
SAP ABAP
Objects

A Practical Guide to the Basics and Beyond
—
Rehan Zaidi

www.allitebooks.com

http://www.allitebooks.org

SAP ABAP Objects
A Practical Guide to the

Basics and Beyond

Rehan Zaidi

www.allitebooks.com

http://www.allitebooks.org

SAP ABAP Objects: A Practical Guide to the Basics and Beyond

ISBN-13 (pbk): 978-1-4842-4963-5 ISBN-13 (electronic): 978-1-4842-4964-2
https://doi.org/10.1007/978-1-4842-4964-2

Copyright © 2019 by Rehan Zaidi

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Development Editor: Laura Berendson
Coordinating Editor: Rita Fernando

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484249635. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Rehan Zaidi
Dubai, United Arab Emirates

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4964-2
http://www.allitebooks.org

Another book dedicated to my mother….

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Chapter 1: Creating Classes and Objects �� 1

Classes and Their Components ��� 2

Local Classes �� 4

Global Classes ��� 6

Object Creation and Instance-Method Calls �� 10

Methods and Method Calls ��� 12

Static Components �� 13

A Full-Fledged Demo ��� 15

The IS INSTANCE OF Predicate Expression ��� 20

Deferred Class Specification ��� 22

Summary��� 23

Chapter 2: Class Components in Detail��� 25

Finding the Type of an Object Reference Variable: Revisited �� 26

Using the New Operator to Create an Object �� 27

Defining Our Own Types in Classes ��� 31

Constants in Classes ��� 32

Dictionary Types for Global Classes �� 34

Static Constructor ��� 36

Method Revisited �� 39

Specifying Internal Tables as Method Parameters �� 39

Inline Declarations While Calling Methods �� 43

About the Author ��� xi

About the Technical Reviewer ��� xiii

www.allitebooks.com

http://www.allitebooks.org

vi

Functional Methods �� 44

Specifying Exporting and Returning Parameters for Functional Methods ���������������������������������� 47

Methods Calling Other Methods �� 51

Method Chaining ��� 51

Event Handling in ABAP Objects �� 53

A Working Example ��� 54

Triggering and Handling the PLAYER_CREATED Event �� 54

Summary��� 60

Chapter 3: More on Object-Oriented ABAP ��� 61

Inheritance: Super and Subclasses ��� 61

Redefining Methods �� 66

Instance Constructors ��� 66

Working Example ��� 68

Casting and Polymorphism ��� 73

Global Subclasses and Redefinition of Methods ��� 81

Interfaces �� 87

Creating Global Interfaces ��� 91

Abstract and Final Classes �� 94

Friendships ��� 97

Summary��� 100

Chapter 4: Class Builder ��� 101

Transaction SE80 �� 101

The Class Builder and Its Features ��� 104

Class Builder Tabs ��� 106

Useful Functions of the Class Builder ��� 107

Where-Used Lists �� 107

Class Browser ��� 113

Testing Classes in SE24 ��� 114

Testing a Static Method ��� 115

Table of ConTenTs

vii

Testing Instance Methods ��� 119

Testing Methods Using Table Parameters ��� 128

Summary��� 135

Chapter 5: Exceptions, Shared, and Persistent Objects �� 137

Exception Handling and Exception Classes �� 137

RAISE and TRY �� ENDTRY Statements ��� 139

Resumable Exceptions �� 140

Using Message Classes for Exception Class Text�� 144

A Working Example �� 146

Singleton Classes �� 150

Persistent Objects ��� 154

Storing and Reading Persistent Objects �� 160

Shared Memory Objects �� 163

The GET_DATA and SET_DATA Methods �� 164

Versioning Switched On��� 168

Writing and Reading Data Into Shared Memory �� 169

Summary��� 172

Chapter 6: More Topics in Object- Oriented ABAP ��� 173

Using the New Operator to Create an Object �� 173

ALV Object Model �� 177

Adding Header Texts to ALV Columns �� 180

Method Chaining ��� 183

Object-Oriented Transactions �� 185

Refactoring Assistant �� 192

Moving Components from a Class to its Direct Subclass �� 194

Moving Components from a Class to an Implemented Interface ��� 195

Moving Components from a Class to an Associated Class �� 198

Table of ConTenTs

viii

Enhancement of Classes ��� 199

Example 1� PreExit and PostExit Methods ��� 200

Example 2� Overwrite Method ��� 206

Statements/Constructs Not Allowed in Object- Oriented ABAP ��� 208

Naming Variables ��� 208

Using Logical Operators �� 209

CASE Statement Usage �� 210

Using ON CHANGE OF �� 210

Restrictions to Using the TYPES Statement ��� 210

Restrictions to Using DATA Declarations and Constants�� 211

Untyped Field-Symbols�� 211

Internal Table-Related Statements �� 212

Database Table-Related Statements ��� 213

Untyped Method Parameters ��� 213

Summary��� 214

Chapter 7: ABAP Unit Test-Driven Development ��� 215

Testing Need and Phases �� 215

Basics of ABAP Unit Test Driven Development �� 217

Unit Test Benefits �� 219

Demo Example �� 220

Executing a Unit Test ��� 224

Methods in CL_ABAP_UNIT_ASSERT for Testing ��� 227

ABAP Unit Results in Code Inspector �� 230

Exceptions in ABAP Unit Tests ��� 233

Enabling and Executing ABAP Unit Browser ��� 234

Summary��� 237

Chapter 8: Creating ABAP Classes Using Eclipse ��� 239

Installing Eclipse and Loading ABAP Perspective ��� 239

Creating an ABAP Project in Eclipse �� 242

Creating a Global Class in Eclipse ��� 244

Table of ConTenTs

ix

Creating a Local Class in Eclipse �� 249

Method Wizard in Eclipse �� 251

Unit Test Templates Using Eclipse ��� 254

Modifying Templates ��� 256

Summary��� 259

Index ��� 261

Table of ConTenTs

xi

About the Author

Rehan Zaidi is a consultant for several international SAP

clients. He started working with SAP in 1999 and writing about

his experiences in 2001. He has written several articles for both

SAP Professional Journal and HR Expert, and he also has a

number of popular SAP- and ABAP-related books to his credit.

He provides SAP consulting to companies and helps

clients (both on-site and remote) with their SAP technical

requirements (ABAP, Workflow, Quick development of Fiori

apps, and S/4 HANA-related requirements). Rehan also

creates documentation and training manuals for a number

of companies based in the United States.

Rehan is interested in providing publicity options to ERP consulting firms.

His clients are located in a number of countries and continents, including the Middle

East (GCC region) as well as North America and Europe. He is currently working on a

new ERP programmer magazine. He can be reached at erpdomain@gmail.com.

http://erpdomain@gmail.com/

xiii

About the Technical Reviewer

Farhan Ullah started his career in SAP as an ABAP

developer in 2002. He is a certified ABAP developer

and a successful SAP ABAP trainer. He has also moved

toward providing functional consultancy and fulfilling the

business analysis role. However, he remains vested in ABAP

development and keeps abreast on the latest ABAP tools

and technologies. With more than 15 years of experience

in various roles, Farhan has broad expertise in solution

design, project management, support of long-term customer

relationships, and strategic business development.

1
© Rehan Zaidi 2019
R. Zaidi, SAP ABAP Objects, https://doi.org/10.1007/978-1-4842-4964-2_1

CHAPTER 1

Creating Classes
and Objects
Within ABAP object-oriented programming, classes are defined which encapsulate data

as well as functions. Objects (also known as instances) can then be created based on the

class in question. Classes can be created locally (within a program) or globally (available

to all programs in a system). ABAP also supports polymorphism via simple inheritance

interfaces.

In this chapter, we start by defining the key terms used in the ABAP Objects arena.

Then, we look at the various components of a typical class in ABAP Objects and walk

through the steps required to create a local class in an ABAP program. In the next

section, we look at the global Class Builder transaction SE24 and review the steps

required to create a global class that can be accessed by all ABAP programs. We also

discuss the constructor concept, the creation of objects, and the syntax for calling the

methods of the created class. We also demonstrate the importance of defining static

components in the class concept. We wrap this chapter up by creating a full-fledged

coding demo of the PLAYER class by printing a list of football players (via the usage of a

static attribute and method).

The following topics will be covered in this chapter:

• Classes and their various components

• Object creation and instance-method calls

• Static components

• The predicate expression IS INSTANCE OF

• Deferred class definition

2

Technical requirements include:

• Access to a SAP NetWeaver 7.5X system with ABAP authorization

• Basic knowledge of ABAP programming

 Classes and Their Components
A class is simply defined as a general representation of a real-world thing. Typical

examples include a factory, a purchase order, and a player. There may be none, one,

or a number of instances for this class at any given time. These instances are known

as objects. The creation or generation of these objects is called instantiation. For

example, a purchase order class may have two objects—purchase orders 620000022 and

6200000023.

Within ABAP, classes can be local or global. A local class is defined in a program,

whereas the global class is defined via the Class Builder transaction SE24. (A global

class can be addressed by all the programs within a given SAP system.) An ABAP class

(whether local or global) may have the following components:

• Attributes: Attributes are the data of a given class or object. They

may store important information like the unique key or they may

uniquely identify the object. They may also store characteristics of

the object or may even help you determine the current state or status

of the object. For example, the PURCHASE ORDER class may have the

Purchase Order Number attribute. Likewise, the PLAYER class may

have the Player Weight and Height attributes. The attributes may be

based on any data type. It is also possible to define an attribute based

on the reference to any other global or local class. (This means that

a given class will have an attribute that is another class’ object.) An

attribute may also be read-only, i.e., defined as constants.

• Methods: These are actions or operations that can be done on

objects of a given class. For example, the PURCHASE ORDER class

may have a number of methods, such as PurchaseOrder_Change or

PurchaseOrder_Delete.

Chapter 1 Creating Classes and ObjeCts

3

• Events: These are signals generated as a result of changes in an

object’s state. Typical examples include SalesOrder_Changed and

Player_Transferred. The events that are triggered for a given object

can be linked to special handler methods. (The coding within such

methods is executed when the relevant event occurs.)

In addition to class components, visibility sections are also important. Within a class

definition, there may be three visibility sections (at the global Class Builder level, these

are known as visibility levels). These are Public, Private, and Protected. You may have

any number of events, attributes, and methods within these visibility sections.

Let’s consider these components in a little more detail:

• Public components: These are defined within the public section of

a class and can be accessed from anywhere—from the class itself,

outside the class, or from a subclass of the class in question.

• Private components: These are only accessible from within the

class in question. For example, the EMPLOYEE_NO attribute may be

accessed via a method of the class called WRITE_EMPLOYEE_NO. Private

section components can be accessed by the class only, and not by its

subclasses or by users outside the class. (An exception to this is the

Friend Class concept, which we will discuss in Chapter 6.)

• Protected components: These are defined within the protected

section of a class. These components are only accessible within the

class itself or from any of its subclasses (either immediate or their

subclasses).

The components of a class can be static (instance-independent) or instance

(instance- dependent). Static components, such as static attributes, are for the entire

class (for all objects of the class) and not specific to any one object instance. These are

defined via the addition of the CLASS prefix . For example, CLASS-DATA is used to define

static attributes, whereas CLASS-METHODS specifies static methods of a given class. For

example, we may have a static attribute called TOTAL_EMPLOYEES that’s used to store the

total number of employee objects. Likewise, to find the total list of employees, a static

method (GET_TOTAL_EMPLOYEES) may be contained within a class.

A class (known in this context as a subclass) can be inherited from another class

(called a superclass). The inherited class may then have additional methods of its own as

well as contain redefinitions of methods derived from its superclass. It is also possible to

Chapter 1 Creating Classes and ObjeCts

4

define a class as final, meaning no subclasses may be created for it. A final class may not

be inherited. Also, a particular class may be defined as abstract, meaning that no objects

may be created for the class. However, abstract classes may be inherited and subclasses

may be defined. For example, consider the PLAYER class. We may define this class as an

abstract class, since we cannot have just a player. It should either be a cricket player or a

football player, which are derived classes of PLAYER. So, PLAYER is an abstract class that

cannot be instantiated but only derived in the form of a subclass.

 Local Classes
As mentioned previously, classes may be defined as global or local. Local classes are

defined within a given program and are local (only accessible) to the program in which

they are created. These may be defined in programs using the transactions SE38 and

SE80. In this section, we look at how to define a simple local class in a program.

We first create a definition of the class. We define the class by the name of PLAYER.

This class has two sections—public and private. The private section has three

attributes with type STRING, including NAME, COUNTRY, and CLUB, as follows:

 public section.

 methods write_player_details.

 methods constructor importing

 name type string

 country type string

 club type string.

 private section.

 data name type string.

 data country type string.

 data club type string.

 endclass.

Within the public section, there are two methods, constructor and WRITE_PLAYER_

DETAILS. The constructor method has three importing parameters for name, country,

and club, as shown. The actual code of the constructor and WRITE_PLAYER_DETAILS

methods is written in the implementation of the class, as follows:

Chapter 1 Creating Classes and ObjeCts

5

class player implementation.

 method write_player_details.

 skip.

 write :/ 'Name :', me->name.

 write :/ 'Country :', me->country.

 write :/ 'Club :', me->club.

 endmethod.

 method constructor.

 me->name = name.

 me->country = country.

 me->club = club.

 endmethod.

endclass.

In the constructor, we assign the imported values of name, country, and club to

the corresponding attributes of the object in question (the one being created at the time

of the constructor call). The special variable called me is used for this purpose. The

constructor is called automatically when new objects are created for the class (we will

see this in detail in the next section).

Tip a special variable called me is provided for accessing the components within
a class from within the class. this is the self-reference variable. these refer to
the instance of the class under consideration at the time of program execution or
object method. this refers to the attribute of the current object in question.

The implementation of the WRITE_PLAYER_DETAILS method writes the values

contained in the three attributes—name, country, and club.

It is worth noting that the sequence of the three sections is important. The sections

should be ordered as public, followed by protected (if any), and then finally private. If

this sequence is not followed, an error occurs, as shown in Figure 1-1.

Figure 1-1. Misplaced section error

Chapter 1 Creating Classes and ObjeCts

6

We will now create the same class using transaction SE24, i.e. as a global class.

Defining a class within the Class Builder allows it to be accessed from all programs (and

even workflows). Moreover, the Class Builder provides a number of tools and features

that the developer may use. Alternatively to transaction SE24, you can also define global

classes using transaction SE80. These will be discussed in detail in Chapter 3.

 Global Classes
In this section, we define a global class using the transaction SE24 from the Class Builder.

This class will have the same components as the local class defined in the previous

section. Follow these steps:

 1. Call transaction SE24. The screen shown in Figure 1-2 appears.

 2. Enter the name of the class in the field provided. We will create a

class called ZST6_PLAYER_CLASS. Then click the Create button. The

popup shown in Figure 1-3 appears.

Figure 1-2. Class Builder transaction

Chapter 1 Creating Classes and ObjeCts

7

 3. Make sure the Class radio button is selected.

 4. Click the Continue button. The dialog shown in Figure 1-4

appears.

 5. Enter a suitable description (in our case PLAYER Class) in the field

provided.

 6. Do not change any of the other values shown in the dialog box.

Click the Save button. This takes us to the screen shown in

Figure 1-5.

Figure 1-3. Object type

Figure 1-4. Create the class

Chapter 1 Creating Classes and ObjeCts

8

 7. Note that there are a number of tabs on the screen, including

Interface, Friends, Attributes, and Methods. Click on the

Attributes tab and enter the three attributes—NAME, COUNTRY, and

CLUB—as instance-level attributes.

 8. Choose the type as STRING and visibility as Private.

 9. Enter CONSTRUCTOR and WRITE_PLAYER_DETAILS in the method

list. Both methods are instance-level methods and have public

visibility, as shown in Figure 1-6.

 10. Select the Constructor method and then click on the Parameter

button. This will take you to the parameter specification screen of

the Constructor method, as shown in Figure 1-7.

Figure 1-5. Class components

Figure 1-6. Methods

Chapter 1 Creating Classes and ObjeCts

9

 11. Here we will specify the three parameters of the constructor—

NAME, COUNTRY, and CLUB—as shown. Double-click the name of

Constructor method to open the method code editor, as shown in

Figure 1-8.

 12. We can now write the constructor code. The three values

imported into the method are assigned to the corresponding

components of the class attributes using the self- reference

variable me. Similarly, we will enter the WRITE_PLAYER_DETAILS

method code, as shown in Figure 1-9.

Figure 1-7. Constructor method

Figure 1-8. Method code editor

Figure 1-9. write_player_details method

Chapter 1 Creating Classes and ObjeCts

10

When you are done with the settings, save your class and activate it using the

CTRL+F3 key. Make sure all the components in the class are in an activated state.

 Object Creation and Instance-Method Calls
So far in the chapter we have seen how to define classes locally in a program and within

the global Class Builder. In this section, we learn what is involved in creating objects

based on the local and global classes created in the previous sections. One or more

objects can be created for a particular class within a program. Let’s see how this is done.

The first step is to define the reference variable for the defined class. This can be

either the local class or the global class.

We then call the CREATE OBJECT statement in order to generate an object (instance)

for the given class. For the object, the constructor is automatically called.

The method can then be called using the object component selector ->.

The constructor is not called when an object assignment is made, i.e., when one

particular object reference is assigned to another, as shown:

: OBJ2 = OBJ1.

To call methods of global classes, the code is similar. However, we need to call the

respective global class. For global classes, we have an additional shortcut available.

For example, to add the CREATE OBJECT statement, follow these steps:

 1. Click the Pattern button. The dialog box appears as shown in

Figure 1-10.

 2. Then select the ABAP Objects Patterns option and click the

Continue button. This will display the object-oriented statement

pattern popup, as shown in Figure 1-11.

Figure 1-10. Ins. statement

Chapter 1 Creating Classes and ObjeCts

11

 3. Choose Create Object. We also need to enter the instance name

and the global class to be used. Then click the Continue button.

This will add the code shown in Figure 1-12 to your ABAP program.

Similarly, to add a CALL method statement to the OO statement pattern dialog, follow

these steps:

 1. Enter the instance name in the field provided (in our case, PLAYER4).

 2. Enter the name of the global class (ZT6_PLAYER_CLASS) in the field

provided. When the f4 help for the method is taken, all methods of

the specified class (other than the Constructor) are displayed in

the Hit list.

Figure 1-11. Statement pattern

Figure 1-12. Create Object statement added

Chapter 1 Creating Classes and ObjeCts

12

 3. Fill in the Instance name, Class name, and the Method name, as

shown in Figure 1-13.

 4. Click the Continue button. This will insert the CALL METHOD code

into the program, as shown in Figure 1-14. In this case, no method

parameters exist.

 Methods and Method Calls
We have already seen methods in action. In this section, we look at methods in

greater depth.

A method can have importing parameters and exporting parameters. A method

can create an object of another class, or the same class to which the method belongs.

Constructors are special methods that are called at the time of object creation or

instantiation. They may or may not have an importing parameter.

There are various ways of calling a method.

Suppose we have a method called WRITE_PLAYER_DETAILS that has no importing

or exporting parameters. In that case, the following two forms of method calls are

permissible:

• CALL METHOD player1->write_player_details.

• player2->write_player_details().

Figure 1-13. OO statement pattern

Figure 1-14. Call method

Chapter 1 Creating Classes and ObjeCts

13

There are certain methods that have one RETURNING parameter and any number

of IMPORTING parameters. These are known as functional methods and the RETURNING

parameter corresponds to the RESULT value returned by the method.

There are various ways of calling a functional method:

• When there are no parameters for the functional method, the call

may be like this one:

result = func_meth()

• If one value is passed as a parameter (this may correspond to a non-

optional IMPORTING parameter), the call may look like this:

result = func_meth(VAL1)

• When two values are supplied for importing parameters, the call may

look like this:

result = func_meth(par1 = VAL1 par2 = VAL2).

CALL METHOD func_meth

exporting par1 = VAL1

 par2 = VAL2

 receiving result = result.

Here we saw some of the examples of methods and method calls. In the newer

releases, a number of other forms of functional methods are possible. We will see these

in more detail in the next chapter.

In the next section, we cover another important topic related to ABAP Objects—static

components.

 Static Components
So far, we have been working with instance-level components (methods and attributes).

Now we will look at static components. Unlike instance components, static components

belong to the entire class and not to any given object of the class. All of the objects in

a class can access its static attributes. If you change a static attribute in an object, the

change is visible to all other objects in the class.

Chapter 1 Creating Classes and ObjeCts

14

There are three kinds of static components:

• Static attributes

• Static methods

• Static events

If a class is composed of only static components and no instance components, the

class is called a static class.

In this section, we will see how to define static components in our local class.

Note We also have static constructor in a class. this is called only once for a
class (and internal session), prior to the first access made to the class.

The class (static) constructor is defined in the class definition, as shown here:

CLASS myclass DEFINITION.

 PUBLIC SECTION.

 CLASS-METHODS class_constructor.

 """ static constructor

 PRIVATE SECTION.

 ENDCLASS.

To add static components to the local class definition, we use the CLASS prefix, such

as CLASS-METHODS or CLASS-DATA.

For example, within the class definition, we may define a static internal table called

PLAYERS_LIST based on the TY_PLAYER type, as shown:

class-data: players_list type STANDARD

 TABLE OF ty_player.

Similarly, we may have a static method called DISPLAY_LIST_OF_PLAYERS (also in the

class definition) as shown:

class-methods display_list_of_players

Chapter 1 Creating Classes and ObjeCts

15

The method code in the implementation section of the class method is written

similarly to the instance method.

Accessing static components is a little different from that of instance components.

Unlike the instance component access, we use the class component selector => to refer

to static components. For example, suppose we need to call the static method DISPLAY_

LIST_OF_PLAYERS of the PLAYER class from outside the class. We may do so as follows:

player=>display_list_of_players()

The class name is used in this case and not the name of any object of the class.

Similarly, if a static attribute called MYATTR of a class called MYCLASS has been defined as

public, this attribute may be accessed outside the class as shown:

write : MYCLASS=>MYATTR

So far, we have seen how to define and access static components within a local class.

Depending on the scenario, static components such as attributes and methods may be

used in your classes. We will see more uses of static components in the next chapter.

 A Full-Fledged Demo
In this section, we create a local class that will contain static components. We make a

copy of the local class created earlier. We then add the static components in order to

create and print a list of football players.

In the copy of the class, we will make these changes. We will first create a DEFERRED

definition of the PLAYER class. Next, we will create a type TY_PLAYER based on the

reference type TY_PLAYER, which in turn is based on the PLAYER class.

CLASS PLAYER DEFINITION DEFERRED.

 TYPES: TY_PLAYER TYPE REF TO PLAYER

The DEFERRED variant of the class is used to make the existence of the class known,

irrespective of where the class is defined in the program. For example, in the following

example, the PLAYER class has a deferred definition, which means the reference type

definition for TY_PLAYER does not give an error. The actual definition of the PLAYER class

comes later.

Chapter 1 Creating Classes and ObjeCts

16

class player DEFINITION DEFERRED.

 types: ty_player type ref to player.

 class player DEFINITION.

 endclass.

Within the PLAYER class, we add a static attribute called PLAYERS_LIST. This is a

standard internal table of players. We used the TY_PLAYER type created in the previous step.

PRIVATE SECTION.

 DATA NAME TYPE STRING.

 DATA COUNTRY TYPE STRING.

 DATA CLUB TYPE STRING.

 CLASS-DATA: PLAYERS_LIST TYPE STANDARD

 TABLE OF TY_PLAYER.

We add a static method called DISPLAY_LIST_OF_PLAYERS to the class definition. This

will later be used to print the list of players stored in the PLAYERS_LIST internal table.

CLASS PLAYER DEFINITION.

 PUBLIC SECTION.

 METHODS WRITE_PLAYER_DETAILS.

 METHODS CONSTRUCTOR IMPORTING

 NAME TYPE STRING

 COUNTRY TYPE STRING

 CLUB TYPE STRING.

 CLASS-METHODS DISPLAY_LIST_OF_PLAYERS.

Next, we make a small change to the class constructor. We append the object

currently being created to the internal table PLAYERS_LIST (using the self-reference

variable me). Our constructor will look like the one shown here:

METHOD CONSTRUCTOR.

 ME->NAME = NAME.

 ME->COUNTRY = COUNTRY.

 ME->CLUB = CLUB.

 APPEND ME TO PLAYERS_LIST.

 ENDMETHOD.

Chapter 1 Creating Classes and ObjeCts

17

Finally, we write the method to display the list of players. Within this method, we first

define a TEMP_PLAYER reference variable to hold the reference to the PLAYER class.

We then loop at the PLAYERS_LIST internal table. Within the loop, we call the WRITE_

PLAYER_DETAILS method for each object reference contained in the internal table.

METHOD DISPLAY_LIST_OF_PLAYERS

 DATA : TEMP_PLAYER TYPE REF TO PLAYER.

 WRITE :/ '------------PLAYERS LIST------------'.

 LOOP AT PLAYERS_LIST INTO TEMP_PLAYER.

 TEMP_PLAYER->WRITE_PLAYER_DETAILS() .

 ENDLOOP.

 WRITE :/ '------------------------------------'.

 ENDMETHOD.

Next, we write the code to create the two objects based on the PLAYER class and then

call the static method DISPLAY_LIST_PLAYERS. This is shown here:

 data: player1 type ref to player.

 data: player2 type ref to player.

 CREATE OBJECT player1

 EXPORTING

 name = 'John Mann'

 country = 'Germany'

 club = 'Bayern Munich'.

 CREATE OBJECT player2

 EXPORTING

 name = 'Paul Goldberg'

 country = 'Britain'

 club = 'Liverpool'.

 player=>display_list_of_players() .

We created two objects (PLAYER1 and PLAYER2) based on the PLAYER class. (The

constructor is automatically called twice, once for each object, and each time the

respective player details are appended to the internal table called PLAYERS_LIST.)

Finally, we print the list of players by calling the static method DISPLAY_LIST_OF_

PLAYERS. This will generate the output shown in Figure 1-15.

Chapter 1 Creating Classes and ObjeCts

18

The full code listing of this example is shown next:

class player DEFINITION DEFERRED.

 types: ty_player type ref to player.

 class player DEFINITION.

 public section.

 methods write_player_details.

 methods constructor importing name type string

 country type string

 club type string.

 class-methods display_list_of_players.

 private section.

 data name type string.

 data country type string.

 data club type string.

 class-DATA: players_list type STANDARD TABLE OF ty_player.

 ENDCLASS.

 class player IMPLEMENTATION .

 method write_player_details.

 skip.

Figure 1-15. Players list displayed

Chapter 1 Creating Classes and ObjeCts

19

 write :/ 'Name :', me->name.

 write :/ 'Country :', me->country.

 write :/ 'Club :', me->club.

 endmethod.

 method constructor.

 me->name = name.

 me->country = country.

 me->club = club.

 append me to players_list.

 ENDMETHOD.

 method display_list_of_players.

 data : temp_player type ref to player.

 write :/ '------------PLAYERS LIST------------'.

 loop at players_list into temp_player.

 temp_player->write_player_details() .

 endloop.

 write :/ '------------------------------------'.

 endmethod.

 ENDCLASS.

 start-OF-SELECTION.

 data : player1 type ref to player.

 data : player2 type ref to player.

 CREATE OBJECT player1

 EXPORTING

 name = 'John Mann'

 country = 'Germany'

 club = 'Bayern Munich'.

 CREATE OBJECT player2

 EXPORTING

 name = 'Paul Goldberg'

 country = 'Britain'

 club = 'Liverpool'.

 player=>display_list_of_players() .

 end-OF-selection.

Chapter 1 Creating Classes and ObjeCts

20

 The IS INSTANCE OF Predicate Expression
In newer releases, SAP supports a new predicate expression called IS INSTANCE OF.

It allows you to check whether a particular reference variable is based on a given class

or not. This may be used in an if statement to program a check and then execute

appropriate code. The predicate expression checks if a given reference variable refers

to an object of the specified class (or any of its subclasses—not emphasized here for

simplicity’s sake). In this case, however, it must be ensured that the reference variable is

not initial. This may be used to check the reference of local and global classes.

The generic syntax of this predicate expression is:

IF MYREF is instance of class_name.

 ENDIF.

Here the expression is true when MYREF is a reference variable based on the

class_name class. The comparison must be done with an object type (i.e., a class or an

interface). The MYREF statement expects a reference variable pointing to the type of class

compared in question. Now consider the following example:

class player DEFINITION.

 public section.

 methods write_player_details.

 methods constructor importing name type string

 country type string

 club type string.

 private section.

 data name type string.

 data country type string.

 data club type string.

 ENDCLASS.

 class player IMPLEMENTATION .

 method write_player_details.

 skip.

 write :/ 'Name :', me->name.

 write :/ 'Country :', me->country.

 write :/ 'Club :', me->club.

 endmethod.

Chapter 1 Creating Classes and ObjeCts

21

 method constructor.

 me->name = name.

 me->country = country.

 me->club = club.

 ENDMETHOD.

 ENDCLASS.

 START-OF-SELECTION.

 data player1 type ref to player.

 CREATE OBJECT player1

 EXPORTING

 name = 'John Mann'

 country = 'Germany'

 club = 'Bayern Munich'.

 if player1 is instance of player .

 write :/ ' Object of Player class '.

 endif.

We can also use the IS INSTANCE OF expression to compare interface references.

This will be discussed later in the book.

Here, we have defined a class and implemented its methods. We then defined a

reference variable pointing to the PLAYER class, and then created an object using the

player1 variable. Finally, we use the IS INSTANCE OF predicate to determine the type of

the player1 object. The if statement returns true.

When the program is executed, the output is as follows:

Object of Player 1

Consider another example:

data player1 type ref to player.

 CREATE OBJECT player1

 EXPORTING

 name = 'John Mann'

 country = 'Germany'

 club = 'Bayern Munich'.

Chapter 1 Creating Classes and ObjeCts

22

 if player1 is instance of cl_salv_table .

 write :/ ' Object of Player class '.

 endif.

Here, we are using the IS INSTANCE OF expression in order to find out if the

reference variable MYREF points to a reference in the CL_SALV_TABLE class. In this case,

the program does not compile correctly and results in a syntax error.

Apart from the IS INSTANCE OF expression, during the past few releases there

have been a number of changes in ABAP as far as the ABAP Objects are concerned

(in particular in NetWeaver 7.52). One change is that we can define functional methods

with both exporting and receiving parameters. We will see this in a later part of the book.

 Deferred Class Specification
It is now time to discuss an important variant of class declaration—the DEFERRED variant.

This form of the CLASS statement allows you to make the class known to the program,

irrespective of the location of the addressed class’ definition. Using this form, you do not

need to specify a definition part. It must also be noted that you do not need to specify

the ENDCLASS while making a DEFERRED specification. The complete definition of the

class must be included later in the program. Typically, this is required when you need to

address a local class before it is defined.

Consider for example the following case:

CLASS myclass1 DEFINITION.

 PUBLIC SECTION.

 DATA object_of_2 TYPE REF TO myclass2.

 ENDCLASS.

 CLASS myclass2 DEFINITION.

 PUBLIC SECTION.

 DATA object_of_1 TYPE REF TO myclass1.

ENDCLASS.

Suppose we have this program and try to include in myclass1 a reference to an

object of the myclass2 class. The code would give us a syntax error.

This is because we tried to address myclass2 (within the declaration of myclass1)

before defining it. (The program then tries to find this class in the global class library.)

The myclass2 class does not give an error since myclass1 has already been defined.

Chapter 1 Creating Classes and ObjeCts

23

To solve the issue, we need to include the following line before the definition of

myclass2:

CLASS myclass2 DEFINITION DEFERRED.

The complete code is:

CLASS myclass2 DEFINITION DEFERRED.

 CLASS myclass1 DEFINITION.

 PUBLIC SECTION.

 DATA object_of_2 TYPE REF TO myclass2.

 ENDCLASS.

 CLASS myclass2 DEFINITION.

 PUBLIC SECTION.

 DATA object_of_1 TYPE REF TO myclass1.

ENDCLASS.

Note that the words DEFERRED and DEFINITION are used together. As you will see, no

error occurs now.

It must be noted that the components of the class may not be specified within a

DEFERRED DEFINITION.

When PUBLIC is used as well, this variant makes a global class visible but defers its

load until the end of respective program unit.

