

SQL	Server	2014	with	PowerShell	v5	Cookbook

Table	of	Contents
SQL	Server	2014	with	PowerShell	v5	Cookbook

Credits

About	the	Author

Acknowledgments

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more
Why	subscribe?
Free	access	for	Packt	account	holders
Instant	updates	on	new	Packt	books

Preface

What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Sections
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Conventions
Reader	feedback
Customer	support
Downloading	the	example	code
Downloading	the	color	images	of	this	book
Errata
Piracy
Questions

1.	Getting	Started	with	SQL	Server	and	PowerShell

Introduction
Working	with	SQL	Server	and	PowerShell

Running	as	an	administrator
Execution	Policy
Running	scripts
Running	different	PowerShell	versions
Line	continuation
PowerShell	modules

Working	with	the	sample	code
How	to	do	it…

See	also
Installing	SQL	Server	using	PowerShell
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

Installing	SQL	Server	Management	Objects
Getting	ready
How	to	do	it…
There’s	more…

Loading	SMO	assemblies
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Exploring	the	SQL	Server	PowerShell	hierarchy
Getting	ready
How	to	do	it…
How	it	works…

Discovering	SQL-related	cmdlets	and	modules
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

Creating	a	SQL	Server	Instance	Object
Getting	ready
How	to	do	it…
How	it	works…
See	also

Exploring	SMO	Server	Objects
Getting	ready
How	to	do	it…
How	it	works…
See	also

2.	SQL	Server	and	PowerShell	Basic	Tasks

Introduction
Listing	SQL	Server	instances
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

Discovering	SQL	Server	services
Getting	ready
How	to	do	it…

How	it	works…
There’s	more…
See	also

Starting/stopping	SQL	Server	services
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Listing	SQL	Server	configuration	settings
How	to	do	it…
How	it	works…
There’s	more…

Changing	SQL	Server	Instance	configurations
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Searching	for	database	objects
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Scripting	SQL	Server	Stored	Procedures
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

Creating	a	database
Getting	ready
How	to	do	it…
How	it	works…

Altering	database	properties
Getting	ready
How	to	do	it…
How	it	works…
See	also

Dropping	a	database
Getting	ready
How	to	do	it…
How	it	works…

Changing	database	owner
Getting	ready
How	to	do	it…

How	it	works…
See	also

Creating	a	table
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Creating	a	view
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

Creating	a	stored	procedure
Getting	ready
How	to	do	it…
How	it	works…

Creating	a	trigger
Getting	ready
How	to	do	it…
How	it	works…

Creating	an	index
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Executing	a	query/SQL	script
Getting	ready
How	to	do	it…
How	it	works…

Performing	bulk	export	using	Invoke-SqlCmd
Getting	ready
How	to	do	it…
How	it	works…
See	also

Performing	bulk	export	using	the	bcp	command-line	utility
Getting	ready
How	to	do	it…
There’s	more…
See	also

Performing	bulk	import	using	BULK	INSERT
Getting	ready
How	to	do	it…
How	it	works…
See	also

Performing	bulk	import	using	the	bcp	command-line	utility
Getting	ready
How	to	do	it…
How	it	works…
See	also

Connecting	to	an	Azure	SQL	database
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
There’s	more…

Creating	a	table	in	an	Azure	SQL	database
Getting	ready
How	to	do	it…
How	it	works…

3.	Basic	Administration

Introduction
Creating	a	SQL	Server	instance	inventory
How	to	do	it…
How	it	works…
There’s	more…
See	also

Creating	a	SQL	Server	database	inventory
Getting	ready
How	to	do	it…
How	it	works…
See	also

Listing	installed	hotfixes	and	Service	Packs
How	to	do	it…
How	it	works…
There’s	more…

Listing	running/blocking	processes
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Killing	a	blocking	process
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Checking	disk	space	usage
How	to	do	it…

How	it	works…
There’s	more…

Setting	up	WMI	server	event	alerts
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

Detaching	a	database
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Attaching	a	database
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Copying	a	database
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

Executing	SQL	query	to	multiple	servers
Getting	ready
How	to	do	it…
How	it	works…
See	also

Creating	a	filegroup
Getting	ready
How	to	do	it…
How	it	works…
See	also

Adding	a	secondary	data	file	to	a	filegroup
Getting	ready
How	to	do	it…
How	it	works…
See	also

Increase	data	file	size
Getting	ready
How	to	do	it…
How	it	works…
See	also

Moving	an	index	to	a	different	filegroup
Getting	ready

How	to	do	it…
How	it	works…
There’s	more…
See	also

Checking	index	fragmentation
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Reorganizing/rebuilding	an	index
Getting	ready
How	to	do	it…
How	it	works…
See	also

Running	DBCC	commands
How	to	do	it…
How	it	works…

Setting	up	Database	Mail
Getting	ready
How	to	do	it…
How	it	works…

Listing	SQL	Server	Jobs
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Adding	a	SQL	Server	operator
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Creating	a	SQL	Server	Job
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Adding	a	SQL	Server	event	alert
How	to	do	it…
How	it	works…
There’s	more…
See	also

Running	an	SQL	Server	Job

Getting	ready
How	to	do	it…
How	it	works…
See	also

Scheduling	a	SQL	Server	Job
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

4.	Security

Introduction
Listing	SQL	Server	service	accounts
How	to	do	it…
How	it	works…
See	also

Changing	SQL	Server	service	account
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Listing	authentication	mode
Getting	ready
How	to	do	it…
How	it	works…
See	also

Changing	authentication	mode
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

More	on	legacy	LoginMode	values
See	also

Listing	SQL	Server	log	errors
Getting	ready
How	to	do	it…
How	it	works…
See	also

Listing	failed	login	attempts
Getting	ready
How	to	do	it…
How	it	works…
See	also

Enabling	Common	Criteria	compliance

How	to	do	it…
How	it	works…
There’s	more…
See	also

Listing	logins,	users,	and	database	mappings
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Listing	login/user	roles	and	permissions
How	to	do	it…
How	it	works…
See	also

Creating	a	user-defined	server	role
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Creating	a	login
Getting	ready
How	to	do	it…
How	it	works…
See	also

Assigning	permissions	and	roles	to	a	login
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Creating	a	database	user
Getting	ready
How	to	do	it…
How	it	works…
See	also

Assigning	permissions	to	a	database	user
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Creating	a	database	role
Getting	ready
How	to	do	it…
How	it	works…

See	also
Fixing	orphaned	users
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Creating	a	credential
Getting	ready
How	to	do	it…
How	it	works…
See	also

Creating	a	proxy
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

5.	Backup	and	Restore

Introduction
Changing	database	recovery	model
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Checking	last	backup	date
Getting	ready
How	to	do	it…
How	it	works…
See	also

Creating	a	backup	device
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Listing	backup	header	and	FileList	information
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

Creating	a	full	backup
Getting	ready
How	to	do	it…

How	it	works…
There’s	more…

More	about	backup	and	PercentCompleteEventHandler
See	also

Creating	a	backup	on	Mirrored	Media	Sets
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Creating	a	differential	backup
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Creating	a	transaction	log	backup
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Creating	a	filegroup	backup
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Restoring	a	database	to	a	point-in-time
Getting	ready
How	to	do	it…
How	it	works…

Gathering	your	backup	files
Restoring	the	latest	good	full	backup	with	NORECOVERY
Restoring	the	last	good	differential	backup	taken	after	the	full	backup

you	just	restored	with	NORECOVERY
Restoring	the	transaction	logs	taken	after	your	differential	backup

There’s	more…
See	also

Performing	an	online	piecemeal	restore
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Backing	up	database	to	Azure	Blob	storage

Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Restoring	database	from	Azure	Blob	storage
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

6.	Advanced	Administration

Introduction
Connecting	to	LocalDB
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Creating	a	new	LocalDB	instance
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Listing	database	snapshots
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Creating	a	database	snapshot
Getting	ready
How	to	do	it…
How	it	works…
See	also

Dropping	a	database	snapshot
How	to	do	it…
How	it	works…
See	also

Enabling	FileStream
How	to	do	it…
How	it	works…
There’s	more…
See	also

Setting	up	a	FileStream	filegroup
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Adding	a	FileTable
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Adding	full-text	catalog
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Adding	full-text	index
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Creating	a	memory-optimized	table
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Creating	a	database	master	key
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Creating	a	certificate
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Creating	symmetric	and	asymmetric	keys
Getting	ready
How	to	do	it…
How	it	works…

