is not only wonderful from the perspective of app visibility, it also allows
users to interact with your app without having to go searching for it. With functionality like this, all a user
needs do is ask Cortana the right question and your app can answer it. But what if you want even tighter
integration than that? From the previous example the user is able to use Cortana to launch your app and
navigate to context-specific pages, (and for a lot of use cases this makes perfect sense), but what if you want
that same flexibility of Cortana but without the burden of launching your app explicitly?

With UWP apps running on Windows 10, you can also extend Cortana with features and functionality
from a background app using voice commands that specify an action or command to execute within the
app. The added benefit here is that when an app handles a voice command in the background, it can display
feedback on the Cortana canvas and communicate with the user using the Cortana voice. This means that
basically the user will truly see your app as an extension of Cortana!

Using Cortana in the background requires the same VCD file as the foreground app, but in the
background usage scenario you are using a background task, in this case an app service, rather than your
full foreground app. In general, when little or no interaction (other than the user’s voice) is required, this
approach of interacting with Cortana through an app service is ideal. In situations where more interactivity
is required (like the need to view complex data or interact with the app interface in a sophisticated way),
launching the app in the foreground is preferable.

The basic steps to add voice-command functionality and extend Cortana with background functionality
from your app using speech or keyboard input are as follows.

1. Create a VCD file. This is an XML document that defines all the spoken
commands that the user can say to initiate actions or invoke commands when
activating your app. See VCD elements and attributes v1.2.

2. Create an app service (see Windows.ApplicationModel.AppService) that
Cortana invokes in the background. See Chapter 11 for more details on the
subject.

3. Register the command sets in the VCD file when the app is launched.

http://dx.doi.org/10.1007/978-1-4842-1449-7_11

Chapter 12 ■ Leveraging Cortana and SpeeCh

503

4. Handle the background activation of the app service and the execution of the
voice command.

5. Display and/or speak the appropriate feedback to the voice command within
Cortana.

The first step in this case is to create a VCD. Note that with background integration the system requires
version 1.2 of the specification (you used version 1.1 for the last example). Add a new file to the Media/Audio
folder called VoiceCommands_2.xml and populate it with the code from Listing 12-27.

Listing 12-27. VCD File VoiceCommands_2.xml

<?xml version="1.0" encoding="utf-8"?>
<VoiceCommands xmlns="http://schemas.microsoft.com/voicecommands/1.2">
 <CommandSet xml:lang="en-us" Name="en-us-CommandSet">

<CommandPrefix>Big Mountain,</CommandPrefix>
<Example> Show me what's hapenning </Example>
<Command Name="change-desktop-wallpaper">

<Example>change my wallpaper</Example>
<ListenFor>change my wallpaper</ListenFor>
<Feedback>okay</Feedback>
<VoiceCommandService Target="bmx-cortana-service"/>

</Command>
<Command Name="joke-knock-knock">

<Example>tell me a joke</Example>
<ListenFor>tell me a joke</ListenFor>
<Feedback>okay</Feedback>
<VoiceCommandService Target="bmx-cortana-service"/>

</Command>
<Command Name="joke-whos-there">

<Example>tell me a joke</Example>
<ListenFor>who's there</ListenFor>
<Feedback>it's</Feedback>
<VoiceCommandService Target="bmx-cortana-service"/>

</Command>
<Command Name="joke-punchline">

<Example>tell me a joke</Example>
<ListenFor>{joke_name} who</ListenFor>
<Feedback>okay</Feedback>
<VoiceCommandService Target="bmx-cortana-service"/>

</Command>
<Command Name="buy-tickets">

<Example>Get me tickets to the next evening show in Miami</Example>
<ListenFor>Get me tickets to the next {event_type} in {location}</ListenFor>
<Feedback>Getting tickets to {event_type} in {location}</Feedback>
<VoiceCommandService Target="bmx-cortana-service"/>

</Command>
<Command Name="make-suggestions">

<Example>Give me some fun suggestions</Example>
<ListenFor>Give me some fun suggestions in {location}</ListenFor>
<Feedback>here are some fun suggestions in {location}</Feedback>
<VoiceCommandService Target="bmx-cortana-service"/>

</Command>

http://schemas.microsoft.com/voicecommands/1.2

Chapter 12 ■ Leveraging Cortana and SpeeCh

504

<Command Name="count">
<Example>give me the count</Example>
<ListenFor>give me the count</ListenFor>
<Feedback>okay</Feedback>
<VoiceCommandService Target="bmx-cortana-service"/>

</Command>
<PhraseList Label="location" />
<PhraseList Label="joke_name" >

<Item>amos</Item>
<Item>who</Item>
<Item>honey bee</Item>
<Item>letuce</Item>
<Item>double</Item>

</PhraseList>
<PhraseList Label="event_type" >

<Item>morning show</Item>
<Item>afternoon show</Item>
<Item>evening show</Item>
<Item>night show</Item>

</PhraseList>
 </CommandSet>
</VoiceCommands>

From the VCD in Listing 12-27 you can tell that you will be building a new background app service for
handling buying tickets, changing the computer’s wallpaper, getting suggested places to go to, and even
telling jokes. You also have an extra command for getting a count. This extra command is meant to be used
to highlight the manner in which state is managed across multiple requests into a background task like this;
it is not meant to be part of the overall app being built. The key difference between this VCD and the one
used for foreground apps is the introduction of the VoiceCommandService element. This service maps a
given voice command to an application service used to service the voice command request. Ordinarily we
would be telling you to open up your app manifest and start adding declarations right now, but with Cortana
app services you do not need to do this…just kidding! You do. Open up your app manifest and add a new
declaration for an app service. Give the new service the same name as your VCD file is expecting (from the
VoiceCommandService node of the VCD element). Call it bmx-cortana-service. Figure 12-8 shows how the
configuration should look.

Chapter 12 ■ Leveraging Cortana and SpeeCh

505

Add a new class file to your BMX.BackgroundTasks project called CortanaAppService (to match the
entry point type you identified in your manifest. The Run method for this class should be defined as shown in
Listing 12-28.

Listing 12-28. Cortana App Service Run Method

async public void Run(IBackgroundTaskInstance taskInstance)
{
 _deferral = taskInstance.GetDeferral();

 var local = ApplicationData.Current.LocalFolder;
 State = await AppState.FromStorageFileAsync(local, "state.xml");

 var app_service = taskInstance.TriggerDetails as AppServiceTriggerDetails;
 var connection = VoiceCommandServiceConnection.FromAppServiceTriggerDetails(app_service);

 //get the voice command
 var command = await connection.GetVoiceCommandAsync();
 var rule_path = command.SpeechRecognitionResult.RulePath[0];

 VoiceCommandUserMessage user_message = new VoiceCommandUserMessage();
 if (rule_path == "change-desktop-wallpaper")
 {

//await HandleChangeWallpaper(connection, user_message);
 }
 else if (rule_path == "make-suggestions")
 {

//await HandleMakeSuggestions(connection, command, user_message);
 }

Figure 12-8. Declarations tab

Chapter 12 ■ Leveraging Cortana and SpeeCh

506

 else if (rule_path == "buy-tickets")
 {

//await HandleBuyTickets(connection, command, user_message);
 }
 else if (rule_path == "count")
 {

count++;
user_message.SpokenMessage = $"the current count is {count}";
user_message.DisplayMessage = user_message.SpokenMessage;
var response = VoiceCommandResponse.CreateResponse(user_message);
await connection.ReportSuccessAsync(response);

 }
 else if (rule_path == "joke-knock-knock")
 {

//await HandleTellJoke(connection, user_message);
 }
 else if (rule_path == "joke-whos-there")
 {

//await HandleWhosThere(connection, user_message);
 }
 else if (rule_path == "joke-punchline")
 {

//await HandlePunchline(connection, command, user_message);
 }

 _deferral.Complete();
}

As with every other background task you have worked on, you start by getting a deferral. You then
initialize the app state so that you have access to the AppState object instance used by the foreground app.
You then pull the trigger details out from the task instance and use the VoiceCommandServiceConnection
to generate an appropriate connection to the voice command interaction through the method
VoiceCommandServiceConnection.FromAppServiceTriggerDetails(app_service). With this class instance
you can gain access to what was said and also interact back with the user through the Cortana interface. In your
case, you next call GetVoiceCommand, which gives you access to the command that triggered the background
task. The rest of the code follows a pattern you should be familiar with from your previous examples. command.
SpeechRecognitionResult.RulePath[0] gives you the command that Cortana believes the user’s request maps
to; the value should map to one of the Command node’s Name attribute from the VCD file you registered. With
this value in hand, you use it to decide which of the helper methods you want to call to handle that specific
request. For each one of the helper commands, you pass in a VoiceCommandUserMessage object instance, the
connection object, and optionally the VoiceCommand itself. The VoiceCommandUserMessage object is used to
send messages back to the user in TTS form. It basically allows you to talk to the user through Cortana.

State Management
Add a static global int to the class called count to enable the count scenario. Compile and run the app. Then
try using the command “Big Mountain give me the count”. You will note that regardless of how many times
this command is made, the result is always the same: the count is always shown as 1. It is important to clearly
understand why this is happening. Basically, the background task used to handle this request is always being
recreated. With each request an entirely new app domain containing the CortanaAppService is instantiated
so that even when a static variable is used, its value restarts at zero.

Chapter 12 ■ Leveraging Cortana and SpeeCh

507

Long story short, you must use some other external source to handle state management. In the
examples that follow, you utilize the file system for this purpose; however, there is nothing that prevents you
from using the application settings or even external services to get this done. Figure 12-9 shows what the
Cortana interface looks like when the result is displayed.

Figure 12-9. Cortana display message

Note from the image that the result is also displayed on the Cortana interface. Users may be interacting
with Cortana through the text interface as well as the speech one, so be sure to include responses for
both cases. The DisplayMessage property of VoiceCommandUserMessage is used to set this value. For a
voice command to be successful it must pass the created VoiceCommandResponse object into a call to
ReportSuccessAsync on the VoiceCommandServiceConnection object. This class has a number of other
overrides that you can explore when building your own Cortana integration. You will be looking at a few of
them as you work through this example.

Chapter 12 ■ Leveraging Cortana and SpeeCh

508

Deep Linking
You can provide deep links from the background app service in Cortana to launch the app to the foreground
in a specific state or context. A deep link is displayed by default on the Cortana completion screen, but you
can display deep links on various other screens. Deep linking is useful when Cortana and your app service
are a gateway to the full app (instead of requiring the user to launch your app through the Start menu), or
for providing access to richer detail and functionality within your app that is not possible through Cortana.
Deep linking is another way to increase usability and access to your app.

There are three ways to provide deep links:

• A "Go to <app>" link on various Cortana screens

• A link embedded in a content tile on various Cortana screens

• The app service programmatically launches the foreground app

Cortana can expose a "Go to <app>" deep link to the content tile on various screens. You can provide a
launch argument for this link to open your app with similar context as the app service. If you don't provide a
launch argument, the app is launched to the main screen. Regardless of whether you provide an app launch
argument or not, you need to add a declaration to the app manifest in order for it to be launched by Cortana.
This declaration has no user interface associated with it unfortunately, so you must open the manifest to its
XML view and add it there. Right-click your project’s app manifest and selected View Code from the context
menu that appears. In the Extensions node of the Application element, add the following declaration:

<uap:Extension Category="windows.personalAssistantLaunch"/>

Your app is launched to the foreground through URI activation using a Protocol contract. As with
any protocol contract, your app must override its OnActivated event and check for an ActivationKind of
Protocol. When your app is launched in this manner, the resulting URL sent to it is “windows.personalassista
ntlaunch:?LaunchContext=<AppLaunchArgument>”, where AppLaunchArgument is the value of the property
AppLaunchArgument of the VoiceCommandResponse object returned to the user. Let’s extend your app to
support launching directly into the All events page when opened from Cortana. The process starts with you
extending the functionality of your QueryReader class. Add a new function called Contains as shown in
Listing 12-29. As the name implies, this app basically tests to see if a key exists in the internal key-value pair
of the object.

Listing 12-29. QueryReader Contains Method

public bool Contains(string key)
{
 return _values.ContainsKey(key);
}

With this added feature you can now organize the protocol activation piece of OnActivated more
readily. Listing 12-30 illustrates.

Listing 12-30. OnActivated Changes

if (args.Kind == ActivationKind.Protocol)
{
 var protocol_args = args as ProtocolActivatedEventArgs;
 var query = protocol_args.Uri.Query.ToLower();
 var reader = QueryReader.Load(query);

Chapter 12 ■ Leveraging Cortana and SpeeCh

509

 if (reader.Contains("launchcontext"))
 {

var context = reader["launchcontext"];
if (context == "all_events")

Window.Current.Content = new ListEventsPage(App.State.Events);
 }
 else if (reader.Contains("page"))
 {

var target_page = reader["page"];

if (target_page == "street")
{

StreetSideViewPage street_view = new StreetSideViewPage();
var center_point = new Geopoint(new BasicGeoposition
{

Latitude = App.State.NextEvent.Latitude.Value,
Longitude = App.State.NextEvent.Longitude.Value,

});
await street_view.InitializeAsync(center_point);
Window.Current.Content = street_view;

}
else if (target_page == "main")
{

Window.Current.Content = new ApplicationHostPage();
}
else if (target_page == "counter")
{

Window.Current.Content = new PatronCounter();
}
else if (target_page == "test")
{

Window.Current.Content = new TestPage();
}
else
{

Window.Current.Content = new PageNotFound();
}

 }
}

In Listing 12-30, you use your newly created Contains method to test to see if certain URI parameters
exist in the activation URI. Based on their existence you are making a finer grained determination on the
purpose of the launch. In this situation, you first test for a launch with the parameter launchcontext and
then within that you test the value of that parameter. If it is all_events, you launch the ListEventsPage with
no filter on the events listed.

Besides the “Go to <your app>” link that appears in the Cortana interface you can also create custom
ones called content tiles by adding VoiceCommandContentTile objects to the VoiceCommandResponse you
respond to the user with. VoiceCommandResponse can be created with a list of these content tiles, each
representing a link into the app. Each of these tiles has their own AppLaunchArgument property that can be
used to set the launch parameters under which the app will launch. In Listing 12-31, you implement the
HandleMakeSuggestions method and uncomment the section of Run that calls it.

Chapter 12 ■ Leveraging Cortana and SpeeCh

510

Listing 12-31. HandleMakeSuggestions Method

private async Task HandleMakeSuggestions(VoiceCommandServiceConnection connection,
VoiceCommand command, VoiceCommandUserMessage user_message)
{
 var tiles = new List<VoiceCommandContentTile>();
 var location = command.SpeechRecognitionResult.SemanticInterpretation.
Properties["location"][0].ToLower();

 //find events
 var events = State.Events;
 events = (from evt in events

where evt.Address.ToLower().Contains(location)
select evt).ToList();

 //create tiles
 foreach (var evt in events)
 {

tiles.Add(new VoiceCommandContentTile
{

ContentTileType = VoiceCommandContentTileType.TitleWithText,
AppLaunchArgument = $"event,event_id={evt.EventID}",
Title = evt.EventTitle,
TextLine1 = evt.Description,

});
 }

 //respond
 var response = VoiceCommandResponse.CreateResponse(user_message, tiles);

 response.AppLaunchArgument = "all_events";

 await connection.ReportSuccessAsync(response);
}

Listing 12-31 basically reads the location value specified by the user and uses this to filter the
BMXEvents to just those that contain the value. So if the user says “Give me some fun suggestions in
Boston,” only Boston-based events will be displayed. For each of the events in the filtered list you then
build a VoiceCommandContentTile that will represent that event. Note that you have set the value of
AppLaunchArgument for the content tile to include the event id and the value event; “event” will be the value
set to launchcontext. Further down the code base you create a new VoiceCommandResponse object using the
CreateResponse method but in this case use an override that also accepts a list of VoiceCommandContentTile
objects; you pass in the list you previously created. Finally, you provide the AppLaunchArgument for the
response as a whole, in this case setting it to all_events. When Cortana is invoked, it will show the list of
specific events you have provided and at the bottom it will have a link to launch the app. When this link is
clicked, it will launch the app as though it were launched via protocol activation (the content tiles do the same).

You must now modify the OnActivated handler to expect the new URIs introduced by the content
tiles. As stated earlier, they add a new potential value for launchcontext, event. When launchcontext has
this value you will expect to see an event_id parameter that you can use to filter the events available in the
system. Listing 12-32 shows the changes made to the launchcontext section of the if statement. Changes
are in bold.

Chapter 12 ■ Leveraging Cortana and SpeeCh

511

Listing 12-32. OnActivated Handler

...
var protocol_args = args as ProtocolActivatedEventArgs;
var query = WebUtility.UrlDecode(protocol_args.Uri.Query.ToLower());
var reader = QueryReader.Load(query);

if (reader.Contains("launchcontext"))
{
 var context = reader["launchcontext"];
 if (context == "all_events")

Window.Current.Content = new ListEventsPage(App.State.Events);
 else if (context == "event")
 {

var event_id = Guid.Parse(reader["event_id"]);
var event_list = App.State.Events.Where(i => i.EventID == event_id).ToList();
Window.Current.Content = new ListEventsPage(event_list);

 }
}
...

Be sure to use the WebUtility to decode the query coming into the app; it is encoded by Windows before
being used (because it is expected to be an argument and not a list of parameters) so you will lose any
delimiting character like comma and the equal sign.

Figure 12-10 shows how the Cortana looks when the user requests fun suggestions in Boston (based on
events created on your machine).

Figure 12-10. Content tiles on Cortana UI

Chapter 12 ■ Leveraging Cortana and SpeeCh

512

From this screen, clicking “Go to BigMountainX” will launch the app through the protocol activation
mechanisms described. In this case, it will be launched with the parameter all_events. Figure 12-11 shows
how the app looks when launched (this is based on events you have created on your machine).

Figure 12-11. Search results page

Try using Cortana again with the same statement. This time, instead of clicking the link “Go to
BigMountainX,” click one of the content tiles provided. Depending on whether or not you exploited your
little “copy” trick when creating these events, you should see something like Figure 12-12.

Chapter 12 ■ Leveraging Cortana and SpeeCh

513

Your eyes are not deceiving you; there should be only one event showing but the app is displaying four.
This is because all the events shown here have the same event id, a side effect of the approach you used to
quickly create tons of events.

Prompting the User
In certain scenarios it may be necessary to ask the user for a confirmation before proceeding with an action
through the background app service. For this kind of situation, the method CreateResponseForPrompt
of the class VoiceCommandResponse can be used. When CreateResponseForPrompt is used, the
resulting voice command response must be used with the RequestConfirmationAsync method of the
VoiceCommandServiceConnection. In Listing 12-33, you use this technique to ask the user if they want to
also change their lock screen image once you are done changing their desktop wallpaper. Don’t forget to
uncomment the call to HandleChangeWallpaper within the Run method before testing it.

