

SAP	Data	Services	4.x	Cookbook

Table	of	Contents
SAP	Data	Services	4.x	Cookbook

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more
Why	subscribe?
Free	access	for	Packt	account	holders
Instant	updates	on	new	Packt	books

Preface

What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Sections
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Conventions
Reader	feedback
Customer	support
Downloading	the	example	code
Downloading	the	color	images	of	this	book
Errata
Piracy
Questions

1.	Introduction	to	ETL	Development

Introduction
Preparing	a	database	environment
Getting	ready
How	to	do	it…
How	it	works…

Creating	a	source	system	database
How	to	do	it…
How	it	works…
There’s	more…

Defining	and	creating	staging	area	structures
How	to	do	it…

Flat	files

RDBMS	tables
How	it	works…

Creating	a	target	data	warehouse
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

2.	Configuring	the	Data	Services	Environment

Introduction
Creating	IPS	and	Data	Services	repositories
Getting	ready…
How	to	do	it…
How	it	works…
See	also

Installing	and	configuring	Information	Platform	Services
Getting	ready…
How	to	do	it…
How	it	works…

Installing	and	configuring	Data	Services
Getting	ready…
How	to	do	it…
How	it	works…

Configuring	user	access
Getting	ready…
How	to	do	it…
How	it	works…

Starting	and	stopping	services
How	to	do	it…
How	it	works…
See	also

Administering	tasks
How	to	do	it…
How	it	works…
See	also

Understanding	the	Designer	tool
Getting	ready…
How	to	do	it…
How	it	works…

Executing	ETL	code	in	Data	Services
Validating	ETL	code
Template	tables
Query	transform	basics
The	HelloWorld	example

3.	Data	Services	Basics	–	Data	Types,	Scripting	Language,	and	Functions

Introduction
Creating	variables	and	parameters
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

Creating	a	script
How	to	do	it…
How	it	works…

Using	string	functions
How	to	do	it…

Using	string	functions	in	the	script
How	it	works…
There’s	more…

Using	date	functions
How	to	do	it…

Generating	current	date	and	time
Extracting	parts	from	dates

How	it	works…
There’s	more…

Using	conversion	functions
How	to	do	it…
How	it	works…
There’s	more…

Using	database	functions
How	to	do	it…

key_generation()
total_rows()
sql()

How	it	works…
Using	aggregate	functions
How	to	do	it…
How	it	works…

Using	math	functions
How	to	do	it…
How	it	works…
There’s	more…

Using	miscellaneous	functions
How	to	do	it…
How	it	works…

Creating	custom	functions
How	to	do	it…
How	it	works…
There’s	more…

4.	Dataflow	–	Extract,	Transform,	and	Load

Introduction
Creating	a	source	data	object
How	to	do	it…
How	it	works…
There’s	more…

Creating	a	target	data	object
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

Loading	data	into	a	flat	file
How	to	do	it…
How	it	works…
There’s	more…

Loading	data	from	a	flat	file
How	to	do	it…
How	it	works…
There’s	more…

Loading	data	from	table	to	table	–	lookups	and	joins
How	to	do	it…
How	it	works…

Using	the	Map_Operation	transform
How	to	do	it…
How	it	works…

Using	the	Table_Comparison	transform
Getting	ready
How	to	do	it…
How	it	works…

Exploring	the	Auto	correct	load	option
Getting	ready
How	to	do	it…
How	it	works…

Splitting	the	flow	of	data	with	the	Case	transform
Getting	ready
How	to	do	it…
How	it	works…

Monitoring	and	analyzing	dataflow	execution
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

5.	Workflow	–	Controlling	Execution	Order

Introduction
Creating	a	workflow	object
How	to	do	it…

How	it	works…
Nesting	workflows	to	control	the	execution	order
Getting	ready
How	to	do	it
How	it	works…

Using	conditional	and	while	loop	objects	to	control	the	execution	order
Getting	ready
How	to	do	it…
How	it	works…
There	is	more…

Using	the	bypassing	feature
Getting	ready…
How	to	do	it…
How	it	works…
There	is	more…

Controlling	failures	–	try-catch	objects
How	to	do	it…
How	it	works…

Use	case	example	–	populating	dimension	tables
Getting	ready
How	to	do	it…
How	it	works…

Mapping
Dependencies
Development
Execution	order
Testing	ETL

Preparing	test	data	to	populate	DimSalesTerritory
Preparing	test	data	to	populate	DimGeography

Using	a	continuous	workflow
How	to	do	it…
How	it	works…
There	is	more…
Peeking	inside	the	repository	–	parent-child	relationships	between	Data

Services	objects
Getting	ready
How	to	do	it…
How	it	works…

Get	a	list	of	object	types	and	their	codes	in	the	Data	Services
repository

Display	information	about	the	DF_Transform_DimGeography
dataflow

Display	information	about	the	SalesTerritory	table	object
See	the	contents	of	the	script	object

6.	Job	–	Building	the	ETL	Architecture

Introduction
Projects	and	jobs	–	organizing	ETL
Getting	ready
How	to	do	it…
How	it	works…

Hierarchical	object	view
History	execution	log	files
Executing/scheduling	jobs	from	the	Management	Console

Using	object	replication
How	to	do	it…
How	it	works…

Migrating	ETL	code	through	the	central	repository
Getting	ready
How	to	do	it…
How	it	works…

Adding	objects	to	and	from	the	Central	Object	Library
Comparing	objects	between	the	Local	and	Central	repositories

There	is	more…
Migrating	ETL	code	with	export/import
Getting	ready
How	to	do	it…

Import/Export	using	ATL	files
Direct	export	to	another	local	repository

How	it	works…
Debugging	job	execution
Getting	ready…
How	to	do	it…
How	it	works…

Monitoring	job	execution
Getting	ready
How	to	do	it…
How	it	works…

Building	an	external	ETL	audit	and	audit	reporting
Getting	ready…
How	to	do	it…
How	it	works…

Using	built-in	Data	Services	ETL	audit	and	reporting	functionality
Getting	ready
How	to	do	it…
How	it	works…

Auto	Documentation	in	Data	Services
How	to	do	it…
How	it	works…

7.	Validating	and	Cleansing	Data

Introduction

Creating	validation	functions
Getting	ready
How	to	do	it…
How	it	works…

Using	validation	functions	with	the	Validation	transform
Getting	ready
How	to	do	it…
How	it	works…

Reporting	data	validation	results
Getting	ready
How	to	do	it…
How	it	works…

Using	regular	expression	support	to	validate	data
Getting	ready
How	to	do	it…
How	it	works…

Enabling	dataflow	audit
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

Data	Quality	transforms	–	cleansing	your	data
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

8.	Optimizing	ETL	Performance

Introduction
Optimizing	dataflow	execution	–	push-down	techniques
Getting	ready
How	to	do	it…
How	it	works…

Optimizing	dataflow	execution	–	the	SQL	transform
How	to	do	it…
How	it	works…

Optimizing	dataflow	execution	–	the	Data_Transfer	transform
Getting	ready
How	to	do	it…
How	it	works…

Why	we	used	a	second	Data_Transfer	transform	object
When	to	use	Data_Transfer	transform

There’s	more…
Optimizing	dataflow	readers	–	lookup	methods
Getting	ready
How	to	do	it…

Lookup	with	the	Query	transform	join
Lookup	with	the	lookup_ext()	function
Lookup	with	the	sql()	function

How	it	works…
Query	transform	joins
lookup_ext()
sql()
Performance	review

Optimizing	dataflow	loaders	–	bulk-loading	methods
How	to	do	it…
How	it	works…

When	to	enable	bulk	loading?
Optimizing	dataflow	execution	–	performance	options
Getting	ready
How	to	do	it…

Dataflow	performance	options
Source	table	performance	options
Query	transform	performance	options
lookup_ext()	performance	options
Target	table	performance	options

9.	Advanced	Design	Techniques

Introduction
Change	Data	Capture	techniques
Getting	ready

No	history	SCD	(Type	1)
Limited	history	SCD	(Type	3)
Unlimited	history	SCD	(Type	2)

How	to	do	it…
How	it	works…

Source-based	ETL	CDC
Target-based	ETL	CDC
Native	CDC

Automatic	job	recovery	in	Data	Services
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

Simplifying	ETL	execution	with	system	configurations
Getting	ready
How	to	do	it…
How	it	works…

Transforming	data	with	the	Pivot	transform
Getting	ready
How	to	do	it…
How	it	works…

10.	Developing	Real-time	Jobs

Introduction
Working	with	nested	structures
Getting	ready
How	to	do	it…
How	it	works…
There	is	more…

The	XML_Map	transform
Getting	ready
How	to	do	it…
How	it	works…

The	Hierarchy_Flattening	transform
Getting	ready
How	to	do	it…

Horizontal	hierarchy	flattening
Vertical	hierarchy	flattening

How	it	works…
Querying	result	tables

Configuring	Access	Server
Getting	ready
How	to	do	it…
How	it	works…

Creating	real-time	jobs
Getting	ready

Installing	SoapUI
How	to	do	it…
How	it	works…

11.	Working	with	SAP	Applications

Introduction
Loading	data	into	SAP	ERP
Getting	ready
How	to	do	it…
How	it	works…

IDoc
Monitoring	IDoc	load	on	the	SAP	side
Post-load	validation	of	loaded	data

There	is	more…

12.	Introduction	to	Information	Steward

Introduction
Exploring	Data	Insight	capabilities
Getting	ready
How	to	do	it…

Creating	a	connection	object
Profiling	the	data

Viewing	profiling	results
Creating	a	validation	rule
Creating	a	scorecard

How	it	works…
Profiling
Rules
Scorecards

There	is	more…
Performing	Metadata	Management	tasks
Getting	ready
How	to	do	it…
How	it	works…

Working	with	the	Metapedia	functionality
How	to	do	it…
How	it	works…

Creating	a	custom	cleansing	package	with	Cleansing	Package	Builder
Getting	ready
How	to	do	it…
How	it	works…
There	is	more…

Index

SAP	Data	Services	4.x	Cookbook

SAP	Data	Services	4.x	Cookbook
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	November	2015

Production	reference:	1261115

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78217-656-5

www.packtpub.com

http://www.packtpub.com

Credits
Author

Ivan	Shomnikov

Reviewers

Andrés	Aguado	Aranda

Dick	Groenhof

Bernard	Timbal	Duclaux	de	Martin

Sridhar	Sunkaraneni

Meenakshi	Verma

Commissioning	Editor

Vinay	Argekar

Acquisition	Editors

Shaon	Basu

Kevin	Colaco

Content	Development	Editor

Merint	Mathew

Technical	Editor

Humera	Shaikh

Copy	Editors

Brandt	D’mello

Shruti	Iyer

Karuna	Narayanan

Sameen	Siddiqui

Project	Coordinator

Francina	Pinto

Proofreader

Safis	Editing

Indexer

Monica	Ajmera	Mehta

Production	Coordinator

Nilesh	Mohite

Cover	Work

Nilesh	Mohite

About	the	Author
Ivan	Shomnikov	is	an	SAP	analytics	consultant	specializing	in	the	area	of	Extract,
Transform,	and	Load	(ETL).	He	has	in-depth	knowledge	of	the	data	warehouse	life	cycle
processes	(DWH	design	and	ETL	development)	and	extensive	hands-on	experience	with
both	the	SAP	Enterprise	Information	Management	(Data	Services)	technology	stack	and
the	SAP	BusinessObjects	reporting	products	stack	(Web	Intelligence,	Designer,
Dashboards).

Ivan	has	been	involved	in	the	implementation	of	complex	BI	solutions	on	the	SAP
BusinessObjects	Enterprise	platform	in	major	New	Zealand	companies	across	different
industries.	He	also	has	a	strong	background	as	an	Oracle	database	administrator	and
developer.

This	is	my	first	experience	of	writing	a	book,	and	I	would	like	to	thank	my	partner	and	my
son	for	their	patience	and	support.

About	the	Reviewers
Andrés	Aguado	Aranda	is	a	26-year-old	computer	engineer	from	Spain.	His	experience
has	given	him	a	really	technical	background	in	databases,	data	warehouse,	and	business
intelligence.

Andrés	has	worked	in	different	business	sectors,	such	as	banking,	public	administrations,
and	energy,	since	2012	in	data-related	positions.

This	book	is	my	first	stint	as	a	reviewer,	and	it	has	been	really	interesting	and	valuable	to
me,	both	personally	and	professionally.

I	would	like	to	thank	my	family	and	friends	for	always	being	willing	to	help	me	when	I
needed.	Also,	I	would	like	to	thank	to	my	former	coworker	and	currently	friend,	Antonio
Martín-Cobos,	a	BI	reporting	analyst	who	really	helped	me	get	this	opportunity.

Dick	Groenhof	started	his	professional	career	in	1990	after	finishing	his	studies	in
business	information	science	at	Vrije	Universiteit	Amsterdam.	Having	worked	as	a
software	developer	and	service	management	consultant	for	the	first	part	of	his	career,	he
became	active	as	a	consultant	in	the	business	intelligence	arena	since	2005.

Dick	has	been	a	lead	consultant	on	numerous	SAP	BI	projects,	designing	and
implementing	successful	solutions	for	his	customers,	who	regard	him	as	a	trusted	advisor.
His	core	competences	include	both	frontend	(such	as	Web	Intelligence,	Crystal	Reports,
and	SAP	Design	Studio)	and	backend	tools	(such	as	SAP	Data	Services	and	Information
Steward).	Dick	is	an	early	adopter	of	the	SAP	HANA	platform,	creating	innovative
solutions	using	HANA	Information	Views,	Predictive	Analysis	Library,	and	SQLScript.

He	is	a	Certified	Application	Associate	in	SAP	HANA	and	SAP	BusinessObjects	Web
Intelligence	4.1.	Currently,	Dick	works	as	senior	HANA	and	big	data	consultant	for	a
highly	respected	and	innovative	SAP	partner	in	the	Netherlands.

He	is	a	strong	believer	in	sharing	his	knowledge	with	regard	to	SAP	HANA	and	SAP	Data
Services	by	writing	blogs	(at	http://www.dickgroenhof.com	and
http://www.thenextview.nl/blog)	and	speaking	at	seminars.

Dick	is	happily	married	to	Emma	and	is	a	very	proud	father	of	his	son,	Christiaan,	and
daughter,	Myrthe.

Bernard	Timbal	Duclaux	de	Martin	is	a	business	intelligence	architect	and	technical
expert	with	more	than	15	years	of	experience.	He	has	been	involved	in	several	large
business	intelligence	system	deployments	and	administration	in	banking	and	insurance
companies.	In	addition,	Bernard	has	skills	in	modeling,	data	extraction,	transformation,
loading,	and	reporting	design.	He	has	authored	four	books,	including	two	regarding	SAP
BusinessObjects	Enterprise	administration.

Meenakshi	Verma	has	been	a	part	of	the	IT	industry	since	1998.	She	is	an	experienced
business	systems	specialist	having	the	CBAP	and	TOGAF	certifications.	Meenakshi	is
well-versed	with	a	variety	of	tools	and	techniques	used	for	business	analysis,	such	as	SAP
BI,	SAP	BusinessObjects,	Java/J2EE	technologies,	and	others.	She	is	currently	based	in
Toronto,	Canada,	and	works	with	a	leading	utility	company.

http://www.dickgroenhof.com
http://www.thenextview.nl/blog

Meenakshi	has	helped	technically	review	many	books	published	by	Packt	Publishing
across	various	enterprise	solutions.	Her	earlier	works	include	JasperReports	for	Java
Developers,	Java	EE	5	Development	using	GlassFish	Application	Server,	Practical	Data
Analysis	and	Reporting	with	BIRT,	EJB	3	Developer	Guide,	Learning	Dojo,	and	IBM
WebSphere	Application	Server	8.0	Administration	Guide.

I’d	like	to	thank	my	father,	Mr.	Bhopal	Singh,	and	mother,	Mrs.	Raj	Bala,	for	laying	a
strong	foundation	in	me	and	giving	me	their	unconditional	love	and	support.	I	also	owe
thanks	and	gratitude	to	my	husband,	Atul	Verma,	for	his	encouragement	and	support
throughout	the	reviewing	of	this	book	and	many	others;	my	ten-year-old	son,	Prieyaansh
Verma,	for	giving	me	the	warmth	of	his	love	despite	my	hectic	schedules;	and	my	brother,
Sachin	Singh,	for	always	being	there	for	me.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
	

Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Instant	updates	on	new	Packt	books
Get	notified!	Find	out	when	new	books	are	published	by	following	@PacktEnterprise	on
Twitter	or	the	Packt	Enterprise	Facebook	page.

Preface
SAP	Data	Services	delivers	an	enterprise-class	solution	to	build	data	integration	processes
as	well	as	perform	data	quality	and	data	profiling	tasks,	allowing	you	to	govern	your	data
in	a	highly-efficient	way.

Some	of	the	tasks	that	Data	Services	helps	accomplish	include:	migration	of	the	data
between	databases	or	applications,	extracting	data	from	various	source	systems	into	flat
files,	data	cleansing,	data	transformation	using	either	common	database-like	functions	or
complex	custom-built	functions	that	are	created	using	an	internal	scripting	language,	and
of	course,	loading	data	into	your	data	warehouse	or	external	systems.	SAP	Data	Services
has	an	intuitive	user-friendly	graphical	interface,	allowing	you	to	access	all	its	powerful
Extract,	Transform,	and	Load	(ETL)	capabilities	from	the	single	Designer	tool.	However,
getting	started	with	SAP	Data	Services	can	be	difficult,	especially	for	people	who	have
little	or	no	experience	in	ETL	development.	The	goal	of	this	book	is	to	guide	you	through
easy-to-understand	examples	of	building	your	own	ETL	architecture.	The	book	can	also
be	used	as	a	reference	to	perform	specific	tasks	as	it	provides	real-world	examples	of
using	the	tool	to	solve	data	integration	problems.

What	this	book	covers
Chapter	1,	Introduction	to	ETL	Development,	explains	what	Extract,	Transform,	and	Load
(ETL)	processes	are,	and	what	role	Data	Services	plays	in	ETL	development.	It	includes
the	steps	to	configure	the	database	environment	used	in	recipes	of	the	book.

Chapter	2,	Configuring	the	Data	Services	Environment,	explains	how	to	install	and
configure	all	Data	Services	components	and	applications.	It	introduces	the	Data	Services
development	GUI—the	Designer	tool—with	the	simple	example	of	“Hello	World”	ETL
code.

Chapter	3,	Data	Services	Basics	–	Data	Types,	Scripting	Language,	and	Functions,
introduces	the	reader	to	Data	Services	internal	scripting	language.	It	explains	various
categories	of	functions	that	are	available	in	Data	Services,	and	gives	the	reader	an	example
of	how	scripting	language	can	be	used	to	create	custom	functions.

Chapter	4,	Dataflow	–	Extract,	Transform,	and	Load,	introduces	the	most	important
processing	unit	in	Data	Service,	dataflow	object,	and	the	most	useful	types	of
transformations	that	can	be	performed	inside	a	dataflow.	It	gives	the	reader	examples	of
extracting	data	from	source	systems	and	loading	data	into	target	data	structures.

Chapter	5,	Workflow	–	Controlling	Execution	Order,	introduces	another	Data	Services
object,	workflow,	which	is	used	to	group	other	workflows,	dataflows,	and	script	objects
into	execution	units.	It	explains	the	conditional	and	loop	structures	available	in	Data
Services.

Chapter	6,	Job	–	Building	the	ETL	Architecture,	brings	the	reader	to	the	job	object	level
and	reviews	the	steps	used	in	the	development	process	to	make	a	successful	and	robust
ETL	solution.	It	covers	the	monitoring	and	debugging	functionality	available	in	Data
Services	and	embedded	audit	features.

Chapter	7,	Validating	and	Cleansing	Data,	introduces	the	concepts	of	validating	methods,
which	can	be	applied	to	the	data	passing	through	the	ETL	processes	in	order	to	cleanse
and	conform	it	according	to	the	defined	Data	Quality	standards.

Chapter	8,	Optimizing	ETL	Performance,	is	one	of	the	first	advanced	chapters,	which
starts	explaining	complex	ETL	development	techniques.	This	particular	chapter	helps	the
user	understand	how	the	existing	processes	can	be	optimized	further	in	Data	Services	in
order	to	make	sure	that	they	run	quickly	and	efficiently,	consuming	as	less	computer
resources	as	possible	with	the	least	amount	of	execution	time.

Chapter	9,	Advanced	Design	Techniques,	guides	the	reader	through	advanced	data
transformation	techniques.	It	introduces	concepts	of	Change	Data	Capture	methods	that
are	available	in	Data	Services,	pivoting	transformations,	and	automatic	recovery	concepts.

Chapter	10,	Developing	Real-time	Jobs,	introduces	the	concept	of	nested	structures	and
the	transforms	that	work	with	nested	structures.	It	covers	the	mains	aspects	of	how	they
can	be	created	and	used	in	Data	Services	real-time	jobs.	It	also	introduces	new	a	Data
Services	component—Access	Server.

Chapter	11,	Working	with	SAP	Applications,	is	dedicated	to	the	topic	of	reading	and

loading	data	from	SAP	systems	with	the	example	of	the	SAP	ERP	system.	It	presents	the
real-life	use	case	of	loading	data	into	the	SAP	ERP	system	module.

Chapter	12,	Introduction	to	Information	Steward,	covers	another	SAP	product,
Information	Steward,	which	accompanies	Data	Services	and	provides	a	comprehensive
view	of	the	organization’s	data,	and	helps	validate	and	cleanse	it	by	applying	Data	Quality
methods.

What	you	need	for	this	book
To	use	the	examples	given	in	this	book,	you	will	need	to	download	and	make	sure	that	you
are	licensed	to	use	the	following	software	products:

	
SQL	Server	Express	2012
SAP	Data	Services	4.2	SP4	or	higher
SAP	Information	Steward	4.2	SP4	or	higher
SAP	ERP	(ECC)
SoapUI—5.2.0

Who	this	book	is	for
The	book	will	be	useful	to	application	developers	and	database	administrators	who	want	to
get	familiar	with	ETL	development	using	SAP	Data	Services.	It	can	also	be	useful	to	ETL
developers	or	consultants	who	want	to	improve	and	extend	their	knowledge	of	this	tool.
The	book	can	also	be	useful	to	data	and	business	analysts	who	want	to	take	a	peek	at	the
backend	of	BI	development.	The	only	requirement	of	this	book	is	that	you	are	familiar
with	the	SQL	language	and	general	database	concepts.	Knowledge	of	any	kind	of
programming	language	will	be	a	benefit	as	well.

Sections
In	this	book,	you	will	find	several	headings	that	appear	frequently	(Getting	ready,	How	to
do	it,	How	it	works,	There’s	more,	and	See	also).

To	give	clear	instructions	on	how	to	complete	a	recipe,	we	use	these	sections	as	follows:

Getting	ready
This	section	tells	you	what	to	expect	in	the	recipe,	and	describes	how	to	set	up	any
software	or	any	preliminary	settings	required	for	the	recipe.

How	to	do	it…
This	section	contains	the	steps	required	to	follow	the	recipe.

How	it	works…
This	section	usually	consists	of	a	detailed	explanation	of	what	happened	in	the	previous
section.

There’s	more…
This	section	consists	of	additional	information	about	the	recipe	in	order	to	make	the	reader
more	knowledgeable	about	the	recipe.

See	also
This	section	provides	helpful	links	to	other	useful	information	for	the	recipe.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“We	can
include	other	contexts	through	the	use	of	the	include	directive.”

A	block	of	code	is	set	as	follows:
select	*	

from	dbo.al_langtext	txt

		JOIN	dbo.al_parent_child	pc

		on	txt.parent_objid	=	pc.descen_obj_key

where		

		pc.descen_obj	=	‘WF_continuous’;

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:
AlGUIComment	(“ActaName_1”	=	‘RSavedAfterCheckOut’,	“ActaName_2”	=	‘RDate_created’,	“ActaName_3”	=	‘RDate_modified’,	“ActaValue_1”	=	‘YES’,	“ActaValue_2”	=	‘Sat	Jul	04	16:52:33	2015’,	“ActaValue_3”	=	‘Sun	Jul	05	11:18:02	2015’,	“x”	=	’-1’,	“y”	=	’-1’)

CREATE	PLAN	WF_continuous::‘7bb26cd4-3e0c-412a-81f3-b5fdd687f507’()

DECLARE

		$l_Directory	VARCHAR(255)	;

		$l_File	VARCHAR(255)	;

BEGIN

	AlGUIComment	(“UI_DATA_XML”	=	’<UIDATA><MAINICON><LOCATION><X>0</X>

<Y>0</Y></LOCATION><SIZE><CX>216</CX><CY>-179</CY></SIZE></MAINICON>

<DESCRIPTION><LOCATION><X>0</X><Y>-190</Y></LOCATION><SIZE><CX>200</CX>

<CY>200</CY></SIZE><VISIBLE>0</VISIBLE></DESCRIPTION></U

IDATA>’,	“ui_display_name”	=	‘script’,	“ui_script_text”	=	’$l_Directory	=	'C:\\AW\\Files\\';

$l_File	=	'flag.txt';

$g_count	=	$g_count	+	1;

print('Execution	#'||$g_count);

print('Starting		'||workflow_name()||'	…');

sleep(10000);

print('Finishing	'||workflow_name()||'	…');’,	“x”	=	‘116’,	“y”	=	’-175’)

BEGIN_SCRIPT

$l_Directory	=	‘C:\AW\Files\’;$l_File	=	‘flag.txt’;$g_count	=	($g_count	+	1);print((‘Execution	#’	||	$g_count));print(((‘Starting		’	||	workflow_name())	||	’	…’));sleep(10000);print(((‘Finishing	’	||	workflow_name())	||	’	…’));END

END

	SET	(“loop_exit”	=	‘fn_check_flag($l_Directory,	$l_File)’,	“loop_exit

_option”	=	‘yes’,	“restart_condition”	=	‘no’,	“restart_count”	=	‘10’,	“restart_count_option”	=	‘yes’,	“workflow_type”	=	‘Continuous’)

Any	command-line	input	or	output	is	written	as	follows:

setup.exe	SERVERINSTALL=Yes

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Open	the	workflow
properties	again	to	edit	the	continuous	options	using	the	Continuous	Options	tab.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from:
https://www.packtpub.com/sites/default/files/downloads/6565EN_Graphics.pdf.

https://www.packtpub.com/sites/default/files/downloads/6565EN_Graphics.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Introduction	to	ETL	Development
In	this	chapter,	we	will	cover:

	
Preparing	a	database	environment
Creating	a	source	system	database
Defining	and	creating	staging	area	structures
Creating	a	target	data	warehouse

Introduction
Simply	put,	Extract-Transform-Load	(ETL)	is	an	engine	of	any	data	warehouse.	The
nature	of	the	ETL	system	is	straightforward:

	
Extract	data	from	operational	databases/systems
Transform	data	according	to	the	requirements	of	your	data	warehouse	so	that	the
different	pieces	of	data	can	be	used	together
Apply	data	quality	transformation	methods	in	order	to	cleanse	data	and	ensure	that	it
is	reliable	before	it	gets	loaded	into	a	data	warehouse
Load	conformed	data	into	a	data	warehouse	so	that	end	users	can	access	it	via
reporting	tools,	using	client	applications	directly,	or	with	the	help	of	SQL-based
query	tools

While	your	data	warehouse	delivery	structures	or	data	marts	represent	the	frontend	or,	in
other	words,	what	users	see	when	they	access	the	data,	the	ETL	system	itself	is	a	backbone
backend	solution	that	does	all	the	work	of	moving	data	and	getting	it	ready	in	time	for
users	to	use.	Building	the	ETL	system	can	be	a	really	challenging	task,	and	though	it	is	not
part	of	the	data	warehouse	data	structures,	it	is	definitely	the	key	factor	in	defining	the
success	of	the	data	warehouse	solution	as	a	whole.	In	the	end,	who	wants	to	use	a	data
warehouse	where	the	data	is	unreliable,	corrupted,	or	sometimes	even	missing?	This	is
exactly	what	ETL	is	responsible	for	getting	right.

The	following	data	structure	types	most	often	used	in	ETL	development	to	move	data
between	sources	and	targets	are	flat	files,	XML	datasets,	and	DBMS	tables,	both	in
normalized	schemas	and	dimensional	data	models.	When	choosing	an	ETL	solution,	you
might	face	two	simple	choices:	building	a	handcoded	ETL	solution	or	using	a	commercial
one.

The	following	are	some	advantages	of	a	handcoded	ETL	solution:

	
A	programming	language	allows	you	to	build	your	own	sophisticated	transformations
You	are	more	flexible	in	building	the	ETL	architecture	as	you	are	not	limited	by	the
vendor’s	ETL	abilities
Sometimes,	it	can	be	a	cheap	way	of	building	a	few	simplistic	ETL	processes,

whereas	buying	an	ETL	solution	from	a	vendor	can	be	overkill
You	do	not	have	to	spend	time	learning	the	commercial	ETL	solution’s	architecture
and	functionality

Here	are	some	advantages	of	a	commercial	ETL	solution:

	
This	is	more	often	a	simpler,	faster,	and	cheaper	development	option	as	a	variety	of
existing	tools	allow	you	to	build	a	very	sophisticated	ETL	architecture	quickly
You	do	not	have	to	be	a	professional	programmer	to	use	the	tool
It	automatically	manages	ETL	metadata	by	collecting,	storing,	and	presenting	it	to	the
ETL	developer,	which	is	another	important	aspect	of	any	ETL	solution
It	has	a	huge	range	of	additional	ready-to-use	functionality,	from	built-in	schedulers
to	various	connectors	to	existing	systems,	built-in	data	lineages,	impact	analysis
reports,	and	many	others

In	the	majority	of	DWH	projects,	the	commercial	ETL	solution	from	a	specific	vendor,	in
spite	of	the	higher	immediate	cost,	eventually	saves	you	a	significant	amount	of	money	on
the	development	and	maintenance	of	ETL	code.

SAP	Data	Services	is	an	ETL	solution	provided	by	SAP	and	is	part	of	the	Enterprise
Information	Management	product	stack,	which	also	includes	SAP	Information	Steward;
we	will	review	this	in	one	of	the	last	chapters	of	this	book.

Preparing	a	database	environment
This	recipe	will	lead	you	through	the	further	steps	of	preparing	the	working	environment,
such	as	preparing	a	database	environment	to	be	utilized	by	ETL	processes	as	a	source	and
staging	and	targeting	systems	for	the	migrated	and	transformed	data.

Getting	ready
To	start	the	ETL	development,	we	need	to	think	about	three	things:	the	system	that	we	will
source	the	data	from,	our	staging	area	(for	initial	extracts	and	as	a	preliminary	storage	for
data	during	subsequent	transformation	steps),	and	finally,	the	data	warehouse	itself,	to
which	the	data	will	be	eventually	delivered.

How	to	do	it…
Throughout	the	book,	we	will	use	a	64-bit	environment,	so	ensure	that	you	download	and
install	the	64-bit	versions	of	software	components.	Perform	the	following	steps:

	
1.	 Let’s	start	by	preparing	our	source	system.	For	quick	deployment,	we	will	choose	the

Microsoft	SQL	Server	2012	Express	database,	which	is	available	for	download	at
http://www.microsoft.com/en-nz/download/details.aspx?id=29062.

2.	 Click	on	the	Download	button	and	select	the	SQLEXPRWT_x64_ENU.exe	file	in
the	list	of	files	that	are	available	for	download.	This	package	contains	everything
required	for	the	installation	and	configuration	of	the	database	server:	the	SQL	Server
Express	database	engine	and	the	SQL	Server	Management	Studio	tool.

3.	 After	the	download	is	complete,	run	the	executable	file	and	follow	the	instructions	on
the	screen.	The	installation	of	SQL	Server	2012	Express	is	extremely	straightforward,
and	all	options	can	be	set	to	their	default	values.	There	is	no	need	to	create	any
default	databases	during	or	after	the	installation	as	we	will	do	it	a	bit	later.

http://www.microsoft.com/en-nz/download/details.aspx?id=29062

How	it	works…
After	you	have	completed	the	installation,	you	should	be	able	to	run	the	SQL	Server
Management	Studio	application	and	connect	to	your	database	engine	using	the	settings
provided	during	the	installation	process.

If	you	have	done	everything	correctly,	you	should	see	the	“green”	state	of	your	Database
Engine	connection	in	the	Object	Explorer	window	of	SQL	Server	Management	Studio,	as
shown	in	the	following	screenshot:

We	need	an	“empty”	installation	of	MS	SQL	Server	2012	Express	because	we	will	create
all	the	databases	we	need	manually	in	the	next	steps	of	this	chapter.	This	database	engine
installation	will	host	all	our	source,	stage,	and	target	relational	data	structures.	This	option
allows	us	to	easily	build	a	test	environment	that	is	perfect	for	learning	purposes	in	order	to
become	familiar	with	ETL	development	using	SAP	Data	Services.

In	a	real-life	scenario,	your	source	databases,	staging	area	database,	and	DWH
database/appliance	will	most	likely	reside	on	separate	server	hosts,	and	they	may
sometimes	be	from	different	vendors.	So,	the	role	of	SAP	Data	Services	is	to	link	them
together	in	order	to	migrate	data	from	one	system	to	another.

Creating	a	source	system	database
In	this	section,	we	will	create	our	source	database,	which	will	play	the	role	of	an
operational	database	that	we	will	pull	data	from	with	the	help	of	Data	Services	in	order	to
transform	the	data	and	deliver	it	to	a	data	warehouse.

How	to	do	it…
Luckily	for	us,	there	are	plenty	of	different	flavors	of	ready-to-use	databases	on	the	Web
nowadays.	Let’s	pick	one	of	the	most	popular	ones:	Adventure	Works	OLTP	for	SQL
Server	2012,	which	is	available	for	download	on	the	CodePlex	website.	Perform	the
following	steps:

	
1.	 Use	the	following	link	to	see	the	list	of	the	files	available	for	download:

https://msftdbprodsamples.codeplex.com/releases/view/55330

2.	 Click	on	the	AdventureWorks2012	Data	File	link,	which	should	download	the
AdventureWorks2012_Data.mdf	data	file.

3.	 When	the	download	is	complete,	copy	the	file	into	the	C:\AdventureWorks\
directory	(create	it	before	copying	if	necessary).

The	next	step	is	to	map	this	database	file	to	our	database	engine,	which	will	create	our
source	database.	To	do	this,	perform	the	following	steps:

	
1.	 Start	SQL	Server	Management	Studio.
2.	 Click	on	the	New	Query	button,	which	will	open	a	new	session	connection	to	a

master	database.
3.	 In	the	SQL	Query	window,	type	the	following	command	and	press	F5	to	execute	it:

CREATE	DATABASE	AdventureWorks_OLTP	ON	

(FILENAME	=	‘C:\AdventureWorks\AdventureWorks2012_Data.mdf’)	

FOR	ATTACH_REBUILD_LOG;

4.	 After	a	successful	command	execution	and	upon	refreshing	the	database	list	(using
F5),	you	should	be	able	to	see	the	AdventureWorks_OLTP	database	in	the	list	of	the
available	databases	in	the	Object	Explorer	window	of	SQL	Server	Management
Studio.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased
from	your	account	at	http://www.packtpub.com.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the
files	e-mailed	directly	to	you.

https://msftdbprodsamples.codeplex.com/releases/view/55330
http://www.packtpub.com
http://www.packtpub.com/support

How	it	works…
In	a	typical	scenario,	every	SQL	Server	database	consists	of	two	data	files:	a	database	file
and	a	transaction	log	file.	A	database	file	contains	actual	data	structures	and	data,	while	a
transaction	log	file	keeps	the	transactional	changes	applied	to	the	data.

As	we	only	downloaded	the	data	file,	we	had	to	execute	the	CREATE	DATABASE	command
with	a	special	ATTACH_REBUILD_LOG	clause,	which	automatically	creates	a	missing
transaction	log	file	so	that	the	database	could	be	successfully	deployed	and	opened.

Now,	our	source	database	is	ready	to	be	used	by	Data	Services	in	order	to	access,	browse,
and	extract	data	from	it.

There’s	more…
There	are	different	ways	to	deploy	test	databases.	This	mainly	depends	on	which	RDBMS
system	you	use.	Sometimes,	you	may	find	a	package	of	SQL	scripts	that	contains	the
commands	required	to	create	all	the	database	structures	and	commands	used	to	insert	data
into	these	structures.	This	option	may	be	useful	if	you	have	problems	with	attaching	the
downloaded	mdf	data	file	to	your	database	engine	or,	for	example,	if	you	find	the	SQL
scripts	created	for	SQL	Server	RDBMS	but	have	to	apply	them	to	the	Oracle	DB.	With
slight	modifications	to	the	command,	you	can	run	them	in	order	to	create	an	Oracle
database.

Explaining	RDBMS	technologies	lies	beyond	the	scope	of	this	book.	So,	if	you	are
looking	for	more	information	regarding	how	a	specific	RDBMS	system	works,	refer	to	the
official	documentation.

What	has	to	be	said	here	is	that	from	the	perspective	of	using	Data	Services,	it	does	not
matter	which	source	system	or	target	systems	you	use.	Data	Services	not	only	supports	the
majority	of	them,	but	it	also	creates	its	own	representation	of	the	source	and	target	objects;
this	way,	they	all	look	the	same	to	Data	Services	users	and	abide	by	the	same	rules	within
the	Data	Services	environment.	So,	you	really	do	not	have	to	be	a	DBA	or	database
developer	to	easily	connect	to	any	RDBMS	from	Data	Services.	All	that	is	required	is	a
knowledge	of	the	SQL	language	to	understand	the	principle	of	methods	that	Data	Services
uses	when	extracting	and	loading	data	or	creating	database	objects	for	you.

Defining	and	creating	staging	area	structures
In	this	recipe,	we	will	talk	about	ETL	data	structures	that	will	be	used	in	this	book.
Staging	structures	are	important	storage	areas	where	extracted	data	is	kept	before	it	gets
transformed	or	stored	between	the	transformation	steps.	The	staging	area	in	general	can	be
used	to	create	backup	copies	of	data	or	to	run	analytical	queries	on	the	data	in	order	to
validate	the	transformations	made	or	the	extract	processes.	Staging	data	structures	can	be
quite	different,	as	you	will	see.	Which	one	to	use	depends	on	the	tasks	you	are	trying	to
accomplish,	your	project	requirements,	and	the	architecture	of	the	environment	used.

How	to	do	it…
The	most	popular	data	structures	that	could	be	used	in	the	staging	area	are	flat	files	and
RDBMS	tables.

Flat	files
One	of	the	perks	of	using	Data	Services	against	the	handcoded	ETL	solution	is	that	Data
Services	allows	you	to	easily	read	from	and	write	information	to	a	flat	file.

Create	the	C:\AW\	folder,	which	will	be	used	throughout	this	book	to	store	flat	files.

Note
Inserting	data	into	a	flat	file	is	faster	than	inserting	data	into	an	RDBMS	table.	So,	during
ETL	development,	flat	files	are	often	used	to	reach	two	goals	simultaneously:	creating	a
backup	copy	of	the	data	snapshot	and	providing	you	with	the	storage	location	for	your
preliminary	data	before	you	apply	the	next	set	of	transformation	rules.

Another	common	use	of	flat	files	is	the	ability	to	exchange	data	between	systems	that
cannot	communicate	with	each	other	in	any	other	way.

Lastly,	it	is	very	cost-effective	to	store	flat	files	(OS	disk	storage	space	is	cheaper	than	DB
storage	space).

The	main	disadvantage	of	the	flat	files	storage	method	is	that	the	modification	of	data	in	a
flat	file	can	sometimes	be	a	real	pain,	not	to	mention	that	it	is	much	slower	than	modifying
data	in	a	relational	DB	table.

RDBMS	tables
These	ETL	data	structures	will	be	used	more	often	than	others	to	stage	the	data	that	is
going	through	the	ETL	transformation	process.

Let’s	create	two	separate	databases	for	relational	tables,	which	will	play	the	role	of	the
ETL	staging	area	in	our	future	examples:

	
1.	 Open	SQL	Server	Management	Studio.
2.	 Right-click	on	the	Databases	icon	and	select	the	New	Database…	option.
3.	 On	the	next	screen,	input	ODS	as	the	database	name,	and	specify	100	MB	as	the	initial

size	value	of	the	database	file	and	10	MB	as	that	of	the	transactional	log	file:

4.	 Repeat	the	last	two	steps	to	create	another	dataset	called	STAGE.

How	it	works…
Let’s	recap.	The	ETL	staging	area	is	a	location	to	store	the	preliminary	results	of	our	ETL
transformations	and	also	a	landing	zone	for	the	extracts	from	the	source	system.

Yes,	Data	Services	allows	you	to	extract	data	and	perform	all	transformations	in	the
memory	before	loading	to	the	target	system.	However,	as	you	will	see	in	later	chapters,	the
ETL	process,	which	does	everything	in	one	“go”,	can	be	complex	and	difficult	to
maintain.	Plus,	if	something	goes	wrong	along	the	way,	all	the	changes	that	the	process
has	already	performed	will	be	lost	and	you	may	have	to	start	the	extraction/transformation
process	again.	This	obviously	creates	extra	workload	on	a	source	system	because	you	have
to	query	it	again	in	order	to	get	the	data.	Finally,	big	does	not	mean	effective.	We	will
show	you	how	splitting	your	ETL	process	into	smaller	pieces	helps	you	to	create	a	well-
performing	sequence	of	dataflow.

The	ODS	database	will	be	used	as	a	landing	zone	for	the	data	coming	from	source	systems.
The	structure	of	the	tables	here	will	be	identical	to	the	structure	of	the	source	system
tables.

The	STAGE	database	will	hold	the	relational	tables	used	to	store	data	between	the	data
transformation	steps.

We	will	also	store	some	data	extracted	from	a	source	database	in	a	flat	file	format	to
demonstrate	the	ability	of	Data	Services	to	work	with	them	and	show	the	convenience	of
this	data	storage	method	in	the	ETL	system.

Creating	a	target	data	warehouse
Finally,	this	is	the	time	to	create	our	target	data	warehouse	system.	The	data	warehouse
structures	and	tables	will	be	used	by	end	users	with	the	help	of	various	reporting	tools	to
make	sense	of	the	data	and	analyze	it.	As	a	result,	it	should	help	business	users	to	make
strategic	decisions,	which	will	hopefully	lead	to	business	growth.

We	should	not	forget	that	the	main	purpose	of	a	data	warehouse,	and	hence	that	of	our
ETL	system,	is	to	serve	business	needs.

Getting	ready
The	data	warehouse	created	in	this	recipe	will	be	used	as	a	target	database	populated	by
the	ETL	processes	developed	in	SAP	Data	Services.	This	is	where	the	data	modified	and
cleansed	by	ETL	processes	will	be	inserted	in	the	end.	Plus,	this	is	the	database	that	will
mainly	be	accessed	by	business	users	and	reporting	tools.

How	to	do	it…
Perform	the	following	steps:

	
1.	 AdventureWorks	comes	to	the	rescue	again.	Use	another	link	to	download	the

AdventureWorks	data	warehouse	data	file,	which	will	be	mapped	in	the	same	manner
to	our	SQL	Server	Express	database	engine	in	order	to	create	a	local	data	warehouse
for	our	own	learning	purposes.	Go	to	the	following	URL	and	click	on	the
AdventureWorksDW	for	SQL	Server	2012	link:

https://msftdbprodsamples.codeplex.com/releases/view/105902

2.	 After	you	have	successfully	downloaded	the	AdventureWorksDW2012.zip	file,
unpack	its	contents	into	the	same	directory	as	the	previous	file:
C:\AdventureWorks\

3.	 There	should	be	two	files	in	the	archive:
AdventureWorksDW2012_Data.mdf—the	database	data	file
AdventureWorksDW2012_Log.ldf—the	database	transaction	log	file

4.	 Open	SQL	Server	Management	Studio	and	click	on	the	New	Query…	button	in	the
uppermost	tool	bar.

5.	 Enter	and	execute	the	following	command	in	the	SQL	Query	window:
CREATE	DATABASE	AdventureWorks_DWH	ON	

(FILENAME	=	‘C:\AdventureWorks\AdventureWorksDW2012_Data.mdf’),	(FILENAME	=	‘C:\AdventureWorks\AdventureWorksDW2012_Log.ldf’)	FOR	ATTACH;

6.	 After	a	successful	command	execution,	right-click	on	the	Databases	icon	and	choose
the	Refresh	option	in	the	opened	menu	list.	This	should	refresh	the	contents	of	your
object	library,	and	you	should	see	the	following	list	of	databases:

ODS

STAGE

AdventureWorks_OLTP

AdventureWorks_DWH

https://msftdbprodsamples.codeplex.com/releases/view/105902

How	it	works…
Get	yourself	familiar	with	the	tables	of	the	created	data	warehouse.	Throughout	the	whole
book,	you	will	be	using	them	in	order	to	insert,	update,	and	delete	data	using	Data
Services.

There	are	also	some	diagrams	available	that	could	help	you	see	the	visual	data	warehouse
structure.	To	get	access	to	them,	open	SQL	Server	Management	Studio,	expand	the
Databases	list	in	the	Object	Explorer	window,	then	expand	the	AdventureWorks_DWH
database	object	list,	and	finally	open	the	Diagrams	tree.	Double-clicking	on	any	diagram
in	the	list	opens	a	new	window	within	Management	Studio	with	the	graphical	presentation
of	tables,	key	columns,	and	links	between	the	tables,	which	shows	you	the	relationships
between	them.

There’s	more…
In	the	next	recipe,	we	will	have	an	overview	of	the	knowledge	resources	that	exist	on	the
Web.	We	highly	recommend	that	you	get	familiar	with	them	in	order	to	improve	your	data
warehousing	skills,	learn	about	the	data	warehouse	life	cycle,	and	understand	what	makes
a	successful	data	warehouse	project.	In	the	meantime,	feel	free	to	open	New	Query	in
SQL	Server	Management	Studio	and	start	running	the	SELECT	commands	to	explore	the
contents	of	the	tables	in	your	AdventureWorks_DWH	database.

Note
The	most	important	asset	of	any	DWH	architect	or	ETL	developer	is	not	the	knowledge	of
a	programming	language	or	the	available	tools	but	the	ability	to	understand	the	data	that
is,	or	will	be,	populating	the	data	warehouse	and	the	business	needs	and	requirements	for
this	data.

Chapter	2.	Configuring	the	Data	Services
Environment
In	this	chapter,	we	will	install	and	configure	all	components	required	for	SAP	Data
Services.	In	this	chapter,	we	will	cover	the	following	topics:

	
Creating	IPS	and	Data	Services	repositories
Installing	and	configuring	Information	Platform	Services
Installing	and	configuring	Data	Services
Configuring	user	access
Starting	and	stopping	services
Administering	tasks
Understanding	the	Designer	tool

Introduction
The	same	thing	that	makes	SAP	Data	Services	a	great	ETL	development	environment
makes	it	quite	not	a	trivial	one	to	install	and	configure.	Here	though,	you	have	to
remember	that	Data	Services	is	an	enterprise	class	ETL	solution	that	is	able	to	solve	the
most	complex	ETL	tasks.

See	the	following	image	for	a	very	high-level	Data	Services	architecture	view.	Data
Services	has	two	basic	groups	of	components:	client	tools	and	server-based	components:

Client	tools	include	the	following	(there	are	more,	but	we	mention	the	ones	most	often
used):

	
The	Designer	tool:	This	is	the	client-based	main	GUI	application	for	ETL
development
Repository	Manager:	This	is	a	client-based	GUI	application	for	Data	Services	to
create,	configure,	and	upgrade	Data	Services	repositories

The	main	server-based	components	include	the	following	ones:

	
IPS	Services:	This	is	used	for	user	authentication,	system	configuration	storage,	and
internal	metadata	management
Job	Server:	This	is	a	core	engine	service	that	executes	ETL	code

Access	server:	This	is	a	real-time	request-reply	message	broker,	which	implements
real-time	services	in	the	Data	Services	environment
Web	application	server:	This	provides	access	to	some	Data	Services	administration
and	reporting	tasks	via	the	DS	Management	Console	and	Central	Management
Console	web-based	applications

In	the	course	of	the	next	few	recipes,	we	will	install,	configure,	and	access	all	the
components	required	to	perform	the	majority	of	ETL	development	tasks.	You	will	learn
about	their	purposes	and	some	useful	tips	that	will	help	you	effectively	work	in	the	Data
Services	environment	throughout	the	book	and	in	your	future	work.

Data	Services	installation	supports	all	major	OS	and	database	environments.	For	learning
purposes,	we	have	chosen	the	Windows	OS	as	it	involves	the	least	configuration	on	the
user	part.	Both	client	tools	and	server	components	will	be	installed	on	the	same	Windows
host.

Creating	IPS	and	Data	Services	repositories
The	IPS	repository	is	a	storage	for	environment	and	user	configuration	information	and
metadata	collected	by	various	services	of	IPS	and	Data	Services.	It	has	another	name:	the
CMS	database.	This	name	should	be	quite	familiar	to	those	who	have	used	SAP	Business
Intelligence	software.	Basically,	IPS	is	a	light	version	of	SAP	BI	product	package.	You
will	always	use	only	one	IPS	repository	per	Data	Services	installation	and	most	likely	will
deal	with	it	only	once:	when	configuring	the	environment	at	the	very	beginning.	Most	of
the	time,	Data	Services	will	be	communicating	with	IPS	services	and	the	CMS	database	in
the	background,	without	you	even	noticing.

The	Data	Services	repository	is	a	different	story.	It	is	much	closer	to	an	ETL	developer	as
it	is	a	database	that	stores	your	developed	code.	In	a	multiuser	development	environment,
every	ETL	developer	usually	has	its	own	repository.	They	can	be	of	two	types:	central	and
local.	They	serve	different	purposes	in	the	ETL	lifecycle,	and	I	will	explain	this	in	more
detail	in	the	upcoming	chapters.	Meanwhile,	let’s	create	our	first	local	Data	Services
repository.

Getting	ready…
Both	repositories	will	be	stored	in	the	same	SQL	Server	Express	RDBMS
((local)\SQLEXPRESS)	that	we	used	to	create	our	source	OLTP	database,	ETL	staging
databases,	and	target	data	warehouse.	So,	at	this	point,	you	only	need	to	have	access	to
SQL	Server	Management	Studio	and	your	SQL	Server	Express	services	need	to	start.

How	to	do	it…
This	will	consist	of	two	major	tasks:

	
1.	 Creating	a	database:

1.	 Log	in	to	SQL	Server	Management	Studio	and	create	two	databases:	IPS_CMS
and	DS_LOCAL_REPO.

2.	 Right	now,	your	database	list	should	look	like	this:

2.	 Configuring	the	ODBC	layer:	Installation	requires	that	you	create	the	ODBC	data
source	for	the	IPS_CMS	database.
1.	 Go	to	Control	Panel	|	Administrative	Tools	|	ODBC	Data	Sources	(64-bit).
2.	 Open	the	System	DSN	tab	and	click	on	the	Add…	button.
3.	 Choose	the	name	of	the	data	source:	SQL_IPS,	the	description	SQL	Server

Express,	and	the	SQL	Server	you	want	to	connect	to	through	this	ODBC	data
source:	(local)\SQLEXPRESS.	Then,	click	on	Next.

4.	 Choose	SQL	Server	authentication	and	select	the	checkbox	Connect	to	SQL
to	obtain	the	default	settings.	Enter	the	login	ID	(sa	user)	and	password.	Click
on	Next.

5.	 Select	the	checkbox	and	change	the	default	database	to	IPS_CMS.	Click	on	Next.
6.	 Skip	the	next	screen	by	clicking	on	Next.
7.	 The	final	screen	of	the	ODBC	configuration	should	look	like	the	following

screenshot.	Then,	clicking	on	the	Test	Data	Source	button	should	give	you	the
message,	TESTS	COMPLETED	SUCCESSFULLY!

How	it	works…
These	two	empty	databases	will	be	used	by	Data	Services	tools	during	installation	and
post-installation	configuration	tasks.	All	structures	inside	them	will	be	created	and
populated	automatically.

Usually,	they	are	not	built	for	users	to	access	them	directly,	but	in	the	upcoming	chapters,	I
will	show	you	a	few	tricks	on	how	to	extract	valuable	information	from	them	in	order	to
troubleshoot	potential	problems,	do	a	little	bit	of	ETL	metadata	reporting,	or	use	an
extended	search	for	ETL	objects,	which	is	not	possible	in	the	GUI	of	the	Designer	tool.

The	ODBC	layer	configured	for	the	IPS_CMS	database	allows	you	to	access	it	from	the	IPS
installation.	When	we	install	both	IPS	and	Data	Services,	you	will	be	able	to	connect	to
the	databases	directly	from	the	Data	Services	applications,	as	it	has	native	drivers	for
various	types	of	databases	and	also	allows	you	to	connect	through	ODBC	layers	if	you
want.

See	also
References	to	a	future	chapter	containing	techniques	mentioned	in	the	preceding
paragraph.

Installing	and	configuring	Information	Platform
Services
The	Information	Platform	Services	(IPS)	product	package	was	added	as	a	component
into	the	Data	Services	bundle	starting	from	the	Data	Services	4.x	version.	The	reason	for
this	was	to	make	the	Data	Services	architecture	flexible	and	robust	and	introduce	some
extra	functionality,	that	is,	a	user	management	layer	to	the	existing	SAP	Data	Services
solution.	As	we	mentioned	before,	IPS	is	a	light	version	of	SAP	BI	core	services	and	has	a
lot	of	similar	functionality.

In	this	recipe,	we	will	perform	the	installation	and	basic	configuration	of	IPS,	which	is	a
mandatory	component	for	future	Data	Services	installations.

Tip
As	an	option,	you	could	always	use	the	existing	full	enterprise	SAP	BI	solution	if	you
have	it	installed	in	your	environment.	However,	this	is	generally	considered	a	bad	practice.
Imagine	that	it	is	like	storing	all	eggs	in	one	basket.	Whenever	you	need	to	plan	downtime
for	your	BI	system,	you	should	keep	in	mind	that	it	will	affect	your	ETL	environment	as
well,	and	you	will	not	be	able	to	run	any	Data	Services	jobs	during	this	period.	That	is
why,	IPS	is	installed	to	be	used	only	by	Data	Services	as	a	safer	and	more	convenient
option	in	terms	of	support	and	maintenance.

Getting	ready…
Download	the	Information	Platform	Services	installation	package	from	the	SAP	support
portal	and	unzip	it	to	the	location	of	your	choice.	The	main	requirement	for	installing	IPS
as	well	as	Data	Services	in	the	next	recipe	is	that	your	OS	should	have	a	64-bit
architecture.

How	to	do	it…
	
1.	 Create	an	EIM	folder	in	your	C	drive	to	store	your	installation	in	one	place.
2.	 Launch	the	IPS	installer	by	executing	InstallIPS.exe.
3.	 Make	sure	that	all	your	critical	prerequisites	have	the	Succeeded	status	on	the	Check

Prerequisites	screen.	Continue	to	the	next	screen.
4.	 Choose	C:\EIM\	as	the	installation	destination	folder.	Continue	to	the	next	screen.
5.	 Choose	the	Full	installation	type.	Continue	to	the	next	screen.
6.	 On	Select	Default	or	Existing	Database,	choose	Configure	an	existing	database

and	continue	to	the	next	screen.
7.	 Select	Microsoft	SQL	Server	using	ODBC	as	the	existing	CMS	database	type.
8.	 Select	No	auditing	database	on	the	next	screen	and	continue.
9.	 Choose	Install	the	default	Tomcat	Java	Web	Application	Server	and

automatically	deploy	web	applications.	Continue	to	the	next	screen.
10.	 For	version	management,	choose	Do	not	configure	a	version	control	system	at	this

time.
11.	 On	the	next	screen,	specify	the	SIA	name	in	the	Node	name	field	as	IPS	and	SIA

port	as	6410.
12.	 Do	not	change	the	default	CMS	port,	6400.
13.	 On	the	CMS	account	configuration	screen,	input	passwords	for	the	administrator

user	account	and	the	CMS	cluster	key	(they	can	be	the	same	if	you	want).	Continue
further.

14.	 Use	the	following	settings	from	the	following	screenshot	to	configure	the	CMS
Repository	Database:

15.	 Leave	the	default	values	for	Tomcat	ports	on	the	next	screen	and	click	on	Next.
Remember	the	Connection	Port	setting	(default	is	8080)	as	you	will	require	it	to
connect	to	the	IPS	and	Data	Services	web	applications.

16.	 Do	not	configure	connectivity	to	SMD	Agent.
17.	 Do	not	configure	connectivity	to	Introscope	Enterprise	Manager.
18.	 Finally,	the	installation	will	begin.	It	should	take	approximately	5–15	minutes,

depending	on	your	hardware.

How	it	works…
Now,	by	installing	IPS,	we	prepared	the	base	layers,	on	top	of	which	we	will	install	the
Data	Services	installation	package	itself.

To	check	that	your	IPS	installation	was	successful,	start	the	Central	Management	Console
web	application	using	the	http://localhost:8080/BOE/CMC	URL	and	use	the
administrator	account	that	you	set	up	during	IPS	installation	to	log	in.	In	the	system	field,
use	localhost:6400	(your	host	name	and	CMS	port	number	specified	during	IPS
installation).

Check	out	the	Core	Services	tree	in	the	Servers	section	of	CMC.	All	services	listed
should	have	the	Running	and	Enabled	statuses.

Installing	and	configuring	Data	Services
The	installation	of	Data	Services	in	a	Windows	environment	is	a	smooth	and	quick
process.	Of	course,	you	have	various	installation	options,	but	here,	we	will	choose	the
easiest	path:	the	full	installation	of	all	components	on	the	same	host	with	IPS	services
installed	and	the	local	repository	already	created	and	configured.

Getting	ready…
Completion	of	the	previous	recipe	should	prepare	your	environment	to	install	Data
Services.	Download	the	Data	Services	installation	package	from	the	SAP	support	portal
and	unzip	it	to	a	local	folder.

How	to	do	it…
	
1.	 Start	Data	Services	from	Windows	command	line	(cmd)	by	executing	this

command:

setup.exe	SERVERINSTALL=Yes

2.	 Make	sure	that	all	your	critical	prerequisites	have	the	Succeeded	status	on	the	Check
Prerequisites	screen.

3.	 Choose	the	destination	folder	as	C:\EIM\	if	required.
4.	 On	the	CMS	connection	information	step,	specify	the	connection	details	to	your

previously	installed	CMS	(part	of	IPS)	installation.	The	system	is	localhost:6400,
and	the	user	is	Administrator.	Click	on	Next.

5.	 In	the	CMS	Service	Stop/Start	pop-up	window,	agree	to	restart	SIA	servers.
6.	 Choose	Install	with	default	configuration	on	the	Installation	Type	selection

screen.
7.	 Make	sure	that	you	select	all	features	by	selecting	all	the	checkboxes	on	the	next

feature	selection	screen	and	click	on	Next.
8.	 Specify	Microsoft_SQL_Server	as	a	database	type	for	a	local	repository.
9.	 Use	the	following	details	as	a	reference	to	configuring	your	local	repository	database

connection	on	the	next	screen:

Option Value

Registration	name	for	CMS DS4_REPO

Database	Type Microsoft_SQL_Server

Database	server	name (local)\SQLEXPRESS

Database	port 50664

Database	name DS_LOCAL_REPO

User	Name sa

Password <sa	user	password>

10.	 For	login	information,	choose	the	account	recommended	by	installation.
11.	 The	installation	should	be	completed	in	5–10	minutes,	depending	on	your

environment.

How	it	works…
After	finishing	this	recipe,	you	will	have	all	the	Data	Services	servers	and	client
components	installed	on	the	same	Windows	host.	Also,	your	Data	Services	installation	is
integrated	with	IPS	services.

To	check	that	the	installation	and	integration	were	successful,	log	in	to	CMC	and	see	that
in	the	main	menu,	there	is	a	new	section	called	Data	Services	(see	the	Organize	column).
Go	to	this	section	and	see	whether	your	DS4_REPO	exists	in	the	list	of	local	repositories.

Configuring	user	access
In	this	recipe,	I	will	show	you	how	to	configure	your	access	as	a	fresh	ETL	developer	in	a
Data	Services	environment.	We	will	create	a	user	account,	assign	all	the	required
functional	privileges,	and	assign	owner	privileges	for	our	local	Data	Services	repository.
In	a	multiuser	development	environment,	you	would	require	to	perform	this	step	for	every
newly	created	user.

Getting	ready…
Choose	the	username	and	password	for	your	ETL	developer	user	account.	We	will	log	in
to	the	CMC	application	to	create	a	user	account	and	grant	it	the	required	set	of	privileges.

How	to	do	it…
	
1.	 Launch	the	Central	Management	Console	web	application.
2.	 Go	to	Users	and	Groups.
3.	 Click	on	Create	a	user	button	(see	the	following	screenshot):

4.	 In	the	opened	window,	choose	a	username	(we	picked	etl)	and	password.	Also,
select	the	Password	never	expires	option	and	unselect	User	must	change	password
at	next	logon.	Choose	Concurrent	User	as	the	connection	type.

5.	 Now,	we	should	add	our	newly	created	account	to	two	pre-existing	user	groups.
Right-click	on	the	user	and	choose	the	Member	Of	option	in	the	right-click	menu.

6.	 Click	on	the	Join	Group	button	in	the	newly	opened	window	and	add	two	groups
from	the	group	list	to	the	right	window	panel:	Data	Services	Administrator	Users
and	Data	Services	Designer	Users.	Click	on	OK.

7.	 From	the	left-side	instrument	panel,	click	on	the	CMC	Home	button	to	return	to	the
main	CMC	screen.

8.	 Now,	we	have	to	grant	our	user	extra	privileges	on	the	local	repository.	For	this,	open
the	Data	Services	section,	right-click	on	DS4_REPO,	and	choose	User	Security
from	the	context	menu.

9.	 Click	on	the	Add	principals	button,	move	the	etl	user	to	the	right	panel	and	click	on
the	Add	and	Assign	Security	button	at	the	bottom	of	the	screen.

10.	 On	the	next	screen,	assign	the	full	control	(owner)	access	level	on	the	Access	Levels
tab	and	go	to	the	Advanced	tab.

11.	 Click	on	the	Add/Remove	Rights	link	and	set	the	following	two	options	that	appear
to	Granted	for	the	Data	Services	Repository	application	(see	the	following
screenshot):

12.	 Click	on	OK	in	the	Assign	Security	window	to	confirm	your	configuration.
13.	 As	a	test,	log	out	of	the	CMC	and	log	in	using	a	newly	created	user	account.

How	it	works…
In	a	complex	enterprise	environment,	you	can	create	multiple	groups	for	different
categories	of	users.	You	have	full	flexibility	in	order	to	provide	users	with	various	kinds	of
permissions,	depending	on	their	needs.

Some	users	might	require	administration	privileges	to	start/stop	services	and	to	manage
repositories	without	the	need	to	develop	ETL	and	access	Designer.

The	ETL	developer	role	might	require	only	permissions	for	the	Designer	tool	to	develop
ETL	code.

In	our	case,	we	have	created	a	single	user	account	that	has	both	administration	and
developer	privileges.

Starting	and	stopping	services
In	this	recipe,	I	will	explain	how	you	can	restart	the	services	of	all	the	main	components	in
your	Data	Services	environment.

How	to	do	it…
This	relates	to	the	three	different	services:

	
Web	application	server:

The	Tomcat	application	server	configured	in	our	environment	can	be	configured
from	two	places:

Computer	Management	|	Services	and	Applications	|	Services	where	it	exists
as	a	standard	Windows	service	BOEXI40Tomcat

Central	Configuration	Management	tool	installed	as	a	part	of	IPS	product
package:

Using	this	tool,	you	can:

1.	 Start/stop	services.
2.	 Back	up	and	restore	system	configuration.
3.	 Specify	the	Windows	user	who	starts	and	stops	the	underlying	services.

Data	Services	Job	Server:
To	manage	Data	Services	Job	Server	in	the	Windows	environment,	SAP	created
a	separate	GUI	application	called	Data	Services	Server	Manager.
Using	this	tool,	you	can	perform	the	following	tasks:

1.	 Restart	Job	Server.
2.	 Create	and	configure	Job	Servers.
3.	 Create	and	configure	Access	Servers.
4.	 Perform	SSL	configuration.
5.	 Set	up	a	pageable	cache	directory.
6.	 Perform	SMTP	configuration	for	the	smpt_to()	Data	Services	function.

Information	Platform	Services:
To	manipulate	these	services,	you	have	two	options:

Central	Management	Console	(to	stop/start	and	configure	services	parameters)

Central	Configuration	Management	(to	stop/start	services)

In	most	cases,	you	will	be	using	the	CMC	option,	as	it	is	a	quick	and	convenient	way	to
access	all	services	included	in	the	IPS	package.	It	also	allows	you	to	see	much	more
service-related	information.

The	second	option	is	useful	if	you	have	the	application	server	stopped	for	some	reason
(CMC	as	a	web-based	application	will	not	be	working,	of	course),	and	you	still	need	to

access	IPS	services	to	perform	basic	administration	tasks	such	as	restarting	them,	for
example.

How	it	works…
Sometimes,	things	turn	sour,	and	restarting	services	is	the	quickest	and	easiest	option	to
return	them	to	a	normal	state.	In	this	recipe,	I	mentioned	all	the	main	server	components
and	points	of	access	to	perform	such	a	task.

The	last	thing	you	should	keep	in	mind	regarding	this	is	the	recommended
startup/shutdown	sequences	of	those	components.

	
1.	 The	first	thing	that	should	start	after	Windows	starts	is	your	database	server,	as	it

hosts	the	CMS	database	required	for	the	IPS	services	and	Data	Services	local
repository.

2.	 Second,	you	should	start	IPS	services	(the	main	one	is	the	CMS	service)	as	an
underlying	level	for	Data	Services.

3.	 Then,	it	is	the	turn	of	the	Data	Services	Job	Server.
4.	 Finally,	it	goes	to	Tomcat	(web	application	server)	that	provides	users	with	access	to

web-based	applications.

See	also
	

I	definitely	recommend	that	you	get	familiar	with	the	SAP	Data	Services
Administrators	Guide	to	understand	the	details	regarding	IPS	and	Data	Services
component	management	and	configuration.
Knowledge	sourced	and	documentation	links	from	Chapter	1,	Introduction	to	ETL
Development.

Administering	tasks
The	previous	recipe	is	part	of	the	basic	administration	tasks	too,	of	course.	I	separated	it
from	the	current	one	as	I	wanted	to	put	an	accent	on	Data	Services	architecture	details	by
explaining	the	main	Data	Services	components	in	relation	to	the	methods	and	tools	you
can	use	to	manipulate	them.

How	to	do	it…
Here,	we	will	look	at	some	of	the	most	important	administrative	tasks.

	
1.	 Using	Repository	Manager:

As	you	can	probably	remember,	there	are	two	types	of	repositories	in	Data	Services:
the	local	repository	and	central	repository.	They	serve	different	purposes	but	can	be
created	in	quite	a	similar	way:	with	the	help	of	the	Data	Services	Repository	Manager
tool.

This	is	a	GUI-based	tool	available	on	your	Windows	machine	and	installed	with
other	client	tools.

As	we	already	have	one	repository	created	and	configured	automatically	during	the
Data	Services	installation,	let’s	check	its	version	using	the	Repository	Manager	tool.

Launch	Repository	Manager	and	enter	the	following	values	for	the	corresponding
options:

Field Value

Repository	type Local

Database	Type Microsoft	SQL	Server

Database	server	name (local)\SQLEXPRESS

Database	name DS_LOCAL_REPO

User	Name sa

Password *******

After	entering	these	details,	you	have	several	options:

Create:	This	option	creates	repository	objects	in	the	defined	database.	As	we	already
have	a	repository	in	DS_LOCAL_REPO,	the	application	will	ask	us	whether	we	want
to	reset	the	existing	repository.	Sometimes,	this	can	be	useful,	but	keep	in	mind	that	it
will	cleanse	the	repository	of	all	objects,	and	if	not	careful,	all	your	ETL	that	resides
in	the	repository	can	be	lost.

Upgrade:	This	option	upgrades	the	repository	to	the	version	of	the	Repository
Manager	tool.	It	is	useful	during	software	upgrades.	After	installing	the	new	version
of	IPS	and	Data	Services,	you	have	to	upgrade	your	repository	contents	as	well.	This
is	when	you	launch	the	Repository	Manager	tool	(which	has	already	been	updated)
and	upgrade	your	repository	to	the	current	version.

Get	version:	This	is	the	safest	option	of	them	all.	It	just	returns	the	string	containing
the	repository	version	number.	In	our	case,	it	returned:	BODI-320030:	The	local
repository	version:	<14.2.4.0>.

2.	 Using	Server	Manager	and	CMC	to	register	the	new	repository:

After	you	create	the	new	repository	with	Repository	Manager,	you	have	to	register	it
in	IPS	and	link	it	to	the	existing	Job	Server.

To	register	a	new	repository	in	IPS,	use	the	following	steps:

1.	 Launch	Central	Management	Console.
2.	 Open	the	Data	Services	section	from	the	CMC	home	page.
3.	 Go	to	Manage	|	Configure	Repository.
4.	 Enter	database	details	of	your	newly	created	repository	and	click	on	Save.
5.	 To	assign	users	a	required	set	of	privileges,	use	User	Security	when	right-

clicking	on	the	repository	in	the	list.	For	details,	see	the	Configuring	user	access
recipe.

To	link	a	new	repository	to	the	Job	Server,	perform	these	steps:

1.	 Launch	the	Data	Services	Server	Manager	tool.
2.	 Choose	the	Job	Server	tab.
3.	 Press	on	the	Configuration	Editor…	button.
4.	 Select	Job	Server	and	press	the	Edit…	button.
5.	 In	the	Associated	Repositories	panel,	press	the	Add…	button	and	fill	in

database-related	information	of	the	new	repository	in	the	correspondent	fields
on	the	right-hand	side.

6.	 Use	the	Close	and	Restart	button	in	the	Data	Services	Server	Management
tool	to	apply	the	changes	done	to	a	Job	Server.

3.	 Using	License	Manager:
1.	 License	Manager	exists	only	in	a	command-line	mode.
2.	 Use	the	following	syntax	to	run	License	Manager:

LicenseManager	[-v	|	-a	<keycode>	|	-r	<keycode>	[-l	<location>]]	

3.	 Use	the	–v	option	to	view	existing	license	keys,	-a	to	add	a	new	license	key,	and
–r	to	remove	the	existing	license	key	from	the	–l	location	specified.

This	tool	is	available	at	C:\EIM\Data	Services\bin\.

How	it	works…
Creating	and	configuring	a	new	local	repository	is	usually	required	when	you	set	up	an
environment	for	a	new	ETL	developer	or	want	to	use	an	extra	repository	to	migrate	your
ETL	for	ETL	testing	purposes	or	to	test	a	repository	upgrade.

After	creating	a	new	local	repository,	you	should	always	link	it	to	an	existing	Job	Server.
This	link	ensures	that	Job	Server	is	aware	of	the	repository	and	can	execute	jobs	from	it.

Finally,	License	Manager	can	be	used	to	see	the	license	key	used	in	your	installations	and
to	add	new	extra	ones	if	required.

See	also
You	can	practice	with	your	Data	Services	admin	skills	by	creating	a	new	database	and	new
local	Data	Services	repository.	Do	not	forget	that	you	do	not	just	have	to	create	it,	but	also
register	it	with	IPS	services	and	Data	Services	Job	Server	so	that	you	can	successfully	run
jobs	from	it.

Some	other	administrative	tasks	can	be	found	in	the	following	chapters:

	
The	Starting	and	stopping	services	recipe	from	this	chapter
The	Configure	ODBC	layer	point	from	the	How	to	do	it…	section	of	the	Creating	IPS
and	Data	Services	repositories	recipe	of	this	chapter

Understanding	the	Designer	tool
Now	that	we	have	reviewed	all	the	important	server	and	client	components	of	our	new
Data	Services	installation,	it	is	time	to	get	familiar	with	the	most	usable	and	most
important	tool	in	the	Data	Services	product	package.	It	will	be	our	main	focus	in	the
following	chapters,	and	of	course,	I	am	talking	about	our	development	GUI:	the	Designer
tool.

Every	object	you	create	in	Designer	is	stored	in	a	local	object	library,	which	is	a	logical
storage	unit	part	of	the	physical	local	repository	database.	In	this	recipe,	we	will	log	in	to	a
local	repository	via	Designer,	set	up	a	couple	of	settings,	and	write	our	first	“Hello	World”
program.

Getting	ready…
Your	Data	Services	ETL	development	environment	is	fully	deployed	and	configured,	so
go	ahead	and	start	the	Designer	application.

How	to	do	it…
First,	let’s	change	some	default	options	to	make	our	development	life	a	little	bit	easier	and
to	see	how	options	windows	in	Data	Services	looks:

	
1.	 When	you	launch	your	Designer	application,	you	see	quite	a	sophisticated	login

screen.	Enter	the	etl	username	we	created	in	one	of	the	previous	recipes	and	its
password	to	see	the	list	of	repositories	available	in	the	system.

2.	 At	this	point,	you	should	see	only	one	local	repository,	DS4_REPO,	that	was	created	by
default	during	the	Data	Services	installation.	Double-click	on	it.

3.	 You	should	see	your	Designer	application	started.
4.	 Go	to	Tools	|	Options.
5.	 In	the	opened	window,	expand	the	Designer	tree	and	choose	General.
6.	 Set	the	Number	of	characters	in	workspace	icon	name	option	to	50	and	select	the

Automatically	calculate	column	mappings	checkbox.
7.	 Click	on	OK	to	close	the	options	window.

Before	we	create	our	first	“Hello	World”	program,	let’s	quickly	take	a	look	at	Designer’s
user	interface.

In	this	recipe,	you	will	be	required	to	work	with	only	two	areas:	Local	Object	Library
and	the	main	development	area.	The	biggest	window	on	the	right-hand	side	with	the	Start
Page	tab	will	open	by	default.

Local	Object	Library	contains	tabs	with	lists	of	objects	you	can	create	or	use	during	your
ETL	development.	These	objects	include	Projects,	Jobs,	Work	Flows,	Data	Flows,
Transforms,	Datastores,	Formats,	and	Custom	Functions:

All	tabs	are	empty,	as	you	have	not	created	any	objects	of	any	kind	yet,	except	for	the
Transforms	tab.	This	tab	contains	a	predefined	set	of	transforms	available	for	you	to	use
for	ETL	development.	Data	Services	does	not	allow	you	to	create	your	own	transforms
(there	is	an	exception	that	we	will	discuss	in	the	upcoming	chapters).	So,	everything	you
see	on	this	tab	is	basically	everything	that	is	available	for	you	to	manipulate	your	data
with.

Now,	let’s	create	our	first	“Hello	World”	program.	As	ETL	development	in	Data	Services
is	not	quite	the	usual	experience	of	developing	with	a	programming	language,	we	should
agree	on	what	our	first	program	should	do.	In	almost	any	programming	language	related
book,	this	kind	of	program	just	performs	an	output	of	a	“Hello	World”	string	onto	your
screen.	In	our	case,	we	will	generate	a	“Hello	World”	string	and	output	it	in	a	table	that
will	be	automatically	created	by	Data	Services	in	our	target	database.

In	the	Designer	application,	go	to	the	Local	Object	Library	window,	choose	the	Jobs	tab,
right-click	on	the	Batch	Jobs	tree,	and	select	New	from	the	list	of	options	that	appears.

	
1.	 Choose	the	name	for	a	new	job	Job_HelloWorld	and	enter	it.	After	the	job	is	created,

double-click	on	it.
2.	 You	will	enter	the	job	design	window	(see	Job_HelloWorld	–	Job	at	the	bottom	of

the	application),	and	now,	you	can	add	objects	to	your	job	and	set	up	its	variables	and
parameters.

3.	 In	the	design	window	of	the	Job_HelloWorld	–	Job	tab,	create	a	dataflow.	To	do
this,	from	the	right	tool	panel,	choose	Data	Flow	object	and	left-click	on	a	main
design	window	to	create	it.	Name	it	DF_HelloWorld.

4.	 Double-click	on	a	newly	created	dataflow	(or	just	click	once	on	its	title)	to	open	the
Data	Flow	design	window.	It	appears	as	another	tab	in	the	main	design	window	area.

5.	 Now,	when	we	are	designing	the	processing	unit	or	dataflow,	we	can	choose	the
transforms	from	the	Transforms	tab	of	the	Local	Object	Library	window	to
perform	manipulation	with	the	data.	Click	on	the	Transforms	tab.

6.	 Here,	select	the	Platform	transforms	tree	and	drag	and	drop	the	Row_Generation
transform	from	it	to	the	Data	Flow	design	window.

Note
As	we	are	generating	a	new	“Hello	World!”	string,	we	should	use	the
Row_Generation	transform.	It	is	a	very	useful	way	of	generating	rows	in	Data
Services.	All	other	transforms	are	performing	operations	on	the	rows	extracted	from
source	objects	(tables	or	files)	that	are	passing	from	source	to	target	within	a
dataflow.	In	this	example,	we	do	not	have	a	source	table.	Hence,	we	have	to	generate
a	record.

