ObjeCtS

A Practical Guide to the Basics and Beyond
Rehan Zaidi

Apress’

ww.allitebooks.cor

http://www.allitebooks.org

SAP ABAP Objects

A Practical Guide to the
Basics and Beyond

Rehan Zaidi

Apress’

vww .allitebooks.cond

http://www.allitebooks.org

SAP ABAP Objects: A Practical Guide to the Basics and Beyond

Rehan Zaidi
Dubai, United Arab Emirates

ISBN-13 (pbk): 978-1-4842-4963-5 ISBN-13 (electronic): 978-1-4842-4964-2
https://doi.org/10.1007/978-1-4842-4964-2

Copyright © 2019 by Rehan Zaidi

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott

Development Editor: Laura Berendson

Coordinating Editor: Rita Fernando

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484249635. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

vww allitebooks.conl

https://doi.org/10.1007/978-1-4842-4964-2
http://www.allitebooks.org

Another book dedicated to my mother....

vww allitebooks.conl

http://www.allitebooks.org

Table of Contents

About the AUROKc.ccccmmismnmmsnssssns s san s an s a s annn s nnnn s nnnnnnns xi
About the Technical ReVIEWETccussssmssssssssassssnsssssssssssssnssssssssasssssssssnsssassssnsnsas Xiii
Chapter 1: Creating Classes and Objects.......ccucccmmnmssmmnmmmssssnsnmmssssssnmsssssssssssssssnnsnss 1
Classes and Their COMPONENTS......c.ccviririererissirrere s ss e e s sae e s e sne s 2
0o L 0T L P 4
GIODAI CIASSES........cucueueererisseeise s p s se R 6
Object Creation and Instance-Method Calls.........c..cccovivrenrninncnn s 10
Methods and Method CallS ... s 12
Static COMPONENTS.......ccceiirecr e e s s ne e e s 13
A FUll-FIEdged DEMO.........ccrerreernereresee e sese s sse e e sre e s e e s se e s e s ssesessennessessssennsssens 15
The IS INSTANCE OF Predicate EXPreSSionccvvevererienienenessessesessssessessessessssessessesssssssessessens 20
Deferred Class SPECifiCationcouvevvrenennnernsesne s 22

£ 11114 RS 23
Chapter 2: Class Components in Detail........c..cousmmmsanmssansssnsssnsssassssnssssnsssansssanssansas 25
Finding the Type of an Object Reference Variable: Revisitedcccccovvevrerrnccnnicnenescnnccnen 26
Using the New Operator to Create an Object ... 27
Defining Our Own TYPES iN ClASSES.......ccvvrerrerererererenerrse s e ses s ssssesesesenns 31
CONSTANTS IN ClASSES.....ceveerreerrssereree s s r e nr e nnnne e 32
Dictionary Types for GIODAl ClASSESccvvererrirerserierenersersese s s e sessessessessssssessessesessessesaes 34
STALC CONSIIUCTONc.cvivieicccri i 36
Method REVISITEM ..o e 39
Specifying Internal Tables as Method Parametersccoovvvvvverevrsnrenienenessessesesessessessenees 39
Inline Declarations While Calling Methods..........c.cccviniininininsnsn s 43

A%

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

FUNCtional METNOUScovceimriir s 44
Specifying Exporting and Returning Parameters for Functional Methodsccoceevnienenenens 47
Methods Calling Other Methods..........covvrrnnnin e 51
11113 (oo B 04 U T oo S 51
Event Handling in ABAP ODJECTS.......ccouevrrinerrisesrnisssessssse s s s sssss s e ssssssssssssssssessssessnns 53
AWOIKING EXAMPIE c..cveeeeriereriesersese s ses s sessessesae e e saesessessessessssesessesasssssessessessssennensens 54
Triggering and Handling the PLAYER_CREATED EVENL........c.ccccvevveriernnensensenesessessessessesessessensens 54
£ 111 4= 7R 60
Chapter 3: More on Object-Oriented ABAPcccocemmsssmsmsssmssssssssssssssssssnsssssnssssanss 61
Inheritance: Super and SUDCIASSES........cccurriinin e 61
Redefining Methodsc.cccereieresrrcse s 66
INSEANCE CONSIIUCIONScivicicce e e 66
WOrKing EXAMPIE.......ccoviierierinesesese s s e s sssssssssssssessssssssssssssssssssssssnssnnns 68
Casting and POIYMOIPRISIMccvcerevinrirere e ss e sa e sae e se e nne e 73
Global Subclasses and Redefinition of Methods...........cccoviiennrnncncsnn s 81
1=t T < L S 87
Creating GIODAl INTEITACEScvrveeercrerrrrreee s 91
ADStract and FiNaAl CIASSES.......c.uereruererreererererese s s neens 94
FHENUSNIPS ..o e e e e p e e b e nn 97
B30T 111 T o SRS 100
Chapter 4: Class BUilderccuvummmmmsmmmsmsmsssmmsssmssmmsssssssmsssssssssssssssssssnsssassnsass 101
TranSACTHION SEBOccociererirriieie s 101
The Class Builder and ItS FEALUEScccvrriinnnmsininsss s sssssnns 104
Class BUIAET TADS........cceurerreeerererersseesesesesssssssssesessssesssssesessssesssssessssssssssssssessssssssssssesessasensaes 106
Useful Functions of the Class BUIIEr ... 107
WREIE-USEA LISTScceecereeereecrer e s nnenens 107
ClASS BIOWSETcucereeuereeerenscsessese s e ssese e ses e se e se s e sss e sse e ses e e se e ses s sensssessassssnsssenns 113
Testing Classes iN SE24.........coo s s sessssesssnens 114
Testing @ Static Method..........cocevreiirerere s 115

TABLE OF CONTENTS

Testing Instance Methods ... e 119
Testing Methods Using Table Parameters ..o 128
SUMIMANY ..ttt s b e e e e R e b e e e R e A e e e e e Re e Ao b e e e e e Re R e e e e e aenrs 135
Chapter 5: Exceptions, Shared, and Persistent Objects........ccccccmmrrrrrsssssssnnnnnnnnnas 137
Exception Handling and EXCeption CIaSSEScccurirnnneninninsinseniesssissessessssessessessessssessessens 137
RAISE and TRY .. ENDTRY Statements..........ccccvrvrernnrnnenessnnesssesessssesssesssessssesessssessssessnss 139
Resumable EXCEPLIONS ... st 140
Using Message Classes for Exception Class TeXt........c.cucvvenernsmnnsesssnssssssessssessssssesssesessesenns 144
AWOrKing EXAmPI@.........ccoveierrenerrnisesenessse s ssssesssssssssssssssssssssesssssssssssessnsssssssnnns 146
SINGIEION ClASSES....viitirerererirririe st se s s s a e e s b e e e ae s p e e e e s aenns 150
PerSiStENT ODJECTS ...ciuivriierererterirrere st re e r e s s se s e s s r e e s s ae s a e e e e saeenena e e naenne e 154
Storing and Reading Persistent ODjECES.......ccvcevvvrrrieninn s 160
Shared MemOrY ODJECTS.......cvvrierierererserrererse s s e s s e sae e s e s ssesesessesaessesessesaesaesesnesnesaes 163
The GET_DATA and SET_DATA MEEhOAScccceurmerennrnrninrnesesesesesesesesssssesssssssssssssssssanas 164
Versioning SWItChEH ON......c.cveiervriererrserrerere s s e e s s e ssesas e s e ssesaesesessesaesassssnesaeses 168
Writing and Reading Data Into Shared Memory...........ccccnrinnnininssnsc s 169
£ T TS 172
Chapter 6: More Topics in Object-Oriented ABAP...........ccccussmmmmmmmmnnmsssssssssssssssnnns 173
Using the New Operator to Create an Objectccocvvevrcsnnsc s 173
ALV ODJECE MOTEIeeueerereerere st ses e a e sae e s s a e sa e st e e saesae e e e naennens 177
Adding Header Texts t0 ALV COIUMNSccccvererrrnerrerersesessenesessssessessessessssessessesssssssessesaes 180
1T (0 o I 1 T 1 T OO 183
Object-Oriented TranSaCHIONS........ccovvrrerricsrn e e 185
Refactoring ASSIStant ... ——— 192
Moving Components from a Class to its Direct SUDCIaSS.........cccceeerirvrrercncrcr s 194
Moving Components from a Class to an Implemented Interface........c..ccccovvvnvrcniviencenene. 195
Moving Components from a Class to an Associated Class..........ccooevververreererrerversessersensenns 198

vii

TABLE OF CONTENTS

Enhancement 0f CIASSES.........cucvirerriiinmsessss s s 199
Example 1. PreExit and POStEXit Methods.........cccvvririnneninsnsnse e 200
Example 2. Overwrite Methodccccvverevrinine v se e enes 206

Statements/Constructs Not Allowed in Object-Oriented ABAP.........c.cccovvvvrnrrnnennnesesensenenns 208
NamMiNG VariabIes.......cccceveierririee it r s s s s e e s a e s ssa e s nesnenae e 208
USING LOGICAI OPEIALOLSccvvvereereerererersessesesessessesessessessessssessessesssssssessesaessssessessesssnsssessenes 209
CASE Statement USAQE.......ccvverrerrererreriersessesersessessessssessessessssessessesssssssessessssssssssessesssssssessees 210
USING ON CHANGE OFccvuiuirrrrrriresesesesesesesesesesssssssssssssssssssssssssssssssssssnssssessssssssssssssasanas 210
Restrictions to Using the TYPES Statement..........ccoccvvvirevnvniennensserene s ses v s sessessennes 210
Restrictions to Using DATA Declarations and Constants..........cccceeevvrerieniennsnsensesesessensennes 211
Untyped Field-SYMDOIS.......cccvrerrierrrereses s s ses s sse s ssesssssssessesaessssessessesssssssesneses 211
Internal Table-Related Statements ... 212
Database Table-Related Statements ... 213
Untyped Method Parameters..........ccocvvriinininiensin e sses s se s sse s s sssesne s sseas 213

£ 1134 7O 214

Chapter 7: ABAP Unit Test-Driven Development...........ccccnnnmemmmnmnnnnnnssssssssssnnnns 215

Testing Need and PRaSES........cccuvrrenernsmsmnesessse s s e sessssssssssssssssessssssssnens 215

Basics of ABAP Unit Test Driven Development...........ccovcevrenennsennessneses e sessesenns 217

UNit TEST BENEILSvvcecccerersecii s 219

DEmO EXAMPIE ..ottt e a e e 220

Executing @ UNit TEST......cccciee e 224

Methods in CL_ABAP_UNIT_ASSERT fOr TESTING.......cceererverrerreererierreeseeserersee e sesesseeseesaesnenns 227

ABAP Unit Results in Code INSPECION ... e snens 230

Exceptions in ABAP UNit TESTS ..o st ses e sse s ssssessesnens 233

Enabling and Executing ABAP UNit BrOWSEccucervnnnenieninnensenese s sessessesssssssessessesssssssesaens 234

£ 1] R 237

Chapter 8: Creating ABAP Classes Using EClipSeccccvnnsssmmnrmssssnnnsssssssnsssssssnnnss 239

Installing Eclipse and Loading ABAP Perspectivecccccviennnnneniesnsnsessessssssessessessssessensens 239

Creating an ABAP Project in EClIPSE......couoererererrcrererereseres s 242

Creating a Global Class iN EClIPSE.......cccuvurerermrrnsmsrseseseseressesessssessssesessesesssssssssssessssssssssssssssenns 244

viii

TABLE OF CONTENTS

Creating a Local Class iN ECHPSEvvuvvevrererersineresesssseressessssessessesssssssessessessssessessesssssssessenses 249
Method Wizard in EClIPSE......ccouivciirirnsinene e se s se s s s sn e snens 251
Unit Test Templates USIiNg EClIPSE.......ccoucviririininenn s sss s ssessssessesnens 254
Modifying TEMPIALESc.coveirerer e 256
BT 111 7 o SRS 259
INA@X tiiiiissnnnnnnnnnnnnssssssssnnnnnnnnnessssssssnnnnnnnnesssssssssnnnnnnnesssssssssnnnnnnnnensssssssnnnnnnnnnesssssnnn 261

ix

About the Author

Rehan Zaidi is a consultant for several international SAP
clients. He started working with SAP in 1999 and writing about
his experiences in 2001. He has written several articles for both
SAP Professional Journal and HR Expert, and he also has a
number of popular SAP- and ABAP-related books to his credit.
He provides SAP consulting to companies and helps
clients (both on-site and remote) with their SAP technical
requirements (ABAP, Workflow, Quick development of Fiori
apps, and S/4 HANA-related requirements). Rehan also

creates documentation and training manuals for a number
of companies based in the United States.

Rehan is interested in providing publicity options to ERP consulting firms.
His clients are located in a number of countries and continents, including the Middle
East (GCC region) as well as North America and Europe. He is currently working on a
new ERP programmer magazine. He can be reached at erpdomain@gmail.com.

xi

http://erpdomain@gmail.com/

About the Technical Reviewer

Farhan Ullah started his career in SAP as an ABAP
developer in 2002. He is a certified ABAP developer

and a successful SAP ABAP trainer. He has also moved
toward providing functional consultancy and fulfilling the
business analysis role. However, he remains vested in ABAP
development and keeps abreast on the latest ABAP tools

and technologies. With more than 15 years of experience

in various roles, Farhan has broad expertise in solution
design, project management, support of long-term customer

relationships, and strategic business development.

xiii

CHAPTER 1

Creating Classes
and Objects

Within ABAP object-oriented programming, classes are defined which encapsulate data
as well as functions. Objects (also known as instances) can then be created based on the
class in question. Classes can be created locally (within a program) or globally (available
to all programs in a system). ABAP also supports polymorphism via simple inheritance
interfaces.

In this chapter, we start by defining the key terms used in the ABAP Objects arena.
Then, we look at the various components of a typical class in ABAP Objects and walk
through the steps required to create a local class in an ABAP program. In the next
section, we look at the global Class Builder transaction SE24 and review the steps
required to create a global class that can be accessed by all ABAP programs. We also
discuss the constructor concept, the creation of objects, and the syntax for calling the
methods of the created class. We also demonstrate the importance of defining static
components in the class concept. We wrap this chapter up by creating a full-fledged
coding demo of the PLAYER class by printing a list of football players (via the usage of a
static attribute and method).

The following topics will be covered in this chapter:

e C(lasses and their various components

e Object creation and instance-method calls
o Static components

e The predicate expression IS INSTANCE OF

o Deferred class definition

© Rehan Zaidi 2019
R. Zaidi, SAP ABAP Objects, https://doi.org/10.1007/978-1-4842-4964-2_1

CHAPTER 1 CREATING CLASSES AND OBJECTS

Technical requirements include:
e Accessto a SAP NetWeaver 7.5X system with ABAP authorization

e Basic knowledge of ABAP programming

Classes and Their Components

A class is simply defined as a general representation of a real-world thing. Typical
examples include a factory, a purchase order, and a player. There may be none, one,

or a number of instances for this class at any given time. These instances are known

as objects. The creation or generation of these objects is called instantiation. For
example, a purchase order class may have two objects—purchase orders 620000022 and
6200000023.

Within ABAP, classes can be local or global. A local class is defined in a program,
whereas the global class is defined via the Class Builder transaction SE24. (A global
class can be addressed by all the programs within a given SAP system.) An ABAP class
(whether local or global) may have the following components:

o Attributes: Attributes are the data of a given class or object. They
may store important information like the unique key or they may
uniquely identify the object. They may also store characteristics of
the object or may even help you determine the current state or status
of the object. For example, the PURCHASE ORDER class may have the
Purchase Order Number attribute. Likewise, the PLAYER class may
have the Player Weight and Height attributes. The attributes may be
based on any data type. It is also possible to define an attribute based
on the reference to any other global or local class. (This means that
a given class will have an attribute that is another class’ object.) An
attribute may also be read-only, i.e., defined as constants.

e Methods: These are actions or operations that can be done on
objects of a given class. For example, the PURCHASE ORDER class
may have a number of methods, such as PurchaseOrder Change or
PurchaseOrder Delete.

CHAPTER 1 CREATING CLASSES AND OBJECTS

Events: These are signals generated as a result of changes in an
object’s state. Typical examples include SalesOrder Changed and
Player Transferred. The events that are triggered for a given object
can be linked to special handler methods. (The coding within such
methods is executed when the relevant event occurs.)

In addition to class components, visibility sections are also important. Within a class

definition, there may be three visibility sections (at the global Class Builder level, these

are known as visibility levels). These are Public, Private, and Protected. You may have

any number of events, attributes, and methods within these visibility sections.

Let’s consider these components in a little more detail:

Public components: These are defined within the public section of
a class and can be accessed from anywhere—from the class itself,
outside the class, or from a subclass of the class in question.

Private components: These are only accessible from within the

class in question. For example, the EMPLOYEE_NO attribute may be
accessed via a method of the class called WRITE_EMPLOYEE_NO. Private
section components can be accessed by the class only, and not by its
subclasses or by users outside the class. (An exception to this is the
Friend Class concept, which we will discuss in Chapter 6.)

Protected components: These are defined within the protected
section of a class. These components are only accessible within the
class itself or from any of its subclasses (either immediate or their
subclasses).

The components of a class can be static (instance-independent) or instance

(instance-dependent). Static components, such as static attributes, are for the entire

class (for all objects of the class) and not specific to any one object instance. These are
defined via the addition of the CLASS prefix . For example, CLASS-DATA is used to define
static attributes, whereas CLASS-METHODS specifies static methods of a given class. For
example, we may have a static attribute called TOTAL_EMPLOYEES that’s used to store the
total number of employee objects. Likewise, to find the total list of employees, a static
method (GET_TOTAL_EMPLOYEES) may be contained within a class.

A class (known in this context as a subclass) can be inherited from another class

(called a superclass). The inherited class may then have additional methods of its own as

well as contain redefinitions of methods derived from its superclass. It is also possible to

3

CHAPTER 1 CREATING CLASSES AND OBJECTS

define a class as final, meaning no subclasses may be created for it. A final class may not
be inherited. Also, a particular class may be defined as abstract, meaning that no objects
may be created for the class. However, abstract classes may be inherited and subclasses
may be defined. For example, consider the PLAYER class. We may define this class as an
abstract class, since we cannot have just a player. It should either be a cricket player or a
football player, which are derived classes of PLAYER. So, PLAYER is an abstract class that
cannot be instantiated but only derived in the form of a subclass.

Local Classes

As mentioned previously, classes may be defined as global or local. Local classes are
defined within a given program and are local (only accessible) to the program in which
they are created. These may be defined in programs using the transactions SE38 and
SE80. In this section, we look at how to define a simple local class in a program.

We first create a definition of the class. We define the class by the name of PLAYER.
This class has two sections—public and private. The private section has three
attributes with type STRING, including NAME, COUNTRY, and CLUB, as follows:

public section.
methods write player details.
methods constructor importing
name type string
country type string
club type string.

private section.
data name type string.
data country type string.
data club type string.
endclass.

Within the public section, there are two methods, constructor and WRITE_PLAYER _
DETAILS. The constructor method has three importing parameters for name, country,
and club, as shown. The actual code of the constructor and WRITE_PLAYER_DETAILS
methods is written in the implementation of the class, as follows:

CHAPTER 1 CREATING CLASSES AND OBJECTS

class player implementation.
method write player details.
skip.
write :/ 'Name :', me->name.
write :/ 'Country :', me->country.
write :/ 'Club :', me->club.
endmethod.

method constructor.
me->name = name.
me->country = country.
me->club = club.

endmethod.

endclass.

In the constructor, we assign the imported values of name, country, and club to
the corresponding attributes of the object in question (the one being created at the time
of the constructor call). The special variable called me is used for this purpose. The
constructor is called automatically when new objects are created for the class (we will
see this in detail in the next section).

Tip A special variable called me is provided for accessing the components within
a class from within the class. This is the self-reference variable. These refer to

the instance of the class under consideration at the time of program execution or
object method. This refers to the attribute of the current object in question.

The implementation of the WRITE_PLAYER DETAILS method writes the values
contained in the three attributes—name, country, and club.

It is worth noting that the sequence of the three sections is important. The sections
should be ordered as public, followed by protected (if any), and then finally private. If
this sequence is not followed, an error occurs, as shown in Figure 1-1.

Sections are in the wrong order: The correct order is PUBLIC SECTION,
PROTECTED SECTION, PRIVATE SECTION.

Figure 1-1. Misplaced section error

CHAPTER 1 CREATING CLASSES AND OBJECTS

We will now create the same class using transaction SE24, i.e. as a global class.
Defining a class within the Class Builder allows it to be accessed from all programs (and
even workflows). Moreover, the Class Builder provides a number of tools and features
that the developer may use. Alternatively to transaction SE24, you can also define global
classes using transaction SE80. These will be discussed in detail in Chapter 3.

Global Classes

In this section, we define a global class using the transaction SE24 from the Class Builder.
This class will have the same components as the local class defined in the previous
section. Follow these steps:

1. Call transaction SE24. The screen shown in Figure 1-2 appears.

Class Builder: Initial Screen

gt o 8 & (3] | 1 (O 8D | | Class Browser
Class Browser (Ctrl+Shift+F1)

al

Object Type)

G Dispy ||# change || create |

Figure 1-2. Class Builder transaction

2. Enter the name of the class in the field provided. We will create a
class called ZST6_PLAYER_CLASS. Then click the Create button. The
popup shown in Figure 1-3 appears.

CHAPTER 1 CREATING CLASSES AND OBJECTS

[S Object type X
Name |ZST6_PLAYER_CLASS

@) Class

“lInterface

Figure 1-3. Object type

3. Make sure the Class radio button is selected.

4. Click the Continue button. The dialog shown in Figure 1-4
appears.

5. Enter a suitable description (in our case PLAYER Class) in the field

provided.
[S Create Class ZST6_PLAYER_CLASS X
Class [z5T6_PLAYER_CLASS
S s 1
Description Ililaier Clasq |
Instantiation | Public 2
| Class Type.

(®)Usual ABAP Class

() Exception Class
[with Message Class

(O Persistent class

() Test Class (ABAP Unit)

[v|Final
¥/ Save

Figure 1-4. Create the class

6. Do not change any of the other values shown in the dialog box.
Click the Save button. This takes us to the screen shown in
Figure 1-5.

CHAPTER 1 CREATING CLASSES AND OBJECTS

Class Interface |ZST6_PLAYER CLASS | Implemented / Active
_ Properties | Interfaces | Friends ./ Attributes | Methods | Events | Types | Alases

Friscitert

E@ BE (%o & e _ Cliter

Attrbute |Level Visbilty |Typing Associated Type | Description
NAME Instance Attrbute Private Type STRING Narne of Player
COUNIRY Instance Attrbute Private Type STRING Countrv of Player
CLUB Instance Attribute Private Type STRING Chb of Player

Figure 1-5. Class components

7. Note that there are a number of tabs on the screen, including
Interface, Friends, Attributes, and Methods. Click on the
Attributes tab and enter the three attributes—NAME, COUNTRY, and
CLUB—as instance-level attributes.

8. Choose the type as STRING and visibility as Private.

9. Enter CONSTRUCTOR and WRITE PLAYER DETAILS in the method
list. Both methods are instance-level methods and have public
visibility, as shown in Figure 1-6.

Class Interface 2ST6_PLAYER_CLASS | Implemented / Active

Properties | Interfaces | Friends | Attributes /‘Methods | Events Types | Alases |

@ _parameter |18 _exception [[=] (B BIE) (¥)@IF (& BOE8] (20| Creer

Method Level \Visbiity ~Method type | Description
CONSTRUCTIOR Instance Method Public ﬁ? Constructor

‘B\'RITE“PLRYER_DETAILS Instance Method Public Write Player Details

Figure 1-6. Methods

10. Select the Constructor method and then click on the Parameter
button. This will take you to the parameter specification screen of
the Constructor method, as shown in Figure 1-7.

CHAPTER 1 CREATING CLASSES AND OBJECTS

Method parameters |CONSTRUCTOR

[@ Methods][ml Exceptions] FE—] @@ [ﬁ—ﬂﬁ

| Parameter _1Pa$ Value Optional Typing ... Associated Type |

NAM] 4 (V)) Type STRING
|COUNTRY [] Type STRING
lcLuB V! M Type STRING

Figure 1-7. Constructor method

11. Here we will specify the three parameters of the constructor—
NAME, COUNTRY, and CLUB—as shown. Double-click the name of
Constructor method to open the method code editor, as shown in

Figure 1-8.
Method |CONSTRUCTOR
Cmethod CONSTRUCTOR.
me->name = name.

me->country = country.
me->club = club.

L7 Y S S

Figure 1-8. Method code editor

12. We can now write the constructor code. The three values
imported into the method are assigned to the corresponding
components of the class attributes using the self-reference
variable me. Similarly, we will enter the WRITE_PLAYER_DETAILS
method code, as shown in Figure 1-9.

Method |WRITE_PLAYER DETAILS
1 Bpethod WRITE_PLAYER DETAILS.
2 skip.
3 write :/ 'Name :', me->name.
4 write :/ 'Country :', me->country.
5 write :/ 'Club :', me->club.
-

Figure 1-9. write_player_details method

CHAPTER 1 CREATING CLASSES AND OBJECTS

When you are done with the settings, save your class and activate it using the
CTRL+F3 key. Make sure all the components in the class are in an activated state.

Object Creation and Instance-Method Calls

So far in the chapter we have seen how to define classes locally in a program and within
the global Class Builder. In this section, we learn what is involved in creating objects
based on the local and global classes created in the previous sections. One or more
objects can be created for a particular class within a program. Let’s see how this is done.

The first step is to define the reference variable for the defined class. This can be
either the local class or the global class.

We then call the CREATE OBJECT statement in order to generate an object (instance)
for the given class. For the object, the constructor is automatically called.

The method can then be called using the object component selector ->.

The constructor is not called when an object assignment is made, i.e., when one
particular object reference is assigned to another, as shown:

: 0BJ2 = 0OBJ1.

To call methods of global classes, the code is similar. However, we need to call the
respective global class. For global classes, we have an additional shortcut available.
For example, to add the CREATE OBJECT statement, follow these steps:

1. Click the Pattern button. The dialog box appears as shown in
Figure 1-10.

[= Ins. statement

Statements

() CALL FUNCTION

(e) ABAP Objects Patterns
()MESSAGE

Figure 1-10. Ins. statement

2. Then select the ABAP Objects Patterns option and click the
Continue button. This will display the object-oriented statement
pattern popup, as shown in Figure 1-11.

10

CHAPTER 1 CREATING CLASSES AND OBJECTS

[E 00 Statement Pattemn x

() Call Method
Instance
Class/Interface
Method

(®) Create Object

Instance |PLAYERL

Class ;_zsra_pmfzk_cmssl _,fj
() Raise Event

Class/Interface

Event

() Raise exception
Exception class

Figure 1-11. Statement pattern
3. Choose Create Object. We also need to enter the instance name
and the global class to be used. Then click the Continue button.

This will add the code shown in Figure 1-12 to your ABAP program.

CREATE OBJECT PLAYER1
EXPORTING
NAME -
COUNTRY =
CLUB -

Figure 1-12. Create Object statement added

Similarly, to add a CALL method statement to the OO statement pattern dialog, follow
these steps:

1. Enter the instance name in the field provided (in our case, PLAYER4).

2. Enter the name of the global class (ZT6_PLAYER_CLASS) in the field
provided. When the {4 help for the method is taken, all methods of
the specified class (other than the Constructor) are displayed in
the Hit list.

11

CHAPTER 1 CREATING CLASSES AND OBJECTS

3. Fill in the Instance name, Class name, and the Method name, as
shown in Figure 1-13.

[00 Statement Pattern X
(®) Call Method

Instance |PLAYER4

Class/Interface \Z5T6_PLAYER CLASS

Method IWRITE_PLAYER DETAILS]

Figure 1-13. OO statement pattern

4. Click the Continue button. This will insert the CALL METHOD code
into the program, as shown in Figure 1-14. In this case, no method
parameters exist.

CALL METHOD PLAYER4->WRITE_PLAYER DETAILS

Figure 1-14. Call method

Methods and Method Calls

We have already seen methods in action. In this section, we look at methods in
greater depth.

A method can have importing parameters and exporting parameters. A method
can create an object of another class, or the same class to which the method belongs.
Constructors are special methods that are called at the time of object creation or
instantiation. They may or may not have an importing parameter.

There are various ways of calling a method.

Suppose we have a method called WRITE_PLAYER DETAILS that has no importing
or exporting parameters. In that case, the following two forms of method calls are
permissible:

o CALL METHOD playeri->write player details.

o player2->write player details().

12

CHAPTER 1 CREATING CLASSES AND OBJECTS

There are certain methods that have one RETURNING parameter and any number
of IMPORTING parameters. These are known as functional methods and the RETURNING
parameter corresponds to the RESULT value returned by the method.

There are various ways of calling a functional method:

e When there are no parameters for the functional method, the call
may be like this one:

result = func_meth()

o Ifone value is passed as a parameter (this may correspond to a non-
optional IMPORTING parameter), the call may look like this:

result = func_meth(VAL1)

e When two values are supplied for importing parameters, the call may
look like this:

result = func_meth(parl = VAL1 par2 = VAL2).

CALL METHOD func_meth
exporting parl = VAL1
par2 = VAL2
receiving result = result.

Here we saw some of the examples of methods and method calls. In the newer
releases, a number of other forms of functional methods are possible. We will see these
in more detail in the next chapter.

In the next section, we cover another important topic related to ABAP Objects—static
components.

Static Components

So far, we have been working with instance-level components (methods and attributes).
Now we will look at static components. Unlike instance components, static components
belong to the entire class and not to any given object of the class. All of the objects in

a class can access its static attributes. If you change a static attribute in an object, the
change is visible to all other objects in the class.

13

CHAPTER 1 CREATING CLASSES AND OBJECTS

There are three kinds of static components:
o Static attributes
e Static methods
o Static events

If a class is composed of only static components and no instance components, the
class is called a static class.

In this section, we will see how to define static components in our local class.

Note We also have static constructor in a class. This is called only once for a
class (and internal session), prior to the first access made to the class.

The class (static) constructor is defined in the class definition, as shown here:

CLASS myclass DEFINITION.

PUBLIC SECTION.

CLASS-METHODS class_constructor.
""" static constructor

PRIVATE SECTION.

ENDCLASS.

To add static components to the local class definition, we use the CLASS prefix, such
as CLASS-METHODS or CLASS-DATA.

For example, within the class definition, we may define a static internal table called
PLAYERS LIST based on the TY_ PLAYER type, as shown:

class-data: players list type STANDARD
TABLE OF ty player.

Similarly, we may have a static method called DISPLAY LIST OF PLAYERS (also in the
class definition) as shown:

class-methods display list of players

14

CHAPTER 1 CREATING CLASSES AND OBJECTS

The method code in the implementation section of the class method is written
similarly to the instance method.

Accessing static components is a little different from that of instance components.
Unlike the instance component access, we use the class component selector => to refer
to static components. For example, suppose we need to call the static method DISPLAY _
LIST _OF PLAYERS of the PLAYER class from outside the class. We may do so as follows:

player=>display list of players()

The class name is used in this case and not the name of any object of the class.
Similarly, if a static attribute called MYATTR of a class called MYCLASS has been defined as
public, this attribute may be accessed outside the class as shown:

write : MYCLASS=>MYATTR

So far, we have seen how to define and access static components within a local class.
Depending on the scenario, static components such as attributes and methods may be
used in your classes. We will see more uses of static components in the next chapter.

A Full-Fledged Demo

In this section, we create a local class that will contain static components. We make a
copy of the local class created earlier. We then add the static components in order to
create and print a list of football players.

In the copy of the class, we will make these changes. We will first create a DEFERRED
definition of the PLAYER class. Next, we will create a type TY PLAYER based on the
reference type TY_PLAYER, which in turn is based on the PLAYER class.

CLASS PLAYER DEFINITION DEFERRED.
TYPES: TY_PLAYER TYPE REF TO PLAYER

The DEFERRED variant of the class is used to make the existence of the class known,
irrespective of where the class is defined in the program. For example, in the following
example, the PLAYER class has a deferred definition, which means the reference type
definition for TY_PLAYER does not give an error. The actual definition of the PLAYER class

comes later.

15

CHAPTER 1 CREATING CLASSES AND OBJECTS

class player DEFINITION DEFERRED.
types: ty player type ref to player.
class player DEFINITION.

endclass.

Within the PLAYER class, we add a static attribute called PLAYERS LIST. Thisisa
standard internal table of players. We used the TY_PLAYER type created in the previous step.

PRIVATE SECTION.

DATA NAME TYPE STRING.

DATA COUNTRY TYPE STRING.

DATA CLUB TYPE STRING.

CLASS-DATA: PLAYERS_LIST TYPE STANDARD
TABLE OF TY PLAYER.

We add a static method called DISPLAY_LIST_OF PLAYERS to the class definition. This
will later be used to print the list of players stored in the PLAYERS LIST internal table.

CLASS PLAYER DEFINITION.

PUBLIC SECTION.

METHODS WRITE PLAYER DETAILS.
METHODS CONSTRUCTOR IMPORTING
NAME TYPE STRING

COUNTRY TYPE STRING

CLUB TYPE STRING.

CLASS-METHODS DISPLAY LIST OF PLAYERS.

Next, we make a small change to the class constructor. We append the object
currently being created to the internal table PLAYERS LIST (using the self-reference
variable me). Our constructor will look like the one shown here:

METHOD CONSTRUCTOR.
ME->NAME = NAME.
ME->COUNTRY = COUNTRY.
ME->CLUB = CLUB.

APPEND ME TO PLAYERS LIST.
ENDMETHOD.

16

CHAPTER 1 CREATING CLASSES AND OBJECTS

Finally, we write the method to display the list of players. Within this method, we first
define a TEMP_PLAYER reference variable to hold the reference to the PLAYER class.

We then loop at the PLAYERS LIST internal table. Within the loop, we call the WRITE
PLAYER_DETAILS method for each object reference contained in the internal table.

METHOD DISPLAY LIST OF PLAYERS

DATA : TEMP_PLAYER TYPE REF TO PLAYER.

WRITE :/ '-------un--- PLAYERS LIST------------ ".
LOOP AT PLAYERS LIST INTO TEMP_PLAYER.
TEMP_PLAYER->WRITE PLAYER DETAILS() .

ENDLOOP.

WRITE :/ '----ommmmmmmrmmmm e .
ENDMETHOD.

Next, we write the code to create the two objects based on the PLAYER class and then
call the static method DISPLAY_LIST PLAYERS. This is shown here:

data: player1i type ref to player.
data: player2 type ref to player.

CREATE OBJECT playeri
EXPORTING

name = 'John Mann'
country = 'Germany'
club = 'Bayern Munich'.

CREATE OBJECT player2

EXPORTING

name = 'Paul Goldberg'

country = 'Britain’

club = '"Liverpool'.
player=>display list of players() .

We created two objects (PLAYER1 and PLAYER2) based on the PLAYER class. (The
constructor is automatically called twice, once for each object, and each time the
respective player details are appended to the internal table called PLAYERS LIST.)

Finally, we print the list of players by calling the static method DISPLAY LIST OF
PLAYERS. This will generate the output shown in Figure 1-15.

17

CHAPTER 1 CREATING CLASSES AND OBJECTS

Display Players List

.
PLAYERS LIST—

Name : John Mann
Country : Germany
Club : Bayern Munich
Name : Paul Goldberg
Country : Britain
Club : Liverpool

Figure 1-15. Players list displayed

The full code listing of this example is shown next:

class player DEFINITION DEFERRED.
types: ty player type ref to player.

class player DEFINITION.

public section.

methods write player details.

methods constructor importing name type string
country type string

club type string.

class-methods display list of players.

private section.

data name type string.

data country type string.

data club type string.

class-DATA: players list type STANDARD TABLE OF ty player.
ENDCLASS.

class player IMPLEMENTATION .
method write player details.
skip.

18

write :/ 'Name :', me->name.

write :/ 'Country :', me->country.
write :/ 'Club :', me->club.
endmethod.

method constructor.

me->name = name.

me->country = country.

me->club = club.

append me to players list.
ENDMETHOD.

method display list of players.
data : temp player type ref to player.

write i/ '--mmeeoooe- PLAYERS LIST------

loop at players list into temp_player.
temp_player->write player details() .
endloop.

write 1/ '---mmmm e

endmethod.
ENDCLASS.

start-OF-SELECTION.
data : playeri type ref to player.
data : player2 type ref to player.

CREATE OBJECT playeri
EXPORTING

name = 'John Mann'
country = 'Germany'
club = 'Bayern Munich'.

CREATE OBJECT player2

EXPORTING

name = 'Paul Goldberg'

country = 'Britain’

club = 'Liverpool'.
player=>display list of players() .
end-OF-selection.

CHAPTER 1

CREATING CLASSES AND OBJECTS

19

CHAPTER 1 CREATING CLASSES AND OBJECTS

The IS INSTANCE OF Predicate Expression

In newer releases, SAP supports a new predicate expression called IS INSTANCE OF.
It allows you to check whether a particular reference variable is based on a given class
or not. This may be used in an if statement to program a check and then execute
appropriate code. The predicate expression checks if a given reference variable refers
to an object of the specified class (or any of its subclasses—not emphasized here for
simplicity’s sake). In this case, however, it must be ensured that the reference variable is
not initial. This may be used to check the reference of local and global classes.

The generic syntax of this predicate expression is:

IF MYREF is instance of class_name.
ENDIF.

Here the expression is true when MYREF is a reference variable based on the
class_name class. The comparison must be done with an object type (i.e., a class or an
interface). The MYREF statement expects a reference variable pointing to the type of class
compared in question. Now consider the following example:

class player DEFINITION.

public section.

methods write player details.

methods constructor importing name type string
country type string

club type string.

private section.

data name type string.

data country type string.

data club type string.

ENDCLASS.

class player IMPLEMENTATION .

method write player details.

skip.

write :/ 'Name :', me->name.

write :/ 'Country :'
write :/ 'Club :', me->club.
endmethod.

, me->country.

20

CHAPTER 1 CREATING CLASSES AND OBJECTS

method constructor.
me->name = name.
me->country = country.
me->club = club.
ENDMETHOD.

ENDCLASS.

START-OF-SELECTION.

data player1l type ref to player.
CREATE OBJECT playeri

EXPORTING

name = 'John Mann'

country = 'Germany'

club = 'Bayern Munich'.

if playeri is instance of player .
write :/ ' Object of Player class '
endif.

We can also use the IS INSTANCE OF expression to compare interface references.
This will be discussed later in the book.

Here, we have defined a class and implemented its methods. We then defined a
reference variable pointing to the PLAYER class, and then created an object using the
player1 variable. Finally, we use the IS INSTANCE OF predicate to determine the type of
the player1 object. The if statement returns true.

When the program is executed, the output is as follows:

Object of Player 1
Consider another example:

data player1l type ref to player.
CREATE OBJECT playeri
EXPORTING

name = 'John Mann'

country = 'Germany'

club = 'Bayern Munich'.

21

CHAPTER 1 CREATING CLASSES AND OBJECTS

if playeri is instance of cl salv_table .
write :/ ' Object of Player class '
endif.

Here, we are using the IS INSTANCE OF expression in order to find out if the
reference variable MYREF points to a reference in the CL_SALV_TABLE class. In this case,
the program does not compile correctly and results in a syntax error.

Apart from the IS INSTANCE OF expression, during the past few releases there
have been a number of changes in ABAP as far as the ABAP Objects are concerned
(in particular in NetWeaver 7.52). One change is that we can define functional methods
with both exporting and receiving parameters. We will see this in a later part of the book.

Deferred Class Specification

It is now time to discuss an important variant of class declaration—the DEFERRED variant.
This form of the CLASS statement allows you to make the class known to the program,
irrespective of the location of the addressed class’ definition. Using this form, you do not
need to specify a definition part. It must also be noted that you do not need to specify
the ENDCLASS while making a DEFERRED specification. The complete definition of the
class must be included later in the program. Typically, this is required when you need to
address a local class before it is defined.

Consider for example the following case:

CLASS myclass1 DEFINITION.

PUBLIC SECTION.

DATA object of 2 TYPE REF TO myclass2.
ENDCLASS.

CLASS myclass2 DEFINITION.

PUBLIC SECTION.

DATA object of 1 TYPE REF TO myclassi.
ENDCLASS.

Suppose we have this program and try to include in myclass1 a reference to an
object of the myclass2 class. The code would give us a syntax error.

This is because we tried to address myclass2 (within the declaration of myclass1)
before defining it. (The program then tries to find this class in the global class library.)
The myclass2 class does not give an error since myclass1 has already been defined.

22

CHAPTER 1 CREATING CLASSES AND OBJECTS

To solve the issue, we need to include the following line before the definition of
myclass2:

CLASS myclass2 DEFINITION DEFERRED.
The complete code is:
CLASS myclass2 DEFINITION DEFERRED.

CLASS myclass1 DEFINITION.

PUBLIC SECTION.

DATA object of 2 TYPE REF TO myclass2.
ENDCLASS.

CLASS myclass2 DEFINITION.

PUBLIC SECTION.

DATA object of 1 TYPE REF TO myclassi.

ENDCLASS.

Note that the words DEFERRED and DEFINITION are used together. As you will see, no
€ITor OCCUIS NOW.

It must be noted that the components of the class may not be specified within a
DEFERRED DEFINITION.

When PUBLIC is used as well, this variant makes a global class visible but defers its
load until the end of respective program unit.

Summary

We learned the basics of ABAP object-oriented programming. We saw how to define
local classes and global classes. We also discussed the ways of creating objects of these
classes and calling their methods.

Let’s proceed to Chapter 2 in which we will move one step forward in ABAP Objects.
We will see more examples on object creation and method usage, as well as events
creation and generation.

23

CHAPTER 2

Class Components
in Detail

The first chapter introduced you to the basic concepts of object-oriented ABAP. In this

chapter, we continue moving ahead and cover a number of useful topics that you need to
know to work with ABAP Objects.
We also cover the concepts of local and global classes along with demos and

examples. We will move one more step forward. I will use the global as well as local

classes to exemplify my point.

The following topics will be covered in this chapter:

CASE TYPE OF used for determining the type of an object reference
variable

The NEW operator

Defining types in classes

Inline declaration

Specifying constant values within classes
Static constructor concept

Method chaining and functional methods

Event handling

25

© Rehan Zaidi 2019
R. Zaidi, SAP ABAP Objects, https://doi.org/10.1007/978-1-4842-4964-2_2

CHAPTER 2 CLASS COMPONENTS IN DETAIL

Finding the Type of an Object Reference Variable:
Revisited

Depending on the requirements, it may be necessary to confirm if an object belongs to
a particular class, i.e, for example, if an EMPLOYEE object is an instance of the ZCL_TEST _
EMPLOYEE class.