Listing 12-33. HandleChageWallpaper Method

private async Task HandleChangeWallpaper(VoiceCommandServiceConnection connection,
VoiceCommandUserMessage user_message)
{
 //copy images to appdata
 var local_folder = ApplicationData.Current.LocalFolder;
 var install_path = Package.Current.InstalledLocation;
 var media_path = await install_path.GetFolderAsync("media\\images");

Figure 12-12. View event page

Chapter 12 ■ Leveraging Cortana and SpeeCh

514

 var images = await media_path.GetFilesAsync();
 foreach (var image in images)
 {

try
{

await local_folder.GetFileAsync(image.Name);
continue;

}
catch { }
await image.CopyAsync(local_folder, image.Name, ReplaceExisting);

 }

 //change wallpaper and prepare response back to user

 var result = await UserSettings.ChangeWallpaperAsync();
 user_message.SpokenMessage = " Your wallpaper was modified, do you want me to change the

lock screen as well?";

 var backup_message = new VoiceCommandUserMessage
 {

SpokenMessage = "Change your lock screen",
 };

 var response = VoiceCommandResponse.CreateResponseForPrompt(user_message, backup_message);
 var confirm_result = await connection.RequestConfirmationAsync(response);

 if (confirm_result.Confirmed)
 {

await UserSettings.ChangeLockScreenAsync();
user_message.SpokenMessage = "Your lock screen was also modified.";
response = VoiceCommandResponse.CreateResponse(user_message);
await connection.ReportSuccessAsync(response);

 }
 else
 {

user_message.SpokenMessage = "okay, you're all set then";
response = VoiceCommandResponse.CreateResponse(user_message);
await connection.ReportSuccessAsync(response);

 }
}

In Listing 12-33, you define a method that will be dedicated to handling the case where Cortana
evaluates what the user has said as “change my wallpaper.” Because you will be toggling between images
(and counting in the process), you will need to maintain some measure of state between calls to for this
command. This functionality is built into the use of ChangeWallpaperAsync on the class UserSettings.
Before doing this, though, you must try to copy all the images from the app package to local storage (this
is a condition of the programming logic you have chosen to utilize and not a requirement of changing
wallpapers or Cortana). Once the wallpaper is changed, you use the CreateResponseForPrompt and
RequestConfirmationAsync to send a prompt to the user for information on whether they want the
lock screen image changed as well. If they chose to, you modify it; otherwise, you end the conversation.
Figure 12-13 shows how the prompt UI looks within Cortana.

Chapter 12 ■ Leveraging Cortana and SpeeCh

515

Multi-Command Interactions
In the previous section, we secretly introduced the notion of multi-command interactions when you
used the file-system to store the index of the image that was last displayed (see the implementation of
ChangeWallpaper for details on how this is implemented). To summarize, ChangeWallpaper stores a number
in a file that it reads every time it is called. Once called, it gets that number, increments it, gets the image
associated with the new number, sets the wallpaper for that image, and finally stores the new number back
to the file. Consequently, each time you ask Cortana to change your wallpaper, a fresh image is used. In the
context of Cortana, doing this is a multi-command interaction because it maintains state across individual
commands. In the following example, you will be utilizing the same approach to enable the joke telling
functionality of the app. You will be implementing your joke command as a “knock-knock” joke which, as
you might know, has three parts:

• The “knock-knock” part

• The “who’s there?” part

• The punchline

Figure 12-13. Cortana user prompt UI

Chapter 12 ■ Leveraging Cortana and SpeeCh

516

With each section the user will of course have to re-initialize Cortana and include the command prefix
in the statement. A normal interaction would be as follows:

1. User: “big mountain tell me a joke”

2. Cortana: “knock-knock”

3. User: “big mountain who’s there?”

4. Cortana: “amos”

5. User: “amos who?”

6. Cortana: “amosquito!”

To accomplish this, you must implement a command for each of the statements you expect the
user to make. You start with the first: asking Cortana to tell you a joke. Listing 12-34 implements the
HandleTellJoke method. Be sure to uncomment the call to this method in Run.

Listing 12-34. HandleTellJoke Method

private static async Task HandleTellJoke(VoiceCommandServiceConnection connection,
VoiceCommandUserMessage user_message)
{
 var local_folder = ApplicationData.Current.LocalFolder;
 var file = await local_folder.CreateFileAsync("joke_state.txt", CreationCollisionOption.
ReplaceExisting);
 await file.WriteTextAsync("knock knock");

 user_message.SpokenMessage = "knock knock";
 user_message.DisplayMessage = "knock knock!";
 var response = VoiceCommandResponse.CreateResponse(user_message);
 await connection.ReportSuccessAsync(response);
}

In Listing 12-34, you start by creating a file in local storage where you will store state about the location
of the user within the joke dialogue. The StorageFile is created as ReplaceExisting because asking for a
joke will always restart the process. Beyond that, all this method does is respond back with the statement
“knock-knock.”

The next part of the conversation starts with you listening for the “who’s there” from the user. Listing 12-35
implements the method HandleWhosThere. Be sure to uncomment the call to this method in Run.

Listing 12-35. HandleWhosThere Method

private static async Task HandleWhosThere(VoiceCommandServiceConnection connection,
VoiceCommandUserMessage user_message)
{
 var local_folder = ApplicationData.Current.LocalFolder;
 var file = await local_folder.CreateFileAsync("joke_state.txt", CreationCollisionOption.

OpenIfExists);
 var text = await file.ReadTextAsync();
 if (text == "knock knock")
 {

await file.WriteTextAsync("joke");
Random random = new Random();

Chapter 12 ■ Leveraging Cortana and SpeeCh

517

var next = random.Next(100);
var index = next % 5;

var jokes = new string[] {
"amos",
"who",
"honey bee",
"lettuce",
"double"

};

var joke = jokes[index];

user_message.SpokenMessage = joke;
user_message.DisplayMessage = user_message.SpokenMessage;
var response = VoiceCommandResponse.CreateResponse(user_message);
await connection.ReportSuccessAsync(response);

 }
 else
 {

user_message.SpokenMessage = "first ask me to tell you a joke";
var response = VoiceCommandResponse.CreateResponse(user_message);
await connection.ReportSuccessAsync(response);

 }
}

In Listing 12-35, you start by opening the StorageFile joke_state.txt that was created as part of
the initializing conversation (saying “big mountain, tell me a joke”). Once open, you test to see if the text
“knock-knock” is in the file. The previous method, HandleTellJoke, created this file and added that text; this
method will only work as the second step in the process, the step where you ask Cortana “who’s there?” If the
text in the file is correct, you overwrite it to now say “joke” and then insert a list of supported knock-knock
joke setups into an array. Next, you generate a random number and use that number to determine which of
the joke intros you want to use for this interaction. Whichever joke intro is randomly selected is then used to
respond back to the user.

The final step in the process is for the background service to say the punchline when the user invokes
the "{joke_name} who" command (As you know, joke_name is a label connected to the phrase list of
possible knock-knock joke setups you have). Listing 12-36 implements the method HandlePunchline, which
says the punchline for the joke based on the setup phrase used. Be sure to uncomment the place where this
is called in the Run method.

Listing 12-36. HandlePunchline Method

async Task HandlePunchline(VoiceCommandServiceConnection connection, VoiceCommand command,
VoiceCommandUserMessage user_message)
{
 var local_folder = ApplicationData.Current.LocalFolder;
 var file = await local_folder.CreateFileAsync("joke_state.txt", CreationCollisionOption.

OpenIfExists);
 var text = await file.ReadTextAsync();
 if (text != "joke")
 {

user_message.SpokenMessage = "first ask me to tell you a joke";

Chapter 12 ■ Leveraging Cortana and SpeeCh

518

var response = VoiceCommandResponse.CreateResponse(user_message);
await connection.ReportSuccessAsync(response);
return;

 }
 var name = command.SpeechRecognitionResult.SemanticInterpretation.Properties["joke_name"]

[0].ToLower();
 switch (name)
 {

case "amos":
{

user_message.SpokenMessage = "a mosquito";
user_message.DisplayMessage = user_message.SpokenMessage;
var response = VoiceCommandResponse.CreateResponse(user_message);
await connection.ReportSuccessAsync(response);

}
break;

case "who":
{

user_message.SpokenMessage = "that's what an owl says";
user_message.DisplayMessage = user_message.SpokenMessage;
var response = VoiceCommandResponse.CreateResponse(user_message);
await connection.ReportSuccessAsync(response);

}
break;

case "honey bee":
{

user_message.SpokenMessage = "honey bee a dear and get me some juice";
user_message.DisplayMessage = user_message.SpokenMessage;
var response = VoiceCommandResponse.CreateResponse(user_message);
await connection.ReportSuccessAsync(response);

}
break;

case "lettuce":
{

user_message.SpokenMessage = "lettuce in it's cold out here";
user_message.DisplayMessage = user_message.SpokenMessage;
var response = VoiceCommandResponse.CreateResponse(user_message);
await connection.ReportSuccessAsync(response);

}
break;

case "double":
{

user_message.SpokenMessage = "double u";
user_message.DisplayMessage = user_message.SpokenMessage;
var response = VoiceCommandResponse.CreateResponse(user_message);
await connection.ReportSuccessAsync(response);

}
break;

 }

Chapter 12 ■ Leveraging Cortana and SpeeCh

519

 //the joke has now been told, reset
 await file.DeleteAsync(StorageDeleteOption.PermanentDelete);
}

Although Listing 12-36 is long, the code is relatively straightforward and should be easy for you to
dissect. First, you open and read the text in joke_state to ensure that the previous interaction was the
“who’s there?” part of the knock-knock joke. If this is the case, you read the value of “joke_name” from the
voice command and use it to determine which response to send back to the user. Each response in this
switch statement corresponds to the appropriate punchline.

The Final Command
The final command that you have not implemented is the “buy tickets” command. Listing 12-37 shows the
implementation for HandleBuyTickets. Be sure to uncomment the call to this method in the Run method.

Listing 12-37. HandleBuyTickets Method

private async Task HandleBuyTickets(VoiceCommandServiceConnection connection, VoiceCommand
command, VoiceCommandUserMessage user_message)
{
 var location = command.SpeechRecognitionResult.SemanticInterpretation.
Properties["location"][0].ToLower();
 var event_type = command.SpeechRecognitionResult.SemanticInterpretation.
Properties["event_type"][0].ToLower();

 var events = State.Events;
 var target_event = (from evt in events

where evt.Address.ToLower().Contains(location)
select evt).FirstOrDefault();

 user_message.SpokenMessage = $"I got your tickets to {target_event.EventTitle}";
 var response = VoiceCommandResponse.CreateResponse(user_message);
 await connection.ReportSuccessAsync(response);
}

Based on what you have worked on thus far, the meaning of the implementation for this method
should be easily gleaned. You get the values for location and event_type, two phrase list parameters that
are passed in by the user’s request. You simply query your event list to find an event at the given location
provided by the user and respond to the user if you find the event. You should have all you need to complete
the exercise: add functionality that responds with a different message when the event is not found. Also, try
modifying the query to include the event_type parameter that is passed in.

Chapter 12 ■ Leveraging Cortana and SpeeCh

520

Summary
You just completed a meaty chapter with a comprehensive and in-depth investigation into incorporating
speech and Cortana integration in your app. Through the use of VCD files, text to speech, and integration
between Cortana and your app in foreground and background scenarios, you should be able to develop rich
and powerful applications that provide alternative interaction patterns to the user. The following are some
key points:

• Text-to-speech uses a speech synthesis engine (voice) to convert a text string into
spoken words. The simplest form of this takes as input the text you actually want the
engine to utter.

• SSML provides a standard way to control characteristics of speech output, such as
pronunciation, volume, pitch, rate or speed, and emphasis.

• Constraints define the words and phrases (vocabulary) that an app recognizes in
speech input. They are at the core of speech recognition and give your app great
influence over the accuracy of speech recognition. Constraints are applied using
predefined grammars, which provide speech recognition for your app without
requiring you to author a grammar.

• A voice command is a single utterance with a specific intent, defined in a Voice
Command Definition (VCD) file, and directed at an installed app through Cortana.
A voice command definition can vary in complexity. It can support anything from
a single, constrained utterance to a collection of more flexible, natural language
utterances, all denoting the same intent.

• VCD files define one or more voice commands, each with a unique intent.

• Cortana integration comes in two flavors:

• Foreground causes the app to be launched then uses the app to process the
voice commands.

• Background integration targets a background task associated with the app and
uses it to process voice commands.

521

Chapter 13

App Monetization

When all is said and done, most developers aren’t in it just for the sake of creative expression. In most cases,
you want some financial gain from the work you’ve done—even if it’s only enough to cover the expenses of
building an app. And to be sure, building and maintaining apps can get very expensive very quickly. For one
thing, because of the sandboxed nature of Windows 10 apps, many features aren’t available in the Windows
10 app world. Windows 10 apps are sandboxed for a reason—to minimize the damage a misbehaving app
can do to a device—but the side effect of these well-deserved limitations is a need for apps to generally
include a cloud component. This cloud resident part of the app functions like a traditional application with
full access to the cloud server’s environment. Hosting such a solution quickly turns your fixed-cost app
(the sweat equity used to build the app has a one-time price tied to it) into a recurring-cost app.

The market adds to this problem. Consumers of apps are generally accustomed to the ease and
frequency with which apps can be installed and are updated. This means an underlying expectation of
ongoing development is extended to any app in the marketplace, whether it is created by a billion-dollar
organization like Facebook or by you. When you publish an app out to the market, you must also consider
the cost of the time required to support it.

For these and many more reasons, digital marketplaces such as the Windows Store, Windows Phone
Store, and Google Play all let you monetize apps through direct sales, with the marketplaces acting as
merchants. Using this marketplace mode, prospective Windows 10 users can discover and purchase apps
from the Windows Store. A percentage of the profits go to the developer who built the target app, and the rest
goes to Microsoft to help offset the cost of maintaining the Windows Store. Figure 13-1 shows the landing
screen of the Windows Store.

Chapter 13 ■ app Monetization

522

This chapter discusses two common ways to make money through your app: selling the app and
selling within the app. Many apps also generate revenue through in-app advertising, but the nuances of that
approach are outside of the scope of this book.

Selling Your App
If you’ve had the opportunity to own an iPhone and walk through Apple’s App Store purchasing process,
you might have noticed that many non-free/for-cost apps have two versions: a free “demo” version that is
used to show what the app can do, and an accompanying full-featured version. The demo version either has
limited functionality or is totally open but ad supported. The accompanying full-featured version typically
isn’t ad supported. Users can get used to a convention like this, but on the development side it can lead to
headaches because features must essentially be managed across two code bases: one for the demo version of
the app and one for the full version (technically the same code base can be used with different deployment
parameters applied during the build process).

Microsoft’s Windows Store helps resolve this issue by letting you publish paid apps as trials.
This allows developers to maintain one version of an app to serve as both the trial version and the full
version–and specify the conditions under which the app can be migrated from one version to the other.
From the standpoint of the Windows Store, this prevents needless repetition. From the perspective of the
end user, it provides a simple and easy way to try an app and purchase it if you like it. Figure 13-2 shows a
Windows Store paid app page with a trial mode available for the user.

Figure 13-1. Windows Store landing page

Chapter 13 ■ app Monetization

523

From the developer’s perspective, the workflow for building an app that will be for sale but includes a
trial component is relatively straightforward:

1. Build the app as a full-featured app without worrying about which pieces of
functionality are trial bits and which aren’t.

2. After the app is built and tested, and you’re sure everything works as intended,
determine which features you want available to trial-version users and which bits
you want to make visible only to paid-version users.

3. Use the Microsoft-provided classes to gate the sections of the app that a trial user
can’t access.

Each app has its own means of gating trial users. For some apps, such as games, you might want to show
everything the app can do, but time-restrict the advanced features (or usage of the app as a whole). The idea
of the trial isn’t just to give a test drive of the app; it’s also to market the app’s goodies. When you’re building
apps for the purpose of monetization, keep this core concept in mind: upsell, upsell, upsell!

Next, let’s look at sample trial app.

Figure 13-2. App with trial mode

Chapter 13 ■ app Monetization

524

App Trial Mode
The trial-mode app presents two features to the user: one that is cool and one that is even cooler.
Presumably, you want to allow users of this app to be able to use the cool feature but only see the even cooler
feature. Also, when the app is in trial mode, you want the Buy App button to be visible, but after the app has
been purchased, you want the button to disappear; otherwise the user may become confused and think their
purchase wasn’t registered or that the app is defective.

For Windows 10 apps, purchases are managed through the Windows Store APIs available via the
Windows.ApplicationModel.Store namespace. This is your entry point to all relevant information about
whether the user is using a trial version and, if so, how much time is left in that trial. Unfortunately, these
classes work solely against the actual production Windows Store data, meaning they expect that your app
is in the store and live. This poses a problem, because an unpublished app has no information available,
making it impossible to test the trial-mode workflow. To help with this quagmire, the Windows Store API
includes a simulator API-set that mimics the live functionality but works against an XML file that you
provide. Working on a Windows Store app that uses the Windows Store commerce infrastructure this way
requires you to build and manage this XML file, which is called WindowsStoreProxy.xml and is always
located in the %userprofile%\appdata\local\packages\<package-moniker>\localstate\microsoft\
Windows Store\Apidata folder. It’s up to you, the developer, to place/modify this file to fit the scenario in
which you intend to test in your app (in this case, testing to see how the app behaves in trial mode and in
purchased mode). Listing 13-1 shows a sample of this file’s format.

Listing 13-1. WindowsStoreProxy.xml

<?xml version="1.0" encoding="utf-16" ?>
<CurrentApp>
 <ListingInformation>

<App>
<AppId>2B14D306-D8F8-4066-A45B-0FB3464C67F2</AppId>
 <LinkUri>http://apps.microsoft.com/app/2B14D306-D8F8-4066-A45B-0FB3464C67F2
</LinkUri>
<CurrentMarket>en-us</CurrentMarket>
<AgeRating>12</AgeRating>
<MarketData xml:lang="en-us">

<Name>Trial management full license</Name>
 <Description>Sample app for demonstrating trial license management
</Description>
<Price>4.99</Price>
<CurrencySymbol>$</CurrencySymbol>

</MarketData>
</App>
<Product ProductId="bmx_ticket">

<MarketData xml:lang="en-us">
<Name>Buy Ticket</Name>
<Price>49.99</Price>
<CurrencySymbol>$</CurrencySymbol>

</MarketData>
</Product>
<Product ProductId="bmx_table">

<MarketData xml:lang="en-us">
<Name>Register for Open Mic</Name>
<Price>150.00</Price>
<CurrencySymbol>$</CurrencySymbol>

http://apps.microsoft.com/app/2B14D306-D8F8-4066-A45B-0FB3464C67F2
http://apps.microsoft.com/app/2B14D306-D8F8-4066-A45B-0FB3464C67F2

Chapter 13 ■ app Monetization

525

</MarketData>
</Product>
<Product ProductId="bmx_openmic">

<MarketData xml:lang="en-us">
<Name>Buy Table</Name>
<Price>19.99</Price>
<CurrencySymbol>$</CurrencySymbol>

</MarketData>
</Product>

 </ListingInformation>
 <LicenseInformation>

<App>
<IsActive>true</IsActive>
<IsTrial>true</IsTrial>
<ExpirationDate>2016-01-01T00:00:00.00Z</ExpirationDate>

</App>
<Product ProductId="bmx_ticket">

<IsActive>true</IsActive>

</Product>
<Product ProductId="bmx_table">

<IsActive>false</IsActive>
</Product>
<Product ProductId="bmx_openmic">

<IsActive>false</IsActive>
<ExpirationDate>2016-01-01T00:00:00.00Z</ExpirationDate>

</Product>
 </LicenseInformation>
</CurrentApp>

An exciting marketing feature available for Windows is transparency into the origin of your app’s
downloads. This feature, called campaign tracking, allows you to track the referral source of customers who
visited your app product description page in the Windows Store.

