




Red	Hat	Enterprise	Linux	Server
Cookbook



Table	of	Contents

Red	Hat	Enterprise	Linux	Server	Cookbook

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	Subscribe?

Free	Access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Sections

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Conventions

Reader	feedback

Customer	support

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Working	with	KVM	Guests

Introduction

Installing	and	configuring	a	KVM

Getting	ready



How	to	do	it…

Manual	installation

Kickstart	installation

Graphical	setup	during	the	system’s	setup

See	also

Configuring	resources

Getting	ready

How	to	do	it…

Creating	storage	pools

Querying	storage	pools

Removing	storage	pools

Creating	a	virtual	network

Removing	networks

How	it	works…

There’s	more…

Local	storage	pools

Networked	or	shared	storage	pools

See	also

Building	guests

Getting	ready

How	to	do	it…

Create	a	guest

Deleting	a	guest

How	it	works…

There’s	more…

See	also

Adding	CPUs	on	the	fly

Getting	ready

How	to	do	it…

On	the	KVM	host,	perform	the	following	steps:

On	the	KVM	guest,	perform	the	following:



Adding	RAM	on	the	fly

Getting	ready

How	to	do	it…

Adding	disks	on	the	fly

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Moving	disks	to	another	storage

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Moving	VMs

Getting	ready

How	to	do	it…

Live	native	migration	over	the	default	network

Live	native	migration	over	a	dedicated	network

How	it	works…

There’s	more…

See	also

Backing	up	your	VM	metadata

How	to	do	it…

How	it	works…

See	also

2.	Deploying	RHEL	“En	Masse”

Introduction

Creating	a	kickstart	file

Getting	ready

How	to	do	it…

How	it	works…



There’s	more…

See	also

Publishing	your	kickstart	file	using	httpd

How	to	do	it…

There’s	more…

See	also

Deploying	a	system	using	PXE

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Deploying	a	system	using	a	custom	boot	ISO	file

How	to	do	it…

How	it	works…

3.	Configuring	Your	Network

Introduction

Creating	a	VLAN	interface

Getting	ready

How	to	do	it…

Creating	the	VLAN	connection	with	nmcli

Creating	the	VLAN	connection	with	nmtui

Creating	the	VLAN	connection	with	kickstart

There’s	more…

See	also

Creating	a	teamed	interface

Getting	ready

How	to	do	it…

Creating	the	teamed	interface	using	nmcli

Creating	the	teamed	interface	using	nmtui

Creating	the	teamed	interface	with	kickstart



There’s	more…

nmcli

nmtui

kickstart

See	also

Creating	a	bridge

Getting	ready

How	to	do	it…

Creating	a	bridge	using	nmcli

Creating	a	bridge	using	nmtui

Creating	a	bridge	with	kickstart

There’s	more…

See	also

Configuring	IPv4	settings

How	to	do	it…

Setting	your	IPv4	configuration	using	nmcli

Setting	your	IPv4	configuration	using	nmtui

There’s	more…

Configuring	your	DNS	resolvers

How	to	do	it…

Setting	your	DNS	resolvers	using	nmcli

Setting	your	DNS	resolvers	using	nmtui

There’s	more…

Configuring	static	network	routes

How	to	do	it…

Configuring	static	network	routes	using	nmcli

Configuring	network	routes	using	nmtui

4.	Configuring	Your	New	System

Introduction

The	systemd	service	and	setting	runlevels

How	to	do	it…



There’s	more…

See	also

Starting	and	stopping	systemd	services

How	to	do	it…

There’s	more…

See	also

Configuring	the	systemd	journal	for	persistence

How	to	do	it…

There’s	more…

See	also

Monitoring	services	using	journalctl

How	to	do	it…

There’s	more…

See	also

Configuring	logrotate

How	to	do	it…

How	it	works…

There’s	more…

See	also

Managing	time

How	to	do	it…

Managing	time	through	chrony

Managing	time	through	ntpd

There’s	more…

See	also

Configuring	your	boot	environment

How	to	do	it…

How	it	works…

There’s	more…

See	also

Configuring	smtp



How	to	do	it…

There’s	more…

See	also

5.	Using	SELinux

Introduction

Changing	file	contexts

Getting	ready

How	to	do	it…

Temporary	context	changes

Persistent	file	context	changes

There’s	more…

See	also

Configuring	SELinux	booleans

How	to	do	it…

Listing	SELinux	booleans

Changing	SELinux	booleans

There’s	more…

Configuring	SELinux	port	definitions

How	to	do	it…

There’s	more…

Troubleshooting	SELinux

Getting	ready

How	to	do	it…

audit.log

syslog

ausearch

There’s	more…

See	also

Creating	SELinux	policies

Getting	ready

How	to	do	it…



How	it	works…

There’s	more…

See	also

Applying	SELinux	policies

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

6.	Orchestrating	with	Ansible

Introduction

Install	Ansible

Getting	ready

How	to	do	it…

Installing	the	latest	tarball

Installing	cutting	edge	from	Git

Installing	Ansible	from	the	EPEL	repository

There’s	more…

Configuring	the	Ansible	inventory

How	to	do	it…

The	static	inventory	file

The	dynamic	inventory	file

host_vars	files

group_vars	files

How	it	works…

There’s	more…

See	also

Creating	a	template	for	a	kickstart	file

Getting	ready

How	to	do	it…

How	it	works…



There’s	more…

See	also

Creating	a	playbook	to	deploy	a	new	VM	with	kickstart

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	a	playbook	to	perform	system	configuration	tasks

Getting	ready

How	to	do	it…

There’s	more…

See	also

Troubleshooting	Ansible

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

7.	Puppet	Configuration	Management

Introduction

Installing	and	configuring	Puppet	Master

How	to	do	it…

There’s	more…

See	also

Installing	and	configuring	the	Puppet	agent

How	to	do	it…

There’s	more…

Defining	a	simple	module	to	configure	time

Getting	ready

How	to	do	it…

How	it	works…



There’s	more…

See	also

Defining	nodes	and	node	grouping

How	to	do	it…

Create	the	configuration	node

Create	a	node	group

There’s	more…

Deploying	modules	to	single	nodes	and	node	groups

How	to	do	it…

Configure	to	deploy	a	module	or	manifest	to	a	single	client

Configure	to	deploy	a	module	or	manifest	to	a	node	group

Configure	to	deploy	to	all	registered	systems

Deploy	to	a	system

There’s	more…

8.	Yum	and	Repositories

Introduction

Managing	yum	history

How	to	do	it…

Your	yum	history

Information	about	a	yum	transaction	or	package

Undoing/redoing	certain	yum	transactions

Roll	back	to	a	certain	point	in	your	transaction	history

There’s	more…

See	also

Creating	a	copy	of	an	RHN	repository

Getting	ready

How	to	do	it…

Syncing	RHN	repositories

There’s	more…

See	also

Configuring	additional	repositories



Getting	ready

How	to	do	it…

There’s	more…

See	also

Setting	up	yum	to	automatically	update

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Configuring	logrotate	for	yum

How	to	do	it…

How	it	works…

See	also

Recovering	from	a	corrupted	RPM	database

Getting	ready

How	to	do	it…

There’s	more…

9.	Securing	RHEL	7

Introduction

Installing	and	configuring	IPA

Getting	ready

How	to	do	it…

Installing	the	IPA	server

Installing	the	IPA	client

There’s	more…

See	also

Securing	the	system	login

How	to	do	it…

How	it	works…

There’s	more…



See	also

Configuring	privilege	escalation	with	sudo

Getting	ready

How	to	do	it…

There’s	more…

See	also

Secure	the	network	with	firewalld

How	to	do	it…

Showing	the	currently	allowed	services	and	ports	on	your	system

Allowing	incoming	requests	for	NFS	(v4)

Allowing	incoming	requests	on	an	arbitrary	port

There’s	more…

See	also

Using	kdump	and	SysRq

How	to	do	it…

Installing	and	configuring	kdump	and	SysRq

Using	kdump	tools	to	analyze	the	dump

There’s	more…

See	also…

Using	ABRT

How	to	do	it…

Installing	and	configuring	abrtd

Using	abrt-cli

There’s	more…

See	also

Auditing	the	system

How	to	do	it…

Configuring	a	centralized	syslog	server	to	accept	audit	logs

Some	audit	rules

Showing	audit	logs	for	the	preceding	rules

See	also



10.	Monitoring	and	Performance	Tuning

Introduction

Tuning	your	system’s	performance

How	to	do	it…

There’s	more…

See	also

Setting	up	PCP	–	Performance	Co-Pilot

How	to	do	it…

The	default	installation

The	central	collector

There’s	more…

See	also

Monitoring	basic	system	performance

How	to	do	it…

There’s	more…

Monitoring	CPU	performance

How	to	do	it…

Monitoring	RAM	performance

How	to	do	it…

Monitoring	storage	performance

How	to	do	it…

Monitoring	network	performance

How	to	do	it…

Index





Red	Hat	Enterprise	Linux	Server
Cookbook





Red	Hat	Enterprise	Linux	Server
Cookbook
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	December	2015

Production	reference:	1151215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-201-7

www.packtpub.com

http://www.packtpub.com




Credits
Author

William	Leemans

Reviewers

Kyung	Huh

Marcus	Young

Commissioning	Editor

Kunal	Parikh

Acquisition	Editor

Reshma	Raman

Content	Development	Editor

Arshiya	Ayaz	Umer

Technical	Editor

Siddhesh	Ghadi

Copy	Editor

Shruti	Iyer

Project	Coordinator

Shipra	Chawhan

Proofreader

Safis	Editing

Indexer

Monica	Ajmera	Mehta

Graphics

Disha	Haria

Production	Coordinator

Conidon	Miranda

Cover	Work

Conidon	Miranda





About	the	Author
William	Leemans	has	over	20	years	of	experience	in	the	IT	industry	in	various	positions
and	supporting	several	environments.

In	2005,	he	started	his	own	consulting	company,	Critter	BVBA,	in	the	hope	of	offering
open	source	solutions	to	his	customers,	who	are	mainly	enterprises.

In	2010,	William	started	supporting	Red	Hat	products	full	time	with	the	Federal	Police,
Belgium.	Since	then,	he	has	moved	on	to	support	Red	Hat	products	at	Proximus	and	now
Euroclear.

William	is	a	strong	open	source	supporter	and	contributes	where	he	can.	He	has	a	couple
of	projects	running	at	GitHub	(https://github.com/bushvin).	During	the	course	of	writing
this	book,	William	recertified	himself	as	a	Red	Hat	Certified	Engineer,	hoping	to	one	day
become	a	Red	Hat	Certified	Architect.

When	he’s	not	tapping	away	at	the	keyboard	of	his	laptop,	William	likes	to	play	around
with	his	two	young	children,	listen	to	rock	music	(Foo	Fighters,	AC/DC,	and	Queens	of
the	Stone	Age	are	some	of	his	favorites),	and	devising	complicated	and	intricate	plots	for
the	stories	that	he	runs	at	his	biweekly	roleplaying	sessions	with	his	friends.

Thank	you,	Caroline,	my	dear	wife,	for	being	my	soul	mate,	supporting	me	during	this
lengthy	process,	and	giving	me	the	space,	time,	and	motivation	to	see	this	to	the	end.

Thanks,	Mom,	Dad,	and	Fre,	for	your	relentless	and	unwavering	belief	in	me	and	support,
regardless	of	my	rebellious	antics.

Thank	you,	Tim,	for	telling	me	that	I	should	get	into	computers	when	you	did.	I	wouldn’t
know	where	I	would’ve	ended	up	if	you	hadn’t!

Thank	you,	Gilad,	for	being	the	friend	I	need	in	my	darkest	hours	and	my	most	joyous
moments!

Thank	you,	Wednesday	Guys,	for	the	support	and	fun.	Koeken	troef!

Thank	you,	Dag,	for	taking	me	on	to	yet	another	rather	interesting	adventure	in	my	life
called	Red	Hat.

https://github.com/bushvin




About	the	Reviewers
Kyung	Huh	is	a	senior	consultant	at	Red	Hat	based	in	Korea.	He	is	a	Red	Hat	Certified
Architect.	Kyung	has	worked	with	Linux	and	open	source	software	for	more	than	16	years
as	an	instructor	and	consultant.	He	has	a	lot	of	experience	in	Linux	environments	and
building	virtualization	and	cloud	infrastructures,	such	as	Red	Hat	Enterprise	Virtualization
and	Red	Hat	OpenStack	Platform,	on	the	field.	Kyung	also	reviewed	Hybrid	Cloud
Management	with	Red	Hat	CloudForms	and	Getting	Started	with	Red	Hat	Enterprise
Virtualization	by	Packt	Publishing.

Marcus	Young	recently	graduated	with	a	degree	in	computer	science	and	mathematics
before	getting	involved	in	system	administration	and	DevOps.	He	currently	works	in
software	automation	using	open	source	tools	and	technologies.	Marcus’	hobbies	include
playing	ice	hockey	and	making	home-brewed	beer.	He	also	enjoys	hardware	projects
based	on	microcontrollers	and	single-board	computers.

Marcus	authored	Implementing	Cloud	Design	Patterns	for	AWS,	Packt	Publishing,	as
well.





www.PacktPub.com



Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib


Why	Subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser



Free	Access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com




Preface
Gnu/Linux	is	the	most	important	OS	in	the	data	center	but	how	do	you	leverage	it?	How
do	you	maintain	and	contain	it?	Many	Gnu/Linux	distributions	try	to	answer	these
questions,	but	not	all	succeed.	Red	Hat	Enterprise	Linux	is	one	that	does	answer	these
questions.

The	next	question	is	how	do	you,	as	a	system	administrator,	manage	a	RHEL
infrastructure?	How	do	you	deploy	not	just	one	system,	but	many?	How	do	you	make	sure
that	it	is	secure	and	up	to	date?	How	can	you	monitor	system	components?

It	may	seem	odd	to	you,	but	as	a	Red	Hat	Certified	Engineer,	I	prefer	the	“lazy”	approach
—not	as	in	“I	can’t	be	bothered,”	but	as	in	“I	like	to	do	something	once	and	do	it	good	the
first	time	and	spend	the	rest	of	my	time	doing	fun	stuff.”

In	this	book,	I	try	to	show	you	how	to	set	up	and	configure	systems,	mainly	by	providing
useful	information	to	automate	the	setup,	configuration,	and	management.	This	also
explains	the	lack	of	the	use	of	a	GUI	in	this	book.	I’ll	be	honest	with	you;	I	couldn’t	live
without	one	on	my	laptop	or	desktop,	but	I	do	not	believe	servers	should	have	a	GUI.
GUI-based	applications	tend	not	to	have	command-line	counterparts,	and	I	solemnly
believe	that	if	you	cannot	install,	configure,	manage,	and	maintain	a	piece	of	software
through	a	script,	it	does	not	belong	on	a	server.

This	book	does	not	pretend	to	be	the	de	facto	answer	to	all	questions	(that	would	be	42),
but	I	do	hope	that	you	will	learn	something	new	and	that,	in	turn,	you	will	put	this
knowledge	to	good	use.	Remember,	with	great	power,	comes	great	responsibility!



What	this	book	covers
Chapter	1,	Working	with	KVM	Guests,	will	not	start	by	installing	a	basic	RHEL	system.	It
will	start	by	introducing	you	to	KVM	if	you	don’t	already	know	it.	You’ll	learn	how	to
install	and	configure	the	KVM	host	and	manage	your	KVM	guests	(the	VMs).	It	will
discuss	the	basics	of	adding	resources	on	the	fly,	moving	disks,	and	even	moving	the
entire	guest	to	another	KVM	host.

Chapter	2,	Deploying	RHEL	“En	Masse”,	will	explore	the	ways	of	installing	a	RHEL
system,	introducing	you	to	kickstart	deployments,	which	are	used	to	streamline	automated
system	installs.	If	you	want	to	orchestrate	your	environment,	this	chapter	will	lay	out	the
basics	for	you	to	build	on.

Chapter	3,	Configuring	Your	Network,	will	explore	NetworkManager	tools	to	manage	your
network	configuration,	including	advanced	topics	such	as	VLANs,	link	aggregation,	and
bridges.	It	will	show	you	how	to	leverage	its	command-line	tools	to	automate	your
system’s	network	configuration	during	its	deployment	or	afterwards,	when	all	is	installed.

Chapter	4,	Configuring	Your	New	System,	will	explain	how	to	configure	the	basics,	such
as	log	retention,	time,	and	your	boot	environment.	It	will	also	introduce	you	to	the	new
systemd,	which	is	SysVinit’s	replacement,	and	to	monitoring	and	managing	your	services.

Chapter	5,	Using	SELinux,	will	give	you	an	overview,	but	a	brief	one,	on	how	to	manage
and	troubleshoot	SELinux	on	your	system.	SELinux	is	becoming	more	and	more
important	in	today’s	world	because	of	its	security	implementation,	and	it’s	better	to	know
about	it	than	to	just	turn	it	off	because	you	can’t	handle	it.

Chapter	6,	Orchestrating	with	Ansible,	will	tell	you	all	about	Ansible,	which	was	recently
bought	by	Red	Hat.	It	will	show	you	how	to	create	simple	playbooks	that	easily	deploy
new	systems	and	how	to	manage	your	system’s	configuration.

Chapter	7,	Puppet	Configuration	Management,	will	show	you	how	to	set	up	and	configure
Puppet.	It	will	also	give	you	a	peek	at	its	configuration	management	capacities.

Chapter	8,	Yum	and	Repositories,	will	take	a	look	at	yum	repositories,	how	you	can	create
your	own	mirrors	of	the	existing	(Red	Hat)	repositories,	and	how	to	leverage	it	to	keep
your	RHEL	environment	up	to	date	without	breaking	a	sweat.

Chapter	9,	Securing	RHEL	7,	will	take	security	configuration	and	auditing	problems	a	bit
further.	We’ll	explore	how	to	configure	setting	up	centralized	secure	authentication	and
privilege	escalation.	It	will	show	you	how	you	can	operate	a	system	that	appears	to	be
“hung”	and	trace	the	root	cause	of	the	event.

Chapter	10,	Monitoring	and	Performance	Tuning,	will	show	you	the	basics	of	easy
performance	tuning	and	how	to	monitor	your	system’s	resources.





What	you	need	for	this	book
The	only	thing	you’ll	need	for	the	recipes	in	this	book	is	the	Red	Hat	Enterprise	Linux	7
Installation	DVD,	for	which	you	can	download	an	evaluation	license	from
https://access.redhat.com/downloads.	All	software	used	in	this	book	is	either	available
through	the	RHEL	media	or	the	yum	repositories	specified	in	the	recipes.

https://access.redhat.com/downloads




Who	this	book	is	for
This	book	is	for	the	system	administrators	who	want	to	learn	about	the	new	RHEL	version
and	features	that	are	included	for	management	or	certification	purposes.	Although	this
book	provides	a	lot	of	information	to	get	your	Red	Hat	Certified	System	Administrator
and/or	Red	Hat	Certified	Engineer	certifications,	it	is	by	far	a	complete	guide	to	get	either!

To	get	the	most	of	this	book,	you	should	have	a	working	knowledge	of	the	basic	(RHEL)
system	administration	and	management	tools.





Sections
In	this	book,	you	will	find	several	headings	that	appear	frequently	(Getting	ready,	How	to
do	it,	How	it	works,	There’s	more,	and	See	also).

To	give	clear	instructions	on	how	to	complete	a	recipe,	we	use	these	sections	as	follows:



Getting	ready
This	section	tells	you	what	to	expect	in	the	recipe,	and	describes	how	to	set	up	any
software	or	any	preliminary	settings	required	for	the	recipe.



How	to	do	it…
This	section	contains	the	steps	required	to	follow	the	recipe.



How	it	works…
This	section	usually	consists	of	a	detailed	explanation	of	what	happened	in	the	previous
section.



There’s	more…
This	section	consists	of	additional	information	about	the	recipe	in	order	to	make	the	reader
more	knowledgeable	about	the	recipe.



See	also
This	section	provides	helpful	links	to	other	useful	information	for	the	recipe.





Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“We	can
include	other	contexts	through	the	use	of	the	include	directive.”

A	block	of	code	is	set	as	follows:

node	/^www[0-9]+\.critter\.be$/	{

}

node	/^repo[0-9]+\.critter\.be$/	{

}

Any	command-line	input	or	output	is	written	as	follows:

~]#	yum	install	-y	/tmp/puppetlabs-release-el-7.noarch.rpm

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Clicking	the	Next
button	moves	you	to	the	next	screen.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.





Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors




Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.



Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/RedHatEnterpriseLinuxServerCookbook_ColorImages.pdf

https://www.packtpub.com/sites/default/files/downloads/RedHatEnterpriseLinuxServerCookbook_ColorImages.pdf


Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support


Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com


Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com




Chapter	1.	Working	with	KVM	Guests
In	this	chapter,	we	will	cover	the	following	recipes:

Installing	and	configuring	a	KVM
Configuring	resources
Building	VMs
Adding	CPUs	on	the	fly
Adding	RAM	on	the	fly
Adding	disks	on	the	fly
Moving	disks	to	another	storage
Moving	VMs
Backing	up	your	VM	metadata



Introduction
This	book	will	attempt	to	show	you	how	to	deploy	RHEL	7	systems	without	too	much	of	a
hassle.	As	this	book	is	written	with	automation	in	mind,	I	will	emphasize	on	command-
line	utilities	rather	than	elaborating	on	its	GUI	counterparts,	which	are	useless	for
automation.

This	chapter	explains	how	to	build	and	manage	KVM	guests	using	the	libvirt	interface	and
various	tools	built	around	it.	It	will	provide	a	brief	overview	on	how	to	set	up	a	KVM	on
RHEL	and	manage	its	resources.	The	setup	provided	in	this	overview	is	far	from	the	ready
enterprise	as	it	doesn’t	provide	any	redundancy,	which	is	generally	required	in	enterprises.
However,	the	recipes	provided	are	relevant	in	enterprise	setups	as	the	interface	stays	the
same.	Most	of	the	time,	you	will	probably	use	a	management	layer	(such	as	RHEV	or
oVirt),	which	will	make	your	life	easier	in	managing	redundancy.

Note
Libvirt	is	the	API	between	the	user	and	the	various	virtualization	and	container	layers	that
are	available,	such	as	KVM,	VMware,	Hyper-V,	and	Linux	Containers.	Check
https://libvirt.org/drivers.html	for	a	complete	list	of	supported	hypervisors	and	container
solutions.

As	most	tasks	performed	need	to	be	automated	in	the	end,	I	tend	not	to	use	any	graphical
interfaces	as	these	do	not	allow	an	easy	conversion	into	script.	Hence,	you	will	not	find
any	recipes	in	this	chapter	involving	a	graphical	interface.	These	recipes	will	primarily
focus	on	virsh,	the	libvirt	management	user	interface	that	is	used	to	manage	various
aspects	of	your	KVM	host	and	guests.	While	a	lot	of	people	rely	on	the	edit	option	of
virsh,	it	doesn’t	allow	you	to	edit	a	guest’s	configuration	in	real	time.	Editing	your	guest’s
XML	configuration	in	this	way	will	require	you	to	shut	down	and	boot	your	guest	for	the
changes	to	take	effect.	A	reboot	of	your	guest	doesn’t	do	the	trick	as	the	XML
configuration	needs	to	be	completely	reread	by	the	guest’s	instance	in	order	for	it	to	apply
the	changes.	Only	a	fresh	boot	of	the	guest	will	do	this.

The	virsh	interface	is	also	a	shell,	so	by	launching	virsh	without	any	commands,	you
will	enter	the	libvirt	management	shell.	A	very	interesting	command	is	help.	This	will
output	all	the	available	commands	grouped	by	keyword.	Each	command	accepts	the	--
help	argument	to	show	a	detailed	list	of	the	possible	arguments,	and	their	explanation,
which	you	can	use.

https://libvirt.org/drivers.html




Installing	and	configuring	a	KVM
This	recipe	covers	the	installing	of	virtualization	tools	and	packages	on	RHEL	7.

By	default,	a	RHEL	7	system	doesn’t	come	with	a	KVM	or	libvirt	preinstalled.	This	can
be	installed	in	three	ways:

Through	the	graphical	setup	during	the	system’s	setup
Via	a	kickstart	installation
Through	a	manual	installation	from	the	command	line

For	this	recipe,	you	should	know	how	to	install	packages	using	yum,	and	your	system
should	be	configured	to	have	access	to	the	default	RHEL	7	repository	(refer	to	Chapter	8,
Yum	and	Repositories,	for	more	information),	which	is	required	for	the	packages	that	we
will	use.

Alternatively,	you	could	install	packages	from	the	installation	media	using	rpm,	but	you’ll
need	to	figure	out	the	dependencies	yourself.

Check	the	dependencies	of	an	rpm	using	the	following	command:

~]#	rpm	-qpR	<rpm	file>

This	will	output	a	list	of	binaries,	libraries,	and	files	that	you	need	installed	prior	to
installing	this	package.

Check	which	package	contains	these	files	through	this	command:

~]#	rpm	-qlp	<rpm	package>

As	you	can	imagine,	this	is	a	tedious	job	and	can	take	quite	some	time	as	you	need	to
figure	out	every	dependency	for	every	package	that	you	want	to	install	in	this	way.



Getting	ready
To	install	a	KVM,	you	will	require	at	least	6	GB	of	free	disk	space,	2	GB	of	RAM,	and	an
additional	core	or	thread	per	guest.

Check	whether	your	CPU	supports	a	virtualization	flag	(such	as	SVM	or	VMX).	Some
hardware	vendors	disable	this	in	the	BIOS,	so	you	may	want	to	check	your	BIOS	as	well.
Run	the	following	command:

~]#	grep	-E	'svm|vmx'	/proc/cpuinfo

flags				:	...	vmx…

Alternatively,	you	can	run	the	following	command:

~]#	grep	-E	'svm|vmx'	/proc/cpuinfo

flags				:	...	svm…

Check	whether	the	hardware	virtualization	modules	(such	as	kvm_intel	and	kvm)	are
loaded	in	the	kernel	using	the	following	command:

~]#	lsmod	|	grep	kvm

kvm_intel													155648		0

kvm																			495616		1	kvm_intel



How	to	do	it…
We’ll	look	at	the	three	ways	of	installing	a	KVM	onto	your	system.

Manual	installation
This	way	of	installing	a	KVM	is	generally	done	once	the	base	system	is	installed	by	some
other	means.	You	need	to	perform	the	following	steps:

1.	 Install	the	software	needed	to	provide	an	environment	to	host	virtualized	guests	with
the	following	command:

~]#	yum	-y	install	qemu-kvm	qemu-img	libvirt

The	installation	of	these	packages	will	include	quite	a	lot	of	dependencies.

2.	 Install	additional	utilities	required	to	configure	libvirt	and	install	virtual	machines
by	running	this	command:

~]#	yum	-y	install	virt-install	libvirt-python	python-virthost	libvirt-

client

3.	 By	default,	the	libvirt	daemon	is	marked	to	autostart	on	each	boot.	Check
whether	it	is	enabled	by	executing	the	following	command:

~]#	systemctl	status	libvirtd

libvirtd.service	-	Virtualization	daemon

			Loaded:	loaded	(/usr/lib/systemd/system/libvirtd.service;	enabled)

			Active:	inactive

					Docs:	man:libvirtd(8)

											http://libvirt.org

4.	 If	for	some	reason	this	is	not	the	case,	mark	it	for	autostart	by	executing	the
following:

~]#	systemctl	enable	libvirtd

5.	 To	manually	stop/start/restart	the	libvirt	daemon,	this	is	what	you’ll	need	to
execute:

~]#	systemctl	stop	libvirtd

~]#	systemctl	start	libvirtd

~]#	systemctl	restart	libvirtd

Kickstart	installation
Installing	a	KVM	during	kickstart	offers	you	an	easy	way	to	automate	the	installation	of
KVM	instances.	Perform	the	following	steps:

1.	 Add	the	following	package	groups	to	your	kickstarted	file	in	the	%packages	section:

@virtualization-hypervisor

@virtualization-client

@virtualization-platform

@virtualization-tools



2.	 Start	the	installation	of	your	host	with	this	kickstart	file.

Graphical	setup	during	the	system’s	setup
This	is	probably	the	least	common	way	of	installing	a	KVM.	The	only	time	I	used	this	was
during	the	course	of	writing	this	recipe.	Here’s	how	you	can	do	this:

1.	 Boot	from	the	RHEL	7	Installation	media.
2.	 Complete	all	steps	besides	the	Software	selection	step.

3.	 Go	to	Software	Selection	to	complete	the	KVM	software	selection.
4.	 Select	the	Virtualization	host	radio	button	in	Base	Environment,	and	check	the

Virtualization	Platform	checkbox	in	Add-Ons	for	Selected	Environment:



5.	 Finalize	the	installation.
6.	 On	the	Installation	Summary	screen,	complete	any	other	steps	and	click	on	Begin

Installation.



See	also
To	set	up	your	repositories,	check	out	Chapter	8,	Yum	and	Repositories.

To	deploy	a	system	using	kickstart,	refer	to	Chapter	2,	Deploying	RHEL	“En	Masse”.

For	more	in-depth	information	about	using	libvirt,	go	to	http://www.libvirt.org/.

RHEL	7	has	certain	support	limits,	which	are	listed	at	these	locations:

https://access.redhat.com/articles/rhel-kvm-limits

https://access.redhat.com/articles/rhel-limits

http://www.libvirt.org/
https://access.redhat.com/articles/rhel-kvm-limits
https://access.redhat.com/articles/rhel-limits




Configuring	resources
Virtual	machines	require	CPUs,	memory,	storage,	and	network	access,	similar	to	physical
machines.	This	recipe	will	show	you	how	to	set	up	a	basic	KVM	environment	for	easy
resource	management	through	libvirt.

A	storage	pool	is	a	virtual	container	limited	by	two	factors:

The	maximum	size	allowed	by	qemu-kvm
The	size	of	the	disk	on	the	physical	machine

Storage	pools	may	not	exceed	the	size	of	the	disk	on	the	host.	The	maximum	sizes	are	as
follows:

virtio-blk	=	2^63	bytes	or	8	exabytes	(raw	files	or	disk)
EXT4	=	~	16	TB	(using	4	KB	block	size)
XFS	=	~8	exabytes



Getting	ready
For	this	recipe,	you	will	need	a	volume	of	at	least	2	GB	mounted	on	/vm	and	access	to	an
NFS	server	and	export.

We’ll	use	NetworkManager	to	create	a	bridge,	so	ensure	that	you	don’t	disable
NetworkManager	and	have	bridge-utils	installed.



How	to	do	it…
Let’s	have	a	look	into	managing	storage	pools	and	networks.

Creating	storage	pools
In	order	to	create	storage	pools,	we	need	to	provide	the	necessary	details	to	the	KVM	for	it
to	be	able	to	create	it.	You	can	do	this	as	follows:

1.	 Create	a	localfs	storage	pool	using	virsh	on	/vm,	as	follows:

~]#	virsh	pool-define-as	--name	localfs-vm	--type	

dir	--target	/vm

2.	 Create	the	target	for	the	storage	pool	through	the	following	command:

~#	mkdir	-p	/nfs/vm

3.	 Create	an	NFS	storage	pool	using	virsh	on	NFS	server:/export/vm,	as	follows:

~]#	virsh	pool-define-as	--name	nfs-vm	--type	network	--source-host	

nfsserver	--source-path	/export/vm	–target	/nfs/vm

4.	 Make	the	storage	pools	persistent	across	reboots	through	the	following	commands:

~]#	virsh	pool-autostart	localfs-vm

~]#	virsh	pool-autostart	nfs-vm

5.	 Start	the	storage	pool,	as	follows:

~]#	virsh	pool-start	localfs-vm

~]#	virsh	pool-start	nfs-vm

6.	 Verify	that	the	storage	pools	are	created,	started,	and	persistent	across	reboots.	Run
the	following	for	this:

~]#	virsh	pool-list

	Name																	State						Autostart

-------------------------------------------

	localfs-vm											active					yes

	nfs-vm															active					yes

Querying	storage	pools
At	some	point	in	time,	you	will	need	to	know	how	much	space	you	have	left	in	your
storage	pool.

Get	the	information	of	the	storage	pool	by	executing	the	following:

~]#	virsh	pool-info	--pool	<pool	name>

Name:											nfs-vm

UUID:											some	UUID

State:										running

Persistent:					yes

Autostart:						yes

Capacity:							499.99	GiB



Allocation:					307.33	GiB

Available:						192.66	GiB

As	you	can	see,	this	command	easily	shows	you	its	disk	space	allocation	and	availability.

Tip
Be	careful	though;	if	you	use	a	filesystem	that	supports	sparse	files,	these	numbers	will
most	likely	be	incorrect.	You	will	have	to	manually	calculate	the	sizes	yourself!

To	detect	whether	a	file	is	sparse,	run	ls	-lhs	against	the	file.	The	-s	command	will	show
an	additional	column	(the	first),	showing	the	exact	space	that	the	file	is	occupying,	as
follows:

~]#	ls	-lhs	myfile

121M	-rw-------.	1	root	root		30G	Jun	10	10:27	myfile

Removing	storage	pools
Sometimes,	storage	is	phased	out.	So,	it	needs	to	be	removed	from	the	host.

You	have	to	ensure	that	no	guest	is	using	volumes	on	the	storage	pool	before	proceeding,
and	you	need	to	remove	all	the	remaining	volumes	from	the	storage	pool.	Here’s	how	to
do	this:

1.	 Remove	the	storage	volume,	as	follows:

~]#	virsh	vol-delete	--pool	<pool	name>	--vol	<volume	name>

2.	 Stop	the	storage	pool	through	the	following	command:

~]#	virsh	pool-destroy	--pool	<pool	name>

3.	 Delete	the	storage	pool	using	the	following	command:

~]#	virsh	pool-delete	--pool	<pool	name>

Creating	a	virtual	network
Before	creating	the	virtual	networks,	we	need	to	build	a	bridge	over	our	existing	network
interface.	For	the	sake	of	convenience,	this	NIC	will	be	called	eth0.	Ensure	that	you
record	your	current	network	configuration	as	we’ll	destroy	it	and	recreate	it	on	the	bridge.

Unlike	the	storage	pool,	we	need	to	create	an	XML	configuration	file	to	define	the
networks.	There	is	no	command	similar	to	pool-create-as	for	networks.	Perform	the
following	steps:

1.	 Create	a	bridge	interface	on	your	network’s	interface,	as	follows:

~]#	nmcli	connection	add	type	bridge	autoconnect	yes	con-name	bridge-

eth0	ifname	bridge-eth0

2.	 Remove	your	NIC’s	configuration	using	the	following	command:

~]#	nmcli	connection	delete	eth0



3.	 Configure	your	bridge,	as	follows:

~]#	nmcli	connection	modify	bridge-eth0	ipv4.addresses	<ip	

address/cidr>	ipv4.method	manual

~#	nmcli	connection	modify	bridge-eth0	ipv4.gateway	<gateway	ip	

address>

~]#	nmcli	connection	modify	bridge-eth0	ipv4.dns	<dns	servers>

4.	 Finally,	add	your	NIC	to	the	bridge	by	executing	the	following:

~]#	nmcli	connection	add	type	bridge-slave	autoconnect	yes	con-name	

slave-eth0	ifname	eth0	master	bridge-eth0

For	starters,	we’ll	take	a	look	at	how	we	can	create	a	NATed	network	similar	to	the	one
that	is	configured	by	default	and	called	the	default:

1.	 Create	the	network	XML	configuration	file,	/tmp/net-nat.xml,	as	follows:

<network>

		<name>NATted</name>

		<forward	mode='nat'>

				<nat>

						<port	start='1024'	end='65535'/>

				</nat>

		</forward>

		<bridge	name='virbr0'	stp='on'	delay='0'/>

		<ip	address='192.168.0.1'	netmask='255.255.255.0'>

				<dhcp>

						<range	start='192.168.0.2'	end='192.168.0.254'/>

				</dhcp>

		</ip>

</network>

2.	 Define	the	network	in	the	KVM	using	the	preceding	XML	configuration	file.	Execute
the	following	command:

~]#	virsh	net-define	/tmp/net-nat.xml

Now,	let’s	create	a	bridged	network	that	can	use	the	network	bound	to	this	bridge	through
the	following	steps:

1.	 Create	the	network	XML	configuration	file,	/tmp/net-bridge-eth0.xml,	by	running
the	following:

<network>

				<name>bridge-eth0</name>

				<forward	mode="bridge"	/>

				<bridge	name="bridge-eth0"	/>

</network>

2.	 Create	the	network	in	the	KVM	using	the	preceding	file,	as	follows:

~]#	virsh	net-define	/tmp/net-bridge-eth0.xml



There’s	one	more	type	of	network	that	is	worth	mentioning:	the	isolated	network.	This
network	is	only	accessible	to	guests	defined	in	this	network	as	there	is	no	connection	to
the	“real”	world.

1.	 Create	the	network	XML	configuration	file,	/tmp/net-local.xml,	by	using	the
following	code:

<network>

		<name>isolated</name>

		<bridge	name='virbr1'	stp='on'	delay='0'/>

		<domain	name='isolated'/>

</network>

2.	 Create	the	network	in	KVM	by	using	the	above	file:

~]#	virsh	net-define	/tmp/net-local.xml

Creating	networks	in	this	way	will	register	them	with	the	KVM	but	will	not	activate	them
or	make	them	persistent	through	reboots.	So,	this	is	an	additional	step	that	you	need	to
perform	for	each	network.	Now,	perform	the	following	steps:

1.	 Make	the	network	persistent	across	reboots	using	the	following	command:

~]#	virsh	net-autostart	<network	name>

2.	 Activate	the	network,	as	follows:

~]#	virsh	net-start	<network	name>

3.	 Verify	the	existence	of	the	KVM	network	by	executing	the	following:

~]#	virsh	net-list	--all

	Name																	State						Autostart					Persistent

----------------------------------------------------------

	bridge-eth0										active					yes											yes

	default														inactive			no												yes

	isolated													active					yes											yes

	NATted															active					yes											yes

Removing	networks
On	some	occasions,	the	networks	are	phased	out;	in	this	case,	we	need	to	remove	the
network	from	our	setup.

Prior	to	executing	this,	you	need	to	ensure	that	no	guest	is	using	the	network	that	you	want
to	remove.	Perform	the	following	steps	to	remove	the	networks:

1.	 Stop	the	network	with	the	following	command:

~#	virsh	net-destroy	--network	<network	name>

2.	 Then,	delete	the	network	using	this	command:

~]#	virsh	net-undefine	--network	<network	name>



How	it	works…
It’s	easy	to	create	multiple	storage	pools	using	the	define-pool-as	command,	as	you	can
see.	Every	type	of	storage	pool	needs	more,	or	fewer,	arguments.	In	the	case	of	the	NFS
storage	pool,	we	need	to	specify	the	NFS	server	and	export.	This	is	done	by	specifying—
source-host	and—source-path	respectively.

Creating	networks	is	a	bit	more	complex	as	it	requires	you	to	create	a	XML	configuration
file.	When	you	want	a	network	connected	transparently	to	your	physical	networks,	you
can	only	use	bridged	networks	as	it	is	impossible	to	bind	a	network	straight	to	your
network’s	interface.



There’s	more…
The	storage	backend	created	in	this	recipe	is	not	the	limit.	Libvirt	also	supports	the
following	backend	pools:

Local	storage	pools
Local	storage	pools	are	directly	connected	to	the	physical	machine.	They	include	local
directories,	disks,	partitions,	and	LVM	volume	groups.	Local	storage	pools	are	not	suitable
for	enterprises	as	these	do	not	support	live	migration.

Networked	or	shared	storage	pools
Network	storage	pools	include	storage	shared	through	standard	protocols	over	a	network.
This	is	required	when	we	migrate	virtual	machines	between	physical	hosts.	The	supported
network	storage	protocols	are	Fibre	Channel-based	LUNs,	iSCSI,	NFS,	GFS2,	and	SCSI
RDMA.

By	defining	the	storage	pools	and	networks	in	libvirt,	you	ensure	the	availability	of	the
resources	for	your	guest.	If,	for	some	reason,	the	resource	is	unavailable,	the	KVM	will
not	attempt	to	start	the	guests	that	use	these	resources.

When	checking	out	the	man	page	for	virsh	(1),	you	will	find	a	similar	command	to	net-
define,	pool-define:	net-create,	and	pool-create	(and	pool-create-as).	The	net-
create	command,	similar	to	pool-create	and	pool-create-as,	creates	transient	(or
temporary)	resources,	which	will	be	gone	when	libvirt	is	restarted.	On	the	other	hand,
net-define	and	pool-define	(as	also	pool-define-as)	create	persistent	(or	permanent)
resources,	which	will	still	be	there	after	you	restart	libvirt.



See	also
You	can	find	out	more	on	libvirt	storage	backend	pools	at	https://libvirt.org/storage.html

More	information	on	libvirt	networking	can	be	found	at
http://wiki.libvirt.org/page/Networking

https://libvirt.org/storage.html
http://wiki.libvirt.org/page/Networking




Building	guests
After	you	install	and	configure	a	KVM	on	the	host	system,	you	can	create	guest	operating
systems.	Every	guest	is	defined	by	a	set	of	resources	and	parameters	stored	in	the	XML
format.	When	you	want	to	create	a	new	guest,	creating	such	an	XML	file	is	quite
cumbersome.	There	are	two	ways	to	create	a	guest:

Using	virt-manager
Using	virt-install

This	recipe	will	employ	the	latter	as	it	is	perfect	for	scripting,	while	virt-manager	is	a
GUI	and	not	very	well	suited	to	automate	things.



Getting	ready
In	this	recipe,	we	will	cover	a	generic	approach	to	create	a	new	virtual	machine	using	the
bridge-eth0	network	bridge	and	create	a	virtual	disk	on	the	localfs-vm	storage	pool,
which	is	formatted	as	QCOW2.	The	QCOW2	format	is	a	popular	virtual	disk	format	as	it
allows	thin	provisioning	and	snapshotting.	We	will	boot	the	RHEL	7	installation	media
located	on	the	localfs-iso	storage	pool	(rhel7-install.iso)	to	start	installing	a	new
RHEL	7	system.



How	to	do	it…
Let’s	create	some	guests	and	delete	them.

Create	a	guest
Let’s	first	create	a	disk	for	the	guest	and	then	create	the	guest	on	this	disk,	as	follows:

1.	 Create	a	10	GB	QCOW2	format	disk	in	the	localfs-vm	pool,	as	follows:

~]#	virsh	vol-create-as	--pool	localfs-vm	--name	rhel7_guest-vda.qcows2	

--format	qcows2	–capacity	10G

2.	 Create	the	virtual	machine	and	start	it	through	the	following	command:

~]#	virt-install	\

--hvm	\

--name	rhel7_guest	\

–-memory=2048,maxmemory=4096	\

--vcpus=2,maxvcpus=4	\

--os-type	linux	\

--os-variant	rhel7	\

--boot	hd,cdrom,network,menu=on	\

--controller	type=scsi,model=virtio-scsi	\

--disk	device=cdrom,vol=localfs-iso/rhel7-

install.iso,readonly=on,bus=scsi	\

--disk	device=disk,vol=localfs-vm/rhel7_guest-

vda.qcow2,cache=none,bus=scsi	\

--network	network=bridge-eth0,model=virtio	\

--graphics	vnc	\

--graphics	spice	\

--noautoconsole	\

--memballoon	virtio

Deleting	a	guest
At	some	point,	you’ll	need	to	remove	the	guests.	You	can	do	this	as	follows:

1.	 First,	ensure	that	the	guest	is	down	by	running	the	following:

~]#	virsh	list	–all

	Id				Name																											State

----------------------------------------------------

-					rhel7_guest																					shut	off

If	the	state	is	not	shut	off,	you	can	forcefully	shut	it	down:

~]#	virsh	destroy	--domain	<guest	name>

2.	 List	the	storage	volumes	in	use	by	your	guest	and	copy	this	somewhere:

~]#	virsh	domblklist	<guest	name>

Type							Device					Target					Source

------------------------------------------------

file							disk							vda								/vm/rhel7_guest-vda.qcow2

file							cdrom						hda								/iso/rhel7-install.iso



3.	 Delete	the	guest	through	the	following	command:

~]#	virsh	undefine	--domain	<guest	name>	--storage	vda

Adding	--remove-all-storage	to	the	command	will	wipe	off	the	data	on	the	storage
volumes	dedicated	to	this	guest	prior	to	deleting	the	volume	from	the	pool.