 Summary
We learned the basics of ABAP object-oriented programming. We saw how to define

local classes and global classes. We also discussed the ways of creating objects of these

classes and calling their methods.

Let’s proceed to Chapter 2 in which we will move one step forward in ABAP Objects.

We will see more examples on object creation and method usage, as well as events

creation and generation.

Chapter 1 Creating Classes and ObjeCts

25
© Rehan Zaidi 2019
R. Zaidi, SAP ABAP Objects, https://doi.org/10.1007/978-1-4842-4964-2_2

CHAPTER 2

Class Components
in Detail
The first chapter introduced you to the basic concepts of object-oriented ABAP. In this

chapter, we continue moving ahead and cover a number of useful topics that you need to

know to work with ABAP Objects.

We also cover the concepts of local and global classes along with demos and

examples. We will move one more step forward. I will use the global as well as local

classes to exemplify my point.

The following topics will be covered in this chapter:

• CASE TYPE OF used for determining the type of an object reference

variable

• The NEW operator

• Defining types in classes

• Inline declaration

• Specifying constant values within classes

• Static constructor concept

• Method chaining and functional methods

• Event handling

26

 Finding the Type of an Object Reference Variable:
Revisited
Depending on the requirements, it may be necessary to confirm if an object belongs to

a particular class, i.e, for example, if an EMPLOYEE object is an instance of the ZCL_TEST_

EMPLOYEE class.

As mentioned in last chapter, since NetWeaver 7.50, we have a new expression called

IS INSTANCE OF that can be used in conjunction with the IF statement to confirm if

a particular object belongs to a particular class. The usage is very simple, just like any

other expression within an IF statement.

Suppose we have the following code:

data employee type ref to ZCL_TEST_EMPLOYEE.

 create object employee

 EXPORTING

 number = 10

 name = 'John Reed'

 country = 'England'.

Here, we defined a variable called EMPLOYEE that is a reference to the ZCL_TEST_

EMPLOYEE class. We then used the CREATE OBJECT statement to instantiate the given

object with suitable attribute values for number, name, and country.

In this case, we use the IF statement with the IS INSTANCE OF addition on the given

class, as shown here:

if employee is instance of ZCL_TEST_EMPLOYEE.

 NEW-LINE.

 write : 'This is an employee'.

 endif.

The output of this code is shown in Figure 2-1.

Figure 2-1. Program output

Chapter 2 Class Components in Detail

27

There is another way we can determine the type of the given employee.

This is done using the CASE.. ENDCASE control structure. A simple example of this in

the context of our employee scenario is as follows:

 CASE TYPE OF employee.

 WHEN TYPE zcl_test_employee.

 write : / 'This is an employee'.

 WHEN OTHERS.

 ENDCASE.

Here, note that the TYPE OF addition has been used along with CASE, and the TYPE

variant is written with the WHEN clause. This code also checks whether the employee

object is an instance of the ZCL_TEST_EMPLOYEE class. The code output is the same as

shown in Figure 2-1.

 Using the New Operator to Create an Object
Starting with NetWeaver 7.4, ABAP allows creation of objects via the NEW operator. This

operator provides an alternate to the CREATE OBJECT statement. There are a number of

ways in which it may be used for objects’ instantiation. The NEW operator may be used for

creating instances of both local and global classes.

Before we look at the actual coding, let’s go through the general syntax for the NEW

operator. For object creation, the NEW operator may be used in the following two ways:

 1. Used in conjunction with the class name. The construct for this is

shown here:

DATA MYOBJ TYPE REF TO MYCLASS.

 MYOBJ = NEW myclass(

 param1 = val1

 param2 = val2

 paramN = valN).

Using the inline declaration supported by ABAP 7.40, the same

form may be written in one single statement:

Chapter 2 Class Components in Detail

28

DATA(MYOBJ) = NEW myclass(

 param1 = val1

 param2 = val2

 ...

 paramN = valN).

In both of the previous cases, the NEW operator is used in

conjunction with the class name. This will create an instance of

the MYCLASS class and assign to the reference variable MYOBJ. In

the latter case, there is an implicit declaration of MYOBJ based on

the MYCLASS class (where the type of MYOBJ is derived from the

content of the right side of the assignment). If the constructor of

the class has mandatory importing parameters, the corresponding

data must be passed to the instance constructor within the

parentheses, as shown.

 2. Used with the # character. Another form of the NEW operator is

using it with the # character. The syntax is as follows:

DATA

 MYOBJ TYPE REF TO MYCLASS.

 MYOBJ = NEW #(param1 = val1

 param2 = val2

 ...

 paramN = valN).

We declare a variable called MYOBJ referred to the MYCLASS class. Since we already

declared a reference variable based on the class in question, there is no need to specify

the class again with the NEW operator. Instead of the class name, the # character can be

used. Any non-optional parameters are provided in parentheses, as shown earlier.

To better understand how to use the two forms of the NEW operator, let’s look at a

few examples. In this example, we use the global football player class ZST6_FOOTBALL_

PLAYER_CLASS that we defined earlier in the book.

Consider the following code block, which is a pre-ABAP 7.40 version:

DATA FOOTBALL_PLAYER TYPE REF TO ZST6_FOOTBALL_PLAYER_CLASS. CREATE OBJECT

FOOTBALL_PLAYER

"""""""" Without NEW Operator

Chapter 2 Class Components in Detail

29

 EXPORTING

 NAME = 'Oliver Kahn'

 WEIGHT = '88'

 HEIGHT = '178'

 FOOTBALL_CLUB = 'Bayern Munich'.

FOOTBALL_PLAYER->DISPLAY_PLAYER_DETAILS().

We created an object of the global class using the CREATE OBJECT statement. The

DISPLAY_PLAYER_DETAILS method was then called to print the details of the created

football player. This block of code was earlier used to create a football player object.

We will now see two ways that we can instantiate the object of using the NEW operator

(and not the CREATE OBJECT statement). The block of code shown in the previous listing

may be replaced with the following:

DATA(FOOTBALL_PLAYER) =

 NEW ZST6_FOOTBALL_PLAYER_CLASS(NAME = 'Oliver Kahn'

 WEIGHT = '88'

 HEIGHT = '178'

 FOOTBALL_CLUB = 'Bayern Munich').

FOOTBALL_PLAYER->DISPLAY_PLAYER_DETAILS().

We used the inline declaration of FOOTBALL_PLAYER along with the NEW operator in a

single statement. This involves the implicit definition of FOOTBALL_PLAYER as a reference

of class ZST6_FOOTBALL_PLAYER_CLASS. In this case, we did not have to declare a variable

based on the class in a separate statement. An object for the given class is created and

the reference variable FOOTBALL_PLAYER may then be used to display the player details.

Let’s now look at another piece of code that uses the NEW operator in conjunction

with the # character. The corresponding code is shown here:

DATA: FOOTBALL_PLAYER TYPE REF TO ZST6_FOOTBALL_PLAYER_CLASS.

FOOTBALL_PLAYER = NEW #(NAME = 'Oliver Kahn'

 WEIGHT = '88'

 HEIGHT = '178'

 FOOTBALL_CLUB = 'Bayern Munich').

FOOTBALL_PLAYER->DISPLAY_PLAYER_DETAILS().

In this usage form, we declare a reference variable FOOTBALL_PLAYER for the class

ZST6_FOOTBALL_PLAYER_CLASS. We use the NEW operator to create an object of the given

Chapter 2 Class Components in Detail

30

class. Instead of specifying the name of the class, we use the # character. The reference to

the newly created object is assigned to the FOOTBALL_PLAYER variable. The values for the

various importing parameters are supplied as shown earlier. The complete class name is

not required, as the system automatically detects it from the type of the variable to which

the created object’s reference is assigned (in our case, FOOTBALL_PLAYER).

The following block of code pertaining to our requirement will be unacceptable, as

the class whose object is to be created is unknown:

DATA(FOOTBALL_PLAYER) =

 NEW #(NAME = 'Oliver Kahn'

 WEIGHT = '88'

 HEIGHT = '178'

 FOOTBALL_CLUB = 'Bayern Munich').

 "" NOT ALLOWED

FOOTBALL_PLAYER->DISPLAY_PLAYER_DETAILS().

In the above code, the error appears as shown in Figure 2-2. An error results since

the type (the class name) of the football player object cannot be determined.

Figure 2-2. Syntax error using the NEW operator

Chapter 2 Class Components in Detail

31

 Defining Our Own Types in Classes
In this section, we learn how to define our own types in local and global classes. You may

define types within the class in the private or the public sections (as well as the protected

section). We will first see how to define types in local classes.

A simple example of this is as follows:

 class newclass definition.

 public section.

 types : myty_dec2 type p length 13 decimals 2.

 endclass.

Here we defined our own type based on the public section.

You may define your own variables within the class and outside using the data

statement.

Based on a type defined within the public section, it is possible to define variables

based on the define type. You may use the class name and the => symbol to address the

define type. An example of this follows:

data INT type newclass=>myty_dec2.

As mentioned earlier, it is also possible to define a type in a global class. To define a

type in an SE24 transaction, a few additional steps are required.

Go to the class in edit mode. Then, click on the Types tab. Enter the name of the type

in the Type field. Enter Public as the visibility for this example. Then click the yellow

arrow icon on the relevant row.

Figure 2-3. Defining types in SE24

Chapter 2 Class Components in Detail

32

This will take you to the Class Builder code editor, where you may specify the

complete specification (length and decimals). This is shown in Figure 2-4.

Save and activate the class.

 Constants in Classes
Just like we have constants while making report programs, we can declare constants

within local and global classes. Within the realm of classes, constants are special static

attributes within a class. Constants may be public or private attributes and may not be

changed within the class or outside the class.

For local classes, suppose we have a class called MYCLASS, as shown:

 CLASS myclass DEFINITION.

 PUBLIC SECTION.

 CONSTANTS: myconstant TYPE string VALUE 'XYZ'.

 ENDCLASS.

 DATA myvalue TYPE string.

 myvalue = myclass=>myconstant.

 write myvalue.

Here we have the MYCLASS class, and within the public section, we defined a constant

by the name MYCONSTANT and assigned it the value XYZ. Since this is a public attribute,

Figure 2-4. Specifying type definition

Chapter 2 Class Components in Detail

33

it can be accessed outside the class using the => operator. The value is assigned to the

string called myvalue. The contents of myvalue are printed.

Suppose you try to change the value of MYCONSTANT anywhere in the program? An

error will occur at the time of the syntax check, as shown in Figure 2-5.

As mentioned, a constant can be defined in the private section of a class as well.

Hence, the following class definition is also acceptable:

CLASS myclass DEFINITION.

 Private SECTION.

 CONSTANTS: myconstant TYPE string VALUE 'XYZ'.

 ENDCLASS.

You may not be able to access myconstant outside the class, like all other private

attributes.

It is also possible to define constants within global classes. Let’s see how this is

done using the Class Builder. Suppose we have a class called ZCL_TEST_EMPLOYEE

(see Figure 2-6).

Here we defined a constant called SALUTATION_MR based on the type STRING, and

assigned it the value 'MR'. For the Level, we specified CONSTANT, as shown in Figure 2-6.

Figure 2-5. Syntax error

Chapter 2 Class Components in Detail

34

 Dictionary Types for Global Classes
In Chapter 1, we saw how to define a type pertaining to an internal table comprised of

employee objects. Earlier we did this by defining a table type local to a program. It is

also possible to define a table type globally in the transaction SE24 Class Builder. This

may later be used in any program to create objects based on the underlying class. In this

section, we see how this is done.

Suppose we have a class called ZCL_TEST_EMPLOYEE, defined in the Class Builder. To

create a table type based on this class, follow these steps:

 1. Go to transaction SE11. This will display the screen shown in

Figure 2-7.

Figure 2-6. The SALUTATION_MR constant

Chapter 2 Class Components in Detail

35

 2. Enter the name of the table type that you want to create in the

Data Type field and click the Create button. (As you will see, we

called our type ZEMP_OBJECT_TABLE_TYPE.) This will display a

small dialog box, as shown in Figure 2-8.

 3. Choose the Table Type option and press Enter. This will take you

to the screen shown in Figure 2-9.

 4. Choose the Reference type option.

Figure 2-7. Data type in SE11

Figure 2-8. Data type options

Chapter 2 Class Components in Detail

36

 5. Enter the name and description in the fields provided. Choose

the Reference Type option and enter the name of the employee

class (i.e., ZCL_TEST_EMPLOYEE) in the field as shown. Once you are

done, save and activate the type using the CTRL+F3 keys.

Now that we are done, we can use this type in any program. An example is shown here:

 data EMPLOYEES type zemp_object_table_type.

This statement is the same as the following two statements:

 Types emp type ref to ZCL_TEST_EMPLOYEE.

 data employees type STANDARD TABLE OF emp.

 Static Constructor
In Chapter 1, we discussed instance constructors and saw related coding examples. It is

also possible to define static constructors within classes.

A static constructor is also known as a class constructor. As with the other static

methods, the static constructor is only able to address the static components residing

within the class in question.

We also have a static constructor in a class. This is called ONLY once for a class

(and internal session), prior to the first access made to the class.

Figure 2-9. Specifying reference type

Chapter 2 Class Components in Detail

37

The following statement shows the generic form of a static constructor declaration

within a local class:

CLASS-METHODS class_constructor.

As you will see, we declared a static constructor by the name class_constructor of

the class in question. This statement may only be written within the public section of the

class (declaration). By default, every class has a built-in class_constructor method in

the public section.

However, without the declaration, this constructor is blank.

In contrast to the instance constructor, the static constructor is executed once for

each class within an internal session. This execution occurs before the first access to the

class in question, such as an instance creation.

You can access any static component of the class using =>. It is also possible to call a

static method within the static constructor.

Any failed attempt to dynamically address a nonexistent component of a class does

not result in the static constructor being called.

Now that we have some knowledge of the working of static constructors, let’s look at

a fully working example:

CLASS my_class DEFINITION.

 PUBLIC SECTION.

 CLASS-METHODS class_constructor.

 CLASS-METHODS my_static_method.

 ENDCLASS.

 CLASS my_class IMPLEMENTATION.

 METHOD class_constructor.

 write : / 'Static Constructor Called'.

 ENDMETHOD.

 METHOD my_static_method.

 write : / 'Static Method Called'.

 ENDMETHOD.

 ENDCLASS.

 START-OF-SELECTION.

 my_class=>my_static_method().

Chapter 2 Class Components in Detail

38

Here we have a local class called MY_CLASS that has two static methods, namely

CLASS_CONSTRUCTOR and MY_STATIC_METHOD. Within the two methods, there are specific

messages outputted in order to show the sequence of method execution. We call the

static method only using the component class selector =.>.

Calling the static method MY_STATIC_METHOD will result in the static constructor

being executed prior to MY_STATIC_METHOD.

The output of the program is shown in Figure 2-10.

Now let’s look at the same requirement fulfilled using a global class. We assume for

this example that a class already exists by the name ZCL_TEST_EMPLOYEE.

Follow the steps:

 1. Open the class in edit mode. Then click the Methods tab.

 2. Under the method list, enter the name CLASS_CONSTRUCTOR and

press Enter. This will automatically populate Static Method into

the Level field, as shown in Figure 2-11.

As you will see, the Level is set to Static Method and cannot be changed. In

addition, the visibility column will be automatically populated with Public. It is worth

noting that if any other visibility, such as Private, is entered in the column, upon pressing

Enter, the Visibility will change back to Public.

Figure 2-10. Program output

Figure 2-11. Methods tab

Chapter 2 Class Components in Detail

39

 Method Revisited
In Chapter 1, we saw local as well as global methods. In this section, we will go a few

steps further with methods. We will see how to specify internal tables as method

parameters, method chaining, and functional methods.

 Specifying Internal Tables as Method Parameters
So far we have only seen integers and strings as types of method parameters. It is also

possible to specify internal tables as exporting, importing, and returning parameters of

class methods.

Let’s now complicate things a bit. In this section, we see how we can specify an

internal table as a parameter of the method of a class. In the football player example

introduced in Chapter 1, we define a new method, called RETURN_LIST_OF_PLAYERS.

Instead of writing the attributes of each player object on the screen, we will return the list

of player objects in an internal table.

We will specify an internal table (of player objects) as a parameter to this method.

Prior to this method, we specify a type called ty_player_tab based on the the ty_player

type defined earlier.

class player DEFINITION DEFERRED.

 types : ty_player type ref to player.

 types : ty_player_tab type STANDARD TABLE OF ty_player.

We then define the static RETURN_LIST_OF_PLAYERS method. The signature of this

method is shown in the Player class definition:

class player DEFINITION.

 public section.

 methods write_player_details.

 methods constructor importing name type string

 country type string

 club type string.

 class-methods display_list_of_players.

 class-methods return_list_of_players

 exporting players_tab

 type ty_player_tab.

Chapter 2 Class Components in Detail

40

 private section.

 data name type string.

 data country type string.

 data club type string.

 class-DATA: players_list type STANDARD TABLE OF ty_player.

 ENDCLASS.

As you will see, we have specified an exporting parameter called PLAYERS_TAB based

on the TY_PLAYER_TAB type. It must be noted that the table type must be specified here.

(This is a TYPE STANDARD TABLE type based on TY_PLAYER.)

Next, we write the code of the method within the Implementation section. Since we

already have the internal table of objects stored in the PLAYERS_LIST static variable, we

simply use an assignment operator to store the internal table contents in the exporting

parameter, called PLAYERS_TAB.

 method return_list_of_players.

 players_tab[] = players_list[] .

 endmethod.

The internal table is then returned as an exporting parameter.

To call the method we will use the player class static method:

player=>return_list_of_players(IMPORTING players_tab

= data(players_tab)) .

This method is called after instantiation of two player objects, as shown in our

previous example, which shows the contents of our players_tab. We use inline

declaration to return this in players_tab.

After execution of the program, the contents of the internal table will look like

Figure 2-12.

Chapter 2 Class Components in Detail

41

The complete code of the football player exercise will now look like this:

class player DEFINITION DEFERRED.

 types : ty_player type ref to player.

 types : ty_player_tab type STANDARD TABLE OF ty_player.

 class player DEFINITION.

 public section.

 methods write_player_details.

 methods constructor importing name type string

 country type string

 club type string.

 class-methods display_list_of_players.

 class-methods return_list_of_players exporting players_tab type

ty_player_tab.

 private section.

 data name type string.

 data country type string.

 data club type string.

 class-DATA: players_list type STANDARD TABLE OF ty_player.

 ENDCLASS.

 class player IMPLEMENTATION .

 method write_player_details.

 skip.

Figure 2-12. Table contents

Chapter 2 Class Components in Detail

42

 write :/ 'Name :', me->name.

 write :/ 'Country :', me->country.

 write :/ 'Club :', me->club.

 endmethod.

 method constructor.

 me->name = name.

 me->country = country.

 me->club = club.

 append me to players_list.

 ENDMETHOD.

 method display_list_of_players.

 data : temp_player type ref to player.

 write :/ '------------PLAYERS LIST------------'.

 loop at players_list into temp_player.

 temp_player->write_player_details() .

 endloop.

 write :/ '------------------------------------'.

 endmethod.

 method return_list_of_players.

 players_tab[] = players_list[] .

 endmethod.

 endclass.

 start-OF-SELECTION.

 data : player1 type ref to player.

 data : player2 type ref to player.

 CREATE OBJECT player1

 EXPORTING

 name = 'John Mann'

 country = 'Germany'

 club = 'Bayern Munich'.

 CREATE OBJECT player2

 EXPORTING

Chapter 2 Class Components in Detail

43

 name = 'Paul Goldberg'

 country = 'Britain'

 club = 'Liverpool'.

 player=>return_list_of_players(IMPORTING

 players_tab = data(players_tab)) .

 end-OF-selection.

 Inline Declarations While Calling Methods
Since 740, ABAP supports inline declaration of variables. This holds true for method calls

as well. We will see how to call methods and specify (as parameters) variables that were

not declared earlier in the program.

Consider a situation where we have an employee class called ZCL_EMPLOYEE that

has a method called GET_NAME_AND_COUNTRY that returns the name and country of the

employee in question.

One of the ways to call this method is:

 data name type string.

 data country type string.

 employee->get_name_and_country(

 IMPORTING

 name = name

 country = country) .

This is the traditional method, where we first declare variables pertaining to the

importing parameters of the method. The value of name and country is then returned in

the declared variables.

There is another compact way of writing this using inline declaration. This is shown as:

employee->get_name_and_country(

 IMPORTING

 name = data(name)

 country = data(country)) .

As you will see, we have not done any prior declaration of the two variables NAME

and COUNTRY. Rather we used the feature of inline declaration while specifying the

Chapter 2 Class Components in Detail

44

parameters of the method in question. The variable name to be declared inline must be

in parentheses and must be preceded by data. The output of this piece of code and the

one shown earlier are exactly the same.

Using inline declarations is not just restricted to exporting parameters of the

method. They may also be used for RECEIVING parameters (we will discuss this in an

upcoming section).

 Functional Methods
So far, we have only seen methods that take as input a number of importing parameters

and then export a number of parameters (exporting parameters). We also have a

special type of method that returns a single result or returning value. Such methods

are known as functional methods. These may be defined in local and global classes. It

is also possible to have a functional method as a static method or an instance method

within a class.

One such functional method is as follows:

class func_method_class DEFINITION.

 public section.

 class-methods calc_average IMPORTING

 int1 type i

 int2 type i

 RETURNING value(average) type i.

 endclass.

 class func_method_class IMPLEMENTATION.

 method calc_average.

 average = (int1 + int2) / 2.

 endmethod.

 endclass.

As you can see, the static method CALC_AVERAGE takes as input two integer values

int1 and int2 and returns a single parameter called AVERAGE as the returning parameter.

The example shows a local class, called func_method_class. As with other methods, the

code of this is written in the IMPLEMENTATION of the class.

Chapter 2 Class Components in Detail

45

To call this method, we use the following formats:

 func_method_class=>calc_average(

 exporting int1 = i1

 int2 = i2

 RECEIVING average = av).

As you will see, while calling the CALC_AVERAGE method, we use RECEIVING

(corresponding to the RETURNING parameter AVERAGE). In addition, there is another way

of calling the functional method using inline declaration:

 func_method_class=>calc_average(

 exporting int1 = i1

 int2 = i2

 RECEIVING average = data(av1)).

A more meaningful and preferred format is shown in the following example:

 data(i1) = 1.

 data(i2) = 3.

 data(av) = func_method_class=>calc_average(int1 = i1 int2 = i2).

 write : av.

Here we used the assignment operator to return the average result in the variable AV.

When using a functional method, you do not have to specify the parameter names for

the return value explicitly in the parameter list, as shown in the code.

We can also define a functional method for a global class. We will create a static

method called CALC_AVERAGE having public visibility, as shown in Figure 2-13.

Figure 2-13. Global class with a functional method

Chapter 2 Class Components in Detail

46

For the method, the next step involves specifying the parameters for the method. For

the AVERAGE parameter, we need to select the Returning type. If you do not select the Pass

Value checkbox for Average, the system automatically checks this indicator. The other

two parameters are specified as Importing, as shown in Figure 2-14.

Next, we write the source code of the method, as shown in Figure 2-15.

When you are done, save and activate the class. The method created here may be

called in programs the same way the local functional method was called.

A functional method can have only one returning parameter. You may not create

two or more returning parameters. You must also ensure that the assignment operator

is used with a method that has a returning parameter. If the method does not have a

returning parameter, but you try to use it in an expression along with the assignment

= operator, a syntax error occurs. Consider the example shown in Figure 2-16.

Figure 2-15. Method source code

Figure 2-14. Parameters of CALC_AVERAGE

Chapter 2 Class Components in Detail

47

Here we have a method called PRIMARY_RECORD_REF that does not have a returning

parameter. But we have used this improperly, which results in a syntax error.

When you try to create more than one returning parameter for a given method, a

syntax error occurs, as shown in Figure 2-17.

This error occurs for global as well as local classes. Starting from NetWeaver 7.50, it is

also possible to specify exporting parameters for functional methods.

 Specifying Exporting and Returning Parameters
for Functional Methods
The newer NetWeaver release provides an interesting feature of functional methods.

In addition to a returning parameter, a functional method can also have an exporting

parameter. However, note that functional methods support only one returning

parameter and any number of other formal parameters, including importing and

exporting. We can create local or global functional methods, which may be static or

instance methods.

Figure 2-16. Syntax error

Figure 2-17. Syntax error

Chapter 2 Class Components in Detail

48

In the examples, we cover both scenarios of defining functional methods locally and

globally that have both exporting and returning parameters. We use static method in

these examples for better understanding.

This first example defines a functional method locally. We define a class with a static

method to calculate the total sum and average of two given numbers. The sum will be

returned as an exporting parameter, whereas the average will be a returning parameter.

The code is shown:

 class newclass definition.

 public section.

 types : myty_dec2 type p length 13 decimals 2.

 class-methods : func_av_and_total importing

 myint1 type i

 myint2 type i

 exporting

 sum type i

 returning

 value(av) type myty_dec2.

 endclass.

As you see in the code, we defined a class locally within the program. The class name

is newclass. A static method, func_av_and_total, is defined within the class, which

calculates both the average and the sum of the two numbers supplied to the method.

This method has two import parameters (myint1 and myint2) of type Integer.

The sum is the exporting parameter, whereas AV is the returning parameter of the type

myty_dec2. (This is a user-defined type defined within the class.)

The class implementation is shown here:

 class newclass implementation.

 method func_av_and_total.

 sum = myint1 + myint2.

 av = sum / 2.

 endmethod.

 endclass.

Chapter 2 Class Components in Detail

49

In the class implementation, we specified how the sum and the average are

calculated. We add the two numbers to get sum and divide the total by 2 in order to get

the average that is returned in parameter AV.

We can call this method in multiple ways. The example will show you how to use the

assignment operator to read only the average value of the provided numbers.

data(av1) = newclass=>func_av_and_total(

 exporting myint1 = '2'

 myint2 = '11') .

In the example, a static method is called without creating a class instance. The

variable AV is defined using an inline declaration. The method returns the average of the

input parameters, which is captured in the variable AV. This may later be printed on the

user screen.

In another example, we will show how you call the static method with exporting and

importing parameters, along with the returning parameter.

 data sum type i.

 data(av1) = Newclass=>func_av_and_total(

 exporting myint1 = '2'

 myint2 = '11'

 importing sum = sum).

 write : av1 , sum.

In this example, the func_av_and_total method is called with exporting integer

parameters and an importing sum. The function will return the av value. Here, we

have passed numbers 2 and 8 to MYINT1 and MYINT2, respectively. The average value is

returned in the AV1 variable, whereas sum is assigned to the variable sum. The output is

then printed on the screen, as shown in Figure 2-18.

Using Class Builder (transition SE24), we can define a similar method globally. An

example of this is shown in Figure 2-19.

Figure 2-18. Program output

Chapter 2 Class Components in Detail

50

In this class definition, SUM is defined as an exporting parameter and AV is defined as

a returning parameter. The ty_dec2 type is defined using the Types tab.

The method may be tested using the standard test feature, as shown in Figure 2-20.

Figure 2-19. Functional method in sE24

Figure 2-20. Test feature

Chapter 2 Class Components in Detail

51

 Methods Calling Other Methods
A declared method can call other methods in the source code. For example, it is possible

for a local class method to call a (public) method of another local class, or a static

local method can call a static global or local method. At the time of calling, the control

switches just like other modularization units, such as form subroutine and function

modules, and returns to the calling method.

 Method Chaining
A newer concept that has evolved is method chaining. This involves combining calls of

functional methods (i.e., methods that have one returning value as output). The chaining

of methods makes the code more compact and allows you to fulfill requirements without

the need for additional reference variables. There are two types of chaining possible:

chained method access and chained method call. (The primary emphasis of this section

is on chained method access.) Let’s take a look at what each of these means.

In chained method access, there could be two forms as follows:

obj_ref->inst_meth_a(..)->inst_meth_b(..)->inst_meth(..).

class=>static_meth_a(..)->inst_meth_b(..)->inst_meth(..).

The return value of one functional method is a reference to an object that is used to

call the next method in the chain. The returning value of the last method is used as an

operand.

In this case, the first use may be a class component selector (=>) or an object

component selector (->). After that, all the methods are called using the component. Or,

in other words, the first method may be a static or an instance method. Other than that,

you must have all functional instance methods.

Chained attribute access, on the other hand, is similar to chained method calling. In

this case, the instance attribute is used as an operand. The chained attribute access may

be in the following forms:

obj_ref->inst_meth_a(..)->inst_meth_b(..)->inst_attr.

class=>static_meth_a(..)->inst_meth_b(..)->inst_attr.

Chapter 2 Class Components in Detail

52

The return value of the last method (INST_METH_B) must refer to the object that

contains the INST_ATTR attribute. In this case, the return values of the previous

functional methods are variables that refer to objects for the next method.

As an example of method chaining, consider the previous block of code that we used

in our ALV example earlier, shown here:

 data : functions type ref to cl_salv_functions.

 functions = alv->get_functions().

 functions->set_all().

Method chaining can be applied in this case. The three lines above can be replaced

by a single line of code, as shown here:

 alv->get_functions()->set_all().

There is also no need to define the FUNCTIONS variable, and the coding is very

compact.

Let’s look at one more example of method chaining. Let’s go back to our football

example shown earlier involving the NEW operator:

DATA: FOOTBALL_PLAYER type ref to ZST6_FOOTBALL_PLAYER_CLASS.

 FOOTBALL_PLAYER = NEW #(NAME = 'Oliver Kahn'

 WEIGHT = '88'

 HEIGHT = '178'

 FOOTBALL_CLUB = 'Bayern Munich').

 FOOTBALL_PLAYER->DISPLAY_PLAYER_DETAILS().

We can combine the NEW operator shown earlier in the chapter with method

chaining. The previous block of code can be written more compactly, as shown here:

NEW ZST6_FOOTBALL_PLAYER_CLASS(

 NAME = 'Oliver Kahn'

 WEIGHT = '88'

 HEIGHT = '178'

 FOOTBALL_CLUB =

 'Bayern Munich')->DISPLAY_PLAYER_DETAILS().

Chapter 2 Class Components in Detail

53

 Event Handling in ABAP Objects
The topic of ABAP Objects is incomplete without one important component that may be

included within a class definition—events.

Events are signals generated by a class or its object. They may be the result of

changes in the state of an object, such as Employee Hired, Employee Changed, or

Player Created.

Just like any other components of a class, there may be static or instance events.

Static events are independent of any particular object of a class. Static events may be

triggered from both static and instance methods, whereas instance events may be

triggered from instance methods only.

At runtime, the handler method’s code (the method that handles the event) is

executed when the event is triggered (also known as event raised). Handling and

generating events in your programs involves the following essential steps:

• Defining the method as an instance or static event within the

respective class definition. The class containing the event may be

a subclass of another class, or may have a number of subclasses

derived from it. You may also define an event in an interface.

(The event will then be part of the class(es) that implement(s) the

interface.) To define the event as static, use this code:

CLASS_EVENTS <event_name>.

On the other hand, the following statement defines an instance

event:

EVENTS <event_name>.

• Raising the event at a suitable place using the RAISE EVENT

statement.

The parameters are specified after the EXPORTING ADDITION. For an

instance event, an implicit parameter called SENDER is applicable.

This parameter holds a reference to the object for which the event

has been generated. For example, when the instance event called

PLAYER_CREATED is raised, SENDER will contain the reference to the

player object in question. For static events, the SENDER parameter is

not there.

Chapter 2 Class Components in Detail

54

• Defining and implementing the event handler method. This may be

defined in the same class or in a separate class. Within the handler

class implementation, you write the method code to be executed

upon event trigger. The parameters available to the method (i.e., the

ones exported via the RAISE statement) may be used by the developer

for fulfilling user requirements.

• Registering the method to react to events. The SET HANDLER

statement is used for this purpose. If the event is static, the syntax

may be of the form shown here:

SET HANDLER <method_name>.

In the case of an instance event, the SET HANDLER statement will contain

the additions FOR ALL INSTANCES or FOR (referring to a specific object for

whose event the event handler is to be executed). It is possible to specify

all instances or a particular object instance whose raised event is to be

caught and the handler method is executed.