Licensing Your App (Trial Mode)
The next section goes into more detail about the various elements of the WindowsStoreProxy.xml file. For
now, let’s focus on the LicenseInformation section, with an emphasis on the IsTrial node, which in this
document is set to true.

You interact with the Windows Store primarily through one class: CurrentApp. (Due to the
aforementioned reasons, in this example you will use another class, the one that uses WindowsStoreProxy.xml,
called CurrentAppSimulator. It mimics the API surface area of CurrentApp.) CurrentApp exposes a
LicenseInformation property of type LicenseInformation which you can use to read the license data
associated with an app. The bolded section of the WindowsStoreProxy.xml file in Listing 13-2 corresponds to
this section. LicenseInformation provides properties like IsActive, IsTrial, and ExpirationDate. In normal
circumstances (when your app has been published to the Windows Store and is public), calling Windows.
ApplicationModel.Store.CurrentApp.LicenseInformation returns the LicenseInformation instance for the
app. In this case, because your app isn’t published yet, you have to use CurrentAppSimulator, which expects the
WindowsStoreProxy.xml file to be in the previously discussed location when the property is invoked; otherwise

Chapter 13 ■ app Monetization

526

an error occurs. Rather than digging through the Windows Store folders looking for the location where this file
should be placed and manually editing it there, you might consider creating a temporary version of the file in
your app package. This way the file can be edited as needed, and then, each time the app is started, published to
the appropriate folder location.

In the BigMountainX project, add the StoreProxy folder; within it, add the file TrialManagement.xml,
which is a copy of the WindowsStoreProxy.xml file you created in Listing 13-1. In Listing 13-2, you modify
App.xaml.cs to load this proxy XML file.

Listing 13-2. Code for InitializeLicencingAsync

public static LicenseInformation License { get; set; }
public static ListingInformation ListingInfo { get; set; }
private static async Task InitializeAppAsync()
{
 ...

 await InitializeLicensingAsync();
}

async static Task InitializeLicensingAsync()
{
 var local = ApplicationData.Current.LocalFolder;
 var install_location = Windows.ApplicationModel.Package.Current.InstalledLocation;
 var proxyFolder = await local.CreateFolderAsync("Microsoft\\Windows Store\\ApiData",
CreationCollisionOption.OpenIfExists);
 var installLocation = await install_location.GetFolderAsync("samples\\inapppayment\\

licensedata");
 // open the proxy file
 StorageFile proxyFile = await installLocation.GetFileAsync("trialmanagement.xml");

 // create proxy file in application data
 var simulator_settings = await proxyFolder.CreateFileAsync("WindowsStoreProxy.xml",
CreationCollisionOption.ReplaceExisting);

 // replace the contents
 await proxyFile.CopyAndReplaceAsync(simulator_settings);

 //load the listing information read from the file. The currentproductsimulator seems
 //to expect a file in the location where i put it. It reads it and uses it as if it is
 //coming from the marketplace.
 License = CurrentAppSimulator.LicenseInformation;
 ListingInfo = await CurrentAppSimulator.LoadListingInformationAsync();

}

Listing 13-2 starts by specifying the properties that store both the licensing and listing information
for the app. The licensing information is self-explanatory; the listing information represents the data that
would ideally show up in the Windows Store when the product is listing. Regardless of whether you’re using
a proxy file or going to the Windows Store for information about the app’s license, it makes sense to store
these values in a global area where they can easily be accessed throughout your app. After all, you use this

Chapter 13 ■ app Monetization

527

information to determine what functionality to expose to the user and what functionality to hide. As the final
step of the InitializeAppAsync function you make a call to InitializeLicenseAsync, the method that will
do all the licensing initialization for the app.

InitializeLicensingAsync is fairly straightforward; you open or create the target folder where the
proxy file should be, create the official proxy file there, and then copy the contents of your temporary proxy
file (the one you work with and modify) to the official WindowsStoreProxy.xml file. At the end of the async
chain you read the LicenseInformation. Again, because you’re using CurrentAppSimulator, this reads from
your WindowsStoreProxy.xml file and not the actual Windows Store.

To implement this functionality, you must first add a new page to the app dedicated to handling
purchasing of tickets; the functionality you will be using highlights the purchasing features of Windows 10.
For the purposes of this sample, BigMountainX will not allow users to purchase tickets unless they have
purchased the app. This means that in trial mode you should see the options to buy things (and even get a
prompt that allows the user to buy the item), but the user should not be able to make a purchase. Add a new
page to the project called TicketingPage and apply the XAML shown in Listing 13-3 to it.

Listing 13-3. TicketingPage XAML

<Grid Background="#FF6A6A6A ">
 <StackPanel HorizontalAlignment="Center"

VerticalAlignment="Center">
<Button Content="Buy Standard Ticket"

Margin="5"
Click="OnStandardTicket"
HorizontalAlignment="Stretch" />

<Button Content="Buy Table (VIP Ticket)"
Margin="5"
Click="OnVIPTicket"
HorizontalAlignment="Stretch" />

<Button Content="Buy Open Mic Ticket"
Margin="5"
Click="OnOpenMicTicket"
HorizontalAlignment="Stretch" />

 </StackPanel>
</Grid>

You must also modify ApplicationHostPage to connect to this page. Listing 13-4 shows the changes to
the ApplicationHostPage XAML layout. Place this XAML directly underneath the layout for the Schedule
Open Mic button.

Listing 13-4. Modifications to ApplicationHostPage

<Button HorizontalAlignment="Stretch"
HorizontalContentAlignment="Left"
Margin="0,5,0,0"
Click="OnGetTicketsClicked"
Background="Transparent">

 <StackPanel Orientation="Horizontal">
<SymbolIcon Symbol="Calendar"

Margin="0,0,20,0" />
<TextBlock Text="Get Tickets" />

 </StackPanel>
</Button>

Chapter 13 ■ app Monetization

528

Finally, you need to change the handlers for both this button and the Schedule Open Mic button to
point to your newly created page. Listing 13-5 illustrates.

Listing 13-5. Modifications to ApplicationHostPage

...
private void OnOpenMicClicked(object sender, RoutedEventArgs e)
{
 root_frame.Navigate(typeof(TicketingPage));
}

private void OnGetTicketsClicked(object sender, RoutedEventArgs e)
{
 root_frame.Navigate(typeof(TicketingPage));
}
...

Listing 13-5 simply calls your new page, TicketingPage, whenever the Schedule Open Mic or Buy Tickets
button is clicked. As stated earlier, the implementation you will initially be going with prevents any of the
functionality found on this page if the app has not been previously purchased. The user can see the potential
functionality but they can’t use it. Listing 13-6 shows the code behind for TicketingPage.

Listing 13-6. TicketingPage Code

public sealed partial class TicketingPage : Page
{
 public TicketingPage()
 {

this.InitializeComponent();
 }

 async void BuyApp(IUICommand c)
 {

await CurrentAppSimulator.RequestAppPurchaseAsync(true);
 }

 async private void OnStandardTicket(object sender, RoutedEventArgs e)
 {

if (App.License.IsTrial)
{

 MessageDialog dlg = new MessageDialog(string.Format("{1}: I cost {0}",
App.ListingInfo.FormattedPrice, App.ListingInfo.Description), "app is trial, why not buy it?");

dlg.Commands.Add(new UICommand("Buy It", BuyApp));
dlg.Commands.Add(new UICommand("No thanks", cmd =>
{

}));

Chapter 13 ■ app Monetization

529

dlg.DefaultCommandIndex = 1;
await dlg.ShowAsync();

}
else
{

MessageDialog dlg = new MessageDialog("Standard Ticket was purchased?");
await dlg.ShowAsync();

}
 }

 async private void OnVIPTicket(object sender, RoutedEventArgs e)
 {

if (App.License.IsTrial)
{

MessageDialog dlg = new MessageDialog(string.Format("{1}: I cost {0}",
App.ListingInfo.FormattedPrice, App.ListingInfo.Description), "app is trial, why not buy it?");

dlg.Commands.Add(new UICommand("Buy It", BuyApp));
dlg.Commands.Add(new UICommand("No thanks", cmd =>
{

}));
dlg.DefaultCommandIndex = 1;
await dlg.ShowAsync();

}
else
{

MessageDialog dlg = new MessageDialog("VIP Ticket was purchased?");
await dlg.ShowAsync();

}
 }

 async private void OnOpenMicTicket(object sender, DragEventArgs e)
 {

if (App.License.IsTrial)
{

MessageDialog dlg = new MessageDialog(string.Format("{1}: I cost {0}",
App.ListingInfo.FormattedPrice, App.ListingInfo.Description), "app is trial, why not buy it?");

dlg.Commands.Add(new UICommand("Buy It", BuyApp));
dlg.Commands.Add(new UICommand("No thanks", cmd =>
{

}));

Chapter 13 ■ app Monetization

530

dlg.DefaultCommandIndex = 1;
await dlg.ShowAsync();

}
else
{

MessageDialog dlg = new MessageDialog("Open Mic was purchased?");
await dlg.ShowAsync();

}
 }
}

Now that you have the details of the app’s license, you can begin showing and hiding functionality as
needed. As shown in Listing 13-6, all you need to do is read the value of IsTrial and, based on that, decide
whether or not to allow the user to move forward.

Build and run the app, and then try to purchase a ticket. Figure 13-3 shows the look and feel of the app
at this point.

Figure 13-3. Trial mode sample app

Chapter 13 ■ app Monetization

531

To test the alternative scenario, update the license file with the value highlighted in Listing 13-7.

Listing 13-7. Updating the License File

 <LicenseInformation>
<App>

<IsActive>true</IsActive>
<IsTrial>false</IsTrial>
<ExpirationDate>2016-01-01T00:00:00.00Z</ExpirationDate>

</App>
<Product ProductId="bmx_ticket">

<IsActive>true</IsActive>

</Product>
<Product ProductId="bmx_table">

<IsActive>false</IsActive>
</Product>
<Product ProductId="bmx_openmic">

<IsActive>false</IsActive>
<ExpirationDate>2016-01-01T00:00:00.00Z</ExpirationDate>

</Product>
 </LicenseInformation>

You can use the IsTrial value set here to toggle between testing the app as a trial and testing it as a full
app. Alternatively, you can test by actually clicking the Buy It button. Figure 13-4 shows what is displayed in
this case.

Figure 13-4. App Simulator purchase dialogue

Chapter 13 ■ app Monetization

532

This system-generated user interface allows you to test for the various situations that can occur during
the purchasing process so that your app behaves appropriately in each case. If you proceed with the S_OK
value, as shown in Figure 13-4, the app is shifted to a “purchased” state and all subsequent calls to this
function treat it as such. The contextual meaning of each of these arguments in beyond the scope of this
book. The important thing to keep track of is not blindly expecting any call to purchase an app to succeed
when in trial mode. The Windows Store is not local to a user’s machine; this means that at any point in time
the network connection to it may fail, leaving the app unable to implement any change requested. As the
developer, you must account for this scenario and provide a meaningful user interface to the user so that
they have some idea of what is going on. The worst thing anyone can get from a user experience perspective
is a cryptic, meaningless message. One of the key things that separates the top tier app developer from
the run-of-the-mill app dev shop is the time that is taken on support and user messaging, specifically in
scenarios where errors have occurred. Figure 13-5 shows the purchased screen.

Figure 13-5. Confirmation screen

Purchasing the App
An app can make a purchase request on behalf of the user (this must be done via a user-driven event like a
mouse click) by invoking the RequestAppPurchaseAsync method of CurrentApp or CurrentAppSimulator.
Although the API is the same, the actions that follow differ based on which class is used. CurrentApp invokes
the Windows Store purchasing user interface, whereas CurrentAppSimulator launches a legacy Windows
dialog box in which you can select the type of response you want the simulator to return to your app (the
same dialog box used earlier for purchasing the app). You can use this functionality to simulate various use
cases beyond the happy path. Figure 13-8 (shown later in the chapter) offers a close-up look at the resulting
dialog box when the Buy App button is clicked.

Chapter 13 ■ app Monetization

533

Your code should be able to handle these scenarios so your app doesn’t crash. The value selected in the
dialog in Figure 13-6 is passed as a parameter into the error event handler. You can use this value to present
an appropriate message to the user.

Selling Within an App
You’ve looked at how to build out an app so it supports trials. This approach is predicated on publishing your
app as a paid app. Paid apps represent the principle way of monetizing your app through the Windows Store
but only scratch the surface of the overarching model.

Offering a trial is a good way to get potential customers to download your app and give it a dry run
before committing to the cost, but this approach suffers from some distinct disadvantages when it comes
to competing with the free counterparts. Statistics show beyond a reasonable doubt (and across all major
app stores) that free apps are downloaded far more than paid apps and also have more activity and dialogue
tied to them. Although a trial app is technically free, it is still listed in the Windows Store within the paid
category, making discovery of your app an issue. Furthermore, as you saw from the previous example, the
paid/trial model has limited flexibility. What we mean by this is that, as a developer, you really have only
two products that you are presenting to the end user: the free version of the app and the full version of the
app. The binary nature of the implementation restricts the opportunities for commerce that naturally exist
within the app. For instance, suppose you created another cool piece of functionality that you valued at an
extra dollar amount. That would raise the cost of the app to $5.99 (based on the WindowsStoreProxy.xml file,
the product presently costs $4.99). Not only might the high price point be hard to digest, but it also removes
the option of the user just paying for that one feature for the dollar. With in-app purchases, you can shift the
pressure of purchasing away from the app as a whole and into specific features within the app. This kills two
birds with one stone. On one hand, you shift your app to the higher-traffic free side of the world, making
it easier to discover. On the other hand, you continue to monetize your app, this time with finer-grained
control over which pieces of the app you provide for free.

A category of app that stands out in regard to in-app purchasing is gaming. Users often stumble on
free games, which they are quick to download due to the nonexistent price tag. Once engaged (addicted is a
common term), users are more apt to pay for additional features.

Figure 13-6. CurrentAppSimulator purchasing dialog for testing purchasing scenarios

Chapter 13 ■ app Monetization

534

Adding In-App Purchasing to an App
Let’s modify the example app to use in-app purchasing. So far you have an app that allows the user to
purchase tickets as a normal patron, as a VIP, and as an individual looking to be a part of the show in some
fashion (the Open Mic scenario). As you will see in a moment, you do this to take advantage of one of the
benefits of using in-app purchases: the fact that you can define your catalog of products outside the app.
You no longer need to hard-code the names of the features you’re selling; you read them directly from the
Windows Store.

Chapter 15 goes into more detail about setting up your app in the store. To help with this, in-app
purchasing introduces some new element types to the WindowsStoreProxy.xml file. Listing 13-8 updates
your local copy to include all the elements necessary to represent the in-app purchasing functionality.

Listing 13-8. WindowsStoreProxy.xml with Product Listing Information Included

<?xml version="1.0" encoding="utf-16" ?>
<CurrentApp>
 <ListingInformation>

<App>
<AppId>2B14D306-D8F8-4066-A45B-0FB3464C67F2</AppId>
 <LinkUri>http://apps.microsoft.com/app/2B14D306-D8F8-4066-A45B-0FB3464C67F2
</LinkUri>
<CurrentMarket>en-us</CurrentMarket>
<AgeRating>12</AgeRating>

<MarketData xml:lang="en-us">
<Name>Trial management full license</Name>
 <Description>Sample app for demonstrating trial license management
</Description>
<Price>4.99</Price>
<CurrencySymbol>$</CurrencySymbol>

</MarketData>
</App>
<Product ProductId="bmx_ticket">

<MarketData xml:lang="en-us">
<Name>Buy Ticket</Name>
<Price>49.99</Price>
<CurrencySymbol>$</CurrencySymbol>

</MarketData>
</Product>
<Product ProductId="bmx_table">

<MarketData xml:lang="en-us">
<Name>Register for Open Mic</Name>
<Price>150.00</Price>
<CurrencySymbol>$</CurrencySymbol>

</MarketData>
</Product>
<Product ProductId="bmx_openmic">

<MarketData xml:lang="en-us">
<Name>Buy Table</Name>
<Price>19.99</Price>
<CurrencySymbol>$</CurrencySymbol>

</MarketData>

http://dx.doi.org/10.1007/978-1-4842-1449-7_15
http://apps.microsoft.com/app/2B14D306-D8F8-4066-A45B-0FB3464C67F2
http://apps.microsoft.com/app/2B14D306-D8F8-4066-A45B-0FB3464C67F2

Chapter 13 ■ app Monetization

535

</Product>
 </ListingInformation>
 <LicenseInformation>

<App>
<IsActive>true</IsActive>
<IsTrial>true</IsTrial>
<ExpirationDate>2014-01-01T00:00:00.00Z</ExpirationDate>

</App>
<Product ProductId="bmx_ticket">

<IsActive>true</IsActive>

</Product>
<Product ProductId="bmx_table">

<IsActive>false</IsActive>
</Product>
<Product ProductId="bmx_openmic">

<IsActive>false</IsActive>
<ExpirationDate>2011-01-01T00:00:00.00Z</ExpirationDate>

</Product>
 </LicenseInformation>
</CurrentApp>

Implementing In-App Purchasing
Implementing in-app purchasing changes an app in numerous ways. In the previous approach, you let
the user click any of the purchasing buttons and they are immediately prompted with a message stating
that they must purchase the app in order to use the feature. Now that you are transitioning the app to a
commerce-style app, you should provide the user up front with information to help them make a purchase
decision. To that end, you need to access product-listing information to identify the name of each feature
and how much the feature costs. To start, you will need to add identifiable names to the buttons you
previously created in TicketingPage. Listing 13-9 illustrates.

Listing 13-9. Modifications to TicketingPage XAML

<StackPanel HorizontalAlignment="Center"
VerticalAlignment="Center">

 <Button x:Name="btn_ticket"
Content="Buy Standard Ticket"
Margin="5"
Click="OnStandardTicket"
HorizontalAlignment="Stretch" />

 <Button x:Name="btn_vipticket"
Content="Buy Table (VIP Ticket)"
Margin="5"
Click="OnVIPTicket"
HorizontalAlignment="Stretch" />

 <Button x:Name="btn_openmic"
Content="Buy Open Mic Ticket"
Margin="5"
Click="OnOpenMicTicket"
HorizontalAlignment="Stretch" />

</StackPanel>

Chapter 13 ■ app Monetization

536

Next, you modify TicketingPage to use the values from the ListingInfo object (the listing object you
load up when the app starts). Listing 13-10 illustrates.

Listing 13-10. Modifications to TicketingPage Code

public TicketingPage()
{
 this.InitializeComponent();
 this.Loaded += TicketingPage_Loaded;
}

private void TicketingPage_Loaded(object sender, RoutedEventArgs e)
{
 SetButtonLabel("bmx_openmic", btn_openmic);
 SetButtonLabel("bmx_ticket", btn_ticket);
 SetButtonLabel("bmx_table", btn_vipticket);
}

public void SetButtonLabel(string key, Button button)
{
 var product_name = App.ListingInfo.ProductListings[key].Name;
 var product_price = App.ListingInfo.ProductListings[key].FormattedPrice;
 button.Content = $"{product_name} - {product_price}";
}

When you run the app at this point and navigate to the ticketing page, you should see something
like Figure 13-7.