How	it	works…
The	virt-install	command	supports	creating	storage	volumes	(disks)	by	specifying	the
pool,	size,	and	format.	However,	if	this	storage	volume	already	exists,	the	application	will
fail.	Depending	on	the	speed	of	your	KVM	host	disks	(local	or	network)	and	the	size	of
the	guest’s	disks,	the	process	of	creating	a	new	disk	may	take	some	time	to	be	completed.
By	specifying	an	existing	disk	with	virt-install,	you	can	reuse	the	disk	should	you	need
to	reinstall	the	guest.	It	would	be	possible	to	only	create	the	disk	on	the	first	pass	and
change	your	command	line	appropriately	after	this.	However,	the	fact	remains	that	using
virsh	vol-create-as	gives	you	more	granular	control	of	what	you	want	to	do.

We’re	using	the	QCOW2	format	to	contain	the	guest’s	disk	as	it	is	a	popular	format	when
it	comes	to	storing	KVM	guest	disks.	This	is	because	it	supports	thin	provisioning	and
snapshotting.

When	creating	the	guest,	we	specify	both	the	maxmemory	option	for	memory	configuration
and	the	maxvcpus	option	for	vcpus	configuration.	This	will	allow	us	to	add	CPUs	and
RAM	to	the	guest	while	it	is	running.	If	we	do	not	assign	these,	we’ll	have	to	shut	down
the	system	before	being	able	to	change	the	XML	configuration	using	the	following
command:

~#	virsh	edit	<hostname>

As	you	can	see,	we’re	using	the	virtio	driver	for	any	hardware	(network,	disks,	or
balloon)	that	supports	it	as	it	is	native	to	the	KVM	and	is	included	in	the	RHEL	7	kernel.

Note
If,	for	some	reason,	your	guest	OS	doesn’t	support	virtio	drivers,	you	should	remove	the
--controller	option	of	the	command	line	and	the	bus	specification	from	the	--disk
option.

For	more	information	on	virtio	support,	go	to	http://wiki.libvirt.org/page/Virtio.

The	--memballoon	option	will	ensure	that	we	do	not	run	into	problems	when	we
overcommit	our	memory.	When	specific	guests	require	more	memory,	the	ballooning
driver	will	ensure	that	the	“idle”	guests’	memory	can	be	evenly	redistributed.

The	graphics	option	will	allow	you	to	connect	to	the	guest	through	the	host	using	either
VNC	(which	is	a	popular	client	to	control	remote	computers)	or	spice	(which	is	the	default
client	for	virt-manager).	The	configuration	for	both	VNC	and	spice	is	insecure,	though.
You	can	either	set	this	up	by	specifying	a	password—by	adding	password=<password>	to
each	graphics	stanza—or	by	editing	the	/etc/libvirt/qemu.conf	file	on	the	KVM	host,
which	will	be	applied	to	all	guests.

http://wiki.libvirt.org/page/Virtio


There’s	more…
In	this	recipe,	we	used	“local”	install	media	in	the	form	of	an	ISO	image	to	install	the
system.	However,	it	is	also	possible	to	install	a	guest	without	a	CD,	DVD,	or	an	ISO
image.	The	--location	installation	method	option	allows	you	to	specify	a	URI	that
contains	your	kernel/initrd	pair,	which	is	required	to	start	the	installation.

Using	--location	in	combination	with	--extra-args	will	allow	you	to	specify	kernel
command-line	arguments	to	pass	to	the	installer.	This	can	be	used,	for	instance,	to	pass	on
the	location	of	an	Anaconda	kickstart	file	for	automated	installs	and/or	specifying	your	IP
configuration	during	the	installer.



See	also
Check	the	man	page	of	virt-install	(1)	for	more	information	on	how	to	use	it	to	your
advantage.





Adding	CPUs	on	the	fly
Imagine	an	enterprise	having	to	correctly	add	dimension	to	all	their	systems	right	from	the
start.	In	my	experience,	this	is	very	difficult.	You	will	either	underdimension	it,	and	your
customers	will	complain	about	performance	at	some	point,	or	you	will	overdimension	it,
and	then	the	machine	will	sit	there,	idling	about,	which	is	not	optimal	either.	This	is	the
reason	hardware	vendors	have	come	up	with	hot-add	resources.	This	allows	a	system	to
have	its	CPUs,	memory,	and/or	disks	to	be	upgraded/increased	without	the	need	for	a
shutdown.	A	KVM	implements	a	similar	functionality	for	its	guests.	It	allows	you	to
increase	the	CPUs,	memory,	and	disks	on	the	fly.

The	actual	recipe	is	very	simple	to	execute,	but	there	are	some	prerequisites	to	be	met.



Getting	ready
In	order	to	be	able	to	add	CPUs	on	the	fly	to	a	guest,	the	guest’s	configuration	must
support	them.

There	are	two	ways	to	achieve	this:

It	must	be	created	with	the	max	option,	as	follows:

--vcpus	2,maxvcpus=4

You	can	set	the	maximum	using	virsh	(which	will	be	applied	at	the	next	boot)
through	the	following	command:

~]#	virsh	setvcpus	--domain	<guestname>	--count	<max	cpu	count>	--

config	--maximum

You	can	edit	the	guests’	XML	files,	as	follows:

~]#	virsh	edit	<guestname>

The	last	two	options	will	require	you	to	shut	down	and	boot	(not	reboot)	your	guest	as
these	commands	cannot	change	the	“live”	configuration.

The	guest’s	XML	file	must	contain	the	following	element	with	the	subsequent	attributes:

<domain	type='kvm'>

...

<vcpu	current='2'>4</vcpu>

...

</domain>

Here,	current	indicates	the	number	of	CPUs	in	use,	and	the	number	within	the	node
indicates	the	maximum	number	of	vCPUs	that	can	be	assigned.	This	number	can	be
increased	but	should	never	exceed	the	number	of	cores	or	threads	in	your	host.



How	to	do	it…
Let’s	add	some	CPUs	to	the	guest.

On	the	KVM	host,	perform	the	following	steps:
1.	 Get	the	maximum	number	vCPUs	that	you	can	assign,	as	follows:

~]#	virsh	dumpxml	<guestname>	|grep	vcpu

<vcpu	placement='static'	current='4'>8</vcpu>

2.	 Now,	set	the	new	number	of	vCPUs	through	this	command:

~]#	virsh	setvcpus	--domai

n	<guestname>	--count	<#	of	CPUs>	--live

On	the	KVM	guest,	perform	the	following:
1.	 Tell	your	guest	OS	there	are	more	CPUs	available	by	executing	the	following

command:

~]#	for	i	in	$(grep	-H	0	/sys/devices/system/cpu/cpu*/online	|	awk	-F:	

'{print	$1}');	do	echo	1	>	$i;	done





Adding	RAM	on	the	fly
As	with	CPUs,	the	possibility	to	add	memory	on	the	fly	is	an	added	value	in	mission-
critical	environments	where	downtime	can	literally	cost	a	company	millions	of	Euros.

The	recipe	presented	here	is	quite	simple,	similar	to	the	one	on	CPUs.	Here,	your	guest
needs	to	be	prepared	to	use	this	functionality	as	well.



Getting	ready
If	you	want	to	be	able	to	add	memory	on	the	fly	to	a	guest,	it	must	be	configured	to
support	it.	As	with	the	CPU,	this	has	to	be	activated.	There	are	three	ways	to	do	this:

The	guest	must	be	created	with	the	maxmem	option,	as	follows:

--memory	2G,maxmemory=4G

You	can	set	the	maximum	memory	using	the	virsh	command,	as	follows:

~]#	virsh	setmaxmem	--domain	<guestname>	--size	<max	mem>	--live

You	can	edit	the	guests’	XML	files:

~]#	virsh	edit	<guestname>

Of	course,	the	latter	2	option	requires	you	to	shut	down	the	guest,	which	is	not	always
possible	in	production	environments.

Ensure	that	the	guests’	XML	configuration	files	contain	the	following	elements	with	the
subsequent	attributes:

<domain	type='kvm'>

...

				<memory	unit='KiB'>4194304</memory>

				<currentMemory	unit='KiB'>2097152</currentMemory>

...

</domain>



How	to	do	it…
Let’s	increase	the	guest’s	memory.

On	the	KVM	host,	perform	the	following	steps:

1.	 Get	the	current	and	maximum	memory	allocation	for	a	guest,	as	follows:

~]#	virsh	dumpxml	srv00002	|grep	-i	memory

		<memory	unit='KiB'>4194304</memory>

		<currentMemory	unit='KiB'>4194304</currentMemory>

2.	 Set	the	new	amount	of	memory	for	the	guest	by	executing	the	following	command:

~]#	virsh	setmem	--domain	<guestname>	--size	<memory>	--live

On	the	KVM	guest,	perform	the	following:

1.	 Tell	your	guest	OS	about	the	memory	increase	through	this	command:

~]#	for	i	in	$(grep	-H	offline	/sys/devices/system/memory/memory*/state	

|	awk	-F:	'{print	$1}');	do	echo	online	>	$i;	done





Adding	disks	on	the	fly
This	recipe	includes	instructions	on	how	to	create	different	types	of	storage	volumes.
Storage	volumes	are	dedicated	storage	sets	aside	for	use	by	guests.



Getting	ready
There	is	not	a	lot	of	preparation	to	be	done	in	order	to	add	disks	to	your	guest,	which	is	in
contrast	to	adding	CPUs	and	RAM.

You	only	need	to	ensure	that	the	storage	pool	has	enough	free	disk	space	to	accommodate
the	new	disk.



How	to	do	it…
Similar	to	the	recipe	for	creating	guests,	you’ll	need	to	create	a	disk	first.	This	can	be	done
as	follows:

1.	 Let’s	create	a	raw	disk	in	the	localfs-vm	pool	that	is	30	GB	big	through	the
following	command:

~]#	virsh	vol-create-as	--pool	localfs-vm	--name	rhel7_guest-vdb.raw	--

format	raw	--capacity	30G

2.	 Look	up	the	path	of	the	newly	created	volume,	as	follows:

~]#	virsh	vol-list	--pool	localfs-vm	|awk	'$1	~	/^rhel7_guest-vdb.raw$/	

{print	$2}'

This	will	result	in	the	path	of	your	volume;	here’s	an	example:

/vm/rhel7_guest-vdb.raw

3.	 Attach	the	disk	to	the	guest,	as	follows:

~]#	virsh	attach-disk	--domain	<guestname>	--source	<the	above	path>	--

target	vdb	--cache	none	--persistent	–live



How	it	works…
Creating	a	disk	using	vol-create-as	may	take	some	time	depending	on	the	speed	of	your
host’s	disks	and	the	size	of	the	guest’s	disks.

We	will	look	up	the	path	of	the	newly	created	volume	as	it	is	a	required	argument	for	the
command	that	attaches	the	disk	to	the	guest.	In	most	cases,	you	won’t	need	to	do	this	as
you’ll	know	how	your	host	is	configured,	but	when	you	script	this	kind	of	functionality,
you	will	require	this	step.

Adding	a	disk	in	this	way	will	attach	a	disk	using	the	virtio	driver,	which,	as	specified
earlier,	is	optimized	for	use	with	KVMs.



There’s	more…
If,	for	some	reason,	the	original	guest	doesn’t	support	virtio	drivers	or	you	do	not	have
the	virtio	controller,	you	can	create	this	yourself.	Store	the	XML	configuration	file	as
/tmp/controller.xml	with	the	following	contents:

<controller	type='scsi'	model='virtio'	/>

You	can	find	this	out	by	checking	the	host’s	XML	file	for	the	preceding	statement.

Then,	import	the	XML	configuration	file,	as	follows:

~]#	virsh	attach-device	–domain	<guestname>	/tmp/controller.xml

This	will	allow	you	to	create	disks	using	virtio.





Moving	disks	to	another	storage
Moving	disks	around	is	part	of	the	life	cycle	of	a	guest.	Disks	in	the	storage	pools	(local	or
network)	may	fail	or	fill	up	due	to	bad	capacity	management.	Another	reason	may	be	the
cost	or	speed	of	the	disks	involved.	Sooner	or	later,	one	of	these	things	will	happen,	and
then	you	will	need	to	move	the	storage	somewhere	else.

Ordinarily,	one	would	have	to	shut	down	the	guest,	copy	the	storage	volume	file	elsewhere
(if	it	is	a	file),	wait,	update	the	machine’s	XML	configuration,	and	launch	it	again.
However,	in	today’s	mission-critical	enterprises,	this	may	not	always	be	possible.



Getting	ready
In	order	to	perform	this	copy,	you	need	the	source	and	destination	paths	of	the	disk.	You
can	get	the	source	path	by	checking	the	XML	configuration	file	or,	even	better,	by
querying	the	storage	volume	itself.	This	does	require	you	to	know	which	storage	pool	it	is
located	on.

Execute	the	following	command:

~]#	virsh	vol-list	--pool	<storage	pool>	|awk	'$1	~	/^<volume	name>$/	

{print	$2}'

Ensure	that	your	destination	is	an	existing	storage	pool;	if	not,	go	ahead	and	create	it.

Check	out	the	Configuring	resources	recipe	in	this	chapter	to	create	storage	pools.

If	you	can’t	remember	the	path	to	your	pool’s	location,	run	the	following:

~]#	virsh	pool-dumpxml	<poolname>	|awk	'/<path>.*<\/path>/	{print	$1}'



How	to	do	it…
Moving	disks	can	take	some	time,	so	ensure	that	you	have	plenty	of	time	available.
Perform	the	following	steps:

1.	 Dump	the	inactive	XML	configuration	file	for	the	guest,	as	follows:

~]#	virsh	dumpxml	--inactive	<guestname>	>	/tmp/<guestname>.xml

The	–-inactive	file	will	ensure	that	it	doesn’t	copy	any	temporary	information	that
is	irrelevant	to	the	guest.

2.	 Undefine	the	guest	through	the	following	command:

~]#	virsh	undefine	<guestname>

3.	 Copy	the	virtual	disk	to	another	location	by	executing	the	following:

~]#	virsh	blockcopy	--domain	<guestname>	--path	<original	path>	--dest	

<destination	path>	--wait	--verbose	–-pivot

4.	 Now,	edit	the	guest’s	XML	configuration	file	and	change	the	path	of	the	disk	to	the
new	location.

5.	 Redefine	the	guest,	as	follows:

~]#	virsh	define	/tmp/<guestname>.xml

6.	 Remove	the	source	disk	after	you	are	happy	with	the	results.	Run	the	following
command:

~]#	virsh	vol-delete	--pool	<poolname>	--vol	<volname>



How	it	works…
The	moving	of	disks	can	only	be	performed	on	transient	domains,	which	is	the	reason	we
execute	the	virsh	undefine	command.	In	order	to	be	able	to	make	it	persistent	again	after
the	transfer,	we	also	need	to	dump	the	XML	configuration	file	and	modify	the	storage
volume	path.

Moving	the	disk	does	two	things,	which	are:

Firstly,	it	copies	all	the	data	of	the	source	to	the	destination
Secondly,	when	the	copying	is	complete,	both	source	and	destination	remain	mirrored
until	it	is	either	canceled	with	blockjob	--abort	or	actually	switched	over	to	the
new	target	by	executing	the	blockjob	--pivot	command

The	preceding	blockcopy	command	does	everything	at	the	same	time.	The	--wait
command	will	not	give	control	back	to	the	user	until	the	command	fails	or	succeeds.	It	is
essentially	the	same	as	the	following:

~]#	virsh	blockcopy	--domain	<guestname>	--path	<source	path>	--dest	

<destination	path>

Monitor	the	progress	of	the	copy	by	executing	the	following:

~]#	watch	-n10	"virsh	blockjob	–domain	<guestname>	--path	<source	path>	--

info"

When	it’s	done,	execute	this:

~]#	virsh	blockjob	–domain	<guestname>	--path	<source	path>	--pivot



There’s	more…
It	is	also	possible	to	change	the	disk	format	on	the	fly,	by	specifying	the	--format
argument	with	the	format	that	you	want	to	convert	your	disk	into.	If	you	want	to	copy	it	to
a	block	device,	specify	--blockdev.





Moving	VMs
Moving	disks	will	mitigate	the	risk	of	failing	disks.	When	your	CPUs,	memory,	and	other
non-disk-related	components	start	failing,	you	have	no	other	option	but	to	move	the	guests
to	other	host(s).

The	recipe	for	this	task	is	rather	simple,	but	it’s	the	prerequisites	that	can	make	it	succeed
or	fail	miserably.



Getting	ready
The	prerequisites	for	this	recipe	are	quite	extended.

For	the	host,	the	following	are	the	requirements:

You’ll	need	to	have	access	to	shared	data.	Both	the	source	and	destination	KVM
machine	will	need	to	be	able	to	access	the	same	storage—for	example,	iSCSI,	NFS,
and	so	on.
Both	hosts	need	the	same	type	of	CPU—that	is,	Intel	or	AMD	(one	cannot	live
migrate	a	guest	from	a	host	with	Intel	CPUs	to	a	host	with	AMD	CPUs).
Both	hosts	need	to	be	installed	with	the	same	version	and	updates	of	libvirt.
Both	hosts	need	to	have	the	same	network	ports	open.
Both	hosts	must	have	identical	KVM	network	configurations	or	at	least	the	same
network	configurations	for	the	interfaces	used	by	the	guest.
Both	hosts	must	be	accessible	through	the	network.
It’s	a	good	idea	to	have	a	management	network	set	up	and	connected	to	the	two	hosts,
which	can	be	used	for	data	transfer.	This	will	cause	less	network	traffic	on	your
“production”	network	and	increase	the	overall	speed.
The	No	execution	bit	must	be	the	same	on	both	hosts.

The	requirement	for	the	guest	is:

The	cache=none	must	be	specified	for	all	block	devices	that	are	opened	in	write
mode.



How	to	do	it…
There	are	multiple	ways	to	migrate	hosts,	but	we	will	only	highlight	the	two	most
common	ways.

Live	native	migration	over	the	default	network
This	process	to	migrate	a	host	is	luckily	very	simple	and	can	be	summarized	in	one
command.

On	the	source	host,	execute	the	following:

~]#	virsh	migrate	--domain	<guestname>	--live	–-persistent	--undefinesource	

--verbose	--desturl	qemu+ssh://<host	2>/system

Live	native	migration	over	a	dedicated	network
It	is	possible	to	perform	the	migration	over	a	dedicated	network.	By	default,	this	will	use
the	first	network	it	finds	that	suits	it	needs.	You’ll	need	to	specify	the	listening	address	(on
the	host)	and	the	protocol.	This	requires	the	same	command	as	before,	but	we’ll	need	to
specify	the	local	listening	IP	address	and	protocol,	such	as	TCP.

On	the	source	host,	execute	the	following:

~]#	virsh	migrate	--domain	<guestname>	--live	–-persistent	--undefinesource	

--verbose	--desturl	qemu+ssh://<host	2>/system	tcp://<local	ip	address	on	

dedicated	network>/



How	it	works…
This	type	of	migration	is	called	a	“hypervisor	native”	transport.	The	biggest	advantage	of
this	type	of	migration	is	that	it	incurs	the	lowest	computational	cost	by	minimizing	the
number	of	data	copies	involved.

When	we	migrate	a	host,	it	performs	a	copy	of	the	memory	of	the	guest	to	the	new	host.
When	the	copying	is	successful,	it	kills	the	guest	on	the	source	host	and	starts	it	on	the
new	host.	As	the	memory	is	copied,	the	interruption	will	be	very	short-lived.



There’s	more…
Communication	between	the	two	hosts	is	over	SSH,	which	is	already	pretty	secure.
However,	it’s	also	possible	to	tunnel	the	data	over	an	even	more	strongly	encrypted
channel	by	specifying	the	--tunnelled	option.	This	will	impose	more	traffic	on	your
network	as	there	will	be	extra	data	communication	between	the	two	hosts.

The	--compress	option	can	help	you	out	if	you	wish	to	reduce	the	traffic	over	your
network,	but	this	will	increase	the	load	on	both	your	hosts	as	they	need	to
compress/decompress	the	data,	which,	in	turn,	may	impact	your	guests	performance.	If
time	is	not	of	the	essence	but	traffic	is,	this	is	a	good	solution.



See	also
There’s	very	good	and	in-depth	documentation	about	this	process	at
https://libvirt.org/migration.html.

https://libvirt.org/migration.html




Backing	up	your	VM	metadata
While	a	KVM	stores	some	of	the	resources’	configuration	on	the	disk	in	a	human	readable
format,	it	is	a	good	idea	to	query	libvirt	for	the	configuration	of	your	resources.



How	to	do	it…
In	this	recipe	we’ll	back	up	all	relevant	KVM	metadata	by	performing	the	following	steps:

Here’s	the	network	configuration:

~]#	for	i	in	$(virsh	net-list	--all	|	sed	-e	'1,2d'	|awk	'{print	$1}');	do	

\

				virsh	net-dumpxml	--network	$i	--inactive	>	/tmp/net-$i.xml;	\

done

Here’s	the	storage	configuration:

~]#	for	i	in	$(virsh	pool-list	--all	|	sed	-e	'1,2d'	|awk	'{print	$1}');	do	

\

				for	j	in	$(virsh	vol-list	--pool	$i	|sed	-e	'1,2d')	|	awk	'{print	$1}';	

do	\

								virsh	vol-dumpxml	--pool	$i	--vol	$j	>	/tmp/vol-$j.xml;	\

				done	\

				virsh	pool-dumpxml	--pool	$i	--inactive	>	/tmp/pool-$i.xml;	\

done

Here’s	the	guest	configuration:

~]#	for	i	in	$(virsh	list	--all	|	sed	-e	'1,2d'	|awk	'{print	$1}');	do	\

				virsh	dumpxml	--domain	$i	--inactive	>	/tmp/domain-$i.xml;	\

done



How	it	works…
The	virsh	net-dumpxml	command	allows	you	to	dump	the	precise	configuration	of	the
specified	network.	In	combination	with	virsh	net-list,	you	can	create	a	loop	that
enumerates	all	networks	and	dumps	them	on	the	file.	By	specifying	–-all,	you	will	export
all	networks,	even	those	that	are	not	active.	If	you	do	not	wish	to	back	up	the
configuration	for	nonactive	networks,	substitute	virsh	net-list	--all	with	virsh	net-
list.

Storage	pools	can	be	enumerated,	similarly	to	networks,	using	virsh	net-list.	However,
besides	the	individual	storage	pool	configuration,	we	are	also	interested	in	the
configuration	of	individual	storage	volumes.	Luckily,	both	implement	a	list	and	dumpxml
command!	If	you’re	not	interested	in	nonactive	pools,	you	can	omit	the	--all	option	with
virsh	pool-list.

Guests	can	similarly	be	enumerated	and	their	XML	configuration	dumped	using	dumpxml.
Again,	if	you’re	not	interested	in	nonactive	guests,	you	can	omit	the	--all	option	with
virsh	list.



See	also
The	man	page	for	virsh	(1)	lists	all	the	possible	options	for	the	commands	used	in	the
preceding	section.





Chapter	2.	Deploying	RHEL	“En	Masse”
In	this	chapter,	the	following	recipes	are	provided:

Creating	a	kickstart	file
Publishing	your	kickstart	file	using	httpd
Deploying	a	system	using	pxe
Deploying	a	system	using	a	custom	boot	ISO	file



Introduction
In	this	chapter,	you	will	find	the	answer	to	deploying	multiple	systems	with	the	same	basic
setup.	We	will	first	look	at	creating	an	answer	file,	the	kickstart	file	that	will	drive	the
unattended	installation.	Then,	we’ll	take	a	look	at	a	possible	way	to	make	this	kickstart	file
accessible	through	the	Apache	web	server.	Finally,	we’ll	discuss	two	common	ways	to
install	physical	and	virtual	machines.

This	chapter	assumes	that	you	have	a	working	knowledge	of	system	network
configuration	components,	such	as	DNS,	DNS	search,	IP	addresses,	and	so	on,	and	yum
repositories.





Creating	a	kickstart	file
A	kickstart	file	is	essentially	a	file	containing	all	the	necessary	answers	to	questions	that
are	asked	during	a	typical	install.	It	was	created	by	Red	Hat	in	response	to	the	need	for
automated	installs.	Using	kickstart,	an	admin	can	create	one	file	or	template	containing	all
the	instructions.

There	are	three	ways	to	create	a	kickstart	file:

By	hand
Using	the	GUI’s	system-config-kickstart	tool
Using	the	standard	Red	Hat	installation	program	Anaconda

In	this	recipe,	I	will	cover	a	combination	of	the	first	two.



Getting	ready
Before	we	can	get	down	to	the	nitty-gritty	of	generating	our	base	kickstart	file	or	template,
we	need	to	install	system-config-kickstart.	Run	the	following	command:

~#	yum	install	-y	system-config-kickstart



How	to	do	it…
First,	let’s	create	a	base	template	for	our	kickstart	file(s)	through	the	following	steps:

1.	 First,	launch	Kickstart	Configurator	from	the	menu.
2.	 Select	your	system’s	basic	configuration	from	the	Kickstart	Configurator	GUI.

The	following	screenshot	shows	the	options	you	can	set	in	the	Basic	Configuration
view:

3.	 Now,	select	the	installation	method	from	the	Kickstart	Configurator	GUI.

The	following	screenshot	shows	the	options	that	you	can	set	in	the	Installation
method	view:



4.	 Next,	substitute	the	values	for	HTTP	Server	and	HTTP	Directory	with	your	own
repositories.

5.	 Ensure	that	the	correct	settings	are	applied	for	Boot	Loader.

The	following	screenshot	shows	the	options	that	you	can	set	in	the	Boot	Loader
options	view:



6.	 Configure	your	disk	and	partition	information.	Simply	create	a	/boot	partition	and	be
done	with	it!	We’ll	edit	the	file	manually	for	better	customization.

The	following	screenshot	shows	the	options	you	can	set	in	the	Partition
Information	view:



7.	 Configure	your	network.	You	need	to	know	the	name	of	your	device	if	you	want	to
correctly	configure	your	network.

The	following	screenshot	shows	the	Network	Device	information	that	you	can	edit	in
the	Network	Configuration	view:



8.	 Now,	disable	Installing	a	graphical	environment.

We	want	as	few	packages	as	possible.	The	following	screenshot	shows	the	options
that	you	can	set	in	the	Display	Configuration	view:



9.	 Next,	perform	any	preinstallation	and/or	postinstallation	tasks	you	deem	necessary.	I
always	try	to	make	root	accessible	through	SSH	and	keys.

The	following	screenshot	shows	the	options	that	you	can	set	in	the	Post-Installation
Script	view:



10.	 Save	the	kickstart	file.
11.	 Open	the	file	using	your	favorite	editor	and	add	the	following	to	your	partition

section:

part	pv.01	--size=1	--ondisk=sda	--grow

volgroup	vg1	pv.01

logvol	/	--vgname=vg1	--size=2048	--name=root

logvol	/usr	--vgname=vg1	--size=2048	--name=usr

logvol	/var	--vgname=vg1	--size=2048	--name=var

logvol	/var/log	--vgname=vg1	--size=1024	--name=var

logvol	/home	--vgname=vg1	--size=512	--name=home

logvol	swap	--vgname=vg1	--recommended	--name=swap	–fstype=swap

12.	 Now,	add	the	following	script	to	your	network	line:

--hostname=rhel7

13.	 Add	the	following	script	before	%post:

%packages	–nobase

@core	--nodefaults

%end



14.	 Create	a	password	hash	for	use	in	the	next	step,	as	follows:

~]#	openssl	passwd	-1	"MySuperSecretRootPassword"

$1$mecIlXKN$6VRdaRkevjw9nngcMtRlO.

15.	 Save	the	resulting	file.	You	should	have	something	similar	to	this:

#platform=x86,	AMD64,	or	Intel	EM64T

#version=DEVEL

#	Install	OS	instead	of	upgrade

install

#	Keyboard	layouts

keyboard	'be-latin1'

#	Halt	after	installation

halt

#	Root	password

rootpw	--iscrypted	$1$mecIlXKN$6VRdaRkevjw9nngcMtRlO.

#	System	timezone

timezone	Europe/Brussels

#	Use	network	installation

url	–url="http://repo.example.com/rhel/7/os/x86_64/"

#	System	language

lang	en_US

#	Firewall	configuration

firewall	--disabled

#	Network	information

network		--bootproto=static	--device=eno1	--gateway=192.168.0.254	--

ip=192.168.0.1	--nameserver=192.168.0.253	--netmask=255.255.255.0	--

hostname=rhel7#	System	authorization	information

auth		--useshadow		--passalgo=sha512

#	Use	text	mode	install

text

#	SELinux	configuration

selinux	--enforcing

#	Do	not	configure	the	X	Window	System

skipx

#	System	bootloader	configuration

bootloader	--location=none

#	Clear	the	Master	Boot	Record

zerombr

#	Partition	clearing	information

clearpart	--all	--initlabel

#	Disk	partitioning	information

part	/boot	--fstype="xfs"	--ondisk=sda	--size=512

part	pv.01	--size=1	--ondisk=sda	--grow

volgroup	vg1	pv.01

logvol	/	--vgname=vg1	--size=2048	--name=root	--fstype=xfs

logvol	/usr	--vgname=vg1	--size=2048	--name=usr	--fstype=xfs

logvol	/var	--vgname=vg1	--size=2048	--name=var	--fstype=xfs

logvol	/var/log	--vgname=vg1	--size=1024	--name=var	--fstype=xfs

logvol	/home	--vgname=vg1	--size=512	--name=home	--fstype=xfs

logvol	swap	--vgname=vg1	--recommended	--name=swap	--fstype=swap

%packages	--nobase

@core	--nodefaults

%end



%post

mkdir	-p	~/.ssh

chmod	700	~/.ssh

#	Let's	download	my	authorized	keyfile	from	my	key	server…

curl	-O	~/.ssh/authrorized_keys	

https://keys.example.com/authorized_keys

chmod	600	~/.ssh/authrorized_keys

%end



How	it	works…
The	system-config-kickstart	is	used	to	generate	a	minimal	install	as	any	addition
would	be	more	complex	than	the	tool	can	handle	and	we	need	to	be	able	to	add	them
manually/dynamically	afterwards.	The	fewer	the	number	of	packages	the	better	as	you’ll
need	to	apply	bug	and	security	fixes	for	every	package	installed.

Although	the	GUI	allows	us	to	configure	the	brunt	of	the	options	we	need,	I	prefer
tweaking	some	portions	of	them	manually	as	they	are	not	as	straightforward	through	the
GUI.

Step	9	adds	the	necessary	information	to	use	the	rest	of	the	disk	as	an	LVM	physical
volume	and	partitions	it	so	that	big	filesystems	can	easily	be	extended	if	necessary.

The	--recommended	argument	for	the	SWAP	partition	creates	a	swap	partition	as	per	the
swap	size	recommendations	set	by	Red	Hat.

Step	10	adds	a	hostname	for	your	host.	If	you	do	not	specify	this,	the	system	will	attempt
to	resolve	the	IP	address	and	use	this	hostname.	If	it	cannot	determine	any	hostname,	it
will	use	localhost.localdomain	as	fqdn.

Step	11	ensures	that	only	the	core	system	is	installed	and	nothing	more,	so	you	can	build
from	here.

If	you	want	to	know	exactly	which	packages	are	installed	in	the	core	group,	run	the
following	command	on	an	RHEL	7	system:

~#	yum	groupinfo	core



There’s	more…
I	didn’t	cover	one	option	that	I	mentioned	in	the	Getting	Ready	section	as	it	is
automatically	generated	when	you	install	a	system	manually.	The	file	can	be	found	after
installation	at	/root/anaconda-ks.cfg.	Instead	of	using	the	system-config-kickstart
tool	to	generate	a	kickstart	file,	you	can	use	this	file	to	get	started.

Starting	with	RHEL	7,	kickstart	deployments	support	add-ons.	These	add-ons	can	expand
the	standard	kickstart	installation	in	many	ways.	To	use	kickstart	add-ons,	just	add	the
%addon	addon_name	option	followed	by	%end,	as	with	the	%pre	and	%post	sections.
Anaconda	comes	with	the	kdump	add-on,	which	you	can	use	to	install	and	configure	kdump
during	the	installation	by	providing	the	following	section	in	your	kickstart	file:

%addon	com_redhat_kdump	--enable	--reserve-mb=auto

%end



See	also
For	more	detailed	information	about	kickstart	files,	refer	to	the	website
https://github.com/rhinstaller/pykickstart/blob/master/docs/kickstart-docs.rst.

For	the	consistent	network	device	naming,	refer	to
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-
Consistent_Network_Device_Naming.html.

https://github.com/rhinstaller/pykickstart/blob/master/docs/kickstart-docs.rst
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-Consistent_Network_Device_Naming.html




Publishing	your	kickstart	file	using	httpd
You	can	save	your	kickstart	file	to	a	USB	stick	(or	any	other	medium),	but	this	becomes	a
bit	cumbersome	if	you	need	to	install	multiple	systems	in	different	locations.

Loading	kickstart	files	over	the	network	from	the	kernel	line	during	an	install	only
supports	NFS,	HTTP,	and	FTP.

In	this	recipe,	I	choose	HTTP	as	it	is	a	common	technology	within	companies	and	easy	to
secure.



How	to	do	it…
Let’s	start	by	installing	Apache	httpd,	as	follows:

1.	 Install	Apache	httpd	through	the	following	command:

~]#	yum	install	-y	httpd

2.	 Enable	and	start	the	httpd	daemon,	as	follows:

~]#	systemctl	enable	httpd

ln	-s	'/usr/lib/systemd/system/httpd.service'	

'/etc/systemd/system/multi-user.target.wants/httpd.service'

~]#	systemctl	start	httpd

3.	 Create	a	directory	to	contain	the	kickstart	file(s)	by	running	the	following	command:

~]#	mkdir	-p	/var/www/html/kickstart

~]#	chown	apache:apache	/var/www/html/kickstart

~]#	chmod	750	/var/www/html/kickstart

4.	 Copy	your	kickstart	file	to	this	new	location:

~]#	cp	kickstart.ks	/var/www/html/kickstart/

5.	 In	a	browser,	browse	to	the	kickstart	directory	on	your	web	server,	as	shown	in	the
following	screenshot:



There’s	more…
In	this	way,	you	can	create	multiple	kickstart	files,	which	will	be	available	from	anywhere
in	your	network.

Additionally,	you	could	use	CGI-BIN,	PHP,	or	any	other	technology	that	has	an	Apache
module	to	dynamically	create	kickstart	files	based	on	the	arguments	that	you	specify	in	the
URL.

An	alternative	to	creating	your	own	solution	for	dynamic	kickstart	files	is	Cobbler.



See	also
For	more	info	on	Cobbler,	go	to	http://cobbler.github.io/.

http://cobbler.github.io/




Deploying	a	system	using	PXE
PXE,	or	Preboot	eXecution	Environment,	allows	you	to	instruct	computers	to	boot	using
network	resources.	This	allows	you	to	control	a	single	source	to	install	servers	without	the
need	to	physically	insert	cumbersome	DVDs	or	USB	sticks.



Getting	ready
For	this	recipe,	you	will	need	a	fully	working	RHEL	7	repository.



How	to	do	it…
With	this	recipe,	we’ll	install	and	configure	PXE	boots	from	the	RHEL	7	installation
media,	as	follows:

1.	 Install	the	necessary	packages	using	the	following	command:

~]#	yum	install	-y	dnsmasq	syslinux	tftp-server

2.	 Configure	the	DNSMASQ	server	by	editing	/etc/dnsmasq.conf,	as	follows:

#	interfaces	to	bind	to

interface=eno1,lo

#	the	domain	for	this	DNS	server

domain=rhel7.lan

#	DHCP	lease	range

dhcp-range=	eno1,192.168.0.3,192.168.0.103,255.255.255.0,1h

#	PXE	–	the	address	of	the	PXE	server

dhcp-boot=pxelinux.0,pxeserver,192.168.0.1

#	Gateway

dhcp-option=3,192.168.0.254

#	DNS	servers	for	DHCP	clients(your	internal	DNS	servers,	and	one	of	

Google's	DNS	servers)

dhcp-option=6,192.168.1.1,	8.8.8.8

#	DNS	server	to	forward	DNS	queries	to

server=8.8.4.4

#	Broadcast	Address

dhcp-option=28,192.168.0.255

pxe-prompt="Press	F1	for	menu.",	60

pxe-service=x86_64PC,	"Install	RHEL	7	from	network",	pxelinux

enable-tftp

tftp-root=/var/lib/tftpboot

3.	 Enable	and	start	dnsmasq	using	the	following:

~]#	systemctl	enable	dnsmasq

~]#	systemctl	start	dnsmasq

4.	 Now,	enable	and	start	the	xinet	daemon	by	running	the	following:

~]#	systemctl	enable	xinetd

~]#	systemctl	start	xinetd

5.	 Enable	the	tftp	server’s	xinet	daemon,	as	follows:

~]#	sed	-i	'/disable/	s/yes/no/'	/etc/xinetd.d/tftp

6.	 Copy	the	syslinux	boot	loaders	to	the	tftp	server’s	boot	directory	by	executing	the
following	command:

~]#	cp	-r	/usr/share/syslinux/*	/var/lib/tftpboot

7.	 Next,	create	the	PXE	configuration	directory	using	this	command:

~]#	mkdir	/var/lib/tftpboot/pxelinux.cfg

8.	 Then,	create	the	PXE	configuration	file,	as	follows:



/var/lib/tftpboot/pxelinux.cfg/default.

default	menu.c32

prompt	0

timeout	300

ONTIMEOUT	local

menu	title	PXE	Boot	Menu

label	1

		menu	label	^1	-	Install	RHEL	7	x64	with	Local	http	Repo

		kernel	rhel7/vmlinuz

		append	initrd=rhel7/initrd.img	

method=http://repo.critter.be/rhel/7/os/x86_64/	devfs=nomount	

ks=http://kickstart.critter.be/kickstart.ks

label	2

		menu	label	^2	-	Boot	from	local	media

9.	 Copy	initrd	and	kernel	from	the	RHEL	7	installation	media	to
/var/lib/tftpboot/rhel7/,	and	run	the	following	commands:

~]#	mkdir	/var/lib/tftpboot/rhel7

~]#	mount	-o	loop	/dev/cdrom	/mnt

~]#	cp	/mnt/images/pxeboot/{initrd.img,vmlinuz}	

/var/lib/tftpboot/rhel7/

~]#	umount	/mnt

10.	 Open	the	firewall	on	your	server	using	these	commands	(however,	this	may	not	be
necessary):

~]#	firewall-cmd	--add-service=dns	--permanent

~]#	firewall-cmd	--add-service=dhcp	--permanent

~]#	firewall-cmd	--add-service=tftp	--permanent

~]#	firewall-cmd	--reload

11.	 Finally,	launch	your	client,	configure	it	to	boot	from	the	network,	and	select	the	first
option	shown	in	the	following	figure:





How	it	works…
DNSMASQ	takes	care	of	pointing	booting	systems	to	the	tftp	server	by	providing	the
enable-tftp	option	in	the	dnsmasq	configuration	file.

Syslinux	is	needed	to	provide	the	necessary	binaries	to	boot	from	the	network.

The	tftp	server	itself	provides	access	to	the	syslinux	files,	RHEL	7	kernel,	and	initrd
for	the	system	to	boot	from.

The	PXE	configuration	file	provides	the	necessary	configuration	to	boot	a	system,
including	a	kickstart	file	that	automatically	installs	your	system.



There’s	more…
This	recipe’s	base	premise	is	that	you	do	not	have	a	DHCP	server	installed.	In	most
companies,	you	already	have	DHCP	services	available.

If	you	have	an	ISC-DHCP	server	in	place,	this	is	what	you	need	to	add	to	the	subnet
definition(s)	you	want	to	allow	in	PXE:

		next-server	<ip	address	of	TFTP	server>;

		filename	"pxelinux.0";



See	also
Check	out	Chapter	8,	Yum	and	Repositories	to	set	up	an	RHEL	7	repository	from	the
installation	media.





Deploying	a	system	using	a	custom	boot
ISO	file
PXE	is	a	widely	used	way	to	deploy	systems,	and	so	are	ISO’s.	PXE	may	not	always	be	at
hand	because	of	security,	hardware	availability,	and	so	on.

Many	hardware	manufacturers	provide	remote	access	to	their	systems	without	an	OS
installed.	HP	has	iLO,	while	Dell	has	RIB.	The	advantage	of	these	“remote”	control
solutions	is	that	they	also	allow	you	to	mount	“virtual”	media	in	the	form	of	an	ISO.



How	to	do	it…
Red	Hat	provides	boot	media	as	ISO	images,	which	you	can	use	to	boot	your	systems
from.	We	will	create	a	custom	ISO	image,	which	will	allow	us	to	boot	a	system	in	a
similar	way.

Let’s	create	an	ISO	that	you	can	mount	as	virtual	media,	write	a	CD-ROM,	or	even	use	dd
to	write	the	contents	on	a	USB	stick/disk	through	the	following	steps:

1.	 Install	the	required	packages	to	create	ISO9660	images,	as	follows:

~]#	yum	install	-y	genisoimage

2.	 Mount	the	RHEL	7	DVD’s	ISO	image	by	executing	the	following	command:

~]#	mount	-o	loop	/path/to/rhel-server-7.0-x86_64-dvd.iso	/mnt

3.	 Copy	the	required	files	for	the	custom	ISO	from	the	RHEL	7	media	via	the	following
commands:

~]#	mkdir	-p	/root/iso

~]#	cp	-r	/mnt/isolinux	/root/iso

~]#	umount	/mnt

4.	 Now,	unmount	the	RHEL	7	DVD’s	ISO	image	by	running	the	following:

~]#	umount	/mnt

5.	 Next,	remove	the	isolinux.cfg	file	using	the	following	command:

~]#	rm	-f	/root/iso/isolinux/isolinux.cfg

6.	 Create	a	new	isolinux.cfg	file,	as	follows:

default	vesamenu.c32

timeout	600

display	boot.msg

menu	clear

menu	background	splash.png

menu	title	Red	Hat	Enterprise	Linux	7.0

menu	vshift	8

menu	rows	18

menu	margin	8

menu	helpmsgrow	15

menu	tabmsgrow	13

menu	color	sel	0	#ffffffff	#00000000	none

menu	color	title	0	#ffcc000000	#00000000	none

menu	color	tabmsg	0	#84cc0000	#00000000	none

menu	color	hotsel	0	#84cc0000	#00000000	none

menu	color	hotkey	0	#ffffffff	#00000000	none

menu	color	cmdmark	0	#84b8ffff	#00000000	none

menu	color	cmdline	0	#ffffffff	#00000000	none

label	linux

		menu	label	^Install	Red	Hat	Enterprise	Linux	7.0

		kernel	vmlinuz

		append	initrd=initrd.img	ks=http://kickstart.critter.be/kickstart.ks	



text

label	local

		menu	label	Boot	from	^local	drive

		localboot	0xffff

menu	end

7.	 Now,	create	the	ISO	by	executing	the	following	command:

~]#	cd	/root/iso

~/iso]#	mkisofs	-o	../boot.iso	-b	isolinux/isolinux.bin	-c	

isolinux/boot.cat	-no-emul-boot	-boot-load-size	4	-boot-info-table	-J	-

r	.