There’s	more…
See	also

Setting	up	Transparent	Data	Encryption
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

7.	Audit	and	Policies

Introduction
Enabling/disabling	change	tracking
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Configuring	SQL	Server	Audit
How	to	do	it…
How	it	works…
There’s	more…
See	also

Listing	facets	and	their	properties
How	to	do	it…
How	it	works…
There’s	more…
See	also

Listing	policies
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Exporting	a	policy
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Importing	a	policy
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Creating	a	condition

Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Creating	a	policy
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Evaluating	a	policy
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Running	and	saving	a	profiler	trace	event
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Extracting	the	contents	of	a	trace	file
Getting	ready
How	to	do	it…
How	it	works…
See	also

8.	High	Availability	with	AlwaysOn

Introduction
Installing	the	Failover	Cluster	feature	on	Windows
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

Enabling	TCP	and	named	pipes	in	SQL	Server
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

Enabling	AlwaysOn	in	SQL	Server
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

Creating	and	enabling	the	HADR	endpoint
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Granting	the	CONNECT	permission	to	the	HADR	endpoint
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Creating	an	AlwaysOn	Availability	Group
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

Joining	the	secondary	replicas	to	Availability	Group
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Adding	an	availability	database	to	an	Availability	Group
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

Creating	an	Availability	Group	listener
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

Testing	the	Availability	Group	failover
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

Monitoring	the	health	of	an	Availability	Group
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

9.	SQL	Server	Development

Introduction

Importing	data	from	a	text	file
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

Exporting	records	to	a	text	file
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

Adding	files	to	a	FileTable
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Inserting	XML	into	SQL	Server
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Extracting	XML	from	SQL	Server
Getting	ready
How	to	do	it…
How	it	works…
See	also

Creating	an	RSS	feed	from	SQL	Server	content
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Applying	XSL	to	an	RSS	feed
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Creating	a	JSON	file	from	SQL	Server
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

Storing	binary	data	in	SQL	Server
Getting	ready

How	to	do	it…
How	it	works…
There’s	more…
See	also

Extracting	binary	data	from	SQL	Server
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Creating	a	new	assembly
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Listing	user-defined	assemblies
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Extracting	user-defined	assemblies
Getting	ready
How	to	do	it…
How	it	works…
See	also

10.	Business	Intelligence

Introduction
Listing	items	in	your	SSRS	Report	Server
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Listing	SSRS	report	properties
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Using	ReportViewer	to	view	your	SSRS	report
Getting	ready
How	to	do	it…
How	it	works…

There’s	more…
See	also

Downloading	an	SSRS	report	in	Excel	and	as	a	PDF
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Creating	an	SSRS	folder
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Creating	an	SSRS	data	source
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Changing	an	SSRS	report’s	data	source	reference
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Uploading	an	SSRS	report	to	Report	Manager
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Downloading	all	SSRS	report	RDL	files
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Adding	a	user	with	a	role	to	SSRS	report
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

Creating	folders	in	an	SSIS	package	store	and	MSDB
Getting	ready
How	to	do	it…

How	it	works…
There’s	more…
See	also

Deploying	an	SSIS	package	to	the	package	store
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Executing	an	SSIS	package	stored	in	a	package	store	or	filesystem
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Downloading	an	SSIS	package	to	a	file
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Creating	an	SSISDB	catalog
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Creating	an	SSISDB	folder
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Deploying	an	ISPAC	file	to	SSISDB
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Executing	an	SSIS	package	stored	in	SSISDB
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Listing	SSAS	cmdlets

How	to	do	it…
How	it	works…
There’s	more…
See	also

Listing	SSAS	instance	properties
How	to	do	it…
How	it	works…
There’s	more…
See	also

Backing	up	an	SSAS	database
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Restoring	an	SSAS	database
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Processing	an	SSAS	cube
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

11.	Helpful	PowerShell	Snippets

Introduction
Documenting	PowerShell	script	for	Get-Help
How	to	do	it…
How	it	works…
There’s	more…

Getting	history
How	to	do	it…
How	it	works…

Getting	a	timestamp
How	to	do	it…
How	it	works…
There’s	more…

Getting	more	error	messages
How	to	do	it…
How	it	works…

Listing	processes
How	to	do	it…

How	it	works…
There’s	more…
See	also

Getting	aliases
How	to	do	it…
How	it	works…
There’s	more…

Exporting	to	CSV	and	XML
How	to	do	it…
How	it	works…
There’s	more…

Using	Invoke-Expression
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

Testing	regular	expressions
How	to	do	it…
How	it	works…
There’s	more…

Managing	folders
How	to	do	it…
How	it	works…
There’s	more…
See	also

Manipulating	files
How	to	do	it…
How	it	works…
There’s	more…
See	also

Compressing	files
How	to	do	it…
How	it	works…

Searching	for	files
How	to	do	it…
How	it	works…
There’s	more…
See	also

Reading	an	event	log
How	to	do	it…
How	it	works…
There’s	more…

Sending	an	e-mail
Getting	ready
How	to	do	it…
How	it	works…

There’s	more…
Embedding	C#	code
How	to	do	it…
How	it	works…
There’s	more…

Creating	an	HTML	report
How	to	do	it…
How	it	works…
There’s	more…

Parsing	XML
Getting	ready
How	to	do	it…
How	it	works…

Extracting	data	from	a	web	service
How	to	do	it…
How	it	works…
There’s	more…

Using	PowerShell	remoting
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

A.	PowerShell	Primer

Introduction
Understanding	the	need	for	PowerShell
Setting	up	the	environment
Running	PowerShell	scripts
Through	shell	or	through	the	ISE
The	execution	policy

Learning	PowerShell	basics
Cmdlets
Learning	PowerShell

Get-Command
Get-Help
Get-Member

Starter	notes
PowerShell	is	object-oriented	and	works	with	.NET
Cmdlets	may	have	aliases	or	you	can	create	one
You	can	chain	commands
Filter	left,	format	right
Package	and	reuse

Common	cmdlets
Scripting	syntax
Statement	terminators
Escape	and	line	continuation

Variables
Here-string
String	interpolation

Operators
Displaying	messages
Comments
Special	variables
Special	characters
Conditions
Regular	expressions
Arrays
Hash	tables
Loops
Error	handling

Converting	scripts	into	functions
Listing	notable	PowerShell	features
Exploring	more	PowerShell

B.	Creating	a	SQL	Server	VM

Introduction
Terminologies
Downloading	software
VM	details	and	accounts
Creating	an	empty	virtual	machine
Installing	Windows	Server	2012	R2	as	guest	OS
Installing	VMware	tools
Making	a	snapshot	as	a	baseline
Configuring	a	domain	controller	(optional)
Creating	domain	accounts
Installing	SQL	Server	2014	on	a	VM
Configuring	Reporting	Services	in	native	mode
Installing	sample	databases
Installing	PowerShell	V5
Using	SQL	Server	on	a	Windows	Azure	VM

Index

SQL	Server	2014	with	PowerShell	v5	Cookbook

SQL	Server	2014	with	PowerShell	v5	Cookbook
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	November	2015

Production	reference:	1251115

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78528-332-1

www.packtpub.com

http://www.packtpub.com

Credits
Author

Donabel	Santos

Reviewers

David	Cobb

Chrissy	LeMaire

Patrik	Lindström

Fabrice	Romelard

Dave	Wentzel

Commissioning	Editor

Dipika	Gaonkar

Acquisition	Editors

Aaron	Lazar

Neha	Nagwekar

Content	Development	Editor

Aparna	Mitra

Technical	Editors

Madhunikita	Sunil	Chindarkar

Manali	Gonsalves

Copy	Editor

Rashmi	Sawant

Project	Coordinator

Izzat	Contractor

Proofreader

Safis	Editing

Indexer

Priya	Sane

Production	Coordinator

Shantanu	N.	Zagade

Cover	Work

Shantanu	N.	Zagade

About	the	Author
Donabel	Santos	(SQL	Server	MVP)	is	a	business	intelligence	architect,	trainer/instructor,
consultant,	author,	and	principal	at	QueryWorks	Solutions	(http://www.queryworks.ca/),
based	in	Vancouver,	Canada.	She	works	primarily	with	SQL	Server	for	database/data
warehouse,	reporting,	and	ETL	solutions.	She	scripts	and	automates	tasks	with	T-SQL	and
PowerShell	and	creates	corporate	dashboards	and	visualizations	with	Tableau	and	Power
BI.