Figure 13-7. User interface elements populated from the Windows Store listing

Chapter 13 ■ app Monetization

537

Based on the sample so far, the user should be allowed to purchase one of the features highlighted in
Figure 13-7 once they have bought the app. Listing 13-11 implements the necessary code to achieve the
purchasing part of the functionality.

Listing 13-11. The PurchaseFeatureAsync Method

async Task PurchaseFeatureAsync(string feature_name)
{
 var feature = App.License.ProductLicenses[feature_name];
 if (App.ListingInfo.ProductListings.ContainsKey(feature_name))
 {

var feature_listinginfo = App.ListingInfo.ProductListings[feature_name];
if (feature.IsActive)
{

 MessageDialog dlg = new MessageDialog($"You already have
{feature_listinginfo.Name}");
await dlg.ShowAsync();

}
else
{

 MessageDialog dlg = new MessageDialog($"{feature_listinginfo.FormattedPrice}
costs {feature_listinginfo.Name}", $"Buy {feature_listinginfo.Name}?");
 dlg.Commands.Add(new UICommand($"Buy {feature_listinginfo.Name}",
async delegate (IUICommand c)
{

await CurrentAppSimulator.RequestProductPurchaseAsync(feature.ProductId);
//CurrentAppSimulator.

}));
dlg.Commands.Add(new UICommand("No thanks", cmd =>
{

}));
await dlg.ShowAsync();

}
 }
 else
 {

 MessageDialog dlg = new MessageDialog($"{feature_name} does not exist in this
application");
await dlg.ShowAsync();

 }
}

In Listing 13-11, you use the License and LicenseInfo objects to determine which license
is being requested for purchasing. Once identified, you call RequestProductPurchaseAsync on
CurrentAppSimulator to purchase it. The logic is simple: when the user clicks either button, you check to
see if the product feature has an active license. If it does, the feature functionality is invoked. If it doesn’t, a
request to purchase the feature is initiated with the store. As with app purchasing, CurrentAppSimulator
presents the dialog in Figure 13-8.

The code in Listing 13-12 contains the modifications that need to be made to the TicketingPage page to
enable using this functionality.

Chapter 13 ■ app Monetization

538

Listing 13-12. Modifications to TicketingPage to Support In-App Purchasing

async private void OnStandardTicket(object sender, RoutedEventArgs e)
{
 if (App.License.IsTrial)
 {

 MessageDialog dlg = new MessageDialog(string.Format("{1}: I cost {0}",
App.ListingInfo.FormattedPrice, App.ListingInfo.Description), "app is trial,
why not buy it?");
dlg.Commands.Add(new UICommand("Buy It", BuyApp));
dlg.Commands.Add(new UICommand("No thanks", cmd =>
{

}));
dlg.DefaultCommandIndex = 1;
await dlg.ShowAsync();

 }
 else
 {

await PurchaseFeatureAsync("bmx_ticket");
 }
}

async private void OnVIPTicket(object sender, RoutedEventArgs e)
{
 if (App.License.IsTrial)
 {

 MessageDialog dlg = new MessageDialog(string.Format("{1}: I cost {0}",
App.ListingInfo.FormattedPrice, App.ListingInfo.Description), "app is trial,
why not buy it?");
dlg.Commands.Add(new UICommand("Buy It", BuyApp));
dlg.Commands.Add(new UICommand("No thanks", cmd =>
{

}));
dlg.DefaultCommandIndex = 1;
await dlg.ShowAsync();

 }
 else
 {

await PurchaseFeatureAsync("bmx_table");
 }
}

Chapter 13 ■ app Monetization

539

async private void OnOpenMicTicket(object sender, RoutedEventArgs e)
{
 if (App.License.IsTrial)
 {

 MessageDialog dlg = new MessageDialog(string.Format("{1}: I cost {0}",
App.ListingInfo.FormattedPrice, App.ListingInfo.Description), "app is trial,
why not buy it?");
dlg.Commands.Add(new UICommand("Buy It", BuyApp));
dlg.Commands.Add(new UICommand("No thanks", cmd =>
{

}));
dlg.DefaultCommandIndex = 1;
await dlg.ShowAsync();

 }
 else
 {

await PurchaseFeatureAsync("bmx_openmic");
 }
}

Running the sample here should function similar to the flow of purchasing the app. Figure 13-8 shows
the UI when the user attempts to buy the “Register for Open Mic” feature.

Figure 13-8. Prompt populated from the Windows Store listing

Chapter 13 ■ app Monetization

540

Once you have purchased the item, each subsequent call to purchase will notify the user that they
already own it. Another approach that might be taken is to simply remove the ability to attempt purchasing
items that the user has already purchased by either disabling the button or removing it outright. Figure 13-9
shows the prompt the user gets if they attempt to purchase “Register Open Mic” again.

Figure 13-9. Purchase confirmation

In-app purchasing and trial apps are powerful features to help you monetize apps, so ensuring proper
functionality is critical. The last thing you want is for your app to function improperly in a purchasing
scenario, considering how critical confidence in your app’s stability is to the purchasing experience from
a user’s standpoint. Using CurrentAppSimulator in tandem with the WindowsStoreProxy.xml file is of
paramount importance in testing these scenarios. The following section from the MSDN documentation
(http://msdn.microsoft.com/en-us/library/windows/apps/hh779766.aspx) outlines in detail this
file’s various nodes. If you’re interested in monetizing your app, be sure you understand how each of these
nodes work.

1. ListingInformation: Represents data that would normally be found in the app’s
listing and includes these elements:

a. App: Represents data about the app and contains these elements:

i. AppId: The GUID that identifies the app in the store. This can be any GUID
for testing.

ii. LinkUri: The URI of the listing page in the store. This can be any valid URI
for testing.

iii. AgeRating: An integer that represents the minimum age rating of the app.
This is the same value you specify in the Dashboard when you submit
the app. The values used by the Windows Store are 3, 7, 12, and 16.

http://msdn.microsoft.com/en-us/library/windows/apps/hh779766.aspx

Chapter 13 ■ app Monetization

541

iv. CurrentMarket: The customer’s country/region. For each country/region
in which the app is listed, there must be a MarketData element:

1. MarketData: Info about the app for this country/region. Requires the
xml:lang attribute, which specifies the country/region for which this
info applies:

a. Name: The name of the app in this country/region.

b. Description: The description of the app for this country/region.

c. Price: The price of the app in this country/region.

d. CurrencySymbol: The currency symbol used in this
country/region.

b. Product: Describes a product or a feature in this app that is enabled when
the customer makes an in-app purchase. Requires the ProductId attribute,
which contains the string used by the app to identify the product or feature.
Requires the LicenseDuration attribute, which contains the number of days
the license will be valid after the purchase. The expiration date of the new
license created by a product purchase is the purchase date plus the license
duration:

i. MarketData: Info about the product or feature for this country/region.
Requires the xml:lang attribute, which specifies the country/region for
which this information applies:

a. Name: The name of the product or feature in this country/region.

b. Price: The price of the product or feature in this country/region.

c. CurrencySymbol: The currency symbol used in this country/region.

d. CurrencyCode: The currency code used in this country/region.

2. LicenseInformation: Represents data that describes the licenses available for
this app and includes the following elements:

a. App: Describes the app’s license:

i. IsActive: Describes the current license state of this app. true indicates
the license is valid. Normally this value is true, whether the app has a trial
mode or not. false indicates an invalid license. Set this value to false to
test how your app behaves when it has an invalid license.

ii. IsTrial: Describes the current trial state of this app. true indicates the app
is being used during the trial period. false indicates the app isn’t in a trial,
either because the app has been purchased or because the trial period has
expired.

iii. ExpirationDate: The date the trial period for this app expires. The date
must be express as yyyy-mm-ddThh:mm:ss.ssZ. For example, 05:00 on
January 19, 2012 is specified as 2012-01-19T05:00:00.00Z. This element is
required when IsTrial is true. Otherwise, it isn’t required.

Chapter 13 ■ app Monetization

542

iv. DefaultResponse: Describes the default error code returned
by a given method. The MethodName attribute allows you to
specify one of these methods: RequestAppPurchaseAsync_
GetResult, RequestProductPurchaseAsync_GetResult, or
LoadListingInformationAsync_GetResult. The HResult attribute allows
you to specify the error code.

b. Product: Describes the license status of a product or feature in the app:

i. IsActive: Describes the current license state of this product or feature.
true indicates the product or feature can be used. false indicates the
product or feature can’t be used or has not been purchased.

ii. ExpirationDate: The date the product or feature expires. The date must be
express as yyyy-mm-ddThh:mm:ss.ssZ. For example, 05:00 on January 19,
2012 is specified as 2012-01-19T05:00:00.00Z. If this element is present,
the product or feature has an expiration date. If this element isn’t present,
the product or feature doesn’t expire.

Summary
Whether taking steps to monetize your app is a necessary evil or the icing on the cake, it’s something you
should know about and can benefit from in real-world app development. This chapter provided the steps to
follow, as well as some useful insight into how to effectively monetize your app. Key points covered in this
chapter include the following:

• The Microsoft Windows Store can publish paid apps as trials, allowing you to create
and maintain both a trial (free) and a full-functionality (paid) version of a single
app, and to specify the conditions under which your app can be migrated from one
version to the other.

• Implementing both trial and full-functionality versions of a single app is
instrumental to upselling your app.

• It’s important to use CurrentAppSimulator in tandem with the
WindowsStoreProxy.xml file in testing scenarios.

• Monetizing your app via selling it is different than monetizing the app via selling
within it.

• There are potential pros and cons to offering your app free, as a paid app, or as a paid
app with a free trial option.

• Implementing in-app purchasing is a powerful methodology for monetizing the app.

543

Chapter 14

Leveraging Existing Code

If you’re like us and you have been using Microsoft-based technologies to build user interfaces, you will likely
be quite skeptical about the UWP and Windows 10 app development in general. It’s been a long hard road
for us. .NET was introduced on February 2002 and with it came WinForms, a replacement for Visual Basic 6
and MFC. Three years later (2005), WinForms was essentially supplanted (at least in the minds of Microsoft)
by the paradigm-shifting Windows Presentation Foundation (WPF). Two years later (2007), Silverlight was
introduced as an alternative to the heavy WPF for line of business applications, and it was awesome!

No sooner had we begun accepting this as the framework on which to build our legacies then the ground
was pulled from under us, and WinRT was introduced as the “actual” future. This was 2012. If you consider
that Visual Basic and MFC came out roughly in 1992/1992, it means that in the time that it took for Microsoft
to go from those technologies to WinForms (10 years), Microsoft launched and re-launched three different
paradigm-shifting user interface frameworks upon which we have had to create and recreate our apps.

It is no wonder the Windows Store is devoid of apps. Many think it is primarily because of lack of
adoption tied to a lack of interest. The truth is it is a lack of adaption due to fear. Many app developers are
simply in a wait-and-see mode when it comes to the constantly rebooting (no pun intended) frameworks
introduced. I certainly cannot recommend ANY firm that I work with to adopt any such technology without
at least waiting four years to see if it will stick.

The moral of the story is that the frameworks can and most certainly will change. Because of this, to get
the most out of your work and save yourself a ton of rework, it is imperative that you build solutions that are
composable, flexible, and transferable. In some cases, this might mean exploring technologies that allow you
to leverage the code that you presently have within UWP apps. In this case, the approach to your legacy code
will most likely not be affected by your introduction of WinRT to your portfolio. Others cases might mean
utilizing code that is shared in some manner between your UWP app and your legacy code. In this case,
there are a number of techniques that can be used.

In this chapter, you will explore several approaches to leveraging existing code from legacy applications.
You will focus primarily on the following techniques:

• Portable class libraries

• Shared projects

• Localhost communication

Bear in mind that your choice of approach may have an impact on the deployment footprint of your
app. If, for instance, you utilize a technique that allows you to make calls to the Win32 API, don’t expect to
run on anything but the Windows 10 desktop experience.

Chapter 14 ■ Leveraging existing Code

544

Sharing Code
In the old days, when you wanted to share code between multiple Visual Studio projects (and didn’t want to
get yelled at by the architect for copying the same class multiple times), you would use the trusty Add as Link
context menu item on the Add Existing Item dialog. Figure 14-1 illustrates.

But this approach, while usable, was clunky since each separate source file had to be selected
individually. With the move to supporting multiple disparate platforms (iOS, Android, etc.), Microsoft has
finally innovated on this and decided to make it easier to share source between projects by adding the
concept of a shared project. Shared projects provide a way of linking files in the manner described above
at the project level. With shared projects, the files are consolidated into a project structure that can then be
linked as a whole to other projects.

Unlike a class library, which is compiled and the unit of reuse is the output assembly, the unit of reuse for
a shared project is the source code, and the shared code is incorporated into each assembly that references
the shared project. This is quite useful when there is a need to create separate assemblies that target specific
platforms but still have code that should be shared among them. The following example will illustrate how
powerful shared projects are in helping you maintain a core set of functionality that can be transported across
your projects, regardless of the technologies they utilize. For the purposes of this lesson, let’s pretend that the
sample you will be creating here came first. This will typically be the case for UWP apps as they are too young
to have amassed the kind of library of work we see from legacy WinForms (or older apps). In this case, you will
be creating a profile generation command line utility that can be quickly used to create and test profiles.

The common problem here is that you do not want to re-create all the types associated with your
application state in this app. Using shared projects, you won’t have to.

Start by adding a new console application to your project entitled ProfileGenerator. Figure 14-2
illustrates a created console application.

Figure 14-1. Adding a file as a link

Chapter 14 ■ Leveraging existing Code

545

Next, add a reference to the System.Runtime.Serialization assembly to this project.
Follow this up be adding another new project to the solution. This time select the Shared Project

template and call it BMX.Shared. Figure 14-3 illustrates.

Figure 14-2. Creating a console application

Figure 14-3. Creating a shared project

Chapter 14 ■ Leveraging existing Code

546

The next step is to add a BMX.Shared as a reference to both the ProfileGenerator and General.UWP.
Library projects. These will be the two primary projects that use it.

You will be using your shared project to share the entities you’ve created thus far between your UWP
app and your .NET-based ProfileGenerator project. The key thing to watch for when doing this is that
the types exposed through the classes you are sharing are available in the project type you have selected.
Remember, referencing a shared project is like taking all the types defined in it and moving them into your
project. Those types must be referencable for the code in the target project to compile properly. Copy the
entire Library folder from General.UWP.Library to BMX.Shared and then delete the version of the folder
in General.UWP.Library. Now rename that folder to Entities; it was initially named Library but Entities
is a better name for the folder now that it will mainly store the entities used to store application state for
BigMountainX. Following in this vein, copy the AppState class out of this folder and place it in the root of the
project. The layout of the two projects should now look like Figure 14-4.

Try building General.UWP.Library or BigMountainX now and you should note that all runs well. This
is because in terms of the two projects nothing has changed. At build time, the files in BMX.Shared are
copied into General.UWP.Library and it continues to build as usual. Because General.UWP.Library builds,
BigMountainX will also build successfully (assuming nothing has been changed in it). With those two
projects building fine, try to build the ProfileGenerator project. You should immediately notice that the build
fails with errors related to types missing or not being defined. Specifically, StateAwareObject will be flagged
as unavailable.

You get this error because the AppState class inherits from the type StateAwareObject, which you have
not carried over to the shared project because it utilized types like StorageFile and StorageFolder that
are not available to standard .NET projects at this time. The best way to alleviate this problem is to define
another StateAwareObject that is .NET-specific, but that follows the same interface structure. Add a new
file to ProfileGenerator called StateAwareObject and define it as shown in Listing 14-1. Make sure to set the
namespace for this type to match that of its namesake: General.UWP.Library.

Figure 14-4. Project structure

Chapter 14 ■ Leveraging existing Code

547

Listing 14-1. Alternate StateAwareObject Class Definition

public class StateAwareObject<T> where T : StateAwareObject<T>, new()
{
 string _file_path;

 public string AsSerializedString()
 {

DataContractSerializer dcs = new DataContractSerializer(typeof(T));
MemoryStream ms = new MemoryStream();
dcs.WriteObject(ms, this);
ms.Seek(0, SeekOrigin.Begin);
byte[] buffer = new byte[ms.Length];
ms.Read(buffer, 0, buffer.Length);
string serialized_object = Encoding.ASCII.GetString(buffer);
return serialized_object;

 }

 public void Save()
 {

var f = File.CreateText(_file_path);
var serialized = this.AsSerializedString();
f.Write(serialized);
f.Flush();
f.Close();

 }

 public void Delete()
 {

File.Delete(_file_path);
 }

 public static T FromSerializedString(string resume_string)
 {

try
{

var buffer = Encoding.ASCII.GetBytes(resume_string);
MemoryStream ms = new MemoryStream(buffer);
DataContractSerializer dcs = new DataContractSerializer(typeof(T));
var retval = dcs.ReadObject(ms);
var app_state = retval as T;
return app_state;

}
catch
{

return null;
}

 }

Chapter 14 ■ Leveraging existing Code

548

 public static T FromFileAsync(string file_path)
 {

T app_state = null;
if (File.Exists(file_path))
{

var serialized = File.ReadAllText(file_path);
app_state = FromSerializedString(serialized);

}

if (app_state == null)
app_state = new T();

app_state._file_path = file_path;

return app_state;
 }
}

In Listing 14-1, you have defined a new StateAwareObject with file access that is tailored to the full
.NET Framework. Notice that both serialization methods remain unchanged. Build this and note that
ProfileGenerator now contains no errors.

With the entities and state management shared between both projects, you can now implement the
profile generation functionality in your console application. Listing 14-2 shows the implementation for the
static method GenerateProfile on the Program class. This class does the actual profile generation.

Listing 14-2. GenerateProfile Method

private static bool GenerateProfile(int number_of_records)
{

 // State.UserProfile = null;
 if (State == null)
 {

WriteLine("call load first.");
return false;

 }

 //create sample customers
 int dob_years = (number_of_records % 20); //keep it to a max of 20 years
 foreach (var item_id in Enumerable.Range(0, number_of_records))
 {

State.Customers.Add(new BMXCustomerInfo
{

CustomerID = Guid.NewGuid(),
CustomerName = $"John Smith {item_id}",
DOB = DateTime.Now.Subtract(TimeSpan.FromDays(365 * dob_years)),
Email = $"test{item_id}@test.com",

});
 }

Chapter 14 ■ Leveraging existing Code

549

 //create sample events
 foreach (var item_id in Enumerable.Range(0, number_of_records))
 {

State.Events.Add(new BMXEvent
{

Address = $"{item_id} test street",
Latitude = 40.7484,
Longitude = -73.9857,
CreateDate = DateTime.Now,
Duration = TimeSpan.FromHours(item_id % 5), //keep it to a max of 5 hours
EventID = Guid.NewGuid(),
Description = $"A night of wine and comedy-{item_id}",
EventTitle = $"Comedy Night at the Empire State-{item_id}",
StartDateTime = DateTime.Now.AddDays(item_id),
Feature = new BMXFeaturedPerformer
{

BIO = File.ReadAllText("../../artistbio.txt"),
},

});
 }
 //next event
 State.NextEvent = State.Events.OrderBy(i => i.StartDateTime).FirstOrDefault();

 //create sample mailing list data
 foreach (var item_id in Enumerable.Range(0, number_of_records))
 {

State.MailingList.Add($"patron{item_id}@test.com");
 }

 State.Save();
 return true;
}

Given an AppState instance and a count, Listing 14-2 simply iterates through the count and adds some
profile artifacts to the AppState object. Once completed, the AppState is then saved. The remainder of the
class is implemented as shown in Listing 14-3.