7.	 By	default,	the	Row_Generation	transform	generates	only	one	row	with	the	ID	as	0.
Now,	we	have	to	create	our	string	and	present	it	as	a	field	in	a	future	target	table.	For
this,	we	need	to	use	the	Query	transform.	Select	it	from	the	right	tool	panel	or	drag
and	drop	it	from	Transforms	to	Platform.	The	icon	of	the	Query	transforms	looks
like	this:

8.	 In	the	Data	Flow	design	window,	link	Row_Generation	to	Query,	as	shown	here,
and	double-click	on	the	Query	transform	to	open	the	Query	Editor	tab:

Note
In	the	next	chapter,	we	will	explain	the	details	of	the	Query	transform.	In	the
meantime,	let’s	just	say	that	this	is	one	of	the	most	used	transforms	in	Data	Services.
It	allows	you	to	join	flows	of	your	data	and	modify	the	dataset	by	adding/removing
columns	in	the	row,	changing	data	types,	and	performing	grouping	operations.	On	the
left-hand	side	of	the	Query	Editor,	you	will	see	an	incoming	set	of	columns,	and	on
the	right-hand	side,	you	will	see	the	output.	This	is	where	you	will	define	all	your
transformation	functions	for	specific	fields	or	assign	hard-coded	values.	We	are	not

interested	in	the	incoming	ID	generated	by	the	Row_Generation	transform.	For	us,	it
served	the	purpose	of	creating	a	row	that	will	hold	our	“Hello	World!”	value	and	will
be	inserted	in	a	table.

9.	 In	the	right	panel	of	Query	Editor,	right-click	on	Query	and	choose	New	Output
Column…:

10.	 Select	the	following	settings	in	the	opened	Column	Properties	window	to	define	the
properties	of	our	newly	created	column	and	click	on	OK:

11.	 Now,	when	our	generated	row	has	one	column,	we	have	to	populate	it	with	value.	For
this,	we	have	to	use	the	Mapping	tab	in	Query	Editor.	Select	our	output	field	TEXT
and	enter	the	“Hello	World!”	value	in	the	mapping	tab	window.	Do	not	forget	single
quotes,	which	mean	a	string	in	DS.	Then,	close	Query	Editor	either	with	the	tab
cross	in	the	top-right	corner	(do	not	confuse	it	with	the	Designer	application	cross
that	is	located	dangerously	close	to	it)	or	just	use	the	Back	button	(Alt	+	Left),	a	green
arrow	icon	in	the	top	instrument	panel.

At	this	point,	we	have	a	source	in	our	dataflow.	We	also	have	a	transformation	object
(the	Query	transform),	which	defines	our	text	column	and	assigns	a	value	to	it.	What
is	missing	is	a	target	object	we	will	insert	our	row	to.

As	we	will	use	a	table	as	a	target	object,	we	have	to	create	a	reference	to	a	database
within	Data	Services.	We	will	use	this	reference	to	create	a	target	table.	Those
database	references	are	called	datastores	and	are	used	as	a	presentation	of	the
database	layer.	In	the	next	step,	we	will	create	a	reference	to	our	STAGE	database
created	in	the	previous	chapter.

12.	 Go	to	the	Datastores	tab	of	Local	Object	Library.	Then,	right-click	on	the	empty
window	and	select	New	to	open	the	Create	New	Datastore	window.

13.	 Choose	the	following	settings	for	the	newly	created	datastore	object:

14.	 Repeat	steps	12	and	13	to	create	the	rest	of	datastore	objects	connected	to	the
databases	we	created	in	the	previous	recipes.	Use	the	same	database	server	name	and
user	credentials	and	change	only	the	Datastore	Name	and	Database	name	fields
when	creating	new	datastores.	See	the	following	table	for	reference:

Datastore	Name Database	name

DS_ODS ODS

DWH AdventureWorks_DWH

OLTP AdventureWorks_OLTP

Now,	you	should	have	four	datastores	created,	referencing	all	databases	created	in	the
SQL	server:	DS_STAGE,	DS_ODS,	DWH,	and	OLTP.

15.	 Now,	we	can	use	the	DS_STAGE	datastore	to	create	our	target	table.	Go	back	to	the
DF_HelloWorld	in	the	Data	Flow	tab	of	the	design	window	and	select	Template
Table	on	the	right	tool	panel.	Put	it	on	the	right-hand	side	of	the	Query	transform
and	choose	HELLO_WORLD	as	the	table	name	in	the	DS_STAGE	datastore.

16.	 Our	final	dataflow	should	look	like	this	now:

17.	 Go	back	to	the	Job_HelloWorld	–	Job	tab	and	click	on	the	Validate	All	button	in
the	top	instrument	panel.	You	should	get	the	following	message	in	the	output	window
of	Designer	on	the	left-hand	side	of	your	screen:	Validate:	No	Errors	Found
(BODI-1270017).

18.	 Now,	we	are	ready	to	execute	our	first	job.	For	this,	use	the	Execute…	(F8)	button
from	the	top	instrument	panel.	Agree	to	save	the	current	objects	and	click	on	OK	on
the	following	screen.

19.	 See	that	the	log	screen	that	shows	you	the	execution	steps	contains	no	execution
errors.	Then,	go	to	your	SQL	Server	Management	Studio,	open	the	STAGE	database,
and	check	the	contents	of	the	appeared	HELLO_WORLD	table.	It	has	just	one	column,
TEXT,	with	only	one	value,	“Hello	World!”.

How	it	works…
“Hello	World!”	is	a	small	example	that	introduces	a	lot	of	general	and	even	sophisticated
concepts.	In	the	following	sections,	we	will	quickly	review	the	most	important	ones.	They
will	help	you	get	familiar	with	the	development	environment	in	Data	Services	Designer.
Keep	in	mind	that	we	will	return	to	all	these	subjects	again	throughout	the	book,
discussing	them	in	more	detail.

Executing	ETL	code	in	Data	Services
To	execute	any	ETL	code	developed	in	the	Data	Services	Designer	tool,	you	have	to	create
a	job	object.	In	Data	Services,	the	only	executable	object	is	job.	Everything	else	goes
inside	the	job.

ETL	code	is	organized	as	a	hierarchy	of	objects	inside	the	job	object.	To	modify	any	new
object	by	placing	another	object	in	it,	you	have	to	open	the	edited	object	in	the	main
workspace	design	area	and	then	drag	and	drop	the	required	object	inside	it,	placing	them
in	the	workspace	area.	In	our	recipe,	we	created	a	job	object	and	placed	the	dataflow
object	in	it.	We	then	opened	the	dataflow	object	in	the	workspace	area	and	placed
transform	objects	inside	it.	As	you	can	see	in	the	following	screenshot,	workspace	areas
opened	previously	could	be	accessible	through	the	tabs	at	the	bottom	of	the	workspace
area:

The	Project	Area	panel	can	display	the	hierarchy	of	objects	in	the	form	of	a	tree.	To	see
it,	you	have	to	assign	your	newly	created	job	to	a	specific	project	and	open	the	project	in
Project	Area	by	double-clicking	on	the	project	object	in	Local	Object	Library.

Executable	ETL	code	contains	one	job	object	and	can	contain	script,	dataflow,	and
workflow	objects	combined	in	various	ways	inside	the	job.

As	you	saw	from	the	recipe	steps,	you	can	create	a	new	job	by	going	to	Local	Object
Library	|	Jobs.

Although	you	can	combine	all	types	of	objects	by	placing	them	in	the	job	directly,	some
objects,	for	example,	transform	objects,	can	be	placed	only	into	dataflow	objects	as
dataflow	is	the	only	type	of	object	that	can	process	and	actually	migrate	data	(on	a	row-
by-row	basis).	Hence,	all	transformations	should	happen	only	inside	the	dataflow.	In	the
same	way,	you	can	only	place	datastore	objects,	such	as	tables	and	views,	directly	in

dataflows	as	source	and	target	objects	for	data	to	be	moved	from	source	to	target	and
transformed	along	the	way.	When	a	dataflow	object	is	executed	within	the	job,	it	reads
data	row	by	row	from	the	source	and	moves	the	row	from	left	to	right	to	the	next
transform	object	inside	the	dataflow	until	it	reaches	the	end	and	is	sent	to	the	target	object,
which	usually	is	a	database	table.

Throughout	this	book,	you	will	learn	the	purpose	of	each	object	type	and	how	and	when	it
can	be	used.

For	now,	remember	that	all	objects	inside	the	job	are	executed	in	the	sequential	order	from
left	to	right	if	they	are	connected	and	simultaneously	if	they	are	not.	Another	important
rule	is	that	the	parent	object	starts	executing	first	and	then	all	objects	inside	it.	The	parent
object	completes	its	execution	only	after	all	child	objects	have	completed	successfully.

Validating	ETL	code
To	avoid	job	execution	failures	due	to	incorrect	ETL	syntax,	you	can	validate	the	job	and
all	its	objects	with	the	Validate	Current	or	Validate	All	button	on	the	top	instrument
panel	inside	the	Designer	tool:

Validate	Current	validates	only	the	current	object	opened	in	the	workspace	design	area
and	script	objects	in	it	and	does	not	validate	the	underlying	child	object	such	as	dataflows
and	workflows.	In	the	preceding	example,	the	object	opened	in	the	workspace	is	a	job
object	that	has	one	child	dataflow	object	called	DF_HelloWorld	inside	it.	Only	one	job
object	will	be	validated	and	not	DF_HelloWorld.

Validate	All	validates	the	current	and	all	underlying	objects.	So,	both	are	currently	opened
in	the	workspace	object,	and	all	objects	you	see	in	the	workspace	are	validated.	The	same
applies	to	the	objects	nested	inside	them,	down	to	the	very	end	of	the	object	hierarchy.

So,	to	validate	the	whole	job	and	its	objects,	you	have	to	go	to	the	job	level	by	opening	the
job	object	in	the	workspace	area	and	clicking	on	Validate	All	button	on	the	top
instrument	panel.

Validation	results	are	displayed	in	the	Output	panel.	Warning	messages	do	not	affect	the
execution	of	the	job	and	often	indicate	possible	ETL	design	problems	or	show	data	type
conversions	performed	by	Data	Services	automatically.	Error	messages	in	the	Output	|
Errors	tab	mean	syntax	or	critical	design	errors	made	in	ETL.	Whenever	you	try	to	run
the	job	after	seeing	“red”	error	validation	messages,	the	job	will	fail	with	exactly	the	same
errors	that	you	saw	at	the	beginning	of	execution,	as	every	job	is	implicitly	validated	when

executed.

Always	validate	your	job	manually	before	executing	it	to	avoid	job	failures	due	to
incorrect	syntax	or	incorrect	ETL	design.

Template	tables
This	is	a	convenient	way	to	specify	the	target	table	that	does	not	yet	exist	in	the	database
and	send	data	to	it.	When	a	dataflow	object	where	the	template	target	table	object	is	placed
is	executed,	it	runs	two	DDL	commands,	DROP	TABLE	<template	table	name>	and
CREATE	TABLE	<template	table	name>,	using	the	output	schema	(set	of	columns)	of	the
last	object	inside	the	dataflow	before	the	target	template	table.	Only	after	that,	the
dataflow	processes	all	the	data	from	the	source,	passing	rows	from	left	to	right	through	all
transformations,	and	finally	inserts	data	into	the	freshly	created	target	table.

Note
Note	that	tables	are	not	created	on	the	database	level	from	template	tables	until	the	ETL
code	(dataflow	object)	is	executed	within	Data	Services.	Simply	placing	the	template	table
object	inside	a	dataflow	and	creating	it	in	a	datastore	structure	is	not	enough	for	the	actual
physical	table	to	be	created	in	the	database.	You	have	to	run	your	code.

They	are	displayed	under	different	categories	in	the	datastore.	They	appear	separately
from	normal	table	objects:

The	usage	of	template	table	is	extremely	useful	during	ETL	development	and	testing.	It
enables	you	to	not	think	about	going	to	the	database	level	and	changing	the	structure	of
the	tables	by	altering,	deleting,	or	creating	them	manually	if	the	ETL	code	that	inserts	the
data	in	the	table	changes.	Every	time	dataflow	runs,	it	will	be	deleting	and	recreating	the
database	table	defined	through	the	template	table	object,	with	the	currently	required	table
structure	defined	by	your	current	ETL	code.

Template	table	objects	are	easily	converted	to	normal	table	objects	using	the	“Import”

command	on	them.	This	command	is	available	from	the	object’s	context	menu	in	the
dataflow	workspace	or	in	the	datastores	tab	in	Local	Object	Library.

Query	transform	basics
Query	transform	is	one	of	the	most	important	and	most	often	used	transform	objects	in
Data	Services.	Its	main	purpose	is	to	read	data	from	left	object(s)	(input	schema(s))	and
send	data	to	the	output	schema	(object	to	the	right	of	the	Query	transform).	You	can	join
multiple	datasets	with	the	help	of	the	Query	transform	using	syntax	rules	of	the	SQL
language.

Additionally,	you	can	specify	the	mapping	rules	for	the	output	schema	columns	inside	the
Query	transform	by	applying	various	functions	to	the	mapped	fields.	You	can	also	specify
hard-coded	values	or	even	create	additional	output	schema	columns,	like	we	did	in	our
HelloWorld	example.

The	example	in	the	next	screenshot	is	not	from	our	HelloWorld	example.	However,	it
demonstrates	how	the	row	extracted	previously	from	the	source	object	(input	schema)	can
be	augmented	with	extra	columns	or	can	get	its	columns	renamed	or	its	values
transformed	by	functions	applied	to	the	columns:

See	how	columns	from	two	different	tables	are	combined	in	a	single	dataset	in	the	output
schema,	with	columns	renamed	according	to	new	standards	and	new	columns	created	with
NULL	values	in	them.

The	HelloWorld	example
You	have	just	created	the	simplest	dataflow	processing	unit	and	executed	it	within	your
first	job.

The	dataflow	object	in	our	example	has	the	Row_Generation	transform,	which	generates
rows	with	only	one	field.	We	generated	one	row	with	the	help	of	this	transform	and	added
an	extra	field	to	the	row	with	the	help	of	the	Query	transform.	We	then	inserted	our	final
row	into	the	HELLO_WORLD	table	created	automatically	by	Data	Services	in	the	STAGE
database.

You	also	have	configured	a	couple	of	Designer	properties	and	created	a	Datastore	object
that	represents	the	Data	Services	view	of	the	underlying	database	level.	Not	all	database
objects	(tables	and	views)	are	visible	within	your	datastore	by	default.	You	have	to	import
only	those	you	are	going	to	work	with.	In	our	HelloWorld	example,	we	did	not	import	the
table	in	the	datastore,	as	we	used	the	template	table.	To	import	the	table	that	exists	in	the
database	into	your	datastore	so	that	it	can	be	used	in	ETL	development,	you	can	perform
the	following	steps:

	
1.	 Go	to	Local	Object	Library	|	Datastores.
2.	 Expand	the	datastore	object	you	want	to	import	the	table	in.
3.	 Double-click	on	the	Tables	section	to	open	the	list	of	database	tables	available	for

import:

4.	 Right-click	on	the	specific	table	in	the	External	Metadata	list	and	choose	Import
from	the	table	context	menu.

5.	 The	table	object	will	now	appear	in	the	Tables	section	of	the	chosen	datastore.	As	it
has	not	yet	been	placed	in	any	dataflow	object,	the	Usage	column	shows	a	0	value:

Creating	different	datastores	for	the	same	database	could	also	be	a	flexible	and	convenient
way	of	categorizing	your	source	and	target	systems.

There	is	also	a	concept	of	configurations	when	you	can	create	multiple	configurations	of
the	same	datastore	with	different	parameters	and	switch	between	them.	This	is	very	useful
when	you	are	working	in	a	complex	development	environment	with	development,	test,
and	production	databases.	However,	this	is	a	topic	for	future	discussion	in	the	upcoming
chapters.

Chapter	3.	Data	Services	Basics	–	Data	Types,
Scripting	Language,	and	Functions
In	this	chapter,	I	will	introduce	you	to	scripting	language	in	Data	Services.	In	this	chapter,
we	will	cover	the	following	topics:

	
Creating	variables	and	parameters
Creating	a	script
Using	string	functions
Using	date	functions
Using	conversion	functions
Using	database	functions
Using	aggregate	functions
Using	math	functions
Using	miscellaneous	functions
Creating	custom	functions

Introduction
It	is	easy	to	underestimate	the	importance	of	the	scripting	language	in	Data	Services,	but
you	should	not	fall	for	this	pitfall.	In	simple	words,	scripting	language	is	a	glue	that	allows
you	to	build	smart	and	reliable	ETL	and	unite	all	processing	units	of	work	(which	are
dataflow	objects)	together.

The	scripting	language	in	Data	Services	is	mainly	used	to	create	custom	functions	and
script	objects.	Script	objects	rarely	perform	data	movement	and	data	transformation.	They
are	used	to	assist	the	dataflow	object	(main	data	migration	and	transformation	processes).
They	are	usually	placed	before	and	after	them	to	assist	with	execution	logic	and	calculate
the	execution	parameter	values	for	the	processes	that	extract,	transform,	and	load	the	data.

The	scripting	language	in	Data	Services	is	armed	with	powerful	functions	that	allow	you
to	query	databases,	execute	database	stored	procedures,	and	perform	sophisticated
calculations	and	data	validations.	It	even	supports	regular	expressions	matching
techniques,	and,	of	course,	it	allows	you	to	build	your	own	custom	functions.	These
functions	can	be	used	not	just	in	the	scripts	but	also	in	the	mapping	of	Query	transforms
inside	dataflows.

Without	further	delay,	let’s	get	to	learning	scripting	language.

Creating	variables	and	parameters
In	this	recipe,	we	will	extend	the	functionality	of	our	Hello	World	dataflow	(see	the
Understanding	the	Designer	tool	recipe	from	Chapter	2,	Configuring	the	Data	Services
Environment).	Along	with	the	first	row	saying	“Hello	World!”,	we	will	generate	the
second	row,	providing	you	with	the	name	of	the	Data	Services	job	that	generated	the
greetings.

This	example	will	not	just	allow	us	to	get	familiar	with	how	variables	and	parameters	are
created	but	also	introduce	us	to	one	of	the	Data	Services	functions.

Getting	ready
Launch	your	Designer	tool	and	open	the	Job_HelloWorld	job	created	in	the	previous
chapter.

How	to	do	it…
We	will	parameterize	our	dataflow	so	that	it	can	receive	the	external	value	of	the	job	name
where	it	is	being	executed,	and	create	the	second	row	accordingly.

We	will	also	require	an	extra	object	in	our	job,	in	the	form	of	a	script	that	will	be	executed
before	the	dataflow	and	that	will	initialize	our	variables	before	passing	their	values	to	the
dataflow	parameters.

	
1.	 Using	the	script	button	()	from	the	right	instrument	panel,	create	a	script	object.

Name	it	scr_init,	and	place	it	to	the	left	of	your	dataflow.	Do	not	forget	to	link
them,	as	shown	in	the	following	screenshot:

2.	 To	create	dataflow	parameters,	click	on	the	dataflow	object	to	open	it	in	the	main
workspace	window.

3.	 Open	the	Variables	and	Parameters	panel.	All	panels	in	Designer	can	be
enabled/displayed	with	help	the	of	the	buttons	located	in	the	top	instrument	panel,	as
in	the	following	screenshot:

4.	 If	they	are	not	displayed	on	your	screen,	click	on	the	Variables	button	on	the	top
instrument	panel	().	Then,	right-click	on	Parameters	and	choose	Insert	from	the
context	menu.	Specify	the	following	values	for	the	new	input	parameter:

Note
Note	that	the	$	sign	is	very	important	when	you	reference	a	variable	or	parameter,	as
it	defines	the	parameter	in	Data	Services	and	is	required	so	that	the	compiler	can

parse	it	correctly.	Otherwise,	it	will	be	interpreted	by	Data	Services	as	a	text	string.
Data	Services	automatically	puts	the	dollar	sign	in	when	you	create	a	new	variable	or
parameter	from	the	panel	menus.	However,	you	should	not	forget	to	use	it	when	you
are	referencing	the	parameter	or	variable	in	your	script	or	in	the	Calls	section	of	the
dataflow.

5.	 Now,	let’s	create	a	job	variable	that	we	will	use	to	pass	the	value	defined	in	the	script
to	the	dataflow	parameter.	For	this,	use	the	Back	(Alt	+	Left)	button	to	go	to	the	job
level	(so	that	its	content	is	displayed	in	the	main	design	window).	Then,	right-click
on	Variables	in	the	Variables	and	Parameters	panel	and	choose	Insert	from	the
context	menu	to	insert	a	new	variable.	Name	it	$l_JobName	and	assign	the
varchar(100)	data	type	to	it,	which	is	the	same	as	the	dataflow	parameter	created
earlier.

6.	 To	pass	variable	values	from	the	job	to	the	input	parameter	of	the	dataflow,	go	to	the
Calls	tab	of	the	Variables	and	Parameters	panel	on	the	job	design	level.	Here,	you
should	see	the	input	dataflow	$p_JobName	parameter	with	an	empty	value.

7.	 Double-click	on	the	$p_JobName	parameter	and	reference	the	$l_JobName	variable	in
the	Value	field	of	the	Parameter	Value	window.	Click	on	OK:

8.	 Assign	a	value	to	a	job	variable	in	the	previously	created	script	object.	To	do	this,
open	the	script	in	the	main	design	window	and	insert	the	following	code	in	it:
$l_JobName	=	‘Job_HelloWorld’;

9.	 Finally,	let’s	modify	the	dataflow	to	generate	a	new	column	in	the	target	table.	For
this,	open	the	dataflow	in	the	main	design	window.

10.	 Open	the	Query	transform	and	right-click	on	the	TEXT	column	to	go	to	New	Output
Column…	|	Insert	Below.

11.	 In	the	opened	Column	Properties	window,	specify	JOB_NAME	as	the	name	of	the	new
column	and	assign	it	the	same	data	type,	varchar(100).

12.	 In	the	Mapping	tab	of	the	Query	transform	for	the	JOB_NAME	column,	specify	the
‘Created	by	‘||$p_JobName	string.

13.	 Go	back	to	the	job	context	and	create	a	new	global	variable,	$g_JobName,	by	right-
clicking	on	the	Global	Variables	section	and	selecting	Insert	from	the	context	menu.

14.	 Your	final	Query	output	should	look	like	this:

15.	 Now,	go	back	to	the	job	level	and	execute	it.	You	will	be	asked	to	save	your	work	and
choose	the	execution	parameters.	At	this	point,	we	are	not	interested	in	modifying
them,	so	just	continue	with	the	default	ones.

16.	 After	executing	the	job	in	Designer,	go	to	Management	Studio	and	query	the
HELLO_WORLD	table	to	see	that	a	new	column	has	appeared	with	the	‘Created	by
Job_HelloWorld’	value.

How	it	works…
All	main	objects	in	Data	Services	(dataflow,	workflow,	and	job)	can	have	local	variables
or	parameters	defined.	the	difference	between	an	object	variable	and	an	object	parameter
is	very	subtle.	Parameters	are	created	and	used	to	accept	the	values	from	other	objects
(input	parameters)	or	pass	them	outside	of	the	object	(output	parameters).	Otherwise,
parameters	can	behave	in	the	same	way	as	local	variables—you	can	use	them	in	the	local
functions	or	use	them	to	store	and	pass	the	values	to	other	variables	or	parameters.
Dataflow	objects	can	only	have	parameters	defined	but	not	local	variables.	See	the
following	screenshot	of	the	earlier	example:

Workflow	and	job	objects,	on	the	other	hand,	can	only	have	local	variables	defined	but	not
parameters.	Local	variables	are	used	to	store	the	values	locally	within	the	object	to
perform	various	operations	on	them.	As	you	have	seen,	they	can	be	passed	to	the	objects
that	are	“calling”	for	them	(go	to	Variables	and	Parameters	|	Calls).

There	is	another	type	of	variable	called	a	global	variable.	These	variables	are	defined	at
the	job	level	and	shared	among	all	objects	that	were	placed	in	the	job	structure.

What	you	have	done	in	this	chapter	is	a	common	practice	in	Data	Services	ETL
development:	passing	variable	values	from	the	parent	object	(job	in	our	example)	to	the
child	object	(dataflow)	parameters.

To	keep	things	simple,	you	can	specify	hard-coded	values	for	the	input	dataflow
parameters,	but	this	is	usually	considered	bad	practice.

What	we	could	also	do	in	our	example	is	pass	global	variable	values	to	dataflow
parameters.	Global	variables	are	created	at	a	very	top	job	level	and	are	shared	by	all	nested
objects,	not	just	with	immediate	job	child	objects.	That	is	why	they	are	called	global.	They
can	be	created	only	in	the	job	context,	as	shown	here:

Also,	note	that	in	Data	Services,	you	cannot	reference	parent	object	variables	directly	into
child	objects.	You	always	have	to	create	input	child	object	parameters	and	map	them	on

the	parent	level	(using	the	Calls	tab	of	the	Variables	and	Parameters	panel)	to	local
parent	variables.	Only	after	doing	this,	you	can	go	in	your	child	object	and	map	its
parameters	to	the	local	child	object’s	variables.

Now,	you	can	see	that	parameters	are	not	the	same	thing	as	variables,	and	they	carry	an
extra	function	of	bridging	variable	scope	between	parent	and	child.	In	fact,	you	do	not
have	to	map	them	to	a	local	variable	inside	a	child	object	if	you	are	not	going	to	modify
them.	You	can	use	parameters	directly	in	your	calculations/column	mapping.

Last	thing	to	say	here	is	that	dataflows	do	not	have	local	variables	at	all.	They	can	only
accept	values	from	the	parents	and	use	them	in	function	calls/column	mapping.	That	is
because	you	do	not	write	scripts	inside	a	dataflow	object.	Scripts	are	only	created	at	the
job	or	workflow	level	or	inside	the	custom	functions	that	have	their	own	variable	scope.

Data	types	available	in	Data	Services	are	similar	to	common	programming	language	data
types.	For	a	more	detailed	description,	reference	the	official	Data	Services	documentation.

Note
The	blob	and	long	data	types	can	only	be	used	by	structures	created	inside	a	dataflow	or,
in	other	words,	columns.	You	cannot	create	script	variables	and	dataflow	/	workflow
parameters	of	blob	or	long	data	types.

There’s	more…
Try	to	modify	your	Job_HelloWorld	job	to	pass	global	variable	values	to	dataflow
parameters	directly.	To	do	this,	use	the	previously	created	global	variable	$g_JobName,
specify	a	hard-coded	value	for	it	(or	assign	it	a	value	inside	a	script,	as	we	did	with	the
local	variable)	and	map	it	to	the	input	dataflow	parameter	on	the	Calls	tab	of	the
Variables	and	Parameters	panel	in	the	job	context.	Do	not	forget	to	run	the	job	and	see
the	result.

Creating	a	script
Yes,	technically	we	created	our	first	script	in	the	previous	recipe,	but	let’s	be	honest—this
is	not	the	most	advanced	script	in	the	world,	and	it	does	not	provide	us	with	much
knowledge	regarding	scripting	language	capabilities	in	Data	Services.	Finally,	although
simplicity	is	usually	a	virtue,	it	would	be	nice	to	create	a	script	that	would	have	more	than
one	row	in	it.

In	the	following	recipe,	we	will	create	a	script	that	would	do	some	data	manipulation	and	a
little	bit	of	text	processing	before	passing	a	value	to	a	dataflow	input	parameter.

How	to	do	it…
Clear	the	contents	of	your	scr_init	script	objects	and	add	the	following	lines.	Note	that
every	command	or	function	call	should	end	with	a	semicolon:
#	Script	which	determines	name	of	the	job	and	

#	prepares	it	for	data	flow	input	parameter

print(‘INFO:	scr_init	script	has	started…’);

while	($l_JobName	IS	NULL)		

		begin

				if	($g_JobName	IS	NOT	NULL)	

				begin

						print(‘INFO:	assigning	$g_JobName	value’

						||’	of	{$g_JobName}	to	a	$l_JobName	variable…’);

						$l_JobName	=	$g_JobName;

				end	

				else	

						print(‘INFO:	global	variable	$g_JobName	is	empty,’

						||’	calculating	value	for	$l_JobName’

						||’	using	Data	Services	function…’);

						$l_JobName	=	job_name();

						print(‘INFO:	new	value	assigned	to	a	local	’

						||‘variable:	$l_JobName	=	{$l_JobName}!’);

		end

print(‘INFO:	scr_init	script	has	successfully	completed!’);

Try	to	run	a	job	now	and	confirm	that	the	row	inserted	into	the	target	HELLO_WORLD	table
has	a	proper	job	name	in	the	second	column.

How	it	works…
We	introduced	a	couple	of	new	elements	of	scripting	language	syntax.	The	#	sign	defines
the	comment	section	in	Data	Services	scripts.

Note	that	we	also	referenced	variable	values	in	the	text	string	using	curly	brackets
{$l_JobName}.	If	you	skip	them,	the	Data	Services	compiler	will	not	recognize	variables
marked	with	the	$	sign	and	will	use	the	variable	name	and	dollar	sign	as	part	of	the	string.

Tip
You	can	also	use	square	brackets	[]	instead	of	curly	brackets	to	reference
variable/parameter	values	within	a	text	string.	The	difference	between	them	is	that	if	you
use	curly	brackets,	the	compiler	will	put	the	variable	value	in	the	quoted	string	`value`
instead	of	using	it	as	it	is	used	in	the	text	string.

Scripting	language	in	Data	Services	is	easy	to	learn	as	it	does	not	have	much	variety	in
terms	of	conditional	constructs.	It	has	a	simple	syntax,	and	all	its	powers	come	from
functions.

In	this	particular	example,	you	can	see	one	while	loop	and	one	conditional	construct.	The
while	loop	is	the	only	type	of	loop	supported	in	the	Data	Services	scripting	language	and
the	only	conditional	supported	as	well.	This	is	really	all	you	need	in	most	cases.

The	while	(<condition>)	loop	expression	should	include	a	block	of	code	starting	with
begin	and	ending	with	end.	The	condition	check	happens	at	the	beginning	of	each
iteration	(even	the	very	first	one),	so	keep	it	in	mind	as	even	your	very	first	loop	iteration
can	be	skipped.	In	our	example,	the	loop	runs	while	the	$l_JobName	local	variable	is
empty.

The	syntax	of	the	if	conditional	element	is	the	same—each	conditional	block	should	be
wrapped	in	begin/end.	It	supports	else	if,	and	you	can	include	multiple	conditional
statements	separated	by	AND	or	OR.	We	can	use	the	conditional	to	check	whether	the	global
variable	from	which	we	will	be	sourcing	value	for	the	local	variable	is	empty	or	not.	If	it	is
not	empty,	we	would	assign	it	to	a	local	variable,	and	if	it’s	empty,	we	should	generate	a
job	name	using	the	job_name()	function	that	returns	the	name	of	the	job	it	is	executed	in.

The	print()	function	is	a	main	logging	function	in	the	Data	Services	scripting	language.
It	allows	you	to	print	out	messages	in	the	trace	log	file.	Look	at	the	following	screenshot.
It	shows	an	excerpt	from	the	trace	log	file	displayed	in	one	of	the	tabs	in	the	main	design
window	after	you	execute	the	job.

Note
When	you	execute	the	job,	Data	Services	generates	three	log	files:	trace	log,	monitor	log,
and	error	log.	We	will	explain	these	logs	in	detail	in	the	upcoming	recipes	and	chapters.
For	now,	use	the	trace	log	button	to	see	the	result	of	your	job	execution.

Messages	generated	by	the	print()	function	are	marked	in	the	trace	log	as	PRINTFN
(see	the	following	screenshot).	You	can	also	add	your	own	formatting	in	the	print()
function	to	make	the	messages	more	distinguishable	from	the	rest	of	the	log	messages	(see
the	INFO	word	added	in	the	example	here):

Using	string	functions
Here,	we	will	explore	a	few	useful	string	functions	by	updating	our	HelloWorld	code	to
include	some	extra	functionality.	There	is	only	one	data	type	in	Data	Services	used	to	store
character	strings,	and	that	is	varchar.	It	keeps	things	pretty	simple	for	string-related	and
conversion	operations.

How	to	do	it…
Here,	you	will	see	two	examples:	applying	string	functions	transformation	within	a
dataflow	and	using	string	functions	in	the	script	object.

Follow	these	steps	to	use	string	functions	in	Data	Services	using	the	example	of	the
replace_substr()	function,	which	substitutes	part	of	the	string	with	another	substring:

	
1.	 Open	the	DF_HelloWorld	dataflow	in	the	workspace	window	and	add	a	new	Query

transform	named	Who_says_What.	Put	it	after	the	Query	transform	and	before	the
target	template	table.

2.	 Open	the	Who_says_What	Query	transform	and	add	a	new	WHO_SAYS_WHAT	output
column	of	the	varchar(100)	type.

3.	 Add	the	following	code	into	a	mapping	tab	of	the	new	column:
replace_substr($p_JobName,‘_’,’	’)	||	’	says	’	||	word(Query.TEXT,1)

4.	 Your	new	Query	transform	should	look	like	the	one	in	the	following	screenshot.	Note
that	you	should	use	single	quotes	to	define	the	string	text	in	mapping	or	script:

5.	 The	final	version	of	the	dataflow	should	look	like	this:

Save	your	work	and	execute	the	job.	Go	to	Management	Studio	to	see	the	contents	of	the
dbo.HELLO_WORLD	table.	The	table	now	has	a	new	column	with	the	“Job	HelloWorld”
says	Hello	string.

Using	string	functions	in	the	script
We	are	not	quite	happy	with	the	Who_says_What	string.	Obviously,	only	HelloWorld
should	be	put	in	double	quotes	(they	do	not	affect	the	behavior	of	string	text	in	Data

Services).	Also,	we	will	use	the	init_cap()	function	to	make	sure	that	only	the	first	letter
of	our	job	name	is	capitalized.

Change	the	mapping	of	WHO_SAYS_WHAT	to	the	following	code:
‘Job	”’	||	init_cap(ltrim(lower($p_JobName),‘job_’))	||	’”’	||	’	says	’	||	word(Query.TEXT,1)

According	to	this	logic,	we	are	expecting	the	job	name	to	start	with	the	Job_	prefix.	In	this
case,	we	have	to	add	an	extra	logic	to	the	script	logic	running	before	the	dataflow	to	make
sure	that	we	have	this	prefix	in	our	job	name.	The	following	code	will	add	it	if	the	job
name	is	not	valid	according	to	our	naming	standards.	Add	the	following	code	before	the
last	print()	function	call:
#	Check	that	job	is	named	according	to	the	naming	standards

if	(match_regex($l_JobName,’^(job_).*$’,

				‘CASE_INSENSITIVE’)	=	1)	

		begin

				print(‘INFO:	the	job	name	is	correct!”);

		end

else	

		begin

				print(‘WARNING:	job	has	not	been	named	according	’

				||	‘to	the	standards.	’

				||	‘Changing	the	name	of	{$l_JobName}…’);

				$l_JobName	=	‘Job_’||$l_JobName;

				print(‘INFO:	new	job	name	is	’||$l_JobName);

		end

As	the	final	step,	save	the	job	and	execute	it.	Now,	the	string	in	your	third	column	should
be	Job	“Helloworld”	says	Hello.	Now,	even	if	you	rename	your	job	and	remove	the
Job_	prefix,	your	script	should	see	this	and	add	the	prefix	to	your	job	name.

How	it	works…
As	you	can	see	in	the	preceding	example,	we	used	common	string	manipulation	functions
similar	to	the	other	programming	languages.

In	the	first	part	of	the	recipe,	we	transformed	the	mapping	of	the	WHO_SAYS_WHAT	column
to	strip	out	the	Job_	prefix	from	the	parameter	value.	This	allows	us	to	correctly	wrap	the
rest	of	the	job	name	into	double	quotes	for	better	presentation.

The	init_cap()	function	capitalizes	the	first	character	of	the	input	string.

The	lower()	function	transforms	the	input	string	to	lowercase.

The	ltrim()	function	trims	the	specified	characters	on	the	left-hand	side	of	the	input
string.	Usually,	it	is	used	to	quickly	remove	leading	blank	characters	in	strings.	The
rtrim()	function	does	the	same	thing	but	for	trailing	characters.

The	word()	function	is	extremely	useful	in	parsing	the	input	string	to	extract	“words”	or
parts	of	a	string	separated	by	space	characters.	There	is	an	extended	version	of	the
word_ext()	function.	It	accepts	a	specified	separator	as	the	third	parameter.	As	the	second
parameter	in	both	these	versions,	you	will	specify	the	word	number	to	be	extracted	from
the	string.

You	probably	have	already	guessed	that	||	is	used	as	a	string	concatenation	operator.

The	second	part	of	the	changes	implemented	in	this	recipe	in	the	script	object	contained
the	very	interesting	and	powerful	match_regex()	function.	It	is	one	of	the	few	functions
that	represents	regular	expression	support	within	Data	Services.	If	you	are	not	familiar
with	regular	expression	concept,	you	can	find	many	sources	on	the	Internet	explaining	it	in
detail.	Regular	expressions	are	supported	in	almost	all	major	programming	languages	and
allow	you	to	specify	matching	patterns	in	a	very	short	form.	This	makes	them	very
effective	to	parse	a	string	and	find	a	matching	substring	or	pattern	for	it.

In	the	Data	Services	match_regex()	function,	if	you	specify	a	regular	expression	pattern
string	as	a	second	input	parameter,	it	will	return	1	if	it	finds	the	match	of	the	pattern	in	the
input	string.	It	will	return	0	if	it	does	not	find	the	match.	It	is	a	very	effective	way	to
validate	the	format	of	the	text	string	or	look	for	specific	characters	or	patterns	in	the	string.

Here,	we	checked	whether	our	job	has	the	prefix	Job_	in	its	name.	If	not,	we	should	add	it
to	the	beginning	of	the	job	name	before	passing	the	value	to	a	dataflow.

There’s	more…
Feel	free	to	explore	the	existing	string	functions	available	in	Data	Services.	There	are
some	extended	versions	of	the	functions	we	already	used	in	the	preceding	recipe.	You	can
take	a	look	at	them.	For	example,	the	ltrim_blanks()	function	allows	you	to	quickly
remove	blank	characters	without	specifying	extra	parameters.	Its	extended	version,	the
ltrim_blanks_ext(),	substr()	function	returns	part	of	the	string	from	another	string.
The	replace_substr()	function	is	used	to	substitute	part	of	the	string	with	another	string.

We	will	definitely	use	some	of	them	in	our	future	recipes	throughout	the	book.

Using	date	functions
Correctly	dealing	with	dates	and	time	is	critically	important	in	data	warehouses.	In	the
end,	you	should	understand	that	this	is	one	of	the	most	important	attributes	in	a	majority	of
fact	tables	in	your	DWH,	which	defines	the	“position”	of	your	data	records.	Lots	of
reports	are	filtering	data	by	date-time	fields	before	performing	data	aggregation.	This	is
probably	why	Data	Services	has	a	decent	amount	of	date	functions,	allowing	a	variety	of
operations	on	date-time	variables	and	table	columns.

Data	Services	supports	the	following	date	data	types:	date,	datetime,	time,	and
timestamp.	They	define	what	part	of	time	units	are	stored	in	the	field:

	
date:	This	stores	the	calendar	date
datetime:	This	stores	the	calendar	date	and	the	time	of	the	day
time:	This	stores	only	the	time	of	the	day	without	the	calendar	date
timestamp:	This	stores	the	time	of	the	day	in	subseconds

How	to	do	it…
Generating	current	date	and	time
Here	is	a	script	that	can	be	included	in	your	current	script	object	in	the	HelloWorld	job	to
display	the	generated	date	values	in	the	job	trace	log.

To	test	this	script,	create	a	new	job	called	Job_Date_Functions	and	a	new	script	within	it
called	SCR_Date_Functions.	Also,	create	four	local	variables	in	the	job:	$l_date	of	the
date	data	type,	$l_datetime	of	the	datetime	data	type,	$l_time	of	the	time	data	type,
and	$l_timestamp	of	the	timestamp	data	type.

Print	out	date	function	examples	to	the	trace	log:
$l_date	=	sysdate();

print(‘$l_date	=	[$l_date]’);

$l_datetime	=	sysdate();

print(‘$l_datetime	=	[$l_datetime]’);

$l_time	=	systime();

print(‘$l_time	=	[$l_time]’);

$l_timestamp	=	systime();

print(‘$l_timestamp	=	[$l_timestamp]’);

$l_timestamp	=	sysdate();

print(‘$l_timestamp	=	[$l_timestamp]’);

The	trace	logfile	displays	the	following	information:
$l_date	=	2015.05.05

$l_datetime	=	2015.05.05	18:47:27

$l_time	=	18:47:27

$l_timestamp	=	1900.01.01	18:47:27.030000000

$l_timestamp	=	2015.05.05	18:15:21.472000000

As	you	can	see,	different	data	types	are	able	to	store	different	amounts	of	data.	Also,	you
see	that	the	systime()	function	does	not	generate	date-related	data	(days,	months,	and
years),	and	1900.01.01	that	you	see	in	the	first	timestamp	variable	output	is	a	dummy
default	date	value.	The	second	output	shows	that	we	used	the	sysdate()	function	to	get
this	information.

Extracting	parts	from	dates
Here	are	some	useful	operations	you	can	perform	to	extract	parts	from	data	type	values.
Note	that	all	of	them	return	integer	values.	You	can	append	these	commands	to	the	script
object	already	created	in	order	to	test	how	they	work:
$l_datetime	=	sysdate();

print(‘$l_datetime	=	[$l_datetime]’);

#	Extract	Year	from	date	field

print(‘Year	=	’||	date_part($l_datetime,‘YY’));

#	Extract	Day	from	date	field

print(‘Day	=	’||	date_part($l_datetime,‘DD’));

#	Extract	Month	from	date	field

print(‘Month	=	’||	date_part($l_datetime,‘MM’));

#	Display	day	in	month	for	the	input	date

print(‘Day	in	Month	=	’||	day_in_month($l_datetime));

#	Display	day	in	week	for	the	input	date

print(‘Day	in	Week	=	’||	day_in_week($l_datetime));

#	Display	day	in	year	for	the	input	date

print(‘Day	in	Year	=	’||	day_in_year($l_datetime));

#	Display	number	of	week	in	year

print(‘Week	in	Year	=	’||	week_in_year($l_datetime));

#	Display	number	of	week	in	month

print(‘Week	in	Month	=	’||	week_in_month($l_datetime));

#	Display	last	day	of	the	current	month	in	the	provided	input	date

print(‘Last	date	of	the	date	month	=	’||	last_date($l_datetime));

The	output	in	a	trace	log	should	be	similar	to	this:
$l_datetime	=	2015.05.05	15:55:09

Year	=	2015

Day	=	5

Month	=	5

Day	in	Month	=	5

Day	in	Week	=	2

Day	in	Year	=	125

Week	in	Year	=	18

Week	in	Month	=	1

Last	date	of	the	date	month	=	2015.05.31	15:55:09

How	it	works…
Some	functions	use	the	extra	formatting	parameter,	for	example,	date_part()	does.	You
can	also	use	‘HH’,‘MI’,‘SS’	to	extract	hours,	minutes,	and	seconds	respectively.

There	are	also	shorter	versions	of	the	date_part()	function	that	allow	you	to	extract	year,
month,	or	quarter	without	specifying	any	extra	formatting	parameters.	For	this,	you	can
use	the	year(),	month(),	and	quarter()	functions.

An	interesting	function	is	the	isweekend()	function.	It	returns	1	if	the	specified	date	value
is	a	weekend,	and	0	if	it’s	not.

There’s	more…
You	can	access	the	full	list	of	functions	available	in	Data	Services	from	different	places	in
Designer.	One	option	is	to	open	the	script	object.	There	is	a	Functions…	button	at	the	top
of	the	main	design	window.	Click	it	to	open	the	Select	Function	window.	All	functions
are	categorized	and	have	a	short	description	explaining	how	they	work	and	what	they
require	as	input	parameters.	Look	at	this	screenshot:

The	same	button	is	also	available	on	the	Mapping	tab	of	the	Query	transform	inside	a
dataflow,	so	you	can	access	it	if	you	are	trying	to	create	a	transformation	rule	for	one	of
the	columns.

This	list	is	also	available	in	Smart	Editor,	but	we	will	discuss	it	in	detail	in	one	of	the
next	recipes.	Of	course,	you	can	always	reference	the	Data	Services	documentation	to	see
all	functions	available	in	Data	Services,	and	some	examples	of	their	usage.

Using	conversion	functions
Conversion	functions	allow	you	to	change	the	data	type	of	the	variable	or	column	data
type	in	the	Query	transform	from	one	to	another.	This	is	very	handy,	for	example,	when
you	receive	date	values	as	string	characters	and	want	to	convert	them	to	internal	date	data
types	to	apply	date	functions	or	perform	arithmetic	operations	on	them.

How	to	do	it…
One	of	the	most	used	functions	to	convert	from	one	data	type	to	another	is	the	cast()
function.	Look	at	the	examples	here.	As	usual,	create	a	new	job	with	an	empty	script
object	and	type	this	code	in	it.	Create	a	$l_varchar	job	local	variable	of	the	varchar(10)
data	type:
$l_varchar	=	‘20150507’;

#	Casting	varchar	to	integer

print(cast($l_varchar,‘integer’));

#	Casting	varchar	to	decimal

print(cast($l_varchar,‘decimal(10,0)’));

#	Casting	integer	value	to	varchar

print(cast(987654321,‘varchar’(10)’));

#	Casting	integer	to	a	double

print(cast($l_varchar,‘double’));

The	output	is	shown	here:

Remember	that	the	print()	function	automatically	converts	the	input	to	varchar	in	order
to	display	it	in	a	trace	file.	Note	how	casting	to	a	double	data	type	changed	the	appearance
of	the	number.

Casting	is	helpful	in	order	to	make	sure	that	you	are	sending	values	of	the	correct	data
type	to	the	column	of	a	specific	data	type	or	function	that	expects	the	data	of	the	particular
data	type	required	for	it	to	work	correctly.	Automatic	conversions	performed	by	Data
Services	when	the	value	of	one	data	type	is	assigned	to	a	variable	or	column	of	a	different
data	type	could	produce	unexpected	results	and	lead	to	errors.

However,	the	most	useful	conversion	functions	are	functions	used	to	convert	a	string	to	a
date	and	vice	versa.	Add	the	following	lines	to	your	script	and	run	the	job:
$l_varchar	=	‘20150507’;

#	Casting	varchar	to	a	date

print(to_date($l_varchar,‘YYYYMMDD’));

#	Converting	changing	format	of	the	input	date	

#	from	”YYYYMMDD’	to	‘DD.MM.YYYY’

print(

to_char(to_date($l_varchar,‘YYYYMMDD’),‘DD.MM.YYYY’)

);

When	converting	text	string	to	a	date,	you	have	to	specify	the	format	of	the	string	so	that
the	Data	Services	compiler	can	interpret	and	convert	the	values	correctly.	The	full	table	of
possible	formats	available	in	these	two	functions	is	available	in	the	Data	Services
Reference	Guide	available	for	download	at	http://help.sap.com.	Refer	to	it	for	more
details.	Here	are	some	more	examples	of	the	to_char()	function	conversions	of	a	date
variable:
$l_date	=	sysdate();

print(to_char($l_date,‘DD	MON	YYYY’));

print(to_char($l_date,‘MONTH-DD-YYYY’));

The	trace	log	should	be	similar	to	the	following	one:
07	MAY	2015

MAY-07-2015

Let’s	get	familiar	with	another	interesting	data	type:	interval.	It	helps	you	perform
arithmetic	operations	on	dates.	The	script	here	performs	arithmetic	operations	on	a	date
stored	in	the	$l_date	variable	by	first	adding	5	days	to	it,	then	calculating	the	first	date	of
the	next	month,	and	finally	subtracting	1	second	from	the	date-time	value	stored	in	the
$l_datetime	variable.

See	the	example	here:
$l_date	=	to_date(‘01/05/2015’,‘DD/MM/YYYY’);

print(‘Date	=	’||	$l_date);

#	Add	5	days	to	the	$l_date	value

print(‘{$l_date}	+	5	days	=	’||	$l_date	+	num_to_interval(5,‘D’));

#	Calculate	first	day	of	next	month

print(‘Firs	day	of	next	month	=	’||	last_date($l_date)	+	num_to_interval(1,‘D’));

#	Subtract	1	second	out	of	the	datetime

$l_datetime	=	to_date(‘01/05/2015	00:00:00’,‘DD/MM/YYYY	HH24:MI:SS’);

print(‘{$l_datetime}	minus	1	second	=	’||	$l_datetime	-	num_to_interval(1,‘S’));

http://help.sap.com

How	it	works…
You	probably	have	not	noticed,	but	you	have	already	seen	the	results	of	implicit	data	type
conversion	made	automatically	by	Data	Services	in	the	previous	recipes.	For	example,
date	extract	functions	returned	integer	values	that	were	converted	automatically	to
varchar	so	that	they	could	be	concatenated	with	the	string	part	and	displayed	using	the
print()	function,	which,	by	the	way,	can	accept	only	varchar	as	an	input	parameter.

Data	Services	does	data	type	conversions	automatically	whenever	you	assign	a	value	of
one	data	type	to	a	variable	or	column	of	a	different	data	type.	The	only	potential	pitfall
here	is	that	if	you	rely	on	automatic	conversion	you	are	leaving	some	guessing	work	to
Data	Services	and	can	get	unexpected	results	in	the	end.	So,	understanding	how	and	when
conversion	happens	automatically	to	implement	manual	checks	instead	could	be	critical.
Many	bugs	in	ETL	code	are	related	to	incorrect	data	type	conversion,	so	you	should	be
extra	careful.

There’s	more…
Try	to	experiment	with	automatic	conversion.	For	example,	when	adding	integer	numbers
to	date	variables:	sysdate()	+	10	to	see	how	Data	Services	behaves	and	which	default
parameters	it	uses	for	formatting	automatically	converted	value.

Using	database	functions
There	is	no	great	variety	of	functions	in	this	area.	Data	Services	encourages	you	to
communicate	with	database	objects	and	control	the	flow	of	data	within	a	dataflow.

How	to	do	it…
You	will	learn	a	little	more	about	the	functions	here.

key_generation()
First,	let’s	look	at	the	key_generation()	function.	This	is	the	function	the	can	be	called
only	from	the	dataflow	(when	used	in	column	mapping),	so	we	are	not	interested	in	it	at
this	point	as	we	cannot	use	it	in	the	Data	Services	scripts.

This	function	is	actually	similar	to	the	Key_Generation	transform	object	that	can	be	used
as	part	of	a	dataflow	as	well,	and	it	is	used	to	lookup	the	highest	key	value	from	a	table
column	and	generate	the	next	one.	This	is	often	used	to	populate	the	key	column	of	the
new	record	with	the	unique	values	before	inserting	this	record	to	a	target	table.	We	will
take	a	closer	look	at	the	Key_Generation	transform	in	the	upcoming	chapters.

total_rows()
This	function	is	used	to	calculate	the	total	number	of	rows	in	the	database	table.	The
easiest	and	quickest	way	to	check	in	the	script	whether	the	table	is	empty	or	not	before
running	a	dataflow	populating	this	table	is	to	run	this	function.	Then,	according	to	the
results,	you	can	make	further	decisions,	that	is,	truncate	the	table	directly	from	a	script
before	running	the	next	dataflow.	Alternatively,	you	can	use	conditionals	to	skip	the	next
portion	of	ETL	code	entirely.

See	the	example	of	how	this	function	is	used.	As	usual,	you	can	create	a	new	job	with	a
script	object	inside	it.	Type	the	following	code	and	run	the	job:
print(

total_rows(‘DWH.DBO.DIMACCOUNT’)

);

Do	not	forget	to	import	the	table	into	your	DWH	datastore	as	you	can	reference	only
tables	that	have	been	imported	in	your	Data	Services	repository.	Look	at	this	screenshot:

sql()
The	sql()	function	is	a	universal	function	that	allows	you	to	perform	SQL	calls	to	any
database	for	which	you	created	a	datastore	object.	You	can	run	DDL	and	DML	statements,
SELECT	queries,	and	even	call	stored	procedures	and	database	functions.

Note
You	should	be	using	the	sql()	function	very	carefully	in	your	scripts,	and	we	do	not
recommend	that	you	use	it	at	all	in	column	mappings	inside	a	dataflow.	This	function
should	only	be	used	to	return	one	record	with	as	few	fields	as	possible.	So,	always	test	the

statement	you	place	inside	the	sql()	function	directly	in	the	database	first	to	make	sure	it
behaves	as	expected.

For	example,	to	calculate	the	total	number	of	rows	in	the	DimAccount	table	with	the	sql()
function,	you	can	use	the	following	code:
print(‘Total	number	of	rows	in	DBO.DIMACCOUNT	table	is	:	’||

		sql(‘DWH’,‘SELECT	COUNT(*)	FROM	DBO.DIMACCOUNT’)

);

How	it	works…
The	sql()	function	is	very	convenient	for	doing	stored	procedures	executions,	truncating,
and	creating	database	objects	and	doing	lookups	for	aggregated	values	when	the	query
returns	only	one	row	or	even	one	value.	If	you	try	to	return	the	dataset	of	multiple	rows,
you	will	get	only	the	value	of	the	first	field	from	the	first	row.	It	is	still	possible	to	query
multiple	fields,	but	it	will	require	that	you	modify	the	query	itself	and	add	extra	code	to
parse	the	returned	string	(see	the	example	here):
#	returning	multiple	fields	from	a	database	table

$l_row	=	sql(‘DWH’,‘SELECT	CONVERT(VARCHAR(10),ACCOUNTKEY)	’||

		’	+','+	CONVERT(VARCHAR(50),ACCOUNTDESCRIPTION)	’||

		‘FROM	DBO.DIMACCOUNT’);

$l_AccountKey	=	word_ext($l_row,1,’,’);

$l_AccountDescription	=	word_ext($l_row,2,’,’);

print(‘AccountKey	=	{$l_AccountKey}’);

print(‘AccountDescription	=	{$l_AccountDescription}’);

As	you	can	see,	this	is	a	lot	of	code	for	such	a	simple	procedure.	If	you	want	to	extract	and
parse	a	multiple	rows	in	the	Data	Services	script,	you	will	have	to	create	a	row-counting
mechanism	and	loop	through	the	rows	by	doing	multiple	query	executions	within	a	loop.
However,	you	can	try	to	do	this	yourself	as	an	exercise	to	practice	a	little	bit	of	Data
Services	scripting	language.

Note
Note	that	you	do	not	have	to	import	the	table	you	want	to	reference	in	the	sql()	function
into	a	datastore.

Using	aggregate	functions
Aggregate	functions	are	used	in	dataflow	Query	transforms	to	perform	aggregation	on	the
grouped	dataset.

You	should	be	familiar	with	these	functions	as	they	are	the	same	ones	used	in	the	SQL
language:	avg(),	min(),	max(),	count(),	count_distinct(),	and	sum().

How	to	do	it…
To	demonstrate	the	use	of	aggregate	functions,	we	will	perform	a	simple	analysis	of	one	of
our	tables.	Import	the	DimGeography	table	into	the	DWH	datastore	and	create	a	new	job
with	a	single	dataflow	inside	it	using	these	steps:

	
1.	 Your	dataflow	should	include	the	DimGeography	source	table	and	the	DimGeography

target	template	table	in	a	STAGE	database	to	send	the	output	to:

2.	 Open	the	Query	transform	and	create	the	following	output	structure:

The	COUNTRYREGIONCODE	column	contains	country	code	values	and	will	be	the
column	on	which	we	perform	the	grouping	of	the	dataset.	It	is	mapped	from	the	input
dataset	to	the	output.	Also,	drag	and	drop	it	to	the	GROUP	BY	tab	of	the	Query
transform	from	the	input	dataset	to	specify	it	as	a	grouping	column.	Other	columns
are	created	as	New	Output	Column…	(choose	this	option	from	the	context	menu	of
the	COUNTRYREGIONCODE	column)	and	contain	the	following	mappings	(see	the	table
here):

Output	column	name Mapping	expression

COUNT_DISTINCT_PROVINCE count_distinct(DIMGEOGRAPHY.STATEPROVINCENAME)

COUNT_PROVINCE count(DIMGEOGRAPHY.STATEPROVINCENAME)

MIN_KEY min(DIMGEOGRAPHY.GEOGRAPHYKEY)

MAX_KEY max(DIMGEOGRAPHY.GEOGRAPHYKEY)

3.	 Save	the	changes	and	run	the	job.	Now,	go	to	Management	Studio	and	query	the
contents	of	the	newly	created	DimGeography	table	in	the	STAGE	database.	You	should

get	the	results	as	shown	in	this	screenshot:

How	it	works…
What	we	have	just	built	in	the	dataflow	in	the	Query	transform	can	be	done	with	the
following	SQL	statement:
select	

		CountryRegionCode,	

		COUNT(DISTINCT	StateProvinceName),	

		COUNT(StateProvinceName),	

		MIN(GeographyKey),	

		MAX(GeographyKey)	

from	

		dbo.DimGeography	

group	by	

		CountryRegionCode;

First,	the	count_distinct()	function	calculates	the	number	of	distinct	provinces	within
each	country,	count()	calculates	the	total	number	of	rows	for	each	country,	and	min()	and
max()	show	the	lowest	and	highest	GeographyKey	values	within	each	country	group,
respectively.

Note
You	cannot	use	these	functions	directly	in	the	scripting	language	but	only	in	the	Query
transform.	If	you	need	to	extract	the	aggregated	values	from	the	database	tables	within
Data	Services	script,	you	can	use	sql()	containing	the	SELECT	statement	with	aggregated
database	functions.

Using	math	functions
Data	Services	has	a	standard	set	of	functions	available	to	perform	mathematical
operations.	In	this	recipe,	we	will	use	the	most	popular	of	them	to	show	you	what
operations	can	be	performed	on	numeric	data	types.

How	to	do	it…
	
1.	 Create	a	new	job	and	name	it	Job_Math_Functions.
2.	 Inside	this	job,	create	a	single	dataflow	called	DF_Math_Functions.
3.	 Import	the	FactResellerSales	table	in	your	DHW	datastore	and	add	it	to	the

dataflow	as	a	source	object.
4.	 Add	the	first	Query	transform	after	the	source	table	and	link	them	together.	Then,

open	it	and	drag	two	columns	to	the	output	schema:	PRODUCTKEY	and	SALESAMOUNT.
Specify	the	FACTRESELLERSALES.PRODUCTKEY	=	354	filtering	condition	in	the
WHERE	tab:

5.	 Add	the	second	Query	transform	and	rename	it	Group.	Here,	we	will	perform	a
grouping	operation	on	the	product	key	we	selected	in	the	previous	transform.	To	do
this,	add	the	PRODUCTKEY	column	in	the	GROUP	BY	tab	and	apply	the	sum()
aggregate	function	on	SALESAMOUNT	in	the	Mapping	tab:

6.	 Finally,	add	the	last	Query	transform	called	Math	and	link	it	to	the	previous	one.
Inside	it,	drag	all	columns	from	the	source	to	the	target	schema	and	add	the	new	ones
using	New	Output	Column….	Specify	mapping	expressions,	as	in	the	following
screenshot:

7.	 As	the	last	step,	add	a	new	template	table	located	in	the	STAGE	database	owned	by	the
dbo	user.	This	template	is	called	FACTRESELLERSALES.	Your	dataflow	should	look	like
this	now:

8.	 Save	and	run	the	job.	Then,	to	check	the	result	dataset,	either	query	the	new	table
from	SQL	Server	Management	Studio.	Alternatively,	open	your	dataflow	in	Data
Services	and	click	on	the	magnified	glass	icon	of	your	FACTRESELLERSALES
(DS_STAGE.DBO)	target	table	object	to	browse	the	data	directly	from	Data	Services.

How	it	works…
The	result	you	see	here	very	well	explains	the	effect	of	the	math	functions	applied	to	your
SALESAMOUNT	column	value:

The	ceil()	function	returns	the	smallest	integer	value	(automatically	converted	to	an
input	column	data	type;	that	is	why,	you	see	trailing	zeroes)	equal	to	or	greater	than	the
specified	input	number.

The	floor()	function	returns	the	highest	integer	value	equal	to	or	less	than	the	input
number.

The	rand_ext()	function	returns	a	random	real	number	from	0	to	1.	In	Data	Services,	you
do	not	have	much	control	over	the	behavior	of	the	functions	that	generate	random
numbers.	So,	you	have	to	apply	extra	mathematical	operations	to	define	the	range	of	the
generated	random	numbers	and	their	types.	In	the	example	earlier,	we	generated	random
integer	numbers	from	0	to	10	inclusively.

The	trunc()	and	round()	functions	perform	rounding	operations	similar	to	ceil()	and
floor(),	but	trunc()	just	truncates	the	number	to	the	length	specified	in	the	second
parameter	and	shows	you	the	result	as	is.	On	the	other	hand,	the	round()	function	rounds
the	number	according	to	the	precision	specified.

There’s	more…
As	an	exercise,	try	the	other	Data	Services	mathematical	functions.	Modify	the	created
dataflow	to	include	examples	of	their	usage.	To	see	the	full	list	of	mathematical	functions
available,	use	the	Functions…	button	in	the	script	object	or	column	mapping	field	and
choose	the	Math	Functions	category	in	the	Select	Function	window:

Using	miscellaneous	functions
Actually,	miscellaneous	groups	include	almost	all	types	of	functions	that	cannot	easily	be
categorized.	Among	miscellaneous	functions,	there	are	functions	that	allow	you	to	extract
useful	information	from	the	Data	Services	repository,	for	example,	name	of	the	job,	the
workflow	or	dataflow	it	is	executed	from,	functions	that	allow	you	to	perform	advanced
string	searches,	functions	similar	to	other	standard	SQL	functions,	and	many	others.
Throughout	the	book,	we	will	very	often	use	Data	Services	miscellaneous	functions.	So,	in
this	recipe,	we	will	take	a	look	at	some	of	those	that	are	usually	used	in	the	scripts	and
help	you	query	the	Data	Services	repository.

How	to	do	it…
At	this	point,	you	should	be	pretty	comfortable	creating	new	jobs,	script	objects,	and
dataflow	objects.	So,	I	will	not	explain	the	steps	in	detail	every	time	we	need	to	create	a
new	test	job	object.	If	you	forgot	how	to	do	it,	refer	to	the	previous	recipes	in	the	book.

	
1.	 Create	a	new	job	and	add	a	script	object	in	it.
2.	 Open	the	script	and	populate	it	with	the	following	code.	This	code	shows	you	an

example	of	how	to	use	three	miscellaneous	functions:	ifthenelse(),	decode(),	and
nvl():
#	Conditional	functions

$l_string	=	‘Length	of	that	string	is	38	characters’;

$l_result	=	ifthenelse(length($l_string)	=	8,print(‘TRUE’),print(‘FALSE’));

$l_string	=	‘Length	of	that	string	is	38	characters’;

$l_result	=	decode(

		length($l_string)	=	10,	print(‘TRUE’),

		length($l_string)	=	12,	print(‘TRUE’),

		length($l_string)	=	38,	print(‘TRUE’),

		print(‘FALSE’)

);

$l_string	=	NULL;

$l_string	=	nvl($l_string,‘Empty	string’);

print($l_string);

3.	 For	this	script	to	work,	you	should	also	make	sure	that	you	have	local	variables
created	at	the	job	level—	$l_string	and	$l_result	of	the	varchar(255)	data	type.

How	it	works…
Most	of	the	miscellaneous	functions	are	functions	that	require	advanced	knowledge	of
Data	Services.	In	this	book,	you	will	see	a	lot	of	examples	of	how	they	can	be	used	in
complex	dataflows	and	Data	Services	scripts.

In	this	recipe,	we	can	see	three	conditional	functions:	ifthenelse(),	decode(),	and
nvl().	They	allow	you	to	evaluate	the	result	of	an	expression	and	execute	other
expressions,	depending	on	the	result	of	the	initial	evaluation.

After	executing	the	earlier	script,	you	can	see	the	following	trace	log	records:
8172		12468		PRINTFN		18/05/2015	8:12:34	p.m.		FALSE

8172		12468		PRINTFN		18/05/2015	8:12:34	p.m.		TRUE

8172		12468		PRINTFN		18/05/2015	8:12:34	p.m.		Empty	string

The	ifthenelse()	function	accepts	one	input	parameter:	a	comparison	expression,	which
returns	either	TRUE	or	FALSE.	If	TRUE,	then	the	second	parameter	of	ifthenelse()	is
executed	(if	it	is	an	expression)	or	just	returned	as	the	result	of	the	function.	The	third
parameter	is	executed	(or	returned)	if	the	comparison	expression	returns	FALSE.

The	decode()	function	does	the	same	thing	as	the	ifthenelse()	function,	except	that	it
allows	you	to	evaluate	multiple	expressions.	Its	parameters	go	in	pairs,	as	you	can	see	in
the	example.	The	first	parameter	in	a	pair	is	a	comparison	expression	and	the	second
parameter	is	what	is	returned	by	the	function	if	the	comparison	expression	is	TRUE.	If	it
returns	FALSE,	then	decode()	moves	to	the	next	pair	and	then	the	next	one	until	it	reaches
the	last	pair.	If	none	of	the	expressions	returned	TRUE,	then	the	last	parameter	of	the
decode()	is	returned	as	a	default	value.

Note
Bear	in	mind	that	the	decode()	function	first	returns	TRUE	without	evaluating	the	rest	of
the	conditions.	So,	be	careful	with	the	order	of	conditional	expressions	in	the	decode()
function.

Finally,	the	last	function	in	the	example	is	the	common	SQL	function	nvl().	It	returns	the
value	specified	in	the	second	parameter	if	the	first	parameter	is	NULL.	This	function	is	very
useful	in	dataflows.	Usually,	it	is	used	as	a	mapping	expression	in	the	Query	transform	to
prevent	NULL	values	from	coming	through	for	a	specific	column.	All	NULL	values	will	be
converted	to	the	value	you	define	in	the	nvl()	function.

Creating	custom	functions
In	this	recipe,	we	will	get	familiar	with	a	Smart	Editor	tool	available	in	Designer	to	help
you	write	your	scripts	or	functions	in	a	convenient	way.

We	will	create	a	new	function	that	can	be	executed	either	within	a	script	or	within	a
dataflow.	This	function	accepts	two	parameters:	date	value	and	number	of	days.	It	then
adds	the	number	of	days	to	the	input	date	and	returns	the	result	date.

How	to	do	it…
	
1.	 Open	Designer	and	go	to	Tools	|	Custom	Functions…	from	the	top	level	menu:

2.	 In	the	opened	window,	right-click	in	the	area	with	the	list	of	functions	and	choose
New….

3.	 Choose	the	name	of	the	new	fn_add_days	function	and	populate	the	description
section,	as	shown	in	this	screenshot:

4.	 Then,	click	on	Next	to	open	a	Smart	Editor	window	and	input	the	following	code:
try

		begin

				$l_Date	=	to_date($p_InputDate,‘DD/MM/YYYY’);

				$l_Days	=	num_to_interval($p_InputDays,‘D’);

		end

catch	(all)

		begin

				print(‘fn_add_days()	FAILED	:	check	input	parameters’);

				raise_exception(‘fn_add_days()	FAILED	:	check	input	parameters:	’||

				’	Date	format	DD/MM/YYYY	and	number	of	days	should	be	an	integer	value’);

		end

$l_Result	=	$l_Date	+	$l_Days;	

Return	$l_Result;

5.	 For	it	to	work,	you	have	to	create	a	set	of	required	input/output	parameters	and	local
variables	for	this	custom	function.	Your	function	in	the	Smart	Editor	should	look
like	the	one	shown	in	this	screenshot:

6.	 Create	the	following	input	parameters:	$p_InputDate	of	the	varchar	data	type	and
$p_InputDays	of	the	integer	data	type.	Use	the	left	panel	Variables	inside	the
Custom	Function	window.

7.	 These	local	variables	will	be	used	only	within	a	function	and	will	not	be	accessible
from	outside	of	the	function.	Create	$l_Date	of	the	date	data	type,	$l_Days	of	the
interval	data	type,	and	$l_Result	of	the	date	data	type.

8.	 Now,	it	is	time	to	click	on	OK	to	create	our	first	custom	function	and	use	it	in	the	job.
For	this,	you	can	create	a	simple	job	with	one	script	object	inside	it	using	the
following	code:
print(to_char(fn_add_days(‘10/10/2015’,12),‘DD-MM-YYYY’));

How	it	works…
We	made	the	input	parameters	of	the	varchar	and	integer	data	types	for	the	convenience	of
calling	the	function.	It	will	itself	perform	the	conversion	to	the	correct	date	and	interval
data	types	before	returning	the	result	of	the	date	sum	operation.

Even	though	we	have	not	used	the	num_to_interval()	function	to	convert	integer	values
to	intervals,	Data	Services	will	still	perform	the	correct	sum	operation.	This	is	because	it
does	an	automatic	conversion	of	the	numeric	data	type	into	intervals	of	days	when	it	is
used	in	arithmetic	operation	with	dates.	That	is	why,	print(sysdate()	+	1)	will	return
you	tomorrow’s	date.

In	the	code	mentioned	earlier,	you	can	also	see	the	error-handling	mechanism	that	can	be
used	in	Data	Services	scripts:	the	try-catch	block.	Everything	executed	between	try	and
catch	if	failed	will	never	fail	the	parent	object	execution.	It	is	very	useful	if	you	do	not
want	to	fail	your	job	because	of	the	non-critical	piece	of	code	failing	somewhere	inside	it.
In	case	of	a	failed	execution,	it	is	passed	to	the	second	begin-end	block	of	the	try-catch.
Here,	you	can	write	extra	log	messages	to	the	trace	logfile	and	still	fail	the	job	execution
with	the	raise_exception()	function	if	you	want	to.	We	will	discuss	it	in	more	detail	in
Chapter	5,	Workflow	–	Controlling	Execution	Order,	and	Chapter	9,	Advanced	Design
Techniques.

There’s	more…
The	scripting	language	in	Data	Services	is	a	very	important	tool	extensively	used	in
simple	or	complex	jobs.	In	this	chapter,	we	established	a	good	base	regarding	building
Data	Services	script	language	skills.	You	will	find	a	lot	more	examples	throughout	this
book.

Chapter	4.	Dataflow	–	Extract,	Transform,	and
Load
In	this	chapter	we	will	take	a	look	at	examples	of	the	most	important	processing	unit	in
Data	Services—the	dataflow	object—and	the	most	useful	types	of	transformations	you	can
use	inside	them.	We	will	cover:

	
Creating	a	source	data	object
Creating	a	target	data	object
Loading	data	into	a	flat	file
Loading	data	from	a	flat	file
Loading	data	from	table	to	table	–	lookups	and	joins
Using	the	Map_Operation	transform
Using	the	Table_Comparison	transform
Exploring	the	Auto	correct	load	option
Splitting	the	flow	of	data	with	the	Case	transform
Monitoring	and	analyzing	dataflow	execution

Introduction
In	this	chapter	we	move	to	the	most	important	component	of	the	ETL	design	in	Data
Services:	the	dataflow	object.	The	dataflow	object	is	the	container	that	holds	all
transformations	that	can	be	performed	on	data.

The	structure	of	the	dataflow	object	is	simple:	one	or	many	source	objects	are	placed,	on
the	left-hand	side	(which	we	extract	the	data	from),	then	source	objects	are	linked	to	the
series	of	transform	objects	(which	perform	manipulation	on	the	data	extracted),	and
finally,	the	transform	objects	are	linked	to	one	or	many	target	table	objects	(telling	Data
Services	where	the	transformed	data	should	be	inserted).	During	the	transformation	of	the
dataset	inside	the	dataflow,	you	can	split	the	dataset	into	multiple	dataset	flows,	or
conversely,	merge	multiple	separately	transformed	dataflows	together.

Manipulations	performed	on	data	inside	dataflows	are	done	on	a	row-by-row	basis.	The
rows	extracted	from	the	source	go	from	left	to	right	through	all	objects	placed	inside	the
dataflow.

We	will	review	all	major	aspects	of	dataflow	design	in	Data	Services,	from	creating	source
and	target	objects	to	the	usage	of	complex	transformations	available	as	part	of	the	Data
Services	functionality.

Creating	a	source	data	object
In	a	couple	of	previous	recipes,	you	have	already	become	familiar	with	data	sources,
importing	tables,	and	using	imported	tables	inside	dataflows	as	source	and	target	objects.
In	this	recipe,	we	will	create	the	rest	of	the	datastore	objects	linking	all	our	existing
databases	to	a	Data	Services	repository	and	will	spend	more	time	explaining	this	process.

How	to	do	it…
In	the	Understanding	the	Designer	tool	recipe	in	Chapter	2,	Configuring	the	Data	Services
Environment,	we	already	created	our	first	datastore	object,	STAGE,	for	the	“Hello	World”
example.

So,	why	do	you	need	a	datastore	object	and	what	is	it	exactly?	Datastore	objects	are
containers	representing	the	connections	to	specific	databases	and	storing	imported
database	structures	that	can	be	used	in	your	Data	Services	ETL	code.	In	reality,	datastore
objects	do	not	store	the	database	objects	themselves	but	rather	the	metadata	for	the	objects
belonging	to	the	application	system	or	database	that	the	datastore	object	connects	to.
These	objects	most	commonly	include	tables,	views,	database	functions,	and	stored
procedures.

If	you	have	not	followed	the	steps	in	the	“Hello	World”	example	presented	in	Chapter	2,
Configuring	the	Data	Services	Environment,	you	can	find	here	the	steps	to	create	all
datastore	objects	that	will	be	used	in	the	book	explained	in	better	detail.	With	these	steps,
we	will	create	datastore	objects	referencing	all	databases	we	have	created	previously	in
SQL	Server	in	the	first	two	chapters:

	
1.	 Open	the	Datastores	tab	in	Local	Object	Library.
2.	 Right-click	on	any	empty	space	in	the	window	and	choose	New	from	the	context

menu:

3.	 First	specify	Datastore	Type	for	the	datastore	object.	The	datastore	type	defines	the
connectivity	type	and	datastore	configuration	options	that	will	be	used	by	Data
Services	to	communicate	with	referenced	source/target	system	objects	lying	behind
this	datastore	connection.	In	this	book,	we	will	mainly	be	working	with	datastores	of
the	Database	type.	See	that	as	soon	as	the	datastore	type	Database	is	selected,	a
second	Database	Type	option	appears	with	a	list	of	available	databases:

4.	 The	Create	New	Datastore	window,	with	all	options	expanding	after	you	choose
Datastore	Type	and	Database	Type,	looks	like	this	screenshot:

5.	 Leave	all	advanced	options	at	their	default	values	and	configure	only	the	mandatory
options	in	the	top	window	panel:	the	database	connectivity	details	and	user
credentials,	which	will	be	used	by	Data	Services	to	access	the	database	and
read/insert	the	data.

6.	 Using	the	previous	steps,	create	another	datastore	named	ODS.
7.	 Altogether,	you	should	have	the	following	list	of	datastore	objects	created	for	all	our

local	test	databases.	If	you	do	not	have	all	of	them,	please	create	the	missing	ones
using	the	same	steps	just	mentioned:

DS_ODS:	This	is	the	datastore	linking	to	the	ODS	database
DS_STAGE:	This	is	the	datastore	linking	to	the	STAGE	database
DWH:	This	is	the	datastore	linking	to	the	AdventureWorks_DWH	database
OLTP:	This	is	the	datastore	linking	to	the	AdventureWorks_OLTP	database

8.	 To	create	a	reference	to	a	database	table	in	the	datastore	OLTP,	expand	the	OLTP
datastore	in	the	Local	Object	Library	tab	and	double-click	on	the	Tables	list.

9.	 The	Database	Explorer	window	opens	in	a	workspace	Designer	section,	showing

you	all	the	table	and	view	objects	in	the	OLTP	database.
10.	 Find	the	HumanResources.Employee	table	in	the	External	Metadata	list,	right-click

on	it,	and	choose	the	Import	option	from	the	context	menu:

11.	 You	can	see	how	the	table	status	has	changed	in	Database	Explorer	to	Yes	under
Imported	and	No	under	Changed.

12.	 Also,	you	can	see	the	table	references	appear	in	the	datastore	OLTP	table	list.	As	it	is
not	used	anywhere	in	ETL	code,	the	Usage	column	in	the	Local	Object	Library
shows	0	for	that	table.

13.	 Now,	close	the	Database	Explorer	window	and	double-click	on	the	imported	table
name	in	the	Local	Object	Library	window.	The	Table	Metadata	window	opens
showing	your	table	attributes	and	even	allowing	you	to	view	the	contents	of	the	table:

Note
This	Table	Metadata	window	is	extremely	useful	for	performing	a	source	system
analysis	when	you	have	to	learn	the	source	data	to	understand	it	before	starting	to

develop	your	ETL	code	and	applying	transformation	rules	on	it.