As mentioned in last chapter, since NetWeaver 7.50, we have a new expression called
IS INSTANCE OF that can be used in conjunction with the IF statement to confirm if
a particular object belongs to a particular class. The usage is very simple, just like any
other expression within an IF statement.

Suppose we have the following code:

data employee type ref to ZCL_TEST EMPLOYEE.
create object employee
EXPORTING
number = 10
name = 'John Reed'
country = 'England’.

Here, we defined a variable called EMPLOYEE that is a reference to the ZCL_TEST _
EMPLOYEE class. We then used the CREATE OBJECT statement to instantiate the given
object with suitable attribute values for number, name, and country.

In this case, we use the IF statement with the IS INSTANCE OF addition on the given
class, as shown here:

if employee is instance of ZCL_TEST EMPLOYEE.
NEW-LINE.
write : 'This is an employee’.

endif.

The output of this code is shown in Figure 2-1.

This is an employee

Figure 2-1. Program output

26

CHAPTER 2 CLASS COMPONENTS IN DETAIL

There is another way we can determine the type of the given employee.
This is done using the CASE.. ENDCASE control structure. A simple example of this in
the context of our employee scenario is as follows:

CASE TYPE OF employee.
WHEN TYPE zcl test employee.
write : / 'This is an employee'.
WHEN OTHERS.
ENDCASE.

Here, note that the TYPE OF addition has been used along with CASE, and the TYPE
variant is written with the WHEN clause. This code also checks whether the employee
object is an instance of the ZCL_TEST_EMPLOYEE class. The code output is the same as
shown in Figure 2-1.

Using the New Operator to Create an Object

Starting with NetWeaver 7.4, ABAP allows creation of objects via the NEW operator. This
operator provides an alternate to the CREATE OBJECT statement. There are a number of
ways in which it may be used for objects’ instantiation. The NEW operator may be used for
creating instances of both local and global classes.

Before we look at the actual coding, let’s go through the general syntax for the NEW
operator. For object creation, the NEW operator may be used in the following two ways:

1. Used in conjunction with the class name. The construct for this is
shown here:

DATA MYOBJ TYPE REF TO MYCLASS.
MYOBJ = NEW myclass(
paraml = vall
param2 = val2
paramN = valN).

Using the inline declaration supported by ABAP 7.40, the same
form may be written in one single statement:

27

CHAPTER 2 CLASS COMPONENTS IN DETAIL

DATA(MYOBJ]) = NEW myclass(
paraml = vall
param2 = val2

paramN = valN).

In both of the previous cases, the NEW operator is used in
conjunction with the class name. This will create an instance of
the MYCLASS class and assign to the reference variable MYOBJ. In
the latter case, there is an implicit declaration of MYOBJ based on
the MYCLASS class (where the type of MYOB] is derived from the
content of the right side of the assignment). If the constructor of
the class has mandatory importing parameters, the corresponding
data must be passed to the instance constructor within the
parentheses, as shown.

2. Used with the # character. Another form of the NEW operator is
using it with the # character. The syntax is as follows:

DATA
MYOBJ TYPE REF TO MYCLASS.
MYOBJ] = NEW #(paraml = vali
param2 = val2

paramN = valN).

We declare a variable called MYOBJ referred to the MYCLASS class. Since we already
declared a reference variable based on the class in question, there is no need to specify
the class again with the NEW operator. Instead of the class name, the # character can be
used. Any non-optional parameters are provided in parentheses, as shown earlier.

To better understand how to use the two forms of the NEW operator, let’s look at a
few examples. In this example, we use the global football player class ZST6_FOOTBALL _
PLAYER_CLASS that we defined earlier in the book.

Consider the following code block, which is a pre-ABAP 7.40 version:

DATA FOOTBALL_ PLAYER TYPE REF TO ZST6 FOOTBALL PLAYER CLASS. CREATE OBJECT
FOOTBALL_PLAYER
numunnn® Without NEW Operator

28

CHAPTER 2 CLASS COMPONENTS IN DETAIL

EXPORTING
NAME = 'Oliver Kahn'
WEIGHT = '88'
HEIGHT = '178'

FOOTBALL CLUB = 'Bayern Munich'.
FOOTBALL PLAYER->DISPLAY PLAYER DETAILS().

We created an object of the global class using the CREATE OBJECT statement. The
DISPLAY_PLAYER_DETAILS method was then called to print the details of the created
football player. This block of code was earlier used to create a football player object.

We will now see two ways that we can instantiate the object of using the NEW operator
(and not the CREATE OBJECT statement). The block of code shown in the previous listing
may be replaced with the following:

DATA(FOOTBALL_PLAYER) =
NEW ZST6 FOOTBALL PLAYER CLASS(NAME = 'Oliver Kahn'
WEIGHT = '88'
HEIGHT = '178'
FOOTBALL CLUB = 'Bayern Munich').
FOOTBALL PLAYER->DISPLAY PLAYER DETAILS().

We used the inline declaration of FOOTBALL_PLAYER along with the NEW operator in a
single statement. This involves the implicit definition of FOOTBALL PLAYER as a reference
of class ZST6_FOOTBALL PLAYER CLASS. In this case, we did not have to declare a variable
based on the class in a separate statement. An object for the given class is created and
the reference variable FOOTBALL PLAYER may then be used to display the player details.

Let’s now look at another piece of code that uses the NEW operator in conjunction
with the # character. The corresponding code is shown here:

DATA: FOOTBALL_PLAYER TYPE REF TO ZST6_FOOTBALL_PLAYER_CLASS.
FOOTBALL PLAYER = NEW #(NAME = 'Oliver Kahn'

WEICHT = '88'

HEIGHT = '178'

FOOTBALL_CLUB = 'Bayern Munich').
FOOTBALL_PLAYER->DISPLAY PLAYER DETAILS().

In this usage form, we declare a reference variable FOOTBALL_PLAYER for the class
ZST6_FOOTBALL_PLAYER CLASS. We use the NEW operator to create an object of the given

29

CHAPTER 2 CLASS COMPONENTS IN DETAIL

class. Instead of specifying the name of the class, we use the # character. The reference to
the newly created object is assigned to the FOOTBALL_PLAYER variable. The values for the
various importing parameters are supplied as shown earlier. The complete class name is
not required, as the system automatically detects it from the type of the variable to which
the created object’s reference is assigned (in our case, FOOTBALL PLAYER).

The following block of code pertaining to our requirement will be unacceptable, as
the class whose object is to be created is unknown:

DATA(FOOTBALL_PLAYER) =
NEW #(NAME = 'Oliver Kahn'
WEIGHT = '88'
HEIGHT = '178'
FOOTBALL CLUB = 'Bayern Munich').

"" NOT ALLOWED
FOOTBALL PLAYER->DISPLAY PLAYER DETAILS().

In the above code, the error appears as shown in Figure 2-2. An error results since
the type (the class name) of the football player object cannot be determined.

11 DATA (FOOTBALL_PLAYER) =

12; NEW #(NAME = 'Oliver Kahn'

13} WEIGHT = '88’

14 HEIGHT = '178°

15; FOOTBALL CLUB = 'Bayern Munich').
1 E mommnnr NOT ALLOWED

FCOTBALL_PLAYER->DISPLAY PLAYER DETAILS().

&el[2] (=]

Syntax error
Description Row | Type
Program ZNEW_OPERATOR_DEMO 12 @O0

No type can be derived from the context for the operator "NEW".

Figure 2-2. Syntax error using the NEW operator

30

CHAPTER 2 CLASS COMPONENTS IN DETAIL

Defining Our Own Types in Classes

In this section, we learn how to define our own types in local and global classes. You may
define types within the class in the private or the public sections (as well as the protected
section). We will first see how to define types in local classes.

A simple example of this is as follows:

class newclass definition.
public section.
types : myty dec2 type p length 13 decimals 2.
endclass.

Here we defined our own type based on the public section.

You may define your own variables within the class and outside using the data
statement.

Based on a type defined within the public section, it is possible to define variables
based on the define type. You may use the class name and the => symbol to address the
define type. An example of this follows:

data INT type newclass=>myty dec2.

As mentioned earlier, it is also possible to define a type in a global class. To define a
type in an SE24 transaction, a few additional steps are required.

Go to the class in edit mode. Then, click on the Types tab. Enter the name of the type
in the Type field. Enter Public as the visibility for this example. Then click the yellow
arrow icon on the relevant row.

Class/Interface Z$T17_TOTAL_AVERAGE Implemented J Active
Properties Interfaces | Friends Attributes Methods Events Aliases

"[‘ — . %. ? 5:7@ 'o.‘q'_?*.-_._” ; E_ un e

Type Visibility Typing Associated... Description
MYTY_DEC2 Public & |

Type ol

Type ctl

Type e

Type 7 |

Type c |

Figure 2-3. Defining types in SE24
31

CHAPTER 2 CLASS COMPONENTS IN DETAIL

This will take you to the Class Builder code editor, where you may specify the
complete specification (length and decimals). This is shown in Figure 2-4.

Class Builder Class ZST17 _TOTAL AVERAGE Change
* S RVMHO e 25] @

Public section Active
| 4 create public .

s
6 public section.
7
8 types:
9 MYTY DECZ type p length 13 decimals 2 .
10
11

Figure 2-4. Specifying type definition

Save and activate the class.

Constants in Classes

Just like we have constants while making report programs, we can declare constants
within local and global classes. Within the realm of classes, constants are special static
attributes within a class. Constants may be public or private attributes and may not be
changed within the class or outside the class.

For local classes, suppose we have a class called MYCLASS, as shown:

CLASS myclass DEFINITION.

PUBLIC SECTION.

CONSTANTS: myconstant TYPE string VALUE 'XYZ'.
ENDCLASS.

DATA myvalue TYPE string.

myvalue = myclass=>myconstant.
write myvalue.

Here we have the MYCLASS class, and within the public section, we defined a constant
by the name MYCONSTANT and assigned it the value XYZ. Since this is a public attribute,

32

CHAPTER 2 CLASS COMPONENTS IN DETAIL

it can be accessed outside the class using the => operator. The value is assigned to the
string called myvalue. The contents of myvalue are printed.

Suppose you try to change the value of MYCONSTANT anywhere in the program? An
error will occur at the time of the syntax check, as shown in Figure 2-5.

1 DATA myvalue TYPE string.

myclass=>myconstant = '4L',
write myvalue.

[0 B S S]

«»
[&)[2) @1 B e B[+~]I [(F])(&]
1 Syntax Error for Program YTEST1
Ty Line Description
@ 14 Program YTEST1
The field "MYCLASS=>MYCONSTANT" cannot be modified. -

Figure 2-5. Syntax error

As mentioned, a constant can be defined in the private section of a class as well.
Hence, the following class definition is also acceptable:

CLASS myclass DEFINITION.
Private SECTION.
CONSTANTS: myconstant TYPE string VALUE 'XYZ'.
ENDCLASS.

You may not be able to access myconstant outside the class, like all other private
attributes.

It is also possible to define constants within global classes. Let’s see how this is
done using the Class Builder. Suppose we have a class called ZCL_TEST_EMPLOYEE
(see Figure 2-6).

Here we defined a constant called SALUTATION_MR based on the type STRING, and
assigned it the value 'MR". For the Level, we specified CONSTANT, as shown in Figure 2-6.

33

CHAPTER 2 CLASS COMPONENTS IN DETAIL

Class/Interface |ZCL_TEST_EMPLOYEE Implemented / Active (revised)
Properties | Interfaces | Friends /(Attrbutes | Methods | Events | Types | Alases |

B propertes | [BEJER) [o4fDIT (8] (@R8] Ooeer

Attribute Level Visbiity Read-Only Typing |Associated Type | Description | Initial Value
[NUMBER Instance Attribute Private [0 [mwpe 1 Number
[MAME Instance Attribute Private [0 Type [PERSNO Name
|COUNTRY Instance Attribute Private (M) Type SIRING Countn_.r
|SALUTATION MR Constant Private [] 1Type SIRING ‘MR’

[J [Type

Figure 2-6. The SALUTATION_MR constant

Dictionary Types for Global Classes

In Chapter 1, we saw how to define a type pertaining to an internal table comprised of
employee objects. Earlier we did this by defining a table type local to a program. It is
also possible to define a table type globally in the transaction SE24 Class Builder. This
may later be used in any program to create objects based on the underlying class. In this
section, we see how this is done.

Suppose we have a class called ZCL_TEST_EMPLOYEE, defined in the Class Builder. To
create a table type based on this class, follow these steps:

1. Go to transaction SE11. This will display the screen shown in
Figure 2-7.

34

CHAPTER 2 CLASS COMPONENTS IN DETAIL

ABAP Dictionary: Initial Screen
g0 o/ B B i @O

() Database table ']

; 1
(O View

. . 7
(e)Data type ZEMP_OBJECT_TABLE_ TYPE _‘le!
(O Type Group

(O Domain
() Search help " '
(O Lock object ']

k&r’ Display } [i Change] lD Create

Figure 2-7. Data typein SE11

2. Enter the name of the table type that you want to create in the
Data Type field and click the Create button. (As you will see, we
called our type ZEMP_OBJECT_TABLE_TYPE.) This will display a
small dialog box, as shown in Figure 2-8.

[Create Type ZEMP_OBJECT_T... X

=
L@ Data element
() Structure

() Table type

)]

Figure 2-8. Data type options
3. Choose the Table Type option and press Enter. This will take you
to the screen shown in Figure 2-9.
4. Choose the Reference type option.

35

CHAPTER 2 CLASS COMPONENTS IN DETAIL

Dictionary: Change Table Type

G| % IE| e A S| S [i] ' Hierarchy Display

[

Table Type \ZEMP_OBJECT_TABLE_TYPE | Active
Short text _Employee Tablel
Attributes . Line Type %"mtiaizatinn and Access ¢ "Pr'manr Key '.'"'Secondar\r Key |

(C)Line Type

() Predefined Type
Data Type
No. of Characters lo] Decimal Places lo

() Reference type
(*)Referenced Type |ZCL_TEST EMPLOYEE | O

Figure 2-9. Specifying reference type

5. Enter the name and description in the fields provided. Choose
the Reference Type option and enter the name of the employee
class (i.e., ZCL_TEST_EMPLOYEE) in the field as shown. Once you are
done, save and activate the type using the CTRL+F3 keys.

Now that we are done, we can use this type in any program. An example is shown here:
data EMPLOYEES type zemp object table type.
This statement is the same as the following two statements:

Types emp type ref to ZCL TEST EMPLOYEE.
data employees type STANDARD TABLE OF emp.

Static Constructor

In Chapter 1, we discussed instance constructors and saw related coding examples. It is
also possible to define static constructors within classes.

A static constructor is also known as a class constructor. As with the other static
methods, the static constructor is only able to address the static components residing
within the class in question.

We also have a static constructor in a class. This is called ONLY once for a class
(and internal session), prior to the first access made to the class.

36

CHAPTER 2 CLASS COMPONENTS IN DETAIL

The following statement shows the generic form of a static constructor declaration
within a local class:

CLASS-METHODS class_constructor.

As you will see, we declared a static constructor by the name class_constructor of
the class in question. This statement may only be written within the public section of the
class (declaration). By default, every class has a built-in class_constructor method in
the public section.

However, without the declaration, this constructor is blank.

In contrast to the instance constructor, the static constructor is executed once for
each class within an internal session. This execution occurs before the first access to the
class in question, such as an instance creation.

You can access any static component of the class using =>. It is also possible to call a
static method within the static constructor.

Any failed attempt to dynamically address a nonexistent component of a class does
not result in the static constructor being called.

Now that we have some knowledge of the working of static constructors, let’s look at
a fully working example:

CLASS my class DEFINITION.
PUBLIC SECTION.
CLASS-METHODS class_constructor.
CLASS-METHODS my_static_method.
ENDCLASS.

CLASS my class IMPLEMENTATION.
METHOD class_constructor.
write : / 'Static Constructor Called'.
ENDMETHOD.
METHOD my static_method.
write : / 'Static Method Called'.
ENDMETHOD.
ENDCLASS.

START-OF-SELECTION.
my class=>my static_method().

37

CHAPTER 2 CLASS COMPONENTS IN DETAIL

Here we have a local class called MY _CLASS that has two static methods, namely
CLASS_CONSTRUCTOR and MY_STATIC METHOD. Within the two methods, there are specific
messages outputted in order to show the sequence of method execution. We call the
static method only using the component class selector =. >.

Calling the static method MY_STATIC_METHOD will result in the static constructor
being executed prior to MY_STATIC_METHOD.

The output of the program is shown in Figure 2-10.

Static Constructor Called
Static Method Called

Figure 2-10. Program output

Now let’s look at the same requirement fulfilled using a global class. We assume for
this example that a class already exists by the name ZCL_TEST_EMPLOYEE.
Follow the steps:

1. Open the class in edit mode. Then click the Methods tab.

2. Under the method list, enter the name CLASS CONSTRUCTOR and
press Enter. This will automatically populate Static Method into
the Level field, as shown in Figure 2-11.

Class Builder: Change Class ZCL_TEST_EMPLOYEE
G PR [E et 2 B | su =0 P (A | E Lol Defintions/Implementations = Local Test Classes

Class/Interface [zCL_TEST EMPLOYEE Implemented / Active
_Properties | Interfaces | Friends |~ Attributes ./ Methods | Events | Types | Alases |

[EI Parameters]ID@ Exceptions]E Sourcecode @[’?ﬁ]@ E@ [;]EI. B @ mm} Iu_‘| [IFiter

Method Level Visbiity ~ |M... Description

|SHOW_DETAILS Instance Methed Public Show Employee detzis
|GET_NAME_AND_COUNTRY Instance Methed Public Give Employee name and Country for Object
|CONSTRUCTOR Instance Method FPublic 2z Create object

|CLASS_CONSTRUCTOR Static Method Public e Class Constructor

Figure 2-11. Methods tab

As you will see, the Level is set to Static Method and cannot be changed. In
addition, the visibility column will be automatically populated with Public. It is worth
noting that if any other visibility, such as Private, is entered in the column, upon pressing
Enter, the Visibility will change back to Public.

38

CHAPTER 2 CLASS COMPONENTS IN DETAIL

Method Revisited

In Chapter 1, we saw local as well as global methods. In this section, we will go a few
steps further with methods. We will see how to specify internal tables as method
parameters, method chaining, and functional methods.

Specifying Internal Tables as Method Parameters

So far we have only seen integers and strings as types of method parameters. It is also
possible to specify internal tables as exporting, importing, and returning parameters of
class methods.

Let’s now complicate things a bit. In this section, we see how we can specify an
internal table as a parameter of the method of a class. In the football player example
introduced in Chapter 1, we define a new method, called RETURN_LIST_OF PLAYERS.
Instead of writing the attributes of each player object on the screen, we will return the list
of player objects in an internal table.

We will specify an internal table (of player objects) as a parameter to this method.
Prior to this method, we specify a type called ty player tabbased on the the ty player
type defined earlier.

class player DEFINITION DEFERRED.
types : ty player type ref to player.
types : ty player tab type STANDARD TABLE OF ty player.

We then define the static RETURN_LIST OF PLAYERS method. The signature of this
method is shown in the Player class definition:

class player DEFINITION.

public section.

methods write player details.

methods constructor importing name type string
country type string
club type string.

class-methods display list of players.

class-methods return_list of players

exporting players tab
type ty player tab.

39

CHAPTER 2 CLASS COMPONENTS IN DETAIL

private section.
data name type string.
data country type string.
data club type string.
class-DATA: players list type STANDARD TABLE OF ty player.

ENDCLASS.

As you will see, we have specified an exporting parameter called PLAYERS TAB based
onthe TY_PLAYER TAB type. It must be noted that the table type must be specified here.
(Thisisa TYPE STANDARD TABLE type based on TY_PLAYER.)

Next, we write the code of the method within the Implementation section. Since we
already have the internal table of objects stored in the PLAYERS LIST static variable, we
simply use an assignment operator to store the internal table contents in the exporting
parameter, called PLAYERS_TAB.

method return list of players.
players tab[] = players list[] .
endmethod.

The internal table is then returned as an exporting parameter.
To call the method we will use the player class static method:

player=>return list of players(IMPORTING players tab
= data(players tab)) .

This method is called after instantiation of two player objects, as shown in our
previous example, which shows the contents of our players tab. We use inline
declaration to return this in players_tab.

After execution of the program, the contents of the internal table will look like
Figure 2-12.

40

CHAPTER 2 CLASS COMPONENTS IN DETAIL

| Tables Table Contents

Table PLAYERS_TAB m
Attributes Standard [2x1(8)] g
ESCoumns ... 4

Insert Column

Row TABLE_LINE [Reference]
1 ->{0: 10%\ PROGRAM=ZST17_TEST111\CLASS=PLAYER}

2 ->{0:11*\PROGRAN=Z5T17 TESTLLL\CLASS=PLAYER}

Figure 2-12. Table contents

The complete code of the football player exercise will now look like this:

class player DEFINITION DEFERRED.

types : ty player type ref to player.
types : ty player tab type STANDARD TABLE OF ty player.

class player DEFINITION.
public section.
methods write player details.
methods constructor importing name type string
country type string
club type string.

class-methods display list of players.
class-methods return list of players exporting players tab type
ty player tab.
private section.

data name type string.

data country type string.

data club type string.

class-DATA: players list type STANDARD TABLE OF ty player.

ENDCLASS.

class player IMPLEMENTATION .
method write player details.
skip.
41

CHAPTER 2 CLASS COMPONENTS IN DETAIL

write :/ 'Name :', me->name.

write :/ 'Country :', me->country.

write :/ 'Club :', me->club.
endmethod.

method constructor.
me->name = name.
me->country = country.
me->club = club.
append me to players list.
ENDMETHOD.

method display list of players.
data : temp player type ref to player.

write i/ '--cme-ooooe- PLAYERS LIST-----=--n--- .

loop at players list into temp player.
temp_player->write player details() .
endloop.

write 1/ temmmmmm e .

endmethod.

method return list of players.
players tab[] = players list[] .
endmethod.

endclass.

start-OF-SELECTION.
data : playeri type ref to player.
data : player2 type ref to player.

CREATE OBJECT playeri

EXPORTING
name = 'John Mann'
country = 'Germany'
club = 'Bayern Munich'.

CREATE OBJECT player2
EXPORTING

42

CHAPTER 2 CLASS COMPONENTS IN DETAIL

name = 'Paul Goldberg'
country = 'Britain’
club = 'Liverpool'.

player=>return list of players(IMPORTING
players tab = data(players tab)) .
end-OF-selection.

Inline Declarations While Calling Methods

Since 740, ABAP supports inline declaration of variables. This holds true for method calls
as well. We will see how to call methods and specify (as parameters) variables that were
not declared earlier in the program.

Consider a situation where we have an employee class called ZCL_EMPLOYEE that
has a method called GET_NAME_AND_COUNTRY that returns the name and country of the
employee in question.

One of the ways to call this method is:

data name type string.
data country type string.

employee->get name_and_country(
IMPORTING
name = name
country = country) .

This is the traditional method, where we first declare variables pertaining to the
importing parameters of the method. The value of name and country is then returned in
the declared variables.

There is another compact way of writing this using inline declaration. This is shown as:

employee->get name_and_country(
IMPORTING
name = data(name)
country = data(country)) .

As you will see, we have not done any prior declaration of the two variables NAME
and COUNTRY. Rather we used the feature of inline declaration while specifying the

43

CHAPTER 2 CLASS COMPONENTS IN DETAIL

parameters of the method in question. The variable name to be declared inline must be
in parentheses and must be preceded by data. The output of this piece of code and the
one shown earlier are exactly the same.

Using inline declarations is not just restricted to exporting parameters of the
method. They may also be used for RECEIVING parameters (we will discuss this in an
upcoming section).

Functional Methods

So far, we have only seen methods that take as input a number of importing parameters
and then export a number of parameters (exporting parameters). We also have a
special type of method that returns a single result or returning value. Such methods
are known as functional methods. These may be defined in local and global classes. It
is also possible to have a functional method as a static method or an instance method
within a class.

One such functional method is as follows:

class func_method class DEFINITION.
public section.
class-methods calc_average IMPORTING
int1 type i
int2 type i
RETURNING value(average) type i.
endclass.

class func_method class IMPLEMENTATION.
method calc_average.
average = (int1 + int2) / 2.
endmethod.
endclass.

Asyou can see, the static method CALC_AVERAGE takes as input two integer values
int1 and int2 and returns a single parameter called AVERAGE as the returning parameter.
The example shows a local class, called func_method class. As with other methods, the
code of this is written in the IMPLEMENTATION of the class.

44

CHAPTER 2 CLASS COMPONENTS IN DETAIL
To call this method, we use the following formats:

func_method_class=>calc_average(
exporting int1 = i1
int2 = i2
RECEIVING average = av).
As you will see, while calling the CALC_AVERAGE method, we use RECEIVING

(corresponding to the RETURNING parameter AVERAGE). In addition, there is another way
of calling the functional method using inline declaration:

func_method_class=>calc_average(
exporting int1 = i1
int2 = i2
RECEIVING average = data(avl)).

A more meaningful and preferred format is shown in the following example:

1.

data(i1)
data(i2)
data(av)
write : av.

func_method_class=>calc_average(int1 = i1 int2 = i2).

Here we used the assignment operator to return the average result in the variable AV.
When using a functional method, you do not have to specify the parameter names for
the return value explicitly in the parameter list, as shown in the code.

We can also define a functional method for a global class. We will create a static
method called CALC_AVERAGE having public visibility, as shown in Figure 2-13.

Class/Interface |zsTe_TEST1 Implemented / Active
“properties | Interfaces | Friends | Attributes /Methods |} Events | Types + Alases |

o Parameter '8 _Exception] [T ERIER] [4DIT (2] (@8R (/5] Oeer
Method Level Visibiity ~ Description
EC.I‘.LC_AVERAGE Static Method Public [Calculate the average of two numbers

Figure 2-13. Global class with a functional method

45

CHAPTER 2 CLASS COMPONENTS IN DETAIL

For the method, the next step involves specifying the parameters for the method. For
the AVERAGE parameter, we need to select the Returning type. If you do not select the Pass
Value checkbox for Average, the system automatically checks this indicator. The other

two parameters are specified as Importing, as shown in Figure 2-14.

Class/Interface lzsTe_TESTL | Implemented / Active
Properties Interfaces | Friends | Attributes ./ Methods | Events | Types ! Alases |

Method parameters !CALC_AVERAGE Lﬂ@
{8 Methods [&3 Exceptions‘@] [El EE} H[FE‘"

!Parameter Type Pass Value Optional Typing ... Associated Type Default value Description
AVERAGE Returning % O fwe 1

(1nT2 Importing m [J fType I

mvT2 Importing O] Type 1

Figure 2-14. Parameters of CALC_AVERAGE

Next, we write the source code of the method, as shown in Figure 2-15.

Class Builder: Class ZST8_TEST1 Change
LS M=l P MR E(©) S 8B g3 U [E] | @ G Pattern Pretty Printer

Ty. Parameter Type spec. Descri
@, value(AVERAGE) TYPE I
pa INT1 TYPEI
pa INT2 TYPE I

Method |cALC AVERAGE Active

©| method CALC_AVERAGE.

L average = (intl + int2) /J 2.
A O,

W A

Figure 2-15. Method source code

When you are done, save and activate the class. The method created here may be
called in programs the same way the local functional method was called.

A functional method can have only one returning parameter. You may not create
two or more returning parameters. You must also ensure that the assignment operator
is used with a method that has a returning parameter. If the method does not have a
returning parameter, but you try to use it in an expression along with the assignment
= operator, a syntax error occurs. Consider the example shown in Figure 2-16.

46

CHAPTER 2 CLASS COMPONENTS IN DETAIL

data wa_p0006 type p0006.
wa_p0006 = lr_conta:i.ner_dat.a—:\PRIMARYJ{ECORD_REF:;)i

~hanged record data 2= » container data->modifyv primary recor

Syntax error
Description Row | Type
Program ZST2_CHANGE_0006 5 WO

The method "PRIMARY_RECORD_REF" does not have a RETURNING parameter.
You cannot call it in expressions.

Figure 2-16. Syntax error

Here we have a method called PRIMARY_RECORD_REF that does not have a returning
parameter. But we have used this improperly, which results in a syntax error.

When you try to create more than one returning parameter for a given method, a
syntax error occurs, as shown in Figure 2-17.

1 Syntax Error for Program 2ST17_TEST111

Ty, Line Description
® 2 Program Z5T17_TEST111
: :".", "RAISING", "OPTIONAL", "DEFAULT ...", or "EXCEPTIONS ..." expected after "T", i

Figure 2-17. Syntax error

This error occurs for global as well as local classes. Starting from NetWeaver 7.50, it is
also possible to specify exporting parameters for functional methods.

Specifying Exporting and Returning Parameters
for Functional Methods

The newer NetWeaver release provides an interesting feature of functional methods.
In addition to a returning parameter, a functional method can also have an exporting
parameter. However, note that functional methods support only one returning
parameter and any number of other formal parameters, including importing and
exporting. We can create local or global functional methods, which may be static or
instance methods.

47

CHAPTER 2 CLASS COMPONENTS IN DETAIL

In the examples, we cover both scenarios of defining functional methods locally and
globally that have both exporting and returning parameters. We use static method in
these examples for better understanding.

This first example defines a functional method locally. We define a class with a static
method to calculate the total sum and average of two given numbers. The sum will be
returned as an exporting parameter, whereas the average will be a returning parameter.
The code is shown:

class newclass definition.
public section.
types : myty dec2 type p length 13 decimals 2.
class-methods : func_av_and total importing
myintl type i
myint2 type i
exporting
sum type i
returning
value(av) type myty dec2.

endclass.

As you see in the code, we defined a class locally within the program. The class name
is newclass. A static method, func_av_and_total, is defined within the class, which
calculates both the average and the sum of the two numbers supplied to the method.

This method has two import parameters (myint1 and myint2) of type Integer.

The sum is the exporting parameter, whereas AV is the returning parameter of the type
myty dec2. (This is a user-defined type defined within the class.)

The class implementation is shown here:

class newclass implementation.
method func_av_and total.
sum = myintl + myint2.
av = sum / 2.
endmethod.
endclass.

48

CHAPTER 2 CLASS COMPONENTS IN DETAIL

In the class implementation, we specified how the sum and the average are
calculated. We add the two numbers to get sum and divide the total by 2 in order to get
the average that is returned in parameter AV.

We can call this method in multiple ways. The example will show you how to use the
assignment operator to read only the average value of the provided numbers.

data(avi) = newclass=>func_av_and total(
|2l
11") .

exporting myint1
myint2

In the example, a static method is called without creating a class instance. The
variable AV is defined using an inline declaration. The method returns the average of the
input parameters, which is captured in the variable AV. This may later be printed on the
user screen.

In another example, we will show how you call the static method with exporting and
importing parameters, along with the returning parameter.

data sum type i.
data(avl) = Newclass=>func_av_and total(
exporting myint1 = '2°
myint2 = '11'
importing sum = sum).

write : avl , sum.

In this example, the func_av_and_total method is called with exporting integer
parameters and an importing sum. The function will return the av value. Here, we
have passed numbers 2 and 8 to MYINT1 and MYINT2, respectively. The average value is
returned in the AV1 variable, whereas sum is assigned to the variable sum. The output is
then printed on the screen, as shown in Figure 2-18.

Figure 2-18. Program output

Using Class Builder (transition SE24), we can define a similar method globally. An
example of this is shown in Figure 2-19.

49

CHAPTER 2 CLASS COMPONENTS IN DETAIL

Method FUNC_AV_iND_TOTAL Active

i @ method FUNC_AV_AND TOTAL.
2|

sum = myintl + myint2.

Class ZST17_TOTAL_AVERAGE

Method FUNC_AV_AND_TOTAL
Description Total and Average

[Attributes Exceptions

Methods Exceptions Sourcecode &F‘ Properties |
I_Parameuer _|Ty'pe P... O... Typing Method Associated Type
Enflm’l _}n'lporting Type T
MYINTZ Importing Type 1
SuH Exporting Type I
AV Retuming Type MYTY_DECZ

Figure 2-19. Functional method in sE24

In this class definition, SUM is defined as an exporting parameter and AV is defined as

areturning parameter. The ty dec2 type is defined using the Types tab.
The method may be tested using the standard test feature, as shown in Figure 2-20.

Test Method FUNC_AV_AND_TOTAL: Display Restuilts
= =
TestObject->FUNC_AV_AND_TOTAL{}
Case-Sensitive o

Runtime: 26 Microseconds

(SFUNC_AV_AND_TOTAL

—3 Import Parameter

PCMVINTL 2
YCUYINTZ 11

—3 Export Parameter

»OSUM 13

—3 Result

AV 6.50

Figure 2-20. Test feature

50

CHAPTER 2 CLASS COMPONENTS IN DETAIL

Methods Calling Other Methods

A declared method can call other methods in the source code. For example, it is possible
for a local class method to call a (public) method of another local class, or a static

local method can call a static global or local method. At the time of calling, the control
switches just like other modularization units, such as form subroutine and function
modules, and returns to the calling method.

Method Chaining

A newer concept that has evolved is method chaining. This involves combining calls of
functional methods (i.e., methods that have one returning value as output). The chaining
of methods makes the code more compact and allows you to fulfill requirements without
the need for additional reference variables. There are two types of chaining possible:
chained method access and chained method call. (The primary emphasis of this section
is on chained method access.) Let’s take a look at what each of these means.

In chained method access, there could be two forms as follows:

obj ref->inst meth a(..)->inst meth b(..)->inst meth(..).
class=>static_meth a(..)->inst meth b(..)->inst meth(..).

The return value of one functional method is a reference to an object that is used to
call the next method in the chain. The returning value of the last method is used as an
operand.

In this case, the first use may be a class component selector (=>) or an object
component selector (->). After that, all the methods are called using the component. Or,
in other words, the first method may be a static or an instance method. Other than that,
you must have all functional instance methods.

Chained attribute access, on the other hand, is similar to chained method calling. In
this case, the instance attribute is used as an operand. The chained attribute access may
be in the following forms:

obj_ref->inst_meth_a(..)->inst_meth b(..)->inst_attr.
class=>static_meth_a(..)->inst _meth b(..)->inst _attr.

51

CHAPTER 2 CLASS COMPONENTS IN DETAIL

The return value of the last method (INST_METH_B) must refer to the object that
contains the INST_ATTR attribute. In this case, the return values of the previous
functional methods are variables that refer to objects for the next method.

As an example of method chaining, consider the previous block of code that we used
in our ALV example earlier, shown here:

data : functions type ref to cl _salv_functions.
functions = alv->get functions().
functions->set all().

Method chaining can be applied in this case. The three lines above can be replaced
by a single line of code, as shown here:

alv->get functions()->set all().

There is also no need to define the FUNCTIONS variable, and the coding is very
compact.

Let’s look at one more example of method chaining. Let’s go back to our football
example shown earlier involving the NEW operator:

DATA: FOOTBALL_PLAYER type ref to ZST6_FOOTBALL_ PLAYER_CLASS.
FOOTBALL _PLAYER = NEW #(NAME = 'Oliver Kahn'
WEIGHT = '88'
HEIGHT = '178'
FOOTBALL_CLUB = 'Bayern Munich').
FOOTBALL_PLAYER->DISPLAY PLAYER DETAILS().

We can combine the NEW operator shown earlier in the chapter with method
chaining. The previous block of code can be written more compactly, as shown here:

NEW ZST6 FOOTBALL PLAYER CLASS(
NAME = 'Oliver Kahn'
WEIGHT = '88'
HEIGHT = '178'
FOOTBALL _CLUB =
'Bayern Munich')->DISPLAY PLAYER DETAILS().

52

CHAPTER 2 CLASS COMPONENTS IN DETAIL

Event Handling in ABAP Objects

The topic of ABAP Obijects is incomplete without one important component that may be
included within a class definition—events.

Events are signals generated by a class or its object. They may be the result of
changes in the state of an object, such as Employee Hired, Employee Changed, or
Player Created.

Just like any other components of a class, there may be static or instance events.
Static events are independent of any particular object of a class. Static events may be
triggered from both static and instance methods, whereas instance events may be
triggered from instance methods only.

At runtime, the handler method’s code (the method that handles the event) is
executed when the event is triggered (also known as event raised). Handling and
generating events in your programs involves the following essential steps:

o Defining the method as an instance or static event within the
respective class definition. The class containing the event may be
a subclass of another class, or may have a number of subclasses
derived from it. You may also define an event in an interface.
(The event will then be part of the class(es) that implement(s) the
interface.) To define the event as static, use this code:

CLASS_EVENTS <event_name>.

On the other hand, the following statement defines an instance

event:
EVENTS <event_name>.

o Raising the event at a suitable place using the RAISE EVENT
statement.

The parameters are specified after the EXPORTING ADDITION. For an
instance event, an implicit parameter called SENDER is applicable.
This parameter holds a reference to the object for which the event
has been generated. For example, when the instance event called
PLAYER_CREATED is raised, SENDER will contain the reference to the
player object in question. For static events, the SENDER parameter is
not there.

53

CHAPTER 2

CLASS COMPONENTS IN DETAIL

Defining and implementing the event handler method. This may be
defined in the same class or in a separate class. Within the handler
class implementation, you write the method code to be executed
upon event trigger. The parameters available to the method (i.e., the
ones exported via the RAISE statement) may be used by the developer
for fulfilling user requirements.

Registering the method to react to events. The SET HANDLER
statement is used for this purpose. If the event is static, the syntax
may be of the form shown here:

SET HANDLER <method_name>.

In the case of an instance event, the SET HANDLER statement will contain
the additions FOR ALL INSTANCES or FOR (referring to a specific object for
whose event the event handler is to be executed). It is possible to specify
all instances or a particular object instance whose raised event is to be
caught and the handler method is executed.

This is an important step that defines the link between the handler
method and the event that is to be raised. If the registration is not
performed, the handler method will not be executed even if the event
gets triggered successfully with all essential information passed.

In the next section, we see these steps in detail as applied to our football player

example.

A Working Example

In this section, we look at a full-fledged working example of event handling. For the sake

of our example, we see how events may be defined and handled in local classes.

Triggering and Handling the PLAYER_CREATED

Event

We add the event triggering functionality for our local football player class defined

earlier. We create a separate event handler class for handling our PLAYER_CREATED event.

54

CHAPTER 2 CLASS COMPONENTS IN DETAIL

The following steps are required:

1. Asmentioned, we need to define the event for our football player
class. In our case, we name the event PLAYER _CREATED. This is

defined as an instance event, as shown here:
events : player created .

2. We make sure that the event is defined in the public section of the
class. We then raise the event. This is done using the RAISE EVENT
statement as shown here:

raise event player created.
3. We put this in the constructor, as shown here:

method constructor.
call method super->constructor
exporting
name = name
weight = weight
height = height.
me->football club = football club.
raise event player created.
nothing exported

"" but created object passed

via implicit SENDER parameter
endmethod .

4. We will not pass a parameter explicitly to the RAISE event. Next
we create an event handler class with the name MYHANDLERCLASS.
Within the class, there is a handler method called MYHANDLER
defined as a static class method. Within the definition of the
class for our handler method, we specify that it is for the PLAYER _
CREATED event of the football player class.

Note that the importing implicit parameter SENDER is also specified. The sender
contains a reference to the object for which the event has been triggered.

55

CHAPTER 2 CLASS COMPONENTS IN DETAIL

The code for the handler class definition is shown here:

class myhandlerclass DEFINITION.
public section.

class-methods myhandler FOR EVENT player created
OF football player importing sender.
endclass.

Since we defined the event earlier as a public event, we are able to create a handler

method in a separate class. Suppose the event was in the private section. In that case, an
error would occur, as shown in Figure 2-21 .

74» @ class myhandlerclass DEFINITION.
75 public section.
76

class-methods myhandler FOR EVENT player created OF football player
importing sender.
- endclass.

80 class myhandlerclass IMPLEMENTATION.
81 T method myhandler.

B3 call method sender->displav plaver details.
Scope \CLASS myhandlerclass\METHOD miyhandler

Syntax error
Description Row | Type
Program YTEST_ABAP_INHERITANCE 76 @&co

L Access to private event "PLAYER_CREATED" is not allowed. !

Figure 2-21. Syntax error for a private event

Next in the implementation section, we will write the code (for method MYHANDLER)
to be executed when the PLAYER_CREATED event is triggered.

class myhandlerclass IMPLEMENTATION.
method myhandler.
write : 'Event Handler Executed'.

call method sender->display player details.
endmethod.

endclass.

Within the method code, we will simply call the DISPLAY_PLAYER_DETAILS method

of the football player class. This will display the various attributes of the newly created
football player.

56

CHAPTER 2 CLASS COMPONENTS IN DETAIL

In this example, we have seen a football player class inherited from a player class.
The inheritance concept will be explained in detail in the next chapter.

Next, we will register the handler method to react to the situation when the event
occurs. We will use the SET HANDLER statement for this purpose, as shown here:

SET HANDLER myhandlerclass=>myhandler for all instances.

The name of the method along with class name is specified. Since the MYHANDLER
is a static method, we use the class component selector (=>). We use the FOR ALL
INSTANCES addition in order for the handler method to be executed for all instances of
the FOOTBALL_PLAYER class.

When the program is executed, the CREATE OBJECT statement for the football player
is executed. Whenever a new football player is created, a Player Created event is
triggered. This is an instance event raised via a RAISE EVENT statement in the constructor
of the FOOTBALL_PLAYER class. Since we have registered the MYHANDLER method for the
PLAYER_CREATED event of all instances of the football player class, the handler method
gets executed. The method receives SENDER as an importing parameter, which is the
reference to the football player object for which the event is raised. Within the handler
method, we call the DISPLAY_PLAYER_DETAILS method of the FOOTBALL_PLAYER class to
display the details of the football player object that is created.

The output of the program is shown in Figure 2-22.

Event Handler Executed
Player Name: Oliver Kahn

Height : 1la8
Weight : 95.00
Club Name : Bayern Munich

Figure 2-22. Program output

The complete code listing is shown here:

class player DEFINITION.
public section.
methods constructor importing name type string
weight type p height type i.
methods display player details.

57

CHAPTER 2 CLASS COMPONENTS IN DETAIL

PROTECTED SECTION.
data : name type string.
data : height type i.
data : weight type p decimals 2.
endclass.
class player IMPLEMENTATION.
method constructor .
me->name = name.
me->height = height.
me->weight = weight.
ENDMETHOD.

method display player details.

write :/ 'Player Name: ',15 me->name ,
/ 'Height : ',15 me->height LEFT-JUSTIFIED ,
/ 'Weight :',15 me->weight LEFT-JUSTIFIED.
ENDMETHOD.
endclass.

class football player DEFINITION INHERITING
FROM player.
public section.
methods constructor importing
name type string
weight type p
height type i
football club type string.
methods display player details REDEFINITION.

events : player created

private section.
data : football club type string.
endclass.

class football player IMPLEMENTATION.
method constructor.