She	is	a	Microsoft	Certified	Trainer	(MCT)	and	an	accredited	Tableau	trainer.	She
provides	consulting	and	corporate	training	to	clients	and	also	conducts	some	of	Tableau’s
fundamental	and	advanced	classes	in	Canada.	She	is	the	lead	instructor	for	SQL	Server
and	Tableau	(Visual	Analytics)	courses	at	British	Columbia	Institute	of	Technology
(BCIT)	Part-time	Studies	(PTS).

She	is	a	self-professed	data	geek.	Her	idea	of	fun	is	working	with	data,	SQL	Server,
PowerShell,	and	Tableau.	She	authored	two	books	from	Packt	Publishing:	SQL	Server
2012	with	PowerShell	v3	Cookbook,	and	PowerShell	and	SQL	Server	Essentials.	She	has
also	contributed	to	PowerShell	Deep	Dives,	Manning	Publications.	She	blogs	at
http://sqlbelle.com/	and	tweets	at	@sqlbelle.

http://www.queryworks.ca/
http://sqlbelle.com/

Acknowledgments
Writing	a	book	is	a	lot	of	work	and	indeed	a	labor	of	love.	I	think	the	hardest	part	is	the
time	it	takes	away	from	spending	with	your	loved	ones.	It’s	the	time	that	can	never	be
replaced,	and	the	least	I	can	do	is	express	my	gratitude	to	them	in	this	corner	of	the	book.

To	my	dearest	Chiyo	and	the	twins,	Kristina	and	Jayden,	I	hope	you	will	always	remember
that	Tita/Agim	loves	you	all	very	much.	Tita/Agim	will	always	be	here	for	you,	whenever
you	need	me.

To	Eric,	it	still	feels	like	it	was	just	yesterday	when	you	first	brought	me	that	cup	of	coffee
one	midnight	while	I	was	cramming	for	a	project	at	BCIT.	I	usually	drink	coffee	with	milk
and	sugar,	and	you	brought	one	that	was	piping	hot,	unsweetened,	and	black	(that	I	was
not	able	to	drink	at	all).	Who	knew	we’d	still	be	together.	Thank	you	for	everything.
Here’s	to	more	coffees,	green	smoothies,	veggie	juices,	anime	and	Korean	dramas…	to	a
lifetime	of	crazy	adventures	together.	I	love	you.

To	Papa	and	Mama,	you	have	always	given	me	strength	and	inspiration.	Thank	you	for
everything	that	you’ve	done	for	us.	I	love	you	both	very	much.

To	JR	and	RR—no	matter	what	happens,	you	will	always	be	my	baby	brothers,	and	I	will
always	be	your	big	sis	and	be	there	for	you.

To	Catherine	and	Lisa,	thank	you	for	being	the	sisters	I	never	had.	I	am	very	happy	to	call
you	both	sisters.	To	Veronica,	you’re	a	cool	girl.	Just	follow	your	dreams.	We’re	here	for
you.

To	my	in-laws—Mom	Lisa,	Dad	Richard,	Ama,	Aunt	Rose,	and	David—thank	you	for
being	my	family.

To	my	BCIT	family—Kevin	Cudihee,	Elsie	Au,	Joanne	Atha,	Vaani	Nadhan,	Cynthia	van
Ginkel,	Steve	Eccles,	Dean	Hildebrand,	Charlie	Blattler,	Bob	Langelaan,	and	Paul	Mills—
thank	you.	A	special	thanks	to	Kevin	Cudihee.	Thank	you	for	giving	me	the	chance	to
teach	at	BCIT	and	for	believing	that	I	can.	12	years	and	counting,	I	still	love	every	minute
that	I	teach.	I	will	always	be	grateful.	And	to	Elsie	Au,	thank	you	for	the	friendship	all
these	years.

To	my	UBC	family—I	am	fortunate	to	work	in	a	great	place	with	great,	smart,	fun,	and
passionate	people	who	I	deeply	admire	and	learn	from.	To	my	teammates,	coworkers,
acquaintances,	and	friends,	especially	Joe	Xing,	Min	Zhu,	Jason	Metcalfe,	Tom	Yerex,
Jing	Zhu,	Suzanne	Landry,	George	Firican,	Mai	Bui,	Amy	Matsubara,	Mary	Mootatamby,
Shirley	Tsui,	Lynda	Campbell,	Cindy	Lee,	Pat	Carew,	Stan	Tian,	and	to	my	truly
wonderful	director,	Pradeep	Nair,	and	our	managing	director,	Ana-Maria	Hobrough.	It	is	a
privilege	to	work	with	all	of	you.

To	the	Packt	team,	to	Neha	Nagwekar	for	contacting	me	to	author	this	book,	and	Akshay
Nair,	Aparna	Mitra,	and	Aaron	Lazar,	who	all	have	helped	me	throughout	the	process,
thank	you	so	much.

To	Chrissy	LeMaire,	David	Wentzel,	David	Cobb,	and	Patrik	Lindström—my	sincerest
thank	you	for	your	help	in	reviewing	the	recipes	and	content	and	for	all	your	thoughtful

and	constructive	feedback	and	corrections.	I	appreciate	your	time	and	learned	a	lot	from
your	comments,	corrections,	and	suggestions.	Thank	you	for	helping	me	make	this	book
better.

I	have	learned	so	much	from	so	many	other	people—from	all	the	Microsoft	Product	teams,
the	SQL	Server	and	PowerShell	MVPs,	each	technology’s	communities,	and	bloggers.
Thank	you	all	for	selflessly	sharing	your	knowledge	and	for	keeping	these	wonderful
communities	alive.

There	are	so	many	other	people	who	inspired	me	and	helped	me	along	the	way,	including
friends,	students	(and	former	students),	and	acquaintances.	Thank	you	to	all	of	you.

And	most	importantly,	thank	you	Lord,	for	all	the	miracles	and	blessings	in	my	life.

About	the	Reviewers
David	Cobb	is	a	system	architect	for	CheckAlt	Payment	Solutions,	providers	of
automated	and	electronic	check	transaction	processing	since	2005.	He	is	a	Microsoft
Certified	Trainer,	training	people	on	SQL	Server	since	2002.	He	is	also	the	principal
consultant	for	Cobb	Information	Technologies,	Inc,	founded	in	1996,	providing
technology	consulting	with	a	focus	on	SQL	Server.	David	blogs	occasionally	at
http://daveslog.com.

He	has	reviewed	Pro	PowerShell	for	Microsoft	Azure,	and	Hyper-V	for	VMware
Administrators,	for	Apress.

I	would	like	to	thank	Eivina,	Noah,	and	Evan	for	making	my	workplace	an	exciting	place
to	be.

Chrissy	LeMaire	is	a	PowerShell	MVP	and	currently	works	as	a	SQL	Server	DBA	at
NATO	Special	Operations	Headquarters	in	Belgium.	She	is	an	avid	scripter	and	has
attended	the	Monad	session	at	the	Microsoft’s	Professional	Developers	Conference	in	Los
Angeles	back	in	2005	and	has	worked	and	played	with	PowerShell	ever	since.

She	is	currently	pursuing	an	MS	degree	in	systems	engineering	at	Regis	University.	In	her
spare	time,	she	tweets	(@cl)	and	maintains	two	websites,	https://blog.netnerds.net	and
http://www.realcajunrecipes.com.

She	has	also	worked	as	a	technical	reviewer	for	Windows	PowerShell	Cookbook,	by	Lee
Holmes,	O’Reilly	Media,	and	Automating	Microsoft	Azure	with	PowerShell	by	John
Chapman	and	Aman	Dhally,	Packt	Publishing.

Patrik	Lindström	has	worked	as	an	IT	consultant	since	1991.	He	has	worked	with	SQL
Server	since	1997.	He	has	worked	with	BI	solutions	on	the	SQL	Server	stack	in	media,
retail,	and	finance	industries.	He	started	using	PowerShell	in	2008	at	one	of	the	world’s
largest	fashion	retailers	for	measuring	the	performance	of	a	SQL	Server-based	system.
Currently	he	works	as	a	DevOps	consultant	at	one	of	the	largest	banks	in	Scandinavia.

He	is	interested	in	a	wide	range	of	technologies	such	as	C#,	JavaScript,	functional
programming	and	of	course,	SQL	and	PowerShell.	If	there	is	a	problem,	he	will	find	the
right	tool	and	get	the	problem	solved.

You	can	find	his	resume	at	https://careers.stackoverflow.com/patriklindstrom,	or	you	can
take	a	look	at	his	code	at	https://github.com/patriklindstrom/.