14.	 The	View	Data	tab	has	three	subtabs	within	it:	the	Data,	Profile,	and	Column
profile	tabs.	Choose	the	Column	profile	tab	and	select	the	GENDER	column	in	the
drop-down	list.

15.	 Click	on	the	Update	button	to	see	the	column	profile	data:

Column	profiling	data	shows	that	there	are	206	male	employees	(71.03%)	against	84
(28.97%)	female	ones.

How	it	works…
The	most	important	thing	you	should	understand	about	datastore	objects	is	that	when	you
import	a	database	object	into	a	datastore,	all	you	do	is	you	create	a	reference	to	the
database	object.	You	are	not	creating	a	physical	copy	of	the	table	in	your	Data	Services
datastore	when	you	import	a	table.	Hence,	when	you	use	View	data	in	the	Table
Metadata	window	for	that	table,	Data	Services	executes	the	SELECT	query	in	the
background	to	extract	this	data	for	you.

Looking	at	the	browsing	external	metadata	screen	again,	you	can	see	that	there	are	two
other	options	available	in	the	table	context	menu:	Open	and	Reconcile:

The	Open	option	allows	you	to	open	an	external	table	metadata	window	which	can
display	table	definition	information,	partitions,	indices,	table	attributes,	and	other	useful
information.

The	Reconcile	option	simply	updates	the	two	columns,	Imported	and	Changed,	in	the
External	Metadata	list.	It	is	useful	when	you	want	to	check	whether	the	table	object	has
been	imported	into	a	datastore	already	and	whether	it	has	changed	in	the	database	since
the	last	time	it	was	imported	into	a	datastore.

Note
It	is	the	ETL	developer’s	responsibility	to	reimport	the	table	objects	in	the	datastore	if
their	definition	or	structure	has	been	changed	on	the	database	level.	Data	Services	does	not
automatically	perform	this	operation.	The	most	common	problem	with	table	object
synchronization	is	when	the	column	populated	by	ETL	gets	removed	from	the	table	in	the
database.	To	reflect	this	change,	the	developer	has	to	reimport	the	table	object	in	the
datastore	to	update	table	object	structure	in	Data	Services	and	then	update	ETL	code	to
make	sure	that	a	non-existing	column	is	not	referenced	as	the	target	column	anymore.

Views	as	source	objects	behave	exactly	as	tables.	They	can	be	imported	in	the	datastore	in
the	same	Tables	section	along	with	other	table	objects.	The	only	difference	is	that	you
cannot	specify	the	imported	view	as	a	target	object	in	your	dataflow.

You	may	also	wonder	that,	if	the	datastore	object	represents	the	connection	to	a	specific

database,	why	do	you	not	see	all	the	database	objects	straight	away	after	creating	it.	The
answer	is	simple:	you	import	only	those	database	objects	you	will	be	using	in	your	ETL
code.	If	the	database	has	a	few	hundred	tables,	it	would	be	extremely	time-	and	resource-
intensive	for	Data	Services	to	automatically	synchronize	all	datastore	object	references
with	actual	database	objects	each	time	you	open	a	Designer	application.	It	is	also	easier
for	the	developer	to	be	able	to	see	only	the	tables	used	in	ETL	development.	Plus,	with	the
datastore	configurations	feature,	you	can	use	the	same	datastore	object	to	connect	to
different	physical	databases,	that	might	have	different	versions	of	the	tables	with	the	same
names,	so	the	synchronization	of	objects	imported	in	the	datastore	is	solely	your
responsibility	and	has	to	be	done	manually.	We	will	discuss	configurations	in	the	future
chapters.

The	profiling	functionality	of	Data	Services	that	we	used	in	this	recipe	allows	you	to	look
into	the	data	without	the	need	for	going	to	SQL	Server	Management	Studio	and	manually
querying	the	tables.	It	is	easy	and	convenient	to	use	during	ETL	development.

There’s	more…
It	is	quite	difficult	to	cover	all	the	information	about	all	datastore	settings	in	one	chapter,
as	Data	Services	is	able	to	connect	to	so	many	different	databases	and	application	systems.
As	the	datastore	options	are	database	specific,	the	number	of	options	and	their	behavior
vary	depending	on	which	database	or	system	you	are	trying	to	connect	to.

Creating	a	target	data	object
A	target	data	object	is	the	object	to	which	we	send	the	data	within	a	dataflow.	There	are	a
few	different	types	of	target	data	objects,	but	the	two	main	ones	are	tables	and	flat	files.	In
this	recipe,	we	will	take	a	look	at	a	target	table	object.

Note
Views	imported	into	a	datastore	cannot	be	target	objects	within	a	dataflow.	They	can	only
be	a	source	of	data.

Getting	ready
To	prepare	for	this	recipe,	we	need	to	create	a	table	in	our	STAGE	database.	To	do	that,
please	connect	to	SQL	Server	Management	Studio	and	create	the	Person	table	in	the
STAGE	database	using	the	following	command:
CREATE	TABLE	dbo.Person

(

		FirstName	varchar(50),

		LastName	varchar(50),

		Age	integer

);

This	table	will	be	used	as	a	target	table,	which	we	will	load	data	into	by	using	Data
Services.	We	will	use	the	data	stored	in	the	Person	table	from	the	OLTP	database	as	the
source	data	to	be	loaded.

How	to	do	it…
	
1.	 Open	the	Data	Services	Designer	application.
2.	 In	the	DS_STAGE	datastore,	right-click	on	Tables	and	choose	the	option	Import	By

Name…	(another	quick	method	to	import	a	table	definition	into	Data	Services
without	opening	Database	Explorer).	Of	course,	in	order	to	do	that,	you	should	know
the	exact	table	name	and	schema	it	was	created	in.

3.	 In	the	opened	window,	enter	the	required	details,	as	in	the	following	screenshot:

4.	 Click	on	the	Import	button	to	finish.
5.	 Also	in	the	OLTP	datastore,	import	a	new	table	Person	from	the	Person	schema

inside	the	AdventureWorks_OLTP	database.	We	will	use	this	table	as	a	source	of	data.

Note
In	the	example	of	using	SQL	Server	as	an	underlying	database,	the	owner	is
synonymous	with	the	database	schema.	When	importing	a	table	by	name	in	the
datastore	or	creating	template	tables,	the	Owner	field	defines	the	schema	where	the
table	will	be	imported	from/created	in	the	database.	So,	keep	in	mind	that	you	have	to
use	existing	schema	created	previously.

6.	 Create	a	new	job	with	a	new	dataflow	object,	open	the	dataflow,	and	drag	the	Person
table	from	the	OLTP	datastore	into	this	dataflow	as	a	source.	Then,	drag	the	Person
table	from	the	DS_STAGE	datastore	as	a	target.

7.	 Create	a	new	Query	transform	between	them	and	link	it	to	both	source	and	target
tables:

8.	 As	soon	as	you	open	the	Query	transform,	you	will	see	that	both	input	and	output
structures	were	created	for	you.	All	column	names	and	data	types	were	imported
from	the	source	and	target	objects	you	linked	the	Query	transform	to,	and	all	you
have	to	do	is	to	map	the	column	values	from	the	source	to	pass	to	the	columns	in	the
target	you	want	to	pass	them	to.

9.	 Map	the	source	FIRSTNAME	column	to	the	target	FIRSTNAME	column	and	perform	the

same	mapping	for	LASTNAME.	As	there	is	no	AGE	column	in	the	source,	put	NULL	as	the
value	for	the	mapping	expression	for	the	AGE	target	column	in	the	Query	transform.
This	can	be	done	by	dragging	and	dropping	from	the	input	to	the	output	schema	or	by
typing	the	mapping	manually:

10.	 Each	target	object	within	a	dataflow	has	a	set	of	options	that	is	available	in	the
Target	Table	Editor	window.	To	open	it,	double-click	on	a	target	table	object	in	the
dataflow	workspace:

11.	 For	now,	let’s	just	select	the	Delete	data	from	table	before	loading	checkbox.	This
option	makes	sure	that	each	time	the	dataflow	runs,	all	target	table	records	are	deleted
by	Data	Services	before	populating	the	target	table	with	data	from	a	source	object.

12.	 Validate	the	dataflow	by	clicking	on	the	Validate	Current	button	when	the	dataflow
is	opened	in	the	main	workspace	to	make	sure	that	you	have	not	made	any	design
errors.

13.	 Now	execute	the	job	and	click	on	the	View	Data	button	in	the	bottom-right	corner	of
the	target	table	icon	within	a	dataflow	to	see	the	data	loaded	into	the	target	table.

How	it	works…
You	can	see	that	the	target	table	object	has	a	lot	of	options.	Data	Services	can	perform
different	types	of	loading	of	the	same	dataset,	and	all	those	types	are	configured	in	the
target	table	object	tabs.	Some	of	them	are	used	if	the	inserted	data	set	is	voluminous,	while
some	of	them	allow	you	to	insert	data	without	duplicating	it.	We	will	discuss	all	of	this	in
detail	in	a	later	chapters.

When	Data	Services	selects	data	from	source	tables,	all	it	does	is	execute	the	SELECT
statement	in	the	background.	But	when	Data	Services	inserts	the	data,	there	are	risks	such
as	incompatible	data	types/values,	duplicate	data	(which	violates	referential	integrity	in
the	target	table),	slow	performance,	and	so	on.	Do	not	forget	that	you	insert	data	after
transforming	it,	so	it	is	your	responsibility	to	understand	the	target	database	object
requirements	and	specifics	of	the	data	you	are	inserting.

That	is	why	the	loading	mechanism	in	Data	Services	has	many	more	settings	to	configure
and	is	much	more	flexible	than	the	mechanism	of	getting	source	data	inside	a	dataflow.

There’s	more…
As	you	might	remember	from	the	“Hello	World”	example	in	Chapter	2,	Configuring	the
Data	Services	Environment,	there	is	a	great	and	simple	way	to	create	target	table	objects	in
a	dataflow	without	the	necessity	to	create	a	physical	table	in	the	database	first	and	import
it	into	the	DS	datastore.	We	used	this	type	of	target	table	before,	and	I	am	talking	about
template	tables.	Objects	that	we	used	in	the	previous	recipes	when	we	wanted	Data
Services	to	create	a	physical	target	table	for	us	from	the	mappings	we	defined	in	a	Query
transform	inside	our	ETL	code	in	a	dataflow.

Note
Note	that	the	template	target	table	has	an	extra	target	table	option;	Drop	and	re-create
table.	By	default,	it	is	ticked	and	gets	physically	dropped	and	recreated	each	time	the
dataflow	runs.	Data	Services	generates	a	table	definition	from	the	output	schema	of	the
last	transform	object	in	the	dataflow	linked	to	the	target	table	object.

As	you	can	see	in	the	following	figure,	you	can	specify	multiple	target	tables.	They	get
populated	with	the	same	data	set	coming	from	the	source	table,	and	as	they	get	populated
from	the	same	output	schema	of	the	Query	transform,	they	have	the	same	table	definition
format:

To	create	a	template	table,	you	use	the	right-hand	side	tool	menu	in	the	Designer	and	the
template	table	icon	shown	in	the	following	screenshot:

Click	on	the	template	table	button	in	the	tool	menu	and	then	on	the	empty	space	in	the
dataflow	workspace	to	place	it	as	a	target	table	object.

Specify	the	template	table	name,	the	Data	Services	datastore	where	it	should	be	created,
and	the	database	owner	(schema)	name	where	the	table	gets	created	physically	when	the
dataflow	is	executed:

Loading	data	into	a	flat	file
This	recipe	will	teach	you	how	to	export	information	from	a	table	into	a	flat	file	using
Data	Services.

Flat	files	are	a	popular	choice	when	you	need	to	store	data	externally	for	backup	purposes
or	in	order	to	transfer	and	feed	it	into	another	system	or	even	send	to	another	company.

The	simplest	file	format	usually	describes	a	list	of	columns	in	specific	order	and	a
delimiter	used	to	separate	field	values.	In	most	cases,	it’s	all	you	need.	As	you	will	see	a
bit	later,	Data	Services	has	many	extra	configuration	options	available	in	the	File	Format
object,	allowing	you	to	load	the	contents	of	the	flat	files	into	a	database	or	export	the	data
from	a	database	table	to	a	delimited	text	file.

How	to	do	it…
	
1.	 Create	a	new	dataflow	and	use	the	EMPLOYEE	table	from	the	OLTP	datastore	imported

earlier	as	a	source	object.
2.	 Link	the	source	table	with	a	Query	transform	and	drag	-	and	-	drop	all	source

columns	to	the	output	schema	for	mapping	configuration.
3.	 In	the	Query	transform,	right-click	on	the	parent	Query	item,	which	includes	all

output	mapping	columns,	and	choose	the	Create	File	Format…	option	at	the	bottom
of	the	opened	context	menu:

4.	 The	main	File	Format	Editor	window	opens:

5.	 Refer	to	the	following	table	for	more	details	about	File	Format	options	and	their
corresponding	values:

File
Format
options

Description Value

Type
Specifies	the	type	of	the	file	format:
Delimited,	Fixed	Width,	Unstructured
Text,	and	so	on.

In	this	recipe,	we	are
creating	plain	text	file
with	row	fields	separated
by	a	comma.	Choose	the
Delimited	option.

Name
Name	of	the	File	Format.	Note	that	this	is	not
the	name	of	the	file	that	will	be	created	but
the	general	name	of	the	File	Format.

Type	F_EMPLOYEE.

Location

This	is	the	physical	location	of	the	file
referenced	using	this	file	format.	In	our	case,
the	locations	of	Job	Server	and	Local	are	the
same	as	Data	Services	installed	on	the	same Choose	Job	Server.

machine	where	we	executed	our	Designer
application.

Root
directory

Directory	path	to	the	file.	Make	sure	that	this
directory	exists. Type	C:\AW\Files.

File
name(s)

Name	of	the	file	that	we	read	data	from	or
write	into. Type	HR_Employee.csv.

Delimiters
|	Column

You	can	either	choose	from	existing	options:
Tab,	Semicolon,	Comma,	Space,	or	just	type
in	your	own	custom	delimiter	as	one
character	or	a	sequence	of	characters.

Choose	Comma.

Delimiters
|	Text

You	can	specify	whether	you	want	character
values	to	be	wrapped	in	quotes	/	double
quotes	or	not.

Choose	“.

Skip	row
header

When	you	read	from	the	file,	use	this	option
to	skip	the	row	header	so	it	is	not	confused	as
a	first	data	record.

We	do	not	have	to	change
this	option	as	it	would
not	make	any	effect
because	we	are	going	to
write	to	a	flat	file,	not
read	from	it.

Write	row
header

Same	options	as	the	previous	one,	but	for
cases	when	you	write	into	a	file.	If	set	to	Yes,
the	row	header	will	be	created	as	a	first	line
in	the	file.	If	No,	the	first	line	in	the	file	will
be	a	data	record.

Choose	Yes	to	create	a
row	header	when	writing
to	a	file.

6.	 Click	on	the	Save	&	Close	button	to	close	File	Format	Editor	and	save	the	new	File
Format.

7.	 Now	you	can	open	the	Local	Object	Library	|	Formats	tab	and	see	your	newly
created	file	format	F_EMPLOYEE.

8.	 Open	the	dataflow	workspace	and	drag-and-drop	this	file	format	from	the	Local
Object	Library	tab	to	a	dataflow	and	choose	the	Make	Target…	option.

9.	 Link	your	Query	transform	to	a	target	file	object	and	validate	your	dataflow	to	make
sure	that	there	are	no	errors.

10.	 Run	the	job.	You	will	see	that	the	file	HR_Employee.csv	appears	in	C:\AW\Files	and
gets	populated	with	292	records	(1	header	record	+	291	data	records).

How	it	works…
File	format	configuration	provides	you	with	a	flexible	solution	for	reading	data	from	and
loading	data	into	flat	files.	You	can	even	set	up	automatic	date	recognition	and	configure
an	error	handling	mechanism	to	reject	rows	that	do	not	fit	into	a	defined	file	format
structure.

Note	that	editing	the	file	format	from	Local	Object	Library	and	editing	it	directly	from
the	dataflow	where	it	was	placed	to	be	used	to	read	or	write	from	flat	files	is	not	the	same.
If	you	edit	it	inside	the	dataflow,	you	will	notice	that	some	fields	in	the	File	Format
Editor	are	grayed	out.	Opening	the	same	file	format	for	editing	from	Local	Object
Library	makes	those	fields	available	for	editing.	This	happens	because	when	imported	in
a	dataflow,	the	File	Format	object	becomes	an	instance	of	the	parent	File	Format	object
stored	in	a	Local	Object	Library.	and	because	all	changes	applied	to	an	instance	inside	a
dataflow	are	not	propagated	to	other	instances	of	this	File	Format	object	imported	into
other	dataflows.	Alternatively,	when	you	modify	the	File	Format	definition	in	Local
Object	Library,	changes	made	are	propagated	to	all	instances	of	this	File	Format	object
imported	to	different	dataflows	across	ETL	code.

Note
Some	file	format	configuration	parameters	can	be	changed	only	on	the	parent	file	format
object	in	Local	Object	Library.

You	should	also	keep	in	mind	that	export	to	a	flat	file	in	Data	Services	is	quite	a	forgiving
process.	For	example,	if	your	file	format	has	the	varchar(2)	character	field	and	you	are
trying	to	export	a	line	of	50	characters	to	a	file	in	this	field,	Data	Services	will	allow	you
to	do	that.	In	fact	Data	Services	does	not	care	much	about	the	columns	specified	in	the	file
format	at	all	if	you	use	your	file	format	to	export	data	to	a	flat	file.	Data	definition	will	be
sourced	from	the	output	schema	of	the	preceding	transformation	object	linked	to	the	target
file	object.

Importing	from	a	flat	file	on	the	other	hand	is	a	very	strict	process.	Data	Services	will
reject	the	record	immediately	if	it	does	not	fit	the	file	format	definition.

There’s	more…
There	are	more	ways	to	create	a	File	Format	object	than	shown	in	this	recipe.	Some	are
listed	here:

	
Creating	in	Local	Object	Library:	Open	the	Formats	tab	in	the	Local	Object
Library	window,	right-click	on	Flat	Files,	choose	New	from	the	context	menu.	You
can	use	the	Location,	Root	directory,	and	File	Name(s)	options	to	automatically
import	the	format	from	an	external	file.	Otherwise,	you	will	have	to	define	all
columns	and	their	data	types	manually,	one	by	one.
Replicating	a	file	format	from	an	existing	File	Format	object	in	Local	Object
Library:	On	the	Formats	tab,	choose	the	object	you	want	to	replicate,	right-click	on
it,	and	choose	the	Replicate…	option	in	the	context	menu.

Loading	data	from	a	flat	file
You	can	use	the	same	File	Format	object	created	in	the	previous	recipe	to	load	data	from	a
flat	file.	In	the	following	section,	we	will	take	a	closer	look	at	file	format	options	relevant
to	loading	data	from	the	files.

How	to	do	it…
	
1.	 Create	a	new	job	and	a	new	dataflow	object	in	it.
2.	 Create	a	new	text	file,	Friends_30052015.txt,	with	the	following	lines	inside	it:

NAME|DOB|HEIGHT|HOBBY

JANE|12.05.1985|176|HIKING

JOHN|07-08-1982|182|FOOTBALL

STEVE|01.09.1976|152|SLEEPING|10

DAVE|27.12.1983|AB5

3.	 Go	to	Local	Object	Library	and	create	a	new	file	format	by	right-clicking	on	Flat
Files	and	choosing	New.

4.	 Populate	the	File	Format	options	as	shown	in	the	following	screenshot:

Delimiters	|	Column	is	set	to	|	in	this	case	as	our	file	has	the	pipe	as	a
delimiter.
NULL	Indicator	was	set	to	NULL,	which	means	that	only	NULL	values	in	the
incoming	file	are	interpreted	as	NULL	when	read	by	Data	Services.	The	other
“empty”	values	will	be	interpreted	as	empty	strings.
Date	format	is	set	to	dd.mm.yyyy	as	we	specified	in	the	file	format	that	we	are

loading	the	DOB	(Date	of	Birth)	column	of	the	date	data	type.	Imagine	that	you
have	configured	the	Query	transform	mapping	for	that	column	using	the
to_date(<date>,‘dd.mm.yyyy’)	function.
Skip	row	header	is	set	to	Yes	in	order	to	specify	that	the	file	has	a	header	row
which	has	to	be	skipped.
Then	we	set	all	options	related	to	error	capturing	to	Yes	to	catch	all	possible
errors.
Write	errors	to	a	file	allows	you	to	record	the	rejected	records	in	a	separate	file
for	further	analysis.	We	will	be	writing	them	to	the	Friends_rejected.txt	file.

5.	 Import	this	file	format	object	as	a	data	source	in	your	newly	created	dataflow.
6.	 Map	all	source	columns	to	a	Query	transform	and	create	the	target	template	table

FRIENDS	in	the	DS_STAGE	datastore.
7.	 Save	and	run	the	job.

As	a	result,	you	can	see	that	two	records	were	rejected,	one	because	of	an	extra	column	in
the	row	and	the	other	because	the	row	had	one	column	less	than	the	defined	file	format.

The	contents	of	your	target	table	should	look	like	this:

You	can	see	that	some	lines	are	missing	here	due	to	the	errors	in	the	input	file.

What’s	interesting	is	that	Data	Services	was	smart	enough	to	correctly	recognize	and
convert	the	date	of	birth	for	JOHN.	Remember	it	was	07-08-1982	in	the	file	and	the	date
format	we	specified	was	dd.mm.yyyy.

How	it	works…
As	you	can	see,	most	of	the	file	format	options	we	have	used	are	useful	for	validating	the
contents	of	the	source	data	file	in	order	to	reject	records	with	data	of	incorrect	data	type	or
format.

The	main	question	you	have	to	ask	yourself	is	whether	you	want	all	these	records	to	be
rejected.	The	alternative	might	be	to	build	a	dataflow	that	loads	all	records	of	the	varchar
data	type	and	tries	to	cleanse	and	convert	incorrect	values	to	an	acceptable	format,	or	puts
the	default	value	instead	of	a	wrong	one	to	mark	the	field.	Sometimes	you	do	not	want	to
lose	the	whole	record	if	just	one	value	is	incorrect.

Now,	let’s	fix	the	“number	of	columns”	problem	in	the	source	file	to	see	how	Data
Services	deals	with	conversion	problems.	Do	you	remember	we	put	the	character	symbol
in	one	of	the	integer	data	type	fields?

Change	the	records	for	Steve	and	Dave	to	the	following	lines	and	rerun	the	job:
STEVE|1976.01.01|152|SLEEPING

DAVE|27.12.1983|AB5|DREAMING

Both	records	are	rejected	with	the	following	error	messages	appearing	in	the	error	log	file
when	you	execute	the	job:

You	can	see	those	messages	in	the	job	error	log	and	in	the	Friends_rejected.txt	file
along	with	the	rejected	records	themselves.	The	name	and	location	of	the	reject	file	is
defined	by	two	file	format	options:	Error	file	root	directory	and	Error	file	name.	They
become	available	when	you	open	the	file	format	object	instance	for	editing	from	within	a
dataflow:

As	we	just	stated,	in	order	to	load	those	records,	you	should	put	in	some	extra
development	effort	and	create	a	logic	in	your	dataflow	to	deal	with	all	possible	scenarios
in	order	to	cleanse	and	correctly	convert	the	data,	and	of	course	you	should	amend	the	file
format,	changing	all	data	types	to	varchar	in	order	to	pass	those	records	through	for
further	cleansing.

Note
You	can	use	masks	in	the	File	name(s)	option	when	configuring	the	file	object	in	your
dataflow.	For	example,	specifying	invoice_*.csv	as	a	file	name	will	allow	you	to	load
both	invoice_number_1.csv	and	invoice_number_2.csv	files	in	a	single	execution	of	the
dataflow.	They	will	be	loaded	one	after	another.

There’s	more…
Try	to	experiment	further	with	the	contents	of	the	Friends_30052015.txt	file	by	adding
extra	rows	with	different	data	types	to	see	whether	they	will	be	rejected	or	loaded,	and
which	error	messages	you	will	get	from	Data	Services.

Loading	data	from	table	to	table	–	lookups	and
joins
When	you	specify	a	relational	source	table	in	the	dataflow,	Data	Services	executes	simple
SQL	SELECT	statements	in	the	background	to	fetch	the	data.	If	you	want	to,	you	can	see	the
list	of	statements	executed	for	each	source	table.	In	this	recipe,	we	explore	what	happens
under	the	hood	when	you	add	multiple	source	tables	and	how	Data	Services	optimizes	the
extraction	of	the	data	from	these	source	tables	and	even	joins	them	together,	executing
complex	SQL	queries	instead	of	multiple	SELECT	*	FROM	<table>.

How	to	do	it…
In	this	recipe,	we	will	extract	a	person’s	name,	address,	and	phone	number	from	the	source
OLTP	database	and	populate	a	new	stage	table	PERSON_DETAILS	with	this	data	set.

	
1.	 Create	a	new	job	and	a	new	dataflow.	Specify	your	own	names	for	the	created

objects.
2.	 To	extract	the	required	data,	you	will	need	to	import	the	tables	PERSON,	ADDRESS,	and

BUSINESSENTITYADDRESS	(which	is	a	table	linking	the	first	two)	into	your	source
OLTP	datastore.	All	these	tables	are	located	in	the	Person	schema	of	the
AdventureWorks_OLTP	database.

3.	 Place	the	imported	tables	as	source	objects	in	your	dataflow,	as	shown	in	the
following	figure,	and	link	them	with	the	Query	transform.	Insert	the	target	template
table	PERSON_DETAILS	to	be	created	in	the	DS_STAGE	datastore:

4.	 To	set	the	required	join	conditions,	you	should	use	the	Join	pairs	section	located	on
the	FROM	tab	of	the	Query	transform.	In	this	example,	these	join	conditions	should
be	generated	automatically	as	soon	as	you	open	the	Query	transform.	If	they	weren’t,
you	can	click	on	the	icon	with	two	intersecting	green	circles	with	the	hint	Click	to
propose	join	to	generate	them,	or	click	on	the	Join	Condition	field	and	type
required	join	conditions	manually	for	each	table	pair	to	create	join	conditions
manually.	Please	use	the	following	screenshot	as	a	reference	to	create	two	Inner	join
pairs	(PERSON	-	BUSINESSENTITYADDRESS	and	BUSINESSENTITYADDRESS	-	ADDRESS):

5.	 At	this	point,	you	are	able	to	see	which	SQL	statement	DS	uses	to	extract	the
required	information	by	choosing	Validation	|	Display	Optimized	SQL	from	the
main	menu.	It	opens	the	following	window	showing	you	the	number	of	datastores
queried	in	the	window	on	the	left	and	the	full	SELECT	statement	executed	in	each	of
them	on	the	right:

6.	 We	forgot	to	add	country	information	for	each	person.	It	looks	like	the	Address	table
has	only	street	information	and	city	but	no	country	or	state	data.	Import	another	two
tables	in	the	OLTP	datastore:	STATEPROVINCE	and	COUNTRYREGION.

7.	 Add	them	as	source	tables	in	the	dataflow,	but	do	not	join	them	to	already	existing
ones	in	the	same	Query	transform.	Create	another	Query	transform	and	call	it
Get_Country.	Use	it	to	join	the	Query	data	set	with	two	new	source	tables,	as	shown
in	the	following	figure:

8.	 Add	two	new	column	mappings	in	the	Get_Country	Query	transform:
BUSINESSENTITYID,	mapped	from	the	field	with	the	same	name	from	the	Query	input
schema,	and	the	COUNTRY	column,	mapped	from	the	NAME	column	of	the
COUNTRYREGION	table	input	schema.

9.	 If	you	check	Validation	|	Display	Optimized	SQL	again,	you	will	see	that	the	SQL
statement	has	changed,	now	including	two	new	tables:

10.	 We	still	have	missing	phone	information	for	our	PERSON_DETAILS	tables.	Add	a	third
Query	transform	on	the	right	and	call	it	Lookup_Phone.	To	look	for	the	phone
information,	we	will	use	the	lookup_ext()	function	executed	from	a	function	call
within	a	Query	transform.	The	function	lookup_ext()	is	most	commonly	used	in
column	mappings	to	perform	the	lookup	operation	for	the	values	from	other	tables.

11.	 Open	the	Lookup_Phone	Query	transform	and	map	all	source	columns	to	the	target
ones	except	for	the	BUSINESSENTITYID	and	ADDRESSLINE2	columns	(we	are	not	going
to	propagate	those).

12.	 Right-click	on	the	last	mapped	column	in	the	target	schema	(should	be	COUNTRY)	and
select	the	option	New	Function	Call…	from	the	context	menu:

13.	 Choose	Insert	Below…,	and	in	the	opened	Select	Function	window,	choose	Lookup
Functions	|	lookup_ext

14.	 The	opened	Lookup_ext	|	Select	Parameters	window	allows	you	to	set	lookup
parameters	for	the	table	you	want	to	extract	information	from.	Remember	that	this	is
basically	a	form	of	a	join,	so	you	would	have	to	specify	the	join	conditions	of	the
input	data	set	to	the	lookup	table.	In	our	case,	the	lookup	table	is	PERSONPHONE.	If	you
did	not	import	it	earlier	in	your	OLTP	datastore,	please	do	that	now.	Use	the	lookup
parameter	details	shown	in	the	following	screenshot:

15.	 After	you	click	on	Finish,	your	target	schema	in	the	Lookup_Phone	transform	should
look	like	this:

16.	 It	so	happens	that	the	PHONENUMBER	field	we	have	extracted	from	the	lookup	table	is	a
key	column	in	that	table.	Data	Services	automatically	defines	key	columns	from
source	tables	in	the	Query	transform	as	primary	keys	as	well.	To	change	this	and
make	sure	that	our	final	data	set	does	not	include	duplicates,	we	are	going	to	create	a
last	Query	transform	and	name	it	Distinct.	Link	it	on	the	right	to	the	Lookup_Phone
transform	and	open	it	choosing	the	following	options:

To	change	the	PHONENUMBER	column	from	being	a	primary	key,	double-click	on	the
column	in	the	target	schema	and	uncheck	the	Primary	key	option.	To	get	rid	of	the
duplicate	fields,	open	the	SELECT	tab	and	check	Distinct	rows.

17.	 Save	and	run	the	job	and	view	the	data	using	the	dataflow	target	table	option:

As	the	final	step,	import	the	template	table	PERSON_DETAILS	so	it	is	converted	into	the
normal	table	object	inside	the	DS_STAGE	datastore.	To	do	that,	right-click	on	the	table
either	in	Local	Object	Library	or	inside	the	dataflow	workspace,	as	shown	in	the
following	screenshot,	and	choose	the	Import	Table	option	from	the	object’s	context
menu:

How	it	works…
You	have	seen	an	example	of	how	multiple	tables	can	be	joined	in	Data	Services.	The
Query	transform	represents	the	traditional	SQL	SELECT	statement	with	the	ability	to	group
the	incoming	dataset,	use	various	join	conditions	(INNER,	LEFT,	or	OUTER),	use	the
DISTINCT	operator,	sort	data	(on	the	ORDER	BY	tab),	and	apply	filtering	conditions	in
the	WHERE	tab.

The	Data	Services	optimizer	tries	to	build	as	few	SQL	statements	as	possible	in	order	to
extract	the	source	data	by	joining	tables	in	a	complex	SELECT	statement.	In	a	future
chapters,	we	will	see	which	factors	prevent	the	propagation	of	dataflow	logic	to	a	database
level.

We	have	also	tried	to	use	a	function	call	in	the	mappings	in	order	to	join	a	table	to	extract
additional	data.	It	would	be	perfectly	valid	to	import	the	PERSONPHONE	table	as	a	source
table	and	join	it	with	the	rest	of	the	tables	with	the	help	of	the	Query	transform,	but	using
the	lookup_ext()	functions	gives	you	a	great	advantage.	It	always	returns	only	one	record
from	the	lookup	table	for	each	record	we	look	up	values	for.	Whereas	joining	with	a
Query	transform	does	not	prevent	you	from	getting	duplicated	or	multiple	records	in	the
same	way	as	if	you	have	joined	two	tables	in	standard	SQL	query.	Of	course,	if	you	want
your	Query	transform	to	behave	exactly	like	a	SELECT	statement	joining	tables	in	the
database,	producing	multiple	output	records	for	each	lookup	record,	the	lookup_ext()
function	should	not	be	used.

If	you	are	writing	a	complex	SQL	SELECT	statement,	you	are	probably	aware	that	joining
multiple	tables	can	lead	to	duplicate	records	in	the	result	data	set.	This	does	not
necessarily	mean	that	joins	are	incorrectly	specified.	Sometimes	it	is	the	required
behavior,	or	it	can	be	a	database	design	problem	or	simply	the	presence	of	“dirty”	data	in
one	of	the	source	tables.

The	function	lookup_ext()	makes	sure	that	if	it	finds	multiple	records	in	the	lookup	table
for	your	source	record,	it	picks	only	one	value	according	to	the	method	specified	in	the
Return	policy	field	of	the	Lookup_ext	parameters	window:

Note
The	main	disadvantages	of	using	the	lookup_ext()	function	are	low	transparency	of	the
ETL	code—as	it	is	hidden	inside	the	Query	transform—and	the	fact	that	lookup_ext()
functions	prevent	the	propagation	of	execution	logic	to	a	database	level.	Data	Services
always	extracts	the	full	table	specified	as	the	lookup	table	in	the	lookup_ext()	function
parameters.

Depending	on	which	version	of	the	product	is	used	and	on	database	environment
configuration,	Data	Services	can	automatically	generate	all	join	conditions	when	you	join
tables	in	the	Query	transform	and	specify	join	pairs.	This	is	because,	when	you	import	the
source	tables	to	a	datastore,	Data	Services	imports	not	just	table	definitions	but	also
information	about	primary	keys,	indexes,	and	other	table	metadata.	So,	if	Data	Services
sees	that	you	are	joining	two	tables	with	identically	named	fields	which	are	marked	as
primary	or	foreign	keys	on	the	database	level,	it	automatically	assumes	that	those	tables
can	be	joined	using	those	key	fields.

Keep	that	in	mind	that	if	business	rules	or	ETL	logic	dictates	join	conditions	to	be
different	from	what	Data	Services	automatically	produces	and	you	have	to	modify	those
values	in	Query	transform	logic	or	even	write	your	own	join	conditions	by	manually
entering	them.

Using	the	Map_Operation	transform
Here	we	explore	a	very	interesting	transformation	available	to	you	in	Data	Services.	In
fact,	it	does	not	perform	any	transformation	of	data	per	se.	What	it	does	is	that	it	changes
the	type	of	the	SQL	Data	Modification	Language	(DML)	operation	that	should	be
applied	to	the	row	when	it	reaches	the	target	object.	As	you	probably	know	already,	the
DML	operations	in	SQL	language	are	the	operations	which	modify	the	data,	in	other
words,	the	INSERT,	UPDATE,	and	DELETE	statements.

First	we	will	see	the	effect	Map_Operation	has	when	used	in	a	dataflow,	and	then	we	will
explain	in	detail	how	it	works.	In	a	few	words,	the	Map_Operation	transform	allows	you
to	choose	what	Data	Services	will	do	with	the	migrated	row	when	passing	it	from
Map_Operation	to	the	next	transform.	Map_Operation	assigns	one	of	the	four	statuses
to	each	record	passing	through:	normal,	insert,	update,	or	delete.	By	default,	the	majority
of	transforms	in	Data	Services	produce	records	with	a	normal	status.	This	means	that	the
record	will	be	inserted	when	it	reaches	the	target	table	object	in	a	dataflow.	With
Map_Operation,	you	can	control	this	behavior.

How	to	do	it…
In	this	exercise,	we	are	going	to	slightly	change	the	contents	of	our	PERSON_DETAILS	table.
We	will	change	country	values	for	records	belonging	to	Samantha	Smith	from	United
States	to	USA	and	remove	the	records	for	the	same	person	with	United	Kingdom	as	the
country.	That	means	we	will	specify	the	same	table	both	as	a	source	and	as	a	target:

	
1.	 Create	a	new	job	and	new	dataflow	object	and	place	the	PERSON_DETAILS	table	from

the	DS_STAGE	datastore	as	a	source	table.
2.	 Join	the	source	table	to	a	new	Query	transform	named	Get_Samantha_Smith.	Map	all

columns	from	source	to	target	and	specify	filtering	conditions,	as	shown	in	the
following	screenshot.	Also,	double-click	on	each	of	the	three	columns,	FIRSTNAME,
LASTNAME,	and	ADDRESSLINE1,	to	define	them	as	primary	key	columns:

3.	 Split	the	dataflow	in	two	by	creating	two	new	Query	transforms:	US	and	UK.	Link
them	to	two	Map_Operation	transforms	imported	from	Local	Object	Library	|
Transforms	|	Platform	|	Map_Operation	named	update	and	delete	respectively.
Then	merge	the	dataflows	together	with	the	Merge	transform,	which	can	be	found	in
the	same	Platform	category,	and	finally	link	it	to	the	same	table	PERSON_DETAILS
specified	as	a	target	table	object.	The	Merge	transform	does	not	perform	any
transformations	or	does	not	have	any	configuration	options	as	it	simply	merges	two
data	sets	together	(like	the	UNION	operation	in	SQL).	Of	course,	input	schema	formats
should	be	identical	for	the	Merge	transform	to	work.	See	what	the	dataflow	should
look	like	in	the	following	figure:

4.	 In	the	US	transform,	map	all	key	columns	and	the	COUNTRY	column	to	target	and
change	mapping	for	COUNTRY	to	a	hardcoded	value,	USA.	Most	importantly,	specify
Get_Samantha_Smith.COUNTRY	=	‘United	States’	in	the	WHERE	tab	to	select
only	United	States	records:

5.	 In	the	UK	transform,	map	only	key	columns	and	the	COUNTRY	column	to	target	it	as
well	and	put	Get_Samantha_Smith.COUNTRY	=	‘United	Kingdom’	in	the	WHERE
tab:

6.	 Now	we	have	to	tell	Data	Services	that	we	want	to	update	one	set	of	records	and
delete	the	other.	Double-click	on	your	update	Map_Operation	transform	and	set	up
the	following	options:

By	doing	this,	we	change	row	types	for	normal	rows	(the	Query	transform	produces
rows	of	normal	type)	to	update.	This	means	that	Data	Services	will	execute	an
UPDATE	statement	for	those	rows	on	the	target	table.

7.	 Repeat	the	same	for	the	Delete	Map_Operation	transform	but	now	change	normal
to	delete	and	discard	the	rest	of	the	row	types:

8.	 For	Data	Services	to	correctly	perform	an	update	and	delete	operations,	we	have	to
define	the	correct	target	table	key	columns.	Double-click	on	a	target	table	object
PERSON_DETAILS	in	the	dataflow	and	change	Use	input	keys	to	Yes	in	the	Options
tab.	That	tells	Data	Services	to	consider	primary	key	information	from	the	source
dataset	rather	than	using	the	target	table	primary	keys:

9.	 Before	executing	the	job,	let’s	check	what	our	data	looks	like	in	the	PERSON_DETAILS
table	for	Samantha	Smith.	Click	on	the	View	data	button	in	the	target	table	and	apply
filters	by	clicking	on	the	Filters	button.	Specify	filters	in	the	FIRSTNAME	and
LASTNAME	columns	and	check	the	records:

10.	 Set	the	filters:

11.	 This	is	what	the	data	in	the	table	looks	like	before	job	execution:

12.	 Run	the	job	and	view	the	data	using	the	same	filters	to	see	the	result:

How	it	works…
This	is	the	kind	of	task	that	would	be	much	easier	to	accomplish	with	the	following	two
SQL	statements:
update	dbo.person_details	set	country	=	‘USA’	

where	firstname	=	‘Samantha’	and	lastname	=	‘Smith’	and	country	=	‘United	States’;

delete	from	dbo.person_details

where	firstname	=	‘Samantha’	and	lastname	=	‘Smith’	and	country	=	‘United	Kingdom’;

But	for	us,	this	example	perfectly	illustrates	what	can	be	done	with	the	use	of	the
Map_Operation	transform	in	Data	Services.

Each	row	passed	from	the	source	to	a	target	table	in	a	dataflow	through	various
transformation	objects	can	be	assigned	one	of	the	four	types:	normal,	insert,	update,	and
delete.

Some	transformations	can	change	the	type	of	the	row,	while	others	just	behave	differently,
depending	on	which	type	the	incoming	row	has.	For	the	target	table	object,	the	type	of	the
row	defines	which	DML	instruction	it	has	to	execute	on	the	target	table	using	source	row
data.	This	is	listed	as	follows:

	
insert:	If	the	row	comes	with	normal	or	insert	type,	Data	Services	executes	the
INSERT	statement	in	order	to	insert	the	source	row	into	a	target	table.	It	will	check	the
key	columns	defined	on	a	target	table	in	order	to	check	for	duplicates	and	prevent
them	from	being	inserted.
update:	If	a	row	is	marked	as	an	update,	Data	Services	determines	the	key	columns	it
will	use	to	find	the	corresponding	record	in	the	target	table	and	updates	all	non-key
column	values	of	the	target	table	record	with	the	values	from	the	source	record.
delete:	Data	Services	determines	the	key	columns	to	link	source	rows	marked	with
the	delete	type	with	corresponding	target	row(s)	and	then	deletes	the	row	found	in
the	target	table.
normal:	This	is	treated	as	an	insert	when	the	row	comes	to	a	final	target	table	object.
It	is	the	default	type	of	row	produced	by	the	Query	transform	and	the	majority	of
other	transforms	in	Data	Services.

What	the	Map_Operation	transform	allows	you	to	do	is	to	change	the	type	of	the
incoming	row.	This	allows	you	to	implement	sophisticated	logic	in	your	dataflows,
making	your	data	transformation	extremely	flexible.

Note
Defining	primary	keys	in	Data	Services	objects,	such	as	Query	transforms,	table	and	view
objects,	imported	in	datastores	does	not	create	the	same	primary	key	constraints	for	the
correspondent	tables	on	the	database	level.	If	you	have	them	defined	on	the	database	level,
they	will	be	imported	along	with	the	table	definition	and	will	appear	in	Data	Services
automatically.	Otherwise,	you	define	primary	key	columns	manually	to	help	Data	Services
to	efficiently	and	correctly	process	the	data.	Many	Data	Services	transforms	and	target
objects	rely	on	this	information	to	correctly	process	the	passing	records.

Setting	Output	row	type	to	Discard	in	Map_Operation	for	a	specific	input	row	type	will
completely	block	the	rows	of	the	chosen	type,	not	letting	them	pass	through	the
Map_Operation	transform.	This	is	a	great	way	to	make	sure	that	your	dataflow	does	not
perform	any	unexpected	inserts	when	it	should,	for	example,	always	only	update	the	target
table.

Note	how	our	target	table	in	this	recipe	does	not	have	the	primary	key	constraints
specified	at	the	database	level.	It	so	happens	that	we	analyzed	the	data	in	the
PERSON_DETAILS	table	and	know	that	the	FIRSTNAME,	LASTNAME,	and	ADDRESSLINE	columns
define	the	uniqueness	of	the	record.	That	is	why,	we	manually	specify	them	as	primary
keys	in	Data	Services	transforms	and	use	the	Update	control	option	Use	input	keys	on
the	target	table	object	so	it	knows	where	to	get	information	regarding	key	columns	to
perform	the	correct	execution	of	the	INSERT,	UPDATE,	and	DELETE	statements.	In	case	of
UPDATE,	all	non-key	columns	will	be	updates	with	the	values	from	the	source	row.	That	is
why	we	propagated	only	the	COUNTRY	column	as	we	wanted	to	update	only	this	field.	In
case	of	DELETE,	the	set	of	non-key	columns	does	not	matter	much	as	only	source	key
columns	will	be	considered	in	order	to	find	the	target	row	to	delete.

The	other	option	would	be	to	modify	the	table	object	PERSON_DETAILS	in	datastore	and
specify	primary	keys	there	(see	the	following	screenshot).	In	that	case,	we	would	not	have
to	define	keys	in	the	transforms	and	use	the	target	table	loading	option	as	Data	Services
would	pick	up	this	information	from	the	target	table	object.	To	do	that,	expand	the
datastore	object	and	double-click	on	the	table	to	open	the	table	editor,	then	double-click	on
the	column	and	check	Primary	key	in	the	newly	opened	window:

Using	the	Table_Comparison	transform
The	Table_Comparison	transform	compares	a	dataset	generated	inside	a	dataflow	to	a
target	table	dataset	and	changes	the	statuses	of	data	set	rows	to	different	types	according	to
the	conditions	specified	in	the	Table_Comparison	transform.

Data	Services	uses	primary	key	values	for	the	row	comparison	and	marks	the	passing	row
accordingly	as:	an	insert	row,	which	does	not	exist	in	the	target	table	yet;	an	update	row,
the	row	for	which	primary	key	values	exist	in	the	target	table	but	whose	non-primary	key
fields	(or	comparison	fields)	have	different	values;	and	finally,	a	delete	row	(when	the
target	dataset	has	rows	with	primary	key	values	that	do	not	exist	in	the	source	data	set
generated	inside	a	dataflow).	In	some	way,	Table_Comparison	does	exactly	the	same
thing	as	Map_Operation:	it	changes	the	row	type	of	passing	rows	from	normal	to	insert,
update,	or	delete.	The	difference	is	that	it	does	it	in	a	smart	way—after	comparing	the
dataset	to	the	target	table.

Getting	ready
In	order	to	prepare	the	source	data	in	the	OLTP	system	for	this	recipe,	please	execute	the
following	UPDATE	in	the	AdventureWorks_OLTP	database.	It	only	updates	one	row	in	the
table.
update	Production.ProductDescription	set	Description	=	‘Enhanced	Chromoly	steel.’	

where	Description	=	‘Chromoly	steel.’;

We	performed	this	modification	of	the	source	data	so	we	can	use	this	change	to
demonstrate	the	capabilities	of	the	Table_Comparison	transform.

How	to	do	it…
Our	goal	in	this	recipe	is	simple.	You	remember	that	our	DWH	database	sources	data	from
the	OLTP	database.	One	of	the	tables	in	the	target	DWH	database	we	are	interested	in
right	now	is	the	DimProduct	table,	which	is	a	dimension	table	that	holds	the	information
about	all	company	products.	In	this	recipe,	we	are	going	to	build	a	job,	which	if	executed,
will	check	the	product	descriptions	within	source	OLTP	tables,	and	if	necessary,	will	apply
any	changes	to	the	product	description	in	our	data	warehouse	table	DimProduct.

This	is	a	small	example	of	propagating	data	changes	happening	in	the	source	systems	to
the	data	warehouse	tables.

As	an	example,	imagine	that	we	need	to	change	the	name	of	one	of	the	materials	used	to
produce	one	of	our	products.	Instead	of	the	English	description	“Chromoly	steel”,	we	have
to	use	“Enhanced	Chromoly	steel”	now.	People	working	with	the	OLTP	database	via
applications	systems	have	already	made	the	required	change,	and	now	it	is	our
responsibility	to	develop	an	ETL	code	that	propagates	this	change	from	the	source	to	the
target	data	warehouse	tables.

	
1.	 Create	a	new	job	with	one	dataflow,	sourcing	data	from	the	following	OLTP	tables

(Production	schema):
Product:	This	is	a	table	containing	products	with	some	information	(price,
color,	and	so	on)
ProductDescription:	This	is	a	table	containing	product	descriptions
ProductModelProductDescriptionCulture:	This	is	a	linking	table,	which
holds	the	key	references	of	both	Product	and	ProductDescription	tables

2.	 If	you	do	not	have	these	tables	imported	already	into	your	datastore,	please	do	that	in
order	to	be	able	to	reference	them	within	your	dataflow	object.

3.	 Add	a	DimProduct	table	from	DWH	as	a	source	table.	Yes,	do	not	be	surprised,	we
are	going	to	use	the	same	table	as	a	source	and	as	a	target	within	the	same	dataflow.
The	Table_Comparison	transform	will	compare	two	datasets:	the	source	dataset,
which	is	based	on	the	DimProduct	table	modified	with	the	help	of	the	source	OLTP
tables	and	the	target	dataset	of	the	DimProduct	table	itself.

4.	 Create	a	new	Join	Query	transform	and	modify	its	properties	to	join	all	four	tables,
as	shown	in	the	following	screenshot:

You	can	see	that	we	use	the	Product	and	ProductModelProductDescriptionCulture
tables	just	to	link	the	ProductDescription	table	to	our	target	DimProduct	table	in
order	to	get	a	dataset	of	DimProduct	primary	key	values	and	the	corresponding
English	description	values	for	specific	products.

5.	 Next	to	your	Join	Query	transform,	place	the	Table_Comparison	transform,	which
can	be	found	in	Local	Object	Library	|	Transforms	|	Data	Integrator	|
Table_Comparison.

6.	 Open	the	Table_Comparison	editor	in	the	workspace	and	specify	the	following
parameters:

7.	 Then,	place	the	Map_Operation	transform	called	MO_Update	and	discard	all	rows	of
normal,	insert,	and	delete	types,	letting	through	only	rows	with	the	update	status:

8.	 Finally,	link	MO_Update	to	the	target	DimProduct	table	and	check	whether	your
dataflow	looks	like	the	following	figure:

Now,	save	the	job	and	execute	it.	Then,	run	the	following	command	in	SQL	Server
Management	Studio	to	check	the	result	data	in	the	DimProduct	table:
select	EnglishDescription	from	dbo.DimProduct	where	EnglishDescription	like	’%Chromoly	steel%’;

You	should	get	the	following	resulting	value:
Enhanced	Chromoly	steel

How	it	works…
To	see	what	exactly	is	happening	with	the	data	set	before	and	after	the
Table_Comparison	transform,	replicate	your	dataflow	and	change	the	copy	in	the
following	manner:

Here	we	dump	the	result	of	the	Join	Query	transform	in	the	temporary	table	to	see	which
dataset	we	compare	to	the	DimProduct	table	inside	the	Table_Comparison	transform.

Extra	Map_Operation	transforms	allow	us	to	capture	rows	of	different	types	coming	out
of	Table_Comparison.	Using	Map_Operation,	we	convert	all	of	them	to	normal	type	in
order	to	insert	them	into	temporary	tables	to	see	which	rows	were	assigned	which	row
types	by	the	Table_Comparison	transform:

Note
Adding	multiple	target	template	tables	after	your	transformations	is	a	very	popular	method
of	debugging	in	ETL	development.	It	allows	you	to	see	exactly	how	your	dataset	looks
after	each	transformation.

Let’s	see	what	is	going	on	in	our	ETL	by	analyzing	the	data	inserted	into	the	temporary
target	tables.

The	PRODUCT_TEST_COMPARE	table	contains	the	rows	starting	from	ProductKey	=	210.
This	is	simply	because	ProductKeys	<	210	in	the	DimProduct	table	does	not	have	English
descriptions	in	the	source	system.

The	PRODUCT_DESC_INSERT	table	is	empty.	Table_Comparison	uses	the	primary	key
specified	in	the	Input	primary	key	columns	section	to	identify	new	rows	in	the	input
dataset	that	do	not	exist	in	the	specified	comparison	table,	DWH.DBO.DIMPRODUCT.	As	we
used	the	DimProduct	table	as	a	source	of	the	PRODUCTKEY	values,	there	couldn’t	be	any
new	values	of	course.	So	no	rows	were	assigned	the	insert	type.

PRODUCT_DESC_UPDATE	contains	exactly	one	row	with	a	new	ENGLISHDESCRIPTION	value:

As	you	can	see,	the	rest	of	the	row	fields	Data	Services	has	sourced	from	the	comparison

table.	All	of	them	except	for	the	column	specified	in	the	Compare	columns	section	of	the
Table_Comparison	transform.

The	PRODUCT_DESC_DELETE	table,	on	the	other	hand,	has	a	lot	of	records.	Those	are	the
target	records	(from	comparison	table	DimProduct)	for	which	primary	key	values	do	not
exist	in	the	dataset	coming	to	a	Table_Comparison	transform	from	a	Join	Query
transform.	As	you	may	remember,	those	are	records	that	do	not	have	English	description
records	in	the	source	tables.	This	is	an	optional	feature	of	Table_Comparison.	Data
Services	will	use	primary	key	values	of	those	records	to	execute	the	DELETE	statement
on	the	target	table.	You	can	easily	prevent	delete	rows	from	being	generated	by	checking
the	Detect	deleted	row(s)	from	comparison	table	option	in	the	Table_Comparison
transform.

Note
The	Filter	section	of	Table_Comparison	allows	you	to	apply	additional	filters	on	the
comparison	table	in	order	to	restrict	the	number	of	rows	you	are	comparing.	This	is	very
useful	if	your	comparison	table	is	large.	This	allows	optimizing	the	resources	consumed
by	Data	Services	in	order	to	extract	and	store	the	comparison	dataset	and	also	speeds	up
the	comparison	process	itself.

Exploring	the	Auto	correct	load	option
The	Auto	correct	load	option	is	a	convenient	means	Data	Services	provides	for
preventing	the	insertion	of	duplicates	into	your	target	table.	This	is	the	method	of	inserting
data	into	a	target	table	object	inside	the	dataflow.	It	can	easily	be	configured	by	setting	the
target	table	option	to	Yes,	with	no	more	configuration	required.	This	recipe	describes
details	regarding	the	usage	of	this	load	method.

Getting	ready
For	this	recipe,	we	will	create	a	new	table	in	the	STAGE	database	and	populate	it	with	a	list
of	currencies	from	the	DimCurrency	dimension	table	in	the	AdventureWorks_DWH	data
warehouse.

Execute	the	following	statements	in	SQL	Server	Management	Studio:
SELECT	CurrencyAlternateKey,	CurrencyName

INTO	STAGE.dbo.NewCurrency

FROM	AdventureWorks_DWH.dbo.DimCurrency;

ALTER	TABLE	STAGE.dbo.NewCurrency

ADD	PRIMARY	KEY	(CurrencyAlternateKey);

We	will	use	the	Auto	correct	load	option	to	make	sure	that	our	dataflow	does	not	insert
rows	already	existing	in	the	target	table.

How	to	do	it…
First,	we	are	going	to	design	the	dataflow	that	will	populate	the	target	table	NewCurrency.

In	the	dataflow,	we	will	use	the	Row_Generation	transform	to	generate	three	new	rows,
each	for	different	currencies,	and	try	to	insert	it	into	the	previously	created	currency	stage
table	NewCurrency.	The	NewCurrency	table	already	has	some	data	prepopulated	from	the
DimCurrency	table.	That	is	required	if	we	want	to	test	the	Auto	correct	load	option.

The	first	generated	row	will	be	for	EUR	currency	(the	CURRENCYALTERNATEKEY	column),
which	already	exists	in	a	target	table	but	with	a	different	currency	name:	CURRENCYNAME	=
‘NEW	EURO’.

The	second	generated	row	will	be	a	new	currency	which	does	not	exist	in	the	table	yet:
‘CRO’	with	CURRENCYNAME	=	‘CROWN’.

The	third	generated	row	will	be	‘NZD’	with	CURRENCYNAME	=	‘New	Zealand	Dollar’,
matching	both	values	in	fields	CURRENCYALTERNATEKEY	and	CURRENCYNAME	of	the	existing
record	in	NewCurrency	table.

	
1.	 Create	a	new	job	and	a	new	dataflow,	picking	your	own	names	for	the	created

objects.
2.	 Open	the	dataflow	in	the	workspace	window	to	edit	it	and	add	three	new

Row_Generation	transforms,	which	we	will	use	as	a	source	of	data	with	default
parameters.	By	default,	this	transform	object	generates	one	row	with	a	single	ID
column	populated	with	integer	values	starting	with	0.	Name	the	three	newly	added
Row_Generation	transforms	Generate_EURO,	Generate_NZD,	and	Generate_CROWN:

3.	 Link	each	Row_Generation	transform	to	a	respective	Query	transform	to	create	an
output	schema	matching	the	target	table	schema	with	two	columns:
CURRENCYALTERNATEKEY	and	CURRENCYNAME.	See	the	example	for	EURO	shown	in	the
following	screenshot:

The	other	two	are	CRO	(CROWN)	and	NZD	(New	Zealand	Dollar)

4.	 Finally,	merge	these	three	rows	into	one	dataset	with	the	help	of	the	Merge	transform
(Local	Object	Library	|	Transforms	|	Platform	|	Merge).

5.	 Map	the	Merge	transform	output	to	Query	transform	columns	with	the	same	names
and	link	Query	to	the	target	table	NewCurrency	previously	imported	into	the
DS_STAGE	datastore.

6.	 Check	the	target	data	in	the	NewCurrency	table	before	running	this	code.	Apply	filters
in	a	View	Data	window	of	the	target	table,	as	shown	in	the	following	screenshot,	to
see	the	existing	rows	we	are	interested	in:

You	can	see	that	we	have	two	records	in	the	target	table	for	EUR	and	NZD.

7.	 Save	and	run	the	job.	You	should	get	the	following	error	message:

Recall	how	we	applied	the	primary	key	constraint	on	the	NewCurrency	table.	The
Data	Services	job	fails	in	an	attempt	to	insert	rows	with	the	primary	key	values	that
already	exist	in	the	target	table.

8.	 Now	to	enable	the	Auto	correct	load	option,	open	the	target	table	editor	in	the
workspace.	On	the	Options	tab,	change	Auto	correct	load	to	Yes:

9.	 Now	save	the	job	and	run	it	again.	It	runs	without	errors,	and	if	you	browse	the	data
in	the	target	table	using	the	same	filters	as	before,	you	will	see	that	the	new	CRO
currency	appears	in	the	list	and	the	EUR	currency	has	a	new	currency	name:

How	it	works…
Preventing	duplicate	data	from	being	inserted	is	often	one	of	the	responsibilities	of	the
ETL	solution.	In	this	example,	we	created	a	constraint	object	on	our	target	table,
delegating	control	to	the	database	level.	But	this	is	not	a	common	practice	in	modern	data
warehouses.

If	not	for	that	constraint,	we	would	successfully	have	inserted	duplicate	rows	on	the	first
attempt	and	our	job	would	not	fail.	The	beauty	of	the	Auto	correct	load	option	is	its
simplicity.	All	it	takes	is	to	set	up	a	single	option	on	a	target	object.	When	this	option	is
enabled,	Data	Services	checks	each	row	before	inserting	it	to	a	target	table.

	
If	target	table	has	a	row	identical	to	the	incoming	dataflow	row,	then	the	row	is
simply	discarded.
If	the	target	table	has	the	row	with	the	same	primary	key	values	but	different	values
in	one	or	more	columns,	the	Data	Services	executes	the	UPDATE	statement,	updating
all	non-primary	key	columns.
And	finally,	if	the	target	table	does	not	have	the	row	with	the	same	primary	key
values,	the	Data	Services	executes	the	INSERT	statement,	inserting	the	row	into	the
target	table.

You	can	build	a	dataflow	with	the	same	logic,	preventing	duplicates	from	being	inserted
by	using	the	Table_Comparison	transform.	Auto	correct	load	performs	the	comparison
between	the	dataflow	dataset	and	the	target	table	dataset	just	as	well	as
Table_Comparison	does.	Both	methods	produce	INSERT/UPDATE	row	types.	The	only
difference	is	that	Auto	correct	load	cannot	perform	the	deletion	of	target	table	records.
Thus,	the	main	purpose	of	the	Auto	correct	load	option	is	to	provide	you	with	a	simple
and	efficient	method	of	protecting	your	target	data	from	incoming	duplicate	records.

We	also	used	the	Merge	transform	in	this	recipe.	The	Merge	transform	does	the	same
thing	as	the	SQL	UNION	operator	and	has	the	same	requirements:	the	datasets	should	have
the	same	format	in	order	to	be	successfully	merged:

Merge	is	often	used	in	combination	with	Table_Comparison.	First,	you	split	your	rows,
assigning	them	different	row	types	with	Table_Comparison.	Then,	you	deal	with
different	types	of	rows,	applying	different	transformations	depending	on	whether	the	row

is	going	to	be	inserted	or	updated	in	the	target	table.	Finally,	you	join	both	split	datasets
back	into	one	with	the	help	of	Merge	transforms	as	you	cannot	link	multiple	transforms	to
a	single	target	object.

Splitting	the	flow	of	data	with	the	Case	transform
The	Case	transform	allows	you	to	put	branch	logic	in	a	single	location	inside	a	dataflow	in
order	to	split	the	dataset	and	send	parts	of	it	to	different	locations.	They	might	be	target
dataflow	objects,	such	as	tables	and	files,	or	just	other	transforms.	The	use	of	the	Case
transform	simplifies	ETL	development	and	increases	the	readability	of	your	code.

Getting	ready
In	this	recipe,	we	will	build	the	dataflow	that	reads	the	contents	of	the	dimension	table
DimEmployee	and	updates	it	according	to	the	following	business	requirements:

	
All	male	employees	in	the	production	department	gets	extra	vacation	hours
All	female	employees	in	the	production	department	get	10	extra	sick	hours
All	employees	in	the	quality	assurance	department	get	their	base	rate	increased	by	1.5

So,	before	you	begin	developing	your	ETL,	make	sure	you	import	the	DimEmployee	table
in	the	DWH	datastore.	We	are	going	to	use	it	as	both	source	and	target	object	in	our
dataflow.

How	to	do	it…
	
1.	 First	of	all,	lets	calculate	average	values	per	department	and	gender	we	are	interested

in.	Execute	the	following	queries	in	SQL	Server	Management	Studio:
—	Average	vacation	hours	for	all	males	in	Production	department

select	avg(VacationHours)	as	AvgVacHrs	from	dbo.DimEmployee	where	DepartmentName	=	‘Production’	and	Gender	=	‘M’	and	Status	=	‘Current’;

—	Average	sick	hours	for	all	females	in	Production	department

select	avg(SickLeaveHours)	as	AvgSickHrs	from	dbo.DimEmployee	where	DepartmentName	=	‘Production’	and	Gender	=	‘F’	and	Status	=	‘Current’;

—	Average	base	rate	for	all	employees	in	Quality	Assurance	department

select	avg(BaseRate)	as	AvgBaseRate	from	dbo.DimEmployee	where	DepartmentName	=	‘Quality	Assurance’	and	Status	=	‘Current’;

2.	 Please	note	the	resultant	values	to	compare	them	with	the	results	when	we	run	our
dataflow	after	having	updated	those	fields:

3.	 Create	a	new	job	and	a	new	dataflow	object,	and	open	the	dataflow	in	the	workspace
window	for	editing.

4.	 Put	the	DimEmployee	table	object	as	a	source	inside	your	new	dataflow	and	link	it	to
the	Case	transform,	which	can	be	found	at	Local	Object	Library	|	Transforms	|
Platform	|	Case.

5.	 Open	Case	Editor	in	the	workspace	by	double-clicking	on	the	Case	transform.	Here
you	can	choose	one	of	the	tree	options	and	specify	conditions	as	label-expression
pairs	(by	modifying	the	Label	and	Expression	settings),	according	to	which	the	row
will	be	send	to	one	output	or	another:

6.	 Label	values	are	used	to	label	different	output.	You	will	use	these	labels	to	output
information	to	different	transform	objects	when	you	are	linking	Case	output	to	the
next	objects	in	a	dataflow.

7.	 Check	only	the	Row	can	be	TRUE	for	one	case	only	option	and	add	the	following
condition	expressions	by	clicking	on	the	Add	button:

Label Expression

Female_in_Production

DIMEMPLOYEE.DEPARTMENTNAME	=	‘Production’	AND

DIMEMPLOYEE.STATUS	=	‘Current’	AND

DIMEMPLOYEE.GENDER	=	‘F’

Male_in_Production

DIMEMPLOYEE.DEPARTMENTNAME	=	‘Production’	AND

DIMEMPLOYEE.STATUS	=	‘Current’	AND

DIMEMPLOYEE.GENDER	=	‘M’

All_in_Quality_Assurance
DIMEMPLOYEE.DEPARTMENTNAME	=	‘Quality

Assurance’	AND	DIMEMPLOYEE.STATUS	=	‘Current’

8.	 Your	Case	Editor	should	look	like	the	following	screenshot:

9.	 Now	we	have	to	link	our	Case	transform	output	to	three	different	Query	transform
objects.	Each	time	you	link	the	objects,	you	will	be	asked	to	choose	the	Case	output
from	what	we	created	before.

10.	 For	Query	transform	names,	lets	choose	meaningful	values	that	represent	the	type	of
transformations	we	are	going	to	perform	inside	them.

The	Increase_Sick_Hours	Query	transform	is	linked	to	the
Female_in_Production	Case	output
The	Increase_Vacation_Hours	Query	transform	is	linked	to	the
Male_in_Production	Case	output
The	Increase_BaseRate	Query	transform	is	linked	to	the
All_in_Quality_Assurance	Case	output

11.	 Lastly,	merge	all	Query	outputs	with	the	Merge	transform	object,	link	it	to	the
Map_Operation	transform	object,	and	finally	to	the	DimEmployee	table	object
brought	from	the	DWH	datastore	as	a	target	table.

12.	 Please	use	the	following	screenshot	as	a	reference	for	how	your	dataflow	should
look:

13.	 Now	we	have	to	configure	output	mappings	in	our	Query	transforms.	As	we	are
interested	in	updating	only	three	target	columns—VacationHours,	SickLeaveHours,

and	BaseRate—we	map	them	from	the	source	Case	transform.	The	Case	transform
inherits	all	column	mappings	automatically	from	the	source	object.	We	also	map	the
primary	key	column	EmployeeKey	so	Data	Services	will	know	which	rows	to	update
in	the	target.

14.	 Then	in	each	Query	transform,	modify	the	mapping	expression	of	the	correspondent
column	according	to	the	business	logic.	Use	the	following	table	for	the	list	of
columns	and	their	new	mapping	expressions.	Remember	that	each	of	our	Query
transforms	modifies	only	one	correspondent	column;	the	other	column	mappings
should	remain	intact.	We	are	simply	going	to	propagate	them	from	the	source	object:

Query	transform Modified
column Mapping	expression

Increase_Sick_Hours SICKLEAVEHOURS
Case_Female_in_Production.SICKLEAVEHOURS

+	10

Increase_Vacation_Hours VACATIONHOURS
Case_Male_in_Production.VACATIONHOURS	+

5

Increase_BaseRate BASERATE
Case_All_in_Quality_Assurance.BASERATE	*

1.5

15.	 See	the	example	of	the	Increase_Vacation_Hours	mapping	configuration:

16.	 The	last	object	we	need	to	configure	is	the	Map_Operation	transform	object	named
Update.	You	should	already	know	by	now	that	the	Query	transform	generates	the
normal	type	of	rows,	which	are	inserted	into	a	target	object	when	they	reach	the	end
of	the	dataflow.

17.	 In	our	example,	as	we	want	to	perform	an	update	of	non-key	columns	defined	in	our
source	dataset	using	matching	primary	key	values	in	the	target	table,	we	need	to
modify	the	row	type	from	normal	to	update:

18.	 To	be	absolutely	clear	about	the	purpose	of	this	Map_Operation	object,	we	change
the	other	row	types	to	discard,	though	we	would	never	get	the	insert,	update,	or
delete	rows	in	this	dataflow	without	modifying	it.

19.	 Save	and	run	the	job	and	run	the	queries	to	see	new	average	results	for	the	columns
updated	in	the	table:

The	difference	between	“before”	and	“after”	values	proves	that	Data	Services	correctly
updates	the	required	rows	in	the	DimEmployee	table.

How	it	works…
The	developed	dataflow	is	a	good	example	of	a	dataflow	performing	an	update	of	the
target	table.

We	have	split	the	rows	according	to	the	conditions	specified,	performed	the	required
transformation	of	the	data	according	to	the	logic	provided	in	the	conditions,	and	then
merged	all	split	datasets	back	together	and	modified	all	row	types	to	update.	We	did	this
so	that	Data	Services	would	execute	UPDATE	statements	for	the	whole	dataset,	updating
the	corresponding	rows	that	have	the	same	primary	key	values.

As	we	used	the	target	table	as	a	source	object	as	well,	we	can	be	sure	that	we	will	not	have
any	extra	rows	in	our	update	dataset	that	do	not	exist	in	the	target.

Note	that	the	dataset	generated	in	your	dataflow	does	not	have	to	match	exactly	the	target
table	structure.	When	you	perform	the	update	of	the	target	table,	make	sure	you	have	the
primary	key	defined	correctly	and	keep	in	mind	that	the	target	table	will	have	updated	all
columns	defined	as	non-primary	columns	in	the	source	schema	structure.

Note
Data	Services	uses	primary	key	columns	defined	in	the	target	table	to	find	the	matching
rows.	If	you	want	to	use	a	different	set	of	columns	to	find	the	corresponding	record	to
update	in	the	target,	set	them	up	as	primary	key	columns	in	the	output	schema	of	the
Query	transform	inside	a	dataflow,	and	set	Use	input	keys	to	Yes	in	the	Update	control
section	of	the	target	table	object.

There	is	another,	less	elegant	way	of	doing	the	same	thing	that	Case	transform	does.	It
involves	using	the	WHERE	tab	of	the	Query	transforms	to	filter	the	data	required	for
transformation:

That	does	look	like	a	simpler	solution,	but	there	are	two	main	disadvantages:

	
You	lose	readability	of	your	code:	With	Case	transform,	you	can	see	labels	of	the
output,	which	can	explain	the	conditions	used	to	split	the	data.
You	lose	in	performance:	Instead	of	splitting	the	dataset,	you	actually	send	it	three

times	to	different	Query	transforms,	each	of	which	performs	the	filtering.
Technically,	you	are	tripling	the	dataset,	making	your	dataflow	consume	much	more
memory.

Monitoring	and	analyzing	dataflow	execution
When	you	execute	the	job,	Data	Services	populates	relevant	execution	information	into
three	log	files:	the	trace,	monitor,	and	error	logs.	In	later	chapters,	we	will	take	a	closer
look	at	the	configuration	parameters	available	at	the	job	level	in	order	to	gather	more
detailed	information	regarding	job	execution.	Meanwhile,	in	this	recipe,	we	will	spend
some	time	analyzing	the	monitor	log	file,	which	logs	processing	information	from	inside
the	dataflow	components.

Getting	ready
For	simplicity,	we	will	use	the	second	dataflow	from	the	recipe	Using	the
Table_Comparison	transform	created	for	detailed	explanation	of	the	flow	of	the	data
before	and	after	it	passes	the	Table_Comparison	transform	object:

Open	the	Table_Comparison	transform	editor	in	the	workspace	and	change	the
comparison	method	to	Cached	comparison	table:

We	change	this	option	to	slightly	change	the	behavior	of	the	Data	Services	optimizer.
Now,	instead	of	comparing	data	row	by	row,	executing	the	SELECT	statement	against	the
comparison	table	in	the	database	for	each	input	row,	Data	Services	will	read	the	whole
comparison	table	and	cache	it	on	the	Data	Services	server	side.	Only	after	this	will	it
perform	the	comparison	of	input	dataset	records	with	table	records	cached	on	the	Data
Services	server	side.	That	slightly	speeds	up	the	comparison	process	and	changes	how	the
information	about	dataflow	execution	is	logged	in	the	monitor	log.

How	to	do	it…
	
1.	 Save	the	dataflow	and	execute	the	job	with	the	default	parameters	as	usual.
2.	 In	the	main	workspace,	open	the	Job	Log	tab	to	show	the	trace	log	section,	which

contains	information	about	job	execution.	To	see	the	monitor	log,	click	on	the	second
button	at	the	top	of	the	workspace	area.	For	convenience,	you	may	select	the	records
from	the	log	you	are	interested	in	and	copy	and	paste	them	into	the	Excel	spreadsheet
using	the	right-click	context	menu:

3.	 This	monitor	log	section	displays	information	about	the	number	of	records	processed
by	each	dataflow	component	and	how	long	it	takes	to	process	them.	The	reader
components	shown	in	the	following	screenshot	are	responsible	for	extracting
information	from	the	source	database	tables.	You	can	see	that	the	DimProduct	table	is
extracted	by	a	separate	process	(probably	because	it	is	located	in	a	different
database),	whereas	the	other	three	tables	are	joined	and	extracted	with	a	single
SELECT	statement	by	a	single	component	with	quite	a	sophisticated	name,	as	you	can
see:

4.	 The	component	Join_PRODUCT_TEST_COMPARE	passes	the	dataset	from	the	Join
Query	transform	to	the	first	target	table,	PRODUCT_TEST_COMPARE.	You	can	see	that	it
has	processed	396	rows	in	0.136	seconds:

5.	 Finally,	information	about	dataflow	components	responsible	for	processing	data	in
Map_Operation	transforms	shows	that	there	were	210	rows	processed	by	the
MO_Delete	transform	and	passed	to	a	target	PRODUCT_DESC_DELETE
template	table.	Only	one	row	was	processed	by	MO_Update	and	passed	to	a

corresponding	target	table	and	no	rows	were	processed	by	MO_Insert	as	there
weren’t	any	rows	with	insert	row	type	generated	by	this	dataflow:

6.	 The	last	column	shows	the	total	time	passed	in	the	executed	dataflow	object	when	the
component	was	processing	records.

How	it	works…
Data	Services	puts	processing	information	from	all	dataflow	objects	in	a	single	place.	If
you	have	a	job	with	100	dataflows	and	some	of	them	run	in	parallel,	you	can	imagine	that
records	in	the	monitor	log	could	be	mixed.	That	is	why	copying	the	log	data	to	a
spreadsheet	for	further	search	and	filtering	with	functionality	of	Excel	is	quite	useful.

Dataflow	execution	is	a	very	complex	process,	and	the	components	you	see	in	the	monitor
log	are	not	always	in	a	one-to-one	relationship	with	the	objects	placed	inside	a	dataflow.
There	are	various	internal	service	components	performing	joins,	splits,	and	the	merging	of
data	that	will	be	displayed	in	the	monitor	log.	Sometimes	Data	Services	creates	a	few
processing	components	for	a	single	transform	object.

If	you	know	what	you	are	looking	for,	reading	the	monitor	log	is	much	easier.	Here	is	a
summary	of	what	the	columns	mean:

	
The	first	column	in	the	monitor	log	is	the	name	of	the	component	containing	the
name	of	the	dataflow	and	the	names	of	the	components	inside	the	dataflow.
The	second	column	is	the	status	of	the	processing	component.	READY	means	that	the
component	has	not	started	processing	data;	in	other	words,	no	records	have	reached	it
yet.	PROCEED	means	that	the	component	is	processing	rows	at	the	moment,	and	STOP
means	that	all	rows	have	passed	the	component	and	it	has	finished	processing	them
by	passing	them	further	down	the	dataflow	execution	sequence.
The	third	column	shows	you	the	number	of	rows	processed	by	a	component.	This
value	is	in	flux	while	the	component	has	the	PROCEED	status	and	attains	a	final	value
when	the	component’s	status	changes	to	STOP.
The	fourth	column	shows	you	the	execution	time	of	the	component.
The	fifth	column	shows	you	the	total	execution	time	of	the	dataflow	while	the
component	was	processing	the	rows.	As	soon	as	the	component’s	status	changes	to
STOP,	both	execution	time	values	freeze	and	stop	changing.

To	illustrate	this	even	further,	let’s	count	the	rows	in	the	source	tables	to	compare	with
what	we	have	seen	in	the	monitor	log.

First,	see	the	results	of	counting	the	number	of	records	in	the	tables	DIMPRODUCT	and
PRODUCTMODELPRODUCTDESCRIPTIONCULTURE	with	the	help	of	the	View	Data	function
available	on	the	Profile	Tab	for	table	objects	inside	a	dataflow.	Click	on	the	Records
button	to	calculate	the	number	of	records	in	the	table:

Now	see	the	result	of	counting	the	number	of	records	in	the	tables	PRODUCT	and
PRODUCTDESCRIPTION	with	the	same	View	Data	|	Profile	feature:

By	using	the	transform	name	Join,	you	can	see	the	components	related	to	the	execution	of
the	first	Query	transform.

You	see	the	DIMPRODUCT_11	component	(606	rows)	as	being	not	part	of	the	Join	transform
components	because	it	was	executed	separately.	Data	Services	could	not	include	it	in	a
single	SELECT	statement	(remember	that	this	table	is	in	the	DWH	database)	with	three
other	tables	that	had	join	conditions	specified	inside	the	Join	transform.	Data	Services
could	recognize	them	as	belonging	to	the	same	database	and	pushed	down	the	single
SELECT	statement	to	the	database	level,	extracting	294	rows.

Some	components,	that	is	Map_Operation	related	ones,	are	easily	recognizable	by	name,
which	includes	the	name	of	the	current	transformation	and	the	next	target	table	object
name:	Join_PRODUCT_TEST_COMPARE,	MO_Update_PRODUCT_DESC_UPDATE,	and	so	on.

The	Table_Comparison	execution	is	the	most	complex	one,	as	you	can	see	from	the
monitor	log.	All	compared	datasets	are	first	cached	by	separate	components	and	then
compared	to	each	other	by	the	other	ones.	You	can	identify	components	belonging	to	a
Table_Comparison	transform	by	using	the	keywords	TCRdr	and	Table_Comparison.