58

CHAPTER 2 CLASS COMPONENTS IN DETAIL

call method super->constructor
exporting

name = name

weight = weight

height = height.
me->football club = football club.
raise event player created.

endmethod .

method display player details.

call method super->display player details.

write:/ 'Club Name : ',15 me->football club.
endmethod .

endclass.

class myhandlerclass DEFINITION.
public section.
class-methods myhandler FOR EVENT player created
OF football player importing sender.
endclass.

class myhandlerclass IMPLEMENTATION.
method myhandler.
write : 'Event Handler Executed'.
call method sender->display player details.
endmethod.
endclass.

START-OF-SELECTION.

data : myfootball player type ref to football player.
set HANDLER myhandlerclass=>myhandler for all instances.
create object myfootball player

exporting name = 'Oliver Kahn'
weight = '95'
height = '188'

football club = 'Bayern Munich'.

59

CHAPTER 2 CLASS COMPONENTS IN DETAIL

Summary

In this chapter, we covered a number of useful topics that you need to know in order
to work with ABAP Objects. We discussed the CASE TYPE OF construct used for
determining the type of an object reference variable followed by a discussed of the “new”
NEW operator.

We also saw how to apply inline declaration in ABAP Objects, constant declaration,
method chaining, and functional methods. Finally, we saw a fully working demo of event

handling.

60

CHAPTER 3

More on Object-Oriented
ABAP

After the basic introduction to ABAP provided in Chapters 1 and 2, this chapter dives
deeper into the topic. It starts by showing how inheritance applies to ABAP Objects.
Then, the chapter covers the concept of casting—upcasting and downcasting—and how
we can achieve polymorphism using casting.

Inheritance: Super and Subclasses

ABAP lets you derive (inherit) a new class from a given class. This is called inheritance
and the inherited class is referred to as a subclass of the main class in question, which is
known as the superclass. Within ABAP, you may have any number of classes derived from
a given base class. For example, if we have class B inherited from class A, then class A is
the direct superclass of class B. It is also possible to derive another class, class C, from
class B. Then, both A and B are superclasses of C, but B is the direct superclass of C, as
shown in Figure 3-1.

61
© Rehan Zaidi 2019

R. Zaidi, SAP ABAP Objects, https://doi.org/10.1007/978-1-4842-4964-2_3

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

[» |

Figure 3-1. Inheritance tree

The diagram shown in Figure 3-1 is referred to as the inheritance hierarchy or tree.
These trees may contain multiple levels of class inheritance. (For simplicity’s sake, only
two levels are shown along with single inheritance only.)

Player
Football Cricket
Player Player

Figure 3-2. Inheritance tree of players

Within ABAP, you may have multiple direct subclasses for a given superclass.
Conversely, you may have only one direct superclass of a given class (subclass). This is
called a single inheritance.

You may view a superclass as having the common (general) characteristics of its
subclasses. The level of specialization in the tree increases as we move down through
each level. Likewise, as you move up the hierarchy (i.e., toward the root node), the
classes tend to be more general.

62

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

For example, we may have a class called PLAYER that is the superclass of
Football player and Cricket player. The PLAYER class has properties of both football
and cricket players. However, the Cricket player will have specific characteristics to
that of a cricketer, which are not possessed by a football player, and vice versa.

Note The predefined empty class called OBJECT is the root node of all
inheritance trees.

There is a general class called OBJECT from which all inheritance trees originate. This
class has no attributes or methods. The PLAYER class is actually a subclass of the OBJECT
class. For simplicity’s sake, it is not shown in Figure 3-2.

Up until this point, we have looked at two types of class components—private
and public. With the advent of inheritance, another type comes into play, protected.

Of primary importance is the “protected” section within a superclass. The protected
section contains components that are accessible from within the subclasses of the given
superclass.

Within the superclass, there may be protected, private, and public components.

The components of the superclass become part of the derived subclass(es). (Although
the private components are included in the subclass, only the private and public
components within are visible in the subclass.) Because of this, all public and protected
components of classes within a given inheritance hierarchy must have unique names. For
private components, you must make sure that they are uniquely named within a class.

An inherited class contains the components that are defined in ALL its superclasses
(i.e., the direct superclass and the above).

Let’s illustrate this concept with an example.

Suppose we have the following inheritance tree, where two classes—B and C—are
derived from a common superclass A. We can have a private attribute INT1 in classes A,
B, and C. However, we cannot have a protected attribute INT1 in the superclass A and at
the same time a public attribute INT1 defined in the subclass B.

The syntax for defining a subclass locally within a program is via the addition
INHERITING FROM, shown as follows:

CLASS <MYSUBCLASS> DEFINITION INHERITING FROM <MYSUPERCLASS>.
ENDCLASS.

63

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

For example, in the following code excerpt, we have a player class called
Football player thatis inherited from the generic class PLAYER.

class football player DEFINITION INHERITING
FROM player.

endclass.

Suppose within the PLAYER class, we have an instance constructor and a method
called DISPLAY_PLAYER DETAILS. We also have protected attributes called NAME, WEIGHT,
and HEIGHT. The attributes are protected so that they may be addressed by the subclasses
inherited from the PLAYER class. See the code block as follows.

class player DEFINITION.
public section.
methods constructor importing
name type string
weight type p
height type 1i.

methods display player details.
protected section.
data : name type string.
data : height type i.
data : weight type p decimals 2.
endclass.

We can then have a subclass called FOOTBALL PLAYER that’s inherited from the given
PLAYER class. Another attribute, called FOOTBALL CLUB, has been defined that is specific to
FOOTBALL PLAYER. This class has its own instance constructor, which has four importing
parameters (Football Club isincluded in addition to the three parameters contained
in the player’s constructor). The DISPLAY PLAYER DETAILS method is redefined in the
FOOTBALL_PLAYER class. It contains no parameters, as in the player class:

class football player DEFINITION INHERITING
FROM player.
public section.
methods constructor importing
name type string

64

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

weight type p

height type i

football club type string.
methods display player details REDEFINITION.

private section.
data : football club type string.
endclass.

We will take a closer look at the instance constructors for subclasses and the
redefinition of superclass methods in detail in upcoming sections.

While naming attributes within subclasses, a few restrictions apply. Let’s look at an
example. Suppose you try to define a private attribute with the name HEIGHT within the
FOOTBALL_PLAYER class, as shown:

class football player DEFINITION INHERITING
FROM player. "BADCODE
private section.
data height type i. """ NOT ALLOWED
endclass.

In this case, a syntax error occurs (see Figure 3-3).

Syntax error

Description

Program YTEST_ABAP_INHERITANCE
"HEIGHT" has already been declared

Figure 3-3. Syntax error

This is because the HEIGHT attribute is already declared in the superclass PLAYER as
a protected attribute. The protected and public attribute of the superclass becomes part
of the derived subclass. If the superclass contained HEIGHT in its private section instead,
this code would not have given an error.

65

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

Redefining Methods

As mentioned, an important aspect we need to see within the ABAP Objects is the
redefinition of inherited methods defined in the subclasses.

An instance method inherited from a superclass may be redefined in the subclasses.
This allows you to add more specific functionality to the redefined method in the
subclass (or subclasses).

During redefinition, you may not change the visibility section of the method. For
example, it is not possible to have a private method redefined as a public method in
a subclass. The signature of the instance method also cannot be changed during the
redefinition. For example, it is not possible to add a new parameter to the method in the
definition or change the type of a given parameter.

Itis also important to note that static methods cannot be redefined in subclasses.
Only instance methods can be redefined.

Within a local subclass, we may redefine a given instance method using the
REDEFINITION keyword. Let’s take a look at an example of this.

class football player DEFINITION INHERITING
FROM player.
public section.
methods display player details REDEFINITION.

endclass.

It is possible to call the superclass’ method DISPLAY_PLAYER_DETAILS within the
redefined method using SUPER->DISPLAY-PLAYER DETAILS.

Instance Constructors

As discussed, every class has an instance constructor. Within the inheritance tree,

the various instance constructors (of a class, its superclasses, and subclasses) are
independent of each other. You may not redefine an instance constructor of a class in its
subclasses.

66

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

The instance constructor is called automatically upon instantiation (creation) of
the object (via the CREATE OBJECT statement). Within the constructor of the subclass,
the immediate superclass constructor may be called. You may call the constructor of a
superclass from a subclass using the following statement:

CALL METHOD SUPER->CONSTRUCTOR

This statement must not be used in the class that’s a direct subclass
of the OBJECT class.

After the SUPER->CONSTRUCTOR call, the code for assigning values to the attributes
specific to the subclass is written, as shown in the following example.

class football player IMPLEMENTATION.
method constructor.
call method super->constructor
exporting
name = name
weight = weight
height = height.

me->football club = football club.
endmethod .
endclass.

When you instantiate a class that has an instance constructor with a set of
parameters (interface), appropriate values must be then supplied using the EXPORTING
addition within the CREATE OBJECT statement:

create object myfootball player

exporting name = ‘'Oliver Kahn'
weight = '95'
height = '188'

football club = 'Bayern Munich'.

Likewise, when you call a superclass constructor from a subclass, appropriate values
must be supplied for the various parameters (mandatory, non optional). A class that is
instantiated at the bottom of the inheritance tree may need to pass parameters to the
class constructor that is close to the root.

67

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

Note If a given SUPERCLASS has an instance constructor that contains the call
of a method via the self-reference variable me, then the method as defined in the
SUPERCLASS is called and not the ones redefined in any of the subclasses.

Working Example

In this section, we look at how these concepts can be applied to solve a simple
requirement.

We create a superclass player and its subclass Football player. A suitable
Football player objectis created and its attributes are displayed onscreen.

We first define a PLAYER class having three attributes in the protected section,
including NAME, HEIGHT, and WEIGHT. Two methods are defined within the public
section—the instance constructor and the DISPLAY_PLAYER DETAILS method.
Appropriate parameters are specified for the CONSTRUCTOR for creating instances
belonging to the PLAYER class. The DISPLAY_PLAYER_DETAILS method has no parameters.
The definition of the class looks like this:

class player DEFINITION.
public section.
methods constructor importing
name type string
weight type p
height type 1i.

methods display player details.
protected section.
data : name type string.
data : height type i.
data : weight type p decimals 2.
endclass.

Within the implementation section of the PLAYER class, we write the code for
constructor, by initializing the attributes NAME, HEIGHT, and WEIGHT. Within the
DISPLAY_PLAYER DETAILS method, we include the WRITE statement to display the
attribute values on the user screen.

68

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

class player IMPLEMENTATION.
method constructor .
me->name = name.
me->height = height.
me->weight = weight.
ENDMETHOD.

method display player details.
write :/ 'Player Name: ',15 me->name ,
/ 'Height : ',15 me->height
LEFT-JUSTIFIED ,
/ 'Weight :',15 me->weight
LEFT-JUSTIFIED.
ENDMETHOD .
endclass.

Next, we define the FOOTBALL_PLAYER class. The constructor of the class takes as an
importing parameter the player’s name, weight, and height, as well as the name of the
football club. The private section contains the FOOTBALL CLUB attribute—this is specific
to the football player class.

A redefined method for displaying the player’s detail is also DISPLAY_PLAYERS _
DETAILS defined.

class football player DEFINITION INHERITING
FROM player.
public section.
methods constructor importing
name type string
weight type p
height type i
football club type string.
methods display player details REDEFINITION.
private section.
data : football club type string.
endclass.

69

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

Within the implementation of the class, we have the code written for the subclass
constructor and DISPLAY PLAYER DETAILS.

class football player IMPLEMENTATION.
method constructor.
call method super->constructor
exporting
name = name
weight = weight
height = height.

me->football club = football club.
endmethod .

method display player details.
call method super->display player details.
write:/ 'Club Name ',15
me->football club.
endmethod .
endclass.

The full code of the example is shown here:

class player DEFINITION.
public section.
methods constructor importing
name type string
weight type p
height type i.

methods display player details.
protected section.
data : name type string.
data : height type 1i.
data : weight type p decimals 2.
endclass.

70

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

class player IMPLEMENTATION.
method constructor .
me->name = name.
me->height = height.
me->weight = weight.
ENDMETHOD.

method display player details.
write :/ 'Player Name: ',15 me->name ,
/ 'Height : ',15 me->height
LEFT-JUSTIFIED ,
/ 'Weight :',15 me->weight
LEFT-JUSTIFIED.
ENDMETHOD.

endclass.

class football player DEFINITION INHERITING
FROM player.
public section.
methods constructor importing
name type string
weight type p
height type i
football club type string.
methods display player details REDEFINITION.

private section.
data : football club type string.
endclass.

class football player IMPLEMENTATION.
method constructor.
call method super->constructor
exporting
name = name
weight = weight
height = height.

71

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

me->football club = football club.
endmethod .

method display player details.
call method super->display player details.
write:/ 'Club Name ',15
me->football club.
endmethod .

endclass.
START-OF-SELECTION.

data : myfootball player type ref to
football player.

create object myfootball player

exporting name = ‘'Oliver Kahn'
weight = '95'
height = '188'

football club = 'Bayern Munich'.

call method

myfootball player->display player details.

We have defined a reference variable typed with the FOOTBALL_PLAYER class. We
then created the football player object using the CREATE OBJECT statement. Appropriate
values are supplied for instantiation of the football player object. The values exported
from the program to the CREATE OBJECT statement are imported into the constructor.
First, the constructor of the FOOTBALL PLAYER class is executed, within which the
constructor of the superclass PLAYER is called. The code of the super->constructor
assigns values to the NAME, HEIGHT, and WEICHT attributes, whereas the last line of the
subclass’ constructor assigns a supplied value to the FOOTBALL CLUB attribute.

Once the football player object is created, we called the DISPLAY PLAYER DETAILS
method using the reference variable FOOTBALL_PLAYER. The method contains a call to the

72

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

SUPER->DISPLAY_PLAYER DETAILS method, which displays the three attribute values—
player name, height, and weight. The football club name is printed via the WRITE statement
within the redefined DISPLAY _PLAYER DETAILS method of the football player class.

The output of the program is shown in Figure 3-4.

Player Name: Oliver Kahn

Height : 188
Weight = 95,00
Club Name : Bayern Munich

Figure 3-4. Program output

Casting and Polymorphism

Related to the concept of inheritance is casting. Within the arena of inheritance and
ABAP Objects, upcasting and downcasting are both possible. Let’s take a closer look at
these concepts.

Using upcasting, a reference variable typed with reference to a subclass may
be assigned to a variable typed via reference to its direct superclass (or any of its
superclasses).

superclass type = subclass type. "Upcasting

This statement is permissible because a subclass contains all components of all its
superclasses. Moreover, the interfaces of methods of a superclass cannot be changed
in subclasses. The reference variable SUPERCLASS TYPE may then be used to address
the components visible to the given superclass. In this case, no specific functionality
added to the subclasses may be addressed. For example, any new attribute added to the
subclasses, or any new method added to the subclasses, may not be accessed using the
variable SUPERCLASS TYPE. (We will look at a working example of upcasting and its role
in implementing polymorphism in the latter part of this section.)

On the other hand, downcasting involves assignment of a reference variable (based
on a reference of a superclass) to a reference variable typed via reference to a subclass:

subclass_type ?= superclass_type. "Downcasting

In this case, the downcasting operator ?= must be used. If we use the equals (=) sign
instead, a syntax error will occur at the time of program check.

73

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

Note In upcasting, we assign a reference variable to a more general reference
variable type; i.e we go up the inheritance hierarchy. On the other hand, in the case
of downcasting, the target is a more specific type (i.e., we move downward within
the inheritance tree).

Downcasting is particularly useful when we need to access components. For
example, when we have a method that is defined in the more specific subclass, but
we have a reference to superclass and not to the subclass itself. Let’s now consider the
following example (pertaining to ALV classes) in order to understand downcasting and
how to use it.

DATA: ALV TYPE REF TO CL_SALV_TABLE.
DATA: MYCOLUMNS TYPE REF TO CL_SALV_COLUMNS TABLE.
DATA: ONE_COLUMN TYPE REF TO CL_SALV_COLUMN_TABLE.

MYCOLUMNS = ALV->GET_COLUMNS().
ONE_COLUMN ?= MYCOLUMNS->GET COLUMN('COLNAME').

The GET_COLUMN method returns an instance of the CL_SALV_COLUMN class, but we
need to call the methods of the CL_ALV_COLUMN_TABLE class. For example, the SET_KEY
method used for setting a column as a key field is available in the CL_SALV_COLUMN_TABLE
class and notin CL_SALV_COLUMN. (The CL_SALV_COLUMN class is a superclass (not direct)
of the CL_SALV_COLUMN_TABLE class.)

In this case, downcasting is useful. The returned reference is assigned to the ONE_
COLUMN variable, based on CL_SALV_COLUMN_TABLE. Once the downcasting is successful,
we can call the methods that are provided via the CL_SALV_COLUMN_TABLE class using the
reference variable ONE_COLUMN. To catch any exceptions that occur during casting, we can
use the exception class CX_SY_MOVE_CAST_ERROR.

As an example, let’s add another class called Cricket player to our PLAYER and
FOOTBALL_PLAYER example. Two objects are created, one for Football player and the
other for the Cricket_player class. Their details are printed using a single reference
variable, based on superclass PLAYER.

74

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

If you redefine a given instance method in multiple subclasses, it is possible to access
the various method implementation via one reference variable, based on the superclass
type. Addressing the different implementations using a single reference variable is called
polymorphism. Upcasting may be used to implement polymorphism.

We declare another class, CRICKET _PLAYER, that is also inherited from the class
PLAYER. We add a new attribute called COUNTY_ NAME with type STRING. The constructor
of this class is also added with COUNTY_NAME as an importing parameter. As with the
FOOTBALL_PLAYER class previously shown, the DISPLAY_PLAYER_DETAILS method is
redefined in the class. The definition of this class is shown here:

class cricket_player definition inheriting
from player.
public section.
methods constructor importing
name type string
weight type p
height type i
county name type string.
methods display player details redefinition.

private section.
data : county name type string.
endclass.

Next, within the constructor in the CRICKET PLAYER implementation, we call SUPER-
>CONSTRUCTOR and assign the importing parameter. COUNTY_NAME to the private attribute
COUNTY_NAME defined in the class.

In the redefined method DISPLAY PLAYER DETAILS, we add a WRITE statement that
displays the county for which the cricketer plays, that is the COUNTY_NAME.

class cricket player implementation.
method constructor.
call method super->constructor
exporting
name

name
weight = weight
height = height.

75

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

me->county name = county_name.
endmethod .

method display player details.
call method super->display player details.
write:/ 'County Name : ',
15 me->county_name.

endmethod .
endclass.

We then create two objects belonging to the FOOTBALL_PLAYER and CRICKET_PLAYER
classes respectively, using CREATE OBJECT statements.

data : myfootball player type ref to football player.
create object myfootball player

exporting
name = 'Oliver Kahn'
weight = '95'
height = '188'

football club = 'Bayern Munich'.

data : mycricket player type ref to cricket player.
create object mycricket player

exporting
name = 'James Reed'
weight = '98'
height = '178'

county name = 'Surrey'.

We now declare a reference variable based on the PLAYER class (the superclass of the
FOOTBALL_PLAYER and CRICKET_PLAYER classes defined earlier). We then use upcasting
to assign the created object MYFOOTBALL PLAYER to the PLAYER variable. The method

76

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

of DISPLAY_PLAYER_DETAILS is then called using the reference variable PLAYER. This is
repeated for the CRICKET _PLAYER class. The code for this follows:

data : player type ref to player.

player = myfootball player.
player->display player details().

player = mycricket player.
player->display player details().

The output of the program is shown in Figure 3-5.

Player Name: Oliver Kahn

Height : 188
Weight : 95,00
Club Name : DBayern Munich

Player Name: James Reed
Height : 178

Weight : 98,00
County Name :Surrey

Figure 3-5. Program output

The complete listing for the program exhibiting polymorphism is as follows:

class player definition.
public section.
methods constructor importing
name type string
weight type p
height type 1i.
methods display player details.

protected section.
data : name type string.
data : height type 1i.

77

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP
data : weight type p decimals 2.
endclass.

class player implementation.
method constructor .
me->name = name.
me->height = height.
me->weight = weight.
endmethod.

method display player details.

write :/ 'Player Name: ',15 me->name ,
/ 'Height : '
15 me->height left-justified ,
/ 'Weight N
15 me->weight left-justified.
endmethod.
endclass.

class football player definition inheriting
from player.
public section.
methods constructor importing
name type string
weight type p
height type i
football club type string.
methods display player details redefinition.
private section.
data : football club type string.
endclass.

class football player implementation.
method constructor.
call method super->constructor
exporting
name = name

78

CHAPTER 3

weight = weight
height = height.
me->football club = football club.
endmethod .

method display player details.
call method super->display player details.

write:/ 'Club Name : i
15 me->football club.
skip.

endmethod .
endclass.

class cricket player definition inheriting
from player.
public section.
methods constructor importing

name type string
weight type p
height type i
county name type string.

methods display player details redefinition.

private section.
data : county name type string.
endclass.

class cricket_player implementation.
method constructor.
call method super->constructor

exporting
name = name
weight = weight
height = height.

MORE ON OBJECT-ORIENTED ABAP

79

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

me->county name = county_name.
endmethod .

method display player details.
call method super->display player details.
write:/ 'County Name : ',
15 me->county_name.

endmethod .
endclass.
start-of-selection.

data : myfootball player type ref to football player.
create object myfootball player

exporting
name = 'Oliver Kahn'
weight = '95'
height = '188'

football club = 'Bayern Munich'.

data : mycricket player type ref to cricket player.
create object mycricket player

exporting
name = "James Reed'
weight = '98'
height = '178'

county name = 'Surrey'.
data : player type ref to player.

player = myfootball player. “UPCASTING
player->display player details().

player = mycricket player.
player->display player details().

80

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

Global Subclasses and Redefinition of Methods

We have discussed how to define and implement subclasses locally within a program.
In this section, we learn how to define global classes that are derived from other global
classes (superclasses). Let’s take a look at how to do this.

We will define a class ZST6_FOOTBALL PLAYER_CLASS (a football player class) that
is derived from the superclass ZST6_PLAYER_CLASS. For the sake of this example, we
assume that the superclass ZST6_PLAYER CLASS (the PLAYER class) already exists.

The global PLAYER class is similar to the one used as the superclass in the previous
example of our locally defined class. One important point to keep in mind is that the final
checkbox on the Properties tab must not be selected (see Figure 3-6). This is because we
will have to define the FOOTBALL PLAYER subclass based on the PLAYER class.

Class/Interface [ZSIG_PIAYER_CLRSS | implemented | Active
_« Properties | Interfaces | Friends | Attributes | Methods | Events | Types | Alases |

Hl Superclass j_tffﬁ) Undo inheritance A Change Inheritance
Description \Player Class
: T
Inst.Generation 2 Public il
'- -
QFnal

Figure 3-6. Player class

Three attributes (NAME, WEIGHT, and STRING) with protected visibility are defined for
the PLAYER class, as shown in Figure 3-7.

BiE @@ (%™ & s Fiter

Attrbute Level Visbilty R... Typing Assocated Type Description
NAME Instance . Protected Type STRING | ® |name
WEIGHT Instance ..Protected Type I Wenght
HEIGHT Instance .. Protected Type I LS JHeight

Figure 3-7. Attributes of the player class

81

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

An instance constructor and a DISPLAY_PLAYER_DETAILS method are also defined.
The code of the constructor of the PLAYER class is shown here.

method CONSTRUCTOR.
me->name = name.

me->height = height.
me->weight = weight.
endmethod.

The DISPLAY PLAYER DETAILS method will remain the same as shown earlier in the
local class example:

method DISPLAY PLAYER DETAILS.
write :/ 'Player Name: ',15 me->name ,
/ 'Height : ',15 me->height
LEFT-JUSTIFIED ,
/ 'Weight :',15 me->weight
LEFT-JUSTIFIED.
ENDMETHOD.

Now comes the most important part. We will see how the inherited class is defined.

Call transaction SE24. Enter the name of the new ZST6_FOOTBALL_PLAYER _CLASS in
the field provided. Then click the Create button. Choose the option class from the small
popup box that appears and then click the Continue button. This will display the dialog
box shown in Figure 3-8.

82

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

[Create Class ZST6_FOOTBALL_PLAYER_CLASS X

Class |ZST6_FOOTBALL_PLAYER CLASS '
I

Description 'Football Player Class J

Inst.Generation |2 Public

Class Type

()Usual ABAP Class

() Exception Class
[(Jwith Message Class

() Persistent class

() Test Class (ABAP Unit)

[v]Final

Figure 3-8. Creating the football player class

Enter the description in the field provided. Then click the Save button. This will take
you to the screen shown in Figure 3-9.

Class/Interface |25T6_FOOTBALL_PLAYER CLASS | Implemented / Inactive (revised)
roperties | Interfaces | Friends . Attributes | Methods ! Events | Types . Alases |

'43 Superclass |F© Undo inheritance “é Change Inheritance |
Superclass |zsT6_PLAYER CLass| 13 IModeled only

Description 'Football Player Class

Inst.Generation |2 Pubic -

[v|Final

Figure 3-9. Properties of the football player class

On the Properties tab, click the [4 Superciass] button. This will make the

superclass field visible and ready for input. Enter the name of the superclass in the field
provided (in our case, ZST6_PLAYER CLASS). Then press Enter to save your entries.

83

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

By saving your class, you automatically fill in the Attributes and Methods tabs from
the superclass ZST6_PLAYER_CLASS, as shown in Figure 3-10.

Class/Interface \ZST6_FOOTBALL PLAYER CLASS | Implemented / Active
Properties | Interfaces | Friends /(Attrbutes | Methods | Events | Types | Alases

BER) BB KT @ [e

Attrbute | Level \Visbity Read-Only Typing |Associted Type | Description
INAME Instance Attribute Protected [] Type SIRING | & |Name
WEIGHT Instance Attribute Protected [] Type I | & |weight
HEIGHT Instance Attribute Protected [] Type 1 | & |Height

Figure 3-10. Attributes tab

The protected attributes of the superclass automatically appear in the Attributes tab
of the subclass. Likewise, the public methods defined within the superclass are made
available as methods of the inherited class (see Figure 3-11).

Class/Interface \ZST6_FOOTBALL_PLAYER CLASS | Implemented / Active
_properties | Interfaces | Friends | Attrbutes /(Methods | Events | Types | Alases |

(= parameter [_Excepron =] (BRI BiE) (KIRF (&) (08 (@A) Orrer

Method iLeveI Visbiity = Method type Description
|CONSTRUCTOR Instance Method Public dfe Constructor
‘DISPLM_“PLAYER__DEIMLS Instance Method Public Display Player Details

Figure 3-11. Methods tab

We now enter our subclass-specific FOOTBALL_CLUB attribute on the STRING type and
include the necessary description on the Attributes tab, as shown in Figure 3-12.

B BE WE (A 6y CFker

| Attrbute Level |Vsbity |R.. Typng | Assocated Type Description
NAME Instance .. Protected [] Type STRING E]Name
[REIGHT Instance .. Protected [Type 1 Weight
HEIGHT Instance _Protected [] Type 1 | & |Height
|FooTBALL_CLUB Instance . Private [Type STRING = |Football club

Figure 3-12. Football club attribute

84

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

We now have a total of four attributes in the subclass (NAME, WEIGHT, HEIGHT, and
FOOTBALL CLUB).
Next, we need to define the instance constructor of our subclass FOOTBALL_PLAYER.

Click the Constructor button) CONStUCOr ;¢ il display the dialog box shown in
Figure 3-13.

[© Create Constructor %

Do you want to copy across the signature of the
superclass constructor?

=3

Yes I No

Figure 3-13. Creating a constructor

Click the Yes button, as we need the parameters of the superclass’ constructor for the
instance constructor of our inherited class. On the parameters list, the NAME, WEIGHT, and
HEIGHT parameters will be added. Then, we will add the fourth parameter in the list of
importing parameters of our instance constructor, as shown in Figure 3-14.

Method parameters CONSTRUCTOR Al
{4- Methods h"l Exceptions ||@| {E] mﬂ: ,f‘rﬁl[q
Parameter Pass ... O... Typing ... Associated Type Defauk value Description
NAME v Type STRING Name
WEIGHT v Type 1 Weight
HEIGHT v Type 1 Height
FOOTBALL_CLUB v Type STRING Football Club
Type

Figure 3-14. Parameters of subclass instance constructor

Within the code of the constructor, the superclass constructor is called, as well
as a statement included to assign the value imported via FOOTBALL CLUB to the
corresponding attribute of the class. The code is shown in Figure 3-15.

85

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

Class Builder: Class ZST6_FOOTBALL_PLAYER_CLASS Change
€9 PR E®) @b &8 DH @ @ pattem Pretty Printer

Method [cONSTRUCTOR | Active

B method CONSTRUCICR.
call method super->constructor

exporting
name = name
weight = weight
height = height.

D] v 0 b W M

me->football club = football club.

Figure 3-15. Constructor code

Next, we need to redefine the DISPLAY PLAYER DETAILS method in our inherited
class. We need to make the method “specific” to the football player class in order for it to
print the name of the football club that the player is associated with.

To redefine a method, while on the Methods tab, select the DISPLAY_PLAYER DETAILS
method and click the (& button.

You will then be taken to the code editor. Add the following code to the redefined
method:

method DISPLAY PLAYER DETAILS.
CALL METHOD SUPER->DISPLAY PLAYER DETAILS.
write:/ 'Club Name : ',15
me->football club.

endmethod.

Once you are done, activate your subclass.

After activation, the class may be used in your ABAP programs. Objects may be
instantiated based on the newly created subclass ZST6 _FOOTBALL PLAYER CLASS. The
code for doing so is shown here:

data : myfootball player type ref
to ZST6_FOOTBALL PLAYER CLASS.
create object myfootball player
exporting name = 'Oliver Kahn'
weight = '95'

86

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

height = '188'
football club = 'Bayern Munich'.

call method myfootball player->display player details.

This will create an object for the football player and print its details, as shown earlier.

Interfaces

In ABAP Obijects, interfaces are also of importance. Interfaces may be simply defined as a
set of components (events, attributes, and methods) that may be reused (implemented)
in classes, thus may be used to extend the scope of classes. Interfaces cannot have
instances (unlike classes), but are only used to implement classes.

Interfaces only have a public section and have no implementation part. The
implementation (of the interface’s methods) is done in the various classes that
implement the interface.

You may have one class implement more than one interface. Also one interface may
be used in multiple classes. For example, we may have an interface called INT_PLAYER
that’s used in the FOOTBALL_PLAYER and CRICKET_PLAYER classes. The interfaces may
only be used in the public section of the class that implements them.

They may not be used in the private or protected sections. An interface may be
composed of one or more interfaces—these are called composite interfaces. We use the
following syntax to create an interface locally within a program:

INTERFACE int_name.

ENDINTERFACE.

For example, say we have an INTERFACE with the same DISPLAY comprised of a
DISPLAY PLAYER DETAILS method, as shown here:

INTERFACE display.
METHODS display player details.
ENDINTERFACE.

The particular interface may then be used in a class using the INTERFACES keyword
within the public section of the class definition (as mentioned earlier).

87

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

Suppose we use this interface to extend the PLAYER class. The following code shows
how this is done:

class player DEFINITION.
public section.
methods constructor importing
name type string
weight type p
height type 1i.

INTERFACES display. ""INTERFACE used
private section.

data : name type string.

data : height type 1i.

data : weight type p decimals 2.

endclass.

Within the implementation of the PLAYER class, we have the code of
the DISPLAY_PLAYER _DETAILS method, as shown here:

method display~display player details.

write :/ 'Player Name: ',15 me->name ,
/ 'Height : ',15 me->height
LEFT-JUSTIFIED ,
/ 'Weight :',15 me->weight
LEFT-JUSTIFIED.
ENDMETHOD.

You may note how the name of the method is indicated, i.e., the name of the
interface followed by the method name, separated by a tilde (*). The tilde is also known
as the Interface component selector.

Suppose we have a class called myclass that has implemented an interface called
myinterface, and the variable classref points to an object in the myclass class. Then,
we can have an assignment:

intref = classref.

After this, the interface reference in intref will point to the object as the class
reference in classref.

88

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

To call the relevant interface methods from a program, there are two possible

approaches:

We declare two reference variables, one for the PLAYER class and the
other for the display interface. The MY_PLAYER object is then created.
We assign the MY_PLAYER object reference to the MY_DISPLAY interface
reference. The relevant method can then be called to display the
player’s details on the user screen.

data : my display type ref to display.
data : my player type ref to player.
create object my player

exporting name = ‘'Oliver Kahn'
weight = '95'
height = '188".

my display = my player.
my display->display player details().

Alternatively, we declare only one variable, called MY_DISPLAY, based
on the PLAYER class. An object is created via the CREATE OBJECT
statement. We then use the MY_PLAYER reference and the interface
component selector (™) to call the DISPLAY PLAYER DETAILS method.

data : my display type ref to player.
create object my player

exporting name = 'Oliver Kahn'
weight = '95'
height = '188".

my player->display~display player details().

The result of this code is the same (i.e., the player details are displayed on the user

screen) as shown in Figure 3-16.

89

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

Player Name: Oliver Kahn
Height : 188
Weight : 95,00

Figure 3-16. Program output

The complete listing of the program is shown here (the first approach is shown):

INTERFACE display.
METHODS display player details.
ENDINTERFACE.

class player DEFINITION.
public section.
methods constructor importing
name type string
weight type p
height type i.

INTERFACES display.
private section.
data : name type string.
data : height type i.
data : weight type p decimals 2.

endclass.

class player IMPLEMENTATION.
method constructor .
me->name = name.
me->height = height.
me->weight = weight.
ENDMETHOD.

method display~display player details.
write :/ ‘'Player Name: ',15 me->name ,
/ 'Height : ',15 me->height

90

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

LEFT-JUSTIFIED ,
/ 'Weight :',15 me->weight
LEFT-JUSTIFIED.
ENDMETHOD.

endclass.
START-OF-SELECTION.
data : my display type ref to display.

data : my player type ref to player.
create object my_player

exporting name = 'Oliver Kahn'
weight = '95'
height = '188'.

my_display = my_player.
my display->display player details().
my_player->display~display player details().

Creating Global Interfaces

To define global interfaces using the Class Builder, follow these steps.

1. Call transaction SE24. Enter the name of the interface in the field
provided (in our case, Z_INTERFACE_PLAYER) and click the Create
button. The dialog box shown in Figure 3-17 appears.

[Object type x
Name |Z_INTERFACE DISPLAY '
() Class
2
I_@ Interface

Figure 3-17. Choosing the interface object type

91

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

2. In this case, select the Interface checkbox and click the Continue
button. The popup box appears, as shown in Figure 3-18.

[= Create Interface

Interface !Z_INIERFACE_DISPIAY
I
Description Display Interface |

Figure 3-18. The Create Interface dialog box

3. Enter the description of the interface in the field provided and
click the Save button. This will take you to the screen shown in
Figure 3-19.

Class Builder: Change Interface Z INTERFACE_DISPLAY
= PN H@ a4) & o5 2 ¥ O HE | 5source Code-Based Interface documentation

Interface |2_INTERFACE_DISPLAY | Implemented / Active
 Properties ¢ Interfaces | Attributes + Methods | Events | Types | Alases

[D Pammeter][w Excenbion] Iﬁﬁ]g} [@[@ {@@J [Q @ﬁ [Fiiter
Method Level Method type Description
DISPLAY PLAYER DETAILS Instance Method Display Method

Figure 3-19. Adding methods to the interface

4. Onthe Methods tab, add the DISPLAY PLAYER DETAILS method
as an Instance Method level with an appropriate description. Save
and activate your interface.

5. To use the global interface in a global class definition, click on the
Interfaces tab and enter the name of the interface, as shown in
Figure 3-20.

92

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

Class Builder: Change Class Z PLAYER_CLLASS
= | PR EE o @b 580D T £=] Local Definitions/Implementations

Class/Interface |z_PLAYER_cLLaSS Implemented / Active
Properties . Inte “Friends | Attrbutes | Methods | Events | Types | Alases |
[@ @[@ [IFitter
| Interface Abstract Final Model... Description
:Z_IHTERFACE_DISPL'AY :D: B ’t‘ Display Interface
O] O
OJ O O

Figure 3-20. Using an interface in a global class

6. Once you save your class, the Methods tab will be populated with
the Interface method (Z_INTERFACE_DISPLAY~DISPLAY PLAYER
DETAILS). See Figure 3-21.

Class Builder: Change Class Z PLAYER_CLLASS
3 PREO a8) B & 80 FH (Lol Defintions/Implementations

Class/Interface |2_PLAYER_CLLASS Implemented / Active
 Properties | Interfaces ! Friends |~ Attributes / Methods | Events | Types | Alases

lu parameter B _exception || [B@< BIE (%@ (& HEE 22 [Fiter

| Method Level Visibility M... Description
!Z_INTERFAC'E_DISPI.AY»-DISPIAY_PLAYF.R_DEIAII.S Instance Methed Public Display Method
ECGNSIRUCIOR Instance Method FPublic Iz Constructor

Figure 3-21. Interface method added

7. You can double-click on the method name. This will take you to
the editor to add the method code. Then, you can activate the

class in question.

93

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

A global interface can be used in global classes and global interfaces as well as
within local interfaces and local classes. For example, we may use our newly-defined
Z INTERFACE_DISPLAY in order to extend our PLAYER class, as shown here:

class player DEFINITION.
public section.
methods constructor importing
name type string
weight type p
height type 1i.

INTERFACES Z_INTERFACE_DISPLAY. "global
" interface Z INTERFACE _DISPLAY.

Abstract and Final Classes

In this section, we discuss the two important types of classes that can be defined locally
or globally using the Class Builder. You can create classes as abstract or as final.

With abstract classes, you may not create any instances. Abstract classes are defined
using the addition ABSTRACT within DEFINITION, as shown in the following syntax.

CLASS MYABSTRACTCLASS DEFINITION ABSTRACT.
ENDCLASS.

An example of an abstract class player is shown below:

class player DEFINITION abstract.
public section.
methods constructor importing
name type string
weight type p
height type i.
methods display player details.

PROTECTED SECTION.

data : name type string.

data : height type 1i.

data : weight type p decimals 2.

endclass.
94

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

Ifyou try to create an instance of an abstract class, a syntax error results, as shown in
Figure 3-22.

1035} data : myplayer type ref to PLAYER.
106 create object myplayer EXPORTING name = 'Oliver Kahn'
107 weight = '95°'
108 height = '188°'
(&][2]/[E]
Syntax error
Description 'Row | Type
Program YTEST_ABAP_INHERITANCE 106 @O0

You cannot generate instances of the abstract class "PLAYER". -

Figure 3-22. Syntax error on abstract class instantiation

With global classes, you can define an abstract class by choosing abstract as the
instance generation field on the Create Class dialog, as shown in Figure 3-23.

[= Create Class ZTEST_ABTSRACT

Class [zTEST_aBTSRACT "

Description Abstract Clasq]

Inst.Generation |3 Abstra.. v/

| Class Type
() Usual ABAP Class
()Exception Clss
[Cwith Message Class

() Persistent class
() Test Class (ABAP Unit)

|v!Final

Figure 3-23. The Create Class dialog

95

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

The same field may be edited from the Properties tab, as shown in Figure 3-24.

Class/Interface ZTEST_ABTSRACT Implemented / Inactive
A Properties | Interfaces | Friends | Attrbutes | Methods | Events Types | Alases

|4 Superclass | %3 : ranc A

Description Abstract Class
Inst.Generation 3 Abstract

Figure 3-24. Properties tab

Note Abstract classes cannot be instantiated, but can be inherited. Final classes
cannot be inherited, but can be instantiated.

Final classes are classes that may not be inherited, i.e. they cannot have subclasses.
They may be defined locally in a program or globally using the Class Builder. A final class
is specified locally via the addition FINAL, as shown here:

class football player DEFINITION INHERITING
FROM player final.
public section.

methods constructor importing
name type string
weight type p
height type i

football club type string.

methods display player details REDEFINITION.
private section.

data : football club type string.
endclass.

With global classes, you need to check the Final checkbox on the Properties tab, as
shown in Figure 3-25.

96

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

< ‘Properties | Interfaces | Friends | Attributes |/ Methods Events | Types | Alases |

|$ Superclass L() Undo inheritance z:x Change Inheritance
Description Final Class

Inst.Generation 2 Public -

[¥|Final

Figure 3-25. Final checkbox on the Properties tab

Ifyou try to derive a class from a FINAL class, a syntax error occurs, as shown as in
Figure 3-26.

Syntax error
Description Row Type
Program YTEST_ABAP_INHERITANCE 87 @O0

The final class "FOOTBALL_PLAYER" cannot have any subclasses.

Figure 3-26. Error on final class

Friendships

Another important concept within ABAP Objects is the concept of friend classes. From
outside the class, you can only access the public components of the class in question.
The protected components are only visible to the subclasses of the given class.

In some very special cases, it may be required to grant another class access to a class’
private components. This is done by designating the class as a friend (class) to the one
whose private components are to be accessed. In this way, only friends may have access
to these invisible components. This does not grant access to any other classes.

A class A may be specified as a friend to a given class. In addition, you may specify
an interface I as a friend. In this way, all classes that implement the friend interface are
friends of the given class and may access its private, public, and protected components.

Note Friends are given access to all components of the class that offers the
friendship, irrespective of the visibility section.

97

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

Friendship defined between two classes is one-way. For example, if the class C1 has
a friend F1 specified in the definition, then the class C1 is not automatically the friend of
F1. If the class C1 wants to access the protected or private components of its friend F1,
then the latter must explicitly grant friendship to C1.

In addition, the friendship is not hereditary, i.e., a superclass’ friend is not a friend of
its subclasses. On the other hand, subclasses of a friend class are implicitly the friends of
the given class that granted the friendship. For example, consider the following scenario.

Suppose we have a class C1 that has a friend F1 that has subclasses F2 and F3. Once
class C1 has granted friendship to F1, F2 and F3 automatically become friends of C1 and
can access private (and protected) components of C1.

You must therefore be very cautious when granting friendship to a class.

A high-position friend class within an inheritance hierarchy means that a number of
subclasses can access the components of the class that granted friendship. In an ideal
situation, you may specify a final class as a friend class, which ensures that no other
classes are granted implicit friendship.

In order to specify the friend of a particular local class, the FRIENDS addition is used
in the class definition. After the FRIENDS keyword, the various classes and interfaces (to
which the friendship is granted) are listed. Friendship can be granted to all classes or
interfaces of the same program.