This is an important step that defines the link between the handler

method and the event that is to be raised. If the registration is not

performed, the handler method will not be executed even if the event

gets triggered successfully with all essential information passed.

In the next section, we see these steps in detail as applied to our football player

example.

 A Working Example
In this section, we look at a full-fledged working example of event handling. For the sake

of our example, we see how events may be defined and handled in local classes.

 Triggering and Handling the PLAYER_CREATED
Event
We add the event triggering functionality for our local football player class defined

earlier. We create a separate event handler class for handling our PLAYER_CREATED event.

Chapter 2 Class Components in Detail

55

The following steps are required:

 1. As mentioned, we need to define the event for our football player

class. In our case, we name the event PLAYER_CREATED. This is

defined as an instance event, as shown here:

events : player_created .

 2. We make sure that the event is defined in the public section of the

class. We then raise the event. This is done using the RAISE EVENT

statement as shown here:

raise event player_created.

 3. We put this in the constructor, as shown here:

 method constructor.

 call method super->constructor

 exporting

 name = name

 weight = weight

 height = height.

 me->football_club = football_club.

 raise event player_created.

"" nothing exported

"" but created object passed

"" via implicit SENDER parameter

 endmethod .

 4. We will not pass a parameter explicitly to the RAISE event. Next

we create an event handler class with the name MYHANDLERCLASS.

Within the class, there is a handler method called MYHANDLER

defined as a static class method. Within the definition of the

class for our handler method, we specify that it is for the PLAYER_

CREATED event of the football player class.

Note that the importing implicit parameter SENDER is also specified. The sender

contains a reference to the object for which the event has been triggered.

Chapter 2 Class Components in Detail

56

The code for the handler class definition is shown here:

 class myhandlerclass DEFINITION.

 public section.

 class-methods myhandler FOR EVENT player_created

 OF football_player importing sender.

 endclass.

Since we defined the event earlier as a public event, we are able to create a handler

method in a separate class. Suppose the event was in the private section. In that case, an

error would occur, as shown in Figure 2-21 .

Next in the implementation section, we will write the code (for method MYHANDLER)

to be executed when the PLAYER_CREATED event is triggered.

 class myhandlerclass IMPLEMENTATION.

 method myhandler.

 write : 'Event Handler Executed'.

 call method sender->display_player_details.

 endmethod.

 endclass.

Within the method code, we will simply call the DISPLAY_PLAYER_DETAILS method

of the football player class. This will display the various attributes of the newly created

football player.

Figure 2-21. Syntax error for a private event

Chapter 2 Class Components in Detail

57

In this example, we have seen a football player class inherited from a player class.

The inheritance concept will be explained in detail in the next chapter.

Next, we will register the handler method to react to the situation when the event

occurs. We will use the SET HANDLER statement for this purpose, as shown here:

SET HANDLER myhandlerclass=>myhandler for all instances.

The name of the method along with class name is specified. Since the MYHANDLER

is a static method, we use the class component selector (=>). We use the FOR ALL

INSTANCES addition in order for the handler method to be executed for all instances of

the FOOTBALL_PLAYER class.

When the program is executed, the CREATE OBJECT statement for the football player

is executed. Whenever a new football player is created, a Player_Created event is

triggered. This is an instance event raised via a RAISE EVENT statement in the constructor

of the FOOTBALL_PLAYER class. Since we have registered the MYHANDLER method for the

PLAYER_CREATED event of all instances of the football player class, the handler method

gets executed. The method receives SENDER as an importing parameter, which is the

reference to the football player object for which the event is raised. Within the handler

method, we call the DISPLAY_PLAYER_DETAILS method of the FOOTBALL_PLAYER class to

display the details of the football player object that is created.

The output of the program is shown in Figure 2-22.

The complete code listing is shown here:

class player DEFINITION.

 public section.

 methods constructor importing name type string

 weight type p height type i.

 methods display_player_details.

Figure 2-22. Program output

Chapter 2 Class Components in Detail

58

 PROTECTED SECTION.

 data : name type string.

 data : height type i.

 data : weight type p decimals 2.

 endclass.

class player IMPLEMENTATION.

 method constructor .

 me->name = name.

 me->height = height.

 me->weight = weight.

 ENDMETHOD.

 method display_player_details.

 write :/ 'Player Name: ',15 me->name ,

 / 'Height : ',15 me->height LEFT-JUSTIFIED ,

 / 'Weight :',15 me->weight LEFT-JUSTIFIED.

 ENDMETHOD.

 endclass.

 class football_player DEFINITION INHERITING

 FROM player.

 public section.

 methods constructor importing

 name type string

 weight type p

 height type i

 football_club type string.

 methods display_player_details REDEFINITION.

 events : player_created .

 private section.

 data : football_club type string.

 endclass.

 class football_player IMPLEMENTATION.

 method constructor.

Chapter 2 Class Components in Detail

59

 call method super->constructor

 exporting

 name = name

 weight = weight

 height = height.

 me->football_club = football_club.

 raise event player_created.

 endmethod .

 method display_player_details.

 call method super->display_player_details.

 write:/ 'Club Name : ',15 me->football_club.

 endmethod .

 endclass.

 class myhandlerclass DEFINITION.

 public section.

 class-methods myhandler FOR EVENT player_created

 OF football_player importing sender.

 endclass.

 class myhandlerclass IMPLEMENTATION.

 method myhandler.

 write : 'Event Handler Executed'.

 call method sender->display_player_details.

 endmethod.

 endclass.

 START-OF-SELECTION.

 data : myfootball_player type ref to football_player.

 set HANDLER myhandlerclass=>myhandler for all instances.

 create object myfootball_player

 exporting name = 'Oliver Kahn'

 weight = '95'

 height = '188'

 football_club = 'Bayern Munich'.

Chapter 2 Class Components in Detail

60

 Summary
In this chapter, we covered a number of useful topics that you need to know in order

to work with ABAP Objects. We discussed the CASE TYPE OF construct used for

determining the type of an object reference variable followed by a discussed of the “new”

NEW operator.

We also saw how to apply inline declaration in ABAP Objects, constant declaration,

method chaining, and functional methods. Finally, we saw a fully working demo of event

handling.

Chapter 2 Class Components in Detail

61
© Rehan Zaidi 2019
R. Zaidi, SAP ABAP Objects, https://doi.org/10.1007/978-1-4842-4964-2_3

CHAPTER 3

More on Object-Oriented
ABAP
After the basic introduction to ABAP provided in Chapters 1 and 2, this chapter dives

deeper into the topic. It starts by showing how inheritance applies to ABAP Objects.

Then, the chapter covers the concept of casting—upcasting and downcasting—and how

we can achieve polymorphism using casting.

 Inheritance: Super and Subclasses
ABAP lets you derive (inherit) a new class from a given class. This is called inheritance

and the inherited class is referred to as a subclass of the main class in question, which is

known as the superclass. Within ABAP, you may have any number of classes derived from

a given base class. For example, if we have class B inherited from class A, then class A is

the direct superclass of class B. It is also possible to derive another class, class C, from

class B. Then, both A and B are superclasses of C, but B is the direct superclass of C, as

shown in Figure 3-1.

62

The diagram shown in Figure 3-1 is referred to as the inheritance hierarchy or tree.

These trees may contain multiple levels of class inheritance. (For simplicity’s sake, only

two levels are shown along with single inheritance only.)

Figure 3-1. Inheritance tree

Figure 3-2. Inheritance tree of players

Within ABAP, you may have multiple direct subclasses for a given superclass.

Conversely, you may have only one direct superclass of a given class (subclass). This is

called a single inheritance.

You may view a superclass as having the common (general) characteristics of its

subclasses. The level of specialization in the tree increases as we move down through

each level. Likewise, as you move up the hierarchy (i.e., toward the root node), the

classes tend to be more general.

Chapter 3 More on objeCt-oriented abap

63

For example, we may have a class called PLAYER that is the superclass of

Football_player and Cricket_player. The PLAYER class has properties of both football

and cricket players. However, the Cricket_player will have specific characteristics to

that of a cricketer, which are not possessed by a football player, and vice versa.

Note the predefined empty class called OBJECT is the root node of all
inheritance trees.

There is a general class called OBJECT from which all inheritance trees originate. This

class has no attributes or methods. The PLAYER class is actually a subclass of the OBJECT

class. For simplicity’s sake, it is not shown in Figure 3-2.

Up until this point, we have looked at two types of class components—private

and public. With the advent of inheritance, another type comes into play, protected.

Of primary importance is the “protected” section within a superclass. The protected

section contains components that are accessible from within the subclasses of the given

superclass.

Within the superclass, there may be protected, private, and public components.

The components of the superclass become part of the derived subclass(es). (Although

the private components are included in the subclass, only the private and public

components within are visible in the subclass.) Because of this, all public and protected

components of classes within a given inheritance hierarchy must have unique names. For

private components, you must make sure that they are uniquely named within a class.

An inherited class contains the components that are defined in ALL its superclasses

(i.e., the direct superclass and the above).

Let’s illustrate this concept with an example.

Suppose we have the following inheritance tree, where two classes—B and C—are

derived from a common superclass A. We can have a private attribute INT1 in classes A,

B, and C. However, we cannot have a protected attribute INT1 in the superclass A and at

the same time a public attribute INT1 defined in the subclass B.

The syntax for defining a subclass locally within a program is via the addition

INHERITING FROM, shown as follows:

CLASS <MYSUBCLASS> DEFINITION INHERITING FROM <MYSUPERCLASS>.

...

ENDCLASS.

Chapter 3 More on objeCt-oriented abap

64

For example, in the following code excerpt, we have a player class called

Football_player that is inherited from the generic class PLAYER.

class football_player DEFINITION INHERITING

 FROM player.

endclass.

Suppose within the PLAYER class, we have an instance constructor and a method

called DISPLAY_PLAYER_DETAILS. We also have protected attributes called NAME, WEIGHT,

and HEIGHT. The attributes are protected so that they may be addressed by the subclasses

inherited from the PLAYER class. See the code block as follows.

class player DEFINITION.

 public section.

 methods constructor importing

 name type string

 weight type p

 height type i.

 methods display_player_details.

 protected section.

 data : name type string.

 data : height type i.

 data : weight type p decimals 2.

endclass.

We can then have a subclass called FOOTBALL_PLAYER that’s inherited from the given

PLAYER class. Another attribute, called FOOTBALL_CLUB, has been defined that is specific to

FOOTBALL_PLAYER. This class has its own instance constructor, which has four importing

parameters (Football_Club is included in addition to the three parameters contained

in the player’s constructor). The DISPLAY_PLAYER_DETAILS method is redefined in the

FOOTBALL_PLAYER class. It contains no parameters, as in the player class:

class football_player DEFINITION INHERITING

 FROM player.

 public section.

 methods constructor importing

 name type string

Chapter 3 More on objeCt-oriented abap

65

 weight type p

 height type i

 football_club type string.

 methods display_player_details REDEFINITION.

 private section.

 data : football_club type string.

endclass.

We will take a closer look at the instance constructors for subclasses and the

redefinition of superclass methods in detail in upcoming sections.

While naming attributes within subclasses, a few restrictions apply. Let’s look at an

example. Suppose you try to define a private attribute with the name HEIGHT within the

FOOTBALL_PLAYER class, as shown:

class football_player DEFINITION INHERITING

 FROM player. "BADCODE

.......

 private section.

 data height type i. """ NOT ALLOWED

endclass.

In this case, a syntax error occurs (see Figure 3-3).

Figure 3-3. Syntax error

This is because the HEIGHT attribute is already declared in the superclass PLAYER as

a protected attribute. The protected and public attribute of the superclass becomes part

of the derived subclass. If the superclass contained HEIGHT in its private section instead,

this code would not have given an error.

Chapter 3 More on objeCt-oriented abap

66

 Redefining Methods
As mentioned, an important aspect we need to see within the ABAP Objects is the

redefinition of inherited methods defined in the subclasses.

An instance method inherited from a superclass may be redefined in the subclasses.

This allows you to add more specific functionality to the redefined method in the

subclass (or subclasses).

During redefinition, you may not change the visibility section of the method. For

example, it is not possible to have a private method redefined as a public method in

a subclass. The signature of the instance method also cannot be changed during the

redefinition. For example, it is not possible to add a new parameter to the method in the

definition or change the type of a given parameter.

It is also important to note that static methods cannot be redefined in subclasses.

Only instance methods can be redefined.

Within a local subclass, we may redefine a given instance method using the

REDEFINITION keyword. Let’s take a look at an example of this.

class football_player DEFINITION INHERITING

 FROM player.

 public section.

 methods display_player_details REDEFINITION.

endclass.

It is possible to call the superclass’ method DISPLAY_PLAYER_DETAILS within the

redefined method using SUPER->DISPLAY-PLAYER_DETAILS.

 Instance Constructors
As discussed, every class has an instance constructor. Within the inheritance tree,

the various instance constructors (of a class, its superclasses, and subclasses) are

independent of each other. You may not redefine an instance constructor of a class in its

subclasses.

Chapter 3 More on objeCt-oriented abap

67

The instance constructor is called automatically upon instantiation (creation) of

the object (via the CREATE OBJECT statement). Within the constructor of the subclass,

the immediate superclass constructor may be called. You may call the constructor of a

superclass from a subclass using the following statement:

CALL METHOD SUPER->CONSTRUCTOR

This statement must not be used in the class that’s a direct subclass

of the OBJECT class.

After the SUPER->CONSTRUCTOR call, the code for assigning values to the attributes

specific to the subclass is written, as shown in the following example.

class football_player IMPLEMENTATION.

 method constructor.

 call method super->constructor

 exporting

 name = name

 weight = weight

 height = height.

 me->football_club = football_club.

 endmethod .

endclass.

When you instantiate a class that has an instance constructor with a set of

parameters (interface), appropriate values must be then supplied using the EXPORTING

addition within the CREATE OBJECT statement:

create object myfootball_player

 exporting name = 'Oliver Kahn'

 weight = '95'

 height = '188'

 football_club = 'Bayern Munich'.

Likewise, when you call a superclass constructor from a subclass, appropriate values

must be supplied for the various parameters (mandatory, non optional). A class that is

instantiated at the bottom of the inheritance tree may need to pass parameters to the

class constructor that is close to the root.

Chapter 3 More on objeCt-oriented abap

68

Note if a given SUPERCLASS has an instance constructor that contains the call
of a method via the self-reference variable me, then the method as defined in the
SUPERCLASS is called and not the ones redefined in any of the subclasses.

 Working Example
In this section, we look at how these concepts can be applied to solve a simple

requirement.

We create a superclass player and its subclass Football_player. A suitable

Football_player object is created and its attributes are displayed onscreen.

We first define a PLAYER class having three attributes in the protected section,

including NAME, HEIGHT, and WEIGHT. Two methods are defined within the public

section—the instance constructor and the DISPLAY_PLAYER_DETAILS method.

Appropriate parameters are specified for the CONSTRUCTOR for creating instances

belonging to the PLAYER class. The DISPLAY_PLAYER_DETAILS method has no parameters.

The definition of the class looks like this:

class player DEFINITION.

 public section.

 methods constructor importing

 name type string

 weight type p

 height type i.

 methods display_player_details.

 protected section.

 data : name type string.

 data : height type i.

 data : weight type p decimals 2.

endclass.

Within the implementation section of the PLAYER class, we write the code for

constructor, by initializing the attributes NAME, HEIGHT, and WEIGHT. Within the

DISPLAY_PLAYER_DETAILS method, we include the WRITE statement to display the

attribute values on the user screen.

Chapter 3 More on objeCt-oriented abap

69

class player IMPLEMENTATION.

 method constructor .

 me->name = name.

 me->height = height.

 me->weight = weight.

 ENDMETHOD.

 method display_player_details.

 write :/ 'Player Name: ',15 me->name ,

 / 'Height : ',15 me->height

 LEFT-JUSTIFIED ,

 / 'Weight :',15 me->weight

 LEFT-JUSTIFIED.

 ENDMETHOD.

 endclass.

Next, we define the FOOTBALL_PLAYER class. The constructor of the class takes as an

importing parameter the player’s name, weight, and height, as well as the name of the

football club. The private section contains the FOOTBALL_CLUB attribute—this is specific

to the football player class.

A redefined method for displaying the player’s detail is also DISPLAY_PLAYERS_

DETAILS defined.

class football_player DEFINITION INHERITING

 FROM player.

 public section.

 methods constructor importing

 name type string

 weight type p

 height type i

 football_club type string.

 methods display_player_details REDEFINITION.

 private section.

 data : football_club type string.

endclass.

Chapter 3 More on objeCt-oriented abap

70

Within the implementation of the class, we have the code written for the subclass

constructor and DISPLAY_PLAYER_DETAILS.

class football_player IMPLEMENTATION.

 method constructor.

 call method super->constructor

 exporting

 name = name

 weight = weight

 height = height.

 me->football_club = football_club.

 endmethod .

method display_player_details.

 call method super->display_player_details.

 write:/ 'Club Name : ',15

 me->football_club.

 endmethod .

 endclass.

The full code of the example is shown here:

class player DEFINITION.

 public section.

 methods constructor importing

 name type string

 weight type p

 height type i.

 methods display_player_details.

 protected section.

 data : name type string.

 data : height type i.

 data : weight type p decimals 2.

endclass.

Chapter 3 More on objeCt-oriented abap

71

class player IMPLEMENTATION.

 method constructor .

 me->name = name.

 me->height = height.

 me->weight = weight.

 ENDMETHOD.

 method display_player_details.

 write :/ 'Player Name: ',15 me->name ,

 / 'Height : ',15 me->height

 LEFT-JUSTIFIED ,

 / 'Weight :',15 me->weight

 LEFT-JUSTIFIED.

 ENDMETHOD.

endclass.

class football_player DEFINITION INHERITING

 FROM player.

 public section.

 methods constructor importing

 name type string

 weight type p

 height type i

 football_club type string.

 methods display_player_details REDEFINITION.

 private section.

 data : football_club type string.

endclass.

class football_player IMPLEMENTATION.

 method constructor.

 call method super->constructor

 exporting

 name = name

 weight = weight

 height = height.

Chapter 3 More on objeCt-oriented abap

72

 me->football_club = football_club.

 endmethod .

 method display_player_details.

 call method super->display_player_details.

 write:/ 'Club Name : ',15

 me->football_club.

 endmethod .

 endclass.

 START-OF-SELECTION.

 data : myfootball_player type ref to

 football_player.

 create object myfootball_player

 exporting name = 'Oliver Kahn'

 weight = '95'

 height = '188'

 football_club = 'Bayern Munich'.

 call method

 myfootball_player->display_player_details.

We have defined a reference variable typed with the FOOTBALL_PLAYER class. We

then created the football player object using the CREATE OBJECT statement. Appropriate

values are supplied for instantiation of the football player object. The values exported

from the program to the CREATE OBJECT statement are imported into the constructor.

First, the constructor of the FOOTBALL_PLAYER class is executed, within which the

constructor of the superclass PLAYER is called. The code of the super->constructor

assigns values to the NAME, HEIGHT, and WEIGHT attributes, whereas the last line of the

subclass’ constructor assigns a supplied value to the FOOTBALL_CLUB attribute.

Once the football player object is created, we called the DISPLAY_PLAYER_DETAILS

method using the reference variable FOOTBALL_PLAYER. The method contains a call to the

Chapter 3 More on objeCt-oriented abap

73

SUPER->DISPLAY_PLAYER_DETAILS method, which displays the three attribute values—

player name, height, and weight. The football club name is printed via the WRITE statement

within the redefined DISPLAY_PLAYER_DETAILS method of the football player class.

The output of the program is shown in Figure 3-4.

 Casting and Polymorphism
Related to the concept of inheritance is casting. Within the arena of inheritance and

ABAP Objects, upcasting and downcasting are both possible. Let’s take a closer look at

these concepts.

Using upcasting, a reference variable typed with reference to a subclass may

be assigned to a variable typed via reference to its direct superclass (or any of its

superclasses).

 superclass_type = subclass_type. "Upcasting

This statement is permissible because a subclass contains all components of all its

superclasses. Moreover, the interfaces of methods of a superclass cannot be changed

in subclasses. The reference variable SUPERCLASS_TYPE may then be used to address

the components visible to the given superclass. In this case, no specific functionality

added to the subclasses may be addressed. For example, any new attribute added to the

subclasses, or any new method added to the subclasses, may not be accessed using the

variable SUPERCLASS_TYPE. (We will look at a working example of upcasting and its role

in implementing polymorphism in the latter part of this section.)

On the other hand, downcasting involves assignment of a reference variable (based

on a reference of a superclass) to a reference variable typed via reference to a subclass:

subclass_type ?= superclass_type. "Downcasting

In this case, the downcasting operator ?= must be used. If we use the equals (=) sign

instead, a syntax error will occur at the time of program check.

Figure 3-4. Program output

Chapter 3 More on objeCt-oriented abap

74

Note in upcasting, we assign a reference variable to a more general reference
variable type; i.e we go up the inheritance hierarchy. on the other hand, in the case
of downcasting, the target is a more specific type (i.e., we move downward within
the inheritance tree).

Downcasting is particularly useful when we need to access components. For

example, when we have a method that is defined in the more specific subclass, but

we have a reference to superclass and not to the subclass itself. Let’s now consider the

following example (pertaining to ALV classes) in order to understand downcasting and

how to use it.

DATA: ALV TYPE REF TO CL_SALV_TABLE.

DATA: MYCOLUMNS TYPE REF TO CL_SALV_COLUMNS_TABLE.

DATA: ONE_COLUMN TYPE REF TO CL_SALV_COLUMN_TABLE.

....

....

 MYCOLUMNS = ALV->GET_COLUMNS().

 ONE_COLUMN ?= MYCOLUMNS->GET_COLUMN('COLNAME').

The GET_COLUMN method returns an instance of the CL_SALV_COLUMN class, but we

need to call the methods of the CL_ALV_COLUMN_TABLE class. For example, the SET_KEY

method used for setting a column as a key field is available in the CL_SALV_COLUMN_TABLE

class and not in CL_SALV_COLUMN. (The CL_SALV_COLUMN class is a superclass (not direct)

of the CL_SALV_COLUMN_TABLE class.)

In this case, downcasting is useful. The returned reference is assigned to the ONE_

COLUMN variable, based on CL_SALV_COLUMN_TABLE. Once the downcasting is successful,

we can call the methods that are provided via the CL_SALV_COLUMN_TABLE class using the

reference variable ONE_COLUMN. To catch any exceptions that occur during casting, we can

use the exception class CX_SY_MOVE_CAST_ERROR.

As an example, let’s add another class called Cricket_player to our PLAYER and

FOOTBALL_PLAYER example. Two objects are created, one for Football_player and the

other for the Cricket_player class. Their details are printed using a single reference

variable, based on superclass PLAYER.

Chapter 3 More on objeCt-oriented abap

75

If you redefine a given instance method in multiple subclasses, it is possible to access

the various method implementation via one reference variable, based on the superclass

type. Addressing the different implementations using a single reference variable is called

polymorphism. Upcasting may be used to implement polymorphism.

We declare another class, CRICKET_PLAYER, that is also inherited from the class

PLAYER. We add a new attribute called COUNTY_NAME with type STRING. The constructor

of this class is also added with COUNTY_NAME as an importing parameter. As with the

FOOTBALL_PLAYER class previously shown, the DISPLAY_PLAYER_DETAILS method is

redefined in the class. The definition of this class is shown here:

class cricket_player definition inheriting

 from player.

 public section.

 methods constructor importing

 name type string

 weight type p

 height type i

 county_name type string.

 methods display_player_details redefinition.

 private section.

 data : county_name type string.

endclass.

Next, within the constructor in the CRICKET_PLAYER implementation, we call SUPER-

>CONSTRUCTOR and assign the importing parameter. COUNTY_NAME to the private attribute

COUNTY_NAME defined in the class.

In the redefined method DISPLAY_PLAYER_DETAILS, we add a WRITE statement that

displays the county for which the cricketer plays, that is the COUNTY_NAME.

class cricket_player implementation.

 method constructor.

 call method super->constructor

 exporting

 name = name

 weight = weight

 height = height.

Chapter 3 More on objeCt-oriented abap

76

 me->county_name = county_name.

 endmethod .

 method display_player_details.

 call method super->display_player_details.

 write:/ 'County Name : ',

 15 me->county_name.

 endmethod .

endclass.

We then create two objects belonging to the FOOTBALL_PLAYER and CRICKET_PLAYER

classes respectively, using CREATE OBJECT statements.

data : myfootball_player type ref to football_player.

 create object myfootball_player

 exporting

 name = 'Oliver Kahn'

 weight = '95'

 height = '188'

 football_club = 'Bayern Munich'.

data : mycricket_player type ref to cricket_player.

 create object mycricket_player

 exporting

 name = 'James Reed'

 weight = '98'

 height = '178'

 county_name = 'Surrey'.

We now declare a reference variable based on the PLAYER class (the superclass of the

FOOTBALL_PLAYER and CRICKET_PLAYER classes defined earlier). We then use upcasting

to assign the created object MYFOOTBALL_PLAYER to the PLAYER variable. The method

Chapter 3 More on objeCt-oriented abap

77

of DISPLAY_PLAYER_DETAILS is then called using the reference variable PLAYER. This is

repeated for the CRICKET_PLAYER class. The code for this follows:

 data : player type ref to player.

 player = myfootball_player.

 player->display_player_details().

 player = mycricket_player.

 player->display_player_details().

The output of the program is shown in Figure 3-5.

The complete listing for the program exhibiting polymorphism is as follows:

class player definition.

 public section.

 methods constructor importing

 name type string

 weight type p

 height type i.

 methods display_player_details.

 protected section.

 data : name type string.

 data : height type i.

Figure 3-5. Program output

Chapter 3 More on objeCt-oriented abap

78

 data : weight type p decimals 2.

endclass.

class player implementation.

 method constructor .

 me->name = name.

 me->height = height.

 me->weight = weight.

 endmethod.

 method display_player_details.

 write :/ 'Player Name: ',15 me->name ,

 / 'Height : ',

 15 me->height left-justified ,

 / 'Weight :',

 15 me->weight left-justified.

 endmethod.

endclass.

class football_player definition inheriting

 from player.

 public section.

 methods constructor importing

 name type string

 weight type p

 height type i

 football_club type string.

 methods display_player_details redefinition.

 private section.

 data : football_club type string.

endclass.

class football_player implementation.

 method constructor.

 call method super->constructor

 exporting

 name = name

Chapter 3 More on objeCt-oriented abap

79

 weight = weight

 height = height.

 me->football_club = football_club.

 endmethod .

 method display_player_details.

 call method super->display_player_details.

 write:/ 'Club Name : ',

 15 me->football_club.

 skip.

 endmethod .

endclass.

class cricket_player definition inheriting

 from player.

 public section.

 methods constructor importing

 name type string

 weight type p

 height type i

 county_name type string.

 methods display_player_details redefinition.

 private section.

 data : county_name type string.

endclass.

class cricket_player implementation.

 method constructor.

 call method super->constructor

 exporting

 name = name

 weight = weight

 height = height.

Chapter 3 More on objeCt-oriented abap

80

 me->county_name = county_name.

 endmethod .

 method display_player_details.

 call method super->display_player_details.

 write:/ 'County Name : ',

 15 me->county_name.

 endmethod .

endclass.

start-of-selection.

data : myfootball_player type ref to football_player.

 create object myfootball_player

 exporting

 name = 'Oliver Kahn'

 weight = '95'

 height = '188'

 football_club = 'Bayern Munich'.

data : mycricket_player type ref to cricket_player.

 create object mycricket_player

 exporting

 name = 'James Reed'

 weight = '98'

 height = '178'

 county_name = 'Surrey'.

 data : player type ref to player.

 player = myfootball_player. “UPCASTING

 player->display_player_details().

 player = mycricket_player.

 player->display_player_details().

Chapter 3 More on objeCt-oriented abap

81

 Global Subclasses and Redefinition of Methods
We have discussed how to define and implement subclasses locally within a program.

In this section, we learn how to define global classes that are derived from other global

classes (superclasses). Let’s take a look at how to do this.

We will define a class ZST6_FOOTBALL_PLAYER_CLASS (a football player class) that

is derived from the superclass ZST6_PLAYER_CLASS. For the sake of this example, we

assume that the superclass ZST6_PLAYER_CLASS (the PLAYER class) already exists.

The global PLAYER class is similar to the one used as the superclass in the previous

example of our locally defined class. One important point to keep in mind is that the final

checkbox on the Properties tab must not be selected (see Figure 3-6). This is because we

will have to define the FOOTBALL_PLAYER subclass based on the PLAYER class.

Figure 3-6. Player class

Figure 3-7. Attributes of the player class

Three attributes (NAME, WEIGHT, and STRING) with protected visibility are defined for

the PLAYER class, as shown in Figure 3-7.

Chapter 3 More on objeCt-oriented abap

82

An instance constructor and a DISPLAY_PLAYER_DETAILS method are also defined.

The code of the constructor of the PLAYER class is shown here.

 method CONSTRUCTOR.

 me->name = name.

 me->height = height.

 me->weight = weight.

 endmethod.

The DISPLAY_PLAYER_DETAILS method will remain the same as shown earlier in the

local class example:

 method DISPLAY_PLAYER_DETAILS.

 write :/ 'Player Name: ',15 me->name ,

 / 'Height : ',15 me->height

 LEFT-JUSTIFIED ,

 / 'Weight :',15 me->weight

 LEFT-JUSTIFIED.

 ENDMETHOD.

Now comes the most important part. We will see how the inherited class is defined.

Call transaction SE24. Enter the name of the new ZST6_FOOTBALL_PLAYER_CLASS in

the field provided. Then click the Create button. Choose the option class from the small

popup box that appears and then click the Continue button. This will display the dialog

box shown in Figure 3-8.

Chapter 3 More on objeCt-oriented abap

83

Enter the description in the field provided. Then click the Save button. This will take

you to the screen shown in Figure 3-9.

Figure 3-8. Creating the football player class

Figure 3-9. Properties of the football player class

On the Properties tab, click the button. This will make the

superclass field visible and ready for input. Enter the name of the superclass in the field

provided (in our case, ZST6_PLAYER_CLASS). Then press Enter to save your entries.

Chapter 3 More on objeCt-oriented abap

84

By saving your class, you automatically fill in the Attributes and Methods tabs from

the superclass ZST6_PLAYER_CLASS, as shown in Figure 3-10.

The protected attributes of the superclass automatically appear in the Attributes tab

of the subclass. Likewise, the public methods defined within the superclass are made

available as methods of the inherited class (see Figure 3-11).

We now enter our subclass-specific FOOTBALL_CLUB attribute on the STRING type and

include the necessary description on the Attributes tab, as shown in Figure 3-12.

Figure 3-10. Attributes tab

Figure 3-11. Methods tab

Figure 3-12. Football club attribute

Chapter 3 More on objeCt-oriented abap

85

We now have a total of four attributes in the subclass (NAME, WEIGHT, HEIGHT, and

FOOTBALL_CLUB).

Next, we need to define the instance constructor of our subclass FOOTBALL_PLAYER.

Click the Constructor button . This will display the dialog box shown in

Figure 3-13.

Figure 3-13. Creating a constructor

Click the Yes button, as we need the parameters of the superclass’ constructor for the

instance constructor of our inherited class. On the parameters list, the NAME, WEIGHT, and

HEIGHT parameters will be added. Then, we will add the fourth parameter in the list of

importing parameters of our instance constructor, as shown in Figure 3-14.

Figure 3-14. Parameters of subclass instance constructor

Within the code of the constructor, the superclass constructor is called, as well

as a statement included to assign the value imported via FOOTBALL_CLUB to the

corresponding attribute of the class. The code is shown in Figure 3-15.

Chapter 3 More on objeCt-oriented abap

86

Next, we need to redefine the DISPLAY_PLAYER_DETAILS method in our inherited

class. We need to make the method “specific” to the football player class in order for it to

print the name of the football club that the player is associated with.

To redefine a method, while on the Methods tab, select the DISPLAY_PLAYER_DETAILS

method and click the button.

You will then be taken to the code editor. Add the following code to the redefined

method:

 method DISPLAY_PLAYER_DETAILS.

 CALL METHOD SUPER->DISPLAY_PLAYER_DETAILS.

 write:/ 'Club Name : ',15

 me->football_club.

 endmethod.