There’s	more…
Reading	the	monitor	log,	which	is	the	main	source	of	the	dataflow	execution	information,
can	require	a	lot	of	experience.	In	the	following	chapters,	we	will	spend	a	lot	of	time
peeking	into	the	monitor	log	for	different	kinds	of	information	about	the	dataflow
execution.	Often,	it	is	very	useful	for	identifying	potential	performance	bottlenecks	inside
the	dataflow.

Chapter	5.	Workflow	–	Controlling	Execution
Order
This	chapter	will	explain	in	detail	another	type	of	Data	Services	object:	workflow.
Workflow	objects	allow	you	to	group	other	workflows,	dataflows	and	script	objects	into
execution	units.	In	this	chapter,	we	will	cover	the	following	topics:

	
Creating	a	workflow	object
Nesting	workflows	to	control	the	execution	order
Using	conditional	and	while	loop	objects	to	control	the	execution	order
Using	the	bypassing	feature
Controlling	failures	–	try-catch	objects
Use	case	example	–	populating	dimension	tables
Using	a	continuous	workflow
Peeking	inside	the	repository	–	parent-child	relationships	between	Data	Services
objects

Introduction
In	this	chapter,	we	will	move	to	the	next	object	in	the	Data	Services	hierarchy	of	objects
used	in	ETL	design:	the	workflow	object.	Workflows	do	not	perform	any	movement	of
data	themselves;	their	main	purpose	is	to	group	dataflows,	scripts,	and	other	workflows
together.

In	other	words,	workflows	are	container	objects	grouping	pieces	of	ETL	code.	They	help
define	the	dependencies	between	various	pieces	of	ETL	code	in	order	to	provide	robust
and	flexible	ETL	architecture.

I	will	also	show	you	how	you	can	query	the	Data	Services	repository	using	database	tools
in	order	to	query	the	hierarchy	of	objects	directly	and	will	show	you	how	this	hierarchy	is
stored	in	repository	database	tables.	This	may	be	very	useful	if	you	want	to	understand	a
bit	more	about	how	the	software	is	functioning	“under	the	hood”.

Additionally,	we	will	build	a	real-life	use	case	ETL	code	by	populating	dimension	tables
in	data	warehouse.	This	use	case	example	will	include	the	functionality	already	reviewed
in	the	previous	chapters	and	will	show	you	how	you	can	augment	existing	ETL	processes
and	migrate	data	(dataflows)	with	the	help	of	workflow	objects.

Creating	a	workflow	object
A	workflow	object	is	a	reusable	object	in	Data	Services.	Once	created,	the	same	object	can
be	used	in	different	places	of	your	ETL	code.	For	example,	you	can	place	the	same
workflow	in	different	jobs	or	nest	it	in	other	workflow	objects	by	placing	them	in	the
workflow	workspace.

Note
Note	that	a	workflow	object	cannot	be	nested	inside	a	dataflow	object.	Workflows	are
used	to	group	dataflow	objects	and	other	workflows	so	that	you	can	control	their
execution	order.

Every	workflow	object	has	its	own	local	variable	scope	and	can	have	a	set	of	input/output
parameters	so	that	it	can	“communicate”	with	the	parent	object	(in	which	it	is	nested)	by
accepting	input	parameter	values	or	sending	values	back	through	output	parameters.	A
script	object	placed	inside	the	workflow	becomes	part	of	the	workflow	and	shares	its
variable	scope.	That	is	why	all	workflow	local	variables	can	be	used	within	the	scripts
placed	directly	into	the	workflow	or	passed	to	the	child	objects	by	going	to	Variables	and
Parameters	|	Calls.

Later	in	this	chapter,	we	will	explore	how	this	object	hierarchy	is	stored	within	the	Data
Services	repository.

How	to	do	it…
There	are	few	ways	to	create	a	workflow	object.	Follow	these	steps:

	
1.	 To	create	a	workflow	object	in	the	workspace	of	the	other	parent	object,	you	can	use

the	tool	pallet	on	the	right-hand	side	of	the	Designer	interface.	Follow	these	steps:
1.	 Create	a	new	job	and	open	it	in	the	workspace	for	editing.
2.	 Left-click	on	the	Work	Flow	icon	in	the	workspace	tool	palette	(see	the

following	screenshot),	drag	it	to	the	job	workspace,	and	left-click	on	the	empty
space	in	the	workspace	to	place	the	new	workflow	object:

3.	 Name	the	object	WF_example	and	press	Enter	to	create	it.	Note	that	the	object
immediately	appears	in	the	Local	Object	Library	workflow	list.	The	parent
object	of	the	WF_example	workflow	is	the	job	itself.

2.	 Create	another	workflow	object	inside	WF_example.	Now,	we	will	use	a	different
method	to	create	workflows	directly	from	Local	Object	Library	rather	than	using
the	workspace	tool	palette.	Then,	perform	these	steps:
1.	 Open	WF_example	in	the	main	workspace	window.
2.	 Go	to	the	Local	Object	Library	window	and	select	the	Work	Flows	tab.
3.	 Right-click	on	the	Local	Object	Library	empty	area	of	this	tab	and	choose

New	from	the	context	menu.
4.	 Fill	in	the	workflow	name,	WF_example_child,	and	drag	and	drop	the	created

object	to	the	workspace	area	of	WF_example	from	Local	Object	Library.

How	it	works…
A	workflow	object	organizes	and	groups	pieces	of	ETL	processes	(dataflow	and
sometimes	scripts).	It	does	not	perform	any	data	processing	itself.	When	it	is	being
executed,	it	simply	starts	executing	sequentially	(or	in	parallel)	all	its	child	objects	in	the
order	defined	by	the	user.

You	can	think	of	a	workflow	as	a	container	that	holds	the	executable	elements.	Like	a
project	object	function	is	similar	to	a	root	folder,	workflow	serves	the	same	“folder”
functionality	with	a	few	extra	features,	which	you	will	be	able	to	get	familiar	with	in	the
next	few	recipes.

Like	the	folder	structure	on	your	disk,	you	can	create	sophisticated	nested	tree	structures
with	the	help	of	workflow	objects	by	putting	them	into	each	other.

One	thing	to	remember	is	that	each	workflow	has	its	own	scope	of	variables	or	context.	To
pass	variables	from	a	parent	workflow	to	a	child	object,	select	the	Calls	tab	on	the
Variables	and	Parameters	panel.	It	shows	the	list	of	input	parameters	from	the	child
objects	for	the	object	currently	open	in	the	main	workspace	area.

To	open	the	Variables	and	Parameters	window,	you	can	click	on	the	Variables	button	in
the	tool	menu	at	the	top	of	your	Designer	screen.

Here,	you	see	the	context	of	the	currently	open	object,	that	is,	the	list	of	defined	local
variables,	input	parameters,	and	available	global	variables	inherited	from	the	job	context:

The	Calls	section	allows	you	to	pass	your	previously	created	local	variable
$WF_example_local_var	of	the	WF_example	workflow	to	the	WF_example_child	child
workflow	object’s	$WF_example_child_var1	input	parameter,	as	shown	here:

Of	course,	you	have	to	open	the	child	object	context	first	and	create	an	input	parameter	so

that	its	call	is	visible	in	the	context	of	the	parent.

Scripts	are	not	reusable	objects	and	do	not	have	local	variable	scope	or	parameters	of	their
own.	They	belong	to	the	workflow	or	job	object	they	have	been	placed	into.	In	other
words,	they	can	see	and	operate	only	on	the	local	variables	and	parameters	defined	at	the
parent	object	level.

Of	course,	you	can	copy	and	paste	the	contents	of	a	single	script	object	to	another	script
object	in	a	different	workflow.	However,	it	will	be	a	new	instance	of	the	script	object	that
will	be	running	in	a	new	context	of	the	different	parent	workflow.	Hence,	the	variables	and
parameters	used	could	be	completely	different.

Nesting	workflows	to	control	the	execution	order
In	this	recipe,	we	will	see	how	workflow	objects	are	executed	in	the	nested	structure.

Getting	ready
We	will	not	create	dataflow	objects	in	this	recipe,	so	to	prepare	an	environment,	just	create
an	empty	job	object.

How	to	do	it
We	will	create	a	nested	structure	of	a	few	workflow	objects,	each	of	which,	when
executed,	will	run	the	script.	It	will	display	the	current	workflow	name	and	the	full	path	to
the	root	job	context.	Follow	these	steps:

	
1.	 In	the	job	workspace,	create	a	new	workflow	object,	WF_root,	and	open	it.
2.	 In	the	Variables	and	Parameters	window,	when	in	the	WF_root	context,	create	one

local	variable	$l_wf_name	and	one	input	parameter	$p_wf_parent_name,	both	of	the
varchar(255)	data	type.

3.	 Also,	inside	WF_root,	add	the	new	script	object	named	Script	with	the	following
code:
$l_wf_name	=	workflow_name();

print(‘INFO:	running	{$l_wf_name}	(parent={$p_wf_parent_name})’);

$l_wf_name	=	$p_wf_parent_name	||	’	>	’	||	$l_wf_name;

4.	 In	the	same	WF_root	workflow	workspace,	add	two	other	workflow	objects,
WF_level_1	and	WF_level_1_2,	and	link	all	of	them	together.

5.	 Repeat	steps	2	and	3	for	both	new	workflows	WF_level_1	and	WF_level_1_2.
6.	 Open	WF_level_1,	create	a	new	workflow,	WF_parallel,	and	link	it	to	the	script

object.
7.	 Inside	the	WF_level_1	workflow,	create	two	other	workflow	objects,	WF_level_3_1

and	WF_level_3_2.	Then,	create	only	one	input	parameter,	$p_wf_parent_name,
without	creating	a	local	variable.

8.	 Repeat	steps	2	and	3	for	both	the	WF_level_3_1	and	WF_level_3_2	workflows.
9.	 Now,	we	have	to	specify	mappings	for	the	input	parameters	of	the	created	workflows.

To	do	this,	double-click	on	parameter	name	$p_wf_parent_name	by	going	to
Variables	and	Parameters	|	Calls	and	input	the	name	of	the	$l_wf_name	local
variable.

10.	 There	are	two	exceptions	to	the	input	parameter	mapping	settings.	In	the	context	of
the	job	for	the	input	parameter	of	the	WF_root	workflow,	you	have	to	specify	the
job_name()	function	as	a	value.	Perform	these	steps:
1.	 Open	the	job	in	the	main	workspace	(so	that	the	WF_root	workflow	is	visible	on

the	screen).
2.	 Choose	Variables	and	Parameters	|	Calls	and	double-click	on	the

$p_wf_parent_name	input	parameter	name.
3.	 In	the	Value	field,	enter	the	job_name()	function	and	click	on	OK.

11.	 The	second	exception	is	the	input	parameter	mappings	for	workflows	WF_level_3_1
and	WF_level_3_2.	Perform	the	following	steps:
1.	 Open	the	WF_parallel	workflow	to	see	both	WF_level_3_1	and	WF_level_3_2

displayed	on	the	screen.
2.	 Go	to	Variables	and	Parameter	|	Calls	and	specify	the	following	value	for	both

input	parameter	calls:
(($p_wf_parent_name	||	’	>	’)	||	workflow_name())

12.	 Your	job	should	have	the	following	workflow	nested	structure,	as	shown	in	the

screenshot	here:

The	only	workflow	object	that	does	not	have	a	script	object	inside	it	is	WF_parallel.
It	will	be	explained	later	in	the	recipe.

13.	 Now,	open	the	job	in	the	workspace	area	and	execute	it.
14.	 The	trace	log	shows	the	order	of	workflow	executions,	currently	executed	workflow

names,	and	their	location	in	the	object	hierarchy	within	the	job.	See	the	following
screenshot:

How	it	works…
As	we	have	passed	values	to	the	input	parameters	of	the	objects	in	the	previous	chapter
dedicated	to	the	creation	of	dataflow	objects,	you	probably	already	know	how	this
mechanism	works.	The	object	calls	for	the	input	parameter	value	right	before	its	execution
in	the	parent	object	where	it	is	located.

Every	workflow	in	our	structure	(except	WF_parallel)	has	a	local	variable	that	is	used	in
the	script	object	to	save	and	display	the	current	workflow	name	and	concatenate	it	to	the
workflow	path	in	the	hierarchy	received	from	the	parent	object	in	order	to	pass	the
concatenated	value	to	the	child	object	in	their	calls.

Let’s	follow	the	executions	steps:

	
When	a	job	executes,	it	first	runs	the	object	that	is	located	in	the	job	context;	in	our
case,	it	is	WF_root.	As	we	do	not	specify	any	local	variable	for	the	job,	we	cannot
pass	its	value	to	the	input	parameter	of	the	WF_root	object.	So,	we	simply	pass	it	a
job_name()	function	that	returns	the	name	of	the	job	where	it	is	being	executed.	The
job_name()	function	generates	the	value	that	is	passed	to	the	input	parameter	right
before	the	WF_root	execution.
The	WF_root	execution	runs	the	script	object	from	left	to	right.	In	the	script,	the	local
variable	gets	the	value	from	the	output	of	the	workflow_name()	function,	which
returns	the	name	of	the	workflow	where	it	is	being	executed.	With	the	print()
function,	we	display	the	local	variable	value	and	value	of	the	input	parameter
received	from	the	parent	object	(job).	As	the	next	step,	the	value	of	the	local	variable
is	being	concatenated	with	the	value	of	the	input	parameter	to	get	the	current	location
path	in	the	hierarchy	for	the	child	objects	WF_level_1	and	WF_level_1_2.
As	all	objects	inside	WF_root	are	linked	together,	they	are	executed	sequentially	from
left	to	right.	Every	next	object	only	runs	after	successful	completion	of	the	previous
object.
Data	Services	runs	WF_level_1	and	repeats	the	same	sequence	of	displaying	the
current	workflow	name	and	current	path	with	the	consequent	concatenation	and
passing	of	the	value	to	the	input	parameter	of	the	WF_parallel	workflow.
The	WF_parallel	workflow	demonstrates	how	Data	Services	executes	two	workflow
objects	placed	in	the	same	level	that	are	not	linked	to	each	other.	Here,	we	cannot	use
the	script	to	prepare	to	perform	our	usual	sequence	of	script	logic	steps.	If	you	try	to
add	a	script	object	not	linked	to	the	parallel	workflows,	Data	Services	gives	you	an
error	message	from	the	job	validation	process:

If	you	try	to	link	the	script	object	to	one	of	the	workflows,	you	will	get	the	following
error	message:

Note
Note	how	Data	Services	does	not	allow	you	to	link	the	script	object	to	both
workflows.

If	used	within	a	job	or	a	workflow,	script	objects	disable	parallel	execution	logic,
allowing	you	only	a	sequential	execution	within	the	current	context:

To	make	sure	that	your	workflow	executes	simultaneously	and	runs	in	parallel,	make
sure	that	you	do	not	use	the	script	object	in	the	same	workspace.

That	is	why,	when	we	pass	the	values	to	the	input	parameters	of	two	workflows
executed	in	parallel,	WF_level_3_1	and	WF_level_3_2,	we	specify	the	concatenation
formula	right	in	the	input	parameter	value	field:

It’s	very	important	to	understand	that	$p_wf_parent_name	are	two	different
parameters	in	the	preceding	screenshot.	The	one	on	the	left-hand	side	is	the
$p_wf_parent_name	input	parameter	belonging	to	the	child	object	WF_level_3_1,
which	asks	for	a	value.	The	one	on	the	right-hand	side	belongs	to	the	current
workflow	WF_parallel,	in	which	context	we	are	located	at	the	moment,	and	it	holds

the	value	received	from	its	parent	object	WF_level_1.

After	completion	of	WF_level_3_1	and	WF_level_3_2,	Data	Services	completes	the
WF_parallel	workflow,	then	the	WF_level_1	workflow,	and	finally	runs	the
WF_level_1_2	workflow.	WF_root	is	the	last	workflow	object	that	is	finishing	its
execution	within	the	job,	so	the	job	completes	its	execution	successfully.

See	the	trace	log	again	to	follow	the	sequence	of	steps	executed,	and	make	sure	that	you
understand	why	they	were	executed	in	this	particular	order.

Using	conditional	and	while	loop	objects	to	control
the	execution	order
Conditional	and	while	loop	objects	are	special	control	objects	that	branch	the	execution
logic	at	the	workflow	level.	In	this	recipe,	we	will	modify	the	job	from	the	previous	recipe
to	make	the	execution	of	our	workflow	objects	more	flexible.

Conditional	and	loop	structures	in	Data	Services	are	similar	to	the	ones	used	in	other
programming	languages.

For	readers	with	no	programming	background,	here	is	a	brief	explanation	of	conditional
and	loop	structures.

	
The	IF-THEN-ELSE	structure	allows	you	to	check	the	result	of	the	conditional
expression	presented	in	the	IF	block	and	executes	either	the	THEN	block	or	ELSE	block
depending	on	whether	the	result	of	the	conditional	expression	is	TRUE	or	FALSE.
The	LOOP	structure	in	programming	language	allows	you	to	execute	the	same	code
again	and	again	in	the	loop	until	the	specified	condition	is	met.	You	should	be	very
careful	when	creating	loop	structures	in	programming	language	and	correctly	specify
the	condition	that	exits	or	ends	the	loop.	If	incorrectly	specified,	the	code	in	the	loop
could	run	indefinitely,	making	your	program	hang.

Getting	ready
Open	the	job	from	the	previous	recipe.

How	to	do	it…
We	will	get	rid	of	our	WF_parallel	workflow	and	execute	only	one	of	the	underlying
WF_level_3_1	or	WF_level_3_2	workflows	randomly.	This	is	not	a	common	scenario	you
will	see	in	real	life,	but	it	gives	a	perfect	example	of	how	Data	Services	allows	you	to
control	your	execution	logic.	Perform	these	steps:

	
1.	 Open	WF_level_1	in	the	workspace	and	remove	WF_parallel	from	it.
2.	 Using	the	tool	palette	on	the	right-hand	side,	create	a	conditional	object,	and	link

your	script	object	to	it.	Name	the	conditional	object	If_Then_Else:

3.	 Double-click	on	the	If_Then_Else	conditional	object	or	choose	Open	from	the	right-
click	context	menu.

4.	 You	can	see	three	sections:	If,	Then,	and	Else.	In	the	Then	and	Else	sections,	you
can	put	any	executional	elements	(workflows,	scripts,	or	dataflows).	The	If	field
should	contain	the	expression	returning	a	Boolean	value.	If	it	returns	TRUE,	then	all
objects	in	the	Then	section	are	executed	in	sequential	or	parallel	order,	depending	on
their	arrangement.	If	the	expression	returns	FALSE,	then	all	elements	from	the	Else
section	are	executed:

5.	 Put	WF_level_3_1	from	Local	Object	Library	into	the	Then	section.
6.	 Put	WF_level_3_2	from	Local	Object	Library	into	the	Else	section.
7.	 Map	input	parameter	calls	of	each	workflow	to	the	local	$l_wf_name	variable	of	the

parent	WF_level_1	workflow	object.	You	can	now	see	that	without	the	WF_parallel
workflow,	both	WF_level_3_1	and	WF_level_3_2	are	operating	within	the	context	of
the	WF_level_1	workflow	(remember	that	the	conditional	object	does	not	have	its
own	context	and	variable	scope,	and	it	is	transparent	in	that	aspect).

8.	 Type	in	the	following	expression	that	randomly	generates	0	or	1	in	the	If	section:
cast(round(rand_ext(),0),‘integer’)	=	1

We	will	use	this	expression	to	randomly	generate	either	0	or	1	in	order	to	execute	the
ETL	placed	in	THEN	or	ELSE	blocks	every	time	we	run	the	Data	Services	job.

9.	 Save	and	execute	the	job.	The	trace	log	shows	that	only	one	workflow,
WF_level_3_2,	was	executed.	To	have	more	visibility	on	the	values	generated	by	the
If	expression,	you	can	put	in	the	script	before	If_Then_Else	and	assign	its	value	to	a
local	variable,	which	can	be	used	after	that	in	the	If	section	of	the	If_Then_Else
object	to	get	the	Boolean	value:

Now,	let’s	make	our	last	workflow	object	in	the	job	run	10	times	in	a	loop,	using	these
steps:

	
1.	 Open	WF_root	in	the	main	workspace.
2.	 Delete	WF_level_1_2	from	the	workspace.
3.	 Add	a	while	loop	object	from	the	tool	palette,	name	it	While_Loop,	and	link	it	to

WF_level_1,	as	shown	in	the	following	screenshot.	As	we	know	that	we	are	going	to
run	a	loop	for	10	cycles,	we	need	to	create	a	counter	that	we	will	use	in	the	loop
condition.	For	this	purpose,	create	a	$l_count	local	integer	variable	for	the	WF_root
workflow	and	assign	it	a	value	“1”	in	the	initial	script.	Your	code	in	the	Script	object
should	look	like	this:
$l_wf_name	=	workflow_name();

print(‘INFO:	running	{$l_wf_name}	(parent={$p_wf_parent_name})’);

$l_wf_name	=	$p_wf_parent_name	||	’	>	’	||	$l_wf_name;

$l_count	=	1;

4.	 Open	the	While_Loop	in	the	workspace	and	place	the	WF_level_1_2	workflow	by
copying	or	dragging	it	from	Local	Object	Library.

5.	 Place	two	script	objects,	script	and	increase_counter,	before	and	after	the
workflow	and	link	all	three	objects	together.

6.	 The	initial	script	will	contain	the	print()	function	displaying	the	current	loop	cycle,
and	the	final	script	will	increase	the	counter	value	by	1.	You	also	have	to	put	the
conditional	expression	that	checks	the	current	counter	value	in	the	while	field	of	the
While_Loop	object.	The	expression	is	$l_count	<=	10:

The	conditional	expression	is	checked	after	each	loop	cycle.	The	loop	executes
successfully	as	soon	as	the	conditional	expression	returns	FALSE.

7.	 Map	the	$p_wf_parent_name	input	parameter	of	WF_level_1_2	to	the	local	variable
from	the	parent’s	context,	$l_wf_name,	by	going	to	Variables	and	Parameters	|
Calls.

8.	 Save	and	execute	the	job.	Check	your	trace	log	file	to	see	that	WF_level_1_2	was
executed	10	times:

How	it	works…
The	if-then-else	construction	is	available	in	the	scripting	language	as	well,	but	as	you
know	already,	the	usage	of	script	objects	with	workflows	is	quite	limited—you	can	only
join	these	objects	sequentially.	This	is	where	conditional	objects	come	in	action.

The	main	characteristic	of	the	conditional	and	while	loop	objects	is	that	they	are	not
workflows	and	do	not	have	their	own	context.	They	operate	within	the	variable	scope	of
their	parent	objects	and	can	only	be	placed	within	a	workflow	or	job	object.	That	is	why,
you	need	to	create	and	define	all	local	variables	used	in	the	if-then-else	or	while
conditional	expression	inside	the	parent	object	context.

Note
Script	objects	have	their	own	if-then-else	and	while	loop	constructions,	and	to	branch
logic	within	dataflows,	you	can	use	Case,	Validation,	or	simply	Query	with	filtering
conditions	transforms.

There	is	more…
Workflow	objects	themselves	have	a	few	options	to	control	how	they	are	executed	within
the	job	that	adds	some	flexibility	to	the	ETL	design.	They	will	be	explained	in	the
following	recipes	of	this	chapter.	Now,	we	will	just	take	a	look	at	one	of	them.

This	is	the	Execute	only	once	option	available	in	the	workflow	object	properties	window.

To	open	it,	just	right-click	on	the	workflow	either	in	the	workspace	or	in	Local	Object
Library	and	choose	Properties…	from	the	context	menu:

To	see	the	effect	this	option	has	on	workflow	execution,	take	the	job	from	this	recipe	and
tick	this	option	for	the	WF_level_1_2	workflow—the	one	that	runs	in	loop.

Then,	save	the	job	and	execute	it.	The	trace	log	looks	like	this	now:

What	is	happening	here	now	is	that	after	successfully	executing	the	workflow	for	the	first
time	in	the	first	run,	the	while	loop	tries	to	do	this	another	9	times.	However,	as	the
workflow	has	already	run	within	this	job	execution,	it	skips	it	with	successful	workflow
completion	status.

This	option	is	rarely	used	within	a	loop	as	you,	of	course,	do	not	put	anything	in	loop	that
can	be	executed	only	once,	but	it	shows	how	Data	Services	deals	with	workflows	like	this.

The	most	common	scenario	is	when	you	put	the	specific	workflow	in	multiple	branches	of
the	workflow	hierarchy	as	a	dependency	for	other	workflows	and	you	only	need	it	to	be
executed	once	without	caring	which	branch	it	will	be	executed	in	first	as	long	as	it
completes	successfully.

The	scope	of	this	option	is	restricted	by	a	job	level.	If	you	place	the	workflow	with	this
option	enabled	in	multiple	jobs	and	run	them	in	parallel,	the	workflow	will	be	executed
once	in	each	job.

Using	the	bypassing	feature
The	bypassing	option	allows	you	to	configure	a	workflow	or	dataflow	object	to	be	skipped
during	the	job	execution.

Getting	ready…
We	will	use	the	same	job	as	in	the	previous	recipe.

How	to	do	it…
Let’s	configure	the	WF_level_1	workflow	object	that	belongs	to	the	parent	WF_root
workflow	to	be	skipped	permanently	when	the	job	runs.

The	configuration	of	this	feature	requires	two	steps:	creating	a	bypassing	substitution
parameter	and	enabling	the	bypassing	feature	for	the	workflow	using	a	created	substitution
parameter.

	
1.	 To	create	a	bypassing	substitution	parameter,	follow	these	steps:

1.	 Go	to	Tools	|	Substitution	Parameter	Configurations….
2.	 On	the	Substitution	Parameter	Editor	window,	you	can	see	the	list	of	default

substitution	parameters	used	by	Data	Services.
3.	 Click	on	the	empty	field	at	the	bottom	of	the	list	to	create	a	new	substitution

parameter.
4.	 You	can	choose	any	name	you	want,	but	remember	that	all	substitution

parameters	start	with	the	double	dollar	sign.
5.	 Call	your	new	substitution	parameter	$$BypassEnabled	and	choose	the	default

value	YES	in	the	Configuration	column	to	the	right:

6.	 As	a	final	step,	click	on	OK	to	create	the	substitution	parameter.
2.	 Now,	you	can	“label”	any	workflow	object	with	this	substitution	parameter	if	you

want	it	to	be	bypassed	during	job	execution.	Follow	these	steps:
1.	 Open	the	WF_root	workflow	within	your	job	to	see	WF_level_1	in	the	main

workspace	window.
2.	 Right-click	on	the	WF_level_1	workflow	and	choose	Properties…	from	the

context	menu	to	open	the	workflow	properties	window.
3.	 Click	on	the	Bypass	field	combobox	and	choose	the	newly	created	substitution

parameter	from	the	list,	[$$BypassEnabled].	By	default,	the	{No	Bypass}	value
is	chosen	in	this	field:

4.	 Click	on	OK.	The	workflow	becomes	marked	with	a	crossed	red-circle	icon.
This	means	that	during	the	job	execution,	this	workflow	will	be	skipped,	and	the
next	object	in	the	sequence	will	be	executed	straight	away:

How	it	works…
Now,	let’s	see	what	happens	when	you	run	the	job:

	
During	job	validation,	you	can	see	a	warning	message	telling	you	that	a	particular
workflow	will	be	bypassed:

When	the	job	is	executed,	it	runs	the	workflow	sequence	as	usual,	except	when	it	gets
to	the	bypassed	workflow	object.	The	workflow	object	is	skipped	and	all	dependent
objects,	the	object	next	in	sequence	and	the	parent	workflow	where	the	bypassed
object	resides,	consider	its	execution	to	be	successful.	If	you	take	a	look	at	the	trace
log	of	the	job	execution,	you	will	see	something	similar	to	this	screenshot:

There	is	more…
In	Data	Services,	there	is	more	than	one	way	to	set	up	the	workflow	object	as	bypassed.	If
you	right-click	on	the	workflow	object,	you	will	see	that	the	Bypass	option	is	available	in
the	context	menu	directly.	It	opens	the	Set	Bypass	window	with	the	same	combobox	list
of	substitution	parameter	values	available	for	this	option.

Note
You	can	not	only	bypass	workflows.	Dataflow	objects	can	be	bypassed	in	the	same
manner.

Controlling	failures	–	try-catch	objects
In	the	Creating	custom	functions	recipe	in	Chapter	3,	Data	Services	Basics	–	Data	Types,
Scripting	Language,	and	Functions,	we	created	a	custom	function	showing	an	example	of
the	try-catch	block	exception	handling	in	the	scripting	language.	Like	in	the	case	of	if-
then-else	and	while	loop,	Data	Services	has	a	variation	of	the	try-catch	construction
for	the	workflow/dataflow	object	level	as	well.	You	can	put	the	sequence	of	the	executable
objects	(workflows/dataflows)	between	Try	and	Catch	objects	and	then	catch	potential
errors	in	the	Catch	object	where	you	can	put	scripts,	dataflows,	or	workflows	that	you
want	to	run	to	handle	the	caught	errors.

How	to	do	it…
The	steps	to	deploy	and	enable	the	exception	handling	block	in	your	workflow	structure
are	extremely	easy	and	quick	to	implement.

All	you	have	to	do	is	place	an	object	or	sequence	of	objects	from	which	you	want	to	catch
possible	exceptions	between	two	special	objects,	Try	and	Catch.	Then,	follow	these	steps:

	
1.	 Open	the	job	from	the	previous	recipe.
2.	 Open	WF_root	in	the	workspace.
3.	 Choose	the	Try	object	from	the	right-side	tool	palette	and	place	it	at	the	beginning	of

the	object	sequence.	Name	it	Try:

4.	 Choose	the	Catch	object	from	the	right-side	tool	palette	and	place	it	at	the	end	of	the
object	sequence.	Name	it	Catch:

5.	 The	Try	object	is	not	modifiable	and	does	not	have	any	properties	except	description.
Its	only	purpose	is	to	mark	the	beginning	of	the	sequence	for	which	you	want	to
handle	an	exception.

6.	 Double-click	on	the	Catch	object	to	open	it	in	the	main	workspace.	Note	that	all
exception	types	are	selected	by	default.	This	way,	we	make	sure	that	we	catch	any
possible	failures	that	can	happen	during	our	code	execution.	Of	course,	there	can	be
scenarios	when	you	want	the	ETL	to	fail	and	do	not	want	to	run	the	code	in	the	Catch
block	for	some	types	of	errors.	In	this	case,	you	can	deselect	the	exception	to	be
handled	in	the	Catch	block.	In	our	example,	we	just	want	our	code	to	continue	to	run
putting	the	error	message	in	the	trace	log.

7.	 Create	the	script	object	with	the	following	line	in	it:
print(‘ERROR:	exception	has	been	caught	and	handled	successfully’);

8.	 Save	and	execute	the	job.	The	exception	you	generated	in	the	script	is	successfully
handled	by	the	try-catch	construction,	and	the	job	completes	successfully.

How	it	works…
If	you	take	a	look	at	the	trace	log	of	your	job	run,	you	can	see	that	the	WF_level_3_1	and
WF_level_1	workflows	failed:

WF_level_3_1	failed	as	the	exception	was	raised	in	the	script	inside	it,	and	WF_level_1
failed	because	its	execution	depends	on	the	child	object	WF_level_3_1.	You	should
remember	that	if	any	child	objects	within	a	workflow	fail	(another	workflow,	dataflow,	or
script),	the	parent	object	fails	immediately.	Then,	the	parent’s	parent	object	fails	as	well,
and	so	on,	until	the	root	level	of	the	job	hierarchy	is	reached	and	the	job	itself	fails	and
stops	it’s	execution.

By	placing	the	try-catch	sequence	inside	WF_root,	we	made	it	possible	to	catch	all
exceptions	inside	it,	making	sure	that	our	WF_root	workflow	never	fails.

Note
Try-catch	objects	do	not	prevent	a	job	from	failing	in	the	case	of	the	crash	of	the	job
server	itself.	This	is,	of	course,	because	the	successful	execution	of	the	try-catch	logic
depends	on	the	work	of	the	Data	Services	job	server.

Note	that	the	error	log	is	still	generated	in	spite	of	the	successful	job	execution.	In	there,
you	can	see	the	logging	message	that	was	generated	by	the	logic	from	the	catch	object	and
the	context	in	which	the	initial	exception	happened:

Try-catch	objects	can	be	a	vital	part	of	your	recovery	strategy.	If	your	workflow	contains
a	few	steps	that	you	can	think	of	as	a	transactional	unit,	you	would	want	to	clean	up	when
some	of	these	steps	fail	before	running	the	sequence	again.	As	explained	in	the	recipe
dedicated	to	the	recovery	topic,	the	Data	Services	automatic	recovery	strategy	just	simply
skips	the	steps	that	have	already	been	executed,	and	sometimes,	this	is	simply	not	enough.

It	all	depends	on	how	thorough	you	have	to	be	during	your	recovery.

Another	very	important	aspect	is	to	understand	that	try-catch	blocks	prevent	the	failure
of	the	workflow	in	which	context	they	are	put.	This	means	that	the	error	is	hidden	inside
the	try-catch	and	parent	workflow,	and	all	subsequent	objects	down	the	execution	path
will	be	executed	by	Data	Services.

There	are	situations	when	you	definitely	want	to	fail	the	whole	job	to	prevent	any	further
execution	if	some	of	the	data	processing	inside	it	fails.	You	can	still	use	try-catch	blocks
to	catch	the	error	in	order	to	log	it	properly	or	do	some	extra	steps,	but	after	all	this	is
done,	the	raise_exception()	function	at	the	end	of	the	catch	block	is	put	to	fail	the
workflow.

Use	case	example	–	populating	dimension	tables
In	this	recipe,	we	will	build	the	ETL	job	to	populate	two	dimension	tables	in	the
AdventureWorks_DWH	database,	DimGeography	and	DimSalesTerritory,	with	the	data
from	the	operational	database	AdventureWorks_OLTP.

Getting	ready
For	this	recipe,	you	will	have	to	create	new	job.	Also,	create	two	new	schemas	in	the
STAGE	database:	Extract	and	Transform.	To	do	this,	open	the	SQL	Server	Management
Studio,	expand	Databases	|	STAGE	|	Security	|	Schemas,	right-click	on	the	Schemas
folder,	and	choose	the	New	Schema…	option	from	the	context	menu.	Specify	your
administrator	user	account	as	a	schema	owner.

How	to	do	it…
	
1.	 In	the	first	step,	we	will	create	extraction	processes	using	these	steps:

1.	 Open	the	job	context	and	create	the	WF_extract	workflow.
2.	 Open	the	WF_extract	workflow	in	the	workspace	and	create	four	workflows:

each	for	every	source	table	we	extract	from	the	OLTP	database:
WF_Extract_SalesTerritory,	WF_Extract_Address,
WF_Extract_StateProvince,	WF_Extract_CountryRegion.	Do	not	link	these
workflow	objects	to	make	them	run	in	parallel.

3.	 Open	WF_Extract_SalesTerritory	in	the	main	workspace	area	and	create	the
DF_Extract_SalesTerritory	dataflow.

4.	 Open	DF_Extract_SalesTerritory	in	the	workspace	area.
5.	 Add	a	source	table	from	the	OLTP	datastore:	SalesTerritory.
6.	 Place	the	Query	transform	after	the	source	table,	link	them,	open	the	Query

transform	object	in	the	workspace,	and	map	all	source	columns	to	the	target
schema	by	selecting	them	together	and	dragging	them	to	the	target	schema
empty	section.

7.	 Exit	Query	Editor	and	add	the	target	template	table,	SalesTerritory.	Choose
DS_STAGE	as	a	datastore	object	and	Extract	as	the	owner	to	create	a	target	stage
table	in	the	Extract	schema	of	the	STAGE	database.

8.	 Your	dataflow	and	Query	transform	mapping	should	look	as	shown	in	the
screenshots	here:

9.	 In	the	same	manner,	using	steps	3	to	8,	create	extract	dataflow	objects	for	the
other	OLTP	tables:	Address	(dataflow	DF_Extract_Address),	StateProvince
(dataflow	DF_Extract_StateProvince),	and	CountryRegion	(dataflow
DF_Extract_CountryRegion).	Place	each	of	the	created	dataflows	inside	the
parent	object	with	the	same	name,	substituting	the	prefix	DF_	with	WF_	and	put
all	extract	workflows	to	run	in	parallel	inside	the	WF_extract	workflow	object.
To	name	the	target	template	tables	inside	each	of	the	dataflows,	choose	the	same

name	as	of	the	source	table	object	and	select	DS_STAGE	as	a	database	for	the
table	to	be	created	in	and	Extract	as	the	owner/schema:

2.	 Now,	let’s	create	transformation	processes	using	these	steps:
1.	 Go	to	the	job	context	level	in	your	Designer	and	open	the	WF_transform	object.
2.	 As	we	will	populate	two	dimension	tables,	we	will	create	two	transformation

workflows	running	in	parallel	for	each	one	of	them:
WF_Transform_DimSalesTerritory	and	WF_Transform_DimGeography.

3.	 Open	WF_transform_DimSalesTerritory	and	create	a	new	dataflow	in	its
workspace:	DF_Transform_DimSalesTerritory.

4.	 Open	the	dataflow	object	and	design	it	as	shown	in	the	following	screenshot:

5.	 It	is	now	important	for	the	transformation	dataflows	to	create	target	template
tables	in	the	Transform	schema	created	earlier.	The	name	of	the	target	table
template	object	should	be	the	same	as	the	target	dimension	table	in	DWH.

6.	 The	Join	Query	transform	performs	the	join	of	two	source	tables	and	maps	the
columns	from	each	one	of	them	to	the	Query	output	schema.	As	we	do	not
migrate	image	columns,	specify	NULL	as	a	mapping	for	the
SalesTerritoryImage	output	column.	Also,	specify	NULL	as	a	mapping	for
SalesTerritoryKey,	as	its	value	will	be	generated	in	one	of	the	load	processes:

7.	 To	create	the	transformation	process	for	DimGeography,	go	back	to	the
WF_transform	workflow	context	level	and	create	a	new	workflow
WF_Transform_DimGeography	with	a	dataflow	DF_Transform_DimGeography
inside.

8.	 In	the	dataflow,	we	will	source	the	data	from	three	OLTP	tables,	Address,
StateProvince,	and	CountryRegion,	to	populate	the	stage	transformation	table
with	the	table	definition	that	matches	the	target	DWH	DimGeography	table:

9.	 Specify	join	conditions	for	all	three	source	tables	in	the	Join	Query	transform
and	map	the	source	column	to	the	target	output	schema:

10.	 Place	another	Query	transform	and	name	it	Mapping.	Link	the	Join	Query
transform	to	the	Mapping	Query	transform	and	map	the	source	columns	to	the
target	schema	columns	which	match	the	table	definition	of	the	DWH
DimGeography	table.	Map	one	extra	column	TERRITORYID	from	source	to	target:

11.	 In	the	Mapping	Query	transform,	place	NULL	in	the	mapping	sections	for	the
columns	that	we	are	not	going	to	populate	values	for.

3.	 Now,	we	need	to	create	final	load	processes	that	will	move	the	data	from	the	stage
transformation	tables	into	the	target	DWH	dimension	tables.	Perform	these	steps:
1.	 Open	the	WF_load	workflow,	add	two	workflow	objects

WF_Load_DimSalesTerritory	and	WF_Load_DimGeography,	and	link	them
together	to	run	sequentially.

2.	 Open	WF_Load_DimSalesTerritory	and	create	a	dataflow	object,
DF_Load_DimSalesTerritory,	inside	it.

3.	 This	dataflow	will	perform	a	comparison	of	source	data	to	a	target
DimSalesTerritory	dimension	table	data	and	will	produce	the	set	of	updates	for

the	existing	records	whose	values	have	changed	in	the	source	system,	or	will
insert	records	with	key	column	values	that	do	not	exist	in	the	dimension	table
yet:

4.	 In	the	Query	transform,	simply	map	all	source	columns	from	the
DimSalesTerritory	transformation	table	to	the	output	schema.

5.	 Inside	the	Table_Comparison	object,	define	target	DWH	DimSalesTerritory	as
a	comparison	table	and	specify	SalesTerritoryAlternateKey	as	a	key	column
and	three	compare	columns	SalesTerritoryRegion,	SalesTerritoryCountry,
and	SalesTerrtoryGroup,	as	shown	here:

6.	 As	the	final	step	in	the	dataflow,	before	inserting	data	into	target	table	object,	the
Key_Generation	transform	helps	you	to	populate	the	SalesTerritoryKey
column	of	the	target	dimension	table	with	sequential	surrogate	keys.	Surrogate
keys	are	the	keys	usually	generated	during	the	population	of	DWH	tables.
Surrogate	key	columns	can	identify	the	uniqueness	of	the	record.	This	way,	you
have	a	single	column	with	a	unique	ID	that	you	can	use	instead	of	referencing
multiple	columns	in	the	table,	which	defines	the	uniqueness	of	the	record:

7.	 By	default,	all	dimension	tables	in	the	DWH	database	we	are	using	have	identity
columns.	In	SQL	Server,	the	identity	columns	feature	allows	you	to	delegate	the
process	of	surrogate	keys	creation	to	the	SQL	Server	database.	You	simply	insert
the	record	without	specifying	values	for	the	identity	column,	and	the	SQL
Server	populates	the	field	for	you	with	the	sequential	unique	number.	In	our
case,	we	want	to	have	control	over	the	key	creation	ourselves	to	be	able	to
generate	the	keys	in	the	ETL	before	inserting	the	data.	To	do	this,	we	have	to
enable	IDENTITY	INSERT	before	inserting	the	records	and	disable	it	after	the
insert.	Otherwise,	you	will	receive	the	error	message	from	the	SQL	Server
informing	you	that	you	cannot	populate	identity	columns	with	values	as	it	is
done	automatically	by	the	database	engine.

To	switch	the	ability	to	insert	surrogate	keys	in	identity	columns	from	Data
Services,	open	Target	Table	Editor	of	the	DimSalesTerritory	table	and
populate	the	Pre-Load	Commands	and	Post-Load	Commands	tabs	with	the
following	two	commands	correspondingly:
set	identity_insert	dimsalesterritory	on

set	identity_insert	dimsalesterritory	off	

8.	 Now,	let’s	create	the	second	load	process	of	populating	the	DimGeography
dimension	table.	Open	the	DF_Load_DimGeography	dataflow	in	the	workspace
area.

9.	 The	dataflow	will	have	the	same	structure	as	the	previous	one,	except	that	we
will	look	up	to	the	already	populated	DimSalesTerritory	dimension	table	for
SalesTerritoryKey:

10.	 In	the	Query	transform,	map	all	columns	from	the	stage
Transform.DimGeography	table	and	one	SalesTerritoryKey	from	the	DWH
DimSalesTerritory	table	to	the	output	schema.	For	the	join	condition,	specify
the	following	one:
DIMGEOGRAPHY.TERRITORYID	=	DIMSALESTERRITORY.SALESTERRITORYALTERNATEKEY

11.	 Mapping	transform	output	schema	definition	matches	the	target	table	definition,
and	here,	we	will	finally	drop	the	TERRITORYID	column	from	the	mappings,	as
we	do	not	need	it	anymore.

12.	 Specify	the	following	settings	in	the	Table_Comparison	transform:

13.	 In	the	Key_Generation	transform,	specify	DWH.DBO.DIMGEOGRAPHY	as	the	table
name	and	GEOGRAPHYKEY	as	the	generated	key	column.

14.	 Also,	do	not	forget	to	define	the	commands	in	Pre-Load	and	Post-Load	target
table	settings	to	switch	on	IDENTITY_INSERT	and	switch	it	off	after	the	insert	is
complete.	Use	the	following	commands:
set	identity_insert	dimgeography	on

set	identity_insert	dimgeography	off

How	it	works…
Let’s	review	the	different	aspects	of	the	example	we	just	implemented	in	the	previous
steps.

Mapping
Before	you	start	the	ETL	development	in	Data	Services,	you	have	to	define	the	mapping
between	source	columns	of	operational	database	tables,	target	columns	of	Data	Warehouse
tables,	and	transformation	rules	for	the	migrated	data,	if	required.	At	this	step,	you	also
have	to	identify	dependencies	between	source	data	structures	to	correctly	identify	types	of
join	required	to	extract	the	correct	dataset.

Target	column Source	table Source
column Transformation	rule

SalesTerritoryKey NULL 	 Generated	surrogate	key
in	DWH

SalesTerritoryAlternateKey SalesTerritory TerritoryID Direct	mapping

SalesTerritoryRegion SalesTerritory Name Direct	mapping

SalesTerritoryCountry CountryRegion Name Direct	mapping

SalesTerritoryGroup SalesTerritory Group Direct	mapping

SalesTerritoryImage 	 	 Not	migrating

Table	1:	Mappings	for	the	DimSalesTerritory	dimension

Here,	you	can	find	the	mapping	table	for	the	DimGeography	dimension:

Target	column Source	table Source	column Transformation
rule

GeographyKey NULL 	
Generated
surrogate	key	in
DWH

City Address City Direct	mapping

StateProvinceCode StateProvince StateProvinceCode Direct	mapping

StateProvinceName StateProvince Name Direct	mapping

CountryRegionCode CountryRegion CountryRegionCode Direct	mapping

EnglishCountryRegionName CountryRegion Name Direct	mapping

SpanishCountryRegionName NULL 	 Not	migrated

FrenchCountryRegionName NULL 	 Not	migrated

PostalCode Address PostalCode Direct	mapping

SalesTerritoryKey DimSalesTerritory SalesTerritoryKey Lookup

IpAddressLocator NULL 	 Not	migrated

Table	2:	Mappings	for	DimGeography	dimension

The	majority	are	direct	mappings,	which	means	that	we	do	not	change	the	migrated	data
and	move	it	as	is	from	source	to	target.	The	information	in	these	mapping	tables	is	used
primarily	in	the	Query	transforms	inside	the	dataflows	to	join	the	source	table	together
and	map	source	columns	from	source	to	target	schema:

Dependencies

The	next	step	is	to	define	the	dependencies	between	populated	target	tables	to	understand
in	which	order	ETL	processes	loading	data	into	them	should	be	executed.	The	preceding
diagram	shows	that	SalesTerritoryKey	from	the	DimSalesTerritory	dimension	table	is
used	as	a	reference	key	in	the	DimGeography	dimension	table.	This	means	that	ETL
processes	populating	each	of	these	tables	cannot	be	executed	in	parallel	and	should	run
sequentially,	as	when	we	populate	the	DimGeography	table,	we	will	require	the	information
in	DimSalesTerritory	to	be	already	updated.

Development

After	defining	the	mappings	and	transformation	rules	and	making	the	decision	about	the
execution	order	of	ETL	elements,	you	can	finally	open	the	Designer	application	and	start
developing	the	ETL	job.

Note
The	naming	conventions	for	the	workflow,	dataflow,	scripts,	and	different	transformation
objects	as	well	as	for	staging	table	objects	is	very	important.	It	allows	you	to	easily	read
the	ETL	code	and	understand	what	resides	in	one	table	or	another	and	what	type	of
operation	is	performed	by	a	specific	dataflow	or	transformation	object	within	a	dataflow.

Our	ETL	job	contains	three	main	stages	that	are	defined	by	three	workflow	objects	created
in	the	job’s	workspace.	Each	of	these	workflows	plays	a	role	of	the	container	for	the
underlying	workflow	objects	containing	dataflows:

	
The	first	workflow	container	WF_extract	contains	the	processing	units	that	extract
the	data	from	the	OLTP	system	into	the	DWH	staging	area.	There	are	different
advantages	of	this	approach	rather	than	extracting	and	transforming	data	within	the
same	dataflow.	The	main	reason	is	that	by	copying	the	data	as	is	in	the	staging	area,
you	access	the	production	OLTP	system	only	once,	creating	a	consistent	snapshot	of
the	OLTP	data	at	specific	time.	You	can	query	extracted	tables	in	staging	as	many
times	as	you	want,	without	affecting	the	live	production	system’s	performance.	We
do	not	apply	any	transformations	or	mapping	logic	in	these	extraction	processes	and
are	simply	copying	the	contents	of	the	source	tables	as	is.
The	second	workflow	container	WF_transform	selects	the	data	from	the	stage	tables,
assembles	it,	and	transforms	to	match	the	target	table	definition.	At	this	stage,	we	will
leave	all	surrogate	key	columns	empty	and	NULL-out	the	columns	for	which	we	are
not	going	to	migrate	values.

Note
In	the	DF_Transform_DimGeography	dataflow,	the	target	template	table	does	not
exactly	match	the	DWH	table’s	DimGeography	definition.	We	will	keep	one	extra
column	from	the	source	TERRITORYID	to	reference	another	dimension	table
DimSalesTerritory	at	the	load	stage.	Without	this	column,	we	would	not	be	able	to
link	these	two	dimension	tables	together.

The	third	workflow	container,	WF_load,	loads	the	transformed	datasets	into	the	target
DWH	dimension	tables.	Another	important	operation	this	step	performs	is	generating
surrogate	keys	for	the	new	records	to	be	inserted	into	the	target	dimension	table.

Another	important	decision	you	have	to	make	when	you	populate	dimension	tables	using
the	Table_Comparison	transform	is	which	set	of	keys	define	a	new	record	in	the	target
dimension	table	and	which	columns	you	are	checking	for	updated	values.

In	this	example,	we	made	a	decision	to	select	only	two	comparison	columns,	PostalCode
and	SalesTerritoryKey.	Whenever	there	is	a	new	location	(City	+	State	+	Country),	the
record	is	inserted,	and	if	the	location	exists,	Data	Services	checks	whether	the	source

record	coming	from	the	OLTP	system	contains	new	values	in	the	PostalCode	or
SalesTerritoryKey	column.	If	yes,	then	the	existing	record	in	the	target	dimension	table
would	be	updated.

Note
Note	that	in	the	transformation	processes	we	developed,	we	did	not	generate	DWH
surrogate	keys	for	our	new	records.	The	main	goal	of	the	transformation	process	is	to
assemble	the	dataset	for	it	to	match	the	target	table	definition	and	apply	all	required
transformation	if	the	source	data	do	not	comply	with	the	data	warehouse	requirements.

Execution	order

All	three	steps	or	three	workflows,	WF_extract,	WF_transform,	and	WF_load,	run
sequentially	one	after	another.	The	next	workflow	starts	execution	only	after	successful
completion	of	the	previous	one.

Child	objects	of	both	WF_extract	and	WF_transform	run	in	parallel	as	at	those	stages,	we
are	not	trying	to	link	the	migrated	datasets	to	each	other	with	reference	keys.

At	the	final	load	stage,	WF_Load,	contains	two	workflow	objects	that	run	sequentially.
First,	we	will	fully	populate	and	update	the	DimSalesTerritory	dimension,	and	then	after
it’s	done,	we	can	safely	reference	it	when	populating	the	DimGeography	table.

Testing	ETL

The	best	way	to	test	ETL	is	to	make	changes	to	the	source	system,	run	the	ETL	job,	and
check	the	contents	of	the	target	data	warehouse	tables.
Preparing	test	data	to	populate	DimSalesTerritory

Let’s	make	some	changes	to	the	source	data.	We	will	add	a	new	sales	territory	in	the
Sales.SalesTerritory	table	and	a	new	state	in	the	Person.StateProvince	table.	Run	the
following	code	in	the	SQL	Server	Management	Studio:
—	Insert	new	records	into	source	OLTP	tables	to	test	ETL	

—	populating	DimSalesTerritory

USE	[AdventureWorks_OLTP]

GO

—	Insert	new	sales	territory

INSERT	INTO	[Sales].[SalesTerritory]

		([Name],	[CountryRegionCode],	[Group],	[SalesYTD],	[SalesLastYear]

						,[CostYTD],	[CostLastYear],	[rowguid],	[ModifiedDate])

		VALUES

		(‘Russia’,	‘RU’,	‘Russia’,	9000000.00,	0.00

				,0.00,	0.00,	NEWID(),	GETDATE());

—	Insert	new	state

INSERT	INTO	[Person].[StateProvince]

		([StateProvinceCode],	[CountryRegionCode],	[IsOnlyStateProvinceFlag]

						,[Name],	[TerritoryID],	[rowguid],	[ModifiedDate])

		VALUES

		(‘CR’,‘RU’,	1,	‘Crimea’,	12,	NEWID(),	GETDATE());

GO

Preparing	test	data	to	populate	DimGeography

To	update	the	source	tables,	run	the	following	script	in	the	SQL	Server	Management
Studio.	This	should	create	a	new	address	with	a	new	city	which	does	not	yet	exist	in	the
DimGeography	dimension.	You	could	skip	this	step	as,	by	default,	the	OLTP	database	has
multiple	address	records	that	do	not	have	correspondent	rows	in	the	target	DWH
dimension,	but	to	make	the	test	more	transparent,	it	is	recommended	that	you	create	your
own	new	record	in	the	source	system:
—	Insert	new	records	into	source	OLTP	tables	to	test	ETL	

—	populating	DimGeography	dimension

USE	[AdventureWorks_OLTP]

GO

—	Insert	new	address

INSERT	INTO	[Person].[Address]

		([AddressLine1],	[AddressLine2],	[City],	[StateProvinceID]

				,[PostalCode],	[SpatialLocation],	[rowguid],	[ModifiedDate])

		VALUES

		(‘10	Suvorova	St.’,NULL,	‘Sevastopol’,	182,	‘299011’,	NULL,	NEWID(),	GETDATE());

GO

Now,	execute	the	job	and	query	both	dimension	tables.	There	is	one	new	row	inserted	in
DimSalesTerritory	with	SalesTerritoryKey	=	12	and	multiple	records	were	inserted
into	and	updated	in	the	DimGeography	table.

Among	the	new	records	in	DimGeography,	you	should	be	able	to	see	the	record	for	the	new
city	of	Sevastopol	that	we	inserted	manually	with	the	help	of	the	preceding	script.

Note
If	you	run	the	job	again	without	making	changes	to	the	source	system’s	data,	it	should	not
create	or	update	any	records	in	the	target	dimension	tables,	as	all	changes	have	already
been	propagated	from	OLTP	to	DWH	by	the	first	job	run.	The	main	object	in	our	ETL
driving	the	changes	tracking	is	the	Table_Comparison	transform.

Using	a	continuous	workflow
In	this	recipe,	we	will	take	a	close	look	at	one	of	the	workflow	object	features	that	controls
how	the	workflow	runs	within	a	job.

How	to	do	it…

	
1.	 Create	a	job	with	a	single	workflow	inside	named	WF_continuous.	Create	a	single

global	variable	$g_count	of	the	integer	type	at	the	job	level	context.
2.	 Open	the	workflow	properties	by	right-clicking	on	the	workflow	object	and	selecting

the	Properties…	option	from	the	context	menu	and	change	the	workflow	execution
type	to	Continuous	on	the	General	workflow	properties	tab:

3.	 Exit	the	workflow	properties	by	clicking	on	OK.	See	how	the	icon	of	the	workflow
object	changes	when	its	execution	type	is	changed	from	Regular	to	Continuous:

4.	 Go	to	Local	Object	Library	|	Custom	Functions.
5.	 Right-click	on	the	Custom	Functions	list	and	select	New	from	the	context	menu.
6.	 Name	the	custom	function	fn_check_flag	and	click	on	Next	to	open	the	custom

function	editor.
7.	 Create	the	following	parameters	and	variables:

Variable/parameter Description

$p_Directory
Input	parameter	of	the	varchar(255)	type	to	store	the
directory	path	value

$p_File
Input	parameter	of	the	varchar(255)	type	to	store	the
filename	value

$l_exist
Local	variable	of	the	integer	type	to	store	the	result	of	the
file_exists()	function

8.	 Add	the	following	code	to	the	custom	function	body:
$l_exist	=	file_exists($p_Directory||$p_File);

if	($l_exist	=	1)

		begin

		print(‘Check:	file	exists’);

		Return	0;

		end	

else	

		begin

		print(‘Check:	file	does	not	exist’);

		Return	1;

		End

Your	custom	function	should	look	like	this:

9.	 Open	the	workflow	properties	again	to	edit	the	continuous	options	using	the
Continuous	Options	tab.

10.	 On	the	Continuous	Options	tab,	tick	the	checkbox	when	the	result	of	the	function	is
zero	in	the	Stop	section	at	the	bottom	and	input	the	following	line	in	the	empty	box:
fn_check_flag($l_Directory,	$l_File).

11.	 Click	on	OK	to	exit	the	workflow	properties	and	save	the	changes.
12.	 Open	the	workflow	in	the	main	workspace	and	create	two	local	variables	in	the

Variables	and	Parameters	window:	$l_Directory	of	the	varchar(255)	type	and
$l_File	of	the	varchar(255)	type.

13.	 Create	a	single	script	object	within	a	workflow	and	add	the	following	code	in	it:
$l_Directory	=	‘C:\AW\Files\’;

$l_File	=	‘flag.txt’;

$g_count	=	$g_count	+	1;

print(‘Execution	#’||$g_count);

print(‘Starting		’||workflow_name()||’	…’);

sleep(10000);

print(‘Finishing	’||workflow_name()||’	…’);

14.	 Save	and	validate	the	job	to	make	sure	that	there	are	no	errors.
15.	 Run	the	job	and	after	few	workflow	execution	cycles	add	the	flag.txt	file	in	the

C:\AW\Files\	directory	to	stop	the	continuous	workflow	execution	sequence	and	the
job	itself.

How	it	works…

Continuous	execution	type	allows	you	to	run	the	workflow	object	an	indefinite	number	of
times	in	a	loop.	There	are	many	restrictions	of	using	the	continuous	workflow	execution
mode.	Some	of	them	are	as	follows:

	
You	cannot	nest	continuous	workflow	in	another	workflow	object
Some	dataflow	transforms	are	not	available	for	use	when	placed	under	a	continuous
workflow	hierarchy	structure
A	continuous	workflow	object	can	be	used	only	in	the	batch	job

The	main	purpose	of	the	continuous	workflow	is	not	to	substitute	the	while	loop	as	you
might	have	thought	at	a	first	glance,	but	to	save	memory	and	processing	resources	for	the
tasks	that	have	to	be	executed	again	and	again,	indefinitely	in	the	non-stop	mode	or	for	a
very	long	period	of	time.	Data	Services	is	saving	resources	by	initializing	and	optimizing
for	execution	all	the	underlying	structures	such	as	dataflows,	datastores,	and	memory
structures	required	for	dataflow	processing	only	once	the	continuous	workflow	object	is
executed	for	the	first	time.

The	release	resources	section	inside	the	Continuous	option	controls	how	often	resources
used	by	the	underlying	objects	are	released	and	reinitialized.

It	is	not	possible	to	specify	the	exact	number	of	cycles	for	the	continuous	workflow
directly.	The	only	option	to	add	the	stop	logic	is	to	write	a	custom	function	that	is
executed	after	every	cycle,	and	if	it	returns	zero,	the	value	stops	the	continuous	workflow
execution	sequence.

In	the	preceding	recipe,	we	created	a	custom	function	that	checks	the	presence	of	the	file
in	the	specified	folder.	If	the	file	appears	in	there,	it	returns	0.	The	job	will	be	running
indefinitely	until	the	file	appears	in	the	folder,	or	the	job	itself	is	killed	manually,	or	the
job	server	crashes.

To	check	the	existence	of	the	file,	the	file_exists()	function	is	used.	It	returns	1	if	the
file	exists	and	0	if	it	does	not.	The	function	accepts	a	single	parameter:	a	full	filename	that
includes	the	path.	As	in	our	case,	we	are	interested	in	stopping	continuous	workflow
execution.	When	the	function	returns	0,	we	had	to	invert	the	returned	value	of	the	function
and	created	a	custom	function	for	that.

We	added	the	sleep()	function	to	imitate	the	execution	of	the	workflow	so	that	it	would
be	easy	to	place	the	file	while	the	execution	cycle	is	still	running.	The	Sleep()	function
accepts	integer	parameters	in	milliseconds,	so	10000	is	equal	to	10	seconds.

The	global	variable	$g_count	was	added	to	control	the	number	of	cycles	that	were
executed	in	the	continuous	workflow	sequence.

Another	interesting	fact	about	how	continuous	workflow	behaves	is	that	it	always
executes	another	cycle	after	the	stop	function	returns	the	zero	value.	Look	at	the	following
screenshot:

See	that	in	spite	of	the	fact	that	we	placed	the	flag.txt	file	during	the	third	execution
cycle	and	the	stop	function	found	it	and	returned	a	zero	value	(see	the	Check:	file
exists	print	message	in	the	trace	log),	the	fourth	cycle	still	was	executed.

Let’s	try	another	test	to	confirm	this.	Place	the	flag.txt	file	before	the	job	is	executed
and	then	run	it.	This	is	what	you	see	in	the	trace	log	file:

You	can	see	that	after	the	custom	function	returned	0	after	the	first	cycle,	the	continuous
workflow	was	executed	the	second	time.

There	is	more…

You	have	to	understand	that	continuous	workflow	usage	is	very	limited	in	real	life	because
of	functional	restrictions	and	also	because	of	the	nature	of	the	loop	in	which	the	workflow
is	executed.	In	the	majority	of	cases,	the	while	loop	object	is	a	preferable	option	to	run	the
workflow	or	underlying	processing	sequence	of	objects.

Peeking	inside	the	repository	–	parent-child	relationships	between	Data
Services	objects
With	the	introduction	of	workflow	objects,	which	allow	the	nesting	and	grouping	of
objects,	you	can	see	that	ETL	code	executed	within	the	Data	Services	job	is	a	hierarchical
structure	of	objects	that	can	be	quite	complex.	Just	imagine	if	real-life	jobs	have	hundreds
of	workflows	in	their	structure	and	twice	as	many	dataflows.

In	this	recipe,	we	will	look	under	the	hood	of	Data	Services	to	see	how	it	stores	the	object
information	(our	ETL	code)	in	the	local	Data	Services	repository.	Techniques	learned	in
this	recipe	can	help	you	browse	the	hierarchy	of	objects	within	your	local	repository	with
the	help	of	the	database	SQL	language	toolset.	This	often	proves	to	be	a	very	convenient
method	to	use.

Getting	ready

You	will	not	create	any	jobs	or	other	objects	in	the	Data	Services	Designer	as	we	are	just
going	to	browse	the	ETL	code	and	run	a	few	queries	in	the	SQL	Server	Management
Studio.

How	to	do	it…

Follow	these	simple	steps	to	access	the	contents	of	the	Data	Services	local	repository	in
this	recipe:

	
1.	 Start	the	SQL	Server	Management	Studio	and	connect	to	the	DS_LOCAL_REPO

database	created	in	Chapter	2,	Configuring	the	Data	Services	Environment.
2.	 Query	the	dbo.AL_PARENT_CHILD	table	for	references	between	Data	Services	objects

and	additional	info.
3.	 Query	the	dbo.AL_LANGTEXT	table	for	extra	object	properties	and	script	object

contents.

How	it	works…

Querying	object-related	information	from	the	Data	Services	repository	could	be	useful	if
you	want	to	build	the	report	on	ETL	metadata	that	does	not	exist	out	of	the	box	in	Data
Services.	It	also	could	be	useful	when	troubleshooting	potential	problems	with	your	ETL
code.	We	will	take	a	look	at	the	different	scenarios	and	briefly	explain	each	case.
Get	a	list	of	object	types	and	their	codes	in	the	Data	Services	repository

Use	the	following	query:
select	

		descen_obj_type,	descen_obj_r_type,	count(*)	

from	

		dbo.al_parent_child	

group	by	

		descen_obj_type,	descen_obj_r_type;	

The	main	table	of	the	reference	is	the	AL_PARENT_CHILD	table.	It	contains	the	full
hierarchy	of	the	objects	starting	from	the	job	object	level	and	finishing	with	the	table
object	level.	The	preceding	query	shows	all	the	possible	object	types	that	Data	Services

registers	in	the	repository.
Display	information	about	the	DF_Transform_DimGeography	dataflow

Use	the	query	to	get	this	information:
select	*	

from	

		dbo.al_parent_child	

where	

		descen_obj	=	‘DF_Transform_DimGeography’;

All	columns	and	their	values	are	explained	in	this	table:

Column	name Value Description

PARENT_OBJ WF_Transform_DimGeography

This	is	the	name	of	the	parent	object
DF_Transform_DimGeography

belongs	to.	See	the	following	figure.

PARENT_OBJ_TYPE WorkFlow This	is	the	type	of	the	parent	object.

PARENT_OBJ_R_TYPE 0
This	is	the	type	code	of	the	parent
object.

PARENT_OBJ_DESC No	description	available

This	is	the	description	of	the	parent
object.	This	is	what	you	input	in	the
Description	field	inside	the	workflow
properties	window	in	the	Designer.	If
empty,	Data	Services	uses	“No
description	available”	in	the	repo
table.

PARENT_OBJ_KEY 175
This	is	the	internal	parent	object	key
(ID).

DESCEN_OBJ DF_Transform_DimGeography
This	is	the	object	name	we	are
looking	up	information	for.

DESCEN_OBJ_TYPE DataFlow This	is	the	type	of	the	object.

DESCEN_OBJ_R_TYPE 1 This	is	the	type	code	of	the	object.

DESCEN_OBJ_DESC No	description	available

This	is	the	contents	of	the
Description	field	of	dataflow
properties	in	the	Designer.	It	is
empty	for	this	specific	dataflow.

DESCEN_OBJ_USAGE NULL
This	indicates	whether	the	object	is	a
source	or	a	target	within	a	dataflow.
As	the	object	itself	is	a	dataflow,	this
field	is	not	populated.

DESCEN_OBJ_KEY 174 This	is	the	internal	object	key	(ID).

DESCEN_OBJ_DS NULL

This	indicates	what	the	datastore
object	belongs	to.	As	the	object	we
are	looking	up	is	a	dataflow.	this
field	is	not	populated.

DESCEN_OBJ_OWNER NULL

This	is	the	database	owner	of	the
object.	It	is	not	applicable	to
dataflow	objects	either.

Display	information	about	the	SalesTerritory	table	object

Use	the	following	query:
select	

		parent_obj,	descen_obj_desc,	descen_obj_usage,	descen_obj_key,	descen_obj_ds,	descen_obj_owner	

from	

		dbo.al_parent_child

where	descen_obj	=	‘SALESTERRITORY’;	

The	result	is	in	the	following	screenshot:

From	the	preceding	screenshot,	you	can	see	that	two	different	objects	with	the	same	name
SALESTERRITORY	exist	in	the	Data	Services	repository	with	unique	keys	37	and	38.

The	one	with	OBJ_KEY	as	37	is	imported	in	the	OLTP	datastore	and	belongs	to	the	Sales
schema.	It	is	used	only	DF_Extract_SalesTerritory	as	it	has	only	one	record	with	the
parent	object	of	that	name.

The	SALESTERRITORY	object	with	OBJ_KEY	as	38	is	a	stage	area	table	and	is	imported	into
the	DS_STAGE	datastore	and	belongs	to	the	Extract	database	schema.	It	has	two	different
parent	objects,	as	in	Designer,	it	was	placed	into	two	different	dataflows:	as	a	target	table
object	in	DF_Extract_SalesTerritory	(you	can	see	it	from	the	DESCEN_OBJ_USAGE

column)	and	as	a	source	table	object	in	DF_Transform_DimSalesTerritory.
See	the	contents	of	the	script	object

The	one	thing	you	have	probably	noticed	already	from	the	result	of	the	very	first	query	in
this	recipe	is	that	Data	Services	does	not	have	a	script	object	type.

As	you	probably	remember,	script	objects	do	not	have	their	own	context	in	Data	Services
and	operate	in	the	context	of	the	workflow	object	they	belong	to.	That	is	why,	you	have	to
query	the	information	about	workflow	properties	using	another	table	AL_LANGTEXT	to	find
the	information	about	script	contents	in	the	Data	Services	repository.

Use	the	following	query:
select	*	

from	dbo.al_langtext	txt

		JOIN	dbo.al_parent_child	pc

		on	txt.parent_objid	=	pc.descen_obj_key

where		

		pc.descen_obj	=	‘WF_continuous’;

We	are	extracting	information	about	the	script	object	created	in	the	WF_continuous
workflow.

All	workflow	properties	with	the	contents	of	all	scripts	that	belong	to	it	are	stored	in	a
plain	text	format.

In	this	table,	we	are	only	interested	in	two	columns	SEQNUM,	which	represents	the	number
of	properties	text	row,	and	TEXTVALUE,	which	stores	the	properties	text	row	itself.

See	the	concatenated	version	of	information	stored	in	the	TEXTVALUE	column	of	the
AL_LANGTEXT	repository	table	here:
AlGUIComment	(“ActaName_1”	=	‘RSavedAfterCheckOut’,	“ActaName_2”	=	‘RDate_created’,	“ActaName_3”	=	‘RDate_modified’,	“ActaValue_1”	=	‘YES’,	“ActaValue_2”	=	‘Sat	Jul	04	16:52:33	2015’,	“ActaValue_3”	=	‘Sun	Jul	05	11:18:02	2015’,	“x”	=	’-1’,	“y”	=	’-1’)

CREATE	PLAN	WF_continuous::‘7bb26cd4-3e0c-412a-81f3-b5fdd687f507’()

DECLARE

		$l_Directory	VARCHAR(255)	;

		$l_File	VARCHAR(255)	;

BEGIN

	AlGUIComment	(“UI_DATA_XML”	=	’<UIDATA><MAINICON><LOCATION><X>0</X>

<Y>0</Y></LOCATION><SIZE><CX>216</CX><CY>-179</CY></SIZE></MAINICON>

<DESCRIPTION><LOCATION><X>0</X><Y>-190</Y></LOCATION><SIZE><CX>200</CX>

<CY>200</CY></SIZE><VISIBLE>0</VISIBLE></DESCRIPTION></U

IDATA>’,	“ui_display_name”	=	‘script’,	“ui_script_text”	=	’$l_Directory	=	'C:\\AW\\Files\\';

$l_File	=	'flag.txt';

$g_count	=	$g_count	+	1;

print('Execution	#'||$g_count);

print('Starting		'||workflow_name()||'	…');

sleep(10000);

print('Finishing	'||workflow_name()||'	…');’,	“x”	=	‘116’,	“y”	=	’-175’)

BEGIN_SCRIPT

$l_Directory	=	‘C:\AW\Files\’;$l_File	=	‘flag.txt’;$g_count	=	($g_count	+	1);print((‘Execution	#’	||	$g_count));print(((‘Starting		’	||	workflow_name())	||	’	…’));sleep(10000);print(((‘Finishing	’	||	workflow_name())	||	’	…’));END

END

	SET	(“loop_exit”	=	‘fn_check_flag($l_Directory,	$l_File)’,	“loop_exit

_option”	=	‘yes’,	“restart_condition”	=	‘no’,	“restart_count”	=	‘10’,	“restart_count_option”	=	‘yes’,	“workflow_type”	=	‘Continuous’)

The	first	highlighted	section	of	the	preceding	code	is	the	declaration	section	of	local
workflow	variables	created	for	WF_continuous.	The	second	highlighted	section	is	marking
the	text	that	belongs	to	the	underlying	script	object.	You	can	see	that	the	script	object	is
not	considered	by	Data	Services	as	a	separate	object	entity	and	is	just	a	property	of	the
parent	workflow	object.	To	compare,	take	a	look	at	how	the	script	contents	look	like	in
Designer:
$l_Directory	=	‘C:\AW\Files\’;

$l_File	=	‘flag.txt’;

$g_count	=	$g_count	+	1;

print(‘Execution	#’||$g_count);

print(‘Starting		’||workflow_name()||’	…’);

sleep(10000);

print(‘Finishing	’||workflow_name()||’	…’);

You	can	see	that	formatting	of	the	same	information	stored	in	the	TEXTVALUE	field	is	a	bit
different.	So,	be	careful	when	extracting	and	parsing	this	data	from	the	local	repository.

Finally,	the	third	highlighted	section	marks	the	workflow	properties	configured	with	the
Properties…	context	menu	option	in	Designer.

Note
There	is	another	version	of	the	AL_LANGTEXT	table	that	contains	the	same	properties
information	but	in	the	XML	format.	It	is	the	AL_LANGXMLTEXT	table.

Chapter	6.	Job	–	Building	the	ETL	Architecture
In	this	chapter,	we	will	cover	the	following	topics:

	
Projects	and	jobs	–	organizing	ETL
Using	object	replication
Migrating	ETL	code	through	the	central	repository
Migrating	ETL	code	with	export/import
Debugging	job	execution
Monitoring	job	execution
Building	an	external	ETL	audit	and	audit	reporting
Using	built-in	Data	Services	ETL	audit	and	reporting	functionality
Auto	Documentation	in	Data	Services

Introduction
In	this	chapter,	we	will	go	up	to	the	job	level	and	review	the	steps	in	the	development
process	that	make	a	successful	and	robust	ETL	solution.	All	recipes	presented	in	this
chapter	can	fall	into	one	of	the	three	categories:	ETL	development,	ETL	troubleshooting,
and	ETL	reporting.	These	categories	include	design	techniques	and	processes	usually
implemented	and	executed	sequentially	in	order	within	the	ETL	life	cycle.

Here,	you	can	see	which	topics	fall	under	which	category.

	
Developing	ETL:

Projects	and	jobs	–	organizing	ETL
Using	object	replication
Migrating	ETL	code	through	the	central	repository
Migrating	ETL	code	with	export/import

The	developing	category	discusses	issues	faced	by	ETL	developers	on	a	daily	basis
when	they	work	on	designing	and	implementing	an	ETL	solution	in	Data	Services.

Troubleshooting	ETL:
Debugging	job	execution
Monitoring	job	execution

The	troubleshooting	category	explains	in	detail	the	troubleshooting	techniques	that
can	be	used	in	Data	Services	Designer	to	troubleshoot	the	ETL	code.

Reporting	on	ETL:
Building	external	ETL	audit	and	audit	reporting
Using	built-in	Data	Services	ETL	audit	and	reporting	functionality
Auto	Documentation	in	Data	Services

The	reporting	category	reviews	the	methods	used	to	report	on	ETL	metadata	and
also	explains	the	Auto	Documentation	feature	available	in	Data	Services	to	quickly
generate	and	export	documentation	for	the	developed	ETL	code.

Projects	and	jobs	–	organizing	ETL
Projects	are	a	simple	and	great	mechanism	to	group	your	ETL	jobs	together.	They	are	also
mandatory	components	of	ETL	code	organization	for	various	Data	Services	features,	such
as	Auto	Documentation	and	batch	job	configuration	available	in	the	Data	Services
Management	Console.

Getting	ready
There	are	no	preparation	steps.	You	have	everything	you	need	in	your	local	repository	that
has	already	been	created.	In	this	recipe,	we	will	use	Job_DWH_DimGeography	developed	in
Chapter	5,	Workflow	–	Controlling	Execution	Order,	to	populate	the	DWH	dimension
tables	DimSalesTerritory	and	DimGeography.

How	to	do	it…
To	create	a	project	object	in	Data	Services,	follow	these	steps:

	
1.	 Open	the	Local	Object	Library	window	and	choose	the	Projects	tab.
2.	 Right-click	in	the	empty	space	of	the	Projects	tab	and	select	New	from	the	context

menu.	The	Project	–	New	window	appears	on	the	screen.
3.	 Input	the	project	name	as	DWH_Dimensions	in	the	Project	Name	field.
4.	 Open	the	Project	Area	window	using	the	Project	Area	button	on	the	tool	bar	at	the

top:

5.	 Go	to	Project	Area	|	Designer.	You	will	only	see	the	contents	of	one	selected
project.	To	select	the	project	or	make	it	visible	in	the	Project	Area	|	Designer
window,	go	to	Local	Object	Library	|	Projects	and	either	double-click	on	the
project	you	are	interested	in	(in	our	case,	it	has	only	one	project	created)	or	choose
Open	from	the	context	menu	of	the	selected	project.

6.	 To	add	the	job	in	the	project,	drag	and	drop	the	selected	job	from	Local	Object
Library	|	Jobs	into	the	Project	Area	|	Designer	tab	window	or	right-click	on	the	job
object	in	Local	Object	Library	and	choose	the	Add	To	Project	option	from	the
context	menu.	Add	Job_DWH_DimGeography	created	in	the	previous	recipe	to	the
DWH_Dimensions	project:

How	it	works…
This	is	all	you	need	to	do	to	create	a	project	and	place	jobs	in	it.	It	is	a	very	simple	process
that,	in	fact,	brings	you	a	few	extra	advantages	that	you	can	use	in	ETL	development.	The
process	also	reveals	new	functionality	not	accessible	otherwise	in	Data	Services.	Let’s
take	a	look	at	some	of	them.