In addition to accessing the components of a class, friend classes can also create
instances of the given class that granted friendship, irrespective of whether private
instantiation has been specified in the class definition.

To specify a particular global class as a friend of another class, you must enter the
name of the former on the Friends tab, as shown in Figure 3-27.

Class/Interface Z_PLAYER CLLASS Implemented [Active (revised)
properties ¢ Interfaces /(Friends | Attributes Methods | Events | Types | Alases |

=
Friend Mo... Description
ZST_MYCLASS [] My test class

Figure 3-27. Friends tab

98

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

Let’s now look at how a friendship can be created between classes. (We will look at
an example of a local friend class shortly.) Consider the following piece of code:

class friend1l definition.
public section.
methods display.
endclass.

class myclass definition create private friends friendi.
private section.
data private int type i value 200.
endclass.

class friend1 implementation.
method display.
data myobject type ref to myclass.
create object myobject.
write : myobject->private_int.
endmethod.
endclass.

start-of-selection.
data friend1l type ref to friendi.
create object friend1.
friend1->display().

We created a class called FRIEND1 with a display method in its definition. Another
class, called MYCLASS, has a private instantiation defined with FRIEND1 specified as its
friend. This class has a private attribute PRIVATE_INT with an initial value of 200. Within
the DISPLAY method of the FRIEND1 class, an object called MYCLASS is created using a
CREATE OBJECT statement and the value of the private attribute PRIVATE_INT is then
printed. Finally, we define a reference to the FRIEND1 class and create a corresponding
object. The DISPLAY method is then called. The DISPLAY method creates an object of
MYCLASS and displays its private attribute value 200 on the user screen. If the FRIEND
addition is not specified, the following syntax error occurs when trying to create an
instance of MYCLASS within the DISPLAY method of FRIEND1. See Figure 3-28.

99

CHAPTER 3 MORE ON OBJECT-ORIENTED ABAP

Syntax error
Description Row = Type
Program YTEST_FRIEND 24 @0

You cannot create an instance of the class "MYCLASS" outside the class.

Figure 3-28. Error related to private instantiation

Summary

In this chapter, we learned about inheritance and redefining of methods. We then
covered instance constructors and interfaces. A section on casting and polymorphism
was also included. We also discussed abstract and final classes. Finally, we discussed the
friendship concept within classes, along with looking at fully working coding examples.

100

CHAPTER 4

Class Builder

Global classes are defined in the Class Builder, which has the transaction code SE24.
Global classes and interfaces can be accessed by all ABAP programs in the R/3 system.

In this chapter, we first see how we can use the Object Navigator as an alternative
transaction for creating global classes. We then move on to the Class Builder, where we
will spend some time exploring its various tabs, particularly the Methods tab. We take a
brief look at the Class Browser, and then return to the Class Builder, where we learn to
test instance methods and view some examples.

Finally, we see a number of examples using the transaction SE24 that will be tested
using the transaction itself rather than having to create a program for them.

Transaction SES0

One easy way to create a new global class is by using the Object Navigator, which has the
transaction code SE80. The navigator is split into two areas: the navigation area and the
tool area. A screenshot of the Object Navigator is shown in Figure 4-1.

101
© Rehan Zaidi 2019

R. Zaidi, SAP ABAP Objects, https://doi.org/10.1007/978-1-4842-4964-2_4

CHAPTER 4 CLASS BUILDER

@ v «H @@ =|(

oD ISE @m

Object Navigator
¢ = | E [i] BEdk Object

kﬁ.web Dynpro Text Browser

kﬂ'ﬁg Browser

2 Transport Organzer

[Test Repostory

@ Enterprise Service Browser

| Class / Interface =l
|zo¢_sip w | &el
[El=LI=]a] &2 [E]

Object Name
v [$TMP SAPUSER

> [Dictionary Objects

» {7 Class Library

» [programs
» 3 Web Dynpro

Figure 4-1. The Object Navigator

L= IS =S Emle=-) < |

The left side of the window is the navigation area, and right side is the tool area.

It also makes it easy for us to use the navigation area in order to navigate through the

various components of the global class.

Follow these steps to create a global class using SE80:

1. To create a new global class, use the context menu in the

navigation area.

2. First select the package node or select the Class Library node

within the package and right-click it. From the context menu that

appears, choose the Create option. A dialog box will open.

3. Inputthe class name and description, select the Usual ABAP Class

option, and uncheck the Final checkbox, as shown in Figure 4-2.

Click the Save button.

102

SAP

&3 Web Dynpro Text Browser

CHAPTER 4

[2/ MIME Reposttory
&a Repository Browser
e et
(G| Tag Browser
[Transport Organizer | Class znew_class A
|1 Test Repostory Description |test class |
{38 Enterprise Service Brow Instantiation Public
Package Class Type
SABP * Usual ABAP Class
: Exception Class
@ L= |$ﬁ | il e oy
OrlackTiane Persistent class
v [sABP 2
> B3 Package Interfa Test Class (ABAP Unit)
» X3 Dictionary Obje
¥ [E= Clss Lbrary |+ Final
> [0 Classes Only Modeled]
> [Interfaces et
» 3 Programs 7 e %
» 3 Function Group! Ime Comment

LN o B

Figure 4-2. Create Class dialog box

CLASS BUILDER

The global class will then appear in the Class Builder (in the right pane), which you

can find in the tool area of the Object Navigator. It will display various tabs like Interface,
Attributes, Methods, etc., as you can see in Figure 4-3.

Class Builder: Change Class ZNEW._CLASS
G PUB a8 KR EDFE

&% Web Dynpro Text Browser
[2# MIME Repostory

[Repostory Information System
(& Tag Browser

& Transport Organizer

[Local Types

Class Interface
Properties

o Parameters B Exceptions f=l D= B & DT & R 25
V... M... Descrption

Method
r

L

Interfaces

I Implementation

INEW_CLASS
Friends

Level
-

-

miMacros [Constructor [Class constructor

Implemented / Inactive

Attributes

Events

Chss documentatior

a5 Alases

Fiter

] Test Repostory
_88 Enterprise Service Browser

I Package = I

|sap

RarT

«lL[=li=al&x]a 8
Object Name g
v [sasp -
» [Package Interfaces >
» [Dictionary Objects
v B2 Cass Lbrary
» [Classes (=]
» 08 Interfaces

EElwiaE

Display Workhst

Figure 4-3. Creating a class

103

CHAPTER 4 CLASS BUILDER

Here, we can define any new method and its parameters, the class attributes, and
other components. The steps from this point on are the same as the ones when using the
transaction SE24.

The Class Builder and Its Features

As mentioned earlier, transaction SE24 is the main global Class Builder. With this
transaction, we can create, display, and modify global classes and interfaces. Together,
these form the Central Class Library, which is accessible throughout the SAP system.
Class Builder is used to define or create new custom global classes. It may be used to
modify the existing custom SAP ABAP classes and interfaces. Using the Class Builder, it
is also possible to implement inheritance of classes and the redefining of the inherited
methods.

To create a new global class or interface, start the name with Y or Z (the convention
followed for all custom developments). This will distinguish it from a standard class or
interface.

We may use the transaction SE24 to display the standard SAP classes. Now, let’s
look at one of the standard ABAP classes. Let’s take the example of CL_ABAP_REGEX. We
start with the initial screen of the Class Builder. The Class Builder (SE24) initial screen is
shown in Figure 4-4.

@ M e =i T80 o

Class Builder: Initial Screen

gt 2 8 £ (3] 0 [0 ED | class Browser

Object type I |

& Display V' Change O Create

Figure 4-4. Class Builder

104

CHAPTER 4 CLASS BUILDER

Enter the name of the CL_ABAP_REGEX class in the Object Type field (see Figure 4-5)

and click Display.
@ v« Ra@ =i A8 @B
Class Builder: Initial Screen

a0 2 8w (5] | @ [0 D | dass Browser

Object type

& Display ' Change D Create

Figure 4-5. Class Builder with a standard SAP class

The screen—with the Properties, Interfaces, Friends, Attributes, Methods, Events,

Types, and Aliases tabs—appears. See Figure 4-6.

@ v«Hee

2/ % DDAH TR %

Class Builder: Display Class CL_ABAP_REGEX
G | PR P st 2 5 E D P o FwalTypes & implementation [Macros
Class Interface CL_RBRE_REGEX Implemented [Active
Propertes Interfaces Friends Attrbutes Events Types | Alasas
5 B[R 25 Fiter

o Pparmeters 1% Exceptions|Td BB =] B LiD
Level Vis... M... Description
d

Method
E:ousmucma _Insta. Fub. e Generation of an Object for a Regular Expression
DESTRUCTOR Insta. Pub. % Delete Machine (Intemal Destructor)

_COMPILE Insta. Bri. (internal usage)

CREATE_MATCHER Insta.. Fub. Assignment of 3 Char. String/ Table to 3 Reguler Expression

Figure 4-6. Display mode

These methods can be called from any ABAP program.

105

CHAPTER 4 CLASS BUILDER

Class Builder Tabs

A global class includes several components, all of which have a visibility—public, private
or protected. The various tabs on the Class Builder are shown in Figure 4-7.

Class Builder: Display Class CL_ABAP_REGEX

D | PR A st O & EDTE @ HowalTpes [Eimkmentaton [FMacros | Cass documantation

Cass Interface CL_ABAD BEGEX | Active

T Properties Interfaces | Friends | Attrbutes Events | Types | Alases

B paemeters |8} Exceptions Tl My BB |54 DT (&) 68 B2 Fiter
Method _‘Lml VE... M... Descrption

Ea.vsmmci _fnata. fub. ZFz Generation of an Object for a Regular Expression
DESTRUCTIOR Insta. Fub_ dfz Delete Machine (Internal Destructor)

COMPTLE Insta Pri {internal usage)

CREATE_MATCHER Insta_ Pub. Assgnmant of a Char, String/ Table to a Reguiar Expression

Figure 4-7. Global class methods

The tabs on the Class Builder transaction SE24 are as follows:

o Properties. This tab includes the properties, such as a short
description of the class, the name of the user who created it, the date
of the last change by a user, the package name, etc.

o Interfaces. This shows the list of interfaces that the class implements.

o Attributes. In this tab, we specify the list of attributes of the class.
Attributes include data, constants, and types.

e Methods. The tab has two subtabs: Parameters and Exceptions.
Parameters include importing, exporting, changing, and returning.
These may be based on any data types or dictionary types, or may
refer to any objects. Exceptions are exceptional situations that do not
allow a method to proceed normally during execution. These may
be raised within the code and may be used to avoid the method from

resulting in a runtime error (and short dump).

o Events. On this tab, we can define several events for the class.
A corresponding method can be triggered when an event occurs.

106

CHAPTER 4 CLASS BUILDER

o Types. On this tab, we define or declare any user-defined
types, which we can then use in method parameters. To declare a
user-defined type, go to the Types tab and input the type name, its
visibility, an associate type, and a description, then click Save. See

Figure 4-8.
Class Interface ZCL_CALCULATION Implemented / Active (revised)
Properties | Interfaces | Friends | Attributes | Methods | Events Aliases
R BE #DD (& @@ Fiter
Type Visbiity Typing Assocated... Description
LTY_HUML Publc Type ANY | (% |define user define type
LTY HUM2 Public Type ANY | (% |define user define type

Type | &

- I e

Figure 4-8. Types tab

When you click on the direct type entry icon (the yellow arrow),
it will take you to the ABAP editor where the type is declared. You
can now use this user-defined type in the method parameters.

TYPES 1ty numi TYPE any.
TYPES 1ty num2 TYPE any.

o Aliases. On this tab, we can declare any aliases. These are only
used in conjunction with interfaces and may be used to form short
names to components existing in an interface that is implemented by
a given class.

Useful Functions of the Class Builder

In this section, we discuss the various functions within the Class Builder.

Where-Used Lists

This is one of the functions used in the Class Builder as well as in the methods of a class.
As its name suggests, the where-used list shows every place (in a program, class or
enhancement) where a class or method is used.

107

CHAPTER 4 CLASS BUILDER

To create a where-used list for a class (e.g., CL_SALV_TABLE), go to Utilities =
Where-Used List (CTRL+Shift+F3), as shown in Figure 4-9.

Settings...
(V] v
Class Browser Ctri+Shift+F1 ===
Class Builder: Initial. ~ Where-used lst CuisShift+F3
Versions »

at o 8 b [i] | T [0 b wass srowser

Object type |cr_sa1v_table| |7

& Dispy | | Change D Create
Figure 4-9. Creating a where-used list
A dialog box will appear with the class/interface name CL_SALV_TABLE, as shown in

Figure 4-10. Select the top three options to see which program or classes/interfaces use
them, then click to continue.

108

CHAPTER 4 CLASS BUILDER

Class Builder: Initial Screen
- = Where-Used s/Interface
a8 o

i T
Lclasflnterhce | CL_SALV_TRBLE

Used in

I programs

+f Classes/Interfaces

+/ BSP Applications
Web Dynpro Component
Function Module Interfaces
Package Interfaces

%}

Transactions
WebService Definitions

Business Add-ins
Enhancement Implementations
Enhancement Spots

Data elements
Structures

Table types

Test Scripts (eCATT)

(& In the Background | & Search Range ||EL (5] %

Figure 4-10. Where-Used List dialog box

A dialog box appears with a message, as shown in Figure 4-11. Click Yes.

Where-Used List: Include
e Components of the Type

I:' =1
Yes i No *® Cancel

s

Figure 4-11. Confirm your where-used list

The output will display a hit list showing each place the CL_SALV_TABLE class is used
or defined in the program. In this case, there are around 149 programs using this class.
From this hit list, you can select the location of the object’s exact usage.

In this way, the where-used list function makes it easy for us to search for any object
in programs. See Figure 4-12.

109

CHAPTER 4 CLASS BUILDER

Where-used Class/Interface CL_SALV._TABLE (139 Hits)
dm el | S R | o3 U7 KT | & T 4H KW M) B L ES W | complete Lisc

Clasasa/Interfaces Short Deacript.

ZCL_IM_BADI_SD_CM _ERP200OS

IF_EX_BADI_SD_CM~FSCM_DISPLAY CREDIT_MESSAGES F3CM Credit Messages

Frogram Short description

BC40S_ARCD_CREATEOOL
BC405_ARCD_CREATETOP

L BC405_ARCS_1EO0L

[Clscaos_arcs_itor

BCAOS_ARCS_4E0L
BC405_ARCSE_ 4001
BC40S_ARCS_4TOP
BCA0S_CALS_1TOP
BCAOS_CALT_1I0P
BC40S_EVED_COMPLETEEOL
BC40S_EVED_COMPLETEFOL
BE40S_EVED_COMPLETEKOL
BC40S_EVED_COMPLETECOL
BC40S_EVED_COMPLETETOP
BC40S_EVED_DBLCLK_ZND_ALVKOL
BC40S_EVES_1EOL

BC40S EVES 1F01

Figure 4-12. Hit list

To create a where-used list for methods, go to the CL_SALV_TABLE class, go to the
DISPLAY method, and click on the where-used list icon (the yellow icon with a tree
structure), which you can see in Figure 4-13.

Class Builder: Display Class CL_SALV_TABLE
G PR IP gD A ED PG @& Sl Types = Implementation

Class Interface CL_SALV_TABLE Implemented / Active
Properties | Interfaces | Friends | Attributes |BIACGGIECCH Events | Types | Alases |

[0 parameters| B Exceptions | 8fRel FLE A (2] @R 295 Fiter
Method IR et V= Y here Used LEE

FACTORY Stati. Fub.. Get New Instance for ALV Table Object

REFRESH Insta. Pub. Rebuild Display

GEI_SCRIS Insta. Pub. Get Sort Object

GET_SELECTIONS Insta._ Pub. Get Selection Object

GEI_EVENT Insta_ Fub._ Get Event Object

SET_DATA Insta. Pub. Create New Instance with New Data Structure

:DISPIA‘(]]Ins:a - Bub.. Qutput table

GET_RGGREGATICNS Insta._ Pub. Get Aggregation Object

Figure 4-13. Where-used list icon

A dialog box will appear with the class/interface and method name with the selected
option program, classes, and BSP application, as shown in Figure 4-14.

110

CHAPTER 4 CLASS BUILDER

=

&l

i Class/Interface Ll:l._sm.v_rm ol %
Method DISELRY

Used in

~ Programs

o Classes

~/ BSP Applications
Web Dynpro Component
Test Scripts (eCATT)
Transactions

D=

Ld :@ In the Background (& Search Range E.! (B

Figure 4-14. Where-Used List dialog box

OLa e m

Click Continue. A hit list will then appear. In this example, you can see that the
Display method is used in 96 programs, as shown in Figure 4-15.

Where-used Method CL_SALV_TABLE=>DISPLAY (96 Hits)

G e T E0D 2T TEERER T comlete st

Classes/Incerfaces Found Locations/Short Description

2CL_IM_BADI_SD_CM_ERP2005

=
[CJ|IF_EX_BADI_SD CM-FSCM_DISPLAY_CREDIT_MESSAGES FSCM Credit Measages

Frogram Short description

BC405_ARCD_CREATEQOL
BC405_ARCS_1E0L
BC405_ARCS_2E01
BC405_ARCS_3E01
BC405_ARCS_4E01
BC405_RRCS_4001
BC405_EVED_COMBLETEEQL
BC405_EVED_COMPLETECOL
BC405_EVED_DBLCLK_2ND_ALVKOL
BC405_EVES 1E01
BC405_EVES_1001
BC405_EVES_2E01

BC405_EVES_2001
BC40S_EVES_3E01
BC405_EVES_3001

BC405_LAYD COMPLETECOL
AEAAR TAVR SETTATTARGAN

1

Figure 4-15. Hit list

111

CHAPTER 4 CLASS BUILDER

To check where the method is used, double-click on an object name. This will take

you to the exact location where it is used, as shown in Figure 4-16.

Class Builder: Class ZCL_IM_BADI SD_CM_ERP2005 Display

2 | PURE@ st S B | &K EOGE @ paten Pprettyprnter | Signature
Ty. Parameter Type spec. Description

pa I_MESSAGE_TYPE TYPE CHAR1 OPTIONAL Einstefiges Kennzeichen

v |I_TEXT TYPE CHAR100 OPTIONAL Charakter 100

ra I_NO_DIALOG TYPE CHARL OPTIONAL Einstebges Kennzeichen

o» ET_MESSAGES TYPE FSCM_T_CREDIT_MSGTEXT Meldungen aus einer Kreditprifung

[} COX_SD_CM_ERROR_MSG Test Ausnahme Credt Meldung
Method IF_EX_BADI_SD CM~FSCM DISPLAY CREDIT MESSAGES Active

78| start_column = 1

end column = 100
atart_line

8 end line 15)
84| | *... Display table

85| ir_cable->display().
86|

87| endif.

Figure 4-16. Method display used location

Useful Buttons on the SE24 Tab

Every SE24 tab (methods, attributes, and interfaces) features buttons like Insert, Delete,
Copy, Sort, Detail View, Documentation, etc. The following is a brief description of some

of these buttons.

o Insert method. The green icon shown in Figure 4-17 is used to
add methods. Here, we are adding the GET_PRIMENUMBERS method to

a class.
Class Interface ZCL_CALCULATION Implemented / Active
Properties Interfaces | Friends | Attributes Events | Types | Alsses |

o parameters M Exceptions TH| [B] E[) Lé'i lseDB & MG 2| Fiter
Method Level V... M... Description

GEI_CALULATICN Stati. Fub. Get the arthmatic calculations

B =

Lgel:_prmnunbers JS\:m:i_. Pub._. Identify prime numbers

Figure 4-17. Add Method icon

112

CHAPTER 4 CLASS BUILDER

o Delete method. The red icon shown in Figure 4-18 is used to delete
a method. Here, we are deleting the GET_PRIMENUMBERS method from

the column.
Class Interface ICL_CALCULATION Implemented / Active (revised)
Propertes Interfaces Frends Attrbutes Events Types Alases
o paameters 8 Exceptions T [8 D)< »DIT (& |00 o Fiver
Method Level Vs... M... Descgtion
GET_CALULATION Stati. Pub Get the arthmatic cakcubtions
r -

=

Figure 4-18. Delete Method icon

Class Browser

This is used to display all the global classes and interfaces or business objects in the class
library. The transaction code is CLABAP. We can do this via the Class Builder, or we can
use the transaction CLABAP directly.

You'll find a screen with the options All Classes and Business Objects, as shown in
Figure 4-19.

[= Class Browser: Entry Screen x
Choose a set

L
|_® All classes
() Business objects

(¢][¥_other settings |(%]

Figure 4-19. SAP easy access screen

113

CHAPTER 4 CLASS BUILDER

Choose the All Classes option. You'll get a screen showing all the standard SAP
global classes and interfaces, as you can see in Figure 4-20.

Application Components

) Application Platform

00 Integrated Product and Process Engineering
— 00 Classification System (HNew)

00 Master Data

AP-LIM Logistics Inventory Management Engline
G0 Product Configurator

0 pPricing & Condition Technigue

00 Transaction Tax Engine

[— 00 cCress-Application Components

00 Enterprise Portal

00 sSAP NHectWeaver Master Data Management
—o0 Accounting - General

=00 rFrinancial Accounting

—8 Treasury

00 cCcontrolling

0 Investment Management

—00 Encterprise Controlling

[00 Real Escatce Management

F—o0 Incentive & Commission Managesment, Portfolic Assignment
—00 Financials

[— 2 rinancial Services

— 2 rogisctics - General

— 08 Sales and Disctribution

Figure 4-20. All classes screen

The other way to access the class browser is through the Class Builder (SE24). Go
to SE24, click on Utilities, and select Class Browser. A similar dialog box of options will
appear, as shown in Figure 4-21, and you can search through the classes and interfaces.

Class Builder: Initial Screen
gt # B G @ [0 BD | [Cass Browser
Class Browser (Ctrl+Shift+F1)

Object Type Ql

ke Dspey |[# change | D Create |

Figure 4-21. Class Browser screen

Testing Classes in SE24

The Class Builder allows you to test your class and its methods without creating a test
program. The test function within the class lets you specify test data and check the
behavior of both static and instance methods. These may contain table parameters or not.

114

CHAPTER 4 CLASS BUILDER

In this section, we look at a number of examples that will be tested via SE24.

Testing a Static Method

Let’s look at the steps needed to test a static method. To serve as the example, we will
create a class called ZMY_PERCENTAGE to calculate the percentage of the two inputted
numbers.

Go to SE24 and input the class name ZMY_ PERCENTAGE. Click on the Create option, as
shown in Figure 4-22.

Class Builder: Initial Screen
a0 2 8 & [i] | 1 [0 B | Class Browser

Object Type ZMY_PERCENTAGE Ql

Ke Dispay |[¢ Change]ID Create |

Figure 4-22. Inputting a class name
Choose the Class option from the dialog box that appears and then press Enter.

The dialog box shown in Figure 4-23 will appear. Input the description, select the
Usual ABAP Class option, uncheck the Final checkbox, and click the Save button.

115

CHAPTER 4 CLASS BUILDER

[Create Class ZMY_PERCENTAGE

Class [zy_PERCENTAGE "
Description "Percenl?ge Calculator _.L
Inst.Generation |Public
| Class Type

(®) Usual ABAP Class

() Exception Class

M with messages of message

e classes as exception texts

() Persistent class
() Test Class (ABAP Unit)

[¥|Final

& save |[X]
Figure 4-23. Creating a class

A new screen will appear. Input the method name as CALC_PERCENT and select Static

Method for the level. Set the visibility to public and enter a description, as shown in
Figure 4-24.

(@ parameters [Exceptions {8 sourcecode IR BES (#]D T (&)

Method Level Visibiity ~ M... Description
‘CALC_PERCENT Static Method [Public This method Calculates Percentage

Figure 4-24. Setting the class description

Now, go to Method and select the Parameters tab. Input MYNUMBER1 and MYNUMBER2

as the importing parameters of type INTEGER and input CALC_PERCENT as an exporting
parameter of type INTEGER. This is shown in Figure 4-25. Click Save.

Parameters of Method

|cALC_PERCENT

IG:I MEt_h_ods]% Exceptions "@ Sourcecode |Ej Properties | [@@ @[@E
Parameter Type P... O... Typing Method Associated Type Default Value

\MYNUMBER1 Importing [} [] Type INTEGER
MYNUMBERZ Importing [] [] Type INTEGER

|PERCENTAGE Returning [v] [Type WGDS_PERCENTAGE

Figure 4-25. Method parameters

116

CHAPTER 4 CLASS BUILDER

Go back to Method to implement source code for CALC_PERCENT. Select the method
by clicking on it. You'll get the screen shown in Figure 4-26.

Method CALC_PERCENT .Acdve

mechod CALC PERCENT.
2i 8 if mynumber2 gt
3 I percentage = (mynumberl / mynumber2) *
endif.
endmethod.

Figure 4-26. Source code screen

Here, we have written the logic of the program to calculate percentage. Now, check
the syntax for errors using the check option (or CTRL+F2), save (CTRL+S) every element
of the class, and activate the class (CTRL+F3).

To test the static method CALC_PERCENT of the ZMY_PERCENTAGE class, follow
these steps:

1. Click the ® button. This will take you to the screen shown in
Figure 4-27.

Test Class ZMY_PERCENTAGE: No Instance Bound
Minstance & ¥3] [@ Handler

Loz —
Case-Sensitive ,_C_],
(CzMY_PERCENTAGE <not instantiated>
Attributes
& Methods

(%iCALC_PERCENT

&

Figure 4-27. Testing ZMY PERCENTAGE

117

CHAPTER 4 CLASS BUILDER

2. We do not need to create an instance of the object since we have
to test a static method (in our case, CALC_PERCENT). Simply click
the “ next to the method.

3. This will take you to the input screen of the method, where the
importing parameters will be shown. Enter suitable test values for
the MYNUMBER1 and MYNUMBER2 parameters and click the button
on the toolbar. This will display the output of the returning
parameter PERCENTAGE, as shown in Figure 4-28.

(%CALC_PERCENT

3 Import Parameter

@ MYNUMBER1 15

@ MYNUMBER2 200
3 Result

b@ PERCENTAGE 7.50

Figure 4-28. Percentage output
The equivalent code for calling the static method created earlier is shown in the
code, as follows.

PARAMETERS: p_num1 TYPE i ,
p_num2 TYPE i.

DATA cal percent TYPE 1i.

CALL METHOD zmy percentage=>calc_percent

EXPORTING
mynumber1 = p_numl
mynumber 2 = p_num2
IMPORTING

cal percent = cal percent.

WRITE: 'Percentage =', cal percent.

118

CHAPTER 4 CLASS BUILDER

In this code, we are again calculating percentage through an ABAP program. We've
declared the P_NUM1 and P_NUM2 parameters of type string, so that we can take the input
values from the selection screen. The result is stored in CAL_PERCENT, which is of the
integer type.

We have now called the CALC_PERCENT method from a ZMY_PERCENTAGE class, which
calculates the percentage. The importing parameters of the MYNUMBER1 and MYNUMBER2
methods are exported with P_NUM1, P_NUM2, and CAL_PERCENT stored as the result.

Testing Instance Methods

Now let’s look at a simple example of testing pertaining to instance methods.

We will create the class to calculate the cubic value of a number. In this code, we
will use the constructor method to calculate the cubic value of the inputted number
(importing parameter of the constructor) and set the cubic value as an attribute of the
class. We will then use the Class Builder to instantiate an object of the class and calculate
the cubic value. Let’s see how this is done.

Go to the SE24 Class Builder, input the object type name ZCL_MY_CUBE_CALCULATOR,
and click on Create, as shown in Figure 4-29.

[= Create Class ZCL_MY_CUBE_CALCULATOR

Class |2ZCL_MY_CUBE_CALCULATOR @
Description [cube Cakubator)
Inst.Generation |Pubic |

=l

Class Type
(®)Usual ABAP Class
() Exception Class
? With messages of message Classes as exception texts
(C)Persistent class
(O Test Class (ABAP Unit)

[vIFinal

ZTIE

Figure 4-29. Creating a cube class

119

CHAPTER 4 CLASS BUILDER
Go to the Methods tab and input the method name CONSTRUCTOR, then press Enter. A
constructor symbol is created, showing you that this is a constructor method, as you can

see in Figure 4-30. For the constructor, choose a visibility of Public

[E! Parameters "'@ Exceptions "@ Sourcecode lr]mﬂ ’EQ[EQ

IVEbitv |M 'Description
T Constructor

‘ Method Level
CONSTRUCTOR Instance Method Public

Figure 4-30. Constructor method

Go to the CONSTRUCTOR method you've just created and click on the Specifying
parameters. Input the parameter name MYNUMVALUE, type integer, as shown in Figure 4-31

Class Builder: Cfl&m aamZCLMY CUBE_CALCULATOR
= Local Definitions/Implementations (= Local Test Classes

Class/Interface
_ Properties | == # Met i Typ
Parameters of Method CONSTRUCTOR | |af~]
[0 methods [exceptons [f sourcecode I8 roperes | BRJER (o]0 T
Parameter Pass Value Optional | Typing Method Associated Type |Default Value Description
MYNUMVALUE 0O [Type INTEGER Whole Number with +/- Sign (-2.147.483.648 ..
n [Type

Figure 4-31. Specifying parameters

Select the Attributes tab and input the attribute name MYCUBICVALUE. Set it as an
instance attribute with public visibility of type integer, as shown in Figure 4-32.

Class/Interface [2CL_MY_CUBE_CALCULATOR | Implemented / Active
Properties [Interfaces | Friends . Attrbutes | Methods . Events . Types | Alases

E Properties [a[_] E]E] “IFD E‘ mﬁ] [Fiter
Attribute Level Vsl:tv R... Typing Assocated Type
MYCUBICVALUE Instance Attribute Public] Type INTEGER

A rype

Figure 4-32. Attributes tab

120

CHAPTER 4 CLASS BUILDER

Go back to the method constructor and double-click on it. Write the logic of the code
to calculate the cube of the input number, as shown in Figure 4-33.

1 B method CONSTRUCIOR.
e mycubicvalue = mynumvalue * mynumvalue * mynumvalue.
endmethod.

Figure 4-33. Calculation code

Save the class and activate all the elements of the class.

Once the class is activated, we can execute the constructor method using the Test
feature of the Class Builder.

From the Class Builder, click the ® button or use the F8 key. The Create Instance
screen appears, as shown in Figure 4-34.

Create Instance of Class ZCL_MY _CUBE_CALCULATOR: Constructor Parameter
D Instance

- =
Case-Sensitive ,DJ

CONSTRUCTOR
& Import Parameter

o MYNUMVALUE 0
Figure 4-34. Create Instance screen

Here, you will be provided space to enter value(s) for the importing parameter(s) of
the constructor. In our case, there is only one parameter—MYNUMVALUE.

Insta:
D "¢ button on the

We will enter a value of 10 in the input field and click the
toolbar. This will create an instance of the class and will assign a value equal to the

inputted number’s cube value of the MYCUBICVALUE attribute, as shown in Figure 4-35.

121

CHAPTER 4 CLASS BUILDER

QzCL_MY_CUBE_CALCULATOR {0:23*\CLASS=ZCL_MY_CUBE_CALCULATOR)

Interfaces
3 Attributes

@MYCUBICVALUE 1,000
Figure 4-35. Cubic value calculated

In short, you'll get the cube of the number stored in the given attribute, without the
need to develop a test program with relevant coding.

E

We will now see another example—a bank account demo—where will test
instance methods (other than the constructor) using the functions of the Class Builder.
As an example, we will use a bank account for bank customers. The class we will use is
ZCL_MY_ACCOUNT_DEMO.

This class has the private instance attribute called BALANCE, based on the type BETRCG.
We will use this to store the customer’s account balance at any given time. This attribute
is shown in Figure 4-36.

Class/Interface |2CL_MY_ACCOUNT_DEMO | Implemented / Active

Properties | Interfaces | Friends //Attributes | Methods . Events | Types
B propertes | [IR o[DIE) (&] (@GRl Oieeer
Attribute Level Visbiity Typing | Associated Type
BALANCE Instance Attribute Private Iype BETRG
Type

Figure 4-36. Account attributes
The class also has three methods, all of which have public visibility, as shown in

Figure 4-37. The methods are DEPOSIT_MONEY, WITHDRAW_MONEY, and SET_ACCOUNT _
BALANCE.

122

CHAPTER 4 CLASS BUILDER

Class Builder: Display Class ZCL_MY _ACCOUNT_DEMO
G PR IERE e B & E P A E Loal Definttions/Implementations

Class/Interface |z€L_MY_ACCOUNT_DEMO | Implemented / Active
Metho Events . Types . Alases

/ Properties

Method Level Visbiity ~ Description
SET_ACCOUNT_BALANCE Instance Method Public Setting Balance to a Certain Value
DEPOSIT_MONEY Instance Method Fublic Deposit Money

WITHDRAW MONEY Instance Method Public Withdraw Money

Figure 4-37. Class methods

The methods are defined as follows:

o DEPOSIT MONEY. This method adds a deposit to the current balance
and returns the new one. The importing parameter is AMOUNT _
DEPOSITED of type BETRG, and the returning parameter is NEW_BALANCE
of type BETRG, as shown in Figure 4-38.

Method \DEPOS IT MONEY Active
1 E method deposit_money.
2i balance = balance + amount_deposited.
3
4 new_balance = balance.
5 - endmethod.

[Display Method DEPOSIT_MONEY

Class |zcn,_my_account_peMo |
Method [pEROSIT MONEY l
Description |Deposit Money
 Attributes / rs | Exceptions
I<.1 Methods .jl.["fl Exceptions I}_ Sourcecode ”51 Properties | | J,;":
Parameter Type \Pass Value Optional !Typ'rlg Method Associated Type
|AMOUNT_DEPOSITED Importing 0 [Type BETRG
E O [0 Type BETRG

NEW_BALANCE Exporting

Figure 4-38. Method deposit balance

123

CHAPTER 4 CLASS BUILDER

SET_ACCOUNT_BALANCE. This method sets the balance with the
new amount when money is added to the account. The importing
parameter is NEW_BALANCE of type BETRG, as shown in Figure 4-39.

Method |SET_ACCOUNT BALANCE
1i @ method SET ACCOUNT BALANCE.
2 { BALANCE = new_balance.
Class Elzcx._m_nccom_nmo I
Method |SET_ACCOUNT_BALANCE |
Description | Setting Balance to a Certain Value
" Attributes /Parameters | Exceptions |
'l{': Methods ““ Exceptions }[Sourcecode !‘F’j Properties]
Parameter Type Pass Value O... Typing Method Associated Type
NEW_BALANCE Importing 0O [Type BETRG |
O [Type

Figure 4-39. NEW_BALANCE method

124

WITHDRAW_MONEY. When an amount is withdrawn from the balance,
this method returns the new amount. The importing parameter is
AMOUNT_WITHDRAWN of type BETRG, and the exporting parameter is
NEW_BALANCE of type BETRG, as shown in Figure 4-40.

CHAPTER 4 CLASS BUILDER

Method |WITHDRAW_MONEY | Active

I @ method WITHDRAW MONEY.
balance = balance - amount_withdrawn.

new balance = balance.

Class |zCL_MY ACCOUNT DEMO |

Method |WITHDRAW_MONEY '

Description |Withdraw Money |
__Attributes / Parameters

[methods M exceptions |f# Sourcecode [Pproperties | EBJES
Parameter Type P... O... Typing Method Associated Type
AMOUNT_WITHDRARN Importing] [] Tvpe BETRG

|NEW_BALANCE Exporting [] [] Type BETRG

Figure 4-40. Debit amount method

To test the object, activate all the elements of the global class and click on the Test
button. The screen shown in Figure 4-41 appears.

Test Class ZCL_MY_ACCOUNT_DEMO
& %) @] A Handler

TestObject->

o =
Case-Sensitive L)
CzCL_MY_ACCOUNT_DEMO {0:12*\CLASS=2CL_MY_ACCOUNT_DEMO}
I Interfaces
Attributes
— 3 Methods
@SET_ACCOUNT_BALANCE &
——DEPOSIT_MONEY &
——WITHDRAW_MONEY ©

Figure 4-41. Testing the object

125

CHAPTER 4 CLASS BUILDER

Click on SET_ACCOUNT_BALANCE and set the balance to the new balance amount, as
shown in Figure 4-42.

Test Method SET_ACCOUNT _BALANCE: Maintain Input Parameters
® (PDebuggng ¥ &
TestObject->SET_ACCOUNI_BALANCE()

Case-Sensitive

@!SET_ACCOUNT_BALANCE
& Import Parameter

b0 NEW_BRLANCE 100,000

Figure 4-42. Setting the new balance

Click Execute. The account balance is now set, and you will return to the previous
screen.
Go to DEPOSIT_MONEY and enter the deposit amount as 200, as shown in Figure 4-43.

Test Method DEPOSIT _MONEY: Maintain Input Paramefters
& (¥ Debugging '] &
TestObject->DEPOSIT_MONEY ()

s e
Case-Sensitive ,_C]

L

@DEPOSIT MONEY
= Import Parameter

»o AMOUNT_DEPOSITED 200.00

Figure 4-43. Setting the new balance

126

CHAPTER 4 CLASS BUILDER

Click the Execute button. The output of this method is shown in Figure 4-44.
As you can see in Figure 4-44, the new balance in the account is 100,200.

TestObject->DEPOSIT_MONEY ()
=
Case-Sensitive L)

Runtime: 19 Microseconds

DEPOSIT_MONEY
3 Import Parameter
ba AMOUNT DEPOSITED 200.00
3 Export Parameter

bo NEW_BALRNCE 100,200.00

Figure 4-44. Setting the new balance

Let’s withdraw 99,000 from the current balance. We can see this step in Figure 4-45.

Test Method WITHDRAW_MONEY: Maintain Input Parameters
(& (S pebugging '] @
TestObject->WITHDRAW_MONEYX ()

Case-Sensitive
@ WITHDRAW_MONEY
3 Import Parameter

be AMOUNT_WITHDRAWN 99,000

Figure 4-45. Setting the new balance

127

CHAPTER 4 CLASS BUILDER

As you can see in Figure 4-46, the balance remaining in the account is 1,200.

Test Method WITHDRAW _MONEY: Display Results

B B
TestObject->WITHDRAW_MONEY ()
Case-Sensitive CD:
Runtime: 23 Microseconds

@ WITHDRAW MONEY
3 Import Parameter
»o AMOUNT WITHDRAWN 99,000.00
3 Export Parameter

PO NEW_BALANCE 1,200.00

Figure 4-46. Setting the new balance

Testing Methods Using Table Parameters

Up to this point, we have seen methods with parameters having single values. It is

also possible to test methods that have table parameters via transaction SE24. We will
demonstrate with for an example that displays an employee list from SAP standard table
PA0002. The steps are as follows:

1. Create a global class named ZCL_EMPLOYEES, as shown in
Figure 4-47.

Object type 1ZCL_E.“.FLGYEES

=

& Display Vi Change 0 Create

Figure 4-47. Global class ZCL_EMPLOYEES

128

CHAPTER 4 CLASS BUILDER

2. Declare the instance attributes with visibility set to public in
the Attributes tab. P_BEGDA and P_ENDDA are used to select the
employee start date and end date. WA_PA0002 is a work area, and
IT _PA0002 is a table. You can see this step in Figure 4-48.

Class Interface ZCL_EMPLOYEES Implemented | Active

Properties | Interfaces | Friends It Il Methods | Events | Types | Alases
B BE| |4DI0 (& 060 Fiter
Attrbute Level Vs... Re... Typing Associated Type Description Initial value
®_secoA Jnsanc Publc Type BEGDA % |start Date
P_ENDDA Instanc_Publc Type ENDDA 5 |End Date
WA_PADO0O2 Instanc..Public Type PAO0O2 (% |HR Master Record: Infoty.
IT_PA0002 Instanc_Public Type ZPA0002_TT S |Table type

Tvoe =

Figure 4-48. Declaring instance attributes

3. Inthe Methods tab, declare the instance methods
as GET_EMPLOYEES and DISPLAY_EMP, with public visibility. The
GET_EMPLOYEES method will list the entries in an internal table,
and DISPLAY_EMP will display the employee details. You can see
this step in Figure 4-49.

Class Interface ZCL_EMPLOYEES Implemented [Active
| Properties | Interfaces | Friends | Attrbutes Events | Types | Alases

|a parameters| | Exceptions || [BED|<| B2 [o<D]E & [G§] 2= Fite
Method Level Vis... M... Description

GET_EMPLOYEES Insta.. Pub.. Employees details

DISPLAY EMP Insta.. Pub.. Display employee details

Figure 4-49. Methods tab

4. To write the logic for the code, double-click on the GET_EMPLOYEES
method. This will take you inside the method. Here, we select all
the data from table PA0002 and insert it into table IT_PA0002. You

can see this step in Figure 4-50.

129

CHAPTER 4 CLASS BUILDER

Method GET_EMPLOYEES Active

]METHOD get_employees.

SELECT = FRCM pa0002
INTO TABLE it_pa0002.

* ENDMETHOD.
»
-1 4

Figure 4-50. Writing the code

5. Inthe DISPLAY_ EMP method, use the LOOP AT statement to display
all the records, as shown in Figure 4-51.

Method DISPLAY EMP Active

Elmethed DISPLAY EMP.

J‘l LOOP AT it_pa0002 INIC wa_pa0002.
WRITE: / wa_pa0002-pernr,
wa_pal002-begda,
wa_paoooz—endda,
wa_pa0002-uname.
ENDLOCE.

s (b R

I I

10 endmechod.
118

Figure 4-51. Using the LOOP AT statement

6. Activate all the elements of the global class and test the class.

7. On the screen, you need to input the employee start date and end
date, as you can see in Figure 4-52.

130

CHAPTER 4 CLASS BUILDER

TestCbject->

Upper/lower case active

(OzCL_EMPLOYEES {0:4*\CLASS=ZCL_EMPLOYEES}
Interfaces
— 3 Attributes
@&Pr_BEGDA 01.01.1970
@&r_ENDDA 31.12.9999,
——@@WA_PA0002 1 00000000
@@1T_PA0002 0 Entries
—3 Methods
@GET_EMPLOYEES (>
@DISPLAY_EMP (>

Figure 4-52. Selection screen

8. When you click the Execute button from the GET_EMPLOYEES
method, it will give you a number of entries in the internal table
IT_PA0002, as shown in Figure 4-53.