Besides	facilitating	development,	he	enjoys	practicing	Shorinji	Kempo—in	which	he
received	a	second	degree	black	belt.	He	trains	with	his	youngest	son	Olle,	at	the
Stockholm	Södra	Branch.	He	and	his	wife	Jane,	regularly	train	with	their	Great	Dane,
Baaghida.	Patrick	also	practices	open	water	swimming	with	his	older	brother,	Fredrik
Döberl.

Fabrice	Romelard	is	a	French	IT	system	and	network	engineer	with	great	experience	in
development	(.NET	since	the	start	of	this	technology).	He	then	moved	to	Microsoft	SQL
Server	DBA	and	SharePoint	architect.	He	is	now	a	DevOps	engineer.	He	is	currently
working	for	a	global	company	in	the	industrial	certification	in	Geneva.

http://daveslog.com
https://blog.netnerds.net
http://www.realcajunrecipes.com
https://careers.stackoverflow.com/patriklindstrom
https://github.com/patriklindstrom/

Microsoft	gives	the	MVP	(Most	Valuable	Professional)	honor	since	2003	to	different
technologies	(.NET	developer,	SQL	Server	DBA,	and	SharePoint	architect).

After	doing	an	executive	MBA	in	risk	management,	his	day	at	work	is	a	mix	between	the
administration	of	his	SharePoint	farms,	DBA	on	the	corporate	SQL	Server,	infrastructure
architect	for	internal	projects,	and	DevOps	for	all	the	applications	he	has	to	manage.	He
also	manages	the	due	diligence	and	risk	assessments	executed	by	the	corporate	IT
department.

He	has	published	many	articles	about	Microsoft	technologies,	risk	management,	and	due
diligence	on	his	blogs.

I	would	like	to	thank	the	publisher	team	for	giving	me	the	opportunity	to	review	this	book
and	the	authors	who	did	a	great	job	on	the	content.	This	book	will	give	you	many	tips	and
tricks	for	your	daily	DBA	job.

Dave	Wentzel	is	an	independent	consultant	who	specializes	in	SQL	Server	performance
management	and	Big	Data	integration.	He	uses	PowerShell	for	zero	downtime	database
deployments	and	automation,	freeing	up	time	for	life’s	more	important	passions.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
	

Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Instant	updates	on	new	Packt	books
Get	notified!	Find	out	when	new	books	are	published	by	following	@PacktEnterprise	on
Twitter	or	the	Packt	Enterprise	Facebook	page.

Preface
PowerShell	is	a	powerful	and	flexible	task	automation	platform	and	scripting	language
from	Microsoft.	Many	Microsoft	applications,	such	as	Windows	Server,	Microsoft
Exchange,	and	Microsoft	SharePoint	now	ship	with	PowerShell	cmdlets	that	can	be	used
for	automated	and	streamlined	integration.	SQL	Server	database	professionals	can	also
leverage	PowerShell	to	simplify	database	tasks	using	built-in	cmdlets,	the	improved
SQLPS	module,	the	flexible	SQL	Server	Management	Objects	(SMO),	or	by	leveraging
any	of	the	readily	available	.NET	classes.

SQL	Server	2014	with	PowerShell	V5	Cookbook,	provides	easy-to-follow,	practical
examples	for	the	busy	database	professional.	There	are	over	150	recipes	in	this	book,	and
you’re	guaranteed	to	find	one	that	you	can	use	right	away!

You	start	off	with	basic	topics	to	get	you	going	with	SQL	Server	and	PowerShell	scripts
and	progress	into	more	advanced	topics	to	help	you	manage	and	administer	your	SQL
Server	databases.

The	first	few	chapters	demonstrate	how	to	work	with	SQL	Server	settings	and	objects,
including	exploring	objects,	creating	databases,	configuring	server	settings,	and
performing	inventories.	The	book	then	dives	deep	into	more	administration	topics	such	as
backup	and	restore,	managing	security,	and	configuring	AlwaysOn.	Additional
development	and	Business	Intelligence	(BI)-specific	topics	are	also	explored,	including
how	to	work	with	SQL	Server	Integration	Services	(SSIS),	SQL	Server	Reporting	Services
(SSRS),	and	SQL	Server	Analysis	Services	(SSAS).

A	short	PowerShell	primer	is	also	provided	as	a	supplement	in	the	Appendix	A,	which	the
database	professional	can	use	as	a	refresher	or	occasional	reference	material.	Packed	with
more	than	150	practical,	ready-to-use	scripts,	SQL	Server	2014	with	PowerShell	V5
Cookbook	will	be	your	go-to	reference	in	automating	and	managing	SQL	Server.

What	this	book	covers
Chapter	1,	Getting	Started	with	SQL	Server	and	PowerShell,	provides	an	introduction	on
how	to	work	with	SQL	Server	and	PowerShell,	including	an	introduction	to	SQL	Server
Management	Objects	(SMO).	This	chapter	provides	a	recipe	to	install	SQL	Server	using
PowerShell	and	helps	you	explore	and	discover	SQL	Server-related	objects	and	cmdlets.

Chapter	2,	SQL	Server	and	PowerShell	Basic	Tasks,	provides	scripts	and	snippets	of	code
that	accomplish	some	basic	SQL	Server	tasks	using	PowerShell.	Tasks	include	listing	SQL
Server	instances,	discovering	SQL	Server	services,	configuring	SQL	Server,
importing/exporting	records	in	SQL	Server,	and	creating	objects	such	as	tables,	indexes,
stored	procedures,	and	functions.	Some	recipes	also	teach	you	how	to	work	with	Azure
SQL	Database.

Chapter	3,	Basic	Administration,	explores	how	administrative	tasks	can	be	accomplished
in	PowerShell.	Some	recipes	deal	with	how	to	create	SQL	Server	instances	and	database
inventories,	how	to	check	disk	space,	running	processes,	and	SQL	Server	jobs.	Other
recipes	show	you	how	to	attach/detach/copy	databases,	add	files	to	databases,	and	execute
a	query	to	multiple	SQL	Server	instances

Chapter	4,	Security,	focuses	on	how	to	work	with	SQL	Server	service	accounts,	manage
logins/users/permissions,	and	monitor	login	attempts	and	also	how	to	work	with	database
roles,	credentials,	and	proxies.

Chapter	5,	Backup	and	Restore,	teaches	you	what	you	already	know	about	SQL	Server
backup	and	restore	procedures	and	shows	you	how	these	tasks	can	be	done	using
PowerShell.	Many	recipes	use	SQL	Server-specific	cmdlets,	such	as	Backup-SqlDatabase
and	Restore-SqlDatabase	wherever	possible,	but	also	utilize	SQL	Server	Management
Objects	(SMO)	to	get	more	information	on	backup	metadata.	Some	recipes	also	help	you
tackle	backup	and	restore	to	Azure	BLOB	storage.

Chapter	6,	Advanced	Administration,	discusses	some	of	the	most	advanced	features	of
SQL	Server	and	how	you	can	work	with	them	in	PowerShell.	Recipes	in	this	chapter
include	how	to	work	with	LocalDB,	database	snapshots,	Filestream,	FileTable,	Full-Text
Index,	memory-optimized	tables,	security	objects	such	as	certificates,	symmetric	and
asymmetric	keys,	and	setting	up	Transparent	Data	Encryption	(TDE).

Chapter	7,	Audit	and	Policies,	focuses	on	how	to	work	with	SQL	Server	tracking	and
auditing	capabilities	and	SQL	Server	Policy	Based	Management	(PBM).	This	chapter	also
explores	how	to	work	with	SQL	Server	Profiler	trace	files	and	events	programmatically.

Chapter	8,	High	Availability	with	AlwaysOn,	covers	specific	recipes	that	can	help	you
manage	and	automate	SQL	Server	AlwaysOn,	including	how	to	install	the	failover	cluster
feature,	enabling	AlwaysOn,	creating	AlwaysOn	availability	groups	and	listeners,	and
testing	the	availability	group	failover.

Chapter	9,	SQL	Server	Development,	provides	snippets	and	guidance	on	how	you	can
work	with	XML,	XSL,	JSON,	binary	data,	files	in	FileTable,	and	CLR	assemblies	with
SQL	Server	and	PowerShell.

Chapter	10,	Business	Intelligence,	covers	how	PowerShell	can	help	you	automate	and

manage	any	BI-related	tasks,	including	how	to	manage	and	execute	SQL	Server
Integration	Services	(SSIS)	packages,	list	and	download	SQL	Server	Reporting	Services
(SSRS)	reports,	and	backup	and	restore	SQL	Server	Analysis	Services	(SSAS)	cubes.