More	information	on	the	options	used	with	the	mkisofs	command	can	be	found	in	the
man	pages	for	mkisofs(1).

The	following	image	shows	the	progress	on	creating	a	custom	ISO:

8.	 Then,	use	the	ISO	to	install	a	guest	on	a	KVM	server,	as	shown	in	the	following
commands:

~]#	virsh	vol-create-as	--pool	localfs-vm	--name	rhel7_guest-da.qcows2	

--format	qcows2	–capacity	10G

~]#	virt-install	\



--hvm	\

--name	rhel7_guest	\

–-memory	2G,maxmemory=4G	\

--vcpus	2,max=4	\

--os-type	linux	\

--os-variant	rhel7	\

--boot	hd,cdrom,network,menu=on	\

--controller	type=scsi,model=virtio-scsi	\

--disk	device=cdrom,vol=iso/boot.iso,readonly=on,bus=scsi	\

--disk	device=disk,vol=localfs-vm/rhel7_guest-

vda.qcow2,cache=none,bus=scsi	\

--network	network=bridge-eth0,model=virtio	\

--graphics	vnc	\

--graphics	spice	\

--noautoconsole	\

--memballoon	virtio

The	following	screenshot	shows	the	console	when	booted	with	the	custom	ISO
image:



How	it	works…
Using	the	RHEL	7	installation	media,	we	created	a	new	boot	ISO	that	allows	us	to	install	a
new	system.	The	ISO	can	be	used	to	either	burn	a	CD,	with	the	dd	tool	to	be	copied	on	a
USB	stick,	or	to	mount	as	virtual	media.	The	way	to	mount	this	ISO	as	virtual	media	is
different	on	each	hardware	platform,	so	this	recipe	shows	you	how	to	install	it	using
KVM.





Chapter	3.	Configuring	Your	Network
The	recipes	we’ll	be	covering	in	this	chapter	are	as	follows:

Creating	a	VLAN	interface
Creating	a	teamed	interface
Creating	a	bridge
Configuring	IPv4	settings
Configuring	your	DNS	resolvers
Configuring	static	network	routes



Introduction
This	chapter	will	attempt	to	explain	how	to	use	NetworkManager,	which	is	the	default
network	configuration	tool	and	daemon	in	RHEL	7.	It	is	a	set	of	tools	that	makes
networking	simple	and	straightforward.

Configuring	your	network	can	be	hard	at	times,	especially	when	using	the	more	exotic
configuration	options	in	combination	with	well-known	configuration	scripts.	The
NetworkManager	allows	you	to	easily	configure	your	network	without	needing	to	edit	the
configuration	files	manually.

Tip
You	can	still	edit	the	network	configuration	files	located	in	/etc/sysconfig/network-
scripts	using	your	preferred	editor;	however,	by	default,	NetworkManager	does	not	notice
any	changes	you	make.	You’ll	need	to	execute	the	following	after	editing	the	files	located
in	the	preceding	location:

~]#	nmcli	connection	reload

This	is	not	enough	to	apply	the	changes	immediately.	You’ll	need	to	bring	down	and	up
the	connection	or	reboot	the	system.

Alternatively,	you	can	edit	/etc/NetworkManager/NetworkManager.conf	and	add
monitor-connection-files=yes	to	the	[main]	section.	This	will	cause	NetworkManager
to	pick	up	the	changes	and	apply	them	immediately.

Within	these	recipes,	you	will	get	an	overview	on	how	to	configure	your	network	using
the	NetworkManager	tools	(nmcli	and	nmtui)	and	kickstart	files.





Creating	a	VLAN	interface
VLANs	are	isolated	broadcast	domains	that	run	over	a	single	physical	network.	They
allow	you	to	segment	a	local	network	and	also	to	“stretch”	a	LAN	over	multiple	physical
locations.	Most	enterprises	implement	this	on	their	network	switching	environment,	but	in
some	cases,	the	tagged	VLANs	reach	your	server.



Getting	ready
In	order	to	configure	a	VLAN,	we	need	an	established	network	connection	on	the	local
network	interface.



How	to	do	it…
For	the	sake	of	ease,	our	physical	network	interface	is	called	eth0.	The	VLAN’s	ID	is	1,
and	the	IPv4	address	is	10.0.0.2,	with	a	subnet	mask	of	255.0.0.0	and	a	default	gateway
of	10.0.0.1.

Creating	the	VLAN	connection	with	nmcli
With	nmcli,	we	need	to	first	create	the	connection	and	then	activate	it.	Perform	the
following	steps:

1.	 Create	a	VLAN	interface	using	the	following	command:

~]#	nmcli	connection	add	type	vlan	dev	eth0	id	1	ip4	10.0.0.2/8	gw4	

10.0.0.1

Connection	'vlan'	(4473572d-26c0-49b8-a1a4-c20b485dad0d)	successfully	

added.

~]#

2.	 Now,	via	this	command,	activate	the	connection:

~]#	nmcli	connection	up	vlan

Connection	successfully	activated	(D-Bus	active	path:	

/org/freedesktop/NetworkManager/ActiveConnection/7)

~]#

3.	 Check	your	network	connection,	as	follows:

~]#	nmcli	connection	show

~]#	nmcli	device	status

~]#	nmcli	device	show	eth0.1

Here	is	an	example	output	of	the	preceding	commands:

Creating	the	VLAN	connection	with	nmtui
The	nmtui	tool	is	a	text	user	interface	to	NetworkManager	and	is	launched	by	executing	the



following	in	a	terminal:

~]#	nmtui

This	will	bring	up	the	following	text-based	interface:

Navigation	is	done	using	the	Tab	and	arrow	keys,	and	the	selection	is	done	by	pressing	the
Enter	key.	Now,	you	need	to	do	the	following:

1.	 Go	to	Edit	a	connection	and	select	<OK>.	The	following	screen	will	appear:



2.	 Next,	select	<Add>	and	the	VLAN	option.	Confirm	by	Selecting	<Create>:

3.	 Enter	the	requested	information	in	the	following	form	and	commit	by	selecting
<OK>:



Your	new	VLAN	interface	will	now	be	listed	in	the	connections	list:



Creating	the	VLAN	connection	with	kickstart
Let’s	explore	what	you	need	to	add	to	your	kickstart	script	in	order	to	achieve	the	same
result	as	in	the	preceding	section:

1.	 Look	for	the	configuration	parameters	within	your	kickstart	file	with	the	following
command:

...

network	--device=eth0…

2.	 Replace	it	with	the	following	configuration	parameters:

network	--device=eth0	--vlanid=1	--bootproto=static	--ip=10.0.0.2	--

netmask=255.0.0.0	--gateway=10.0.0.1



There’s	more…
The	command	line	to	create	a	VLAN	with	nmcli	is	pretty	basic	as	it	uses	default	values
for	every	piece	of	information	that	is	missing.	To	make	sure	that	everything	is	created	to
your	wishes,	it	is	wise	to	also	use	con-name	and	ifname.	These	will	respectively	name
your	connection	and	the	device	you’re	creating.	Take	a	look	at	the	following	command:

~]#	nmcli	connection	add	type	vlan	con-name	vlan1	ifname	eth0.1	dev	eth0	id	

1	ip4	10.0.0.2/8	gw4	10.0.0.1

This	will	create	the	vlan.1	connection	with	eth0	as	the	parent	and	eth0.1	as	the	target
device.

As	with	nmcli	and	nmtui,	you	can	name	your	VLAN	connection	in	kickstart;	you	only
need	to	specify	the	--interfacename	option.	If	you	cannot	find	any	previous	network
configuration	in	your	kickstart	file,	just	add	the	code	to	your	kickstart	file.



See	also
The	nmcli	tool	lacks	a	man	page,	but	execute	the	following	command	for	for	more	options
to	create	VLAN	connections:

~]#	nmcli	con	add	help

For	more	kickstart	information	on	networks,	check	the	following	URL:
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/sect-kickstart-syntax.html.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/sect-kickstart-syntax.html




Creating	a	teamed	interface
Interface	teaming,	interface	bonding,	and	link	aggregation	are	all	the	same.	It	was	already
implemented	in	the	kernel	by	way	of	the	bonding	driver.	The	team	driver	provides	a
different	mechanism	(from	bonding)	to	team	multiple	network	interfaces	into	a	single
logical	one.



Getting	ready
To	set	up	a	teamed	interface,	we’ll	need	more	than	one	network	interface.



How	to	do	it…
For	the	sake	of	ease,	our	physical	network	interfaces	are	called	eth1	and	eth2.	The	IPv4
address	for	the	team	interface	is	10.0.0.2,	with	a	subnet	mask	of	255.0.0.0	and	a	default
gateway	of	10.0.0.1.

Creating	the	teamed	interface	using	nmcli
Using	this	approach,	we’ll	need	to	create	the	team	connection	and	two	team	slaves	and
activate	the	connection,	as	follows:

1.	 Use	the	following	command	line	to	create	the	team	connection:

~]#	nmcli	connection	add	type	team	ip4	10.0.0.2/8	gw4	10.0.0.1

Connection	'team'	(cfa46865-deb0-49f2-9156-4ca5461971b4)	successfully	

added.

~]#

2.	 Add	eth1	to	the	team	by	executing	the	following:

~]#	nmcli	connection	add	type	team-slave	ifname	eth1	master	team

Connection	'team-slave-eth1'	(01880e55-f9a5-477b-b194-73278ef3dce5)	

successfully	added.

~]#

3.	 Now,	add	eth2	to	the	team	by	running	the	following	command:

~]#	nmcli	connection	add	type	team-slave	ifname	eth2	master	team

Connection	'team-slave-eth2'	(f9efd19a-905f-4538-939c-3ea7516c3567)	

successfully	added.

~]#

4.	 Bring	the	team	up,	as	follows:

~]#	nmcli	connection	up	team

Connection	successfully	activated	(master	waiting	for	slaves)	(D-Bus	

active	path:	/org/freedesktop/NetworkManager/ActiveConnection/12)

~]#

5.	 Finally,	check	your	network	connections	through	the	following	commands:

~]#	nmcli	connection	show

~]#	nmcli	device	status

~]#	nmcli	device	show	nm-team

Here’s	an	example	output	of	the	preceding	commands:



Creating	the	teamed	interface	using	nmtui
Let’s	fire	up	nmtui	and	add	a	connection	through	the	following	steps:

1.	 First,	create	a	team	connection	by	selecting	<Add>:

2.	 Enter	the	requested	information	in	the	following	form	and	click	on	<Add>	for	every
interface	to	add:



3.	 Next,	select	<Add>	within	team	slaves	to	add	an	interface	by	filling	out	the	form	and
selecting	<OK>.	Repeat	this	for	every	physical	interface:



4.	 Now,	select	<OK>	to	create	the	team	interface:



Your	new	team	interface	will	now	be	listed	in	the	connections	list,	as	shown	in	the
following	screenshot:



Creating	the	teamed	interface	with	kickstart
Open	your	kickstart	file	with	your	favorite	editor	and	perform	the	following	steps:

1.	 Look	for	the	network	configuration	parameters	within	your	kickstart	file	by
running	the	following	command:

...

network	--device=eth0…

2.	 Next,	add	the	following	configuration	parameters:

network	--device=team0	--teamslaves="eth1,eth2"	--bootproto=static	--

ip=10.0.0.2	--netmask=255.0.0.0	--gateway=10.0.0.1



There’s	more…
Teaming	comes	with	runners—a	way	of	load-sharing	backup	methods	that	you	can	assign
to	your	team:

active-backup:	In	this,	one	physical	interface	is	used,	while	the	others	are	kept	as
backup
broadcast:	In	this,	data	is	transmitted	over	all	physical	interfaces’	selectors
LACP:	This	implements	802.3ad	Link	Aggregation	Control	Protocol
loadbalance:	This	performs	active	Tx	load	balancing	and	uses	a	BPF-based	Tx	port
round-robin:	The	data	is	transmitted	over	all	physical	interfaces	in	turn

These	can	also	be	defined	upon	creation	using	either	of	the	presented	options	here:

nmcli
Add	team.config	"{\"runner\":{\"name\":	\"activebackup\"}}"	to	your	command
to	create	your	team	interface,	and	substitute	activebackup	with	the	runner	that	you	wish
to	use.

nmtui
Fill	out	the	JSON	configuration	field	for	the	team	interface	with	{"runner":	{"name":
"activebackup"}},	and	substitute	activebackup	with	the	runner	that	you	wish	to	use.



kickstart
Add	--teamconfig="{\"runner\":{\"name\":	\"activebackup\"}}"	to	your	team
device	line,	and	substitute	activebackup	with	the	runner	that	you	wish	to	use.

The	options	provided	to	create	the	team	interface	are	bare	bones	using	nmcli.	If	you	wish
to	add	a	connection	and	interface	name,	use	con-name	and	ifname,	respectively,	in	this
way:



~]#	nmcli	connection	add	type	team	con-name	team0	ifname	team0	ip4	

10.0.0.2/8	gw4	10.0.0.1

Connection	'team0'	(e1856313-ecd4-420e-96d5-c76bc00794aa)	successfully	

added.

~]#

The	same	is	true	for	adding	the	team	slaves,	except	for	ifname,	which	is	required	to
specify	the	correct	interface:

~#	nmcli	connection	add	type	team-slave	con-name	team0-slave0	ifname	eth1	

master	team0

Connection	'team0-slave0'	(3cb2f603-1f73-41a0-b476-7a356d4b6274)	

successfully	added.

~#	nmcli	connection	add	type	team-slave	con-name	team0-slave1	ifname	eth2	

master	team0

Connection	'team0-slave1'	(074e4dd3-8a3a-4997-b444-a781114c58c9)	

successfully	added.

~#



See	also
For	more	information	on	the	networking	team	daemon	and	“runners”,	refer	to	the
following	URL:

https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-
Understanding_the_Network_Teaming_Daemon_and_the_Runners.html

For	more	information	on	using	nmcli	to	create	team	interfaces,	take	a	look	at	the
following	link:

https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-
Configure_a_Network_Team_Using-the_Command_Line.html

For	more	information	on	using	nmtui	to	create	team	interfaces,	follow	this	link:

https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-
Configure_a_Network_Team_Using_the_Text_User_Interface_nmtui.html

For	more	information	on	creating	team	interfaces	in	kickstart	scripts,	the	following	link
will	be	useful:

https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/sect-kickstart-syntax.html

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-Understanding_the_Network_Teaming_Daemon_and_the_Runners.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-Configure_a_Network_Team_Using-the_Command_Line.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-Configure_a_Network_Team_Using_the_Text_User_Interface_nmtui.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/sect-kickstart-syntax.html




Creating	a	bridge
A	network	bridge	is	a	logical	device	that	forwards	traffic	between	connected	physical
interfaces	based	on	MAC	addresses.	This	kind	of	bridge	can	be	used	to	emulate	a
hardware	bridge	in	virtualization	applications,	such	as	KVM,	to	share	the	NIC	with
multiple	virtual	NICs.



Getting	ready
To	bridge	two	physical	networks,	we	need	two	network	interfaces.	Your	physical
interfaces	should	never	be	configured	with	any	address	as	the	bridge	will	be	configured
with	the	IP	address(es).



How	to	do	it…
For	the	sake	of	ease,	the	physical	network	interfaces	we	will	bridge	are	eth1	and	eth2.
The	IPv4	address	will	be	10.0.0.2	with	a	subnet	mask	of	255.0.0.0	and	a	default
gateway	of	10.0.0.1.

Creating	a	bridge	using	nmcli
Make	sure	that	you	activate	the	bridge	after	configuring	the	bridge	and	interfaces!	Here
are	the	steps	that	you	need	to	perform	for	this:

1.	 First,	create	the	bridge	connection	via	the	following	command:

~]#	nmcli	connection	add	type	bridge	ip4	10.0.0.2/8	gw4	10.0.0.1

Connection	'bridge'	(36e40910-cf6a-4a6c-ae28-c0d6fb90954d)	successfully	

added.

~]#

2.	 Add	eth1	to	the	bridge,	as	follows:

~]#	nmcli	connection	add	type	bridge-slave	ifname	eth1	master	bridge

Connection	'bridge-slave-eth1'	(6821a067-f25c-46f6-89d4-a318fc4db683)	

successfully	added.

~]#

3.	 Next,	add	eth2	to	the	bridge	using	the	following	command:

~]#	nmcli	connection	add	type	bridge-slave	ifname	eth2	master	bridge

Connection	'bridge-slave-eth2'	(f20d0a7b-da03-4338-8060-07a3775772f4)	

successfully	added.

~]#

4.	 Activate	the	bridge	by	executing	the	following:

~#	nmcli	connection	up	bridge

Connection	successfully	activated	(master	waiting	for	slaves)	(D-Bus	

active	path:	/org/freedesktop/NetworkManager/ActiveConnection/30)

~]#

5.	 Now,	check	your	network	connection	by	running	the	following	commands:

~]#	nmcli	connection	show

~]#	nmcli	device	status

~]#	nmcli	device	show	bridge

Here	is	an	example	output	of	the	preceding	commands:



Creating	a	bridge	using	nmtui
Launch	nmtui	and	select	Edit	a	connection.	After	this,	follow	these	steps	to	create	a
bridge	using	nmtui:

1.	 Create	a	bridge	connection	by	selecting	<Add>	and	Bridge	from	the	connection	list
and	then	click	on	<Create>:

2.	 Fill	out	the	presented	form	with	the	required	information:



3.	 Next,	add	the	two	network	interfaces	by	selecting	<Add>	and	providing	the
requested	information	for	each	interface:



4.	 Finally,	select	<OK>	to	create	the	bridge:



Your	new	bridge	will	now	be	listed	in	the	connections	list:



Creating	a	bridge	with	kickstart
Edit	your	kickstart	file	with	your	favorite	editor	through	the	following	steps:

1.	 Look	for	the	configuration	parameters	within	your	kickstart	file	using	this
command	line:

...

network	--device=eth0…

2.	 Now,	add	the	following	configuration	parameters:

network	--device=bridge0	--bridgeslaves="eth1,eth2"	--bootproto=static	

--ip=10.0.0.2	--netmask=255.0.0.0	--gateway=10.0.0.1



There’s	more…
The	options	provided	to	create	the	bridge	are	bare	bones	using	nmcli.	If	you	wish	to	add	a
connection	and	interface	name,	use	con-name	and	ifname,	respectively,	in	this	way:

~#	nmcli	connection	add	type	bridge	con-name	bridge0	ifname	bridge0	ip4	

10.0.0.2/8	gw4	10.0.0.1

Connection	'bridge0'	(d04180be-3e80-4bd4-a0fe-b26d79d71c7d)	successfully	

added.

~#

The	same	is	true	for	adding	the	bridge	slaves,	except	for	ifname,	which	is	required	to
specify	the	correct	interface:

~]#	nmcli	connection	add	type	bridge-slave	con-name	bridge0-slave0	ifname	

eth1	master	bridge0

Connection	'bridge0-slave0'	(3a885ca5-6ffb-42a3-9044-83c6142f1967)	

successfully	added.

~]#	nmcli	connection	add	type	team-slave	con-name	team0-slave1	ifname	eth2	

master	team0

Connection	'bridge0-slave1'	(f79716f1-7b7f-4462-87d9-6801eee1952f)	

successfully	added.

~]#



See	also
For	more	information	on	creating	network	bridges	using	nmcli,	go	to	the	following	URL:

https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-
Network_Bridging_Using_the_NetworkManager_Command_Line_Tool_nmcli.html

For	more	information	on	creating	network	bridges	using	nmtui,	go	to	this	website:

https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-
Configure_Network_Bridging.html

For	more	information	on	kickstart	and	bridging,	go	to	the	following	website:

https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/sect-kickstart-syntax.html

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-Network_Bridging_Using_the_NetworkManager_Command_Line_Tool_nmcli.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-Configure_Network_Bridging.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/sect-kickstart-syntax.html




Configuring	IPv4	settings
Changing	your	IP	addresses	is	pretty	straightforward	in	the	old	ifcfg-style	files,	and	it’s
actually	pretty	simple	using	NetworkManager	tools	as	well.

As	kickstart	is	only	used	to	set	up	a	system,	it	is	not	relevant	to	go	in	depth	into	this	matter
in	this	recipe.



How	to	do	it…
Let’s	change	our	current	IPv4	address	and	gateway	for	eth1	to	10.0.0.3/8,	with	10.0.0.2
as	the	default	gateway.

Setting	your	IPv4	configuration	using	nmcli
Perform	the	following	steps:

1.	 Set	the	ipv4	information	by	executing	the	following	command	line:

~]#	nmcli	connection	modify	eth0	ipv4.addresses	10.0.0.3/8	ipv4.gateway	

10.0.0.2

2.	 Now,	run	the	following	to	verify	the	information:

~]#	nmcli	connection	show	eth0

Here	is	an	example	output	of	the	preceding	commands:



Setting	your	IPv4	configuration	using	nmtui
The	nmtui	tool	takes	a	bit	more	work,	but	the	end	result	remains	the	same.	Perform	the
following	steps:

1.	 Start	nmtui,	select	the	interface	that	you	wish	to	modify,	and	click	on	<Edit…>:



2.	 Now,	modify	the	IPv4	configuration	to	your	liking	and	click	on	<OK>.



There’s	more…
Managing	IPv6	ip	addresses	is	as	straightforward	as	configuring	your	IPv4	counterparts.

The	options	you	need	to	use	in	kickstart	to	set	your	ip	address	and	gateway	are:

--ip:	This	is	used	to	set	the	system’s	IPv4	address
--netmask:	This	is	used	for	the	subnet	mask
--gateway:	This	is	used	to	set	the	IPv4	gateway





Configuring	your	DNS	resolvers
DNS	servers	are	stored	in	/etc/resolv.conf.	You	can	also	manage	this	file	using
NetworkManager.

As	with	the	previous	recipe,	and	for	the	same	reasons,	this	recipe	won’t	go	into	the
kickstart	options.



How	to	do	it…
Let’s	set	the	DNS	resolvers	for	eth1	to	point	to	Google’s	public	DNS	servers:	8.8.8.8
and	8.8.4.4.

Setting	your	DNS	resolvers	using	nmcli
Perform	the	following	steps:

1.	 Set	the	DNS	servers	via	the	following	command:

~]#	nmcli	connection	modify	System\	eth1	ipv4.dns	"8.8.8.8,8.8.4.4"

2.	 Now,	use	the	following	command	to	check	your	configuration:

~]#	nmcli	connection	show	System\	eth1

Here	is	an	example	output	of	the	preceding	commands:



Setting	your	DNS	resolvers	using	nmtui
The	nmtui	tool	requires	a	bit	more	work	to	set	the	DNS	resolvers,	as	follows:

1.	 Start	nmtui,	select	the	interface	that	you	wish	to	modify,	and	click	on	<Edit…>:





There’s	more…
The	nmcli	tool	supports	adding	multiple	DNS	servers	by	separating	them	with	a
semicolon.	Using	a	blank	value	("")	will	remove	all	the	DNS	servers	for	this	connection.

Similarly,	you	can	set	the	DNS	search	domains	for	your	environment.	When	using	nmcli,
you’ll	need	to	specify	the	ipv4.dns-search	property.

Kickstart	will	allow	you	to	specify	the	DNS	servers	using	the	--nameserver	option	for
each	DNS	server.	If	you	do	not	wish	to	specify	any	DNS	servers,	use	--nodns.
Unfortunately,	there	is	no	native	way	to	set	the	DNS	domain	search	using	kickstart.	You
will	have	to	use	nmcli,	for	example,	in	the	%post	section	of	your	kickstart	script.

Tip
Be	careful	when	setting	DNS	configurations	for	multiple	network	interfaces.
NetworkManager	adds	all	your	nameservers	to	your	resolv.conf	file,	but	libc	may	not
support	more	than	six	nameservers.





Configuring	static	network	routes
In	some	cases,	it	is	required	to	set	static	routes	on	your	system.	As	static	routes	are	not
natively	supported	in	kickstart,	this	is	not	covered	in	this	recipe.



How	to	do	it…
Add	static	routes	to	both	the	192.168.0.0/24	and	192.168.1.0/24	networks	via	10.0.0.1.

Configuring	static	network	routes	using	nmcli
Here’s	what	you	need	to	do:

1.	 Set	the	route	using	the	following	command:

~]#	nmcli	connection	modify	eth0	ipv4.routes	"192.168.0.0/24	

10.0.0.1,192.168.1.0/24	10.0.0.1"

2.	 Now,	execute	the	following	command	line	to	verify	the	configuration:

~]#	nmcli	connection	show	eth0

Here	is	an	example	output	of	the	preceding	commands:



Configuring	network	routes	using	nmtui
Here	are	the	steps	for	this	recipe:

1.	 Launch	nmtui,	select	the	interface	that	you	wish	to	modify	the	static	routes	for,	and
click	on	<Edit…>:



2.	 Now,	select	<Edit…>	next	to	the	IPv4	Configuration	–	Routing	entry	and	enter
your	routes.	Select	<OK>	to	confirm:



3.	 Finally,	click	on	<OK>	to	confirm	the	changes	and	save	them.





Chapter	4.	Configuring	Your	New	System
Here’s	an	overview	of	the	recipes	that	we’ll	be	covering	in	this	chapter:

The	systemd	service	and	setting	runlevels
Starting	and	stopping	systemd	services
Configuring	the	systemd	journal	for	persistence
Monitoring	services	using	journalctl
Configuring	logrotate
Managing	time
Configuring	your	boot	environment
Configuring	smtp



Introduction
Once	your	system	is	installed	and	the	network	is	configured,	it’s	time	to	start	configuring
everything	else.

RHEL	7	comes	with	the	systemd	init	daemon,	which	takes	care	of	your	daemon	or
service	housekeeping	and	more,	replacing	the	old	SysV	(UNIX	System	V)	init	system.

Its	main	advantages	are	automatic	dependency	handling,	parallel	startup	of	services,	and
the	monitoring	of	started	services	with	the	ability	to	restart	crashed	services.

For	a	good	read	on	systemd	and	its	inner	workings,	head	over	to
https://n0where.net/understanding-systemd.

https://n0where.net/understanding-systemd




The	systemd	service	and	setting	runlevels
The	systemd	service	doesn’t	use	runlevels	as	SysV	or	Upstart	do.	The	alternatives	for
systemd	are	called	targets.	Their	purpose	is	to	group	a	set	of	systemd	units	(not	only
services,	but	also	sockets,	devices,	and	so	on)	through	a	chain	of	dependencies.



How	to	do	it…
Managing	targets	with	systemd	is	pretty	simple,	as	shown	through	the	following	steps:

1.	 List	all	target	units,	as	follows:

~]#	systemctl	list-unit-files	--type	target

UNIT	FILE																	STATE			

anaconda.target											static		

basic.target														static		

bluetooth.target										static		

cryptsetup.target									static		

ctrl-alt-del.target							disabled

default.target												enabled

...

sysinit.target												static		

system-update.target						static		

time-sync.target										static		

timers.target													static		

umount.target													static		

58	unit	files	listed.

~]#

This	list	shows	all	target	units	available	followed	by	information	regarding	whether
the	target	is	enabled	or	not.

2.	 Now,	show	the	currently	loaded	target	units.

The	systemd	targets	can	be	chained	unlike	SysV	runlevels,	so	you’ll	not	only	see	one
target	but	a	whole	bunch	of	them,	as	follows:

~]#	systemctl	list-units	--type	target

UNIT																		LOAD			ACTIVE	SUB				DESCRIPTION

basic.target										loaded	active	active	Basic	System

cryptsetup.target					loaded	active	active	Encrypted	Volumes

getty.target										loaded	active	active	Login	Prompts

local-fs-pre.target			loaded	active	active	Local	File	Systems	(Pre)

local-fs.target							loaded	active	active	Local	File	Systems

multi-user.target					loaded	active	active	Multi-User	System

network-online.target	loaded	active	active	Network	is	Online

network.target								loaded	active	active	Network

nfs-client.target					loaded	active	active	NFS	client	services

paths.target										loaded	active	active	Paths

remote-fs-pre.target		loaded	active	active	Remote	File	Systems	(Pre)

remote-fs.target						loaded	active	active	Remote	File	Systems

slices.target									loaded	active	active	Slices

sockets.target								loaded	active	active	Sockets

swap.target											loaded	active	active	Swap

sysinit.target								loaded	active	active	System	Initialization

time-sync.target						loaded	active	active	System	Time	Synchronized

timers.target									loaded	active	active	Timers

LOAD			=	Reflects	whether	the	unit	definition	was	properly	loaded.

ACTIVE	=	The	high-level	unit	activation	state,	i.e.	generalization	of	



SUB.

SUB				=	The	low-level	unit	activation	state,	values	depend	on	unit	

type.

18	loaded	units	listed.	Pass	--all	to	see	loaded	but	inactive	units,	

too.

To	show	all	installed	unit	files	use	'systemctl	list-unit-files'.

~]#

3.	 Next,	change	the	default	systemd	target	by	running	the	following	commands:

~]#	systemctl	set-default	graphical.target

rm	'/etc/systemd/system/default.target'

ln	-s	'/usr/lib/systemd/system/graphical.target'	

'/etc/systemd/system/default.target'

~]#



There’s	more…
Sometimes,	you	want	to	change	targets	on	the	fly	as	you	would	in	the	past	with	runlevel	or
telinit.	With	systemd,	this	is	accomplished	in	the	following	way:

~]#	systemctl	isolate	<target	name>

Here’s	an	example:

~]#	systemctl	isolate	graphical.target

Let’s	take	an	overview	of	the	former	runlevels	versus	the	systemd	targets	in	the	following
table:

Runlevel Target	units Description

0 runlevel0.target	or	poweroff.target This	is	used	to	shut	down	and	power	off	the	system

1 runlevel1.target	or	rescue.target This	is	used	to	enter	a	rescue	shell

2 runlevel2.target	or	multi-user.target This	is	used	to	set	up	a	command-line	multiuser	system

3 runlevel3.target	or	multi-user.target This	is	used	to	set	up	a	command-line	multiuser	system

4 runlevel4.target	or	multi-user.target This	is	used	to	set	up	a	command-line	multiuser	system

5 runlevel5.target	or	graphical.target This	is	used	to	set	up	a	graphical	multiuser	system

6 runlevel6.target	or	reboot.target This	is	used	to	reboot	the	system



See	also
For	more	in-depth	information	about	RHEL	7	and	systemd	targets,	refer	to	the	following
link:	https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-
Managing_Services_with_systemd-Targets.html

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Managing_Services_with_systemd-Targets.html




Starting	and	stopping	systemd	services
Although	this	recipe	uses	services	by	their	base	name,	they	can	also	be	addressed	by	their
full	filename.	For	example,	sshd	can	be	substituted	by	sshd.service.



How	to	do	it…
The	following	steps	need	to	be	performed	to	successfully	start	or	stop	systemd	services:

1.	 List	all	available	systemd	services,	as	follows:

~]#	systemctl	list-unit-files	--type	service

UNIT	FILE																																			STATE			

atd.service																																	enabled

auditd.service																														enabled

auth-rpcgss-module.service																		static		

autovt@.service																													disabled

avahi-daemon.service																								disabled

blk-availability.service																				disabled

brandbot.service																												static		

...

systemd-udev-trigger.service																static		

systemd-udevd.service																							static		

systemd-update-utmp-runlevel.service								static		

systemd-update-utmp.service																	static		

systemd-user-sessions.service															static		

systemd-vconsole-setup.service														static		

tcsd.service																																disabled

teamd@.service																														static		

tuned.service																															enabled

wpa_supplicant.service																						disabled

xinetd.service																														enabled

161	unit	files	listed.

This	shows	all	service	units	available	followed	by	information	regarding	whether	the
service	is	enabled	or	not.

2.	 Now,	list	all	the	loaded	systemd	services	and	their	status,	as	follows:

~]#	systemctl	list-units	--type	service	--all

UNIT																								LOAD			ACTIVE			SUB					DESCRIPTION

atd.service																	loaded	active			running	Job	spooling	tools

auditd.service														loaded	active			running	Security	Auditing	

Service

auth-rpcgss-module.service		loaded	inactive	dead				Kernel	Module	

supporting	RPC

brandbot.service												loaded	inactive	dead				Flexible	Branding	

Service

cpupower.service												loaded	inactive	dead				Configure	CPU	power	

related

crond.service															loaded	active			running	Command	Scheduler

cups.service																loaded	inactive	dead				CUPS	Printing	

Service

dbus.service																loaded	active			running	D-Bus	System	

Message	Bus

...

systemd-...es-setup.service	loaded	active			exited		Create	Volatile	



Files	and	Di

systemd-...-trigger.service	loaded	active			exited		udev	Coldplug	all	

Devices

systemd-udevd.service							loaded	active			running	udev	Kernel	Device	

Manager

systemd-update-utmp.service	loaded	active			exited		Update	UTMP	about	

System	Reb

systemd-...sessions.service	loaded	active			exited		Permit	User	

Sessions

systemd-...le-setup.service	loaded	active			exited		Setup	Virtual	

Console

tuned.service															loaded	active			running	Dynamic	System	

Tuning	Daemon

xinetd.service														loaded	active			running	Xinetd	A	Powerful	

Replacemen

LOAD			=	Reflects	whether	the	unit	definition	was	properly	loaded.

ACTIVE	=	The	high-level	unit	activation	state,	i.e.	generalization	of	

SUB.

SUB				=	The	low-level	unit	activation	state,	values	depend	on	unit	

type.

103	loaded	units	listed.

To	show	all	installed	unit	files	use	'systemctl	list-unit-files'.

~]#

3.	 Next,	get	the	status	of	a	service.

To	get	the	status	of	a	particular	service,	execute	the	following,	substituting	<service>
with	the	name	of	the	service:

~]#	systemctl	status	<service>

Here’s	an	example:

~]#	systemctl	status	sshd

sshd.service	-	OpenSSH	server	daemon

			Loaded:	loaded	(/usr/lib/systemd/system/sshd.service;	enabled)

			Active:	active	(running)	since	Fri	2015-07-17	09:13:55	CEST;	1	weeks	

0	days	ago

	Main	PID:	11880	(sshd)

			CGroup:	/system.slice/sshd.service

											└─11880	/usr/sbin/sshd	-D

Jul	22	12:07:31	rhel7.mydomain.lan	sshd[10340]:	Accepted	publickey	for	

root…

Jul	22	12:12:29	rhel7.mydomain.lan	sshd[10459]:	Accepted	publickey	for	

root…

Jul	22	12:13:33	rhel7.mydomain.lan	sshd[10473]:	Accepted	publickey	for	

root…

Jul	24	21:27:24	rhel7.mydomain.lan	sshd[28089]:	Accepted	publickey	for	

root…

Hint:	Some	lines	were	ellipsized,	use	-l	to	show	in	full.

~]#

4.	 Now,	start	and	stop	the	systemd	services.

To	stop	a	systemd	service,	execute	the	following,	substituting	<service>	with	the



name	of	the	service:

~]#	systemctl	stop	<service>

Here’s	an	example:

~]#	systemctl	stop	sshd

To	start	a	systemd	service,	execute	the	following,	substituting	<service>	with	the
name	of	the	service:

~]#	systemctl	start	<service>

Here’s	an	example:

~]#	systemctl	start	sshd

5.	 Next,	enable	and	disable	the	systemd	services.

To	enable	a	systemd	service,	execute	the	following,	substituting	<service>	with	the
name	of	the	service:

~]#	systemctl	enable	<service>

Here’s	an	example:

~]#	systemctl	enable	sshd

ln	-s	'/usr/lib/systemd/system/sshd.service'	

'/etc/systemd/system/multi-user.target.wants/sshd.service'

~]#

To	disable	a	systemd	service,	execute	the	following,	substituting	<service>	with	the
name	of	the	service:

~]#	systemctl	disable	<service>

Here’s	an	example:

~]#	systemctl	disable	sshd

rm	'/etc/systemd/system/multi-user.target.wants/sshd.service'

~]#

6.	 Now,	configure	a	service	to	restart	when	crashed.

Let’s	make	the	ntpd	service	restart	if	it	crashes	after	1	minute.

1.	 First,	create	the	directory,	as	follows:	/etc/systemd/system/ntpd.service.d.

~]#	mkdir	-p	/etc/systemd/system/ntpd.service.d

2.	 Create	a	new	file	in	that	directory	named	restart.conf	and	add	the	following
to	it:

[Service]

Restart=on-failure

RestartSec=60s

3.	 Next,	reload	the	unit	files	and	recreate	the	dependency	tree	using	the	following
command:



~]#	systemctl	daemon-reload

4.	 Finally,	restart	the	ntpd	service	by	executing	the	following	command:

~]#	systemctl	restart	ntpd



There’s	more…
When	requesting	the	status	of	a	service,	the	most	recent	log	entries	are	also	shown	when
executed	as	root.

The	service	status	information	can	be	seen	in	the	following	table:

Field Description

Loaded
This	provides	information	on	whether	the	service	is	loaded	and	enabled.	It	also	includes	the	absolute	path	to
the	service	file.

Active This	provides	information	on	whether	the	service	is	running,	followed	by	the	time	it	started.

Main

PID
This	provides	PID	of	the	corresponding	service,	followed	by	its	name.

Status This	provides	information	about	the	corresponding	service.

Process This	provides	information	about	the	related	process.

Cgroup This	provides	information	about	related	control	groups.

In	some	(rare)	cases,	you	want	to	prevent	a	service	from	being	started,	either	manually	or
by	another	service;	there	is	an	option	to	mask	the	service,	which	is	as	follows:

~]#	systemctl	mask	<service>

To	unmask,	execute	the	following:

~]#	systemctl	unmask	<service>

When	modifying	service	unit	files	(and	this	is	not	limited	to	services	only),	it	is	best
practice	to	copy	the	original	service	file,	which	is	located	at	/lib/systemd/system	to
/etc/systemd/service.	Alternatively,	you	can	create	a	directory	in
/etc/systemd/service	appended	with	.d,	in	which	you	will	create	conf	files	containing
only	the	directives	that	you	wish	to	add	or	change,	as	in	the	previous	recipe.	The
advantage	of	the	latter	is	that	you	don’t	need	to	keep	up	with	changes	in	the	original
service	file	as	it	will	be	“updated”	with	whatever	is	located	in	the	service.d	directory.



See	also
For	more	information	about	managing	systemd	services,	go	to
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-
Managing_Services_with_systemd-Services.html.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Managing_Services_with_systemd-Services.html




Configuring	the	systemd	journal	for
persistence
By	default,	the	journal	doesn’t	store	log	files	on	disk,	only	in	memory	or	the
/run/log/journal	directory.	This	is	sufficient	for	the	recent	log	history	(with	the	journal)
but	not	for	long-term	log	retention	should	you	decide	to	go	with	journal	only	and	not	with
any	other	syslog	solution.



How	to	do	it…
Configuring	journald	to	keep	more	logs	than	memory	allows	is	fairly	simple,	as	follows:

1.	 Open	/etc/systemd/journald.conf	with	your	favorite	text	editor	with	root
permissions	by	executing	the	following	command:

~]#	vim	/etc/systemd/journald.conf

2.	 Ensure	that	the	line	containing	Storage	is	either	remarked	or	set	to	auto	or
persistent	and	save	it,	as	follows:

Storage=auto

3.	 If	you	select	auto,	the	journal	directory	needs	to	be	manually	created.	The	following
command	would	be	useful	for	this:

~]#	mkdir	-p	/var/log/journal

4.	 Now,	restart	the	journal	service	by	executing	the	following	command:

~]#	systemctl	restart	systemd-journald



There’s	more…
There	are	many	other	options	that	can	be	set	for	the	journal	daemon.

By	default,	all	the	data	stored	by	journald	is	compressed,	but	you	could	disable	this	using
Compress=no.

It	is	recommended	to	limit	the	size	of	the	journal	files	by	either	specifying	a	maximum
retention	age	(MaxRetentionSec),	a	global	maximum	size	usage	(SystemMaxUse),	or	a
maximum	size	usage	per	file	(SystemMaxFileSize).



See	also
For	more	information	about	using	the	journal	with	RHEL	7,	go	to
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/s1-
Using_the_Journal.html.

Take	a	look	at	the	man	page	for	journald	(5)	for	more	information	on	what	can	be
configured.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/s1-Using_the_Journal.html




Monitoring	services	using	journalctl
Systemd’s	journal	has	the	added	advantage	that	its	controls	allow	you	to	easily	narrow
down	on	messages	generated	by	specific	services.



How	to	do	it…
Here	are	the	steps	you	need	to	perform	for	this	recipe:

1.	 First,	display	all	the	messages	generated	by	your	system.

This	will	show	all	the	messages	generated	on	the	system;	run	the	following
commands:

~]#	journalctl

--	Logs	begin	at	Fri	2015-06-26	23:37:30	CEST,	end	at	Sat	2015-07-25	

00:30:01	CEST.	--

Jun	26	23:37:30	rhel7.mydomain.lan	systemd-journal[106]:	Runtime	

journal	is	using	8.0M	(max	396.0M,	leaving	594.0M	of	free	3.8G,	current	

limit	396.0M).

Jun	26	23:37:30	rhel7.mydomain.lan	systemd-journal[106]:	Runtime	

journal	is	using	8.0M	(max	396.0M,	leaving	594.0M	of	free	3.8G,	current	

limit	396.0M).

Jun	26	23:37:30	rhel7.mydomain.lan	kernel:	Initializing	cgroup	subsys	

cpuset

...

~]#

2.	 Now,	display	all	system-related	messages.

This	command	shows	all	the	messages	related	to	the	system	and	not	its	users:

~]#	journalctl	–-system

--	Logs	begin	at	Fri	2015-06-26	23:37:30	CEST,	end	at	Sat	2015-07-25	

00:30:01	CEST.	--

Jun	26	23:37:30	rhel7.mydomain.lan	systemd-journal[106]:	Runtime	

journal	is	using	8.0M	(max	396.0M,	leaving	594.0M	of	free	3.8G,	current	

limit	396.0M).

Jun	26	23:37:30	rhel7.mydomain.lan	systemd-journal[106]:	Runtime	

journal	is	using	8.0M	(max	396.0M,	leaving	594.0M	of	free	3.8G,	current	

limit	396.0M).

Jun	26	23:37:30	rhel7.mydomain.lan	kernel:	Initializing	cgroup	subsys	

cpuset

...

~]#

3.	 Display	all	the	current	user	messages.

This	command	shows	all	messages	related	to	the	user	that	you	are	logged	on	with:

~]#	journalctl	--user

No	journal	files	were	found.

~]#

4.	 Next,	display	all	messages	generated	by	a	particular	service	using	the	following
command	line:

~]#	journalctl	--unit=<service>

Here’s	an	example:

~]#	journalctl	--unit=sshd



--	Logs	begin	at	Fri	2015-06-26	23:37:30	CEST,	end	at	Sat	2015-07-25	

00:45:01	CEST.	--

Jun	26	23:40:18	rhel7.mydomain.lan	systemd[1]:	Starting	OpenSSH	server	

daemon…

Jun	26	23:40:18	rhel7.mydomain.lan	systemd[1]:	Started	OpenSSH	server	

daemon.

Jun	26	23:40:20	rhel7.mydomain.lan	sshd[817]:	Server	listening	on	

0.0.0.0	port	22.

Jun	26	23:40:20	rhel7.mydomain.lan	sshd[817]:	Server	listening	on	::	

port	22.

Jun	27	11:30:08	rhel7.mydomain.lan	sshd[4495]:	Accepted	publickey	for	

root	from	10.0.0.2	port	42748	ssh2:	RSA	

cf:8a:a0:b4:4c:3d:d7:4d:93:c6:e0:fe:c0:66:e4

...