131

CHAPTER 4 CLASS BUILDER

TestObject->

Upper/lower case active

D ZCL_EMPLOYEES {0: 4*\CLASS=ZCL_EMPLOYEES}
Czcr |]
Interfaces
—(E Attributes
—@&P_BEGDA 01.01.1970
(Sr_ENDDA 31.12.9999
—(@WA_PA0002 (B ooo0oo0000
G 1T_PA0002 5.254 Entries
— Methods
@GET_EMPLOYEES @,
—— @ DISPLAY_EMP [

Figure 4-53. Internal table

9. When you execute the DISPLAY EMP method, it will display all the
records, as shown in Figure 4-54.

132

TestObject->DISPLAY EMP()

Upper/lower case active

00000000 09.09.1967 31.12.
00000010 22.05.1967 31.12.
00000069 01.01.1956 31.12.
00000070 01.01.1921 31.12.
00000071 09.09.1967 31.12.
00000072 08.09.1965 31.12.
00000073 09.09.1956 31.12.
00001000 05.09.1960 04.10.
00001000 05.10.200€ 31.12.
00001001 05.06.1960 31.12.
00001002 05.09.1960 31.12.
00001003 09.06.1970 31.12.
00001004 01.01.1994 31.12.
00001005 31.05.1970 31.12.
00001006 29.04.1960 31.12.
00001007 07.12.1955 31.12.
00001008 12.03.1955 31.12.
00001009 16.11.1938 31.12.
00001010 12.03.1944 31.12.
00001011 01.01.1970 31.12.
00001012 01.01.1970 31.12.
00001013 01.01.1970 31.12.
00001014 01.01.1960 31.12.
00001015 13.11.1952 31.12.
00001016 26.10.1954 31.12.
00001017 16.10.1960 31.12.
00001018 13.06.1940 31.12.
00001019 19.09.1950 31.12.

Figure 4-54. Record display

9999
9999
9999
9999
9999
9999
9999
2006
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999

M=
i)

WEISSANJR
HOLDERM
HOLDERM
HOLDERM
HOLDERM
HOLDERM
WECKESSER
HRADMIN
LIMPERT
WAECHTERH
LIMPERT
LIMPERT
LIMPERT
BONIN
LIMPERT
LIMPERT
LIMPERT
LIMPERT
MIERZWA
WOLTERA
WOLTERA
CURR
WEISSRANJR
LIMPERT
LIMPERT
MIERZWA
LIMPERT

CHAPTER 4 CLASS BUILDER

Equivalent code to call this method from a program is shown here:

REPORT ZCL_EMPLOYEES.

PARAMETERS: p_begda TYPE begda,
p_endda TYPE endda.

DATA: obj emp TYPE REF TO ZCL_EMPLOYEES.
CREATE OBJECT obj_emp.
CALL METHOD obj_emp->get employees.

CALL METHOD obj_emp->display emp.

133

CHAPTER 4 CLASS BUILDER

The output of this code is shown in Figure 4-55.

Test Employee details
@

P_BEGDA 01.01.1970

P_ENDDA 31.12.9999|C7|

Figure 4-55. Output

Here, we want to fetch all the employee records from table PA0002. We have declared
the parameters P_BEGDA and P_ENDDA. Data OBJ_EMP refers to class ZCL_EMPLOYEES.
Now, we create an object called 0BJ_EMP, which has instance attributes, and we call the
GET_EMPLOYEES and DISPLAY EMP methods to get the required output, which is shown in
Figure 4-56.

Test Employee details

00000000 09.09.1967 31.12.9999

00000010 22.05.1967 31.12.9999 WEISSANJA
00000065 01.01.1956 31.12.9999 HOLDERM
00000070 01.01.1921 31.12.9999 HOLDERM
00000071 09.09.1967 31.12.9999 HOLDERM
00000072 08.09.1965 31.12.9999 HOLDERM
00000073 09.09.1956 31.12.9999 HOLDERM
00001000 05.09.1960 04.10.2006 WECKESSER
00001000 05.10.2006 31.12.9999 HRADMIN
00001001 05.06.1960 31.12.9999 LIMPERT
00001002 05.09.1960 31.12.9999 WAECHTERH
00001003 09.06.1970 31.12.9999 LIMPERT
00001004 01.01.1994 31.12.9999 LIMPERT
00001005 31.05.1970 31.12.9999 LIMPERT
00001006 29.04.1960 31.12.9999 BONIN
00001007 07.12.1955 31.12.9999 LIMPERT
00001008 12.03.1955 31.12.9999 LIMPERT
00001008 16.11.1938 31.12.9999 LIMPERT
00001010 12.03.1944 31.12.9999 LIMPERT
00001011 01.01.1970 31.12.9999 MIERZWA
00001012 01.01.1970 31.12.9999 WOLTERA
00001013 01.01.1970 31.12.9999 WOLTERA
00001014 01.01.1960 31.12.9999 CURA
00001015 13.11.1952 31.12.9999 WEISSANJA
00001016 26.10.1954 31.12.9999 LIMPERT
00001017 16.10.1960 31.12.9999 LIMPERT

Figure 4-56. Output

134

CHAPTER 4 CLASS BUILDER

Summary

In this chapter, we saw how we can use the Object Navigator to create global classes.
We then explored the various tabs of the Class Builder, particularly the Methods tab. We
discussed the Class Browser, and other useful options of the transaction SE24. Finally,
we saw a number of examples using the transaction SE24 that could be tested using the
transaction itself rather than having to create a program for them.

135

CHAPTER 5

Exceptions, Shared,
and Persistent Objects

In this chapter, we cover some special topics and techniques that will help you create
better programs and respond to users’ requirements.

We start with a brief introduction of exception and exception handling as applied
to ABAP Objects. We then see how we can create persistent objects in object-oriented
ABAP. Finally, we learn about the theory and working code for shared objects.

These are some of the topics that this chapter will address:

o Exception handling and exception classes
» Singleton classes
o Persistent objects

e Shared memory objects

Exception Handling and Exception Classes

An important concept related to ABAP Objects is the exception class. You can create your
own exception class. In this section, we learn how to create our own exception class and
use it in an ABAP program.

During program execution, certain erroneous situations may arise and interrupt
normal processing. In such situations, exceptions are raised. These may either be
generated by the ABAP runtime environment or triggered explicitly through coding. If a
suitable handler is not found for the exception, a runtime error occurs. Typical examples
include arithmetic overflow, memory consumption problems, or a syntax error in a SQL

statement.

137
© Rehan Zaidi 2019
R. Zaidi, SAP ABAP Objects, https://doi.org/10.1007/978-1-4842-4964-2_5

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

Developers must use their understanding to judge situations that may allow the
program to halt specific to their program. For example, in our player class scenario, if we
try to create a football player who weighs 0 (zero) kg, the object must not be created and
an exception must be raised.

Within ABAP Obijects, it is best practice to use class-based exceptions. Exception
classes are special classes that allow you to handle exceptional (erroneous) situations.
They may be defined globally in the Class Builder or defined locally within a program.
In addition to the standard exception classes, you can also create your own exception
classes and use them in your programs. It is possible to define text related to the
exceptions, which may be short or more descriptive and long. These descriptors provide
more details about the error that has occurred. It is possible to create text based on an
OTR (Object Text Repository), or you may base your exception text on messages residing
in the message classes.

An exception class has to be a subclass of one of the standard classes CX_STATIC
CHECK, CX_DYNAMIC_ CHECK, or CX_NO_CHECK, which are all derived from the CX_ROOT class.

For exceptions derived from CX_STATIC CHECK, the exception must either be handled
via TRY and CATCH statements or passed along via declaration in a method’s interface
using the RAISING clause. The handling of such exceptions is checked by the compiler.

If an exception is not handled locally within a method and not declared in the method’s
interface, a syntax warning is generated.

The CX_DYNAMIC_CHECK category refers to exceptions that are not checked by the
complier during syntax check. They “may” be declared in the methods interface via the
RAISING clause. If these exceptions are not handled within a method or propagated to
the caller via RAISING, a runtime error occurs during program execution.

For the CX_STATIC CHECK and CX_DYNAMIC CHECK categories, if the exceptions
are declared in a method’s interface using a RAISING clause, the exception passes the
method interface at runtime, if the exception is not handled within the method itself.

The exception classes that are subclasses of CX_NO_CHECK can be handled within
amethod, or otherwise are automatically forwarded. They must not be declared in
the interface of methods, and they do not result in any syntax check warnings. If such
exceptions are not handled within a call hierarchy, they are assigned to the top-most
call level. If they are not handled there, a runtime error occurs. A typical example of this
category is a situation involving resource bottlenecks.

138

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

RAISE and TRY .. ENDTRY Statements

The RAISE EXCEPTION statement is used to raise an exception. This statement may be
used in the method of a class. The syntax of the RAISE statement is as follows:

raise exception type zcx_player exception.

After RAISE EXCEPTION, we specify the exception class using the TYPE keyword (in
the example, it is ZCX_PLAYER_EXCEPTION). If the exception is not caught in the program,
aruntime error occurs.

A RAISE statement may also have exporting parameters. For example, you may pass
HEIGHT as a parameter to the RAISE statement.

raise exception type zcx_player exception
exporting height = height .

The TRY...ENDTRY block is used for exception handling in our program, as follows:

TRY.

CATCH zcx_player exception INTO
EXCEPTION_OBJECT.

ENDTRY.

Within the block, we first write the set of statements (for example, creation of a
player object) that may trigger an exception. The exception class is specified using the
CATCH statement. The CATCH block is an exception handler. When the exception specified
within the TRY block occurs, the code after CATCH statement is executed. (If all goes well,
and no exception is raised, this code is not executed.) When the exception is raised, an
exception object gets generated at runtime (based on the exception class specified). The
reference to the exception object is stored in the reference variable MY_EXCEPTION_OBJ.

Suppose we have an exception raised within a program and the exception is not
caught in the program at runtime. In this case, a short dump will occur stating that the
exception was raised but not caught in the program.

139

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

Resumable Exceptions

The code syntax shown in this section is for non-resumable exceptions. It is also possible
to raise resumable exceptions. In this case, the coding may slightly vary.

Creating an Exception Class

In this section, we learn how to define a global exception class.

We will create an exception class called ZCX_MY_EXCEPTION that will be used for our
PLAYER class that we defined earlier.

To define an exception class, call transaction SE24. The screen shown in Figure 5-1
appears.

Class Builder: Initial Screen
go § @ S E O OBD classBrowser

Object type :_ZCX_PLAYER_EXCEPIION

==
Q]

[6’0" Display] [(‘/” Change] [D Create]

Figure 5-1. Entering the exception class name

Enter the name of the class in the field provided. The name of the exception class
should begin with ZCX or YCX. If this naming connection is not followed, an error is
displayed, as shown in Figure 5-2.

140

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

[Error X

A The class name is not permitted for the class
type you have chosen

Vi@

Figure 5-2. Error due to improper naming

Once the correct name is entered and you click the Create button, the dialog box

shown in Figure 5-3 will be displayed.

[© Create Class ZCX_PLAYER_EXCEPTION X
Class [ZCX_PLAYER_EXCEPTION |
Superclass (CX_DYNAMIC_CHECK k)
Description 'My Player Exception Class '

Inst.Generation 2 Public

| Class Type
() Usual ABAP Class
() Exception Class
ZI:IWith Message Class
(O Persistent class
() Test Class (ABAP Unit)

[IFinal

Figure 5-3. Create an exception class

Make sure that the CX_DYNAMIC CHECK class is entered in the Superclass field. Enter
a suitable description in the Description field. For the Inst. Generation, choose Public
from the listbox. In addition, make sure that the Exception class radio button is switched
on and that the With Message Class checkbox is not selected. Once you are done with
the settings, click the Save button to proceed.

141

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

Public Instantiation

If you do not check public instantiation, an error occurs when trying to use the exception
in a RAISE statement from outside the class.
The Methods tab will look like the one shown in Figure 5-4.

Class/Interface [ZCK_PLAYER_EXCEPTION Implemented / Inactive
Properties | Interfaces - Friends | Attrbutes Texts . Methods | Events |

o parameter [0 Excepton || ([EEE] EIE ﬂ &) 668 (&)

Method Level Visbity Description

IF MESSAGE~GET TEXT Instance. Public Retumns message short text
IF_MESSAGE~GET_LONGIEXT Instance. Public Returmns message long text
GET_SOURCE_POSITION Instance. Public Retums Posttion in Source Text
CONSTRUCTOR Instance. Public CONSTRUCTOR

Figure 5-4. Methods of an exception class

Two important methods—GET _TEXT and GET_LONGTEXT—are added to our
exception class. In addition, the constructor of the exception class is also generated.
The parameters of the constructor correspond to the parameters of the RAISE statement
used to trigger the exceptions. If an attribute is added to our exception class, the attribute
parameter will appear as a parameter of the constructor.

Likewise, the Attributes tab will look like the one shown in Figure 5-5. We will add
a HEIGHT attribute to our exception class. This is because when the RAISE statement is
called, we will pass the height of the invalid player in order to be displayed with the long

exception text.

Attribute Level Visbility R... Typing Associated Type
CX_ROOT Constant Public] Type SOTR_CONC
TEXTID Instance Attribute Public V] Type SOTR_CONC
PREVIOUS Instance Attrbute Public [¥] Type Ref . CX_ROCT
KERNEL_ERRID Instance Attribute Public V) Type S320ERRID
IS_RESUMABLE Instance Attribute Public V] Type ABARP_BOOL
HEIGHT Instance Attribute Public | Type I

Figure 5-5. Adding HEIGHT to the exception class attributes

This adds the HEIGHT attribute as a parameter to the constructor of the exception

class, as shown in Figure 5-6.

142

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

Method parameters |CONSTRUCTOR

4= Methods |1 Exceptionsl@ @ @l |
Parameter Pass Value Optional |Typing ... Associated Type
TEXTID O] Like TEXTID
PREVIQUS O V) Like PREVIOQUS
HEIGHT (]] Type I

Figure 5-6. HEIGHT parameter

If no text is defined for your exception class, when an exception occurs in a program
and is caught via a CATCH statement in a TRY.. ENDTRY block, you will see the text An
Exception occurred of the CX_ROOT class.

Next, we will define the short and the long text for the exception ID. This text is
stored in the OTR of the system (as we unchecked the With Message Class checkbox
while creating the class). To define the text, click on the Texts tab. Then, for the ZCX
PLAYER_EXCEPTION class, enter the text Player Height Invalid, as shown in Figure 5-7.

Class/Interface ZCX_PLAYER_EXCEPTION Implemented / Active (revised)
Properties | Interfaces - Friends [Attributes / Texts | Methods [Events r

BIE0068 vLong Text

Exception ID Text
CX_ROOT An exception occurred
ZCX_PLAYER EXCEPTION Player height invaiid

Figure 5-7. Defining exception text

Next, we will define the long text for the exception. Place the cursor on the name of
the class (in our case, ZCX_MY_EXCEPTION) and then click the long text button. The long
text editor will appear, as shown in Figure 5-8.

143

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

[Change Text

Y08 B HE B
The mininum height of the player must be 50.
A height of gheights is invalid. Player was not created.

Figure 5-8. Entering long text for an exception

Enter the text as shown in Figure 5-8. Since we will also be displaying the HEIGHT
attribute in the long text, we have included it in ampersands. This will serve as the
placeholder of the height passed as a parameter of the RAISE statement. At runtime if
an exception raised, the height along with the other text shown is generated as long text
(we will see the output in the latter part of this chapter).

Once you have completed all the steps, save and activate your exception class.

Using Message Classes for Exception Class Text

In addition to the option of specifying texts (created in the OTR), it is also possible to use
the text residing in existing message classes. In order to do so, you must make sure that
the With Message Class checkbox on the Create Class dialog of the exception class is on,

as shown in Figure 5-9.

144

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

[S Create Class ZCX_SY_PLAYER_EXCEPTION X
Class ZCX_SY_PLAYER_EXCEPTION

Superclass CX_DYNAMIC_CHECK 2
Description 'Exceation Class]

Tree———1
Inst.Generation I_Z-_I?u.bic '_]I

| Class Type
() Usual ABAP Class
() Exception Class
V| With Message Class

() Persistent class
() Test Class (ABAP Unit)

["IFinal

Figure 5-9. Choosing the With Message Class option

Once this is done, the following steps are required:

1. Click the Texts tab while you are in Change mode for the exception
Message Text

class using transaction SE24. Then, click the [/
button. The dialog appears, as shown in Figure 5-10.

] [= Assign Attributes of an Exception Class to a Message

Message Class [zex 1
Message Number 000
Message Text ;!_Height & Invalid. Player not Created| _‘
| Attributes for Exception Class |
Attrib. 1 'HEIGHT v
Attrib. 2 ' -|
Attrib. 3 ~]
Attrib. 4 |

Figure 5-10. Assign attributes to a message

145

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

2. Enter the name of the message class and the message number
for the exception text. Press Enter. Once this is done, the message
appears in the Message Text field. Choose a suitable attribute
from the exception class that has to be displayed within the text
specified via the placeholders (&). In our example, we selected
the HEIGHT attribute. When you are done, select the Change
button. You can then see that the relevant message text along
with the HEIGHT attribute is shown as the text of the exception
class (see Figure 5-11).

Class/Interface ZCX_SY_PLAYER EXCEPTION Implemented / Active
Properties - Interfaces - Friends [Attributes / ‘rmf} Methods . Events

BE0008 wngText |# Message Text |

Exception ID Text
ZCX_SY_PLAYER EXCEPTION Height SHEIGHT& Invaiid. Player not Created

Figure 5-11. The Texts tab

A Working Example

In this section, we learn how the exception class that we defined can be used for
exception handling in ABAP programs.

Note We will use the exception class ZCX PLAYER _EXCEPTION that we created
earlier to make sure that, for our PLAYER class, no PLAYER object is created with
a height less than 50 cm. We can assume that the Without Message class has
been used.

We first add RAISING ZCX_PLAYER_EXCEPTION to the constructor of the PLAYER class.
This is optional. No syntax warning will be generated if this is not done, as our exception
class is based on the CX_DYNAMIC CHECK class.

class player definition.
public section.
methods constructor importing
name type string

146

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

weight type p

height type i
raising zcx_player exception.
methods display player details.

protected section.
data : name type string.
data : height type 1i.
data : weight type p decimals 2.

endclass.

We will make a small change to the constructor of the PLAYER class. We will use the
raise exception ZCX_PLAYER_EXCEPTION via a RAISE statement if the height of the player
to be created is less than 50. The height is also supplied as a parameter in the RAISE
statement. The code in this case is as follows:

class player implementation.
method constructor .
if height 1t s50.
raise exception
type zcx_player exception
exporting height = height .
endif.

me->name = name.

me->height = height.
me->weight = weight.
endmethod.
endclass.

Next, we will use the CREATE OBJECT statement to attempt to create a player 1 cm tall.
The block of code is enclosed within a TRY.. ENDTRY block.

The CREATE OBJECT statement results in the constructor being called that raises the
ZCX_PLAYER_EXCEPTION exception. The height supplied as the parameter (in our case,
1 cm) is also an exporting parameter of the RAISE statement (see the constructor code
in the PLAYER class implementation).

147

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

try .
create object my player
exporting
name = 'Wrong Player'
weight = '80'
height = "1'. "" Height is wrong

catch zcx_player exception into exception obj.
short text = exception obj->get text().
long_text = exception_obj->get longtext().
write / : short text , long text.

endtry.

The PLAYER object is not created. Rather, the exception object is generated at
runtime, whose reference is stored in the EXCEPTION_OBJ variable. The GET_TEXT and
GET_LONGTEXT methods are called to return the short and long text of the exception,
respectively. SHORT TEXT and LONG_TEXT are then outputted to the user screen. (If the
exception is not caught in the program, a short dump occurs.)

The output of the program is shown in Figure 5-12.

Flayer height invalid
The mininum height of the player must be 50. A height of 1 is invalid. Player was not created.

Figure 5-12. Program output

The complete code listing is shown as follows:

class player definition.
public section.

methods constructor importing
name type string

weight type p

height type i
raising zcx_player_exception.
methods display player details.

protected section.
data : name type string.

148

CHAPTER 5

data : height type i.
data : weight type p decimals 2.
endclass.

class player implementation.
method constructor .
if height 1t 50.
raise exception
type zcx_player exception
exporting height = height .
endif.

me->name = name.
me->height = height.
me->weight = weight.
endmethod.

method display player details.

write :/ 'Player Name: ',
15 me->name ,
/ 'Height : '
15 me->height left-justified ,
/ 'Weight A
15 me->weight left-justified.

endmethod.
endclass.

start-of-selection.

data : my player type ref to player,
exception obj type ref to
zcx_player exception,
short_text type string,
long text type string.
try .

create object my player

exporting

EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

149

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

name = 'Wrong Player'
weight = '80'
height = "1'. "" Height is wrong

catch zcx_player exception into exception obj.
short text = exception obj->get text().
long_text = exception_obj->get longtext().
write / : short text , long text.

endtry.

Singleton Classes

A singleton is simply defined as a class that has a maximum of one instance created by
the user of an internal session. Any attempt to create a second instance must not be
allowed and results in an error saying, for example, that “an object already exists” It is
possible to create a singleton class locally or globally in the Class Builder.

In this section, we learn how to create a singleton design pattern class using a static
method and static attributes. For simplicity’s sake, we will create a class locally in a
program.

We will start with the definition of a class (we will name it BEST_PLAYER based on
the PLAYER class we used earlier). In the definition, the addition CREATE PRIVATE is
added. This will ensure that instances of the given class may be created only inside the
class. Any attempt to instantiate from outside the class or instantiate from subclasses is
disallowed when the CREATE PRIVATE addition is used.

In addition to the CREATE PRIVATE addition, we will use a static attribute OBJECT,
which is a reference variable based on the BEST PLAYER class. (The single instance of the
class is referred to by the OBJECT variable.) We also have a static method called CREATE _
OBJECT that takes the importing parameters NAME, WEIGHT, and HEICGHT and returns
R_OBJECT areference to the BEST_PLAYER class. The definition of the class is as follows:

class best_player definition create private.
public section.
class-methods create object

importing name type string
weight type p
height type i

150

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

returning value(r_object) type ref to
best player.

methods constructor importing
name type string
weight type p
height type i.

methods display player details.
private section.
class-data object type ref to best player.

data : name type string.

data : height type 1i.

data : weight type p decimals 2.
endclass.

Next, we write the implementation of the class. In the implementation, we write the
code of the CREATE_OBJECT method, in which we first check whether the static attribute
OBJECT is already bound (i.e., instantiated) or not. If it is already bound, no new object
is created and a message saying "Best Player Already exists, no new object
created" is displayed.

If the OBJECT attribute is not bound yet, we create the object via the CREATE OBJECT
statement (exporting the necessary parameters NAME, HEIGHT, and WEIGHT). The reference
of the created object is assigned to the returning parameter R_OBJECT.

class best player implementation.

method create object.

if object is not bound.

create object object

exporting
name = name
height = height
weight = weight.

else.
write :/ 'Best Player Already exists',
'no new object created'.

151

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

endif.
T object = object.
endmethod.

To create an object of the BEST_PLAYER class and display its details, we call the static
method CREATE_OBJECT. Since this method returns the reference to the BEST _PLAYER
class, the DISPLAY_PLAYER_DETAILS method may be chained in the same statement to
write the details of the player on the screen. The code is as follows:

best player=>create object(
name = 'Player' weight = '80'
height = '100')->display player details().

Since it is the first time that the CREATE_OBJECT method is called, the BEST_PLAYER
object is successfully created and the relevant details are displayed on the user screen
as shown.

If the block of code is executed again, no new object is created. A message appears,
and the details of the same player object are displayed.

The complete code for the singleton class BEST_PLAYER is as follows.

class best player definition create private.
public section.
class-methods create_object

importing name type string
weight type p
height type i

returning value(r_object) type ref to
best player.

methods constructor importing
name type string
weight type p
height type 1i.

methods display player details.

private section.

152

CHAPTER 5

class-data object type ref to best player.

data : name type string.

data : height type i.

data : weight type p decimals 2.
endclass.

class best_player implementation.

method create object.

if object is not bound.

create object object

exporting
name = name
height = height
weight = weight.

else.

write :/ 'Best Player Already exists',
'no new object created’.

endif.
T object = object.
endmethod.

method constructor .
me->name = name.
me->height = height.
me->weight = weight.

endmethod.

method display player details.
write :/ 'Player Name: ',
15 me->name ,

/ 'Height : ',

15 me->height left-justified ,

/ 'Weight A

15 me->weight left-justified.

endmethod.

EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

153

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS
endclass.
start-of-selection.

best player=>create object(
name = 'Player' weight = '80'
height = '100')->display player details().

skip.

best_player=>create_object(
name = 'Player' weight = '80'
height = '100')->display player details().

Persistent Objects

By default, objects in ABAP are transient in nature, i.e., they are alive in memory until

the execution time of the program. However, it is also possible to store the attributes of
an object in the database. The persistence service for ABAP Objects lets you achieve this.
These objects are called persistent objects and the class on which they are based is known
as a persistence class. In this section, we learn how to define a persistent class.

Persistent classes are defined globally in the Class Builder transaction SE24. Before
creating a persistent class, we need to define a database table that is used to store the
attributes of the object in question. The fields of the table must correspond to the
attributes of the class whose objects are to be stored in the database.

Note There are three options for storing persistent objects, including using
business keys, GUIDs, and using a combination of GUID and business keys. For
simplicity‘s sake, we will build an object using the business key option.

Let’s use the PLAYER class example that we defined earlier and define a similar table
in the database. In addition to the NAME, WEIGHT, and HEIGHT attributes, we will add
PLAYERID as the key field, as shown in Figure 5-13.

154

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

Transparent Table |ZPLAYER TAB Active
Short Description | Table for Storing Player Persistent Objects |
" Attributes (beiverv and Maintenance Fields '/Entry help/check % "Currencw'Quanﬁtv Fields |

. [@[@1;!3] [E" Srch Help | ’ Predefined Type]
| .

| Field Key Initial Values |Data element Data Type Length Deci.. Short Description
| T ¥ @ Mor cruT 3 0 Client
[PLAYERID | [v] vl ZPLAYERID NUMC 8 oPlyer ID
NAME 0 [0 zENRME CHAR 40 0Player Name
[WEIGHT 0O O ZEWEIGHT INT1 3 0 Player Weight
|sETGHT M) (] zPHEIGHT INT1 3 0Player Height

Figure 5-13. Database table for storing persistent objects

Prior to defining this table, we created data elements and domains pertaining to the
player ID, weight, height, and name.

We will now create a persistence class. Call the transaction SE24. The screen shown
in Figure 5-14 appears.

Class Builder: Initial Screen
go p B HE T OED ClassBrowser

Object type \ZCL_PLAYER_PERSISTENT 3!

]

‘& Dispy ||&# Change HD Create

Figure 5-14. Class Builder

Enter a suitable name in the field provided (in our case, ZCL_PLAYER PERSISTENT)
and click the Create button. The Create Class dialog box appears. Choose the Persistent
Class option, as shown in Figure 5-15.

155

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

[= Create Class ZCL_PLAYER_PERSISTENT x
Class r2c.'L_PI..AYER_PERSISIENI
Description |Pla\,'er Persistent Class 1

Inst.Generation |2 Public !

Class Type

() Usual ABAP Class

(O Exception Class
[WWith Message Class

(e) Persistent: class

() Test Class (ABAP Unit)

[v|Final

[sove J%)
Figure 5-15. Persistent Class option

Enter a suitable description and click the Save button.

This will take you to the screen shown in Figure 5-16. As you can see, a number of

methods are available in our newly defined persistence class.

Class Builder: Change Class ZCL_PLAYER PERSISTENT

= PR E® s g @D 5 S0 P H (S Lol Definttions/Implementations (] Local Test Classes

Class/Interface |2CL_PLAYER_PERSISTENT | Implemented / Inactive
Properties | Interfaces | Friends | Attributes ‘Methods | Events | Types | Alases

[0 rarsmeter [_excepton |1 (B B (X[©IF (&) (08 (@Al Cmer
Level

Method Visbity Description
rr_os_sruz-mm_sxczmmu jInsunce Method Public Handles Exception After Reading State

IF 0S_STATE~GET Instance Method ©Public Object Services Private: Copy State Object
IF_0S_STATE-INIT Instance Methed Public [Initialzes Transient Part of Object State
IF_0S_STATE-SET Instance Method FPublic Object Services Private: Replace State Object
IF 0S_STATE~INVALIDATE Instance Methed Public Invalidate Object State

Figure 5-16. Methods of the persistent class

As a developer, we can only modify the HANDLE_EXCEPTION and INIT methods. In
contrast to other classes, a & persstence by (ton appears on the application toolbar. Click

the Persistence button to display a popup dialog box, as shown in Figure 5-17.

156

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

[Class: ZCL_PLAYER_PERSISTENT: Add table/structure

Table/Structure :zpmm_nsl =)

Figure 5-17. Specifying a table

Enter the name of the database table (in our case, ZPLAYER TAB) that you defined
earlier. You will then be taken to the mapping editor. The top part of the mapping editor
is initially empty (i.e., it contains no fields), as shown in Figure 5-18.

Change Persistence Representation: ZCL_PLAYER_PERSISTENT
& PRE s H B H Bcenentorsettngs [Hlinsert Table/structure

Class/ Attribute Addtional Info | Modfabity | Visbity | Type Lfetime Assigned field Class D Feid Table
+ @ ZOL_PLAYER_PERSISTENT

Figure 5-18. Mapping editor (persistence representation)

In the lower part of the mapping editor, the table’s (that we have added) fields are
listed, as shown in Figure 5-19.

- .

=)/
1
=

0 Prh.ra_.v:"FALSE._. +[C Value attribu_ | '

Tables/Fields Additional Info Type Description
~ [l zrLAYER_TAB |
* O PLAYERID N Player ID
o NAME Player Name
o WEIGHT Player Weight
9 HEIGHT [Player Weight

Figure 5-19. Fields of the table

We need to specify the fields from the database table that will be included as
attributes of the persistence class. For each field of the table, double-click the table field
line in the lower part of the screen. The name of the field and other details then appear
in the editable fields (shown in Figure 5-20).

157

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

(&] [praverip Player ID]
2 Public *| TRUE .. * B Business key ~ |
Tables/Fields Additional Info Type Description
~ [zrLAYER_TAB !
» O PLAYERID |7 Player ID
O NAME Player Name
* O WEIGHT Player Weight
O HEIGHT | Player Weight

Figure 5-20. Selecting PLAYERID

Then, click the Set Attribute Values |* | button to include the field as an attribute of
the persistence class.
The upper part will change, as shown in Figure 5-21.

Change Persistence Representation: ZCL_PLAYER_PERSISTENT
= PO H s H 80 H BocenentorSettngs [l insert Table/Structure

Class/Attrbute Modffabity Visbl.. Type Lfetime Assigned field Table
~ |@ ZCL_PLAYER PERSISTENT
. @ PLAYERID & o Q PLAYERID ZPLAYER_TAB

Figure 5-21. PLAYERID included as a key attribute

As you can see, we added PLAYERID as an attribute of the persistence class. In this
example, we created mapping based on business keys, where the Class Builder generates
key attributes based on the key field(s) of the database table used to define the mapping.
(The key attribute of the class is mapped to the key field of the underlying database
table.) For the Player ID in this case, we will see a different icon denoting that this is the
key field.

Repeat the step until all the fields are transferred to the top of the editor, as shown in
Figure 5-22.

158

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

Change Persistence Representation: ZCL_PLAYER_PERSISTENT
& = PN E 40 as B0 HE 3cenemtorSettings | [l Insert Table/Structure

Class/Attribute Alv|v| Type L | Assigned field | Class ID Field
~ [@ ZCL PLAYER PERSISTENT

* &> PLAYERID © < 0 zpLavERD PLAYERID

« © NAME @ ZPNAME B naMe

« ¥ WEIGHT @ ZPWEIGHT E] WEIGHT

+ © HEIGHT @ ZPHEIGHT HEIGHT

Figure 5-22. Class/attributes of the persistent class

The lower area will be blank since all the fields have been transferred to the top
portion.

Once this is done, save and activate the class. Upon activation, the system
asks whether the class actor should be activated. Click the Yes button to continue
(see Figure 5-23).

[Activate Persistent Classes x

Should the Class Actor Also Be

@ Actiated

Yes No I

Figure 5-23. Class actor activation popup

Three classes are generated once the persistence class is activated. The first is the
Zcl Player Persistent persistent class that we created. In addition, the system also
creates an actor class called ZCA_PLAYER_PERSISTENT. One additional base class called
ZCB_PLAYER_PERSISTENT, which is the superclass of the actor, is also created.

The purpose of mapping is to define the relationship between the database table
fields and the class attributes. Once mapping is complete, the mapped fields are
included in the attributes of the persistence class (see Figure 5-24).

159

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

Class/Interface ZCL_PLAYER_PERSISTENT Implemented / Active
Properties | Interfaces - Friends . Attrbutes | Methods | Events | Types |

B B 0 (A e

Attrbute Level Visbity Read-Only Persistent Typing Assoc@ated Type
PLAYERID Instance Attribute Public v v Type ZPLAYERID
NAME Instance Attribute Public A V] Type ZPNAME

WEIGHT Instance Attrbute Publc v Type ZPWEIGHT
HEIGHT Instance Attribute Publc 5] V] Type ZPHEIGHT

Figure 5-24. Attributes of the persistent class

The base agent class called ZCB_PLAYER_PERSISTENT is created as a friend of our
persistent class ZCL_PLAYER PERSISTENT, as shown in Figure 5-25.

Class Builder: Change Class ZCL_PLAYER_PERSISTENT
5 PRED & B & S0 FH | Ll Defntions/Implementations

Class/Interface ZCL_PLAYER_PERSISTENT Implemented / Inactive

___ Propertes | Interfaces (Friends | Attrbutes | Methods | Events | Types | Alases |
Friend Modeled only Description

ZCB_PLAYER_PERSISTENT Base agent Player Persistent Class

Figure 5-25. Friend class of the ZCL_PLAYER PERSISTENT class

Our ZCL_PLAYER_PERSISTENT class has a number of methods. There are SET and
GET methods for each non-key attribute of the class. For the player ID, no SET method is
created since the player ID is the key field. This is because the value of the key field may
not be changed once an object is created.

The agent class, in our case ZCA_PLAYER_PERSISTENT, has many important methods
for the creation, deletion, and retrieval of object data stored in the database (we will see
later how these methods are used).

Storing and Reading Persistent Objects

In this section, we learn how to use simple code in order to store object attributes (of our
persistent PLAYER class) in the database, as well as how to read them in your programs.
As mentioned, the agent class has important methods, such as CREATE_PERSISTENT and
GET_PERSISTENT, that create and read database table records based on the persistent
class attributes.

160

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

To store persistent objects, we first declare references to our persistence class
ZCL_PLAYER_PERSISTENT and our actor class ZCA PLAYER PERSISTENT.

data : player type ref to zcl player persistent.
data : agent type ref to zca_player persistent.

We then access the AGENT object using the static attribute AGENT of the actor class
ZCA _PLAYER PERSISTENT.

agent = zca player persistent=>agent.

Using the AGENT object, we call the CREATE_PERSISTENT method and pass as
parameters the attribute values for the player ID. The object player is created and the
reference is returned in the parameter PLAYER.

The SET_NAME, SET_HEIGHT, and SET_WEIGHT methods are then called for the PLAYER
object in order to assign appropriate values to NAME, HEIGHT, and WEICHT, respectively.
Finally, the COMMIT WORK statement is used to store the player attributes in the database
table (in our case, ZPLAYER_TAB). Any exception caught is in the TRY. . ENDTRY block using
the CATCH statement.

Once the code is executed, we can see that the corresponding record has been
created in the database (see Figure 5-26).

Data Browser: Table ZPLAYER_TAB Select Entries 1
DveoTA&FEREA

Table: ZFLAYER TAB

Displayed Fields: 5 of

5 Fixed Columns: 123

MANDT | PLAYERID| NAME WEIGHT| HEIGHT

850 |00000002|0liver Kahn

w
(]

188

Figure 5-26. Attributes stored in the ZPLAYER_TAB table

The complete code listing is shown as follows:

data : player type ref to zcl player persistent.
data : agent type ref to zca player persistent.

agent = zca player persistent=>agent.
try.
call method agent->create persistent

161

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

exporting

i playerid = '00000002"
receiving

result = player.

call method player->set name
exporting
i name = 'Oliver Kahn'.
call method player->set weight
exporting
i weight = '88".
call method player->set_height
exporting
i height = "188".
commit work.
catch cx_os_object existing .
endtry.

Once the record is created, we can use a similar code fragment to read the stored

data into our programs. Appropriate variables are defined for the NAME and WEIGHT

attributes.

The GET_PERSISTENT method of the agent class is used in this case and is supplied
with a player ID (in our case, 00000002). We use the GET_NAME and GET_WEICHT methods
for the PLAYER object in order to read the NAME and WEIGHT of the player. The values are
then displayed on the user screen.

The code for this is as follows.

data : player type ref to zcl player persistent.
data : agent type ref to zca player persistent.
data : name type zplayer tab-name.

data : weight type zplayer tab-weight.

agent = zca_player persistent=>agent.

try.

162

call method agent->get persistent
exporting

i_playerid = '00000002'

CHAPTER 5

receiving

result = player.

name = player->get name().

weight = player->get weight() .

write : name, weight.

catch cx_os_Object not found.

endtry.

Shared Memory Objects

EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

Using shared memory objects, you can store instances of your classes in the shared

memory of the application server. (The attributes of these objects are stored in the

application server.) The benefit of this is that all ABAP programs running on the server

can access this data.

There are two classes that must be defined in order to use shared memory. These are

the area class (defined automatically while creating a shared memory area) and the root

class. The root class is the class whose instances (instance’s attributes) will be stored in

the shared memory. The root class must be created before the area is created.

There are a few steps required to make a shared memory area. Before that, we must

create our root class. Call transaction SE24. The screen in Figure 5-27 appears.

Class Builder: Initial Screen

¢ 1 @5 H OO

Class Browser

Object type

iﬁCL_MY_PLAYER_ROOT_CLASﬂ ul

% Disply ||# change

|8

Create]

Figure 5-27. Specifying a root class name

163

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

We need to enter a suitable name for the root class (in our case, we use ZCL_MY_
PLAYER_ROOT_CLASS) in the field provided. Then click the Create button.

Enter a suitable description in the dialog box that appears and click the Save button.
Once the class is created, click on the Properties tab. Under General Data, check the
Shared Memory-Enabled indicator, as shown in Figure 5-28.

I= A
Shared Memory-Enabled 3T Fixed point arithmetic
v|Unicode checks active

Figure 5-28. Shared-Memory Enabled property

On the Attributes tab of our root class, enter the attributes of the PLAYER class.
These are the attributes whose values will be stored in the shared memory area on the

application server (as shown in Figure 5-29).

Class/Interface |zcL_My_PLAYER ROOT_CLASS Implemented / Active
Properties f"'mterféces VFriends Attributes k"’Meﬂiods VEvents T

B B (%o (& 66

!Attrbute Level Visbiity |Read-Only Typing Associated Type
NAME Instance Attribute Private 0] Type STRING
WEIGHT Instance Attribute Private 0O [Type I

|
[HEIGHT Instance Attribute Private [J [Type I
|

Figure 5-29. Root class attributes

The GET_DATA and SET_DATA Methods

The GET_DATA and SET_DATA methods will be used for reading and writing data to the

shared memory area.
Next, we create two methods—SET_DATA and GET_DATA—as shown in Figure 5-30.

164

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

Class/Interface |2CL_MY_PLAYER ROOT_CLASS | tmplemented / Active
" Properties | Interfaces | Friends | Attrbutes /Methods | Events |~

el

[parameter [excepton |1l [BJeGije| BE (%)@ (&) GG [

Method Level Visibility |Method type Description
SET_DATA Instance Method Public Setting Player Data
||GET_DATA Instance Method Public Reading Player Data

Figure 5-30. The SET_DATA and GET_DATA methods

The parameters of SET_DATA are shown in Figure 5-31.

Class/Interface |zCL_MY_PLAYER ROOT_CLASS | implemented / Active
_ Properties | Interfaces | Friends | Attributes /‘Methods | Events |

Method parameters !SEI_DMI\
[Methods |t Exceptionsl [@ [E}@ @lﬁ]
Parameter ;Tvpe Pass Value |Optional |Typing ... |Associated Type ||
NAME Importing | V] Type STRING
WEIGHT Importing O vl Type 1

] Type I

HEIGHT Importing O

Figure 5-31. Parameters of the SET_DATA method

There are three importing parameters—NAME, WEIGHT, and HEIGHT—that represent
the player. As the name suggests, SET_DATA is used to assign the imported values
(NAME, WEIGHT, and HEIGHT) to the corresponding attributes of the PLAYER root class
(see Figure 5-32).

Class Builder: Class ZCL_MY_PLAYER_ROOT_CLASS Change
= PRE® a0 B K ETDH @ @ Pattem Pretty Printer

Method [sET_pata | Active
E method SET_DATA.
me->name = name.
me->welght = weight.
me->height = height.
_endmethod.

B

0o W

Figure 5-32. SET_DATA method code

165

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

Next, we specify the parameters of the GET_DATA method. The method takes as an
importing parameter the name of the player. It also has two exporting parameters—
HEIGHT and WEIGHT—as shown in Figure 5-33.

Class/Interface |zcL_My PLAYER ROOT_CLASS | Implemented / Active
‘Properties Interfaces | Friends | Attributes / Methods | Events .~

Method parameters |GET_DATA

[@ Methods][Bﬂ Exceptions]@ [@ [@,ﬁ.

|Parameter Type Pass Value Optional Typing ... Associated Type
Emm :Import'ng O [0 [Type STRING
[WEIGHT Exporting O [0 [Type I

[HETGHT Exporting O [Type I

‘ O] Type

Figure 5-33. Parameters of the GET_DATA method

We then write the code in the GET_DATA method. We have an IF statement that
checks if the imported name of the player is the same as the attribute name of the object
in consideration. If this is true, the WEIGHT and HEICHT of the object are returned using

the appropriate exporting parameters.

method GET DATA.

if name eq me->name.

weight = me->weight.

height = me->height.

else.

write 'No data for given player'.
endif.

endmethod.

Next, we create the shared memory area. (As mentioned, successful creation of the
area will create an area class.) In order to create a shared memory area, call transaction
SHMA. The screen shown in Figure 5-34 appears.

166

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

Shared Objects: Area Management
ﬁ@@ﬂ@@ Monﬂ:or

-

[- e
Area Name |2MY_PLAYER SHARED AREA Jrj]

l&{’ Display Hﬁ Change HD Create I

Figure 5-34. Area creation transaction

Enter a suitable name for the shared memory area into the field provided and click
the Create button. This will take you to the screen shown in Figure 5-35, where you must
enter the necessary attributes of the shared memory area.

Name |z2uy_PLAYER SHARED AREA
Description |Player Shared Memory Area @

| Basic Properties
Root Class [zCL_MY_PLAYER ROOT_CLASS 2]
|| Client-Specific Area
| |Aut. Area Creation
|| Transactional Area

| Fixed Properties

Binding 7109200001 Appication Server =
[v|With Versioning

Figure 5-35. Specifying properties for the shared memory area

Additional Settings

It is also possible to make an area “client-specific” by choosing the appropriate indicator.
In addition, if you'll need write changes to the area only when the next database commit
occurs, the Transactional Area property must be set.