Once you are done, activate your subclass.

After activation, the class may be used in your ABAP programs. Objects may be

instantiated based on the newly created subclass ZST6_FOOTBALL_PLAYER_CLASS. The

code for doing so is shown here:

data : myfootball_player type ref

 to ZST6_FOOTBALL_PLAYER_CLASS.

 create object myfootball_player

 exporting name = 'Oliver Kahn'

 weight = '95'

Figure 3-15. Constructor code

Chapter 3 More on objeCt-oriented abap

87

 height = '188'

 football_club = 'Bayern Munich'.

 call method myfootball_player->display_player_details.

This will create an object for the football player and print its details, as shown earlier.

 Interfaces
In ABAP Objects, interfaces are also of importance. Interfaces may be simply defined as a

set of components (events, attributes, and methods) that may be reused (implemented)

in classes, thus may be used to extend the scope of classes. Interfaces cannot have

instances (unlike classes), but are only used to implement classes.

Interfaces only have a public section and have no implementation part. The

implementation (of the interface’s methods) is done in the various classes that

implement the interface.

You may have one class implement more than one interface. Also one interface may

be used in multiple classes. For example, we may have an interface called INT_PLAYER

that’s used in the FOOTBALL_PLAYER and CRICKET_PLAYER classes. The interfaces may

only be used in the public section of the class that implements them.

They may not be used in the private or protected sections. An interface may be

composed of one or more interfaces—these are called composite interfaces. We use the

following syntax to create an interface locally within a program:

INTERFACE int_name.

......

ENDINTERFACE.

For example, say we have an INTERFACE with the same DISPLAY comprised of a

DISPLAY_PLAYER_DETAILS method, as shown here:

INTERFACE display.

 METHODS display_player_details.

ENDINTERFACE.

The particular interface may then be used in a class using the INTERFACES keyword

within the public section of the class definition (as mentioned earlier).

Chapter 3 More on objeCt-oriented abap

88

Suppose we use this interface to extend the PLAYER class. The following code shows

how this is done:

class player DEFINITION.

 public section.

 methods constructor importing

 name type string

 weight type p

 height type i.

 INTERFACES display. ""INTERFACE used

 private section.

 data : name type string.

 data : height type i.

 data : weight type p decimals 2.

endclass.

Within the implementation of the PLAYER class, we have the code of

the DISPLAY_PLAYER_DETAILS method, as shown here:

method display~display_player_details.

 write :/ 'Player Name: ',15 me->name ,

 / 'Height : ',15 me->height

 LEFT-JUSTIFIED ,

 / 'Weight :',15 me->weight

 LEFT-JUSTIFIED.

 ENDMETHOD.

You may note how the name of the method is indicated, i.e., the name of the

interface followed by the method name, separated by a tilde (~). The tilde is also known

as the Interface component selector.

Suppose we have a class called myclass that has implemented an interface called

myinterface, and the variable classref points to an object in the myclass class. Then,

we can have an assignment:

 intref = classref.

After this, the interface reference in intref will point to the object as the class

reference in classref.

Chapter 3 More on objeCt-oriented abap

89

To call the relevant interface methods from a program, there are two possible

approaches:

• We declare two reference variables, one for the PLAYER class and the

other for the display interface. The MY_PLAYER object is then created.

We assign the MY_PLAYER object reference to the MY_DISPLAY interface

reference. The relevant method can then be called to display the

player’s details on the user screen.

data : my_display type ref to display.

data : my_player type ref to player.

create object my_player

 exporting name = 'Oliver Kahn'

 weight = '95'

 height = '188'.

my_display = my_player.

my_display->display_player_details().

• Alternatively, we declare only one variable, called MY_DISPLAY, based

on the PLAYER class. An object is created via the CREATE OBJECT

statement. We then use the MY_PLAYER reference and the interface

component selector (~) to call the DISPLAY_PLAYER_DETAILS method.

data : my_display type ref to player.

create object my_player

 exporting name = 'Oliver Kahn'

 weight = '95'

 height = '188'.

 my_player->display~display_player_details().

The result of this code is the same (i.e., the player details are displayed on the user

screen) as shown in Figure 3-16.

Chapter 3 More on objeCt-oriented abap

90

The complete listing of the program is shown here (the first approach is shown):

INTERFACE display.

 METHODS display_player_details.

ENDINTERFACE.

class player DEFINITION.

 public section.

 methods constructor importing

 name type string

 weight type p

 height type i.

 INTERFACES display.

 private section.

 data : name type string.

 data : height type i.

 data : weight type p decimals 2.

endclass.

class player IMPLEMENTATION.

 method constructor .

 me->name = name.

 me->height = height.

 me->weight = weight.

 ENDMETHOD.

 method display~display_player_details.

 write :/ 'Player Name: ',15 me->name ,

 / 'Height : ',15 me->height

Figure 3-16. Program output

Chapter 3 More on objeCt-oriented abap

91

 LEFT-JUSTIFIED ,

 / 'Weight :',15 me->weight

 LEFT-JUSTIFIED.

 ENDMETHOD.

endclass.

 START-OF-SELECTION.

 data : my_display type ref to display.

 data : my_player type ref to player.

 create object my_player

 exporting name = 'Oliver Kahn'

 weight = '95'

 height = '188'.

 my_display = my_player.

 my_display->display_player_details().

my_player->display~display_player_details().

 Creating Global Interfaces
To define global interfaces using the Class Builder, follow these steps.

 1. Call transaction SE24. Enter the name of the interface in the field

provided (in our case, Z_INTERFACE_PLAYER) and click the Create

button. The dialog box shown in Figure 3-17 appears.

Figure 3-17. Choosing the interface object type

Chapter 3 More on objeCt-oriented abap

92

 2. In this case, select the Interface checkbox and click the Continue

button. The popup box appears, as shown in Figure 3-18.

 3. Enter the description of the interface in the field provided and

click the Save button. This will take you to the screen shown in

Figure 3-19.

 4. On the Methods tab, add the DISPLAY_PLAYER_DETAILS method

as an Instance Method level with an appropriate description. Save

and activate your interface.

 5. To use the global interface in a global class definition, click on the

Interfaces tab and enter the name of the interface, as shown in

Figure 3-20.

Figure 3-18. The Create Interface dialog box

Figure 3-19. Adding methods to the interface

Chapter 3 More on objeCt-oriented abap

93

 6. Once you save your class, the Methods tab will be populated with

the Interface method (Z_INTERFACE_DISPLAY~DISPLAY_PLAYER_

DETAILS). See Figure 3-21.

Figure 3-20. Using an interface in a global class

Figure 3-21. Interface method added

 7. You can double-click on the method name. This will take you to

the editor to add the method code. Then, you can activate the

class in question.

Chapter 3 More on objeCt-oriented abap

94

A global interface can be used in global classes and global interfaces as well as

within local interfaces and local classes. For example, we may use our newly-defined

Z_INTERFACE_DISPLAY in order to extend our PLAYER class, as shown here:

class player DEFINITION.

 public section.

 methods constructor importing

 name type string

 weight type p

 height type i.

 INTERFACES Z_INTERFACE_DISPLAY. "global

 " interface Z_INTERFACE_DISPLAY.

 Abstract and Final Classes
In this section, we discuss the two important types of classes that can be defined locally

or globally using the Class Builder. You can create classes as abstract or as final.

With abstract classes, you may not create any instances. Abstract classes are defined

using the addition ABSTRACT within DEFINITION, as shown in the following syntax.

CLASS MYABSTRACTCLASS DEFINITION ABSTRACT.

ENDCLASS.

An example of an abstract class player is shown below:

class player DEFINITION abstract.

 public section.

 methods constructor importing

 name type string

 weight type p

 height type i.

 methods display_player_details.

 PROTECTED SECTION.

 data : name type string.

 data : height type i.

 data : weight type p decimals 2.

endclass.

Chapter 3 More on objeCt-oriented abap

95

If you try to create an instance of an abstract class, a syntax error results, as shown in

Figure 3-22.

With global classes, you can define an abstract class by choosing abstract as the

instance generation field on the Create Class dialog, as shown in Figure 3-23.

Figure 3-22. Syntax error on abstract class instantiation

Figure 3-23. The Create Class dialog

Chapter 3 More on objeCt-oriented abap

96

Note abstract classes cannot be instantiated, but can be inherited. Final classes
cannot be inherited, but can be instantiated.

Final classes are classes that may not be inherited, i.e. they cannot have subclasses.

They may be defined locally in a program or globally using the Class Builder. A final class

is specified locally via the addition FINAL, as shown here:

class football_player DEFINITION INHERITING

 FROM player final.

 public section.

 methods constructor importing

 name type string

 weight type p

 height type i

 football_club type string.

 methods display_player_details REDEFINITION.

 private section.

 data : football_club type string.

endclass.

With global classes, you need to check the Final checkbox on the Properties tab, as

shown in Figure 3-25.

The same field may be edited from the Properties tab, as shown in Figure 3-24.

Figure 3-24. Properties tab

Chapter 3 More on objeCt-oriented abap

97

If you try to derive a class from a FINAL class, a syntax error occurs, as shown as in

Figure 3-26.

 Friendships
Another important concept within ABAP Objects is the concept of friend classes. From

outside the class, you can only access the public components of the class in question.

The protected components are only visible to the subclasses of the given class.

In some very special cases, it may be required to grant another class access to a class’

private components. This is done by designating the class as a friend (class) to the one

whose private components are to be accessed. In this way, only friends may have access

to these invisible components. This does not grant access to any other classes.

A class A may be specified as a friend to a given class. In addition, you may specify

an interface I as a friend. In this way, all classes that implement the friend interface are

friends of the given class and may access its private, public, and protected components.

Note Friends are given access to all components of the class that offers the
friendship, irrespective of the visibility section.

Figure 3-25. Final checkbox on the Properties tab

Figure 3-26. Error on final class

Chapter 3 More on objeCt-oriented abap

98

Friendship defined between two classes is one-way. For example, if the class C1 has

a friend F1 specified in the definition, then the class C1 is not automatically the friend of

F1. If the class C1 wants to access the protected or private components of its friend F1,

then the latter must explicitly grant friendship to C1.

In addition, the friendship is not hereditary, i.e., a superclass’ friend is not a friend of

its subclasses. On the other hand, subclasses of a friend class are implicitly the friends of

the given class that granted the friendship. For example, consider the following scenario.

Suppose we have a class C1 that has a friend F1 that has subclasses F2 and F3. Once

class C1 has granted friendship to F1, F2 and F3 automatically become friends of C1 and

can access private (and protected) components of C1.

You must therefore be very cautious when granting friendship to a class.

A high- position friend class within an inheritance hierarchy means that a number of

subclasses can access the components of the class that granted friendship. In an ideal

situation, you may specify a final class as a friend class, which ensures that no other

classes are granted implicit friendship.

In order to specify the friend of a particular local class, the FRIENDS addition is used

in the class definition. After the FRIENDS keyword, the various classes and interfaces (to

which the friendship is granted) are listed. Friendship can be granted to all classes or

interfaces of the same program.

In addition to accessing the components of a class, friend classes can also create

instances of the given class that granted friendship, irrespective of whether private

instantiation has been specified in the class definition.

To specify a particular global class as a friend of another class, you must enter the

name of the former on the Friends tab, as shown in Figure 3-27.

Figure 3-27. Friends tab

Chapter 3 More on objeCt-oriented abap

99

Let’s now look at how a friendship can be created between classes. (We will look at

an example of a local friend class shortly.) Consider the following piece of code:

class friend1 definition.

 public section.

 methods display.

endclass.

class myclass definition create private friends friend1.

 private section.

 data private_int type i value 200.

endclass.

class friend1 implementation.

 method display.

 data myobject type ref to myclass.

 create object myobject.

 write : myobject->private_int.

 endmethod.

endclass.

start-of-selection.

 data friend1 type ref to friend1.

 create object friend1.

 friend1->display().

We created a class called FRIEND1 with a display method in its definition. Another

class, called MYCLASS, has a private instantiation defined with FRIEND1 specified as its

friend. This class has a private attribute PRIVATE_INT with an initial value of 200. Within

the DISPLAY method of the FRIEND1 class, an object called MYCLASS is created using a

CREATE OBJECT statement and the value of the private attribute PRIVATE_INT is then

printed. Finally, we define a reference to the FRIEND1 class and create a corresponding

object. The DISPLAY method is then called. The DISPLAY method creates an object of

MYCLASS and displays its private attribute value 200 on the user screen. If the FRIEND

addition is not specified, the following syntax error occurs when trying to create an

instance of MYCLASS within the DISPLAY method of FRIEND1. See Figure 3-28.

Chapter 3 More on objeCt-oriented abap

100

 Summary
In this chapter, we learned about inheritance and redefining of methods. We then

covered instance constructors and interfaces. A section on casting and polymorphism

was also included. We also discussed abstract and final classes. Finally, we discussed the

friendship concept within classes, along with looking at fully working coding examples.

Figure 3-28. Error related to private instantiation

Chapter 3 More on objeCt-oriented abap

101
© Rehan Zaidi 2019
R. Zaidi, SAP ABAP Objects, https://doi.org/10.1007/978-1-4842-4964-2_4

CHAPTER 4

Class Builder
Global classes are defined in the Class Builder, which has the transaction code SE24.

Global classes and interfaces can be accessed by all ABAP programs in the R/3 system.

In this chapter, we first see how we can use the Object Navigator as an alternative

transaction for creating global classes. We then move on to the Class Builder, where we

will spend some time exploring its various tabs, particularly the Methods tab. We take a

brief look at the Class Browser, and then return to the Class Builder, where we learn to

test instance methods and view some examples.

Finally, we see a number of examples using the transaction SE24 that will be tested

using the transaction itself rather than having to create a program for them.

 Transaction SE80
One easy way to create a new global class is by using the Object Navigator, which has the

transaction code SE80. The navigator is split into two areas: the navigation area and the

tool area. A screenshot of the Object Navigator is shown in Figure 4-1.

102

The left side of the window is the navigation area, and right side is the tool area.

It also makes it easy for us to use the navigation area in order to navigate through the

various components of the global class.

Follow these steps to create a global class using SE80:

 1. To create a new global class, use the context menu in the

navigation area.

 2. First select the package node or select the Class Library node

within the package and right-click it. From the context menu that

appears, choose the Create option. A dialog box will open.

 3. Input the class name and description, select the Usual ABAP Class

option, and uncheck the Final checkbox, as shown in Figure 4-2.

Click the Save button.

Figure 4-1. The Object Navigator

Chapter 4 Class Builder

103

The global class will then appear in the Class Builder (in the right pane), which you

can find in the tool area of the Object Navigator. It will display various tabs like Interface,

Attributes, Methods, etc., as you can see in Figure 4-3.

Figure 4-2. Create Class dialog box

Figure 4-3. Creating a class

Chapter 4 Class Builder

104

Here, we can define any new method and its parameters, the class attributes, and

other components. The steps from this point on are the same as the ones when using the

transaction SE24.

 The Class Builder and Its Features
As mentioned earlier, transaction SE24 is the main global Class Builder. With this

transaction, we can create, display, and modify global classes and interfaces. Together,

these form the Central Class Library, which is accessible throughout the SAP system.

Class Builder is used to define or create new custom global classes. It may be used to

modify the existing custom SAP ABAP classes and interfaces. Using the Class Builder, it

is also possible to implement inheritance of classes and the redefining of the inherited

methods.

To create a new global class or interface, start the name with Y or Z (the convention

followed for all custom developments). This will distinguish it from a standard class or

interface.

We may use the transaction SE24 to display the standard SAP classes. Now, let’s

look at one of the standard ABAP classes. Let’s take the example of CL_ABAP_REGEX. We

start with the initial screen of the Class Builder. The Class Builder (SE24) initial screen is

shown in Figure 4-4.

Figure 4-4. Class Builder

Chapter 4 Class Builder

105

Enter the name of the CL_ABAP_REGEX class in the Object Type field (see Figure 4-5)

and click Display.

The screen—with the Properties, Interfaces, Friends, Attributes, Methods, Events,

Types, and Aliases tabs—appears. See Figure 4-6.

Figure 4-5. Class Builder with a standard SAP class

Figure 4-6. Display mode

These methods can be called from any ABAP program.

Chapter 4 Class Builder

106

 Class Builder Tabs
A global class includes several components, all of which have a visibility—public, private

or protected. The various tabs on the Class Builder are shown in Figure 4-7.

The tabs on the Class Builder transaction SE24 are as follows:

• Properties. This tab includes the properties, such as a short

description of the class, the name of the user who created it, the date

of the last change by a user, the package name, etc.

• Interfaces. This shows the list of interfaces that the class implements.

• Attributes. In this tab, we specify the list of attributes of the class.

Attributes include data, constants, and types.

• Methods. The tab has two subtabs: Parameters and Exceptions.

Parameters include importing, exporting, changing, and returning.

These may be based on any data types or dictionary types, or may

refer to any objects. Exceptions are exceptional situations that do not

allow a method to proceed normally during execution. These may

be raised within the code and may be used to avoid the method from

resulting in a runtime error (and short dump).

• Events. On this tab, we can define several events for the class.

A corresponding method can be triggered when an event occurs.

Figure 4-7. Global class methods

Chapter 4 Class Builder

107

• Types. On this tab, we define or declare any user-defined

types, which we can then use in method parameters. To declare a

user- defined type, go to the Types tab and input the type name, its

visibility, an associate type, and a description, then click Save. See

Figure 4-8.

When you click on the direct type entry icon (the yellow arrow),

it will take you to the ABAP editor where the type is declared. You

can now use this user-defined type in the method parameters.

TYPES lty_num1 TYPE any.

TYPES lty_num2 TYPE any.

• Aliases. On this tab, we can declare any aliases. These are only

used in conjunction with interfaces and may be used to form short

names to components existing in an interface that is implemented by

a given class.

 Useful Functions of the Class Builder
In this section, we discuss the various functions within the Class Builder.

 Where-Used Lists
This is one of the functions used in the Class Builder as well as in the methods of a class.

As its name suggests, the where-used list shows every place (in a program, class or

enhancement) where a class or method is used.

Figure 4-8. Types tab

Chapter 4 Class Builder

108

To create a where-used list for a class (e.g., CL_SALV_TABLE), go to Utilities ➔

Where- Used List (CTRL+Shift+F3), as shown in Figure 4-9.

Figure 4-9. Creating a where-used list

A dialog box will appear with the class/interface name CL_SALV_TABLE, as shown in

Figure 4-10. Select the top three options to see which program or classes/interfaces use

them, then click to continue.

Chapter 4 Class Builder

109

A dialog box appears with a message, as shown in Figure 4-11. Click Yes.

Figure 4-10. Where-Used List dialog box

Figure 4-11. Confirm your where-used list

The output will display a hit list showing each place the CL_SALV_TABLE class is used

or defined in the program. In this case, there are around 149 programs using this class.

From this hit list, you can select the location of the object’s exact usage.

In this way, the where-used list function makes it easy for us to search for any object

in programs. See Figure 4-12.

Chapter 4 Class Builder

110

To create a where-used list for methods, go to the CL_SALV_TABLE class, go to the

DISPLAY method, and click on the where-used list icon (the yellow icon with a tree

structure), which you can see in Figure 4-13.

Figure 4-12. Hit list

Figure 4-13. Where-used list icon

A dialog box will appear with the class/interface and method name with the selected

option program, classes, and BSP application, as shown in Figure 4-14.

Chapter 4 Class Builder

111

Click Continue. A hit list will then appear. In this example, you can see that the

Display method is used in 96 programs, as shown in Figure 4-15.

Figure 4-14. Where-Used List dialog box

Figure 4-15. Hit list

Chapter 4 Class Builder

112

To check where the method is used, double-click on an object name. This will take

you to the exact location where it is used, as shown in Figure 4-16.

 Useful Buttons on the SE24 Tab

Every SE24 tab (methods, attributes, and interfaces) features buttons like Insert, Delete,

Copy, Sort, Detail View, Documentation, etc. The following is a brief description of some

of these buttons.

• Insert method. The green icon shown in Figure 4-17 is used to

add methods. Here, we are adding the GET_PRIMENUMBERS method to

a class.

Figure 4-16. Method display used location

Figure 4-17. Add Method icon

Chapter 4 Class Builder

113

• Delete method. The red icon shown in Figure 4-18 is used to delete

a method. Here, we are deleting the GET_PRIMENUMBERS method from

the column.

 Class Browser
This is used to display all the global classes and interfaces or business objects in the class

library. The transaction code is CLABAP. We can do this via the Class Builder, or we can

use the transaction CLABAP directly.

You’ll find a screen with the options All Classes and Business Objects, as shown in

Figure 4-19.

Figure 4-18. Delete Method icon

Figure 4-19. SAP easy access screen

Chapter 4 Class Builder

114

Choose the All Classes option. You’ll get a screen showing all the standard SAP

global classes and interfaces, as you can see in Figure 4-20.

The other way to access the class browser is through the Class Builder (SE24). Go

to SE24, click on Utilities, and select Class Browser. A similar dialog box of options will

appear, as shown in Figure 4-21, and you can search through the classes and interfaces.

Figure 4-20. All classes screen

Figure 4-21. Class Browser screen

 Testing Classes in SE24
The Class Builder allows you to test your class and its methods without creating a test

program. The test function within the class lets you specify test data and check the

behavior of both static and instance methods. These may contain table parameters or not.

Chapter 4 Class Builder

115

In this section, we look at a number of examples that will be tested via SE24.

 Testing a Static Method
Let’s look at the steps needed to test a static method. To serve as the example, we will

create a class called ZMY_PERCENTAGE to calculate the percentage of the two inputted

numbers.

Go to SE24 and input the class name ZMY_PERCENTAGE. Click on the Create option, as

shown in Figure 4-22.

Figure 4-22. Inputting a class name

Choose the Class option from the dialog box that appears and then press Enter.

The dialog box shown in Figure 4-23 will appear. Input the description, select the

Usual ABAP Class option, uncheck the Final checkbox, and click the Save button.

Chapter 4 Class Builder

116

Now, go to Method and select the Parameters tab. Input MYNUMBER1 and MYNUMBER2

as the importing parameters of type INTEGER and input CALC_PERCENT as an exporting

parameter of type INTEGER. This is shown in Figure 4-25. Click Save.

A new screen will appear. Input the method name as CALC_PERCENT and select Static

Method for the level. Set the visibility to public and enter a description, as shown in

Figure 4-24.

Figure 4-23. Creating a class

Figure 4-24. Setting the class description

Figure 4-25. Method parameters

Chapter 4 Class Builder

117

Go back to Method to implement source code for CALC_PERCENT. Select the method

by clicking on it. You’ll get the screen shown in Figure 4-26.

Here, we have written the logic of the program to calculate percentage. Now, check

the syntax for errors using the check option (or CTRL+F2), save (CTRL+S) every element

of the class, and activate the class (CTRL+F3).

To test the static method CALC_PERCENT of the ZMY_PERCENTAGE class, follow

these steps:

 1. Click the button. This will take you to the screen shown in

Figure 4-27.

Figure 4-26. Source code screen

Figure 4-27. Testing ZMY_PERCENTAGE

Chapter 4 Class Builder

118

 2. We do not need to create an instance of the object since we have

to test a static method (in our case, CALC_PERCENT). Simply click

the next to the method.

 3. This will take you to the input screen of the method, where the

importing parameters will be shown. Enter suitable test values for

the MYNUMBER1 and MYNUMBER2 parameters and click the button

on the toolbar. This will display the output of the returning

parameter PERCENTAGE, as shown in Figure 4-28.

Figure 4-28. Percentage output

The equivalent code for calling the static method created earlier is shown in the

code, as follows.

PARAMETERS: p_num1 TYPE i ,

 p_num2 TYPE i.

DATA cal_percent TYPE i.

CALL METHOD zmy_percentage=>calc_percent

 EXPORTING

 mynumber1 = p_num1

 mynumber2 = p_num2

 IMPORTING

 cal_percent = cal_percent.

WRITE: 'Percentage =', cal_percent.

Chapter 4 Class Builder

119

In this code, we are again calculating percentage through an ABAP program. We’ve

declared the P_NUM1 and P_NUM2 parameters of type string, so that we can take the input

values from the selection screen. The result is stored in CAL_PERCENT, which is of the

integer type.

We have now called the CALC_PERCENT method from a ZMY_PERCENTAGE class, which

calculates the percentage. The importing parameters of the MYNUMBER1 and MYNUMBER2

methods are exported with P_NUM1, P_NUM2, and CAL_PERCENT stored as the result.

 Testing Instance Methods
Now let’s look at a simple example of testing pertaining to instance methods.

We will create the class to calculate the cubic value of a number. In this code, we

will use the constructor method to calculate the cubic value of the inputted number

(importing parameter of the constructor) and set the cubic value as an attribute of the

class. We will then use the Class Builder to instantiate an object of the class and calculate

the cubic value. Let’s see how this is done.

Go to the SE24 Class Builder, input the object type name ZCL_MY_CUBE_CALCULATOR,

and click on Create, as shown in Figure 4-29.

Figure 4-29. Creating a cube class

Chapter 4 Class Builder

120

Go to the Methods tab and input the method name CONSTRUCTOR, then press Enter. A

constructor symbol is created, showing you that this is a constructor method, as you can

see in Figure 4-30. For the constructor, choose a visibility of Public.

Figure 4-30. Constructor method

Go to the CONSTRUCTOR method you’ve just created and click on the Specifying

parameters. Input the parameter name MYNUMVALUE, type integer, as shown in Figure 4-31.

Figure 4-31. Specifying parameters

Figure 4-32. Attributes tab

Select the Attributes tab and input the attribute name MYCUBICVALUE. Set it as an

instance attribute with public visibility of type integer, as shown in Figure 4-32.

Chapter 4 Class Builder

121

Go back to the method constructor and double-click on it. Write the logic of the code

to calculate the cube of the input number, as shown in Figure 4-33.

Save the class and activate all the elements of the class.

Once the class is activated, we can execute the constructor method using the Test

feature of the Class Builder.

From the Class Builder, click the button or use the F8 key. The Create Instance

screen appears, as shown in Figure 4-34.

Figure 4-33. Calculation code

Figure 4-34. Create Instance screen

Here, you will be provided space to enter value(s) for the importing parameter(s) of

the constructor. In our case, there is only one parameter—MYNUMVALUE.

We will enter a value of 10 in the input field and click the button on the

toolbar. This will create an instance of the class and will assign a value equal to the

inputted number’s cube value of the MYCUBICVALUE attribute, as shown in Figure 4-35.

Chapter 4 Class Builder

122

In short, you’ll get the cube of the number stored in the given attribute, without the

need to develop a test program with relevant coding.

E

We will now see another example—a bank account demo—where will test

instance methods (other than the constructor) using the functions of the Class Builder.

As an example, we will use a bank account for bank customers. The class we will use is

ZCL_MY_ACCOUNT_DEMO.

This class has the private instance attribute called BALANCE, based on the type BETRG.

We will use this to store the customer’s account balance at any given time. This attribute

is shown in Figure 4-36.

Figure 4-35. Cubic value calculated

Figure 4-36. Account attributes

The class also has three methods, all of which have public visibility, as shown in

Figure 4-37. The methods are DEPOSIT_MONEY, WITHDRAW_MONEY, and SET_ACCOUNT_

BALANCE.

Chapter 4 Class Builder

123

The methods are defined as follows:

• DEPOSIT_MONEY. This method adds a deposit to the current balance

and returns the new one. The importing parameter is AMOUNT_

DEPOSITED of type BETRG, and the returning parameter is NEW_BALANCE

of type BETRG, as shown in Figure 4-38.

Figure 4-37. Class methods

Figure 4-38. Method deposit balance

Chapter 4 Class Builder

124

• SET_ACCOUNT_BALANCE. This method sets the balance with the

new amount when money is added to the account. The importing

parameter is NEW_BALANCE of type BETRG, as shown in Figure 4-39.

• WITHDRAW_MONEY. When an amount is withdrawn from the balance,

this method returns the new amount. The importing parameter is

AMOUNT_WITHDRAWN of type BETRG, and the exporting parameter is

NEW_BALANCE of type BETRG, as shown in Figure 4-40.

Figure 4-39. NEW_BALANCE method

Chapter 4 Class Builder

125

To test the object, activate all the elements of the global class and click on the Test

button. The screen shown in Figure 4-41 appears.

Figure 4-40. Debit amount method

Figure 4-41. Testing the object

Chapter 4 Class Builder

126

Click on SET_ACCOUNT_BALANCE and set the balance to the new balance amount, as

shown in Figure 4-42.

Figure 4-42. Setting the new balance

Click Execute. The account balance is now set, and you will return to the previous

screen.

Go to DEPOSIT_MONEY and enter the deposit amount as 200, as shown in Figure 4-43.

Figure 4-43. Setting the new balance

Chapter 4 Class Builder

127

Click the Execute button. The output of this method is shown in Figure 4-44.

As you can see in Figure 4-44, the new balance in the account is 100,200.

Figure 4-44. Setting the new balance

Let’s withdraw 99,000 from the current balance. We can see this step in Figure 4-45.

Figure 4-45. Setting the new balance

Chapter 4 Class Builder

128

As you can see in Figure 4-46, the balance remaining in the account is 1,200.

 Testing Methods Using Table Parameters
Up to this point, we have seen methods with parameters having single values. It is

also possible to test methods that have table parameters via transaction SE24. We will

demonstrate with for an example that displays an employee list from SAP standard table

PA0002. The steps are as follows:

 1. Create a global class named ZCL_EMPLOYEES, as shown in

Figure 4-47.

Figure 4-46. Setting the new balance

Figure 4-47. Global class ZCL_EMPLOYEES

Chapter 4 Class Builder

129

 2. Declare the instance attributes with visibility set to public in

the Attributes tab. P_BEGDA and P_ENDDA are used to select the

employee start date and end date. WA_PA0002 is a work area, and

IT_PA0002 is a table. You can see this step in Figure 4-48.

Figure 4-48. Declaring instance attributes

 3. In the Methods tab, declare the instance methods

as GET_EMPLOYEES and DISPLAY_EMP, with public visibility. The

GET_EMPLOYEES method will list the entries in an internal table,

and DISPLAY_EMP will display the employee details. You can see

this step in Figure 4-49.

Figure 4-49. Methods tab

 4. To write the logic for the code, double-click on the GET_EMPLOYEES

method. This will take you inside the method. Here, we select all

the data from table PA0002 and insert it into table IT_PA0002. You

can see this step in Figure 4-50.

Chapter 4 Class Builder

130

 5. In the DISPLAY_EMP method, use the LOOP AT statement to display

all the records, as shown in Figure 4-51.

Figure 4-50. Writing the code

Figure 4-51. Using the LOOP AT statement

 6. Activate all the elements of the global class and test the class.

 7. On the screen, you need to input the employee start date and end

date, as you can see in Figure 4-52.

Chapter 4 Class Builder

131

 8. When you click the Execute button from the GET_EMPLOYEES

method, it will give you a number of entries in the internal table

IT_PA0002, as shown in Figure 4-53.

Figure 4-52. Selection screen

Chapter 4 Class Builder

132

Figure 4-53. Internal table

 9. When you execute the DISPLAY_EMP method, it will display all the

records, as shown in Figure 4-54.

Chapter 4 Class Builder

133

Equivalent code to call this method from a program is shown here:

REPORT ZCL_EMPLOYEES.

PARAMETERS: p_begda TYPE begda,

 p_endda TYPE endda.

DATA: obj_emp TYPE REF TO ZCL_EMPLOYEES.

CREATE OBJECT obj_emp.

CALL METHOD obj_emp->get_employees.

CALL METHOD obj_emp->display_emp.

Figure 4-54. Record display

Chapter 4 Class Builder

134

The output of this code is shown in Figure 4-55.

Here, we want to fetch all the employee records from table PA0002. We have declared

the parameters P_BEGDA and P_ENDDA. Data OBJ_EMP refers to class ZCL_EMPLOYEES.

Now, we create an object called OBJ_EMP, which has instance attributes, and we call the

GET_EMPLOYEES and DISPLAY_EMP methods to get the required output, which is shown in

Figure 4-56.

Figure 4-55. Output

Figure 4-56. Output

Chapter 4 Class Builder

135

 Summary
In this chapter, we saw how we can use the Object Navigator to create global classes.