~]#

5.	 Now,	display	messages	by	priority.

Priorities	can	be	specified	by	a	keyword	or	number,	such	as	debug	(7),	info	(6),
notice	(5),	warning	(4),	err	(3),	crit	(2),	alert	(1),	and	emerg	(0).	When
specifying	a	priority,	this	includes	all	the	lower	priorities	as	well.	For	example,	err
implies	that	crit,	alert,	and	emerg	are	also	shown.	Take	a	look	at	the	following
command	line:

~]#	journalctl	-p	<priority>

Here’s	an	example:

~]#	journalctl	-p	err

--	Logs	begin	at	Fri	2015-06-26	23:37:30	CEST,	end	at	Fri	2015-07-24	

22:30:01	CEST.	--

Jun	26	23:37:30	rhel7.mydomain.lan	kernel:	ioremap	error	for	

0xdffff000-0xe0000000,	requested	0x10,	got	0x0

Jun	26	23:38:49	rhel7.mydomain.lan	systemd[1]:	Failed	unmounting	/usr.

...

~]#

6.	 Next,	display	messages	by	time.

You	can	show	all	messages	from	the	current	boot	through	the	following	commands:

~]#	journalctl	-b

--	Logs	begin	at	Fri	2015-06-26	23:37:30	CEST,	end	at	Sat	2015-07-25	

00:45:01	CEST.	--

Jun	26	23:37:30	rhel7.mydomain.lan	systemd-journal[106]:	Runtime	

journal	is	using	8.0M	(max	396.0M,	leaving	594.0M	of	free	3.8G,	current	

limit	396.0M).

Jun	26	23:37:30	rhel7.mydomain.lan	systemd-journal[106]:	Runtime	

journal	is	using	8.0M	(max	396.0M,	leaving	594.0M	of	free	3.8G,	current	

limit	396.0M).

Jun	26	23:37:30	rhel7.mydomain.lan	kernel:	Initializing	cgroup	subsys	

cpuset

Jun	26	23:37:30	rhel7.mydomain.lan	kernel:	Initializing	cgroup	subsys	

cpu

Jun	26	23:37:30	rhel7.mydomain.lan	kernel:	Initializing	cgroup	subsys	

cpuacct



Jun	26	23:37:30	rhel7.mydomain.lan	kernel:	Linux	version	3.10.0-

229.4.2.el7.x86_64	(gcc	version	4.8.2	20140120	(Red	Hat	4.8.2-

Jun	26	23:37:30	rhel7.mydomain.lan	kernel:	Command	line:	

BOOT_IMAGE=/vmlinuz-3.10.0-229.4.2.el7.x86_64	

root=/dev/mapper/rhel7_system-root	ro	vconsole.keymap=

Jun	26	23:37:30	rhel7.mydomain.lan	kernel:	e820:	BIOS-provided	physical	

RAM	map:

~]#		

You	can	even	show	all	the	messages	within	a	specific	time	range	by	running	the
following:

~]#	journalctl	--since="2015-07-24	08:00:00"	--until="2015-07-24	

09:00:00"

--	Logs	begin	at	Fri	2015-06-26	23:37:30	CEST,	end	at	Sat	2015-07-25	

00:45:01	CEST.	--

Jul	24	08:00:01	rhel7.mydomain.lan	systemd[1]:	Created	slice	user-

48.slice.

Jul	24	08:00:01	rhel7.mydomain.lan	systemd[1]:	Starting	Session	3331	of	

user	apache.

J

...

Jul	24	08:45:01	rhel7.mydomain.lan	systemd[1]:	Starting	Session	3335	of	

user	apache.

Jul	24	08:45:01	rhel7.mydomain.lan	systemd[1]:	Started	Session	3335	of	

user	apache.

Jul	24	08:45:01	rhel7.mydomain.lan	CROND[22909]:	(apache)	CMD	(php	-f	

/var/lib/owncloud/cron.php)

~]#



There’s	more…
The	examples	presented	in	this	recipe	can	all	be	combined.	For	instance,	if	you	want	to
show	all	the	error	messages	between	8:00	and	9:00	on	2015-07-24,	your	command	would
be	the	following:

~]#	journalctl	-p	err	--since="2015-07-24	08:00:00"	--until="2015-07-24	

09:00:00"

A	lot	of	people	tend	to	“follow”	log	files	to	determine	what	is	happening,	hoping	to	figure
out	any	issues.	The	journalctl	binary	is	an	executable	one,	so	it	is	impossible	to	use	the
traditional	“following”	techniques	such	as	tail	–f	or	using	less	and	pressing	CTRL	+	F.
The	good	folks	that	coded	systemd	and	systemctl	have	provided	a	solution	to	this:
simply	add	-f	or	--follow	as	an	argument	to	the	journalctl	command.

Although	most	environments	are	used	to	create	syslog	messages	to	troubleshoot,	the
journal	does	provide	the	added	value	of	being	able	to	create	simple	filters	that	allow	you
to	monitor	their	messages	live.



See	also
For	more	information	about	using	the	journal	with	RHEL	7,	go	to
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/s1-
Using_the_Journal.html.

Take	a	look	at	the	man	page	of	journalctl	(1)	for	more	information	on	what	can	be
configured.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/s1-Using_the_Journal.html




Configuring	logrotate
The	logrotate	tool	allows	you	to	rotate	the	logs	that	are	generated	by	applications	and
scripts

It	keeps	your	log	directories	clutter-free	and	minimizes	disk	usage	when	correctly
configured.



How	to	do	it…
The	logrotate	tool	is	installed	by	default,	but	I	will	include	the	installation	instructions
here	for	completeness.	This	recipe	will	show	you	how	to	rotate	logs	for	rsyslog.	We	will
rotate	the	logs	everyday,	add	an	extension	based	on	the	date,	compress	them	with	a	one-
day	delay,	and	keep	them	for	365	days.	Perform	the	following	steps:

1.	 First,	to	install	logrotate,	perform	the	following	command:

~]#	yum	install	-y	logrotate

2.	 Ensure	that	it’s	enabled	through	the	following:

~]#	systemctl	restart	crond

3.	 Open	/etc/logrotate.d/syslog	with	your	favorite	editor.	The	contents	of	this	file
are	the	following,	by	default:

/var/log/cron

/var/log/maillog

/var/log/messages

/var/log/secure

/var/log/spooler

{

				sharedscripts

				postrotate

								/bin/kill	-HUP	`cat	/var/run/syslogd.pid	2>	/dev/null`	2>	

/dev/null	||	true

				endscript

}

4.	 Now,	replace	this	with	the	following	code:

/var/log/cron

/var/log/maillog

/var/log/messages

/var/log/secure

/var/log/spooler

{

				compress

				daily

				delaycompress

				dateext

				missingok

				rotate	365

				sharedscripts

				postrotate

								/bin/kill	-HUP	`cat	/var/run/syslogd.pid	2>	/dev/null`	2>	

/dev/null	||	true

				endscript

}

5.	 Finally,	save	the	file.



How	it	works…
The	logrotate	tool	is	a	script	that	is	launched	by	cron	everyday.

The	directives	added	to	the	default	logrotate	definition	are	compress,	daily,
delaycompress,	dateext,	missingok,	and	rotate.

The	compress	directive	compresses	old	versions	of	the	log	files	with	gzip.	This	behavior	is
somewhat	changed	by	specifying	delaycompress.	This	causes	us	to	always	have	the	most
recently	rotated	log	file	available	uncompressed.

The	daily	directive	makes	logrotate	execute	the	definition	every	day.	The	rotate
directive	only	keeps	x	rotated	log	files	before	deleting	the	oldest.	In	this	case,	we	have
specified	this	to	be	365,	which	means	that	while	rotating	daily,	the	logs	are	kept	for	365
days.

The	missingok	directive	makes	it	alright	for	syslog	to	not	create	a	file,	which,	however
unlikely,	is	possible.

The	dateext	directive	appends	a	date	to	the	rotated	file	in	the	form	of	yyyymmdd	instead	of
a	number,	which	is	the	default.



There’s	more…
The	/etc/logrotate.conf	file	contains	the	defaults	directives	for	all	definitions.	If	you
don’t	specifically	use	a	directive	within	a	definition	for	a	file,	the	values	in	this	file	will	be
used	if	specified.

It	would	make	sense	to	change	the	settings	in	this	file	so	that	all	the	definitions	are
affected,	but	this	is	not	practical;	not	all	log	files	are	made	equal.	The	syslog	service
generates	a	lot	of	messages,	and	it	would	probably	clutter	up	your	system	before	long.
However,	yum,	for	instance,	doesn’t	generate	a	lot	of	messages,	and	it	keeps	this	log	file
readable	for	much	longer	than	your	syslog	files.	This,	by	the	way,	is	reflected	in	the
definition	for	yum.

If	you	want	to	debug	your	new	configuration,	this	can	be	achieved	by	executing	the
following	to	test	just	one	configuration:

~#	/usr/sbin/logrotate	-v	/etc/logrotate.d/<config	file>

Alternatively,	you	can	use	the	following	to	test	everything:

~]#	/usr/sbin/logrotate	-v	/etc/logrotate.conf

Here’s	an	example:

~]#	/usr/sbin/logrotate	-v	/etc/logrotate.d/syslog

reading	config	file	/etc/logrotate.d/syslog

Handling	1	logs

rotating	pattern:	/var/log/cron

/var/log/maillog

/var/log/messages

/var/log/secure

/var/log/spooler

	1048576	bytes	(no	old	logs	will	be	kept)

empty	log	files	are	rotated,	old	logs	are	removed

considering	log	/var/log/cron

		log	does	not	need	rotating

considering	log	/var/log/maillog

		log	does	not	need	rotating

considering	log	/var/log/messages

		log	does	not	need	rotating

considering	log	/var/log/secure

		log	does	not	need	rotating

considering	log	/var/log/spooler

		log	does	not	need	rotating

not	running	postrotate	script,	since	no	logs	were	rotated

~]#



See	also
Take	a	look	at	the	man	page	of	logrotate	(8)	for	more	information	on	configuring
logrotate.





Managing	time
RHEL	7	comes	preinstalled	with	Chrony.	While	everybody	knows	Ntpd,	Chrony	is	a
newcomer	to	the	game	of	timekeeping.

Chrony	is	a	set	of	programs	that	maintains	the	time	on	your	computer	using	different	time
sources,	such	as	NTP	servers,	your	system’s	clock,	and	even	custom-made
scripts/programs.	It	also	calculates	the	rate	at	which	the	computer	loses	or	gains	time	to
compensate	while	no	external	reference	is	present—for	example,	if	your	NTP	server(s)
is(are)	down.

Chrony	is	a	good	solution	for	systems	which	are	intermittently	disconnected	and
reconnected	to	a	network.

Ntpd	should	be	considered	for	systems	that	are	normally	kept	on	permanently.



How	to	do	it…
When	talking	about	managing	time	in	RHEL,	it	can	be	done	through:

Chrony
Ntpd

We’ll	take	a	look	at	each	of	the	methods	separately.

Managing	time	through	chrony
Ensure	that	chrony	is	installed	and	enabled,	and	perform	the	following	steps:

1.	 First,	install	chrony	through	the	following	command:

~]#	yum	install	-y	chrony

2.	 Enable	chrony,	as	follows:

~]#	systemctl	enable	chrony

~]#	systemctl	start	chrony

3.	 Now,	open	/etc/chrony.conf	with	your	favorite	editor	and	look	for	lines	starting
with	the	server	directive	using	the	following	commands:

server	0.rhel.pool.ntp.org	iburst

server	1.rhel.pool.ntp.org	iburst

server	2.rhel.pool.ntp.org	iburst

server	3.rhel.pool.ntp.org	iburst

4.	 Next,	replace	these	lines	with	NTP	servers	that	are	near	you	and	save	the	file:

server	0.pool.ntp.mydomain.lan	iburst

server	1.pool.ntp.mydomain.lan	iburst

The	iburst	option	causes	NTP	to	send	a	burst	of	eight	packets	at	the	next	poll
instead	of	just	one	if	the	time	master	is	unavailable,	causing	the	NTP	daemon	to
speed	up	time	synchronization.

5.	 Finally,	restart	chrony	by	executing	the	following	command:

~]#	systemctl	restart	chrony

Managing	time	through	ntpd
Ensure	that	ntpd	is	installed	and	enabled,	and	perform	the	following	steps:

1.	 First,	install	ntpd	by	running	the	following:

~]#	yum	install	-y	ntpd

2.	 Enable	ntpd	through	this	command:

~]#	systemctl	enable	ntpd

3.	 Open	/etc/ntp.conf	with	your	favorite	editor	and	look	for	the	lines	starting	with	the
server	directive.	Run	the	following:



server	0.rhel.pool.ntp.org	iburst

server	1.rhel.pool.ntp.org	iburst

server	2.rhel.pool.ntp.org	iburst

server	3.rhel.pool.ntp.org	iburst

4.	 Replace	these	lines	with	the	NTP	servers	near	you	and	save	the	file:

server	0.pool.ntp.mydomain.lan	iburst

server	1.pool.ntp.mydomain.lan	iburst

5.	 Replace	the	contents	of	/etc/ntp/step-tickers	with	all	your	NTP	servers,	one	per
line:

0.pool.ntp.mydomain.lan

1.pool.ntp.mydomain.lan

6.	 Now,	restart	ntpd	by	executing	the	following:

~]#	systemctl	restart	ntpd



There’s	more…
While	ntpd	is	the	obvious	choice	for	time	synchronization,	it	doesn’t	fare	well	in
environments	where	time	masters	are	intermittently	accessible	(for	whatever	reason).	In
these	environments,	chronyd	thrives.	Also,	ntpd	can	be	quite	complex	to	configure
correctly,	whereas	chronyd	is	a	little	bit	simpler.

The	reason	for	modifying	/etc/ntp/step-tickers	when	using	the	ntpd	file	is	for	the
startup	of	the	service.	It	uses	ntpdate	to	synchronize	time	in	one	step	before	actually
starting	the	NTP	daemon	itself,	which	is	a	lot	slower	in	synchronizing	time.

To	figure	out	whether	your	system	is	synchronized,	use	the	following	command:

For	chrony,	use	the	following	command:

~]#	chronyc	sources

For	ntpd,	run	the	following:

~]#	ntpq	-p

Your	output	will	be	similar	to:

remote							refid						st	t	when	poll	reach			delay			offset		jitter

=====================================================================

	LOCAL(0)				.LOCL.						5	l		60m			64				0				0.000				0.000			0.000

*master.exam	178.32.44.208	3	u		35	128	377					0.214			-0.651		14.285

The	asterisk	(*)	in	front	of	an	entry	means	that	your	system	is	synchronized	to	this	remote
system’s	clock.



See	also
For	more	information	on	configuring	chrony	for	RHEL	7,	go	to
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-
Configuring_NTP_Using_the_chrony_Suite.html.

For	more	information	on	configuring	ntpd	for	RHEL	7,	go	to
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-
Configuring_NTP_Using_ntpd.html.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-Configuring_NTP_Using_the_chrony_Suite.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-Configuring_NTP_Using_ntpd.html




Configuring	your	boot	environment
GRUB2	is	the	default	boot	loader	for	RHEL	7.	By	default,	it	doesn’t	use	any	fancy
configuration	options,	but	it	is	wise	to	at	least	secure	your	grub	boot	loader.



How	to	do	it…
There	are	many	advantages	to	having	your	grub	and	boot	environment	output	to	serial
console	in	an	enterprise	environment.	Many	vendors	integrate	virtual	serial	ports	in	their
remote	control	systems,	as	does	KVM.	This	allows	you	to	connect	to	the	serial	port	and
easily	grab	whatever	is	displayed	in	a	text	editor.

Setting	a	password	on	the	GRUB2	boot	loader	mitigates	possible	hacking	attempts	on
your	system	when	you	have	physical	access	to	the	server	or	console.	Perform	the
following	steps	for	this	recipe:

1.	 First,	edit	/etc/sysconfig/grub	with	your	favorite	editor.
2.	 Now,	modify	the	GRUB_TERMINAL_OUTPUT	line	to	include	both	console	and	serial

access	by	executing	the	following	command	line:

GRUB_TERMINAL_OUTPUT="console	serial"

3.	 Add	the	GRUB_SERIAL_COMMAND	entry,	as	follows:

GRUB_SERIAL_COMMAND="serial	--speed=9600	--unit=0	--word=8	--parity=no	

–stop=1"

4.	 Now,	save	the	file.
5.	 Create	the	/etc/grub.d/01_users	file	with	the	following	contents:

cat	<<	EOF

set	superusers="root"

password	root	SuperSecretPassword

EOF

6.	 Next,	update	your	grub	configuration	by	running	the	following	commands:

~]#	grub2-mkconfig	-o	/boot/grub2/grub.cfg

Generating	grub	configuration	file…

Found	linux	image:	/boot/vmlinuz-3.10.0-229.4.2.el7.x86_64

Found	initrd	image:	/boot/initramfs-3.10.0-229.4.2.el7.x86_64.img

Found	linux	image:	/boot/vmlinuz-3.10.0-229.1.2.el7.x86_64

Found	initrd	image:	/boot/initramfs-3.10.0-229.1.2.el7.x86_64.img

Found	linux	image:	/boot/vmlinuz-0-rescue-

fe045089e49942cb97db675892395bc8

Found	initrd	image:	/boot/initramfs-0-rescue-

fe045089e49942cb97db675892395bc8.img

done

~]#



How	it	works…
The	behavior	of	grub2-mkconfig	is	defined	by	the	directives	of	the	files	in	/etc/grub.d.
These	files,	based	on	the	configuration	in	/etc/sysconfig/grub,	autogenerate	all	the
menu	entries	in	the	grub.cfg	file.	You	can	modify	its	behavior	by	adding	files	with	bash
code	in	this	directory.

For	instance,	you	could	add	a	script	that	would	add	a	menu	entry	to	boot	from	the
CD/DVD	ROM	drive.

The	user	root,	which	is	added	to	/etc/grub.d/01_users,	is	the	only	one	allowed	to	edit
menu	entries	from	the	console,	mitigating	the	weakness	in	GRUB	to	force	rescue	mode	by
adding	1	or	rescue	at	the	end	of	the	kernel	line.



There’s	more…
The	grub2-mkconfig	command	is	specific	for	BIOS-based	systems.	In	order	to	do	the
same	on	UEFI	systems,	modify	the	command	as	follows:

~]#	grub2-mkconfig	-o	/boot/efi/EFI/redhat/grub.cfg

In	order	to	access	the	GRUB	terminal	over	the	same	serial	connection,	you	need	to	specify
an	additional	kernel	option:	console=ttyS0,9600n8.

You	can	either	modify	the	kernel	lines	in	/boot/grub2/grub.cfg	(or
/boot/efi/EFI/redhat/grub.cfg	manually,	but	you	do	risk	losing	the	change	when	your
kernel	is	updated),	or	manually	regenerate	the	file	using	grub2-mkconfig.

It’s	best	to	add	it	to	the	GRUB_CMDLINE_LINUX	directive	in	/etc/sysconfig/grub	and
regenerate	your	grub.cfg	file.

Passwords	for	GRUB	users	can	be	encrypted	using	the	grub2-mkpasswd-pbkdf2
command,	as	follows:

~]#	grub2-mkpasswd-pbkdf2

Enter	password:

Reenter	password:

PBKDF2	hash	of	your	password	is	

grub.pbkdf2.sha512.10000.C208DD5E318B1D6477C4E51035649C197411259C214D0B83E3

E83753AD58F7676B62CDF48E31AF0E739844A5CF9A95F76AF5008AF340336DB50ECA23906EC

C13.9D20A66F0CADA12AA617B293B5BBF7AAD44423ECA513F302FEBF5CB92A0DC54436E16D7

CD6E09685323084A27462C2A981054D52F452F5C2F71FBACD2C31AEFA

~]#

Then,	you	can	substitute	the	clear	text	password	in	/etc/grub.d/01_users	with	the
generated	hash.	Here’s	an	example:

password	root	

grub.pbkdf2.sha512.10000.C208DD5E318B1D6477C4E51035649C197411259C214D0B83E3

E83753AD58F7676B62CDF48E31AF0E739844A5CF9A95F76AF5008AF340336DB50ECA23906EC

C13.9D20A66F0CADA12AA617B293B5BBF7AAD44423ECA513F302FEBF5CB92A0DC54436E16D7

CD6E09685323084A27462C2A981054D52F452F5C2F71FBACD2C31AEFA

All	the	entries	that	are	automatically	generated	are	bootable	but	not	editable	from	the
console,	unless	you	know	the	user	and	password.	If	you	have	custom	menu	entries	and
want	to	protect	them	in	a	similar	way,	add	--unrestricted	to	the	menu	entry	definition
before	the	accolades.	Here’s	an	example:

menuentry	'My	custom	grub	boot	entry'	<options>	--unrestricted	{



See	also
For	more	information	about	working	with	the	GRUB2	boot	loader,	go	to
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-
Working_with_the_GRUB_2_Boot_Loader.html.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-Working_with_the_GRUB_2_Boot_Loader.html




Configuring	smtp
Many	programs	use	(or	can	be	configured	to	use)	SMTP	to	send	messages	about	their
status	and	so	on.	By	default,	postfix	is	configured	to	deliver	all	messages	locally	and	not
respond	to	incoming	mails.	If	you	have	an	environment	of	multiple	servers,	this	can
become	quite	tedious	to	log	on	to	each	server	to	check	for	new	mail.	This	recipe	will	show
you	how	to	relay	messages	to	a	central	mail	relay	or	message	store	that	also	uses	SMTP.

Postfix	is	installed	by	default	on	RHEL	7.



How	to	do	it…
In	this	recipe,	we’ll	combine	several	options:

We’ll	allow	the	server	to	accept	incoming	mails
We’ll	only	allow	the	server	to	relay	messages	from	recipients	in	the	mydomain.lan
domain
We’ll	forward	all	mails	to	the	mailhost.mydomain.lan	mailserver

To	complete	this	recipe,	perform	the	following	steps:

1.	 Edit	/etc/postfix/main.cf	with	your	favorite	editor.
2.	 Modify	inet_interface	to	accept	mails	on	any	interface	through	the	following

command:

inet_interface	=	all

3.	 Add	the	smtpd_recipient_restrictions	directive	to	only	allow	incoming	mails
from	the	mydomain.lan	domain,	as	follows:

smtpd_recipient_restrictions	=

				check_sender_access	hash:/etc/postfix/sender_access,

				reject

As	you	can	see,	the	last	two	lines	are	indented.	The	postfix	considers	this	block	as
one	line	instead	of	three	separate	lines.

4.	 Add	the	relayhost	directive	to	point	to	mailhost.mydomain.lan,	as	follows:

relayhost	=	mailhost.mydomain.lan

5.	 Now,	save	the	postfix	file.
6.	 Create	/etc/postfix/sender_access	with	the	following	contents:

mydomain.lan	OK

7.	 Next,	hash	the	/etc/postfix/access	file	using	the	following	command:

~]#	postmap	/etc/postfix/access

8.	 Finally,	restart	postfix,	as	follows:

~]#	systemctl	restart	postfix



There’s	more…
To	monitor	your	mail	queue	on	the	system,	execute	the	following:

~]#	postqueue	-p

Whenever	your	mail	relay	cannot	forward	mails,	it	stores	them	locally	and	tries	to	resend
them	at	a	later	time.	When	you	restore	the	mailflow,	you	can	flush	the	queue	and	attempt
delivery	by	executing	the	following:

~]#	postqueue	-f

The	kind	of	setup	presented	in	this	recipe	is	quite	simple	and	assumes	that	you	don’t	have
malicious	users	on	your	network.	There	are	software	that	allow	you	to	mitigate	spam	and
viruses.	Popular	solutions	for	this	are	spamassassin	and	amavis.



See	also
For	more	information	on	using	postfix	with	RHEL	7,	go	to
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/s1-email-
mta.html#s2-email-mta-postfix.

For	more	information	on	postfix,	check	out	the	postfix	rpm	(rpm	-ql	postfix)	or	go	to
http://www.postfix.org/.	This	site	provides	good	documentation	and	how	to‘s	for	a	large
number	of	scenarios.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/s1-email-mta.html#s2-email-mta-postfix
http://www.postfix.org/




Chapter	5.	Using	SELinux
Here	is	an	overview	of	the	recipes	presented	in	this	chapter:

Changing	file	contexts
Configuring	SELinux	booleans
Configuring	SELinux	port	definitions
Troubleshooting	SELinux
Creating	SELinux	policies
Applying	SELinux	policies



Introduction
SELinux	is	a	Linux	kernel	module	that	allows	supporting	mandatory	access	control
(MAC)	security	policies.	The	Red	Hat	implementation	of	SELinux	combines	role-based
access	control	(RBAC)	with	type	enforcement	(TE).	Optionally,	multilevel	security
(MLS)	is	also	available	but	isn’t	widely	used	as	it	implements	fewer	policies	than	the
default	Red	Hat	SELinux	policies.

SELinux	is	enabled	by	default	in	RHEL	7	and	supported	for	all	software	packaged	by	Red
Hat.

The	recipes	presented	in	this	chapter	will	not	only	provide	you	with	a	solid	base	to
troubleshoot	SELinux	issues	and	fix	them,	but	also	a	peek	into	how	to	create	your	own
SELinux	policies.





Changing	file	contexts
Files	and	processes	are	labeled	with	a	SELinux	context,	which	contains	additional
information	about	a	SELinux	user,	role	type,	and	level.	This	information	is	provided	by
the	SELinux	kernel	module	to	make	access	control	decisions.

The	SELinux	user,	a	unique	identity	known	by	the	SELinux	policy,	is	authorized	for	a
number	of	roles.

SELinux	roles,	as	we	already	alluded	to	before,	are	attributes	of	SELinux	users	and	part	of
the	RBAC	SELinux	policy.	SELinux	roles	are	authorized	for	SELinux	domains.

SELinux	types	define	the	type	for	files	and	domain	for	processes.	SELinux	policies	define
access	between	types	and	other	files	and	processes.	By	default,	if	there	is	no	specific	rule
in	the	SELinux	policy,	access	is	denied.

The	SELinux	level	is	only	used	when	the	SELinux	type	is	set	to	MLS	and	should	be
avoided	altogether	on	anything	other	than	servers.	This	set	of	policies	doesn’t	cover	the
same	domains	as	defined	by	the	default	Red	Hat	SELinux	policy.	The	SELinux	level	is	an
attribute	of	MLS	and	multi-category	security	(MCS).



Getting	ready
All	files	and	processes	on	a	system	are	labeled	to	represent	security-relevant	information.
This	information	is	called	the	SELinux	context.	To	view	the	contexts	of	files	(and
directories),	execute	the	following:

~#	ls	-Z

-rw-r--r--.	root	root	unconfined_u:object_r:admin_home_t:s0	file

~#



How	to	do	it…
You	can	temporarily	change	the	context	of	a	file	(or	files)	or	permanently	change	their
context.	The	first	option	allows	easy	troubleshooting	if	you	need	to	figure	out	whether
changing	the	context	solves	your	problem.	Persistent	changes	are	mostly	used	when	your
applications	refer	to	data	that	is	not	in	the	standard	location—for	example,	if	your	web
server	serves	data	from	/srv/www.

Temporary	context	changes
Temporary	SELinux	context	changes	remain	until	the	file,	or	the	filesystem	that	the	file
resides	on,	is	relabeled.

To	change	the	SELinux	user	of	a	file,	execute	the	following:

~#	chcon	--user	<SELinux	user>	<filename>

To	change	the	SELinux	role	of	a	file,	execute	the	following:

~#	chcon	--role	<SELinux	role>	<filename>

To	change	the	SELinux	type	of	a	file,	execute	the	following:

~#	chcon	--type	<SELinux	typs>	<filename>

Persistent	file	context	changes
Changing	the	application	data	location	doesn’t	automatically	modify	SELinux	contexts	to
allow	your	application	to	access	this	data.

To	permanently	relabel	files	or	directories,	perform	the	following:

1.	 Change	the	SELinux	user	for	your	files	or	directories	via	this	command:

~#	semanage	fcontext	-a	--seuser	<SELinux	user>	<filename|dirname>

2.	 Change	the	SELinux	type	of	your	files	or	directories	by	running	the	following:

~#	semanage	fcontext	-a	--type	<SELinux	type>	<filename|dirname>

3.	 Finish	with	this	command	line	by	applying	the	directive	to	the	files/directories:

~#	restorecon	<filename|dirname>



There’s	more…
To	show	all	the	available	SELinux	users,	execute	the	following:

~#	semanage	user	-l

Alternatively,	you	can	install	the	setools-console	package	and	run	the	following:

~#	seinfo	-u



To	show	all	the	available	SELinux	types,	install	the	setools-console	package	and	run	the
following:

~#	seinfo	-t

To	show	the	available	SELinux	roles,	install	the	setools-console	package	and	run	the
following:

~#	seinfo	-r



The	semanage	tool	doesn’t	have	an	option	to	include	all	files	recursively,	but	there	is	a
solution	to	this.	The	filename	or	dirname	you	specify	is	actually	a	regular	expression	filter.
So,	for	example,	if	you	want	to	recursively	include	all	the	files	in	/srv/www,	you	could
specify	"/srv/www(/.*)?".

Tip
For	now,	there’s	no	way	to	change	the	SELinux	role	using	semanage.	A	way	to	get	around
this	is	to	change	the	SELinux	user	or	type	using	semanage	and	then	edit	it,	as	follows:
/etc/selinux/targeted/contexts/files/file_contexts.local.

Here’s	a	wrong	SELinux	context	example	of	an	AVC	denial	report	found	in	the	audit.log
file:

type=AVC	msg=audit(1438884962.645:86):	avc:		denied		{	open	}	for		pid=1283	

comm="httpd"	path="/var/www/html/index.html"	dev="dm-5"	ino=1089	

scontext=system_u:system_r:httpd_t:s0	

tcontext=system_u:object_r:user_home_t:s0	tclass=file

This	command	can	be	explained	as	follows:

Commands Description

type=AVC This	is	the	log	type

msg=audit(1438884962.645:86) This	is	the	log	entry	timestamp

avc This	is	a	repetition	of	the	log	type

denied This	states	whether	enforcing	is	enabled



{	open	} This	is	a	permission	that	causes	AVC	denial

for	pid=1283 This	is	the	process	ID

comm="httpd" This	is	the	process	command

path="/var/www/html/index.html" This	is	the	path	that	is	accessed

dev="dm-5" This	blocks	the	device	that	the	preceding	file	is	located	on

ino=1089 This	is	the	inode	of	the	preceding	file

scontext=system_u:system_r:httpd_t:s0 This	is	the	source	SELinux	context

tcontext=system_u:object_r:user_home_t:s0 This	is	the	target	SELinux	context

tclass=file This	is	the	target	SELinux	class



See	also
Refer	to	the	man	page	for	chcon	(1)	and	semanage-fcontext	(8)	for	more	information.





Configuring	SELinux	booleans
SELinux	booleans	allow	you	to	change	the	SELinux	policy	at	runtime	without	the	need	to
write	additional	policies.	This	allows	you	to	change	the	policy	without	the	need	for
recompilation,	such	as	allowing	services	to	access	NFS	volumes.



How	to	do	it…
This	is	the	way	to	temporarily	or	permanently	change	SELinux	booleans.

Listing	SELinux	booleans
For	a	list	of	all	booleans	and	an	explanation	of	what	they	do,	execute	the	following:

~#	semanage	boolean	-l

Now,	let’s	try	to	get	the	value	of	a	particular	SELinux	boolean.	It	is	possible	to	get	the
value	of	a	single	SELinux	boolean	without	the	use	of	additional	utilities,	such	as	grep
and/or	awk.	Simply	execute	the	following:

~#	getsebool	<SELinux	boolean>

This	shows	you	whether	or	not	the	boolean	is	set.	Here’s	an	example:

~#	getsebool	virt_use_nfs

virt_use_nfs	-->	off

~#

Changing	SELinux	booleans
To	set	a	boolean	value	to	a	particular	one,	use	the	following	command:

~#	setsebool	<SELinux	boolean>	<on|off>

Here’s	an	example	command:

~#	setsebool	virt_use_nfs	on

This	command	allows	you	to	change	the	value	of	the	boolean,	but	it	is	not	persistent



across	reboots.	To	allow	persistence,	add	the	-P	option	to	the	command	line,	as	follows:

~#	setsebool	-P	virt_use_nfs	on



There’s	more…
If	you	would	like	a	list	of	all	the	bare	bones	of	SELinux	booleans	and	their	values,
getsebool	-a	is	an	alternative,	as	follows:

~#	getsebool	-a

Managing	SELinux	booleans	can	be	rather	complex	as	there	are	a	lot	of	booleans,	and
their	names	are	not	always	simple	to	remember.	For	this	reason,	the	setsebool,
getsebool,	and	semanage	tools	come	with	tab	completion.	So,	whenever	you	type	any
boolean	name,	you	can	use	the	tab	key	to	complete	or	display	the	possible	options.

Here’s	an	example	of	an	AVC	denial	report	found	in	the	audit.log	file	that	can	be	solved
by	enabling	a	boolean:

type=AVC	msg=audit(1438884483.053:48):	avc:		denied		{	open	}	for		pid=1270	

comm="httpd"	path="/nfs/www/html/index.html"	dev="0:38"	ino=2717909250	

scontext=system_u:system_r:httpd_t:s0	tcontext=system_u:object_r:nfs_t:s0	

tclass=file

This	is	an	example	of	a	service	(httpd	in	this	case)	accessing	a	file	located	on	an	NFS
share,	which	is	disabled	by	default.

This	can	be	allowed	by	setting	the	httpd_use_nfs	boolean	to	“on“.





Configuring	SELinux	port	definitions
SELinux	also	controls	access	to	your	TCP/IP	ports.	If	your	application	is	confined	by
SELinux,	it	will	also	deny	access	to	your	ports	when	starting	up	the	application.

This	recipe	will	show	you	how	to	detect	which	ports	are	used	by	a	particular	SELinux	type
and	change	it.



How	to	do	it…
Let’s	allow	the	HTTP	daemon	to	listen	on	the	nonstandard	port	82	through	the	following
steps:

1.	 First,	look	for	the	ports	that	are	accessed	by	HTTP	via	these	commands:

~#	semanage	port	-l	|grep	http

http_cache_port_t														tcp						8080,	8118,	8123,	10001-10010

http_cache_port_t														udp						3130

http_port_t																				tcp						80,	81,	443,	488,	8008,	8009,	

8443,	9000

pegasus_http_port_t												tcp						5988

pegasus_https_port_t											tcp						5989

~#

The	SELinux	port	assignment	we’re	looking	for	is	http_port_t.	As	you	can	see,
only	the	displayed	ports	(80,	81,	443,	488,	8008,	8009,	8443,	and	9000)	are	allowed	to
be	used	to	listen	on	by	any	process	that	is	allowed	to	use	the	http_port_t	type.

2.	 Add	port	82	to	the	list	of	allowed	ports,	as	follows:

~#	semanage	port	-a	-t	http_port_t	-p	tcp	82

~#

3.	 Next,	verify	the	port	assignment,	as	follows:

~#	semanage	port	-l	|grep	^http_port_t

http_port_t																				tcp						82,	80,	81,	443,	488,	8008,	

8009,	8443,	9000

~#



There’s	more…
In	this	example,	there	is	reference	to	the	HTTP	daemon	as	the	SELinux	policy	governing
HTTP	daemons	is	implemented	not	only	for	the	Apache	web	server,	but	also	for	Nginx.
So,	as	long	as	you	use	the	packages	provided	by	Red	Hat,	the	SELinux	policies	will	be
used	correctly.

Take	a	look	at	the	following	example	of	an	AVC	denial	report	found	in	the	audit.log	file
that	is	caused	because	the	domain	is	not	allowed	to	access	a	certain	port:

type=AVC	msg=audit(1225948455.061:294):	avc:	denied	{	name_bind	}	for	

pid=4997	comm="httpd"	src=82	scontext=unconfined_u:system_r:httpd_t:s0	

tcontext=system_u:object_r:port_t:s0	tclass=tcp_socket

This	AVC	denial	shows	that	the	httpd	daemon	attempted	to	listen	(name_bind)	on	port	82
but	was	prohibited	by	SELinux.





Troubleshooting	SELinux
Troubleshooting	SELinux	is	not	as	straightforward	as	it	may	seem	as	at	the	time	of	writing
this	book,	there	is	no	integration	with	SELinux	to	return	SELinux-related	events	back	to
the	applications.	Usually,	you	will	find	that	access	is	denied	with	no	further	description	of
it	in	log	files.



Getting	ready
Make	sure	that	setroubleshoot-server	and	setools-console	are	installed	by	executing
the	following	command:

~#	yum	install	-y	setroubleshoot-server	setools-console

If	you	have	X	server	installed	on	your	system,	you	can	also	install	the	GUI,	as	follows:

~#	yum	install	-y	setroubleshoot

Make	sure	that	auditd,	rsyslog,	and	setroubleshootd	are	installed	and	running	before
reproducing	the	issue.



How	to	do	it…
There	are	several	ways	to	detect	SELinux	issues.

This	is	a	classic	issue	where	the	SELinux	context	of	a	file	is	incorrect,	causing	the
application	trying	to	access	the	file	to	fail.

In	this	case,	the	context	of	/var/www/html/index.html	is	set	to
system_u:object_r:user_home_t:s0	instead	of
system_u:object_r:httpd_sys_content_t:s0,	causing	httpd	to	throw	a	404.	Take	a
look	at	the	following	command:

#	ls	-Z	/var/www/html/index.html

-rw-r--r--.	apache	apache	system_u:object_r:user_home_t:s0	

/var/www/html/index.html

~#

audit.log
Use	the	following	command	to	look	for	denied	or	failed	entries	in	the	audit	log:

~#	egrep	'avc.*denied'	/var/log/audit/audit.log

ype=AVC	msg=audit(1438884962.645:86):	avc:		denied		{	open	}	for		pid=1283	

comm="httpd"	path="/var/www/html/index.html"	dev="dm-5"	ino=1089	

scontext=system_u:system_r:httpd_t:s0	

tcontext=system_u:object_r:user_home_t:s0	tclass=file

~#

syslog
You	can	look	for	SELinux	messages	in	/var/log/messages	via	the	following	command:

~#	grep	'SELinux	is	preventing'	/var/log/messages

Aug		6	20:16:03	localhost	setroubleshoot:	SELinux	is	preventing	

/usr/sbin/httpd	from	read	access	on	the	file	index.html.	For	complete	

SELinux	messages.,	run	sealert	-l	dc544bde-2d7e-4f3f-8826-224d9b0c71f6

Aug	6	20:16:03	localhost	python:	SELinux	is	preventing	/usr/sbin/httpd	from	

read	access	on	the	file	index.html.

~#

ausearch
Use	the	audit	search	tool	to	find	SELinux	errors,	as	follows:

~#	ausearch	-m	avc

time->Thu	Aug		6	20:16:02	2015

type=SYSCALL	msg=audit(1438884962.645:86):	arch=c000003e	syscall=2	

success=yes	exit=25	a0=7f1bcfb65670	a1=80000	a2=0	a3=0	items=0	ppid=1186	

pid=1283	auid=4294967295	uid=48	gid=48	euid=48	suid=48	fsuid=48	egid=48	

sgid=48	fsgid=48	tty=(none)	ses=4294967295	comm="httpd"	

exe="/usr/sbin/httpd"	subj=system_u:system_r:httpd_t:s0	key=(null)

type=AVC	msg=audit(1438884962.645:86):	avc:		denied		{	open	}	for		pid=1283	

comm="httpd"	path="/var/www/html/index.html"	dev="dm-5"	ino=1089	

scontext=system_u:system_r:httpd_t:s0	

tcontext=system_u:object_r:user_home_t:s0	tclass=file

type=AVC	msg=audit(1438884962.645:86):	avc:		denied		{	read	}	for		pid=1283	



comm="httpd"	name="index.html"	dev="dm-5"	ino=1089	

scontext=system_u:system_r:httpd_t:s0	

tcontext=system_u:object_r:user_home_t:s0	tclass=file

~#

Once	we	restore	the	context	of	/var/www/html/index.html	to	its	original,	the	file	is
accessible	again.	Take	a	look	at	the	following	commands:

~#	restorecon	/var/www/html/index.html

~#	ls	-Z	/var/www/html/index.html

-rw-r--r--.	apache	apache	system_u:object_r:httpd_sys_content_t:s0	

/var/www/html/index.html

~#



There’s	more…
It’s	not	always	easy	to	determine	whether	a	file	has	the	correct	context.	To	view	the	actual
SELinux	context	and	compare	it	to	what	it	should	be	without	modifying	anything,	execute
this	command:

~#	matchpathcon	-V	index.html

index.html	has	context	system_u:object_r:user_home_t:s0,	should	be	

system_u:object_r:httpd_sys_content_t:s0

~#

This	tells	you	what	the	current	context	is	and	what	it	should	be.

As	you	can	see	in	the	preceding	syslog	example,	the	output	comes	with	the	following
command:

...	run	sealert	-l	dc544bde-2d7e-4f3f-8826-224d9b0c71f6

This	command	provides	you	with	a	richer	description	of	the	problem:

~#	sealert	-l	dc544bde-2d7e-4f3f-8826-224d9b0c71f6

SELinux	is	preventing	/usr/sbin/httpd	from	read	access	on	the	file	

index.html.

*****		Plugin	catchall_boolean	(89.3	confidence)	suggests			

******************

If	you	want	to	allow	httpd	to	read	user	content

Then	you	must	tell	SELinux	about	this	by	enabling	the	

'httpd_read_user_content'	boolean.

You	can	read	'None'	man	page	for	more	details.

Do

setsebool	-P	httpd_read_user_content	1

*****		Plugin	catchall	(11.6	confidence)	suggests			

**************************

If	you	believe	that	httpd	should	be	allowed	read	access	on	the	index.html	

file	by	default.

Then	you	should	report	this	as	a	bug.

You	can	generate	a	local	policy	module	to	allow	this	access.

Do

allow	this	access	for	now	by	executing:

#	grep	httpd	/var/log/audit/audit.log	|	audit2allow	-M	mypol

#	semodule	-i	mypol.pp

Additional	Information:

Source	Context																system_u:system_r:httpd_t:s0

Target	Context																system_u:object_r:user_home_t:s0

Target	Objects																index.html	[	file	]

Source																								httpd

Source	Path																			/usr/sbin/httpd

Port																										<Unknown>

Host																										localhost.localdomain



Source	RPM	Packages											httpd-2.4.6-31.el7.rhel.x86_64

Target	RPM	Packages											

Policy	RPM																				selinux-policy-3.13.1-23.el7_1.7.noarch

Selinux	Enabled															True

Policy	Type																			targeted

Enforcing	Mode																Permissive

Host	Name																					localhost.localdomain

Platform																						Linux	localhost.localdomain

																														3.10.0-229.4.2.el7.x86_64	#1	SMP	Wed	May	13

																														10:06:09	UTC	2015	x86_64	x86_64

Alert	Count																			1

First	Seen																				2015-08-06	20:16:02	CEST

Last	Seen																					2015-08-06	20:16:02	CEST

Local	ID																						dc544bde-2d7e-4f3f-8826-224d9b0c71f6

Raw	Audit	Messages

type=AVC	msg=audit(1438884962.645:86):	avc:		denied		{	read	}	for		pid=1283	

comm="httpd"	name="index.html"	dev="dm-5"	ino=1089	

scontext=system_u:system_r:httpd_t:s0	

tcontext=system_u:object_r:user_home_t:s0	tclass=file

type=AVC	msg=audit(1438884962.645:86):	avc:		denied		{	open	}	for		pid=1283	

comm="httpd"	path="/var/www/html/index.html"	dev="dm-5"	ino=1089	

scontext=system_u:system_r:httpd_t:s0	

tcontext=system_u:object_r:user_home_t:s0	tclass=file

type=SYSCALL	msg=audit(1438884962.645:86):	arch=x86_64	syscall=open	

success=yes	exit=ENOTTY	a0=7f1bcfb65670	a1=80000	a2=0	a3=0	items=0	

ppid=1186	pid=1283	auid=4294967295	uid=48	gid=48	euid=48	suid=48	fsuid=48	

egid=48	sgid=48	fsgid=48	tty=(none)	ses=4294967295	comm=httpd	

exe=/usr/sbin/httpd	subj=system_u:system_r:httpd_t:s0	key=(null)

Hash:	httpd,httpd_t,user_home_t,file,read

~#

This	will	actually	give	you	more	details	about	the	problem	at	hand,	and	it	will	also	make	a
couple	of	suggestions.	Of	course,	in	this	case,	the	real	solution	is	to	restore	the	SELinux
context	of	the	file.