167

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

Enter a suitable description for your area in the description field. Within the
Attributes, enter the name of the root class you created earlier (in our case, ZCL_MY_
PLAYER _ROOT_CLASS) in the field provided. Under Fixed Properties, make sure the With
Versioning checkbox is on. Click the Save button.

The area class is generated with the same name as the area defined, i.e. ZMY_PLAYER _
SHARED_AREA. This class is derived from the CL_SHM AREA superclass and has a number
of attributes and methods. Via transaction SE24, you may see the area class. It’s shown in
Figure 5-36.

Class/Interface |ZMY_PLAYER_SHARED_AREA | Implemented / Active
Properties ! Interfaces . Friends |~ Attrbutes /‘Methods | Events | Types | Alases

|0 parameter [B3 Exception |F~ﬂ a EENE [a @ %) [Fiter
Visbilty

Method Level Description

ATTACH_FOR_READ Static Method Fublic RequestaRead Lock

ATTACH_FOR_WRITE Static Methed Fublic Requesta Write Lock

ATTACH_FOR_UPDATE Static Method Fublic Requesta Change Lock

DETACH_RRER Static Methed Public Release all locks on all instances

INVALIDATE INSTANCE Static Methed Public Active version of one instance wil be set to obsolete
INVALIDATE_RRER Static Methed Public Active versions of all instances wil be set to obsolete
FREE_INSTANCE Static Methed Public Deletion of an Instance

FREE_AREA Static Methed FPublic Delete all instances

GET_INSTANCE_INFOS Static Methed FPublic Returns the names of all instances

BUILD Static Method Public Direct Call of Area Constructor

SET_ROOT Instance Math_ Fublic Sets Root Objects

Figure 5-36. Area class

On the Methods tab, there are a number of useful methods that will be used to store
the object attributes, as well as read the object from shared memory.

Versioning Switched On

A shared memory area may consist of a number of instances. (This is different from the
instance of a shared memory enabled class.) There may be multiple versions of an area
instance, such as Build, Active, Obsolete, and Expired, when versioning is applicable.
When data is first being written on an area instance (or being changed), a Build version
is created. When the build process is completed, and the write or update locks are
released, the version being built becomes an Active version. There can be only one Active
version at any given time. In addition, only one change lock may be set on a particular
area instance. Any program that tries to read an area instance will automatically

impose a read lock on the current active version. While an active version is being

read, another new version may be built via a write/change lock. Once the new version

168

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

build is completed, it is set as Active, and the version being read is set as Obsolete. Any
subsequent read locks will be now be set on the new Active version. Once the read on an
obsolete version is completed and the read lock is released, the obsolete version is set as
Expired, which is later deleted by the system.

Writing and Reading Data Into Shared Memory

In this section, we learn how to write simple code in order to store objects in shared
memory.

We will first look at the code for writing into the shared memory area. We must define
two variables—AREA_ROOT and PLAYER_HANDLE—based on the area class and the root class
created earlier (in our case ZMY PLAYER SHARED AREA and ZCL MY PLAYER ROOT_CLASS).

We then use the static ATTACH_FOR_WRITE method of the shared area class to get a
handle on the instance within the area (we named it PLAYER _INST). This sets a write lock
to the area instance. We then use CREATE OBJECT to create an instance of the root class
PLAYER ROOT in the area instance pointed to by the handle AREA_HANDLE. The SET_ROOT
method is then called to link the root object with the area handle. (This is an important
step, as the subsequent SET_DATA method for writing data to the shared area instance
will not work.) Next, the SET_DATA method of the PLAYER_ROOT class is called. Finally, the
DETACH_COMMIT method is called using the AREA_HANDLE to complete the writing process
(to commit the changes to the database) and release the write lock imposed on the area
instance PLAYER _INST.

data : area_handle type ref to zmy player shared_area.
data : player root type ref to zcl my player root_class.

Jtry .
| area handle =
zmy_player_ shared_area=>attach_for write('FLAYER INST').

create object player root area handle area_handle.
area handle->set_root(player_ root).

call method player_ root->set_data
exporting
name = 'Qliver Kahn'
weight = '88°'
height = '18 .
area handle->detach commit().

catch cx_shm attach_error.

L endtry.

169

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

Once the program is executed, we can see the shared memory area (in our case ZMY _
SHARED_PLAYER_AREA) using the transaction SHMM, as shown in Figure 5-37.

Shared Memory: Areas

H S © mManagement & Trace Administration

“EHAreas | & shared Objects Memory

EEEG Zo[aj= view DVERVIEW Overview 2

Area Instances Versions {8 N ‘@
| |CL_WB_REGISIRY_SHM AREA 1 1 0 0 1
CL_ESH_CA_SHARED OBJECTS_AREA 3 3 0 0 3
CL_ESH_SE_RUNTIME_DATA_ARER 9 9 0 0 3
|CL_WDR_CONF_APPL_SHM s 5 0 0 5

E .IIBOBFJ' CL_CONE_SHARED 12 12 (1] 0 12
 |CLUR_KW7_MESSAGE_AREA 1 1 0 0 1
 |/BOBE/CL_CONF_TRANSACT SHARED 1 1 0 0 1
| 2MY_PIAYER SHARED AREA 1 1 0 0 1
CL_SAM_METADATA_AREA 2 2 0 0 2

Figure 5-37. Shared memory areas and SHMM

This area has one instance of which one version exists—the Active version (denoted
by the green square icon in the right-most column).
Double-clicking the row will take you to the details shown in Figure 5-38.

Shared Memory: Area Instances

H 5 £ Trace Administration

|2My_PLAYER SHARED_AREA

Occup. [Bytes] |12.464 |

B

/tiarea Instances | @& Lock

BEa= ST B@RE vew bVERVIEW Oveniew 7
_|Client Instnce Eod ¥ o o @
PLAYER INST 0 0 1 0 7

Figure 5-38. Area instances

The name of the instance we created is PLAYER_INST and it’s shown along with the
versions and the occupied size in bytes.

170

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

In addition to writing data to memory, it is also possible to read data from the shared
memory area instance into your program. The code pertaining to our PLAYER_INST
example is as follows.

data : area_handle type ref to
zmy_player_shared_area.

data : weight type i.

data : height type i.

try.
call method
zmy_player shared area=>attach_for read

exporting

inst name = 'PLAYER INST'
receiving

handle = area_handle.

call method area_handle->root->get data
exporting
name = 'Oliver Kahn'
importing
weight = weight
height = height.

call method area_handle->detach().
write : 'Oliver Kahn' , weight, height.
catch cx_shm attach error.
write : 'Error While Reading '.
endtry.

We first declare appropriate variables for WEIGHT and HEIGHT, which will be read from
the shared area. The static method ATTACH_FOR_READ of the area class ZMY PLAYER SHARED _
AREA is called to impose a read lock on the area instance PLAYER_INST and return an area
handle. Using this handle, the GET_DATA method of the root is then called in order to read
the weight and height of the player whose name is specified via parameter NAME. After this,
the DETACH method is called and the read lock set on the area instance is released.

The data read from the shared memory area is then displayed on the screen, as
shown in Figure 5-39.

171

CHAPTER 5 EXCEPTIONS, SHARED, AND PERSISTENT OBJECTS

Oliver Kahn ge 187
Figure 5-39. Output of player weight and height

Summary

We saw the basics of exception and exception handling as applied to ABAP Objects,
along with a fully working demo. We covered how we can create persistent objects in
object-oriented ABAP. Finally, we learn about the theory and saw real working code of
shared objects.

172

CHAPTER 6

More Topics in
Object-Oriented ABAP

In this chapter, we cover many diverse and useful object-oriented topics. The lessons
have been designed to build on each other, with each one progressing and layering the
information and skills.

I start with a discussion of the NEW operator (introduced in NetWeaver 7.40) used
to create objects. I will then discuss using an ALV object model to create reports. We
discuss the various ALV classes and methods along with a practical coding demo. Next,
you will see how chaining methods enables you to write compact code. An example
of ALV-related code written in conjunction with chaining methods is included. I then
cover object-oriented transactions followed by the Refactoring Assistant tool in the
Class Builder. A detailed discussion of the various ways a class can be enhanced is also
included. At the end of the chapter, you will learn about a number of constructs and
statements in detail that are not allowed in the ABAP Objects arena.

Using the New Operator to Create an Object

Starting with NetWeaver 7.4, ABAP allows creation of objects via the NEW operator. This
operator provides an alternate to the CREATE OBJECT statement. There are a number of
ways in which it may be used for object instantiation. The NEW operator may be used to
create instances of local and global classes.

173

© Rehan Zaidi 2019
R. Zaidi, SAP ABAP Objects, https://doi.org/10.1007/978-1-4842-4964-2_6

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

Before we look at the actual coding, let’s go through the general syntax for the NEW

operator. For object creation, the NEW operator may be used in the following two ways:

174

Used in conjunction with a class name. The construct for this is:

DATA MYOBJ TYPE REF TO MYCLASS.
MYOBJ = NEW myclass(paraml = vall
param2 = val2

paramN = valN).

Using the inline declaration supported by ABAP 7.40, the above
form may be written in one single statement, as shown here:

DATA(MYOBJ) = NEW myclass(

paraml = val1
param2 = val2
paramN = valN).

In both cases, the NEW operator is used in conjunction with the
class name. This will create an instance of class MYCLASS and
assign to the reference variable MYOB]. In the latter case, there is
an implicit declaration of MYOBJ based on class MYCLASS (where
the type of MYOB] is derived from the content of the right side

of the assignment). If the constructor of the class has mandatory
importing parameters, the corresponding data must be passed to
the instance constructor within the parentheses shown.

Used with # character. Another form is via usage of the NEW
operator with the # character. The syntax form is shown as follows:

DATA MYOBJ TYPE REF TO MYCLASS.
MYOBJ = NEW #(paraml = vall
param2 = val2

paramN = valN).

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

We declare a MYOB] variable referred to the MYCLASS class. Since
we have already declared a reference variable based on the class
in question, there is no need to specify the class again with the NEW
operator. Instead of the class name, the # character can be used.
Any non-optional parameters are provided in parentheses, as

shown earlier.

To better understand how to use the two forms of the NEW operator, let’s look at a few
examples. We will use the global football player class called ZST6_FOOTBALL_PLAYER _
CLASS that we defined earlier in the book.

Consider the following code block (this is a pre-ABAP 7.40 version):

DATA FOOTBALL_PLAYER
TYPE REF TO ZST6_FOOTBALL_PLAYER_CLASS.

CREATE OBJECT FOOTBALL_PLAYER

" Without NEW Operator

EXPORTING
NAME = 'Oliver Kahn'
WEIGHT = '88'
HEIGHT = '178'

FOOTBALL_CLUB = 'Bayern Munich'.
FOOTBALL_PLAYER->DISPLAY PLAYER DETAILS().

We created an object of the global class using the CREATE OBJECT statement. The
DISPLAY_PLAYER_DETAILS method was then called in order to print the details of the
created football player. This block of code was earlier used to create a football player object.

We will now see two ways that we can instantiate the object using the NEW operator
(and not the CREATE OBJECT statement). The block of code shown in the previous listing
may be replaced with the following:

DATA(FOOTBALL PLAYER) =
NEW ZST6 FOOTBALL PLAYER CLASS(NAME = 'Oliver Kahn'
WEIGHT = '88'
HEIGHT = '178'
FOOTBALL CLUB = 'Bayern Munich').
FOOTBALL PLAYER->DISPLAY PLAYER DETAILS().

175

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

We used the inline declaration of FOOTBALL_PLAYER along with the NEW operator in a
single statement. This involves the implicit definition of FOOTBALL_PLAYER as a reference
of the ZST6_FOOTBALL_PLAYER_CLASS class. In this case, we did not have to declare a
variable based on a separate statement. An object for the given class is created and the
reference variable FOOTBALL_PLAYER may then be used to display the player details.

Let’s look at another piece of code that uses the NEW operator in conjunction with the
character. The corresponding code is shown here:

DATA: FOOTBALL_PLAYER
TYPE REF TO ZST6 FOOTBALL PLAYER CLASS.
FOOTBALL PLAYER = NEW #(NAME = 'Oliver Kahn'
WEIGHT = '88'
HEIGHT = '178'
FOOTBALL CLUB = 'Bayern Munich').
FOOTBALL PLAYER->DISPLAY PLAYER DETAILS().

In this form, we declare a reference variable FOOTBALL _PLAYER for the ZST6_
FOOTBALL_PLAYER_CLASS class. We use the NEW operator to create an object of the given
class. Instead of specifying the name of the class, we used the # character. The reference
to the newly created object is assigned to the FOOTBALL PLAYER variable. The values for
the various importing parameters are supplied as shown earlier. The complete class
name is not required, as the system automatically detects it from the type of the variable
to which the created object’s reference is assigned (in our case, FOOTBALL_PLAYER).

The following block of code pertaining to our requirement will be unacceptable, as
the class whose object is to be created is unknown:

DATA(FOOTBALL_PLAYER) =
NEW #(NAME = 'Oliver Kahn'
WEIGHT = '88'
HEIGHT = '178'
FOOTBALL CLUB = 'Bayern Munich').

moopnononn NOT ALLOWED
FOOTBALL PLAYER->DISPLAY PLAYER DETAILS().

In this code, the error appears, as shown in Figure 6-1. An error results since the type
(class name) of the football player object cannot be determined.

176

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

11 DATA (FOOTBALL PLAYER) =

12 NEW #(NAME = 'Oliver Kahn'

13 WEIGHT = '88&"

14 HEIGHT = '178"

] FOOTBALL_CLUB = 'Bayern Munich'’
swawmnss NOT ALLOWED

FOOTBALL PLAYER->DISPLAY PLAYER DETAILS().

& 2]

Syntax error

Description Row | Type
Program ZNEW_OPERATOR_DEMO 12 - ‘o0

No type can be derived from the context for the operator "NEW".

Figure 6-1. Syntax error using the NEW operator

ALV Object Model

In this section, we look at one of the most popular and commonly used applications of
ABAP Objects in everyday usage.

For reporting, I recommended that you do not use list creation techniques via WRITE
statements. Rather, you should use the ALV or the ABAP/SAP List Viewer to output data
to the user. ALV provides a number of advantages, including:

o It provides a number of functions. The programmer does not have

to program these functions. These functions include sorting,
filtering, etc.

o The user may also save layouts.

There are three major standard classes used for ALV display. However, in this
section, we will use the CL_SALV_TABLE - Table display class to fulfill a simple
requirement.

Along with the global CL_SALV_TABLE class, there are a number of other classes that

are used in order to generate the output. The important methods of these classes are
shown in Table 6-1.

177

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

Table 6-1. Methods for ALV-Related Classes

Class Methods
CL_SALV TABLE FACTORY
DISPLAY

CL_SALV_FUNCTIONS
CL_SALV_COLUMNS
CL_SALV_COLUMN TABLE

GET_COLUMNS

GET_FUNCTIONS
SET ALL

SET OPTIMIZE
SET _MEDIUM_TEXT

SET_SHORT TEXT
SET_LONG_TEXT

SET OUTPUT_LENGTH

We will take a detailed look at the other classes (and the methods) used in

conjunction with CL_SALV_TABLE to create the solution.
We will create a report based on the ALV format. The report will display, for a

number of players, information such as name, weight, and height.
We assume that the data is outputted to an ALV format and stored in the IT_PLAYER

table, as shown here:

TYPES : BEGIN OF TY_PLAYER,
NAME TYPE CHAR20,
HEIGHT TYPE I ,
WEIGHT TYPE I,

END OF TY PLAYER.

DATA : WA _PLAYER TYPE TY PLAYER,

IT PLAYER TYPE STANDARD TABLE OF TY_PLAYER.

178

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

We then define references to the ALV object, the ALV function object, and the
columns objects. The CL_SALV_TABLE, CL_SALV_FUNCTIONS, and CL_SALV_COLUMNS _
TABLE classes are involved. The variables defined are ALV, FUNCTIONS, and COLUMNS,
respectively.

DATA : ALV TYPE REF TO CL_SALV_ TABLE,
FUNCTIONS TYPE REF TO CL_SALV_FUNCTIONS,
COLUMNS TYPE REF TO CL_SALV_COLUMNS_TABLE.

Next, we use the static factory method of the CL_SALV_TABLE class to create the
ALV object. The internal table IT_PLAYER is passed as a parameter to this method. The
reference to the newly created ALV object is then returned in the variable ALV (this was
defined in the previous step).

CALL METHOD CL_SALV_TABLE=>FACTORY
IMPORTING
R_SALV_TABLE = ALV
CHANGING
T TABLE = IT_PLAVER.

We then call the GET_COLUMNS method of the CL_SALV_TABLE to get the columns
object for the ALV object. This is then returned to the variable define earlier. We then use
the SET_OPTIMIZE method provided by the standard CL_SALV_COLUMNS_TABLE class. This
is used to optimize the width of the various columns included in the display.

COLUMNS = ALV->GET_COLUMNS().
COLUMNS->SET _OPTIMIZE().

Similarly, the GET_FUNCTIONS of the CL_SALV_TABLE are called. The returned
parameter is assigned to the FUNCTIONS variable declared earlier. We then call SET_ALL of
the CL_SALV_FUNCTIONS class to enable the standard toolbar functions of the ALV:

FUNCTIONS = ALV->GET_FUNCTIONS().
FUNCTIONS->SET ALL().

Since everything is done, we just need to display the ALV on the user screen. The
method DISPLAY of the CL_SALV_TABLE class is used to display the data:

ALV->DISPLAY().

179

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

The output of the ALV is shown in Figure 6-2.

Player Output

G &Y TS i T B
Char20
[Oliver Kahn] 188 100
John Reed 178 98

Figure 6-2. ALV output

The output does not have proper column headers. In the next subsection, we add
column header texts for the three displayed columns-player, weight, and height.

Adding Header Texts to ALV Columns

In this subsection, we will now add header text to the columns of our ALV output, i.e., the
three created columns—Name, Weight, and Height. The SET_LONG_TEXT, SET_MEDIUM_
TEXT, and SET_SHORT_TEXT methods of CL_SALV_COLUMN_TABLE are used for this purpose.

We first declare a COLUMN variable based on the CL_SALV_COLUMN_TABLE class. The
COLUMNS object is then used along with the GET_COLUMN method of the CL_SALV_COLUMNS _
TABLE class. The result of this method is stored in the COLUMN variable. The SET_MEDIUM
TEXT, SET_LONG_TEXT, and SET_SHORT _TEXT methods are then called to specify the
column headers in the ALV output. The (?=) operator is used for this purpose.

The code for this is shown here:

DATA : COLUMN TYPE REF TO CL_SALV_COLUMN_TABLE.

COLUMNS = ALV->GET_COLUMNS().

COLUMN ?= COLUMNS->GET _COLUMN('NAME').
COLUMN->SET _MEDIUM TEXT('Player Name').
COLUMN->SET SHORT TEXT('Pl. Name').
COLUMN->SET _LONG_TEXT('Player Name').
COLUMN->SET _OUTPUT LENGTH('25").

180

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

COLUMN ?= COLUMNS->GET_COLUMN('WEIGHT'").
COLUMN->SET MEDIUM TEXT(").
COLUMN->SET SHORT TEXT(").

COLUMN->SET _LONG_TEXT('Weight').

COLUMN ?= COLUMNS->GET COLUMN('HEIGHT').
COLUMN->SET MEDIUM_TEXT(").
COLUMN->SET_SHORT TEXT(").
COLUMN->SET_LONG_TEXT('Height').

Note For simplicity’s sake, separate blocks of statements for each column are
shown. You can modularized the code in order to avoid repetition of the similar
statements.

Once this is done, the program code will look like this:

types : begin of ty player,
name type char2o0,
height type i,
weight type i,
end of ty player.

data : wa_player type ty player,
it player type standard table of ty player.

data : alv type ref to cl salv_table,
functions type ref to cl salv_functions,
columns type ref to cl_salv_columns_table.

data : column type ref to cl salv column table.
"" Internal Table IT PLAYER population part not shown
try.
call method cl salv_table=>factory
importing
r salv_table = alv

181

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

changing
t table = it _player.

functions = alv->get functions().
functions->set_all().

columns = alv->get columns().

column ?= columns->get column('NAME").
column->set _medium text('Player Name').
column->set_short text('Pl. Name').
column->set long text('Player Name').
column->set output length('25").

column ?= columns->get column('WEIGHT'").
column->set_medium text(").
column->set _short text(").
column->set_long text('Weight').

column ?= columns->get column('HEIGHT'").
column->set _medium text(").
column->set _short text(").
column->set long text('Height').

alv->display().

catch cx_salv_msg.
write: / 'Problem while generating ALV Output'.
endtry.

After adding the column headers, the output of the program (along with the data) is

shown in Figure 6-3.

182

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

Player Output
@ EFTFE @ BT B

Player Name Height Weight
Oliver Kahn 188 100
John Reed 178 : 98 j

Figure 6-3. Final player output

Method Chaining

A newer concept that has evolved is method chaining. This involves combining calls of
functional methods (i.e., methods that have one returning value as output). The chaining
of methods makes the code more compact and allows requirements to be met without
the need for additional reference variables. There are two types of chaining possible:
chained method access and chained method call. (The primary emphasis of this section
is on chained method access.) Let’s take a look at what each means.

In chained method access, there could be two forms, as shown here:

obj ref->inst meth a(..)->inst meth b(..)->inst meth(..).
class=>static_meth_a(..)->inst meth b(..)->inst meth(..).

The return value of one functional method is a reference to an object that is used to
call the next method in the chain. The returning value of the last method is used as an
operand.

In this case, the first use may be a class component selector (=>) or an object
component selector (->). After that, all the methods are called using the component. Or,
in other words, the first method may be a static or an instance method; other than that,
you must have all functional instance methods.

Chained attribute access, on the other hand, is similar to chained method calls. In
this case, the instance attribute is used as an operand.

The chained attribute access may be one of the following forms:

obj ref->inst meth_a(..)->inst _meth b(..)->inst attr.

class=>static_meth_a(..)->inst _meth b(..)->inst _attr.

183

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

The return value of the last method (INST_METH_B) must refer to the object that
contains the INST_ATTR attribute. In this case, the return values of the previous
functional methods are variables that refer to objects for the next method.

As an example of method chaining, consider the previous block of code that we used
in our ALV example earlier, shown here:

data : functions type ref to cl _salv_functions.

functions = alv->get functions().
functions->set all().

Method chaining can be applied in this case. These three lines can be replaced with
a single line of code, as shown here:

alv->get functions()->set all().

There is also no need to define the FUNCTIONS variable, and the coding is very
compact.

Let’s look at one more example of method chaining. Going back to our football
example involving the NEW operator:

DATA: FOOTBALL_PLAYER TYPE REF TO ZST6 FOOTBALL PLAYER CLASS.
FOOTBALL PLAYER = NEW #(NAME = 'Oliver Kahn'

WEIGHT = '88'

HEIGHT = '178'

FOOTBALL CLUB = 'Bayern Munich').

FOOTBALL PLAYER->DISPLAY PLAYER DETAILS().

We can combine the NEW operator shown earlier and method chaining. The previous
block of code can be written more compactly, as shown here:

NEW ZST6 FOOTBALL PLAYER CLASS(
NAME = 'Oliver Kahn'
WEIGHT = '88'
HEIGHT '178"
FOOTBALL_CLUB "Bayern Munich')->DISPLAY PLAYER DETAILS().

184

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

Object-Oriented Transactions

An object-oriented transaction is a transaction (defined via SE93) that may be linked
to a method of a class. When the transaction is called, the method gets executed
automatically. The transaction may be linked to a global or a local class residing in your
SAP system. The method used may be both static and instance. If the underlying method
is an instance method, the object of the class is instantiated within the internal session in
which the transaction is run.

In this section, we learn how to create an object-oriented transaction.

We will create an object-oriented transaction called ZPLAYER that will be used to
create and display instances of a local PLAYER class (defined in Chapter 1).

Before actually creating the transaction via SE93, we will carry out some prerequisite
steps. This is to ensure that a callable method exists for our transaction.

We will create a copy of the program shown in Chapter 1. We will name the copy
program ZOOTRANSACTION DEMO. In this program, we will add a class creator with

definition and implementation shown here:

class creator definition.
public section.
class-methods create display players.
endclass.

class creator implementation.
method create display players.
data : playeri type ref to player.
data : player2 type ref to player.

create object playeri

exporting
name = "John Mann'
country = 'Germany'
club = 'Bayern Munich'.

create object player2
exporting
name = 'Paul Goldberg'

185

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

country = 'Britain’

club

"Liverpool’.

player=>display list of players() .

endmethod.
endclass.

We have defined a new class called CREATOR with a static method called CREATE _
DISPLAY_PLAYERS that will be used to instantiate two instances of the local class PLAYER
using the CREATE OBJECT statements. Finally, within the method, we will call the static
method DISPLAY_LIST OF PLAYERS to display the players on the user screen.

We will modify the DISPLAY_LIST OF PLAYERS method in order to display the list in
ALV format instead of using traditional WRITE statements (for simplicity’s sake, this code
is not shown but may be easily written using the concept shown earlier in this chapter).

Since we have completed all the prerequisite steps, let’s now create the transaction.
To define an object-oriented transaction, call transaction SE93. The screen shown in
Figure 6-4 appears.

[Z Transaction code Edit Goto Utities Envionment System Help

v "B Q@ CHR HDOH

Maintain Transaction

@S EE O 0B

Transaction Code ZPLAYER

l&f Disply] ’i Change] 1D Create]

Figure 6-4. Entering the transaction code

186

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

Then click the Create button. This will display the dialog box shown in Figure 6-5.

[= Create Transaction %

Transaction code |ZPLAYER

| Transaction attributes
Short text |Player Creation Transaction

| Start object

() Program and screen (dialog transaction)

() Program and selection screen (report transaction)
:@ru'lethnd of a class (0O transaction)

() Transaction with variant (variant transaction)

(") Transaction with parameters (parameter transaction)

][]

Figure 6-5. Choosing the OO Transaction option

Enter a suitable description for the transaction. Make sure that the third option
(Method of a Class OO Transaction) is selected. Then click the Continue button.
This will take you to the screen shown in Figure 6-6.

187

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

Change Object Transaction
= P a8l K80 H

Transaction code |ZPLAYER
Package {sTMP
Transaction text Player Creation Transaction| }

100 transaction model

Class Name |CRERTOR

Method |CREATE_DISPLAY PLAYERS
vILocal in program [zooTRANSACTION_DEMO
Authorization Object [| | Values

Figure 6-6. Specifying OO transaction settings

Enter a suitable name for the transaction in the Transaction Text field. Make sure
to uncheck the OO Transaction Model checkbox. Since we will be using a local class
defined in the program, check the Local in Program checkbox. Fill in the Class Name and
Method Name fields as well (refer to Figure 6-6 again).

Once all the settings are done, save your newly created transaction.

When we execute the transaction, the output is generated, as shown in Figure 6-7.

Object Oriented Transaction Demo - Player List
& A&FF BTl =B

Player Name Country Club
John Mann Germany Bayern Munich
Paul Goldberg Britain Liverpool

Figure 6-7. Output of the OO transaction

When the transaction in ZPLAYER is executed, the static method CREATE_DISPLAY
METHOD of the CREATOR class is automatically called. The method creates two objects of
the PLAYER class by the names PLAYER1 and PLAYER2. For each object, the NAME, COUNTRY,
and CLUB attributes are assigned values via the corresponding parameters of the
constructor.

188

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

Finally, the static method DISPLAY_LIST_OF PLAYERS of the PLAYER class is called in
order to display the created players in ALV format on the screen.
The complete code listing is shown in Listing 6-1.

Listing 6-1. Complete Program Listing
report zootransaction_demo.

class player definition deferred.
types: ty player type ref to player.

class player definition.
public section.
methods write player details.
methods constructor importing name type string
country type string
club type string.
class-methods display list of players.

private section.
data name type string.
data country type string.
data club type string.

class-data: players list type standard
table of ty player.
endclass.

class player implementation .
method write player details.

skip.

write :/ 'Name :', me->name.

write :/ 'Country :', me->country.

write :/ 'Club :', me->club.
endmethod.

method constructor.
me->name = name.
me->country = country.

189

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

me->club = club.
append me to players list.
endmethod.

method display list of players.
types : begin of ty player,
name type char2o0,
country type char20,
club type char2o0,
end of ty player.
data : wa_player type ty player,
it player type standard table of ty player.
data : alv type ref to cl salv table,
functions type ref to cl salv_functions,
columns type ref to cl salv_columns table.
data : temp player type ref to player.

loop at players list into temp_player.
wa_player-name = temp_player->name.
wa_player-country = temp player->country.
wa_player-club = temp_player->club.
append wa_player to it player.

endloop.
try.
call method cl _salv_table=>factory
importing
r salv_table = alv
changing
t table = it player.

functions = alv->get functions().

functions->set all().

et adding column headers
data : column type ref to cl salv_column_table.

columns = alv->get columns().

column ?= columns->get column('NAME").
column->set _medium text('Player Name').

190

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

column->set short text('Pl. Name').
column->set _long text('Player Name').
column->set_output length('25").

column ?= columns->get column('COUNTRY').
column->set _medium text(").
column->set_short text(").
column->set _long text('Country').

column ?= columns->get column('CLUB").
column->set _medium text(").
column->set _short text(").
column->set_long text('Club").
alv->display().
catch cx_salv_msg.
endtry.
endmethod.
endclass.

class creator definition.
public section.
class-methods create display players.
endclass.

class creator implementation.
method create display players.
data : playeri type ref to player.
data : player2 type ref to player.

create object playeri
exporting
name = 'John Mann'
country = 'Germany'
club = 'Bayern Munich'.

create object player2
exporting
name = 'Paul Goldberg'

191

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

country = 'Britain’
club = 'Liverpool'.
player=>display list of players() .
endmethod.
endclass.

Refactoring Assistant

In the ABAP Objects arena, refactoring involves changing (improving) the structure of
a class (or classes) without changing its functionality. For this purpose, the Refactoring
Assistant is available in the ABAP workbench tool from the Class Builder, ABAP Editor,
and the Function Builder. The primary emphasis of this will be on refactoring classes via
transaction SE24.

The Refactoring Assistant provides the following advantages to developers:

o Itenables developers to change the structure (components) of classes
in the least possible time without any inconsistencies.

o Ithas an easy graphical tool that lets developers move components
from classes to interfaces/classes and vice versa via simply dragging
and dropping. This relieves the developer from the burden of
manually editing the classes.

Some examples of refactoring include:
e Moving components from a subclass to a superclass
e Moving components from a superclass to a subclass
e Moving components from an interface to a class
e Moving components from a class to an interface

Likewise, we may also move a class’ components to another class (provided an
association exists between them). In case of nested interfaces, we can also move
components from one interface to another.

From the display mode, the Refactoring Assistant is not available. While in the
change mode within the class (in transaction SE24), choose Utilities » Refactoring »
Refactoring Assistant.

192

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

Note Refactoring is only possible in Edit mode. The Refactoring Assistant is not
available in the Display mode of the Class Builder.

Alternately, you can also use the F7 key. This will show the Refactoring Assistant for
the given class or interface. For example, if we have the ZST6 PLAYER CLASS class defined
earlier, the Refactoring Assistant will look like Figure 6-8.

[= RefcatoringAssistant

=|alQ »8kE)(E]

Class Description
~ &) ZST6_PLAYER_CLASS {
~ &3 Attribs _
* O NAME Name
* & WEIGHT Weight
* & HEIGHT |Height
~ &3 Methods |
* @ CONSTRUCTOR Constructor
* @ DISPLAY_PLAYER_DETAILS IDispIa‘,f Player Details
~ &3 Subdasses

+ (O 75T6_FOOTBALL_PLAYER_CLASS

Figure 6-8. Refactoring Assistant

As you can see, this shows the class has three attributes—NAME, WNEIGHT, and HEIGHT.
In addition, the methods of the class and the subclass that has been derived from the
given class are also displayed. The Refactoring Assistant displays the colors according
to the visibility of the components. The private components are shown in red, public
components are in green, and components that are protected are shown in yellow.

It must also be noted that refactoring is not supported for classes that have been
enhanced. If you try to run the Refactoring Assistant on these, the following message
appears (Figure 6-9).

(¥ Refactoring is not supported for enhanced objects!

Figure 6-9. “Not supported” message

193

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

If a component with the same name already exists in the target class, an error will be

displayed and no transfer will be made.
Once we know how to switch on the Refactoring Assistant, we will see a few

examples applicable to refactoring classes.

Moving Components from a Class to its Direct Subclass

As mentioned, the Refactoring Assistant allows you to move the various attributes from
the one class (or interface) to another. In this subsection, we see how we can move
components (e.g., attributes) from a class to its subclass. Components can only be
moved to a subclass if they do not already exist there. Consider the example shown in
Listing 6-1.

Say we need to add another (private) attribute called COUNTRY to ZST6_PLAYER CLASS.
The class will then look like Figure 6-10.

[= RefcatoringAssistant sl 1
[EA(ENC]
Class Description
M= Z5T6_PLAYER_CLASS | ~
~ & Attrbs _ v
O NAME Name
+ & WEIGHT Weight
* & HEIGHT Height
* @ COUNTRY |Country
~ &3 Methods _
+ B CONSTRUCTOR Constructor
+ [@ DISPLAY_PLAYER_DETAILS Display Player Details
~ &3 Subclasses | =
+ (® Z5T6 FOOTBALL PLAYER CLASS il X

Figure 6-10. Refactoring Assistant
To move the COUNTRY attribute to the subclass ZST6_FOOTBALL _PLAYER_ CLASS, simply

drag the COUNTRY node and drop it on the subclass name node. After the change, the
class will look like Figure 6-11.

194

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

= RefcatoringAssistant

EEYIIEIENC]
Class Description
> €3 ZST6_PLAYER_CLASS
~ & Attribs
* O NAME Name
* & WEIGHT Weight
* & HEIGHT Height
~ &3 Methods
* @ CONSTRUCTOR Constructor
* @ DISPLAY_PLAYER_DETALS _Display Player Details
~ 3 subclasses |
- (D 75T6_FOOTBALL_PLAYER_CLASS |

Figure6-11. ZST6_PLAYER CLASS

A message will appear at the bottom of the Refactoring Assistant dialog, as shown in
Figure 6-12.

Attribute COUNTRY has been moved to the subclass ZST6_FOOTBALL_PLAYER CLASS

Figure 6-12. Attribute COUNTRY moved to subclass

You may use the Undo ¥2 button on the Assistant toolbar to return the class to its
original form. If you want to go ahead with the change, click the 8 Save button.

In our case, when the changes are saved, we can see that the COUNTRY attribute
does not exist in the superclass, but has been created (also as a private attribute) in the
subclass. You may now activate both classes.

Moving Components from a Class to an Implemented
Interface

Let’s consider another example. As mentioned, the components of a class may be
moved to an implementing interface. Take an example of a class Z PLAYER _CLASS

that implements an interface Z INTERFACE_DISPLAY. The class within the Refactoring
Assistant is shown in Figure 6-13.

195

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

[S RefcatoringAssistant =]

EAENCINL:

Class | Description
~ 69 7_PLAYER_CLASS '
+ &3 Interfaces
- (@ Z_INTERFACE_DISPLAY
~ &3 Attribs |
+ O NAME |Name
* O WEIGHT |Weight
+ & HEIGHT |Height
~ &3 Methods |
- @ CONSTRUCTOR |Constructor

Figure 6-13. Interface used in class

Asyou can see, the Z PLAYER_CLASS class has the NAME, WEIGHT, and HEIGHT attributes
and implements Z INTERFACE_DISPLAY. It must be noted that the components within
the Z INTERFACE_DISPLAY interface are not shown.

Suppose we need to move the HEIGHT attribute to the Z INTERFACE_DISPLAY
interface. Simply move the attribute by dragging and dropping it to the interface. A
message appears saying that the attribute has been moved, as shown in Figure 6-14.

| Attribute HEIGHT has been moved to the interface Z_INTERFACE DISPLAY

Figure 6-14. The HEIGHT attribute has moved
Save your refactoring using the Save button. You will see that the HEIGHT attribute has

been moved to the Z_ INTERFACE_DISPLAY interface. You may now go to transaction SE24
and activate the interface.

196

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

The Refactoring Assistant dialog is shown in Figure 6-15.

[RefcatoringAssistant

SN TIEENC TN)
Class

~ (&) Z_INTERFACE_DISPLAY
~ & Attribute
* @ HEIGHT |Height
~ &3 Methods |
+ @ DISPLAY_PLAYER_DETAILS |Display Method
= | Implementing Classes
+ (D Z_PLAYER_CLASS

Description

Figure 6-15. Refactoring Assistant

Since all of the components of an interface have public visibility, once the private
attribute HEIGHT of the Z PLAYER _CLASS is transferred to the class, its visibility becomes
public (denoted in green).

Within the Z_PLAYER _CLASS, this may be seen but we cannot change its visibility (see
Figure 6-16).

Class Builder: Change Class Z_PLAYER_CLASS
= P8 HP v @ S5 S0 P H E Lol Defintions/Implementations

Class/Interface |z_pLAYER CLASS | Implemented / Active

Properties | Interfaces | Friends ~ Attrbutes |~ Methods | Events | Types | Alases |

e Ty —

(B BE (%0 & s CFker
i_Attrbube _|Level Visbiity Read-Only | Typing Associated Type
[_INTEREACE_DISPLAY-HEIGET Jnstance Attribute Publc 0O fTywe I
[NRME Instance Attribute Protected [] Type SIRING
[WEIGHT Instance Attribute Protected [Twpe I [

Figure 6-16. HEIGHT attribute

After activating the interface, when you try to activate the Z PLAYER _CLASS class,
the class will give a syntax error. This is because the constructor addresses the HEIGHT
attribute using ME- >HEIGHT, as shown here:

method CONSTRUCTOR.
me->name = name.
me->height = height. ""ERROR
me->weight = weight.
endmethod.
197

CHAPTER 6 MORE TOPICS IN OBJECT-ORIENTED ABAP
The constructor must be changed, as shown here:

method CONSTRUCTOR.
me->name = name.
Z INTERFACE_DISPLAY~HEICHT = height.
me->weight = weight.

endmethod.

Alternatively, you may also define an alias based on the HEIGHT using the ALIAS tab
of the Z_PLAYER_CLASS.
Once the change is made, you may activate the class.

Moving Components from a Class to an Associated Class

Another scenario in which the Refactoring Assistant may be used is when associations
exist between classes. This means that within a class another class has been referenced
as an attribute using TYPE REF TO.

Consider the example where we have an empty class called ZST_ASSOC_CLASS that
has been referenced in an attribute residing in the class. Once this association exists, the
associated class may then be seen via the Refactoring Assistant, as shown in Figure 6-17.

[S RefcatoringAssistant

Class Description
~ 3 Z5T6_PLAYER_CLASS
~ <3 Associations
- {37 ZST_ASSOC_CLASS i
~ & Attribs
* O NAME Name
+ & WEIGHT Weight
* @ ASSOCIATED_CLASS Assocated Class
+ & HEIGHT Height
+ @ EXP_PLAYER_NAME
* &3 Methods
+ @ CONSTRUCTOR Constructor
+ @ DISPLAY_PLAYER_DETAILS Display Player Details
- @ GET_MOST_EXPENSIVE_PLAYER |Get Most Expensive Player
~ &3 Subclasses
- (@ 75T6_FOOTBALL_PLAYER_CLASS

Figure 6-17. ZST6_PLAYER_CLASS class in the Refactoring Assistant

198

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

Suppose in our ZST6_PLAYER_CLASS class, we have the EXP_PLAYER_NAME (attribute)
and GET_MOST_EXPENSIVE (method) components. You may now drag and drop these two
components to the associated class.

Once the transfer is done successfully, a message appears, as shown in Figure 6-18.

Method GET_MOST_EXPENSIVE FLAYER has been moved to the class ZSI_ASSCC_CLASS
Attribute EXP_PLAYER NAME has been moved to the class ZST_ASS50C_CLASS

Figure 6-18. Method and attributes transferred

You may then adjust the code within the ZST6_PLAYER_CLASS class in order to
address the components of the associated class.

Enhancement of Classes

SAP allows you to define enhancement (exits) for methods. This allows you to enhance
the behavior of standard methods. In addition, using the enhancement concept, you
may add new methods to the original class and call them in the defined exits. There are
three possibilities, as listed here:

o PreExit. This method is called before the method in question
is executed. Any code that you want to be executed before the
actual method must be placed here. The code run may be used,
for example, to supply additional data to the original method or to

display an information message.

o PostExit. This method is executed after execution of the method
under consideration. If there is any activity that you want to happen
after, it should be placed within the PostExit method. Any activity that
you want to happen after execution of the method must be placed
here.

o Overwrite-Exit. This is used for overwriting (replacing) the original
method. Once the Overwrite-Exit is defined, any program that calls
the original method executes the overwrite method code and not the
original method. For the Overwrite-Exit to be running without any
errors, make sure that the PostExit and PreExit methods do not exist.

199

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

These can be used for enhancing methods residing in the standard SAP classes.
However, for the sake of this illustration, we will enhance the global class ZST6_PLAYER _
CLASS that we created earlier.

Now let’s look at how we can modify the behavior of an already-defined global class.
Two examples will be shown. Before we do that, we will first see the actual (original)
output of the method. A simple block of code that uses the DISPLAY PLAYER DETAILS
method is shown here:

NEW ZST6 FOOTBALL PLAYER CLASS(
NAME = 'Oliver Kahn'
WEIGHT ‘88"
HEIGHT '178'
FOOTBALL_CLUB 'Bayern Munich')->DISPLAY PLAYER DETAILS().

The original output of the method (as in the code) is shown in Figure 6-19.

Player Name: Oliver Kahn

Height . 178
Weight : 88
Club Name : Bayern Munich

Figure 6-19. Original method output

Example 1. PreExit and PostExit Methods

The first example will be based on PreExit and PostExit methods for the DISPLAY _
PLAYER_DETAILS method of the ZST6_FOOTBALL_PLAYER CLASS. We will now use both of
these exits to change the output of the DISPLAY_PLAYER DETAILS method.

Call transaction SE24, enter the name of the class that is to be enhanced (in our case
ZST6_PLAYER_CLASS) in the field provided, and click the Display button. Initially, the
enhancement menu options will be disabled, as shown in Figure 6-20.