Hierarchical	object	view
Available	in	the	Project	Area	|	Designer,	this	view	allows	you	to	quickly	access	any	child
object	within	a	job.	In	the	following	screenshot,	the	expanding	tree	shows	workflow,
dataflow,	and	transformation	objects;	by	clicking	on	any	of	them,	you	open	them	in	the
main	workspace	window:

History	execution	log	files
These	log	files	are	available	only	if	the	job	was	assigned	to	a	project.	The	Project	Area	|
Log	tab	allows	you	to	see	and	access	all	available	log	files	(trace,	performance,	and	error
logs)	kept	by	Data	Services	for	specific	jobs:

Executing/scheduling	jobs	from	the	Management	Console

Yes,	this	option	is	available	only	for	jobs	that	belong	to	a	project.

Use	http://localhost:8080/DataServices	to	start	your	Data	Services	Management
Console.

Log	in	to	the	Management	Console	using	the	etl	user	account	created	in	the	Configuring
user	access	recipe	of	Chapter	2,	Configuring	the	Data	Services	Environment.	It	is	the
same	user	you	use	to	connect	to	Data	Services	Designer.

Go	to	Administrator	|	Batch	|	DS4_REPO.

If	you	open	the	Batch	Job	Configuration	tab,	you	will	see	that	only
Job_DWH_DimGeography	is	available	for	being	executed/scheduled/exported	for	execution,
as	it	was	the	only	job	in	our	local	repository	that	we	added	to	a	created	project:

As	you	can	see,	projects	are	the	containers	for	your	jobs,	allowing	you	to	organize	and
display	your	ETL	code	and	perform	additional	tasks	from	the	Management	Console
application.	Keep	in	mind	that	you	cannot	add	anything	else	except	the	job	object	directly
into	the	project	level.

Using	object	replication
Data	Services	allows	you	to	instantly	create	an	exact	replica	of	almost	any	object	type	you
are	using	in	ETL	development.	This	feature	is	useful	to	create	new	versions	of	an	existing
workflow	or	dataflow	to	test	or	just	to	create	backups	at	the	object	level.

How	to	do	it…
We	will	replicate	a	job	object	using	these	steps:

	
1.	 Go	to	Local	Object	Library	|	Jobs.
2.	 Right-click	on	the	Job_DWH_DimGeography	job	and	select	Replicate	from	the	context

menu:

3.	 Copy	of	the	job	with	the	new	name	is	created	in	the	Local	Object	Library:

How	it	works…
All	objects	in	Data	Services	can	be	identified	as	either	reusable	or	not	reusable.

A	reusable	object	can	be	used	in	multiple	locations,	that	is,	a	table	object	imported	in	a
datastore	can	be	used	as	a	source	or	target	object	in	different	dataflows.	Nevertheless,	all
these	dataflows	will	reference	the	same	object,	and	if	changed	in	one	place,	it	would
change	everywhere	it	is	used.

Not	reusable	objects	represent	the	instances	of	a	specific	object	type.	For	example,	if	you
copy	and	paste	the	script	object	from	one	workflow	to	another,	these	two	copies	will	be
two	different	objects,	and	by	changing	one	of	them,	you	are	not	making	changes	to
another.

Let’s	take	another	example	of	a	dataflow	object.	Dataflows	are	reusable	objects.	If	you
copy	and	paste	the	selected	dataflow	object	into	another	workflow,	you	would	create	a
reference	to	the	same	dataflow	object.

To	be	able	to	make	a	copy	of	a	reusable	object	so	that	the	copy	does	not	reference	the
original	object,	it	has	been	copied	from	the	replication	feature	used	in	Data	Services.	Note
that	the	replicated	object	cannot	have	the	same	name	as	the	original	object	it	has	been
replicated	from.	That	is	because	for	reusable	objects	such	as	workflows	and	dataflows,
their	names	uniquely	identify	the	object.

Note
The	rule	of	thumb	for	checking	whether	an	object	type	is	reusable	or	not,	is	to	check	if	it
exists	in	the	Local	Object	Library	panel.	All	objects	that	can	be	found	on	Local	Object
Library	panel	tabs	are	reusable	objects,	except	Projects,	as	it	is	not	part	of	executable
ETL	code.	Instead,	it	is	a	location	folder	that	is	used	to	organize	job	objects.	Nevertheless,
you	cannot	create	two	projects	with	the	same	tool	like	you	can	with	the	script	objects.

The	following	table	shows	which	object	type	can	be	replicated	in	Data	Services	and	how
the	replication	process	behaves	for	each	one	of	them.	All	these	are	reusable	object	types.

Job New	object	automatically	created	in	Local	Object	Library	named	as
Copy_<ID>_<original	job	name>

Workflow New	object	automatically	created	in	Local	Object	Library	named	as
Copy_<ID>_<original	workflow	name>

Dataflow New	object	automatically	created	in	Local	Object	Library	named	as
Copy_<ID>_<original	dataflow	name>

File
format

New	File	Format	Editor	window	is	opened.	The	new	name	is	already
defined	as	Copy_<ID>_<Original	File	Format	name>,	but	you	can	change	it
by	adding	a	new	value	into	the	name	field

Custom
functions

New	Customer	Function	window	is	opened.	You	have	to	select	a	new	name
for	the	replicated	function

The	replication	process	is	a	convenient	and	easy	way	to	perform	object-level	backups.
All	you	have	to	do	to	create	a	copy	of	the	object	before	editing	it	is	to	click	on	the
Replicate	option	from	the	context	menu	of	the	object	you	are	replicating.

It	is	also	an	easy	way	to	test	the	code	changes	before	you	decide	to	update	the	production
version	of	the	ETL.

For	example,	if	you	want	to	see	how	your	dataflow	object	behaves	after	you	change	the
properties	of	the	Table_Comparison	transform	inside	it,	you	can	perform	the	following
sequence	of	steps:

	
1.	 Replicate	the	dataflow	and	set	it	up	to	run	separately	within	a	test	job.
2.	 Run	the	test	job	and	test	the	output	dataset	to	make	sure	that	it	generates	the	expected

result.
3.	 Rename	the	original	dataflow	by	adding	the	_archive	or	_old	prefix	to	it.
4.	 Rename	the	new	replicated	version	to	the	original	dataflow	name.
5.	 Replace	the	archive	dataflow	object	everywhere	it	is	used	with	a	new	version.

To	see	all	parent	objects	the	specific	object	belongs	to	you.	In	other	words,	to	see	all	the
locations	where	the	specific	object	was	placed,	you	can	use	one	of	the	following	steps:

	
1.	 Choose	the	DIMGEOGRAPHY	object	from	the	DWH	datastore	in	Local	Object	Library.

Right-click	on	it	and	choose	the	View	Where	Used	option	from	the	context	menu.

The	parent	objects	that	the	table	object	belongs	to	are	displayed	in	the	Information
tab	of	the	Output	window:

You	can	also	see	the	number	of	parent	objects	(locations)	for	the	object	right	away	in
Local	Object	Library	in	the	Usage	column	available	next	to	the	object	name.	This	is
useful	information	that	can	help	you	identify	unused	or	“orphaned”	objects.

2.	 Pick	the	object	of	interest	in	the	workspace	area	(for	example,	a	dataflow	placed

within	a	workflow	workspace	or	table	object	placed	in	the	dataflow),	right-click	on	it,
and	choose	View	Where	Used	from	the	context	menu.	The	list	of	parent	objects	will
appear	in	the	Output	|	Information	window:

3.	 Finally,	it	is	possible	to	check	where	the	currently	opened	object	is	used.	When	you
have	the	object	opened	in	the	workspace	area	and	do	not	have	the	ability	to	right-
click	on	it,	instead	of	going	to	the	Local	Object	Library	lists	in	order	to	find	the
object,	try	to	just	click	on	the	View	Where	Used	button	from	the	top	tool	menu
panel:

Note
Remember	that	it	displays	the	used	locations	list	for	the	object	currently	displayed	on	the
active	tab	of	the	main	workspace	area.

Migrating	ETL	code	through	the	central	repository
In	this	recipe,	we	will	take	a	brief	look	at	the	aspects	of	working	in	the	multiple-user
development	environment	and	how	Data	Services	accommodates	the	need	to	migrate	the
ETL	code	between	local	repositories	belonging	to	different	ETL	developers.

Getting	ready
To	use	all	functionality	available	in	Data	Services	to	work	in	a	multiuser	development
environment,	we	miss	a	very	important	component:	the	configured	central	repository.	So,
to	get	ready,	and	before	we	explore	this	functionality,	we	have	to	create	and	deploy	the
central	repository	into	our	Data	Services	environment.

Perform	all	the	following	steps	to	create,	configure,	and	deploy	the	central	repository:

	
1.	 Open	the	SQL	Server	Management	Studio	and	connect	to	the	SQLEXPRESS	server

engine.
2.	 Right-click	on	Databases	and	choose	the	New	Database…	option	from	the	context

menu.
3.	 Name	the	new	database	as	DS_CENTRAL_REPO	and	keep	all	its	parameters	with	default

values.
4.	 Start	the	SAP	Data	Services	Repository	Manager	application.
5.	 Choose	Repository	type	as	Central	and	specify	connectivity	settings	to	the	new

database	DS_CENTRAL_REPO.	When	you	finish,	click	on	the	Create	button	to	create
central	Data	Services	repository	objects	in	the	selected	database:

6.	 The	process	of	creating	a	repository	can	take	a	few	minutes.	If	it	is	successful,	you
should	see	the	following	output	on	the	screen:

7.	 Now,	we	need	to	register	our	newly	created	central	repository	within	Data	Services
and	the	Information	Platform	Services	(IPS)	configuration.	Start	the	Central
Management	Console	web	application	by	going	to	http://localhost:8080/BOE/CMC
and	log	in	to	the	administrator	account.	It	is	the	same	account	that	was	created
during	the	installation	of	Data	Services	(see	Chapter	2,	Configuring	the	Data	Services
Environment,	for	details).

8.	 Choose	the	Data	Services	link	on	the	home	screen	to	open	the	Data	Services
repository	configuration	area.

9.	 Right-click	on	the	Repositories	folder	or	in	the	empty	area	of	the	main	window	and

choose	the	Configure	repository	option	from	the	context	menu:

10.	 Name	the	newly	configured	repository	as	DS4_CENTRAL	and	input	connectivity
settings.	After	that,	click	on	Test	Connection	to	see	the	successful	connection
message:

11.	 Close	the	repository	properties	window.	You	should	see	the	new	non-secured	central
repository,	DS4_CENTRAL,	displayed	on	the	screen	along	with	local	repository
DS4_REPO:

12.	 Right-click	on	DS4_CENTRAL	and	choose	the	User	Security	option	from	the	context
menu.

13.	 Choose	Data	Services	Administrator	Users	and	click	on	the	Assign	Security

button.
14.	 On	the	Assign	Security	window,	go	to	the	Advanced	tab	and	click	on	the

Add/Remove	Rights	link.
15.	 On	the	Add/Remove	Rights	window,	choose	Application	|	Data	Services

Repository	and	select/grant	the	following	options	in	the	right-hand	side	under	the
Specific	Rights	for	Data	Services	Repository	section:

16.	 Click	on	OK	to	save	the	changes	and	close	the	User	Security	window.
17.	 The	final	step	of	configuration	is	to	specify	the	central	repository	in	your	Designer

configuration	settings.	This	can	be	configured	on	the	Designer	Option	window,	or
you	can	open	the	Central	Repository	Connections	section	by	going	to	Tools	|
Central	Repositories…	from	the	top	menu.

18.	 In	the	Central	Repository	Connections	section,	click	on	the	Add	button	to	open	the
list	of	repositories	available	and	select	DS4_CENTRAL.

19.	 The	Activate	button	activates	the	central	repository	from	the	list	(if	you	add	multiple
ones,	only	one	of	them	can	be	active	at	a	time).	You	can	also	specify	the	Reactivate
automatically	flag	for	the	central	repository	to	reactivate	automatically	when	the
Designer	application	restarts:

20.	 After	performing	all	these	steps,	you	should	be	able	to	activate	the	Central	Object
Library	window	(see	the	top	tool	panel),	which	looks	almost	exactly	like	Local
Object	Library:

The	preceding	steps	showed	you	how	to	create,	configure,	and	deploy	the	central
repository	in	Data	Services.	Next,	we	will	see	how	you	can	actually	use	the	central
repository	to	migrate	the	ETL	between	different	local	repositories.

How	to	do	it…
The	central	repository	or	Central	Object	Library	is	a	location	shared	by	different	ETL
developers	to	exchange	and	synchronize	the	ETL	code.	In	this	recipe,	we	will	copy	the
existing	job	into	Central	Object	Library	and	see	which	operations	are	available	in	Data
Services	on	the	objects	stored	there.	Follow	these	steps:

	
1.	 Go	to	Local	Object	Library	|	Jobs.
2.	 Right-click	on	the	Job_DWH_DimGeography	job	object	and	go	to	Add	to	Central

Repository	|	Object	and	Dependents	from	the	context	menu.
3.	 Open	Central	Object	Library	and	see	that	the	job	object	and	all	dependent	objects,

workflows,	and	dataflows	appeared	on	the	Central	Object	Library	tab	sections.	The
ETL	code	for	Job_DWH_DimGeography	has	been	successfully	migrated	to	the	central
repository.

4.	 Now,	go	to	the	Local	Object	Library	|	Dataflows,	find	the	DF_Load_DimGeography
dataflow	object,	and	double-click	on	it	to	open	it	in	the	workspace	area	for	editing.

5.	 Rename	the	first	Query	transform	from	Query	to	Join	and	save	the	dataflow.
6.	 Now	that	you	have	changed	the	ETL	code	migrated	from	local	to	central	repository,

you	can	compare	the	two	versions	of	your	job	and	see	the	differences	displayed	in
Differences	Viewer.	Right-click	on	the	job	in	Local	Object	Library	and	go	to
Compare	|	Object	and	dependents	to	Central	from	the	context	menu:

7.	 When	in	Central	Object	Library,	you	can	do	the	same	thing	by	clicking	on	a
specific	object	and	choosing	the	preferable	option	from	the	Compare	context	menu.

8.	 To	get	the	version	of	the	object	from	the	central	repository	to	a	local	one,	select	the
DF_Load_DimGeography	dataflow	object	in	the	Central	Object	Library,	right-click
on	it,	and	go	to	Get	Latest	Version	|	Object	from	the	context	menu.

9.	 If	you	compare	the	local	object	version	to	the	one	stored	in	the	central	repository
now,	you	will	see	that	there	is	no	difference,	as	the	central	object	version	has
overwritten	the	local	object	version.

How	it	works…
The	purpose	of	the	central	repository	is	to	provide	a	centralized	location	to	store	ETL
code.

The	Central	Object	Library	represents	the	contents	of	the	central	repository	in	the	same
way	that	the	Local	Object	Library	represents	the	contents	of	the	local	repository.

The	ETL	code	stored	in	the	central	repository	cannot	be	changed	directly	as	in	the	local
repository.	So,	it	provides	a	level	of	security	to	make	sure	that	the	central	repository
changes	can	be	tracked,	and	the	history	of	all	operations	performed	on	its	objects	can	be
displayed.

Adding	objects	to	and	from	the	Central	Object	Library
If	the	object	does	not	exist	in	the	central	repository,	you	can	add	it	using	the	Add	to
Central	Repository	option	from	the	objects	context	menu.

If	the	object	already	exists	in	the	central	repository,	there	are	a	few	extra	steps	required	to
update	it	with	a	newer	version	from	the	local	one.	We	will	take	a	close	look	at	this
functionality	in	the	upcoming	chapters.

Getting	the	object	from	the	central	to	the	local	repository	is	much	more	simple.	All	you
need	to	do	is	use	the	Get	Latest	Version	option	from	the	objects	context	menu	in	Central
Object	Library.	It	does	not	matter	if	the	object	exists	or	not	in	the	local	repository—it
will	be	created	or	overwritten.	This	means	that	it	will	be	deleted	and	copied	from	the
central	repository.

Another	important	aspect	of	copying	an	object	into,	and	from,	the	central	repository	is	the
availability	of	three	modes:	Object,	Object	and	dependents,	and	With	filtering:

	
Object:	In	this	mode,	it	does	not	matter	which	operation	you	perform,	whether	it	is
getting	the	latest	object	version	from	central	to	local,	comparing	object	versions
between	central	and	local,	or	just	placing	objects	from	local	to	central.	The	operation
is	performed	on	this	object	only.
Object	and	dependents:	This	operation	affects	all	the	child	objects	belonging	to	the
selected	object,	their	child	objects,	their	child	objects,	and	so	on	until	the	lowest	level

down	the	hierarchy	(which	is	usually	a	table/file	format	level).
With	filtering:	This	mode	is	basically	the	same	as	Object	and	dependents,	but	with
the	ability	to	exclude	the	specific	object	from	the	affected	objects.	When	chosen,	the
new	window	opens,	allowing	you	to	exclude	specific	objects	from	the	hierarchy	tree.
Here	is	the	result	of	choosing	Add	to	Central	Repository	|	With	filtering	for	the
Job_DWH_DimGeography	object:

Comparing	objects	between	the	Local	and	Central	repositories
Designer	has	a	very	useful	Compare	function	available	for	all	objects	stored	in	the	local	or
central	repositories.	When	selected	from	the	context	menu	of	the	object	stored	in	a	central
repository	location,	there	are	two	Compare	methods	available:	Object	to	Local	and	Object
with	dependents	to	Local.

When	selected	from	the	context	menu	of	the	object	stored	in	a	local	repository	location,
there	are	two	Compare	methods	available:	Object	to	Central	and	Object	with
dependents	to	Central.

The	result	is	presented	in	the	Difference	Viewer	window,	which	opens	in	the	main
workspace	area	in	a	separate	tab	and	looks	similar	to	the	following	screenshot:

This	is	an	example	of	the	Difference	Viewer	window.	Note	how	we	have	only	renamed
the	Query	transform,	yet	Difference	Viewer	shows	the	whole	structure	of	the	Join	Query
object	as	deleted,	and	on	the	Central	tab,	it	shows	the	new	Query	Query	transform
structure.	The	Mapping	and	Links	sections	of	the	updated	dataflow	are	also	affected,	as
you	can	see	in	the	preceding	screenshot.

There	is	more…
I	have	not	described	one	of	the	most	important	concepts	of	the	central	repository:	the
ability	to	check	out	and	check	in	objects	and	view	the	history	of	changes	in	the	multiuser
development	environment.	I	have	left	it	for	more	advanced	chapters,	and	it	will	be
explained	further	in	the	book.

Migrating	ETL	code	with	export/import
Data	Services	Designer	has	various	options	to	import/export	ETL	code.

In	this	recipe,	we	will	review	all	possible	import/export	scenarios	and	take	a	closer	look	at
the	file	formats	used	for	import/export	in	Data	Services:	ATL	files	(the	main	export	file
format	for	the	Data	Services	code)	and	XML	structures.

Getting	ready
To	complete	this	recipe,	you	will	need	another	local	repository	created	in	your
environment.	Refer	to	the	first	two	chapters	of	the	book	to	create	another	repository
named	DS4_LOCAL_EXT	in	the	new	database,	DS_LOCAL_REPO.	Do	not	forget	to	assign	the
proper	security	settings	for	Data	Services	Administrator	users	in	CMC	after	registering	the
new	repository.

How	to	do	it…
Data	Services	has	two	main	import/export	options:

	
Using	ATL/XML	external	files
Direct	import	into	another	local	repository

Import/Export	using	ATL	files
In	the	following	steps,	I	will	show	you	an	example	of	how	to	export	ETL	code	from	the
Data	Services	Designer	into	an	ATL	file.

	
1.	 Export	Job_DWH_DimGeography	into	an	ATL	file.	Right-click	on	the	job	object	in

Local	Object	Library	|	Jobs	and	select	Export	from	the	context	menu.	The	Export
window	opens	in	the	main	workspace	area.	Look	at	the	following	screenshot:

2.	 Using	the	context	menu	by	right-clicking	on	the	specific	object	or	objects	in	the
Export	window,	you	can	exclude	selected	objects	with	the	Exclude	option	or
selected	objects	with	all	their	dependencies	using	the	Exclude	Tree	option.	Exclude
the	DF_Extract_SalesTerritory	dataflow	and	all	its	dependencies	from	the	export,

as	shown	in	the	following	screenshot	using	the	Exclude	Tree	option:

3.	 Objects	excluded	from	the	export	are	marked	with	red	crosses.	See	both	the	Objects
to	export	and	Datastores	to	export	areas	on	the	Export	tab	for	the	objects	excluded
by	the	Exclude	Tree	command	executed	in	the	previous	step:

4.	 To	execute	the	export	operation,	right-click	in	any	area	of	the	Export	workspace	tab
and	choose	the	Export	to	ATL	file…	option	from	the	context	menu.	On	the	opened
Save	As	screen,	choose	the	name	of	the	ATL	file,	export.atl,	and	its	location.	Then,
click	on	OK	and	specify	the	security	passphrase	for	the	ATL	file.

5.	 Export	could	take	anything	from	a	few	seconds	up	to	a	few	minutes,	depending	on
the	number	of	objects	you	are	exporting.	When	it	is	finished,	you	will	see	the
following	output	in	the	Output	|	Information	window.	If	you	check	the	chosen
location,	you	should	see	that	the	export.atl	file	was	created:

6.	 Now,	log	in	to	the	second	local	repository	with	Designer.	For	this,	exit	the	Designer
to	restart	the	application.	On	the	logon	screen,	choose	to	connect	to	another	local
repository:

7.	 The	new	local	repository	is	completely	empty.	We	will	use	the	export.atl	file

created	in	the	previous	step	to	import	the	job	and	its	dependent	objects	into	this	new
repository.	Select	the	Import	From	File…	option	from	the	top	Tools	menu	list.
Then,	select	the	export.atl	file	and	click	on	OK,	thus	agreeing	to	import	all	objects
from	the	file	into	the	currently	open	local	repository.

8.	 As	we	exported	the	job	object	and	its	dependents,	it	does	not	belong	to	any	project	in
a	new	repository.	Create	a	new	project	called	TEST	and	place	the	job	in	it	to	expand
its	structure:

See	that	DF_Extract_SalesTerritory	and	the	tables	belonging	to	it	are	missing	from
the	job	structure,	although	Data	Services	keeps	reference	for
WF_Extract_SalesTerritory.	If	the	dataflow	is	imported	in	the	future,	it	would
automatically	be	assigned	as	a	child	object	to	the	workflow	and	would	fit	into	the	job
structure.

Direct	export	to	another	local	repository
Let’s	perform	a	direct	export	of	the	missing	DF_Extract_SalesTerritory	object	and	its
dependents	from	the	DS4_REPO	to	DS4_LOCAL_EXT	repository:

	
1.	 Log	in	to	DS4_REPO,	right-click	on	the	DF_Extract_SalesTerritory	dataflow	object

in	the	Local	Object	Library,	and	select	Export	from	the	context	menu	to	open	the
Export	tab	in	the	main	workspace	area.	By	default,	the	selected	objects	and	all	its
dependents	are	added	to	the	Export	tab.

2.	 Right-click	on	the	Export	tab	and	choose	the	Export	to	repository…	menu	item
displayed	with	bold	text.	Select	DS4_LOCAL_EXT	as	the	target	repository:

3.	 On	the	Export	Confirmation	window,	which	opens	next,	exclude	all	objects	that
already	exist	in	the	target	repository.	These	are	the	datastore	objects	OLTP	and
DS_STAGE:

4.	 The	output	of	the	direct	export	command	is	displayed	in	the	Output	|	Information
window:
(14.2)	07-13-15	21:06:51	(1000:6636)	JOB:	Exported	1	Data	Flows

(14.2)	07-13-15	21:06:51	(1000:6636)	JOB:	Exported	2	Tables

(14.2)	07-13-

15	21:06:51	(1000:6636)	JOB:	Completed	Export.	Exported	3	objects.

5.	 Now,	exit	the	Designer	and	reopen	it	by	connecting	to	the	DS4_LOCAL_EXT	repository.
Expand	the	full	project	TEST	structure	to	see	that	all	missing	dependent	objects	were
imported	into	the	structure	of	the	Job_DWH_DimGeography	job:

How	it	works…
Manipulating	objects	on	the	Export	tab	is	a	preparation	step	that	allows	you	to	exclude
the	objects	that	you	do	not	want	to	export	to	the	ATL	file	or	directly	to	another	local
repository.	After	preparing	the	ETL	structure	for	export	by	excluding	specific	objects	that
you	do	not	want	to	export,	in	case	you	do	not	want	to	overwrite	versions	of	the	same
objects	in	the	target	repository	or	are	just	not	interested	in	migrating	them,	you	have	three
options:

	
Direct	export	into	another	local	repository	(a	comparison	window	opens,	allowing
you	exclude	objects	from	being	exported	and	showing	which	object	exists	in	the
target	repository)
Export	to	an	ATL	file
Export	to	an	XML	file	(this	is	exactly	the	same	as	the	previous	option,	except	that	a
different	flat	file	format	is	used	to	store	the	ETL	code)

An	ATL	file	is	a	structured	file	that	contains	properties,	links,	and	references	for	the
objects	exported.

An	ATL	file	can	be	opened	in	any	text	editor.	It	can	be	useful	to	browse	its	contents	if	you
want	to	check	which	specific	object	included	in	the	export	file.	For	function	objects,	it	is
easy	to	see	the	text	of	the	exported	function	if	you	want	to	check	its	version	and	so	on.

For	example,	if	you	open	the	export.atl	file	generated	in	this	recipe	with	Notepad	and
search	for	DF_Load_DimGeography,	you	will	see	that	it	can	be	found	in	two	places	within	a
file:

The	first	section	defines	the	properties	of	the	object,	and	the	second	defines	its	place
within	an	execution	structure.

Debugging	job	execution
Here,	I	will	explain	the	use	of	Data	Services	Interactive	Debugger.	In	this	recipe,	I	will
debug	the	DF_Transform_DimGeography	dataflow.

The	debugging	process	is	the	process	of	defining	the	points	in	the	ETL	code	(dataflow	in
particular)	that	you	want	to	monitor	closely	during	job	execution.	By	monitoring	it	closely,
I	mean	to	actually	see	the	rows	passing	through	or	even	to	have	control	to	pause	the
execution	at	those	points	to	investigate	the	current	passing	record	more	closely.

Those	points	in	code	are	called	breakpoints,	and	they	are	usually	placed	before	and	after
particular	transform	objects	in	order	to	see	the	effect	made	by	particular	a	transformation
on	the	passing	row.

Getting	ready…
The	easiest	way	to	debug	a	specific	dataflow	is	to	copy	it	in	a	separate	test	job.	Create	a
new	job	called	Job_Debug	and	copy	DF_Transform_DimGeography	in	it	from	the	workflow
workspace	that	it’s	currently	located	in,	or	just	drag	and	drop	the	dataflow	object	in	the
Job_Debug	workspace	from	Local	Object	Library	|	Dataflows.

How	to	do	it…
Here	are	the	steps	to	create	a	breakpoint	and	execute	the	job	in	the	debug	mode:

	
1.	 First,	define	the	breakpoint	inside	a	dataflow.	To	do	this,	double-click	on	the	link

connecting	the	two	transform	objects,	Join	and	Mapping:

2.	 Created	breakpoints	are	displayed	as	red	dots	on	the	links	between	transform	objects.
You	can	toggle	them	on/off	using	the	Show	Filters/Breakpoints	button	from	the	top
instrument	panel:

3.	 Go	to	the	Job_Debug	context	and	choose	Debug	|	Start	Debug…	from	the	top	menu,
or	just	click	on	the	Start	Debug…	(Ctrl	+	F8)	button	on	the	top	instrument	panel:

4.	 The	Debug	Properties	window	opens,	allowing	you	to	specify	or	change	the	debug
properties.	Do	not	change	them—the	default	values	are	suitable	for	most	debugging
cases:

5.	 In	the	debugging	mode,	the	job	executes	in	the	same	manner	as	in	the	normal
execution	mode,	except	that	it	is	possible	to	pause	it	at	any	moment	to	browse	the
data	between	transforms.	In	our	case,	the	job	paused	automatically	as	soon	as	the	first
passing	row	meets	the	specified	breakpoint	condition.	To	view	the	dataset	passed
between	the	transforms,	click	on	the	magnifying	glass	icon	on	the	link	between	the
transform	objects:

6.	 When	paused	or	running,	the	top-level	instrument	panel	changes	the	activating
debugging	buttons,	allowing	you	to	stop/continue	debugging:

Alternatively,	step	through	the	passing	rows	one	by	one	when	viewing	the	dataset
between	transforms:

7.	 Along	with	the	breakpoints,	you	can	define	the	filter	in	the	same	window:

The	filter	is	displayed	with	a	different	icon	in	the	dataflow	and	allows	you	to	filter
datasets	passing	through	the	dataflow	in	the	debugging	mode.

How	it	works…
Two-step	process:

	
1.	 Define	the	breakpoints	where	you	want	the	job	execution	to	pause.
2.	 Run	the	job	in	the	debugging	mode.

Breakpoints	allow	you	to	pause	job	execution	on	a	specific	condition	so	that	you	are	able
to	investigate	the	data	flowing	through	you	dataflow	process.	In	the	debugging	mode,	it	is
possible	to	see	all	records	passed	between	transform	objects	inside	a	dataflow.	You	can	see
how	a	specific	record	extracted	from	the	source	object	is	transformed	and	changed	while	it
is	making	its	way	into	the	target	object.	It	is	also	easy	to	detect	when	the	record	is	filtered
by	the	WHERE	clause	condition,	as	it	will	not	appear	after	the	Query	transform	that	filters	it
out.

Managing	filters/breakpoints	with	the	Filters/Breakpoints…	(Alt	+	F9)	button	from	the
instrument	panel.

Filters	applied	to	links	between	transform	objects	are	considered	only	when	the	job	is
executed	in	the	debugging	mode.	Filters	as	well	as	breakpoints	are	not	visible	for	the	Data
Services	engine	when	the	job	is	executed	in	the	normal	execution	mode.

Note
Filters	are	a	great	way	to	decrease	the	number	of	records	passing	through	the	dataflow
when	you	run	a	job	in	the	debugging	mode.	If	you	are	interested	in	debugging/seeing	the
transformation	behavior	for	a	small,	specific	amount	of	records	that	can	be	defined	with
filtering	conditions,	then	it	could	significantly	decrease	the	debugging	execution	time.

Monitoring	job	execution
In	this	recipe,	we	will	take	a	closer	look	at	the	job	execution	parameters,	tracing	options,
and	job	monitoring	techniques.

Getting	ready
We	will	use	the	job	we	developed	in	the	previous	chapters,	Job_DWH_DimGeography,	to	see
how	the	job	execution	can	be	traced	and	monitored.

Let’s	perform	minor	changes	to	the	job	to	prepare	the	job	for	the	recipe	examples	using
these	steps:

	
1.	 On	the	job-level	context,	create	a	global	variable,	$g_RunDate,	of	the	date	data	type

and	assign	the	sysdate()	function	to	it	as	a	value.
2.	 At	the	same	job	level,	before	the	sequence	of	workflows,	place	a	new	script	object

with	the	following	code	and	link	it	to	the	first	workflow.	This	script	will	be	the	first
object	executed	within	a	job:
print(‘***’);

print(‘INFO:	Job	’||job_name()||’	started	on	’||$g_RunDate);

print(‘***’);

How	to	do	it…
Click	on	the	Execute…	button	to	execute	the	job.	Before	the	job	runs,	the	Execution
Properties	window	opens,	allowing	you	to	set	up	execution	options,	configure	the	tracing
of	the	job,	or	change	the	predefined	values	of	the	global	variables	for	that	particular	job
run	to	a	different	one.

Let’s	take	a	closer	look	at	the	tabs	available	on	this	window:

Click	on	the	Execution	Options	tab.

Here	are	the	options	available	on	this	tab:

	
Print	all	trace	messages:	This	option	displays	all	the	possible	trace	messages	from
all	components	participating	in	the	job	execution:	object	parameters	and	options,
internal	system	queries	and	internally	executed	commands,	loader	parameters,	the
data	itself,	and	many	other	different	kinds	of	information.	The	log	generated	is	so
enormous	that	we	do	not	recommend	that	you	use	this	option	if	you	have	a	few
workflow/dataflow	objects	inside	your	job	or	if	the	data	passing	your	dataflows	is	big
enough	to	not	want	to	see	every	row	of	it	passing	through	the	transformations.

This	option	literally	shows	what	is	happening	in	every	Data	Services	internal
component	participating	in	the	data	processing,	and	all	this	information	is	displayed
for	every	row	passing	those	components.

Monitor	sample	rate:	This	option	defines	how	often	your	logs	get	updated	when	the
job	runs.	The	default	is	5	seconds.

Collect	statistics	for	optimization:	This	option	collects	optimization	statistics,
allowing	Data	Services	to	choose	optimal	cache	types	for	various	components	when
executing	dataflows.	We	will	talk	about	it	in	more	detail	in	the	upcoming	chapters.
Collect	statistics	for	monitoring:	If	set,	Data	Services	will	display	cache	sizes	in	the
trace	log	when	the	job	runs.
Use	collected	statistics:	This	makes	Data	Services	use	the	statistics	collected	when
the	job	was	executed	previously	with	the	Collect	statistics	for	optimization	option
set	up.

Click	on	the	second	Trace	tab.

This	tab	has	a	list	of	various	trace	options.	Setting	up	each	of	these	options	adds	extra
information	to	the	contents	of	the	trace	log	file	when	the	job	runs:

By	default,	only	Trace	Session,	Trace	Work	Flow,	and	Trace	Data	Flow	are	enabled.
Switch	their	values	to	No	and	enable	only	Trace	Row	by	changing	its	value	to	Yes.	After
you	execute	the	job,	you	will	see	the	following	trace	log:

You	can	see	that	you	do	not	see	information	about	the	statuses	of	the	workflow	and
dataflow	execution	that	you	normally	see.	The	trace	log	file	now	displays	only	the	output
of	the	print()	functions	from	user	script	objects	and	rows	passing	through	the	dataflows.
Be	extra	careful—this	is	a	lot	of	data.	Avoid	using	this	option	unless	you	are	specifically
in	a	design	test	environment	with	just	a	few	rows	red	from	the	source	table.

Click	on	the	third	Global	Variable	tab.

This	tab	displays	the	list	of	all	global	variables	created	within	the	job,	allowing	you	to
modify	their	values	for	this	specific	job	execution	without	changing	these	values	in	the	job
context	level:

To	change	the	value,	just	double-click	on	the	Value	field	of	the	specific	global	variable
row	and	input	the	new	value.	Remember	that	this	change	applies	only	to	this	current	job
execution.	When	you	run	the	job	next	time	and	open	this	tab,	the	global	variables	will
have	their	default	values	defined	again.

Log	in	to	the	Data	Services	Management	Console	to	monitor	job	execution	and	go	to
Administrator	|	Batch	|	DS4_REPO.

The	Management	Console	not	just	allows	the	Web	access	to	the	same	three	log	files,	trace,
log,	and	monitor,	but	also	to	another	one,	Performance	Monitor:

The	top-level	section	allows	easy	access	to	the	previous	versions	of	the	log	files	for	a
specific	job.	It	does	not	matter	whether	the	job	has	been	placed	in	the	Project	folder	or
not.

In	the	preceding	screenshot,	we	displayed	all	log	files	for	the	last	5	days	for	the
Job_DWH_DimGeography	job.

Click	on	the	Performance	Monitor	link	of	the	last	job	execution	to	open	the
Performance	Monitor	page:

The	first	page	of	Performance	Monitor	displays	the	list	of	dataflows	from	the	job
structure.	When	clicking	on	the	specific	dataflow,	it	is	possible	to	drill	in	on	the	dataflow
components	level	to	see	how	many	records	passed	through	the	specific	dataflow
components	and	the	execution	time	of	each	them.

In	fact,	the	information	displayed	in	Performance	Monitor	is	based	on	the	same	data	as
the	information	displayed	in	the	Monitor	log.	It	is	just	presented	differently,	in	making	it
sometimes	more	convenient	for	analysis.

How	it	works…
It	is	simply	a	matter	of	personal	choice	when	deciding	what	to	use	to	monitor	job
execution:	the	web	application	of	Data	Services	Management	Console	or	the	Designer
client.	Sometimes,	due	to	restricted	access	to	the	environment,	the	Web	option	is	more
preferable.	It	is	also	easier	to	use	if	you	need	to	find	any	old	log	files	of	a	specific	job	for
analysis,	performance	comparison,	or	simply	need	to	copy	and	paste	few	rows	from	the
trace	log	file.

Building	an	external	ETL	audit	and	audit	reporting
In	this	recipe,	we	will	implement	the	external	user-built	ETL	audit	mechanism.	Our	ETL
audit	will	include	information	about	the	start	and	stop	times	of	the	workflows	running
within	the	job,	their	statuses,	names,	and	information	about	which	job	they	belong	to.

Getting	ready…
We	need	to	create	an	ETL	audit	table	in	our	database	where	we	will	store	the	audit	results.

Connect	to	the	STAGE	database	using	the	SQL	Server	Management	Studio	and	execute	the
following	statement	to	create	the	ETL	audit	table:
create	table	dbo.etl_audit	(

		job_run_id	integer,	

		workflow_status	varchar(50),

		job_name	varchar(255),

		start_dt	datetime,

		end_dt	datetime,

		process_name	varchar(255)

);

How	to	do	it…
First,	we	need	to	choose	objects	for	auditing.	The	following	steps	should	be	implemented
for	every	workflow	or	dataflow	that	you	want	to	collect	auditing	information	about.	In	this
particular	example,	we	will	enable	ETL	auditing	for	the	job	object	itself.

	
1.	 Create	extra	variables	for	the	job	object:

$v_process_name	varchar(255)

$v_job_run_id	integer

2.	 Add	the	following	code	in	the	script	that	starts	the	job	execution:
$v_process_name	=	job_name();

$v_job_run_id	=	job_run_id();

#	Insert	audit	record

sql(‘DS_STAGE’,

		’	insert	into	dbo.etl_audit	(job_run_id,	workflow_status,	job_name,	start_dt,	end_dt,	process_name)	’||

		’	values(‘||	$v_job_run_id	||’,	’||	’'STARTED'’	||’,	'’||	job_name()	||’',	SYSDATETIME(),	NULL,	'’||	$v_process_name	||’')’

);

3.	 Create	a	new	script,	ETL_audit_update,	at	the	end	of	the	execution	sequence	inside
the	job	context	and	put	the	following	code	in	it:
#	Update	ETL	audit	record

sql(‘DS_STAGE’,

		’	update	dbo.etl_audit	’||

		’			set	workflow_status	=	’||’'COMPLETED'’||’,	end_dt	=	SYSDATETIME()	’||

		’	where	job_run_id	=	’||	$v_job_run_id	||’	and	process_name	=	'’||	$v_process_name	||’'’

);

4.	 The	job	content	has	now	been	wrapped	in	the	auditing	insert/update	commands
placed	in	the	initial	and	final	scripts:

5.	 Implement	the	preceding	steps	for	WF_Extract_SalesTerritory,	which	can	be	found
in	the	WF_extract	workflow	container	to	enable	the	ETL	audit	for	that	object	as	well.

The	only	change	is	that	in	the	initial	script,	the	$v_process_name	variable	value
should	be	changed	to	the	workflow_name()	function	instead	of	the	job_name()
function,	how	it	was	done	for	the	job:

How	it	works…
Now,	if	you	execute	the	job	and	query	the	contents	of	the	ETL	audit	table	in	a	few
seconds,	you	should	see	some	thing	like	this:

A	few	seconds	later,	after	the	job	successfully	completes,	your	ETL	audit	table	will	look
like	this:

A	simple	analysis	of	this	table	can	answer	the	following	questions:

	
Which	objects	are	running	within	the	currently	running	job?	This	is	very	useful
information,	especially	if	your	job	contains	hundreds	of	workflows,	with	20	of	them
running	in	parallel.	In	this	case,	it	is	hard	to	obtain	this	information	from	the	trace
log.
What	was	the	status	of	the	object	when	it	was	executed	last	time?	To	be	precise,	you
also	have	to	implement	another	piece	of	logic,	the	third	update	that	changes	the	status
of	the	workflow	to	“ERROR”	if	something	unexpected	happens	and	the	workflow
cannot	be	considered	as	successfully	completed.	This	third	update	usually	goes	into
the	catch	section	of	the	try-catch	block.
What	was	the	execution	time	for	the	specific	object?	The	answer	speaks	for	itself.
What	was	the	execution	order	of	the	objects?	You	can	compare	the	execution	times.
If	you	know	when	the	objects	started	and	ended,	you	can	easily	derive	the	execution
order.	When	comparable	workflows	are	not	directly	linked	and	run	within	different
branches	of	logic,	it	is	sometimes	useful	to	know	which	one	started	or	finished
earlier.

The	advantage	of	the	external	user-built	ETL	audit	is	that	you	can	build	a	flexible	solution
that	gathers	any	information	that	you	want	it	to	gather.

Note
Note	that	with	insert/update	ETL	audit	statements,	you	can	define	the	logical	borders	of	a
successful	object	completion.	Theoretically,	a	workflow	object	and	the	job	itself	can	still
fail	right	after	it	successfully	executes	the	sql()	command	and	updates	its	status	in	the
ETL	audit	table	as	successful.	However,	this	is	often	a	good	thing	as	it	is	exactly	what	you
are	interested	in	when	you	make	the	decision	of	if	you	should	rerun	a	specific	workflow	or
not	–	has	the	workflow	completed	the	work	it	was	supposed	to?

Information	in	ETL	audit	tables	can	be	utilized	not	only	in	the	reports	showing	the

execution	statistics	of	your	jobs	but	also	to	implement	execution	logic	inside	the	job.

For	example,	if	you	want	to	run	the	specific	workflow	only	once	a	week	but	it	is	being
executed	within	a	daily	job,	you	could	add	the	script	objects	in	your	workflow.	You	could
check	from	ETL	audit	tables	when	the	workflow	was	run	the	last	time	and	skip	it	if	it	was
executed	and	successfully	completed	less	than	a	week	ago.

Finally,	it	is	even	possible	to	not	only	audit	a	Data	Services	object	(dataflow,	workflow,
job,	or	script	object)	but	to	audit	any	piece	of	code—part	of	the	script	or	a	single	branch	of
the	logic.	You	can	wrap	anything	in	the	insert/update	statements	sent	to	an	external	table
to	store	audit	information.

That	is	the	true	power	of	custom	ETL	auditing.	You	can	collect	all	the	information	you
want	and	easily	query	this	information	from	ETL	itself	to	make	various	decisions.

Using	built-in	Data	Services	ETL	audit	and
reporting	functionality
Data	Services	provides	ETL	reporting	functionality	through	the	Management	Console	web
application.	It	is	available	in	the	form	of	the	Operational	Dashboard	application	on	the
main	Management	Console	Hope	page.

Getting	ready
You	do	not	have	to	configure	or	prepare	the	operational	dashboards	feature.	It	is	available
by	default,	and	all	you	have	to	do	to	access	it	is	start	the	Data	Services	Management
Console.

How	to	do	it…
Let’s	review	which	ETL	reporting	capabilities	are	available	in	Data	Services.	Perform
these	steps:

	
1.	 Start	the	Data	Services	Management	Console.
2.	 Choose	the	Operational	Dashboard	application	from	the	home	page:

3.	 The	main	interface	of	Operational	Dashboard	includes	three	sections.	It	includes
the	pie	chart	of	the	general	job	status	statistics	per	interval	for	a	selected	repository.
Green	shows	the	number	of	successfully	completed	jobs	for	a	specific	period	of	time,
yellow	shows	jobs	successfully	completed	with	warning	messages,	and	red	shows
failed	jobs:

4.	 The	section	below	shows	more	detailed	job	execution	statistics	in	the	form	of	a
vertical	bar	chart	for	specific	days	or	interval	of	days.	Try	to	hover	your	mouse	cursor
over	the	bars	to	see	the	actual	numbers	behind	the	graph.	The	vertical	line	shows	the
number	of	jobs	executed	on	specific	days	with	different	statuses:	successfully	with	no
errors	(green),	successfully	with	warning	messages	(yellow),	and	failed	(red):

5.	 At	the	right-hand	side,	you	can	see	the	list	of	jobs	whose	execution	statistics	are
represented	by	graphs	on	the	left-hand	side.	By	clicking	on	a	specific	row,	you	can
drill	down	to	see	the	list	of	executions	for	this	specific	job.	The	most	useful
information	here	is	the	execution	time	displayed	in	seconds,	the	run	ID	of	the	job,
and	status	of	the	job,	as	you	can	see	in	the	following	screenshot:

How	it	works…
Operational	Dashboard	reporting	can	be	used	to	provide	job	execution	history	data,
analyze	the	percentage	of	failed	jobs	for	a	specific	time	interval,	and	compare	those
numbers	between	different	days	or	time	intervals.

That	is	pretty	much	it.	To	do	more,	you	would	have	to	build	your	own	ETL	metadata
collection	and	build	your	own	reporting	functionality	on	top	of	this	data.

Auto	Documentation	in	Data	Services
This	recipe	will	guide	you	through	the	Auto	Documentation	feature	available	in	Data
Services.	Like	Operational	Dashboard,	this	feature	is	also	part	of	functionality	available
in	the	Data	Services	Management	Console.

How	to	do	it…
These	steps	will	create	a	PDF	document	containing	graphical	representation,	descriptions,
and	relationships	between	all	underlying	objects	of	the	Job_DWH_DimGeography	job	object:

	
1.	 Log	in	to	the	Data	Services	Management	Console	web	application.
2.	 On	the	home	page,	click	on	the	Auto	Documentation	icon:

3.	 In	the	following	screen,	expand	the	project	tree	and	left-click	on	the	job	object.	You
can	see	which	object	is	displayed	as	current	by	checking	the	object	name	in	the	top
tab	name	on	the	right-hand	side	of	the	window:

4.	 Then,	click	on	the	small	printer	icon	located	at	the	top	of	the	window:

5.	 In	the	pop-up	window,	just	click	on	the	Print	button,	leaving	all	options	with	default
values.

6.	 Data	Services,	by	default,	generates	a	PDF	document	in	the	browser’s	default
Downloads	folder:

How	it	works…
As	you	have	probably	noticed,	the	Auto	Documentation	feature	is	only	available	for	the
jobs	included	in	projects	as	it	displays	the	object	tree	starting	from	the	root	Project	level.
Jobs	that	were	created	in	the	Local	Object	Library	and	were	not	assigned	to	a	specific
project	will	not	be	visible	for	auto-documenting.

Auto	Documentation	export	is	available	in	two	formats:	PDF	and	Microsoft	Word	(see	the
following	screenshot):

On	the	same	screen,	you	can	display	types	of	information	to	be	included	in	the
documentation	file.

Note
Note	that	dataflow	documentation	includes	mapping	of	each	and	every	column	from
source	to	target	through	all	dataflow	transformations.	This	is	a	very	detailed	level,	and
even	our	dataflow	inside	Job_DWH_DimGeography	is	not	at	all	complex.	The	datasets	we
are	migrating	are	relatively	small,	but	we	still	get	a	34-pages	document.	So,	you	can	see
that	the	documentation	level	is	extremely	detailed.

Another	extremely	useful	feature	of	Data	Services	Auto	Documentation	is	the	Table
Usage	tab:

It	allows	us	to	see	which	source	and	target	table	objects	are	used	within	the

Job_DWH_DimGeography	object	tree.

Information	like	this	about	relationships	between	objects	within	ETL	is	extremely	useful
as	during	development,	some	objects	often	change,	and	you	need	to	evaluate	how	it
impacts	the	ETL	code.	If	the	table	column	is	changed	(renamed	and	data	type	changed)	on
the	database	level	and	you	have	to	apply	the	same	changes	to	your	ETL	code.	Otherwise,
it	will	fail	the	next	time	it	runs,	as	Data	Services	is	not	aware	of	the	table	changes	and	still
operates	with	old	version	of	the	table.

Table	object	dependencies	can	also	be	visualized	with	another	Data	Services	feature:
Impact	and	Linage	Analysis.	This	functionality	will	be	discussed	in	Chapter	12,
Introduction	to	Information	Steward.

Chapter	7.	Validating	and	Cleansing	Data
Here	are	the	recipes	presented	in	this	chapter:

	
Creating	validation	functions
Using	validation	functions	with	the	Validation	transform
Reporting	data	validation	results
Using	regular	expression	support	to	validate	data
Enabling	dataflow	audit
Data	Quality	transforms	–	cleansing	your	data

Introduction
This	chapter	introduces	the	concepts	of	validating	methods	that	can	be	applied	to	the	data
passing	through	ETL	processes	in	order	to	cleanse	and	conform	it	according	to	the	defined
Data	Quality	standards.	It	includes	validation	methods	that	consist	of	defining	validation
expressions	with	the	help	of	validation	functions	and	then	splitting	data	into	two	data	sets:
valid	and	invalid	data.	Invalid	data	that	does	not	pass	the	validation	function	conditions
usually	gets	inserted	into	a	separate	target	table	for	further	investigation.

Another	topic	discussed	in	this	chapter	is	dataflow	audit.	This	feature	of	Data	Services
allows	the	collection	of	executional	statistical	information	about	the	data	processed	by	the
dataflow	and	even	controls	the	executional	behavior	depending	on	the	numbers	collected.

Finally,	we	will	discuss	the	Data	Quality	transforms—the	powerful	set	of	instruments
available	in	Data	Services	in	order	to	parse,	categorize,	and	make	cleansing	suggestions	in
order	to	increase	the	reliability	and	quality	of	the	transformed	data.

Creating	validation	functions
One	of	the	ways	to	implement	the	data	validation	process	in	Data	Services	is	to	use
validation	functions	along	with	the	Validation	transform	in	your	dataflow	to	split	the	flow
of	data	into	two:	records	that	pass	the	defined	validation	rule	and	those	that	do	not.	Those
validation	rules	can	be	combined	into	validation	function	objects	for	your	convenience
and	traceability.

In	this	recipe,	we	will	create	a	standard	but	quite	simple	validation	function.	We	will
deploy	it	in	our	dataflow,	which	extracts	the	address	data	from	the	source	system	into	a
staging	area.	The	Validation	function	will	check	to	see	whether	the	city	in	the	migrated
record	has	Paris	as	a	value,	and	if	it	does,	it	will	send	the	records	to	a	separate	reject
table.

Getting	ready
First,	we	need	to	create	another	schema	in	our	STAGE	database	to	contain	reject	tables.
Creating	the	Reject	schema	to	store	these	tables	allows	the	keeping	of	the	original	table
names;	that	makes	writing	queries	and	reporting	against	those	tables	as	well	as	locating
them	much	easier.

	
1.	 Open	SQL	Server	Management	Studio.
2.	 Go	to	STAGE	|	Security	|	Schemas	in	the	Object	Explorer	window.
3.	 Right-click	on	the	list	and	choose	New	Schema…	in	the	context	menu.
4.	 Choose	Reject	for	schema	name	and	dbo	as	schema	owner.
5.	 Click	on	OK	to	create	the	schema.

How	to	do	it…
Follow	these	steps	to	create	a	validation	function:

	
1.	 Log	in	to	Data	Services	Designer	and	connect	to	the	local	repository.
2.	 Go	to	Local	Object	Library	|	Custom	Functions.
3.	 Right-click	on	Validation	Functions	and	select	New	from	the	context	menu.
4.	 Input	the	function	name	fn_Check_Paris,	check	Validation	function,	as	shown	in

the	following	screenshot,	and	populate	the	description	field.

5.	 Click	on	Next	and	input	the	following	code	in	the	main	section	of	Smart	Editor:
#	Validation	function	to	check	if	the	passed	value	equals	

#	to	‘Paris’

#	Wrap	the	function	in	the	try-catch	block.	We	do	not	want	

#	to	fail	the	dataflow	process

#	if	the	function	itself	fails.	

try

		begin

				#	Assign	input	parameter	value	to	a	local	variable

				$l_City	=	$p_City;

				$l_AddressID	=	$p_AddressID;

				#	Default	“Success”	result	status	

				$l_Result	=	1;

				if	($l_City	=	‘Paris’)

				begin

						#	Change	to	“Failure”	result	status

			

						$l_Result	=	0;	

				end	

				#	Returning	result	status

				Return	$l_Result;	

		end

catch	(all)

		begin

				#	writing	information	about	the	failure	in	the	

#	trace	log

				print(‘Validation	function	fn_check_Paris()	failed	with	error:	’||

				error_message()||’	while	processing	AddressID	=	{$l_AddressID}	with	City	=	{$l_City}’);

				#	Returning	the	result	status	

				Return	$l_Result;	

		end

6.	 In	the	same	Smart	Editor	window,	create	local	variables	$l_AddressID	int,
$l_City	varchar(100),	and	$l_Result	int	and	the	function’s	input	parameters,
$p_City	varchar(100)	and	$p_AddressID	int.

7.	 Click	on	the	Validate	button	to	validate	the	function	and	click	OK	to	close	Smart
Editor	and	save	all	changes.

How	it	works…
The	function’s	body	is	wrapped	in	try-catch	block	to	prevent	our	main	dataflow
processes	from	failing	if	something	goes	wrong	with	the	validation	function.	The
validation	function	is	executed	for	each	row	passing	through,	so	it	would	be	ineffective	at
allowing	the	execution	of	the	function	to	determine	the	execution	behavior	of	the	main
process.

Try	to	imagine	a	situation	when	you	your	dataflow	process	2	million	records	from	the
source	table	and	50	of	them	make	the	function	fail	for	some	reason	or	other.	To	process	all
2	million	records	in	one	go,	you	would	need	to	wrap	the	logic	of	the	entire	function	in
try-catch	and	output	extra	information	into	the	trace	log	or	into	an	external	table	in	the
catch	section	to	perform	further	analysis	of	the	data	after	processing	is	done.

In	our	example,	we	only	pass	the	AddressID	field	for	traceability	purposes,	so	it	would	be
easy	to	find	the	exact	row	on	which	the	function	failed.

The	validation	function	should	return	either	1	or	0.	The	value	1	means	that	the	processed
row	against	which	the	validation	function	was	executed	successfully	passed	the	validation;
0	means	failure.

See	in	the	following	screenshot	that,	in	Local	Object	Library,	validation	functions	are
displayed	separately	from	custom	functions:

Using	validation	functions	with	the	Validation
transform
This	recipe	will	demonstrate	how	validation	functions	are	deployed	and	configured	within
a	dataflow.	As	the	validation	function	that	we	created	in	the	previous	recipe	validates	city
values,	we	will	deploy	it	in	the	DF_Extract_Address	dataflow	object	to	perform	the
validation	of	data	extracted	from	the	Address	table	located	in	the	source	OLTP	database.

Getting	ready
Open	the	job-containing	dataflow,	DF_Extract_Address,	already	created	in	the	Use	case
example	–	populating	dimension	tables	recipe	in	Chapter	5,	Workflow	–	Controlling
Execution	Order,	and	copy	it	into	a	new	job	to	be	able	to	execute	it	as	a	standalone
process.

How	to	do	it…
	
1.	 Open	DF_Extract_Address	in	the	main	workspace	for	editing.
2.	 Go	to	Local	Object	Library	|	Transform,	find	the	Validation	transform	under

Platform,	and	drag	it	into	the	DF_Extract_Address	dataflow	right	after	the	Query
transform.

3.	 Link	the	output	of	the	Query	transform	to	the	Validation	transform	and	double-click
on	the	Validation	transform	to	open	it	for	editing.

4.	 Open	the	Validation	transform	in	the	workspace	and	see	how	Validation	splits	the
flow	into	three	output	schemas:	Validation_Pass,	Validation_Fail,	and
Validation_RuleViolation:

The	Validation_Pass	and	Validation_Fail	output	schemas	are	identical,	except	that
Validation_Fail	contains	three	extra	columns:	DI_ERRORACTION,	DI_ERRORCOLUMNS,
and	DI_ROWID.

5.	 Inside	the	Validation	transform,	click	on	the	Add	button	located	on	the	Validation
Rules	tab	to	create	the	first	validation	rule.	Choose	the	Validation	Function	option
for	the	created	rule	and	map	columns	sent	from	the	previous	transform	output	to	the
input	parameters,	also	choosing	Send	To	Fail	as	the	value	for	Action	on	Fail.	Do	not
forget	to	specify	the	validation	rule	name	and	description.

6.	 Click	on	OK	to	create	the	validation	rule.	It	is	now	displayed	in	the	Validation
transform.

7.	 Now	close	the	Validation	transform	editor	window	and	add	three	Query	transforms,
one	for	each	validation	schema	output.	Name	them	Validation_Pass,
Validation_Fail,	and	Validation_Rules.	Link	the	Validation	transform	output	to
all	Query	transforms	choosing	the	correct	logic	branch	each	time	Data	Services	asks
you	to.

8.	 Map	all	input	schema	columns	to	the	output	schemas	in	all	created	Query	transforms
without	making	any	changes	to	the	mappings.

9.	 Create	two	additional	template	target	tables	to	output	data	from	the	Rules	and	Fail
transforms.	Specify	the	REJECT	owner	schema	for	both	of	them	as	follows:

The	ADDRESS	template	table	for	the	Fail	output
The	ADDRESS_RULES	template	table	for	the	Rules	output

10.	 Your	final	dataflow	version	should	look	like	the	one	in	the	following	screenshot:

11.	 Save	and	execute	the	job.
12.	 After	the	execution	is	finished,	open	the	dataflow	again	and	view	the	data	in	the

REJECT.ADDRESS	and	REJECT.ADDRESS_RULES	tables:

Note
Note	that	the	rows	where	the	value	of	CITY	equals	Paris	are	not	passed	to	the
Transform.ADDRESS	stage	table	anymore.

How	it	works…
Usually,	the	Validation	transform	is	deployed	right	before	the	target	object	to	perform	the
validation	of	data	changed	by	previous	transformations.

The	Pass	output	schema	of	the	Validation	transform	is	used	to	output	records	that	have
successfully	passed	the	validation	rule	defined	by	either	validation	function(s)	or	column
condition(s).

Note	that	you	can	define	as	many	validation	functions	or	column	condition	rules	as	you
like,	and	Data	Services	is	very	flexible	in	allowing	you	to	define	different	Action	on	Fail
options	for	different	functions.	This	makes	it	possible	to	send	some	“failed”	records	to
both	Pass	and	Fail	outputs	or	others	only	to	the	Fail	output,	depending	on	the	severity	of
the	validation	rule.

Let’s	review	another	feature	of	the	Validation	transform—the	ability	to	modify	the	values
of	the	passing	rows	depending	on	the	result	of	validation	rule.	Follow	these	steps:

	
1.	 Open	the	Validation	transform	for	editing	in	the	main	workspace.
2.	 As	we	are	validating	the	city	name,	let’s	change	the	behavior	of	the	Validation

transform	to	send	the	rows	which	did	not	pass	validation	to	both	Pass	and	Fail.
However,	in	the	rows	sent	to	the	Pass	output,	change	the	city	name	value	from	Paris
to	New	Paris.	To	do	that	in	the	section	located	at	the	bottom	of	the	Validation
transform	editor,	choose	the	Query.CITY	column	and	specify	‘New	Paris’	in	the
expression	field,	as	shown	here:

3.	 Save	and	execute	the	job.
4.	 Open	the	dataflow	again	and	view	the	data	from	both	the	Transform.ADDRESS	and

Reject.ADDRESS	tables.	You	will	see	that	records	with	the	same	ADDRESSID	field	were
inserted	in	both	the	tables,	but	in	the	main	staging	table,	the	values	for	city	name
were	substituted	with	New	Paris.

See	the	following	table	for	a	description	of	the	extra	columns	from	the	Fail	and
RuleViolation	Validation	transform	output	schemas:

DI_ERRORACTION
This	shows	where	the	output	for	the	specific	rule	was	sent:	B	means
“both”,	F	means	“fail”,	and	P	means	“pass”.

DI_ERRORCOLUMNS

This	shows	the	specific	columns	that	were	validated	(as	part	of	input
values	for	the	validation	function	or	simply	as	a	source	for	column
validation).

DI_ROWID This	is	the	unique	identifier	of	the	failed	row.

DI_RULENAME This	is	the	name	of	the	rule	which	generated	the	failed	row.

DI_COLUMNNAME

This	is	the	validated	column	(part	of	the	validation	function	input
values	or	source	for	column	validation	in	the	validation	rule).	Note
that	in	ADDRESS_RULE	output,	one	row	is	generated	for	each	validated
column	separately.	So,	if	your	validation	function	was	using	five
columns	from	the	source	object,	all	five	of	them	are	considered	to	be
validated	columns,	and	in	case	of	failure,	five	rows	will	be	created	in
the	ADDRESS_RULE	table	for	each	column	with	the	same	ROWID	(see	the
figure	showing	the	contents	of	the	ADDRESS_RULE	table	in	the	first
example	of	job	execution	in	this	recipe).

Reporting	data	validation	results
One	of	the	advantages	of	using	the	Validation	transform	is	that	Data	Services	provides	the
reporting	functionality	which	is	based	on	validation	statistics	and	collected	sample	data
during	validation	processes.

Validation	reports	can	be	viewed	in	the	Data	Services	Management	Console.	In	this
recipe,	we	will	learn	how	to	collect	data	for	validation	reports	and	access	them	in	the	Data
Services	Management	Console.

Getting	ready
Use	the	same	job	and	dataflow,	DF_Extract_Address,	updated	with	the	Validation
transform	as	in	the	previous	recipes	of	the	current	chapter.

How	to	do	it…
	
1.	 Open	the	dataflow	DF_Extract_Address	and	double-click	on	the	Validation

transform	object	to	open	it	for	editing.

Note
To	be	able	to	use	Data	Services	validation	reports,	the	validation	statistics	collection
has	to	be	enabled	first	for	a	Validation	transform	object	in	the	ETL	code	structure	that
you	want	to	collect	the	reporting	data	for.

2.	 Open	the	Validation	Transform	Options	tab	in	the	Validation	transform	editor.
3.	 Tick	both	check-boxes,	Collect	data	validation	statistics	and	Collect	sample	data.

4.	 Save	and	run	the	job	to	collect	the	data	validation	statistics	for	the	data	set	processed
by	DF_Extract_Address.	Make	sure	that	you	do	not	have	the	option	Disable	data
validation	statistics	collection	selected	on	the	job’s	Execution	Properties	window:

5.	 Launch	the	Data	Services	Management	Console	and	log	into	it.
6.	 On	the	Home	page,	click	on	the	Data	Validation	link	to	start	the	Data	Validation

dashboard	web	application:

7.	 Experiment	and	hover	your	mouse	over	the	pie	chart	to	see	the	detailed	information
about	passed	and	failed	records	for	your	validation	rule.

8.	 Click	on	a	specific	area	in	the	pie	chart	to	drill	down	into	another	bar	chart	report
showing	validation	rules.	As	we	only	have	one	validation	rule	defined	in	our
Validation	transform	and	in	all	repository,	there	is	only	one	bar	displayed	for	the
City_not_Paris	validation	rule.

How	it	works…
The	options	Collect	Data	Validation	Statistics	and	Collect	sample	data	enable	Data
Services	to	collect	execution	statistics	for	specific	Validation	transform	rules.	In	our	case,
we	defined	one,	so	there	is	not	much	diversity	in	the	presented	dashboard	reports	that	you
can	see	in	the	Data	Services	Management	Console.

Here	is	the	pie	chart	you	see	after	implementing	steps	7-8	of	this	recipe:

By	clicking	on	the	object	in	the	bar	chart,	you	can	drill	down	to	the	actual	data	sample	of
the	failed	rows	collected	by	the	Validation	transform	during	job	execution.

The	information	presented	in	these	dashboard	reports	is	a	very	useful	graphical
representation	of	the	quality	of	the	data	which	passes	through	dataflow	objects	and	gets
validated.	You	can	easily	see	what	percentage	of	data	does	not	pass	the	validation	rules,
the	comparison	of	validation	statistics	between	different	periods	of	time,	and	even	the
actual	rows	that	did	not	pass	the	specific	validation	rule	without	running	SQL	queries	on
your	database	tables,	or	using	any	other	application	except	Data	Services	Management
Console.

Using	regular	expression	support	to	validate	data
In	this	recipe,	we	will	see	how	you	can	use	regular	expressions	to	validate	your	data.	We
will	take	a	simple	example	of	validating	phone	numbers	extracted	from	the	source	OLTP
table	PERSONPHONE	located	in	the	PERSON	schema.	The	validation	rule	would	be	to	identify
all	records	which	have	phone	numbers	different	from	this	pattern:	ddd-ddd-dddd	(d	being
a	numeral).	Let’s	say	that	we	do	not	want	to	reject	any	data.	Our	goal	is	to	generate	a
dashboard	report	showing	the	percentage	of	records	in	the	source	table	which	do	not
comply	with	the	specified	requirement	for	the	phone	number	pattern.

Getting	ready
Make	sure	that	you	have	the	PERSON.PERSONPHONE	table	imported	into	the	OLTP	datastore.
We	will	create	a	new	job	and	new	dataflow,	DF_Extract_PersonPhone,	which	will	be
migrating	PersonPhone	records	from	OLTP	to	a	STAGE	database,	at	the	same	time	as
validating	them.

How	to	do	it…
	
1.	 Create	a	new	job	with	a	new	dataflow,	DF_Extract_PersonPhone,	designed	as	a

standard	extract	dataflow	with	a	deployed	Validation	transform,	as	shown	in	the
following	figure:

2.	 You	should	also	create	target	tables	for	the	RuleViolation	and	Fail	output	schemas
in	the	Reject	schema	of	the	STAGE	database.

3.	 To	configure	the	validation	rule,	open	the	Validation	transform	for	editing	in	the	main
workspace.	Use	Column	Validation	instead	of	Validation	Function	and	put	the
following	custom	condition	into	Query.PHONENUMBER:
match_regex(Query.PHONENUMBER,’^\d{3}-\d{3}-\d{4}$’,NULL)	=	1	

The	validation	rule	configuration	should	look	like	in	the	following	screenshot:

Note
Note	that	for	Action	on	Fail,	we	set	up	Send	To	Both	as	we	do	not	want	our
validation	process	affecting	the	migrated	data	set.

4.	 Click	on	OK	to	create	and	save	the	validation	rule.
5.	 Now	go	to	the	second	tab,	Validation	Transform	Options,	and	check	all	three

options:	Collect	data	validation	statistics,	Collect	sample	data,	and	Create
column	DI_ROWID	on	Validation_Fail.

6.	 Your	Validation	transform	should	look	like	this	now:

7.	 Save	and	execute	the	job	to	extract	the	records	into	the	staging	table	and	collect	the
validation	data	for	the	dashboard	report.

How	it	works…
Regular	expressions	are	a	powerful	way	to	validate	the	data	passing	through.	The
match_regex()function	used	in	this	recipe	returns	1	if	the	value	in	the	input	column
matches	the	pattern	specified	as	the	second	input	parameter.

Data	Services	supports	standard	POSIX	regular	expressions.	See	the	match_regex	section
(section	6.3.96)	in	Chapter	6,	Functions	and	Procedures,	of	the	Data	Services	4.2
Reference	Guide	for	full	syntax	and	regular	expression	support	details.

Note	that	in	this	recipe,	we	did	not	reject	the	records	which	failed	the	validation	rule.	As
our	goal	was	to	simply	evaluate	the	number	of	records	which	do	not	comply	with	the
phone	number	standard,	both	failed	and	passed	records	were	forwarded	to	the	target	main
staging	table.

Let’s	see	how	the	dashboard	validation	report	for	our	job	execution	looks:

	
1.	 Launch	the	Data	Services	Management	Console	and	log	in	into	it.
2.	 Open	the	Data	Validation	application	on	the	main	Home	page.
3.	 By	default,	Data	Services	shows	the	data	validation	statistics	for	all	functional	areas

for	the	current	date	(starting	from	midnight).
4.	 Hover	your	mouse	pointer	and	click	on	the	failed	red	section	of	the	pie	chart	to	see

the	following	details:	the	percentage	and	number	of	rows	which	did	not	pass	the
validation	rule.

5.	 If	you	did	not	run	any	jobs	gathering	validation	statistics	today,	the	pie	chart	for
DF_Extract_PersonPhone	created	and	executed	in	this	recipe	shows	that	9,188
records	(46%)	in	the	PERSONPHONE	table	have	a	phone	number	in	a	pattern	different
from	ddd-ddd-dddd,	and	10,784	records	(54%)	have	phone	numbers	matching	this
pattern.

Enabling	dataflow	audit
Auditing	in	Data	Services	allows	the	collection	of	additional	information	about	the	data
migrated	from	the	source	to	the	target	by	a	specific	dataflow	on	which	the	audit	is	enabled,
and	even	allows	making	decisions	according	to	the	rules	applied	on	the	audit	data.	In	this
recipe,	we	will	see	how	audit	can	be	enabled	and	utilized	during	the	extraction	of	data
from	the	source	system.

Getting	ready
For	this	recipe,	you	can	use	the	dataflow	DF_Extract_Address	from	the	previous	recipes
of	this	chapter.

How	to	do	it…
Perform	the	following	steps	to	enable	the	auditing	for	the	specific	dataflow.

	
1.	 Open	DF_Extract_Address	in	the	workspace	window	and	select	Tools	|	Audit	from

the	top-level	menu.

2.	 In	the	newly	opened	window,	select	the	Label	tab,	right-click	in	the	empty	space,	and
choose	Show	All	Objects	from	the	context	menu.

3.	 The	Label	tab	displays	the	list	of	objects	from	within	a	dataflow.	Enable	auditing	on
the	Query	and	Pass	Query	transform	objects	by	right-clicking	on	them	and	selecting
the	Count	option	from	the	context	menu.

4.	 Another	way	to	enable	auditing	on	specific	objects	from	within	a	dataflow	is	to	right-
click	on	it	and	select	the	Properties	option	from	the	context	menu.

5.	 Then,	go	to	the	Audit	tab	in	the	newly	open	Schema	Properties	window	and	select
the	respective	audit	function	from	the	combobox	menu.	In	our	case,	both	audit	points

were	enabled	for	Query	transforms,	and	the	only	audit	option	available	in	this	case	is
Count.

6.	 Data	Services	creates	two	variables	which	are	used	to	store	the	audit	value.	For	the
Pass	Query	transform,	two	variables	were	created	by	default:	$Count_Pass,	to	store
the	number	of	successfully	passed	records,	and	$CountError_Pass	to	store	the
number	of	incorrect	or	rejected	records.

7.	 Let’s	change	the	default	audit	variable	names	for	the	Query	object	by	opening	its
properties	and	selecting	the	Audit	tab	on	the	Schema	Properties	window.

8.	 Specify	the	audit	variable	names	to	be	$Count_Extract	and	$CountError_Extract.
Then,	close	the	window	by	clicking	on	the	OK	button.

9.	 Now,	close	the	Audit:	DF_Extract_Address	window	by	clicking	on	the	Close
button.

10.	 If	you	take	a	look	at	the	dataflow	objects	in	the	workspace	window,	you	can	see	that
the	created	audit	points	were	marked	with	small	green	icons.	To	access	the	dataflow
audit	configuration,	you	also	can	just	click	on	the	Audit	button	in	the	tools	menu.

How	it	works…
At	this	point,	you	have	configured	the	audit	collection	for	rows	passing	two	Query	objects
in	the	DF_Extract_Address	dataflow.	Auditing,	if	enabled	at	the	object	level,	allows	only
single-audit	function	usage:	count	audit	function.	This	audit	function	simply	keeps	track	of
the	number	of	records	passing	the	specific	object	inside	the	dataflow.

Auditing	can	also	be	enabled	on	the	column	level	inside	the	object	which	resides	inside
the	dataflow,	usually	on	the	columns	in	the	Query	transforms.	In	that	case,	three	additional
audit	functions	are	available—Sum,	Average,	and	Checksum—if	the	column	is	of	numeric
data	type	and	only	Checksum	is	available	if	the	column	is	of	the	varchar	data	type.	As	you
might	have	guessed,	these	functions	allow	you	to	store	either	the	summary	or	the	average
of	values	in	the	specific	columns	for	all	passing	records	or	calculate	the	checksum.

As	you	can	see,	the	collected	audit	data	can	later	be	accessed	from	the	Operational
Dashboard	tab	in	the	Data	Services	Management	Console.	However,	the	most	useful
purpose	of	the	audit	feature	is	the	ability	to	define	the	rules	on	the	collected	audit	data	and
perform	the	actions	depending	on	the	result	of	the	audit	rule	implemented.

Here	are	the	steps	showing	you	how	to	implement	the	rule	on	collected	audit	data:

	
1.	 Open	DF_Extract_Address	in	the	workspace	and	click	on	the	Audit	button	to	open

the	Audit	configuration	window	for	this	dataflow.
2.	 Go	to	the	Rule	tab.
3.	 Click	on	the	Add	button	to	add	a	new	audit	rule.
4.	 Choose	the	Custom	option	to	define	a	custom	audit	rule.
5.	 Input	the	custom	function	shown	in	the	following	screenshot:

6.	 Check	the	option	Raise	exception	in	the	Action	on	failure	section.	Other	options	are
Email	to	list	and	Script.

The	Email	to	list	option	allows	you	to	send	notifications	about	rule	violations	to
specific	email	recipients.	Note	that	to	use	this	functionality,	you	have	to	specify
SMTP	server	details	in	your	Data	Services	configuration.

The	Script	option	allows	you	to	execute	scripts	written	in	a	standard	Data
Services	scripting	language.

7.	 The	rule	that	we	specified	is	applied	at	the	very	end	of	the	dataflow	execution	and
checks	that	the	percentage	of	rows	which	passed	the	validation	rule	taken	from	the
total	amount	of	rows	extracted	from	the	source	table	is	higher	than	80	percent.
Remember	that	our	validation	rule	checks	and	rejects	all	Paris	records.	We	know
that	the	number	of	records	with	a	city	value	equal	to	Paris	is	significantly	less	than
20	percent	of	the	rows,	which	should	be	rejected	during	validation	to	fail	the	defined
audit	rule.	So,	if	you	run	your	dataflow	now,	nothing	will	happen;	the	audit	rule	will
not	be	violated	and	the	job	will	be	successfully	completed.	To	make	the	audit	rule
fail,	let’s	change	our	validation	function	to	reject	all	records	with	a	city	value	not
equal	to	Paris,	as	shown	in	the	following	screenshot:

8.	 As	the	final	step	for	utilizing	audit	functionality	on	the	job’s	Execution	Properties
window,	you	should	check	the	Enable	auditing	option.	If	this	is	not	checked,	audit
data	will	not	be	collected	and	audit	rules	will	not	work.

9.	 Save	and	execute	the	job.	Dataflow	execution	fails	and	relevant	information	is
displayed	in	the	error	log,	as	shown	here:

Note
Remember	that	although	the	dataflow	DF_Extract_Address	fails,	the	audit	rule	check
happens	after	it	completes	all	the	previous	steps	and	the	data	is	successfully	inserted	into
all	targets.

There’s	more…
Collected	audit	numbers	can	be	accessed	via	the	Operational	Dashboard	tab	from	the
Data	Services	Management	Console.

To	access	it,	open	the	Operational	Dashboard	tab	and	select	specific	jobs	to	open	Job
Execution	Details.	By	clicking	on	the	job	execution	instances	further,	you	can	open	a	Job
Details	view,	which	will	contain	information	about	all	dataflows	executed	within	a	job.	If
the	dataflow	has	audit	enabled	for	it	columns,	Contains	Audit	Data	will	show	you	that.

By	clicking	on	the	View	Audit	Data	button,	you	can	open	the	new	window	showing
values	collected	during	auditing	and	the	audit	rule	result	for	the	selected	job	instance
execution.

Data	Quality	transforms	–	cleansing	your	data
Data	Quality	transforms	are	available	in	the	Data	Quality	section	of	the	Local	Object
Library	Transforms	tab.	These	transforms	help	you	to	build	a	cleansing	solution	for	your
migrated	data.

The	subject	of	implementing	Data	Quality	solutions	in	ETL	processes	is	so	vast	that	it
probably	requires	a	whole	chapter,	or	even	a	whole	book,	dedicated	to	it.	That	is	why	we
will	just	scratch	the	surface	in	this	recipe	by	showing	you	how	to	use	the	most	popular	of
Data	Quality	transforms,	Data_Cleanse,	to	perform	the	simplest	data	cleansing	task.

Getting	ready
To	build	a	data	cleansing	process,	it	would	be	ideal	if	we	had	source	data	which	required
cleansing.	Unfortunately,	our	OLTP	data	source,	and	especially	DWH	data	source,	already
contain	pretty	conformed	and	clean	data.	Therefore,	we	are	going	to	create	dirty	data	by
concatenating	multiple	fields	together	to	see	how	Data	Services	cleansing	packages	will
automatically	parse	and	cleanse	the	data	out	of	the	concatenated	text	field.

As	a	preparation	step,	make	sure	that	you	have	imported	these	three	tables	in	your	OLTP
datastore:	PERSON,	PERSONPHONE,	and	EMAILADDRESS	(all	of	them	are	from	the	PERSON
schema	of	the	SQL	Server’s	AdventureWorks_OLTP	database).