If	you	have	installed	a	graphical	desktop	environment,	you	will	get	a	notification	each
time	your	system	encounters	an	“AVC	denied”	alert:



Clicking	on	the	icon	will	present	you	with	the	following	dialog:

Clicking	on	the	Troubleshoot	button	will	provide	you	with	additional	information	and	a
(or	multiple)	possible	solution(s)	for	your	problem,	as	shown	in	the	following	screenshot:

In	this	case,	the	first	option	(the	one	marked	with	a	green	line)	is	the	correct	solution.

Some	AVC	denial	messages	may	not	be	logged	when	SELinux	denies	access.	Applications
and	libraries	regularly	probe	for	more	access	than	is	actually	required	to	perform	their
tasks.	In	order	to	not	flood	the	audit	logs	with	these	kinds	of	messages,	the	policy	can
silence	the	AVC	denials	that	are	without	permissions	using	dontaudit	rules.	The



downside	of	this	is	that	it	may	make	troubleshooting	SELinux	denials	more	difficult.

To	disable	the	dontaudit	rules,	execute	the	following	command:

~#	semanage	dontaudit	off

This	will	disable	the	dontaudit	rules	and	rebuild	the	SELinux	policy.

It	is	advisable	to	reenable	the	dontaudit	rules	when	you’re	done	troubleshooting	as	this
may	flood	your	disks.	You	can	do	this	by	executing	the	following	command:

~#	semanage	dontaudit	on

To	get	a	full	list	of	dontaudit	rules,	run	the	following:

~#	sesearch	--dontaudit

Found	8361	semantic	av	rules:

			dontaudit	user_ssh_agent_t	user_ssh_agent_t	:	udp_socket	listen	;

			dontaudit	openshift_user_domain	sshd_t	:	key	view	;

			dontaudit	user_seunshare_t	user_seunshare_t	:	process	setfscreate	;

			dontaudit	ftpd_t	selinux_config_t	:	dir	{	getattr	search	open	}	;

			dontaudit	user_seunshare_t	user_seunshare_t	:	capability	sys_module	;

			dontaudit	xguest_dbusd_t	xguest_dbusd_t	:	udp_socket	listen	;

			dontaudit	tuned_t	tuned_t	:	process	setfscreate	;

...

~#

If	you	know	the	domain	that	you	wish	to	check	for	dontaudit	rules,	add	the	-s	argument
followed	by	the	domain,	as	shown	here:

~#	sesearch	--dontaudit	-s	httpd_t

Found	182	semantic	av	rules:

			dontaudit	httpd_t	snmpd_var_lib_t	:	file	{	ioctl	read	write	getattr	lock	

open	}	;

			dontaudit	domain	rpm_var_lib_t	:	file	{	ioctl	read	write	getattr	lock	

append	}	;

			dontaudit	httpd_t	snmpd_var_lib_t	:	dir	{	ioctl	read	getattr	lock	search	

open	}	;

			dontaudit	domain	rpm_var_lib_t	:	dir	getattr	;

			dontaudit	httpd_t	snmpd_var_lib_t	:	lnk_file	{	read	getattr	}	;

...

~#



See	also
Take	a	look	at	the	man	page	for	ausearch	(8),	matchpathcon	(8),	and	sealert	(8)	for	more
information.





Creating	SELinux	policies
In	some	cases,	you’ll	need	to	create	a	new	SELinux	policy—for	instance,	when	installing
a	piece	of	software	from	source.	Although	I	do	not	recommend	installing	software	from
source	on	enterprise	systems,	this	is	sometimes	your	only	option	for	company-developed
software.

It	is	then	time	to	create	your	own	SELinux	policy.



Getting	ready
For	this	recipe,	you	need	to	have	policycoreutils-python	installed.



How	to	do	it…
We’ll	use	the	denied	entries	in	the	audit.log	log	file	to	build	our	SELinux	policy	with
audit2allow.

In	this	recipe,	we’ll	use	the	same	example	as	in	the	previous	recipe:	the	SELinux	context
of	/var/www/html/index.html	that	is	changed	to	system_u:object_r:user_home_t:s0.
Perform	the	following	steps:

1.	 First,	create	a	human	readable	policy	for	verification	via	the	following	command:

~#	egrep	'avc.*denied'	/var/log/audit/audit.log	|audit2allow	-m	

example_policy

module	example_policy	1.0;

require	{

								type	httpd_t;

								type	user_home_t;

								class	file	{	read	open	};

}

#=============	httpd_t	==============

#!!!!	This	avc	can	be	allowed	using	the	boolean	

'httpd_read_user_content'

allow	httpd_t	user_home_t:file	{	read	open	};

~#

2.	 When	this	policy	is	validated,	you	can	create	a	compiled	SELinux	policy	file,	as
follows:

egrep	'avc.*denied'	/var/log/audit/audit.log	|audit2allow	-M	

example_policy

********************	IMPORTANT	***********************

To	make	this	policy	package	active,	execute:

semodule	-i	example_policy.pp

~#



How	it	works…
When	you	generate	a	module	package,	two	files	are	created:	a	type	enforcement	file	(.te)
and	a	policy	package	file	(.pp)	file.	The	te	file	is	the	human	readable	policy	as	generated
using	audit2allow	-m.

The	pp	file	is	the	SELinux	policy	module	package,	which	will	later	be	used	to	enable	the
new	policy.



There’s	more…
If	you	believe	you	have	discovered	a	bug	in	an	existing	SELinux	policy,	you’ll	need	to
produce	a	type	enforcing	and	policy	package	file	to	report	with	Red	Hat	Bugzilla.

It’s	important	to	make	sure	that	you	only	parse	the	correct	AVC	denial	entries	with
audit2allow	as	it	may	result	in	more	access	than	required.	It’s	a	good	idea	to	pipe	the	AVC
denial	entries	to	a	temporary	file	and	remove	what	is	not	needed	before	you	parse	the	file
with	audit2allow.

If	the	policy	you	generate	in	this	way	is	not	exactly	what	you	need,	you	can	always	edit
the	generated	te	policy	file,	and	when	you’re	done,	compile	a	new	policy	file	using	the	te
policy	file.	You	can	do	this	as	follows:

1.	 Build	a	binary	policy	module	out	of	the	policy	file	through	this	command:

~#	checkmodule	-M	-m	-o	example_policy.mod	example_policy.te

checkmodule:		loading	policy	configuration	from	example_policy.te

checkmodule:		policy	configuration	loaded

checkmodule:		writing	binary	representation	(version	17)	to	

example_policy.mod

~#

2.	 Create	the	SELinux	policy	module	package	by	executing	the	following:

~#	semodule_package	-o	example_policy.pp	-m	example_policy.mod

~#



See	also
Take	a	look	at	the	man	page	for	audit2allow(1)	for	more	options	on	creating	a	policy

To	report	bugs,	go	to	https://bugzilla.redhat.com/.

https://bugzilla.redhat.com/




Applying	SELinux	policies
We’ve	learned	how	to	create	SELinux	policies	in	the	previous	recipe.	This	recipe	will
show	you	how	to	apply	your	newly	created	SELinux	policies.



Getting	ready
In	order	to	apply	a	policy,	we	need	a	policy	package	file	(pp).	This	can	be	obtained	by
parsing	AVC	denials	to	audit2allow	or	compiling	your	own	policy	package	file,	as
explained	in	the	Create	SELinux	policies	recipe.



How	to	do	it…
Follow	these	steps:

1.	 Activate	the	policy	(this	can	take	quite	a	while,	depending	on	the	number	of	policies
applied	to	your	system)	by	running	the	following	command:

~#	semodule	-i	example_policy.pp

~#

2.	 Next,	verify	that	the	policy	is	actually	activated	via	these	commands:

~#	semodule	-l	|grep	example_policy

example_policy		1.0

~#



How	it	works…
When	executing	the	semodule	command,	the	policy	file	is	copied	to
/etc/selinux/targeted/modules/active/modules/,	and	the	complete	SELinux	policy
is	recompiled	and	applied.

Tip
Be	careful	when	applying	custom-made	policies	as	these	may	allow	more	access	than
required!



There’s	more…
To	remove	policies,	execute	the	following	command:

~#	semodule	-r	example_policy

~#

This	is	particularly	practical	when	you	want	to	test	the	effect	with	and	without	the	policy.

There’s	also	a	way	to	upgrade	the	module	without	removing	it	first,	which	is	as	follows:

~#	semodule	-u	example_policy

~#



See	also
Refer	to	the	man	page	for	semodule	(8)	for	more	information.





Chapter	6.	Orchestrating	with	Ansible
In	this	chapter,	the	following	recipes	will	be	addressed:

Installing	Ansible
Configuring	the	Ansible	inventory
Creating	the	template	for	a	kickstart	file
Creating	a	playbook	to	deploy	a	new	VM	with	kickstart
Creating	a	playbook	to	perform	system	configuration	tasks
Troubleshooting	Ansible



Introduction
Ansible	is	an	easy-to-use	agentless	system	configuration	management	tool.	It	allows	us	to
deploy	complex	configurations	without	the	hassle	of	a	complex	interface	or	language.

Ansible	uses	playbooks,	which	are	collections	of	tasks	to	deploy	configurations	and
applications	to	multiple	nodes	over	SSH	in	a	controlled	way.	However,	it	doesn’t	stop
there.

Ansible’s	modules,	which	are	used	to	execute	tasks,	are	all	built	to	be	idempotent	in	their
execution.

The	definition	of	Idempotence,	according	to	Wikipedia,	is	as	follows:

Idempotence	(/ˌaɪdɨmˈpoʊtəns/	eye-dəm-poh-təns	[citation	needed])	is	the	property	of
certain	operations	in	mathematics	and	computer	science	that	can	be	applied	multiple
times	without	changing	the	result	beyond	the	initial	application.

In	short,	any	module	will	detect	the	changes	to	be	applied	and	perform	them.	If	it	doesn’t
need	to	change	anything,	it	will	not	reapply	the	requested	changes	or	interfere	with	file
metadata.

The	Ansible	company	also	provides	Tower,	a	paid	subscription	with	extra	features,	as	an
add-on	to	Ansible.	Tower	provides	a	graphical	interface	to	control	your	Ansible
orchestration	tool.	However,	this	is	out	of	the	scope	of	this	chapter.





Install	Ansible
Ansible	is	not	in	the	default	RHEL	7	repositories,	but	in	this	recipe,	I	will	show	you	how
to	install	it	in	several	ways.



Getting	ready
Ansible	needs	the	following	packages	installed:

Python	v2.7	(Ansible	doesn’t	support	v3	yet)
python-httplib2

python-jinja2

python-paramiko

python-setuptools

PyYAML

So,	in	order	to	achieve	this,	execute	the	following	command:

~]#	yum	install	-y	python-httplib2	python-jinja2	python-keyczar	python-

paramiko	python-setuptools	PyYAML

As	RHEL	7	and	some	other	major	distributions	come	preinstalled	with	Python	(yum
requires	it,	as	do	most	of	the	Red	Hat	tools),	we	don’t	have	to	include	it	in	the	preceding
command.



How	to	do	it…
In	this	recipe,	I	will	cover	the	three	most	used	methods	of	installing	Ansible.

Installing	the	latest	tarball
This	method	is	quite	simple	as	you	just	download	the	tarball	and	extract	it	in	a	location	of
your	choosing.	Perform	the	following	steps:

1.	 Grab	the	latest	tarball	located	at	http://releases.ansible.com/ansible/	via	the	following
command:

~]$	curl	-o	/tmp/ansible-latest.tar.gz	

http://releases.ansible.com/ansible/ansible-latest.tar.gz

	%	Total				%	Received	%	Xferd		Average	Speed			Time				Time					Time		

Current

																																	Dload		Upload			Total			Spent				Left		

Speed

100		905k		100		905k				0					0			870k						0		0:00:01		0:00:01	--:--:-

-		870k

~]$

2.	 Extract	the	tarball	to	/opt,	as	follows:

~]#	tar	zxf	/tmp/ansible-latest.tar.gz	-C	/opt/

3.	 Now,	create	a	symbolic	link	for	easy	access	using	this	command:

~]#	ln	-s	/opt/ansible-1.9.2	/opt/ansible

4.	 Add	the	Ansible	binaries	and	man	pages	to	your	environment’s	path	by	executing	the
following:

~]#	cat	<<	EOF	>	/etc/profile.d/ansible.sh

#	Ansible-related	stuff

export	ANSIBLE_HOME=/opt/ansible

export	PATH=\${PATH-""}:${ANSIBLE_HOME}/bin

export	MANPATH=\${MANPATH-""}:${ANSIBLE_HOME}/docs/man

export	PYTHONPATH=\${PYTHONPATH-""}:${	ANSIBLE_HOME}/lib

EOF

~]#

5.	 Next,	source	the	Ansible	PATH	and	MANPATH	by	running	this	command	line:

~]#	.	/etc/profile.d/ansible.sh

6.	 Finally,	use	the	following	command	to	regenerate	the	man	pages:

~]#	/etc/cron.daily/man-db.cron

Installing	cutting	edge	from	Git
Git	makes	keeping	your	local	copy	of	Ansible	up	to	date	quite	simple.

It	automatically	updates/removes	files	where	needed.	Perform	the	following	steps:

http://releases.ansible.com/ansible/


1.	 Make	sure	git	is	installed	using	this	command:

~]#	yum	install	-y	git

2.	 Clone	the	Ansible	git	repository	to	/opt,	as	follows:

~]#	cd	/opt

~]#	git	clone	git://github.com/ansible/ansible.git	--recursive

3.	 Add	the	Ansible	binaries	and	man	pages	to	your	environment’s	path,	through	the
following	command:

~]#	cat	<<	EOF	>	/etc/profile.d/ansible.sh

#	Ansible-related	stuff

export	ANSIBLE_HOME=/opt/ansible

export	PATH=\${PATH-""}:${ANSIBLE_HOME}/bin

export	MANPATH=\${MANPATH-""}:${ANSIBLE_HOME}/docs/man

export	PYTHONPATH=\${PYTHONPATH-""}:${	ANSIBLE_HOME}/lib

EOF

~]#

4.	 Now,	source	the	Ansible	PATH	and	MANPATH	via	this	command:

~]#	.	/etc/profile.d/ansible.sh

5.	 Finally,	using	the	following	line,	regenerate	the	man	pages:

~]#	/etc/cron.daily/man-db.cron

Installing	Ansible	from	the	EPEL	repository
Installing	from	a	repository	has	the	advantage	that	you	can	keep	your	version	of	Ansible
up	to	date	along	with	your	system.	Here	are	the	steps	you	need	to	perform:



1.	 Install	the	extra	packages	for	the	Enterprise	Linux	(EPEL)	repository	from
https://fedoraproject.org/wiki/EPEL	via	this	command:

~]#	yum	install	-y	https://dl.fedoraproject.org/pub/epel/epel-release-

latest-7.noarch.rpm

2.	 Now,	install	Ansible	using	yum,	as	follows:

~]#	yum	install	-y	ansible

https://fedoraproject.org/wiki/EPEL


There’s	more…
If	you	want	to	keep	your	Git	clone	up	to	date,	remember	that	the	sources	tree	also	contains
two	subtrees.	You’ll	have	to	execute	the	following:

~]#	git	pull	--release

~]#	git	submodule	update	--init	--recursive





Configuring	the	Ansible	inventory
The	Ansible	inventory	is	the	heart	of	the	product	as	it	provides	a	lot	of	variables	about
your	environment	to	the	deployment	mechanism.	These	variables	are	known	as	facts	and
serve	Ansible	to	make	decisions,	template	text-based	files,	and	so	on.



How	to	do	it…
There	are	several	ways	of	adding	information	about	your	environment	to	your	inventory.

The	static	inventory	file
The	static	inventory	is	basically	a	mini-formatted	file	containing	the	definitions	for	hosts
and	groups.	Here’s	what	you	need	to	do:

1.	 Create	/etc/ansible/hosts	with	the	following	contents:

~]#	cat	<<	EOF	>>	/etc/ansible/hosts

localhost									ansible_connection=local

srv1.domain.tld			ansible_connection=ssh	ansible_ssh_user=root

[mail]

mail[01..50].domain.tld

[mail:vars]

dns_servers=[	'8.8.8.8',	'8.8.4.4'	]

mail_port=25

EOF

~]#

The	dynamic	inventory	file
The	dynamic	inventory	file	has	to	be	an	executable	file,	generating	a	JSON	string
containing	information	about	your	hosts	and	groups.	Follow	these	steps::

1.	 Create	an	~/inventory.py	script	with	the	following	contents:

-]#	cat	<<	EOF	>>	~/inventory.py

#!/usr/bin/python	-tt

#	-*-	coding:	utf-8	-*-

#	vim:	tabstop=8	expandtab	shiftwidth=4	softtabstop=4

import	json

def	main():

				inventory	=	{

								'_meta':	{

												'hostvars':	{

																'localhost':	{

																				'ansible_connection':	'local'	},

																'srv1.domain.tld':	{

																				'ansible_connection':	'ssh',

																				'ansible_ssh_user':	'root'	},

																}

												},

								'all':	{

												'hosts':	[

																'localhost',

																'srv1.domain.tld'	]	},

								'mail':	{

												'hosts':	[],

												'vars':	{



																'dns_servers':	[	'8.8.8.8',	'8.8.4.4'	],

																'mail_port':	25}	}

				}

				for	x	in	range(1,50):

								hostname	=	'mail'	+	('00%d'	%	x)[-2:]	+	'.domain.tld'

								inventory['_meta']['hostvars'].update({	hostname:	{}	})

								inventory['mail']['hosts'].append(hostname)

				print	json.dumps(inventory,	sort_keys=True,	indent=4,	separators=

(',',':	'))

if	__name__	==	'__main__':

				main()

~]#

2.	 Now,	make	the	script	executable,	as	follows:

~]#	chmod	+x	~/inventory.py

host_vars	files
A	host_vars	file	is	a	yml-formatted	one	containing	extra	facts,	which	will	only	be	applied
to	the	host	with	the	same	name	as	the	file.	Simply	do	the	following:

1.	 Create	a	host_vars	file	for	srv1.domain.tld	through	this	command:

~]#	cat	<<	EOF	>>	~/host_vars/srv1.domain.tld.yml

ansible_connection:	ssh

ansible_ssh_user:	root

EOF

~]#

group_vars	files
Like	host_vars,	group_vars	files	are	yml-formatted	ones	containing	extra	facts.	These
will	be	applied	to	the	group	with	the	same	name	as	the	file.	Perform	the	following:

1.	 Create	a	group_vars	file	for	mail	via	the	following	command:

~]#	cat	<<	EOF	>>	~/group_vars/mail.yml

dns_servers:	[	'8.8.8.8',	'8.8.4.4'	]

mail_port:	25

EOF

~]#



How	it	works…
The	inventory	file	location	is	set	in	the	Ansible	configuration	file—look	for	the	line
starting	with	hostfile	within	the	defaults	section.	This	file	is	either	a	static	file,	or	a
script	returning	a	JSON-formatted	list	of	hosts	and	groups,	as	shown	in	the	preceding
recipe.	Ansible	automatically	detects	whether	a	file	is	a	script	and	treats	it	this	way	to
import	information.

There	is	one	caveat,	however:	the	script	needs	to	show	the	JSON-formatted	information
by	specifying	--list.

Ansible	can	automatically	combine	the	inventory	with	the	host_vars	and	group_vars
files	if	the	latter	two	directories	are	in	the	same	directory	as	the	inventory	file	/	script.	Take
a	look	at	the	following:

/etc/ansible/hosts

/etc/ansible/host_vars

/etc/ansible/host_vars/srv1.domain.tld.yml

/etc/ansible/host_vars/...

/etc/ansible/group_vars

/etc/ansible/group_vars/mail.yml

/etc/ansible/group_vars/...

The	same	can	be	achieved	by	putting	the	host_vars	and	group_vars	directories	in	the
same	directory	as	the	playbook	you	are	executing.

Tip
The	facts	in	host_vars	and	group_vars	take	priority	over	the	variables	returned	through
the	inventory.



There’s	more…
Ansible	already	seeds	the	inventory	with	the	facts	that	it	retrieves	from	the	host	itself.	You
can	easily	find	out	which	facts	Ansible	prepares	for	your	use	by	executing	the	following
command:

~]#	ansible	-m	setup	<hostname>

This	will	produce	a	lengthy	JSON-formatted	output	with	all	the	facts	Ansible	knows	about
your	destination	host.

If	you	want	even	more	information,	on	RHEL	systems,	you	can	install	redhat-lsb-core
to	have	access	to	LSB-specific	facts.

Enterprises	tend	to	have	databases	containing	information	regarding	all	their	systems	for
change	management.	This	is	an	excellent	source	for	the	inventory	script	to	get	its
information.



See	also
If	you	want	more	detailed	information	about	the	Ansible	inventory,	go	to
http://docs.ansible.com/ansible/intro_inventory.html.

Shameless	self-promotion	for	a	personal	project	and	a	tool	to	automate	the	inventory	calls
for	a	mention	of	https://github.com/bushvin/inventoryd/.

http://docs.ansible.com/ansible/intro_inventory.html
https://github.com/bushvin/inventoryd/




Creating	a	template	for	a	kickstart	file
A	template	is	one	of	the	core	modules	of	Ansible.	It	is	used	to	easily	generate	files	(for
example,	configuration	files)	based	on	a	common	set	of	facts.	It	uses	the	Jinja2	template
engine	to	interpret	template	files.

For	this	recipe,	we’ll	use	a	simple	kickstart	script	that	is	generic	enough	to	deploy	any
host.	Refer	to	Chapter	2,	Deploying	RHEL	“En	Masse”,	to	find	out	about	kickstart	files.



Getting	ready
The	facts	that	we	need	for	this	host	are	repo_url,	root_password_hash,	ntp_servers,
timezone,	ipv4_address,	ipv4_netmask,	ipv4_gateway,	and	dns_servers.



How	to	do	it…
Create	the	kickstart	file	in	your	playbook’s	template	folder
(~/playbooks/templates/kickstart/rhel7.ks)	with	the	following	content:

install

url	--url={{	repo_url	}}

skipx

text

reboot

lang	en_US.UTF-8

keyboard	us

selinux	--enforcing

firewall	--enabled	--ssh

rootpw	–iscrypted	{{	root_password_hash	}}

authconfig	--enableshadow	--passalgo=sha512

timezone	--utc	--ntpservers	{{	ntp_servers|join(',')	}}	{{	timezone	}}

zerombr

clearpart	--all

bootloader	--location=mbr	--timeout=5

part	/boot	--asprimary	--fstype="xfs"	--size=1024	--ondisk=sda

part	pv.1			--size=1	--grow	--ondisk=sda

volgroup	{{	hostname	}}_system	pv.1

logvol	/	--vgname={{	inventory_hostname	}}_system	--size=2048	--name=root	-

-fstype=xfs

logvol	/usr	--vgname={{	inventory_hostname	}}_system	--size=2048	--name=usr	

--fstype=xfs

logvol	/var	--vgname={{	inventory_hostname	}}_system	--size=2048	--name=var	

--fstype=xfs

logvol	/var/log	--vgname={{	inventory_hostname	}}_system	--size=2048	--

name=varlog	--fstype=xfs

logvol	swap	--vgname={{	inventory_hostname	}}_system	--recommended	--

name=swap	--fstype=swap

network	--device=eth0	--bootproto=static	--onboot=yes	--activate	--ip={{	

ipv4_address	}}	--netmask={{	ipv4_netmask	}}	--gateway={{	ipv4_gateway	}}	-

-nameserver={{	dns_servers|join(',')	}}

%packages	--excludedocs

@Core

vim-enhanced

%end



How	it	works…
The	Jinja2	engine	replaces	all	the	variables	enclosed	by	{{	}}	with	whichever	facts	are
available	for	the	specified	host	in	the	inventory,	resulting	in	a	correct	kickstart	file,
assuming	all	variables	have	been	correctly	set.



There’s	more…
Jinja2	can	do	more	than	just	replace	variables	with	whatever	is	in	the	inventory.	It	was
originally	developed	as	a	rich	templating	language	for	web	pages	and	supports	major
features	such	as	conditions,	loops,	and	so	on.

Using	Jinja,	you	can	easily	loop	over	a	list	or	array	within	the	inventory	and	use	the
resultant	variable	or	even	dictionaries	and	objects.	For	example,	consider	that	your	host
has	the	following	fact:

{	'nics':	[

				{	'device':	'eth0',	'ipv4':	{	'address':'192.168.0.100',	

'netmask':'255.255.255.0','gateway':'192.168.0.1'}	},

				{	'device':	'eth1',	'ipv4':	{	'address':'192.168.1.100',	

'netmask':'255.255.255.0','gateway':'192.168.1.1'}	}	]	}

This	would	allow	you	to	replace	the	network	portion	of	your	kickstart	script	with	the
following:

{%	for	nic	in	nics	%}

network	–device={{	nic.device	}}	--bootproto=static	--onboot=yes	--activate	

--ip={{	nic.ipv4.address	}}	--netmask={{	nic.ipv4.netmask	}}	--gateway={{	

nic.ipv4.gateway	}}

{%	endfor	%}

There	is	one	consideration	with	provisioning	new	systems	such	as	this	and	the	inventory:
you	can	only	use	the	facts	that	you	have	introduced	yourself,	not	those	that	Ansible	gets
from	the	system.	This	is	because	firstly,	they	don’t	exist	yet,	and	secondly,	the	task	is
executed	on	a	different	host.



See	also
For	more	information	about	templating	with	Ansible,	read	the	Jinja2	Template	Designer
documentation	at	http://jinja.pocoo.org/docs/dev/templates/.

For	more	information	on	the	Ansible	template	module,	go	to
http://docs.ansible.com/ansible/template_module.html.

http://jinja.pocoo.org/docs/dev/templates/
http://docs.ansible.com/ansible/template_module.html




Creating	a	playbook	to	deploy	a	new	VM
with	kickstart
Creating	playbooks	for	Ansible	is	a	relatively	easy	task	as	most	considerations	are	handled
by	the	modules.	All	modules	are	made	as	“idempotently”	as	possible,	meaning	that	a
module	first	checks	what	it	is	supposed	to	do	with	what	has	been	done	on	the	system	and
only	then	applies	the	changes	if	they	are	different.



Getting	ready
We	don’t	need	any	additional	facts	for	this	recipe.

For	this	to	work,	we	need	to	have	a	web	server	and	a	location	to	store	the	kickstart	files,
which	will	be	served	by	the	web	server.

For	the	sake	of	convenience,	our	web	server	is	called	web.domain.tld,	the	location	on	this
web	server	is	/var/www/html/kickstart,	and	this	directory	can	be	accessed	through
http://web.domain.tld/kickstart.

We	also	need	a	KVM	host	(refer	to	Chapter	1,	Working	with	KVM	Guests,	on	how	to	set
up	a	KVM	server).	In	this	case,	we’ll	call	our	KVM	server	kvm.domain.tld.



How	to	do	it…
Let’s	create	the	playbook	that	will	provision	new	systems	via	the	following	steps:

1.	 Create	a	~/playbooks/provisioning.yml	playbook	with	the	following	contents:

-	name:	Provision	new	machines

		hosts:	all

		gather_facts:	no

		tasks:

		-	name:	Publish	kickstart	template	as	new	file	to	webserver

				action:	template	src=templates/kickstart/rhel7.ks	

dest=/var/www/html/kickstart/{{	inventory_hostname	}}.ks

																					owner=apache	group=apache	mode=0644

																					seuser=system_u	serole=object_r	

setype=httpd_sys_content_t	selevel=s0

				delegate_to:	web.domain.tld

		-	name:	Create	new	isolinux	file	to	contain	reference	to	the	

kickstart	file

				action:	template	src=templates/isolinux/isolinux.cfg.el7	

dest=/root/iso/isolinux/isolinux.cfg

				delegate_to:	kvm.domain.tld

		-	name:	Create	new	iso	boot	media

				action:	shell	cd	/root/iso;	mkisofs	-o	/tmp/{{	inventory_hostname	

}}.iso	-b	isolinux/isolinux.bin	-c	isolinux/boot.cat	-no-emul-boot	-

boot-load-size	4	-boot-info-table	-J	-r	.

				delegate_to:	kvm.domain.tld

				

		-	name:	Create	disk	for	the	new	kvm	guest

				action:	virsh	vol-create-as	--pool	localfs-vm	--name	{{	hostname	

}}-vda.qcows2	--format	qcows2	--capacity	15G

				delegate_to:	kvm.domain.tld

				

		-	name:	Create	new	vm	on	KVM

				action:	shell	virt-install	--hvm	--name	{{	inventory_hostname	}}	--

ram	2048	--vcpus	2	--os-type	linux		--boot	hd,cdrom,network,menu=on	--

controller	type=scsi,model=virtio-scsi	--disk	device=cdrom,path=/tmp/{{	

inventory_hostname	}}.iso,readonly=on,bus=scsi	--disk	

device=disk,vol=localfs-vm/{{	inventory_hostname	}}-

vda.qcows2,cache=none,bus=scsi	--network	network=bridge-

eth0,model=virtio	--graphics	vnc	--graphics	spice	--noautoconsole	--

memballoon	virtio

				delegate_to:	kvm.domain.tld

2.	 You’ll	also	need	to	create	the	template	for	the
~/templates/isolinux/isolinux.cfg.el7	file;	you	can	do	this	by	executing	the
following:

default	vesamenu.c32

timeout	600

display	boot.msg

menu	clear

menu	background	splash.png



menu	title	Red	Hat	Enterprise	Linux	7.0

menu	vshift	8

menu	rows	18

menu	margin	8

menu	helpmsgrow	15

menu	tabmsgrow	13

menu	color	sel	0	#ffffffff	#00000000	none

menu	color	title	0	#ffcc000000	#00000000	none

menu	color	tabmsg	0	#84cc0000	#00000000	none

menu	color	hotsel	0	#84cc0000	#00000000	none

menu	color	hotkey	0	#ffffffff	#00000000	none

menu	color	cmdmark	0	#84b8ffff	#00000000	none

menu	color	cmdline	0	#ffffffff	#00000000	none

label	linux

		menu	label	^Install	Red	Hat	Enterprise	Linux	7.0

		kernel	vmlinuz

		append	initrd=initrd.img	ks=http://web.domain.tld/kickstart/{{	

inventory_hostname	}}.ks	text

label	local

		menu	label	Boot	from	^local	drive

		localboot	0xffff

menu	end

3.	 Now,	use	the	following	command	to	execute	the	playbook:

~]#	ansible-playbook	--limit	newhost	~/playbooks/provisioning.yml

PLAY	[Provision	new	machines]	********************************

TASK:	[Publish	kickstart	template	as	new	file	to	webserver]	**

changed:	[newhost	->	web.domain.tld]

TASK:	[Create	new	isolinux	file	to	contain	reference	to	the	kickstart	

file]	***

changed:	[newhost	->	kvm.domain.tld]

TASK:	[Create	new	iso	boot	media]	****************************

changed:	[newhost	->	kvm.domain.tld]

TASK:	[Create	disk	for	the	new	kvm	guest]	********************

changed:	[newhost	->	kvm.domain.tld]

TASK:	[Create	new	vm	on	KVM]	*********************************

changed:	[newhost	->	kvm.domain.tld]

PLAY	RECAP	***************************************************

newhost													:	ok=5		changed=5		unreachable=0		failed=0

~]#



How	it	works…
The	playbook	starts	off	with	a	name	describing	the	playbook,	as	does	each	task.
Personally,	I	think	naming	your	playbooks	and	tasks	is	a	good	idea	as	it	will	allow	you	to
troubleshoot	any	issue	at	hand	more	easily.

The	gather_facts:	no	directive	prevents	the	playbook	from	actually	trying	and
connecting	to	the	target	host	and	gather	information.	As	the	host	is	yet	to	be	built,	this	is	of
no	use	and	will	make	the	playbook	fail.

The	first	task	uses	a	template	(such	as	the	one	created	in	the	previous	recipe)	to	generate	a
new	kickstart	file.	By	default,	tasks	are	executed	on	the	host	specified	in	the	command
line,	but	by	specifying	the	delegate_to	directive,	this	is	executed	on	the	web	server	with
the	facts	of	the	selected	host.

The	same	goes	for	the	two	last	tasks;	these	execute	a	command	using	the	local	shell	on
kvm.domain.tld	with	the	host’s	facts.



There’s	more…
As	you	can	see,	the	playbook	also	makes	use	of	Jinja,	allowing	us	to	create	dynamic
playbooks	that	can	do	different	things	based	on	the	available	facts.

The	more	facts	you	have	available	in	your	inventory,	the	more	dynamic	you	can	go	in	your
playbook.	For	instance,	your	source	template	could	be	OS-version	specific	and	you	can
create	all	the	virtual	disks	at	once	and	specify	the	correct	amount	of	CPUs	and	RAM	upon
system	creation.



See	also
For	more	information	on	playbooks,	go	to	http://docs.ansible.com/ansible/playbooks.html.

For	more	information	on	Ansible	templates,	go	to
http://docs.ansible.com/ansible/modules_by_category.html.

http://docs.ansible.com/ansible/playbooks.html
http://docs.ansible.com/ansible/modules_by_category.html




Creating	a	playbook	to	perform	system
configuration	tasks
Changing	a	system’s	configuration	with	Ansible	isn’t	much	more	difficult	than
provisioning	a	new	system.



Getting	ready
For	this	recipe,	we	will	need	the	following	facts	for	the	new	host:

ntp_servers

dns_servers

dns_search

We’ll	also	need	to	have	a	couple	of	templates	to	provision	the	following	files:

/etc/logrotate.d/syslog

/etc/ntp.conf

/etc/ntp/step-tickers

/etc/resolv.conf



How	to	do	it…
Now,	we’ll	create	the	playbook	to	configure	the	system.	Perform	the	following	steps:

1.	 Create	a	~/playbooks/config.yml	playbook	with	the	following	content:

-	name:	Configure	system

		hosts:	all

		handlers:

		-	include:	networking.handlers.yml

		-	include:	ntp-client.handlers.yml

		

		tasks:

		-	include:	networking.tasks.yml

		-	include:	ntp-client.tasks.yml

		-	include:	logrotate.tasks.yml

2.	 Create	a	~/playbooks/networking.handlers.yml	file	with	the	following	content:

		-	name:	reset-sysctl

				action:	command	/sbin/sysctl	-p

3.	 Now,	create	a	~/playbooks/ntp-client.handlers.yml	file	with	the	following
content:

		-	name:	restart-ntpd

				action:	service	name=ntpd	state=restarted	enabled=yes

4.	 Create	a	~/playbooks/networking.tasks.yml	file	with	the	following	content:

		-	name:	Set	the	hostname

				action:	hostname	name={{	inventory_hostname	}}

		-	name:	Deploy	sysctl	template	to	disable	ipv6

				action:	template	src=templates/etc/sysctl.d/ipv6.conf.el7	

dest=/etc/sysctl.d/ipv6.conf

				notify:	reset-sysctl

				

		-	name:	'Detect	if	::1	is	in	/etc/hosts'

				action:	shell	/bin/egrep	'^\s*::1.*$'	/etc/hosts

				register:	hosts_lo_ipv6

				failed_when:	false

				always_run:	yes

		

		-	name:	'Remove	::1	from	/etc/hosts'

				action:	lineinfile	dest=/etc/hosts	regexp='^\s*::1.*$'	state=absent

				when:	hosts_lo_ipv6.rc	==	0

		-	name:	Configure	DNS

				action:	template	src=templates/etc/resolv.conf.el7	

dest=/etc/resolv.conf

5.	 Next,	create	a	~/playbooks/ntp-client.tasks.yml	file	with	the	following	content:

		-	name:	"Install	ntpd	(if	it's	not	installed	already)"

				action:	yum	name=ntp	state=present



				notify:	restart-ntpd

				

		-	name:	Configure	the	ntp	daemon

				action:	template	src=templates/etc/ntp.conf.el7	dest=/etc/ntp.conf

				notify:	restart-ntpd

				

		-	name:	Configure	the	step-tickers

				action:	template	src=templates/etc/ntp/step-tickers.el7	

dest=/etc/ntp/step-tickers

				notify:	restart-ntpd

6.	 Create	a	~/playbooks/logrotate.tasks.yml	file	with	the	following	content:

		-	name:	Configure	logrotate	for	rsyslog

				action:	template	src=templates/etc/logrotate.d/syslog.el7	

dest=/etc/logrotate.d/syslog

This	is	it	for	the	playbook.	Now	we	need	to	create	the	templates:

1.	 First,	create	a	~/playbooks/templates/etc/sysctl.d/ipv6.conf.el7	file	with	the
following	content:

#	{{	ansible_managed	}}

net.ipv6.conf.all.disable_ipv6	=	1

net.ipv6.conf.default.disable_ipv6	=	1

net.ipv6.conf.lo.disable_ipv6	=	1

2.	 Then,	create	a	~/playbooks/templates/etc/resolv.conf.el7	file	with	the
following	content:

#	{{	ansible_managed	}}

search	{{	dns_search|join('	')	}}

{%	for	dns	in	dns_servers	%}

nameserver	{{	dns	}}

{%	endfor	%}

3.	 Create	a	~/playbooks/templates/etc/ntp.conf.el7	file	with	the	following
content:

#	{{	ansible_managed	}}

driftfile	/var/lib/ntp/drift

restrict	default	nomodify	notrap	nopeer	noquery

restrict	127.0.0.1

restrict	::1

{%	for	ntp	in	ntp_servers	%}

server	{{	ntp	}}	iburst

{%	endfor	%}

includefile	/etc/ntp/crypto/pw

keys	/etc/ntp/keys

disable	monitor



4.	 Next,	create	a	~/playbooks/templates/etc/ntp/step-tickers.el7	file	with	the
following	content:

#	{{	ansible_managed	}}

{%	for	ntp	in	ntp_servers	%}

{{	ntp	}}

{%	endfor	%}

5.	 Create	a	~/playbooks/templates/etc/logrotate.d/syslog.el7	file	with	the
following	content:

#	{{	ansible_managed	}}

/var/log/cron

/var/log/maillog

/var/log/messages

/var/log/secure

/var/log/spooler

{

				daily

				compress

				delaycompress

				dateext

				ifempty

				missingok

				nocreate

				nomail

				rotate	365

				sharedscripts

				postrotate

								/bin/kill	-HUP	`cat	/var/run/syslogd.pid	2>	/dev/null`	2>	

/dev/null	||	true

				endscript

}

6.	 Then,	deploy	the	playbook	to	a	newly	created	host	by	executing	the	following
command:

~]#	ansible-playbook	--limit	newhost	~/playbooks/config.yml

PLAY	[Configure	system]	**************************************

GATHERING	FACTS	**********************************************

ok:	[newhost]

TASK:	[Set	the	hostname]	*************************************

skipping:	[newhost]

ok:	[newhost]

TASK:	[Deploy	sysctl	template	to	disable	ipv6]	***************

changed:	[newhost]

TASK:	[Detect	if	::1	is	in	/etc/hosts]	***********************

changed:	[newhost]

TASK:	[Remove	::1	from	/etc/hosts]	***************************

changed:	[newhost]



TASK:	[Configure	DNS]	****************************************

changed:	[newhost]

TASK:	[Install	ntpd	(if	it's	not	installed	already)]	*********

ok:	[newhost]

TASK:	[Configure	the	ntp	daemon]	*****************************

changed:	[newhost]

TASK:	[Configure	the	step-tickers]	***************************

changed:	[newhost]

TASK:	[Configure	logrotate	for	rsyslog]	**********************

changed:	[newhost]

NOTIFIED:	[reset-sysctl]	*************************************

skipping:	[newhost]

ok:	[newhost]

NOTIFIED:	[restart-ntpd]	*************************************

changed:	[newhost]

PLAY	RECAP	***************************************************

newhost												:	ok=9		changed=8		unreachable=0		failed=0		

~]#



There’s	more…
The	guys	at	Ansible	are	really	smart	people,	and	they	have	Ansible	packed	with	lots	of
power	tools.	Two	that	are	worth	mentioning	here	and	are	lifesavers	for	debugging	your
playbooks	are	--check	and	--diff.

The	ansible-playbook	--check	tool	allows	you	to	run	your	playbook	on	a	system
without	actually	changing	anything.	Why	is	this	important,	you	ask?	Well,	the	output	of
the	playbook	will	list	which	actions	of	the	playbook	will	actually	change	anything	on	the
target	system.

An	important	point	to	remember	is	that	not	all	modules	support	this,	but	Ansible	will	tell
you	when	it’s	not	supported	by	a	module.

The	shell	module	is	one	such	module	that	doesn’t	support	the	dry	run,	and	it	will	not
execute	unless	you	specify	the	always_run:	yes	directive.	Be	careful	with	this	directive
as	if	the	action	would	change	anything,	this	directive	will	cause	this	change	to	be	applied,
even	when	specifying	--check.

I	added	the	'Detect	if	::1	is	in	/etc/hosts'	action	to	the	networking.tasks.yml
file	with	the	always_run:	yes	directive.	This	specific	action	just	checks	whether	the	line
is	present.	The	ergep	returns	code	0	if	it	finds	a	match	and	1	if	it	doesn’t.	It	registers	the
result	of	the	shell	action	to	a	variable	(hosts_lo_ipv6).

This	variable	contains	everything	about	the	result	of	the	action;	in	this	case,	it	contains	the
values	for	stdout,	stder,r,	and	also	(but	not	limited	to)	the	result	code,	which	we	need
for	the	next	task	in	the	playbook	('Remove	::1	from	/etc/hosts')	to	decide	on.	This
way,	we	can	introduce	a	manual	form	of	idempotency	into	the	playbook	for	modules	that
cannot	handle	idempotency	due	to	whatever	restrictions.

The	ansible-playbook	--diff	--check	tool	does	the	exact	same	work	as	discussed
here.	However,	it	comes	with	an	added	bonus:	it	shows	you	what	exactly	will	be	changed
in	the	form	of	a	diff	-u	between	what	it	actually	is	and	what	it’s	supposed	to	be.	Of
course,	once	again,	the	module	has	to	support	it.

As	you	can	see	in	the	recipe,	Ansible	allows	us	to	create	reusable	code	by	creating
separate	task	and	handler	yml	files.	This	way,	you	could	create	other	playbooks	referring
to	these	files,	without	having	to	reinvent	the	wheel.

This	becomes	particularly	practical	once	you	start	using	roles	to	deploy	your	playbooks.

Roles	allow	you	to	group	playbooks	and	have	them	deployed	according	to	the	needs	(that
is,	roles)	of	your	server.

For	instance,	a	“lamp”	role	would	deploy	Linux,	Apache,	MariaDB,	and	PHP	to	a	system
using	the	playbooks	included	in	the	role.	Roles	can	define	dependencies.	These
dependencies	are	other	roles,	and	thus,	the	“lamp”	role	could	be	broken	down	into	three
more	roles	that	may	be	more	useful	as	separate	roles:	Linux,	Dbserver,	and	ApachePHP.