200

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

& [| Choose 2 @ CHE HDHOHD @ @
| Eind/Replace Ctri+F

Cfassi Insert line '76_FOOTBALL_PLAYER CLASS

e = sa &] ¥ [| & Lol Definitions/Implementations
Class/Inter YER_CLASS Implemented / Active

Prope ttributes Methods | Events . Types | Alases |

[o Paral wodfication operations v | BE (%o CENER (Fiter
Method | Enhancement Operations Insert Pre-Method n

DISPLAY | Cancel F12 yer Details
CONSTRUCTOR = i TaTICE e T CTOR

Figure 6-20. Enhancement Operations menu

From the screen that appears, click the @ button from the application toolbar. This
will display the dialog box shown in Figure 6-21.

[= Create Enhancement Implementation

Enhancement Implementation Z_PLAYER

Short Text Player Enhancement |
= =]

Composite Enhancement Implementation (m] @

Figure 6-21. Enhancement implementation creation

Enter the name of the enhancement and the short text in the fields provided and
then click the Continue button.

This will enable the enhancement menu options. In addition, on the Methods tab
for each method, three columns (PreExit, PostExit, and Overwrite-Exit) will also be
displayed. See Figure 6-22.

201

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

Description |PreExit PostExit Overwrite-Exit
Display Player Details
CONSTRUCTOR

Figure 6-22. Enhancement related columns

Now let’s define a PreExit method PreExit (i.e., the block of code called executed
before the method gets executed) for our DISPLAY PLAYER DETAILS method.

To do so, keep the cursor on the relevant method and choose Edit » Enhancement
Operations » Insert Pre-Method. See Figure 6-23.

Edit | Goto Utiities Environment System Help

Choose F2 E@ CHE DDOD
Find/Replace Ctri+F

i Insertlne Ctrl+F10 tZ PLAYER

Delete Row Ctrl+F9 S @ ¥ H | @ Lol Definitions
1 Cn JER_CLASS Implemented / Active(
{ c tributes . Methods | Events |~

eate subclass
*_- Modification operations 4 1 [@J@ mm[ﬁﬂ rl @m [_
Enhancement Operations » Insert Pre-Method

4 Cancel F12 Insert Post-Method

Crox INSTENCTTFUDL. [ngert Qverwrite-Methode
Delete Pre-Method

Delete Post-Method
Delete Overwrite-Methode

Figure 6-23. Enhancement Operations menu path

202

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

This will create a PreExit method. A button will now appear for the respective
method under the column PreExit method, as shown in Figure 6-24.

Class/Interface [ZST6_FOOTBALL_PLAYER CLASS | Implemented / Active(Enh. revised)
Properties | Interfaces | Friends | Attributes /(Methods | Events | Types | Alases |

_Iu Parameter"ﬁl Exception I[EI [@@ @E} Ig]ﬁ| E] ME @@ _Fitter

Method ‘Description PreExit PostExit Overwrite-Exit Enhancement
r 3 i

DISPLAY_PLAYER DETAILS Display Player Detais

CONSTRUCTIOR CONSTRUCTOR

Figure 6-24. PreExit column shown with a new button

Click the P button to go to the source code editor, as shown in Figure 6-25.

Include |z_PLAYER .| Active
2'.; = METHCD IPR_Z_PLAYER*'DISE'LAY_E'LAYER_DE'IAILS.
23;_ *" Declaration of PRE-method, do not insert any comments here please
24; | =
25 *"methods DISPLAY PLAYER DETAILS
26 b A o
2"';
28 [ENDMETHOD. _—
29 LENDCLASS. e

Figure 6-25. PreExit method editor

As you can see when the PreExit method is created, an interface by the name IPR
followed by the enhancement we create (Z_PLAYER) has been generated. Within this
exists the DISPLAY PLAYER DETAILS method. For our example, we will write simple code
to add the heading Begin of Player Details displayed in red. The code is shown as
follows:

method ipr z player~display player details.

*" Declaration of PRE-method, do not insert any comments here please!
*ll

*"methods DISPLAY PLAYER DETAILS

203

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

skip.

format color col negative on.

write :/ 'Begin of Player Details'.
format color col negative off.
skip.

endmethod.

Once this is done, we will activate the class.

When the program that calls the DISPLAY_PLAYER_DETAILS original method of the
ZST6_FOOTBALL_PLAYER_CLASS is executed, the PreExit method is automatically invoked.
The output of the method call is displayed as shown in Figure 6-26.

Begin of Player Details
Player Name: Oliver Kahn
Height : 178

Weight : 88

Club Name : Bayern Munich

Figure 6-26. Output of method with PreExit method

Note the difference in output between the one shown in Figure 6-20 and this one
(Figure 6-26).

Now let’s define the PostExit method for our DISPLAY_PLAYER_DETAILS method. This
will be executed after the original method has executed. We will follow the similar steps
shown earlier. In this case, however, we will use Enhancement Operations » Insert
Post-Exit. Simply place the cursor on the method and then choose the given menu path.
This will now enable thel ™ | button in the PostExit column. We may then click the
button to go to the editor and write the code for the PostExit method.

method ipo z player~display player details.

*" Declaration of POST-method, do not insert any comments here please!
*"

*"methods DISPLAY PLAYER DETAILS .

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

skip.

format color COL_POSITIVE on.
write :/ 'End of Player Details'.
format color COL_POSITIVE off.
skip.

endmethod.
ENDCLASS.

In this case, we see that the PostExit is a method residing in the interface having the
name beginning with IPO followed by our enhancement option Z_PLAYER. Enter the
code that you like to run after the DISPLAY_PLAYER DETAILS method has executed. We
will insert a single line of code to print the message End of player Details. Save and
activate your class.

Once the original method is executed, the final output (of the PreExit, Original
Method, and the PostExit) is shown in Figure 6-27.

Begin of Player Details
Player Name: Oliver Kahn
Height : 178

Weight : 88

Club Name : Bayern Munich

End of Player Details
Figure 6-27. New output of method execution
After the PreExit method, the DISPLAY _METHOD DETAILS original method is executed.

After completion of DISPLAY METHOD DETAILS, the PostExit method is called. Figure 6-28
shows the sequence of execution of the three methods in our example.

205

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

1. Pre- Exit Method

2. Actual Method

3. Post-Exit Method

Figure 6-28. Method execution sequence

Example 2. Overwrite Method

We will now use the Overwrite-Exit (only) to change the output of the DISPLAY_PLAYER _
DETAILS method. The final output will be the same as the one shown earlier, achieved via
the Pre- and PostExit methods.

As a prerequisite of the step required in creating the overwrite method, we need to
delete the Pre- and PostExit methods, if they exist. Make sure that enhancement mode
is on. Then choose Edit » Enhancement Operations » Delete PreExit and Edit »
Enhancement Operations » Delete PostExit, respectively.

Before creating the Overwrite-Exit method, we will define, via enhancement
implementation, a new method in the class by the name DISPLAY PLAYER DETAILS NEW
(see Figure 6-29). It will display the player details in the new format. We will then call this
method in Overwrite-Exit.

Class/Interface |25T6_FOOTBALL_PLAYER CLASS | Implemented / Active(Enh. active)
Properties | Interfaces ¢ Friends | Attrbutes /(Methods | Events | Types | Alases |

[0 panmeter B _excerton [BB BE XEF & BB @5H e

Method Level Visbility M... Description

DISPLAY PLAYER DETAILS Instance Method Public Display Player Details

CONSTRUCICR Instance Method Public dfe CONSTRUCTOR
DISPLAY PLAYER DETAILS_NEW Instance Method Public Display Player Details { for Overwrite Method)

Figure 6-29. The DISPLAY_PLAYER_DETAILS NEW method

The code of the new method is shown in Figure 6-30.

206

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

Class Builder: Enhancement Z_PLAYER Change
*f =5 BEHE v B & B0 HE @ @ patten Pretty Printer

Method |DISPLAY PLAYER DETAILS NEW Active

1. Emethed display player details new .

2} skip.

q format color col negative on.

4! write :/ 'Begin of Player Details'.

3 format color col negative off.

6: skip.

T write :/ 'Player Name: ',15 me->name ,
8 ! Height H ',15 me->height
9 lefr-justified ,
104 / 'Weight :',15 me->weight

_- left-justified.

12 write:/ 'Club Name : 15

13; me->football club.

15} skip.

16 format color col positive on.

17 write :/ 'End of Player Details'.

18; format color col positive off.

19! skip.
20
21 | endmethod.

Figure 6-30. Code of the DISPLAY_PLAYER DETAILS NEW method

In addition to the main block of player details printing, we added a header and footer
in red and green, respectively. Save and activate your method.

Next, we create the overwrite method. To create the overwrite method, we use Edit »
Enhancement Operations » Overwrite-Exit. This will enable the [™ Ibutton in the
Overwrite column.

We thenuse thel ™ | button to go to the Overwrite-Exit editor. We enter the
following code there.

method iow z player~display player details.

*" Declaration of Overwrite-method, do not insert any comments here please!
*ll

*"methods DISPLAY PLAYER DETAILS .

core_object->display player details new().
endmethod.

207

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

As you will see, the method name is the same and the interface begins with OVR
(and then Z_PLAYER). This code will be executed in place of the actual method code.

In order to call the method residing in the same class (from Overwrite-Exit), use
the CORE_OBJECT instead of the reference variable me. This provides a link to the current
object in question. You cannot use the me variable in Overwrite-Exit.

Once the method is activated and the entire class activated, all programs that refer to
the DISPLAY PLAYER DETAILS original method will now be calling the Overwrite-Exit and
the DISPLAY_PLAYER DETAILS NEW method. The output of this is shown in Figure 6-31.

Player Name: Oliver Kahn

Height : 178
Weight : B8
Club Name : Bayern Munich

End of Player Details

Figure 6-31. Final overwrite output

Statements/Constructs Not Allowed in
Object-Oriented ABAP

Code within ABAP Objects has a number of restrictions. Many statements (or variants of
statements), for example, may not be allowed in the method of classes. These may not
give any errors when used outside ABAP Objects.

In this final section of this chapter, I look into a few statements (or constructs)
that are not allowed in the context of ABAP Objects. These constructs will return a
syntax error when used in local and global classes. They are explained in the following
subsections.

Naming Variables

Within ABAP Objects, variable names can only contain letters ranging from A to Z and
numbers 0 to 9, as well as an underscore (-). In addition, variable names cannot begin
with a number (such as 1_abc).

208

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

Any attempt to break these guidelines will raise a syntax error. A typical example of
this is shown here:

data : 1 _abc(1) type c .
"" not allowed

The following is not permissible since FIELD-1 contains a dash, as shown here:

data : field-1 type i .
"" not allowed

Using Logical Operators

In ABAP Obijects, using logical operators ><, =<, and => is prohibited. This includes use of
IF statements as well as the WHERE clause used in open SQL statements, and the WHERE or
LOOP statements executed on internal tables.

if name >< 'Adrian'. "" not allowed

endif.

If you try to use any of these, the code will give the syntax error shown in Figure 6-32.

Syntax error

Description

Program Z_OO_SYNTAX_ERROR_DEMO

Instead of "=>", "=<", and "> <", use ">=", "<=", and "<>".

Figure 6-32. Syntax error

Instead of the operators mentioned, use <>, <=, and >= (or their equivalents NE, LE,
and GE, respectively).

209

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

CASE Statement Usage

A CASE. .ENDCASE block should be semantically equivalent to an IF..ELSEIF

control structure. No statement (or statements) must be placed before the first WHEN in a
CASE... ENDCASE control structure. In ABAP Objects, this is not permitted. Consider the
following block of code:

CASE INT.
A = 2. " statement gives error
WHEN 1.
WRITE INT.

WHEN OTHERS.
WRITE 'OTHERS'.
ENDCASE.

Using ON CHANGE OF

The ON CHANGE OF statement is not allowed within ABAP Objects. This will give a syntax
error when used in the code of a class method. For example, consider the following:

METHOD MY_PLAYERS.
LOOP AT.
ON CHANGE OF. """ will not compile
ENDON
ENDLOOP.
ENDMETHOD.

Instead of the ON CHANGE OF construct, use temporary variables that store values and
then check for the change in their values using an IF statement.

Restrictions to Using the TYPES Statement

While defining types within a method via the TYPES statement, you must specify the type
of character types. For example, the following is unacceptable:

TYPES TY C. """ error

210

CHAPTER 6 MORE TOPICS IN OBJECT-ORIENTED ABAP
The correct form of this is shown here:
TYPES: TY_C TYPE c length 1.

In addition, the length of TYPES based on the elementary types P, N, and X must also
be specified.

In the case of P types, specifying the number of decimal places is also important. For
example, the following code will give an error:

TYPES TY_2 TYPE p length 8. ""Error
The correct form is shown here:
TYPES TY_2 TYPE p length 8 DECIMALS oO.

It must be also noted that for these data types—T(Time), D(Date), I(Integer),
and F(Floating)—length may not be specified. This is because these data types have
predefined lengths that cannot be changed.

Restrictions to Using DATA Declarations and Constants

Within ABAP Obijects, it is not possible to specify a length for the definition of variables,
or constants that are based on the elementary data types T(Time), D(Date), I(Integer), or
F(Floating). These data types have predefined lengths that cannot be changed. Consider
the following examples:

DATA DATE1(10) TYPE d. "" syntax error
DATA INT1(10) TYPE i. "" syntax error

Both these statements will issue syntax errors.

Untyped Field-Symbols

In an OO context, the TYPE addition must always be used while declaring FIELD-
SYMBOLS. If the type is not specified, at least the TYPE ANY addition must be used. For
example, the following declaration is not allowed and will result in a syntax error:

FIELD-SYMBOLS <field1>. """not allowed

211

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

Internal Table-Related Statements

As with other syntax issues, a number of things must be kept in mind while programing
with internal tables in ABAP Objects. Let’s review them them one by one.

One major restriction is that no code must be written that creates a header line
internal table with a header line. Internal tables with headers are not supported within
the OO context. Consider for example the following block of code:

data : begin of itab occurs 0,
"" not allowed
field 1,

end of itab.

This code will give a syntax error. In addition, you are not allowed to read an internal
table without a work area with a READ TABLE statement. The following form is not
permissible:

READ TABLE MYITAB.

Looping on an internal table using LOOP AT ITAB (without a work area) is not
allowed. This is shown here:

loop at itab.
endloop.

In addition, we may not even use the CLEAR ITAB statement within a LOOP as
shown here:

LOOP AT ITAB INTO WA ITAB.
CLEAR ITAB. """ syntax error
ENDLOOP.

Some other constructs that are not allowed while programming with internal tables
in object-oriented context are shown here:

INSERT TABLE itab.
COLLECT itab.

MODIFY TABLE itab ...
MODIFY itab ... WHERE ...

212

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

Database Table-Related Statements

The database-related statements also have some restrictions within the realm of ABAP
Objects. Let’s look at a few examples.

The TABLES statement may not be used in a method, for example. This may result in
a syntax error, as shown in the following line of code:

tables: 1fa1 .

While using SELECT statements, it is absolutely mandatory to use an INTO clause.
(Even when using Dynamic Open SQL, the INTO clause must never be omitted.)
Consider the following block of code:

SELECT * FROM LFA1.""" NOT ALLOWED
ENDSELECT.

In ABAP Obijects, the following statements are not allowed and will result in an

error message:
SELECT ... FROM DBTABLENAME ...
INSERT DBTABLENAME.
UPDATE DBTABLENAME.
DELETE DBTABLENAME.
A few correct and acceptable form of statements are shown here:

DATA MYWA TYPE DBTABLENAME.
SELECT ... FROM DBTABLENAME INTO MYWA.

INSERT DBTABLENAME FROM MYWA.

INSERT INTO DBTABLENAME VALUES MYWA.

Untyped Method Parameters

Within ABAP Objects, the TYPE addition is necessary for all parameters of methods. The
following form of definition is not allowed:

METHODS MYMETHOD IMPORTING paramil
EXPORTING param2. ""ERROR

213

CHAPTER6 MORE TOPICS IN OBJECT-ORIENTED ABAP

This is not acceptable and will result in a syntax error. An acceptable form is
shown here:

METHODS meth IMPORTING p1 TYPE I
EXPORTING p2 TYPE I.

If you are not sure of the type to which the parameters belong, you may keep them as
generic. In this case, TYPE ANY must be specified. An acceptable form is shown here:

METHODS mymethod IMPORTING p1 TYPE ANY EXPORTING p2 TYPE ANY.

In addition, while specifying the types of formal parameters of a method, the
STRUCTURE addition should not be used. The following statement, for example, will cause
a syntax error:

METHODS mymethod
IMPORTING param1l STRUCTURE structi.

An acceptable form of this is shown here:

METHODS mymethod
IMPORTING paraml TYPE structi.

Summary

In this chapter, we discussed the NEW operator, which is used to create objects, and the
ALV object model, which is used to create reports. We also covered various ALV classes
and methods along with a practical code demo. Then, we discussed how method
chaining is possible and enables you to write compact code. An example of ALV-related
code written in conjunction with method chaining was discussed. We also covered
object-oriented transactions, followed by the Refactoring Assistant tool in the Class
Builder. A detailed discussion on the various ways a class can be enhanced was included.
Finally, we went over a number of constructs and statements in detail that are not
allowed in the ABAP Objects arena.

214

CHAPTER 7

ABAP Unit Test-Driven
Development

An important topic that remains to be discussed is testing the methods and code that we
write. SAP provides the unit test framework embedded in ABAP. In this chapter, we learn
in detail about the following topics:

o Unit testing advantages

e Defining unit classes

o Exception handling in unit testing
e Using the unit test browser

We will start with a brief explanation of testing and its various types. We will then see
what unit testing and test-driven development are. We will also cover the advantages of
unit testing. We will then cover creation of the unit test method and classes in detail and
the relevant coding and class and methods involved. Finally, we will see a full-fledged
programming demo.

We cover how to execute the unit test and check results with and without the Code
Inspector. We end the chapter with a note on the unit test browser that is available for
searching and displaying unit test classes residing in the ABAP system.

Testing Need and Phases

Before going into the details of unit testing, let’s first see why the need for testing arises in
program development.

215
© Rehan Zaidi 2019

R. Zaidi, SAP ABAP Objects, https://doi.org/10.1007/978-1-4842-4964-2_7

CHAPTER 7 ABAP UNIT TEST-DRIVEN DEVELOPMENT

Within a project’s development lifecycle, there may be a number of stages and

phases. There is a need to test programs or products in both the development and

integration stages.

Testing products is a necessary activity and has a number of advantages:

e There is less chance of bugs and problems arising in the product.
Testing allows us to make a more accurate and better quality product
for our customers.

e Good testing done in the early stages is more cost effective than later
testing.

o Testing improves customers’ confidence in the products.

Before moving forward, let’s discuss the various levels of testing. There are a number

of levels in software testing:

216

1. Unit testing. This is the initial testing level. Basic (individual)
units of codes are checked in order to ensure they work as
required. Each code portion is subjected to a set of test scenarios
or cases. Unit testing may be done manually or be automated.
However, developers usually perform automated tests.

2. Integration component testing. As the name indicates, this
checks the integration testing of different units (or modules) that
have been unit tested. These are grouped in a number of ways to
confirm the correctness of integration and communication.

3. System/Ul testing. This emphasizes the UI (User Interface) and
can be done manually or via automated tools. It confirms the
characteristics and state of the user interface elements. This may
be done by sets of test cases.

4. Acceptance testing. This is based on the Quality Assurance (QA)
approach and determines which features of an application work
(or do not work). The team has the option to discover and test the
applications(s) in real-time. Usually, test cases are not made in
advance. While testing, the team decides which application is next
to be tested and how many days are to be given to a feature during
the testing phase.

CHAPTER 7 ABAP UNIT TEST-DRIVEN DEVELOPMENT

Note Other than unit testing, the internal details of an application are visible as a
“black box” to the test team during the testing stage.

Basics of ABAP Unit Test Driven Development

The unit test ABAP unit framework provides an automated mechanism within the
ABAP programming language for carrying out test driven development. In test-based
development, we first write a code block carrying the production code. We then write
tests to check the correctness, by comparing the Expected Value and the Actual value
returned. Finally, we refactor code so that it passes the test. All this may occur in cycles,
i.e. our code may go through many cycles and iterations, such as test writing, changing
production code, and then test execution (see Figure 7-1).

ESN

Refactoring Writing a
test

Pass test <:I

Figure 7-1. Test driven development cycle

While writing the test code, we must keep in mind several aspects pertaining to the
requirements, code test, and production methods. These aspects include definition of
the attributes and the method parameters.

As mentioned, there are two separate methods—test methods and production
methods. The production methods are also called the methods under test, whereas the

class where the production code resides is known as the class under test.

217

http://zevolving.com/2013/04/abap-unit-test-driven-development-basics/

CHAPTER 7 ABAP UNIT TEST-DRIVEN DEVELOPMENT

Every time we want to check a small unit and its functioning is working as normal,
we use unit testing. A unit is simply termed the smallest testable part of an application.
This can be a class or a method, which can be separated from the other code while being
checked if it functions correctly.

You should also consider and manually compute the expected result corresponding
to the respective inputs. For example, if you have a method for doubling a number,
we can first expected value (2 x X). We can then compare this with the actual value
computed by the program code.

We specify the Risk Level and Duration test properties while designing the test.

Risk level, as the name indicates, is the risk of the test.

While running the tests, SAP checks the risk level with the level that’s predefined
within the client setting. If our test has a bigger risk level, the ABAP framework will not
run the test in question. For risk levels, one of the three following values may be set:

o Harmless. As the name indicates, executing this test will not affect
a process and will not make any changes to the database. This is the
default.

o Dangerous/alarming. Such tests change data in the database.

e Critical. These are the critical tests and changes that customize the
database/persistent data.

As far as Duration goes, the ABAP unit framework does not run tests with a higher
duration than that specified in the client level configuration in the SAUNIT_CLIENT_SETUP
transaction.

The Duration may have the following values:

o Short. Refers to tests that run very quickly (default setting at the
client level). Typically, this is less than 60 seconds.

e Medium. Refers to tests running slightly longer than short values.
These lie in the range of 60 to 600 seconds.

o Long. These tests take a considerable amount of time to execute;
more than 600 seconds.

218

CHAPTER 7 ABAP UNIT TEST-DRIVEN DEVELOPMENT
The unit test class definition has the following form.

CLASS Abap Unit Testclass DEFINITION FOR TESTING
"#AU Duration Short
"#AU Risk Level Harmless

As of Release 702 (Release 7.0 Enhancement Pack 2), the unit class definition has the
following form:

CLASS Abap Unit_Testclass DEFINITION FOR TESTING
DURATION SHORT
RISK LEVEL HARMLESS

Unit Test Benefits

Unit tests have a number of advantages. Unit tests:

e Are very fast in execution. Many thousands of tests can be executed
per second.

o Emphasize small portions of the product.
e Are written separately from the production code.

Unit tests cover 75 to 85 percent of the code. They are fast and accurate. Unit tests
help point to the exact location where the code is buggy. Consistent unit test repetition
helps make an application more stable and perform better.

In contrast to the other tests mentioned earlier, when using unit testing you need
to have a good knowledge of system architecture. Unit testing is referred to gray box (or
white box) testing and are defined by the ABAP developer.

Like other programming languages, ABAP has a unit testing framework. Within the
framework, the processes needed for testing are embedded into the IDE. This allows
developers to run unit tests in each compilation of the test program.

Unit tests do not interact with external coding or external systems. They are executed
in a secluded environment. Unit tests are typically run on test methods, which reside in
test classes.

219

CHAPTER 7 ABAP UNIT TEST-DRIVEN DEVELOPMENT

As a developer you should make sure that you program in a manner that makes it fast
and easy for you to create unit tests.

o Unit testing is applicable in situations where carrying out tests serves
a definite purpose or meaning. Usually, the business layer is good for
executing tests and is where unit testing mainly focuses.

¢ You must code automated tests as well as testable code. After
executing the unit tests, you can amend the source code in order to
fix bugs and bring the code to a testable state.

¢ You have to ensure that when a correction is done in one unit that no
other code units are affected.

A test method can have a number of input (importing) parameters and usually a
single output parameter. You can use transactions SE38 and SE80 to create an ABAP unit.
You also have another option for doing unit testing in the ABAP Unit Framework, which
is via the Eclipse IDE. This is contained in the ABAP Development Tools (ADT), so you
need to only install the respective add-on in Eclipse. We discuss unit test using Eclipse in
Chapter 8.

Within the “then” portion of the test method, the resulting value is checked by
comparing the expected value with the actual value the method under test returns.

If the two results differ, the ABAP Test Framework issues an error. Say we have a class
called CL_AUNIT_ASSERT, which provides a number of utility methods. For comparison
purposes, we use the ASSERT _EQUALS method of the CL_AUNIT ASSERT class.

The main challenge is to figure out the cases to cover during testing. Unit tests are
made by the developer, since the developer who coded the product is the best person to
know how the functionality can be tested. When we do ample testing of the small parts
of our product, there will be less time and effort needed in debugging and fixing issues
later on.

Demo Example

As mentioned earlier, the ABAP Unit Framework allows developers to test program
coding at the unit level, i.e., check each unit code independently and separately without
worrying about the entire solution. Checking these smaller units ensures that when
they are all put together into a bigger solution, they will function without error. This unit
framework allows us to use what is called the test-driven development approach.

220

CHAPTER 7 ABAP UNIT TEST-DRIVEN DEVELOPMENT

Now let’s look at a simple example of a requirement in which we will use the unit test
framework. Consider this simple code:

class my_class definition .
public section.
methods square importing inti type i
returning value(sq_in) type i .
endclass.

class my class implementation.
method square.
sq_in = int1 * int1.
endmethod.
endclass.

Our code has a class called my_class and has a method called SQUARE. The purpose
of the method is to square the number it imports and return the square as a parameter.
The square method is called the production method, whereas my _class is referred to as
the production class in the Unit Test Framework.

We will now code a class to act as a test class. We call this mytestclass. In order to
code it, we need to add FOR TESTING to the method definition. Likewise, we add the
keyword FOR TESTING to our CHECK_SQUARE method to designate it as a test method.
These additions separate the class from the productive code.

We also add pseudo comments #AU Risk_Level and #AU Duration:

CLASS mytestclass DEFINITION FOR TESTING
Risk Level Harmless
Duration Short

PUBLIC SECTION.
METHODS check square FOR TESTING.
ENDCLASS.

Note Before ABAP 7.02, pseudo comments allowed the framework to learn about
the ABAP unit class. From 7.02 onward, we use addition RISK LEVEL and
DURATION in the class definition.

221

CHAPTER 7 ABAP UNIT TEST-DRIVEN DEVELOPMENT

can

the

Recall that the risk level can be critical, dangerous, or harmless and the duration
be short, medium, and long.

Now that we have our test class ready, let’s implement the test method. For testing
code, we need to:

1. Create an object of my_class.

2. Call the SQUARE method of this class. A value will be supplied to
the method and the result will be calculated in the method and
returned (if we supplied 10, we would expect a squared value of
100 to be returned).

3. Compare the actual value returned from the square method to our
expected result.

If these two match, no error is present.

On the other hand, if actual and expected result do not match, we
need to inform the ABAP Unit Framework of this erroneous state.

4. For this, we use methods of the standard class CL_AUNIT_ASSERT.
In our example we will use the ASSERT_EQUALS method of this class.

All this is shown in the following code:

CLASS mytestclass IMPLEMENTATION.
METHOD check square .

DATA: obj TYPE REF TO my class.
DATA: square TYPE 1i.

CREATE OBJECT obj.
square = obj->square(10).

cl aunit_assert=>assert equals(

EXP = 100
act = square
msg = 'Wrong Result'
).
ENDMETHOD.
ENDCLASS.

222

CHAPTER 7 ABAP UNIT TEST-DRIVEN DEVELOPMENT

As you can see, we called the square method. We then call the ASSERT_EQUALS
method. This method has three parameters—expected (EXP), actual (AC), and message
(MSG). We supply the expected value 100 to the method, the actual value of the square
computed by the test method square, and the message to be displayed if the values do
not match.

Note It is not mandatory for a test method to have this pattern. We show this
style for consistency and better understanding

The complete code for our requirements is as follows.

class my class definition .
public section.
methods square importing int1 type i
returning value(sq_in) type i .
endclass.

class my class implementation.
method square.
sq_in = int1 * int1.
endmethod.
endclass.

CLASS mytestclass DEFINITION FOR TESTING
Risk Level Harmless
Duration Short

PUBLIC SECTION.
METHODS check square FOR TESTING.
ENDCLASS.

CLASS mytestclass IMPLEMENTATION.
METHOD check square .
DATA: obj TYPE REF TO my class.
DATA: square TYPE i.

CREATE OBJECT obj.

223

CHAPTER 7 ABAP UNIT TEST-DRIVEN DEVELOPMENT
square = obj->square(10).

cl aunit_assert=>assert equals(

EXP = 100
act = square
msg = 'Wrong Result'
).
ENDMETHOD.

ENDCLASS.

Executing a Unit Test

Now that the code is complete, we will execute the unit test and check the results.
Before going into details, it is a good idea to look at the menu options within the

ABAP transactions (class editor, program editor, and function module editor) that

pertain to unit tests. Transactions SE37, SE80, and SE24 have separate menu options for

executing unit tests:
e For Class Builder, use Class » Unit Test.
e For programs using SE38, use Program » Execute » Unit Tests.

e For the Function Module (transaction SE37), use Function Module »
Test » Unit Test.

For our code example shown in the last section, we would use the relevant menu
option Program » Execute » Unit Tests. In our case, the expected and actual results are
the same, so no error messages appear. Only one message will be displayed on the status

bar, as shown in Figure 7-2.

@ Processed: 1 programs, 1 test classes, 1 test methods

Figure 7-2. Status message

224

CHAPTER 7 ABAP UNIT TEST-DRIVEN DEVELOPMENT

You may also choose Execute » Unit Tests With » Coverage in order to view the
details. This is shown in Figure 7-3.

‘DN Edit Goto Utiities Environment System Help
Other Object... Shift+FS

! Display <-> Change Ctrl+F1 © 0 = H .‘+ In 'fj
¢ Active <-> Inactive Shift+Fs T Z8TIQ TT
(oo M Ege 22 0 @@ reen
Check >
3 Save Ctrl+S Active
1 Generate = sguare
Activate Ctrl+F3 = 'Wrong Result!
Execute » Direct Processing F8
Print Ctrl+P Debuoging
Exit Shift+F3 Unit Tests Ctrl+Shift+F 10
-;S e e Unit Tests With » Coverage

Figure 7-3. Unit test menu option

This will display results, as shown in Figure 7-4.

ABAP Unit: Result Display

ABAP Unit Results Caverage Metrics

i'ﬁ}. Priority |
Task/Program/Class/Method Status Falled assertion Exception emror Runtime abortion Warning
v " Test task: STUDENTD19201204 10200519 [] 0 0 i} o}
~¥ () Z5T19_TT O i} 0 i} 0
v @ MYTESTCLASS O 0] 0]
* &2 CHECK_SQUARE (< 0.015) [| 0 0 0 0

Figure 7-4. Coverage

Now let’s complicate things a little. As you see in our code, we have correctly used
the square function. I will now purposely create an error by using addition instead of
multiplication:

class my class implementation.
method square.
sq_in = int1 + int1. ""
endmethod.

endclass.

wrong should be * and not +

225

CHAPTER 7 ABAP UNIT TEST-DRIVEN DEVELOPMENT

If we rerun the unit test result, we will now get messages denoting something went
wrong. These error messages are shown in Figure 7-5.

ABAP Unit: Result Display

3 Pricrity |
TaskfProgram/ClassfMethod Status Failed assertion Exception error Runtime abortion Warning
~ [Test task: STUDENT01920190410201023 [] 1 0 0 0]
~ () Z8T19_TT @] 1 0] 0
~ @ MYTESTCLASS O 1 0 0]
+ &7 (HECK_SQUARE (< 0.015) @] 1 0 0 0

Figure 7-5. Unit result display

The task is shown in the form of a tree showing the program name, class name, and
method name. We also see the test class and method in which the problem has occurred.
Here, we are also shown the number of failed assertion(s).

On the right-bottom part of screen (see Figure 7-6), we can see the actual and
expected values shown as 20 and 100, respectively. This clearly shows the developer
that the production method implementation is not correct. We also can display the line
number where the error occurred. By simply double-clicking the line number, we can go
to the exact line within the source code.

We also see the actual error message. Note the text Wrong Result was specified by us
via the ASSERT_EQUALS method call (see Figure 7-6).

Failures and Messages

Prio Message
B Citical Assertion Error: 'Wrong Result’

< >

v B Analysis
¥ Different Values:
Expected [100] Actual [20]
* Test 'MYTESTCLASS->CHECK_SQUARE' in Main Program 'ZST19_TT'.
v = Stack
* Include: <Z5T19 TT> Line: <36> (CHECK SQUARE)

Figure 7-6. Failures and Messages window

226

CHAPTER 7 ABAP UNIT TEST-DRIVEN DEVELOPMENT

As mentioned earlier, there is a mistake in the implementation of the production

method. Instead of multiplication. we used addition. Once we correct the method and

rerun the test, the results will not show any error messages.

Methods in CL_ABAP_UNIT_ASSERT for Testing

The CL_ABAP_UNIT_ASSERT class has several methods, known as assertion methods. They
are used to pass messages to the ABAP Unit engine.

Before moving forward, it is a good idea to understand the main methods provided
by the the CL_ABAP_UNIT_ ASSERT class. These methods are shown in Figure 7-7.

Class{Interface CL_ABAP_UNIT_ASSERT Implemented [Active
Propertias Interfaces | Friends | Attributes UGG Events | Types | Aliases
O Parameters | Exceptions |2 Sourcecode 455 s | =]] Filter
Method Level visiblity M. Description
E.EEIKI‘ :sr.auc Hethod Fublic Abort test execution due 1o Missing context
ASSERT_EOUND Static Method Public Ensure the validity of the reference
ASSERT_CHAR_CP Static Method Public Ensure that character string fits to simple pattem

Static Mechod
Static Method
Static Method
Static Method
Static Mechod
Static Method
Static Method
Static Method
Static Method
Static Method
Static Method
Static Method

ASSERT_CHAR_NP
ASSERT_DIFFERS
ASSERT_EQUALS
ASSERT_EQUALS_FLOAT
ASSERT_FALSE
ASSERT_INITIAL
ASSERT_NOT_BOUND
ASSERT_NOT_INITIAL
ASSERT_NUMBER_BETWEEN
ASSERT_SUBRC
ASSERT_TABLE_CONTAINS
ASSERT TABLE NOT_CONTAINS

Figure 7-7. Class methods

Fublic
Public
Fublic
Public
Fublic
Fublic
Fublic
Public
Fublic
FPublic
FPublic
Public

Ensure that character string does not fit to simple pattem

Ensure equality of two data objects

Ensure approximate consistency of 2 floating point numbers
Ensure that boolean equals ABAP_FALSE

Ensure that data object value is intid

Ensure invalidity of the reference of a reference variable
Ensure that value of data cbject is not initial

Ensure that number is in given range

Ensure specific value of return code

Ensure that data is contained as ine within intemal table
Ensure that data is not contained as ine in internal table

Some of the more useful and commonly used methods are shown:

o ASSERT_EQUALS

e ASSERT DIFFERS

e ASSERT_BOUND

o ASSERT_NOT_BOUND

e ASSERT INITIAL

o ASSERT NOT_INITIAL

227

CHAPTER 7 ABAP UNIT TEST-DRIVEN DEVELOPMENT

o ASSERT CHAR_CP
e ASSERT CHAR NP
o ASSERT EQUALS F
o FAIL
e ABORT
Let’s look at the purpose of these methods:
o ASSERT_EQUALS. Checks if two data objects are equal.
o ASSERT_DIFFERS. Checks if two data objects are different.

o ASSERT_BOUND. Checks if the reference variable is pointing to a valid
reference.

o ASSERT_NOT_BOUND. Checks for the invalidity (initial) of the reference
of a reference variable.

o ASSERT_NOT_INITIAL. Determines whether a data object is storing its
initial value.

o ASSERT_SUBRC. Determines whether the return code variable SY-
SUBRC has a specific value.

Of special importance is the ASSERT_EQUALS method. It is the most commonly used
method and is shown in Figure 7-8.

ClassfInterface CL_ABAP_UNIT_ASSERT Implemented f Active
Properties | Interfaces | Friends | Attributes DLt Events | Types | Aliases |
Parameters of Method ASSERT_EQUALS AY
- Methods 4 Exceptions |(£ Sourcecode W Properties '
Parameter Type Pass ... O... Typing Method Associated Type D Description
ECT }rnporting W Type ANY Data object with curent value
EXP Importing Type ANY Data object with expected type
IGNORE_HASH SEQUENCE Importing + Type ABAP_BOOL .. Ignore sequence in hash tables
TOL Importing V' Type F Tolerance Range (for directly passed f.
HsG Imnporting + Type CSEQUENCE Description
LEVEL Importing v Type INTL 1. Severity (TOLERABLE, CRITICAL, FAT ..
QUIT Importing v Type INT1 1_Alter control flowf quit test (NO, >M ..
ASSERTION_FAILED Returning N4 Type ABAP_BOOL Condition was not met (and QUIT = ..

Figure 7-8. Method parameters

228

CHAPTER 7 ABAP UNIT TEST-DRIVEN DEVELOPMENT

As mentioned earlier, it checks the equality of two variables. The parameters of the
method are as follows:

e ACT. Actual result

o EXP. Expected result

e MSG. Message to be displayed

e LEVEL. Error level (tolerable/critical/fatal)

e Quit. Defines how the flow level is controlled when the test fails.
Possible values of Quit include:

o No (0).No action taken. The execution of the current test
method continues.

e Method (1).The test method is interrupted.

o (lass (2).The test class is interrupted.

e Program (3).All test classes in the tested program are stopped.
e Level. Has the following values:

o Tolerable

e Ciritical

o Fatal
e TOL. Tolerance

If the given tolerance is exceeded, an error is displayed. Let’s see this with an
example. Suppose we have the following values:

Actual result: 99

Expected result: 100

Tolerance specified as 0.9999

Difference = Expected Result - Actual Result

In this case, the difference is 100 - 99 = 1. Since 1 is greater than the tolerance limit
(.9999), this is above the tolerance limit. Hence, an error would be displayed.

229

CHAPTER 7 ABAP UNIT TEST-DRIVEN DEVELOPMENT

There are certain private methods employed within test classes that are provided by
the Unit Test Framework. They include the test as well as the links required for running
the tests. These methods are:

e SETUP().An instance method run prior to each test or execution of a
test method.

o TEARDOWN().An instance method run after execution of a test
method.

o CLASS SETUP(). A static method run once prior to all the tests of a
given class. This is used for initializing variables that will be used in
the tests.

o CLASS TEARDOWN(). A static method that is run after all tests of the
class have been run. This is used for clearing any data variables used.

These optional methods are also known as fixture methods. These names are
predefined so they can be recognized at execution time.

ABAP Unit Results in Code Inspector

We also can see the ABAP unit test results using the Code Inspector. Within the variant,
we need to check the ABAP unit test within the Dynamic Tests category. Let’s see how
this is done.

First, we call transaction SCI. The screen shown in Figure 7-9 will appear.

230

CHAPTER 7 ABAP UNIT TEST-DRIVEN DEVELOPMENT

Code Inspector: Initial Screen

[{]

Person Responsible E]
Inspection
Mame |.__l. ers.
s Dlsln~Tgl
Object Set
Name L';_ o Vers,
Do
Check Variant
MNarme L;;, Z_UNIT
s D])o/m]

Figure 7-9. SCI transaction

Enter a suitable name for the check variant (in our case, itis Z UNIT) and click the
Create button under the field provided. The screen shown in Figure 7-10 appears.

Check Variant \z_wIT
Changed On 04/04/2019
Description Z_UNIT
+/ Public
Checks to Execute
In reference check system
o Locally avalable checks
Selection D.. A.. R.. E.. Checks
vu | List of Checks
B L] General Checks
>m Cloud Readiness
>l L] Performance Checks
>m L] Security Checks
>m L] Syntax Check/Generation
> B L] Robust Programming
> il Programming Conventions
>m L] Sf4HANA Readiness
> L] Metrics and Statistics
va Y] Dynamic Tests
Bw |1 Bl ABAP Unit

Figure 7-10. Check variant

231

CHAPTER 7 ABAP UNIT TEST-DRIVEN DEVELOPMENT

Click the arrow icon for further settings (see Figure 7-11). Make sure to check the
ABAP unit test as shown in Figure 7-11.

[E ABAP Unit Parameters

Parameters of Test Task

Maxirnurn Risk Level ::-larmhess v:

Maxirmumn Runtime Category Short .

Runtime Restriction Active with default re_ v
Custorn Duration

Long 3,600

Medium 300

Short 60

Figure 7-11. ABAP unit parameters

Once this is done, we can use this variant in our code inspections.

We will now create a code inspection ZS_1. For this code inspection, we assume that
the object set ZS_2 already exists. The checks will be executed against that object set. We
create an inspection using our variant Z_UNIT, as shown in Figure 7-12.

Code Inspector: Inspection

bDeoH YO0

Inspection W ks s, 001/ Person Resporsble | STUDENTOLS
Executed On 04/10/2018) Changed On 04/10/2019 Last Changed By STUDENTO19
Deleted On 05/30/2019
Description z5_1_no1

Object Selection

biect Set

75 2 Vers, 001

Single bl

Chedk Variant

Z_UNIT

Figure 7-12. Inspection ZS_1

When we view the inspection results, we can see that the ABAP unit related

errors, warnings, and other messages. This is shown in the Code Inspector results (see
Figure 7-13).

232

CHAPTER 7 ABAP UNIT TEST-DRIVEN DEVELOPMENT

Code Inspector: Results from Z5_1 001 STUDENTO19
[l B & B o

Irspection [g 251 Version 1 Person Responsible STUDENTOLS

List of Checks
Dynamic Tests
- ABAP Uit
Errors
Message Code Critical
Program 75719 _TT Include Z5T19_ TT Row 36 Column 0]
Critical dert
== Critical alert

Do e Exceptions Checks Emor Wamings Information
i
1
1
1]
LiJ
u

Rl
ocoocooo
coocooo

Figure 7-13. Code Inspector results

As an example, we have executed this inspection on the program we earlier created
in the chapter involving squares. Clicking the message will take us to the exact location
where the error occurred.

Exceptions in ABAP Unit Tests

As with classes in general, exceptions may occur in unit test classes as well. If an
exception occurs with a method, the unit test fails. The exception may be reported as the
reason for the failure. If the method declares and includes the exception in the signature,
the test exception may be propagated to the ABAP runtime.

A preferred approach is that the test method declares the exception in a signature in
order to clarify the functioning of the method. However, the exception should be caught
in the test method.

METHODS m_test_method FOR TESTING
RAISING cx_sy zerodivide.

METHOD m_test method.
obj->division(num = 10).

ENDMETHOD.