Chapter	11,	Helpful	PowerShell	Snippets,	covers	a	variety	of	recipes	that	are	not	SQL
Server-specific,	but	you	may	find	them	useful	when	working	with	SQL	Server	and
PowerShell.	Recipes	include	snippets	for	creating	files	that	use	timestamps,	using	Invoke-
Expression,	compressing	files,	reading	event	logs,	embedding	C#	code,	extracting	data
from	a	web	service,	and	exporting	a	list	of	processes	to	CSV	or	XML.

Appendix	A,	PowerShell	Primer,	offers	a	brief	primer	on	PowerShell	fundamentals	for	the
SQL	Server	professional.	This	chapter	includes	sections	on	how	to	run	PowerShell	scripts,
understand	PowerShell	syntax,	and	convert	scripts	into	functions	to	make	them	more
reusable.

Appendix	B,	Creating	a	SQL	Server	VM,	provides	a	step-by-step	tutorial	on	how	to	create
and	configure	the	virtual	machine	that	was	used	for	this	book.

What	you	need	for	this	book
For	the	purpose	of	this	book,	the	requirements	are	as	follows:

	
VMWare	Workstation	or	Player	(if	you	are	going	to	build	a	virtual	machine)
Windows	Server	2012	R2	Trial
SQL	Server	2014	Developer	Edition

PowerShell	V5	is	bundled	with	Windows	Management	Framework	(WMF)	5.	WMF	5	is
supported	by	the	following	operating	systems:

	
Windows	Server	2012	R2
Windows	8.1	Pro
Windows	8.1	Enterprise
Windows	Server	2012
Windows	7	SP1
Windows	Server	2008	R2	SP1

WMF	5	requires	.NET	Framework	4.5.

Who	this	book	is	for
This	book	is	written	for	SQL	Server	administrators	and	developers	who	want	to	leverage
PowerShell	to	work	with	SQL	Server.	A	little	bit	of	scripting	background	will	be	helpful
but	not	necessary.

Sections
In	this	book,	you	will	find	several	headings	that	appear	frequently	(Getting	ready,	How	to
do	it,	How	it	works,	There’s	more,	and	See	also).

To	give	clear	instructions	on	how	to	complete	a	recipe,	we	use	these	sections	as	follows:

Getting	ready
This	section	tells	you	what	to	expect	in	the	recipe,	and	describes	how	to	set	up	any
software	or	any	preliminary	settings	required	for	the	recipe.

How	to	do	it…
This	section	contains	the	steps	required	to	follow	the	recipe.

How	it	works…
This	section	usually	consists	of	a	detailed	explanation	of	what	happened	in	the	previous
section.

There’s	more…
This	section	consists	of	additional	information	about	the	recipe	in	order	to	make	the	reader
more	knowledgeable	about	the	recipe.

See	also
This	section	provides	helpful	links	to	other	useful	information	for	the	recipe.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“We	can
include	other	contexts	through	the	use	of	the	include	directive.”

A	block	of	code	is	set	as	follows:
#set	connection	to	mixed	mode

#note	that	this	authentication	will	fail	if	mixed	mode

#is	not	enabled	in	SQL	Server

$server.ConnectionContext.set_LoginSecure($false)

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

$server.Databases[“AdventureWorks2014”].Tables	|

Get-Member	-MemberType	“Property”	|

Where-Object	Definition	-Like	”*Smo*”

Any	command-line	input	or	output	is	written	as	follows:

(Get-Command	-Module	”*SQL*”	–CommandType	Cmdlet).Count

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Open	up	your
PowerShell	console,	PowerShell	ISE,	or	your	favorite	PowerShell	editor.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/3321EN_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/3321EN_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Getting	Started	with	SQL	Server	and
PowerShell
In	this	chapter,	we	will	cover:

	
Working	with	the	sample	code
Installing	SQL	Server	using	PowerShell
Installing	SQL	Server	Management	Objects
Loading	SMO	assemblies
Exploring	the	SQL	Server	PowerShell	hierarchy
Discovering	SQL-related	cmdlets	and	modules
Creating	a	SQL	Server	Instance	Object
Exploring	SMO	Server	Objects

Introduction
If	you	have	been	working	with	Microsoft	products,	or	have	been	managing	or	developing
on	the	Microsoft	platform,	you	might	be	familiar	with	PowerShell.	If	not,	I	can	predict
that	you	are	bound	to	encounter	it	sooner	than	later.	Since	you	are	holding	this	book,	my
prediction	just	came	true.

PowerShell	is	Microsoft’s	automation	platform,	which	includes	both	a	shell	(often	referred
to	as	console)	and	a	scripting	language	that	allows	one	to	streamline,	integrate,	and
automate	multiple	tasks	and	applications.	But	why	learn	another	technology	and
language?	Why	bother?	If	you	have	experience	as	a	system	administrator	pre-PowerShell,
you	probably	know	the	pain	of	trying	to	integrate	heterogeneous	systems	using	some	kind
of	scripting.

Windows,	at	its	core,	is	very	Graphical	User	Interface	(GUI)-driven	with	a	lot	of	point-
and-click,	but	this	point-and-click	is	not	so	great	when	you	have	to	do	it	several	times	over
as	you	try	to	tie	together	systems	and	automate	tasks.

Historically,	the	scripting	solution	would	have	involved	a	multitude	of	languages,
including	VBScript,	Jscript,	Perl,	or	Python;	a	batch	file;	and	even	a	little	bit	of	C,	C++,	or
C#.	System	administrators	had	to	be	really	creative	and	resourceful—duct	taping	a
solution	using	a	mishmash	of	languages	in	the	absence	of	a	real	solution.	It	was	messy,	not
flexible,	and	painful	to	maintain.

Enter	PowerShell!	PowerShell	allows	an	administrator,	or	developer,	to	do	more	tasks	in	a
faster,	easier,	and	better	way	using	a	scripting	language,	now	understood	by	many,	in	the
Microsoft	family	of	applications.	PowerShell	is	now	the	one	language	you	need	to	know	if
you	want	to	automate	and	integrate	either,	within	one	application	(for	example,	SQL
Server),	or	between	Microsoft	and	even	non-Microsoft	applications.	Since	many
Microsoft	products	such	as	Windows	Server,	Exchange,	SharePoint,	and	SQL	Server	have
support	for	PowerShell,	getting	one	system	to	talk	to	another	is	just	a	matter	of
discovering	what	cmdlets,	functions,	or	modules	need	to	be	pulled	into	the	script.	The
good	thing	is,	even	if	the	product	does	not	have	support	for	PowerShell	yet,	it	most	likely
has	.NET	or	.com	support,	which	PowerShell	can	easily	use.

PowerShell	has	become	a	major	player	in	the	automation	and	integration	arena,	and	it	will
continue	to	be,	for	the	foreseeable	future.

Working	with	SQL	Server	and	PowerShell
Before	we	dive	into	the	recipes,	let’s	go	over	a	few	important	concepts	and	terminologies
that	will	help	you	understand	how	SQL	Server	and	PowerShell	can	work	together.

Running	as	an	administrator
Most	of	our	recipes	will	perform	possible	queries	and	changes	in	your	SQL	Server
instance	or	Windows	Server.	This	will	require	elevated	privileges	both	on	your	database
side	and	in	the	PowerShell	side.	To	ensure	you	can	run	the	recipes	in	this	book	without
getting	access	errors,	you	will	need	to	execute	the	console	or	the	ISE	as	administrator.	One
way	to	do	this	is	by	right-clicking	on	the	PowerShell	icon	in	your	task	bar	and	selecting	to
run	either	program	as	administrator.

You	can	confirm	that	you’ve	launched	either	program	as	administrator	by	checking	the
title	bar.	You	should	see	Administrator	added	to	your	title	bar.

Execution	Policy
The	Execution	Policy	settings	in	PowerShell	determine	what	is	allowed	or	not	allowed	to
be	run	in	PowerShell.

Note
See	Execution	Policy	section	in,	Appendix	A,	PowerShell	Primer,	for	further	explanation
of	different	execution	policies.

For	security	reasons,	PowerShell	will	not	run	automatically	unless	it	is	authorized	in	the
settings.	This	is	to	prevent	scripts	from	different	sources,	for	example,	the	ones
downloaded	from	the	Internet,	from	potentially	running	malicious	or	destructive	code.