Listing 14-3. ProfileGenerator REPL Loop

static AppState State { get; set; }
static void Main(string[] args)
{
 while (true)
 {

Write(">");
var input = ReadLine().Trim().ToLower();
if (string.IsNullOrWhiteSpace(input))

break;

Chapter 14 ■ Leveraging existing Code

550

if (input == "load")
{

Write("File name>");
input = ReadLine().Trim().ToLower();
string bio_path = $"../../{input}.xml";

State = AppState.FromFileAsync(bio_path);
WriteLine($"Loaded {input}.xml");

}
else if (input == "end")

break;
else if (input == "clear")
{

State.Delete();

}
else if (input == "generate")
{

Write("Number of records>");
input = ReadLine().Trim().ToLower();
int count;
if (int.TryParse(input, out count))
{

GenerateProfile(count);
WriteLine("Generated");

}
else
{

WriteLine($"I dont understand '{input}'.");
WriteLine("Enter 'end' or a number.\n");

}
}
else
{

WriteLine($"I dont understand '{input}'.");
}

 }
}

In Listing 14-3, you see that ProfileGenerator is a simple REPL (Read-Eval-Print) loop used to manage
the population of arbitrary AppState files. The entire application is wrapped in a while loop that only ends
when the user types “end” into the prompt. Typing “load” allows the user to load any arbitrary AppState
file; if a file does not exist, an empty AppState object is used (as per the rules of StateAwareObject). Typing
“clear” deletes the AppState (using the Delete function), and typing “generate” uses the next value inputted
(a number) to generate the profile objects. Figure 14-5 shows a sample usage of the application.

Chapter 14 ■ Leveraging existing Code

551

The commands shown in Figure 14-5 will generate the AppState XML in Listing 14-4 (the BIO section
has been excluded to reduce length).

Listing 14-4. Generated AppState File

<AppState xmlns="http://schemas.datacontract.org/2004/07/BigMountainX"
xmlns:i="http://www.w3.org/2001/XMLSchema-instance">
 <Customers>

<BMXCustomerInfo>
<CustomerID>97670f39-1235-4732-a37f-93e33936e99e</CustomerID>
<CustomerImage i:nil="true"/>
<CustomerName>John Smith 0</CustomerName>
<DOB>2013-10-25T23:32:32.0878067-04:00</DOB>
<Email>test0@test.com</Email>

</BMXCustomerInfo>
<BMXCustomerInfo>

<CustomerID>baa2e9c3-6c4c-407b-86db-90fa69263372</CustomerID>
<CustomerImage i:nil="true"/>
<CustomerName>John Smith 1</CustomerName>
<DOB>2013-10-25T23:32:32.0878067-04:00</DOB>
<Email>test1@test.com</Email>

</BMXCustomerInfo>
 </Customers>
 <Events>

<BMXEvent>
<Address>0 test street</Address>
<CreateDate>2015-10-25T23:32:32.0878067-04:00</CreateDate>
<Description>A night of wine and comedy-0</Description>
<Duration>PT0S</Duration>

Figure 14-5. ProfileGenerator interaction

Chapter 14 ■ Leveraging existing Code

552

<EventID>c88b1d46-6e47-4ea1-ba23-96460a9bbcb2</EventID>
<EventTitle>Comedy Night at the Empire State-0</EventTitle>
<Feature>

<BIO>...</BIO>
<ImageUri i:nil="true"/>
<Name i:nil="true"/>
<VideoUri i:nil="true"/>

</Feature>
<Latitude>40.7484</Latitude>
<Longitude>-73.9857</Longitude>
<Occassions i:nil="true"/>
<StartDateTime>2015-10-25T23:32:32.0878067-04:00</StartDateTime>

</BMXEvent>
<BMXEvent>

<Address>1 test street</Address>
<CreateDate>2015-10-25T23:32:32.0878067-04:00</CreateDate>
<Description>A night of wine and comedy-1</Description>
<Duration>PT1H</Duration>
<EventID>017c04f0-19e5-4cf2-ae5d-26518c9a6a9c</EventID>
<EventTitle>Comedy Night at the Empire State-1</EventTitle>
<Feature>

<BIO>...</BIO>
<ImageUri i:nil="true"/>
<Name i:nil="true"/>
<VideoUri i:nil="true"/>

</Feature>
<Latitude>40.7484</Latitude>
<Longitude>-73.9857</Longitude>
<Occassions i:nil="true"/>
<StartDateTime>2015-10-26T23:32:32.0878067-04:00</StartDateTime>

</BMXEvent>
 </Events>
 <MailingList xmlns:a="http://schemas.microsoft.com/2003/10/Serialization/Arrays">

<a:string>patron0@test.com</a:string>
<a:string>patron1@test.com</a:string>

 </MailingList>
 <NextEvent>

<Address>0 test street</Address>
<CreateDate>2015-10-25T23:32:32.0878067-04:00</CreateDate>
<Description>A night of wine and comedy-0</Description>
<Duration>PT0S</Duration>
<EventID>c88b1d46-6e47-4ea1-ba23-96460a9bbcb2</EventID>
<EventTitle>Comedy Night at the Empire State-0</EventTitle>
<Feature>

<BIO>...</BIO>
<ImageUri i:nil="true"/>
<Name i:nil="true"/>
<VideoUri i:nil="true"/>

</Feature>

Chapter 14 ■ Leveraging existing Code

553

<Latitude>40.7484</Latitude>
<Longitude>-73.9857</Longitude>
<Occassions i:nil="true"/>
<StartDateTime>2015-10-25T23:32:32.0878067-04:00</StartDateTime>

 </NextEvent>
 <OpenMicRequests i:nil="true"/>
 <UserProfile i:nil="true"/>
</AppState>

Portable Class Libraries (PCL)
The good thing about shared projects is unfortunately the bad thing about them. Shared projects are
ultimately a file-linking technology, which means that at compile time any referenced shared projects must
have types within it that the referencing project understands. You saw this in the previous section when you
tried to add AppState and found that because it inherits from StateAwareObject your console application
would not compile. Because shared projects are a pre-compile linking technology, there are no framework
compatibility issues associated with it. As you saw in the previous sample, if you are able to resolve any
missing types (for instance, if you took the time to create a StorageFile and StorageFolder class in your
console application, you would have been able to add both the AppState and StateAwareObject classes to
GenerateProfile. Portable class libraries are a post compile-time technology that allow .Net IL code to be
shared amongst participating platforms. They can help reduce the time and costs of developing and testing
code. The types and members that are available in Portable Class Library projects are constrained by several
compatibility factors:

• They must be shared across the targets you selected.

• They must behave similarly across those targets.

• They must not be candidates for deprecation.

• They must make sense in a portable environment, especially when supporting
members are not portable. As an example, a Portable Class Library may contain UI-
related types only when you target two platforms that support compatible UI-related
functionality: Windows 10, Windows Phone Silverlight 8.1, and Windows Phone 8.1,
for instance.

Creating a PCL
Add a new project to the solution called BMX.Portable, as shown in Figure 14-6.

Chapter 14 ■ Leveraging existing Code

554

Once you have clicked okay, you will be prompted to select the targets you want to have the ability to
reference this portable library. Figure 14-7 illustrates.

Figure 14-7. Managing PCL targets

Figure 14-6. Creating a Portable Class Library (PCL)

Chapter 14 ■ Leveraging existing Code

555

In this case, you are saying that you want this library to be compatible with the .NET Framework and
Windows Universal SDK 10 (UWP). As can be seen from the figure, you can also select to have the file
compatible with Silverlight, Xamarin apps, and Windows Phone if needed. Don’t be afraid of the choices
made here. At any point in time they can be changed through the project properties page, as shown in
Figure 14-8.

Let’s change the projects in your solution so they use this Portable Library instead of a shared project.
You start the process by removing the reference to BMX.Shared from both ProfileGenerator and General.
UWP.Library. To both of these projects, add the BigMountainX project and add a reference to the BMX.
Portable library. Next, copy all the files from BMX.Shared to BMX.Portable. Also copy the file QueryReader.cs
from General.UWP.Library to the portable class library (be sure to remove the original from General.UWP.
Library). Because you have removed the reference to the BMX.Shared project, there is no need to delete the
files from this project. Figure 14-9 shows what the project structure should look like at this point.

Figure 14-8. Managing PCL targets

Figure 14-9. Project structure

Chapter 14 ■ Leveraging existing Code

556

You should immediately notice errors popping up all over the place. Because this is a standard library
referencing pattern and not the linking strategy that shared projects employ, the approach you took in the last
section will not apply. Creating an alternate version of StateAwareObject would mean that AppState would
have to be aware of types in the project that references, something that would result in a circular reference if
it were allowed. To employ Portable Class Libraries for your solution, a major redesign of StateAwareObject
will be required. This redesign will need to take into account the fact that these types will be shared
between platforms with varying technology implementations. The incredibly frustrating thing about this
technique to leverage existing code is in the mystery of what types will be available once you start combining
platforms. In your case, for instance, you will quickly discover that a type that seems as benign as the
DataContractSerializer is no longer available once you combine Windows Universal 10 and .Net Framework.
Based on the technologies you have utilized, you might find that you end up rewriting much of your code
verbatim simply because the implementation of the very same code is incompatible between platforms. For
this and the aforementioned high degree of uncertainty associated with the PCLs, we recommend using shared
projects on anything other than entity classes and classes with very basic functionality.

Modify the project structure as follows to enable the PCL in your projects.

1. Add a BMX.Shared reference back to General.UWP.Library and ProfileGenerator.

2. Delete every file from BMX.Shared except AppState.

You project structure should now look like that in Figure 14-10.

Be sure to also comment out the DataContractAttribute decorating BMXOccassion. You will have
a problem with serialization when you do this. This is because BMXOccassion does not have a public
parameterless constructor (the constructor expects a BMXEvent instance). The best way to resolve this is to
add this default parameterless constructor and then make the EventID setter public (it is presently private).

Figure 14-10. Project structure

Chapter 14 ■ Leveraging existing Code

557

With the entities referenced in this manner they can easily be reused in your other apps, whether those
apps run on WinRT, the UWP, or some future framework.

Localhost Access
When all else fails and there is simply no easy way to get your existing code over to the UWP world, some
integration techniques exist that can be utilized to leverage the legacy code as is. The primary approach to
accomplish this is through localhost access. Localhost allows you to communicate between your app and the
local computer the code is running on through the networking stack. Programs running on the user’s desktop
(acquired through other means) can then be accessed from your UWP through this networking interface.

In the example to follow, you will be utilizing Windows Communication Framework (WCF for short)
to accomplish this. WCF was released in 2005 alongside WPF, so it is a quite mature communication
framework; it allows API-style interaction between disparate components through a varying number of
supported protocols. In the example to follow, you will be utilized the TCP/IP stack to send the mailing list
you generate via WCF to BigMountainX. To start the process, add a new interface to BMX.Shared called
IProfileGenerator. Figure 14-11 illustrates.

The code for IProfileGenerator is shown in Listing 14-5.

Listing 14-5. IProfileGenerator Interface

[ServiceContract]
public interface IProfileGenerator
{
 [OperationContract]
 List<string> GetMailingList(string file_name);
}

Figure 14-11. Adding an interface to the project

Chapter 14 ■ Leveraging existing Code

558

IProfileGenerator, shown in Listing 14-5, is a basic WCF interface, declared as such with the
ServiceContract and OperationContract attributes used to decorate it. It exposes a single method
called GetMailingList that returns a list of strings. In Listing 14-6, you modify the Program file from
ProfileGenerator to implement this interface.

Listing 14-6. IProfileGenerator Implementation

class Program : IProfileGenerator
{
 static AppState State { get; set; }

 public List<string> GetMailingList(string file_name)
 {

WriteLine("Retrieving...");
string profile_path = $"../../{file_name}.xml";
var app_state = AppState.FromFileAsync(profile_path);
WriteLine($"{app_state.MailingList.Count} items found.");
return app_state.MailingList;

 }
 ...
}

You will be using the Program class you created earlier in this chapter to double as both the REPL tool
and a WCF service. When the user types the command “publish,” you will initialize a new ServiceHost
that exposes the method identified in Listing 14-6 such that clients that connect to this class will be able to
call the method through the IProfileGenerator interface. This is the power of WCF. Listing 14-7 modifies
Program to support the “publish” command. Changes are shown in bold.

Listing 14-7. ProfileGenerator Changes

static void Main(string[] args)
{
 ServiceHost host = null;
 while (true)
 {

Write(">");
var input = ReadLine().Trim().ToLower();
if (string.IsNullOrWhiteSpace(input))

break;
if (input == "load")
{

Write("File name>");
input = ReadLine().Trim().ToLower();
string bio_path = $"../../{input}.xml";

State = AppState.FromFileAsync(bio_path);
WriteLine($"Loaded {input}.xml");

}
else if (input == "end")

break;

Chapter 14 ■ Leveraging existing Code

559

else if (input == "clear")
{

State.Delete();
}
else if (input == "generate")
{

Write("Number of records>");
input = ReadLine().Trim().ToLower();
int count;
if (int.TryParse(input, out count))
{

GenerateProfile(count);
WriteLine("Generated");

}
else
{

WriteLine($"I dont understand '{input}'.");
WriteLine("Enter 'end' or a number.\n");

}
}
else if (input == "publish")
{

if (host == null)
{

host = new ServiceHost(typeof(Program));
NetTcpBinding tcp_binding = new NetTcpBinding(SecurityMode.None);
var address = "net.tcp://localhost:9999/profile-generator";
host.AddServiceEndpoint(typeof(IProfileGenerator), tcp_binding, address);
host.Open();

}
}
else
{

WriteLine($"I dont understand '{input}'.");
}

 }
}

That’s it for the backed code. You are now able to listen to calls into your ProfileGenerator console
application through WCF. Let’s next turn our attention to the user interface for BigMountainX. Add a new
page to the project called ManageMailList and implement the layout, as shown in Listing 14-8.

Listing 14-8. MainMailingList XAML Layout

<Page.BottomAppBar>
 <CommandBar>

<AppBarButton Icon="ImportAll"
Label="Import All"
Click="OnImportAllClicked" />

 </CommandBar>
</Page.BottomAppBar>

Chapter 14 ■ Leveraging existing Code

560

<Grid Background="#FF6A6A6A">
 <ListView x:Name="gridview_events"

SelectionMode="Single"
ItemsSource="{x:Bind MailingList, Mode=OneWay}"
>

 </ListView>
</Grid>

This view does nothing other than show a list of email address (strings from the mail list) returned from
your call to ProfileGenerator through the localhost integration. Implement the code-behind class as shown
in Listing 14-9.

Listing 14-9. ManageMailList Code-Behind

public sealed partial class ManageMailingList : Page, INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;
 List<string> MailingList { get; set; }
 public ManageMailingList()
 {

this.InitializeComponent();
 }

 private void OnImportAllClicked(object sender, RoutedEventArgs e)
 {

NetTcpBinding tcp_binding_client = new NetTcpBinding(SecurityMode.None);
 EndpointAddress address = new EndpointAddress("net.tcp://localhost:9999/
profile-generator");
 ChannelFactory<IProfileGenerator> channel = new ChannelFactory
<IProfileGenerator>(tcp_binding_client, address);
var profile_gnerator = channel.CreateChannel();
var list = profile_gnerator.GetMailingList("live");
MailingList = list;
PropertyChanged?.Invoke(this, new PropertyChangedEventArgs("MailingList"));

 }
}

In Listing 14-9, OnImportAllClicked creates a new WCF connection to the service running in
ProfileGenerator. This is done via the Uri specified in the initialization of the EndpointAddress class. Once
the class is created, you pass it into the call to create a new ChannelFactory (along with a NetTcpBinding
object). Note that, at the time of this writing, security has not yet been implemented for this connection.
Once you have the channel factory instantiated, you use it to create a channel to the remote object (Program)
and then call GetMailingList, passing in the value “live”. (For this to work, you must have created a new
AppState file with the name “live”.) When you get the results back, you store them in the local property your
UI ListView is bound to (through compiled binding) and then invoke the PropertyChanged event, so that
the binding framework is aware that MailingList has modified. The final step in the process is to modify
ApplicaitonHostPage so that you can navigate to this page. Add the XAML from Listing 14-10 to below the
“Manage Contacts” button.

Chapter 14 ■ Leveraging existing Code

561

Listing 14-10. ApplicationHostPage Modifications

<Button HorizontalAlignment="Stretch"
HorizontalContentAlignment="Left"
Margin="0,5,0,0"
Click="OnManageMailingListClicked"
Background="Transparent">

 <StackPanel Orientation="Horizontal">
<SymbolIcon Symbol="List"

Margin="0,0,20,0" />
<TextBlock Text="Manage Mailing List" />

 </StackPanel>
</Button>

Next implement OnManageMailingListClicked, as shown in Listing 14-11.

Listing 14-11. OnManageMailingListClicked Method

private void OnManageMailingListClicked(object sender, RoutedEventArgs e)
{
 root_frame.Navigate(typeof(EmployeeSignIn), typeof(ManageMailingList));
}

To test the connection, first create a new AppState file called “live” that you load with some records.
Next, use the “publish” command to publish the WCF endpoint associated with ProfileGenerator. Finally, run
BigMountainX. Figure 14-12 shows how ProfileGenerator looks when servicing requests from BigMountainX.

Figure 14-12. The ProfileGenerator WCF interface in action

Chapter 14 ■ Leveraging existing Code

562

Figure 14-13 shows how the BigMountainX ManageMailList page looks when the call to
ProfileGenerator succeeds.

Summary
To put as simply and bluntly as possible, if you are building client-side applications that utilize Microsoft-based
technology, be sure to separate the parts of your application that are technology agnostic from those parts
that are not. This way, when Microsoft inevitable change strides yet again, you can minimize the amount
of work you have to do to adopt the latest whim. Too many developers have suffered frustrating losses for
this to be left to chance! To be successful and agile with the platform, your ability to leverage existing code
will be critical. Using the approaches outlined in this chapter you will be on your way to building stable,
transportable products. Key points covered in this chapter include the following:

• Using localhost integration to leverage application functionality from legacy apps
through WCF.

• Using shared projects to abstract away program functionality that can easily be
transportable. With shared projects, code files are consolidated into a project
structure that can then be linked as a whole to other projects.

• Portable Class Libraries offer an alternate, albeit volatile, approach to sharing code
between your projects.

Figure 14-13. BigMountainX ManageMailingList interface

Chapter 14 ■ Leveraging existing Code

563

• Portable Class Libraries must be shared across the targets you select.

• Portable Class Libraries must behave similarly across all selected targets.

• Portable Class Libraries must not include candidates for deprecation.

• Portable Class Libraries must make sense in a portable environment, especially
when supporting members are not portable. As an example, a Portable Class Library
may contain UI-related types only when you target two platforms that support
compatible UI related functionality: Windows 10, Windows Phone Silverlight 8.1, and
Windows Phone 8.1, for instance.

565

Chapter 15

Distributing Universal Apps

In Chapter 13, we dove into the monetization of your apps. We discussed, among other things, approaches to
selling content through your app, and even selling your apps directly to the user. One part of the discussion
was on enabling the app commerce functionality through the use of the CurrentAppSimulator class. We
used this class because the primary class for app-based commerce, CurrentApp, connects directly to the
Windows Store.