We then explored the various tabs of the Class Builder, particularly the Methods tab. We

discussed the Class Browser, and other useful options of the transaction SE24. Finally,

we saw a number of examples using the transaction SE24 that could be tested using the

transaction itself rather than having to create a program for them.

Chapter 4 Class Builder

137
© Rehan Zaidi 2019
R. Zaidi, SAP ABAP Objects, https://doi.org/10.1007/978-1-4842-4964-2_5

CHAPTER 5

Exceptions, Shared,
and Persistent Objects
In this chapter, we cover some special topics and techniques that will help you create

better programs and respond to users’ requirements.

We start with a brief introduction of exception and exception handling as applied

to ABAP Objects. We then see how we can create persistent objects in object-oriented

ABAP. Finally, we learn about the theory and working code for shared objects.

These are some of the topics that this chapter will address:

• Exception handling and exception classes

• Singleton classes

• Persistent objects

• Shared memory objects

 Exception Handling and Exception Classes
An important concept related to ABAP Objects is the exception class. You can create your

own exception class. In this section, we learn how to create our own exception class and

use it in an ABAP program.

During program execution, certain erroneous situations may arise and interrupt

normal processing. In such situations, exceptions are raised. These may either be

generated by the ABAP runtime environment or triggered explicitly through coding. If a

suitable handler is not found for the exception, a runtime error occurs. Typical examples

include arithmetic overflow, memory consumption problems, or a syntax error in a SQL

statement.

138

Developers must use their understanding to judge situations that may allow the

program to halt specific to their program. For example, in our player class scenario, if we

try to create a football player who weighs 0 (zero) kg, the object must not be created and

an exception must be raised.

Within ABAP Objects, it is best practice to use class-based exceptions. Exception

classes are special classes that allow you to handle exceptional (erroneous) situations.

They may be defined globally in the Class Builder or defined locally within a program.

In addition to the standard exception classes, you can also create your own exception

classes and use them in your programs. It is possible to define text related to the

exceptions, which may be short or more descriptive and long. These descriptors provide

more details about the error that has occurred. It is possible to create text based on an

OTR (Object Text Repository), or you may base your exception text on messages residing

in the message classes.

An exception class has to be a subclass of one of the standard classes CX_STATIC_

CHECK, CX_DYNAMIC_CHECK, or CX_NO_CHECK, which are all derived from the CX_ROOT class.

For exceptions derived from CX_STATIC_CHECK, the exception must either be handled

via TRY and CATCH statements or passed along via declaration in a method’s interface

using the RAISING clause. The handling of such exceptions is checked by the compiler.

If an exception is not handled locally within a method and not declared in the method’s

interface, a syntax warning is generated.

The CX_DYNAMIC_CHECK category refers to exceptions that are not checked by the

complier during syntax check. They “may” be declared in the methods interface via the

RAISING clause. If these exceptions are not handled within a method or propagated to

the caller via RAISING, a runtime error occurs during program execution.

For the CX_STATIC_CHECK and CX_DYNAMIC_CHECK categories, if the exceptions

are declared in a method’s interface using a RAISING clause, the exception passes the

method interface at runtime, if the exception is not handled within the method itself.

The exception classes that are subclasses of CX_NO_CHECK can be handled within

a method, or otherwise are automatically forwarded. They must not be declared in

the interface of methods, and they do not result in any syntax check warnings. If such

exceptions are not handled within a call hierarchy, they are assigned to the top-most

call level. If they are not handled there, a runtime error occurs. A typical example of this

category is a situation involving resource bottlenecks.

Chapter 5 exCeptions, shared, and persistent objeCts

139

 RAISE and TRY .. ENDTRY Statements
The RAISE EXCEPTION statement is used to raise an exception. This statement may be

used in the method of a class. The syntax of the RAISE statement is as follows:

raise exception type zcx_player_exception.

After RAISE EXCEPTION, we specify the exception class using the TYPE keyword (in

the example, it is ZCX_PLAYER_EXCEPTION). If the exception is not caught in the program,

a runtime error occurs.

A RAISE statement may also have exporting parameters. For example, you may pass

HEIGHT as a parameter to the RAISE statement.

raise exception type zcx_player_exception

exporting height = height .

The TRY...ENDTRY block is used for exception handling in our program, as follows:

 TRY.

...

 CATCH zcx_player_exception INTO

 EXCEPTION_OBJECT.

...

 ENDTRY.

Within the block, we first write the set of statements (for example, creation of a

player object) that may trigger an exception. The exception class is specified using the

CATCH statement. The CATCH block is an exception handler. When the exception specified

within the TRY block occurs, the code after CATCH statement is executed. (If all goes well,

and no exception is raised, this code is not executed.) When the exception is raised, an

exception object gets generated at runtime (based on the exception class specified). The

reference to the exception object is stored in the reference variable MY_EXCEPTION_OBJ.

Suppose we have an exception raised within a program and the exception is not

caught in the program at runtime. In this case, a short dump will occur stating that the

exception was raised but not caught in the program.

Chapter 5 exCeptions, shared, and persistent objeCts

140

 Resumable Exceptions
The code syntax shown in this section is for non-resumable exceptions. It is also possible

to raise resumable exceptions. In this case, the coding may slightly vary.

 Creating an Exception Class

In this section, we learn how to define a global exception class.

We will create an exception class called ZCX_MY_EXCEPTION that will be used for our

PLAYER class that we defined earlier.

To define an exception class, call transaction SE24. The screen shown in Figure 5-1

appears.

Enter the name of the class in the field provided. The name of the exception class

should begin with ZCX or YCX. If this naming connection is not followed, an error is

displayed, as shown in Figure 5-2.

Figure 5-1. Entering the exception class name

Chapter 5 exCeptions, shared, and persistent objeCts

141

Once the correct name is entered and you click the Create button, the dialog box

shown in Figure 5-3 will be displayed.

Make sure that the CX_DYNAMIC_CHECK class is entered in the Superclass field. Enter

a suitable description in the Description field. For the Inst. Generation, choose Public

from the listbox. In addition, make sure that the Exception class radio button is switched

on and that the With Message Class checkbox is not selected. Once you are done with

the settings, click the Save button to proceed.

Figure 5-2. Error due to improper naming

Figure 5-3. Create an exception class

Chapter 5 exCeptions, shared, and persistent objeCts

142

 Public Instantiation

If you do not check public instantiation, an error occurs when trying to use the exception

in a RAISE statement from outside the class.

The Methods tab will look like the one shown in Figure 5-4.

Two important methods—GET_TEXT and GET_LONGTEXT—are added to our

exception class. In addition, the constructor of the exception class is also generated.

The parameters of the constructor correspond to the parameters of the RAISE statement

used to trigger the exceptions. If an attribute is added to our exception class, the attribute

parameter will appear as a parameter of the constructor.

Likewise, the Attributes tab will look like the one shown in Figure 5-5. We will add

a HEIGHT attribute to our exception class. This is because when the RAISE statement is

called, we will pass the height of the invalid player in order to be displayed with the long

exception text.

This adds the HEIGHT attribute as a parameter to the constructor of the exception

class, as shown in Figure 5-6.

Figure 5-4. Methods of an exception class

Figure 5-5. Adding HEIGHT to the exception class attributes

Chapter 5 exCeptions, shared, and persistent objeCts

143

If no text is defined for your exception class, when an exception occurs in a program

and is caught via a CATCH statement in a TRY.. ENDTRY block, you will see the text An

Exception occurred of the CX_ROOT class.

Next, we will define the short and the long text for the exception ID. This text is

stored in the OTR of the system (as we unchecked the With Message Class checkbox

while creating the class). To define the text, click on the Texts tab. Then, for the ZCX_

PLAYER_EXCEPTION class, enter the text Player Height Invalid, as shown in Figure 5-7.

Next, we will define the long text for the exception. Place the cursor on the name of

the class (in our case, ZCX_MY_EXCEPTION) and then click the long text button. The long

text editor will appear, as shown in Figure 5-8.

Figure 5-6. HEIGHT parameter

Figure 5-7. Defining exception text

Chapter 5 exCeptions, shared, and persistent objeCts

144

Enter the text as shown in Figure 5-8. Since we will also be displaying the HEIGHT

attribute in the long text, we have included it in ampersands. This will serve as the

placeholder of the height passed as a parameter of the RAISE statement. At runtime if

an exception raised, the height along with the other text shown is generated as long text

(we will see the output in the latter part of this chapter).

Once you have completed all the steps, save and activate your exception class.

 Using Message Classes for Exception Class Text
In addition to the option of specifying texts (created in the OTR), it is also possible to use

the text residing in existing message classes. In order to do so, you must make sure that

the With Message Class checkbox on the Create Class dialog of the exception class is on,

as shown in Figure 5-9.

Figure 5-8. Entering long text for an exception

Chapter 5 exCeptions, shared, and persistent objeCts

145

Once this is done, the following steps are required:

 1. Click the Texts tab while you are in Change mode for the exception

class using transaction SE24. Then, click the

button. The dialog appears, as shown in Figure 5-10.

Figure 5-9. Choosing the With Message Class option

Figure 5-10. Assign attributes to a message

Chapter 5 exCeptions, shared, and persistent objeCts

146

 2. Enter the name of the message class and the message number

for the exception text. Press Enter. Once this is done, the message

appears in the Message Text field. Choose a suitable attribute

from the exception class that has to be displayed within the text

specified via the placeholders (&). In our example, we selected

the HEIGHT attribute. When you are done, select the Change

button. You can then see that the relevant message text along

with the HEIGHT attribute is shown as the text of the exception

class (see Figure 5-11).

 A Working Example
In this section, we learn how the exception class that we defined can be used for

exception handling in ABAP programs.

Note We will use the exception class ZCX_PLAYER_EXCEPTION that we created
earlier to make sure that, for our PLAYER class, no PLAYER object is created with
a height less than 50 cm. We can assume that the Without Message class has
been used.

We first add RAISING ZCX_PLAYER_EXCEPTION to the constructor of the PLAYER class.

This is optional. No syntax warning will be generated if this is not done, as our exception

class is based on the CX_DYNAMIC_CHECK class.

class player definition.

 public section.

 methods constructor importing

 name type string

Figure 5-11. The Texts tab

Chapter 5 exCeptions, shared, and persistent objeCts

147

 weight type p

 height type i

 raising zcx_player_exception.

 methods display_player_details.

 protected section.

 data : name type string.

 data : height type i.

 data : weight type p decimals 2.

endclass.

We will make a small change to the constructor of the PLAYER class. We will use the

raise exception ZCX_PLAYER_EXCEPTION via a RAISE statement if the height of the player

to be created is less than 50. The height is also supplied as a parameter in the RAISE

statement. The code in this case is as follows:

class player implementation.

 method constructor .

 if height lt 50.

 raise exception

 type zcx_player_exception

 exporting height = height .

 endif.

 me->name = name.

 me->height = height.

 me->weight = weight.

 endmethod.

......

endclass.

Next, we will use the CREATE OBJECT statement to attempt to create a player 1 cm tall.

The block of code is enclosed within a TRY.. ENDTRY block.

The CREATE OBJECT statement results in the constructor being called that raises the

ZCX_PLAYER_EXCEPTION exception. The height supplied as the parameter (in our case,

1 cm) is also an exporting parameter of the RAISE statement (see the constructor code

in the PLAYER class implementation).

Chapter 5 exCeptions, shared, and persistent objeCts

148

 try .

 create object my_player

 exporting

 name = 'Wrong Player'

 weight = '80'

 height = '1'. "" Height is wrong

 catch zcx_player_exception into exception_obj.

 short_text = exception_obj->get_text().

 long_text = exception_obj->get_longtext().

 write / : short_text , long_text.

 endtry.

The PLAYER object is not created. Rather, the exception object is generated at

runtime, whose reference is stored in the EXCEPTION_OBJ variable. The GET_TEXT and

GET_LONGTEXT methods are called to return the short and long text of the exception,

respectively. SHORT_TEXT and LONG_TEXT are then outputted to the user screen. (If the

exception is not caught in the program, a short dump occurs.)

The output of the program is shown in Figure 5-12.

The complete code listing is shown as follows:

class player definition.

 public section.

 methods constructor importing

 name type string

 weight type p

 height type i

 raising zcx_player_exception.

 methods display_player_details.

 protected section.

 data : name type string.

Figure 5-12. Program output

Chapter 5 exCeptions, shared, and persistent objeCts

149

 data : height type i.

 data : weight type p decimals 2.

endclass.

class player implementation.

 method constructor .

 if height lt 50.

 raise exception

 type zcx_player_exception

 exporting height = height .

 endif.

 me->name = name.

 me->height = height.

 me->weight = weight.

 endmethod.

 method display_player_details.

 write :/ 'Player Name: ',

 15 me->name ,

 / 'Height : ',

 15 me->height left-justified ,

 / 'Weight :',

 15 me->weight left-justified.

 endmethod.

endclass.

start-of-selection.

 data : my_player type ref to player,

 exception_obj type ref to

 zcx_player_exception,

 short_text type string,

 long_text type string.

 try .

 create object my_player

 exporting

Chapter 5 exCeptions, shared, and persistent objeCts

150

 name = 'Wrong Player'

 weight = '80'

 height = '1'. "" Height is wrong

 catch zcx_player_exception into exception_obj.

 short_text = exception_obj->get_text().

 long_text = exception_obj->get_longtext().

 write / : short_text , long_text.

 endtry.

 Singleton Classes
A singleton is simply defined as a class that has a maximum of one instance created by

the user of an internal session. Any attempt to create a second instance must not be

allowed and results in an error saying, for example, that “an object already exists”. It is

possible to create a singleton class locally or globally in the Class Builder.

In this section, we learn how to create a singleton design pattern class using a static

method and static attributes. For simplicity’s sake, we will create a class locally in a

program.

We will start with the definition of a class (we will name it BEST_PLAYER based on

the PLAYER class we used earlier). In the definition, the addition CREATE PRIVATE is

added. This will ensure that instances of the given class may be created only inside the

class. Any attempt to instantiate from outside the class or instantiate from subclasses is

disallowed when the CREATE PRIVATE addition is used.

In addition to the CREATE PRIVATE addition, we will use a static attribute OBJECT,

which is a reference variable based on the BEST_PLAYER class. (The single instance of the

class is referred to by the OBJECT variable.) We also have a static method called CREATE_

OBJECT that takes the importing parameters NAME, WEIGHT, and HEIGHT and returns

R_OBJECT a reference to the BEST_PLAYER class. The definition of the class is as follows:

class best_player definition create private.

 public section.

 class-methods create_object

 importing name type string

 weight type p

 height type i

Chapter 5 exCeptions, shared, and persistent objeCts

151

 returning value(r_object) type ref to

 best_player.

 methods constructor importing

 name type string

 weight type p

 height type i.

 methods display_player_details.

 private section.

 class-data object type ref to best_player.

 data : name type string.

 data : height type i.

 data : weight type p decimals 2.

endclass.

Next, we write the implementation of the class. In the implementation, we write the

code of the CREATE_OBJECT method, in which we first check whether the static attribute

OBJECT is already bound (i.e., instantiated) or not. If it is already bound, no new object

is created and a message saying "Best Player Already exists, no new object

created" is displayed.

If the OBJECT attribute is not bound yet, we create the object via the CREATE OBJECT

statement (exporting the necessary parameters NAME, HEIGHT, and WEIGHT). The reference

of the created object is assigned to the returning parameter R_OBJECT.

class best_player implementation.

 method create_object.

 if object is not bound.

 create object object

 exporting

 name = name

 height = height

 weight = weight.

 else.

 write :/ 'Best Player Already exists',

 'no new object created'.

Chapter 5 exCeptions, shared, and persistent objeCts

152

 endif.

 r_object = object.

 endmethod.

......

......

To create an object of the BEST_PLAYER class and display its details, we call the static

method CREATE_OBJECT. Since this method returns the reference to the BEST_PLAYER

class, the DISPLAY_PLAYER_DETAILS method may be chained in the same statement to

write the details of the player on the screen. The code is as follows:

 best_player=>create_object(

 name = 'Player' weight = '80'

 height = '100')->display_player_details().

Since it is the first time that the CREATE_OBJECT method is called, the BEST_PLAYER

object is successfully created and the relevant details are displayed on the user screen

as shown.

If the block of code is executed again, no new object is created. A message appears,

and the details of the same player object are displayed.

The complete code for the singleton class BEST_PLAYER is as follows.

class best_player definition create private.

 public section.

 class-methods create_object

 importing name type string

 weight type p

 height type i

 returning value(r_object) type ref to

 best_player.

 methods constructor importing

 name type string

 weight type p

 height type i.

 methods display_player_details.

 private section.

Chapter 5 exCeptions, shared, and persistent objeCts

153

 class-data object type ref to best_player.

 data : name type string.

 data : height type i.

 data : weight type p decimals 2.

endclass.

class best_player implementation.

 method create_object.

 if object is not bound.

 create object object

 exporting

 name = name

 height = height

 weight = weight.

 else.

 write :/ 'Best Player Already exists',

 'no new object created'.

 endif.

 r_object = object.

 endmethod.

 method constructor .

 me->name = name.

 me->height = height.

 me->weight = weight.

 endmethod.

 method display_player_details.

 write :/ 'Player Name: ',

 15 me->name ,

 / 'Height : ',

 15 me->height left-justified ,

 / 'Weight :',

 15 me->weight left-justified.

 endmethod.

Chapter 5 exCeptions, shared, and persistent objeCts

154

endclass.

start-of-selection.

 best_player=>create_object(

 name = 'Player' weight = '80'

 height = '100')->display_player_details().

 skip.

 best_player=>create_object(

 name = 'Player' weight = '80'

 height = '100')->display_player_details().

 Persistent Objects
By default, objects in ABAP are transient in nature, i.e., they are alive in memory until

the execution time of the program. However, it is also possible to store the attributes of

an object in the database. The persistence service for ABAP Objects lets you achieve this.

These objects are called persistent objects and the class on which they are based is known

as a persistence class. In this section, we learn how to define a persistent class.

Persistent classes are defined globally in the Class Builder transaction SE24. Before

creating a persistent class, we need to define a database table that is used to store the

attributes of the object in question. The fields of the table must correspond to the

attributes of the class whose objects are to be stored in the database.

Note there are three options for storing persistent objects, including using
business keys, GUids, and using a combination of GUid and business keys. For
simplicity‘s sake, we will build an object using the business key option.

Let’s use the PLAYER class example that we defined earlier and define a similar table

in the database. In addition to the NAME, WEIGHT, and HEIGHT attributes, we will add

PLAYERID as the key field, as shown in Figure 5-13.

Chapter 5 exCeptions, shared, and persistent objeCts

155

Prior to defining this table, we created data elements and domains pertaining to the

player ID, weight, height, and name.

We will now create a persistence class. Call the transaction SE24. The screen shown

in Figure 5-14 appears.

Figure 5-13. Database table for storing persistent objects

Figure 5-14. Class Builder

Enter a suitable name in the field provided (in our case, ZCL_PLAYER_PERSISTENT)

and click the Create button. The Create Class dialog box appears. Choose the Persistent

Class option, as shown in Figure 5-15.

Chapter 5 exCeptions, shared, and persistent objeCts

156

Enter a suitable description and click the Save button.

This will take you to the screen shown in Figure 5-16. As you can see, a number of

methods are available in our newly defined persistence class.

As a developer, we can only modify the HANDLE_EXCEPTION and INIT methods. In

contrast to other classes, a button appears on the application toolbar. Click

the Persistence button to display a popup dialog box, as shown in Figure 5-17.

Figure 5-15. Persistent Class option

Figure 5-16. Methods of the persistent class

Chapter 5 exCeptions, shared, and persistent objeCts

157

Enter the name of the database table (in our case, ZPLAYER_TAB) that you defined

earlier. You will then be taken to the mapping editor. The top part of the mapping editor

is initially empty (i.e., it contains no fields), as shown in Figure 5-18.

In the lower part of the mapping editor, the table’s (that we have added) fields are

listed, as shown in Figure 5-19.

We need to specify the fields from the database table that will be included as

attributes of the persistence class. For each field of the table, double-click the table field

line in the lower part of the screen. The name of the field and other details then appear

in the editable fields (shown in Figure 5-20).

Figure 5-17. Specifying a table

Figure 5-18. Mapping editor (persistence representation)

Figure 5-19. Fields of the table

Chapter 5 exCeptions, shared, and persistent objeCts

158

Then, click the Set Attribute Values button to include the field as an attribute of

the persistence class.

The upper part will change, as shown in Figure 5-21.

As you can see, we added PLAYERID as an attribute of the persistence class. In this

example, we created mapping based on business keys, where the Class Builder generates

key attributes based on the key field(s) of the database table used to define the mapping.

(The key attribute of the class is mapped to the key field of the underlying database

table.) For the Player ID in this case, we will see a different icon denoting that this is the

key field.

Repeat the step until all the fields are transferred to the top of the editor, as shown in

Figure 5-22.

Figure 5-20. Selecting PLAYERID

Figure 5-21. PLAYERID included as a key attribute

Chapter 5 exCeptions, shared, and persistent objeCts

159

The lower area will be blank since all the fields have been transferred to the top

portion.

Once this is done, save and activate the class. Upon activation, the system

asks whether the class actor should be activated. Click the Yes button to continue

(see Figure 5-23).

Three classes are generated once the persistence class is activated. The first is the

Zcl_Player_Persistent persistent class that we created. In addition, the system also

creates an actor class called ZCA_PLAYER_PERSISTENT. One additional base class called

ZCB_PLAYER_PERSISTENT, which is the superclass of the actor, is also created.

The purpose of mapping is to define the relationship between the database table

fields and the class attributes. Once mapping is complete, the mapped fields are

included in the attributes of the persistence class (see Figure 5-24).

Figure 5-22. Class/attributes of the persistent class

Figure 5-23. Class actor activation popup

Chapter 5 exCeptions, shared, and persistent objeCts

160

The base agent class called ZCB_PLAYER_PERSISTENT is created as a friend of our

persistent class ZCL_PLAYER_PERSISTENT, as shown in Figure 5-25.

Our ZCL_PLAYER_PERSISTENT class has a number of methods. There are SET and

GET methods for each non-key attribute of the class. For the player ID, no SET method is

created since the player ID is the key field. This is because the value of the key field may

not be changed once an object is created.

The agent class, in our case ZCA_PLAYER_PERSISTENT, has many important methods

for the creation, deletion, and retrieval of object data stored in the database (we will see

later how these methods are used).

 Storing and Reading Persistent Objects
In this section, we learn how to use simple code in order to store object attributes (of our

persistent PLAYER class) in the database, as well as how to read them in your programs.

As mentioned, the agent class has important methods, such as CREATE_PERSISTENT and

GET_PERSISTENT, that create and read database table records based on the persistent

class attributes.

Figure 5-24. Attributes of the persistent class

Figure 5-25. Friend class of the ZCL_PLAYER_PERSISTENT class

Chapter 5 exCeptions, shared, and persistent objeCts

161

To store persistent objects, we first declare references to our persistence class

ZCL_PLAYER_PERSISTENT and our actor class ZCA_PLAYER_PERSISTENT.

data : player type ref to zcl_player_persistent.

data : agent type ref to zca_player_persistent.

We then access the AGENT object using the static attribute AGENT of the actor class

ZCA_PLAYER_PERSISTENT.

agent = zca_player_persistent=>agent.

Using the AGENT object, we call the CREATE_PERSISTENT method and pass as

parameters the attribute values for the player ID. The object player is created and the

reference is returned in the parameter PLAYER.

The SET_NAME, SET_HEIGHT, and SET_WEIGHT methods are then called for the PLAYER

object in order to assign appropriate values to NAME, HEIGHT, and WEIGHT, respectively.

Finally, the COMMIT WORK statement is used to store the player attributes in the database

table (in our case, ZPLAYER_TAB). Any exception caught is in the TRY..ENDTRY block using

the CATCH statement.

Once the code is executed, we can see that the corresponding record has been

created in the database (see Figure 5-26).

The complete code listing is shown as follows:

data : player type ref to zcl_player_persistent.

data : agent type ref to zca_player_persistent.

agent = zca_player_persistent=>agent.

try.

 call method agent->create_persistent

Figure 5-26. Attributes stored in the ZPLAYER_TAB table

Chapter 5 exCeptions, shared, and persistent objeCts

162

 exporting

 i_playerid = '00000002'

 receiving

 result = player.

 call method player->set_name

 exporting

 i_name = 'Oliver Kahn'.

 call method player->set_weight

 exporting

 i_weight = '88'.

 call method player->set_height

 exporting

 i_height = '188'.

 commit work.

 catch cx_os_object_existing .

endtry.

Once the record is created, we can use a similar code fragment to read the stored

data into our programs. Appropriate variables are defined for the NAME and WEIGHT

attributes.

The GET_PERSISTENT method of the agent class is used in this case and is supplied

with a player ID (in our case, 00000002). We use the GET_NAME and GET_WEIGHT methods

for the PLAYER object in order to read the NAME and WEIGHT of the player. The values are

then displayed on the user screen.

The code for this is as follows.

data : player type ref to zcl_player_persistent.

data : agent type ref to zca_player_persistent.

data : name type zplayer_tab-name.

data : weight type zplayer_tab-weight.

agent = zca_player_persistent=>agent.

try.

 call method agent->get_persistent

 exporting

 i_playerid = '00000002'

Chapter 5 exCeptions, shared, and persistent objeCts

163

 receiving

 result = player.

 name = player->get_name().

 weight = player->get_weight() .

 write : name, weight.

 catch cx_os_Object_not_found.

endtry.

 Shared Memory Objects
Using shared memory objects, you can store instances of your classes in the shared

memory of the application server. (The attributes of these objects are stored in the

application server.) The benefit of this is that all ABAP programs running on the server

can access this data.

There are two classes that must be defined in order to use shared memory. These are

the area class (defined automatically while creating a shared memory area) and the root

class. The root class is the class whose instances (instance’s attributes) will be stored in

the shared memory. The root class must be created before the area is created.

There are a few steps required to make a shared memory area. Before that, we must

create our root class. Call transaction SE24. The screen in Figure 5-27 appears.

Figure 5-27. Specifying a root class name

Chapter 5 exCeptions, shared, and persistent objeCts

164

We need to enter a suitable name for the root class (in our case, we use ZCL_MY_

PLAYER_ROOT_CLASS) in the field provided. Then click the Create button.

Enter a suitable description in the dialog box that appears and click the Save button.

Once the class is created, click on the Properties tab. Under General Data, check the

Shared Memory-Enabled indicator, as shown in Figure 5-28.

On the Attributes tab of our root class, enter the attributes of the PLAYER class.

These are the attributes whose values will be stored in the shared memory area on the

application server (as shown in Figure 5-29).

 The GET_DATA and SET_DATA Methods
The GET_DATA and SET_DATA methods will be used for reading and writing data to the

shared memory area.

Next, we create two methods—SET_DATA and GET_DATA—as shown in Figure 5-30.

Figure 5-28. Shared-Memory Enabled property

Figure 5-29. Root class attributes

Chapter 5 exCeptions, shared, and persistent objeCts

165

The parameters of SET_DATA are shown in Figure 5-31.

There are three importing parameters—NAME, WEIGHT, and HEIGHT—that represent

the player. As the name suggests, SET_DATA is used to assign the imported values

(NAME, WEIGHT, and HEIGHT) to the corresponding attributes of the PLAYER root class

(see Figure 5-32).

Figure 5-30. The SET_DATA and GET_DATA methods

Figure 5-31. Parameters of the SET_DATA method

Figure 5-32. SET_DATA method code

Chapter 5 exCeptions, shared, and persistent objeCts

166

Next, we specify the parameters of the GET_DATA method. The method takes as an

importing parameter the name of the player. It also has two exporting parameters—

HEIGHT and WEIGHT—as shown in Figure 5-33.

We then write the code in the GET_DATA method. We have an IF statement that

checks if the imported name of the player is the same as the attribute name of the object

in consideration. If this is true, the WEIGHT and HEIGHT of the object are returned using

the appropriate exporting parameters.

 method GET_DATA.

 if name eq me->name.

 weight = me->weight.

 height = me->height.

 else.

 write 'No data for given player'.

 endif.

 endmethod.

Next, we create the shared memory area. (As mentioned, successful creation of the

area will create an area class.) In order to create a shared memory area, call transaction

SHMA. The screen shown in Figure 5-34 appears.

Figure 5-33. Parameters of the GET_DATA method

Chapter 5 exCeptions, shared, and persistent objeCts

167

Enter a suitable name for the shared memory area into the field provided and click

the Create button. This will take you to the screen shown in Figure 5-35, where you must

enter the necessary attributes of the shared memory area.

 Additional Settings

It is also possible to make an area “client-specific” by choosing the appropriate indicator.

In addition, if you’ll need write changes to the area only when the next database commit

occurs, the Transactional Area property must be set.

Figure 5-34. Area creation transaction

Figure 5-35. Specifying properties for the shared memory area

Chapter 5 exCeptions, shared, and persistent objeCts

168

Enter a suitable description for your area in the description field. Within the

Attributes, enter the name of the root class you created earlier (in our case, ZCL_MY_

PLAYER_ROOT_CLASS) in the field provided. Under Fixed Properties, make sure the With

Versioning checkbox is on. Click the Save button.

The area class is generated with the same name as the area defined, i.e. ZMY_PLAYER_

SHARED_AREA. This class is derived from the CL_SHM_AREA superclass and has a number

of attributes and methods. Via transaction SE24, you may see the area class. It’s shown in

Figure 5-36.

On the Methods tab, there are a number of useful methods that will be used to store

the object attributes, as well as read the object from shared memory.

 Versioning Switched On
A shared memory area may consist of a number of instances. (This is different from the

instance of a shared memory enabled class.) There may be multiple versions of an area

instance, such as Build, Active, Obsolete, and Expired, when versioning is applicable.

When data is first being written on an area instance (or being changed), a Build version

is created. When the build process is completed, and the write or update locks are

released, the version being built becomes an Active version. There can be only one Active

version at any given time. In addition, only one change lock may be set on a particular

area instance. Any program that tries to read an area instance will automatically

impose a read lock on the current active version. While an active version is being

read, another new version may be built via a write/change lock. Once the new version

Figure 5-36. Area class

Chapter 5 exCeptions, shared, and persistent objeCts

169

build is completed, it is set as Active, and the version being read is set as Obsolete. Any

subsequent read locks will be now be set on the new Active version. Once the read on an

obsolete version is completed and the read lock is released, the obsolete version is set as

Expired, which is later deleted by the system.

 Writing and Reading Data Into Shared Memory
In this section, we learn how to write simple code in order to store objects in shared

memory.

We will first look at the code for writing into the shared memory area. We must define

two variables—AREA_ROOT and PLAYER_HANDLE—based on the area class and the root class

created earlier (in our case ZMY_PLAYER_SHARED_AREA and ZCL_MY_PLAYER_ROOT_CLASS).

We then use the static ATTACH_FOR_WRITE method of the shared area class to get a

handle on the instance within the area (we named it PLAYER_INST). This sets a write lock

to the area instance. We then use CREATE OBJECT to create an instance of the root class

PLAYER_ROOT in the area instance pointed to by the handle AREA_HANDLE. The SET_ROOT

method is then called to link the root object with the area handle. (This is an important

step, as the subsequent SET_DATA method for writing data to the shared area instance

will not work.) Next, the SET_DATA method of the PLAYER_ROOT class is called. Finally, the

DETACH_COMMIT method is called using the AREA_HANDLE to complete the writing process

(to commit the changes to the database) and release the write lock imposed on the area

instance PLAYER_INST.

Chapter 5 exCeptions, shared, and persistent objeCts

170

Once the program is executed, we can see the shared memory area (in our case ZMY_

SHARED_PLAYER_AREA) using the transaction SHMM, as shown in Figure 5-37.

This area has one instance of which one version exists—the Active version (denoted

by the green square icon in the right-most column).

Double-clicking the row will take you to the details shown in Figure 5-38.

The name of the instance we created is PLAYER_INST and it’s shown along with the

versions and the occupied size in bytes.