This	is	a	breakdown	of	the	directory/file	structure	that	you’ll	need	to	use	for	certain	roles:



File	structure Description

roles/ The	container	for	all	roles	to	be	used	by	Ansible.

roles/<role> This	is	the	container	for	your	role.

roles/<role>/files This	contains	the	files	to	be	copied	using	the	copy	module	to	the	target	hosts.

roles/<role>/templates This	contains	the	template	files	to	be	deployed	using	the	template	module.

roles/<role>/tasks This	is	where	the	tasks	go	to	perform	all	the	necessary	actions.

roles/<role>/tasks/main.yml
This	playbook	is	automatically	added	to	the	play	when	this	role	is	applied	to	a
system.

roles/<role>/handlers This	is	the	location	of	your	role	handlers.

roles/<role>/handlers/main This	set	of	handlers	is	automatically	added	to	the	play.

roles/<role>/vars This	location	holds	all	the	variables	for	your	role.

roles/<role>/vars/main.yml This	set	of	variables	is	automatically	applied	to	the	play.

roles/<role>/defaults

This	is	the	directory	to	hold	the	defaults	for	any	fact	you	may	need.	The
facts/variables	defined	in	this	way	have	the	lowest	priority,	meaning	that	your
inventory	will	win	in	the	event	that	a	fact	is	defined	in	both.

role/<role>/defaults/main.yml This	set	of	defaults	is	automatically	added	to	the	play.

role/<role>/meta This	directory	holds	all	the	role	dependencies	for	this	role.

role/<role>/meta/main.yml This	set	of	dependencies	is	automatically	added	to	the	play.

In	order	to	address	the	roles	created	in	this	way,	you	just	need	to	create	a	playbook
containing	the	following:

-	name:	Deploy	LAMP	servers

		hosts:	lamp

		roles:

		-	linux

		-	DBserver

		-	Apache-PHP

Alternatively,	you	could	create	a	role	lamp	that	has	Linux,	DBserver,	and	ApachePHP	as
the	dependencies	in	the	meta/main.yml	file	by	creating	it	with	the	following	contents:

dependencies:

		-	{	role:	linux	}

		-	{	role:	DBserver,	db_type:	mariadb	}

		-	{	role:	Apache-PHP	}



See	also
For	more	information	on	Ansible	Roles	and	Includes,	go	to
http://docs.ansible.com/ansible/playbooks_roles.html.

For	more	information	on	playbooks,	go	to	http://docs.ansible.com/ansible/playbooks.html.

For	more	information	on	Ansible	templates,	go	to
http://docs.ansible.com/ansible/modules_by_category.html.

http://docs.ansible.com/ansible/playbooks_roles.html
http://docs.ansible.com/ansible/playbooks.html
http://docs.ansible.com/ansible/modules_by_category.html




Troubleshooting	Ansible
I’ve	written	it	before,	and	I’ll	do	it	again:	the	people	at	Ansible	are	really	smart	as	they
actually	packed	it	with	power	tools.

One	of	my	favorite	troubleshooting	tools	is	--verbose	or	-v.	As	you’ll	find	out	in	this
recipe,	it’s	more	than	just	verbose	logging	when	deploying	a	playbook.



Getting	ready
Let’s	see	what	happens	with	a	~/playbooks/hello_world.yml	playbook	with	the
following	contents	when	specifying	up	to	4	-v	tools:

-	name:	Hello	World	test

		hosts:	all

		tasks:

		-	action:	shell	echo	"Hello	World"



How	to	do	it…
Ansible	has	various	verbosity	levels,	all	adding	another	layer	of	information.	It’s
important	to	understand	which	layer	adds	what.	Perform	the	following	steps:

1.	 First,	execute	the	playbook	without	–v,	as	follows:

~]#	ansible-playbook	--limit	<hostname>	~/playbooks/hello_world.yml

PLAY	[Hello	World	test]	**************************************

GATHERING	FACTS	**********************************************

ok:	[<hostname>]

TASK:	[shell	echo	"Hello	World"]	*****************************

changed:	[<hostname>]

PLAY	RECAP	***************************************************

<hostname>								:	ok=2		changed=1		unreachable=0				failed=0			

~]#

2.	 Execute	the	playbook	with	one	–v,	as	follows:

~]#	ansible-playbook	--limit	<hostname>	~/playbooks/hello_world.yml	-v

PLAY	[Hello	World	test]	**************************************

GATHERING	FACTS	**********************************************

ok:	[<hostname>]

TASK:	[shell	echo	"Hello	World"]	*****************************

changed:	[<hostname>]	=>	{"changed":	true,	"cmd":	"echo	\"Hello	

World\"",	"delta":	"0:00:00.003436",	"end":	"2015-08-18	

23:35:26.668245",	"rc":	0,	"start":	"2015-08-18	23:35:26.664809",	

"stderr":	"",	"stdout":	"Hello	World",	"warnings":	[]}

PLAY	RECAP	***************************************************

<hostname>								:	ok=2		changed=1		unreachable=0				failed=0

3.	 Now,	execute	the	playbook	with	two	–v	tools;	run	the	following:

~]#	ansible-playbook	--limit	<hostname>	~/playbooks/hello_world.yml	-vv

PLAY	[Hello	World	test]	**************************************

GATHERING	FACTS	**********************************************

<hostname_fqdn>	REMOTE_MODULE	setup

ok:	[<hostname>]

TASK:	[shell	echo	"Hello	World"]	*****************************

<hostname_fqdn>	REMOTE_MODULE	command	echo	"Hello	World"	#USE_SHELL

changed:	[<hostname>]	=>	{"changed":	true,	"cmd":	"echo	\"Hello	

World\"",	"delta":	"0:00:00.004222",	"end":	"2015-08-18	

23:37:56.737995",	"rc":	0,	"start":	"2015-08-18	23:37:56.733773",	

"stderr":	"",	"stdout":	"Hello	World",	"warnings":	[]}

PLAY	RECAP	***************************************************

<hostname>								:	ok=2		changed=1		unreachable=0				failed=0



4.	 Next,	execute	the	playbook	with	three	–v	tools	via	this	command:

~]#	ansible-playbook	--limit	<hostname>	~/playbooks/hello_world.yml	-

vvv

PLAY	[Hello	World	test]	**************************************

GATHERING	FACTS	**********************************************

<hostname_fqdn>	ESTABLISH	CONNECTION	FOR	USER:	root

<hostname_fqdn>	REMOTE_MODULE	setup

<hostname_fqdn>	EXEC	ssh	-C	-tt	-v	-o	ControlMaster=auto	-o	

ControlPersist=60s	-o	ControlPath="/root/.ansible/cp/ansible-ssh-%h-%p-

%r"	-o	StrictHostKeyChecking=no	-o	Port=22	-o	

KbdInteractiveAuthentication=no	-o	PreferredAuthentications=gssapi-

with-mic,gssapi-keyex,hostbased,publickey	-o	PasswordAuthentication=no	

-o	ConnectTimeout=10	hostname_fqdn	/bin/sh	-c	'mkdir	-p	

$HOME/.ansible/tmp/ansible-tmp-1439933893.82-159545120587420	&&	echo	

$HOME/.ansible/tmp/ansible-tmp-1439933893.82-159545120587420'

<hostname_fqdn>	PUT	/tmp/tmpZgg_bx	TO	/root/.ansible/tmp/ansible-tmp-

1439933893.82-159545120587420/setup

<hostname_fqdn>	EXEC	ssh	-C	-tt	-v	-o	ControlMaster=auto	-o	

ControlPersist=60s	-o	ControlPath="/root/.ansible/cp/ansible-ssh-%h-%p-

%r"	-o	StrictHostKeyChecking=no	-o	Port=22	-o	

KbdInteractiveAuthentication=no	-o	PreferredAuthentications=gssapi-

with-mic,gssapi-keyex,hostbased,publickey	-o	PasswordAuthentication=no	

-o	ConnectTimeout=10	hostname_fqdn	/bin/sh	-c	'LANG=en_US.UTF-8	

LC_CTYPE=en_US.UTF-8	/usr/bin/python	/root/.ansible/tmp/ansible-tmp-

1439933893.82-159545120587420/setup;	rm	-rf	/root/.ansible/tmp/ansible-

tmp-1439933893.82-159545120587420/	>/dev/null	2>&1'

ok:	[<hostname>]

TASK:	[shell	echo	"Hello	World"]	*****************************

<hostname_fqdn>	ESTABLISH	CONNECTION	FOR	USER:	root

<hostname_fqdn>	REMOTE_MODULE	command	echo	"Hello	World"	#USE_SHELL

<hostname_fqdn>	EXEC	ssh	-C	-tt	-v	-o	ControlMaster=auto	-o	

ControlPersist=60s	-o	ControlPath="/root/.ansible/cp/ansible-ssh-%h-%p-

%r"	-o	StrictHostKeyChecking=no	-o	Port=22	-o	

KbdInteractiveAuthentication=no	-o	PreferredAuthentications=gssapi-

with-mic,gssapi-keyex,hostbased,publickey	-o	PasswordAuthentication=no	

-o	ConnectTimeout=10	hostname_fqdn	/bin/sh	-c	'mkdir	-p	

$HOME/.ansible/tmp/ansible-tmp-1439933894.43-112982528558910	&&	echo	

$HOME/.ansible/tmp/ansible-tmp-1439933894.43-112982528558910'

<hostname_fqdn>	PUT	/tmp/tmp78xbMg	TO	/root/.ansible/tmp/ansible-tmp-

1439933894.43-112982528558910/command

<hostname_fqdn>	EXEC	ssh	-C	-tt	-v	-o	ControlMaster=auto	-o	

ControlPersist=60s	-o	ControlPath="/root/.ansible/cp/ansible-ssh-%h-%p-

%r"	-o	StrictHostKeyChecking=no	-o	Port=22	-o	

KbdInteractiveAuthentication=no	-o	PreferredAuthentications=gssapi-

with-mic,gssapi-keyex,hostbased,publickey	-o	PasswordAuthentication=no	

-o	ConnectTimeout=10	hostname_fqdn	/bin/sh	-c	'LANG=en_US.UTF-8	

LC_CTYPE=en_US.UTF-8	/usr/bin/python	/root/.ansible/tmp/ansible-tmp-

1439933894.43-112982528558910/command;	rm	-rf	

/root/.ansible/tmp/ansible-tmp-1439933894.43-112982528558910/	

>/dev/null	2>&1'

changed:	[<hostname>]	=>	{"changed":	true,	"cmd":	"echo	\"Hello	

World\"",	"delta":	"0:00:00.002934",	"end":	"2015-08-18	

23:38:14.674213",	"rc":	0,	"start":	"2015-08-18	23:38:14.671279",	



"stderr":	"",	"stdout":	"Hello	World",	"warnings":	[]}

PLAY	RECAP	***************************************************

<hostname>								:	ok=2		changed=1		unreachable=0				failed=0



How	it	works…
This	table	depicts	what	information	is	shown:

#	of
–v Information	shown

0
We	obtained	information	about	the	play,	facts	gathered	(if	not	disabled),	and	tasks	executed,	along	with	an
overview	of	which	and	how	many	tasks	are	executed	per	server.

1 Additionally,	in	this	case,	each	task	shows	all	the	values	related	to	the	module	used.

2
This	shows	some	extra	usage	information	additionally.	There’s	not	much	now,	but	this	will	be	expanded	in	the
future.

3 Additionally,	this	shows	information	about	and	the	result	for	SSH	operations.



There’s	more…
When	using	the	three	v	tools,	you	get	to	see	what	Ansible	does	to	execute	a	certain	task,
and	the	SSH	options	will	already	get	you	started	by	debugging	issues	with	communication
to	a	certain	host.	As	you	can	see,	a	lot	of	options	are	passed	along	the	SSH	command(s)
that	may	not	be	a	part	of	the	standard	SSH	configuration	of	your	control	server.	A	mere
SSH	command	to	confirm	connectivity	problems	is	not	the	same	as	what	Ansible	throws
at	the	target.

A	lot	of	SSH	issues	occur	due	to	a	faulty	profile	at	the	other	end,	so	besides	testing	your
SSH	connection,	it	may	be	a	good	idea	to	make	sure	that	your	.bashrc	and
.bash_profile	files	are	correct.

Ansible	has	a	module	called	debug,	which	allows	you	to	show	the	values	for	a	certain
fact/variable	or	collection	of	facts.	Take	a	look	at	the	following	code:

-	action:	debug	var=hostvars[inventory_hostname]

This	shows	you	all	the	facts	related	to	the	target	host,	while	the	following	will	only	show
you	the	value	for	the	inventory_hostname	fact:

-	action:	debug	var=inventory_hostname

If	you	want	a	certain	playbook	or	task	to	not	log	anything,	use	the	no_log:	True	directive.

On	the	play	level,	consider	the	following:

-	name:	playbook

		hosts:	all

		no_log:	True

Then,	on	the	task	level,	consider	the	following:

-	name:	Forkbomb	the	remote	host

		action:	shell	:(){	:|:	&	};:

		no_log:	True





Chapter	7.	Puppet	Configuration
Management
The	recipes	that	are	covered	in	this	chapter	are:

Installing	and	configuring	Puppet	Master
Installing	and	configuring	Puppet	agent
Defining	a	simple	module	to	configure	time
Defining	nodes	and	node	grouping
Deploying	modules	to	single	nodes	and	node	groups



Introduction
Puppet	is	an	“old	school”	configuration	management	tool.	It	helps	you	enforce
configurations	with	great	ease	although	it	is	more	complex	than	Ansible	to	use.	Puppet’s
declarative	language	can	be	compared	to	a	programming	language	and	is	difficult	to
master.	However,	once	you	understand	how	it	works,	it’s	fairly	easy	to	use.

Puppet	is	very	good	at	maintaining	a	strict	set	of	configurations,	but	if	you	aim	at
verifying	the	configurations	before	applying	them,	you’ll	find	that	Puppet	is	not	the
sharpest	tool	in	the	shed.	Puppet	does	have	the	audit	metaparameter	that	you	can	use	in
your	resources	to	track	changes,	but	it	doesn’t	let	you	display	where	it	differs	from	your
manifest.	In	fact	it	doesn’t	allow	you	to	add	the	audit	metaparameter	to	your	“active”
module	or	manifests.	It	sits	in	a	separate	manifest	that	audits	the	requested	resources.

The	version	of	Puppet	used	in	these	recipes	is	v3.8	and	covers	the	community	edition.





Installing	and	configuring	Puppet	Master
The	people	at	Puppet	Labs	have	their	own	repository	servers	for	puppet,	which	is	very
easy	when	it	comes	down	to	installing	and	maintaining	the	server	and	agent.	Although	the
EPEL	repository	also	provides	puppet	packages,	they	tend	to	be	old	or	not	up	to	date.
Hence,	I	recommend	using	the	Puppet	Labs’	yum	repositories.



How	to	do	it…
This	recipe	covers	a	monolithic	install.	Perform	the	following	steps:

1.	 Enable	the	optional	channel	via	the	following	command;	you’ll	need	this	to	install	the
Puppet	Server	component:

~]#	subscription-manager	repos	--enable	rhel-6-server-optional-rpms

2.	 Download	the	puppetlabs	repository	installer,	as	follows:

~]#	curl	-Lo	/tmp/puppetlabs-release-el-7.noarch.rpm	

https://yum.puppetlabs.com/puppetlabs-release-el-7.noarch.rpm

3.	 Now,	install	the	puppetlabs	repository	by	executing	the	following:

~]#	yum	install	-y	/tmp/puppetlabs-release-el-7.noarch.rpm

4.	 Install	puppet-server	by	typing	out	this	command:

~]#	yum	install	-y	puppet-server

5.	 Set	up	Puppet	Master	by	adding	the	following	to	the	[main]	section	of
/etc/puppet/puppet.conf:

dns_alt_names	=	puppetmaster.critter.be,rhel7.critter.be

always_cache_features	=	true

6.	 Next,	verify	the	generation	of	a	CA	certificate	for	the	puppet	environment	through
this	command	line:

~]#	puppet	master	--verbose	--no-daemonize

7.	 Press	CTRL	+	C	when	it	displays	the	following	information:

Notice:	Starting	Puppet	master	version	<version	number>

8.	 Now,	allow	traffic	to	the	Puppet	Master	port	(8140/tcp)	via	the	following
commands:

~]#	firewall-cmd	--permanent	–add-port=8140/tcp

~]#	firewall-cmd	--reload

9.	 Start	Puppet	Master	by	executing	the	following:

~]#	systemctl	start	puppetmaster

10.	 Finally,	enable	Puppet	Master	at	boot,	as	follows:

~]#	systemctl	enable	puppetmaster



There’s	more…
The	basic	HTTP	daemon	that	Puppet	Master	uses	is	not	made	to	provide	service	for	an
enterprise.	Puppet	Labs	recommends	using	Apache	with	Passenger	to	provide	the	same
service	as	Puppet	Master	for	a	bigger	range	of	systems	(more	than	10).

You	can	either	compile	the	Passenger	module	yourself,	or	you	can	just	use	EPEL	(for	the
rubygem(rack)	package)	and	the	Passenger	repository.	I	choose	the	latter.	Here	are	the
steps	that	you	need	to	perform:

1.	 Install	the	Passenger	repository	by	running	the	following	command:

curl	-Lo	/etc/yum.repos.d/passenger.repo	https://oss-

binaries.phusionpassenger.com/yum/definitions/el-passenger.repo

2.	 Now,	download	the	EPEL	repository	installer,	as	follows:

~]#	curl	-Lo	/tmp/epel-release-latest-7.noarch.rpm	

https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

3.	 Install	the	rpm	EPEL	repository	(with	yum)	via	the	following	command:

~]#	yum	install	-y	/tmp/epel-release-latest-7.noarch.rpm

4.	 Next,	install	the	necessary	packages	for	the	Puppet	web	interface.	For	this,	you	can
execute	the	following	command	line:

~]#	yum	install	-y	httpd	mod_ssl	mod_passenger

5.	 Set	up	Puppet	Master’s	virtual	host	directories	and	ownership,	as	follows:

~]#	mkdir	-p	/var/www/puppetmaster/{public,tmp}	-p	&&	chown	-R	

apache:apache	/var/www/puppetmaster

6.	 Copy	the	rack	configuration	file	to	Puppet	Master’s	virtual	host	root	using	the
following	command:

~]#	cp	/usr/share/puppet/ext/rack/config.ru	/var/www/puppetmaster/.

7.	 Next,	change	the	ownership	of	the	config.ru	file.	This	is	very	important!	You	can	do
this	through	the	following	command:

~#]	chown	-R	puppet:puppet	/var/www/puppetmaster/config.ru

8.	 Then,	create	an	Apache	virtual	host	configuration	file	at
/etc/httpd/conf.d/puppetmaster.conf	containing	the	following:

#	passenger	performance	tuning	settings:

#	Set	this	to	about	1.5	times	the	number	of	CPU	cores	in	your	master:

PassengerMaxPoolSize	3

#	Recycle	master	processes	after	they	service	1000	requests

PassengerMaxRequests	1000

#	Stop	processes	if	they	sit	idle	for	10	minutes

PassengerPoolIdleTime	600

Listen	8140



<VirtualHost	*:8140>

				#	Make	Apache	hand	off	HTTP	requests	to	Puppet	earlier,	at	the	cost	

of

				#	interfering	with	mod_proxy,	mod_rewrite,	etc.	See	note	below.

				PassengerHighPerformance	On

				SSLEngine	On

				#	Only	allow	high	security	cryptography.	Alter	if	needed	for	

compatibility.

				SSLProtocol	ALL	-SSLv2	-SSLv3

				SSLCipherSuite	

EDH+CAMELLIA:EDH+aRSA:EECDH+aRSA+AESGCM:EECDH+aRSA+SHA384:EECDH+aRSA+SH

A256:EECDH:+CAMELLIA256:+AES256:+CAMELLIA128:+AES128:+SSLv3:!aNULL:!eNU

LL:!LOW:!3DES:!MD5:!EXP:!PSK:!DSS:!RC4:!SEED:!IDEA:!ECDSA:kEDH:CAMELLIA

256-SHA:AES256-SHA:CAMELLIA128-SHA:AES128-SHA

				SSLHonorCipherOrder					on

				SSLCertificateFile						

/var/lib/puppet/ssl/certs/rhel7.critter.be.pem

				SSLCertificateKeyFile			

/var/lib/puppet/ssl/private_keys/rhel7.critter.be.pem

				SSLCertificateChainFile	/var/lib/puppet/ssl/ca/ca_crt.pem

				SSLCACertificateFile				/var/lib/puppet/ssl/ca/ca_crt.pem

				SSLCARevocationFile					/var/lib/puppet/ssl/ca/ca_crl.pem

				SSLCARevocationCheck			chain

				SSLVerifyClient									optional

				SSLVerifyDepth										1

				SSLOptions														+StdEnvVars	+ExportCertData

				#	Apache	2.4	introduces	the	SSLCARevocationCheck	directive	and	sets	

it	to	none

				#	which	effectively	disables	CRL	checking.	If	you	are	using	Apache	

2.4+	you	must

				#	specify	'SSLCARevocationCheck	chain'	to	actually	use	the	CRL.

				#	These	request	headers	are	used	to	pass	the	client	certificate

				#	authentication	information	on	to	the	Puppet	master	process

				RequestHeader	set	X-SSL-Subject	%{SSL_CLIENT_S_DN}e

				RequestHeader	set	X-Client-DN	%{SSL_CLIENT_S_DN}e

				RequestHeader	set	X-Client-Verify	%{SSL_CLIENT_VERIFY}e

				DocumentRoot	/var/www/puppetmaster/public

				<Directory	/var/www/puppetmaster/>

						Options	None

						AllowOverride	None

						#	Apply	the	right	behavior	depending	on	Apache	version.

						<IfVersion	<	2.4>

								Order	allow,deny

								Allow	from	all

						</IfVersion>

						<IfVersion	>=	2.4>

								Require	all	granted

						</IfVersion>

				</Directory>



				ErrorLog	/var/log/httpd/puppetmaster_ssl_error.log

				CustomLog	/var/log/httpd/puppetmaster_ssl_access.log	combined

</VirtualHost>

Tip
Make	sure	that	you	replace	the	certificate	directives	with	the	certificate	file	paths	of
your	own	system.

9.	 Disable	the	puppetmaster	service	via	the	following:

~]#	systemctl	disable	puppetmaster

10.	 Use	the	following	command	line	to	stop	the	puppetmaster	service:

~]#	systemctl	stop	puppetmaster

11.	 Now,	start	Apache,	as	follows:

~]#	systemctl	start	httpd

12.	 Enable	Apache	on	boot	through	the	following	command	line:

~]#	systemctl	enable	httpd

13.	 Check	your	HTTP	daemon’s	status	using	the	following:

~]#	systemctl	status	httpd

This	will	result	in	the	following	(similar)	output:

Puppet	can	also	run	in	a	masterless	mode.	In	this	case,	you	don’t	install	a	server	but	only
the	clients	on	all	the	systems	that	you	wish	to	manage	in	this	way.



See	also
For	more	in-depth	information	about	installing	Puppet	on	RHEL,	refer	to	the	following
page:

https://docs.puppetlabs.com/guides/install_puppet/install_el.html

https://docs.puppetlabs.com/guides/install_puppet/install_el.html




Installing	and	configuring	the	Puppet
agent
Unlike	Ansible,	Puppet	requires	an	agent	to	be	able	to	enforce	configurations.	This	recipe
will	teach	you	how	to	install	and	configure	the	puppet	agent	on	a	system.	The	only	way	to
mass	deploy	the	Puppet	agent	is	through	an	orchestration	tool	(such	as	Ansible).



How	to	do	it…
The	Puppet	agent	can	be	installed	and	maintained	using	the	same	repository	as	the	Puppet
server:	the	Puppet	Labs	repository.	Perform	the	following	steps:

1.	 Download	the	Puppet	Labs	repository	installer	via	the	following	command:

~]#	curl	-Lo	/tmp/puppetlabs-release-el-7.noarch.rpm	

https://yum.puppetlabs.com/puppetlabs-release-el-7.noarch.rpm

2.	 Install	the	Puppet	Labs	repository	by	executing	the	following	command:

~]#	yum	install	-y	/tmp/puppetlabs-release-el-7.noarch.rpm

3.	 Use	the	following	command	to	download	the	EPEL	repository	installer:

~]#	curl	-Lo	/tmp/epel-release-latest-7.noarch.rpm	

https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

4.	 Now,	install	the	rpm	EPEL	repository	(with	yum)	through	the	following	command
line:

~]#	yum	install	-y	/tmp/epel-release-latest-7.noarch.rpm

5.	 Install	the	Puppet	agent;	you	can	run	the	following	command:

~]#	yum	install	-y	puppet

6.	 Next,	configure	the	agent	so	that	it	will	connect	to	your	Puppet	Master.
7.	 Add	your	Puppet	Master	to	the	[main]	section	of	/etc/puppet/puppet.conf,	as

follows:

server	=	rhel7.critter.be

8.	 Start	the	Puppet	agent	by	executing	the	following	command:

~]#	systemctl	start	puppet

9.	 Then,	enable	the	Puppet	agent	by	running	the	following:

~]#	systemctl	enable	puppet

10.	 Finally,	sign	the	new	node’s	certificate	on	Puppet	Master,	as	follows:

~]#	puppet	cert	sign	rhel7-client.critter.be



There’s	more…
Instead	of	signing	every	single	certificate	individually,	you	can	sign	the	certificate	for	all
systems	that	have	been	registered	with	Puppet	Master	by	executing	the	following:

~]#	puppet	cert	sign	–all

If	you	start	looking	for	puppet	unit	files	in	/lib/systemd/system,	you’ll	also	find	a
puppetagent.service	unit	file.	The	puppetagent.service	unit	file	is	actually	a	soft	link
to	the	puppet.service	unit	file.

If	you	don’t	want	to	set	the	server	property	in	the	/etc/puppet/puppet.conf	file,	you	can
do	this	by	defining	a	puppet	DNS	entry	that	points	to	Puppet	Master	in	all	the	DNS
domain	zones.

The	Puppet	agent	is	known	to	consume	memory.	In	order	to	mitigate	this,	the	Puppet	agent
can	be	run	as	a	cron	job.	This	would	release	some	memory,	but	you	would	lose	the
flexibility	of	pushing	new	configurations	from	Master.

This	will	create	a	cron	job	that	launches	the	Puppet	agent	once	every	30	minutes,	as
follows:

~]#	puppet	resource	cron	puppet-agent	ensure=present	user=root	minute=30	

command='/usr/bin/puppet	agent	--onetime	--no-daemonize	--splay'

The	Puppet	agent	can	also	be	configured	to	run	in	the	Masterless	mode.	This	means	that
you	will	take	care	of	distributing	your	puppet	modules	and	classes	yourself	instead	of
Puppet	taking	care	of	this.	This	implies	that	you	will	synchronize	all	modules	and	classes,
even	those	that	are	not	used	by	the	system,	which	can	be	a	security	risk.





Defining	a	simple	module	to	configure
time
Modules	are	collections	of	manifests	and	files	that	define	how	to	install	and	configure
various	components.	Manifests	contain	the	instructions	to	apply	to	a	system’s
configuration.	In	this	recipe,	we’ll	create	a	simple	module	to	install	and	configure	the	NTP
daemon.



Getting	ready
Puppet	has	a	strict	way	of	organizing	modules.	Your	modules	should	always	be	stored	in
/etc/puppet/modules.	Every	module	is	a	directory	within	this	directory,	containing	the
necessary	directories	that	in	turn	contain	manifests,	files,	templates,	and	so	on.



How	to	do	it…
In	this	recipe,	we’ll	create	the	necessary	directory	structure,	manifests,	and	files	to
configure	your	system’s	time.	Perform	the	following	steps:

1.	 Create	ntp/manifests	in	/etc/puppet/modules	via	the	following	command:

~]#	mkdir	-p	/etc/puppet/modules/ntp/manifests

2.	 Create	ntp/templates	to	house	all	the	templates	used	by	the	puppet	module	through
the	following:

~]#	mkdir	-p	/etc/puppet/modules/ntp/templates

3.	 Now,	create	the	install.pp	file	in	/etc/puppet/modules/ntp/manifests	with	the
following	contents:

class	ntp::install	inherits	ntp	{

		package	{	'ntp':

				ensure	=>	installed,

		}

}

4.	 Create	the	config.pp	file	in	/etc/puppet/modules/ntp/manifests	with	the
following	contents:

class	ntp::config	inherits	ntp	{

		file	{	'/etc/ntp.conf':

				ensure		=>	file,

				owner			=>	'root',

				group			=>	'root',

				mode				=>	0644,

				content	=>	template("ntp/ntp.conf.erb"),

		}

}

5.	 Next,	create	the	ntp.conf.erb	template	file	in
/etc/puppet/modules/ntp/templates	with	the	following	contents:

driftfile	/var/lib/ntp/drift

restrict	default	nomodify	notrap	nopeer	noquery

restrict	127.0.0.1

restrict	::1

server	0.be.pool.ntp.org	iburst

server	1.be.pool.ntp.org	iburst

server	2.be.pool.ntp.org	iburst

server	3.be.pool.ntp.org	iburst

includefile	/etc/ntp/crypto/pw

keys	/etc/ntp/keys

disable	monitor



6.	 Create	the	service.pp	file	in	/etc/puppet/modules/ntp/manifests	with	the
following	contents:

class	ntp::service	inherits	ntp	{

		service	{	'ntp':

				ensure					=>	running,

				enable					=>	true,

				hasstatus		=>	true,

				hasrestart	=>	true,

				require	=>	Package['ntp'],

		}

}

7.	 Finally,	create	the	init.pp	file	that	binds	them	all	together	in
/etc/puppet/modules/ntp/manifests	with	the	following	contents:

class	ntp	{

				include	ntp::install

				include	ntp::config

				include	ntp::service

}



How	it	works…
When	applying	a	module	to	a	system,	it	applies	the	directives	found	in	the	module’s
init.pp	manifest.

As	you	can	see,	we	created	a	template	file	that	is	“automagically”	distributed	to	the
clients.	Puppet	automatically	creates	a	file	share	for	the	templates	and	files	directories.

As	you	can	see	in	the	config.pp	file,	the	template	references	ntp/ntp.conf.erb.	Puppet
will	automatically	resolve	this	to	the	correct	location	(ntp/templates/ntp.conf.erb).



There’s	more…
I	created	four	manifests	to	install	and	configure	Puppet.	This	could	be	easily	achieved	by
just	creating	one	monolithic	init.pp	manifest	with	the	contents	of	the	other	three	files.
When	you	start	creating	complex	manifests,	you’ll	be	happy	to	have	split	them	up.

If	you	want	to	have	a	single	location	for	all	the	assets	(templates	and	files)	you	use	in	your
modules,	you	will	have	to	define	a	separate	file	share	for	this	location	in	the
/etc/puppet/fileserver.conf	file,	as	follows:

[mount_point]

				path	/path/to/files

				allow	*



See	also
Read	up	on	Puppet	Modules	through	the	link
https://docs.puppetlabs.com/puppet/3.8/reference/modules_fundamentals.html.

https://docs.puppetlabs.com/puppet/3.8/reference/modules_fundamentals.html




Defining	nodes	and	node	grouping
In	order	to	push	a	manifest,	its	classes,	and	assets	to	systems,	they	need	to	be	known	by
Puppet	Master.	Grouping	is	practical	if	you	want	to	push	a	manifest	to	a	number	of	hosts
without	having	to	modify	each	configuration	node.



How	to	do	it…
In	contrast	to	what	the	title	wants	you	to	believe,	you	cannot	create	a	group	and	add	nodes.
However,	you	can	group	nodes	and	make	them	behave	in	a	similar	way	to	groups.

Nodes	and	node	groups	are	defined	in	/etc/puppet/manifests/site.pp	or	a	file	at
/etc/puppet/manifests/site.pp.

Create	the	configuration	node
Create	a	/etc/puppet/manifests/site.pp/rhel7-client.pp	file	with	the	following
contents:

node	'rhel7-client.critter.be'	{

}

Create	a	node	group
Create	a	/etc/puppet/manifests/site.pp/rhel7-clientgroup.pp	file	with	the
following	contents:

node	'rhel7-client00.critter.be',	'rhel7-client01.critter.be',	'rhel7-

client02.critter.be'	{

}



There’s	more…
If	you	have	a	strict	naming	convention,	you	can	use	regular	expressions	to	define	your
node	group.	Run	the	following	commands:

node	/^www[0-9]+\.critter\.be$/	{

}

node	/^repo[0-9]+\.critter\.be$/	{

}

By	default,	node	names	are	defined	by	their	certificate	name,	which	is	FQDN	(Fully
Qualified	Domain	Name)	of	the	system	we	used	to	register	with	Puppet	Master.

If	you	don’t	remember	the	names	of	all	of	your	nodes,	you	can	easily	find	them	at
/var/lib/puppet/ssl/ca/signed/.





Deploying	modules	to	single	nodes	and
node	groups
Once	you	define	modules	and	nodes,	you	can	start	deploying	the	modules	to	your	nodes.
You	can	do	this	on	various	levels,	which	will	be	demonstrated	in	the	following	recipe.



How	to	do	it…
In	order	to	deploy	a	module	(or	manifest)	to	a	node,	your	must	configure	this	in	the	node’s
stanza	or	a	group	of	nodes	that	the	node	belongs	to,	or	you	can	define	it	on	the	base	level
to	apply	it	to	every	node.

Configure	to	deploy	a	module	or	manifest	to	a	single	client
Edit	the	client	configuration	node	from	the	previous	recipe	and	add	an	include	statement
referring	to	manifest	you	want	to	be	applied	to	the	client	block.	You	can	execute	the
following	command	for	this:

node	'rhel7-client.critter.be'	{

		include	ntp

}

Configure	to	deploy	a	module	or	manifest	to	a	node	group
In	the	same	way	you	edited	the	single	node	file,	edit	the	node	group	configuration	file	and
add	an	include	statement	to	the	node	group	block	referring	to	the	manifest	you	want
applied.	Take	a	look	at	the	following	command:

node	'rhel7-client0.critter.be',	'rhel7-client1.critter.be',	'rhel7-

client2.critter.be'	{

		include	ntp

}

Configure	to	deploy	to	all	registered	systems
One	will	typically	have	a	node	configuration	file	within
/etc/puppet/manifests/site.pp/,	or	/etc/puppet/manifests/site.pp	itself,	if	you
work	with	one	monolithic	site	definition,	which	affects	all	nodes.	Edit
/etc/puppet/manifests/site.pp/default.pp	and	enter	the	following	code:

include	ntp

Deploy	to	a	system
On	the	system	with	the	Puppet	Agent	installed,	execute	the	following:

~]#	puppet	agent	–-test

When	executed,	the	following	will	appear:



There’s	more…
For	testing	purposes,	there’s	an	alternative	to	defining	nodes	and	including	modules.

Copy	the	manifest(s),	files,	and	templates	to	your	test	machine	(usually,	you	will	develop
elsewhere	than	the	production	Puppet	Master	anyway)	and	execute	them	in	the	following
way:

~]#	puppet	apply	/path/to/manifest.pp

Tip
By	default,	Puppet	applies	all	manifests	found	in	/etc/puppet/manifests/site.pp.	As
explained	in	the	preceding	section,	this	doesn’t	need	to	be	a	single	monolithic	file
containing	all	your	directives.	When	using	it	as	a	directory,	it	uses	all	the	manifests	found
within	this	directory,	or	if	the	name	of	a	subdirectory	ends	with	.pp,	it	interprets	all	of	its
contents	as	manifests	as	well.	It	interprets	all	files	alphanumerically.





Chapter	8.	Yum	and	Repositories
In	this	chapter,	we’ll	cover	the	following	recipes:

Managing	yum	history
Creating	a	copy	(mirror)	of	any	(RHN)	repository
Configuring	additional	repositories
Setting	up	yum	to	automatically	update
Configuring	logrotate	for	yum
Recovering	from	a	corrupted	RPM	database



Introduction
Originally,	you	needed	to	compile	your	GNU/Linux	system	manually	from	source,	which
used	to	be	time	consuming	and	could	be	problematic	if	you	couldn’t	get	your
dependencies	straight.	Red	Hat	created	Red	Hat	Package	Manager	(RPM)	in	1998	to
address	the	concerns	of	dependencies	and	reduce	the	time	needed	to	install	a	system
(among	others).	Since	then,	RPM	has	been	improved	by	the	Open	Source	community.	One
such	improvement	is	yum.

Yellowdog	Updater,	Modified	(yum)	is	a	package	management	tool	using	RPM.	It	allows
RPM	to	access	remote	repositories	of	RPM	files	and	will	automatically	download	the
required	RPM	files	based	on	the	dependency	information	provided	by	RPM.

Without	a	Red	Hat	Network	subscription,	you	will	not	get	access	to	updates.

Besides	Red	Hat	Network,	you	can	purchase	Red	Hat	Satellite	if	you	want	even	more
control	of	your	Red	Hat	systems.





Managing	yum	history
An	often	overlooked	feature	of	yum	is	the	history.	It	allows	you	to	perform	a	load	of
additional	features	that	can	save	your	skin	in	an	enterprise	environment.

It	allows	you	to	turn	back	the	proverbial	clock	to	the	last	functioning	state	of	an
application	should	there	be	an	issue	with	a	package	update,	without	having	to	worry	about
dependencies	and	so	on.



How	to	do	it…
In	this	recipe,	I’ll	show	you	a	couple	of	the	most	used	yum	history	features.

Your	yum	history
Use	the	following	command	to	show	your	yum	history:

~]#	yum	history	list

The	preceding	command	will	list	the	output,	as	follows:

Information	about	a	yum	transaction	or	package
Show	the	details	of	a	yum	transaction	by	executing	the	following	command:

~]#	yum	history	info	1

This	will	show	you	all	about	this	single	transaction:



Show	the	details	of	a	package	installed	with	yum	through	the	following:

~]#	yum	history	info	ntp

This	will	show	information	about	all	the	transactions	that	have	modified	the	ntp	package
in	some	way	(installed/updated/removed):



Undoing/redoing	certain	yum	transactions
Undo	a	specific	transaction	through	the	following	command:

~]#	yum	history	undo	7

This	command	undoes	a	specific	transaction	(defined	by	the	ID),	as	shown	in	the
following	screenshot:



Now,	you	can	redo	a	specific	transaction	using	the	following:

~]#	yum	history	redo	7

This	command	will	reperform	a	specific	transaction	(as	defined	by	the	transaction	ID),	as
follows:



Roll	back	to	a	certain	point	in	your	transaction	history
This	allows	you	to	undo	all	transactions	up	until	the	transaction	ID	that	you	specify.	Run
the	following	command:

~]#	yum	history	rollback	6



Here,	the	transaction	ID	up	to	which	you	roll	back	is	6.	You	will	get	the	following	output:



There’s	more…
You	have	to	be	careful	when	you	use	history	options	such	as	undo	and	rollback.	Yum	does
its	best	to	comply,	but	it	cannot	restore	configurations,	and	it	will	not	restore	previous
versions	of	your	configuration	files	if	you	have	edited	them.	This	is	not	a	fail-safe	option
if	you	don’t	have	any	backups.	Although	both	options	are	very	useful,	I	recommend	that
you	do	not	use	them	too	often.	When	you	do	use	them,	try	to	keep	the	impact	of	the
transactions	as	small	as	possible.	The	smaller	the	delta,	the	more	chance	of	succeeding	in
undoing	or	rolling	back!



See	also
Refer	to	the	yum(8)	man	pages	for	more	information	about	yum	history	options.





Creating	a	copy	of	an	RHN	repository
In	this	recipe,	I’ll	show	you	how	you	can	set	up	a	yum	repository	for	Red	Hat	Network-
based	and	“plain”	yum	repositories.



Getting	ready
Before	you	create	a	copy	of	an	RHN	repository,	you	need	to	ensure	that	you	have	a	valid
subscription	to	the	repository	that	you	want	to	duplicate.	When	this	prerequisite	is	met,
you	can	perform	this	recipe	from	the	machine	that	uses	the	subscription.



How	to	do	it…
Before	being	able	to	create	yum	repositories,	we	need	to	install	a	couple	of	tools	by
performing	the	following	steps:

1.	 Install	the	createrepo	and	yum-utils	packages	using	the	following	command:

~]#	yum	install	-y	yum-utils	createrepo

2.	 Now,	install	the	Apache	web	server,	as	follows:

~]#	yum	install	-y	httpd

Syncing	RHN	repositories
You	can	only	sync	RHN	subscriptions	that	you	have	access	to.	Perform	the	following
steps:

1.	 Create	a	directory	to	hold	the	RHN	rhel7	repository,	as	follows:

~]#	mkdir	/var/www/html/repo/rhel/rhel-x86_64-server-7/packages

2.	 Now,	create	/mnt/iso	by	executing	the	following	command:

~]#	mkdir	-p	/mnt/iso

3.	 Mount	the	RHEL	7	Server	DVD	through	the	following:

~]#	mount	-o	loop,ro	/tmp/rhel-server-7.0-x86_64-dvd.iso	/mnt/iso

4.	 Now,	copy	the	*-comps-Server.x86_64.xml	file	from	the	RHEL	Server	DVD	to
your	repo	directory.	The	following	command	will	help	in	this:

~]#	cp	/mnt/iso/repodata/*-comps-Server.x86_64.xml	

/var/www/html/repo/rhel/comps-Server.x86_64.xml

5.	 Unmount	the	RHEL	Server	DVD,	as	follows:

~]#	umount	/mnt/iso

6.	 Synchronize	the	RHEL	7	OS	repository	by	running	the	following	command:	(This
may	take	a	while…	I	suggest	you	kill	time	drinking	a	cup	of	freshly	ground	Arabica
coffee!)

~]#	reposync	--repoid=rhel-7-server-rpms	--norepopath	–

download_path=/var/www/html/repo/rhel/rhel-x86_64-server-7/packages

7.	 Next,	create	the	local	repository	(depending	on	your	hardware,	this	may	take	a	long
time),	as	follows:

~]#	cd	/var/www/html/repo/rhel/rhel-x86_64-server-7/

~]#	createrepo	--groupfile=/var/www/html/repo/rhel/comps-

Server.x86_64.xml	.

8.	 Finally,	test	your	repository	through	the	following:



~]#	curl	http://localhost/repo/rhel/rhel-x86_64-server-

7/repodata/repomd.xml

Let’s	create	a	copy	of	the	EPEL	repository	through	the	following	steps:

1.	 First,	install	the	EPEL	repository,	as	follows:

~]#	yum	install	-y	epel-release

2.	 Create	a	directory	to	hold	the	EPEL	repository	by	executing	the	following	command:

~]#	mkdir	-p	/var/www/html/repo/epel/7/x86_64

3.	 Now,	download	the	*-comps-epel7.xml	file	to	/repo	as	comps-epel7.xml,	as
follows:

~]#	curl	-o	/var/www/html/repo/epel/comps-epel7.xml	

http://mirror.kinamo.be/epel/7/x86_64/repodata/xxxxxxxxxxxxxxxxxxxx-

comps-epel7.xml

You	will	need	to	replace	the	multiple	x‘s	with	the	correct	MD5	hash,	as	found	in	the
repodata	folder.

1.	 Next,	synchronize	the	EPEL	repository	by	executing	the	following	(this	may	take	a
very	long	time,	depending	on	your	hardware	and	internet	speed):

~]#	reposync	--repoid=epel	--norepopath	–

download_path=/var/www/html/repo/epel/7/x86_64

2.	 Create	the	local	repository	(again,	depending	on	your	hardware,	this	may	take	a	long
time),	as	follows:

~]#	cd	/var/www/html/repo/epel/7/x86_64

~]#	createrepo	--groupfile=/var/www/html/repo/epel/comps-epel7.xml	.

3.	 Finally,	test	your	repository	by	executing	the	following	command:

~]#	curl	http://localhost/repo/epel/7/x86_64/repodata/repomd.xml



There’s	more…
When	synchronizing	RHEL	7	repositories,	you	will	only	be	able	to	sync	those	you	have
entitlement	to.	To	find	out	what	entitlements	you	have	on	a	given	system	connected	to
RHN,	execute	the	following:

~]#	cd	/etc/yum/pluginconf.d/	&&	echo	*.conf	|	sed	"s/rhnplugin.conf//"|sed	

's/\([0-9a-zA-Z\-]*\).conf/--disableplugin=\1/g'|xargs	yum	repolist	&&	cd	-	

>/dev/null

Whenever	you	synchronize	a	repository,	try	to	keep	the	same	directory	structure	as	the
original.	I	have	found	that	it	makes	life	easier	when	you	want	to	rewrite	your
/etc/yum.repos.d	files.