Using CurrentAppSimulator requires setting up an XML file to represent the state of the app in the store.
You can use it to test out the behavior of your app based on the user’s purchasing choices. In the real world,
however, this XML file is not used. In real world scenarios, you must use the Windows Store app submission
interface to configure and manage the purchasing requirements for your app, among other factors.

Pay close attention to the nuances of deploying apps into the Windows Store.
As a developer, getting your app on the Windows Store may be the most tedious part of the journey. But

rest assured that adherence to the guidelines set forth in previous chapters will make getting your app accepted
for publication as seamless as possible. Some administrative duties await that mustn’t be ignored in order for
you to get your app published in the Windows Store. This chapter discusses setting up a developer account,
app submission, app tracking, and app management. You will learn about post-publication features including
tools that provide a view of your sales data, downloads, activations, and telemetry. Hang on tight: you’re almost
there. You are now completing the final step toward sharing your Windows 10 app with the world!

Registering with the Dev Center
Windows 10 app submission starts and ends with the Windows Store Developer Portal (Dev Center) found
at http://dev.windows.com. You will need a Microsoft account registered to this site in order to sign in.
Figure 15-1 shows the landing page once you have signed in.

http://dx.doi.org/10.1007/978-1-4842-1449-7_13
http://dev.windows.com/

Chapter 15 ■ Distributing universal apps

566

Clicking the Dashboard link at the top right of the page (just below your profile decal) will take you to
the page shown in Figure 15-2 (cropped to reduce size).

The dashboard is capable of providing detailed telemetry about your app’s adoption metrics, which are
too numerous to outline here. If you can imagine what a top level product manager might be interested in
knowing to help craft adaption, the tools you might come up with will likely be on par with what is available
through this dashboard. This information is tracked individually and across all your apps. The dashboard
view in Figure 15-3 shows how the apps shown have fared in the past 30 days.

Figure 15-1. Windows Dev Center landing page

Figure 15-2. Developer dashboard

Chapter 15 ■ Distributing universal apps

567

If you haven’t already done so, go through the process of creating a new developer account by signing
into the Dev Center with a valid Microsoft account. Once signed in, click the dashboard link as described
above to start the process of registering to be a Windows 10 app developer. The process is relatively
straightforward but may require you to pay a registration fee to get started. Additionally, if you are a business,
you will have to go through a more detailed registration process. This chapter will only cover the “Individual”
use case. To find out more about the “Business” use case, look to the Dev Center.

Figure 15-4 shows the top half of the registration page you are presented with once you sign in with your
Microsoft account. This will, of course, only be presented to you if you have not previously registered as a
Microsoft developer.

Figure 15-3. Populated developer dashboard

Figure 15-4. Developer registration process

Chapter 15 ■ Distributing universal apps

568

Go through the remainder of the registration process and you will eventually be registered and get to
the default dashboard shown in Figure 15-3. At this point, you are one step closer to publishing your apps.

Creating an App Package
Once you have completed the process of registering as a developer, the next thing you need to do is package
your app up so that it can be published to the Windows Store. Interestingly enough, this is itself a multi-step
process which starts with registering your app name with the Store and ends with uploading the packaged
file that contains all your app content to the Windows Store servers. The easiest way to create an app package
for submission is through the Visual Studio interface. From here you can register app names, generate
packages, and publish to the Store.

To create an app package, right-click the BigMountainX project and select Store ➤ Create App Package
(Figure 15-5).

On the next screen, you will be prompted to select whether you want to build the app package for the
Windows Store or not. Apps that are not built for the Windows Store publish the app package to a local
directory. Apps that are meant for the Windows Store obviously are published there. Figure 15-6 shows the
screen in question.

Figure 15-5. Visual Studio’s Submit App drop-down menu and submenu selections

Chapter 15 ■ Distributing universal apps

569

Side Loading
Selecting “No” from this screen will put you on the path to creating a side-load capable app package ready to
be installed on any developer machine or machine that supports this side loading. Figure 15-7 illustrates.

Figure 15-6. Create package dialog

Figure 15-7. Package selection dialog

Chapter 15 ■ Distributing universal apps

570

Once the packaging is complete, the dialog displays a link to the location of the published app. This can
be modified if you change the Output location value from Figure 15-7. Figure 15-8 shows this screen.

The contents of the app package’s folder are shown in Figure 15-9. Note the presence of a PowerShell script.

Figure 15-8. Package creation complete dialog

Figure 15-9. Local package folder structure

Chapter 15 ■ Distributing universal apps

571

Unlike Win32 applications, you can’t just install UWP apps on any old machine. UWP apps require
the device that the app is being side-loaded onto to specifically declare that it supports such app types. To
declare a device as supporting developer or side-loaded apps, go to Settings ➤ Update & Security ➤ For
Developers, and then select the developer feature you want enabled. Figure 15-10 illustrates.

To install the app, navigate to the location of the file (using PowerShell) and then run the following
command: .\add-appdevpackage.ps1.

You might have to initially set the execution policy for PowerShell using the command
Set-ExecutionPolicy RemoteSigned.

Windows Store Distribution
Select the option to build the app package for the Windows Store and you will be prompted to sign into the
Store with your Windows Developer account first. Once signed in, you will be directed to a screen where you
can select the app name you want your app package to utilize. Figure 15-11 illustrates.

Figure 15-10. Setting up Windows 10 Developer mode

Chapter 15 ■ Distributing universal apps

572

This screen allows for two things. First, you can associate the project you are publishing to an already
registered Windows Store app name. Second, you can register a new app name.

As you undoubtedly have no names pre-registered (since this is your first time signing in), you will have
to take the initial step of registering a name. App names are unique in the Windows Store; once registered,
you have a year to publish an app to that name before it is thrown back into the pool. Figure 15-12 shows a
new app name; once registered, the page refreshes and the app now shows in the App Name list.

Figure 15-12. Selecting an app name from the Windows Store

Figure 15-11. Visual Studio’s Select an App Name screen

Chapter 15 ■ Distributing universal apps

573

As stated earlier, the Windows Store app names listed in Figure 15-12 are names you must have
previously registered through the Windows Store developer center or through the “Reserve a new app name”
command in the dialog box. Selecting one of these names associates the project you are working on with that
particular app. In the case of Figure 15-12, it will make Big Mountain the app name for your Big Mountain
X project. Doing this also pulls down all the identity information from the Windows Store and overrides the
temporary settings in your app with them. As an example of this, open the app manifest for BigMountainX
and navigate to the Packaging tab. You should now see new values all around, values that map to the name
you have associated with the project. Figure 15-13 illustrates.

Click Next, and you are shown a package settings screen where you specify the package output location,
the version number, and the build configuration (see Figure 15-14). This is the same sort of screen you saw
in Figure 15-13 but in this case a few extra items (relevant only to the Windows Store distribution model) are
included.

Figure 15-13. App manifest after Widows Store association

Chapter 15 ■ Distributing universal apps

574

App packages use a .zip-compliant appxupload packaging format for Windows 10 app publishing. An
APPX package is what is downloaded to your machine when you install an app from the Windows Store;
it is also the format you use for submission to the Windows Store. APPX packages can be deployed as x86
(for 32-bit operating systems), x64 (for 64-bit Windows 10 versions), ARM (for ARM-based phones, tablets,
and PCs like the Lumia 950, Microsoft Surface, and Asus VivoTab). For Windows 10 deployment, you must
explicitly specify all supported processor architectures. At the time of this writing, you can no longer specify
the Neutral processor architecture.

Once you are done configuring how you want your app package to be created, click the Create button
to build the package. Visual Studio compiles your project into the appropriate executable formats and
packages them into an appxupload (this package will typically include all necessary certificates and package
manifest files). At this point, the wizard is complete. The final step is to present you with the location where
you can find the packaged file. Figure 15-15 shows this final screen (showing the path to the Big Mountain X
package on our machine). You may run into a bizarre error during publishing, as we did.

Figure 15-14. Package settings screen

Figure 15-15. Error screen

Chapter 15 ■ Distributing universal apps

575

We won’t waste time explaining the convoluted reasons behind why it happens or what it means. It is a
bug in Visual Studio 2015; that’s really all you need to know. To work around this issue, follow these steps.

1. Right-click BigMountainX and select Unload project.

2. Right-click BigMoutainX again and select Edit Project File from the context
menu.

3. Right underneath the first PropertyGroup node in the project XML, add the
following XML:

<ItemGroup>
 <AppxSystemBinary Include="<assembly that shows in error>" />
</ItemGroup>

So in this case the XML would be

<ItemGroup>
 <AppxSystemBinary Include="bigmountainx.dll" />
</ItemGroup>

4. Right-click BigMountainX and select Reload project.

5. Go through the steps to regenerate the app package. See Figure 15-16.

Figure 15-16. The wizard’s final screen

Chapter 15 ■ Distributing universal apps

576

Verifying Your App Package
In order for you to submit your app to the Windows Store, it must meet certain criteria identified by
Microsoft. This ensures that apps in the Windows Store are safe for end users to install. It also means that
there is a good chance that verified apps will work seamlessly on all platforms they target without exception.
Microsoft expects your apps to utilize a standardized API surface area that is approved for use; they would
also like for apps to follow design, style, and content guidelines that match the theme of the Windows Store,
although this requirement has been loosened quite a bit since Windows 10 launched. Validating the content
and style components requires human input; but as part of the app-submission process, the Windows Store
automatically inspects the app package to determine which APIs and programming patterns you used. If the
package doesn’t meet the necessary requirements, it isn’t accepted, and you will be unable to continue the
submission process.

Microsoft provides a useful certification tool called the Windows App Certification Kit (WACK) that runs
your app locally and performs a series of tests designed to find common and easily detected app certification
failures. To launch it, simply use the Cortana and enter its name. You should also note that a button that
activates it is available on the “Create an app package” completion screen. Figure 15-17 shows the WACK
interface.

Figure 15-17. WACK interface

The WACK tool aids you in the process of identifying and resolving any issues in your app that would
otherwise prevent its submission to the Windows Store.

The WACK test runs either in the background or in a small application window, depending on how you
launched the tool. You will see your app appear and disappear several times over the few minutes WACK
takes to run the complete set of tests. Whatever you do, don’t attempt to interact with your app during the
test, or your computer may overheat and explode.

Chapter 15 ■ Distributing universal apps

577

Well, not quite, but your app will close, and you will not be allowed to interact with it. Once the WACK
tool completes its tests, a results screen appears. If the test fails, the WACK tool report relays the reasons for
the failure. If the WACK test passes, you can either head right to the Windows Store to continue your app
submission, or look at the detailed report linked from the results window.

Built-in tests identify support-inclusion for support in previous versions of Windows (Windows 7,
Windows 8, Windows 8.1) as well as identify and confirm compatibility with future versions of the Windows
operating systems (Platform Version Launch Test). This new test flow will detect the app type and apply its
corresponding test workflow as needed.

Enhancements since Windows 8 include an added check to rule out any wildcards in the domain
information for top level domains in the App manifest test. App packages will fail if the wildcard is present.
Also, the Application count is now its own test and has been removed from the App manifest test. Also
removed from the API test is the App Notification Service Usage, which is now standalone as well.

Table 15-1 lists the tests performed by the WACK tool.

Submitting Your App
At the end of the previous section, you should have a verified app that you are sure can be submitted to
the Windows Store without issue. You are sure of this because before attempting to submit it, you used the
WACK tool to verify that the app meets the minimum criteria necessary to be allowed in the Windows Store.

Table 15-1. WACK App Tests

Test Description

Adherence to system restart
manager messages

Ensures that the application exits as quickly as possible when notified of
a system shutdown

Clean reversible install Installs and uninstalls the app, checking for residual files and registry
entries

Support x64 Windows Ensures the .exe is built for the platform architecture onto which it will be
installed

OS Version check Determines how the app checks for the version of Windows on which it’s
running

Compatibility and resiliency Verifies that the app doesn’t use any Windows compatibility fixes

Crashes and hangs Checks the app for crashes or hang-ups by performing startup, run, and
shutdown processes

User account control (UAC) Verifies unnecessarily elevated permissions aren’t needed to run the app

Digital signed file Verifies a valid digital signature

Safe mode Verifies the driver or service is configured to start in safe mode

Installation and writing to the
correct folder

Ensures writing of program and data files to the correct folders

Multiuser session Tests how the app behaves when run in multiple sessions at the
same time

Windows security best practices Verifies that the app doesn’t alter the default Windows security setting

Windows security features Confirms there’s no tampering with default Windows security protections

High DPI Validates Win32 apps to be DPI aware

Chapter 15 ■ Distributing universal apps

578

This section covers using the developer dashboard to upload this verified app package to the Windows
Store and completing the process by submitting your app for certification by the Store. Again, if you have
existing apps on the Windows 8 platform or if you had apps on both Windows and Windows Phone, here
you will experience the new Unified Developer Dashboard in which all your accounts are merged. Other
functionality previously handled in the other developer dashboards associated with Windows Phone, such
as managing ads and promoting your apps, are now located in the Dev Center, your single, unified place in
which to manage your apps.

You can access the Windows Store Dev Center by navigating to http://dev.windows.com. Once there,
you sign in with your Windows Store account (typically a Hotmail/Live/Outlook.com e-mail address).
Figure 15-18 shows the Dev Center landing page.

Nothing you have done so far requires you to sign up for anything, but you need a developer account to
reserve app names and submit applications to the Windows Store.

Once you are signed up and signed in, clicking the Dashboard link (shown in Figure 15-17) takes
you into your Windows Store dashboard for Windows 10 apps. Figure 15-19 shows the Windows Store
dashboard.

Figure 15-18. Dev Center landing page

http://dev.windows.com/

Chapter 15 ■ Distributing universal apps

579

The primary means of submitting an app to the Windows Store is through the “Create a new app”
link on the Dev Center dashboard (if you have already started a submission through Visual Studio or the
dashboard, you can also continue it from here). Clicking this link puts you in a workflow that takes you
all the way from giving your application a name to providing a detailed description for it. As part of the
submission process, you must also provide selling details for your application, tying in everything you
learned in Chapter 13. This means not only providing pricing for the app as a whole but also providing
pricing for features that exist within the app (in-app offers are included in the IAPs section of the app
configuration area, and Figure 15-20 illustrates).

Figure 15-20. App overview screen

Figure 15-19. Windows Store dashboard

http://dx.doi.org/10.1007/978-1-4842-1449-7_13

Chapter 15 ■ Distributing universal apps

580

If you have an existing app in a previous OS and would like to update it for Windows 10, you may update
your submission. You can accomplish this by uploading a new Windows 10 package, which Windows Store
will automatically add to your apps. The Store then automatically selects the most compatible version for
each customer’s device from your available app packages.

Types of apps are categorized by Microsoft, simplifying the sometimes challenging task of categorizing your
creation. Categories and subcategories ultimately help customers find your app and understand your app. For
some categories, no subcategories exist. In the case of Games, a subcategory is mandatory. Both will appear in
separate drop-downs for your selection in the submission process. Table 15-2 contains a list for your reference.

Table 15-2. App Categories

Category Subcategory

Books and reference E-reader

Fiction

Nonfiction

Reference

Business Accounting and finance

Collaboration

CRM

Data and analytics

File management

Inventory and logistics

Legal and HR

Project management

Remote desktop

Sales and marketing

Time and expenses

Developer tools Database

Design tools

Development kits

Networking

Reference and training

Servers

Utilities

Web hosting

Education Books and reference

Early learning

Instructional tools

Language

Study aids

(continued)

Chapter 15 ■ Distributing universal apps

581

Category Subcategory

Entertainment (None)

Food and dining (None)

Games Action and adventure

Card and board

Casino

Educational

Family and kids

Fighting

Music

Platformer

Puzzle and trivia

Racing and flying

Role playing

Shooter

Simulation

Sports

Strategy

Word

Government and politics (None)

Health and fitness (None)

Kids and family Books and reference

Entertainment

Hobbies and toys

Sports and activities

Travel

Lifestyle Automotive

DIY

Home and garden

Relationships

Special interest

Style and fashion

Medical (None)

Multimedia design Illustration and graphic design

Music production

Photo and video production

Table 15-2. (continued)

(continued)

Chapter 15 ■ Distributing universal apps

582

Category Subcategory

Music (None)

Navigation and maps (None)

News and weather News

Weather

Personal finance Banking and investments

Budgeting and taxes

Personalization Ringtones and sounds

Themes

Wallpaper and lock screens

Photo and video (None)

Productivity (None)

Security PC protection

Personal security

Shopping (None)

Social (None)

Sports (None)

Travel City guides

Hotels

Utilities and tools Backup and manage

File managers

Table 15-2. (continued)

The final step, providing your app description, may seem trivial, but it will most likely be the most
engaging part of the processes (particularly if you don’t have a graphic designer and well-defined
iconography in place). In this step you must not only provide a textual description for your application but
also include various screenshots of your running app, promotional images of varying resolutions, a privacy
policy URL, e-mail address, and many more details. Figure 15-21 shows the Submit an App screen.

Chapter 15 ■ Distributing universal apps

583

With the new Dev Center, the submission workflow is now sort of a check-list. You can step into any one
of the areas that needs completing without having to complete a previous step. This allows developers to
complete the submission process in a manner that they are most comfortable with. Some might want to take
the time to get the pricing information done first; others might upload the app package and focus more on the
description first. It all depends. Figure 15-22 shows a larger view of a submission process that is in the works.

Figure 15-21. App submission screen

Chapter 15 ■ Distributing universal apps

584

Once all the items in the list are checked off, the “Submit to the Store” button will become enabled,
allowing you to do just that. If your app has been verified using the WACK tool, then this should be a
formality; otherwise it may turn out to be an extremely frustrating process, given the added upload time
due to running the tool. (Note that app certification doesn’t happen during upload but rather is run before
anything else as part of the overall submission). In the following sections, we go through some of the key
aspects of the app submission checklist.

Naming Your App
The pre-condition to getting to the submission checklist screen is naming your app. This is the entry point
into the submission process as all other steps are presented in terms of this first one. As with web domains,
app names are first-come, first-served. Luckily, in the world of apps the real estate is prime for buying.

When you click the “Create a new app” button, you are taken to a simple screen with a single input box
in which to enter the name you wish your app to have (see Figure 15-23). Enter the name of your choosing,
and click the “Reserve app name” button (you can use the Check availability link to the right of the TextBox
to see if the name has been taken). If the name isn’t available, you will be presented with an error message.

Figure 15-22. App submission checklist

Chapter 15 ■ Distributing universal apps

585

If the name is available, a new app is created, and you are launched into the app overview screen. From
here you can manage multiple aspects of your app as well as start a new app submission. Figure 15-24 illustrates.

In Figure 15-25, you can see the updated app list after you reserve two more app names.

Figure 15-25. Developer app list

Figure 15-23. Reserving an app name

Figure 15-24. App overview for newly created app

Chapter 15 ■ Distributing universal apps

586

Once a name is reserved, you have a one-year deadline to submit an app package to it. After that, the
name goes back into the pool. Click the “Start your submission” button to begin the submission process
(and enter into the app submission checklist discussed earlier). Future trips into the App overview screen
will now show a list of submissions rather than the “Start your submission” button. This allows you to spread
your app submission task out over time. Figure 15-26 illustrates.

Selling Details
When you select “Pricing and availability’ from the app submission checklist, you will be directed to a screen
dedicated to managing the selling details associated with your app. Figure 15-27 shows the top part of this
page, the area where you specify the cost of your app. You can also provide free-trial details and information
about the markets where you want your app to be sold.