Figure 5-37. Shared memory areas and SHMM

Figure 5-38. Area instances

Chapter 5 exCeptions, shared, and persistent objeCts

171

In addition to writing data to memory, it is also possible to read data from the shared

memory area instance into your program. The code pertaining to our PLAYER_INST

example is as follows.

data : area_handle type ref to

 zmy_player_shared_area.

data : weight type i.

data : height type i.

try.

 call method

 zmy_player_shared_area=>attach_for_read

 exporting

 inst_name = 'PLAYER_INST'

 receiving

 handle = area_handle.

 call method area_handle->root->get_data

 exporting

 name = 'Oliver Kahn'

 importing

 weight = weight

 height = height.

 call method area_handle->detach().

 write : 'Oliver Kahn' , weight, height.

 catch cx_shm_attach_error.

 write : 'Error While Reading '.

endtry.

We first declare appropriate variables for WEIGHT and HEIGHT, which will be read from

the shared area. The static method ATTACH_FOR_READ of the area class ZMY_PLAYER_SHARED_

AREA is called to impose a read lock on the area instance PLAYER_INST and return an area

handle. Using this handle, the GET_DATA method of the root is then called in order to read

the weight and height of the player whose name is specified via parameter NAME. After this,

the DETACH method is called and the read lock set on the area instance is released.

The data read from the shared memory area is then displayed on the screen, as

shown in Figure 5-39.

Chapter 5 exCeptions, shared, and persistent objeCts

172

 Summary
We saw the basics of exception and exception handling as applied to ABAP Objects,

along with a fully working demo. We covered how we can create persistent objects in

object-oriented ABAP. Finally, we learn about the theory and saw real working code of

shared objects.

Figure 5-39. Output of player weight and height

Chapter 5 exCeptions, shared, and persistent objeCts

173
© Rehan Zaidi 2019
R. Zaidi, SAP ABAP Objects, https://doi.org/10.1007/978-1-4842-4964-2_6

CHAPTER 6

More Topics in
Object- Oriented ABAP
In this chapter, we cover many diverse and useful object-oriented topics. The lessons

have been designed to build on each other, with each one progressing and layering the

information and skills.

I start with a discussion of the NEW operator (introduced in NetWeaver 7.40) used

to create objects. I will then discuss using an ALV object model to create reports. We

discuss the various ALV classes and methods along with a practical coding demo. Next,

you will see how chaining methods enables you to write compact code. An example

of ALV- related code written in conjunction with chaining methods is included. I then

cover object-oriented transactions followed by the Refactoring Assistant tool in the

Class Builder. A detailed discussion of the various ways a class can be enhanced is also

included. At the end of the chapter, you will learn about a number of constructs and

statements in detail that are not allowed in the ABAP Objects arena.

 Using the New Operator to Create an Object
Starting with NetWeaver 7.4, ABAP allows creation of objects via the NEW operator. This

operator provides an alternate to the CREATE OBJECT statement. There are a number of

ways in which it may be used for object instantiation. The NEW operator may be used to

create instances of local and global classes.

174

Before we look at the actual coding, let’s go through the general syntax for the NEW

operator. For object creation, the NEW operator may be used in the following two ways:

 1. Used in conjunction with a class name. The construct for this is:

 DATA MYOBJ TYPE REF TO MYCLASS.

 MYOBJ = NEW myclass(param1 = val1

 param2 = val2

 ...

 paramN = valN).

Using the inline declaration supported by ABAP 7.40, the above

form may be written in one single statement, as shown here:

DATA(MYOBJ) = NEW myclass(

 param1 = val1

 param2 = val2

 ...

 paramN = valN).

In both cases, the NEW operator is used in conjunction with the

class name. This will create an instance of class MYCLASS and

assign to the reference variable MYOBJ. In the latter case, there is

an implicit declaration of MYOBJ based on class MYCLASS (where

the type of MYOBJ is derived from the content of the right side

of the assignment). If the constructor of the class has mandatory

importing parameters, the corresponding data must be passed to

the instance constructor within the parentheses shown.

 2. Used with # character. Another form is via usage of the NEW

operator with the # character. The syntax form is shown as follows:

 DATA MYOBJ TYPE REF TO MYCLASS.

 MYOBJ = NEW #(param1 = val1

 param2 = val2

 ...

 paramN = valN).

Chapter 6 More topiCs in objeCt- oriented abap

175

We declare a MYOBJ variable referred to the MYCLASS class. Since

we have already declared a reference variable based on the class

in question, there is no need to specify the class again with the NEW

operator. Instead of the class name, the # character can be used.

Any non-optional parameters are provided in parentheses, as

shown earlier.

To better understand how to use the two forms of the NEW operator, let’s look at a few

examples. We will use the global football player class called ZST6_FOOTBALL_PLAYER_

CLASS that we defined earlier in the book.

Consider the following code block (this is a pre-ABAP 7.40 version):

DATA FOOTBALL_PLAYER

 TYPE REF TO ZST6_FOOTBALL_PLAYER_CLASS.

CREATE OBJECT FOOTBALL_PLAYER

" Without NEW Operator

 EXPORTING

 NAME = 'Oliver Kahn'

 WEIGHT = '88'

 HEIGHT = '178'

 FOOTBALL_CLUB = 'Bayern Munich'.

FOOTBALL_PLAYER->DISPLAY_PLAYER_DETAILS().

We created an object of the global class using the CREATE OBJECT statement. The

DISPLAY_PLAYER_DETAILS method was then called in order to print the details of the

created football player. This block of code was earlier used to create a football player object.

We will now see two ways that we can instantiate the object using the NEW operator

(and not the CREATE OBJECT statement). The block of code shown in the previous listing

may be replaced with the following:

DATA(FOOTBALL_PLAYER) =

NEW ZST6_FOOTBALL_PLAYER_CLASS(NAME = 'Oliver Kahn'

 WEIGHT = '88'

 HEIGHT = '178'

 FOOTBALL_CLUB = 'Bayern Munich').

FOOTBALL_PLAYER->DISPLAY_PLAYER_DETAILS().

Chapter 6 More topiCs in objeCt- oriented abap

176

We used the inline declaration of FOOTBALL_PLAYER along with the NEW operator in a

single statement. This involves the implicit definition of FOOTBALL_PLAYER as a reference

of the ZST6_FOOTBALL_PLAYER_CLASS class. In this case, we did not have to declare a

variable based on a separate statement. An object for the given class is created and the

reference variable FOOTBALL_PLAYER may then be used to display the player details.

Let’s look at another piece of code that uses the NEW operator in conjunction with the

character. The corresponding code is shown here:

DATA: FOOTBALL_PLAYER

 TYPE REF TO ZST6_FOOTBALL_PLAYER_CLASS.

FOOTBALL_PLAYER = NEW #(NAME = 'Oliver Kahn'

 WEIGHT = '88'

 HEIGHT = '178'

 FOOTBALL_CLUB = 'Bayern Munich').

FOOTBALL_PLAYER->DISPLAY_PLAYER_DETAILS().

In this form, we declare a reference variable FOOTBALL_PLAYER for the ZST6_

FOOTBALL_PLAYER_CLASS class. We use the NEW operator to create an object of the given

class. Instead of specifying the name of the class, we used the # character. The reference

to the newly created object is assigned to the FOOTBALL_PLAYER variable. The values for

the various importing parameters are supplied as shown earlier. The complete class

name is not required, as the system automatically detects it from the type of the variable

to which the created object’s reference is assigned (in our case, FOOTBALL_PLAYER).

The following block of code pertaining to our requirement will be unacceptable, as

the class whose object is to be created is unknown:

DATA(FOOTBALL_PLAYER) =

 NEW #(NAME = 'Oliver Kahn'

 WEIGHT = '88'

 HEIGHT = '178'

 FOOTBALL_CLUB = 'Bayern Munich').

"""""" NOT ALLOWED

FOOTBALL_PLAYER->DISPLAY_PLAYER_DETAILS().

In this code, the error appears, as shown in Figure 6-1. An error results since the type

(class name) of the football player object cannot be determined.

Chapter 6 More topiCs in objeCt- oriented abap

177

 ALV Object Model
In this section, we look at one of the most popular and commonly used applications of

ABAP Objects in everyday usage.

For reporting, I recommended that you do not use list creation techniques via WRITE

statements. Rather, you should use the ALV or the ABAP/SAP List Viewer to output data

to the user. ALV provides a number of advantages, including:

• It provides a number of functions. The programmer does not have

to program these functions. These functions include sorting,

filtering, etc.

• The user may also save layouts.

There are three major standard classes used for ALV display. However, in this

section, we will use the CL_SALV_TABLE – Table display class to fulfill a simple

requirement.

Along with the global CL_SALV_TABLE class, there are a number of other classes that

are used in order to generate the output. The important methods of these classes are

shown in Table 6-1.

Figure 6-1. Syntax error using the NEW operator

Chapter 6 More topiCs in objeCt- oriented abap

178

We will take a detailed look at the other classes (and the methods) used in

conjunction with CL_SALV_TABLE to create the solution.

We will create a report based on the ALV format. The report will display, for a

number of players, information such as name, weight, and height.

We assume that the data is outputted to an ALV format and stored in the IT_PLAYER

table, as shown here:

 TYPES : BEGIN OF TY_PLAYER,

 NAME TYPE CHAR20,

 HEIGHT TYPE I ,

 WEIGHT TYPE I,

 END OF TY_PLAYER.

DATA : WA_PLAYER TYPE TY_PLAYER,

 IT_PLAYER TYPE STANDARD TABLE OF TY_PLAYER.

Table 6-1. Methods for ALV- Related Classes

Class Methods

CL_SALV_TABLE FACTORY

DISPLAY

GET_COLUMNS

GET_FUNCTIONS

CL_SALV_FUNCTIONS SET_ALL

CL_SALV_COLUMNS SET_OPTIMIZE

CL_SALV_COLUMN_TABLE SET_MEDIUM_TEXT

SET_SHORT_TEXT

SET_LONG_TEXT

SET_OUTPUT_LENGTH

Chapter 6 More topiCs in objeCt- oriented abap

179

We then define references to the ALV object, the ALV function object, and the

columns objects. The CL_SALV_TABLE, CL_SALV_FUNCTIONS, and CL_SALV_COLUMNS_

TABLE classes are involved. The variables defined are ALV, FUNCTIONS, and COLUMNS,

 respectively.

DATA : ALV TYPE REF TO CL_SALV_TABLE,

 FUNCTIONS TYPE REF TO CL_SALV_FUNCTIONS,

 COLUMNS TYPE REF TO CL_SALV_COLUMNS_TABLE.

Next, we use the static factory method of the CL_SALV_TABLE class to create the

ALV object. The internal table IT_PLAYER is passed as a parameter to this method. The

reference to the newly created ALV object is then returned in the variable ALV (this was

defined in the previous step).

 CALL METHOD CL_SALV_TABLE=>FACTORY

 IMPORTING

 R_SALV_TABLE = ALV

 CHANGING

 T_TABLE = IT_PLAYER.

We then call the GET_COLUMNS method of the CL_SALV_TABLE to get the columns

object for the ALV object. This is then returned to the variable define earlier. We then use

the SET_OPTIMIZE method provided by the standard CL_SALV_COLUMNS_TABLE class. This

is used to optimize the width of the various columns included in the display.

 COLUMNS = ALV->GET_COLUMNS().

 COLUMNS->SET_OPTIMIZE().

Similarly, the GET_FUNCTIONS of the CL_SALV_TABLE are called. The returned

parameter is assigned to the FUNCTIONS variable declared earlier. We then call SET_ALL of

the CL_SALV_FUNCTIONS class to enable the standard toolbar functions of the ALV:

 FUNCTIONS = ALV->GET_FUNCTIONS().

 FUNCTIONS->SET_ALL().

Since everything is done, we just need to display the ALV on the user screen. The

method DISPLAY of the CL_SALV_TABLE class is used to display the data:

 ALV->DISPLAY().

Chapter 6 More topiCs in objeCt- oriented abap

180

The output of the ALV is shown in Figure 6-2.

The output does not have proper column headers. In the next subsection, we add

column header texts for the three displayed columns-player, weight, and height.

 Adding Header Texts to ALV Columns
In this subsection, we will now add header text to the columns of our ALV output, i.e., the

three created columns—Name, Weight, and Height. The SET_LONG_TEXT, SET_MEDIUM_

TEXT, and SET_SHORT_TEXT methods of CL_SALV_COLUMN_TABLE are used for this purpose.

We first declare a COLUMN variable based on the CL_SALV_COLUMN_TABLE class. The

COLUMNS object is then used along with the GET_COLUMN method of the CL_SALV_COLUMNS_

TABLE class. The result of this method is stored in the COLUMN variable. The SET_MEDIUM_

TEXT, SET_LONG_TEXT, and SET_SHORT_TEXT methods are then called to specify the

column headers in the ALV output. The (?=) operator is used for this purpose.

The code for this is shown here:

DATA : COLUMN TYPE REF TO CL_SALV_COLUMN_TABLE.

....

 COLUMNS = ALV->GET_COLUMNS().

 COLUMN ?= COLUMNS->GET_COLUMN('NAME').

 COLUMN->SET_MEDIUM_TEXT('Player Name').

 COLUMN->SET_SHORT_TEXT('Pl. Name').

 COLUMN->SET_LONG_TEXT('Player Name').

 COLUMN->SET_OUTPUT_LENGTH('25').

Figure 6-2. ALV output

Chapter 6 More topiCs in objeCt- oriented abap

181

 COLUMN ?= COLUMNS->GET_COLUMN('WEIGHT').

 COLUMN->SET_MEDIUM_TEXT(").

 COLUMN->SET_SHORT_TEXT(").

 COLUMN->SET_LONG_TEXT('Weight').

 COLUMN ?= COLUMNS->GET_COLUMN('HEIGHT').

 COLUMN->SET_MEDIUM_TEXT(").

 COLUMN->SET_SHORT_TEXT(").

 COLUMN->SET_LONG_TEXT('Height').

Note For simplicity’s sake, separate blocks of statements for each column are
shown. You can modularized the code in order to avoid repetition of the similar
statements.

Once this is done, the program code will look like this:

types : begin of ty_player,

 name type char20,

 height type i,

 weight type i,

 end of ty_player.

data : wa_player type ty_player,

 it_player type standard table of ty_player.

data : alv type ref to cl_salv_table,

 functions type ref to cl_salv_functions,

 columns type ref to cl_salv_columns_table.

data : column type ref to cl_salv_column_table.

"" Internal Table IT_PLAYER population part not shown

""

try.

 call method cl_salv_table=>factory

 importing

 r_salv_table = alv

Chapter 6 More topiCs in objeCt- oriented abap

182

 changing

 t_table = it_player.

 functions = alv->get_functions().

 functions->set_all().

 columns = alv->get_columns().

 column ?= columns->get_column('NAME').

 column->set_medium_text('Player Name').

 column->set_short_text('Pl. Name').

 column->set_long_text('Player Name').

 column->set_output_length('25').

 column ?= columns->get_column('WEIGHT').

 column->set_medium_text(").

 column->set_short_text(").

 column->set_long_text('Weight').

 column ?= columns->get_column('HEIGHT').

 column->set_medium_text(").

 column->set_short_text(").

 column->set_long_text('Height').

 alv->display().

 catch cx_salv_msg.

 write: / 'Problem while generating ALV Output'.

endtry.

After adding the column headers, the output of the program (along with the data) is

shown in Figure 6-3.

Chapter 6 More topiCs in objeCt- oriented abap

183

 Method Chaining
A newer concept that has evolved is method chaining. This involves combining calls of

functional methods (i.e., methods that have one returning value as output). The chaining

of methods makes the code more compact and allows requirements to be met without

the need for additional reference variables. There are two types of chaining possible:

chained method access and chained method call. (The primary emphasis of this section

is on chained method access.) Let’s take a look at what each means.

In chained method access, there could be two forms, as shown here:

obj_ref->inst_meth_a(..)->inst_meth_b(..)->inst_meth(..).

class=>static_meth_a(..)->inst_meth_b(..)->inst_meth(..).

The return value of one functional method is a reference to an object that is used to

call the next method in the chain. The returning value of the last method is used as an

operand.

In this case, the first use may be a class component selector (=>) or an object

component selector (->). After that, all the methods are called using the component. Or,

in other words, the first method may be a static or an instance method; other than that,

you must have all functional instance methods.

Chained attribute access, on the other hand, is similar to chained method calls. In

this case, the instance attribute is used as an operand.

The chained attribute access may be one of the following forms:

obj_ref->inst_meth_a(..)->inst_meth_b(..)->inst_attr.

class=>static_meth_a(..)->inst_meth_b(..)->inst_attr.

Figure 6-3. Final player output

Chapter 6 More topiCs in objeCt- oriented abap

184

The return value of the last method (INST_METH_B) must refer to the object that

contains the INST_ATTR attribute. In this case, the return values of the previous

functional methods are variables that refer to objects for the next method.

As an example of method chaining, consider the previous block of code that we used

in our ALV example earlier, shown here:

 data : functions type ref to cl_salv_functions.

 functions = alv->get_functions().

 functions->set_all().

Method chaining can be applied in this case. These three lines can be replaced with

a single line of code, as shown here:

alv->get_functions()->set_all().

There is also no need to define the FUNCTIONS variable, and the coding is very

compact.

Let’s look at one more example of method chaining. Going back to our football

example involving the NEW operator:

DATA: FOOTBALL_PLAYER TYPE REF TO ZST6_FOOTBALL_PLAYER_CLASS.

FOOTBALL_PLAYER = NEW #(NAME = 'Oliver Kahn'

 WEIGHT = '88'

 HEIGHT = '178'

 FOOTBALL_CLUB = 'Bayern Munich').

FOOTBALL_PLAYER->DISPLAY_PLAYER_DETAILS().

We can combine the NEW operator shown earlier and method chaining. The previous

block of code can be written more compactly, as shown here:

NEW ZST6_FOOTBALL_PLAYER_CLASS(

 NAME = 'Oliver Kahn'

 WEIGHT = '88'

 HEIGHT = '178'

FOOTBALL_CLUB = 'Bayern Munich')->DISPLAY_PLAYER_DETAILS().

Chapter 6 More topiCs in objeCt- oriented abap

185

 Object-Oriented Transactions
An object-oriented transaction is a transaction (defined via SE93) that may be linked

to a method of a class. When the transaction is called, the method gets executed

automatically. The transaction may be linked to a global or a local class residing in your

SAP system. The method used may be both static and instance. If the underlying method

is an instance method, the object of the class is instantiated within the internal session in

which the transaction is run.

In this section, we learn how to create an object-oriented transaction.

We will create an object-oriented transaction called ZPLAYER that will be used to

create and display instances of a local PLAYER class (defined in Chapter 1).

Before actually creating the transaction via SE93, we will carry out some prerequisite

steps. This is to ensure that a callable method exists for our transaction.

We will create a copy of the program shown in Chapter 1. We will name the copy

program ZOOTRANSACTION_DEMO. In this program, we will add a class creator with

definition and implementation shown here:

class creator definition.

 public section.

 class-methods create_display_players.

endclass.

class creator implementation.

 method create_display_players.

 data : player1 type ref to player.

 data : player2 type ref to player.

 create object player1

 exporting

 name = 'John Mann'

 country = 'Germany'

 club = 'Bayern Munich'.

 create object player2

 exporting

 name = 'Paul Goldberg'

Chapter 6 More topiCs in objeCt- oriented abap

186

 country = 'Britain'

 club = 'Liverpool'.

 player=>display_list_of_players() .

 endmethod.

endclass.

We have defined a new class called CREATOR with a static method called CREATE_

DISPLAY_PLAYERS that will be used to instantiate two instances of the local class PLAYER

using the CREATE OBJECT statements. Finally, within the method, we will call the static

method DISPLAY_LIST_OF_PLAYERS to display the players on the user screen.

We will modify the DISPLAY_LIST_OF_PLAYERS method in order to display the list in

ALV format instead of using traditional WRITE statements (for simplicity’s sake, this code

is not shown but may be easily written using the concept shown earlier in this chapter).

Since we have completed all the prerequisite steps, let’s now create the transaction.

To define an object-oriented transaction, call transaction SE93. The screen shown in

Figure 6-4 appears.

Figure 6-4. Entering the transaction code

Chapter 6 More topiCs in objeCt- oriented abap

187

Then click the Create button. This will display the dialog box shown in Figure 6-5.

Enter a suitable description for the transaction. Make sure that the third option

(Method of a Class OO Transaction) is selected. Then click the Continue button.

This will take you to the screen shown in Figure 6-6.

Figure 6-5. Choosing the OO Transaction option

Chapter 6 More topiCs in objeCt- oriented abap

188

Enter a suitable name for the transaction in the Transaction Text field. Make sure

to uncheck the OO Transaction Model checkbox. Since we will be using a local class

defined in the program, check the Local in Program checkbox. Fill in the Class Name and

Method Name fields as well (refer to Figure 6-6 again).

Once all the settings are done, save your newly created transaction.

When we execute the transaction, the output is generated, as shown in Figure 6-7.

Figure 6-6. Specifying OO transaction settings

Figure 6-7. Output of the OO transaction

When the transaction in ZPLAYER is executed, the static method CREATE_DISPLAY_

METHOD of the CREATOR class is automatically called. The method creates two objects of

the PLAYER class by the names PLAYER1 and PLAYER2. For each object, the NAME, COUNTRY,

and CLUB attributes are assigned values via the corresponding parameters of the

 constructor.

Chapter 6 More topiCs in objeCt- oriented abap

189

Finally, the static method DISPLAY_LIST_OF_PLAYERS of the PLAYER class is called in

order to display the created players in ALV format on the screen.

The complete code listing is shown in Listing 6-1.

Listing 6-1. Complete Program Listing

report zootransaction_demo.

class player definition deferred.

types: ty_player type ref to player.

class player definition.

 public section.

 methods write_player_details.

 methods constructor importing name type string

 country type string

 club type string.

 class-methods display_list_of_players.

 private section.

 data name type string.

 data country type string.

 data club type string.

 class-data: players_list type standard

 table of ty_player.

endclass.

class player implementation .

 method write_player_details.

 skip.

 write :/ 'Name :', me->name.

 write :/ 'Country :', me->country.

 write :/ 'Club :', me->club.

 endmethod.

 method constructor.

 me->name = name.

 me->country = country.

Chapter 6 More topiCs in objeCt- oriented abap

190

 me->club = club.

 append me to players_list.

 endmethod.

 method display_list_of_players.

 types : begin of ty_player,

 name type char20,

 country type char20,

 club type char20,

 end of ty_player.

 data : wa_player type ty_player,

 it_player type standard table of ty_player.

 data : alv type ref to cl_salv_table,

 functions type ref to cl_salv_functions,

 columns type ref to cl_salv_columns_table.

 data : temp_player type ref to player.

 loop at players_list into temp_player.

 wa_player-name = temp_player->name.

 wa_player-country = temp_player->country.

 wa_player-club = temp_player->club.

 append wa_player to it_player.

 endloop.

 try.

 call method cl_salv_table=>factory

 importing

 r_salv_table = alv

 changing

 t_table = it_player.

 functions = alv->get_functions().

 functions->set_all().

 """"""""""""""" adding column headers

 data : column type ref to cl_salv_column_table.

 columns = alv->get_columns().

 column ?= columns->get_column('NAME').

 column->set_medium_text('Player Name').

Chapter 6 More topiCs in objeCt- oriented abap

191

 column->set_short_text('Pl. Name').

 column->set_long_text('Player Name').

 column->set_output_length('25').

 column ?= columns->get_column('COUNTRY').

 column->set_medium_text(").

 column->set_short_text(").

 column->set_long_text('Country').

 column ?= columns->get_column('CLUB').

 column->set_medium_text(").

 column->set_short_text(").

 column->set_long_text('Club').

 alv->display().

 catch cx_salv_msg.

 endtry.

 endmethod.

endclass.

class creator definition.

 public section.

 class-methods create_display_players.

endclass.

class creator implementation.

 method create_display_players.

 data : player1 type ref to player.

 data : player2 type ref to player.

 create object player1

 exporting

 name = 'John Mann'

 country = 'Germany'

 club = 'Bayern Munich'.

 create object player2

 exporting

 name = 'Paul Goldberg'

Chapter 6 More topiCs in objeCt- oriented abap

192

 country = 'Britain'

 club = 'Liverpool'.

 player=>display_list_of_players() .

 endmethod.

endclass.

 Refactoring Assistant
In the ABAP Objects arena, refactoring involves changing (improving) the structure of

a class (or classes) without changing its functionality. For this purpose, the Refactoring

Assistant is available in the ABAP workbench tool from the Class Builder, ABAP Editor,

and the Function Builder. The primary emphasis of this will be on refactoring classes via

transaction SE24.

The Refactoring Assistant provides the following advantages to developers:

• It enables developers to change the structure (components) of classes

in the least possible time without any inconsistencies.

• It has an easy graphical tool that lets developers move components

from classes to interfaces/classes and vice versa via simply dragging

and dropping. This relieves the developer from the burden of

manually editing the classes.

Some examples of refactoring include:

• Moving components from a subclass to a superclass

• Moving components from a superclass to a subclass

• Moving components from an interface to a class

• Moving components from a class to an interface

Likewise, we may also move a class’ components to another class (provided an

association exists between them). In case of nested interfaces, we can also move

components from one interface to another.

From the display mode, the Refactoring Assistant is not available. While in the

change mode within the class (in transaction SE24), choose Utilities ➤ Refactoring ➤

Refactoring Assistant.

Chapter 6 More topiCs in objeCt- oriented abap

193

Note refactoring is only possible in edit mode. the refactoring assistant is not
available in the display mode of the Class builder.

Alternately, you can also use the F7 key. This will show the Refactoring Assistant for

the given class or interface. For example, if we have the ZST6_PLAYER_CLASS class defined

earlier, the Refactoring Assistant will look like Figure 6-8.

Figure 6-8. Refactoring Assistant

Figure 6-9. “Not supported” message

As you can see, this shows the class has three attributes—NAME, WEIGHT, and HEIGHT.

In addition, the methods of the class and the subclass that has been derived from the

given class are also displayed. The Refactoring Assistant displays the colors according

to the visibility of the components. The private components are shown in red, public

components are in green, and components that are protected are shown in yellow.

It must also be noted that refactoring is not supported for classes that have been

enhanced. If you try to run the Refactoring Assistant on these, the following message

appears (Figure 6-9).

Chapter 6 More topiCs in objeCt- oriented abap

194

If a component with the same name already exists in the target class, an error will be

displayed and no transfer will be made.

Once we know how to switch on the Refactoring Assistant, we will see a few

examples applicable to refactoring classes.

 Moving Components from a Class to its Direct Subclass
As mentioned, the Refactoring Assistant allows you to move the various attributes from

the one class (or interface) to another. In this subsection, we see how we can move

components (e.g., attributes) from a class to its subclass. Components can only be

moved to a subclass if they do not already exist there. Consider the example shown in

Listing 6-1.

Say we need to add another (private) attribute called COUNTRY to ZST6_PLAYER_CLASS.

The class will then look like Figure 6-10.

Figure 6-10. Refactoring Assistant

To move the COUNTRY attribute to the subclass ZST6_FOOTBALL_PLAYER_CLASS, simply

drag the COUNTRY node and drop it on the subclass name node. After the change, the

class will look like Figure 6-11.

Chapter 6 More topiCs in objeCt- oriented abap

195

A message will appear at the bottom of the Refactoring Assistant dialog, as shown in

Figure 6-12.

You may use the Undo button on the Assistant toolbar to return the class to its

original form. If you want to go ahead with the change, click the Save button.

In our case, when the changes are saved, we can see that the COUNTRY attribute

does not exist in the superclass, but has been created (also as a private attribute) in the

subclass. You may now activate both classes.

 Moving Components from a Class to an Implemented
Interface
Let’s consider another example. As mentioned, the components of a class may be

moved to an implementing interface. Take an example of a class Z_PLAYER_CLASS

that implements an interface Z_INTERFACE_DISPLAY. The class within the Refactoring

Assistant is shown in Figure 6-13.

Figure 6-11. ZST6_PLAYER_CLASS

Figure 6-12. Attribute COUNTRY moved to subclass

Chapter 6 More topiCs in objeCt- oriented abap

196

As you can see, the Z_PLAYER_CLASS class has the NAME, WEIGHT, and HEIGHT attributes

and implements Z_INTERFACE_DISPLAY. It must be noted that the components within

the Z_INTERFACE_DISPLAY interface are not shown.

Suppose we need to move the HEIGHT attribute to the Z_INTERFACE_DISPLAY

interface. Simply move the attribute by dragging and dropping it to the interface. A

message appears saying that the attribute has been moved, as shown in Figure 6-14.

Figure 6-13. Interface used in class

Figure 6-14. The HEIGHT attribute has moved

Save your refactoring using the Save button. You will see that the HEIGHT attribute has

been moved to the Z_INTERFACE_DISPLAY interface. You may now go to transaction SE24

and activate the interface.

Chapter 6 More topiCs in objeCt- oriented abap

197

The Refactoring Assistant dialog is shown in Figure 6-15.

Since all of the components of an interface have public visibility, once the private

attribute HEIGHT of the Z_PLAYER_CLASS is transferred to the class, its visibility becomes

public (denoted in green).

Within the Z_PLAYER_CLASS, this may be seen but we cannot change its visibility (see

Figure 6-16).

Figure 6-15. Refactoring Assistant

Figure 6-16. HEIGHT attribute

After activating the interface, when you try to activate the Z_PLAYER_CLASS class,

the class will give a syntax error. This is because the constructor addresses the HEIGHT

attribute using ME->HEIGHT, as shown here:

 method CONSTRUCTOR.

 me->name = name.

 me->height = height. ""ERROR

 me->weight = weight.

 endmethod.

Chapter 6 More topiCs in objeCt- oriented abap

198

The constructor must be changed, as shown here:

 method CONSTRUCTOR.

 me->name = name.

 Z_INTERFACE_DISPLAY~HEIGHT = height.

 me->weight = weight.

 endmethod.

Alternatively, you may also define an alias based on the HEIGHT using the ALIAS tab

of the Z_PLAYER_CLASS.

Once the change is made, you may activate the class.

 Moving Components from a Class to an Associated Class
Another scenario in which the Refactoring Assistant may be used is when associations

exist between classes. This means that within a class another class has been referenced

as an attribute using TYPE REF TO.

Consider the example where we have an empty class called ZST_ASSOC_CLASS that

has been referenced in an attribute residing in the class. Once this association exists, the

associated class may then be seen via the Refactoring Assistant, as shown in Figure 6-17.

Figure 6-17. ZST6_PLAYER_CLASS class in the Refactoring Assistant

Chapter 6 More topiCs in objeCt- oriented abap

199

Suppose in our ZST6_PLAYER_CLASS class, we have the EXP_PLAYER_NAME (attribute)

and GET_MOST_EXPENSIVE (method) components. You may now drag and drop these two

components to the associated class.

Once the transfer is done successfully, a message appears, as shown in Figure 6-18.

You may then adjust the code within the ZST6_PLAYER_CLASS class in order to

address the components of the associated class.

 Enhancement of Classes
SAP allows you to define enhancement (exits) for methods. This allows you to enhance

the behavior of standard methods. In addition, using the enhancement concept, you

may add new methods to the original class and call them in the defined exits. There are

three possibilities, as listed here:

• PreExit. This method is called before the method in question

is executed. Any code that you want to be executed before the

actual method must be placed here. The code run may be used,

for example, to supply additional data to the original method or to

display an information message.

• PostExit. This method is executed after execution of the method

under consideration. If there is any activity that you want to happen

after, it should be placed within the PostExit method. Any activity that

you want to happen after execution of the method must be placed

here.

• Overwrite-Exit. This is used for overwriting (replacing) the original

method. Once the Overwrite-Exit is defined, any program that calls

the original method executes the overwrite method code and not the

original method. For the Overwrite-Exit to be running without any

errors, make sure that the PostExit and PreExit methods do not exist.

Figure 6-18. Method and attributes transferred

Chapter 6 More topiCs in objeCt- oriented abap

200

These can be used for enhancing methods residing in the standard SAP classes.

However, for the sake of this illustration, we will enhance the global class ZST6_PLAYER_

CLASS that we created earlier.

Now let’s look at how we can modify the behavior of an already-defined global class.