To	run	the	recipes	in	this	book,	you	will	need	at	least	a	RemoteSigned	setting.	To	get	this,
run	the	following	code:
Set-ExecutionPolicy	RemoteSigned

Running	scripts
If	you	save	your	PowerShell	code	in	a	file,	you	need	to	ensure	it	has	a	.ps1	extension.
Otherwise,	PowerShell	will	not	run	it.	Unlike	traditional	scripts,	you	cannot	run	a
PowerShell	script	by	double	clicking	the	file.	Instead,	you	can	run	this	script	from	the
PowerShell	console	simply	by	calling	the	name.	For	example,	if	you	have	a	script	called
myscript.ps1	located	in	the	C:\Scripts	directory,	you	can	provide	the	full	path	to	the	file
to	invoke	it:
PS	C:\>	C:\Scripts\myscript.ps1

You	can	also	change	your	directory	to	where	the	script	is	saved,	and	invoke	it	like	this
(notice	there	is	a	dot	and	backslash	in	front	of	the	file):
PS	C:\Scripts>	.\myscript.ps1

If	the	file	or	path	to	the	file	has	spaces,	then	you	will	need	to	enclose	the	full	path	and	file
name	in	single	or	double	quotes.	Before	PowerShell	v3,	you	would	need	to	use	the	call	(&)
operator	prior	to	the	script	name.	From	PowerShell	v3	onwards,	you	do	not	need	to
specify	the	call	operator	anymore,	but	it	will	still	work	if	you	do:
PS	C:\Scripts>	&	’.\my	script.ps1’

If	you	want	to	retain	the	variables	and	functions	included	in	the	script	in	memory,	so	that
it’s	available	in	your	session	globally,	then	you	will	need	to	dot	source	the	script.	Dot
source	means	prepending	the	filename,	or	path	to	the	file,	with	a	dot	and	a	space:
PS	C:\Scripts>	.	.\myscript.ps1

PS	C:\Scripts>	.	’.\my	script.ps1’

Note
To	learn	more	about	how	to	invoke	code	and	executables	in	PowerShell,	see
http://social.technet.microsoft.com/wiki/contents/articles/7703.powershell-running-
executables.aspx.

Running	different	PowerShell	versions
If	you	are	running	PowerShell	v3,	v4,	or	v5,	you	can	choose	to	run	an	older	version	of
PowerShell.	To	do	this,	simply	invoke	the	shell	or	start	your	session	with	a	-Version
parameter	and	provide	the	version	you	want	to	use:
Powershell.exe	-Version	2

http://social.technet.microsoft.com/wiki/contents/articles/7703.powershell-running-executables.aspx

You	can	check	that	the	change	was	made	by	using	the	$PSVersionTable	variable.	You
should	now	see	the	PSVersion	value	reverted	to	the	value	you	provided	to	the	–Version
parameter:

Line	continuation
Understanding	how	line	continuation	works	in	PowerShell	will	be	crucial	when	working
with	the	recipes	in	this	book.

You	will	encounter	a	line	of	PowerShell	code	that	may	be	wider	than	the	width	of	the	page
you	are	reading.	For	example,	consider	the	following	code:
#create	your	SQL	Server	SMO	instance

$server	=	New-Object	-TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

The	preceding	code,	which	creates	a	SQL	Server	instance,	is	meant	to	be	written	in	a
single	line	(no	line	breaks),	otherwise	it	will	not	execute.	However,	to	make	the	line	more
readable,	some	snippets	may	be	broken	into	multiple	lines	as	long	as	the	line	continuation
character,	a	backtick	(`),	is	provided	at	the	end	of	the	line	just	before	the	carriage	return.
Check	out	the	following	code:
$server	=	New-Object	`

									-TypeName	`

										Microsoft.SqlServer.Management.Smo.Server	`

									-ArgumentList	$instanceName

Adding	the	line	breaks	cleans	up	the	code	a	little	bit	and	makes	it	more	readable.	But	do
you	see	the	backtick	at	the	end	of	each	line?	You	probably	have	to	squint	to	see	it.	It’s
probably	not	obvious	that	the	backtick	is	the	last	character	before	the	carriage	return.

Note
The	backtick	(`)	character	in	the	U.S.	keyboard	is	the	key	above	the	left	Tab	key,	and	to
the	left	of	the	number	1	key.	It	shares	the	key	with	the	tilde	(~)	sign.	Check	this	post	for
the	visual	location	of	the	backtick	key	in	localized	keyboards:

http://superuser.com/questions/254076/how-do-i-type-the-tick-and-backtick-characters-
on-windows.

For	this	book,	I	will	try	to	avoid	backticks	for	line	continuation.	Please	assume	that	a	long
line	of	code	in	the	recipes,	although	wrapping	in	your	page,	should	be	written	as	just	a
single	line.	You	can	also	confirm	the	syntax	by	downloading	the	code	from	the	Packt
Publishing	website.

Where	possible,	I	will	break	down	the	code	into	more	readable	chunks	without	using	the
backtick.	For	example,	consider	a	long	line	of	code	like	this:
$server.Databases	|	Get-Member	-MemberType	“Property”	|	Where-

Object	Definition	-Like	”*Smo*”

The	preceding	line	can	be	rewritten	into	multiple	lines	using	the	pipe	(|)	operator	at	the
end	of	each	line:
$server.Databases	|

Get-Member	-MemberType	“Property”	|

Where-Object	Definition	-Like	”*Smo*”

If	I	have	to	use	the	backtick,	I	will	call	your	attention	to	it	in	the	code	comments.

PowerShell	modules
Modules	are	a	way	to	extend	PowerShell.	Modules	can	add	cmdlets	and	providers,	and
load	functions,	variables,	aliases	and	other	tools	to	your	session.

For	our	recipes,	we	will	use	the	SQLPS	module	a	lot.	To	load	this	module,	you	can	use	the
Import-Module	cmdlet:
Import-Module	SQLPS

Note	that	running	this	command	will	change	your	current	working	directory	to:
PS	SQLSERVER:>

http://superuser.com/questions/254076/how-do-i-type-the-tick-and-backtick-characters-on-windows

Working	with	the	sample	code
This	recipe	simply	walks	you	through	how	you	can	work	with	the	scripts	in	this	book.
Samples	in	this	book	have	been	created	and	tested	against	SQL	Server	2014	on	Windows
Server	2012	R2.

How	to	do	it…
If	you	want	to	use	your	current	machine	without	creating	a	separate	VM,	as	illustrated	in
Create	a	SQL	Server	VM	section	in	Appendix	B,	follow	these	steps	to	prepare	your
machine:

	
1.	 Install	SQL	Server	2014	on	your	current	operating	system—either	Windows	7	or

Windows	Server	2012	R2.	A	list	of	supported	operating	systems	for	SQL	Server	2014
is	available	at	http://msdn.microsoft.com/en-us/library/ms143506.aspx.

2.	 Microsoft	provides	really	good	documentation	(both	MSDN	and	TechNet)	on	how	to
install	SQL	Server,	and	the	different	ways	you	can	install	SQL	Server.	I	encourage
you	to	read	the	installation	tutorial,	as	well	as	the	installation	notes	that	come	with
your	software	(https://msdn.microsoft.com/en-us/library/ms143219.aspx)

3.	 Install	PowerShell	v5.	At	the	time	of	writing	this	book,	only	the	Windows
Management	Framework	(WMF)	5.0	Production	Preview	was	available.	You	can
download	it	from	http://www.microsoft.com/en-us/download/details.aspx?id=48729.
The	installation	instructions	are	also	bundled	in	the	download.	At	the	time	of	writing
this	book,	WMF	5.0	Production	Preview	can	be	installed	on	Windows	7	SP1,
Windows	8.1	Pro/Enterprise,	Windows	Server	2008	R2,	Windows	Server	2012,	and
Windows	Server	2012	R2.

4.	 By	the	time	this	book	is	in	your	hands,	PowerShell	v5	might	be	available	and	be
bundled	in	the	newer	Microsoft	operating	systems.	This	download	includes,	as	stated
in	the	download	page,	updates	to	Windows	PowerShell,	Desired	State
Configuration	(DSC)	of	Windows	PowerShell	and	Windows	PowerShell	ISE.	It	also
includes	Package	Management	and	Network	Switch	cmdlets.