Figure 15-26. App overview for app with submissions

Figure 15-27. Upper portion of the Pricing and availability screen

Chapter 15 ■ Distributing universal apps

587

Figure 15-28 shows the bottom part of the screen. Here you indicate when your app is to be released,
the device families your app targets, and the degree to which your app is discoverable.

In-app purchases (IAPs) have been moved to their own dedicated screen. If you would like additional
services tied to your app, this is where to do it (products are part of the in-app purchase functionality
discussed in Chapter 13). They let you offer pieces of functionality that the user can purchase while using
your app. Figure 15-29 shows more of the App properties screen from the Windows Store developer
dashboard. For features such as push notification and map integration, look under the Services section of
the main navigation area to the left of the screen.

Figure 15-28. Lower part of the Selling Details screen

http://dx.doi.org/10.1007/978-1-4842-1449-7_13

Chapter 15 ■ Distributing universal apps

588

Advanced Properties
In the App Properties screen, you can specify the category and age range for your app. From this screen you
can also specify any advanced features your app provides. These include information on whether the app
requires the following hardware:

• Touch screen

• Keyboard

• NFC

• Mouse

• Camera

• Bluetooth

• Telephony

Figure 15-29 illustrates.

Age Rating and Rating Certificates
Next, you need to select an age rating for your app from among the choices listed in Table 15-3. These
ratings are required for games. However, even if your app isn’t a game, if contains adult content, it is best to
stay on the cautious or conservative side and provide a rating. Doing so will help to ensure that you don’t
fail certification simply because of its absence. If you aren’t sure how to rate the content you provide, we
recommend using the highest age rating that makes sense for the provided content. (Again, it is beneficial to
be conservative when it comes to this.)

Figure 15-29. Advanced Features screen

Chapter 15 ■ Distributing universal apps

589

Table 15-3. Windows Store App Ratings

Rating Description

3+ Suitable for
Young Children

These applications are considered appropriate for young children. There may
be minimal comic violence in nonrealistic, cartoon form. Characters should not
resemble or be associated with real-life characters. There should be no content
that could be frightening, and there should be no nudity or references to sexual
or criminal activity. Apps with this age rating also can’t enable features that could
access content or functionality unsuitable for young children. This includes, but
is not limited to, access to online services, collection of personal information, or
activating hardware such as microphones or webcams.

7+ Suitable for
Ages 7 and Older

Apps with this age rating have the same criteria as the 3+ applications, except these
apps can include content that might frighten a younger audience and can contain
partial nudity, as long as the nudity doesn’t refer to sexual activity.

12+ Suitable for
Ages 12 and Older

Choose this rating if you aren’t sure which age rating to select for your app. Apps
with this age rating can contain increased nudity of a nonsexual nature, slightly
graphic violence toward nonrealistic characters, or non-graphic violence toward
realistic human or animal characters. This age rating might also include profanity,
but not of a sexual nature. Also, apps with this age rating may include access to
online services and enable features such as microphones and webcams.

16+ Suitable for
Ages 16 and Older

Apps with this age rating can depict realistic violence with minimal blood, and they
can depict sexual activity. They can also contain drug or tobacco use and criminal
activities, and more profanity than would be allowed in a 12+ app, within the limits
laid out in the certification requirements.

18+ Suitable for
Adults Only

Apps with this age rating may contain intense, gross, or specific violence, and
blood or gore that is only appropriate for an adult audience, in addition to content
that is appropriate for a 16+ app.

Also note that there are varying age requirements for things like gaming, online access, and online
interaction that may not be immediately evident to you (and may vary by country). For instance, even
though social networking apps are inherently benign, they require higher ratings in general because there
is no way to fully control the content that users ultimately view. If you are building such an application, it is
important to present warnings that explicitly prohibit children. This is especially important in apps where
there is a potential for interactions between adults and minors. Having a higher rating allows parents and
guardians to restrict access to such apps.

Finally, if your plan is to publish this app internationally, you might consider specifying the app’s
age rating for other age rating systems. As stated earlier, other countries have varying age requirements.
Figure 15-30 shows part of the App properties screen.

Chapter 15 ■ Distributing universal apps

590

Provided your app is a game or, based on discretion, requires a rating, the next step is to submit
and save your rating. The submitted app’s content is evaluated against the rating you give it during the
certification process. For Windows 10 apps classified as games, a rating board is presented in which there
is a certificate for every geographic market in which the app is listed. Based on these geographic markets—
specifically, Brazil, Korea, South Africa, and Taiwan—the listed certificates must be obtained should you
plan to make the gaming app available worldwide. Naturally, you have the option to forego sales in certain
markets, should obtaining the certificates prove problematic.

Uploading Your App
The Packages checklist item is the step where app packages are actually uploaded to the Windows Store.
The package to be dropped here is the appxupload package created as part of the Visual Studio publishing
process. You can find the file using a File dialog, or you can drag and drop the appxupload file for your
current version into the drop zone on the Packages page (see Figure 15-31). To ensure that all the needed
files and resources are included in the package, the system performs a validation, which completes with an
error or a success message. Until the Packages task is completed, the Description and Notes for certification
task will not be available.

Figure 15-30. App properties screen

Chapter 15 ■ Distributing universal apps

591

Description
With the app package uploaded, it is now time for the fun part. Take a little pride in your hard work and enter
a description of your app on the Description page. You also need to enter the app’s features, keywords, and
screenshots, accompanied by brief descriptions. This is the same information that will be visible to potential
users and approvers, so the content should be accurate, concise, and compelling. Figure 15-32 shows the top
part of the App description page, where you provide the description and application features.

Figure 15-32. Top part of the App description page

Figure 15-31. Packages screen

Chapter 15 ■ Distributing universal apps

592

In addition to the textual description, all apps must provide at least one, and as many as eight,
screenshots. Figure 15-33 shows this section of the App description page.

Figure 15-33. The screenshots section of the App description page

The next part of the App description page allows you to provide search keywords and extra information
like the app’s license terms, copyright information, and required or recommended hardware. If at some
point you go back and edit your app submission (for instance, if you have a new version), you’re required
to include a separate description of the update. The hardware field is where you specify whether your app
requires the existence of sensors or devices in order to operate. Figure 15-34 shows this section of the App
description page.

Chapter 15 ■ Distributing universal apps

593

Finally, you are allowed to upload promotional images for your app. This includes any images to be
used for the purposes of marketing in the Windows Store. You can enter the website associated with your
app or company, if you have one. You can also provide all those final yet important details, including a
support contact address and URL and the link to your online privacy statement. See Figure 15-35.

Figure 15-34. Extra description information on the App description page

Chapter 15 ■ Distributing universal apps

594

Figure 15-35. The Promotional artwork section of the App description page

Notes to Testers
The next and final screen, shown in Figure 15-36, lets you to enter any other information you choose to make
available to the testers. Note that this is the place to enter login test credentials.

Chapter 15 ■ Distributing universal apps

595

Getting Your App Certified
Now comes the easiest—or hardest, depending on how you look at it—part: monitoring your dashboard as
you wait for certification, and subsequent publication, of your app. Following submission, you’ll receive a
confirmation e-mail from the Windows Store team so you know it wasn’t all just a dream. This e-mail also
provides the link to your dashboard for tracking the app’s progression through the approval process.

This process requires six steps and an estimated wait time of six days. If at any point a test results in a
fail, you’re notified through your dashboard and via e-mail, and you are allowed to resubmit when you’ve
addressed the error.

1. The submitted app is run through a series of automated tests.

2. The app proceeds to security testing. (Everyone appreciates downloading secure
apps to their Windows 10 devices, after all.)

3. The app is put through a technical compliance test, which, if you had no
problems running the WACK tool, should be smooth sailing, because Microsoft
runs the WACK tool on its own servers. This completes the automated testing of
the app.

4. Your humble creation is sent to an actual tester (what a fun job!) for compatibility
testing. Your dashboard provides an estimate in terms of days, but because this
is the most subjective stage of the approvals, there can be some leeway in this
estimation. Once it passes this step, your app is ready to be published.

Figure 15-36. Notes to Testers box

Chapter 15 ■ Distributing universal apps

596

5. The app receives digital signage and proceeds to the Windows Store servers and
on to release in the Windows Store!

6. But, ugh, there is still a potential for post-publication failure during what’s called
the Manual Content Compliance test. In this environment, your app is tested
for bugs, security, and appropriateness. You’ll receive an e-mail if the app fails
this final step, directing you to the report detailing the fail reasons and actions to
resolve them in the Dev Center.

Updating Your App
Hopefully, your app will do so well that, as technology advances, so will the need for updated app features.
Rest assured, dear reader, you will receive feedback from your faithful users—perhaps more than you
bargained for! This user feedback can provide valuable insight into usability issues, what works and doesn’t
work for your users, and what may be lacking in the current version of your app.

When development is complete on your updated version, you will find that the Store update process is
a pared-down version of the initial submission process. The Windows Store requires submission of a new
app package, and app updates go through the same six-step verification process. You can run the WACK
tool again for your own local test. Fortunately, submitting and gaining approval for an updated app version
should prove simpler as far as adhering to style guidelines, a reduced risk of bugs, and other potential issues.

Here’s a quick checklist of things to do and remember:

• Click the Update button to initiate a new update on the app page.

• Before submitting a new version 2.0, remember to create the new version number in
the Create App Package Wizard.

• Grab your updated app package, and head back to the dashboard.

• Before submitting for certification, I recommend providing a brief description of the
changes or added features. The update page looks similar to the submission page for
a new app, except that most of the information is already provided.

• If you need to update any of the information about your app, from its features or
licensing terms to screenshots or in-app purchase offers, you can revisit the relevant
sections and update the information accordingly. Otherwise, you can head right to
the Upload Package step and upload the latest version of your app. Once the upload
is complete, go to the Details step to complete the Description of Update field, which
is required.

Chapter 15 ■ Distributing universal apps

597

Summary
Congratulations! You made it not only through the book, but also through the final fulfilling step of getting
your Windows 10 app into the Windows Store. From reading this chapter, you know that the steps in the
process are straightforward and simple, but this may be a tense experience that may result in a lot of
debugging or error fixes. Once you’ve made it to this step, don’t give up or get frustrated! If anything, take a
break from your code and revisit it with fresh eyes. Now, here’s a brief review of the key points covered in this
chapter:

• After reserving a name for your app, you have a year to get your app published under
this name. After that, the name is redistributed into the pool.

• You submit your app and the tools you use in the Windows Store submission
process, which includes the Create App Package Wizard, the Dev Center, and your
developer dashboard.

• There’s a certification tool called the Windows App Certification Kit (WACK) tool,
which you can use to test your app.

• You now know the certification process, including automated testing, human testing,
and Manual Content Compliance testing.

• Consider creating updates for your app by releasing new versions. This is an
important aspect of keeping your app relevant, keeping your users satisfied, and
maintaining an app that is at the forefront of technological advancement.

599

��������� A
Adaptive user experience

code adaptation
ApiInformation class, 204
requirements, 203

creating POS page, 179
device family, 180
input optimization, 180
triggered states

adding toggle button, 188
collapsed pane toggle button, 190
control’s template, 187
desktop, 185
mobile emulators, 185, 192–193
modifying AppBarButton Template, 187
navigation pane content, 189
pane activation, 190
repositioning Dashboard labels, 188
screen size, 184
SizeChanged event, 186
with SplitView, 191–192
SplitView Pane properties, 188
SplitView Pane toggling, 189
with StackPanel, 183–184

utilization, 180
visual states

activating states, 195
AdaptiveTrigger, 195
implementation, 194

XAML views
Control Corral desktop app, 202
control_name, 199
Create Reservation page, 197
device family-specific views, 197
MainPage Mobile XAML view, 199–202
Pivot or FlipView, 196
project structure, 197
responsive HTML pages, 202
using scrollbar, 197
SizeChanged events, 196

visual state system, 196
Windows mobile emulator, 198

ApplicationHostPage
Big Mountain X UI, 432
code mdifications, 427
EmployeeSignIn Code, 431
EmployeeSignIn Layout, 430
event handlers, 433
layout modifications, 425
Patron Counter Code, 429
PatronCounter Layout, 428
XAML Layout, 432–433

Application services
adding Publisher Cache Folder Support, 460
BMXAppServices Class, 455
configuration, 457
customer creation testing, 459
data sending, 458
error prompt, 455
MainPage, 460–461
MainPage modifications, 453
OnAppServiceShareFile, 453
OnLoadCachedCustomer, 461
OnWriteToPublicherCache, 460

App monetization
app selling

ApplicationHostPage
modifications, 527–528

app simulator, 531
code implementation, 526
confirmation screen, 532
license file, 531
purchase requests, 532–533
TicketingPage Code, 528
TicketingPage XAML, 527
with trial mode, 523–524, 530

in-app purchasing
adding, 534–535
code implementation, 537
LicenseInformation, 541
ListingInformation, 540

Index

■ index

600

MarketData, 541
purchase confirmation, 540
PurchaseFeatureAsync Method, 537
TicketingPage code, 535–536
user attempts, 539
user interface elements, 536

Windows store landing page, 522
App-to-app communication

ApplicationHostPage (see ApplicationHostPage)
application services (see Application services)
BMXCustomerInfo Class, 421
BMXOccasion Class, 420
BMXOccasionConverter Class, 424
contracts sharing

BigMountainX sharing view, 469
DataPackage methods, 465
MainPage, 462
ManageCustomer, 467
OnShareTargetActivated, 467
pane sharing, 463
Share Target, 466
view sharing, 464

customer management system, 420
data sharing, 419
file sharing

LoadToken Event Handler, 450
MainPage Modifications, 448
ManageCustomer Code, 451
ManageCustomer Layout, 449
OnManageContactsClicked, 453
OnShareFile Event Handler, 448
process, 448

InitializeAppAsync modifications, 424
OpenMicRequest Class, 423
point-of-sale system, 420
POSTransaction Class, 422
ReceiptItem Class, 421
system scheduling, 420
uniform resource identifier (URI)

data sharing, 443
LaunchResponsePage, 441
MainPage Layout modifications, 436
MainPage modifications, 440, 443
OnActivated event handler, 442
OnActivated method, 435
OnQueryUri event handler, 444
protocol activation, 437–438
QueryReader, 434
TestUriLaunch1, 436, 438–440

APPX package, 574
AsSerializedString method, 221
AudioGraph class, 290
Audio stream categories, 291
AutoSuggestBox, 122

��������� B
Background tasks

BigMountainX, 350
BMXFeaturedPerformer class, 347–348
classes, 354
code implementation, 344
conditions types, 366
contact store, 372
_geolocator_StatusChanged event handler, 349
Grid rpanel_right layout, 345, 347
ImageBannerControl image, 344
key issues, 353
layout, 345
MediaElement, 345
modified application OnLaunched event, 348
properties, 353–354
registeration, 354
reporting progress, 363
revisiting background audio, 368
State.UserProfile, 349
system trigger, 367–368
title bar styling code, 349
transfer of, 376
trigger implementation

adding functionality, 358
ApplicationHostPage loaded handler, 359
ChangeWallpaperAsync method, 362
ChangeWallpaperAsync method, 361
General.UWP.Library, 362
LandingPage constructor, 360
static class UserSettings, 360
StorageFile.GetFileFrom

ApplicationUirAsync, 360
task deferral, 362
UserSettings class, 359

triggers implementation, 357
trigger types, 367
UserIntroPage layout, 349
WallpaperSwitcherTask, 353
Windows 10 apps, 350

��������� C
ChangeWallpaperAsync method, 362
ComboBox, 124
Compiled bindings, 152
Control Corral model, 101

AutoSuggestBox, 104, 107
code implementation, 103
command handler, 106
CreateReservation, 105
creation, 102
CustomerInfo class, 101
dataBinding, 104

App monetization (cont.)

■ Index

601

DisplayMemberPath, 107
MassageType class, 102
page settings, 110

code-behind, 112
Dashboard, 113
RootHost instance, 111
SCRUD-based requirement, 110
SystemNavigationManager, 113

persistence problems
catastrophic failure, 107
DataContractSerializer class, 108
load model, 108
OnLaunched model, 109
save method, 108

ReservationInfo class, 102
summary dialog, 106

Cortana App Service Run Method, 505
Cortana integration

advantages, 471
Cortana App Service Run method, 505
CreateEventPage Code, 489
CreateEventPage XAML, 488
Create Events view, 492
Declarations tab, 505
deep linking (see Deep linking)
EmployeeSignIn, 472
event management, 485
events list, 485
HandleBuyTickets Method, 519
InitializeAppAsync, 498
InitializeAsync, 501
ListEventsPage Code, 495
ListEventsPage XAML, 492
List Events view, 501
Location Phrase List, 501
Manage Events, 486
ManageEventsPage Code, 487
Manage Events view, 491
multi-command interaction

HandlePunchline method, 517
HandleTellJoke method, 516
HandleWhosThere method, 516
normal interaction, 516

Name attribute, 497
PhraseList node, 498
speech interactions, 471
speech recognition

Employee SignIn, 477
guidelines, 477
SpeechRecognitionListConstraint

(see SpeechRecognitionListConstraint)
Voice Sign In, 479

SSML, 474
state management, 506
user interface, 483

user prompt
HandleChageWallpaper

method, 513
user interface, 515

VCD File, 496
VCD File VoiceCommands_2.xml, 503
ViewEventPage Code, 495
ViewEventPage XAML, 493
voice-command function, 502
Voice Command URI Activation, 499

CreateOrOpenFolder method, 223

��������� D, E
Data binding, 46
DataPackage methods, 465
Deep linking

Content tiles, 511
HandleMakeSuggestions

method, 510
OnActivated changes, 508
OnActivated Handler, 511
QueryReader Contains method, 508
search results page, 512
uses, 508
View event page, 513

Device family, 180
DownloadsFolder methods, 236

��������� F
File access

LoadModelAsync method, 212
Persistent Save method, 212
StorageFile, 212
StorageFile Extension methods, 214

File launching
App Picker UI, 447
Attendee Counter UI, 446
file type, 444
MainPage modifications, 446
OnFileActivate, 447
OnFileActivated handler, 445
Query String, 445

File sharing
Custom file save picker, 256
File Open Picker, 247
File Open Picker declaration, 243
File Picker Activation, 250
LandingPage Code, 252
LandingPage UI, 251
ResumeFilePicker, 248
resume file type association, 243
ResumeInfo.cs, 244
SaveResumeAsync, 245

■ index

602

FindLocationsAsync method, 336
FlipView control, 117

click event, 117
constructors, 121
data template, 117
event handlers, 120
execution, 121
layout and code-behind, 122
ManageReservation layout, 118
navigate method, 118
OnNavigated method, 120
template design, 119

FromSerializedString method, 221

��������� G
GenerateProfile method, 548
Generic SetImage method, 282
GetGeopositionAsync method, 311
GridView control

dashboard class, 127
ManageCustomer layout, 127
MangeCustomer code-behind, 129
XAML layout, 126

��������� H
HandleBuyTickets method, 519
HandleChageWallpaper method, 513
HandleMakeSuggestions method, 510
HandlePunchline method, 517
HandleTellJoke method, 516
HandleWhosThere method, 516

��������� I, J, K
IBackgroundTask.Run method, 368
Image control

in action, 92
CameraCaptureUI, 89
file formats, 88
FileOpenPicker control, 89
SetSourceAsync method, 89
user interface, 91