Two examples will be shown. Before we do that, we will first see the actual (original)

output of the method. A simple block of code that uses the DISPLAY_PLAYER_DETAILS

method is shown here:

NEW ZST6_FOOTBALL_PLAYER_CLASS(

 NAME = 'Oliver Kahn'

 WEIGHT = '88'

 HEIGHT = '178'

FOOTBALL_CLUB = 'Bayern Munich')->DISPLAY_PLAYER_DETAILS().

The original output of the method (as in the code) is shown in Figure 6-19.

Figure 6-19. Original method output

 Example 1. PreExit and PostExit Methods
The first example will be based on PreExit and PostExit methods for the DISPLAY_

PLAYER_DETAILS method of the ZST6_FOOTBALL_PLAYER_CLASS. We will now use both of

these exits to change the output of the DISPLAY_PLAYER_DETAILS method.

Call transaction SE24, enter the name of the class that is to be enhanced (in our case

ZST6_PLAYER_CLASS) in the field provided, and click the Display button. Initially, the

enhancement menu options will be disabled, as shown in Figure 6-20.

Chapter 6 More topiCs in objeCt- oriented abap

201

From the screen that appears, click the button from the application toolbar. This

will display the dialog box shown in Figure 6-21.

Figure 6-21. Enhancement implementation creation

Figure 6-20. Enhancement Operations menu

Enter the name of the enhancement and the short text in the fields provided and

then click the Continue button.

This will enable the enhancement menu options. In addition, on the Methods tab

for each method, three columns (PreExit, PostExit, and Overwrite-Exit) will also be

displayed. See Figure 6-22.

Chapter 6 More topiCs in objeCt- oriented abap

202

Now let’s define a PreExit method PreExit (i.e., the block of code called executed

before the method gets executed) for our DISPLAY_PLAYER_DETAILS method.

To do so, keep the cursor on the relevant method and choose Edit ➤ Enhancement

Operations ➤ Insert Pre-Method. See Figure 6-23.

Figure 6-22. Enhancement related columns

Figure 6-23. Enhancement Operations menu path

Chapter 6 More topiCs in objeCt- oriented abap

203

This will create a PreExit method. A button will now appear for the respective

method under the column PreExit method, as shown in Figure 6-24.

Figure 6-24. PreExit column shown with a new button

Figure 6-25. PreExit method editor

Click the button to go to the source code editor, as shown in Figure 6-25.

As you can see when the PreExit method is created, an interface by the name IPR

followed by the enhancement we create (Z_PLAYER) has been generated. Within this

exists the DISPLAY_PLAYER_DETAILS method. For our example, we will write simple code

to add the heading Begin of Player Details displayed in red. The code is shown as

follows:

 method ipr_z_player~display_player_details.

"--

*" Declaration of PRE-method, do not insert any comments here please!

*"

*"methods DISPLAY_PLAYER_DETAILS

Chapter 6 More topiCs in objeCt- oriented abap

204

"--

 skip.

 format color col_negative on.

 write :/ 'Begin of Player Details'.

 format color col_negative off.

 skip.

 endmethod.

Once this is done, we will activate the class.

When the program that calls the DISPLAY_PLAYER_DETAILS original method of the

ZST6_FOOTBALL_PLAYER_CLASS is executed, the PreExit method is automatically invoked.

The output of the method call is displayed as shown in Figure 6-26.

Figure 6-26. Output of method with PreExit method

Note the difference in output between the one shown in Figure 6-20 and this one

(Figure 6-26).

Now let’s define the PostExit method for our DISPLAY_PLAYER_DETAILS method. This

will be executed after the original method has executed. We will follow the similar steps

shown earlier. In this case, however, we will use Enhancement Operations ➤ Insert

Post-Exit. Simply place the cursor on the method and then choose the given menu path.

This will now enable the button in the PostExit column. We may then click the

button to go to the editor and write the code for the PostExit method.

 method ipo_z_player~display_player_details.

"---

*" Declaration of POST-method, do not insert any comments here please!

*"

*"methods DISPLAY_PLAYER_DETAILS .

"---

Chapter 6 More topiCs in objeCt- oriented abap

205

"---

 skip.

 format color COL_POSITIVE on.

 write :/ 'End of Player Details'.

 format color COL_POSITIVE off.

 skip.

 endmethod.

ENDCLASS.

In this case, we see that the PostExit is a method residing in the interface having the

name beginning with IPO followed by our enhancement option Z_PLAYER. Enter the

code that you like to run after the DISPLAY_PLAYER_DETAILS method has executed. We

will insert a single line of code to print the message End of player Details. Save and

activate your class.

Once the original method is executed, the final output (of the PreExit, Original

Method, and the PostExit) is shown in Figure 6-27.

Figure 6-27. New output of method execution

After the PreExit method, the DISPLAY_METHOD_DETAILS original method is executed.

After completion of DISPLAY_METHOD_DETAILS, the PostExit method is called. Figure 6-28

shows the sequence of execution of the three methods in our example.

Chapter 6 More topiCs in objeCt- oriented abap

206

 Example 2. Overwrite Method
We will now use the Overwrite-Exit (only) to change the output of the DISPLAY_PLAYER_

DETAILS method. The final output will be the same as the one shown earlier, achieved via

the Pre- and PostExit methods.

As a prerequisite of the step required in creating the overwrite method, we need to

delete the Pre- and PostExit methods, if they exist. Make sure that enhancement mode

is on. Then choose Edit ➤ Enhancement Operations ➤ Delete PreExit and Edit ➤

Enhancement Operations ➤ Delete PostExit, respectively.

Before creating the Overwrite-Exit method, we will define, via enhancement

implementation, a new method in the class by the name DISPLAY_PLAYER_DETAILS_NEW

(see Figure 6-29). It will display the player details in the new format. We will then call this

method in Overwrite-Exit.

Figure 6-28. Method execution sequence

Figure 6-29. The DISPLAY_PLAYER_DETAILS_NEW method

The code of the new method is shown in Figure 6-30.

Chapter 6 More topiCs in objeCt- oriented abap

207

Figure 6-30. Code of the DISPLAY_PLAYER_DETAILS_NEW method

In addition to the main block of player details printing, we added a header and footer

in red and green, respectively. Save and activate your method.

Next, we create the overwrite method. To create the overwrite method, we use Edit ➤

Enhancement Operations ➤ Overwrite-Exit. This will enable the button in the

Overwrite column.

We then use the button to go to the Overwrite-Exit editor. We enter the

following code there.

 method iow_z_player~display_player_details.

"---

*" Declaration of Overwrite-method, do not insert any comments here please!

*"

*"methods DISPLAY_PLAYER_DETAILS .

"---

 core_object->display_player_details_new().

 endmethod.

Chapter 6 More topiCs in objeCt- oriented abap

208

As you will see, the method name is the same and the interface begins with OVR

(and then Z_PLAYER). This code will be executed in place of the actual method code.

In order to call the method residing in the same class (from Overwrite-Exit), use

the CORE_OBJECT instead of the reference variable me. This provides a link to the current

object in question. You cannot use the me variable in Overwrite-Exit.

Once the method is activated and the entire class activated, all programs that refer to

the DISPLAY_PLAYER_DETAILS original method will now be calling the Overwrite-Exit and

the DISPLAY_PLAYER_DETAILS_NEW method. The output of this is shown in Figure 6-31.

 Statements/Constructs Not Allowed in
Object- Oriented ABAP
Code within ABAP Objects has a number of restrictions. Many statements (or variants of

statements), for example, may not be allowed in the method of classes. These may not

give any errors when used outside ABAP Objects.

In this final section of this chapter, I look into a few statements (or constructs)

that are not allowed in the context of ABAP Objects. These constructs will return a

syntax error when used in local and global classes. They are explained in the following

subsections.

 Naming Variables
Within ABAP Objects, variable names can only contain letters ranging from A to Z and

numbers 0 to 9, as well as an underscore (-). In addition, variable names cannot begin

with a number (such as 1_abc).

Figure 6-31. Final overwrite output

Chapter 6 More topiCs in objeCt- oriented abap

209

Any attempt to break these guidelines will raise a syntax error. A typical example of

this is shown here:

 data : 1_abc(1) type c .

 "" not allowed

The following is not permissible since FIELD-1 contains a dash, as shown here:

 data : field-1 type i .

 "" not allowed

 Using Logical Operators
In ABAP Objects, using logical operators ><, =<, and => is prohibited. This includes use of

IF statements as well as the WHERE clause used in open SQL statements, and the WHERE or

LOOP statements executed on internal tables.

 if name >< 'Adrian'. "" not allowed

...

 endif.

If you try to use any of these, the code will give the syntax error shown in Figure 6-32.

Figure 6-32. Syntax error

Instead of the operators mentioned, use <>, <=, and >= (or their equivalents NE, LE,

and GE, respectively).

Chapter 6 More topiCs in objeCt- oriented abap

210

 CASE Statement Usage
A CASE..ENDCASE block should be semantically equivalent to an IF..ELSEIF

control structure. No statement (or statements) must be placed before the first WHEN in a

CASE... ENDCASE control structure. In ABAP Objects, this is not permitted. Consider the

following block of code:

CASE INT.

 A = 2. " statement gives error

 WHEN 1.

 WRITE INT.

 WHEN OTHERS.

 WRITE 'OTHERS'.

ENDCASE.

 Using ON CHANGE OF
The ON CHANGE OF statement is not allowed within ABAP Objects. This will give a syntax

error when used in the code of a class method. For example, consider the following:

METHOD MY_PLAYERS.

 LOOP AT.

 ON CHANGE OF. """ will not compile

 ENDON

 ENDLOOP.

ENDMETHOD.

Instead of the ON CHANGE OF construct, use temporary variables that store values and

then check for the change in their values using an IF statement.

 Restrictions to Using the TYPES Statement
While defining types within a method via the TYPES statement, you must specify the type

of character types. For example, the following is unacceptable:

TYPES TY_C. """ error

Chapter 6 More topiCs in objeCt- oriented abap

211

The correct form of this is shown here:

 TYPES: TY_C TYPE c length 1.

In addition, the length of TYPES based on the elementary types P, N, and X must also

be specified.

In the case of P types, specifying the number of decimal places is also important. For

example, the following code will give an error:

 TYPES TY_2 TYPE p length 8. ""Error

The correct form is shown here:

 TYPES TY_2 TYPE p length 8 DECIMALS 0.

It must be also noted that for these data types—T(Time), D(Date), I(Integer),

and F(Floating)—length may not be specified. This is because these data types have

predefined lengths that cannot be changed.

 Restrictions to Using DATA Declarations and Constants
Within ABAP Objects, it is not possible to specify a length for the definition of variables,

or constants that are based on the elementary data types T(Time), D(Date), I(Integer), or

F(Floating). These data types have predefined lengths that cannot be changed. Consider

the following examples:

DATA DATE1(10) TYPE d. "" syntax error

DATA INT1(10) TYPE i. "" syntax error

Both these statements will issue syntax errors.

 Untyped Field-Symbols
In an OO context, the TYPE addition must always be used while declaring FIELD-

SYMBOLS. If the type is not specified, at least the TYPE ANY addition must be used. For

example, the following declaration is not allowed and will result in a syntax error:

FIELD-SYMBOLS <field1>. """not allowed

Chapter 6 More topiCs in objeCt- oriented abap

212

 Internal Table-Related Statements
As with other syntax issues, a number of things must be kept in mind while programing

with internal tables in ABAP Objects. Let’s review them them one by one.

One major restriction is that no code must be written that creates a header line

internal table with a header line. Internal tables with headers are not supported within

the OO context. Consider for example the following block of code:

 data : begin of itab occurs 0,

 "" not allowed

 field_1,

 end of itab.

This code will give a syntax error. In addition, you are not allowed to read an internal

table without a work area with a READ TABLE statement. The following form is not

permissible:

 READ TABLE MYITAB.

Looping on an internal table using LOOP AT ITAB (without a work area) is not

allowed. This is shown here:

loop at itab.

 ...

endloop.

In addition, we may not even use the CLEAR ITAB statement within a LOOP as

shown here:

LOOP AT ITAB INTO WA_ITAB.

 CLEAR ITAB. """ syntax error

ENDLOOP.

Some other constructs that are not allowed while programming with internal tables

in object-oriented context are shown here:

INSERT TABLE itab.

COLLECT itab.

MODIFY TABLE itab ...

MODIFY itab ... WHERE ...

Chapter 6 More topiCs in objeCt- oriented abap

213

 Database Table-Related Statements
The database-related statements also have some restrictions within the realm of ABAP

Objects. Let’s look at a few examples.

The TABLES statement may not be used in a method, for example. This may result in

a syntax error, as shown in the following line of code:

tables: lfa1 .

While using SELECT statements, it is absolutely mandatory to use an INTO clause.

(Even when using Dynamic Open SQL, the INTO clause must never be omitted.)

Consider the following block of code:

SELECT * FROM LFA1.""" NOT ALLOWED

ENDSELECT.

In ABAP Objects, the following statements are not allowed and will result in an

error message:

SELECT ... FROM DBTABLENAME ...

INSERT DBTABLENAME.

UPDATE DBTABLENAME.

DELETE DBTABLENAME.

A few correct and acceptable form of statements are shown here:

DATA MYWA TYPE DBTABLENAME.

SELECT ... FROM DBTABLENAME INTO MYWA.

INSERT DBTABLENAME FROM MYWA.

INSERT INTO DBTABLENAME VALUES MYWA.

 Untyped Method Parameters
Within ABAP Objects, the TYPE addition is necessary for all parameters of methods. The

following form of definition is not allowed:

METHODS MYMETHOD IMPORTING param1

 EXPORTING param2. ""ERROR

Chapter 6 More topiCs in objeCt- oriented abap

214

This is not acceptable and will result in a syntax error. An acceptable form is

shown here:

METHODS meth IMPORTING p1 TYPE I

 EXPORTING p2 TYPE I.

If you are not sure of the type to which the parameters belong, you may keep them as

generic. In this case, TYPE ANY must be specified. An acceptable form is shown here:

METHODS mymethod IMPORTING p1 TYPE ANY EXPORTING p2 TYPE ANY.

In addition, while specifying the types of formal parameters of a method, the

STRUCTURE addition should not be used. The following statement, for example, will cause

a syntax error:

 METHODS mymethod

 IMPORTING param1 STRUCTURE struct1.

An acceptable form of this is shown here:

 METHODS mymethod

 IMPORTING param1 TYPE struct1.

 Summary
In this chapter, we discussed the NEW operator, which is used to create objects, and the

ALV object model, which is used to create reports. We also covered various ALV classes

and methods along with a practical code demo. Then, we discussed how method

chaining is possible and enables you to write compact code. An example of ALV-related

code written in conjunction with method chaining was discussed. We also covered

object-oriented transactions, followed by the Refactoring Assistant tool in the Class

Builder. A detailed discussion on the various ways a class can be enhanced was included.

Finally, we went over a number of constructs and statements in detail that are not

allowed in the ABAP Objects arena.

Chapter 6 More topiCs in objeCt- oriented abap

215
© Rehan Zaidi 2019
R. Zaidi, SAP ABAP Objects, https://doi.org/10.1007/978-1-4842-4964-2_7

CHAPTER 7

ABAP Unit Test-Driven
Development
An important topic that remains to be discussed is testing the methods and code that we

write. SAP provides the unit test framework embedded in ABAP. In this chapter, we learn

in detail about the following topics:

• Unit testing advantages

• Defining unit classes

• Exception handling in unit testing

• Using the unit test browser

We will start with a brief explanation of testing and its various types. We will then see

what unit testing and test-driven development are. We will also cover the advantages of

unit testing. We will then cover creation of the unit test method and classes in detail and

the relevant coding and class and methods involved. Finally, we will see a full-fledged

programming demo.

We cover how to execute the unit test and check results with and without the Code

Inspector. We end the chapter with a note on the unit test browser that is available for

searching and displaying unit test classes residing in the ABAP system.

 Testing Need and Phases
Before going into the details of unit testing, let’s first see why the need for testing arises in

program development.

216

Within a project’s development lifecycle, there may be a number of stages and

phases. There is a need to test programs or products in both the development and

integration stages.

Testing products is a necessary activity and has a number of advantages:

• There is less chance of bugs and problems arising in the product.

Testing allows us to make a more accurate and better quality product

for our customers.

• Good testing done in the early stages is more cost effective than later

testing.

• Testing improves customers’ confidence in the products.

Before moving forward, let’s discuss the various levels of testing. There are a number

of levels in software testing:

 1. Unit testing. This is the initial testing level. Basic (individual)

units of codes are checked in order to ensure they work as

required. Each code portion is subjected to a set of test scenarios

or cases. Unit testing may be done manually or be automated.

However, developers usually perform automated tests.

 2. Integration component testing. As the name indicates, this

checks the integration testing of different units (or modules) that

have been unit tested. These are grouped in a number of ways to

confirm the correctness of integration and communication.

 3. System/UI testing. This emphasizes the UI (User Interface) and

can be done manually or via automated tools. It confirms the

characteristics and state of the user interface elements. This may

be done by sets of test cases.

 4. Acceptance testing. This is based on the Quality Assurance (QA)

approach and determines which features of an application work

(or do not work). The team has the option to discover and test the

applications(s) in real-time. Usually, test cases are not made in

advance. While testing, the team decides which application is next

to be tested and how many days are to be given to a feature during

the testing phase.

Chapter 7 aBap Unit test-Driven Development

217

Note other than unit testing, the internal details of an application are visible as a
“black box” to the test team during the testing stage.

 Basics of ABAP Unit Test Driven Development
The unit test ABAP unit framework provides an automated mechanism within the

ABAP programming language for carrying out test driven development. In test-based

development, we first write a code block carrying the production code. We then write

tests to check the correctness, by comparing the Expected Value and the Actual value

returned. Finally, we refactor code so that it passes the test. All this may occur in cycles,

i.e. our code may go through many cycles and iterations, such as test writing, changing

production code, and then test execution (see Figure 7-1).

Figure 7-1. Test driven development cycle

While writing the test code, we must keep in mind several aspects pertaining to the

requirements, code test, and production methods. These aspects include definition of

the attributes and the method parameters.

As mentioned, there are two separate methods—test methods and production

methods. The production methods are also called the methods under test, whereas the

class where the production code resides is known as the class under test.

Chapter 7 aBap Unit test-Driven Development

http://zevolving.com/2013/04/abap-unit-test-driven-development-basics/

218

Every time we want to check a small unit and its functioning is working as normal,

we use unit testing. A unit is simply termed the smallest testable part of an application.

This can be a class or a method, which can be separated from the other code while being

checked if it functions correctly.

You should also consider and manually compute the expected result corresponding

to the respective inputs. For example, if you have a method for doubling a number,

we can first expected value (2 ∗ X). We can then compare this with the actual value

computed by the program code.

We specify the Risk Level and Duration test properties while designing the test.

Risk level, as the name indicates, is the risk of the test.

While running the tests, SAP checks the risk level with the level that’s predefined

within the client setting. If our test has a bigger risk level, the ABAP framework will not

run the test in question. For risk levels, one of the three following values may be set:

• Harmless. As the name indicates, executing this test will not affect

a process and will not make any changes to the database. This is the

default.

• Dangerous/alarming. Such tests change data in the database.

• Critical. These are the critical tests and changes that customize the

database/persistent data.

As far as Duration goes, the ABAP unit framework does not run tests with a higher

duration than that specified in the client level configuration in the SAUNIT_CLIENT_SETUP

transaction.

The Duration may have the following values:

• Short. Refers to tests that run very quickly (default setting at the

client level). Typically, this is less than 60 seconds.

• Medium. Refers to tests running slightly longer than short values.

These lie in the range of 60 to 600 seconds.

• Long. These tests take a considerable amount of time to execute;

more than 600 seconds.

Chapter 7 aBap Unit test-Driven Development

219

The unit test class definition has the following form.

CLASS Abap_Unit_Testclass DEFINITION FOR TESTING

 "#AU Duration Short

 "#AU Risk_Level Harmless

.

As of Release 702 (Release 7.0 Enhancement Pack 2), the unit class definition has the

following form:

CLASS Abap_Unit_Testclass DEFINITION FOR TESTING

 DURATION SHORT

 RISK LEVEL HARMLESS

 Unit Test Benefits
Unit tests have a number of advantages. Unit tests:

• Are very fast in execution. Many thousands of tests can be executed

per second.

• Emphasize small portions of the product.

• Are written separately from the production code.

Unit tests cover 75 to 85 percent of the code. They are fast and accurate. Unit tests

help point to the exact location where the code is buggy. Consistent unit test repetition

helps make an application more stable and perform better.

In contrast to the other tests mentioned earlier, when using unit testing you need

to have a good knowledge of system architecture. Unit testing is referred to gray box (or

white box) testing and are defined by the ABAP developer.

Like other programming languages, ABAP has a unit testing framework. Within the

framework, the processes needed for testing are embedded into the IDE. This allows

developers to run unit tests in each compilation of the test program.

Unit tests do not interact with external coding or external systems. They are executed

in a secluded environment. Unit tests are typically run on test methods, which reside in

test classes.

Chapter 7 aBap Unit test-Driven Development

220

As a developer you should make sure that you program in a manner that makes it fast

and easy for you to create unit tests.

• Unit testing is applicable in situations where carrying out tests serves

a definite purpose or meaning. Usually, the business layer is good for

executing tests and is where unit testing mainly focuses.

• You must code automated tests as well as testable code. After

executing the unit tests, you can amend the source code in order to

fix bugs and bring the code to a testable state.

• You have to ensure that when a correction is done in one unit that no

other code units are affected.

A test method can have a number of input (importing) parameters and usually a

single output parameter. You can use transactions SE38 and SE80 to create an ABAP unit.
You also have another option for doing unit testing in the ABAP Unit Framework, which

is via the Eclipse IDE. This is contained in the ABAP Development Tools (ADT), so you

need to only install the respective add-on in Eclipse. We discuss unit test using Eclipse in

Chapter 8.

Within the “then” portion of the test method, the resulting value is checked by

comparing the expected value with the actual value the method under test returns.

If the two results differ, the ABAP Test Framework issues an error. Say we have a class

called CL_AUNIT_ASSERT, which provides a number of utility methods. For comparison

purposes, we use the ASSERT_EQUALS method of the CL_AUNIT_ASSERT class.

The main challenge is to figure out the cases to cover during testing. Unit tests are

made by the developer, since the developer who coded the product is the best person to

know how the functionality can be tested. When we do ample testing of the small parts

of our product, there will be less time and effort needed in debugging and fixing issues

later on.

 Demo Example
As mentioned earlier, the ABAP Unit Framework allows developers to test program

coding at the unit level, i.e., check each unit code independently and separately without

worrying about the entire solution. Checking these smaller units ensures that when

they are all put together into a bigger solution, they will function without error. This unit

framework allows us to use what is called the test-driven development approach.

Chapter 7 aBap Unit test-Driven Development

221

Now let’s look at a simple example of a requirement in which we will use the unit test

framework. Consider this simple code:

class my_class definition .

 public section.

 methods square importing int1 type i

 returning value(sq_in) type i .

endclass.

class my_class implementation.

 method square.

 sq_in = int1 * int1.

 endmethod.

endclass.

Our code has a class called my_class and has a method called SQUARE. The purpose

of the method is to square the number it imports and return the square as a parameter.

The square method is called the production method, whereas my_class is referred to as

the production class in the Unit Test Framework.

We will now code a class to act as a test class. We call this mytestclass. In order to

code it, we need to add FOR TESTING to the method definition. Likewise, we add the

keyword FOR TESTING to our CHECK_SQUARE method to designate it as a test method.

These additions separate the class from the productive code.

We also add pseudo comments #AU Risk_Level and #AU Duration:

CLASS mytestclass DEFINITION FOR TESTING

 Risk Level Harmless

 Duration Short

.

 PUBLIC SECTION.

 METHODS check_square FOR TESTING.

ENDCLASS.

Note Before aBap 7.02, pseudo comments allowed the framework to learn about
the aBap unit class. From 7.02 onward, we use addition RISK LEVEL and
DURATION in the class definition.

Chapter 7 aBap Unit test-Driven Development

222

Recall that the risk level can be critical, dangerous, or harmless and the duration

can be short, medium, and long.

Now that we have our test class ready, let’s implement the test method. For testing

the code, we need to:

 1. Create an object of my_class.

 2. Call the SQUARE method of this class. A value will be supplied to

the method and the result will be calculated in the method and

returned (if we supplied 10, we would expect a squared value of

100 to be returned).

 3. Compare the actual value returned from the square method to our

expected result.

If these two match, no error is present.

On the other hand, if actual and expected result do not match, we

need to inform the ABAP Unit Framework of this erroneous state.

 4. For this, we use methods of the standard class CL_AUNIT_ASSERT.

In our example we will use the ASSERT_EQUALS method of this class.

All this is shown in the following code:

CLASS mytestclass IMPLEMENTATION.

 METHOD check_square .

 DATA: obj TYPE REF TO my_class.

 DATA: square TYPE i.

 CREATE OBJECT obj.

 square = obj->square(10).

 cl_aunit_assert=>assert_equals(

 EXP = 100

 act = square

 msg = 'Wrong Result'

).

 ENDMETHOD.

ENDCLASS.

Chapter 7 aBap Unit test-Driven Development

223

As you can see, we called the square method. We then call the ASSERT_EQUALS

method. This method has three parameters—expected (EXP), actual (AC), and message

(MSG). We supply the expected value 100 to the method, the actual value of the square

computed by the test method square, and the message to be displayed if the values do

not match.

Note it is not mandatory for a test method to have this pattern. We show this
style for consistency and better understanding

The complete code for our requirements is as follows.

class my_class definition .

 public section.

 methods square importing int1 type i

 returning value(sq_in) type i .

endclass.

class my_class implementation.

 method square.

 sq_in = int1 * int1.

 endmethod.

endclass.

CLASS mytestclass DEFINITION FOR TESTING

 Risk Level Harmless

 Duration Short

.

 PUBLIC SECTION.

 METHODS check_square FOR TESTING.

ENDCLASS.

CLASS mytestclass IMPLEMENTATION.

 METHOD check_square .

 DATA: obj TYPE REF TO my_class.

 DATA: square TYPE i.

 CREATE OBJECT obj.

Chapter 7 aBap Unit test-Driven Development

224

 square = obj->square(10).

 cl_aunit_assert=>assert_equals(

 EXP = 100

 act = square

 msg = 'Wrong Result'

).

 ENDMETHOD.

ENDCLASS.

 Executing a Unit Test
Now that the code is complete, we will execute the unit test and check the results.

Before going into details, it is a good idea to look at the menu options within the

ABAP transactions (class editor, program editor, and function module editor) that

pertain to unit tests. Transactions SE37, SE80, and SE24 have separate menu options for

executing unit tests:

• For Class Builder, use Class ➤ Unit Test.

• For programs using SE38, use Program ➤ Execute ➤ Unit Tests.

• For the Function Module (transaction SE37), use Function Module ➤

Test ➤ Unit Test.

For our code example shown in the last section, we would use the relevant menu

option Program ➤ Execute ➤ Unit Tests. In our case, the expected and actual results are

the same, so no error messages appear. Only one message will be displayed on the status

bar, as shown in Figure 7-2.

Figure 7-2. Status message

Chapter 7 aBap Unit test-Driven Development

225

You may also choose Execute ➤ Unit Tests With ➤ Coverage in order to view the

details. This is shown in Figure 7-3.

This will display results, as shown in Figure 7-4.

Figure 7-3. Unit test menu option

Figure 7-4. Coverage

Now let’s complicate things a little. As you see in our code, we have correctly used

the square function. I will now purposely create an error by using addition instead of

multiplication:

class my_class implementation.

 method square.

 sq_in = int1 + int1. "" wrong should be * and not +

 endmethod.

endclass.

Chapter 7 aBap Unit test-Driven Development

226

If we rerun the unit test result, we will now get messages denoting something went

wrong. These error messages are shown in Figure 7-5.

Figure 7-5. Unit result display

The task is shown in the form of a tree showing the program name, class name, and

method name. We also see the test class and method in which the problem has occurred.

Here, we are also shown the number of failed assertion(s).

On the right-bottom part of screen (see Figure 7-6), we can see the actual and

expected values shown as 20 and 100, respectively. This clearly shows the developer

that the production method implementation is not correct. We also can display the line

number where the error occurred. By simply double-clicking the line number, we can go

to the exact line within the source code.

We also see the actual error message. Note the text Wrong Result was specified by us

via the ASSERT_EQUALS method call (see Figure 7-6).

Figure 7-6. Failures and Messages window

Chapter 7 aBap Unit test-Driven Development

227

As mentioned earlier, there is a mistake in the implementation of the production

method. Instead of multiplication. we used addition. Once we correct the method and

rerun the test, the results will not show any error messages.

 Methods in CL_ABAP_UNIT_ASSERT for Testing
The CL_ABAP_UNIT_ASSERT class has several methods, known as assertion methods. They

are used to pass messages to the ABAP Unit engine.

Before moving forward, it is a good idea to understand the main methods provided

by the the CL_ABAP_UNIT_ASSERT class. These methods are shown in Figure 7-7.

Figure 7-7. Class methods

Some of the more useful and commonly used methods are shown:

• ASSERT_EQUALS

• ASSERT_DIFFERS

• ASSERT_BOUND

• ASSERT_NOT_BOUND

• ASSERT_INITIAL

• ASSERT_NOT_INITIAL

Chapter 7 aBap Unit test-Driven Development

228

• ASSERT_CHAR_CP

• ASSERT_CHAR_NP

• ASSERT_EQUALS_F

• FAIL

• ABORT

Let’s look at the purpose of these methods:

• ASSERT_EQUALS. Checks if two data objects are equal.

• ASSERT_DIFFERS. Checks if two data objects are different.

• ASSERT_BOUND. Checks if the reference variable is pointing to a valid

reference.

• ASSERT_NOT_BOUND. Checks for the invalidity (initial) of the reference

of a reference variable.

• ASSERT_NOT_INITIAL. Determines whether a data object is storing its

initial value.

• ASSERT_SUBRC. Determines whether the return code variable SY-

SUBRC has a specific value.

Of special importance is the ASSERT_EQUALS method. It is the most commonly used

method and is shown in Figure 7-8.

Figure 7-8. Method parameters

Chapter 7 aBap Unit test-Driven Development

229

As mentioned earlier, it checks the equality of two variables. The parameters of the

method are as follows:

• ACT. Actual result

• EXP. Expected result

• MSG. Message to be displayed

• LEVEL. Error level (tolerable/critical/fatal)

• Quit. Defines how the flow level is controlled when the test fails.

Possible values of Quit include:

• No (0). No action taken. The execution of the current test

method continues.

• Method (1). The test method is interrupted.

• Class (2). The test class is interrupted.

• Program (3). All test classes in the tested program are stopped.

• Level. Has the following values:

• Tolerable

• Critical

• Fatal

• TOL. Tolerance

If the given tolerance is exceeded, an error is displayed. Let’s see this with an

example. Suppose we have the following values:

Actual result: 99

Expected result: 100

Tolerance specified as 0.9999

Difference = Expected Result - Actual Result

In this case, the difference is 100 – 99 = 1. Since 1 is greater than the tolerance limit

(.9999), this is above the tolerance limit. Hence, an error would be displayed.

Chapter 7 aBap Unit test-Driven Development

230

There are certain private methods employed within test classes that are provided by

the Unit Test Framework. They include the test as well as the links required for running

the tests. These methods are:

• SETUP(). An instance method run prior to each test or execution of a

test method.

• TEARDOWN(). An instance method run after execution of a test

method.

• CLASS_SETUP(). A static method run once prior to all the tests of a

given class. This is used for initializing variables that will be used in

the tests.

• CLASS_TEARDOWN(). A static method that is run after all tests of the

class have been run. This is used for clearing any data variables used.

These optional methods are also known as fixture methods. These names are

predefined so they can be recognized at execution time.

 ABAP Unit Results in Code Inspector
We also can see the ABAP unit test results using the Code Inspector. Within the variant,

we need to check the ABAP unit test within the Dynamic Tests category. Let’s see how

this is done.

First, we call transaction SCI. The screen shown in Figure 7-9 will appear.

Chapter 7 aBap Unit test-Driven Development

231

Enter a suitable name for the check variant (in our case, it is Z_UNIT) and click the

Create button under the field provided. The screen shown in Figure 7-10 appears.