5.	 If	you	are	planning	to	use	the	console,	set	the	execution	policy	to	RemoteSigned	in
the	console.	This	setting	will	enable	us	to	run	the	scripts	presented	in	this	book.
1.	 Right-click	on	Windows	PowerShell	on	your	taskbar	and	choose	Run	as

Administrator.
2.	 Set	execution	policy	to	RemoteSigned	by	executing	the	following	on	the

console:
Set-ExecutionPolicy	RemoteSigned

6.	 If	you	are	planning	to	use	the	PowerShell	Integrated	Scripting	Environment	(ISE),
set	the	execution	policy	to	RemoteSigned.	We	will	be	using	the	improved	ISE	in
many	samples	in	this	book.
1.	 Right-click	on	Windows	PowerShell	on	your	taskbar	and	choose	Run	ISE	as

Administrator.
2.	 Set	the	execution	policy	to	RemoteSigned	by	executing	the	following	on	the

script	editor:
Set-ExecutionPolicy	RemoteSigned

http://msdn.microsoft.com/en-us/library/ms143506.aspx
https://msdn.microsoft.com/en-us/library/ms143219.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=48729

See	also
	

Keep	up	to	date	with	PowerShell	news,	articles,	tips,	and	tricks	from	the	PowerShell
team	blog	at	http://blogs.msdn.com/b/powershell/.
Check	out	the	SQL	Server	PowerShell	documentation	on	MSDN	at
https://msdn.microsoft.com/en-us/library/hh245198.aspx

http://blogs.msdn.com/b/powershell/
https://msdn.microsoft.com/en-us/library/hh245198.aspx

Installing	SQL	Server	using	PowerShell
If	you’re	really	eager	to	dive	into	PowerShell	and	start	installing	SQL	Server,	this	recipe
will	give	you	a	taste	of	installing	SQL	Server	with	PowerShell	using	the	SQL	Server
setup.exe	file	and	a	configuration	file.

Getting	ready
Get	your	SQL	Server	binaries	ready.	If	you	have	it	burned	on	a	DVD,	place	your	copy	in
the	DVD	drive.	If	you	have	it	as	an	ISO	or	image	file,	mount	the	files	now.

You	will	also	need	to	identify	the	service	accounts	you	want	to	use	for	the	SQL	Server
services	you	want	to	install,	as	well	as	the	locations	for	all	the	files	that	SQL	Server	will
save	on	your	system.	In	order	to	perform	a	completely	automated	install,	the	following
script	will	need	to	be	adjusted	to	use	the	default	service	account	credentials,	or	specify	the
usernames	and	passwords	within	the	$command	variable.

In	this	exercise,	we	will	generate	a	configuration	(.ini)	first,	and	then	use	this	for	the
installation.

How	to	do	it…
The	steps	to	install	a	standalone	SQL	Server	instance	are	as	follows:

	
1.	 Generate	the	configuration	file	using	the	following	steps:

1.	 Load	your	SQL	Server	install	disk	or	image	and	launch	the	setup.exe	file.
2.	 Go	through	the	Wizard	and	enter	all	the	configuration	values.
3.	 Once	you	get	to	the	Ready	to	Install	screen,	note	the	Configuration	file	path:

4.	 Cancel	the	installation	using	the	Wizard.
2.	 Change	the	configuration	file	to	enable	a	silent	install.	Open	the	.ini	file	and	make

the	following	changes:
1.	 Change	the	QUIET	setting	to	True:

QUIET=“True”

2.	 Comment	out	the	UIMODE	setting	by	putting	a	semicolon	before	it:
;UIMODE=“Normal”

3.	 Add	the	IAcceptSQLServerLicenseTerms	value:

IAcceptSQLServerLicenseTerms=“True”

3.	 Save	your	.ini	file.
4.	 Run	your	PowerShell	ISE	as	administrator.
5.	 Add	the	following	code	to	your	script	editor:

#change	this	to	the	location	of	your	configuration	file

$configfile	=	“C:\Configurations\SQL_ConfigurationFile.ini”

#we	are	still	using	the	setup.exe	that	comes	with

#the	SQL	Server	bits

#adjust	the	path	below	to	where	your	setup.exe	is

$command	=	“D:\setup.exe	/ConfigurationFile=$($configfile)”

#run	the	command

Invoke-Expression	-Command	$command

6.	 Change	the	location	of	the	$configfile	variable	to	the	location	where	you	saved
your	.ini	file.	Change	the	location	of	the	executable	as	well.	In	the	preceding	script,
the	executable	is	in	the	D:\	directory.

7.	 Execute	the	code.

How	it	works…
SQL	Server	can	be	installed	different	ways:

	
Using	Wizard:	You	may	choose	to	install	SQL	Server	using	the	wizard-driven	GUI
approach,	which	starts	by	double-clicking	on	the	setup.exe	file	that	comes	with	your
SQL	Server	binary	(https://technet.microsoft.com/en-us/library/ms143219.aspx).
Via	command	prompt:	You	can	also	install	SQL	Server	using	the	command	prompt
by	invoking	setup.exe	from	the	command	prompt,	and	providing	all	the
configuration	values	in	the	proper	setup	parameters
(https://technet.microsoft.com/en-us/library/ms144259.aspx).
Via	configuration	file:	You	can	install	SQL	Server	still	by	using	the	setup
executable,	but	instead	of	providing	all	the	values	in	the	command	prompt,	use	a
configuration	file	that	will	host	all	the	configuration	values.	Visit
https://technet.microsoft.com/en-us/library/dd239405.aspx	for	more	information.
Via	SysPrep:	Install	SQL	Server	using	SysPrep.	It	is	Microsoft’s	system	preparation
tool	that	allows	administrators	to	deploy	an	image	to	multiple	servers	and/or
workstations.	Visit	https://technet.microsoft.com/en-us/library/ee210664.aspx	for
more	information.

In	the	recipe,	we	went	with	the	third	option	and	installed	SQL	Server	using	a	configuration
file.	We	are	simply	going	to	wrap	a	few	components	in	PowerShell.	You	might	be	asking,
“Why	not	script	the	whole	process	in	PowerShell	instead	of	using	the	executable	and
configuration	file?”	The	answer	is,	we	can	do	so,	and	there	may	be	cases	where	that’s	the
best	approach.	However,	for	simple	and	straightforward	installations,	it	will	be	easiest	to
reuse	as	much	of	SQL	Server’s	robust,	tried-and-true	installation	process	and	wrap	it
inside	PowerShell.

The	SQL	Server	configuration	file,	which	has	the	.ini	extension,	is	a	text	file	that
contains	installation	parameter	key-value	pairs	based	on	your	entries	and	selections	within
the	wizard.	The	format	you	will	find	in	the	file	looks	like	this:
;comment	or	description

PARAMETERNAME	=	“value”

Some	of	the	common	parameters	that	will	be	specified	in	the	configuration	file	include	the
following:

Parameter Description

ACTION
This	is	required	to	start	the	installation.	It	accepts	only
a	single	value	of	Install.

IACCEPTSQLSERVERLICENSETERMS
This	is	required	for	unattended	installations,	and	it
accepts	End	User	License	Agreement.

This	specifies	whether	the	installation	should	discover

https://technet.microsoft.com/en-us/library/ms143219.aspx
https://technet.microsoft.com/en-us/library/ms144259.aspx
https://technet.microsoft.com/en-us/library/dd239405.aspx
https://technet.microsoft.com/en-us/library/ee210664.aspx

UPDATEENABLED and	include	product	updates,	and	it	accepts	True	or
False.

FEATURES
This	specifies	components	to	install,	for	example,
SQLENGINE,	AS,	RS,	IS,	SSMS,	or	REPLICATION.

INSTANCENAME This	is	a	SQL	Server	instance	name.

AGTSVCACCOUNT This	is	a	SQL	Agent	service	account.

AGTSVCSTARTUPTYPE
This	is	a	SQL	Agent	startup	type,	and	it	accepts	any	of
the	following	values:	Automatic,	Manual,	or	Disabled.

SQLCOLLATION This	is	the	SQL	Server	instance	collation.

SQLSVCACCOUNT
This	is	the	SQL	Server	database	engine	service
account.

SQLSYSADMINACCOUNTS These	are	the	SQL	Server	system	admin	accounts.

TCPENABLED This	specifies	whether	an	instance	has	TCP	enabled.

The	list	of	supported	settings	is	outlined	at	https://technet.microsoft.com/en-
us/library/ms144259.aspx.

You	can	create	the	.ini	file	from	scratch,	but	it	would	be	best	to	at	least	start	with	the
configuration	file	you	get	with	the	wizard.	From	here,	you	can	adjust	and	provide
additional	settings.