How	to	do	it…
	
1.	 As	the	first	step,	create	a	new	job	with	a	new	dataflow	object	in	it.	Name	the	dataflow

DF_Cleanse_Person_Details.
2.	 Import	three	tables—PERSON,	PERSONPHONE,	and	EMAILADDRESS—from	the	OLTP

datastore	as	a	source	table	inside	the	dataflow.
3.	 Join	these	tables	using	the	Query	transform	with	the	join	conditions,	as	shown	in	the

following	screenshot:

4.	 In	the	output	schema	of	the	Query	transform,	create	two	columns:	ROWID	of	the	data
type	integer,	with	the	following	function	as	a	mapping:	gen_row_num(),	and	DATA
column	of	the	data	type	varchar(255),	with	the	following	mapping:
PERSON.FIRSTNAME||’	’||PERSON.MIDDLENAME||’	’||PERSON.LASTNAME||’	’||PERSONPHONE.PHONENUMBER||’	’||EMAILADDRESS.EMAILADDRESS

5.	 Now,	when	we	have	prepared	the	source	field	that	we	will	be	cleansing,	let’s	import
and	configure	the	Data_Cleanse	transforms	themselves.	Drag	and	drop	the
Data_Cleanse	transform	objects	from	Local	Object	Library	|	Transforms	|	Data
Quality	to	your	dataflow.	Please	refer	to	the	following	steps	as	each	Data_Cleanse
transform	object	will	be	imported	and	configured	differently.

6.	 The	first	Data_Cleanse	object	will	be	parsing	our	DATA	column	to	extract	the	email
address	of	the	person.	When	importing	the	transform	object	into	the	dataflow,	choose
the	Base_DataCleanse	configuration.

7.	 Rename	the	imported	Data_Cleanse	transform	to	Email_DataCleanse	and	join	the
Query	transform	output	to	it.

8.	 Open	the	Email_DataCleanse	transform	editor	in	the	workspace	to	configure	it.
9.	 On	the	Input	tab,	select	EMAIL1	in	the	Transform	Input	Field	Name	column	and

map	it	to	the	DATA	source	field.
10.	 On	the	Options	tab,	choose	PERSON_FIRM	as	a	cleansing	package	name	and

configure	the	rest	of	the	options,	as	shown	in	the	following	screenshot:

11.	 On	the	Output	tab,	select	the	EMAIL	field	(of	the	PARSED	field	class	related	to	the
EMAIL1	parent	component)	to	be	produced	by	the	Email_DataCleanse	transform.
That	will	create	the	EMAIL1_EMAIL_PARSED	column	in	the	output	schema	of	the
Email_DataCleanse	transform.	Propagate	the	source	RO0057ID	column	as	well,
which	will	be	used	to	join	the	cleansed	data	sets	together	in	the	later	steps.

12.	 Close	the	Email_DataCleanse	editor	and	import	the	second	Data_Cleanse
transform	with	the	same	Base_DataCleanse	configuration.	Rename	the	imported
transform	object	to	Phone_DataCleanse,	join	it	to	the	Query	transform	output,	and
open	it	in	the	main	workspace	for	editing.

13.	 Select	the	same	transform	options	on	the	Options	tab	as	for	the	Email_DataCleanse
transform	example	we	just	saw.

14.	 Choose	PHONE1	as	the	input	parsing	component	(Transform	Input	Field	Name)	and
map	it	to	the	source	DATA	column	from	the	Query	transform	output.

15.	 On	the	Output	tab	of	the	Phone_DataCleanse	transform	editor,	choose	the
following	output	fields	from	the	list:

PARENT_COMPONENT FIELD_NAME FIELD_CLASS

NORTH_AMERICAN_PHONE1 NORTH_AMERICAN_PHONE PARSED

NORTH_AMERICAN_PHONE1 NORTH_AMERICAN_PHONE_EXTENSION PARSED

NORTH_AMERICAN_PHONE1 NORTH_AMERICAN_PHONE_LINE PARSED

NORTH_AMERICAN_PHONE1 NORTH_AMERICAN_PHONE_PREFIX PARSED

PHONE1 PHONE PARSED

16.	 Also	propagate	two	source	fields,	ROWID	and	DATA,	into	the	output	schema	of	the
Phone_DataCleanse	transform.	Close	it	to	finish	editing.

17.	 When	importing	the	third	Data_Cleanse	transform,	select	the	predefined
EnglishNorthAmerica_DataCleanse	configuration	and	rename	the	transform	to
Name_DataCleanse.

18.	 Open	the	transform	in	the	workspace	for	editing.	You	do	not	have	to	configure
anything	on	the	Options	tab	this	time.	So,	select	the	component	NAME_LINE1	on
the	Input	tab	and	the	following	fields	on	the	Output	tab:

PARENT_COMPONENT FIELD_NAME FIELD_CLASS

PERSON1 FAMILY_NAME1 PARSED

PERSON1 GENDER STANDARDIZED

PERSON1 GIVEN_NAME1 PARSED

PERSON1 GIVEN_NAME2 PARSED

PERSON1 PERSON PARSED

19.	 Close	the	Name_DataCleanse	transform	editor	and	join	all	three	Data_Cleanse
outputs	with	a	single	Join	Query	transform.	Use	the	ROWID	column	to	join	the
datasets	together	and	remap	the	default	Data_Cleanse	output	names	to	more
meaningful	names,	as	shown	in	the	following	screenshot:

20.	 Specify	Phone_DataCleanse.DATA	IS	NOT	NULL	as	a	join	filter	in	the	Join	Query
transform	to	exclude	the	empty	records	from	the	migration.

21.	 Import	the	target	template	table	CLEANSE_RESULT	stored	in	the	STAGE	datastore	to	save
the	cleansing	results	in.

22.	 Finally,	your	dataflow	should	look	like	this:

23.	 Save	and	execute	the	job	to	see	the	cleansing	results	in	the	CLEANSE_RESULT	table.

How	it	works…
In	the	first	few	steps	of	the	preceding	sequence,	by	concatenation	of	the	multiple	fields
from	the	source	OLTP	database,	we	prepared	our	“dirty”	data	column,	DATA,	which	was
used	as	a	source	column	for	all	three	Data_Cleanse	transforms.

When	importing	the	Data_Cleanse	transform,	Data	Services	offers	you	the	option	to
choose	from	one	of	the	predefined	configurations.	The	Base_DataCleanse	configuration
requires	you	to	configure	the	mandatory	options	manually	or	your	imported	transform
object	will	not	work.

The	Data_Cleanse	transform	is	a	mere	mapping	tool	to	map	your	input	columns	to	the
required	parsing	rules	and	desired	output.	Parsing	rules	and	reference	data	are	defined	in
the	cleansing	package,	which	could	be	developed	and	configured	by	the	Information
Steward	Cleansing	Package	Builder	tool.	This	tool	provides	a	graphical	user	interface
for	this	task.	In	this	recipe,	we	are	using	the	default	cleansing	package	PERSON_FIRM
available	in	Data	Services	without	the	need	to	have	Information	Steward	installed.

Note
The	default	PERSON_FIRM	cleansing	package	allows	you	to	parse	and	standardize	dates,
emails,	firm	data,	person	names,	social	security	numbers,	and	phone	numbers.

The	Input	tab	allows	you	to	choose	the	type	of	component	you	would	like	to	parse	from
the	input	data	set.	Please	note	that	you	cannot	specify	the	same	field	as	a	source	of	data	for
multiple	components.	That	is	why	we	have	to	create	three	distinct	Data_Cleanse
transform	objects	to	parse	the	same	DATA	column	for	email,	person	name,	and	phone	data.
Each	has	its	own	configuration	and	mappings	from	input	components	to	a	desired	set	of
output	fields.

The	set	of	fields	available	on	the	Output	tab	depend	on	which	component	you	have
chosen	to	be	recognized	and	parsed	on	the	Input	tab,	but	it	basically	includes	all	possible
information	that	can	be	extracted	for	a	selected	component.	For	example,	if	it	is	a	Person
name	component,	output	data	cleanse	fields	include	given	name,	second	given	name,	last
name,	gender,	and	similar	others.

Propagation	of	an	artificial	ROWID	column	allows	us	to	join	the	split	datasets	together	after
they	are	processed	by	Data_Cleanse	transforms.

To	view	the	result	data	use	the	View	data	option	on	the	target	table	object	in	the	dataflow
or	open	SQL	Server	Management	Studio	and	run	the	following	query	to	see	the	parsed
results:
select	DATA,EMAIL,PHONE,GIVEN_NAME,GIVEN_NAME_2ND,FAMILY_NAME,

		GENDER_STANDARDIZED

from	dbo.CLEANSE_RESULT

As	you	can	see	in	the	following	screenshot,	Data_Cleanse	transforms	did	a	pretty	good
job	of	parsing	the	input	DATA	field:

An	interesting	result	is	stored	in	the	GENDER_STANDARDIZED	column.	Based	on	the	parsing
rules	and	reference	data	available,	Data	Services	suggests	how	accurate	the	determination
of	gender	could	be	based	solely	on	the	available	given	and	last	names.

There’s	more…
As	mentioned	before,	Data	Services	has	great	Data	Quality	capabilities.	This	is	a	huge
topic	for	discussion,	and	we’ve	just	scratched	the	surface	by	showing	you	one	transform
from	this	toolset.	This	powerful	functionality	works	best	when	Data	Services	is	integrated
with	Information	Steward.	You	can	build	your	own	cleansing	packages	to	parse	the
migrated	data	more	efficiently	and	accurately.	Please	refer	to	Chapter	12	,	Introduction	to
Information	Steward,	for	more	details.

Chapter	8.	Optimizing	ETL	Performance
If	you	tried	all	the	previous	recipes	from	the	book,	you	can	consider	yourself	familiar	with
the	basic	design	techniques	available	in	Data	Services	and	can	perform	pretty	much	any
ETL	development	task.	Starting	from	this	chapter,	we	will	begin	using	advance
development	techniques	available	in	Data	Services.	This	particular	chapter	will	help	you
to	understand	how	the	existing	ETL	processes	can	be	optimized	further	to	make	sure	that
they	run	quickly	and	efficiently,	consuming	as	less	computer	resources	as	possible	with
the	least	amount	of	execution	time.

	
Optimizing	dataflow	execution	–	push-down	techniques
Optimizing	dataflow	execution	–	the	SQL	transform
Optimizing	dataflow	execution	–	the	Data_Transfer	transform
Optimizing	dataflow	readers	–	lookup	methods
Optimizing	dataflow	loaders	–	bulk-loading	methods
Optimizing	dataflow	execution	–	performance	options

Introduction
Data	Services	is	a	powerful	development	tool.	It	supports	a	lot	of	different	source	and
target	environments,	all	of	which	work	differently	with	regard	to	loading	and	extracting
data	from	them.	This	is	why	it	is	required	of	you,	as	an	ETL	developer,	to	be	able	to	apply
different	design	methods,	depending	on	the	requirements	of	your	data	migration	processes
and	the	environment	that	you	are	working	with.

In	this	chapter,	we	will	review	the	methods	and	techniques	that	you	can	use	to	develop
data	migration	processes	in	order	to	perform	transformations	and	migrate	data	from	the
source	to	target	more	effectively.	The	techniques	described	in	this	chapter	are	often
considered	as	best	practices,	but	do	keep	in	mind	that	their	usage	has	to	be	justified.	They
allow	you	to	move	and	transform	your	data	faster,	consuming	fewer	processing	resources
on	the	ETL	engine’s	server	side.

Optimizing	dataflow	execution	–	push-down
techniques
The	Extract,	Transform,	and	Load	sequence	can	be	modified	to	Extract,	Load,	and
Transform	by	delegating	the	power	of	processing	and	transforming	data	to	the	database
itself	where	the	data	is	being	loaded	to.

We	know	that	to	apply	transformation	logic	to	a	specific	dataset	we	have	to	first	extract	it
from	the	database,	then	pass	it	through	transform	objects,	and	finally	load	it	back	to	the
database.	Data	Services	can	(and	most	of	the	time,	should,	if	possible)	delegate	some
transformation	logic	to	the	database	itself	from	which	it	performs	the	extract.	The	simplest
example	is	when	you	are	using	multiple	source	tables	in	your	dataflow	joined	with	a	single
Query	transform.	Instead	of	extracting	each	table’s	contents	separately	onto	an	ETL	box
by	sending	multiple	SELECT	*	FROM	<table>	requests,	Data	Services	can	send	the
generated	single	SELECT	statement	with	proper	SQL	join	conditions	defined	in	the	Query
transform’s	FROM	and	WHERE	tabs.	As	you	can	probably	understand,	this	can	be	very
efficient:	instead	of	pulling	millions	of	records	into	the	ETL	box,	you	might	end	up	with
getting	only	a	few,	depending	on	the	nature	of	your	Query	joins.	Sometimes	this	process
shortens	to	a	complete	zero	processing	on	the	Data	Services	side.	Then,	Data	Services
does	not	even	have	to	extract	the	data	to	perform	transformations.	What	happens	in	this
scenario	is	that	Data	Services	simply	sends	the	SQL	statement	instructions	in	the	form	of
INSERT	INTO	…	SELECT	or	UPDATE	…	FROM	statements	to	a	database	when	all	the
transformations	are	hardcoded	in	those	SQL	statements	directly.

The	scenarios	when	Data	Services	delegates	the	parts	of	or	all	the	processing	logic	to	the
underlying	database	are	called	push-down	operations.

In	this	recipe,	we	will	take	a	look	at	different	kinds	of	push-down	operations,	what	rules
you	have	to	follow	to	make	push-down	work	from	your	designed	ETL	processes,	and	what
prevents	push-downs	from	happening.

Getting	ready
As	a	starting	example,	let’s	use	the	dataflow	developed	in	the	Loading	data	from	table	to
table	–	lookups	and	joins	recipe	in	Chapter	4,	Dataflow	–	Extract,	Transform,	and	Load.
Please	refer	to	this	recipe	to	rebuild	the	dataflow	if,	for	some	reason,	you	do	not	have	it	in
your	local	repository	any	more.

Push-down	operations	can	be	of	two	different	types:

	
Partial	push-downs:	A	partial	push-down	is	when	Optimizer	sends	the	SELECT
query	joining	multiple	source	tables	used	in	a	dataflow	or	sends	one	SELECT
statement	to	extract	data	from	a	particular	table	with	mapping	instructions	and
filtering	conditions	from	the	Query	transform	hardcoded	in	this	SELECT	statement.
Full	push-downs:	A	full	push-down	is	when	all	dataflow	logic	is	reformed	by
Optimizer	in	a	single	SQL	statement	and	sent	to	the	database.	The	most	common
statements	generated	in	these	cases	are	complex	INSERT/UPDATE	and	MERGE
statements,	which	include	all	source	tables	from	the	dataflow	joined	together	and
transformations	in	the	form	of	database	functions	applied	to	the	table	columns.

How	to	do	it…
	
1.	 To	be	able	to	see	what	SQL	queries	have	been	pushed	down	to	the	database,	open	the

dataflow	in	the	workspace	window	and	select	Validation	|	Display	Optimized
SQL….

2.	 The	Optimized	SQL	window	shows	all	queries	generated	by	Data	Services
Optimizer	and	pushed	down	to	the	database	level.	In	the	following	screenshot,	you
can	see	the	ELECT	query	and	part	of	the	dataflow	logic	which	this	statement
represents:

3.	 Let’s	try	to	push	down	logic	from	the	rest	of	the	Query	transforms.	Ideally,	we	would
like	to	perform	a	full	push-down	to	the	database	level.

4.	 The	Lookup_Phone	Query	transform	contains	a	function	call	which	extracts	the
PHONENUMBER	column	from	another	table.	This	logic	cannot	be	included	as	is	because
Optimizer	cannot	translate	internal	function	calls	into	SQL	construction,	which	could
be	included	in	the	push-down	statement.

5.	 Let’s	temporarily	remove	this	function	call	by	specifying	a	hardcoded	NULL	value	for
the	PHONENUMBER	column.	Just	delete	a	function	call	and	create	a	new	output	column
instead	of	the	varchar(25)	data	type.

6.	 Validate	and	save	the	dataflow	and	open	the	Optimized	SQL	window	again	to	see
the	result	of	the	changes.	Straight	away,	you	can	see	how	logic	from	both	the
Lookup_Phone	and	Distinct	Query	transforms	were	included	in	the	SELECT
statement:	the	default	NULL	value	for	a	new	column	and	DISTINCT	operator	at	the
beginning	of	the	statement:

7.	 What	remains	for	the	full	push-down	is	the	loading	part	when	all	transformations	and
selected	datasets	are	inserted	into	the	target	table	PERSON_DETAILS.	The	reason	why
this	does	not	happen	in	this	particular	example	is	because	the	source	tables	and	target
tables	reside	in	different	datastores	which	connect	to	the	different	databases:	OLTP
(AdventureWorks_OLTP)	and	STAGE.

8.	 Substitute	the	PERSON_DETAILS	target	table	from	the	DS_STAGE	datastore	with	a	new
template	table,	PERSON_DETAILS,	created	in	the	DBO	schema	of	OLTP.

9.	 As	a	change,	you	can	see	that	Optimizer	now	fully	transforms	dataflow	logic	into	a
pushed-down	SQL	statement.

How	it	works…
Data	Services	Optimizer	wants	to	perform	push-down	operations	whenever	possible.	The
most	common	reasons,	as	we	demonstrated	during	the	preceding	steps,	for	push-down
operations	not	working	are	as	follows:

	
Functions:	When	functions	used	in	mappings	cannot	be	converted	by	Optimizer	to
similar	database	functions	in	generated	SQL	statements.	In	our	example,	the
lookup_ext()	function	prevents	push-down	from	happening.	One	of	the
workarounds	for	this	is	to	substitute	the	lookup_ext()	function	with	an	imported
source	table	object	joined	to	the	main	data	set	with	the	help	of	the	Query	transform
(see	the	following	screenshot):

Transform	objects:	When	transform	objects	used	in	a	dataflow	cannot	be	converted
by	Optimizer	to	relative	SQL	statements.	Some	transforms	are	simply	not	supported
for	push-down.
Automatic	data	type	conversions:	These	can	sometimes	prevent	push-down	from
happening.
Different	data	sources:	For	push-down	operations	to	work	for	the	list	of	source	or
target	objects,	those	objects	must	reside	in	the	same	database	or	must	be	imported
into	the	same	datastore.	If	they	reside	in	different	databases,	dblink	connectivity
should	be	configured	on	the	database	level	between	those	databases,	and	it	should	be
enabled	as	a	configuration	option	in	the	datastore	object	properties.	All	Data	Services
can	do	is	send	a	SQL	statement	to	one	database	source,	so	it	is	logical	that	if	you
want	to	join	multiple	tables	from	different	databases	in	a	single	SQL	statement,	you
have	to	make	sure	that	connectivity	is	configured	between	databases,	and	then	you
can	run	SQL	directly	on	the	database	level	before	even	starting	to	develop	the	ETL
code	in	Data	Services.

What	is	also	important	to	remember	is	that	Data	Services	Optimizer	capabilities	depend	on
the	type	of	underlying	database	that	holds	your	source	and	target	table	objects.	Of	course,
it	has	to	be	a	database	that	supports	the	SQL	standard	language	as	Optimizer	can	send	the
push-down	instructions	only	in	the	form	of	SQL	statements.

Sometimes,	you	actually	want	to	prevent	push-downs	from	happening.	This	can	be	the
case	if:

	
The	database	is	busy	to	the	extent	that	it	would	be	quicker	to	do	the	processing	on	the
ETL	box	side.	This	is	a	rare	scenario,	but	still	sometimes	occurs	in	real	life.	If	this	is
the	case,	you	can	use	one	of	the	methods	we	just	discussed	to	artificially	prevent	the
push-down	from	happening.
You	want	to	actually	make	rows	go	through	the	ETL	box	for	auditing	purposes	or	to
apply	special	Data	Services	functions	which	do	not	exist	at	the	database	level.	In
these	cases,	the	push-down	will	automatically	be	disabled	and	will	not	be	used	by
Data	Services	anyway.

Optimizing	dataflow	execution	–	the	SQL
transform
Simply	put,	the	SQL	transform	allows	you	to	specify	SQL	statements	directly	inside	the
dataflow	to	extract	source	data	instead	of	using	imported	source	table	objects.	Technically,
it	has	nothing	to	do	with	optimizing	the	performance	of	ETL	as	it	is	not	a	generally
recommended	practice	to	substitute	the	source	table	objects	with	the	SQL	transform
containing	hard-coded	SELECT	SQL	statements.

How	to	do	it…
	
1.	 Take	the	dataflow	used	in	the	previous	recipe	and	select	Validation	|	Display

Optimized	SQL…	to	see	the	query	pushed	down	to	the	database	level.	We	are	going
to	use	this	query	to	configure	our	SQL	transform	object,	which	will	substitute	all
source	table	objects	on	the	left-hand	side	of	the	dataflow.

2.	 On	the	Optimized	SQL	window,	click	on	Save	As…	to	save	this	push-down	query	to
the	file.

3.	 Drag-and-drop	the	SQL	transform	from	Local	Object	Library	|	Transforms	|
Platform	into	your	dataflow.

4.	 Now	you	can	remove	all	objects	on	the	left-hand	side	of	the	dataflow	prior	to	the
Lookup_Phone	Query	transform.

5.	 Open	the	SQL	transform	for	editing	in	a	workspace	window.	Choose	OLTP	as	a
datastore	and	copy	and	paste	the	query	saved	previously	from	your	file	into	the	SQL
text	field.	To	complete	the	SQL	transform	configuration,	create	output	schema	fields
of	appropriate	data	types	which	match	the	fields	returned	by	the	SELECT	statement.

6.	 Exit	the	SQL	transform	editor	and	link	it	to	the	next	Lookup_Phone	Query
transform.	Open	Lookup_Phone	and	map	the	source	columns	to	target.

7.	 Please	note	that	the	dataflow	does	not	perform	any	native	push-down	queries
anymore,	and	will	give	you	the	following	warning	message	if	you	try	to	display
optimized	SQL:

8.	 Validate	the	job	before	executing	it	to	make	sure	there	are	no	errors.

How	it	works…
As	you	can	see,	the	structure	of	the	SQL	transform	is	pretty	simple.	There	are	not	many
options	available	for	configuration.

	
Datastore:	This	option	defines	which	database	connection	will	be	used	to	pass	the
SELECT	query	to
Database	type:	This	option	pretty	much	duplicates	the	value	defined	for	the
specified	datastore	object
Cache:	This	option	defines	whether	the	dataset	returned	by	the	query	has	to	be
cached	on	the	ETL	box
Array	fetch	size:	This	option	basically	controls	the	amount	of	network	traffic
generated	during	dataset	transfer	from	database	to	ETL	box
Update	schema:	This	button	allows	you	to	quickly	build	the	list	of	schema	output
columns	from	the	SQL	SELECT	statement	specified	in	the	SQL	text	field

The	two	most	common	reasons	why	would	you	want	to	use	SQL	transform	instead	of
defining	source	table	objects	are	as	follows:

	
Simplicity:	Sometimes,	you	do	not	care	about	anything	else	except	getting	things
done	as	fast	as	possible.	Sometimes	you	can	get	the	extract	requirements	in	the	form
of	a	SELECT	statement,	or	if	you	want	to	use	a	tested	SELECT	query	in	your	ETL	code
straight	away.
To	utilize	database	functionality	which	does	not	exist	in	Data	Services:	This	is
usually	a	poor	excuse	as	experienced	ETL	developers	can	do	pretty	much	anything
with	standard	Data	Services	objects.	However,	some	databases	can	have	internal	non-
standard	SQL	functions	implemented	which	can	perform	complex	transformations.
For	example,	in	Netezza	you	can	have	functions	written	in	C++,	which	can	be
utilized	in	standard	SQL	statements	and,	most	importantly,	will	be	using	the	massive-
parallel	processing	functionality	of	the	Netezza	engine.	Of	course,	Data	Services
Optimizer	is	not	aware	of	these	functions	and	the	only	way	to	use	them	is	to	run
direct	SELECT	SQL	statements	against	the	database.	If	you	want	to	call	a	SQL
statement	like	this	from	Data	Services,	the	most	convenient	way	to	do	it	from	within
a	dataflow	is	to	use	the	SQL	transform	object	inside	the	dataflow.
Performance	reasons:	Once	in	a	while,	you	can	get	a	set	of	source	tables	joined	to
each	in	a	dataflow	for	which	Optimizer—for	some	reason	or	other—does	not	perform
a	push-down	operation.	You	are	very	restricted	in	the	ways	you	can	create	and	utilize
database	objects	in	this	particular	database	environment.	In	such	cases,	using	a	hard-
coded	SELECT	SQL	statement	can	help	you	to	maintain	an	adequate	level	of	ETL
performance.

As	a	general	practice,	I	would	recommend	that	you	avoid	SQL	transforms	as	much	as
possible.	They	can	come	in	handy	sometimes,	but	when	using	them.	you	not	only	lose	the
advantage	of	utilizing	Data	Services,	the	Information	Steward	reporting	functionality,	and
ability	to	perform	auditing	operations,	you	also	potentially	create	big	problems	for

yourself	in	terms	of	ETL	development	process.	Tables	used	in	the	SELECT	statements
cannot	be	traced	with	the	View	were	used	feature.	They	can	be	missing	from	your
datastores,	which	means	you	do	not	have	a	comprehensive	view	of	your	environment	and
underlying	database	objects	utilized	by	hiding	source	database	tables	inside	the	ETL	code
rather	than	having	them	on	display	in	Local	Object	Library.

This	obviously	makes	ETL	code	harder	to	maintain	and	support.	Not	to	mention	that
migration	to	another	database	becomes	a	problem	as	you	would	most	likely	have	to
rewrite	all	the	queries	used	in	your	SQL	transforms.

Note
The	SQL	transform	prevents	the	full	push-down	from	happening,	so	be	careful.	Only	the
SELECT	query	inside	the	SQL	transform	is	pushed	down	to	database	level.	The	rest	of	the
dataflow	logic	will	be	executed	on	the	ETL	box	even	if	the	full	push-down	was	working
before,	when	you	had	source	table	objects	instead	of	the	SQL	transform.

In	other	words,	the	result	data	set	for	the	SQL	transform	always	transferred	to	the	ETL
box.	That	can	affect	the	decisions	around	ETL	design.	From	the	performance	perspective,
it	is	preferable	to	spend	more	time	building	a	dataflow	based	on	the	source	object	tables
but	for	which	Data	Services	performs	the	full	push-down	(producing	the	INSERT	INTO	…
SELECT	statement),	rather	than	quickly	building	the	dataflow	which	will	transfer	datasets
back	and	forth	to	the	database,	increasing	the	load	time	significantly.

Optimizing	dataflow	execution	–	the	Data_Transfer
transform
The	transform	object	Data_Transfer	is	a	pure	optimization	tool	helping	you	to	push	down
resource-consuming	operations	and	transformations	like	JOIN	and	GROUP	BY	to	the
database	level.

Getting	ready
	
1.	 Take	the	dataflow	from	the	Loading	data	from	a	flat	file	recipe	in	Chapter	4,
Dataflow	–	Extract,	Transform,	and	Load.	This	dataflow	loads	the	Friends_*.txt	file
into	a	STAGE.FRIENDS	table.

2.	 Modify	the	Friends_30052015.txt	file	and	remove	all	lines	except	the	ones	about
Jane	and	Dave.

3.	 In	the	dataflow,	add	another	source	table,	OLTP.PERSON,	and	join	it	to	a	source	file
object	in	the	Query	transform	by	the	first-name	field.	Propagate	the	PERSONTYPE	and
LASTNAME	columns	from	the	source	OLTP.PERSON	table	into	the	output	Query
transform	schema,	as	shown	here:

How	to	do	it…
Our	goal	will	be	to	configure	this	new	dataflow	to	push	down	the	insert	of	the	joined
dataset	of	data	coming	from	the	file	and	data	coming	from	the	OLTP.PERSON	table	to	a
database	level.

By	checking	the	Optimized	SQL	window,	you	will	see	that	the	only	query	sent	to	a
database	from	this	dataflow	is	the	SELECT	statement	pulling	all	records	from	the	database
table	OLTP.PERSON	to	the	ETL	box,	where	Data	Services	will	perform	an	in-memory	join
of	this	data	with	data	coming	from	the	file.	It’s	easy	to	see	that	this	type	of	processing	may
be	extremely	inefficient	if	the	PERSON	table	has	millions	of	records	and	the	FRIENDS	table
has	only	a	couple	of	them.	That	is	why	we	do	not	want	to	pull	all	records	from	the	PERSON
table	for	the	join	and	want	to	push	down	this	join	to	the	database	level.

Looking	at	the	dataflow,	we	already	know	that	for	the	logic	to	be	pushed	down,	the
database	should	be	aware	of	all	the	source	data	sets	and	should	be	able	to	access	them	by
running	a	single	SQL	statement.	The	Data_Transfer	transform	will	help	us	to	make	sure
that	the	Friends	file	is	presented	to	a	database	as	a	table.	Follow	these	steps	to	see	how	it
can	be	done:

	
1.	 Add	the	Data_Transfer	object	from	Local	Object	Library	|	Transforms	|	Data

Integrator	into	your	dataflow,	putting	it	between	the	source	file	object	and	the	Query
transform.

2.	 Edit	the	Data_Transfer	object	by	opening	it	in	a	workspace	window.	Set	Transfer
type	to	Table	and	specify	the	new	transfer	table	in	the	Table	options	section	with
STAGE.DBO.FRIENDS_FILE.

3.	 Close	the	Data	Transfer	transform	editor	and	select	Validation	|	Display
Optimized	SQL…	to	see	the	queries	pushed	down	to	a	database.	You	can	see	that
there	are	now	two	SELECT	statements	generated	to	pull	data	from	the	OLTP.PERSON
and	STAGE.FRIENDS_FILE	tables.

The	join	between	these	two	datasets	happens	on	the	ETL	box.	Then	the	merged
data	set	is	sent	back	to	the	database	to	be	inserted	into	the	DS_STAGE.FRIENDS
table.

4.	 Add	another	Data_Transfer	transformation	between	the	source	table	PERSON	and
the	Query	transform.	In	the	Data_Transfer	configuration	window,	set	Transfer	type
to	Table	and	specify	DS_STAGE.DBO.DT_PERSON	as	the	data	transfer	table.

5.	 Validate	and	save	the	dataflow	and	display	the	Optimized	SQL	window.

Now	you	can	see	that	we	successfully	implemented	a	full	push-down	of	dataflow	logic,

inserting	merged	data	from	two	source	objects	(one	of	which	is	a	flat	file)	into	a	staging
table.	In	the	preceding	screenshot,	logic	in	the	section	marked	as	red	is	represented	by	a
SQL	statement	INSERT	pushed	down	to	the	database	level.

How	it	works…
Under	the	hood,	Data_Transfer	transform	creates	a	subprocess	that	transfers	the	data	to
the	specified	location	(file	or	table).	Simply	put,	Data_Transfer	is	a	target	dataflow	object
in	the	middle	of	a	dataflow.	It	has	a	lot	of	options	similar	to	what	other	target	table	objects
have;	in	other	words,	you	can	set	up	a	bulk-loading	mechanism,	run	Pre-Load
Commands	and	Post-Load	Commands,	and	so	on.

The	reason	why	I	called	Data_Transfer	a	pure	optimization	tool	is	because	you	can
redesign	any	dataflow	to	do	the	same	thing	that	Data_Transfer	does	without	using	it.	All
you	have	to	do	is	to	simply	split	your	dataflow	in	two	(or	three,	for	the	dataflow	in	our
example).	Instead	of	forwarding	your	data	into	a	Data_Transfer	transform,	you	forward	it
to	a	normal	target	object	and	then,	in	the	next	dataflow,	you	use	this	object	as	a	source.

Note
What	Data_Transfer	still	does,	which	cannot	be	done	easily	when	you	are	splitting
dataflows,	is	automatically	clean	up	temporary	data	transfer	tables.

It	is	critical	to	understand	how	push-down	mechanisms	work	in	Data	Services	to	be	able	to
effectively	use	the	Data_Transfer	transform.	Putting	it	to	use	at	the	wrong	place	in	a
dataflow	can	decrease	performance	drastically.

Why	we	used	a	second	Data_Transfer	transform	object
Our	goal	was	to	modify	the	dataflow	in	such	a	way	as	to	get	a	full	push-down	SQL
statement	to	be	generated:	INSERT	INTO	STAGE.FRIENDS	SELECT	<joined	PERSON	and
FRIENDS	data	sets>.

As	we	remember	from	the	previous	recipe,	there	could	be	multiple	reasons	why	full	push-
down	does	not	work.	One	of	these	reasons,	which	is	causing	trouble	in	our	current
example,	is	that	the	PERSON	table	resides	in	a	different	database,	while	our	data	transfer
table,	FRIENDS_FILE,	and	target	table,	FRIENDS,	reside	in	the	same	STAGE	database.

To	make	the	full	push-down	work,	we	had	to	use	a	second	Data_Transfer	transform
object	to	transfer	data	from	the	OLTP.PERSON	table	into	a	temporary	table	located	in	a
STAGE	database.

When	to	use	Data_Transfer	transform
Whenever	you	encounter	a	situation	where	a	dataflow	has	to	perform	a	very	“heavy”
transformation	(say	the	GROUP	BY	operation,	for	example)	or	join	two	very	big	data	sets
and	this	operation	is	happening	on	an	ETL	box.	In	these	cases,	it	is	much	quicker	to
transfer	the	required	data	sets	to	the	database	level	so	that	the	resource-intensive	operation
can	be	completed	there	by	the	database.

There’s	more…
One	of	the	good	examples	of	a	use	case	for	the	Data_Transfer	transform	is	when	you
have	to	perform	the	GROUP	BY	operation	in	a	Query	transform	right	before	inserting	data
into	a	target	table	object.	By	placing	Data_Transfer	right	before	the	Query	transform	at
the	end	of	the	dataflow,	you	can	quickly	insert	the	dataset	processed	by	dataflow	logic
before	the	Query	transform	with	the	GROUP	BY	operation	and	then	push	down	the	INSERT
and	GROUP	BY	operations	in	a	single	SQL	statement	to	a	database	level.

When	you	perform	the	transformations	on	datasets	which	include	millions	of	records,
using	the	Data_Transfer	transform	can	save	you	minutes,	and	sometimes	hours,
depending	on	your	environment	and	the	number	of	processed	records.

Optimizing	dataflow	readers	–	lookup	methods
There	are	different	ways	in	which	to	perform	the	lookup	of	a	record	from	another	table	in
Data	Services.	The	three	most	popular	ones	are:	a	table	join	with	a	Query	transform,	using
the	lookup_ext()	function,	and	using	the	sql()	function.

In	this	recipe,	we	will	take	a	look	at	all	these	methods	and	discuss	how	they	affect	the
performance	of	ETL	code	execution	and	their	impact	on	a	database	used	to	source	data
from.

Getting	ready
We	will	be	using	the	same	dataflow	as	in	the	first	recipe,	the	one	which	populates	the
PERSON_DETAILS	stage	table	from	multiple	OLTP	tables.

How	to	do	it…
We	will	perform	a	lookup	for	the	PHONENUMBER	column	of	a	person	from	the	OLTP	table
PERSONPHONE	in	three	different	ways.

Lookup	with	the	Query	transform	join
	
1.	 Import	the	lookup	table	into	a	datastore	and	add	the	table	object	as	a	source	in	the

dataflow	where	you	need	to	perform	the	lookup.
2.	 Use	the	Query	transform	to	join	your	main	dataset	with	the	lookup	table	using	the

BUSINESSENTITYID	reference	key	column,	which	resides	in	both	tables.

Lookup	with	the	lookup_ext()	function
	
1.	 Remove	the	PERSONPHONE	source	table	from	your	dataflow	and	clear	out	the	join

conditions	in	the	Lookup_Phone	Query	transform.
2.	 As	you	have	seen	in	the	recipes	in	previous	chapters,	the	lookup_ext()	function	can

be	executed	as	a	function	call	in	the	Query	transform	output	columns	list.	The	other
option	is	to	call	the	lookup_ext()	function	in	the	column	mapping	section.	For
example,	say	that	we	want	to	put	an	extra	condition	on	when	we	want	to	perform	a
lookup	for	specific	value.

Instead	of	creating	a	new	function	call	for	looking	up	the	PHONENUMBER	column	for	all
migrated	records,	let’s	put	in	the	condition	that	we	want	to	execute	the	lookup_ext()
function	only	when	the	row	has	nonempty	ADDRESSLINE1,	CITY,	and	COUNTRY
columns;	otherwise,	we	want	to	use	the	default	value	UNKNOWN	LOCATION.

3.	 Insert	the	following	lines	in	the	Mapping	section	of	the	PHONENUMBER	column	inside
the	Lookup_Phone	Query	transform:
ifthenelse(

		(Get_Country.ADDRESSLINE1	IS	NULL)	OR	

		(Get_Country.CITY	IS	NULL)	OR	

		(Get_Country.COUNTRY	IS	NULL),	‘UNKNOWN	LOCATION’,

lookup_ext()

)

4.	 Now	double-click	on	the	lookup_ext()	text	to	highlight	only	the	lookup_ext
function	and	right-click	on	the	highlighted	area	for	the	context	menu.

5.	 From	this	context	menu,	select	Modify	Function	Call	to	open	the	Lookup_ext
parameter	configuration	window.	Configure	it	to	perform	a	lookup	for	a	PHONENUMBER
field	value	from	the	PERSONPHONE	table.

After	closing	the	function	configuration	window,	you	can	see	the	full	code	generated	by
Data	Services	for	the	lookup_ext()	function	in	the	Mapping	section.

When	selecting	the	output	field,	you	can	see	all	source	fields	used	in	its	Mapping	section
highlighted	in	the	Schema	In	section	on	the	left-hand	side.

Lookup	with	the	sql()	function
	
1.	 Open	the	Lookup_Phone	Query	transform	for	editing	in	the	workspace	and	clear	out

all	code	from	the	PHONENUMBER	mapping	section.
2.	 Put	the	following	code	in	the	Mapping	section:

sql(‘OLTP’,‘select	PHONENUMBER	from	Person.PERSONPHONE	where	BUSINESSENTITYID	=	

How	it	works…
Query	transform	joins
The	advantages	of	this	method	are:

	
Code	readability:	It	is	very	clear	which	source	tables	are	used	in	transformation
when	you	open	the	dataflow	in	a	workspace.
Push-down	lookup	to	the	database	level:	This	can	be	achieved	by	including	a
lookup	table	in	the	same	SELECT	statement.	Yes,	as	soon	as	you	have	placed	the
source	table	object	in	the	dataflow	and	joined	it	properly	with	other	data	sources
using	the	Query	transform,	there	is	a	chance	that	it	will	be	pushed	down	as	a	single
SQL	SELECT	statement,	allowing	the	joining	of	source	tables	at	the	database	level.
DS	metadata	report	functionality	and	impact	analysis:	The	main	disadvantage	of
this	method	comes	naturally	from	its	advantage.	If	a	record	from	the	main	dataset
references	multiple	records	in	the	lookup	table	by	the	key	column	used,	the	output
data	set	will	include	multiple	records	with	all	these	values.	That	is	how	standard	SQL
query	joins	work,	and	the	Data	Services	Query	transform	works	in	the	same	way.
This	could	potentially	lead	to	duplicated	records	inserted	into	a	target	table
(duplicated	by	key	columns	but	with	different	values	in	the	lookup	field,	for
example).

lookup_ext()
The	opposite	of	a	Query	transform,	this	function	hides	the	source	lookup	table	object	from
the	developer	and	from	some	of	the	Data	Services	reporting	functionality.	As	you	have
seen,	it	can	be	executed	as	a	function	call	or	used	in	the	mapping	logic	for	a	specific
column.

This	function’s	main	advantage	is	that	it	will	always	return	a	single	value	from	the	lookup
table.	You	can	even	specify	the	return	policy,	which	will	be	used	to	determine	the	single
value	to	return—MAX	or	MIN—with	the	ability	to	order	the	lookup	table	dataset	by	any
column.

sql()
Similar	to	the	lookup_ext()	function	in	the	presented	example,	it	is	rarely	used	that	way
as	lookup_ext()	fetches	rows	from	the	lookup	table	more	efficiently,	if	all	you	want	to	do
is	to	extract	values	from	the	lookup	table	referencing	key	columns.

At	the	same	time,	the	sql()	function	makes	possible	the	implementation	of	very	complex
and	flexible	solutions	as	it	allows	you	to	pass	any	SQL	statement	that	can	be	executed	on
the	database	side.	This	can	be	the	execution	of	stored	procedures,	the	generation	of	the
sequence	numbers,	running	analytical	queries,	and	so	on.

As	a	general	rule,	though,	the	usage	of	the	sql()	function	in	the	dataflow	column
mappings	is	not	recommended.	The	main	reason	for	this	is	performance,	as	you	will	see
further	on.	Data	Services	has	a	rich	set	of	instruments	to	perform	the	same	task	but	with	a
proper	set	of	objects	and	ETL	code	design.

Performance	review
Let’s	quickly	review	dataflow	execution	times	for	each	of	the	explained	methods.

	
The	first	method:	The	lookup	with	the	Query	transform	took	6.4	seconds.

The	second	method:	The	lookup	with	the	lookup_ext()	function	took	6.6	seconds.

The	third	method:	This	used	the	sql()	function	and	took	73.3	seconds.

The	first	two	methods	look	like	the	methods	with	similar	effectiveness,	but	that	is	only
because	the	number	of	rows	and	the	size	of	the	dataset	used	is	very	small.	The
lookup_ext()	function	allows	the	usage	of	the	different	cache	methods	for	the	lookup
dataset,	which	makes	it	possible	to	tune	and	configure	it	depending	on	the	nature	of	your
main	data	and	that	of	the	lookup	data.	It	can	also	be	executed	as	a	separate	OS	process,
increasing	the	effectiveness	of	fetching	the	lookup	data	from	the	database.

The	third	figure	for	the	sql()	function,	on	the	contrary,	shows	the	perfect	example	of
extremely	poor	performance	when	the	sql()	function	is	used	in	the	column	mappings.

Optimizing	dataflow	loaders	–	bulk-loading
methods
By	default,	all	records	inside	a	dataflow	coming	to	a	target	table	object	are	sent	as	separate
INSERT	commands	to	a	target	table	at	the	database	level.	If	millions	of	records	pass	the
dataflow	and	transformation	happens	on	the	ETL	box	without	push-downs,	the
performance	of	sending	millions	of	INSERT	commands	over	the	network	back	to	a
database	for	insertion	could	be	extremely	slow.	That	is	why	it	is	possible	to	configure	the
alternative	load	methods	on	the	target	table	object	inside	a	dataflow.	These	types	of	loads
are	called	bulk-load	loads.	Bulk-load	methods	are	different	in	nature,	but	all	of	them	have
the	main	principle	and	achieve	the	same	goal—they	avoid	the	execution	of	millions	of
INSERT	statements	for	each	migrated	record,	providing	alternative	ways	of	inserting	data.

Bulk-load	methods	executed	by	Data	Services	for	inserting	data	into	a	target	table	are
completely	dependent	on	the	type	of	target	database.	For	example,	Oracle	Database	Data
Services	can	implement	bulk-loading	through	the	files	or	through	the	Oracle	API.

Bulk-loading	mechanisms	for	inserting	data	into	Netezza	or	Teradata	are	completely
different.	You	will	notice	this	straightaway	if	you	create	different	datastores	connecting	to
different	types	of	databases	and	compare	the	target	table	Bulk	Loader	Options	tab	to	the
target	table	object	from	each	of	these	datastores.

For	detailed	information	about	each	bulk-load	method	available	for	each	database,	please
refer	to	official	SAP	documentation.

How	to	do	it…
To	see	the	difference	between	loading	data	in	normal	mode—row	by	row—and	bulk
loading,	we	have	to	generate	quite	a	significant	number	of	rows.	To	do	this,	take	the
dataflow	from	a	previous	recipe,	Optimizing	dataflow	execution	–	the	SQL	transform,	and
replicate	it	to	create	another	copy	for	using	in	this	recipe.	Name	it	DF_Bulk_Load.

Open	the	dataflow	in	the	workspace	window	for	editing.

	
1.	 Add	a	new	Row_Generation	transform	from	Local	Object	Library	|	Transforms	|

Platform	as	a	source	object	and	configure	it	to	generate	50	rows,	starting	with	row
number	1.

2.	 The	Row_Generation	transform	is	used	to	multiply	the	number	of	rows	currently
being	transformed	by	the	dataflow	logic.	Previously,	the	number	of	rows	returned	by
the	Person_OLTP	SQL	transform	was	approximately	19,000.	By	performing	a
Cartesian	join	of	these	records	to	50	artificially	generated	records,	we	can	get	almost
1	million	records	inserted	in	a	target	PERSON_DETAILS	table.	To	implement	Cartesian
join,	use	the	Query	transform	but	without	specifying	any	join	conditions	and	leaving
the	section	empty.

3.	 Your	dataflow	should	look	like	this:

4.	 To	test	the	current	dataflow	execution	time,	save	and	run	the	job,	which	includes	this
dataflow.	Your	target	table’s	Bulk	Loader	Option	tab	should	be	disabled,	and	on	the
Options	tab,	the	Delete	data	from	table	before	loading	flag	should	be	selected.

5.	 The	execution	time	of	the	dataflow	is	49	seconds,	and	as	you	can	see,	it	took	42
seconds	for	Data	Services	to	insert	9,39,900	records	into	the	target	table.

6.	 To	enable	bulk	loading,	open	the	target	table	configuration	in	the	workspace	for
editing,	go	to	the	Bulk	Loader	Options	tab,	and	check	Bulk	load.	After	that,	set
Mode	to	truncate	and	leave	other	options	at	their	default	values.

7.	 Save	and	execute	the	job	again.
8.	 The	following	screenshot	shows	that	total	dataflow	execution	time	was	27	seconds,

and	it	took	20	seconds	for	Data	Services	to	load	the	same	number	of	records.	That	is
two	times	faster	than	loading	records	in	normal	mode	into	the	SQL	Server	database.
Your	time	could	be	slightly	different	depending	on	the	hardware	you	are	using	for
your	Data	Services	and	database	environments.

How	it	works…
Availability	of	the	bulk-load	methods	is	totally	dependent	on	which	database	you	use	as	a
target.	Data	Services	does	not	perform	any	magic;	it	simply	utilizes	bulk-loading	methods
available	in	a	database.

These	methods	are	different	for	different	databases,	but	the	principle	of	bulk	loading	is
usually	as	follows:	Data	Services	sends	the	rows	to	the	database	host	as	quickly	as
possible,	writing	them	into	a	local	file.	Then,	Data	Services	uses	the	external	table
mechanism	available	in	the	database	to	present	the	file	as	a	relational	table.	Finally,	it
executes	a	few	UPDATE/INSERT	commands	to	query	this	external	table	and	insert	data	into	a
target	table	specified	as	a	target	object	in	a	Data	Services	dataflow.

To	run	one	INSERT	…	SELECT	FROM	command	is	much	faster	than	to	execute	1	million
INSERT	commands.

Some	databases	perform	these	small	insert	operations	quite	effectively,	while	for	others
this	could	be	a	really	big	problem.	In	almost	all	cases,	if	we	talk	about	a	significant
number	of	records,	the	bulk-loading	method	will	always	be	the	quicker	way	to	insert	data.

When	to	enable	bulk	loading?
You	have	probably	noticed	that	as	soon	as	you	enable	bulk	loading	in	target	table
configuration,	the	Options	tab	becomes	grayed	out.	Unfortunately,	by	enabling	bulk
loading,	you	lose	all	extra	functionality	available	for	loading	data,	such	as	autocorrect
load,	for	example.	This	happens	because	of	the	nature	of	the	bulk-load	operation.	Data
Services	simply	passes	the	data	to	the	database	for	insertion	and	cannot	perform	extra
comparison	operations,	which	are	available	for	row-by-row	inserts.

The	other	reason	for	not	using	bulk	loading	is	that	enabled	bulk	loading	prevents	full
push-downs	from	occurring.	Of	course,	in	most	of	the	cases	push-down	is	the	best
possible	option	in	terms	of	execution	performance,	so	you	would	never	think	about
enabling	bulk	loading	if	you	have	full	push-down	working.	For	partial	push-downs,	when
you	push	down	only	SELECT	queries	to	get	data	onto	the	ETL	box	for	transformation,	bulk
loading	is	perfectly	valid.	You	still	want	to	send	records	back	to	the	database	for	insertion
and	want	to	do	it	as	quickly	as	possible.

Most	of	the	time,	bulk	loading	does	a	perfect	job	when	you	are	passing	a	big	number	of
rows	for	insertion	from	the	ETL	box	and	do	not	utilize	any	extra	loading	options	available
in	Data	Services.

The	best	advice	in	terms	of	making	decisions	to	enable	or	not	enable	bulk	loading	on	your
target	table	is	to	experiment	and	try	different	ways	of	inserting	data.	This	is	a	decision
which	should	take	into	account	all	parameters,	such	as	environment	configuration,
workload	on	a	Data	Services	ETL	box,	workload	on	a	database,	and	of	course,	the	number
of	rows	to	be	inserted	into	a	target	table.

Optimizing	dataflow	execution	–	performance
options
We	will	review	a	few	extra	options	available	for	different	transforms	and	objects	in	Data
Services	which	affect	performance	and,	sometimes,	the	way	ETL	processes	and	transforms
data.

Getting	ready
For	this	recipe,	use	the	dataflow	from	the	recipe	Optimizing	dataflow	readers	–	lookup
methods	in	this	chapter.	Please	refer	to	this	recipe	if	you	need	to	create	or	rebuild	this
dataflow.

How	to	do	it…
Data	Services	performance-related	configuration	options	can	be	put	under	the	following
categories:

	
Dataflow	performance	options
Source	table	performance	options
Query	transform	performance	options
Lookup	functions	performance	options
Target	table	performance	options

In	the	following	sections,	we	will	review	and	explain	all	of	them	in	details.

Dataflow	performance	options
To	access	dataflow	performance	options,	right-click	on	a	dataflow	object	and	select
Properties	from	the	context	menu.

The	Degree	of	parallelism	option	replicates	transform	processes	inside	the	dataflow
according	to	the	number	specified.	Data	Services	creates	separate	subdataflow	processes
and	executes	them	in	parallel.	At	the	points	in	the	dataflow	where	the	processing	cannot
be	parallelized,	data	is	merged	back	together	from	different	subdataflow	processes	in	the
main	dataflow	process.	If	the	source	table	used	in	the	dataflow	is	partitioned	and	the	value
in	the	Degree	of	parallelism	option	is	higher	than	1,	Data	Services	can	use	multiple
reader	processes	to	read	the	data	from	the	same	table.	Each	reader	reads	data	from
corresponding	partitions.	Then,	data	is	merged	or	continued	to	be	processed	in	parallel	if
the	next	transform	object	allows	parallelization.

For	detailed	information	on	how	the	Degree	of	Parallelism	option	works,	please	refer	to
the	official	documentation,	SAP	Data	Services:	Performance	Optimization	Guide.	You
should	be	very	careful	with	this	parameter.	The	usage	and	value	of	Degree	of	parallelism
should	depend	on	the	complexity	of	the	dataflow	and	on	the	resources	available	on	your
Data	Services	ETL	server,	such	as	the	number	of	CPUs	and	amount	of	memory	used.

If	the	Use	database	links	option	is	configured	on	both	database	and	Data	Services
datastore	levels,	database	links	can	help	to	produce	push-down	operations.	Use	this	option
to	enable	or	disable	database	links	usage	inside	a	dataflow.

Cache	type	defines	which	type	of	cache	will	be	used	inside	a	dataflow	for	caching
datasets.	A	Pageable	cache	is	stored	on	the	ETL	server’s	physical	disk	and	In-Memory
keeps	the	cached	dataset	in	memory.	If	the	dataflow	processes	very	large	datasets,	it	is

recommended	that	you	use	a	pageable	cache	to	not	run	out	of	memory.

Source	table	performance	options
Open	your	dataflow	in	the	workspace	and	double-click	on	any	source	table	object	to	open
the	table	configuration	window.

Array	fetch	size	allows	you	to	optimize	the	number	of	requests	Data	Services	sends	to
fetch	the	source	data	set	onto	the	ETL	box.	The	higher	the	number	used,	the	fewer	the
requests	that	Data	Services	has	to	send	to	fetch	the	data.	This	setting	should	be	dependent
on	the	speed	of	your	network.	The	faster	your	network	is,	the	higher	the	number	you	can
specify	to	move	the	data	in	bigger	chunks.	By	decreasing	the	number	of	requests,	you	can
potentially	also	decrease	the	CPU	usage	consumption	on	your	ETL	box.

Join	rank	specifies	the	“weight”	of	the	table	used	in	Query	transforms	when	you	join
multiple	tables.	The	higher	the	rank,	the	earlier	the	table	will	be	joined	to	the	other	tables.
If	you	have	ever	optimized	SQL	statements,	you	know	that	specifying	big	tables	in	the
join	conditions	earlier	can	potentially	decrease	the	execution	time.	This	is	because	the
number	of	records	after	the	first	join	pair	can	be	decreased	dramatically	through	inner
joins,	for	example.	This	makes	the	join	pairs	further	on	produce	smaller	datasets	and	run
quicker.	The	same	principle	applies	here	in	Data	Services	but	to	specify	the	order	of	join
pairs,	you	can	use	the	rank	option.

Cache	can	be	set	up	if	you	want	the	source	table	to	be	cached	on	the	ETL	server.	The	type
of	cache	used	is	determined	by	the	dataflow	cache	type	option.

Query	transform	performance	options
Open	the	Query	transform	in	the	workspace	window:

Join	rank	offers	the	same	options	as	described	earlier	and	allows	you	to	specify	the	order
in	which	the	tables	are	joined.

Cache	is,	again,	the	same	as	described	earlier	and	defines	whether	the	table	will	be	cached
on	the	ETL	server.

lookup_ext()	performance	options
Right-click	on	the	selected	lookup_ext	function	in	the	column	mapping	section	or	on	the
function	call	in	the	output	schema	of	the	Query	transform	and	select	Modify	Function
Call	in	the	context	menu:

Cache	spec	defines	the	type	of	cache	method	used	for	the	lookup	table.	NO_CACHE
means	that,	for	every	row	in	the	main	dataset,	a	separate	SELECT	lookup	query	is
generated,	extracting	value	from	the	database	lookup	table.	When	PRE_LOAD_CACHE
is	used,	the	lookup	table	first	pulled	to	the	ETL	box	and	cached	in	memory	or	on	the
physical	disk	(depending	on	the	dataflow	cache	type	option).
DEMAND_LOAD_CACHE	is	a	more	complex	method	best	used	when	you	are	looking
up	repetitive	values.	Only	then	is	it	most	efficient.	Data	Services	caches	only	values
already	extracted	from	the	lookup	table.	If	it	encounters	a	new	key	value	that	does	not
exist	in	the	cached	table,	it	makes	another	request	to	the	lookup	table	in	the	database	to
find	it	and	then	caches	it	too.

Run	as	a	separate	process	can	be	encountered	in	many	other	transforms	and	object
configuration	options.	It	is	useful	when	the	transform	is	performing	high-intensive
operations	consuming	a	lot	of	CPU	and	memory	resources.	If	this	option	is	checked,	Data
Services	creates	separate	subdataflow	processes	that	perform	this	operation.	Potentially,
this	option	can	help	parallelize	object	execution	within	a	dataflow	and	speed	up	processing
and	transformations	significantly.	By	default,	the	OS	creates	a	single	process	for	a
dataflow,	and	if	not	parallelized,	all	processing	is	done	within	this	single	OS	process.	Run
as	separate	process	help	to	create	multiple	processes	helping	main	dataflow	OS	process	to
perform	all	extracts,	join	and	calculations	as	fast	as	possible.

Target	table	performance	options
Click	on	a	target	table	to	open	its	configuration	options	in	the	workspace	window:

Rows	per	commit	is	similar	to	Array	fetch	size	but	defines	how	many	rows	are	sent	to	a
database	within	the	same	network	packet.	Do	decrease	amounts	of	packets	with	rows	for
insert	sent	to	a	database	you	can	increase	this	number.

Number	of	loaders	helps	to	parallelize	the	loading	processes.	Enable	partitions	on	the
table	objects	on	the	Datastores	tab	if	the	tables	are	partitioned	at	the	database	level.	If
they	are	not	partitioned,	set	the	same	number	of	loaders	as	Degree	of	parallelism.

Chapter	9.	Advanced	Design	Techniques
The	topics	we	will	cover	in	this	chapter	include:

	
Change	Data	Capture	techniques
Automatic	job	recovery	in	Data	Services
Simplifying	ETL	execution	with	system	configurations
Transforming	data	with	the	Pivot	transform

Introduction
This	chapter	will	guide	you	through	the	advanced	ETL	design	methods.	Most	of	them	will
utilize	Data	Services	features	and	functionality	already	explained	in	the	previous	chapters.
As	you	have	probably	noticed,	there	are	many	ways	to	do	the	same	thing	in	Data	Services.
The	methods	and	logic	you	apply	to	solve	the	specific	problem	often	depend	on
environment	characteristics	and	some	other	conditions,	such	as	development	resources	and
extract	requirements	applied	to	the	source	systems.	On	the	contrary,	some	of	the	methods
and	techniques	explained	further	do	not	depend	on	all	these	factors	and	could	be
considered	as	ETL	development	best	practices.

In	this	chapter	we	will	discuss	a	very	popular	method	of	populating	slowly	changing
dimensions	in	data	warehouse,	which	require	the	use	of	a	combination	of	Data	Services
transforms	and	dataflow	design	techniques.

We	will	also	review	automatic	recovery	methods	available	in	Data	Services,	which	allow
you	to	easily	restart	previously	failed	jobs	without	performing	extra	recovery	steps	for
various	components	of	ETL	code	and	underlying	target	data	structures.

Another	topic	discussed	in	this	chapter	is	the	usage	of	system	configurations	in	Data
Services.	This	feature	allows	you	to	simplify	your	ETL	development	and	makes	it	easy	to
run	the	same	jobs	against	various	sources	and	target	environments.

Finally,	we	will	review	one	of	the	advanced	Data	Services	transforms	that	enables	you	to
implement	the	pivoting	transformation	method	on	the	passing	data	converting	rows	into
columns	and	vice	versa.

Change	Data	Capture	techniques
Change	Data	Capture	(CDC)	is	the	method	of	developing	ETL	processes	to	propagate
changes	in	the	source	system	into	your	data	warehouse	for	dimension	tables.

Getting	ready
CDC	is	directly	related	to	another	DWH	concept	of	Slowly	Changing	Dimensions
(SCD),	the	dimension	tables	that	data	changes	constantly	throughout	the	life	of	data
warehouse.

A	good	example	would	be	the	Employee	dimension	table,	which	holds	data	on	the
employees	in	your	company.	As	you	can	imagine,	this	table	is	in	constant	flux:	new
employees	are	hired	and	some	employees	leave	the	company,	change	positions	and	roles,
or	even	transfer	between	departments.	All	these	changes	have	to	be	propagated	to	an
Employee	dimension	table	in	DWH	from	the	source	systems,	which	always	store	only	the
latest	state	of	the	Employee	data.	In	DWH,	in	most	cases,	for	most	of	the	dimension	tables,
you	want	to	keep	the	historical	data	to	be	able	to	derive	the	state	of	the	Employee	data	at	a
specific	point	of	time	in	the	past.	That	is	why	SCD	tables	have	extra	fields	to
accommodate	historical	data	and	can	be	populated	using	various	methods,	depending	on
their	type.

There	are	many	different	types	of	SCD	tables,	but	we	will	quickly	discuss	only	the	three
main	ones	as	the	rest	are	just	combinations	of	these	three.	We	will	refer	to	SCD	type
numbers	according	to	Ralph	Kimball’s	methodology	in	brackets.

As	an	example,	let’s	take	the	case	of	the	Employee	dimension	table	when	one	employee
John	gets	transferred	from	marketing	to	finance.

No	history	SCD	(Type	1)
Yes,	a	no	history	SCD	table	is	one	that	does	not	store	historical	data	at	all.	Records	are
inserted	(new	records)	and	updated	(changes).	Take	a	look	at	the	following	example.

The	original	record	for	John	looks	like	this:

ID NAME DEPARTMENT

1 John Marketing

Here’s	what	the	new	record	looks	like	after	the	changes	are	applied:

ID NAME DEPARTMENT

1 John Finance

This	type	of	SCD	does	not	keep	historical	records	at	all;	as	you	can	see,	there	is	no
information	that	John	has	ever	worked	in	a	different	department.

Limited	history	SCD	(Type	3)
A	limited	history	table	uses	extra	fields	in	the	same	record	to	keep	the	current	value	and	a
previous	value,	as	shown	here:

ID NAME DEP_PREV DEP_CUR EFFECTIVE_DATE

1 John Marketing Finance 27/02/2015

It	is	“limited”	as	you	have	to	add	extra	columns	for	every	new	“historical	state”	of	the
row.	In	the	preceding	example,	you	can	keep	track	of	only	the	current	and	previous	values
of	the	record.

Unlimited	history	SCD	(Type	2)
Unlimited	history	is	possible	if	you	create	multiple	records	for	each	entity.	Only	one
record	represents	the	current	value.	One	of	the	variations	of	an	unlimited	history	SCD	is
shown	in	the	following	table:

KEY ID NAME DEPARTMENT START_DT END_DT CUR_FLAG

1 1 John Marketing 1582/01/01 27/02/2015 N

2 1 John Finance 27/02/2015 9999/12/31 Y

The	ID	is	a	natural	key	in	the	dimension	table.	For	John,	this	is	1.	This	type	of	SCD
requires	the	creation	of	a	surrogate	key	to	define	the	uniqueness	of	the	record.	The
CUR_FLAG	field	defines	current	record.	The	START_DT	and	END_DT	columns	show	the	period
of	time	when	the	record	was	valid/current.	Note	that	these	date	fields	do	not	represent	any
business	value	such	as	start	employment	date	or	date	of	birth.	They	just	show	the	start	and
end	dates	of	the	period	when	the	record	was	valid	(or	current)	and	are	only	used	to
accommodate	preserving	historical	records.	When	populating	initial	records	for	the	first
time	in	an	SCD	table,	you	may	often	want	to	use	dates	from	the	distant	past	and	future,
such	as	1582/01/01	and	9999/12/31,	called	“low”	and	“high”	date	values.	This	allows
users	to	run	reports	which	retrieve	more	accurate	historical	information.

By	using	a	low	date	in	the	START_DT	field,	we	mark	the	record	as	an	initial	historical
record	in	our	dimension	table.	The	same	goes	for	using	a	high	date	in	the	END_DT	column.
It	always	has	a	CURR_IND	flag	set	to	Y	and	shows	the	latest	(current)	record	in	the	history
table.

Each	time	you	make	a	change	to	the	Employee	table,	in	our	case	to	the	NAME	or
DEPARTMENT	fields,	you	have	to	update	the	“current”	record	by	changing	the	END_DT	and
CUR_FLAG	field	values	with	the	date	of	change	and	N,	respectively,	and	you	also	have	to
insert	a	new	record	with	START_DT	set	to	the	date	of	change	and	CUR_FLAG	set	to	Y.

In	this	recipe,	we	will	build	a	dataflow	that	populates	the	SCD	table	of	the	unlimited
history	type	(as	shown	in	the	Type	2	example).	Data	Services	has	a	special	transform
object	called	History_Preserving,	which	allows	the	automatic	update/insert	of	the
changed	and	new	history	records.

How	to	do	it…
To	build	the	CDC	process—which	will	update	our	target	SCD	table	in	data	warehouse—
from	a	source	OLTP	table,	we	need	to	have	two	dataflows.	The	first	will	extract	data	from
the	source	OLTP	system	into	a	staging	table	located	in	the	STAGE	database,	and	the	second
will	use	this	STAGE	table	to	compare	data	in	it	with	the	target	table	contents	and	will
produce	the	history	records	(in	for	of	INSERT	and	UPDATE	SQL	statements)	to	propagate	the
date	changes	into	a	target	SCD	table.

	
1.	 Create	a	new	job	and	new	extract	dataflow,	DF_OLTP_Extract_STAGE_Employee,	that

extracts	the	Employee	table	from	the	HumanResources	schema	into	a	staging	table,
STAGE_EMPLOYEE.

For	our	future	Employee	SCD	table,	we	will	only	be	extracting	the	following	list	of
fields	from	OLTP.EMPLOYEE:

Field Description

BUSINESSENTITYID Primary	key	for	Employee	records

NATIONALIDNUMBER Unique	national	ID

LOGINID Network	logic

ORGANIZATIONLEVEL The	depth	of	the	employee	in	the	corporate	hierarchy

JOBTITLE Work	title

BIRTHDATE Date	of	birth

MARITALSTATUS M=Married,	S=Single

GENDER M=Male,	F=Female

HIREDATE Employee	hired	on	this	date

SALARIEDFLAG Job	classification

VACATIOINHOURS Number	of	available	vacation	hours

SICKLEAVEHOURS Number	of	available	sick	leave	hours

Map	only	these	fields	to	the	output	schema	of	the	Extract	Query	transform.

2.	 Create	a	new	dataflow,	DF_STAGE_Load_DWH_Employee,	and	link	the	first	extract
dataflow	to	it	in	the	same	job.

3.	 Create	an	empty	target	SCD	table,	EMPLOYEE,	by	using	the	CREATE	TABLE	statement	in
SQL	Server	Management	Studio	when	connected	to	the	AdventureWorks_DWH
database.
CREATE	TABLE	[dbo].[EMPLOYEE](

		[ID]	[decimal](22,	0)	NULL,

		[BUSINESSENTITYID]	[int]	NULL,

		[NATIONALIDNUMBER]	[varchar](15)	NULL,

		[LOGINID]	[varchar](256)	NULL,

		[ORGANIZATIONLEVEL]	[int]	NULL,

		[JOBTITLE]	[varchar](50)	NULL,

		[BIRTHDATE]	[date]	NULL,

		[MARITALSTATUS]	[varchar](1)	NULL,

		[GENDER]	[varchar](1)	NULL,

		[HIREDATE]	[date]	NULL,

		[SALARIEDFLAG]	[int]	NULL,

		[VACATIONHOURS]	[int]	NULL,

		[SICKLEAVEHOURS]	[int]	NULL,

		[START_DT]	[date]	NULL,

		[END_DT]	[date]	NULL,

		[CUR_FLAG]	[varchar](1)	NULL

)	ON	[PRIMARY]

4.	 Import	the	EMPLOYEE	table	created	in	the	previous	step	into	the	DWH	datastore.
5.	 Open	the	DF_STAGE_Load_DWH_Employee	dataflow	in	the	workspace	window	to	edit	it

and	add	the	required	transformations,	as	shown	in	the	following	figure.

These	steps	explain	the	configuration	of	each	of	the	DF	objects	we	just	used:

	
1.	 The	Query	transform	is	used	to	create	an	extra	field,	START_DT,	of	the	date	data	type.

It	will	be	used	by	a	History_Preserving	transform	to	produce	the	start	date	of	the
history	record	in	the	target	SCD	table.

2.	 The	Table_Comparison	transform	is	used	to	compare	the	dataset	from	the
STAGE_EMPLOYEE	table	to	the	target	SCD	table	dataset	in	order	to	produce	the	rows	of
the	INSERT	type	to	create	records	which	do	not	exist	in	the	target	but	do	exist	in
source	according	to	specified	key	columns	and	rows	of	the	UPDATE	type.	Source
records	of	which	the	ID	column	exists	in	the	target	table	will	be	used	to	provide	new
values	for	non-key	fields.	The	input	primary	key	column	we	specify	for
Table_Comparison	to	determine	whether	the	record	exists	in	the	comparison	table	is
BUSINESSENTITYID.	The	rest	of	the	source	columns	go	into	the	Compare	columns
section	as	we	want	to	use	all	of	them	to	determine	if	any	value	in	any	of	these	fields
has	changed.

3.	 The	History_Preserving	transform	works	in	tandem	with	Table_Comparison	to
produce	“history”	records	updating	the	additional	START_DT,	END_DT,	and	CUR_IND
fields,	along	with	the	rest	of	the	non-key	fields,	or	to	create	new	history	records	for
the	INSERT	type	of	rows	defined	by	previous	Table_Comparison.

The	Compare	columns	section	should	have	the	same	list	of	comparison	columns	as
in	the	previous	Table_Comparison	transform.	You	can	also	control	which	format
will	be	used	as	a	high	date	(9999.12.31)	and	which	values	will	be	used	in	the
Current	flag	field.

4.	 The	Key_Generation	transform	generates	surrogate	unique	keys	in	the	ID	field	for
our	history	SCD	table	EMPLOYEE	as	BUSINESSENTITYID	will	no	longer	represent	the
uniqueness	of	the	record	if	multiple	history	rows	are	created	for	the	same	employee.

5.	 Save	and	execute	the	job	initially	to	populate	the	target	SCD	table	with	the	initial
dataset.	After	running	the	job,	if	you	check	the	contents	of	the	target	table,	you	will
see	that	it	represents	the	same	dataset	as	in	the	OLTP.Employee	table	but	with	extra
start/end	date	columns	populated.

Note

Note	that,	as	this	is	the	initial	dataset,	no	history	records	have	been	created	for	any
employee.	Thus,	the	BUSINESSENTITYID	column	still	has	unique	values	in	this
dataset.

6.	 Let’s	generate	some	history	records	in	our	target	SCD	table.	To	do	that,	we	have	to
make	changes	to	the	source	OLTP	table	by	executing	the	following	statements	in
SQL	Server	Management	Studio	when	connected	to	the	AdventureWorks_OLTP
database:
select	*	from	HumanResources.Employee	where	BusinessEntityID	in	(1,999);

insert	into	HumanResources.Employee	

(BusinessEntityID,NationalIDNumber,LoginID,OrganizationNode,JobTitle,BirthDate,MaritalStatus,Gender,

HireDate,SalariedFlag,VacationHours,SickLeaveHours)

values	

(999,‘999999999’,‘domain\johnny’,null,‘Engineer’,‘1982-01-

01’,‘S’,‘M’,SYSDATETIME(),1,99,10);

update	HumanResources.Employee	set	JobTitle	=	‘CEO’	

where	BusinessEntityID	=	1;

7.	 Now	run	the	job	a	second	time	and	check	the	contents	of	the	target	SCD	table,
EMPLOYEE,	for	employees	with	BUSINESSENTITYID	set	to	1	and	999.

How	it	works…
Another	important	thing	we	have	to	discuss	before	we	explain	in	detail	how	this	CDC
dataflow	works	is	the	difference	between	the	different	types	of	CDC	architecture.

There	are	two	basic	types	of	CDC	methods,	or	methods	allowing	you	to	populate	SCD
tables.	They	are	usually	called	source-based	CDC	and	target-based	CDC.	You	can	use
either	of	them	or	even	both	of	them	simultaneously	to	populate	any	type	of	SCD	table.
They	are	different	only	in	how	changes	in	the	source	data	are	determined.

So,	imagine	that	you	have	populated	the	Employee	DWH	dimension	table	(which	has	not
been	updated	for	a	couple	of	days)	on	one	hand	and	the	source	Employee	OLTP	table
(which	might	or	might	not	be	different	from	the	target	DWH	table’s	current	snapshot	of
employee	data).

Source-based	ETL	CDC
This	method	allows	you	to	determine	which	employee	records	have	had	their	values
changed	since	the	last	time	you	updated	the	SCD	dimension	table	in	your	data	warehouse
just	by	looking	at	the	source	Employee	table.	For	this	to	work,	the	source	table	should	have
the	MODIFY_DATE	and	CREATE_DATE	fields	in	it,	updated	with	the	current	date/time	each
time	the	record	in	the	source	Employee	table	gets	updated	or	created	(if	it	is	a	new
employee	record).

Another	component	required	for	source-based	CDC	is	the	date/time	when	the	Employee
table	has	been	migrated	to	populate	the	DWH	table	for	the	last	time	(usually	stored	in	an
ETL	log	table	and	extracted	into	a	variable,	$v_last_update_date).

So,	each	time	you	perform	an	extraction	of	the	source	Employee	table,	you	add	a	filtering
condition,	such	as	SELECT	*	FROM	EMPLOYEE	WHERE	MODIFY_DATE	>=
$v_last_update_date	OR	CREATE_DATE	>=	$v_last_update_date.	This	allows	you	to
extract	significantly	fewer	records	from	the	source	system,	increasing	the	ETL	processing
speed	and	decreasing	your	CPU,	memory,	and	network	resource	consumption.

Then,	in	a	dataflow	that	populates	the	target	SCD	table	in	DWH,	you	determine	whether
this	is	a	new	or	updated	record	by	checking	the	MODIFY_DATE	and	CREATE_DATE	values.
With	the	Map_Operation	transform,	change	the	record	operation	type	to	either	INSERT	or
UPDATE	to	send	them	to	the	History_Preserving	transform	for	history	record	generation.

Target-based	ETL	CDC
In	target-based	CDC,	the	whole	source	table	is	extracted	and	each	extracted	record	is	then
compared	with	each	target	SCD	table	record.	Data	Services	has	an	excellent
transformation	object,	Table_Comparison,	which	performs	this	operation,	producing
INSERT/UPDATE/DELETE	records	and	sending	them	to	the	History_Preserving	transform	for
history	record	generation.

There’s	no	need	to	specify	that	pure	target-based	CDC	is	a	resource-	and	time-consuming
method,	the	main	advantage	of	which	is	the	simplicity	of	implementation.	So,	why	not
mix	them	together	then	to	get	the	speed	of	source-based	CDC	when	extracting	fewer
records	and	the	simplicity	of	target-based	CDC,	using	only	two	transforms,

Table_Comparison	and	History_Preserving,	to	determine	the	rows	for	INSERT	and
UPDATE	and	for	preparing	history	rows	which	will	be	sent	to	target	SCD	table.

In	the	steps	of	this	recipe,	we	implemented	a	pure	target-based	CDC	method.	The
following	screenshot	shows	you	one	of	the	possible	ways	(in	a	very	simplistic	form)	in
which	to	update	our	target-based	CDC	to	utilize	the	techniques	of	the	source-based	CDC
method	in	order	to	determine	the	dataset	for	extraction	with	only	the	changed	data:

The	initial	script	here	uses	the	log	table	CDC_LOG	to	extract	the	date	when	the	data	was
successfully	extracted	and	applied	to	SCD	target	table	the	last	time.

The	CDC_LOG	table	has	only	one	field,	EXTRACT_DATE,	and	always	has	only	one	record
showing	when	the	CDC	process	was	executed	the	last	time.	We	extract	this	value	from	it
before	running	our	CDC	dataflows	and	update	it	right	after	the	successful	execution	of	all
CDC	dataflows.

The	final	script	updates	the	log	table	with	the	current	time,	so	when	the	job	is	executed	the
next	time,	it	will	only	extract	records	that	have	been	modified	since	that	date.

There	are	many	variations	of	source-based	CDC	method	implementation.	They	all	depend
on	how	often	data	is	extracted,	if	there	is	a	MODIFIED_DATE	column	on	the	source	table,
how	intensively	the	source	table	is	updated	with	new	values,	and	so	on.

The	main	idea	here	is	to	extract	as	few	records	as	possible	without	losing	the	changes
made	to	the	source	table.

Native	CDC
Some	databases,	such	as	MS	SQL	Server	and	Oracle,	have	the	Native	CDC	functionality,
which	can	be	enabled	for	specific	tables.	When	any	DML	operations	are	performed	on	the
table	contents,	the	database	updates	the	internal	CDC	structures	logging	when	and	how	the

table	records	were	updated	the	last	time.	Data	Services	can	utilize	this	native	CDC
functionality	provided	by	the	database.	This	configuration	can	be	done	at	a	datastore	level
by	using	datastore	options	when	you	create	a	datastore	object.

Using	this	functionality	allows	you	to	always	select	only	changed	records	from	the	source
database	tables.

We	will	not	discuss	the	details	of	using	Native	CDC	in	Data	Services,	but	you	can
consider	this	task	as	a	good	homework	practice	and	try	to	create	your	own	CDC
dataflows.	Just	do	not	forget	that	CDC	has	to	first	be	enabled	at	the	database	level	before
you	make	any	configuration	changes	on	the	Data	Services	side	and	start	developing	ETL.

Automatic	job	recovery	in	Data	Services
The	recovery	process	usually	kicks	in	when	Data	Services	jobs	fail.	A	failed	job,	in	most
cases,	means	that	some	part	of	it	has	completed	successfully	and	some	part	has	not.	The
job	which	has	failed	right	at	the	very	beginning	is	rarely	a	problem	and	is	of	hardly	any
concern	for	recovery	as	all	you	have	to	do	is	to	start	it	again.

Complications	arise	when	the	job	fails	in	the	middle	of	the	insert,	into	a	target	table	for
example.	Cases	like	that	require	you	to	either	consider	deleting	already	inserted	records	or
even	recovering	a	copy	of	the	table	from	a	backup	using	database	recovery	methods.

Recovery	and	error	handling	is	an	important	part	of	robust	ETL	code.	In	this	recipe,	we
will	take	a	look	at	the	methods	used	to	develop	ETL	in	Data	Services	and	the	functionality
available	in	the	software	to	make	sure	that	the	process	of	resuming	failed	processes	goes
as	smoothly	as	possible.