Figure 7-9. SCI transaction

Figure 7-10. Check variant

Chapter 7 aBap Unit test-Driven Development

232

Click the arrow icon for further settings (see Figure 7-11). Make sure to check the

ABAP unit test as shown in Figure 7-11.

Once this is done, we can use this variant in our code inspections.

We will now create a code inspection ZS_1. For this code inspection, we assume that

the object set ZS_2 already exists. The checks will be executed against that object set. We

create an inspection using our variant Z_UNIT, as shown in Figure 7-12.

Figure 7-11. ABAP unit parameters

Figure 7-12. Inspection ZS_1

When we view the inspection results, we can see that the ABAP unit related

errors, warnings, and other messages. This is shown in the Code Inspector results (see

Figure 7- 13).

Chapter 7 aBap Unit test-Driven Development

233

As an example, we have executed this inspection on the program we earlier created

in the chapter involving squares. Clicking the message will take us to the exact location

where the error occurred.

 Exceptions in ABAP Unit Tests
As with classes in general, exceptions may occur in unit test classes as well. If an

exception occurs with a method, the unit test fails. The exception may be reported as the

reason for the failure. If the method declares and includes the exception in the signature,

the test exception may be propagated to the ABAP runtime.

A preferred approach is that the test method declares the exception in a signature in

order to clarify the functioning of the method. However, the exception should be caught

in the test method.

METHODS m_test_method FOR TESTING

 RAISING cx_sy_zerodivide.

...

METHOD m_test_method.

 obj->division(num = 10).

...

ENDMETHOD.

Figure 7-13. Code Inspector results

Chapter 7 aBap Unit test-Driven Development

234

For provoked exceptions in the method under testing, the developer can include

a call to the FAIL method (contained in the CL_ABAP_UNIT_ASSERT class) to report the

failure of a given test. The code for this is shown here:

...

METHOD m_test_method.

* catching a provoked exception

TRY.

 obj->division(num = 10).

...

 CATCH cx_sy_zerodivide.

ENDTRY.

cl_abap_unit_assert=>fail(

 msg = 'exception not raised'

 level = if_aunit_constants=>critical).

ENDMETHOD.

 Enabling and Executing ABAP Unit Browser
SAP provides an ABAP unit browser for searching and viewing unit test classes residing

within the system. The ABAP unit browser is embedded in transaction SE80. By default,

the ABAP unit browser is switched off, and should be first switched on in order to be used.

In this section, we learn how to enable the unit test browser and how to run it in

order to view the various unit classes defined in our system. Follow these steps:

• Call transaction SE80. By default, the screen on the left side will

appear, as shown in Figure 7-14.

Chapter 7 aBap Unit test-Driven Development

235

As you will see, there is only a Repository Browser button on

the top. We want to include a second button by the name Unit

Browser over here.

• Choose Utilities ➤ Settings. This will open the dialog box shown in

Figure 7-15.

Figure 7-14. SE80 transaction

Figure 7-15. User-specific settings

Chapter 7 aBap Unit test-Driven Development

236

• Click the Workbench (General) Settings. Then, in the browser

selection, click the ABAP Unit Browser button and click the Continue

button.

• Next, you will see that the ABAP Unit Browser button will appear, as

shown in SE80. It’s shown in the left pane in Figure 7-16.

• Now click the ABAP Unit Browser button and choose Package in

the first list box. Enter $tmp in the field provided (see Figure 7-17).

We will then click the Display button. (As an example, we will browse

through local objects, so we have used $tmp.) Then, click the Display

button.

Figure 7-16. ABAP unit browser

Figure 7-17. ABAP unit browser

Chapter 7 aBap Unit test-Driven Development

237

• You will see that the various unit test classes appear, as shown in

Figure 7-18. As a matter of example, we had earlier created a global

test class by the name ZSt19_class.

Figure 7-18. ABAP unit test classes

Double-clicking the unit class name in the left pane will show details of the class in

the right pane.

 Summary
In this chapter, we covered various types of testing. We learned what unit testing and

test-driven development are and covered the advantages of unit testing. Finally, we saw

a full-fledged programming demo. We also executed a unit test and checked the results

with and without the Code Inspector. We ended the chapter with a note on the unit test

browser, which is available for searching and displaying unit test classes residing in the

ABAP system.

Chapter 7 aBap Unit test-Driven Development

239
© Rehan Zaidi 2019
R. Zaidi, SAP ABAP Objects, https://doi.org/10.1007/978-1-4842-4964-2_8

CHAPTER 8

Creating ABAP Classes
Using Eclipse
In recent releases, SAP allows you to develop ABAP programs and classes using the

popular Eclipse IDE. Eclipse provides a number of useful features. We can work with a

number of systems using Eclipse. Eclipse also provides a number of useful templates

that can be modified according to our needs. It also includes code completion features in

order to work faster. In this chapter, we look at all these features in detail.

One of the main reasons we use Eclipse instead of the ABAP Editor is the ease of

code completion and shortcuts that are not provided in the ABAP Editor. These allow

developers to code programs faster.

Here are some of the topics this chapter addresses:

• Configuring the ABAP development environment with ABAP

Development Tools (ADT) in Eclipse

• Creating your first ABAP project

• Using Eclipse to code unit test classes

• Using the Quick Fix feature of Eclipse with ABAP Objects

 Installing Eclipse and Loading ABAP Perspective
In this section, we see how to install Eclipse and the ABAP Development tools (ADT) in

order to develop ABAP classes and methods. Eclipse allows you to create programs (and

local classes) as well as global classes (and unit test classes).

Before working with Eclipse, you need to download and install Eclipse from

www.eclipse.org. Once Eclipse is installed, launch it using the desktop shortcut or via

the Program list.

http://www.eclipse.org

240

We can now install the ABAP Development Tools for SAP NetWeaver. From the menu

bar, choose Help ➤ Install New Software. The dialog box in Figure 8-1 will appear.

Within the dialog box that appears, place the URL relevant to the current version. For

example, you use https://tools.hana.ondemand.com/oxygen for Eclipse Oxygen. Then

press Enter in order to see the available options.

Select ABAP Development Tools for SAP NetWeaver and choose Next. On the next

screen, you will be shown the features that will be installed. Choose Next. Accept the

license agreement and click Finish in order to start the installation. This will install ABAP

Development tools (ADT) on Eclipse.

Once ADT is installed, we need to open the ABAP perspective. Follow these steps to

do so:

 1. Close any Welcome page that appears. Choose the menu path

Window ➤ Open Perspective ➤ Other. Alternately, you may click

the button on the top-right corner, as shown in Figure 8-2.

Figure 8-1. Install dialog

Chapter 8 Creating aBap Classes Using eClipse

https://tools.hana.ondemand.com/oxygen

241

This will display the dialog box shown in Figure 8-3.

 2. Choose ABAP from the list and click Open. This will load the

ABAP perspective.

It is a good idea to familiarize yourself with the layout of the tools

within the Eclipse IDE. The ABAP perspective has various tools

that are arranged in order for you to work easily. You are free to

change positions of views in order to suit your liking.

 3. Go to the Project Explorer. The various sections in the Eclipse IDE

(for the ABAP perspective) are shown in Figure 8-4.

Figure 8-2. Open perspective

Figure 8-3. Perspective lists

Chapter 8 Creating aBap Classes Using eClipse

242

On the top-left, we have the list of project (and connection) nodes that list the

various objects in that system. Below the projects is the outline window (showing the

main structure and elements) of the selected object. On the right are the main

editors for writing code for classes and programs, and under Editors is the window

showing miscellaneous messages such as errors, warnings, and the program output in

some cases.

 Creating an ABAP Project in Eclipse
Within Eclipse, we need to have an ABAP project corresponding to SAP systems

connections. Follow these steps:

Choose the menu path File ➤ New ➤ ABAP Project. The dialog box shown in

Figure 8-5 will appear.

Figure 8-4. ABAP perspective sections

Chapter 8 Creating aBap Classes Using eClipse

243

Choose the ABAP project under the ABAP node and click Next. The screen shown in

Figure 8-6 appears.

Figure 8-5. Backend systems

Figure 8-6. System connection list

Here you can either create a new system connection or select an existing one from

the list. We assume that the connection is already there on our SAP Logon pad. From the

list of backend systems, select the system you want to connect to and choose Next. The

connection settings will appear.

Chapter 8 Creating aBap Classes Using eClipse

244

On the Connection Settings screen, accept the default settings and click the Next

button.

On the screen that now appears (see Figure 8-7), enter the login credentials and click

the Finish button.

This will then create the ABAP project, which is in the left pane. (It now corresponds

to a connection to the backend SAP system of our choice.)

All our development objects will be created within the applicable projects. See

Figure 8-8.

 Creating a Global Class in Eclipse
In this section, we learn how to create a global class using Eclipse (same as the SE24

transaction). The required steps are described next.

Figure 8-7. Logon credentials

Figure 8-8. ABAP project

Chapter 8 Creating aBap Classes Using eClipse

245

First we select the project node we created earlier. Right-click to display the context

menu. From the menu, choose the New ➤ ABAP class option. The dialog box in

Figure 8-9 appears.

Enter a suitable name and description for the class and superclass (if applicable).

Then click Next. On the next screen, click the Finish button.

This will generate the basic coding of the global class, as shown in Figure 8-10.

Figure 8-9. Dialog for the new ABAP class

Figure 8-10. Basic generated code

Chapter 8 Creating aBap Classes Using eClipse

246

Here we can write the additional code we need to specify within the class. These

may include public or private (or protected) methods, attributes, and events. We will

add a private attribute called NUM with a type of integer. We will also add an instance

constructor method along with an instance method called DISP_NUM.

Eclipse provides syntax help when you type incorrectly. Consider for example

if we typed “imporing” instead of “importing”. The error is shown as a red cross (see

Figure 8- 11). Keeping the cursor on it explains the error. These errors are shown during

typing (i.e., before compilation).

Moreover, Eclipse makes it easy and quick to work with attributes and methods by

providing autocomplete features. For example, consider a situation where we are in the

code of a class constructor. If we type the self-referencing variable me followed by the ->

operator, the popup appears, as shown in Figure 8-12.

Figure 8-11. Syntax error

Figure 8-12. Help popup

Here we see the components of the class we are in. (In our case it is the NUM attribute

and the DISP_NUM method.) We can choose which component is used by double-clicking

the relevant item in the list.

Chapter 8 Creating aBap Classes Using eClipse

247

Another useful feature is the outline window, where the structure of the class is

shown. For the class that we are developing, the outline shows the attribute NUM, and the

methods constructor and DISP_NUM, as shown in Figure 8-13.

The complete code that we wrote for our example is shown here. This code is written

in the code editor for the global class.

class ZST19_MY_CLASS definition public final create public.

 public section.

 methods disp_num .

 methods constructor importing num type i.

 protected section.

 private section.

 data num type i.

ENDCLASS.

CLASS ZST19_MY_CLASS IMPLEMENTATION.

 method disp_num.

 write : num .

 endmethod.

 method constructor.

 me->num = num.

 endmethod.

ENDCLASS.

Figure 8-13. Class outline

Chapter 8 Creating aBap Classes Using eClipse

248

Once you have created your class, click the button on the toolbar. This will

activate the class and a message will appear, as shown in Figure 8-14.

We created a simple class that will contain the NUM private attribute with an integer

type. This can be viewed using the transaction SE24 via SAP GUI, as shown in Figure 8- 15.

This class may be used globally by all classes in the system and may also be tested via

transaction code SE24.

In addition to the global class, a number of other useful tabs exist within the Eclipse

IDE at the bottom of the screen. These include the class-relevant local types, local types,

test classes, and macros (see Figure 8-16).

Figure 8-14. Activation message

Figure 8-15. SE24 transaction

Figure 8-16. Class-relevant tabs

Chapter 8 Creating aBap Classes Using eClipse

249

We may click the relevant tab in order to display the code editor at the top part of the

screen and insert the appropriate code. Since we have used the global classes editor for

our current example, these tabs have not been used.

 Creating a Local Class in Eclipse
To create a local class, we need to first create an ABAP program within which the local

class will be created. This will create local classes as programs created via transaction

SE38 using SAP GUI. Follow these steps to create a local class:

• Right-click your project and choose New ➤ ABAP Program. This will

create an ABAP program.

• You can then type the definition and implementation code of the

given class into the program (see Figure 8-17).

Figure 8-17. Local class code

A number of features are available for coding with local classes in Eclipse, especially

for working with methods. In order to see the options that are available for a particular

method, place the cursor on the method name and press CTRL+1. The options are

shown in Figure 8-18.

Chapter 8 Creating aBap Classes Using eClipse

250

If you need to rename a method, simply choose the Rename first_test option. This

will put the method name in a box (see Figure 8-19). As you change the name in the

definition, you will see that the name changes accordingly in the implementation.

Both the definition and implementation parts are automatically adjusted.

We can also make the first_test method protected or public, using the appropriate

options. Currently it is private, so the private option is not shown. We can also delete the

method. This will delete it from the definition and implementation.

Suppose we have a method called second_method, which only exists in the definition

and has not yet been implemented. Place the cursor on the method name in the

definition part and press CTRL+1. The options will now appear as shown in Figure 8-20.

Figure 8-19. Renaming a method

Figure 8-18. Options

Chapter 8 Creating aBap Classes Using eClipse

251

Note that a new option has been added called Add Implementation.

Choosing this option will add an implementation to the class in which we add our

method code (see Figure 8-21).

The cursor will jump inside the newly created method, and we can start writing code

immediately.

 Method Wizard in Eclipse
We have an embedded form-based wizard within the Eclipse editor for quick creation of

class methods along with its signature. In this section, we see how this tool may be used.

Suppose you are in the editor and have already created an ABAP class and are

currently within a class method. You now need to define another method that will be

called from the method you are currently in.

Figure 8-20. Add implementation option

Figure 8-21. Second method implementation

Chapter 8 Creating aBap Classes Using eClipse

252

One way of doing this is to go to the definition of the class and add the new method

and its signature. Then implement the method code and come back to the calling point

(of the new method) within the current method.

Another quick shortcut is to define the new method by entering the name of the new

method in the code and calling the Quick Fix feature.

In the example, we have a method called METHOD1. We can create a method called

METHOD2 by following these steps:

 1. Enter the name METHOD2 followed by parentheses at the point of

calling the new method.

 2. Press CTRL+1 upon placing the cursor on the method name. This

will display the popup shown in Figure 8-22.

 3. Double-click the Create method method2 line shown in the

popup. A Method Signature popup will appear, as shown in

Figure 8-23.

Figure 8-22. Quick Fix in Eclipse

Chapter 8 Creating aBap Classes Using eClipse

253

 4. This will display a wizard that defines the signature of the new

method we like to define. Here we specify the method details,

such as visibility, access, and name.

 5. We also specify the method parameters using the table control

provided. We can add and remove method parameters using the

Add and Remove buttons, respectively. We specify if we need

importing, exporting, changing, or returning parameters. The type

of the relevant parameters can be specified using the given value

help.

 6. When you are done, click the Finish button. You will see that the

wizard automatically generates the new method’s declaration

along with the necessary parameters (see Figure 8-24).

Figure 8-23. Defining method signature

Chapter 8 Creating aBap Classes Using eClipse

254

Moreover, the call of Method2 within Method1 is also added with the parameters we

specified from the Method Creation wizard (see Figure 8-25).

Figure 8-24. Definition of Method2

Figure 8-25. Method call

An empty implementation of Method2 will also be created. We can now proceed

within the code of the new method in the implementation.

 Unit Test Templates Using Eclipse
Eclipse offers several useful templates for fast and easy code completion. Using

and being aware of such templates is essential for ABAP developers. These are also

applicable to unit test programming and are very easy for practicing Test Driven

Development (TDD). We can code tests and then design global classes by generating

blank methods via the CTRL+1 Quick Fix feature from the test class.

Let’s see an example where we have an ABAP program in which we want to create a

local unit test class. Within the program, we need to type test or testClass and then call

the template for Quick Fix.

Chapter 8 Creating aBap Classes Using eClipse

255

• Simply place the cursor on test in the program and press

CTRL+SPACE. This will display the popup shown in Figure 8-26.

Double-click the test class (ABAP unit) option. You will see that the code for the unit

class is inserted automatically, as shown in Figure 8-27.

As you see, Eclipse has inserted the basic coding for our test class. The template for

the ABAP test class has been used. It contains a class definition having the “for testing”

addition. By default, the risk level is harmless, and the duration is specified as short. The

name is ltcl_ and the developer can change it. It contains a FIRST_TEST method, which

calls the fail method of the CL_ABAP_UNIT_ASSERT class.

Figure 8-26. Quick Fix for testClass

Figure 8-27. Inserted unit class code

Chapter 8 Creating aBap Classes Using eClipse

256

For global classes, things are even better. As mentioned, when editing global classes

within Eclipse, we have a number of tabs at the bottom of screen. This is very useful

when used in context of unit tests. These tabs allow the developer to easily see which

section belongs to global classes (production code), test classes, etc. They are a really

quick and easy way to find out where to write code for each section.

To create a new unit test class, click the Test Classes tab, type test in the Test Class

view, and press CTRL+SPACE to see the suggestions. Choose testClass – Test class (ABAP

Unit), and the test class will be generated. It can be later modified.

For testing and writing assertions, you may simply initialize variables and then code

the method in which test and assertions are written. No need to remember the assertion

syntax. Simply type assert and use CTRL+SPACE. Choose the assertEquals template

shown on display.

 Modifying Templates
As mentioned earlier in this chapter, Eclipse provides a number of templates for code

completion. Templates are very powerful and make the coding process very fast. The

shortcuts CTRL+SPACE and CTRL+1 for code generation make coding faster than when

using SE80.

You may create new templates or change existing ones.

Note templates can be used for any aBap development and not only in
development related to aBap classes.

To change templates, follow the menu path Window ➤ Preferences.

Chapter 8 Creating aBap Classes Using eClipse

257

The dialog box shown in Figure 8-28 appears.

Under the node ABAP development on the left pane, choose Source -> Templates.

On the right side, you will see the various templates available. There are buttons for

editing an existing template and the New button to create a new template.

Each template is denoted by a name, which may be called from within a program.

These templates belong to the General, ABAP, ABAP Objects, or Web Dynpro

categories (or contexts). The existing ABAP object-related templates are assertEquals,

lif, lcl, and testClass.

When you are coding the program, simply type the entire name of the template or

part of it. Then use the code completion technique CTRL+SPACE or the CRL+1 shortcut

to see proposals with code completion.

You can also change the existing templates. For example, by default, the assertion is

written on one line, but you can update the template to have each parameter shown on a

new line. Simply select the template and click the Edit button, as shown in Figure 8-29.

Figure 8-28. Templates

Chapter 8 Creating aBap Classes Using eClipse

258

The popup appears, as shown in Figure 8-30.

Here, we change the pattern of the code for the assertEquals method. Then click

OK. This will take us back to the previous screen. Make sure to click the Apply button.

Once this is done, the CTRL+SPACE option will show us the method call, as shown in

Figure 8-31.

Figure 8-29. Edit option

Figure 8-30. Editing method call

Chapter 8 Creating aBap Classes Using eClipse

259

 Summary
In this chapter, you configured the ABAP development environment with ABAP

Development Tools (ADT) in Eclipse, created your first ABAP project, used Eclipse to

code unit test classes, and saw Eclipse’s Quick Fix feature used in conjunction with

ABAP Objects.

Figure 8-31. Method call

Chapter 8 Creating aBap Classes Using eClipse

261
© Rehan Zaidi 2019
R. Zaidi, SAP ABAP Objects, https://doi.org/10.1007/978-1-4842-4964-2

Index

A, B
ABAP Project in Eclipse

backend systems, 243
development objects, 244
logon credentials, 244
system connection list, 243

ABAP unit browser
button, 236
SE80 transaction, 235
steps, 234
test classes, 237
user-specific settings, 235

Abstract classes, 94–96
ALV Object Model

add header text, 180–183
advantages, 177
CL_SALV_COLUMNS_TABLE class, 179
CL_SALV_FUNCTIONS class, 179
CL_SALV_TABLE class, 178, 179
output, 180

ASSERT_EQUALS method, 220, 222,
223, 226, 228

ATTACH_FOR_WRITE method, 169

C
Casting and polymorphism, 73

CREATE OBJECT statements, 76
DISPLAY_PLAYER_DETAILS method, 75
downcasting, 73

GET_COLUMN method, 74
program output, 77–80
upcasting, 73

CL_ABAP_UNIT_ASSERT class
ASSERT_EQUALS method, 228
fixture methods, 227, 228, 230
parameters, 228, 229
values, 229

Class builder, 101, 104
buttons on SE24 tab, 112, 113
class browser, 113, 114

screen, 114
testing classes in SE24, 114
testing static method, 115–119

features, 104, 105
instance methods, testing, 119

account attributes, 122
Attributes tab, 120
calculation code, 121
class methods, 123
constructor method, 120
cube class, 119
cubic value, 122
debit amount method, 125
Instance screen, 121
method deposit balance, 123
NEW_BALANCE method, 124
object testing, 125
parameters tab, 120
setting new balance, 126–128

https://doi.org/10.1007/978-1-4842-4964-2

262

table parameters, testing
methods, 128

declaring instance attributes, 129
global class, 128
internal table, 132
LOOP AT statement, 130
Methods tab, 129
output, 134
record display, 133
selection screen, 131
writing code, 130

tabs, 106, 107
transaction SE80, 101–104
where-used list functions, 107–112

Class constructor, see Static constructor
Classes

components, 1–3
constants, 32–34
defining types, 31, 32
global, 6–10
local, 4–6

Classes enhancement
DISPLAY_PLAYER_DETAILS

method, 200
enhancement columns, 201, 202
enhancement implementation, 201
enhancement operations

menu, 200, 201
sequence of execution, 205, 206

CL_AUNIT_ASSERT class, 220
Code Inspector

ABAP unit parameters, 232
check variant, 231
code inspection ZS_1, 232
results, 233
SCI transaction, 231

Composite interfaces, 87

D
DEFERRED class specification, 22, 23
Dictionary types, global class, 34–36
DISPLAY_PLAYER_DETAILS method, 56,

57, 64, 75, 86, 92, 152, 175

E
Eclipse and ADT

ABAP perspective sections, 242
create ABAP project (see ABAP project

in Eclipse)
global class, 244–248
Install dialog, 240
local classes, 249–251
modifying templates

ABAP object, 257
assertEquals method, 258
coding process, 256
dialog box, 257
editing method call, 258
edit option, 258
method call, 259

open perspective, 241
perspective lists, 241
templates, 254, 255
wizard (see Wizard in Eclipse)

Event handling, 53
event raised, 53
PLAYER_CREATED event, 54–59
steps, 53, 54

Exception classes
creation

class name, 140
error, 140, 141

CX_DYNAMIC_CHECK, 138, 141
CX_NO_CHECK, 138
CX_STATIC_CHECK, 138

Class builder (cont.)

INDEX

263

message classes
assign attributes, 145
CREATE OBJECT statement, 147
CX_DYNAMIC_CHECK class, 146
option, 144, 145
PLAYER class, 147
RAISE statement, 147
text field, 146

public instantiation
HEIGHT attribute, 142
HEIGHT parameter, 142, 143
long text editor, 143, 144
methods, 142
text definition, 143

F
Final classes, 96, 97
Friend classes, 97–100
Functional methods

CALC_AVERAGE method, 45, 46
defining, 44
exporting and returning parameters,

47–50
func_method_class, 44
source code, 46
syntax error, 47

G, H
GET_COLUMNS method, 179
GET_DATA method, 165, 166, 171
GET_LONGTEXT method, 142, 148
GET_PERSISTENT method, 162
GET_TEXT method, 142, 148
Global class in Eclipse

activation message, 248
basic generated code, 245
class outline, 247

class-relevant tabs, 248
complete code, 247
dialog box, 245
DISP_NUM method, 246
help popup, 246
SE24 transaction, 248
syntax error, 246

I, J, K
Inheritance, 61

casting (see Casting and
polymorphism)

FOOTBALL_CLUB attribute, 64, 65
global subclasses

attributes, 81, 84
constructor code, 86
creating constructor, 85
DISPLAY_PLAYER_DETAILS

method, 82
instance constructor, 85
Methods tab, 84
player class, 81, 83
redefined method, 86, 87

HEIGHT attribute, 65
instance constructor, 66–73
redefining methods, 66
subclass, 61, 63
superclass, 61, 63
tree, 62

Inline declarations, 43, 44
Interfaces, 87

component selector, 88
composite, 87
creating global, 91–94
PLAYER class, 88
program output, 90, 91
relevant methods, 89

Index

264

Internal tables as method
parameters, 39–42

IS INSTANCE OF (predicate
expression), 20–22

L
Local class in Eclipse

add implementation option, 251
code creation, 249
options, 250
Rename first_test option, 250
second method implementation, 251

M, N
Method chaining, 51, 52, 183, 184
Methods/method calls, 12, 13

O
Object creation

CREATE OBJECT statement, 173, 175
instance-method calls, 10–12
MYOBJ variable, 174, 175
NEW operator, 27–30, 173, 174
syntax error, 176, 177

Object-oriented transactions
class creator, 185, 186
CREATOR class, 186
DISPLAY_LIST_OF_PLAYERS

method, 186
options, 187
output, 188
program code, 189–192
settings, 188
transaction code, 186

Object reference variable, 26, 27

Object Text Repository (OTR), 138
ON CHANGE OF statement, 210
Overwrite-Exit method, 199, 206–208

P, Q
Persistent classes

attributes, 159, 160
class actor, 159
class/attributes, 158, 159
class builder, 155
class option, 155, 156
database table, 154, 155
friend class, 160
mapping editor, 157
methods, 156
PLAYERID, 157, 158
table fields, 157
table specification, 156, 157

Polymorphism, 75
PostExit method, 199

code, 204, 205
output, 205

PreExit method, 199
column, 203
editor, 203
enhancement operations menu, 202
output, 204

R
RAISE EXCEPTION statement, 139
Refactoring assistant

advantages, 192
attributes, 193
class to associated class, 198, 199
class to interface, 195–198
class to subclass, 194, 195

INDEX

265

S
SET_DATA method, 164, 165, 169
SET_OPTIMIZE method, 179
Shared Memory

objects
active version, 168
area class, 163, 168
attributes, 167
build version, 168
client-specific, 167
reading and writing data, 164
root class, 163, 164
Shared Memory-Enabled

indicator, 164
SHMA, 166, 167

read data
ATTACH_FOR_READ, 171
GET_DATA method, 171

writing code
area instances, 170
ATTACH_FOR_WRITE method, 169
CREATE OBJECT, 169
SET_DATA method, 169
SHMM, 170

Singleton classes
BEST_PLAYER class, 150, 152–154
CREATE OBJECT statement, 151
CREATE PRIVATE, 150
DISPLAY_PLAYER_DETAILS

method, 152
Square method, 221, 223
Statements/constructs not in ABAP

CASE..ENDCASE block, 210
CASE statement, 210
database tables, 213
data types, 211
Field-symbols, 211

internal tables, 212
logical operators, 209
naming variables, 208, 209
ON CHANGE OF statement, 210
TYPES statement, 210, 211
untyped method parameters, 213, 214

Static components, 13–15
DEFERRED variant, 15
PLAYER class, 15
PLAYERS_LIST, 17–19
TEMP_PLAYER reference variable, 17

Static constructor, 36–38
Subclass, 3, 61
Superclass, 3, 61

T
TRY…ENDTRY block, 139

U
Unit test-driven development

ABAP unit browser, 234–237
advantages, 215, 219, 220
#AU Risk_Level and #AU Duration, 221
CHECK_SQUARE method, 221
CL_ABAP_UNIT_ASSERT (see

CL_ABAP_UNIT_ASSERT class)
cycle, 217
definition, unit class, 219
duration, 218
exceptions, 233, 234
execution, 224–227
expected and actual value, 217
framework, 217
implementation, 222, 223
and integration stages, 216
levels, 216

Index

266

outcomes, Code Inspector, 230–233
production and test methods, 217
production class, 221
requirements, complete

code, 223, 224
risk level, 218
simple code, 221
square method, 221

Unit tests, execution
ABAP transactions, 224
ASSERT_EQUALS method, 226
coverage, 225
error messages, 226
failures and messages window, 226
menu option, 225

result display, 226
status message, 224
square function, 225

V
Visibility levels, 3

W, X, Y, Z
Wizard in Eclipse

method1, 252
method2, 254
method call, 254
method signature, 252, 253
Quick Fix feature, 252

Unit test-driven development (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Creating Classes and Objects
	Classes and Their Components
	Local Classes
	Global Classes
	Object Creation and Instance-Method Calls
	Methods and Method Calls
	Static Components
	A Full-Fledged Demo
	The IS INSTANCE OF Predicate Expression
	Deferred Class Specification

	Summary

	Chapter 2: Class Components in Detail
	Finding the Type of an Object Reference Variable: Revisited
	Using the New Operator to Create an Object
	Defining Our Own Types in Classes
	Constants in Classes
	Dictionary Types for Global Classes
	Static Constructor
	Method Revisited
	Specifying Internal Tables as Method Parameters

	Inline Declarations While Calling Methods
	Functional Methods
	Specifying Exporting and Returning Parameters for Functional Methods
	Methods Calling Other Methods
	Method Chaining
	Event Handling in ABAP Objects
	A Working Example
	Triggering and Handling the PLAYER_CREATED Event
	Summary

	Chapter 3: More on Object-Oriented ABAP
	Inheritance: Super and Subclasses
	Redefining Methods
	Instance Constructors
	Working Example

	Casting and Polymorphism
	Global Subclasses and Redefinition of Methods
	Interfaces
	Creating Global Interfaces

	Abstract and Final Classes
	Friendships
	Summary

	Chapter 4: Class Builder
	Transaction SE80
	The Class Builder and Its Features
	Class Builder Tabs
	Useful Functions of the Class Builder
	Where-Used Lists
	Useful Buttons on the SE24 Tab

	Class Browser
	Testing Classes in SE24
	Testing a Static Method

	Testing Instance Methods
	Testing Methods Using Table Parameters
	Summary

	Chapter 5: Exceptions, Shared, and Persistent Objects
	Exception Handling and Exception Classes
	RAISE and TRY .. ENDTRY Statements
	Resumable Exceptions
	Creating an Exception Class
	Public Instantiation

	Using Message Classes for Exception Class Text
	A Working Example

	Singleton Classes
	Persistent Objects
	Storing and Reading Persistent Objects

	Shared Memory Objects
	The GET_DATA and SET_DATA Methods
	Additional Settings

	Versioning Switched On

	Writing and Reading Data Into Shared Memory
	Summary

	Chapter 6: More Topics in Object-Oriented ABAP
	Using the New Operator to Create an Object
	ALV Object Model
	Adding Header Texts to ALV Columns

	Method Chaining
	Object-Oriented Transactions
	Refactoring Assistant
	Moving Components from a Class to its Direct Subclass
	Moving Components from a Class to an Implemented Interface
	Moving Components from a Class to an Associated Class

	Enhancement of Classes
	Example 1. PreExit and PostExit Methods
	Example 2. Overwrite Method

	Statements/Constructs Not Allowed in Object-Oriented ABAP
	Naming Variables
	Using Logical Operators
	CASE Statement Usage
	Using ON CHANGE OF
	Restrictions to Using the TYPES Statement
	Restrictions to Using DATA Declarations and Constants
	Untyped Field-Symbols
	Internal Table-Related Statements
	Database Table-Related Statements
	Untyped Method Parameters

	Summary

	Chapter 7: ABAP Unit Test-Driven Development
	Testing Need and Phases
	Basics of ABAP Unit Test Driven Development
	Unit Test Benefits
	Demo Example
	Executing a Unit Test
	Methods in CL_ABAP_UNIT_ASSERT for Testing
	ABAP Unit Results in Code Inspector
	Exceptions in ABAP Unit Tests
	Enabling and Executing ABAP Unit Browser
	Summary

	Chapter 8: Creating ABAP Classes Using Eclipse
	Installing Eclipse and Loading ABAP Perspective
	Creating an ABAP Project in Eclipse
	Creating a Global Class in Eclipse
	Creating a Local Class in Eclipse
	Method Wizard in Eclipse
	Unit Test Templates Using Eclipse
	Modifying Templates
	Summary

	Index