InitializeAsync function, 392
Intermediate language (IL), 18
IntializeAsync function, 381

��������� L
Layout control

RelativePanel, 161
code-behind method, 163
DefaultTaxAmount property, 165
POS interface, 166

POSTransaction property, 164
StackPanels, 161
totals section, 165

SplitView, 166
code implementation, 167
CompactInline pane, 167
CompactOverlay pane, 167
Inline pane, 166
Overlay pane, 166

VariableSizedWrapGrid, 166
Layout controls

alignment, 137
code implementation, 138
horizontal, 138
vertical, 138

Arrange pass, 136
bounding box, 137
canvas, 141

absolute position, 142
animation logic, 145
DispatcherTimer object, 143
DisplayCircle method, 148
event handlers, 143
page layout, 144
RootHost, 142
security timer out, 144
StartScreenHider method, 147
tick event handler, 148
XAML properties, 142

CirclePanel control, 175
description, 136
Grid layout, 150

code-behind method, 153
compiled binding, 152
design window, 156
fixed width, 151
INotifyPropertyChanged interface, 160
POS page, 153
POSTransaction class, 157
ReceiptItem class, 157
StackPanel, 160
star sizing, 152
two columns, 151
XAML to POS, 153

margin, 139
Measure pass, 136
padding, 141
StackPanel, 149
WinForms, 135

Leveraging existing code
localhost access (see Localhost access)
PCL (see Portable Class Libraries (PCL))

sharing code
adding file as link, 544
Alternate StateAwareObject Class, 547

■ Index

603

console application, 545
Generated AppState File, 551
GenerateProfile method, 548
ProfileGenerator interaction, 551
ProfileGenerator REPL Loop, 549
project structure, 546
shared project, 545

ListBox control, 114
code-behind, 115
execution, 116
XAML layout, 114

ListView control, 130
dashboard class, 131
XAML layout, 130

LoadModelAsync method, 212
Localhost access

adding interface, 557
ApplicationHostPage modifications, 561
BigMountainX ManageMailingList

interface, 562
IProfileGenerator implementation, 558
IProfileGenerator interface, 557
MainMailingList, 559
OnManageMailingListClicked method, 561
ProfileGenerator changes, 558
ProfileGenerator WCF interface, 561
Windows Communication Framework

(WCF), 557
Location awareness

current location
adding txt_location TextBlock, 313
ApplicationHostPage, 312
GetLocationChanged event handler, 312
LandingPage, 314

enabling location functionality, 306
geofencing

foreground notifications, 320
set up, 317

permission access
ApplicationHostPage modification, 315
ApplicationView class, 316
args.Status property, 316
NoLocationPage, 315
RequestAccessAsync method, 314
StatusChanged event, 315–316

requesting access
ApplicationHostPage’s loaded event, 311
app location access list, 309
code-behind, 310
to location information, 308
NoLocationPage page, 309
process, 307
RequestAccessAsync method, 307
user prompt, 309

setting screen, 306

��������� M, N
Mapping

adding maps
application Key, 326
BigMountainX user interface, 329
configuration, 328
ImageBannerControl modifications, 329
LandingPage Code-Behind, 328
LandingPage loaded event, 330
LandingPage modifications, 326–328
MapControl, 330
RequestedTheme attribute, 328

displaying directions, 336
displaying routes, 339
displaying Streetside views, 330–331
features, 323–324
Geocoding

FindLocationsAsync method, 336
reverse, 335

handling events, 332
launching maps, 324
POI

adding MapIcons, 332
XAML controls, 333–334

Media
New Project dialog, 257–258
OnLaunched event handler, 258
project structure, 259
visualization (see Visualizing media)
WebView, 303

Microsoft Blend, 32

��������� O
OnActivated method, 435
OnContinuousRecognize method, 482
OnManageMailingListClicked method, 561
OnPlayAudioClicked event handler, 290
OnSayPrompt method, 481
OnShowStreetView method, 383

��������� P
Persistent Save method, 212
Pickers

DownloadResume event handler, 239
FileOpenPicker class, 239
ImportResume Button UI, 240
ImportResume event handler, 240
RemoveResume event handler, 241
SaveResume method, 241

Points of interest (POI)
adding MapIcons, 332
XAML controls, 333–334

■ index

604

Portable class libraries (PCL)
compatibility factors, 553
creation, 554
functions, 556
project structure, 555
target management, 555

Pulse code modulation (PCM) buffer, 291
PurchaseFeatureAsync method, 537

��������� Q
QueryReader Contains method, 508

��������� R
RequestAccessAsync method, 307
ResumeManager project

ApplicationHost.xaml, 210
new project dialog, 210
OnLaunched event, 210

��������� S
SaveResume method, 241
SetSourceAsync method, 277
Shell integration

launch conditions
Application class, 377
App window, 379
OnActivated event handler, 380
Protocol declaration, app manifest, 379
StreetSide view window protocol, 381

lock screen
Background Image changing, 394
Initial Values, 395
New Context Menu, 395

notification process, 395
tile notifications

adding images, 416
cleaner template, 415
live tiles, 412
scheduling, 416
simple tile, 413
templates, 415
text content, 414
text-only content, 414
updated live tile, 413

Toast notification (see Toast notification)
windowing (see Windowing)

Speech Recognition Grammar Specification
(SRGS), 477

SpeechRecognitionListConstraint
OnContinuousRecognize method, 482
OnSayPrompt method, 481
SpeechRecognizer, 482

Speech Synthesis Markup Language (SSML), 472
State management, 506
StorageFile Extension methods, 214
StorageFolder class

ApplicationData, 238
DownloadsFolder methods, 236
isolated storage area

ApplicationData, 219
ApplicationHost Loaded

event handler, 224
AppStorageManager Class, 221
AsSerializedString method, 221
Certification class, 220
Education class, 220
FromSerializedString method, 221
Resume Class, 220
Technology class, 219
Windows.Storage.CreationCollision

Option, 223
WorkExperience class, 219

LandingPage, 236
Package install location

Industries.txt, 217
INotifyPropertyChanged, 216
installing directory data, 216
LandingPage UI, 217
ListBox, 219
loading data, 218
relative path, 217

ResumeManager, 238
RoamingFolder

ApplicationHost Class, 228
AppStorageManager, 225
LandingPage, 228
quota, 230
ResumeOperationResult, 225

TemporaryFolder
application manifest’s location, 232
capabilities tab, 233
Declarations tab, 235
DocumentsLibrary capability, 234
KnownFolders properties, 231

��������� T
Templated controls, 172
Toast notification, 396

adaptive toasts
ActionableToastServer, 411
AppState modifications, 407
ContactsWatcher modifications, 408
<action /> element, 406
<visual /> element, 406
new contact watch notification, 409
XML definition, 406

■ Index

605

adding images, 400
adding sound, 401
handling events, 405
local toast, 398
multiple toast, 397
scheduling, 403
ToastText01, 398
ToastText02, 399
ToastText03, 399
ToastText04, 399

TryShowAsStandaloneAsync method, 382

��������� U
Universal apps

certification process, 595
package creation

drop-down menu and submenu
selections, 568

package dialog, 569
side loading, 569
windows store distribution, 571

registering with Dev Center, 565
Store update process, 596
submission

advanced features, 588
age rating and certificates, 588
categories, 580
checklist, 584
Dev Center landing page, 578
naming, 584
overview screen, 579
screen, 582–583
Windows Store dashboard, 579

uploading app
checklist item, 590
description page, 591–594
packages screen, 591
testers, 594

verification
WACK interface, 576
WACK tests, 577

Universal Windows Platform (UWP) apps, 9
BouncerX Attendant Counter

Add Attendant button, 33–34
adding event handling into XAML

markup, 34
Blend for Visual Studio 2015 IDE, 35
code, 37–38
design surface, 32
DisplayAttendants method, 32–33
event handlers, 33
Microsoft Blend, 32
RemoveAttendant method, 34–35
Reset Attendants button events, 36

Reset Attendants markup, 36
Resetting Attendants to Zero, 37
user interface, 31

environment setup, 20
layered view, interface, 15–16
Project selection dialog, 24–25
side bar

Application tab, 27
app manifest user interface, 26–27
Capabilities tab, 28–30
Content URIs tab, 30
Packaging tab, 30
Visual Assets tab, 28

supported language
C++/Cx, 18
HTML markup, 19
intermediate language (IL), 18
.NET, 18
XAML markup, 18–19

unified distribution channel and device
families, 16–17

View menu item, 25–26
Visual Studio 2012, 53

C# profile, 55
default C# file, 57
default HTML file, 58
markup extension, 58
project dialog, 55
ThemeResource, 59
type converters, 58
usage profile mechanism, 55

Visual Studio IDE
C#-based UWP project loaded, 20–21
design surface, 21–22
Properties window, 23–24
Solution Explorer, 23–24
Toolbox and Document Outline

panes, 22–23
XAML controls

AppBarButton, 77
AutoSuggestBox, 72
binding and value converters, 44
border, 98
Button class, 65
CalendarDatePicker control, 69
CheckBox control, 96
ComboBox, 86
CommandBar, 75
command binding, 66
DatePicker control, 79
elements, 41
frame control, 63
HyperlinkButton, 95
image control (see Image control)
MenuFlyout functions, 80

■ index

606

namespaces, 38
overview, 59
page control, 64
PasswordBox, 84
ProgressBar control, 94
RadioButton, 97
reservation system, 60
slider, 87
templates, 68
textbox control, 83
TimePicker, 71
ToggleSwitch, 98
WebView (see WebView control)
Window object, 61

User Controls, 168

��������� V
Visualizing media

in action, 261
adding image, 260
ApplicationHostPage modifications, 273
Audio

AudioGraph, 288
capture, 292
MediaElement, 287

background audio, 300–302
ImageBrush

in action, 278, 283
in Blend, 280
capturing images, 284
ellipse, 277–278
feature, 277
Fill property, 281
generic SetImage method, 282
ImageBannerControl, 282
LandingPage banner, 282
LoadImageForEllipse, 278
path data, 281
Pen-defined Path object, 281
Pen tool, 280
SetSourceAsync method, 277

image source, 260
ImageViewerControl event handlers, 276
incorporating image, 270
incorporating ImageViewerControl, 273
OnContinue method, 276
OnGenderSelected and OnDOBSelected

method, 276
specifying stretch values, 261
stretch settings, 262
updating project

Add New Project dialog, 266
application class modifications, 270

ApplicationHostPage modifications, 269
AppState class, 263
AppState modifications, 269
BMXProfile class, 263
Class Library project template, 265
general.UWP.Library, 268
library project, 266
serialization methods, 263
StateAwareObject class, 267–268
StorageFileExtensions, 265
UserIntroPage modifications, 274

video
capture, 298
Internet Client, 298
IsLooping, 297
IsMuted, 297
landing page user interface, 297
MediaElement, 296
playback controls, 297
PosterSource, 297

Voice command definition (VCD), 496

��������� W
WebView control

description, 92
handling events, 93
interopertability, 94
loading contents, 93

Windowing
CoreApplication class

CreateNewView function, 382
Multiple windows, 385
OnShowStreetView method, 383
Streetside View, 385
Windows sizing, 386

TitleBar
Microsoft edge, 389
OnShowStreetView, 392
preferences, 388
StreetSideViewPage, 390
StreetView page, custom title bar, 393

Windows 8 applications
bottom app bar, 10–11
charms bar, 4
Modern app running on Windows 10, 5
Start menu, 1–2, 7
Tablet operating systems, 2
top app bar, 10–11

Windows 10 applications
app bar, 11–12
close button, 9
Cortana compact UI, 13
Cortana full UI, 13–14
Desktop with Start menu, 7–8

Universal Windows Platform (UWP) apps (cont.)

■ Index

607

lifecycle, 9–10
main menu bar, 10
start screen, 3–4, 6
Tablet Mode, 5–6
task switcher, 12–13
two states, 8
two user-controlled layout sizes, 14–15
UWP apps (see Universal Windows Platform

(UWP) apps)
Windows App Certification Kit (WACK), 576
Windows Presentation Foundation (WPF), 543

��������� X, Y, Z
XAML

binding and value converters
adding new item, 44–45
BouncerX after enabled binding, 47
change in MainPage.xaml.cs, 45–46

Convert function, 49
ConvertBack function, 49
data binding, 46–47
DisplayAttendants method

definition, 46–47
IValueConverter interface, 49
modified MainPage.xaml, 49–50
Occasion Class Definition, 45
OccasionConverter class, 48–49

elements
BouncerX UWP app, 44
Content property, 42
rich composition, 42–44
TextBlock, programmatic

definition, 41–42
namespaces

defined, 38–39
procedural expression, 40–41
user interface, 39–40

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: The Windows 10 Ethos and Environment
	 RIP Windows 8
	 Hello, Windows 10
	 A Not-So-Brief Introduction
	 The New All-New Taskbar
	 Building Windows 10 UWP Apps
	 Supported Languages

	 Developing for Windows 10 UWP Apps
	 Setting Up Your Environment
	 The Visual Studio IDE
	 Creating Your First Project
	 Sidebar: Exploring the App Manifest
	 Back to Your First Project
	 Notes on XAML
	 Namespaces
	 Elements
	 Binding and Value Converters

	 Summary

	Chapter 2: Basic Controls
	 Setting Up a Project
	 So Just What Are Controls?
	 Incorporating Controls
	 Window
	 Frame
	 Page
	 Button
	Command Binding
	 Templates
	Loading Content
	Handling Events
	Interoperability with WebView Content

	 CalendarDatePicker
	 TimePicker
	 AutoSuggestBox
	 CommandBar
	 AppBarButton
	 DatePicker
	 MenuFlyout
	 TextBox
	 PasswordBox
	 ComboBox
	 Slider
	 Image
	 WebView
	 Noteworthy Mentions
	
	ProgressBar
	 HyperlinkButton
	CheckBox
	RadioButton
	ToggleSwitch
	Border

	 Summary

	Chapter 3: Data Controls
	 Modifying the Project
	 Creating a Control Corral Model
	 Persisting to the File System
	 Setting Up the Pages

	 Listing Reservations with ListBox
	 Viewing Individual Reservations with FlipView
	 Revisiting AutoSuggestBox
	 Revisiting ComboBox
	 Showing Customers with GridView
	 Displaying Today’s Reservations with ListView
	 Summary

	Chapter 4: Layout and Custom Controls
	 Layout Controls
	 Understanding the Layout System
	 Alignment, Margins, and Padding
	 The Layout Controls
	Canvas
	 StackPanel
	Grid
	RelativePanel
	VariableSizedWrapGrid
	SplitView

	 Building Your Own Controls
	 User Controls
	 Templated Controls
	 Your Own Layout Controls

	 Summary

	Chapter 5: Building an Adaptive Experience
	 Device Families
	 Adapting the User Interface
	 Triggered States
	 Visual States
	 XAML Views

	 Adapting the Code
	 The ApiInformation Class

	 Summary

	Chapter 6: File IO
	 Creating the ResumeManager Project
	 Files
	 Storage Folders
	 The Package Install Location
	 The Isolated Storage Area
	 RoamingFolder
	 TemporaryFolder
	 The User’s Known Folders
	 External Known Folders
	 The Downloads Folder
	 Final Thoughts on Storage via the ApplicationData Class

	 Using Pickers
	 Sharing Files with Custom Pickers
	 Summary

	Chapter 7: Working with Media
	 Creating a New Project
	 Visualizing Media
	 Images
	 Audio
	
	MediaElement
	 AudioGraph
	 Audio Capture

	 Video
	
	Video Capture

	 Background Audio

	 Using WebView to Display Render Media
	 Summary

	Updating the Project
	 Incorporating Image into BigMountainX
	Tying It All Together
	ImageBrush
	 Capturing Images
	Chapter 8: Location and Mapping
	 Location Awareness
	 Enabling Location Functionality
	 Requesting Access to Location Data
	 Getting the Current Location
	 More on Permissions
	 Responding to Location Updates
	 Geofencing
	Setting Up a Geofence
	 Foreground Notifications

	 Mapping
	 Launching Maps via URI
	 Adding Maps into Your App
	 Displaying Streetside Views
	 Handling Events, User Interaction, and Changes
	 Working with POIs (Points of Interest)
	 Adding MapIcons
	Adding XAML Controls to Map

	 Geocoding
	Reverse Geocoding: Getting an Address
	Geocode: Getting a Location from an Address

	 Displaying Directions
	 Displaying Routes

	 Summary

	Chapter 9: Background Tasks
	 Before You Begin
	 Running in the Background
	 Defining a Task to Run in the Background
	 Registering a Background Task
	 Implementing Triggers
	Implementing Wallpaper Switching

	 Reporting Progress
	 Conditions
	 More on Triggers
	 Revisiting Background Audio
	 Monitoring the Contact Store

	 Background Transfers
	 Summary

	Chapter 10: Shell Integration
	 Launch Conditions
	 Windowing
	 Opening New Windows
	 Sizing Windows
	 TitleBar

	 Lock Screen
	 The Notification Process
	 Toast Notifications
	 Generating Toast Notifications
	ToastText01
	ToastText02
	ToastText03
	 ToastText04

	 Adding Images to Toasts
	 Adding Sound to Toasts
	 Scheduling Toasts
	 Responding to Toast Notification Events
	 Adaptive Toasts
	The <visual /> Element
	The <action /> Element

	 Tile Notifications
	 Generating Tile Notifications
	 Presenting Text Content with a Heading
	 Text-Only Content
	 Templates for Summaries
	 Creating a Cleaner Template
	 Adding Images to Tile Notifications
	 Scheduling Tile Notifications

	 Summary

	Chapter 11: Communicating Between Apps
	 Before You Get Started
	 Changing the Object Model
	 Applying SplitView to ApplicationHostPage

	 Communicating Through URI Launching
	 Launching a Specific App
	 Launching a URI and Waiting for Results
	 Querying URI Support

	 File Launching
	 Communicating Through Sharing Files (Shared Storage)
	 Application Services
	 Sharing Data Between the Apps You Created
	 Sharing Contracts
	 Sharing as a Source
	 Sharing as a Target

	 Summary

	Chapter 12: Leveraging Cortana and Speech
	 Making Your Program Speak
	 Using SSML

	 Recognizing Speech
	 Constraints and Grammars
	SpeechRecognitionListConstraint

	 Using Cortana
	 Setting Up for Cortana
	 Launching Your App in the Foreground with Cortana

	 Launching Your App in the Background with Cortana
	 State Management
	 Deep Linking
	 Prompting the User
	 Multi-Command Interactions
	 The Final Command
	 Summary

	Chapter 13: App Monetization
	 Selling Your App
	 App Trial Mode
	 Licensing Your App (Trial Mode)
	 Purchasing the App

	 Selling Within an App
	 Adding In-App Purchasing to an App
	 Implementing In-App Purchasing

	 Summary

	Chapter 14: Leveraging Existing Code
	 Sharing Code
	 Portable Class Libraries (PCL)
	 Creating a PCL

	 Localhost Access
	 Summary

	Chapter 15: Distributing Universal Apps
	 Registering with the Dev Center
	 Creating an App Package
	 Side Loading
	 Windows Store Distribution

	 Verifying Your App Package
	 Submitting Your App
	 Naming Your App
	 Selling Details
	 Advanced Properties
	Age Rating and Rating Certificates

	 Uploading Your App
	 Description
	 Notes to Testers

	 Getting Your App Certified
	 Updating Your App
	 Summary

	Index