The	automatic	job	recovery	feature	available	in	Data	Services	does	not	fix	the	problems
with	the	partially	inserted	data	or	missing	keys	problems	(when	an	insert	into	a	fact	table
cannot	find	the	related	key	values	in	the	referenced	dimension	tables	because	they	have
not	been	properly	populated	after	the	last	job	failure).	Also,	this	feature	does	not	protect
you	from	poor	ETL	design	or	development	errors	when,	for	example,	your	ETL	migration
process	does	an	automatic	conversion	of	data	between	incompatible	data	types.	In	that
case,	it	is	your	job	to	develop	your	ETL	in	such	a	way	that	you	can	cleanse	the	data	if
necessary	and	do	manual	conversions,	making	sure	that	you	can	either	convert	the	value	in
the	field	between	data	types	or	set	the	row	with	this	value	aside	to	investigate	or	deal	with
it	later.

The	automatic	job	recovery	feature	simply	tracks	down	the	execution	statuses	of	all
dataflow	and	workflow	objects	from	within	a	job,	and	if	the	job	fails,	it	allows	you	to
restart	the	job	without	the	need	to	run	successfully	completed	processes	again.

Let’s	see	how	it	works.

Getting	ready
We	will	use	the	job	from	the	previous	recipe.	This	job	contains	two	dataflows:	an	extract
of	the	Employee	table	from	the	OLTP	source	database	into	the	staging	area	and	the	load	of
the	data	from	the	staging	table	into	the	target	data	warehouse	history	table,	Employee.

We	have	to	emulate	the	failed	process.	To	do	that,	we	will	drop	the	target	dimension	table
populated	by	the	second	dataflow.

First	of	all,	generate	a	CREATE	TABLE	statement	from	the	table	dbo.EMPLOYEE	using	SQL
Server	Management	Studio.	Do	this	by	right-clicking	on	the	table	object	and	selecting
Script	Table	As	|	CREATE	To	|	New	Query	Editor	Window	on	the	context	menu	so
that	you	can	create	a	table	with	the	same	table	definition	without	any	difficulties.	Save	this
code	on	your	physical	drive	for	later	use	to	recreate	the	table:
CREATE	TABLE	[dbo].[EMPLOYEE](

		[ID]	[decimal](22,	0)	NULL,

		[BUSINESSENTITYID]	[int]	NULL,

		[NATIONALIDNUMBER]	[varchar](15)	NULL,

		[LOGINID]	[varchar](256)	NULL,

		[ORGANIZATIONLEVEL]	[int]	NULL,

		[JOBTITLE]	[varchar](50)	NULL,

		[BIRTHDATE]	[date]	NULL,

		[MARITALSTATUS]	[varchar](1)	NULL,

		[GENDER]	[varchar](1)	NULL,

		[HIREDATE]	[date]	NULL,

		[SALARIEDFLAG]	[int]	NULL,

		[VACATIONHOURS]	[int]	NULL,

		[SICKLEAVEHOURS]	[int]	NULL,

		[START_DT]	[date]	NULL,

		[END_DT]	[date]	NULL,

		[CUR_FLAG]	[varchar](1)	NULL

)	ON	[PRIMARY]

Then,	execute	the	follow	command	to	drop	the	table:
DROP	TABLE	[dbo].[EMPLOYEE]

How	to	do	it…
	
1.	 Open	Job_Employee	in	the	workspace	window	and	execute	it.
2.	 On	the	Execution	Properties	window,	check	the	option	Enable	recovery.	This

option	will	enable	the	execution	status	logging	of	the	workflow	and	dataflow	objects
within	the	job.

3.	 The	first	dataflow	executes	successfully,	but	the	second	one	fails	straightaway	with
an	error	message	from	the	Key_Generation	transform	which	sends	the	SQL
statement	SELECT	max(ID)	FROM	dbo.EMPLOYEE	in	order	to	get	the	latest	key	value
from	the	target	table.

4.	 Now,	return	our	missing	table	objects	by	executing	the	previously	saved	CREATE
TABLE	command	in	SQL	Server	Management	Studio.

5.	 Execute	the	job	again,	but	this	time	select	the	Recover	from	last	failed	execution
option	in	the	Execution	Properties	window.

6.	 The	trace	log	states	that	DF_OLTP_Extract_STAGE_Employee	is	successfully
recovered	from	the	previous	job	execution.

How	it	works…
The	automatic	recovery	feature	works	only	if	you	enable	the	flag	on	the	job	execution
options	window	to	enable	the	object	status	logging	mechanism.	If	you	haven’t	enabled	it
before	your	job	fails,	you	cannot	use	the	automatic	recovery	feature.

A	very	important	thing	before	running	the	job	again	in	recovery	mode	is	to	check	why	the
job	has	failed.	If	the	job	failed	in	the	middle	of	populating	of	one	of	the	tables	(dimension
of	fact),	you	have	to	understand	the	impact	of	running	the	same	load	process	again	without
cleaning	up	already	inserted	records	first.

In	our	recipe,	we	simulated	the	failure	of	the	load	dataflow,	which	populates	the	target
dimension	table.	As	it	has	the	Table_Comparison	and	History_Preserving	transforms,	it
is	not	a	problem	to	execute	it	again	without	any	preparatory	steps	using	the	same	data	set.
Records	that	have	already	been	inserted	simply	will	not	be	considered	by
Table_Comparison	for	either	INSERT	or	UPDATE	and	will	be	ignored,	so	it	is	safe	for	us	to
just	restart	the	job	in	recovery	mode.

Note
Always	consider	the	type	of	failure	and	the	nature	of	your	data	and	how	it	is	populated	by
your	ETL	before	restarting	the	job	in	recovery	mode	to	prevent	inserting	duplicates	into
your	target	tables	or	to	avoid	referencing	missing	key	values.

The	workflow	object	can	group	several	child	objects	placed	inside	it	as	a	single	recovery
transactional	unit	by	using	Recover	as	a	unit	option.	This	is	useful	when	several	of	your
dataflow	objects	work	as	a	single	unit	in	order	to	populate	the	specific	target	table	by
preparing	data	at	a	specific	point	in	time.	In	that	case,	if	some	of	these	dataflows	fail,	you
want	to	execute	all	sequences	of	dataflow	from	the	beginning.	Otherwise,	Data	Services
will	execute	the	job	in	the	default	recovery	mode,	skipping	all	previously	successfully
completed	dataflows	and	workflows.

To	use	this	ability,	place	both	dataflow	objects	into	the	single	workflow.	Open	the
workflow	properties	and	check	the	option	Recover	as	a	unit.

The	workflow	icon	will	be	marked	in	the	workspace	window	by	a	green	arrow	and	small
black	cross	so	that	you	can	visually	differentiate	which	parts	of	your	code	behave	as	a
transactional	unit	during	the	recovery	process.

Note
Note	that	script	objects	are	not	considered	by	recovery	mode	as	they	are	part	of	the	parent
workflow	object.	You	should	keep	that	in	mind	before	rerunning	the	job	in	recovery	mode.

There’s	more…
Of	course,	the	best	way	to	make	your	life	easier	is	to	try	to	prevent	the	necessity	of	job
recovery	in	the	first	place.	One	of	the	techniques	that	can	be	implemented	to	prevent
possible	problems	with	data	recovery	and	job	rerun	complications	is	by	putting	extra	code
in	the	try-catch	block.	This	code	can	be	a	set	of	scripts	that	will	perform	a	table	clean-up
with	a	consequent	“clean”	failure	so	the	job	can	simply	be	rerun	without	extra
considerations	and	preparatory	steps	or	so	it	could	even	be	an	alternative	workflow	that
processes	the	data	with	a	different	method	as	compared	to	the	original	one	that	failed.

For	example,	if	you	use	a	dataflow	that	loads	the	flat	file	into	a	table,	you	can	wrap	it	in	a
try-catch	block.	If	it	fails,	execute	another	dataflow	from	a	catch	block	to	try	to	read	the
file	again	but	from	a	different	location	or	using	different	method.

Simplifying	ETL	execution	with	system
configurations
Working	in	multiple	source	and	target	environments	is	very	common.	The	development	of
ETL	processes	by	accessing	data	directly	from	the	production	system	happens	very	rarely.
Most	of	the	time,	multiple	copies	of	the	source	system	database	are	created	to	provide	the
working	environment	for	ETL	developers.

Basically,	the	development	environment	is	an	exact	copy	of	the	production	environment
with	the	only	difference	being	that	the	development	environment	holds	an	old	snapshot	of
the	data	or	test	data	in	smaller	volumes	for	quick	test	job	execution.

So,	what	happens	after	you	create	a	datastore	object,	import	all	required	tables	from
database	into	it,	and	finish	developing	your	ETL?	You	have	to	switch	to	the	production
environment.

Data	Services	provides	a	very	convenient	way	of	storing	multiple	datastore	configurations
in	the	same	datastore	object,	so	you	do	not	need	to	edit	datastore	object	options	each	time
you	want	to	extract	from	either	the	production	or	development	database	environments.
Instead,	you	can	create	multiple	configurations	that	each	use	different	credentials	and
different	database	connection	settings	and	quickly	switch	between	them	when	executing	a
job.	This	allows	you	to	touch	datastore	object	settings	only	once	instead	of	changing	them
each	time	you	want	to	run	your	job	against	a	different	environment.

Getting	ready
To	implement	the	steps	in	this	recipe,	we	will	need	to	create	a	copy	of	the
AdventureWorks_DWH	database.	Our	sample	database	copy	is	named	DWH_backup.	Use	any
preferred	SQL	Server	method	to	copy	the	contents	of	AdventureWorks_DWH	into
DWH_backup.	The	quickest	way	of	performing	this	kind	of	backup	is	to	back	up	the
database	using	standard	SQL	Server	methods	available	in	the	database	object	context
menu,	and	then	recovering	this	backup	copy	in	the	database	with	a	new	name.

How	to	do	it…
There	is	no	need	to	create	a	separate	datastore	object	for	DWH_backup	or	change	the	DWH
datastore	configuration	options	each	time	we	want	to	extract	either	from
AdventureWorks_DWH	or	DWH_backup.	Let’s	just	create	two	configurations	for	our	DWH
datastore.

	
1.	 Go	to	Local	Object	Library	|	Datastores.
2.	 Right-click	on	the	DWH	datastore	and	select	Edit…	from	the	context	menu.
3.	 On	the	Edit	Datastore	DWH	window,	click	on	Advanced<<	to	open	the	advanced

configuration	part,	and	then	click	on	the	Edit…	button	against	the	Configurations:
label.

4.	 In	the	top-left	corner	of	the	Configurations	for	Datastore	DWH	window,	you	can
see	four	buttons	that	allow	you	to	create	a	new	configuration,	duplicate	the	currently
chosen	one,	and	rename	or	delete	configurations.	Use	them	to	rename	the	currently
used	configuration	to	DWH_Production	and	create	a	new	configuration,
DWH_Development.

5.	 Change	the	new	DWH_Development	configuration	to	be	the	default	configuration	by
setting	Default	configuration	to	Yes.	Note	that	this	value	changes	automatically	to
No	in	other	configurations.

6.	 Change	the	Database	name	or	SID	or	Service	Name	option	setting	for
DWH_Development	to	DWH_backup	to	point	this	configuration	to	another	database.

There	is	no	need	to	change	the	other	options	as	they	will	be	identical	for	both
configurations.

7.	 Now	let’s	create	system	configurations	so	that	we	can	choose	the	configuration	setup
when	we	run	the	job	without	the	need	to	edit	the	datastore’s	Default	configuration
option.	Go	to	Tools	|	System	Configurations…	and	create	two	system
configurations:	Development	and	Production.

8.	 For	the	DWH	record,	set	Development	to	DWH_Development	and	Production	to
DWH_Production.

9.	 Click	on	OK	to	save	the	changes.

How	it	works…
Using	configurations	enables	you	to	quickly	switch	between	environments	without	the
need	to	modify	connectivity	and	configuration	settings	inside	a	datastore	object.

System	configurations	extend	the	usability	of	datastore	configurations	even	more	by
allowing	you	to	select	the	combination	of	environments	right	at	the	job	execution	time.

Note
For	the	system	configuration	functionality	to	work,	datastore	configurations	have	to	be
created	first.

Do	you	want	to	be	able	to	extract	from	the	production	OLTP	source	but	insert	into	the
development	DWH	target	within	the	same	job	without	changing	the	ETL	code	or	datastore
settings?	Just	create	a	new	system	configuration	that	includes	the	required	combination	of
various	datastore	configurations	and	execute	the	job	with	the	system	configuration
specified.

Now,	if	you	execute	the	Job_Employee	job,	just	select	the	desired	configuration	in	the	job
execution	options:

Use	the	Browse…	button	to	review	all	system	configurations	created,	if	necessary.

Transforming	data	with	the	Pivot	transform
The	Pivot	transform	belongs	to	the	Data	Integrator	group	of	transform	objects,	which	are
usually	all	about	generation	or	transformation	(changing	the	structure)	of	data.	Simply	put,
the	Pivot	transform	allows	you	to	convert	columns	into	rows.	Pivoting	transformation
increases	the	number	of	rows	in	the	dataset	as	for	each	column	converted	into	a	row,	an
extra	row	is	created	for	every	key	(non-pivoted	column)	pair.	Converted	columns	are
called	pivot	columns.

Getting	ready
Run	the	SQL	following	statements	against	the	AdventureWorks_OLTP	database	to	create	a
source	table	and	populate	it	with	data:
create	table	Sales.AccountBalance	(

[AccountID]	integer,

[AccountNumber]	integer,

[Year]	integer,	

[Q1]	decimal(10,2),

[Q2]	decimal(10,2),

[Q3]	decimal(10,2),

[Q4]	decimal(10,2));

—	Row	1

insert	into	Sales.AccountBalance	

				([AccountID],[AccountNumber],[Year],[Q1],[Q2],[Q3],[Q4])	

values		(1,100,2015,100.00,150.00,120.00,300.00);

—	Row	2

insert	into	Sales.AccountBalance	

				([AccountID],[AccountNumber],[Year],[Q1],[Q2],[Q3],[Q4])	

values		(2,100,2015,50.00,350.00,620.00,180.00);

—	Row	3

insert	into	Sales.AccountBalance	

				([AccountID],[AccountNumber],[Year],[Q1],[Q2],[Q3],[Q4])	

values		(3,200,2015,333.33,440.00,12.00,105.50);

The	source	table	should	look	like	the	following	figure:

Do	not	forget	to	import	it	into	the	Data	Services	OLTP	datastore.

How	to	do	it…
	
1.	 Create	a	new	dataflow	and	name	it	DF_OLTP_Pivot_STAGE_AccountBalance.
2.	 Open	the	dataflow	in	the	workspace	window	to	edit	it	and	place	the	source	table

ACCOUNTBALANCE	from	the	OLTP	datastore	created	in	the	Getting	ready	section	of	this
recipe.

3.	 Link	the	source	table	to	the	Extract	Query	transform,	and	propagate	all	source
columns	to	the	target	schema.

4.	 Place	the	new	Pivot	transform	object	into	a	dataflow	and	link	the	Extract	Query	to
it.	The	Pivot	transform	can	be	found	in	Local	Object	Library	|	Transforms	|	Data
Integrator.

5.	 Open	the	Pivot	transform	in	the	workspace	to	edit	and	configure	its	parameters
according	to	the	following	screenshot:

6.	 Close	the	Pivot	transform	and	link	it	to	another	Query	transform	named
Prepare_to_Load.

7.	 Propagate	all	source	columns	to	the	target	schema	of	the	Prepare_to_Load
transform,	and	finally	link	it	to	the	target	ACCOUNTBALANCE	template	table	created	in
the	DS_STAGE	datastore	and	STAGE	database.

8.	 Before	executing	the	job,	open	the	Prepare_to_Load	Query	transform	in	the

workspace	window,	double-click	on	the	PIVOT_SEQ	column,	and	check	Primary	key
to	specify	an	additional	column	as	a	primary	key	column	for	the	migrated	data	set.

9.	 Save	and	run	the	job.
10.	 Open	the	dataflow	again	in	the	workspace	window	and	import	the	target	table	by

right-clicking	on	the	target	table	and	selecting	Import	table	from	the	table	context
menu.

11.	 Open	the	target	table	in	the	workspace	windows	to	edit	its	properties,	and	select	the
flag	Delete	data	from	table	before	loading	on	the	Options	tab.

12.	 Your	dataflow	and	Prepare_to_Load	Query	transform	mapping	should	now	look
like	the	following	screenshot:

How	it	works…
Pivot	columns	are	the	columns	whose	values	will	be	merged	into	one	column	after	the
pivoting	operation	produces	an	extra	row	for	each	pivoted	column.	Non-pivot	columns
are	the	columns	not	affected	by	pivot	operation.	As	you	can	see,	pivoting	operation
denormalizes	the	dataset,	generating	more	rows.	This	is	why	ACCOUNTID	does	not	define
the	uniqueness	of	the	record	anymore	and	why	we	had	to	specify	the	extra	key	column
PIVOT_SEQ.

You	might	ask	Why	pivot?	Why	not	just	use	the	data	as	is	and	perform	the	required
operation	on	the	data	from	columns	Q1-Q4?

The	answer	in	the	given	example	is	very	simple.	It	is	much	more	difficult	to	perform	an
aggregation	when	the	amounts	are	spread	across	the	different	columns.	Instead	of
summarizing	by	a	single	column	with	the	sum(AMOUNT)	function,	we	have	to	write	the
expression	sum(Q1	+	Q2	+	Q3	+	Q4)	each	time.	Quarters	is	not	the	worst	thing	yet.	Try	to
imagine	the	situation	when	the	table	has	amounts	stored	in	columns	defining	month
periods	or	you	have	to	filter	by	these	time	periods.

Of	course,	contrary	cases	exist	as	well—when	storing	data	across	multiple	columns
instead	of	just	in	one	is	justified.	In	these	cases,	if	your	data	structure	is	not	like	that,	you
can	use	the	Reverse_Pivot	transform,	which	does	exactly	the	opposite	thing—converting
rows	into	columns.	Look	at	the	example	of	the	Reverse_Pivot	configuration	given	here:

Reverse	pivoting	or	the	transformation	of	rows	into	columns	has	introduced	another	term:
Pivot	axis	column.	This	is	the	column	that	holds	the	categories	defining	different	columns
after	reverse	pivot	operation.	It	corresponds	to	the	Header	column	option	in	the	Pivot
transform	configuration.

Chapter	10.	Developing	Real-time	Jobs
The	recipes	and	topics	that	will	be	discussed	in	this	chapter	are	as	follows:

	
Working	with	nested	structures
The	XML_Map	transform
The	Hierarchy_Flattening	transform
Configuring	Access	Server
Creating	real-time	jobs

Introduction
In	all	previous	chapters,	we	have	worked	with	batch-type	job	objects	in	Data	Services.	As
we	already	know,	a	batch	job	in	Data	Services	helps	to	organize	ETL	processes	so	that
they	can	be	started	on	demand	or	scheduled	to	be	executed	at	a	specific	time	either	once	or
regularly.

The	main	difference	between	a	real-time	job	and	batch	job	is	the	way	these	two	job	objects
are	executed	by	Data	Services	engine.	The	purpose	of	a	real-time	job	is	to	process	requests
providing	response.	So,	technically,	a	real-time	job	could	be	running	for	hours,	days,	or
even	weeks	without	actually	processing	any	data.	Data	Services	engine	actually	executes
the	ETL	code	from	within	the	real-time	job	object	only	when	new	request	comes	from	an
external	service.	Data	Services	uses	this	request	message	as	the	data	source,	processes	this
data,	and	sends	the	processed	data	back	to	external	service	in	form	of	response	message.

A	new	Data	Services	component	called	Access	Server	has	come	into	the	frame.	Access
Server	plays	the	role	of	a	messenger	servicing	real-time	jobs.	It	is	Access	Server	that
accepts	and	sends	back	messages	to	be	used	as	a	source	and	target	data	for	real-time	jobs.

In	this	chapter,	we	will	also	review	the	concepts	of	nested	structures—how	and	when	they
are	commonly	used.	The	main	reason	for	this	is	that	the	real-time	jobs	often	use	XML
technology	to	receive	requests	and	send	the	responses	back.	The	XML	format	is	often
used	to	exchange	nested	data	structures.

We	will	also	see	how	to	create	and	configure	Access	Server	to	be	able	to	use	real-time	job
functionality	and,	finally,	we	will	create	a	real-time	job	itself.

Working	with	nested	structures
Earlier	in	this	book,	we	worked	solely	with	a	flat	structure—rows	extracted	from	database
tables	and	inserted	back	in	a	database	table,	or	exported	to	a	flat	text	file.	In	this	recipe,	we
will	take	a	look	at	how	to	prepare	nested	data	structures	inside	a	dataflow	and	then	export
it	into	an	XML	file	as	XML	is	a	simple	and	very	convenient	way	to	store	nested	data	and
is	most	commonly	used	as	a	source	and	target	objects	in	real-time	jobs.

Getting	ready
We	will	not	need	to	have	an	XML	file	prepared	for	this	recipe	as	we	are	going	to	generate
them	automatically	with	help	of	Data	Services	from	datasets	stored	in	our	relational
databases:	OLTP	and	DWH.

We	will	construct	the	nested	data	structure	of	job	title	list,	where	each	record	(job	title)
will	have	a	reference	to	a	list	of	employees	who	have	the	same	job	title	in	the	OLTP
system.

Following	is	the	visual	presentation	of	this	nested	data	structure:

In	the	flat	data	structure,	these	would	be	two	different	tables	and	we	would	have	to	have
reference	key	columns	in	both	tables	linking	them	together	as	a	parent–child	relationship.

A	nested	data	structure	allows	you	to	avoid	reference	keys	completely.	In	other	words,	we
do	not	really	need	Job	Title	ID	in	order	to	link	these	two	tables	together.	A	list	of
employees	will	be	literally	stored	in	the	same	dataset	in	one	of	the	fields	for	the	specific
job	title.

We	will	source	the	list	of	job	titles	from	the	HumanResources.Employee	table	of	our	OLTP
database.	Person	data	such	as	first	name	and	last	name,	will	be	sourced	from	the
Person.Person	table	that	is	linked	to	the	Employee	table	by	the	BusinessEntityID
column.

How	to	do	it…
	
1.	 Create	a	new	dataflow,	DF_OLTP_XML,	and	open	it	in	the	workspace	window	for

editing.
2.	 Import,	if	necessary,	two	tables,	Person.Person	and	HumanResources.Employee,	into

the	OLTP	datastore.
3.	 Place	both	tables	in	the	dataflow	DF_OLTP_XML	as	source	table	objects.
4.	 Place	the	Get_Person	Query	transform	inside	the	workspace	of	DF_OLTP_XML	and	link

it	to	the	Person	table	object.	Propagate	three	columns	to	the	output	schema	of	the
Query—BUSINESSENTITYID,	FIRSTNAME,	LASTNAME—from	the	Person	table.

5.	 Create	two	Query	transforms	to	get	the	data	from	the	Employee	table:
Get_JobTitle_Person	and	Distinct_JobTitle.

Get_JobTitle_Person	should	select	the	dataset	consisting	of	two	columns
BUSINESSENTITY_ID	and	JOBTITLE.

Distinct_JobTitle	should	only	select	the	JOBTITLE	column.

6.	 In	the	Distinct_JobTitle	Query	Editor,	tick	the	checkbox	Distinct	rows…	on	the
SELECT	tab	and	set	up	ascending	sorting	on	the	JOBTITLE	column	on	ORDER	BY	tab.

7.	 Create	the	Gen_JobTitle_ID	Query	transform	and	link	Distinct_JobTitle	to	it.
This	Query	transform	will	be	used	to	generate	new	unique	identifiers	for	distinct
values	of	job	titles.

8.	 Finally,	join	all	three	Query	transforms	together	using	another	Join	Query	and
propagate	four	columns	to	the	output	schema:	JOBTITLE_ID,	JOBTITLE,	FIRSTNAME,
LASTNAME.

9.	 Now	that	we	have	merged	our	data	from	multiple	tables	into	one	dataset,	let’s	see
what	is	required	to	convert	this	flat	dataset	to	a	nested	one.

10.	 To	do	that,	we	have	to	split	the	flat	data	again,	separating	job	titles	from	employee
data.	Both	result	datasets	should	have	a	reference	key	column,	which	will	be	used	to
define	the	relationships	between	the	records.

Create	two	Query	transforms,	Q_JobTitle	and	Q_Person,	propagating	JOBTITLE_ID
in	both	Query	objects:

11.	 The	nesting	of	the	data	happens	in	the	Query	transform	object	that	is	used	to	join	the
previously	split	datasets.	Create	the	JobTitle_Tree	Query	transform	and	link	it	to
both	Q_JobTitle	and	Q_Person.

12.	 Open	the	JobTitle_Tree	Query	Editor	in	workspace	window.
13.	 Drag	and	drop	JOBTITLE_ID	and	JOBTITLE	from	Q_JobTitle	input	schema	to	the

output	schema.
14.	 Drag	and	drop	the	whole	Q_Person	input	schema	to	the	output	schema.	That	will	the

place	Q_Person	table	schema	at	the	same	level	with	the	JOBTITLE_ID	and	JOBTITLE
columns.	Q_Person	is	now	a	nested	segment	inside	the	JobTitle_Tree	schema.

15.	 Now,	we	can	switch	between	output	schemas	by	double-clicking	on	either
JobTitle_Tree	or	Q_Person,	or	you	can	right-click	on	schema	name	and	select
Make	current…	from	the	context	menu.	That	is	necessary	if	you	want	to	change
settings	on	the	Query	transform	tabs:	Mapping,	SELECT,	FROM,	WHERE,	and	so
on.	Those	tabs	are	not	shared	by	all	nested	output	schemas	and	only	“current”	output
schema	values	are	displayed.

16.	 Make	the	JobTitle_Tree	output	schema	current	and	select	the	FROM	tab.	Make

sure	that	only	one	Q_JobTitle	checkbox	is	selected.

17.	 Now,	make	the	Q_Person	output	schema	current.
18.	 On	the	FROM	tab,	tick	only	the	Q_Person	checkbox.
19.	 On	the	WHERE	tab,	put	the	following	filtering	condition:

(Q_Person.JOBTITLE_ID	=	Q_JobTitle.JOBTITLE_ID)

20.	 Finally,	we	have	to	output	our	nested	dataset	into	a	proper	target	object,	which
supports	nested	data.	SQL	Server	does	not	support	nested	data,	and	that	is	why	we
will	use	an	XML	file	as	a	target.

21.	 Select	the	Nested	Schemas	Template	object	from	the	right-side	tool	panel,	 ,	and
place	it	as	a	target	object	linked	to	the	last	JobTitle_Tree	Query	transform.

22.	 Name	the	target	object	XML_target	and	open	it	in	the	workspace	windows	for
editing.	Specify	the	following	options:

23.	 Your	dataflow	should	now	look	like	the	following	figure:

How	it	works…
Data	Services	allows	you	to	view	the	target	data	loaded	by	the	last	job	run	from	the	XML
target	object	in	the	same	way	as	for	target	database	table	objects,	as	shown	in	the
following	screenshot:

If	you	open	the	XML_target.xml	file	created	in	the	C:\AW\Files\	folder,	you	will	see	a
common	XML	structure:

XML	is	just	a	convenient	example	of	an	object	that	can	store	nested	data	structure.	Data
Services	has	other	target	objects	that	can	accept	nested	data	such	as	BAPI	functions	and
IDoc	objects,	both	used	to	extract/load	data	from	and	into	SAP	systems.	These	methods
and	concepts	will	be	introduced	in	the	next	chapter.

Data	Services	also	supports	the	JSON	format	as	another	source	or	target	for	nested	data
structures.

Nested	data	is	often	called	hierarchical	data	as	it	resembles	the	tree	structure.	If	you
imagine	row	fields	to	be	leaves,	then	one	of	the	leaves	could	be	another	tree	(one	row	or
multiple	rows)	stored	inside	a	leaf	section.

In	other	words,	nested	data	simply	means	mapping	source	table	as	a	column	in	the	output
object	structure	inside	a	dataflow.

In	the	previous	chapters,	we	worked	only	with	the	flat	table	or	file	data	when	datasets
consisted	of	multiple	rows	and	each	row	consisted	of	multiple	fields,	each	of	which	could
only	have	one	value	(decimal,	character,	date,	and	so	on.).	Nested	or	hierarchical	data
allows	you	to	reference	another	table	inside	a	row	field.

Note
Converting	a	flat	dataset	to	a	nested	dataset	normalizes	it	as	you	do	not	have	to	duplicate
parent	fields	for	every	child	set	of	rows.

You	can	see	how	a	nested	table	segment	is	displayed	among	other	parent	columns.	To
define	if	a	nested	structure	can	have	multiple	records	for	every	parent	record,	you	can
right-click	on	the	nested	table	segment	and	select	the	Repeatable	menu	option.
Unselecting	this	option	will	make	the	nested	segment	a	one-record	segment	and	will
change	the	icon	of	the	nested	table	segment	from	 	to	 .

There	is	more…
Data	Services	has	full	support	of	nested	data	structures.	In	the	steps	of	this	recipe,	we	used
good	old	Query	transform	to	generate	it.	In	the	next	recipe,	we	will	demonstrate	how	the
same	task	can	be	implemented	with	the	help	of	special	Data	Services	transform
—XML_Map	transform.

The	XML_Map	transform
In	the	first	recipe	of	this	chapter,	Working	with	nested	structures,	we	built	the	nested
structure	with	the	help	of	the	most	universal	transform	in	Data	Services—Query
transform.	Query	transform	has	the	power	to	define	column	mapping,	filter	data,	join
datasets	together,	and	merge	data	in	nested	segments.	In	fact,	many	transforms	that	you
have	used	before,	such	as	History_Preserving,	Table_Comparison,	Pivot,	and	others,
can	be	substituted	with	the	set	of	Query	transforms.	Of	course,	those	would	be	complex
ETL	solutions	requiring	more	development	time,	would	be	harder	to	maintain	and	read,
and,	most	importantly,	less	efficient	in	terms	of	performance.

In	this	recipe,	we	will	take	a	look	at	another	transform	XML_Map,	which	does	exactly
the	same	task	as	performed	in	the	previous	recipe—builds	and	transforms	nested
structures.

We	will	use	the	same	source	tables	PERSON.PERSON	and	HUMANRESOURCES.EMPLOYEE	to
build	a	dataset	of	job	titles	with	nested	lists	of	employees.

Getting	ready
We	have	everything	we	need	for	this	recipe	already:	two	source	tables,	PERSON.PERSON
and	HUMANRESOURCE.EMPLOYEE,	imported	in	our	OLTP	datastore.

How	to	do	it…
	
1.	 Create	a	new	job	and	new	dataflow	and	open	it	in	the	workspace.
2.	 Place	the	two	tables	PERSON	and	EMPLOYEE	from	the	OLTP	datastore	inside	a	dataflow

as	source	tables.
3.	 Drag	and	drop	XML_Map	transform	from	Local	Object	Library	|	Transforms	|

Platform	into	a	dataflow	workspace	and	link	both	source	tables	to	it.	When	placing
transform	in	the	workspace,	choose	the	Normal	mode	option.

4.	 Left-click	on	XML_Map	to	open	it	in	workspace	for	editing.
5.	 First,	build	the	parent	data	structure	of	job	titles	by	mapping	the	JOBTITLE	column

from	the	EMPLOYEE	source	schema	to	the	output	XML_Map	schema.
6.	 On	the	Iteration	Rule	tab,	double-click	on	the	iteration	rule	field	and	select	the

EMPLOYEE	input	schema.
7.	 On	the	DISTINCT	tab,	drag	and	drop	the	EMPLOYEE.JOBTITLE	source	column	into

the	Distinct	columns	field.
8.	 On	the	ORDER	BY	tab,	specify	Ascending	sorting	by	the	EMPLOYEE.JOBTITLE

source	field,	as	shown	in	the	following	screenshot:

9.	 Now,	add	a	nested	dataset	containing	personal	information.	Drag	the	PERSON	input
schema	to	the	output	and	make	sure	that	it	is	added	on	the	same	level	with	the
previously	propagated	JOBTITLE	column.

10.	 Double-click	on	the	output	PERSON	schema	to	make	it	current	or	use	Make	current
from	the	context	menu	by	right-clicking	on	the	output	PERSON	schema.

11.	 On	the	Iteration	Rule	tab,	select	the	INNER	JOIN	iteration	rule	and	add	both	source
input	schemas	underneath	it.

12.	 On	the	same	Iteration	Rule	tab,	in	the	On	field,	specify	the	join	condition:
PERSON.BUSINESSENTITYID	=	EMPLOYEE.BUSINESSENTITYID

13.	 On	the	WHERE	tab,	specify	the	join	condition	between	parent	and	nested	datasets	in
the	output	schema:
EMPLOYEE.JOBTITLE	=	XML_Map.JOBTITLE

14.	 Close	XML_Map	Editor	and	link	XML_Map	to	Query	transform	object	called
Gen_JobTitle_ID,	in	which	we	will	generate	an	ID	column	for	the	parent	job	title
dataset.

Add	the	JOBTITLE_ID	output	column,	as	shown	in	the	preceding	screenshot,	and	put
the	mapping	expression	gen_row_num()	for	it	on	the	Mapping	tab.

15.	 After	Query	transform,	add	the	Nested	Schemas	Template	object	as	a	target	object.
Configure	it	as	an	XML	type	with	the	file	name:	C:\AW\Files\XML_map.xml.

How	it	works…
The	XML_Map	transform	properties	are	very	similar	to	Query	transform	properties	with
a	few	exceptions	where	XML_Map	has	some	extra	functionality	that	can	be	used	to	build
nested	data	structures.

What	makes	the	XML_Map	transform	a	really	powerful	tool	is	the	ability	to	join	any
source	input	datasets	(it	does	not	matter	if	they	come	from	flat	data	sources	or	nested	data
structures)	and	iterate	on	the	combined	dataset,	producing	required	output	results.

There	are	multiple	types	of	join	operations	available:

	
*—cross-join	operation:	This	produces	a	Cartesian	product	of	joined	datasets.	In
SQL	language,	it	is	a	normal	INNER	JOIN	without	the	specified	ON	clause.
||—parallel-join	operation:	This	is	a	non-standard	SQL	operation	that	basically
concatenates	the	corresponding	records	from	two	joined	datasets.	See	the	example	in
the	following	figure:

INNER	JOIN—standard	SQL	operation:	This	is	where	you	can	specify	the	join
condition	in	the	On	field.
LEFT	OUTER	JOIN—standard	SQL	operation:	This	is	where	you	can	specify	the
join	condition	in	the	On	field.

In	the	previous	steps	of	the	recipe,	we	produced	one	hierarchical	dataset	with	the	help	of
XML_Map,	which,	in	fact,	has	two	datasets	in	it—a	parent	dataset	of	distinct	job	titles
sourced	from	the	EMPLOYEE	table	and	a	nested	dataset	of	the	employee’s	personal
information	which	belongs	to	the	specific	job	title.

If	we	just	sourced	personal	information	from	only	the	PERSON	table,	we	would	not	be	able
to	specify	which	personal	information	(FIRSTNAME	and	LASTNAME)	belongs	to	which	job
title.

By	providing	a	joined	dataset	for	personal	information	to	iterate	on,	we	could	define	the
dependency	for	our	nested	structure	by	using	the	following	expression	in	the	WHERE
tab,	EMPLOYEE.JOBTITLE	=	XML_Map.JOBTITLE,	which	could	be	roughly	translated	to
build	a	dataset	from	the	source	tables,	which	contains	the	fields	JOBTITLE,	FIRSTNAME,
LASTNAME,	and	nest	the	records	with	FIRSTNAME	and	LASTNAME	fields	inside	the
unique	records	of	the	output	job	title	dataset	by	referencing	the	corresponding	JOBTITLE
column.

The	final	Query	transform,	which	is	used	to	generate	an	extra	output	column	with	a	unique
ID	for	a	parent	job	title	dataset,	is	quite	simple.	We	have	already	produced	an
alphabetically	sorted	and	unique	list	of	job	titles	in	our	parent	data	structure,	and	all	that	is
left	is	to	generate	sequential	numbers	for	each	record,	which	can	be	easily	done	with	help
of	the	gen_row_num()	function.

Note
Note	how	much	more	concise	our	ETL	code	has	become	with	the	use	of	the	XML_Map
transform	as	compared	to	the	previous	recipe	where	we	built	the	same	hierarchical	dataset
by	only	using	Query	transform	objects.

The	Hierarchy_Flattening	transform
Sometimes,	hierarchical	data	is	not	represented	by	nested	(hierarchical)	data	structures	but
is	actually	stored	within	a	simple	flat	structure	in	normal	database	tables	or	flat	files.	The
simplest	form	of	hierarchical	relationships	in	data	can	be	presented	as	a	table	that	has	two
fields:	parent	and	child.

Look	at	the	example	of	folder	hierarchy	on	the	disk	(as	shown	in	the	following	figure).
The	structure	on	the	left	is	visually	simple	to	read	and	understand.	You	can	easily	see	what
is	the	root	folder	and	what	are	the	leaves,	and	can	easily	highlight	the	specific	branch	you
are	interested	in.

The	table	on	the	right	is	the	simplest	way	to	store	the	hierarchical	relationships	data	in	the
flat	format.	This	structure	is	extremely	hard	to	query	with	the	standard	SQL	language.
Some	databases	like	Oracle	have	special	SQL	clauses,	which	can	help	to	query
hierarchical	data	to	be	able	to	analyze	it	and	present	in	an	understandable	and	clear	way.
However,	those	hierarchical	SQL	statements	can	be	quite	complex	and	the	majority	of
other	databases	do	not	support	them	at	all,	leaving	you	with	the	necessity	to	write	stored
procedures	in	order	to	parse	this	hierarchical	data,	answering	even	the	simplest	question
like	select	all	“children”	for	specific	“parent”.

In	this	recipe,	we	will	review	the	method	that	is	available	in	Data	Services	to	convert	data
from	that	simple	flat	hierarchical	presentation	of	parent–child	relationships	into	the	more
efficient	and	easy-to-use	data	structure	that	can	be	queried	with	a	standard	SQL	language.
This	can	be	done	with	the	Hierarchy_Flattening	transform.

Getting	ready
As	we	do	not	have	multi-level	parent–child	relationship	table,	we	should	artificially	create
one.	Let’s	build	the	hierarchy	of	locations	using	our	three	source	tables	from	the	OLTP
database:	ADDRESS	(to	source	cities	from),	STATEPROVINCE	(to	source	states	from),	and
COUNTRYREGION	(to	source	countries	from)—all	of	them	are	from	the	same	Person	schema
of	the	AdventureWorks_OLTP	SQL	Server	database.

The	resulting	dataset	will	only	have	two	columns—PARENT	and	CHILD—and	each	row	in	it
will	represent	one	link	of	the	hierarchical	dataset.

	
1.	 Create	a	new	job	and	create	a	new	dataflow	in	it	named	DF_Prepare_Hierarchy.
2.	 Open	the	dataflow	in	the	workspace	window	for	editing,	and	place	three	source	tables

in	it	from	OLTP	datastore:	ADDRESS,	STATEPROVINCE,	and	COUNTRYREGION.
3.	 Create	Query	transform	State_City	and	join	ADDRESS	and	STATEPROVINCE	in	it	using

the	configuration	settings,	as	shown	in	the	following	screenshot,	propagating	the
STATEPROVINCE.NAME	and	ADDRESS.CITY	source	columns	as	output	PARENT	and	CHILD
columns	respectively:

4.	 Create	Query	transform	Country_State	and	join	COUNTRYREGION	and	STATEPROVINCE
in	it	using	configuration	settings,	as	shown	in	the	following	screenshot,	propagating
COUNTRYREGION.NAME	and	STATEPROVINCE.NAME	source	columns	as	output	PARENT
and	CHILD	columns	respectively:

5.	 Merge	the	outputs	of	both	State_City	and	Country_State	transform	objects	with	the
Merge	transform.

6.	 Link	the	Merge	transform	output	to	the	Hierarchy	Query	transform	and	propagate
both	PARENT	and	CHILD	columns	without	making	any	other	configuration	changes	to
the	Query	transform.

7.	 Place	the	target	template	table	at	the	end	of	dataflow	object	sequence	to	forward	the
result	data	to.	Name	the	target	table	LOCATIONS_HIERARCHY	and	create	it	in	the
DS_STAGE	datastore.

After	saving	and	executing	the	job,	the	LOCATIONS_HIERARCHY	table	will	be	created	and

populated	with	a	three-level	hierarchy	of	locations,	which	include	cities,	states,	and
countries,	as	shown	in	the	following	screenshot:

Now,	let’s	see	how	this	dataset	can	be	flattened	with	the	Hierarchy_Flattening	transform.

How	to	do	it…
There	are	two	different	modes	in	which	the	Hierarchy_Flattening	transform	parses	and
restructures	the	source	hierarchical	data:	horizontal	and	vertical.	They	produce	different
results,	and	we	will	build	two	different	dataflows	for	each	one	of	them	in	order	to	parse
and	flatten	the	source	hierarchical	data	and	compare	the	final	result	datasets.

Horizontal	hierarchy	flattening
The	following	are	the	steps	to	perform	Horizontal	hierarchy	flattening.

	
1.	 Create	a	new	dataflow,	DF_Hierarchy_Flattening_Horizontal,	and	link	it	to	the

existing	DF_Prepare_Hierarchy	in	the	same	job.	Open	it	in	the	workspace	for
editing.

2.	 Put	the	LOCATIONS_HIERARCHY	template	table	from	the	DS_STAGE	datastore	as	a	source
table	object.

3.	 Link	the	source	table	to	the	Hierarchy_Flattening	transform	object,	which	can	be
found	in	the	Local	Object	Library	|	Transforms	|	Data	Integrator	section.

4.	 Open	the	Hierarchy_Flattening	transform	in	the	workspace	window	and	choose	the
horizontal	method	of	hierarchy	flattening.

5.	 Specify	the	source	PARENT	and	CHILD	columns	in	the	corresponding	transform
configuration	settings:

6.	 Close	the	transform	editor	and	link	the	Hierarchy_Flattening	transform	object	to	the
target	template	table	LOCATIONS_TREE_HORIZONTAL	created	in	the	DS_STAGE	datastore.

Vertical	hierarchy	flattening
The	following	are	the	steps	to	perform	vertical	hierarchy	flattening.

	

1.	 Create	a	new	dataflow,	DF_Hierarchy_Flattening_Vertical,	and	link	it	to	the
previously	created	DF_Hierarchy_Flattening_Horizontal	dataflow	in	the	same	job.
Open	it	in	the	workspace	for	editing.

2.	 Put	the	LOCATIONS_HIERARCHY	template	table	from	the	DS_STAGE	datastore	as	a	source
table	object.

3.	 Link	the	source	table	to	the	Hierarchy_Flattening	transform	object,	which	can	be
found	in	the	Local	Object	Library	|	Transforms	|	Data	Integrator	section.

4.	 Open	the	Hierarchy_Flattening	transform	in	the	workspace	window	and	choose	the
vertical	method	of	hierarchy	flattening.

5.	 Specify	the	source	PARENT	and	CHILD	columns	in	the	corresponding	transform
configuration	settings:

6.	 Close	the	transform	editor	and	link	the	Hierarchy_Flattening	transform	object	to	the
target	template	table	LOCATIONS_TREE_VERTICAL	created	in	the	DS_STAGE	datastore.

7.	 Save	and	close	the	dataflow	tab	in	the	workspace.	Your	job	should	have	three
dataflows	now:	the	first	prepares	the	hierarchical	dataset,	the	second	flattens	this
dataset	horizontally,	and	the	third	flattens	the	dataset	vertically.	Both	result	datasets
are	inserted	in	two	different	tables:	LOCATIONS_TREE_HORIZONTAL	and
LOCATIONS_TREE_VERTICAL.

How	it	works…
The	horizontal	flattening	result	table	looks	like	the	following:

You	can	now	see	why	it	is	called	“horizontal”.	All	levels	of	hierarchy	are	spread	across
different	columns	horizontally.

CURRENT_LEAF	shows	the	name	of	the	specific	node	and	LEAF_LEVEL	shows	which	column
it	can	be	found.

The	convenience	of	this	method	is	that	you	can	see	the	full	path	to	the	node	in	one	row,
starting	from	the	root	node,	and	see	the	LEVEL	columns	where	LEVEL0	shows	the	root	node.

Vertical	flattening	looks	a	bit	different:

ANCESTOR	and	DESCENDENT	are	basically	the	same	PARENT	and	CHILD	entities,	but	output
results	set	after	hierarchy	flattening	have	a	lot	more	records	as	extra	records	showing	the

dependency	were	created	between	the	two	nodes	even	if	they	are	not	related	directly.

The	DEPTH	column	shows	the	distance	between	two	related	nodes,	where	0	means	this	is
the	same	node,	1	means	that	the	nodes	are	related	directly,	and	2	means	that	there	is
another	parent	node	between	them.

The	ROOT_FLAG	column	flags	the	root	nodes	and	the	LEAF_FLAG	column	flags	the	end	leaf
nodes	that	do	not	have	descendants.

As	you	can	see	from	the	steps	of	this	recipe,	the	configuration	of	the
Hierarchy_Flattening	transform	is	extremely	simple.	All	that	is	required	from	you	is	to
specify	the	parent	and	child	columns	that	store	the	relationships	between	the	neighbor
nodes	of	the	hierarchy.

Extra	parameters	specific	to	each	type	of	hierarchy	flattening	are	explained	as	follows.

	
Maximum	depth:	It	exists	only	for	the	horizontal	method	because	this	method	uses
new	columns	for	new	levels	of	hierarchy,	and	Data	Services	needs	you	to	specify
how	many	extra	columns	you	want	to	create	in	your	result	target	table.	Imagine	the
situation	when	your	hierarchical	dataset	stores	an	extremely	deep	hierarchy—100
levels	or	more—and	you	do	not	know	about	this	after	having	looked	at	the
unflattened	hierarchy	representation	with	only	parent	and	child	fields.	In	that	case,	a
table	with	a	few	hundred	columns	for	each	hierarchy	level	may	not	be	what	you	are
looking	for.	So,	this	parameter	allows	you	to	control	the	flattening	behavior	of	the
transform.
Use	maximum	length	paths:	This	parameter	is	specific	to	only	the	vertical	method
of	hierarchy	flattening.	It	affects	only	the	value	of	the	DEPTH	field	in	the	result	output
schema.	It	works	only	in	situations	when	there	are	multiple	paths	from	the
descendent	to	its	ancestor	and	they	are	of	a	different	length.	Selecting	this	option	will
always	pick	the	highest	number	for	the	DEPTH	field	out	of	these	multiple	paths.

Querying	result	tables
Now,	let’s	try	to	query	a	result	table	so	that	you	could	see	how	easy	it	is	to	now	perform
the	analysis	of	the	data.	You	can	run	the	following	queries	in	the	SQL	Server	Management
Studio	when	connected	to	the	STAGE	database.

	
Select	all	root	nodes	of	the	hierarchy:
select	CURRENT_LEAF	from	dbo.LOCATIONS_TREE_HORIZONTAL	where	LEAF_LEVEL	=	0	order	by	CURRENT_LEAF;

select	ANCESTOR	from	dbo.LOCATIONS_TREE_VERTICAL	where	DEPTH	=	0	and	ROOT_FLAG	=	1	order	by	ANCESTOR;

Both	SQL	statements	produce	the	same	result—a	list	of	13	root	nodes	(we	know	that
those	are	countries).

Check	if	“United	States”	node	has	a	leaf	node	“Aurora”	among	its	dependents:
select	*	from	dbo.LOCATIONS_TREE_HORIZONTAL	where	LEVEL0	=	‘United	States’	and	CURRENT_LEAF	=	‘Aurora’;

select	*	from	dbo.LOCATIONS_TREE_VERTICAL	where	ANCESTOR	=	‘United	States’	and	DESCENDENT	=	‘Aurora’;

The	result	returned	by	two	queries	looks	different:

You	can	see	that	the	horizontal	view	is	more	convenient	if	you	want	to	see	the	full	path	to
the	leaf	node	from	the	top	root	node.

The	vertical	view	is	more	convenient	to	use	in	SQL	queries	as	sometimes	you	do	not	have
to	figure	out	which	column	you	have	to	use	if	you	want	to	do	a	specific	operation	on	a
specific	level	of	hierarchy.	Result	columns	of	vertical	hierarchy	flattening	are	always	the
same	and	static,	whereas	horizontal	hierarchy	flattening	produces	a	number	of	columns
that	depends	on	the	depth	of	the	flattened	hierarchy.

The	decision	of	what	type	of	hierarchy	flattening	to	use	should	be	made	after	taking	into
account	the	type	of	SQL	queries	that	will	be	used	to	query	this	flattened	data.

Note
If	you	have	experimented	with	the	hierarchy	flattening	result	datasets,	you	would	have
probably	noticed	that	some	queries	written	against	“horizontal”	and	“vertical”	result	tables
produce	different	results	and	are	not	exactly	what	is	expected.	That	happens	because	our
parent	and	child	columns	are	text	fields	(names	of	the	countries,	regions,	and	cities),	and
they	do	not	represent	the	uniqueness	of	every	node.	For	example,	there	is	a	state	“Ontario”
that	belongs	to	Canada	and	a	city	“Ontario”	that	belongs	to	the	state	California.	Data
Services	does	not	know	about	the	fact	that	these	two	are	different	nodes	and	considers
them	to	be	the	same	node	(as	the	name	value	matches).	You	should	keep	that	in	mind	and
use	unique	identifiers	for	the	nodes	in	parent	and	child	fields	for	hierarchy	flattening	to
produce	valid	and	consistent	results.

Configuring	Access	Server
Access	Server	is	required	for	real-time	jobs	to	work.	In	this	recipe,	we	will	go	through	the
steps	of	creating	and	configuring	the	Access	Server	component	that	will	be	required	for
our	next	recipe,	where	we	are	going	to	create	our	first	real-time	job.

Getting	ready
Access	Server	can	be	created	and	configured	with	the	help	of	two	Data	Services	tools:

Data	Services	Server	Manager	()	and	Data	Services	Management	Console	().

How	to	do	it…
	
1.	 Start	SAP	Data	Services	Server	Manager.
2.	 Go	to	the	Access	Server	tab.
3.	 Click	on	the	Configuration	Editor	button.
4.	 On	the	Access	Server	Configuration	Editor	window,	click	on	the	Add	button.
5.	 Fill	in	the	Access	Server	configuration	fields,	as	shown	in	the	following	screenshot:

6.	 Do	not	forget	to	enable	Access	Server	by	ticking	the	corresponding	option.
7.	 Click	on	OK	to	close	and	save	the	changes.
8.	 Start	the	SAP	Data	Services	Management	console	in	your	browser	and	log	in.
9.	 Go	to	the	Administrator	|	Management	section.
10.	 Click	on	the	Add	button	to	add	the	previously	created	Access	Server.
11.	 Specify	the	host	name	and	Access	Server	communication	port,	and	click	on	Apply	to

add	the	Access	Server.

How	it	works…
Access	Server	is	a	standard	Data	Services	component	that	serves	as	a	message	broker
accepting	requests	and	messages	from	external	systems,	forwarding	them	to	Data
Services,	real-time	services	for	processing,	and	then	passes	the	response	back	to	the
external	system.

In	other	words,	this	is	the	key	component	required	in	order	to	feed	real-time	jobs	with	the
source	data	and	get	output	data	from	them.

We	will	create	a	real-time	job	in	the	next	recipe	and	explain	the	design	process	of	real-
time	jobs	in	detail.	In	the	meantime,	you	should	only	know	that	the	main	source	and	target
objects	of	real-time	jobs	are	messages	(most	commonly	in	an	XML	structure)	and	that
Access	Server	is	responsible	for	delivering	those	messages.

With	the	preceding	steps,	the	Access	Server	service	was	created	and	enabled	in	the	Data
Services	environment	and	is	now	ready	to	accept	the	requests	from	external	systems.

Creating	real-time	jobs
In	this	recipe,	we	will	create	real-time	jobs	and	emulate	the	requests	from	the	external
system	using	the	SoapUI	testing	tool	in	order	to	get	the	response	with	processed	data	back.
We	will	go	through	all	the	steps	required	to	configure	all	components	required	for	real-
time	jobs	to	work.

Getting	ready
In	this	section,	we	will	install	the	open	source	SoapUI	tool	and	create	a	new	project	that
will	be	used	to	send	and	receive	SOAP	messages	(XML-based	format)	to	and	from	Data
Services.

Installing	SoapUI
You	can	download	and	install	SoapUI	using	the	URL	http://www.soapui.org/.

The	installation	process	is	very	straightforward.	All	you	have	to	do	is	just	follow	the
instructions	on	the	screen.

After	the	installation	is	complete,	start	the	SoapUI.	Use	the	SOAP	button	in	the	top	tool
bar	menu	to	create	a	new	SOAP	project.	Specify	the	project	name	and	initial	WSDL
address,	as	shown	in	the	following	screenshot:

The	initial	WSDL	address	can	be	obtained	from	Data	Services.	To	get	it,	log	in	to	Data
Services	Management	Console,	go	to	the	Administrator	section,	choose	Web	Services,
and	click	on	the	View	WSDL	button	at	the	bottom	of	the	main	window.

In	the	new	opened	window,	select	and	copy	the	top	URL	address	and	paste	it	in	the	New
SOAP	Project	configuration	window,	as	shown	in	the	following	screenshot:

http://www.soapui.org/

At	this	point,	we	have	made	an	initial	configuration	and	can	proceed	with	actually	creating
real-time	jobs	at	the	Data	Services	side.

How	to	do	it…
Now,	we	have	an	“external”	system	in	place	and	configured	in	order	to	send	us	request
messages.	We	remember	that	the	Data	Services	component	responsible	for	accepting	these
messages	and	sending	them	back	is	Access	Server,	and	it	was	already	configured	by	us	in
the	previous	recipe.	Now,	we	need	the	last	and	most	important	component	to	be	created
and	configured—Data	Services	real-time	job,	which	will	be	processing	these	SOAP
messages	and	returning	the	required	result.

The	goal	of	our	real-time	job	will	be	to	provide	the	full	names	of	the	location	codes	for	a
specific	city	and	the	postal	code	of	the	city.

	
1.	 Go	to	the	Local	Object	Library	|	Jobs	section,	right-click	on	Real-Time	Jobs,	and

choose	New	from	the	context	menu.
2.	 Any	real-time	job	is	created	with	two	default	mandatory	objects	that	define	the

borders	of	the	real-time	job	processing	section:	RT_Process_begins	and	Step_ends.
3.	 Create	two	scripts,	Init_Script	and	Final_Script,	and	place	them	correspondingly

before	and	after	real-time	job	processing	section.
4.	 Inside	the	real-time	job	processing	section,	create	a	dataflow	and	name	it

DF_RT_Lookup_Geography,	as	shown	in	the	following	figure:

5.	 Now,	open	the	dataflow	DF_RT_Lookup_Geography	for	editing	in	the	main	workspace
window.	First	we	have,	to	create	file	formats	for	our	request	and	response	messages.

6.	 Create	a	request	file	in	your	C:\AW\Files	folder	named	RT_request.xsd:
<?xml	version=“1.0”	encoding=“UTF-8”?>

<xsd:schema		xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>

		<xsd:element	name=“Request”	>

				<xsd:complexType>

						<xsd:sequence>

								<xsd:element	name=“CITY”	type=“xsd:string”/>

								<xsd:element	name=“STATEPROVINCECODE”	type=“xsd:string”/>

								<xsd:element	name=“COUNTRYREGIONCODE”	type=“xsd:string”/>

								<xsd:element	name=“LANGUAGE”	type=“xsd:string”/>

						</xsd:sequence>

				</xsd:complexType>

		</xsd:element>

</xsd:schema>

7.	 Create	a	response	file	in	your	C:\AW\Files	folder	named	RT_response.xsd:
<?xml	version=“1.0”	encoding=“UTF-8”?>

<xsd:schema		xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>

		<xsd:element	name=“Response”	>

				<xsd:complexType>

						<xsd:sequence>

								<xsd:element	name=“CITY”	type=“xsd:string”/>

								<xsd:element	name=“POSTALCODE”	type=“xsd:string”/>

								<xsd:element	name=“STATEPROVINCENAME”	type=“xsd:string”/>

								<xsd:element	name=“COUNTRYREGIONNAME”	type=“xsd:string”/>

						</xsd:sequence>

				</xsd:complexType>

		</xsd:element>

</xsd:schema>

8.	 To	create	a	request	message	file	format,	open	Local	Object	Library	|	Formats,
right-click	on	Nested	Schemas,	and	choose	New	|	XML	Schema…	from	the	context
menu.	Specify	the	following	settings	in	the	opened	Import	XML	Schema	Format
window:

9.	 To	create	a	response	message	file	format,	open	Local	Object	Library	|	Formats,
right-click	on	Nested	Schemas,	and	choose	New	|	XML	Schema…	from	the	context
menu.	Specify	the	following	settings	in	the	opened	Import	XML	Schema	Format
window:

10.	 Import	RT_Geography_request	as	a	source	object	into	the	dataflow
DF_RT_Lookup_Geography	and	link	it	to	the	Request	Query	transform,	propagating
all	columns	to	the	output	schema.	Choose	the	Make	Message	Source	option	when
importing	the	object	into	a	dataflow.

11.	 Import	RT_Geography_response	as	a	target	object	into	the	dataflow
DF_RT_Lookup_Geography.	Choose	the	Make	Message	Target	option	when
importing	the	object	into	a	dataflow.

12.	 Import	the	DIMGEOGRAPHY	table	object	from	DWH	datastore	and	join	it	with	the
Request	Query	transform	using	the	Lookup_DimGeography	Query	transform.
Configure	the	mapping	settings	according	to	the	following	screenshots:

13.	 Go	to	the	FROM	tab	and	configure	the	join	conditions	for	LEFT	OUTER	JOIN
between	the	Request	Query	transform	and	DIMGEOGRAPHY	source	table:

14.	 Link	the	Lookup_DimGeography	Query	transform	to	the	target
RT_Geography_response	XML	schema	object.

15.	 Your	dataflow	should	look	like	the	following	figure:

16.	 Save	and	validate	the	job.

How	it	works…
The	dataflow	we	created	in	our	real-time	job	accepts	XML	messages	(requests)	as	an	input
and	produces	XML	messages	(responses)	as	an	output.

We	use	the	DIMGEOGRAPHY	table	from	our	data	warehouse	to	fetch	the	postal	code,	full
state/province	name,	and	country	name	in	either	French,	English,	or	Spanish,	depending
on	which	city	and	language	code	were	received	in	the	request	message.

Basically,	our	real-time	job	serves	as	a	lookup	mechanism	against	data	warehouse	data.

Let’s	publish	our	real-time	job	as	a	web	service	and	do	our	first	test	run	to	see	how	the
exchanging	messages	mechanism	works.

	
1.	 Open	the	Data	Services	Management	Console	|	Administrator	|	Real-Time	|

<Your	Server	Name>:4000	|	Real-Time	Services	|	Real-Time	Service
Configuration	tab.

2.	 Click	on	Add	to	add	the	real-time	service	Lookup_Geography;	use	the	following
settings	to	configure	it,	and	click	on	Apply	when	you	have	finished:

3.	 Go	to	the	next	Real-Time	Services	Status	tab	and	start	the	service	just	created	by
selecting	it	and	clicking	on	the	Start	button:

The	icon	of	the	real-time	service	should	become	green.

	
1.	 Go	to	the	Administrator	|	Web	Services	|	Web	Services	Configuration	tab.
2.	 Select	Add	Real-Time	Services	in	the	below	combobox	and	click	on	the	Apply

button	on	the	right.
3.	 Select	Lookup_Geography	from	the	list	and	click	on	Add:

4.	 The	Lookup_Geography	real-time	service	should	appear	on	the	Web	Services	Status
tab,	as	shown	in	the	following	screenshot:

5.	 We	have	successfully	published	our	created	a	real-time	job	as	real-time	web	service.
Now,	open	SoapUI	and	make	sure	that	you	can	see	the	Lookup_Geography	web
service.	To	do	that,	start	the	SoapUI	tool	and	expand	the	DS	Project	|	Real-
time_Services	tab	in	the	project	tree	panel.

6.	 Right-click	on	the	Lookup_Geography	item	and	choose	New	request	from	the
context	menu.

7.	 Expand	Lookup_Geography	and	double-click	on	the	Geography_request	item.
8.	 You	will	see	that	the	new	window	on	the	right	opens	showing	two	panels:	request	and

response.
9.	 Fill	in	values	in	all	the	fields	of	the	request	XML	structure	and	click	on	the	green

triangle	button	to	submit	a	request.	The	response	is	received	and	displayed	in	the
right	panel.	As	you	can	see,	it	has	the	data	from	DIMGEOGRAPHY	table,	which	resides	in
the	data	warehouse:

Note
One	of	the	most	popular	cases	of	using	real-time	jobs	is	cleansing	the	data	through	web
services	requests.	A	real-time	job	receives	the	specific	value	and	passes	it	through	the	Data
Quality	transforms	available	in	Data	Services	in	order	to	cleanse	it	and	then	returns	the
result	in	the	response	message.

Chapter	11.	Working	with	SAP	Applications

Introduction
This	chapter	is	dedicated	to	the	topic	of	reading	and	loading	data	from	SAP	systems	with
the	example	of	a	SAP	ERP	system.	Data	Services	provides	quick	and	convenient	methods
of	obtaining	information	from	SAP	applications.	As	this	is	a	quite	vast	topic	to	discuss,
there	will	be	only	one	recipe	but,	nevertheless,	it	should	cover	all	aspects	of	extracting	and
loading	data	into	SAP	ERP.

Loading	data	into	SAP	ERP
We	will	not	discuss	the	topic	of	configuring	the	SAP	system	to	communicate	with	the	Data
Services	environment	as	it	would	require	another	few	chapters	on	the	subject	and,	most
importantly,	it	is	not	the	purpose	of	this	book.	All	this	information	can	be	found	in	detailed
SAP	documentation	available	at	http://help.sap.com.

We	presume	that	you	have	exactly	the	same	Data	Services	and	staging	environments
configured	and	created	in	the	previous	chapters	of	this	book	and	have	also	installed	and
configured	the	SAP	ERP	system,	which	can	communicate	with	the	Data	Services	job
server.

In	this	recipe,	we	will	go	through	the	steps	of	loading	information	into	the	SAP	ERP
system	by	using	Data	Services.	In	one	of	our	preparation	processes,	we	will	be	generating
data	records	for	insertion	right	in	the	dataflow,	when	usually,	you	have	the	data	ready	to	be
loaded	in	the	staging	area	extracted	from	another	system.

We	will	also	review	the	main	SAP	transactions	involved	in	the	process	of	manually
creating	data	objects,	monitoring	the	loading	process	on	the	SAP	side,	and	the	transaction,
which	might	be	used	for	the	post-load	validation	of	loaded	data.

We	will	be	using	the	example	of	creating/loading	batch	data,	which	is	related	to	material
data	in	SAP	ERP.	First,	we	will	create	the	specific	material	required	for	the	batch	data	to
be	loaded.	Then,	we	will	create	the	test	batch	manually	to	see	how	it	is	done	on	SAP	side,
and	then	we	will	develop	ETL	code	in	Data	Services,	which	will	prepare	the	batch	record
and	send	it	to	the	SAP	side.

http://help.sap.com

Getting	ready
The	first	thing	we	have	to	do	is	to	create	the	material	for	which	we	will	be	creating
batches	in	SAP.

	
1.	 Log	in	to	the	SAP	ERP	system	and	run	the	transaction	MM01	to	create	new	material.
2.	 Specify	Material	as	RAWMAT01,	Material	Type,	and	Industry	sector:

3.	 Select	the	following	views	for	the	new	material:	Basic	data	1,	Basic	data	2,
Classification,	and	General	Plant	Data	\	Storage	1:

4.	 On	the	next	window,	specify	Organization	Levels:

5.	 On	the	next	screen,	define	Base	Unit	of	Measure	and	material	description:

6.	 On	the	Sales:	general/plant	tab,	tick	the	Batch	management	checkbox	to	define	the
material	as	batch	managed:

7.	 Finally,	on	the	Classification	tab,	classify	the	material	as	the	raw	material	of	class
type	023:

Click	on	the	Continue	(Enter)	button	in	the	top-left	corner	to	save	and	create	new
material.

Now,	we	can	manually	create	the	first	batch	object	for	our	new	material	so	that	we
can	later	compare	it	to	the	batch	object	that	will	be	generated	and	inserted	by	Data
Services	jobs	automatically.

8.	 Run	the	transaction	MSC1N	to	create	a	new	batch,	and	specify	the	material	number
and	batch	name	that	you	would	like	to	create:

9.	 Click	on	Continue,	and	on	the	next	screen,	fill	in	the	values	for	the	following	fields:
the	Date	of	Manufacture	batch,	the	Last	Goods	Receipt	date,	and	Ctry	of	Origin:

10.	 Click	on	Continue	to	save	and	create	a	new	batch,	20151009.

The	last	preparation	step	we	have	to	complete	is	the	configuration	of	a	partner	profile
in	our	SAP	ERP	so	that	the	system	can	accept	the	IDoc	messages	containing	the
batch	data	that	will	be	sent	to	SAP	ERP	from	Data	Services.

11.	 Run	the	transaction	WE20	to	configure	the	partner	profile.
12.	 On	the	Partner	profiles	window,	select	the	Partner	Type	LS	section	and	select	the

client	you	are	currently	using:

Make	sure	that	your	Partn.status	is	Active	on	the	Classification	tab	and	that	you	have
BATMAS	specified	in	the	Inbound	parmtrs	list.	If	not,	then	click	on	the	Create
inbound	parameter	button	under	the	Inbound	parmtrs	tab	and	define	the	BATMAS
inbound	parameter:

Now,	everything	is	ready	on	the	SAP	ERP	side	and	all	we	have	to	do	is	create	the	Data
Services	job	that	will	generate	and	send	the	data	into	the	SAP	ERP	system	for	insertion.

How	to	do	it…
	
1.	 Start	Data	Services	Designer	and	go	to	Local	Object	Library	|	Datastores.
2.	 Right-click	on	the	empty	space	of	the	Datastores	tab	and	choose	New	from	the

context	menu	in	order	to	create	new	datastore	object.
3.	 Create	a	new	datastore,	SAP_ERP,	by	specifying	the	datastore	type	SAP	Applications

and	database	server	name	along	with	your	SAP	credentials.
4.	 Click	on	the	Advanced	button	and	specify	the	additional	settings	required	for	setting

up	the	connection	to	the	SAP	ERP	system,	such	as	Client	number	and	System
number.	See	the	following	screenshot	for	the	full	list	of	configuration	settings:

Click	on	OK	to	create	the	datastore	object.

5.	 Import	the	following	objects	in	your	datastore	by	right-clicking	on	the	required
section	of	the	object	you	want	to	import	and	choosing	the	Import	By	Name…	option
from	the	context	menu:

The	IDoc	object	BATMAS03	will	be	used	as	a	target	object	to	transfer	batch	data	to	the
SAP	system.

The	MARA	and	MCH1	tables	will	be	used	as	source	objects	to	extract	data	from	the	SAP
system	for	pre-load	and	post-load	validation	purposes.

6.	 Create	a	new	job	containing	four	linked	dataflow	objects,	as	shown	in	the	following
screenshot:

7.	 Open	the	first	DF_SAP_MARA	dataflow	in	the	workspace	window	for	editing	and
specify	the	MARA	table	object	imported	in	the	SAP_ERP	datastore	as	a	source	and	the
new	SAP_MARA	template	table	in	the	STAGE	database	as	a	target.	Propagate	all	columns
from	the	source	MARA	table	to	SAP_MARA	using	Query	transform.	Run	the	job	once	and
import	the	target	table	object:

8.	 Open	DF_Prepare_Batch_Data	in	the	workspace	window	for	editing.
9.	 Add	the	Row_Generation	transform	as	a	source.	Set	it	up	to	generate	only	one

record	with	the	row	number	starting	at	1.
10.	 Link	it	to	the	Create_Batch_Record	Query	transform,	which	will	be	used	to	define

the	fields	of	the	created	record.	Use	the	following	screenshot	as	a	reference	for
column	names	and	mappings:

11.	 Add	another	Query	transform	named	Validate_Material,	link
Create_Batch_Record	to	it,	and	propagate	all	columns	from	the	input	schema	to	the
output	schema.

12.	 Add	an	extra	column	as	a	new	function	call	of	the	lookup_ext	function	and	configure
it	as	shown	in	the	following	screenshot,	looking	up	the	MATNR	field	from	the
SAP_MARA	table	by	the	MATERIAL	field	value	from	the	input	schema:

13.	 Add	the	Validation	transform,	forking	the	dataset	into	three	categories—Rule,	Pass,
and	Fail,	sending	the	outputs	to	three	target	tables:	BATCH,	BATCH_REJECT,	and
BATCH_REJECT_RULE,	as	shown	in	the	following	screenshot:

14.	 Open	the	Validation	transform	in	the	workspace	window	for	editing	and	adding	a
new	validation	rule:

15.	 The	Validation	transform	editor	should	look	as	shown	in	the	following	screenshot:

Close	the	dataflow	and	save	the	job.

16.	 Open	the	third	dataflow,	DF_Batch_IDOC_Load,	in	the	workspace	window	for	editing.
17.	 Build	the	structure	of	the	dataflow,	as	shown	in	the	following	screenshot.	The	steps	to

configure	each	of	the	dataflow	components	will	be	provided	further.

18.	 The	Row_Generation	transform	should	be	configured	to	generate	one	record.	Use
the	following	table	to	define	output	schema	mappings	in	the	EDI_DC40	Query
transform.	The	following	table	has	the	records	only	for	the	mandatory	columns	of	the
EDI_DC40	IDoc	segment.	Populate	the	rest	of	them	with	NULL	values.

Column	name Data	type Mapping	expression

TABNAM varchar(10) ‘EDI_DC40’

MANDT varchar(3) ‘100’

DOCREL varchar(4) ‘740’

DIRECT varchar(1) ‘2’

IDOCTYP varchar(30) ‘BATMAS03’

MESTYP varchar(30) ‘BATMAS’

SNDPOR varchar(10) ‘TRFC’

SNDPRT varchar(2) ‘LS’

SNDPRN varchar(10) ‘SBECLNT100’

CREDAT date sysdate()

CRETIM time systime()

ARCKEY varchar(70) ‘1’

Note
Please	keep	in	mind	that	some	of	the	values	in	mapping	expressions	for	this	specific
segment,	EDI_DC40,	are	specific	to	your	own	SAP	environment.	Some	of	them	are
MANDT	and	SNDPRN,	which	should	be	obtained	from	your	SAP	administrator.

To	obtain	the	full	list	of	columns	required	for	the	specific	segment,	refer	to	the
BATMAS03	object	structure	itself.

19.	 Open	the	E1BATMAS	Query	transform	in	the	workspace	window	for	editing	and	define
the	following	mappings	for	the	output	schema	columns:

Column	name Data	type Mapping	expression

MATERIAL varchar(18) BATCH.MATERIAL

BATCH varchar(10) BATCH.BATCH_NUMBER

ROW_ID int BATCH.ROW_ID

20.	 Open	the	E1BPBATCHATT	Query	transform	in	the	workspace	window	for	editing	and
define	the	following	mappings	for	the	output	schema	columns:

Column	name Data	type Mapping	expression

LASTGRDATE date to_date(BATCH.GOODS_RECEIPT_DATE,‘YYYYMMDD’)

COUNTRYORI varchar(3) BATCH.COUNTRY_OF_ORIGIN

PROD_DATE date to_date(BATCH.DATE_OF_MANUFACTURE,‘YYYYMMDD’)

ROW_ID int BATCH.ROW_ID

21.	 Open	the	E1BPBATCHATTX	Query	transform	in	the	workspace	window	for	editing	and
define	the	following	mappings	for	the	output	schema	columns:

Column	name Data	type Mapping	expression

LASTGRDATE varchar(1) ‘X’

COUNTRYORI varchar(1) ‘X’

PROD_DATE varchar(1) ‘X’

ROW_ID int BATCH.ROW_ID

22.	 Open	the	E1BPBATCHCTRL	Query	transform	in	the	workspace	window	for	editing	and
define	the	following	mappings	for	the	output	schema	columns:

Column	name Data	type Mapping	expression

DOCLASSIFY varchar(1) ‘X’

ROW_ID Int BATCH.ROW_ID

23.	 Open	the	IDOC_Nested_Schema	Query	transform	in	the	workspace	window	for
editing.

24.	 Drag	and	drop	EDI_DC40	and	E1BATMAS	segments	from	the	input	schema	into	the
output	schema	of	the	IDOC_Nested_Schema	Query	transform.

25.	 Double-click	on	output	schema	IDOC_Nested_Schema	to	make	its	status	to	“current”,
open	the	FROM	tab,	and	select	only	the	E1BATMAS	input	schema.	Mark	the	EDI_DC40
segment	in	the	output	nested	schema	as	repeatable	(the	full	table	icon).	If	the	segment
schema	is	created	as	repeatable	by	default	then	do	not	change	it.	Mark	the	E1BATMAS
output	schema	segment	as	non-repeatable.	To	do	that,	make	it	current	by	double-
clicking	on	it,	and	then	right-click	on	it,	unselecting	the	Repeatable	option	from	the
context	menu.	See	the	difference	between	the	output	schema	icons	for	EDI_DC40	and
E1BATMAS	as	for	repeatable	and	non-repeatable	segments.

26.	 Double-click	on	the	first	EDI_DC40	output	segment	to	make	its	status	“current”.	Open
the	FROM	tab	and	select	only	the	EDI_DC40	input	schema:

27.	 Double-click	on	the	second	E1BATMAS	output	segment	to	make	it	current.	Open	the
FROM	tab	and	select	only	the	EDI_DC40	input	schema,	in	the	same	way	as	for	the
previous	EDI_DC40	output	schema.	Also,	delete	the	ROW_ID	column	from	the	output
schema	and	drag	and	drop	the	rest	of	the	input	schemas	E1BPBATCHATT,
E1BPBATCHATTX,	and	E1BPBATCHCTRL	inside	the	E1BATMAS	output	schema	creating
nesting	structure:

28.	 Double-click	on	the	nested	E1BPBATCHATT	output	schema	to	make	it	current.	Delete
the	ROW_ID	column	from	the	output	schema.	On	the	FROM	tab,	select	the
E1BPBATCHATT	input	schema.	On	the	WHERE	tab,	specify	the	filtering	condition:
(E1BPBATCHATT.ROW_ID	=	E1BATMAS.ROW_ID).

29.	 Perform	the	preceding	same	step	for	the	next	output	segment.	Double-click	on	the
nested	E1BPBATCHATTX	output	schema	to	make	it	current.	Delete	the	ROW_ID	column
from	the	output	schema.	On	the	FROM	tab,	select	the	E1BPBATCHATTX	input	schema.

On	the	WHERE	tab,	specify	the	filtering	condition:	(E1BPBATCHATTX.ROW_ID	=
E1BATMAS.ROW_ID).

30.	 Perform	the	same	preceding	step	for	the	next	output	segment.	Double-click	on	the
nested	E1BPBATCHCTRL	output	schema	to	make	it	current.	Delete	the	ROW_ID	column
from	the	output	schema.	On	the	FROM	tab,	select	the	E1BPBATCHCTRL	input	schema.
On	the	WHERE	tab,	specify	the	filtering	condition:	(E1BPBATCHCTRL.ROW_ID	=
E1BATMAS.ROW_ID).

31.	 The	target	object	BATMAS03	imported	into	the	SAP_ERP	datastore	should	be	configured
using	the	values	shown	in	the	following	screenshot.	Open	the	BATMAS03	target	object
in	the	dataflow	in	the	main	workspace	for	editing	to	configure	it.

Close	the	dataflow	object.	Save	and	validate	the	job	to	make	sure	that	you	have	not
made	any	syntax	errors	in	your	dataflow	design.

32.	 Open	the	last	dataflow,	DF_SAP_MCH1,	for	editing	in	the	workspace	window.
33.	 Add	the	MCH1	table	from	the	SAP_ERP	datastore	as	a	source	object.
34.	 Propagate	all	the	columns	from	the	MCH1	table	to	the	output	schema	using	the	linked

Query	transform.
35.	 Add	a	new	template	table,-SAP_MCH1,	from	the	STAGE	datastore	as	a	target	table

object.
36.	 Save,	validate,	and	run	the	job.

How	it	works…
The	preceding	steps	show	the	common	process	of	loading	data	into	the	SAP	system	using
the	IDoc	mechanism.	The	load	process	usually	consists	of	few	steps:

	
Extract	master	data	from	the	SAP	system	to	make	sure	that	we	are	referencing	the
correct	objects	existing	in	the	target	system
Process	of	building/preparing	dataset	for	load
Process	of	loading	the	data	into	SAP
The	post-validation	process	of	extracting	data	loaded	in	SAP	back	into	the	staging
area	for	validation

Let’s	review	all	these	processes	built	in	the	form	of	a	dataflow	in	more	detail.