233

CHAPTER 7 ABAP UNIT TEST-DRIVEN DEVELOPMENT

For provoked exceptions in the method under testing, the developer can include
a call to the FAIL method (contained in the CL_ABAP_UNIT_ASSERT class) to report the
failure of a given test. The code for this is shown here:

METHOD m_test_method.

* catching a provoked exception
TRY.
obj->division(num = 10).

CATCH cx_sy_zerodivide.
ENDTRY.

cl abap unit_assert=>fail(
msg = 'exception not raised'
level = if aunit_constants=>critical).

ENDMETHOD.

Enabling and Executing ABAP Unit Browser

SAP provides an ABAP unit browser for searching and viewing unit test classes residing
within the system. The ABAP unit browser is embedded in transaction SE80. By default,

the ABAP unit browser is switched off, and should be first switched on in order to be used.

In this section, we learn how to enable the unit test browser and how to run it in
order to view the various unit classes defined in our system. Follow these steps:

e (Call transaction SE80. By default, the screen on the left side will
appear, as shown in Figure 7-14.

234

CHAPTER 7 ABAP UNIT TEST-DRIVEN DEVELOPMENT

S5 Repositary Browser
| Class/Interface
|cL_TREE_MODEL x| v [ge
= _JIzR]IR])&]*x)3
Object Name

v 4@ CL_TREE_MODEL
> [0 Subclasses
> [0 Interfaces
> [0 Attributes
> [0 Methods
> [0 Events
> [0 Types

Figure 7-14. SE80 transaction

As you will see, there is only a Repository Browser button on
the top. We want to include a second button by the name Unit
Browser over here.

e Choose Utilities » Settings. This will open the dialog box shown in
Figure 7-15.

|

= |
[V ATC Result Browser]
[Test Repository |
1

|

|

]

I

=] Tag Browser

o Services Browser
B web Dyngro Text Browser
&
“h

Enhancement Info System

ABAP Unit Browser

Connectivity Browser]

Figure 7-15. User-specific settings

235

CHAPTER 7 ABAP UNIT TEST-DRIVEN DEVELOPMENT

e Click the Workbench (General) Settings. Then, in the browser
selection, click the ABAP Unit Browser button and click the Continue
button.

o Next, you will see that the ABAP Unit Browser button will appear, as
shown in SE80. It’s shown in the left pane in Figure 7-16.

Class Builder: Display Class ZS5T19 CLASS
< SUDHO0 aéxJ H 2

,a’a Repository Browser
e ABAP Unit Browser
|Package V.

[sTMP EAr3
(R H|L

Figure 7-16. ABAP unit browser

e Now click the ABAP Unit Browser button and choose Package in
the first list box. Enter $tmp in the field provided (see Figure 7-17).
We will then click the Display button. (As an example, we will browse
through local objects, so we have used $tmp.) Then, click the Display
button.

ABAP Unit Browser

|Package .
[sTMP v | &0

Z[R]R][L]
Component f Object
v 25 $TMP
v @ Classes
> () ZSAPLINK
> () ZSAPLINK_PROGRAM
v () ZST19_CLASS
v @ Test Classes
v @ Z5T19_CLASS
v 5 ABAP Unit
+ <] ABAP Unit Test class

Figure 7-17. ABAP unit browser

236

CHAPTER 7 ABAP UNIT TEST-DRIVEN DEVELOPMENT

e Youwill see that the various unit test classes appear, as shown in
Figure 7-18. As a matter of example, we had earlier created a global
test class by the name ZSt19 class.

FL I - ye 2 = g = P " =k}
- S RBHO gk >« & = [Y [% Loca pefinitionsfimplementations 1= Source Code-Based
[Repository Browser Class/Interface :lzsrls_mss :Imalsmanled | Active
Propertes | Interfaces | Frends | Attrbutes [NUEIRSUR Events | Types | Alases
Package bt = — —— . i = = =
[sThp (=& [0 Parameters |+ Exceptions | = Sowcecode W2 55 | || [H
. p— Method Leval Visibility M... Description
= I

=] UL Instance Method Private
Component / Object
v 88 $Tp

v @ Classes
> () ZSAPLINK

» () ZSAPLINK_PROGRAM
v () Z5T19_CLASS
~ @ Test Classes
v @ 25T10.CLASS
¥ B ABAP Unit
+ <} ABAP Unit Test class

Figure 7-18. ABAP unit test classes

Double-clicking the unit class name in the left pane will show details of the class in

the right pane.

Summary

In this chapter, we covered various types of testing. We learned what unit testing and
test-driven development are and covered the advantages of unit testing. Finally, we saw
a full-fledged programming demo. We also executed a unit test and checked the results
with and without the Code Inspector. We ended the chapter with a note on the unit test
browser, which is available for searching and displaying unit test classes residing in the
ABAP system.

237

CHAPTER 8

Creating ABAP Classes
Using Eclipse

In recent releases, SAP allows you to develop ABAP programs and classes using the
popular Eclipse IDE. Eclipse provides a number of useful features. We can work with a
number of systems using Eclipse. Eclipse also provides a number of useful templates
that can be modified according to our needs. It also includes code completion features in
order to work faster. In this chapter, we look at all these features in detail.

One of the main reasons we use Eclipse instead of the ABAP Editor is the ease of
code completion and shortcuts that are not provided in the ABAP Editor. These allow
developers to code programs faster.

Here are some of the topics this chapter addresses:

e Configuring the ABAP development environment with ABAP
Development Tools (ADT) in Eclipse

o Creating your first ABAP project
o Using Eclipse to code unit test classes

o Using the Quick Fix feature of Eclipse with ABAP Objects

Installing Eclipse and Loading ABAP Perspective

In this section, we see how to install Eclipse and the ABAP Development tools (ADT) in
order to develop ABAP classes and methods. Eclipse allows you to create programs (and
local classes) as well as global classes (and unit test classes).

Before working with Eclipse, you need to download and install Eclipse from
www.eclipse.org. Once Eclipse is installed, launch it using the desktop shortcut or via
the Program list.

239
© Rehan Zaidi 2019

R. Zaidi, SAP ABAP Objects, https://doi.org/10.1007/978-1-4842-4964-2_8

http://www.eclipse.org

CHAPTER 8 CREATING ABAP CLASSES USING ECLIPSE

We can now install the ABAP Development Tools for SAP NetWeaver. From the menu
bar, choose Help » Install New Software. The dialog box in Figure 8-1 will appear.

MTVIIEHT L03 [IAWE S [5 Fwimss St aversis wee s Swasst e o e

& install [m] X

Available Software i
Check the iterns that you wish to install. 3 Vo=
IR

Work wi':h:tl https:/ftools hana.ondemand.com/oxygen ~ Add... Manage...

type filter text

Mame Version

<>

< >
Select All Deselect Al
Details

EA Show only the latest versions of available software A Hide iterns that are already installed
A Group items by category What is already installed?

[[] Show only software applicable to target environment

[Contact all update sites during install to find required software

3y
@ < Back Next > Finish Cancel

Figure 8-1. Install dialog

Within the dialog box that appears, place the URL relevant to the current version. For
example, you use https://tools.hana.ondemand.com/oxygen for Eclipse Oxygen. Then
press Enter in order to see the available options.

Select ABAP Development Tools for SAP NetWeaver and choose Next. On the next
screen, you will be shown the features that will be installed. Choose Next. Accept the
license agreement and click Finish in order to start the installation. This will install ABAP
Development tools (ADT) on Eclipse.

Once ADT is installed, we need to open the ABAP perspective. Follow these steps to
do so:

1. Close any Welcome page that appears. Choose the menu path
Window » Open Perspective » Other. Alternately, you may click

the * button on the top-right corner, as shown in Figure 8-2.

240

https://tools.hana.ondemand.com/oxygen

CHAPTER 8 CREATING ABAP CLASSES USING ECLIPSE

- o X

w8 18 %

I Open Perspective

Figure 8-2. Open perspective

This will display the dialog box shown in Figure 8-3.

8] Open Perspective a X
V. apap A
0. ABAP Connectivity 8 Integration
¥ ABAP Profiling
G::Database Debug v

Figure 8-3. Perspective lists

2. Choose ABAP from the list and click Open. This will load the
ABAP perspective.

It is a good idea to familiarize yourself with the layout of the tools
within the Eclipse IDE. The ABAP perspective has various tools
that are arranged in order for you to work easily. You are free to
change positions of views in order to suit your liking.

3. Go to the Project Explorer. The various sections in the Eclipse IDE
(for the ABAP perspective) are shown in Figure 8-4.

241

CHAPTER 8 CREATING ABAP CLASSES USING ECLIPSE

U echpse-workspace - S48 10U_stucenti 9 enf adtfchassbb/classes Tl Lmsty T aclass - kehipre - w

File Edit Navgate Search Project Rum Window Help

if= @-DiwimGIY @YY O RS >l ~ € T Quick Access| !| GF | 4@
[Project Beplorer 31 0 COSMwizater ™ O [[HSA1ZSTIZZ | @ (S9)ZSTI I = O Feature Bplorer 1

>) HEA 100 studentMT_en
») SSE00 smudentd] 9 en |42 100 STUDENTOR [This interactive view allows you to exploe the features
most favoned by the ABAR in Eclipse development team)
[Thece are foatures that wil help you get stuff done
asterl Intereated?

PROJECTS @ | tor s to be relaaded fram the back end.
s 75 erstect i R st EDITORS

<
3 =0
(22 Probaems 52 Properties o Templates LIl Bookmarks Task Repositories Task List () Feed Reader Transport Qrganizer | T =
i!_uns
Frescnipion Resource Path Lozation Type
OUTLINES
OTHERS

SAR 100 mPhedR STIIDENTONG AN

Figure 8-4. ABAP perspective sections

On the top-left, we have the list of project (and connection) nodes that list the
various objects in that system. Below the projects is the outline window (showing the
main structure and elements) of the selected object. On the right are the main
editors for writing code for classes and programs, and under Editors is the window
showing miscellaneous messages such as errors, warnings, and the program output in
some cases.

Creating an ABAP Project in Eclipse

Within Eclipse, we need to have an ABAP project corresponding to SAP systems
connections. Follow these steps:

Choose the menu path File » New » ABAP Project. The dialog box shown in
Figure 8-5 will appear.

242

CHAPTER 8 CREATING ABAP CLASSES USING ECLIPSE

&) New Project O x
Select a wizard | —d
Create an ABAP project |
‘Wizards:
type filter text
122 Java Project A

Java Project from Existing Ant Buildfile
1 Plug-in Project
(= General
v = ABAP
1 ABAP Project
» (= Eclipse Modeling Framework
> (= EB
> L= Gradle v |

@ < Back Next > Finizh Cancel

Figure 8-5. Backend systems

Choose the ABAP project under the ABAP node and click Next. The screen shown in
Figure 8-6 appears.

1@} New ABAP Project O X
System Connection —
Associate the new project with an SAP systern connection | i /

Define 3 new systern connection from scratch, or select an existing SAP Logon entry from the
list:

type filter text

Mame Description SID Grow ™
Ll eee BE3 mzb
L hana DEV LCD 1521
L hana gas LCQ legsz
L} HSa- SAP Server { mib v

< >

® < Back Next > Finish Cancel

Figure 8-6. System connection list

Here you can either create a new system connection or select an existing one from
the list. We assume that the connection is already there on our SAP Logon pad. From the
list of backend systems, select the system you want to connect to and choose Next. The
connection settings will appear.

243

CHAPTER 8 CREATING ABAP CLASSES USING ECLIPSE

On the Connection Settings screen, accept the default settings and click the Next
button.

On the screen that now appears (see Figure 8-7), enter the login credentials and click
the Finish button.

@] MNew ABAP Project O X

Logon to System =

System ID: 548
Client:* |100
User: ™ | REHAN

Password: * | senenee

(?) < Back | Next> Cancel

Figure 8-7. Logon credentials

This will then create the ABAP project, which is in the left pane. (It now corresponds
to a connection to the backend SAP system of our choice.)

All our development objects will be created within the applicable projects. See
Figure 8-8.

v 1 $48.100_student019_en [$48, 100,
. ¢ Local Objects (§TMP) (7)
{8 Favorite Packages (7)

» B8, Systern Library (7)

Figure 8-8. ABAP project

Creating a Global Class in Eclipse

In this section, we learn how to create a global class using Eclipse (same as the SE24
transaction). The required steps are described next.

244

CHAPTER 8 CREATING ABAP CLASSES USING ECLIPSE

First we select the project node we created earlier. Right-click to display the context
menu. From the menu, choose the New » ABAP class option. The dialog box in
Figure 8-9 appears.

@) New 2BAP Class o X
ABAP Class

Create an ABAP class
Project:* l $48_100_student019_en | Browse...
Package: ™ $TMP Browse...

Add to favorite packages

Marne: * | ZsT19 MY_CLASS |
Description: * [My class I

Original Language: | EN !

Superclass: Browse...

@ < Back Mext > Cancel

Figure 8-9. Dialog for the new ABAP class

Enter a suitable name and description for the class and superclass (if applicable).
Then click Next. On the next screen, click the Finish button.
This will generate the basic coding of the global class, as shown in Figure 8-10.

» G ZST19.MY_CLASS »

create public .

public section.
protected section.
irivate section.
NDCLASS.

13- CLASS ZST19 _MY_CLASS IMPLEMENTATION.
14 ENDCLASS.

Figure 8-10. Basic generated code

245

CHAPTER 8 CREATING ABAP CLASSES USING ECLIPSE

Here we can write the additional code we need to specify within the class. These
may include public or private (or protected) methods, attributes, and events. We will
add a private attribute called NUM with a type of integer. We will also add an instance
constructor method along with an instance method called DISP_NUM.

Eclipse provides syntax help when you type incorrectly. Consider for example
if we typed “imporing” instead of “importing” The error is shown as a red cross (see
Figure 8-11). Keeping the cursor on it explains the error. These errors are shown during
typing (i.e., before compilation).

public section.
methods disp_num .

methods constructor imoorkng

["IMPORTING" expected, not "IMPORING".|

protected section.

6
7
8
¢ 9
2
1 private section.

o
il

Figure 8-11. Syntax error

Moreover, Eclipse makes it easy and quick to work with attributes and methods by
providing autocomplete features. For example, consider a situation where we are in the
code of a class constructor. If we type the self-referencing variable me followed by the ->
operator, the popup appears, as shown in Figure 8-12.

17= CLASS Z5T19 MY_CLASS IMPLEMENTATION.
18= method disp_num.

19 write : num .

20 endmethod.

21 method constructor.

22 me->|

O *Global Class q o num

@ disp_num
Figure 8-12. Help popup
Here we see the components of the class we are in. (In our case it is the NUM attribute

and the DISP_NUM method.) We can choose which component is used by double-clicking
the relevant item in the list.

246

CHAPTER 8 CREATING ABAP CLASSES USING ECLIPSE

Another useful feature is the outline window, where the structure of the class is
shown. For the class that we are developing, the outline shows the attribute NUM, and the
methods constructor and DISP_NUM, as shown in Figure 8-13.

95 Outline 52 @ &
« (& ZST19_.MY_CLASS

@ DISP_NUM

@ CONSTRUCTOR

s NUM

Figure 8-13. Class outline

The complete code that we wrote for our example is shown here. This code is written
in the code editor for the global class.

class ZST19 MY CLASS definition public final create public.

public section.
methods disp num .
methods constructor importing num type i.
protected section.
private section.
data num type i.
ENDCLASS.

CLASS 7ZST19 MY CLASS IMPLEMENTATION.
method disp num.
write : num .
endmethod.

method constructor.
me->num = num.
endmethod.
ENDCLASS.

247

CHAPTER 8 CREATING ABAP CLASSES USING ECLIPSE

Once you have created your class, click the U button on the toolbar. This will
activate the class and a message will appear, as shown in Figure 8-14.

i Activation for ZST19_MY_CLASS successful

Figure 8-14. Activation message

We created a simple class that will contain the NUM private attribute with an integer
type. This can be viewed using the transaction SE24 via SAP GUI, as shown in Figure 8-15.

Class Builder: Display Class ZST19 MY CLASS
SRDHO a4 2 & & Y [

Class{Interface ZST19_MY_CLASS Implemented [Active

| Properties | Interfaces | Friends | Attributes [NEE{EES Events | Types
[0 Parameters |4 Exceptions | £ sourcecode (@[| [| || | | ||
Method Level Wisibility M... Description

DISP_NUM Instance Method Public

CONSTRUCTOR Instance Method Public !j-

Figure 8-15. SE24 transaction

This class may be used globally by all classes in the system and may also be tested via
transaction code SE24.

In addition to the global class, a number of other useful tabs exist within the Eclipse
IDE at the bottom of the screen. These include the class-relevant local types, local types,

test classes, and macros (see Figure 8-16).

*Global Class | Class-relevant Local Types Local Types | Test Classes | Macros

Figure 8-16. Class-relevant tabs

248

CHAPTER 8 CREATING ABAP CLASSES USING ECLIPSE

We may click the relevant tab in order to display the code editor at the top part of the
screen and insert the appropriate code. Since we have used the global classes editor for
our current example, these tabs have not been used.

Creating a Local Class in Eclipse

To create a local class, we need to first create an ABAP program within which the local
class will be created. This will create local classes as programs created via transaction
SE38 using SAP GUI. Follow these steps to create a local class:

¢ Right-click your project and choose New » ABAP Program. This will
create an ABAP program.

* You can then type the definition and implementation code of the
given class into the program (see Figure 8-17).

» @ 2510 » © MYCLASS »

1 program zs_l@.
2= class myclass definition .

o private section.

5 methods :

5 first_test .

7 endclass.

8

9 ittt]
%19" class myclass implementation.
g%ll
g 12 method first test.
o -
%14 endmethod.
L16 gndclass.

Figure 8-17. Local class code

A number of features are available for coding with local classes in Eclipse, especially
for working with methods. In order to see the options that are available for a particular
method, place the cursor on the method name and press CTRL+1. The options are
shown in Figure 8-18.

249

CHAPTER 8 CREATING ABAP CLASSES USING ECLIPSE

private section.
methods :

1 Rename first_test (Ctrl+2, R)
& Make first_test protected
~class myclass | @ Make first_test public

€ Delete first_test

@] Add ABAP Doc

endmethod.

method first

endclass.

roblerns Propet
1 Press "Ctrl+ Shift+ 1" to show in Quick Assist Wiew

Figure 8-18. Options

If you need to rename a method, simply choose the Rename first_test option. This
will put the method name in a box (see Figure 8-19). As you change the name in the
definition, you will see that the name changes accordingly in the implementation.

private section.
methods:

firs| methed .

............ -

endclass.

= class ltcl_ implementation.

endmethod.

Figure 8-19. Renaming a method

Both the definition and implementation parts are automatically adjusted.

We can also make the first test method protected or public, using the appropriate
options. Currently it is private, so the private option is not shown. We can also delete the
method. This will delete it from the definition and implementation.

Suppose we have a method called second_method, which only exists in the definition
and has not yet been implemented. Place the cursor on the method name in the
definition part and press CTRL+1. The options will now appear as shown in Figure 8-20.

250

CHAPTER 8 CREATING ABAP CLASSES USING ECLIPSE

private section.

methods:
second_method .
Endeiass. 4 Add implementation for second_method

© Make second_method protected

@ Make second_method public
class ltcl_ imple € Delete second_method

@) Add ABAP Doc

endclass.

Figure 8-20. Add implementation option

Note that a new option has been added called Add Implementation.
Choosing this option will add an implementation to the class in which we add our
method code (see Figure 8-21).

private section.
methods:
second_method .

endclass.

= class 1ltcl_ implementation.

Figure 8-21. Second method implementation

The cursor will jump inside the newly created method, and we can start writing code
immediately.

Method Wizard in Eclipse

We have an embedded form-based wizard within the Eclipse editor for quick creation of
class methods along with its signature. In this section, we see how this tool may be used.

Suppose you are in the editor and have already created an ABAP class and are
currently within a class method. You now need to define another method that will be
called from the method you are currently in.

251

CHAPTER 8 CREATING ABAP CLASSES USING ECLIPSE

One way of doing this is to go to the definition of the class and add the new method
and its signature. Then implement the method code and come back to the calling point
(of the new method) within the current method.

Another quick shortcut is to define the new method by entering the name of the new
method in the code and calling the Quick Fix feature.

In the example, we have a method called METHOD1. We can create a method called
METHOD2 by following these steps:

1. Enter the name METHOD2 followed by parentheses at the point of
calling the new method.

2. Press CTRL+1 upon placing the cursor on the method name. This

will display the popup shown in Figure 8-22.

» & ZST19.MY_CLASS » @ METHOD1

845 METHODZ) .

................

BN | e * @ Create method method2

Figure 8-22. Quick Fix in Eclipse
3. Double-click the Create method method2 line shown in the

popup. A Method Signature popup will appear, as shown in
Figure 8-23.

252

CHAPTER 8 CREATING ABAP CLASSES USING ECLIPSE

Define Method Signature

Class/Interface: ZS5T19 MY_CLASS

Pattern: Method Event

Name: * | METHODZ
Access: [static
Visibility: (O Private () Protected ®) Public
Parameters:
Narme Direction ByValue Typing Data Type Add
NUM Importing [Type PERSNO et
Up
Do

Figure 8-23. Defining method signature

4. This will display a wizard that defines the signature of the new
method we like to define. Here we specify the method details,
such as visibility, access, and name.

5. We also specify the method parameters using the table control
provided. We can add and remove method parameters using the
Add and Remove buttons, respectively. We specify if we need
importing, exporting, changing, or returning parameters. The type
of the relevant parameters can be specified using the given value
help.

6. When you are done, click the Finish button. You will see that the
wizard automatically generates the new method’s declaration
along with the necessary parameters (see Figure 8-24).

253

CHAPTER 8 CREATING ABAP CLASSES USING ECLIPSE

& public section.

3 methods methodl .
methods constructor importing
ethods method2

importing

14 protected section.
5 private section.
16 _data num type i.

17 ENDCLASS.

Figure 8-24. Definition of Method?2

Moreover, the call of Method2 within Method1 is also added with the parameters we
specified from the Method Creation wizard (see Figure 8-25).

3@ method methodl.

31 method2 (
32 numl =
33 num2 =)

Figure 8-25. Method call

An empty implementation of Method2 will also be created. We can now proceed
within the code of the new method in the implementation.

Unit Test Templates Using Eclipse

Eclipse offers several useful templates for fast and easy code completion. Using
and being aware of such templates is essential for ABAP developers. These are also
applicable to unit test programming and are very easy for practicing Test Driven
Development (TDD). We can code tests and then design global classes by generating
blank methods via the CTRL+1 Quick Fix feature from the test class.

Let’s see an example where we have an ABAP program in which we want to create a
local unit test class. Within the program, we need to type test or testClass and then call
the template for Quick Fix.

254

CHAPTER 8 CREATING ABAP CLASSES USING ECLIPSE

o Simply place the cursor on test in the program and press
CTRL+SPACE. This will display the popup shown in Figure 8-26.

f
05 et = -
=2 = , class $ltcl_} definition final for testing
.-_] testClass - Tlestr.lass (ABAP Unit) . . duration §{short}
] textldExceptionClass - Default text id for exception class risk level ${harmless].

private section.
methods:
Hfirst_test] for testing raising cx_static_check,
endclass,

class Hlitel_} implementation,

Press “Shift+Enter’ to insert full signature | | method $ifirst_test),

Heursorlel_abap_unit_assert=>fail{ Implement your first test here'),
endrmethod,

5. Problems Properties 5 Templates Bookmarks 3 Task Repositorie
" JACS L 0 L'ul = / lendclass.

Figure 8-26. Quick Fix for testClass

Double-click the test class (ABAP unit) option. You will see that the code for the unit
class is inserted automatically, as shown in Figure 8-27.

LR S —— *
& REPORT zstl9 testlll.

7

&= class ltcl_ definition final for testing

9 duration short

1@ risk level harmless.

11

12 private section.

13 methods:

14 first_test for testing raising cx_static_check.

15 endclass.

17

18= class ltcl_ implementation.

19

22= methed first_test.

21 cl_abap_unit_assert=>fail({ *Implement your first test here').

22 endmethod.

24 endclass.|

Figure 8-27. Inserted unit class code

As you see, Eclipse has inserted the basic coding for our test class. The template for
the ABAP test class has been used. It contains a class definition having the “for testing”
addition. By default, the risk level is harmless, and the duration is specified as short. The
name is 1tcl_and the developer can change it. It contains a FIRST_TEST method, which
calls the fail method of the CL_ABAP_UNIT ASSERT class.

255

CHAPTER 8 CREATING ABAP CLASSES USING ECLIPSE

For global classes, things are even better. As mentioned, when editing global classes
within Eclipse, we have a number of tabs at the bottom of screen. This is very useful
when used in context of unit tests. These tabs allow the developer to easily see which
section belongs to global classes (production code), test classes, etc. They are a really
quick and easy way to find out where to write code for each section.

To create a new unit test class, click the Test Classes tab, type test in the Test Class
view, and press CTRL+SPACE to see the suggestions. Choose testClass - Test class (ABAP
Unit), and the test class will be generated. It can be later modified.

For testing and writing assertions, you may simply initialize variables and then code
the method in which test and assertions are written. No need to remember the assertion
syntax. Simply type assert and use CTRL+SPACE. Choose the assertEquals template
shown on display.

Modifying Templates

As mentioned earlier in this chapter, Eclipse provides a number of templates for code
completion. Templates are very powerful and make the coding process very fast. The
shortcuts CTRL+SPACE and CTRL+1 for code generation make coding faster than when
using SE80.

You may create new templates or change existing ones.

Note Templates can be used for any ABAP development and not only in
development related to ABAP classes.

To change templates, follow the menu path Window » Preferences.

256

CHAPTER 8 CREATING ABAP CLASSES USING ECLIPSE

The dialog box shown in Figure 8-28 appears.

18] preferences o X
type filter text Templates roevw
G |
: A;:‘:Lmlopment Create,vedit or remove ternplates:
Activation MName Context Description Auto Ins.. New.,
Debug B assert.. ABAP assert_equals (BB... an Edit
v Editors) case ABAp Case block on
v S"‘*‘;::p“d‘ E"":"C | catch... ABAP #HCATCHALL pr.. on Remove
ot Ti::) ”:u olors firePlug Web Dynpro ABAP Fire Plug (use inv.. on
NpIATES] " Restore Removed
Access Control Templates functi.. ABAP Function Module ... on [112i
Annotation Definition Templates gener.. Web Dynpro ABAP Generate Messag.. on Rewert to Default
s CDS if ApAP If block on
Code Completion B ifElse ABAP If-else block on Import...
Data Definition Templates instan.., Web Dynpro 8BAP Instantiated Used ... on
DL Formatter M 1 ABAP Local class on Epois
Dictionary Structure Templates A i ARAD Lacalinterface on W
Mark Qccurrences Preview:
IMetadata Extension Termplates
Quick Assist
Service Definition Templates
> Graphical Tools
Profiling
Project Explorer
SAP GUI Integration =
Search v Restare Defaults Apply
S00_Bdaniter
=
@,‘ Apply and Close Cancel

Figure 8-28. Templates

Under the node ABAP development on the left pane, choose Source -> Templates.
On the right side, you will see the various templates available. There are buttons for
editing an existing template and the New button to create a new template.

Each template is denoted by a name, which may be called from within a program.

These templates belong to the General, ABAP, ABAP Objects, or Web Dynpro
categories (or contexts). The existing ABAP object-related templates are assertEquals,
1if, 1cl, and testClass.

When you are coding the program, simply type the entire name of the template or
part of it. Then use the code completion technique CTRL+SPACE or the CRL+1 shortcut
to see proposals with code completion.

You can also change the existing templates. For example, by default, the assertion is
written on one line, but you can update the template to have each parameter shown on a
new line. Simply select the template and click the Edit button, as shown in Figure 8-29.

257

CHAPTER 8 CREATING ABAP CLASSES USING ECLIPSE

Create, edit or remove templates:

Name Context Description Auto Ins... ~ | New... |
[assert.. ABAP assert_equals (8B... on
[case ABAP Case black on
[catch.. ABAP HHCATCH_ALL pr... on . Remowve
[firePlug Web Dynpro ABAP Fire Plug (use inv... on
functi.. ABAP Function Module... on Restore Removed
[A gener.. Web Dynpro ABAP Generste Messag... on REvr e Deratn
[if ABAP If block on
ifElse ABAP If-else block on Import...
[instan... Web Dynpro ABAP Instantiated Used... on ;
1 lel ABAP Local class on Export...
A i 4RAD Loeal intarfars an i

Preview:

cl_abap_unit_assert=>assert_equals(msg = "§{msg}" exp = ${exp} act :

< >

Restore Defaults_ | Apply
Figure 8-29. Edit option

The popup appears, as shown in Figure 8-30.

@] Edit Ternplate o *

MNarne: | assertEquals | Context: ABAP v | [Asutomatically insert

Description: | assert_equals (ABAP Unith |

Pattern: cl_abap_unit_assert=>assert_equals(msg = ‘${msg}"

exp = ${exp}
act = ${act}).

Insert Variable...

@ Cancel
Figure 8-30. Editing method call

Here, we change the pattern of the code for the assertEquals method. Then click
OK. This will take us back to the previous screen. Make sure to click the Apply button.

Once this is done, the CTRL+SPACE option will show us the method call, as shown in
Figure 8-31.

258

CHAPTER 8 CREATING ABAP CLASSES USING ECLIPSE

13- class 1ltcl_ implementation.
14
15~ method firs_method.

§16 cl_abap_unit_assert=>assert_equals(msg = 'msg
17

s exp = exp
§19 act = act).|
2

§21 endmethod.

Figure 8-31. Method call

Summary

In this chapter, you configured the ABAP development environment with ABAP
Development Tools (ADT) in Eclipse, created your first ABAP project, used Eclipse to
code unit test classes, and saw Eclipse’s Quick Fix feature used in conjunction with
ABAP Objects.

259

Index

A, B GET_COLUMN method, 74

tput, 77-80
ABAP Project in Eclipse program ourpt

backend systems, 243
development objects, 244
logon credentials, 244
system connection list, 243

upcasting, 73
CL_ABAP_UNIT_ASSERT class
ASSERT_EQUALS method, 228
fixture methods, 227, 228, 230
parameters, 228, 229

ABAP unit browser | 999
button, 236 Cl o tl)l e'Sl’d 101, 10
SE80 transaction, 235 ass bullder, , 104
buttons on SE24 tab, 112, 113
steps, 234

test classes, 237 class browser, 113, 114

user-specific settings, 235

Abstract classes, 94-96

ALV Object Model
add header text, 180-183
advantages, 177
CL_SALV_COLUMNS_TABLE class, 179
CL_SALV_FUNCTIONS class, 179
CL_SALV_TABLE class, 178, 179

screen, 114
testing classes in SE24, 114
testing static method, 115-119
features, 104, 105
instance methods, testing, 119
account attributes, 122
Attributes tab, 120
calculation code, 121
class methods, 123

output, 180
ASSERT_EQUALS method, 220, 222, constructor method, 120
223, 226, 228 cube class, 119
ATTACH_FOR_WRITE method, 169 cubic value, 122
debit amount method, 125
Instance screen, 121
C method deposit balance, 123
Casting and polymorphism, 73 NEW_BALANCE method, 124
CREATE OBJECT statements, 76 object testing, 125
DISPLAY PLAYER DETAILS method, 75 parameters tab, 120
downcasting, 73 setting new balance, 126-128

261
© Rehan Zaidi 2019

R. Zaidi, SAP ABAP Objects, https://doi.org/10.1007/978-1-4842-4964-2

https://doi.org/10.1007/978-1-4842-4964-2

INDEX

Class builder (cont.)
table parameters, testing
methods, 128
declaring instance attributes, 129
global class, 128
internal table, 132
LOOP AT statement, 130
Methods tab, 129
output, 134
record display, 133
selection screen, 131
writing code, 130
tabs, 106, 107
transaction SE80, 101-104
where-used list functions, 107-112
Class constructor, see Static constructor
Classes
components, 1-3
constants, 32-34
defining types, 31, 32
global, 6-10
local, 4-6
Classes enhancement
DISPLAY_PLAYER_DETAILS
method, 200
enhancement columns, 201, 202
enhancement implementation, 201
enhancement operations
menu, 200, 201
sequence of execution, 205, 206
CL_AUNIT_ASSERT class, 220
Code Inspector
ABAP unit parameters, 232
check variant, 231
code inspection ZS_1, 232
results, 233
SCI transaction, 231
Composite interfaces, 87

262

D

DEFERRED class specification, 22, 23
Dictionary types, global class, 34-36

DISPLAY_PLAYER_ DETAILS method, 56,

57, 64,75, 86,92, 152, 175

E

Eclipse and ADT
ABAP perspective sections, 242

create ABAP project (see ABAP project

in Eclipse)
global class, 244-248
Install dialog, 240
local classes, 249-251
modifying templates
ABAP object, 257
assertEquals method, 258
coding process, 256
dialog box, 257
editing method call, 258
edit option, 258
method call, 259
open perspective, 241
perspective lists, 241
templates, 254, 255
wizard (see Wizard in Eclipse)
Event handling, 53
event raised, 53
PLAYER_CREATED event, 54-59
steps, 53, 54
Exception classes
creation
class name, 140
error, 140, 141
CX_DYNAMIC_CHECK, 138, 141
CX_NO_CHECK, 138
CX_STATIC_CHECK, 138

message classes
assign attributes, 145
CREATE OBJECT statement, 147
CX_DYNAMIC_CHECK class, 146
option, 144, 145
PLAYER class, 147
RAISE statement, 147
text field, 146

public instantiation
HEIGHT attribute, 142
HEIGHT parameter, 142, 143
long text editor, 143, 144
methods, 142
text definition, 143

F

Final classes, 96, 97
Friend classes, 97-100
Functional methods
CALC_AVERAGE method, 45, 46
defining, 44
exporting and returning parameters,
47-50
func_method_class, 44
source code, 46
syntax error, 47

G, H
GET_COLUMNS method, 179
GET_DATA method, 165, 166, 171
GET_LONGTEXT method, 142, 148
GET_PERSISTENT method, 162
GET_TEXT method, 142, 148
Global class in Eclipse

activation message, 248

basic generated code, 245

class outline, 247

INDEX

class-relevant tabs, 248
complete code, 247
dialog box, 245
DISP_NUM method, 246
help popup, 246

SE24 transaction, 248
syntax error, 246

LJ,K

Inheritance, 61

casting (see Casting and
polymorphism)
FOOTBALL_CLUB attribute, 64, 65
global subclasses
attributes, 81, 84
constructor code, 86
creating constructor, 85
DISPLAY_PLAYER_DETAILS
method, 82
instance constructor, 85
Methods tab, 84
player class, 81, 83
redefined method, 86, 87
HEIGHT attribute, 65
instance constructor, 66-73
redefining methods, 66
subclass, 61, 63
superclass, 61, 63
tree, 62

Inline declarations, 43, 44
Interfaces, 87

component selector, 88
composite, 87

creating global, 91-94
PLAYER class, 88
program output, 90, 91
relevant methods, 89

263

INDEX

Internal tables as method
parameters, 39-42

IS INSTANCE OF (predicate
expression), 20-22

L

Local class in Eclipse
add implementation option, 251
code creation, 249
options, 250
Rename first_test option, 250
second method implementation, 251

M, N
Method chaining, 51, 52, 183, 184
Methods/method calls, 12, 13

O

Object creation
CREATE OBJECT statement, 173, 175
instance-method calls, 10-12
MYOB]J variable, 174, 175
NEW operator, 27-30, 173, 174
syntax error, 176, 177
Object-oriented transactions
class creator, 185, 186
CREATOR class, 186
DISPLAY_LIST_OF_PLAYERS
method, 186
options, 187
output, 188
program code, 189-192
settings, 188
transaction code, 186
Object reference variable, 26, 27

264

Object Text Repository (OTR), 138
ON CHANGE OF statement, 210
Overwrite-Exit method, 199, 206-208

P,Q

Persistent classes
attributes, 159, 160
class actor, 159
class/attributes, 158, 159
class builder, 155
class option, 155, 156
database table, 154, 155
friend class, 160
mapping editor, 157
methods, 156
PLAYERID, 157, 158
table fields, 157
table specification, 156, 157

Polymorphism, 75

PostExit method, 199
code, 204, 205
output, 205

PreExit method, 199
column, 203
editor, 203
enhancement operations menu, 202
output, 204

R

RAISE EXCEPTION statement, 139
Refactoring assistant
advantages, 192
attributes, 193
class to associated class, 198, 199
class to interface, 195-198
class to subclass, 194, 195

S

SET_DATA method, 164, 165, 169
SET_OPTIMIZE method, 179
Shared Memory
objects
active version, 168
area class, 163, 168
attributes, 167
build version, 168
client-specific, 167
reading and writing data, 164
root class, 163, 164
Shared Memory-Enabled
indicator, 164
SHMA, 166, 167
read data
ATTACH_FOR_READ, 171
GET_DATA method, 171
writing code
area instances, 170
ATTACH_FOR_WRITE method, 169
CREATE OBJECT, 169
SET_DATA method, 169
SHMM, 170
Singleton classes
BEST_PLAYER class, 150, 152-154
CREATE OBJECT statement, 151
CREATE PRIVATE, 150
DISPLAY_PLAYER_DETAILS
method, 152
Square method, 221, 223
Statements/constructs not in ABAP
CASE..ENDCASE block, 210
CASE statement, 210
database tables, 213
data types, 211
Field-symbols, 211

INDEX

internal tables, 212
logical operators, 209
naming variables, 208, 209
ON CHANGE OF statement, 210
TYPES statement, 210, 211
untyped method parameters, 213, 214
Static components, 13-15
DEFERRED variant, 15
PLAYER class, 15
PLAYERS_LIST, 17-19
TEMP_PLAYER reference variable, 17
Static constructor, 36-38
Subclass, 3, 61
Superclass, 3, 61

T
TRY...ENDTRY block, 139

U

Unit test-driven development
ABAP unit browser, 234-237
advantages, 215, 219, 220
#AU Risk_Level and #AU Duration, 221
CHECK_SQUARE method, 221
CL_ABAP_UNIT_ASSERT (see

CL_ABAP_UNIT_ASSERT class)

cycle, 217
definition, unit class, 219
duration, 218
exceptions, 233, 234
execution, 224-227
expected and actual value, 217
framework, 217
implementation, 222, 223
and integration stages, 216
levels, 216

265

INDEX

Unit test-driven development (cont.) result display, 226
outcomes, Code Inspector, 230-233 status message, 224
production and test methods, 217 square function, 225

production class, 221
requirements, complete
code, 223, 224 Vv
risk level, 218 Visibility levels, 3
simple code, 221
square method, 221

W XY,Z

Unit tests, execution

ABAP transactions, 224 Wizard in Eclipse
ASSERT_EQUALS method, 226 methodl, 252

coverage, 225 method2, 254

error messages, 226 method call, 254

failures and messages window, 226 method signature, 252, 253
menu option, 225 Quick Fix feature, 252

266

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Creating Classes and Objects
	Classes and Their Components
	Local Classes
	Global Classes
	Object Creation and Instance-Method Calls
	Methods and Method Calls
	Static Components
	A Full-Fledged Demo
	The IS INSTANCE OF Predicate Expression
	Deferred Class Specification

	Summary

	Chapter 2: Class Components in Detail
	Finding the Type of an Object Reference Variable: Revisited
	Using the New Operator to Create an Object
	Defining Our Own Types in Classes
	Constants in Classes
	Dictionary Types for Global Classes
	Static Constructor
	Method Revisited
	Specifying Internal Tables as Method Parameters

	Inline Declarations While Calling Methods
	Functional Methods
	Specifying Exporting and Returning Parameters for Functional Methods
	Methods Calling Other Methods
	Method Chaining
	Event Handling in ABAP Objects
	A Working Example
	Triggering and Handling the PLAYER_CREATED Event
	Summary

	Chapter 3: More on Object-Oriented ABAP
	Inheritance: Super and Subclasses
	Redefining Methods
	Instance Constructors
	Working Example

	Casting and Polymorphism
	Global Subclasses and Redefinition of Methods
	Interfaces
	Creating Global Interfaces

	Abstract and Final Classes
	Friendships
	Summary

	Chapter 4: Class Builder
	Transaction SE80
	The Class Builder and Its Features
	Class Builder Tabs
	Useful Functions of the Class Builder
	Where-Used Lists
	Useful Buttons on the SE24 Tab

	Class Browser
	Testing Classes in SE24
	Testing a Static Method

	Testing Instance Methods
	Testing Methods Using Table Parameters
	Summary

	Chapter 5: Exceptions, Shared, and Persistent Objects
	Exception Handling and Exception Classes
	RAISE and TRY .. ENDTRY Statements
	Resumable Exceptions
	Creating an Exception Class
	Public Instantiation

	Using Message Classes for Exception Class Text
	A Working Example

	Singleton Classes
	Persistent Objects
	Storing and Reading Persistent Objects

	Shared Memory Objects
	The GET_DATA and SET_DATA Methods
	Additional Settings

	Versioning Switched On

	Writing and Reading Data Into Shared Memory
	Summary

	Chapter 6: More Topics in Object-Oriented ABAP
	Using the New Operator to Create an Object
	ALV Object Model
	Adding Header Texts to ALV Columns

	Method Chaining
	Object-Oriented Transactions
	Refactoring Assistant
	Moving Components from a Class to its Direct Subclass
	Moving Components from a Class to an Implemented Interface
	Moving Components from a Class to an Associated Class

	Enhancement of Classes
	Example 1. PreExit and PostExit Methods
	Example 2. Overwrite Method

	Statements/Constructs Not Allowed in Object-Oriented ABAP
	Naming Variables
	Using Logical Operators
	CASE Statement Usage
	Using ON CHANGE OF
	Restrictions to Using the TYPES Statement
	Restrictions to Using DATA Declarations and Constants
	Untyped Field-Symbols
	Internal Table-Related Statements
	Database Table-Related Statements
	Untyped Method Parameters

	Summary

	Chapter 7: ABAP Unit Test-Driven Development
	Testing Need and Phases
	Basics of ABAP Unit Test Driven Development
	Unit Test Benefits
	Demo Example
	Executing a Unit Test
	Methods in CL_ABAP_UNIT_ASSERT for Testing
	ABAP Unit Results in Code Inspector
	Exceptions in ABAP Unit Tests
	Enabling and Executing ABAP Unit Browser
	Summary

	Chapter 8: Creating ABAP Classes Using Eclipse
	Installing Eclipse and Loading ABAP Perspective
	Creating an ABAP Project in Eclipse
	Creating a Global Class in Eclipse
	Creating a Local Class in Eclipse
	Method Wizard in Eclipse
	Unit Test Templates Using Eclipse
	Modifying Templates
	Summary

	Index