In	an	enterprise,	it	is	useful	to	have	a	point	in	time	when	you	“freeze”	your	yum
repositories	to	ensure	that	all	your	systems	are	at	the	same	RPM	level.	By	default,	any
repository	is	“live”	and	gets	updated	whenever	a	new	package	is	added.	The	advantage	of
this	is	that	you	always	have	the	latest	version	of	all	packages	available;	the	downside	is
that	your	environment	is	not	uniform	and	you	can	end	up	troubleshooting	for	different
versions	of	the	same	package.

The	easiest	way	to	achieve	a	“frozen”	repository	is	to	create	a	central	location	that	holds
all	the	RPMs	as	you	would	a	normal	yum	mirror	or	copy.

Every	x	time,	which	you	predefine,	create	a	new	directory	with	a	timestamp,	in	which	you
hard	link	all	the	RPMs	you	mirror.	Then	finally,	create	a	hard	link	to	the	directory,	which
you	will	later	use	in	your	repo	configuration.

Here’s	an	example:

Directories Description

/rhel7/x86_64.all This	directory	contains	a	mirror	which	is	synced	nightly.	RPMs	are	added,	never	deleted.

/rhel7/x86_64.20150701
This	directory	contains	hard	links	to	the	RPMs	in	/rhel7/x86_64,	all	of	which	were	synced
on	01/07/2015,	along	with	monthly	iterations	of	the	/rhel6/x86_64.20150701	directory.

/rhel7/x86_64 This	directory	contains	a	hard	link	to	the	monthly	iteration,	which	is	deemed	in	production.

Of	course,	you	need	to	ensure	that	you	create	a	repository	for	each	new	sync!



See	also
Refer	to	the	createrepo(8)	man	pages	for	more	information	about	creating	a	repository.

Also,	refer	to	the	reposync(1)	man	pages	for	more	information	on	keeping	your	repository
up-to-date.





Configuring	additional	repositories
Whether	you	create	your	own	mirror	repository	or	organizations	provide	software	for	you
in	repositories,	setting	up	additional	repositories	on	your	RHEL	system	is	quite	simple.
This	recipe	will	show	you	how	to	set	them	up.	Many	repositories	have	their	own	repo	files
or	even	an	RPM	that	automatically	installs	the	repository.	When	these	are	available,	don’t
hesitate	to	use	them!



Getting	ready
For	this	to	work,	you	will	need	to	have	a	repository	set	up,	which	can	be	accessed	through
the	following	URL:	http://repo.example.com/myrepo/7/x86_64.



How	to	do	it…
In	order	to	create	an	additional	repository,	create	a	file	in	/etc/yum.repos.d	called
myrepo.repo,	which	contains	the	following	information:

[myrepo]

name=My	Personal	Repository

baseurl=http://repo.example.com/myrepo/$releasever/$basearch

gpgcheck=0

enabled=1



There’s	more…
The	gpgcheck=1	option	only	functions	if	you	or	the	provider	of	a	repo	has	signed	all	the
RPMs	in	the	repo.	This	is	generally	a	good	practice	and	provides	extra	security	to	your
repositories.

The	$releasever	and	$basearch	variables	allow	you	to	create	a	single	repository	file	that
can	work	on	multiple	systems	as	long	as	you	have	a	repository	for	the	URLs.	The
$releasever	variable	expands	to	the	major	version	of	the	OS	(7	in	our	case),	and	the
$basearch	will	expands	to	x86_64.	On	an	i386	system	(RHEL	7	only	comes	in	the
x86_64	architecture),	$basearch	expands	to	i386.

You	can	find	many	repositories	on	the	Internet,	such	as	epel	and	elrepo,	but	it	may	not
always	be	a	good	idea	to	use	them.	Any	software	provided	by	the	Red	Hat	standard
repositories	are	also	supported	by	Red	Hat,	and	they	will	no	longer	support	you	if	you	start
using	the	same	software	provided	through	another	repository.	So,	you	better	ensure	that
you	don’t	care	about	support	or	have	another	party	that	is	willing	to	support	you.



See	also
Although	I	do	not	condone	the	use	of	these	in	production	without	taking	the	appropriate
support	actions,	here	is	a	list	of	some	popular	repositories	that	you	can	use:

The	ELRepo	repository	can	be	found	at:

http://elrepo.org/tiki/tiki-index.php

The	EPEL	repository	is	at:

https://fedoraproject.org/wiki/EPEL

The	Puppetlabs	repositories	can	be	found	at:

https://docs.puppetlabs.com/guides/puppetlabs_package_repositories.html

The	Zabbix	repositories	are	at	the	following	link:

https://www.zabbix.com/documentation/2.0/manual/installation/install_from_packages

For	the	RepoForge	repositories,	refer	to	the	following	website:

http://repoforge.org/use/

Remi’s	repositories	can	be	found	at:

http://rpms.famillecollet.com/

The	Webtatic	repositories	are	at:

https://webtatic.com/projects/yum-repository/

http://elrepo.org/tiki/tiki-index.php
https://fedoraproject.org/wiki/EPEL
https://docs.puppetlabs.com/guides/puppetlabs_package_repositories.html
https://www.zabbix.com/documentation/2.0/manual/installation/install_from_packages
http://repoforge.org/use/
http://rpms.famillecollet.com/
https://webtatic.com/projects/yum-repository/




Setting	up	yum	to	automatically	update
In	enterprises,	automating	the	systematic	updating	of	your	RHEL	systems	is	very
important.	You	want	to	stay	ahead	of	hackers	or,	in	general,	people	trying	to	hurt	you	by
exploiting	the	weaknesses	in	your	environment.

Although	I	do	not	recommend	applying	this	recipe	to	all	systems	in	an	enterprise,	this	is
quite	useful	to	ensure	that	certain	systems	are	kept	up	to	date	as	the	patches	and	bugfixes
are	applied	to	the	RPMs	in	Red	Hat’s	(and	other)	repositories.



Getting	ready
In	order	for	this	recipe	to	work,	you’ll	need	to	be	sure	that	the	repositories	you	are	using
are	set	up	correctly	and	you	have	valid	mail	setup	(using	Postfix	or	Sendmail,	for
example).



How	to	do	it…
We’ll	set	up	yum	to	autoupdate	your	system	once	a	week	(at	03:00	)	and	reboot	if
necessary	through	the	following	steps:

1.	 Install	the	yum	cron	plugin,	as	follows:

~]#	yum	install	-y	yum-cron

2.	 Then,	disable	the	hourly	and	daily	yum	cron	jobs	through	the	following	commands:

~]#	echo	>	/etc/cron.dhourly/0yum-hourly.cron

~]#	echo	>	/etc/cron.daily/0yum-daily.cron

3.	 Create	the	configuration	file	for	the	weekly	yum	update	cron	job	via	the	following:

~]#	cp	/etc/yum/yum-cron.conf	/etc/yum/yum-cron-weekly.conf

4.	 Modify	the	created	configuration	file	to	apply	updates	and	send	a	notification	through
e-mail	by	setting	the	following	values:

apply_updates	=	yes

emit_via	=	email

email_to	=	<your	email	address>

5.	 Next,	create	a	weekly	cron	job	by	adding	the	following	contents	to
/etc/cron.weekly/yum-weekly.cron:

#!/bin/bash																																																					

#	Only	run	if	this	flag	is	set.	The	flag	is	created	by	the	yum-cron	

init

#	script	when	the	service	is	started—this	allows	one	to	use	chkconfig	

and

#	the	standard	"service	stop|start"	commands	to	enable	or	disable	yum-

cron.

if	[[	!	-f	/var/lock/subsys/yum-cron	]];	then

		exit	0

fi

#	Action!

exec	/usr/sbin/yum-cron	/etc/yum/yum-cron-weekly.conf

if	test	"$(yum	history	info	|egrep	'\skernel'|wc	-l)"	!=	"0";	then

				

/sbin/shutdown	--reboot	+5	"Kernel	has	been	upgraded,	rebooting	the	

server	in	5	minutes.	Please	save	your	work."

fi

6.	 Finally,	make	the	cron	job	executable	by	executing	the	following	command:

~]#	chmod	+x	/etc/cron.weekly/yum-weekly.cron



How	it	works…
By	default,	yum-cron	sets	up	a	cron	job	that	is	run	every	hour	(/etc/cron.dhourly/0yum-
hourly.cron)	and	every	day	(/etc/cron.daily/0yum-daily.cron).



There’s	more…
This	recipe	will	upgrade	all	your	packages	when	there’s	an	update	available.	If	you	just
want	to	apply	security	fixes,	modify	the	update_cmd	value	of	your	yum	cron	configuration
file	in	the	following	way:

update_cmd	=	security

Alternatively,	you	can	even	use	the	following	configuration	if	you	only	want	critical	fixes:

update_cmd	=	security-severity:Critical



See	also
Check	the	yum	cron(8)	man	page	or	the	default	yum-cron.conf	file	located	at
/etc/yum/yum-cron.conf	for	more	information.





Configuring	logrotate	for	yum
Every	time	you	use	yum	to	install	and/or	update	packages,	it	logs	to	/var/log/yum.log.	A
lot	of	people	don’t	want	to	rotate	the	file	a	lot	as	they	believe	(incorrectly)	that	it	is	their
only	source	to	the	history	of	their	yum	tasks.	They	may	even	believe	that	it	provides	a	way
to	restore	your	rpm	database	if	it	gets	corrupted	-	it	does	not.

I	do	recommend	keeping	your	complete	yum	history	as	it	doesn’t	grow	a	lot,	unless	you
reinstall	packages	a	lot.

For	a	rich	interface	to	your	yum	history,	I	suggest	you	use	yum	history.

By	default,	your	yum	log	file	is	rotated	yearly,	and	even	then,	it	only	rotates	if	the	size	of
your	log	file	exceeds	30	KB,	and	your	logs	are	only	kept	for	4	years.	Usually,	this	is
enough	in	the	physical	world	as	physical	servers	tend	to	be	replaced	every	3-4	years.
However,	virtual	servers	have	the	potential	to	stay	“alive”	beyond	these	3-4	years.



How	to	do	it…
Modify	/etc/logrotate.d/yum	to	the	following:

/var/log/yum.log	{

				missingok

				notifempty

				size	30k

				rotate	1000

				yearly

				create	0600	root	root

}



How	it	works…
This	configuration	will	only	rotate	the	yum	log	when	it	exceeds	30	KB	in	size	on	a	yearly
basis,	and	it	will	keep	1000	rotated	logs,	which	is	basically	log	files	for	1000	years!



See	also
For	more	information	on	how	to	use	and	configure	logrotate,	refer	to	the	logrotate(8)	man
page.





Recovering	from	a	corrupted	RPM
database
Although	everything	is	done	to	ensure	that	your	RPM	databases	are	intact,	your	RPM
database	may	become	corrupt	and	unuseable.	This	happens	mainly	if	the	filesystem	on
which	the	rpm	db	resides	is	suddenly	inaccessible	(full,	read-only,	reboot,	or	so	on).

This	recipe	will	show	you	the	two	ways	in	which	you	can	attempt	to	restore	your	RPM
database.



Getting	ready
Verify	that	your	system	is	backed	up	in	some	way.



How	to	do	it…
We’ll	start	with	the	easiest	option	and	the	one	with	the	highest	success	rate	in	these	steps:

1.	 Start	by	creating	a	backup	of	your	corrupt	rpm	db,	as	follows:

~]#	cd;	tar	zcvf	rpm-db.tar.gz	/var/lib/rpm/*

2.	 Remove	stale	lock	files	if	they	exist	through	the	following	command:

~]#	rm	-f	/var/lib/rpm/__db*

3.	 Now,	verify	the	integrity	of	the	Packages	database	via	the	following:

~]#	/usr/lib/rpm/rpmdb_verify	/var/lib/rpm/Packages;	echo	$?

If	the	previous	step	prints	0,	proceed	to	Step	7.

4.	 Rename	the	Packages	file	(don’t	delete	it,	we’ll	need	it!),	as	follows:

~]#	mv	/var/lib/rpm/Packages		/var/lib/rpm/Packages.org

5.	 Now,	dump	the	Packages	db	from	the	original	Packages	db	by	executing	the
following	command:

~]#	cd	/usr/lib/rpm/rpmdb_dump	Packages.org	|	/usr/lib/rpm/rpmdb_load	

Packages

6.	 Verify	the	integrity	of	the	newly	created	Packages	database.	Run	the	following:

~]#	/usr/lib/rpm/rpmdb_verify	/var/lib/rpm/Packages;	echo	$?

If	the	exit	code	is	not	0,	you	will	need	to	restore	the	database	from	backup.

7.	 Rebuild	the	rpm	indexes,	as	follows:

~]#	rpm	-vv	--rebuilddb

8.	 Next,	use	the	following	command	to	check	the	rpm	db	with	yum	for	any	other	issues
(this	may	take	a	long	time):

~]#	yum	check

9.	 Restore	the	SELinux	context	of	the	rpm	database	through	the	following	command:

~]#	restorecon	-R	-v	/var/lib/rpm





There’s	more…
If,	for	some	reason,	you	are	unable	to	recover	your	RPM	database,	there	is	one	final	option
left.	Enterprises	tend	to	have	standardized	builds,	and	many	servers	are	installed	with	the
same	packages,	so	copy	the	healthy	/var/lib/rpm	directory	from	another	server	with	the
exact	same	package	set	to	the	corrupted	one,	and	perform	the	preceding	recipe’s	steps	to
ensure	that	everything	is	okay.

Although	you’ll	find	additional	tools	that	can	save	your	skin	(such	as	RPM	cron),	it’s
usually	more	practical	to	have	a	decent	backup.





Chapter	9.	Securing	RHEL	7
In	this	chapter,	you	will	learn	all	about:

Installing	and	configuring	IPA
Securing	the	system	login
Configuring	privilege	escalation	with	sudo
Securing	the	network	with	firewalld
Using	kdump	and	SysRq
Using	ABRT
Auditing	the	system



Introduction
Security	is	an	important	aspect	of	your	environment.	The	recipes	provided	in	this	chapter
are	not	a	definitive	set	of	how-tos;	rather,	they	are	a	start	to	addressing	security	in	an
environment	as	every	environment	is	different.	This	chapter	is	meant	to	give	you	an	idea
of	what	you	can	do	with	a	simple	set	of	tools	included	in	Red	Hat	Enterprise	Server	7.

In	this	chapter,	I	will	not	attempt	explaining	where	the	system	stores	syslog	messages	and
what	they	mean	as	this	can	be	quite	an	exhaustive	topic.	The	most	important	security-
related	syslog	messages	can	be	found	in	/var/log/secure	and
/var/log/audit/audit.log.





Installing	and	configuring	IPA
The	IPA	(Identity	Policy	Audit)	server	allows	you	to	manage	your	kerberos,	DNS,	hosts,
users,	sudo	rules,	password	policies,	and	automounts	in	a	central	location.	IPA	is	a
combination	of	packages,	including—but	not	limited	to—bind,	ldap,	pam,	and	so	on.	It
combines	all	of	these	to	provide	identity	management	for	your	environment.



Getting	ready
In	this	recipe,	I	will	opt	for	an	integrated	DNS	setup,	although	it	is	possible	to	use	your
existing	DNS	infrastructure.



How	to	do	it…
First,	we’ll	install	the	server	component,	followed	by	what	needs	to	be	done	on	an	IPA
client.

Installing	the	IPA	server
Follow	these	instructions	to	install	an	IPA	server:

1.	 Install	the	necessary	packages	via	the	following	command:

~]#	yum	install	-y	ipa-server	bind	bind-dyndb-ldap

2.	 When	the	packages	are	installed,	invoke	the	ipa	installer,	as	follows:

~]#	ipa-server-install

At	this	stage,	you	will	be	asked	a	couple	of	questions	on	how	to	set	up	your	IPA	server.

1.	 Configure	integrated	DNS	as	follows:

Do	you	want	to	configure	integrated	DNS	(BIND)?	[no]:	yes

2.	 Overwrite	existing	/etc/resolv.conf	as	follows:

Existing	BIND	configuration	detected,	overwrite?	[no]:	yes

3.	 Provide	the	IPA	server’s	hostname,	as	follows:

Server	host	name	[localhost.localdomain]:	master.example.com

4.	 Now,	confirm	the	DNS	domain	name	for	the	IPA	server	as	follows:

Please	confirm	the	domain	name	[example.com]:

5.	 Provide	an	IP	address	for	the	IPA	server	as	follows:

Please	provide	the	IP	address	to	be	used	for	this	host	name:	

192.168.0.1

6.	 Next,	provide	a	Kerberos	realm	name,	as	follows:

Please	provide	a	realm	name	[EXAMPLE.COM]:

7.	 Create	the	directory	manager’s	password	and	confirm	it	as	follows:

Directory	Manager	password:

8.	 Create	the	IPA	manager’s	password	and	confirm	it	as	follows:

IPA	admin	password:

9.	 Now,	configure	the	DNS	forwarders	as	follows:

Do	you	want	to	configure	DNS	forwarders?	[yes]:	no

10.	 Finally,	configure	the	reverse	DNS	zones	as	follows:

Do	you	want	to	configure	the	reverse	zone?	[yes]:



Please	specify	the	reverse	zone	name	[0.168.192.in-addr.arpa.]:

The	installer	will	now	provide	an	overview	similar	to	the	following:

The	IPA	Master	Server	will	be	configured	with:

Hostname:						master.example.com

IP	address:				192.168.0.1

Domain	name:			example.com

Realm	name:				EXAMPLE.COM

BIND	DNS	server	will	be	configured	to	serve	IPA	domain	with:

Forwarders:				No	forwarders

Reverse	zone:		0.168.192.in-addr.arpa.

11.	 Now,	confirm	the	information	by	typing	“yes”,	as	follows:

Continue	to	configure	the	system	with	these	values?	[no]:	yes

At	this	point,	you	will	see	a	lot	of	information	scrolling	on	your	screen,	indicating	what
the	installer	is	doing:	installing	or	configuring	NTP,	LDAP,	BIND,	Kerberos,	HTTP,	the
certificate	server,	and	IPA-related	modifications	to	the	preceding	examples.

The	installation	and	configuration	process	can	take	a	while,	so	be	patient.

Installing	the	IPA	client
Perform	these	steps	to	install	and	configure	the	IPA	client	on	your	system:

Tip
Ensure	that	the	hostname	of	your	system	is	different	from	localhost.localdomain.	If	it	is
not,	the	client	configuration	will	fail.

1.	 Install	the	necessary	packages	via	the	following	command:

~]#	yum	install	-y	ipa-client

2.	 Ensure	that	the	IPA	server	is	used	as	a	DNS	server	through	the	following:

~]#	cat	/etc/resolv.conf

search	example.com

nameserver	192.168.0.1

3.	 Invoke	the	IPA	client	configuration	by	running	this	command	line:

~]#	ipa-client-install	--enable-dns-updates

The	installer	will	now	show	an	overview	of	the	detected	IPA	server	and	ask	for	a	user	(the
IPA	manager)	and	password	to	register	your	system,	as	shown	in	the	following	screenshot:





There’s	more…
Once	installed,	you	can	manage	your	IPA	environment	using	the	command	line	tool	IPA	or
the	web	interface,	which	can	be	accessed	by	pointing	your	browser	to	your	IPA	master
server	over	HTTPS.	In	this	case,	the	URL	is	https://master.example.com.

By	default,	the	IPA	client	doesn’t	create	homedirs	for	new	users	at	first	login.	If	you	want
to	enable	this,	use	the	--mkhomedir	argument	with	ipa-client-install.	If	you	happen	to
have	forgotten	about	this,	there’s	no	need	to	reinstall	the	IPA	client.	You	can	just
reconfigure	this	by	executing	the	following	command:

~]#	authconfig	--enablemkhomedir	--update



See	also
For	more	in-depth	information	about	installing	and	configuring	your	IPA	server,	go	to
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Linux_Domain_Identity_Authentication_and_Policy_Guide/installing-
ipa.html.

For	more	information	about	managing	your	IPA	environment	through	the	command	line,
read	the	ipa	(1)	man	pages.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Linux_Domain_Identity_Authentication_and_Policy_Guide/installing-ipa.html




Securing	the	system	login
The	default	settings	applied	to	system	login	are	based	on	what	Red	Hat	deems	basic
security.	If,	for	some	reason,	you	want	to	change	this,	this	recipe	will	show	you	a	couple
of	examples.	Authconfig	has	two	tools	that	you	can	use	to	configure	authentication:
authconfig	and	authconfig-tui.

These	two	tools	configure	pam	for	you	in	such	a	way	that	the	changes	are	consistent
throughout	rpm	updates.

The	authconfig-tui	tool	is	not	as	feature-rich	as	the	plan	authconfig	tool,	which	I
personally	recommend	you	to	use	as	it	allows	you	to	do	more.

You	can	manually	edit	the	files	located	in	/etc/pam.d	if	and	when	you	know	what	you’re
doing,	but	this	is	not	recommended.



How	to	do	it…
Perform	the	following	steps:

First,	change	the	hash	encryption	of	the	passwords	stored	in	/etc/shadow	to	sha512,	as
follows:

~]#	authconfig	--passalgo=sha512	--update

Enable	NIS	authentication	through	the	following	command:

~]#	authconfig	--enablenis	–nisdomain=NISDOMAIN	--

nisserver=nisserver.example.com	--update

Now,	set	the	minimum	length	requirement	for	passwords	to	16	via	the	following:

~]#	authconfig	--passminlen=16	--update

The	user	requires	at	least	one	lowercase	letter	in	the	password;	you	can	set	this
requirement	by	running	the	following:

~]#	authconfig	--enablereqlower	--update

Also,	the	user	requires	at	least	one	uppercase	letter	in	the	password,	for	which	you	can	run
the	following:

~]#	authconfig	--enablerequpper	--update

Now,	the	user	requires	at	least	one	number	in	the	password.	Execute	the	following
command	for	this:

~]#	authconfig	--enablereqdigit	--update

Finally,	the	user	requires	at	least	one	nonalphanumeric	character	in	the	password,	which
you	can	set	using	the	following	command:

~]#	authconfig	--enablereqother	--update



How	it	works…
authconfig	and	authconfig-tui	are	wrapper	scripts	that	modify	a	variety	of	files,
including,	but	not	limited	to,	/etc/nsswitch.conf,	/etc/pam.d/*,	/etc/sssd.conf,
/etc/openldap/ldap.conf,	and	/etc/sysconfig/network.

The	advantage	of	the	tool	is	that	it	uses	the	correct	syntax,	which	can	sometimes	be	a	little
tricky,	especially	for	the	files	in	/etc/pam.d.



There’s	more…
One	of	the	interesting	features	of	this	tool	is	the	backup	and	restore	functions.	In	case	you
do	not	use	any	centralized	identification	and	authentication	infrastructure,	such	as	IPA,
you	can	use	this	to	make	a	backup	of	a	correctly	configured	machine	and	distribute	this
through	whichever	means	you	wish	to	use.

To	back	up	your	authconf	configuration,	execute	the	following:

~]#	authconfig	--savebackup=/tmp/auth.conf

This	will	create	a	/tmp/auth.conf	directory,	which	contains	all	the	files	modified	by
authconfig.

Copy	this	directory	over	to	another	server	and	restore	the	configuration	by	executing	the
following:

~]#	authconfig	–-restorebackup=/tmp/auth.conf

All	of	the	security	changes	you	apply	through	authconfig	can	also	be	managed	through
IPA.



See	also
For	information	about	and	more	configuration	options,	take	a	look	at	the	authconfig	(8)
man	pages.

You	can	also	find	more	information	on	Red	Hat’s	page	on	authentication	at
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System-
Level_Authentication_Guide/Configuring_Authentication.html.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System-Level_Authentication_Guide/Configuring_Authentication.html




Configuring	privilege	escalation	with	sudo
Sudo	allows	users	to	run	applications	and	scripts	with	the	security	privileges	of	another
user.



Getting	ready
Before	allowing	someone	to	elevate	their	security	context	for	a	specific	application	or
script,	you	need	to	figure	out	which	user	or	group	you	wish	to	elevate	from	and	to,	which
applications/scripts	you	use,	and	on	which	systems	to	run	them.

The	default	syntax	for	a	sudo	entry	is	the	following:

who	where	=	(as_whom)	what



How	to	do	it…
These	simple	five	steps	will	guide	you	through	setting	up	privilege	escalation:

1.	 Create	a	new	sudoers	definition	file	in	/etc/sudoers.d/	called	clustering	through
the	following	command:

~]#	visudo	-f	/etc/sudoers.d/clustering

2.	 Create	a	command	alias	for	the	most-used	clustering	tools	called	CLUSTERING	by
executing	the	following:

Cmnd_Alias	CLUSTERING	=	/sbin/ccs,	/sbin/clustat,	/sbin/clusvcadm

3.	 Now,	create	a	host	alias	group	for	all	the	clusters	called	CLUSTERS,	as	follows:

Host_Alias	CLUSTERS	=	cluster1,	cluster2

4.	 Next,	create	a	user	alias	for	all	cluster	admins	called	CLUSTERADMINS	by	executing	the
following:

User_Alias	CLUSTERADMINS	=	spalpatine,	dvader,	okenobi,	qjinn

5.	 Now,	let’s	create	a	sudo	rule	that	allows	the	users	from	CLUSTERADMINS	to	execute
commands	from	CLUSTERING	on	all	servers	within	the	CLUSTERS	group,	as	follows:

CLUSTERADMINS	CLUSTERS	=	(root)	CLUSTERING



There’s	more…
To	edit	the	sudoers	file,	you	can	either	use	a	text	editor	and	edit	/etc/sudoers,	the
visudo	tool,	which	automatically	checks	your	syntax	when	exiting.

It’s	always	a	good	idea	to	leave	the	original	/etc/sudoers	file	alone	and	modify	the	files
located	in	/etc/sudoers.d/.	This	allows	the	sudo	rpm	to	update	the	sudoers	file	should	it
be	necessary.



See	also
For	more	information	about	sudo,	take	a	look	at	the	sudoers	(5)	man	page.





Secure	the	network	with	firewalld
firewalld	is	a	set	of	scripts	and	a	daemon	that	manage	netfilter	on	your	RHEL	system.
It	aims	at	creating	a	simple	command-line	interface	to	manage	the	firewall	on	your
systems.



How	to	do	it…
By	default,	firewalld	is	included	in	the	“core”	rpm	group,	but	it	may	not	be	installed	for
some	reason	(that	you	left	it	out	of	your	kickstart	would	be	one!).	Perform	the	following
steps:

1.	 Install	firewalld	via	the	following	command	line:

~]#	yum	install	-y	firewalld

2.	 Now,	enable	firewalld	through	the	following:

~]#	systemctl	enable	firewalld

3.	 Finally,	ensure	that	firewalld	is	started	by	executing	the	following	command	line:

~]#	systemctl	restart	firewalld

Showing	the	currently	allowed	services	and	ports	on	your	system
List	all	the	allowed	services	using	the	following	command:

~]#	firewall-cmd	–list-services

You	can	see	the	output	as	follows,	where	all	the	allowed	services	are	listed:

Now,	show	the	tcp/udp	ports	that	are	allowed	by	your	firewall	using	the	following
command:

~]#	firewall-cmd	--list-ports

Here’s	what	the	output	should	look	like:



Allowing	incoming	requests	for	NFS	(v4)
Perform	the	following	steps	to	allow	NFSv4	traffic	on	your	system:

1.	 First,	allow	nfs	traffic	via	this	command:

~]#	firewall-cmd	--add-service	nfs	–-permanent

success

~]#

2.	 Then,	reload	the	configuration	as	follows:

~]#	firewall-cmd	--reload

success

~]#

3.	 Now,	check	the	newly	applied	rule	by	executing	the	following	command	line:

~]#	firewall-cmd	–-list-services

nfs

~]#

Allowing	incoming	requests	on	an	arbitrary	port
Perform	the	following	steps	to	allow	incoming	traffic	on	port	1234	over	both	tcp	and	udp:

1.	 First,	allow	traffic	on	port	1234	over	tcp	and	udp	by	running	the	following:

~]#	firewall-cmd	--add-port	1234/tcp	--permanent

success

~]#	firewall-cmd	--add-port	1234/udp	--permanent

success

~]#

2.	 Reload	the	configuration	by	executing	the	following	command:

~]#	firewall-cmd	–-reload

success

~]#

3.	 Check	the	newly	applied	rule	via	the	following:

~]#	firewall-cmd	–-list-ports

1234/tcp	1234/udp

~]#



There’s	more…
firewalld	comes	with	a	set	of	predefined	port	configurations,	such	as	HTTP	and	HTTPS.
You	can	find	all	such	definitions	in	/lib/firewalld/services.	When	creating	your	own
port	definitions	or	modifying	the	existing	ones,	you	should	create	new	port	definition	files
in	/etc/firewalld/services.

When	creating	new	“rules”	by	adding	ports,	services,	and	so	on,	you	need	to	add	the	--
permanent	option,	or	your	changes	would	be	lost	upon	the	rebooting	of	the	system	or	the
reloading	of	the	firewalld	policy.



See	also
For	more	information	on	configuring	your	firewall,	check	the	man	pages	for	firewall-
cmd(1).





Using	kdump	and	SysRq
The	kdump	mechanism	is	a	Linux	kernel	feature,	which	allows	you	to	create	dumps	if
your	kernel	crashes.	It	produces	an	exact	copy	of	the	memory,	which	can	be	analyzed	for
the	root	cause	of	the	crash.

SysRq	is	a	feature	supported	by	the	Linux	kernel,	which	allows	you	to	send	key
combinations	to	it	even	when	your	system	becomes	unresponsive.



How	to	do	it…
First,	we’ll	set	up	kdump	and	SysRq,	and	afterwards,	I’ll	show	you	how	to	use	it	to	debug
a	dump.

Installing	and	configuring	kdump	and	SysRq
Let’s	take	a	look	at	how	this	is	installed	and	configured:

1.	 Install	the	necessary	packages	for	kdump	by	executing	the	following	command:

~]#	yum	install	-y	kexec-tools

2.	 Ensure	that	crashkernel=auto	is	present	in	the	GRUB_CMDLINE_LINUX	variable
declaration	in	the	/etc/sysconfig/grub	file	using	this	command:

GRUB_CMDLINE_LINUX="rd.lvm.lv=system/usr	rd.lvm.lv=system/swap	

vconsole.keymap=us	rd.lvm.lv=system/root	vconsole.font=latarcyrheb-

sun16	crashkernel=auto"

3.	 Start	kdump	by	running	the	following:

~]#	systemctl	start	kdump

4.	 Now,	enable	kdump	to	start	at	boot,	as	follows:

~]#	sysctl	enable	kdump

5.	 Configure	SysRq	to	accept	all	commands	via	the	following	commands:

~]#	echo	"kernel.sysrq	=	1"	>>	/etc/sysctl.d/sysrq.conf

~]#	systemctl	-q	-p	/etc/sysctl.d/sysrq.conf

6.	 Regenerate	your	intramfs	(initial	RAM	file	system)	to	contain	the	necessary
information	for	kdump	by	executing	the	following	command:

~]#	dracut	--force

7.	 Finally,	reboot	through	the	following	command:

~]#	reboot

Using	kdump	tools	to	analyze	the	dump
Although	you’ll	find	most	of	the	information	you’re	looking	for	in	the	vmcode-dmesg.txt
file,	it	can	be	useful	sometimes	to	look	into	the	bits	and	bytes	of	the	vmcore	dump,	even	if
it	is	just	to	know	what	the	people	at	Red	Hat	do	when	they	ask	you	to	send	you	a	vmcore
dump.	Perform	the	following	steps:

1.	 Install	the	necessary	tools	to	debug	the	vmcore	dump	via	the	following	command:

~]#	yum	install	-y	--enablerepo=\*debuginfo	crash	kernel-debuginfo

2.	 Locate	your	vmcore	by	executing	the	following:

~]#	find	/var/crash	-name	'vmcore'



/var/crash/127.0.0.1-2015.10.31-12:03:06/vmcore

Note
If	you	don’t	have	a	core	dump,	you	can	trigger	this	yourself	by	executing	the
following:

~]#	echo	c	>	/proc/sysrq-trigger

3.	 Use	crash	to	analyze	the	contents,	as	follows:

~]#	crash	/var/crash/127.0.0.1-2015.10.31-12:03:06/vmcore	

/usr/lib/debug/lib/modules/<kernel>/vmlinux

Here,	<kernel>	must	be	the	same	kernel	as	the	one	that	the	dump	was	created	for:

4.	 Display	the	kernel	message	buffer	(this	can	also	be	found	in	the	vmcore-dmesg.txt
dump	file)	by	running	the	following	command:

crash>	log

Here’s	what	the	output	should	look	like:



5.	 Display	the	kernel	stack	trace	through	the	following:

crash>	bt

Here’s	what	the	output	should	look	like:

6.	 Now,	show	the	processes	at	the	time	of	the	core	dump,	as	follows:

crash>	ps

Here’s	what	the	output	should	look	like:





There’s	more…
The	default	kdump	configuration	uses	/var/crash	to	dump	its	memory	on.	This	MUST	be
on	the	root	filesystem.	Some	systems	are	configured	with	a	separate	filesystem	for	/var,
so	you	need	to	change	the	location	in	/etc/kdump.conf	or	use	a	different	target	type,	such
as	raw,	nfs,	and	so	on.	If	your	crash	directory	is	located	on	a	nonroot	filesystem,	the
kdump	service	will	fail!

Although	the	crash	utility	can	provide	a	lot	of	details	about	the	crash,	usually	you’re	set
with	the	contents	of	the	vmcore-dmesg.txt	file,	which	resides	in	the	same	directory	as	the
vmcore	file.	So,	I	suggest	that	you	parse	this	file	before	digging	into	the	bits	and	bytes	of
the	memory	dump.

SysRq,	as	stated	before,	allows	you	to	control	your	system	even	if	it	is	in	a	state	that
doesn’t	allow	you	to	do	anything	at	all.	However,	it	does	require	you	to	have	access	to	the
system’s	console.

By	default,	kdump	creates	a	dump	and	reboots	your	system.	In	the	event	that	this	doesn’t
happen	and	you	don’t	want	to	push	the	power	button	on	your	(virtual)	system,	SysRq
allows	you	to	send	commands	through	the	console	to	your	kernel.

The	key	combination	needed	to	send	the	information	differs	a	little	from	architecture	to
architecture.	Take	a	look	at	the	following	table	for	reference:

Architecture Key	combination

x86 <Alt><SysRq><command	key>

Sparc <Alt><Stop><command	key>

Serial	console	(PC	style	only)
This	sends	a	BREAK	and,	within	5	seconds,	the	command	key.

Sending	BREAK	twice	is	interpreted	as	a	normal	BREAK.

PowerPC <Alt><Print	Screen>(or	<F13>)<command	key>

So,	on	an	x86	system,	you	would	attempt	to	sync	your	disks	before	rebooting	it	by
executing	the	following	commands:

<Alt><SysRq><s>

<Alt><SysRq><b>

Alternatively,	if	you	still	have	access	to	your	terminal,	you	can	do	the	same	by	sending
characters	to	/proc/sysrq-trigger,	as	follows:

~]#	echo	s	>	/proc/sysrq-trigger

~]#	echo	b	>	/proc/sysrq-trigger

The	following	key	commands	are	available:

Command
key Function



b
This	immediately	reboots	your	system.	It	does	not	sync	or	unmount	disks.	This	can	result	in	data
corruption!

c This	performs	a	system	crash	by	a	NULL	pointer	dereference.	A	crashdump	is	taken	if	kdump	is	configured.

d This	shows	all	the	locks	held.

e This	sends	a	SIGTERM	signal	to	all	your	processes,	except	for	init.

f This	calls	oom_kill	to	kill	any	process	hogging	the	memory.

g This	is	used	by	the	kernel	debugger	(kgdb).

h This	shows	help.	(Memorize	this	option!)

i This	sends	a	SIGKILL	signal	to	all	your	processes,	except	for	init.

j This	freezes	your	filesystems	with	the	FIFREEZE	ioctl.

k

This	kills	all	the	programs	on	the	current	virtual	console.

It	enables	a	secure	login	from	the	console	as	this	kills	all	malware	attempting	to	grab	your	keyboard	input,
for	example.

l This	shows	a	stack	trace	for	all	active	CPUs.

m This	dumps	the	current	memory	info	to	your	console.

n You	can	use	this	to	make	real-time	tasks	niceable.

o This	shuts	down	your	system	and	turns	it	off	(if	configured	and	supported).

p This	dumps	the	current	registers	and	flags	to	your	console

q
This	will	dump	a	list	of	all	armed	hrtimers	(except	for	timer_list	timers)	per	CPU	together	with	detailed
information	about	all	clockevent	devices.

r This	turns	off	your	keyboard’s	raw	mode	and	sets	it	to	XLATE.

s This	attempts	to	sync	all	your	mounted	filesystems,	committing	unwritten	data	to	them.

t This	dumps	a	list	of	current	tasks	and	their	information	to	your	console.

u This	attempts	to	remount	all	your	filesystems	as	read-only	volumes.

v This	causes	the	ETM	buffer	to	dump	(this	is	ARM-specific).

w This	dumps	all	the	tasks	that	are	in	an	uninterruptable	(blocked)	state.

x This	is	used	by	xmon	on	ppc/powerpc	platforms.	This	shows	the	global	PMU	registers	on	SPARC64.

y This	shows	global	CPU	registers	(this	is	SPARC64-specific).

z
This	dumps	the	ftrace	buffer.



0	-	9
This	sets	the	console’s	log	level,	controlling	which	messages	will	be	printed.	The	higher	the	number,	the
more	the	output.



See	also…
For	more	information	about	SysRq	and	systemd,	refer	to	the	following	page:
https://github.com/systemdaemon/systemd/blob/master/src/linux/Documentation/sysrq.txt

Red	Hat	has	a	complete	crash	dump	guide	at	https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Kernel_Crash_Dump_Guide/index.html.

https://github.com/systemdaemon/systemd/blob/master/src/linux/Documentation/sysrq.txt
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Kernel_Crash_Dump_Guide/index.html




Using	ABRT
ABRT	(Automatic	Bug	Reporting	Tool),	is	a	set	of	tools	that	help	users	detect	and
analyze	application	crashes.



How	to	do	it…
First,	we’ll	install	the	necessary	packages	and	then	take	a	look	at	how	to	use	these	tools.

Installing	and	configuring	abrtd
Let’s	install	abrt	and	get	it	running:

1.	 Install	the	abrt	daemon	and	tools	via	the	following	command	line:

~]#	yum	install	-y	abrt-cli

2.	 Now,	enable	and	start	the	abrt	daemon	through	these	commands:

~]#	systemctl	enable	abrtd

~]#	systemctl	restart	abrtdThere's	more…

Using	abrt-cli
List	all	detected	segmentation	faults	by	executing	the	following	command:

~]#	abtr-cli	list

Here’s	what	the	output	should	look	like:

The	displayed	location	contains	all	the	information	about	the	segmentation	fault.	You	can
use	this	to	analyze	what	went	wrong,	and	if	you	need	help	from	Red	Hat,	you	can	use
abrt-cli	report	to	report	to	Red	Hat	Support.



There’s	more…
When	your	RHEL	7	system	is	registered	with	a	satellite,	all	bugs	will	automatically	be
reported	to	the	satellite	system.

You	can	install	additional	plugins	to	automatically	report	bugs	in	the	following	ways:

to	Bugzilla	(libreport-plugin-bugzilla)
via	ftp	upload	(libreport-plugin-reportuploader)
to	Red	Hat	Support	(libreport-plugin-rhtsupport)
to	an	abrt	server	(libreport-plugin-ureport)

Besides	the	basic	bug	reporting,	you	can	also	create	automatic	bug	reports	for	Java	by
installing	the	abrt-java-connector	package.



See	also
For	more	information	on	how	to	use	the	abrt	tool,	refer	to
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-abrt.html.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-abrt.html




Auditing	the	system
The	Linux	audit	system	allows	you	to	track	security-related	information	about	your
systems.	It	allows	you	to	watch	security	events,	filesystem	access,	network	access,
commands	run	by	users,	and	system	calls.



How	to	do	it…
By	default,	audit	is	installed	as	part	of	the	core	packages.	So,	there’s	no	need	to	install	this.

Configuring	a	centralized	syslog	server	to	accept	audit	logs
Perform	these	steps	to	set	up	the	syslog	server:

1.	 On	the	syslog	server,	create	a	/etc/rsyslog.d/audit_server.conf	file	containing
the	following:

#	Receive	syslog	audit	messages	via	TCP	over	port	65514

$ModLoad	imtcp

$InputTCPServerRun	65514

$AllowedSender	TCP,	127.0.0.1,	192.168.1.0/24

$template	HostAudit,	"/var/log/audit/%$YEAR%%$MONTH%%$DAY%-

%HOSTNAME%/audit.log"

$template	auditFormat,	"%msg%\n"	local6.*		?HostAudit;auditFormat

2.	 On	the	syslog	server,	restart	rsyslog,	as	follows:

~]#	systemctl	restart	rsyslog

3.	 On	the	client,	create	a	/etc/rsyslog.d/audit_client.conf	file	containing	the
following:

$ModLoad	imfile

$InputFileName	/var/log/audit/audit.log

$InputFileTag	tag_audit_log:

$InputFileStateFile	audit_log

$InputFileFacility	local6

$InputFileSeverity	info

$InputRunFileMonitor	local6.*	@@logserver.example.com:65514

4.	 Next,	on	the	client,	restart	rsyslog,	as	follows:

~]#	systemctl	restart	syslog

Some	audit	rules
You	can	use	the	following	command	to	log	activity	on	/etc/resolv.conf:

~]#	auditctl	-w	/etc/resolv.conf	-p	w	-k	resolv_changes

You	can	execute	the	following	commands	to	log	all	the	commands	executed	by	root:

~]#	echo	"session			required	pam_tty_audit.so	disable=*	enable=root"	>>	

/etc/pam.d/system-auth-ac

~]#	echo	"session			required	pam_tty_audit.so	disable=*	enable=root"	>>	

/etc/pam.d/password-auth-ac

Showing	audit	logs	for	the	preceding	rules
You	can	search	for	the	audit	events	that	have	changed	/etc/resolv.conf	using	the
preceding	rule	by	executing	the	following	command:



~]#	ausearch	-k	resolv_changes

Here’s	what	the	output	should	look	like:

To	check	all	the	commands	executed	by	root	today,	you	can	run	the	following:

~]#	aureport	--tty	-ts	today

Here’s	what	the	output	should	look	like:



See	also
For	more	in-depth	information	about	audit,	refer	to
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/chap-system_auditing.html.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/chap-system_auditing.html




Chapter	10.	Monitoring	and	Performance
Tuning
In	this	chapter,	I’ll	explore	the	following	topics:

Tuning	your	system’s	performance
Setting	up	PCP	–	Performance	Co-Pilot
Monitoring	basic	system	performance
Monitoring	CPU	performance
Monitoring	RAM	performance
Monitoring	storage	performance
Monitoring	network	performance



Introduction
Monitoring	your	infrastructure	is	an	important	aspect	of	your	environment	as	it	teaches
you	much	about	its	behavior.	It	will	tell	you	where	your	bottlenecks	are	and	where	room
for	improvement	is.	In	this	chapter,	we	will	monitor	performance	and	not	create	triggers
when	certain	metrics	exceed	specific	values.





Tuning	your	system’s	performance
Companies	buy	the	best	hardware	their	money	can	get,	and	they	want	to	use	everything
optimally.	However,	it’s	not	just	the	hardware	that	makes	your	applications	run	faster.
Your	OS	will	also	behave	differently	under	specific	circumstances.