The	first	dataflow,	DF_SAP_MARA	,	will	be	extracting	material	data	from	SAP	ERP	for
validation	purposes	to	make	sure	that	we	do	not	try	to	create	a	batch	for	material	that	does
not	exist	in	the	target	SAP	system.

The	second	dataflow,	DF_Prepare_Batch_Data,	prepares	the	batch	record	to	be	loaded	in
SAP.	As	you	can	see	from	the	output	schema	mapping	of	one	of	the	Query	transforms,	we
prepare	the	batch	2015100901	to	be	created	for	material	RAWMAT01.	As	you	might
remember,	we	have	already	manually	created	batch	20151009.	The	rest	of	the	mappings
show	that	we	have	also	populated	the	Ctry	of	origin,	Last	Goods	Receipt,	and	Date	of
Manufacture	fields.

The	third	dataflow,	DF_Batch_IDOC_Load,	transforms	the	prepared	batch	record	into	the
nested	format	of	an	IDoc	message	and	sends	this	IDoc	message	to	SAP.	Further	more,	we
will	take	a	look	at	how	you	can	monitor	the	process	of	receiving	and	loading	IDocs	on	the
SAP	side.

Finally,	the	fourth	dataflow,	DF_SAP_MCH1,	extracts	the	SAP	table	MCH1,	which	contains
information	about	batches	created	in	SAP	for	post-load	validation	purposes.	That	allows
us	to	see	which	batches	were	actually	loaded	in	SAP	and	run	the	SQL	queries	in	our
staging	area	to	validate	field	values.

IDoc
IDoc	is	a	format	and	transfer	mechanism	that	SAP	systems	use	to	exchange	data.	Data
Services	utilizes	this	mechanism	in	order	to	send	and	receive	information	from	SAP
systems.	IDocs	that	the	SAP	system	receives	are	called	inbound	and	IDocs	sent	by	SAP
are	called	outbound.	You	saw	that	transaction	WE20	was	used	to	configure	Inbound	IDoc
parameters	so	that	SAP	could	successfully	accept	BATMAS	IDoc	messages	sent	to	it	from
Data	Services.

BATMAS	IDoc	used	to	load	batch	data	has	a	nested	structure,	and	that	is	why	we	had	to
nest	multiple	datasets	with	the	help	of	Query	transform.	We	used	artificial	ID	key	ROW_ID
to	link	all	the	nested	segments	together.

Keep	in	mind	that	Data	Services	does	not	load	data	in	SAP	tables	directly	itself.	All	Data
Services	does	is	prepares	the	data	in	the	IDoc	format	so	that	it	can	be	received	by	SAP	and

loaded	into	SAP	tables	using	internal	mechanisms/programs.

Monitoring	IDoc	load	on	the	SAP	side
Data	Services	sends	IDoc	messages	to	SAP	synchronously.	An	IDoc	message	is	received
by	SAP	and	then	processed.	Only	after	that	does	Data	Services	sends	the	next	IDoc
message.	Sometimes,	this	process	can	take	quite	a	long	time.	All	you	will	see	in	trace	log
on	the	Data	Services	side	is	one	record	indicating	that	the	dataflow	loading	data	is	still
running.

To	see	what	is	going	on	the	SAP	side—how	many	IDocs	fail	and	how	many	of	them	are
processed	successfully	by	SAP—you	can	use	transaction	BD87:

By	expanding	the	BATMAS	section	and	double-clicking	on	the	actual	IDoc	record	that
you	are	interested	in,	you	can	see	the	data	in	the	IDoc	nested	segments:

Other	useful	information	available	on	this	screen	includes:

	
The	status	of	the	IDoc	(processed	successfully	or	failed)
Error	messages	(if	failed)
Data	records	stored	in	IDoc	message	(E1BATMAS,	E1BPBATCHATT,	E1BPBATCHATTX,	and

E1BATCHCTRL	segments)

As	you	can	see,	the	EDI_DC40	segment	is	not	visible	as	it	is	an	IDoc	header	itself.
Information	we	have	provided	in	this	segment	is	available	in	the	Short	Technical
Information	panel	and	defines	the	behavior	of	IDoc	processing.

By	clicking	on	the	Refresh	button	on	the	Status	Monitor	for	ALE	Messages	screen,	you
can	see	in	real	time	how	the	IDocs	received	by	SAP	are	processed.

Post-load	validation	of	loaded	data
We	know	that	one	of	the	tables	in	SAP	where	batch	master	data	is	stored	is	MCH1.
Knowing	which	physical	tables	are	actually	populated	with	data	when	you	enter	data
manually	via	transactional	screens,	or	loading	data	coming	from	external	systems	via	an
IDoc	mechanism,	is	useful	as	you	can	always	extract	the	contents	of	these	tables	to
perform	post-validation	tasks.

To	view	our	newly	created	batch	2015100901,	we	can	use	transaction	MSC3N	(Display
Batch):

Or,	we	can	see	the	contents	of	the	MCH1	table	directly	using	the	SE16	transaction	(Data
Browser):

You	can	see	both	batches	here:	the	one	created	manually	and	the	one	loaded	with	the	help
of	Data	Services.

Do	you	remember	that	we	developed	a	dataflow	to	extract	the	MCH1	table	to	validate
loaded	data?	Let’s	check	the	actual	records	extracted	right	after	the	loading	process	has
been	completed	by	browsing	the	contents	of	the	SAP_MCH1	table	in	our	staging	area:

The	CHARG	column	in	the	MCH1	table	stores	the	batch	number	values.

Tip
As	technical	names	in	SAP	tables	can	be	quite	difficult	to	understand,	you	can	use
transaction	SE11	to	see	the	descriptions	of	the	columns	for	the	specific	table.

There	is	more…
We	have	just	scratched	the	surface	of	one	of	the	possible	methods	of	reading/loading	data
from	the	SAP	system.

There	are	many	other	methods	that	can	be	used	to	communicate	with	SAP	systems:	ABAP
dataflows,	BAPI	calls,	direct	RFC	calls,	Open	Hub	Tables,	and	many	others.

Choosing	between	these	methods	usually	depends	on	the	type	of	tasks	that	have	to	be
implemented,	the	amount	of	transferred	data,	and	the	type	of	SAP	environment	used.

Chapter	12.	Introduction	to	Information	Steward
In	this	chapter,	we	will	see	the	following	recipes:

	
Exploring	Data	Insight	capabilities
Performing	Metadata	Management	tasks
Working	with	the	Metapedia	functionality
Creating	a	custom	cleansing	package	with	Cleansing	Package	Builder

Introduction
SAP	Information	Steward	is	a	separate	product	that	is	installed	alongside	SAP	Data
Services	and	SAP	Business	Intelligence	and	provides	additional	capabilities	for	business
and	IT	users	in	order	to	analyze	data	quality	and	create	cleansing	packages	that	can
increase	data	cleansing	processes	ran	by	Data	Services.

To	cover	all	functionalities	of	Information	Steward,	we	would	have	to	write	another	book.
In	this	chapter,	we	will	explore	the	main	functions	of	Information	Steward	that	proved
themselves	to	be	the	most	valuable	to	users	of	the	product.

All	these	activities	relate	to	specific	areas	within	the	SAP	Information	Steward
application.

Note
Log	in	to	the	SAP	Information	Steward	application	at
http://localhost:8080/BOE/InfoStewardApp.

On	the	main	page,	you	can	see	five	tabs	that	represent	the	four	main	areas	of	the
Information	Steward	product	functionality,	as	shown	in	the	following	screenshot:

Exploring	Data	Insight	capabilities
The	Data	Insight	tab	is	the	first	tab,	and	it	enables	you	to	profile	the	data	available	from
different	sources,	build	validation	rules	for	the	data,	and	design	a	scorecard	in	order	to	see
a	visual	representation	of	the	quality	of	your	data.

Getting	ready
Before	we	log	in	to	the	SAP	Information	Steward	application,	we	have	to	create	couple	of
Information	Steward	objects	in	a	standard	Central	Management	Console	(CMC).	The
goal	of	this	preparation	step	is	to	define	the	sources	of	data	that	Information	Steward	can
connect	to	in	order	to	perform	data	quality	and	analysis	tasks.	You	can	define	some	data
sources	directly	in	the	Information	Steward	application	like	a	flat	file,	but	some	of	them
should	first	be	created	as	connections	in	the	CMC	Information	Steward	area.

	
1.	 Log	in	to	CMC	at	http://localhost:8080/BOE/CMC.
2.	 Go	to	the	Information	Steward	section.
3.	 Click	on	Connections	and	click	on	the	Create	connection	button	in	the	top	menu.
4.	 Fill	in	all	the	required	fields,	as	shown	in	the	following	screenshot,	in	order	to	create

a	connection	object	to	the	AdventureWorks_DWH	SQL	Server	database:

5.	 Click	on	the	Test	Connection	button	to	validate	the	information	entered,	and	then
click	on	the	Save	button	to	save	the	connection	and	exit	the	Create	Connection
screen.

6.	 The	dwh_profile	connection	should	appear	in	the	list	of	connections	that	can	be	used
in	Information	Steward.

7.	 Finally,	let’s	create	a	new	Data	Insight	project	called	Geography.	To	do	that,	go	to
the	Data	Insight	section	and	click	on	the	Create	a	Data	Insight	project	button.

How	to	do	it…
Before	you	start	with	the	following	steps,	first	log	in	to	SAP	Information	Steward	at
http://localhost:8080/BOE/InfoStewardApp.

The	common	sequence	of	actions	performed	on	the	Data	Insight	tab	in	Information
Steward	includes:

	
Creating	a	connection	object
Profiling	the	data
Viewing	profiling	results
Creating	a	validation	rule
Creating	a	scorecard

Creating	a	connection	object
The	following	steps	are	required	to	specify	the	source	of	our	data	for	our	Data	Insight
analysis.

	
1.	 Go	to	Data	Insight	|	Geography	Project.
2.	 Select	the	Workspace	Home	tab	and	click	on	the	Add	|	Tables…	button	in	the	top-

left	corner.
3.	 In	the	opened	window,	select	the	dwh_profile	connection	object,	then	expand	it,

select	the	dbo.DimGeography	table,	and	then	click	on	the	Add	to	Project	button,	as
shown	in	the	following	screenshot:

Profiling	the	data

Profiling	or	gathering	various	kinds	of	information	about	the	data	can	be	used	for	data
analysis.

	
1.	 To	profile	the	data	in	the	added	DimGeography	table,	you	can	use	various	profiling

options.	Let’s	collect	uniqueness	profiling	data.	On	the	Workspace	Home	tab,	select
the	DimGeography	table	in	the	dwh_profile	connection	and	click	on	the	Profile	|
Uniqueness	button	in	the	Profile	Results	toolbar	menu.

2.	 In	the	Define	Tasks:	Uniqueness	window,	specify	which	columns	you	want	to	gather
a	uniqueness	profile	information	for.	Select	City	and	CountryRegionCode	and	click
on	the	Save	and	Run	Now	button,	as	shown	in	the	following	screenshot:

3.	 To	gather	column	profiling	information,	select	the	DimGeography	table	and	click	on
the	Profile	|	Columns	button	in	the	toolbar	menu	of	the	Workspace	Home	|	Profile
Results	tab.	Specify	a	name	for	the	column	profiling	task,
Geography_column_profiling,	and	select	all	profiling	options:	Simple,	Median	&
Distribution,	and	Word	Distribution.	Then,	click	on	the	Save	and	Run	Now	button
to	create	and	execute	the	column	profiling	task.

4.	 Select	the	Tasks	section	on	the	left-side	panel	to	see	both	the	profiling	tasks	created
in	the	previous	steps.	You	can	run	them	any	time	from	this	tab	to	refresh	the	profiling
data	according	to	the	parameters	specified.

Viewing	profiling	results
The	following	steps	show	you	how	to	view	the	previously	gathered	profiling	results.

	
1.	 To	see	the	data	profile	results,	go	to	the	Workspace	Home	|	Profile	Results	tab.
2.	 Expand	the	table	you	are	interested	in	to	see	its	columns	and	select	it.
3.	 Click	on	the	Refresh	|	Profile	Results	button	in	the	toolbar	menu.
4.	 Then,	by	clicking	on	the	field	or	specific	number	you	are	interested	in,	you	can	see

the	detailed	result	for	this	field	in	the	extra	windows	on	the	right-hand	side	of	the
screen,	and	at	the	bottom,	as	shown	in	the	following	screenshot:

5.	 To	see	the	results	of	the	uniqueness	profile	information	collected,	select	the
Advanced	view	mode	under	the	Profile	Results	tab.

6.	 In	the	opened	window,	click	on	the	green	icon	in	the	Uniqueness	column	and	select
the	key	combination	you	have	gathered	information	on.	In	our	case,	we	have	gathered
uniqueness	profiling	information	for	two	columns	of	the	DimGeography	table,	City
and	CountryRegionCode,	as	shown	in	the	following	screenshot:

By	hovering	your	cursor	over	the	red	zone	showing	the	percentage	of	non-unique	records
the	for	selected	combination	of	columns,	you	can	see	detailed	information	such	as	the
percentage	of	non-unique	rows	and	number	of	non-unique	rows.	In	our	case,	it	is	22.08%
and	151.	By	clicking	on	the	red	zone,	you	can	display	non-unique	rows	at	the	bottom	of
the	screen.

So	far,	we	have	gathered	two	types	of	profiling	information:	column	profile	data	and
uniqueness	profile	data	for	the	DimGeography	table	located	in	our	data	warehouse.

Creating	a	validation	rule
Now,	let’s	see	how	you	can	create	a	validation	rule	in	Information	Steward	and	display	the
result	of	applying	it	to	the	dataset	in	a	graphical	form	by	using	scorecards.

	
1.	 On	the	Workspace	Home	|	Profile	Results	tab,	you	can	find	a	yellow	icon	in	the

Advisor	column	against	the	dbo.DimGeography	table,	as	shown	in	the	following
screenshot:

2.	 Click	on	the	yellow	icon	shown	in	the	preceding	screenshot	to	launch	Data
Validation	Advisor:

3.	 We	are	not	going	to	accept	the	validation	rule	suggested	by	Data	Validation	Advisor
and	will	create	our	own	custom	validation	rule.

Our	custom	rule	will	check	if	the	DimGeography	table	record	has	translated	values	in
both	the	columns,	FrenchCountryRegionName	and	SpanishCountryRegionName.	To
create	a	new	rule,	open	the	second	vertical	table	Rules,	which	is	next	to	the
Workspace	Home	tab,	and	click	on	the	New	button	from	the	toolbar	menu	to	create
a	new	rule.

4.	 Fill	in	all	the	configuration	fields	of	the	new	French_Spanish_CountryRegionName
rule,	as	shown	in	the	following	screenshot:

We	have	created	two	parameters,	$French_translation	and
$Spanish_translation,	of	the	varchar	data	type.	Each	parameter	checks	the	value
in	each	of	the	two	columns,	and	in	the	Definition	tab,	we	have	specified	the
condition	to	be	applied	to	the	values.

5.	 Click	on	the	Submit	for	Approval	button.	The	rule	will	be	sent	to	the	Tasks	tab	for
approval	by	a	category	of	users	specified	in	the	Approver	field	on	the	Rule	Editor
window.

6.	 The	rule	can	be	approved	from	the	My	Worklist	section,	as	shown	in	the	following
screenshot:

7.	 Go	to	the	Workspace	Home	|	Rule	Results	tab	and	click	on	the	Bind	to	Rule
button.

8.	 Bind	the	rule	parameters	to	the	dwh_profile.dbo.DimGeography	fields,	as	shown	in
the	following	screenshot,	and	click	on	the	Save	and	Close	button:

9.	 Click	on	Refresh	|	Rule	Results	to	see	the	results	of	applying	the	rule	to	the	columns
of	the	table	specified,	as	shown	in	the	following	screenshot:

The	left	side	of	the	screen	shows	the	rule	scores	for	the	specified	fields	and	the
number	of	records	that	passed/failed	the	rule.	In	our	example,	55	rows	do	not	have
either	a	French	or	Spanish	translation	in	the	FrenchCountryRegionName	and
SpanishCountryRegionName	fields.

You	can	see	the	actual	records	in	the	right-side	panel.

10.	 You	can	see	the	rule	result	on	the	Rules	tab	directly.	All	you	need	to	do	is	select	the
rule	and	click	on	the	Bind	button.	The	rule	result	appears	on	the	right	side	of	the
screen,	as	shown	in	the	following	screenshot:

Creating	a	scorecard
Scorecards	are	a	convenient	way	to	visualize	and	present	historical	information	about
validation	rule	results.

	
1.	 A	scorecard	can	be	created	on	the	Scorecard	Setup	tab.	This	is	a	very

straightforward	process	where	you	first	specify	Key	Data	Domain,	Quality
Dimension,	then	the	rule	you	want	to	include	in	the	scorecard	output,	and,	finally,
perform	rule	binding	to	link	the	rule	to	the	actual	dataset,	as	shown	in	the	following
screenshot:

2.	 To	view	the	scorecard	results,	go	to	Workspace	Home	and	select	the	Scorecard
view	mode	instead	of	Workspace	in	the	combobox	location	in	the	top-right	corner,
as	shown	in	the	following	screenshot:

How	it	works…
Now,	after	we	have	created	our	connection	object,	gathered	the	profiling	data,	applied	the
validation	rule,	and	even	created	the	scorecard	to	see	its	results,	let’s	see	in	more	detail	the
various	aspects	of	the	steps	performed.

Profiling
As	you	can	see,	working	in	Information	Steward	is	a	very	intuitive	process.

As	mentioned	earlier,	the	Data	Insight	section	of	Information	Steward	is	all	about
understanding	your	data,	which	is	possible	with	the	profiling	capabilities	of	IS.	In	the
majority	of	cases,	profiling	your	data	is	the	first	step	before	starting	any	data	quality
related	work.	In	the	following	section,	we	will	review	the	types	of	profiling	data	available
in	the	Profile	Results	section.

	
The	value	section	of	profiling	data	shows	the	actual	border	and	median	values	from
the	dataset	for	a	specific	field.
String	Length	profiling	values	provide	information	about	the	size	of	the	values.
The	completeness	section	helps	you	to	see	any	gaps	in	the	data.
Distribution	can	be	extremely	useful	to	understand	the	cardinality	of	the	specific
fields	in	your	dataset.	For	example,	seeing	number	7	in	the	Distribution	|	Value	field
of	the	profiling	result	data	against	the	CountryRegionCode	field,	we	will	know	that
we	have	only	seven	different	values	in	that	field.	Clicking	on	that	number	shows	us
those	values	and	their	distribution	in	the	right-hand	side	panel.

Rules
Rules	allow	you	to	analyze	the	data	according	to	custom	conditions.	Rules	are	created	for
general	rule	parameters	so	that	you	can	apply	the	same	rule	to	different	datasets,	if
necessary.	Linking	the	rule	to	a	specific	dataset	is	called	binding.	It	is	the	process	of
linking	rule	parameters	to	actual	table	fields.

Rules	are	usually	defined	by	business	users	to	understand	how	data	complies	with	specific
business	requirements.

Information	Steward	offers	a	Data	Validation	Advisor	feature	that	proposes	the
preconfigured	rules	depending	on	the	profiling	results	of	your	data.

Scorecards
Scorecards	allow	you	to	group	your	rules	and	help	you	to	see	trends	in	data	scores
calculated	by	specific	rules.

There	is	more…
There	is	much	more	to	the	Data	Insight	functionality	than	presented	in	this	recipe.	We
have	just	scratched	the	surface	of	the	basic	functions	available	in	this	area	of	Information
Steward.

It	is	possible	to	specify	file	formats	directly	in	Information	Steward	in	order	to	source	data
from	flat	files	and	from	Excel	spreadsheets.

Another	great	thing	about	Information	Steward	Data	Insight	is	that	it	allows	you	to	build
data	views	that	are	based	on	multiple	sources	of	information.

The	intuitive	and	well-documented	interface	allows	you	to	easily	experiment	and	play
with	your	data	on	your	own.	This	is	always	a	very	fascinating	process	that	does	not	require
any	deep	technical	knowledge	of	the	underlying	product.

Performing	Metadata	Management	tasks
The	second	tool	available	in	Information	Steward	after	Data	Insight	is	Metadata
Management.

The	Metadata	Management	tool	is	used	to	collect	metadata	information	from	various
systems	in	order	to	get	a	comprehensive	view	of	it	and	to	analyze	the	relationships
between	metadata	objects.

In	this	recipe,	we	will	take	a	look	at	the	example	of	using	Metadata	Management	on	our
Data	Service	repository,	which	stores	the	ETL	code	developed	for	recipes	of	this	book.

Getting	ready
As	with	Data	Insight,	we	have	to	first	establish	connectivity	to	the	Data	Services
repository.	This	is	usually	an	administration	task	that	can	be	done	in	CMC	in	the
Information	Steward	|	Metadata	Management	section.	Click	on	Create	an	integrator
source	and	fill	in	all	the	required	fields,	as	shown	in	the	following	screenshot,	to	define	a
connection	to	Data	Services	repository	for	the	Metadata	Management	tool:

After	creating	an	integrator	source	object,	you	have	to	run	it	by	using	the	Run	Now	option
in	the	object’s	context	menu.	That	operation	will	perform	the	collection	of	metadata	or
information	about	all	the	objects	in	the	Data	Services	repository.	Remember	that	any
recent	changes	made	to	the	repository	after	this	operation	will	not	be	propagated	to	the
collected	Metadata	Management	snapshot,	so	you	would	need	to	either	run	it	manually	or
schedule	it	to	run	regularly	according	to	your	requirements.

The	following	screenshot	shows	you	how	to	use	the	Run	Now	option:

The	Last	Run	column	shows	you	when	the	integrator	source	data	was	last	updated.

To	see	the	history	of	runs,	just	select	History	from	the	integrator	source	objects	context
menu,	as	shown	in	the	following	screenshot:

This	screen	can	show	you	how	long	it	took	to	collect	metadata	information	from	the
repository	and	even	provides	access	to	the	database	log	of	the	metadata	collection	process,
which	can	be	used	for	troubleshooting	any	potential	problems.

How	to	do	it…
Now	that	we	have	defined	the	connection	to	our	Data	Services	repository	and	collected	the
metadata	snapshot	using	this	connection	in	CMC,	we	can	launch	the	Information	Steward
application	to	use	the	Metadata	Management	functionality.

	
1.	 Log	in	to	Information	Steward	and	go	to	the	Metadata	Management	section,	as

shown	in	the	following	screenshot:

2.	 Click	on	the	Data_Services_Repository	source	in	the	Data	Integration	category
and	on	the	opened	screen,	look	for	the	DimGeography	table	using	the	Search	field.
The	Search	Results	section	at	the	very	bottom	shows	you	all	the	possible	matches,
so	all	you	have	to	do	is	select	the	object	you	need—table	from	the	STAGE	database
under	the	Transform	schema:

3.	 To	see	the	impact	the	table	has	on	another	object	in	ETL	repository,	click	on	the	View
Impact	button.	You	should	see	something	like	the	following	screenshot:

You	can	see	that	the	DimGeography	table	is	used	as	a	source	to	populate	the	other
DimGeography	tables	(from	AdventureWorks_DWH	and	DWH_backup	databases).

4.	 Click	on	the	LINAGE	section	in	the	same	window	to	see	the	source	object	for	the
DimGeography	table	of	the	STAGE	database	Transform	schema,	as	shown	in	the
following	screenshot:

You	can	see	that	the	data	came	from	three	tables:	ADDRESS,	COUNTRYREGION,	and
STATEPROVINCE.

5.	 By	switching	to	Columns	Mapping	View,	you	can	see	the	linage	information	on	the
column	level,	as	shown	in	the	following	screenshot:

6.	 Close	this	window	to	go	back	to	the	main	Metadata	Management	working	area.
Now,	let’s	define	the	relationship	between	the	two	tables	from	the	Data	Services
repository	are	not	directly	related	to	each	other	in	ETL	code:
STAGE.Transform.DIMGEOGRAPHY	and	STAGE.Transform.DIMSALESTERRITORY.	To	do
that,	you	have	to	select	each	table	in	the	Search	results	section	at	the	bottom	and
click	on	the	Add	to	Object	Tray	button.

7.	 When	both	tables	are	added	into	Object	Tray,	click	on	the	Object	Tray	(2)	link	at
the	top	of	the	screen	(right	to	the	Search	field).

8.	 In	the	opened	window,	select	both	objects,	as	shown	in	the	following	screenshot:

9.	 Click	on	Establish	Relationship	and	configure	the	desirable	relationship	between
these	two	objects,	as	shown	in	the	following	screenshot:

10.	 Now,	if	you	click	on	the	View	Related	To	button,	you	can	see	that	the	relationship
information	appears	on	the	screen,	as	shown	in	the	following	screenshot:

11.	 To	export	the	information	from	this	screen	into	an	Excel	spreadsheet,	click	on	the
Export	the	tabular	view	to	an	Excel	file	button	in	the	top-right	corner.

12.	 Choose	the	Open	with	Microsoft	Excel	option,	as	shown	in	the	following
screenshot:

13.	 The	generated	Excel	spreadsheet	could	be	sent	to	other	business	users,	used	in	further
analysis,	or	simply	used	as	a	piece	of	documentation	for	ETL	metadata.

How	it	works…
Metadata	management	can	link	information	provided	by	multiple	sources	in	order	to
perform	lineage	and	impact	analysis	on	objects.	In	our	example,	we	used	only	the	Data
Services	repository,	but	multiple	sources,	such	as	Business	Intelligence	metadata	are	often
imported	along	with	source	database	objects	and	the	Data	Services	metadata.	That	allows
you	to	see	the	full	picture	of	what	is	happening	to	a	specific	dataset,	starting	from	its
extraction	from	the	database,	which	ETL	transformations	are	applied	to	it,	which	target
table	the	transformed	data	is	loaded	to,	and,	finally,	which	BI	universes	and	BI	reports	use
it.

On	top	of	that	you	can	create	user–customer	relationships	between	objects	that	are	not
related	to	each	other	either	directly	or	indirectly.

Working	with	the	Metapedia	functionality
Think	of	Metapedia	as	Wikipedia	for	your	data.	Metapedia	is	used	to	build	a	hierarchy	of
business	terms	and	descriptions	for	your	data,	group	them	into	categories,	and	even
associate	actual	technical	objects	like	pieces	of	ETL	code	and	database	tables	with	these
terms.

In	this	recipe,	we	will	create	a	small	glossary	of	business	terms	in	Information	Steward
and	learn	how	it	can	be	distributed	outside	of	the	system	to	be	updated	by	business	users
and	imported	back	into	Information	Steward.

How	to	do	it…
	
1.	 Log	in	to	Information	Steward	and	go	to	the	Metapedia	section.
2.	 Click	on	the	New	Category	button	to	create	a	new	category,	Geography,	as	shown	in

the	following	screenshot:

Specify	the	keywords	to	be	associated	with	the	category	for	an	easy	search	and	click
on	the	Save	button	to	create	the	category.

3.	 Choose	All	Terms	and	click	on	the	New	button	to	create	a	new	term,	Post	code,	as
shown	in	the	following	screenshot:

Click	on	Save	to	create	it	and	close	the	window.

4.	 Now,	select	the	created	term	in	the	list	of	terms	and	click	on	Category	Actions	|	Add
to	Category.

5.	 On	the	opened	category	list	screen,	select	the	Geography	category	and	click	on	OK,
as	shown	in	the	following	screenshot:

6.	 Click	on	the	Export	Metapedia	to	MS	Excel	file	button	and	select	the	All	Terms
option.

7.	 In	the	prompt	window,	select	Export	term	description	in	plain	text	format.
8.	 Save	the	file	on	the	disk.	Now,	let’s	perform	some	modifications	to	the	file	as	if	we

are	business	users	who	have	been	told	to	create	a	glossary	of	terms	and	categories
using	this	Excel	spreadsheet.

9.	 Add	the	new	terms	on	the	Business	Terms	tab	of	the	spreadsheet,	as	shown	in	the
following	screenshot:

10.	 Add	the	new	categories	on	the	Business	Categories	tab	of	the	spreadsheet,	as	shown
in	the	following	screenshot:

11.	 Go	back	to	Information	Steward	|	Metapedia	and	click	on	Import	Metapedia
from	MS	Excel	file.	Specify	the	file	modified	in	the	previous	step,	as	shown	in	the
following	screenshot:

Note	that	importing	information	from	this	spreadsheet	will	automatically	approve	all
terms	and	will	change	their	statuses	from	Editing	to	Approved.

12.	 To	associate	a	term	with	actual	technical	objects,	double-click	on	the	specific	term
and	click	on	the	Actions	|	Associate	with	objects	button	on	the	term	editor	screen.
Select	the	objects	you	want	to	associate	with	the	term	one	by	one	by	clicking	on	the
Associate	with	term	button.	Click	on	Done	after	you	have	finished.

13.	 We	have	associated	two	objects,	table	CITY	and	parameter	$p_City,	from	our	Data
Services	repository	with	the	term	City,	as	shown	in	the	following	screenshot:

How	it	works…
The	main	function	of	Metapedia	is	to	provide	a	glossary	to	browse	and	understand	the	data
presented	and	categorized	in	clear	business	terms.	In	other	words,	the	purpose	of
Metapedia	is	to	provide	a	clear	translation	of	technical	terms	into	terms	that	could	be
understood	by	business.

It	is	a	simple	but	very	efficient	solution,	and	in	this	recipe,	we	demonstrated	how	a	simple
glossary	can	be	created	in	Information	Steward	Metapedia,	and	then	exported	into	a
spreadsheet	for	distribution	and	imported	back	with	updated	information.

This	is	very	useful	if	you	need	to	gather	this	kind	of	information	from	users	who	do	not
have	knowledge	or	access	to	Information	Steward	and	create	terms	and	categories	directly
in	the	system.

Creating	a	custom	cleansing	package	with
Cleansing	Package	Builder
In	Chapter	7,	Validating	and	Cleansing	Data	(see	the	recipe	Data	Quality	transforms	–
cleansing	your	data),	we	already	used	the	default	cleansing	package	PERSON_FIRM
available	in	Data	Services	for	data	cleansing	tasks.

In	this	recipe,	we	will	create	a	new	cleansing	package	from	scratch	with	the	help	of
Information	Steward	and	publish	it	so	that	it	can	be	used	in	Data	Services	transforms.

Our	new	custom	cleansing	package	will	be	used	to	determine	the	type	of	street	used	in	the
address	field	of	the	Address	table	from	the	OLTP	database.

Getting	ready
The	Information	Steward	Cleansing	Package	Builder	tool	requires	a	sample	flat	file	with
data	that	is	used	to	define	cleansing	rules.	The	following	steps	describe	how	to	prepare
such	a	flat	file	with	sample	data.

As	we	are	going	to	use	our	custom	cleansing	package	to	cleanse	the	OLTP.Address	table
data,	we	will	generate	our	sample	dataset	from	the	same	table.

	
1.	 Launch	Data	Services	Designer	and	log	in	to	local	repository.
2.	 Go	to	Local	Object	Library	|	Formats	|	Flat	Files.
3.	 Right-click	on	the	Flat	Files	section	and	create	a	new	flat	file	format,	PB_sample,	as

shown	in	the	following	screenshot:

4.	 Create	a	new	job	and	new	dataflow.	Inside	a	dataflow,	put	the	OLTP.ADDRESS	table	as
a	source	table.

5.	 Link	the	source	table	to	Query	transform	and	propagate	only	the	ADDRESSLINE1
column	to	the	output	schema.

6.	 Link	the	output	of	a	Query	transform	object	to	the	target	file	based	on	the	PB_sample
file	format	created	earlier.

7.	 Save	and	run	the	job.	The	PB_sample.txt	file	should	appear	in	the	C:\AW\Files\
folder.

How	to	do	it…
Now,	after	we	have	created	a	sample	file,	we	can	finally	start	the	Information	Steward
application	and	use	Cleansing	Package	Builder	to	create	our	new	custom	cleansing
package.

	
1.	 Launch	the	Information	Steward	application	and	go	to	the	Cleansing	Package

Builder	area.
2.	 Click	on	New	Cleansing	Package	|	Custom	Cleansing	Package	and	specify	the

package	name	and	sample	data	file	in	the	first	step	of	package	builder:

3.	 Step	2	of	package	builder	contains	information	which	helps	to	parse	the	sample	data
correctly:

4.	 At	step	3	of	the	package	builder,	you	should	define	the	number	of	records	taken	from
the	sample	file	to	be	used	in	the	package	design	process.	The	maximum	number	of
rows	is	3,000.	Specify	the	random	mechanism	of	obtaining	rows	from	the	sample
file,	and	number	of	rows	to	get	is	3,000.

5.	 Step	4	defines	the	parsing	strategy:

6.	 At	step	5,	you	can	choose	a	category	name	and	assign	suggested	attributes	to	it	if	you
want	to.	In	our	example,	none	of	the	suggested	attributes	matches	our	category
STREET_TYPE,	so	we	do	not	tick	any	of	them:

7.	 At	step	6,	we	create	attributes	for	our	STREET_CATEGORY	category	and	categorize	the
values	found	in	the	sample	file	against	the	attributes.	The	Standard	Forms	column
defines	the	standardized	form	of	the	parsed	value	and	the	Variations	column	defines
what	variations	will	be	standardized	to	the	value	specified	in	the	Standard	Forms
window.	Please	see	an	example	of	the	configuration	for	the	DRIVE_ATTR	attribute:

8.	 Another	example	is	the	STREET_ATTR	attribute:

You	can	see	how	we	have	assigned	STREET	values	to	the	standard	form	that	are
visually	and	syntactically	very	different,	like	Strase	and	Rue.

9.	 After	step	6,	you	might	think	you	have	created	your	package	and	that	the	job	is	done.
This	is	almost	true.	We	have	just	passed	the	basic	cleansing	package	builder	wizard
steps	in	order	to	create	the	canvas	for	our	new	package.	The	real	work	starts	when
you	double-click	on	the	package	in	the	Cleansing	Package	Builder	area	and	the
package	editor	opens.	It	has	two	main	editing	modes:	Design	and	Advanced.	We	are

not	going	to	work	with	the	advanced	design	mode	as	it	would	take	another	book	to
cover	all	the	aspects	of	fine-tuning	your	cleansing	package	in	this	mode.

10.	 In	the	meantime,	you	have	probably	noticed	that	our	custom	package	was	created
with	the	lock	icon:

11.	 Information	Steward	needs	some	time	to	finish	its	background	processes	of	the
package	creation,	so	you	have	to	wait	for	couple	of	minutes	until	the	icon	changes	to
different	one:

12.	 Now	the	package	is	ready	to	be	published.	Select	the	package	on	the	left	and	click	on
the	Publish	button	in	the	toolbar	menu.	The	clock	icon	on	the	package	in	the	right-
side	panel	means	that	Information	Steward	is	still	performing	background	operations
in	order	to	publish	the	package	and	make	it	available	for	usage	in	Data	Services:

13.	 When	the	package	publication	is	finished,	the	icon	changes	again:

14.	 You	can	continue	fine-tuning	your	package	by	entering	package	Design	mode.	This
mode	shows	you	the	result	of	your	actions	immediately	in	the	table	at	the	bottom:

How	it	works…
Let’s	see	how	the	cleansing	package	we	created	could	actually	be	used	in	Data	Services	to
perform	data	cleansing	tasks.

	
1.	 Start	Data	Services	Designer.
2.	 Create	a	new	job	and	new	dataflow.
3.	 Import	the	OLTP.ADDRESS	table	as	a	source	table	object.
4.	 Link	the	source	table	to	the	Query	transform	and	propagate	only	the	ADDRESSLINE1

column	to	the	output	schema	as	we	are	going	to	perform	cleansing	only	on	this
column.

5.	 Link	the	Query	transform	object	to	the	Data_Cleanse	transform,	which	can	be	found
in	Local	Object	Library	|	Transforms	|	Data	Quality	|	Data_Cleanse.

6.	 Open	the	imported	Data_Cleanse	object	for	editing	in	the	main	workspace	window
and	go	to	the	first	tab,	Input.

7.	 Map	the	input	ADDRESSLINE1	field	to	the	MULTILINE1	transform	input	field	name:

8.	 Go	to	the	second	Options	tab	and	configure	the	following	options	specifying	our	new
created	Address_Custom	as	the	cleansing	package:

9.	 Finally,	open	the	third	tab	Output	and	define	the	following	output	columns	that	will
be	produced	by	Data_Cleanse	transform:

10.	 Close	the	Data_Cleanse	transform	object	and	link	it	to	newly	imported	template
table,	ADDRESS_CLEANSE_STREET_TYPE,	created	in	the	DS_STAGE	datastore.

11.	 Your	dataflow	should	look	like	that	in	the	following	figure:

After	you	have	saved	and	ran	the	job,	you	can	see	that	the	cleansing	package
“categorized”	and	populated	columns	have	been	created	for	each	attribute	of

STREET_CATEGORY:

How	well	a	cleansing	package	does	its	job	solely	depends	on	your	ability	to	define	rules
and	configure	it	to	accommodate	all	possible	scenarios	that	can	be	seen	in	your	data.

For	example,	“Circle”	has	not	been	categorized	as	we	simply	did	not	define	any	rule
regarding	the	“Circle”	value.

This	is	one	of	the	simplest	cases	of	the	cleansing	task	but	it	should	give	you	an	idea	of	the
Information	Steward	capabilities	in	this	area.

There	is	more…
Open	a	cleansing	package	by	double-clicking	and	going	to	the	Advanced	mode	to	see
how	many	options	exist	for	creating	and	tuning	cleansing	rules	and	algorithms.	You	can
define	new	rules	and	change	the	already	created	ones	to	make	your	cleansing	process
behave	differently.	The	complexity	of	a	cleansing	package	is	restricted	only	by	your
fantasy	and	the	complexity	of	the	accommodated	cleansing	process	requirements.

Index
A
	

Access	Server
configuring	/	Configuring	Access	Server,	How	to	do	it…

administrative	tasks
Repository	Manager,	using	/	How	to	do	it…
Server	Manager,	using	/	How	to	do	it…
CMC,	used	for	registering	new	repository	/	How	to	do	it…
License	Manager,	using	/	How	to	do	it…

aggregate	functions
using	/	Using	aggregate	functions,	How	to	do	it…,	How	it	works…

audit	reporting
about	/	Building	an	external	ETL	audit	and	audit	reporting,	How	to	do	it…,	How
it	works…

Auto	correct	load	option
about	/	Exploring	the	Auto	correct	load	option,	How	to	do	it…,	How	it	works…

B
	

blob	data	type	/	How	it	works…
bulk-load

about	/	Optimizing	dataflow	loaders	–	bulk-loading	methods
bulk-loading	methods

about	/	Optimizing	dataflow	loaders	–	bulk-loading	methods,	How	to	do	it…,
How	it	works…
enabling	/	When	to	enable	bulk	loading?

bypassing	feature
using	/	Using	the	bypassing	feature,	How	to	do	it…,	How	it	works…

C
	

Case	transform
used,	for	splitting	data	flow	/	Splitting	the	flow	of	data	with	the	Case	transform,
How	to	do	it…,	How	it	works…

Central	Configuration	Management
about	/	How	to	do	it…

Central	Management	Console
about	/	Introduction,	How	to	do	it…

Central	Management	Console	(CMC)	/	Getting	ready
Central	Object	Library

objects,	assigning	to	and	from	/	Adding	objects	to	and	from	the	Central	Object
Library

central	repository
ETL	code,	migrating	through	/	Migrating	ETL	code	through	the	central
repository,	Getting	ready
objects,	comparing	between	Local	and	Central	/	Comparing	objects	between	the
Local	and	Central	repositories

Change	Data	Capture	(CDC)
about	/	Change	Data	Capture	techniques
No	history	SCD	(Type	1)	/	No	history	SCD	(Type	1)
limited	history	SCD	(Type	3)	/	Limited	history	SCD	(Type	3)
unlimited	history	SCD	(Type	2)	/	Unlimited	history	SCD	(Type	2)
process,	building	/	How	to	do	it…,	How	it	works…
source-based	ETL	CDC	/	Source-based	ETL	CDC
target-based	ETL	CDC	/	Target-based	ETL	CDC
native	/	Native	CDC

Cleansing	Package	Builder
used,	for	creating	custom	cleansing	package	/	Creating	a	custom	cleansing
package	with	Cleansing	Package	Builder,	Getting	ready,	How	to	do	it…,	How	it
works…

client	tools
about	/	Introduction
Designer	tool	/	Introduction
Repository	Manager	/	Introduction

CodePlex
URL	/	How	to	do	it…

command	line	(cmd)
about	/	How	to	do	it…

conditional	and	while	loop	objects
used,	for	controlling	execution	order	/	Using	conditional	and	while	loop	objects
to	control	the	execution	order,	Getting	ready,	How	to	do	it…,	There	is	more…

connection	object,	Data	Insight
creating	/	Creating	a	connection	object

continuous	workflow

using	/	Using	a	continuous	workflow,	How	to	do	it…,	How	it	works…,	There	is
more…

conversion	functions
using	/	Using	conversion	functions,	How	to	do	it…,	How	it	works…

custom	functions
creating	/	Creating	custom	functions,	How	to	do	it…,	How	it	works…

D
	

data
loading,	into	flat	file	/	Loading	data	into	a	flat	file,	How	to	do	it…,	How	it
works…,	There’s	more…
loading,	from	flat	file	/	Loading	data	from	a	flat	file,	How	to	do	it…,	How	it
works…,	There’s	more…
loading,	from	table	to	table	/	Loading	data	from	table	to	table	–	lookups	and
joins,	How	to	do	it…,	How	it	works…
flow	splitting,	Case	transform	used	/	Splitting	the	flow	of	data	with	the	Case
transform,	How	to	do	it…,	How	it	works…
flow	execution,	monitoring	/	Monitoring	and	analyzing	dataflow	execution,
Getting	ready,	How	to	do	it…,	How	it	works…
flow	execution,	analyzing	/	Monitoring	and	analyzing	dataflow	execution,
Getting	ready,	How	to	do	it…,	How	it	works…
cleansing	/	Data	Quality	transforms	–	cleansing	your	data,	How	to	do	it…,	How
it	works…,	There’s	more…
transforming,	Pivot	transform	used	/	Transforming	data	with	the	Pivot
transform,	Getting	ready,	How	to	do	it…,	How	it	works…
loading,	into	SAP	ERP	/	Loading	data	into	SAP	ERP,	Getting	ready,	How	to	do
it…,	How	it	works…

database	environment
preparing	/	Preparing	a	database	environment,	How	it	works…

database	functions
using	/	Using	database	functions
key_generation()	function	/	key_generation()
total_rows()	function	/	total_rows()
sql()	function	/	sql(),	How	it	works…

dataflow	audit
enabling	/	Enabling	dataflow	audit,	How	to	do	it…,	How	it	works…,	There’s
more…

dataflow	execution,	optimizing
SQL	transform	/	Optimizing	dataflow	execution	–	the	SQL	transform,	How	to
do	it…,	How	it	works…
Data_Transfer	transform	/	Optimizing	dataflow	execution	–	the	Data_Transfer
transform,	How	to	do	it…,	How	it	works…
Data_Transfer	transform,	usage	/	When	to	use	Data_Transfer	transform,	There’s
more…
performance	options	/	Optimizing	dataflow	execution	–	performance	options,
How	to	do	it…
dataflow	performance	options	/	Dataflow	performance	options
source	table	performance	options	/	Source	table	performance	options
query	transform	performance	options	/	Query	transform	performance	options
lookup_ext()	performance	options	/	lookup_ext()	performance	options
target	table	performance	options	/	Target	table	performance	options

dataflow	flow,	optimizing
push-down	techniques	/	Optimizing	dataflow	execution	–	push-down
techniques,	How	to	do	it…,	How	it	works…

dataflow	loaders,	optimizing
bulk-loading	methods	/	Optimizing	dataflow	loaders	–	bulk-loading	methods,
How	to	do	it…,	How	it	works…
bulk	loading,	enabling	/	When	to	enable	bulk	loading?

dataflow	performance	options
about	/	Dataflow	performance	options

dataflow	readers,	optimizing
lookup	methods	/	Optimizing	dataflow	readers	–	lookup	methods
Query	transform	join,	lookup	with	/	Lookup	with	the	Query	transform	join
lookup_ext()	function,	lookup	with	/	Lookup	with	the	lookup_ext()	function
sql()	function,	lookup	with	/	Lookup	with	the	sql()	function
Query	transform	join,	advantages	/	Query	transform	joins
lookup_ext()	function	/	lookup_ext()
sql()	function	/	sql()
performance	review	/	Performance	review

Data	Insight
capabilities,	exploring	/	Exploring	Data	Insight	capabilities,	Getting	ready,	How
to	do	it…
connection	object,	creating	/	Creating	a	connection	object
data,	profiling	/	Profiling	the	data
profiling	results,	viewing	/	Viewing	profiling	results
validation	rule,	creating	/	Creating	a	validation	rule
scorecard,	creating	/	Creating	a	scorecard,	How	it	works…
profiling	/	Profiling
rules	/	Rules
scorecards	/	Scorecards

Data	Modification	Language	(DML)	operation	/	Using	the	Map_Operation	transform
Data	Quality	transforms

about	/	Data	Quality	transforms	–	cleansing	your	data,	How	to	do	it…,	How	it
works…

Data	Services
client	tools	/	Introduction
server-based	components	/	Introduction
installing	/	Installing	and	configuring	Data	Services,	How	to	do	it…,	How	it
works…
configuring	/	Installing	and	configuring	Data	Services,	How	to	do	it…,	How	it
works…
reference	guide,	URL	/	How	to	do	it…
auto	documentation	/	Auto	Documentation	in	Data	Services,	How	to	do	it…,
How	it	works…
automatic	job	recovery	/	Automatic	job	recovery	in	Data	Services,	Getting
ready,	How	to	do	it…,	How	it	works…,	There’s	more…

Data	Services	objects

and	parent-child	relationships	/	Peeking	inside	the	repository	–	parent-child
relationships	between	Data	Services	objects,	How	it	works…
object	types	list,	getting	in	Data	Services	repository	/	Get	a	list	of	object	types
and	their	codes	in	the	Data	Services	repository
DF_Transform_DimGeography	dataflow	information,	displaying	/	Display
information	about	the	DF_Transform_DimGeography	dataflow
SalesTerritory	table	object	information,	displaying	/	Display	information	about
the	SalesTerritory	table	object
script	object	content,	displaying	/	See	the	contents	of	the	script	object

Data	Services	repository
creating	/	Creating	IPS	and	Data	Services	repositories,	How	to	do	it…,	How	it
works…
database,	creating	/	How	to	do	it…
ODBC	layer,	configuring	/	How	to	do	it…

data	validation
validation	functions,	creating	/	Creating	validation	functions,	How	to	do	it…,
How	it	works…
results,	reporting	/	Reporting	data	validation	results,	How	to	do	it…,	How	it
works…
regular	expression	support	used	/	Using	regular	expression	support	to	validate
data,	Getting	ready,	How	to	do	it…,	How	it	works…

Data_Transfer	transform
about	/	Optimizing	dataflow	execution	–	the	Data_Transfer	transform,	How	to
do	it…,	How	it	works…
usage	/	When	to	use	Data_Transfer	transform,	There’s	more…

date	functions
using	/	Using	date	functions
current	date	and	time,	generating	/	Generating	current	date	and	time
parts,	extracting	from	dates	/	Extracting	parts	from	dates,	How	it	works…,
There’s	more…

Designer	tool
about	/	Understanding	the	Designer	tool
setting	/	How	to	do	it…
default	options,	setting	/	How	to	do	it…
ETL	code,	executing	/	Executing	ETL	code	in	Data	Services
ETL	code,	validating	/	Validating	ETL	code
template	tables,	using	/	Template	tables
query	transform	/	Query	transform	basics
HelloWorld	example	/	The	HelloWorld	example

Drop	and	re-create	table	option	/	There’s	more…
DS	Management	Console

about	/	Introduction

E
	

ETL
organizing	/	Projects	and	jobs	–	organizing	ETL,	How	to	do	it…,	How	it
works…
projects	/	Projects	and	jobs	–	organizing	ETL,	How	to	do	it…,	How	it	works…
hierarchical	object	view	/	Hierarchical	object	view
history	execution	log	files	/	History	execution	log	files
jobs,	scheduling	from	Management	console	/	Executing/scheduling	jobs	from
the	Management	Console
jobs,	executing	from	Management	console	/	Executing/scheduling	jobs	from	the
Management	Console

ETL	audit
external	ETL	audit,	building	/	Building	an	external	ETL	audit	and	audit
reporting,	How	to	do	it…,	How	it	works…
built-in,	using	/	Using	built-in	Data	Services	ETL	audit	and	reporting
functionality,	How	to	do	it…,	How	it	works…

ETL	code
migrating,	through	central	repository	/	Migrating	ETL	code	through	the	central
repository,	Getting	ready,	How	to	do	it…
migrating,	with	export/import	/	Migrating	ETL	code	with	export/import,	How	to
do	it…

ETL	execution
simplifying,	with	system	configurations	/	Simplifying	ETL	execution	with
system	configurations,	Getting	ready,	How	to	do	it…,	How	it	works…

ETL	job
dimension	tables,	populating	/	Use	case	example	–	populating	dimension	tables,
How	to	do	it…
building	/	Use	case	example	–	populating	dimension	tables,	How	to	do	it…
mapping,	defining	/	Mapping
dependencies,	defining	/	Dependencies
development	/	Development
execution	order	/	Execution	order
testing	/	Testing	ETL
test	data,	preparing	to	populate	DimSalesTerritory	/	Preparing	test	data	to
populate	DimSalesTerritory
test	data,	preparing	to	populate	DimGeography	/	Preparing	test	data	to	populate
DimGeography

execution	order
controlling,	by	nesting	workflows	/	Nesting	workflows	to	control	the	execution
order,	How	to	do	it,	How	it	works…
controlling,	conditional	and	while	loops	objects	used	/	Using	conditional	and
while	loop	objects	to	control	the	execution	order,	Getting	ready,	How	to	do	it…,
How	it	works…,	There	is	more…

export/import

ETL	code,	migrating	with	/	Migrating	ETL	code	with	export/import,	Getting
ready
ATL	files	used	/	Import/Export	using	ATL	files
to	local	repository	/	Direct	export	to	another	local	repository,	How	it	works…

Extract-Transform-Load	(ETL)
about	/	Introduction
advantages	/	Introduction

F
	

failures
controlling	/	Controlling	failures	–	try-catch	objects,	How	to	do	it…,	How	it
works…

flat	file
data,	loading	in	/	Loading	data	into	a	flat	file,	How	to	do	it…,	How	it	works…,
There’s	more…
data,	loading	from	/	Loading	data	from	a	flat	file,	How	to	do	it…,	How	it
works…

full	pushdown	/	Getting	ready

H
	

Hierarchy_Flattening	transform
about	/	The	Hierarchy_Flattening	transform,	Getting	ready
horizontal	hierarchy	flattening,	performing	/	Horizontal	hierarchy	flattening
vertical	hierarchy	flattening	/	Vertical	hierarchy	flattening,	How	it	works…
result	tables,	querying	/	Querying	result	tables

horizontal	hierarchy	flattening
about	/	Horizontal	hierarchy	flattening

I
	

IDoc
about	/	IDoc
load,	monitoring	on	SAP	side	/	Monitoring	IDoc	load	on	the	SAP	side
loaded	data,	post-load	validation	/	Post-load	validation	of	loaded	data

Information	Platform	Services	(IPS)
configuring	/	Installing	and	configuring	Information	Platform	Services,	How	to
do	it…,	How	it	works…
installing	/	Installing	and	configuring	Information	Platform	Services,	How	to	do
it…,	How	it	works…

/	Getting	ready
IPS	repository

creating	/	Creating	IPS	and	Data	Services	repositories,	How	to	do	it…,	How	it
works…

J
	

job	execution
debugging	/	Debugging	job	execution,	How	to	do	it…,	How	it	works…
monitoring	/	Monitoring	job	execution,	How	to	do	it…

job	recovery,	automatic
in	Data	Services	/	Automatic	job	recovery	in	Data	Services,	How	to	do	it…,
How	it	works…,	There’s	more…

join	operations
*-cross-join	operation	/	How	it	works…
||-parallel-join	operation	/	How	it	works…
INNER	JOIN	/	How	it	works…
LEFT	OUTER	JOIN	/	How	it	works…

K
	

key_generation()	function	/	key_generation()

L
	

long	data	type	/	How	it	works…
lookup	methods

with	Query	transform	join	/	Lookup	with	the	Query	transform	join
with	lookup_ext()	function	/	Lookup	with	the	lookup_ext()	function
with	sql()	function	/	Lookup	with	the	sql()	function

lookup_ext()	function
lookup	with	/	Lookup	with	the	lookup_ext()	function
advantages	/	lookup_ext()

lookup_ext()	performance	options
about	/	lookup_ext()	performance	options

M
	

Map_Operation	transform
using	/	Using	the	Map_Operation	transform,	How	to	do	it…,	How	it	works…

math	functions
using	/	Using	math	functions,	How	to	do	it…,	There’s	more…

Metadata	Management	tasks
performing	/	Performing	Metadata	Management	tasks,	Getting	ready,	How	to	do
it…,	How	it	works…

Metapedia
working	with	/	Working	with	the	Metapedia	functionality,	How	to	do	it…,	How
it	works…

Microsoft	SQL	Server	2012
URL	/	How	to	do	it…

miscellaneous	functions
using	/	Using	miscellaneous	functions,	How	it	works…

N
	

nested	structures
working	with	/	Working	with	nested	structures,	How	to	do	it…,	How	it	works…,
There	is	more…

O
	

object	replication
using	/	Using	object	replication,	How	it	works…

OLTP	datastore	/	How	to	do	it…

P
	

parameters
creating	/	Creating	variables	and	parameters,	How	to	do	it…,	How	it	works…

parent-child	relationships
between	Data	Services	objects	/	Peeking	inside	the	repository	–	parent-child
relationships	between	Data	Services	objects,	Getting	ready

partial	pushdown	/	Getting	ready
performance	options

about	/	Optimizing	dataflow	execution	–	performance	options,	How	to	do	it…
Pivot	transform

used,	for	transforming	data	/	Transforming	data	with	the	Pivot	transform,
Getting	ready,	How	to	do	it…,	How	it	works…

profiling	data	/	Profiling
profiling	results,	Data	Insight

viewing	/	Viewing	profiling	results
push-down	operations

about	/	Optimizing	dataflow	execution	–	push-down	techniques,	How	it	works…
partial	pushdown	/	Getting	ready
full	pushdown	/	Getting	ready

Q
	

Query	transform	join
lookup	with	/	Lookup	with	the	Query	transform	join

query	transform	joins
advantages	/	Query	transform	joins

Query	transform	performance	options
about	/	Query	transform	performance	options

R
	

real-time	jobs
creating	/	Creating	real-time	jobs
SoapUI,	installing	/	Installing	SoapUI,	How	to	do	it…,	How	it	works…

regular	expression	support
used,	for	validating	data	/	Using	regular	expression	support	to	validate	data,
Getting	ready,	How	to	do	it…,	How	it	works…

replication	process
about	/	How	it	works…

rules	/	Rules

S
	

SAP	ERP
data,	loading	into	/	Loading	data	into	SAP	ERP,	Getting	ready,	How	to	do	it…,
How	it	works…
URL	/	Loading	data	into	SAP	ERP

SAP	Information	Steward
about	/	Introduction
URL	/	Introduction

scorecard,	Data	Insight
creating	/	Creating	a	scorecard,	How	it	works…

scorecards	/	Scorecards
script

creating	/	Creating	a	script,	How	to	do	it…,	How	it	works…
string	functions,	using	/	Using	string	functions	in	the	script,	How	it	works…

server-based	components
IPS	Services	/	Introduction
Job	Server	/	Introduction
access	server	/	Introduction
web	application	server	/	Introduction

services
starting	/	Starting	and	stopping	services,	How	to	do	it…,	See	also
stopping	/	Starting	and	stopping	services,	How	to	do	it…,	See	also
web	application	server	/	How	to	do	it…
Data	Services	Job	Server	/	How	to	do	it…
Information	Platform	Services	/	How	to	do	it…

Slowly	Changing	Dimensions	(SCD)
about	/	Getting	ready

SoapUI
installing	/	Installing	SoapUI,	How	to	do	it…,	How	it	works…
URL	/	Installing	SoapUI

source	data	object
creating	/	Creating	a	source	data	object,	How	to	do	it…,	How	it	works…

source	system	database
creating	/	Creating	a	source	system	database,	There’s	more…

source	table	performance	options
about	/	Source	table	performance	options

sql()	function	/	sql(),	How	it	works…
lookup	with	/	Lookup	with	the	sql()	function
about	/	sql()

SQL	transform
about	/	Optimizing	dataflow	execution	–	the	SQL	transform,	How	to	do	it…,
How	it	works…

staging	area	structures
defining	/	Defining	and	creating	staging	area	structures

creating	/	Defining	and	creating	staging	area	structures
flat	files	/	Flat	files
RDBMS	tables	/	RDBMS	tables,	How	it	works…

string	functions
using	/	Using	string	functions,	How	to	do	it…
using,	in	script	/	Using	string	functions	in	the	script,	How	it	works…

system	configurations
used,	for	simplifying	ETL	execution	/	Simplifying	ETL	execution	with	system
configurations,	How	to	do	it…,	How	it	works…

T
	

Table_Comparison	transform
using	/	Using	the	Table_Comparison	transform,	Getting	ready,	How	to	do	it…,
How	it	works…

target	data	object
creating	/	Creating	a	target	data	object,	How	to	do	it…,	There’s	more…

target	data	warehouse
creating	/	Creating	a	target	data	warehouse,	How	it	works…,	There’s	more…

target	table	performance	options
about	/	Target	table	performance	options

tasks
administering	/	Administering	tasks,	How	to	do	it…,	See	also

total_rows()	function	/	total_rows()
try-catch	objects

about	/	Controlling	failures	–	try-catch	objects,	How	to	do	it…,	How	it	works…

U
	

user	access
configuring	/	Configuring	user	access,	How	to	do	it…,	How	it	works…

V
	

validation	functions
creating	/	Creating	validation	functions,	How	to	do	it…,	How	it	works…
using,	with	validation	transform	/	Using	validation	functions	with	the	Validation
transform,	How	to	do	it…,	How	it	works…

validation	rule,	Data	Insight
creating	/	Creating	a	validation	rule

validation	transform
validation	functions,	using	with	/	Using	validation	functions	with	the	Validation
transform,	How	to	do	it…,	How	it	works…

variables
creating	/	Creating	variables	and	parameters,	How	to	do	it…,	How	it	works…

vertical	hierarchy	flattening
about	/	Vertical	hierarchy	flattening,	How	it	works…

W
	

workflow	object
creating	/	Creating	a	workflow	object,	How	to	do	it…,	How	it	works…

workflows
nesting,	to	control	execution	order	/	Nesting	workflows	to	control	the	execution
order,	How	to	do	it,	How	it	works…

X
	

XML_Map	transform
about	/	The	XML_Map	transform,	How	to	do	it…,	How	it	works…

Table	of	Contents
SAP	Data	Services	4.x	Cookbook

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Instant	updates	on	new	Packt	books

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Sections

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Introduction	to	ETL	Development

Introduction

Preparing	a	database	environment

Getting	ready

How	to	do	it…

How	it	works…

Creating	a	source	system	database

How	to	do	it…

How	it	works…

There’s	more…

Defining	and	creating	staging	area	structures

How	to	do	it…

Flat	files

RDBMS	tables

How	it	works…

Creating	a	target	data	warehouse

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

2.	Configuring	the	Data	Services	Environment

Introduction

Creating	IPS	and	Data	Services	repositories

Getting	ready…

How	to	do	it…

How	it	works…

See	also

Installing	and	configuring	Information	Platform	Services

Getting	ready…

How	to	do	it…

How	it	works…

Installing	and	configuring	Data	Services

Getting	ready…

How	to	do	it…

How	it	works…

Configuring	user	access

Getting	ready…

How	to	do	it…

How	it	works…

Starting	and	stopping	services

How	to	do	it…

How	it	works…

See	also

Administering	tasks

How	to	do	it…

How	it	works…

See	also

Understanding	the	Designer	tool

Getting	ready…

How	to	do	it…

How	it	works…

Executing	ETL	code	in	Data	Services

Validating	ETL	code

Template	tables

Query	transform	basics

The	HelloWorld	example

3.	Data	Services	Basics	–	Data	Types,	Scripting	Language,	and	Functions

Introduction

Creating	variables	and	parameters

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Creating	a	script

How	to	do	it…

How	it	works…

Using	string	functions

How	to	do	it…

Using	string	functions	in	the	script

How	it	works…

There’s	more…

Using	date	functions

How	to	do	it…

Generating	current	date	and	time

Extracting	parts	from	dates

How	it	works…

There’s	more…

Using	conversion	functions

How	to	do	it…

How	it	works…

There’s	more…

Using	database	functions

How	to	do	it…

key_generation()

total_rows()

sql()

How	it	works…

Using	aggregate	functions

How	to	do	it…

How	it	works…

Using	math	functions

How	to	do	it…

How	it	works…

There’s	more…

Using	miscellaneous	functions

How	to	do	it…

How	it	works…

Creating	custom	functions

How	to	do	it…

How	it	works…

There’s	more…

4.	Dataflow	–	Extract,	Transform,	and	Load

Introduction

Creating	a	source	data	object

How	to	do	it…

How	it	works…

There’s	more…

Creating	a	target	data	object

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Loading	data	into	a	flat	file

How	to	do	it…

How	it	works…

There’s	more…

Loading	data	from	a	flat	file

How	to	do	it…

How	it	works…

There’s	more…

Loading	data	from	table	to	table	–	lookups	and	joins

How	to	do	it…

How	it	works…

Using	the	Map_Operation	transform

How	to	do	it…

How	it	works…

Using	the	Table_Comparison	transform

Getting	ready

How	to	do	it…

How	it	works…

Exploring	the	Auto	correct	load	option

Getting	ready

How	to	do	it…

How	it	works…

Splitting	the	flow	of	data	with	the	Case	transform

Getting	ready

How	to	do	it…

How	it	works…

Monitoring	and	analyzing	dataflow	execution

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

5.	Workflow	–	Controlling	Execution	Order

Introduction

Creating	a	workflow	object

How	to	do	it…

How	it	works…

Nesting	workflows	to	control	the	execution	order

Getting	ready

How	to	do	it

How	it	works…

Using	conditional	and	while	loop	objects	to	control	the	execution	order

Getting	ready

How	to	do	it…

How	it	works…

There	is	more…

Using	the	bypassing	feature

Getting	ready…

How	to	do	it…

How	it	works…

There	is	more…

Controlling	failures	–	try-catch	objects

How	to	do	it…

How	it	works…

Use	case	example	–	populating	dimension	tables

Getting	ready

How	to	do	it…

How	it	works…

Mapping

Dependencies

Development

Execution	order

Testing	ETL

Preparing	test	data	to	populate	DimSalesTerritory

Preparing	test	data	to	populate	DimGeography

Using	a	continuous	workflow

How	to	do	it…

How	it	works…

There	is	more…

Peeking	inside	the	repository	–	parent-child	relationships	between	Data	Services	objects

Getting	ready

How	to	do	it…

How	it	works…

Get	a	list	of	object	types	and	their	codes	in	the	Data	Services	repository

Display	information	about	the	DF_Transform_DimGeography	dataflow

Display	information	about	the	SalesTerritory	table	object

See	the	contents	of	the	script	object

6.	Job	–	Building	the	ETL	Architecture

Introduction

Projects	and	jobs	–	organizing	ETL

Getting	ready

How	to	do	it…

How	it	works…

Hierarchical	object	view

History	execution	log	files

Executing/scheduling	jobs	from	the	Management	Console

Using	object	replication

How	to	do	it…

How	it	works…

Migrating	ETL	code	through	the	central	repository

Getting	ready

How	to	do	it…

How	it	works…

Adding	objects	to	and	from	the	Central	Object	Library

Comparing	objects	between	the	Local	and	Central	repositories

There	is	more…

Migrating	ETL	code	with	export/import

Getting	ready

How	to	do	it…

Import/Export	using	ATL	files

Direct	export	to	another	local	repository

How	it	works…

Debugging	job	execution

Getting	ready…

How	to	do	it…

How	it	works…

Monitoring	job	execution

Getting	ready

How	to	do	it…

How	it	works…

Building	an	external	ETL	audit	and	audit	reporting

Getting	ready…

How	to	do	it…

How	it	works…

Using	built-in	Data	Services	ETL	audit	and	reporting	functionality

Getting	ready

How	to	do	it…

How	it	works…

Auto	Documentation	in	Data	Services

How	to	do	it…

How	it	works…

7.	Validating	and	Cleansing	Data

Introduction

Creating	validation	functions

Getting	ready

How	to	do	it…

How	it	works…

Using	validation	functions	with	the	Validation	transform

Getting	ready

How	to	do	it…

How	it	works…

Reporting	data	validation	results

Getting	ready

How	to	do	it…

How	it	works…

Using	regular	expression	support	to	validate	data

Getting	ready

How	to	do	it…

How	it	works…

Enabling	dataflow	audit

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Data	Quality	transforms	–	cleansing	your	data

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

8.	Optimizing	ETL	Performance

Introduction

Optimizing	dataflow	execution	–	push-down	techniques

Getting	ready

How	to	do	it…

How	it	works…

Optimizing	dataflow	execution	–	the	SQL	transform

How	to	do	it…

How	it	works…

Optimizing	dataflow	execution	–	the	Data_Transfer	transform

Getting	ready

How	to	do	it…

How	it	works…

Why	we	used	a	second	Data_Transfer	transform	object

When	to	use	Data_Transfer	transform

There’s	more…

Optimizing	dataflow	readers	–	lookup	methods

Getting	ready

How	to	do	it…

Lookup	with	the	Query	transform	join

Lookup	with	the	lookup_ext()	function

Lookup	with	the	sql()	function

How	it	works…

Query	transform	joins

lookup_ext()

sql()

Performance	review

Optimizing	dataflow	loaders	–	bulk-loading	methods

How	to	do	it…

How	it	works…

When	to	enable	bulk	loading?

Optimizing	dataflow	execution	–	performance	options

Getting	ready

How	to	do	it…

Dataflow	performance	options

Source	table	performance	options

Query	transform	performance	options

lookup_ext()	performance	options

Target	table	performance	options

9.	Advanced	Design	Techniques

Introduction

Change	Data	Capture	techniques

Getting	ready

No	history	SCD	(Type	1)

Limited	history	SCD	(Type	3)

Unlimited	history	SCD	(Type	2)

How	to	do	it…

How	it	works…

Source-based	ETL	CDC

Target-based	ETL	CDC

Native	CDC

Automatic	job	recovery	in	Data	Services

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Simplifying	ETL	execution	with	system	configurations

Getting	ready

How	to	do	it…

How	it	works…

Transforming	data	with	the	Pivot	transform

Getting	ready

How	to	do	it…

How	it	works…

10.	Developing	Real-time	Jobs

Introduction

Working	with	nested	structures

Getting	ready

How	to	do	it…

How	it	works…

There	is	more…

The	XML_Map	transform

Getting	ready

How	to	do	it…

How	it	works…

The	Hierarchy_Flattening	transform

Getting	ready

How	to	do	it…

Horizontal	hierarchy	flattening

Vertical	hierarchy	flattening

How	it	works…

Querying	result	tables

Configuring	Access	Server

Getting	ready

How	to	do	it…

How	it	works…

Creating	real-time	jobs

Getting	ready

Installing	SoapUI

How	to	do	it…

How	it	works…

11.	Working	with	SAP	Applications

Introduction

Loading	data	into	SAP	ERP

Getting	ready

How	to	do	it…

How	it	works…

IDoc

Monitoring	IDoc	load	on	the	SAP	side

Post-load	validation	of	loaded	data

There	is	more…

12.	Introduction	to	Information	Steward

Introduction

Exploring	Data	Insight	capabilities

Getting	ready

How	to	do	it…

Creating	a	connection	object

Profiling	the	data

Viewing	profiling	results

Creating	a	validation	rule

Creating	a	scorecard

How	it	works…

Profiling

Rules

Scorecards

There	is	more…

Performing	Metadata	Management	tasks

Getting	ready

How	to	do	it…

How	it	works…

Working	with	the	Metapedia	functionality

How	to	do	it…

How	it	works…

Creating	a	custom	cleansing	package	with	Cleansing	Package	Builder

Getting	ready

How	to	do	it…

How	it	works…

There	is	more…

Index

	SAP Data Services 4.x Cookbook
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Instant updates on new Packt books
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Introduction to ETL Development
	Introduction
	Preparing a database environment
	Getting ready
	How to do it…
	How it works…
	Creating a source system database
	How to do it…
	How it works…
	There's more…
	Defining and creating staging area structures
	How to do it…
	Flat files
	RDBMS tables
	How it works…
	Creating a target data warehouse
	Getting ready
	How to do it…
	How it works…
	There's more…
	2. Configuring the Data Services Environment
	Introduction
	Creating IPS and Data Services repositories
	Getting ready…
	How to do it…
	How it works…
	See also
	Installing and configuring Information Platform Services
	Getting ready…
	How to do it…
	How it works…
	Installing and configuring Data Services
	Getting ready…
	How to do it…
	How it works…
	Configuring user access
	Getting ready…
	How to do it…
	How it works…
	Starting and stopping services
	How to do it…
	How it works…
	See also
	Administering tasks
	How to do it…
	How it works…
	See also
	Understanding the Designer tool
	Getting ready…
	How to do it…
	How it works…
	Executing ETL code in Data Services
	Validating ETL code
	Template tables
	Query transform basics
	The HelloWorld example
	3. Data Services Basics – Data Types, Scripting Language, and Functions
	Introduction
	Creating variables and parameters
	Getting ready
	How to do it…
	How it works…
	There's more…
	Creating a script
	How to do it…
	How it works…
	Using string functions
	How to do it…
	Using string functions in the script
	How it works…
	There's more…
	Using date functions
	How to do it…
	Generating current date and time
	Extracting parts from dates
	How it works…
	There's more…
	Using conversion functions
	How to do it…
	How it works…
	There's more…
	Using database functions
	How to do it…
	key_generation()
	total_rows()
	sql()
	How it works…
	Using aggregate functions
	How to do it…
	How it works…
	Using math functions
	How to do it…
	How it works…
	There's more…
	Using miscellaneous functions
	How to do it…
	How it works…
	Creating custom functions
	How to do it…
	How it works…
	There's more…
	4. Dataflow – Extract, Transform, and Load
	Introduction
	Creating a source data object
	How to do it…
	How it works…
	There's more…
	Creating a target data object
	Getting ready
	How to do it…
	How it works…
	There's more…
	Loading data into a flat file
	How to do it…
	How it works…
	There's more…
	Loading data from a flat file
	How to do it…
	How it works…
	There's more…
	Loading data from table to table – lookups and joins
	How to do it…
	How it works…
	Using the Map_Operation transform
	How to do it…
	How it works…
	Using the Table_Comparison transform
	Getting ready
	How to do it…
	How it works…
	Exploring the Auto correct load option
	Getting ready
	How to do it…
	How it works…
	Splitting the flow of data with the Case transform
	Getting ready
	How to do it…
	How it works…
	Monitoring and analyzing dataflow execution
	Getting ready
	How to do it…
	How it works…
	There's more…
	5. Workflow – Controlling Execution Order
	Introduction
	Creating a workflow object
	How to do it…
	How it works…
	Nesting workflows to control the execution order
	Getting ready
	How to do it
	How it works…
	Using conditional and while loop objects to control the execution order
	Getting ready
	How to do it…
	How it works…
	There is more…
	Using the bypassing feature
	Getting ready…
	How to do it…
	How it works…
	There is more…
	Controlling failures – try-catch objects
	How to do it…
	How it works…
	Use case example – populating dimension tables
	Getting ready
	How to do it…
	How it works…
	Mapping
	Dependencies
	Development
	Execution order
	Testing ETL
	Preparing test data to populate DimSalesTerritory
	Preparing test data to populate DimGeography
	Using a continuous workflow
	How to do it…
	How it works…
	There is more…
	Peeking inside the repository – parent-child relationships between Data Services objects
	Getting ready
	How to do it…
	How it works…
	Get a list of object types and their codes in the Data Services repository
	Display information about the DF_Transform_DimGeography dataflow
	Display information about the SalesTerritory table object
	See the contents of the script object
	6. Job – Building the ETL Architecture
	Introduction
	Projects and jobs – organizing ETL
	Getting ready
	How to do it…
	How it works…
	Hierarchical object view
	History execution log files
	Executing/scheduling jobs from the Management Console
	Using object replication
	How to do it…
	How it works…
	Migrating ETL code through the central repository
	Getting ready
	How to do it…
	How it works…
	Adding objects to and from the Central Object Library
	Comparing objects between the Local and Central repositories
	There is more…
	Migrating ETL code with export/import
	Getting ready
	How to do it…
	Import/Export using ATL files
	Direct export to another local repository
	How it works…
	Debugging job execution
	Getting ready…
	How to do it…
	How it works…
	Monitoring job execution
	Getting ready
	How to do it…
	How it works…
	Building an external ETL audit and audit reporting
	Getting ready…
	How to do it…
	How it works…
	Using built-in Data Services ETL audit and reporting functionality
	Getting ready
	How to do it…
	How it works…
	Auto Documentation in Data Services
	How to do it…
	How it works…
	7. Validating and Cleansing Data
	Introduction
	Creating validation functions
	Getting ready
	How to do it…
	How it works…
	Using validation functions with the Validation transform
	Getting ready
	How to do it…
	How it works…
	Reporting data validation results
	Getting ready
	How to do it…
	How it works…
	Using regular expression support to validate data
	Getting ready
	How to do it…
	How it works…
	Enabling dataflow audit
	Getting ready
	How to do it…
	How it works…
	There's more…
	Data Quality transforms – cleansing your data
	Getting ready
	How to do it…
	How it works…
	There's more…
	8. Optimizing ETL Performance
	Introduction
	Optimizing dataflow execution – push-down techniques
	Getting ready
	How to do it…
	How it works…
	Optimizing dataflow execution – the SQL transform
	How to do it…
	How it works…
	Optimizing dataflow execution – the Data_Transfer transform
	Getting ready
	How to do it…
	How it works…
	Why we used a second Data_Transfer transform object
	When to use Data_Transfer transform
	There's more…
	Optimizing dataflow readers – lookup methods
	Getting ready
	How to do it…
	Lookup with the Query transform join
	Lookup with the lookup_ext() function
	Lookup with the sql() function
	How it works…
	Query transform joins
	lookup_ext()
	sql()
	Performance review
	Optimizing dataflow loaders – bulk-loading methods
	How to do it…
	How it works…
	When to enable bulk loading?
	Optimizing dataflow execution – performance options
	Getting ready
	How to do it…
	Dataflow performance options
	Source table performance options
	Query transform performance options
	lookup_ext() performance options
	Target table performance options
	9. Advanced Design Techniques
	Introduction
	Change Data Capture techniques
	Getting ready
	No history SCD (Type 1)
	Limited history SCD (Type 3)
	Unlimited history SCD (Type 2)
	How to do it…
	How it works…
	Source-based ETL CDC
	Target-based ETL CDC
	Native CDC
	Automatic job recovery in Data Services
	Getting ready
	How to do it…
	How it works…
	There's more…
	Simplifying ETL execution with system configurations
	Getting ready
	How to do it…
	How it works…
	Transforming data with the Pivot transform
	Getting ready
	How to do it…
	How it works…
	10. Developing Real-time Jobs
	Introduction
	Working with nested structures
	Getting ready
	How to do it…
	How it works…
	There is more…
	The XML_Map transform
	Getting ready
	How to do it…
	How it works…
	The Hierarchy_Flattening transform
	Getting ready
	How to do it…
	Horizontal hierarchy flattening
	Vertical hierarchy flattening
	How it works…
	Querying result tables
	Configuring Access Server
	Getting ready
	How to do it…
	How it works…
	Creating real-time jobs
	Getting ready
	Installing SoapUI
	How to do it…
	How it works…
	11. Working with SAP Applications
	Introduction
	Loading data into SAP ERP
	Getting ready
	How to do it…
	How it works…
	IDoc
	Monitoring IDoc load on the SAP side
	Post-load validation of loaded data
	There is more…
	12. Introduction to Information Steward
	Introduction
	Exploring Data Insight capabilities
	Getting ready
	How to do it…
	Creating a connection object
	Profiling the data
	Viewing profiling results
	Creating a validation rule
	Creating a scorecard
	How it works…
	Profiling
	Rules
	Scorecards
	There is more…
	Performing Metadata Management tasks
	Getting ready
	How to do it…
	How it works…
	Working with the Metapedia functionality
	How to do it…
	How it works…
	Creating a custom cleansing package with Cleansing Package Builder
	Getting ready
	How to do it…
	How it works…
	There is more…
	Index