Tuned	is	a	set	of	tools	and	a	daemon	that	tunes	your	system’s	settings	automatically
depending	on	its	usage.	It	periodically	collects	data	from	its	components	through	plugins,
which	it	uses	to	change	system	settings	according	to	the	current	usage.



How	to	do	it…
In	this	recipe,	we’ll	ask	tuned	which	profile	to	use	and	apply	it	through	the	following
steps:

1.	 First,	run	the	following	command	to	install	the	required	packages:

~]#	yum	install	-y	tuned

2.	 Enable	and	start	tuned	by	executing	the	following	commands:

~]#	systemctl	enable	tuned

~]#	systemctl	restart	tuned

3.	 Have	tuned	guess	the	profile	to	be	used	via	the	following:

~]#	tuned-adm	recommend

virtual-guest

4.	 Finally,	apply	the	recommended	profile	to	tuned,	as	follows:

~]#	tuned-adm	profile	virtual-guest



There’s	more…
You	can	find	the	system’s	tuned	profiles	used	in	/lib/tuned/.	When	you	create	your	own,
create	them	in	/etc/tuned	in	the	same	way	as	they	are	organized	in	/lib/tuned.	I	do	not
recommend	creating	new	profiles	in	/etc/tuned	with	the	same	name	as	in	/lib/tuned,
but	if	you	do,	the	one	in	the	/etc/tuned	directory	will	be	used.	It	is	better	to	create	a	new
one	with	a	different	name,	including	the	one	you	want	to	modify,	and	then	make	the
necessary	changes	in	your	new	profile.

Every	profile	has	a	directory,	which	contains	a	set	of	files	controlling	the	behavior	of	your
system.	If	you	explore	the	tuned.conf	files	in	these	directories,	you	will	see	that	these
files	define	the	exact	settings	that	other	tools	(such	as	cpufreq)	need	to	be	configured	on
and	that	some	profiles	include	other	profiles.	For	instance,	if	you	create	a	profile	for,	say,	a
laptop	that	is	a	little	better	on	the	battery	by	applying	the	powersave	CPU	governor,	you
could	create	a	new	file	located	at	/etc/tuned/laptop/tuned.conf	containing	the
following:

#

#	laptop	tuned	configuration

#

[main]

include=desktop

[cpu]

replace=1

governor=powersave

When	you	know	the	bottlenecks	of	your	systems,	you	can	find	out	how	to	mitigate	them
by	configuring	your	system	in	a	specific	way.	Tuned	can	come	in	handy	to	create	and
apply	profiles	based	on	the	performance	monitoring	of	your	components.



See	also
For	more	information	about	tuning	your	system,	refer	to	the	Red	Hat	Performance	Tuning
guide	at	https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html.

Check	out	the	man	pages	of	tuned	(8),	tuned-adm	(8),	tuned-main.conf	(5),	and	tuned.conf
(5)	for	more	information.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html




Setting	up	PCP	–	Performance	Co-Pilot
Over	the	years,	a	lot	of	tools	have	been	created	to	troubleshoot	performance	issues	on	your
systems,	such	as	top,	sar,	iotop,	iostat,	iftop,	vmstat,	dstat,	and	others.	However,
none	of	these	integrate	with	each	other,	some	are	extensions	to	others,	and	so	on.

PCP	seems	to	have	a	couple	of	things	right:	it	monitors	just	about	every	aspect	of	your
system,	it	allows	the	centralized	storage	of	(important)	performance	data,	and	it	allows
you	to	use	not	only	live	data,	but	also	saved	data	among	others.



How	to	do	it…
In	this	recipe,	we’ll	look	at	both	the	“default”	setup	and	“collector”	configuration,	which
allows	you	to	pull	in	all	the	performance	data	you	want.

The	default	installation
This	is	the	basic	setup	of	PCP:

1.	 Let’s	install	the	necessary	packages;	run	the	following	command:

~]#	yum	install	-y	pcp

2.	 Now,	enable	and	start	the	necessary	daemons,	as	follows:

~]#	systemctl	enable	pmcd

~]#	systemctl	enable	pmlogger

~]#	systemctl	start	pmcd

~]#	systemctl	start	pmlogger

3.	 If	you	want	to	have	the	system	monitored	by	a	central	collector,	execute	the
following:

~]#	firewall-cmd	--add-service	pmcd	--permanent

The	central	collector
Each	host	that	is	to	act	as	a	collector	requires	additional	configuration.	Here’s	how	you
can	do	this:

1.	 Add	a	line	per	system	to	collect	data	from	/etc/pcp/pmlogger/control,	as	follows:

<hostname>	n	n	PCP_LOG_DIR/pmlogger/<hostname>	-r	-T24h10m	-c	config.

<hostname>

Here,	<hostname>	is	the	FDQN	to	this	host.	Take	a	look	at	the	following	example:

guest.example.com	n	n	PCP_LOG_DIR/pmlogger/guest.example.com	-r	-

T24h10m	-c	config.guest.example.com

2.	 After	adding	a	host	in	this	way,	you	need	to	restart	the	pmlogger	daemon.	Execute	the
following	command	line:

~]#	systemctl	restart	pmlogger



There’s	more…
By	default,	PCP	logs	information	every	60	seconds.	If	you	want	to	increase	this	and	want
to	gather	performance	statistics	every	30	seconds,	you	need	to	change	the	line	starting
with	LOCALHOSTNAME	and	add	-t	30s	at	the	end.

Modifying	the	statistics	you	gather	is	a	bit	more	difficult.	You	can	find	the	configuration
for	pmlogger	in	/var/lib/pcp/config/pmlogconf/.	Every	file	in	this	directory	contains
information	about	which	pointers	to	gather.	The	syntax	is	not	very	hard	to	understand,	but
it	is	complex	to	explain.	The	pmlogconf	(1)	man	page	contains	everything	you	need	to
know.

If	you	want	to	visualize	the	data	on	a	host,	you	need	to	install	pcp-gui,	as	follows:

~]#	yum	install	-y	pcp-gui	dejavu-sans-fonts

This	package	comes	with	a	tool	called	pmchart,	which	allows	you	to	create	graphics	with
the	data	collected	by	PCP.	The	fonts	are	needed	to	properly	display	the	characters.



See	also
For	more	information	about	PCP	and	its	components,	refer	to	their	online	manuals,	which
you	can	find	at	http://www.pcp.io/documentation.html.

http://www.pcp.io/documentation.html




Monitoring	basic	system	performance
We	need	to	keep	an	eye	out	on	global	system	values.	The	ones	that	are	particularly	of
interest	are	the	following:

kernel.all.pswitch

kernel.all.nprocs

kernel.all.load



How	to	do	it…
I’ll	show	you	a	way	to	display	both	text-based	and	graphical	output.	Here	are	the	steps:

1.	 Display	live	data	for	the	metrics	with	a	1-second	interval	for	the	guest.example.com
host	by	executing	the	following	command:

~]#	pmdumptext	-H	-t	1	-i	-l	kernel.all.pswitch	kernel.all.nprocs	

kernel.all.load	-h	guest.example.com

2.	 Create	a	configuration	file	for	pmchart	to	display	live	data	called	system.conf	with
the	following	contents:

#kmchart

version	1

chart	style	plot	antialiasing	off

								

plot	color	#ffff00	metric	kernel.all.pswitch

chart	style	plot	antialiasing	off

								plot	color	#ffff00	metric	kernel.all.nprocs

chart	style	plot	antialiasing	off

								plot	color	#ffff00	metric	kernel.all.load	instance	"1	minute"

								plot	color	#ff924a	metric	kernel.all.load	instance	"5	minute"

								plot	color	#ff0000	metric	kernel.all.load	instance	"15	minute"

3.	 Next,	use	pmchart	to	plot	a	live	chart	for	guest.example.com	via	the	following
command:

~]#	pmchart	-h	guest.example.com	-c	system.conf





There’s	more…
The	preceding	examples	are	based	on	“live”	data;	however,	you’re	not	limited	to	live	data.
You	could	increase	the	interval	of	pmlogger	in	order	to	get	more	data	about	a	troublesome
system	and	then	take	a	look	at	the	generated	data	afterwards.	With	other	tools,	you’d	have
to	use	additional	tools	through	cronjob	and	so	on,	while	PCP	allows	you	to	do	both.

Here’s	how	you	can	do	this:

1.	 Show	the	the	data	of	guest.example.com	for	November	1,	2015	between	15:30	and
16:30	with	a	5-minute	interval	via	the	following	command:

~]#	pmdumptext	-H	-t	5m	-i	-l	-S	@15:30	-T	@16:30	kernel.all.pswitch	

kernel.all.nprocs	kernel.all.load	-a	

/var/log/pcp/pmlogger/guest.example.com/20151101

2.	 You	can	do	the	same	with	pmchart,	as	follows:

~]#	pmchart	-a	/var/log/pcp/pmlogger/guest.example.com/20151101	-c	

system.conf	-S	@15:30	-T	@16:30	-W	-o	output.png







Monitoring	CPU	performance
This	recipe	will	show	you	how	to	visualize	using	pmchart	and	command-line	tools	to
monitor	your	CPU’s	performance.	We	will	have	a	look	at	the	following	metrics:

kernel.all.cpu.wait.total

kernel.all.cpu.irq.hard

kernel.all.cpu.irq.soft

kernel.all.cpu.steal

kernel.all.cpu.sys

kernel.all.cpu.user

kernel.all.cpu.nice

kernel.all.cpu.idle



How	to	do	it…
This	will	show	you	how	to	create	the	text	and	graphical	representation	of	performance
data.	Perform	the	following	steps:

1.	 Display	live	data	for	the	preceding	metrics	with	a	1-second	interval	for	the	host,
localhost.	Execute	the	following	command:

~]#	pmdumptext	-H	-t	1	-i	-l	kernel.all.cpu.wait.total	

kernel.all.cpu.irq.hard	kernel.all.cpu.irq.soft	kernel.all.cpu.steal	

kernel.all.cpu.sys	kernel.all.cpu.user	kernel.all.cpu.nice	

kernel.all.cpu.idle	-h	localhost

2.	 Create	a	configuration	file	for	pmchart	to	display	live	data	called	cpu_stack.conf
with	the	following	contents:

#kmchart

version	1

chart	style	stacking	antialiasing	off

								plot	color	#aaaa7f	metric	kernel.all.cpu.wait.total

								

plot	color	#008000	metric	kernel.all.cpu.irq.hard

								plot	color	#ee82ee	metric	kernel.all.cpu.irq.soft

								plot	color	#666666	metric	kernel.all.cpu.steal

								plot	color	#aa00ff	metric	kernel.all.cpu.user

								plot	color	#aaff00	metric	kernel.all.cpu.sys

								plot	color	#aa5500	metric	kernel.all.cpu.nice

								plot	color	#0000ff	metric	kernel.all.cpu.idle

You	will	notice	that	I	don’t	use	all	the	metrics	in	the	graph	as	some	of	the	metrics	are
combined	with	one	another.

3.	 Use	pmchart	to	plot	a	live	chart	for	guest.example.com,	as	follows:



~]#	pmchart	-h	guest.example.com	-c	cpu_stack.conf





Monitoring	RAM	performance
To	monitor	RAM	performance,	I	am	only	interested	in	a	couple	of	metrics,	not	all	the
memory-related	ones.	Take	a	look	at	this	list:

mem.util.used

mem.util.free

mem.util.bufmem

mem.util.cached

swap.free

swap.used

swap.pagesin

swap.pagesout



How	to	do	it…
This	recipe	will	explain	you	how	to	create	text-based	and	graphical	outputs:

1.	 First,	display	live	data	for	the	preceding	metrics	through	this	command:

~]#	pmdumptext	-H	-t	1	-i	-l	mem.util.used	mem.util.free	

mem.util.bufmem	mem.util.cached	swap.free	swap.used	swap.pagesin	

swap.pagesout	-h	guest.example.com

2.	 Create	a	configuration	file	for	pmchart	to	display	live	data	called	memory.conf	with
the	following	contents:

#kmchart

version	1

chart	style	stacking

								plot	color	#ffff00	metric	mem.util.used

								plot	color	#ee82ee	metric	mem.util.free

chart	style	stacking

								plot	color	#ffff00	metric	swap.used

								plot	color	#0000ff	metric	swap.free

chart	style	plot	antialiasing	off

								plot	color	#19ff00	metric	swap.pagesin

								plot	color	#ff0004	metric	swap.pagesout

3.	 Now,	use	pmchart	to	plot	a	live	chart	for	guest.example.com	by	executing	the
following	command	line:

~]#	pmchart	-h	guest.example.com	-c	memory.conf



I	haven’t	included	the	buffer	and	cached	memory	in	this	graph	as	it’s	part	of	the	memory-
used	metric.





Monitoring	storage	performance
In	this	recipe,	we’ll	look	at	the	following	metrics:

disk.all.read

disk.all.write

disk.all.read_bytes

disk.all.write_bytes



How	to	do	it…
Let’s	create	a	text	and	graphical	representation	of	the	performance	data	through	the
following	steps:

1.	 Display	live	data	for	the	preceding	metrics;	you	can	use	the	following	command	for
this:

~]#	pmdumptext	-H	-t	1	-i	-l	disk.all.read	disk.all.write	

disk.all.read_bytes	disk.all.write_bytes	-h	guest.example.com

2.	 Next,	create	a	configuration	file	for	pmchart	to	display	live	data	called	disk.conf
with	the	following	contents:

#kmchart

version	1

chart	style	stacking

								plot	color	#ffff00	metric	mem.util.used

								plot	color	#ee82ee	metric	mem.util.free

chart	style	stacking

								

plot	color	#ffff00	metric	swap.used

								plot	color	#0000ff	metric	swap.free

chart	style	plot	antialiasing	off

								plot	color	#19ff00	metric	swap.pagesin

								plot	color	#ff0004	metric	swap.pagesout



3.	 Now,	use	pmchart	to	plot	a	live	chart	for	guest.example.com,	as	follows:

~]#	pmchart	-h	guest.example.com	-c	memory.conf





Monitoring	network	performance
In	this	recipe,	we’ll	look	at	the	following	network	metrics:

network.interface.collisions

network.interface.in.bytes

network.interface.in.packets

network.interface.in.errors

network.interface.in.drops

network.interface.out.bytes

network.interface.out.packets

network.interface.out.errors

network.interface.out.drops



How	to	do	it…
Now,	one	last	time,	we’ll	look	at	how	we	can	create	a	text	and	graphical	representation	of
data.	Perform	the	following	steps:

1.	 Display	live	data	for	the	preceding	metrics;	run	the	following	command:

~]#	pmdumptext	-H	-t	1	-i	-l	network.interface.collisions	

network.interface.in.bytes	network.interface.in.packets	

network.interface.in.errors	network.interface.in.drops	

network.interface.out.bytes	network.interface.out.packets	

network.interface.out.errors	network.interface.out.drops	-h	

guest.example.com

2.	 Create	a	configuration	file	for	pmchart	to	display	live	data	called	network.conf	with
the	following	contents:

#kmchart

version	1

chart	style	plot	antialiasing	off

								plot	color	#ff0000	metric	network.interface.collisions	instance	

"eth0"

chart	style	plot	antialiasing	off

								plot	color	#00ff00	metric	network.interface.in.bytes	instance	

"eth0"

								plot	color	#ff0000	metric	network.interface.out.bytes	instance	

"eth0"

chart	style	plot	antialiasing	off

								

plot	color	#00ff00	metric	network.interface.in.packets	instance	"eth0"

								plot	color	#ff0000	metric	network.interface.out.packets	

instance	"eth0"

chart	style	plot	antialiasing	off

								plot	color	#00ff00	metric	network.interface.in.errors	instance	

"eth0"

								plot	color	#ff0000	metric	network.interface.out.errors	instance	

"eth0"

chart	style	plot	antialiasing	off

								plot	color	#00ff00	metric	network.interface.in.drops	instance	

"eth0"



								plot	color	#ff0000	metric	network.interface.out.drops	instance	

"eth0"

3.	 Next,	use	pmchart	to	plot	a	live	chart	for	guest.example.com	via	this	command	line:

~]#	pmchart	-h	guest.example.com	-c	network.conf



Index
A

ABRT
using	/	Using	ABRT

abrt
reference	link	/	See	also

abrt-cli
using	/	Using	abrt-cli

abrtd
installing	/	Installing	and	configuring	abrtd
configuring	/	Installing	and	configuring	abrtd

additional	repositories
configuring	/	Configuring	additional	repositories,	There’s	more…
references	/	See	also

Ansible
about	/	Introduction
installing	/	Install	Ansible
latest	tarball,	installing	/	Installing	the	latest	tarball
URL	/	Installing	the	latest	tarball
installing,	from	GIT	/	Installing	cutting	edge	from	Git
installing,	from	Enterprise	Linux	(EPEL)	repository	/	Installing	Ansible	from	the
EPEL	repository
file	structure	/	There’s	more…
troubleshooting	/	Troubleshooting	Ansible,	How	to	do	it…,	How	it	works…,
There’s	more…

Ansible	inventory
configuring	/	Configuring	the	Ansible	inventory,	How	it	works…,	There’s
more…
static	inventory	file	/	The	static	inventory	file
dynamic	inventory	file	/	The	dynamic	inventory	file
host_vars	file	/	host_vars	files
group_vars	file	/	group_vars	files
reference	link	/	See	also

Ansible	template	module
URL	/	See	also

arbitrary	port
incoming	requests,	allowing	on	/	Allowing	incoming	requests	on	an	arbitrary
port

audit
reference	link	/	See	also

audit.log	file
commands	/	There’s	more…



denied	or	failed	entries,	searching	/	audit.log
audit	logs

displaying,	for	preceding	rules	/	Showing	audit	logs	for	the	preceding	rules
audit	rules

about	/	Some	audit	rules
ausearch	tool

using	/	ausearch
authconfig-tui	tool

about	/	Securing	the	system	login,	How	it	works…
authconfig	tool

about	/	Securing	the	system	login,	How	it	works…
authentication	page,	RedHat

reference	link	/	See	also



B
boot	environment

configuring	/	How	to	do	it…,	How	it	works…,	There’s	more…
bridge

creating	/	Creating	a	bridge
creating,	nmcli	used	/	Creating	a	bridge	using	nmcli
creating,	nmtui	used	/	Creating	a	bridge	using	nmtui
creating,	kickstart	used	/	Creating	a	bridge	with	kickstart

Bugzilla
URL	/	See	also



C
centralized	syslog	server

configuring,	to	accept	audit	logs	/	Configuring	a	centralized	syslog	server	to
accept	audit	logs

chrony
used,	for	managing	time	/	Managing	time	through	chrony
reference	link	/	See	also

Cobbler
URL	/	See	also

configuration	node
creating	/	Create	the	configuration	node

corrupted	RPM	database
recovering	/	Recovering	from	a	corrupted	RPM	database,	How	to	do	it…,
There’s	more…

cpufreq
about	/	There’s	more…

CPU	performance
monitoring	/	Monitoring	CPU	performance,	How	to	do	it…

CPUs
adding,	on	fly	to	guest	/	Adding	CPUs	on	the	fly,	Getting	ready
adding,	on	KVM	host	/	On	the	KVM	host,	perform	the	following	steps:
adding,	on	KVM	guest	/	On	the	KVM	guest,	perform	the	following:

crash	dump	guide,	Red	Hat
reference	link	/	See	also…

custom	boot	ISO
used,	for	system	deployment	/	Deploying	a	system	using	a	custom	boot	ISO	file,
How	to	do	it…,	How	it	works…



D
disks

adding,	on	fly	/	Adding	disks	on	the	fly,	How	it	works…
moving,	to	another	storage	/	Moving	disks	to	another	storage,	How	to	do	it…,
How	it	works…

DNS	resolvers
configuring	/	Configuring	your	DNS	resolvers
setting	up,	nmcli	used	/	Setting	your	DNS	resolvers	using	nmcli
setting	up,	nmtui	used	/	Setting	your	DNS	resolvers	using	nmtui

dump
analyzing,	kdump	tools	used	/	Using	kdump	tools	to	analyze	the	dump,	There’s
more…

dynamic	inventory	file
about	/	The	dynamic	inventory	file



E
Enterprise	Linux	(EPEL)	repository

Ansible,	installing	/	Installing	Ansible	from	the	EPEL	repository
URL	/	Installing	Ansible	from	the	EPEL	repository



F
file	contexts

modifying	/	Changing	file	contexts
modifying,	temporarily	/	Temporary	context	changes
modifying,	permanently	/	Persistent	file	context	changes

firewalld
about	/	Secure	the	network	with	firewalld
network,	securing	with	/	Secure	the	network	with	firewalld
working	/	There’s	more…

FQDN	(Fully	Qualified	Domain	Name)	/	There’s	more…



G
GIT

Ansible,	installing	from	/	Installing	cutting	edge	from	Git
group_vars	file

about	/	group_vars	files
GRUB2

about	/	Configuring	your	boot	environment
URL	/	See	also

guests
building	/	Building	guests,	How	it	works…,	There’s	more…
creating	/	Create	a	guest
deleting	/	Deleting	a	guest



H
help	command	/	Introduction
host_vars	file

about	/	host_vars	files
httpd

used,	for	publishing	kickstart	file	/	Publishing	your	kickstart	file	using	httpd,
How	to	do	it…,	There’s	more…



I
Idempotence

about	/	Introduction
incoming	requests

allowing,	for	NFS	(v4)	/	Allowing	incoming	requests	for	NFS	(v4)
allowing,	on	arbitrary	port	/	Allowing	incoming	requests	on	an	arbitrary	port

intramfs	(initial	RAM	file	system)	/	Installing	and	configuring	kdump	and	SysRq
IPA

installing	/	Installing	and	configuring	IPA,	Getting	ready
configuring	/	Installing	and	configuring	IPA,	Getting	ready

IPA	client
installing	/	Installing	the	IPA	client

IPA	server
installing	/	Installing	the	IPA	server
reference	link	/	See	also

IPv4	configuration
setting,	nmcli	used	/	Setting	your	IPv4	configuration	using	nmcli
setting,	nmtui	used	/	Setting	your	IPv4	configuration	using	nmtui

IPv4	settings
configuring	/	Configuring	IPv4	settings



J
Jinja2	Template	Designer

URL	/	See	also
journalctl

used,	for	monitoring	services	/	Monitoring	services	using	journalctl,	How	to	do
it…,	There’s	more…
reference	link	/	See	also



K
kdump

using	/	Using	kdump	and	SysRq
configuring	/	Installing	and	configuring	kdump	and	SysRq
installing	/	Installing	and	configuring	kdump	and	SysRq

kdump	tools
used,	for	analyzing	dump	/	Using	kdump	tools	to	analyze	the	dump,	There’s
more…

kernel	debugger	(kgdb)	/	There’s	more…
kickstart

VLAN	connection,	creating	with	/	Creating	the	VLAN	connection	with	kickstart
reference	link	/	See	also
used,	for	creating	teamed	interface	/	Creating	the	teamed	interface	with	kickstart
about	/	kickstart
used,	for	creating	bridge	/	Creating	a	bridge	with	kickstart

kickstart,	team	interfaces
reference	link	/	See	also

kickstart	file
about	/	Creating	a	kickstart	file
creating	/	Creating	a	kickstart	file,	Getting	ready,	How	to	do	it…,	How	it
works…
references	/	See	also
publishing,	httpd	used	/	Publishing	your	kickstart	file	using	httpd,	How	to	do
it…,	There’s	more…
template,	creating	/	Creating	a	template	for	a	kickstart	file,	How	it	works…,
There’s	more…
playbook,	creating	for	VM	/	Creating	a	playbook	to	deploy	a	new	VM	with
kickstart,	How	to	do	it…,	How	it	works…
URL	/	Getting	ready

KVM
installing	/	Installing	and	configuring	a	KVM
configuring	/	Installing	and	configuring	a	KVM
manual	installation	/	Manual	installation
kickstart	installation	/	Kickstart	installation
graphical	setup	/	Graphical	setup	during	the	system’s	setup



L
libvirt

about	/	Introduction
URL	/	Introduction,	See	also
storage	backend	pools,	URL	/	See	also
networking,	URL	/	See	also

load	sharing	backup	methods,	for	teams
active-backup	/	There’s	more…
broadcast	/	There’s	more…
LACP	/	There’s	more…
loadbalance	/	There’s	more…
round-robin	/	There’s	more…

logrotate
configuring	/	Configuring	logrotate,	How	to	do	it…,	How	it	works…,	See	also
configuring,	for	yum	/	Configuring	logrotate	for	yum



M
mandatory	access	control	(MAC)

about	/	Introduction
manifest

deploying,	to	single	client	/	Configure	to	deploy	a	module	or	manifest	to	a	single
client
deploying,	to	node	group	/	Configure	to	deploy	a	module	or	manifest	to	a	node
group

module
deploying,	to	single	client	/	Configure	to	deploy	a	module	or	manifest	to	a	single
client
deploying,	to	node	group	/	Configure	to	deploy	a	module	or	manifest	to	a	node
group
deploying,	to	registered	systems	/	Configure	to	deploy	to	all	registered	systems
deploying,	to	system	/	Deploy	to	a	system

modules
deploying,	to	single	nodes	/	Deploying	modules	to	single	nodes	and	node	groups
deploying,	to	node	groups	/	Deploying	modules	to	single	nodes	and	node	groups

multilevel	security	(MLS)
about	/	Introduction



N
network

securing,	with	firewalld	/	Secure	the	network	with	firewalld
network	bridges,	kickstart

reference	link	/	See	also
network	bridges,	nmcli

reference	link	/	See	also
network	bridges,	nmtui

reference	link	/	See	also
networking	team	daemon

reference	link	/	See	also
network	performance

monitoring	/	Monitoring	network	performance,	How	to	do	it…
NFS	(v4)

incoming	requests,	allowing	for	/	Allowing	incoming	requests	for	NFS	(v4)
nmcli

VLAN	connection,	creating	with	/	Creating	the	VLAN	connection	with	nmcli
used,	for	creating	teamed	interface	/	Creating	the	teamed	interface	using	nmcli
about	/	nmcli
used,	for	creating	bridge	/	Creating	a	bridge	using	nmcli
used,	for	setting	IPv4	configuration	/	Setting	your	IPv4	configuration	using
nmcli
used,	for	setting	up	DNS	resolvers	/	Setting	your	DNS	resolvers	using	nmcli
used,	for	configuring	static	network	routes	/	Configuring	static	network	routes
using	nmcli

nmcli,	team	interfaces
reference	link	/	See	also

nmtui
VLAN	connection,	creating	with	/	Creating	the	VLAN	connection	with	nmtui
used,	for	creating	teamed	interface	/	Creating	the	teamed	interface	using	nmtui
about	/	nmtui
used,	for	creating	bridge	/	Creating	a	bridge	using	nmtui
used,	for	setting	IPv4	configuration	/	Setting	your	IPv4	configuration	using
nmtui
used,	for	setting	up	DNS	resolvers	/	Setting	your	DNS	resolvers	using	nmtui
used,	for	configuring	static	network	routes	/	Configuring	network	routes	using
nmtui

nmtui,	team	interfaces
reference	link	/	See	also

node	group
creating	/	Create	a	node	group

node	grouping
defining	/	Defining	nodes	and	node	grouping,	How	to	do	it…



node	groups
modules,	deploying	to	/	Deploying	modules	to	single	nodes	and	node	groups

nodes
defining	/	Defining	nodes	and	node	grouping,	How	to	do	it…

ntpd
used,	for	managing	time	/	Managing	time	through	ntpd
reference	link	/	See	also



P
Performance	Co-Pilot	(PCP)

setting	up	/	Setting	up	PCP	–	Performance	Co-Pilot
installation	/	The	default	installation
central	collector	/	The	central	collector
URL	/	See	also

playbook
creating,	for	deploying	VM	with	kickstart	/	Creating	a	playbook	to	deploy	a	new
VM	with	kickstart,	How	to	do	it…,	How	it	works…
reference	link	/	See	also,	See	also
creating,	for	system	configuration	tasks	/	Creating	a	playbook	to	perform	system
configuration	tasks,	How	to	do	it…,	There’s	more…

port	definitions
configuring,	with	SELinux	/	Configuring	SELinux	port	definitions,	There’s
more…

ports
displaying,	on	system	/	Showing	the	currently	allowed	services	and	ports	on
your	system

postfix
references	/	See	also

Preboot	eXecution	Environment	(PXE)
used,	for	system	deployment	/	Deploying	a	system	using	PXE,	How	to	do	it…,
There’s	more…

privilege	escalation
configuring,	with	sudo	/	Configuring	privilege	escalation	with	sudo,	There’s
more…

Puppet	agent
installing	/	Installing	and	configuring	the	Puppet	agent,	How	to	do	it…,	There’s
more…
configuring	/	Installing	and	configuring	the	Puppet	agent,	How	to	do	it…,
There’s	more…

Puppet	installation,	on	RHEL
reference	link	/	See	also

Puppet	Master
installing	/	Installing	and	configuring	Puppet	Master,	How	to	do	it…,	There’s
more…
configuring	/	Installing	and	configuring	Puppet	Master,	How	to	do	it…,	There’s
more…

Puppet	Modules
reference	link	/	See	also



R
RAM

adding,	on	fly	/	Adding	RAM	on	the	fly,	How	to	do	it…
RAM	performance

monitoring	/	Monitoring	RAM	performance,	How	to	do	it…
Red	Hat

performance	tuning,	URL	/	See	also
Red	Hat	Package	Manager	(RPM)

about	/	Introduction
resources

configuring	/	Configuring	resources,	Creating	storage	pools,	How	it	works…,
There’s	more…
virtual	network,	creating	/	Creating	a	virtual	network
networks,	removing	/	Removing	networks

RHEL	7
support	limits,	URL	/	See	also

RHN	repository
copy,	creating	/	Getting	ready
syncing	/	Syncing	RHN	repositories,	There’s	more…

role-based	access	control	(RBAC)
about	/	Introduction

runlevels
setting	/	The	systemd	service	and	setting	runlevels,	How	to	do	it…,	There’s
more…
versus	systemd	targets	/	There’s	more…

runners
reference	link	/	See	also



S
security

about	/	Introduction
SELinux

about	/	Introduction
users,	displaying	/	There’s	more…
types,	displaying	/	There’s	more…
roles,	displaying	/	There’s	more…
port	definitions,	configuring	/	Configuring	SELinux	port	definitions,	There’s
more…
troubleshooting	/	Troubleshooting	SELinux,	How	to	do	it…,	There’s	more…,
See	also
audit	log,	troubleshooting	/	audit.log
troubleshooting,	with	syslog	command	/	syslog
troubleshooting,	with	ausearch	tool	/	ausearch

SELinux	booleans
about	/	Configuring	SELinux	booleans
configuring	/	Configuring	SELinux	booleans
listing	/	Listing	SELinux	booleans,	There’s	more…
modifying	/	Changing	SELinux	booleans

SELinux	policy
creating	/	Creating	SELinux	policies,	How	to	do	it…,	See	also
applying	/	Applying	SELinux	policies,	How	it	works…
removing	/	There’s	more…

services
monitoring,	journalctl	used	/	Monitoring	services	using	journalctl,	How	to	do
it…,	There’s	more…
displaying,	on	system	/	Showing	the	currently	allowed	services	and	ports	on
your	system

service	status
Loaded	/	There’s	more…
Active	/	There’s	more…
Main	PID	/	There’s	more…
Status	/	There’s	more…
Process	/	There’s	more…
Cgroup	/	There’s	more…

simple	module
defining,	for	configuring	time	/	Defining	a	simple	module	to	configure	time,
How	to	do	it…,	How	it	works…

single	nodes
modules,	deploying	to	/	Deploying	modules	to	single	nodes	and	node	groups

smtp
configuring	/	Configuring	smtp,	How	to	do	it…,	There’s	more…



static	inventory	file
about	/	The	static	inventory	file

static	network	routes
configuring	/	Configuring	static	network	routes
configuring,	nmcli	used	/	Configuring	static	network	routes	using	nmcli
configuring,	nmtui	used	/	Configuring	network	routes	using	nmtui

storage	performance
monitoring	/	Monitoring	storage	performance,	How	to	do	it…

storage	pools
about	/	Configuring	resources
creating	/	Creating	storage	pools
querying	/	Querying	storage	pools
removing	/	Removing	storage	pools
local	storage	pools	/	Local	storage	pools
network	storage	pools	/	Networked	or	shared	storage	pools
shared	storage	pools	/	Networked	or	shared	storage	pools

sudo
privilege	escalation,	configuring	with	/	Configuring	privilege	escalation	with
sudo,	There’s	more…

syslog	command
using	/	syslog

SysRq
using	/	Using	kdump	and	SysRq
installing	/	Installing	and	configuring	kdump	and	SysRq
configuring	/	Installing	and	configuring	kdump	and	SysRq
reference	link	/	See	also…

system
ports,	displaying	on	/	Showing	the	currently	allowed	services	and	ports	on	your
system
services,	displaying	on	/	Showing	the	currently	allowed	services	and	ports	on
your	system
auditing	/	Auditing	the	system

system	configuration	tasks
performing,	with	playbook	/	Creating	a	playbook	to	perform	system
configuration	tasks,	How	to	do	it…,	There’s	more…

systemd
URL	/	Introduction
reference	link	/	See	also…

system	deployment
with	Preboot	eXecution	Environment	(PXE)	/	Deploying	a	system	using	PXE,
How	to	do	it…,	There’s	more…
with	custom	boot	ISO	/	Deploying	a	system	using	a	custom	boot	ISO	file,	How
to	do	it…,	How	it	works…

systemd	journal



configuring,	for	persistence	/	Configuring	the	systemd	journal	for	persistence,
There’s	more…
reference	link	/	See	also

systemd	service
about	/	The	systemd	service	and	setting	runlevels,	How	to	do	it…,	There’s
more…
starting	/	Starting	and	stopping	systemd	services,	How	to	do	it…,	There’s
more…
stopping	/	Starting	and	stopping	systemd	services,	How	to	do	it…,	There’s
more…
reference	link	/	See	also

systemd	targets
versus	runlevels	/	There’s	more…
reference	link	/	See	also

system	login
securing	/	Securing	the	system	login,	How	it	works…

system	performance
tuning	/	Tuning	your	system’s	performance,	How	to	do	it…,	There’s	more…
monitoring	/	Monitoring	basic	system	performance,	How	to	do	it…,	There’s
more…



T
teamed	interface

creating	/	Getting	ready
creating,	nmcli	used	/	Creating	the	teamed	interface	using	nmcli
creating,	nmtui	used	/	Creating	the	teamed	interface	using	nmtui
creating,	kickstart	used	/	Creating	the	teamed	interface	with	kickstart

template
creating	/	Creating	a	template	for	a	kickstart	file,	How	it	works…,	There’s
more…

time
managing	/	Managing	time
managing,	through	chrony	/	Managing	time	through	chrony
managing,	through	ntpd	/	Managing	time	through	ntpd

type	enforcement	(TE)
about	/	Introduction



V
virsh	interface	/	Introduction
virt-install	command	/	How	it	works…
virtio	support

URL	/	How	it	works…
VLAN	connection

creating,	with	nmcli	/	Creating	the	VLAN	connection	with	nmcli
creating,	with	nmtui	/	Creating	the	VLAN	connection	with	nmtui
creating,	with	kickstart	/	Creating	the	VLAN	connection	with	kickstart

VLAN	interface
creating	/	Creating	a	VLAN	interface

VM
playbook,	creating	/	Creating	a	playbook	to	deploy	a	new	VM	with	kickstart,
How	to	do	it…,	How	it	works…

VM	metadata
backing	up	/	Backing	up	your	VM	metadata,	How	it	works…

VMs
moving	/	Moving	VMs,	Getting	ready,	How	it	works…
live	native	migration,	over	default	network	/	Live	native	migration	over	the
default	network
live	native	migration,	over	dedicated	network	/	Live	native	migration	over	a
dedicated	network
guest	migration,	URL	/	See	also



Y
yum

about	/	Introduction
updating,	automatically	/	Setting	up	yum	to	automatically	update,	How	it
works…
logrotate,	configuring	/	Configuring	logrotate	for	yum

yum	history
managing	/	Managing	yum	history
displaying	/	Your	yum	history
yum	transaction,	obtaining	/	Information	about	a	yum	transaction	or	package
yum	transaction,	undoing	/	Undoing/redoing	certain	yum	transactions
yum	transaction,	redoing	/	Undoing/redoing	certain	yum	transactions
rolling	back	/	Roll	back	to	a	certain	point	in	your	transaction	history,	There’s
more…


	Red Hat Enterprise Linux Server Cookbook
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why Subscribe?
	Free Access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Conventions
	Reader feedback
	Customer support
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Working with KVM Guests
	Introduction
	Installing and configuring a KVM
	Getting ready
	How to do it…
	Manual installation
	Kickstart installation
	Graphical setup during the system's setup
	See also
	Configuring resources
	Getting ready
	How to do it…
	Creating storage pools
	Querying storage pools
	Removing storage pools
	Creating a virtual network
	Removing networks
	How it works…
	There's more…
	Local storage pools
	Networked or shared storage pools
	See also
	Building guests
	Getting ready
	How to do it…
	Create a guest
	Deleting a guest
	How it works…
	There's more…
	See also
	Adding CPUs on the fly
	Getting ready
	How to do it…
	On the KVM host, perform the following steps:
	On the KVM guest, perform the following:
	Adding RAM on the fly
	Getting ready
	How to do it…
	Adding disks on the fly
	Getting ready
	How to do it…
	How it works…
	There's more…
	Moving disks to another storage
	Getting ready
	How to do it…
	How it works…
	There's more…
	Moving VMs
	Getting ready
	How to do it…
	Live native migration over the default network
	Live native migration over a dedicated network
	How it works…
	There's more…
	See also
	Backing up your VM metadata
	How to do it…
	How it works…
	See also
	2. Deploying RHEL "En Masse"
	Introduction
	Creating a kickstart file
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Publishing your kickstart file using httpd
	How to do it…
	There's more…
	See also
	Deploying a system using PXE
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Deploying a system using a custom boot ISO file
	How to do it…
	How it works…
	3. Configuring Your Network
	Introduction
	Creating a VLAN interface
	Getting ready
	How to do it…
	Creating the VLAN connection with nmcli
	Creating the VLAN connection with nmtui
	Creating the VLAN connection with kickstart
	There's more…
	See also
	Creating a teamed interface
	Getting ready
	How to do it…
	Creating the teamed interface using nmcli
	Creating the teamed interface using nmtui
	Creating the teamed interface with kickstart
	There's more…
	nmcli
	nmtui
	kickstart
	See also
	Creating a bridge
	Getting ready
	How to do it…
	Creating a bridge using nmcli
	Creating a bridge using nmtui
	Creating a bridge with kickstart
	There's more…
	See also
	Configuring IPv4 settings
	How to do it…
	Setting your IPv4 configuration using nmcli
	Setting your IPv4 configuration using nmtui
	There's more…
	Configuring your DNS resolvers
	How to do it…
	Setting your DNS resolvers using nmcli
	Setting your DNS resolvers using nmtui
	There's more…
	Configuring static network routes
	How to do it…
	Configuring static network routes using nmcli
	Configuring network routes using nmtui
	4. Configuring Your New System
	Introduction
	The systemd service and setting runlevels
	How to do it…
	There's more…
	See also
	Starting and stopping systemd services
	How to do it…
	There's more…
	See also
	Configuring the systemd journal for persistence
	How to do it…
	There's more…
	See also
	Monitoring services using journalctl
	How to do it…
	There's more…
	See also
	Configuring logrotate
	How to do it…
	How it works…
	There's more…
	See also
	Managing time
	How to do it…
	Managing time through chrony
	Managing time through ntpd
	There's more…
	See also
	Configuring your boot environment
	How to do it…
	How it works…
	There's more…
	See also
	Configuring smtp
	How to do it…
	There's more…
	See also
	5. Using SELinux
	Introduction
	Changing file contexts
	Getting ready
	How to do it…
	Temporary context changes
	Persistent file context changes
	There's more…
	See also
	Configuring SELinux booleans
	How to do it…
	Listing SELinux booleans
	Changing SELinux booleans
	There's more…
	Configuring SELinux port definitions
	How to do it…
	There's more…
	Troubleshooting SELinux
	Getting ready
	How to do it…
	audit.log
	syslog
	ausearch
	There's more…
	See also
	Creating SELinux policies
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Applying SELinux policies
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also
	6. Orchestrating with Ansible
	Introduction
	Install Ansible
	Getting ready
	How to do it…
	Installing the latest tarball
	Installing cutting edge from Git
	Installing Ansible from the EPEL repository
	There's more…
	Configuring the Ansible inventory
	How to do it…
	The static inventory file
	The dynamic inventory file
	host_vars files
	group_vars files
	How it works…
	There's more…
	See also
	Creating a template for a kickstart file
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Creating a playbook to deploy a new VM with kickstart
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Creating a playbook to perform system configuration tasks
	Getting ready
	How to do it…
	There's more…
	See also
	Troubleshooting Ansible
	Getting ready
	How to do it…
	How it works…
	There's more…
	7. Puppet Configuration Management
	Introduction
	Installing and configuring Puppet Master
	How to do it…
	There's more…
	See also
	Installing and configuring the Puppet agent
	How to do it…
	There's more…
	Defining a simple module to configure time
	Getting ready
	How to do it…
	How it works...
	There's more...
	See also
	Defining nodes and node grouping
	How to do it…
	Create the configuration node
	Create a node group
	There's more…
	Deploying modules to single nodes and node groups
	How to do it…
	Configure to deploy a module or manifest to a single client
	Configure to deploy a module or manifest to a node group
	Configure to deploy to all registered systems
	Deploy to a system
	There's more…
	8. Yum and Repositories
	Introduction
	Managing yum history
	How to do it…
	Your yum history
	Information about a yum transaction or package
	Undoing/redoing certain yum transactions
	Roll back to a certain point in your transaction history
	There's more…
	See also
	Creating a copy of an RHN repository
	Getting ready
	How to do it…
	Syncing RHN repositories
	There's more…
	See also
	Configuring additional repositories
	Getting ready
	How to do it…
	There's more…
	See also
	Setting up yum to automatically update
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Configuring logrotate for yum
	How to do it…
	How it works…
	See also
	Recovering from a corrupted RPM database
	Getting ready
	How to do it…
	There's more…
	9. Securing RHEL 7
	Introduction
	Installing and configuring IPA
	Getting ready
	How to do it…
	Installing the IPA server
	Installing the IPA client
	There's more…
	See also
	Securing the system login
	How to do it…
	How it works…
	There's more…
	See also
	Configuring privilege escalation with sudo
	Getting ready
	How to do it…
	There's more…
	See also
	Secure the network with firewalld
	How to do it…
	Showing the currently allowed services and ports on your system
	Allowing incoming requests for NFS (v4)
	Allowing incoming requests on an arbitrary port
	There's more…
	See also
	Using kdump and SysRq
	How to do it…
	Installing and configuring kdump and SysRq
	Using kdump tools to analyze the dump
	There's more…
	See also…
	Using ABRT
	How to do it…
	Installing and configuring abrtd
	Using abrt-cli
	There's more…
	See also
	Auditing the system
	How to do it…
	Configuring a centralized syslog server to accept audit logs
	Some audit rules
	Showing audit logs for the preceding rules
	See also
	10. Monitoring and Performance Tuning
	Introduction
	Tuning your system's performance
	How to do it…
	There's more…
	See also
	Setting up PCP – Performance Co-Pilot
	How to do it…
	The default installation
	The central collector
	There's more…
	See also
	Monitoring basic system performance
	How to do it…
	There's more…
	Monitoring CPU performance
	How to do it…
	Monitoring RAM performance
	How to do it…
	Monitoring storage performance
	How to do it…
	Monitoring network performance
	How to do it…
	Index