Once	we’ve	finalized	the	.ini	file,	the	next	step	is	to	compose	the	actual	command	that
needs	to	be	executed.	In	the	following	code,	we	are	simply	creating	a	string	that	contains
the	path	to	the	setup.exe	and	passing	in	a	single	parameter	for	the	ConfigurationFile:
$command	=	“D:\setup.exe	/ConfigurationFile=$($configfile)”

Alternatively,	you	can	also	dynamically	build	the	contents	.ini	file	using	PowerShell	and
then	pass	this	configuration	file	to	setup.exe,	just	like	how	we	built	$command	previously.

Once	the	command	string	is	ready,	we	can	use	the	Invoke-Expression	PowerShell	cmdlet
to	run	the	expression	contained	by	the	$command	variable:
Invoke-Expression	-Command	$command

Instead	of	using	the	.ini	file,	you	can	also	dynamically	build	all	the	parameters	in	a	long
string	based	on	specific	conditions	or	cases.	You	can	take	advantage	of	PowerShell’s	logic
operators	and	other	constructs	when	you	do	this.	You	should	be	able	to	compose	the
complete	command	and	use	Invoke-Expression	to	perform	the	actual	installation:
$command	=	‘D:\setup.exe	/ACTION=Install	/Q	/INSTANCENAME=“SQL01”

/IACCEPTSQLSERVERLICENSETERMS	/FEATURES=SQLENGINE,REPLICATION	SQLSYSADMINACCOUNTS=“QUERYWORKS\Administrator”’

https://technet.microsoft.com/en-us/library/ms144259.aspx

There’s	more…
You	can	also	take	advantage	of	Desired	State	Configuration	(DSC),	which	was
introduced	in	PowerShell	v4	and	works	with	Windows	Server	2012	R2,	to	install	SQL
Server.

DSC	is	a	set	of	language	extensions	that	will	allow	you	to	specify	a	desired	state,	or	a	set
of	ideal	configurations,	for	your	servers.	This	simplifies	the	configuration	of	new	SQL
Server	instances,	because	all	you	have	to	do	is	to	identify	the	desired	state	for	your	SQL
Server	installations	and	reuse	the	script	for	every	deployment.

These	are	the	simplified	steps	to	take	advantage	of	DSC:

	
1.	 Write	a	configuration	script.
2.	 Run	the	configuration	script	to	create	a	Management	Object	Framework	(MOF).
3.	 Copy	the	MOF	to	the	server	you’re	installing	SQL	Server	to.	After	the	installation,	at

some	point,	you	will	want	your	server	to	pull	the	updated	MOF	automatically.
4.	 Apply	the	configuration	to	the	target	server	and	start	the	installation	process.

The	PowerShell	team	made	the	xSqlPs	PowerShell	module	available,	which	is	currently
an	experimental	module,	in	the	Technet	Script	Center
(https://gallery.technet.microsoft.com/scriptcenter/xSqlps-PowerShell-Module-aed9426c).
Here	is	a	description	of	the	xSqlPs	module	from	the	site:

The	xSqlPs	module	is	a	part	of	the	Windows	PowerShell	Desired	State	Configuration
resource	kit,	which	is	a	collection	of	DSC	resources	produced	by	the	PowerShell
team.	This	module	contains	the	xSqlServerInstall,	xSqlHAService,	xSqlHAEndpoint,
xSqlHAGroup,	and	xWaitForSqlHAGroup	resources.

To	install	SQL	Server,	you	will	need	to	work	with	xSqlServerInstall.	The	PowerShell
team	has	provided	an	excellent	tutorial	on	how	to	use	this	DSC	resource.	This	is	a	good
starting	script	for	a	SQL	Server	Enterprise	installation,	and	you	can	adjust	it	as	needed.	By
the	time	this	book	is	in	your	hands,	the	scripts	in	the	module	may	have	already	been
updated,	or	moved	from	an	experimental	to	stable	state.	Please	note	that	these	scripts	are
also	provided	as	is,	with	no	support	or	warranty	from	Microsoft.

Note
If	you	are	looking	for	a	good	tutorial	on	DSC,	check	out	the	Microsoft	Virtual	Academy
site	(http://www.microsoftvirtualacademy.com/liveevents/getting-started-with-powershell-
desired-state-configuration-dsc).

https://gallery.technet.microsoft.com/scriptcenter/xSqlps-PowerShell-Module-aed9426c
http://www.microsoftvirtualacademy.com/liveevents/getting-started-with-powershell-desired-state-configuration-dsc

Installing	SQL	Server	Management	Objects
SQL	Server	Management	Objects	(SMO)	was	introduced	with	SQL	Server	2005	to
allow	SQL	Server	to	be	accessed	and	managed	programmatically.	SMO	can	be	used	in	any
.NET	language,	including	C#,	VB.NET,	and	PowerShell.	Since	SQL	Server	does	not	ship
with	many	cmdlets,	SMO	is	the	key	to	automating	most	SQL	Server	tasks.	SMO	is	also
backwards	compatible	with	previous	versions	of	SQL	Server,	extending	support	all	the
way	to	SQL	Server	2000.

SMO	comprises	two	distinct	classes:	the	Instance	classes	and	the	Utility	classes.

The	Instance	classes	are	the	SQL	Server	objects.	Properties	of	objects	such	as	the	server,
databases,	and	tables	can	be	accessed	and	managed	using	the	instance	classes.

The	Utility	classes	are	helper	or	utility	classes	that	accomplish	common	SQL	Server
tasks.	These	classes	belong	to	one	of	four	groups:	Transfer,	Backup,	and	Restore	classes,
or	the	Scripter	class.

To	gain	access	to	the	SMO	libraries,	SMO	needs	to	be	installed	and	the	SQL	Server-
related	assemblies	need	to	be	loaded.

Getting	ready
There	are	a	few	ways	to	install	SMO:

	
If	you	are	installing	SQL	Server	2014	or	already	have	SQL	Server	2014,	SMO	can	be
installed	by	installing	Client	Tools	SDK.	Get	your	install	disk	or	image	ready.
If	you	want	just	SMO	installed	without	installing	SQL	Server,	download	the	SQL
Server	Feature	2014	Pack.

How	to	do	it…
If	you	are	installing	SQL	Server	or	already	have	SQL	Server,	perform	the	following	steps:

	
1.	 Load	up	your	SQL	Server	install	disk	or	image,	and	launch	the	setup.exe	file.
2.	 Select	New	SQL	Server	standalone	installation	or	add	features	to	an	existing

installation.
3.	 Choose	your	installation	type	and	click	on	Next.
4.	 In	the	Feature	Selection	window,	make	sure	you	select	Client	Tools	SDK.

5.	 Complete	your	installation

After	this,	you	should	already	have	all	the	binaries	needed	to	use	SMO.

If	you	are	not	installing	SQL	Server,	you	must	install	SMO	using	the	SQL	Server	Feature
Pack	on	the	machine	you	are	using	SMO	with.	The	steps	are	as	follows:

	
1.	 Open	your	web	browser.	Go	to	your	favorite	search	engine	and	search	for	SQL

Server	2014	Feature	Pack.
2.	 Download	the	package.
3.	 Double-click	on	the	SharedManagementObjects.msi	to	install.

There’s	more…
By	default,	the	SMO	assemblies	in	SQL	Server	2014	will	be	installed	in	<SQL	Server
Install	Directory>\120\SDK\Assemblies.	This	is	shown	in	the	following	screenshot:

Loading	SMO	assemblies
Before	you	can	use	the	SMO	library,	the	assemblies	need	to	be	loaded.	With	the
introduction	of	the	SQLPS	module,	this	step	is	easier	than	ever.

Getting	ready
In	this	recipe,	we	assume	you	have	already	installed	SMO	on	your	machine.

How	to	do	it…
To	load	SMO	assemblies	via	the	SQLPS	module,	perform	the	following	steps:

	
1.	 Open	up	your	PowerShell	console,	PowerShell	ISE,	or	your	favorite	PowerShell

Editor.
2.	 Type	the	import-module	command	as	follows:

Import-Module	SQLPS

3.	 Confirm	that	the	module	is	loaded	by	running	the	following.	This	should	give	the
name	of	the	module	if	it	is	loaded:
Get-Module

How	it	works…
The	way	to	load	SMO	assemblies	has	changed	between	different	versions	of	PowerShell
and	SQL	Server.	Before	the	SQLPS	module	and	in	PowerShell	v1,	loading	assemblies
could	be	done	explicitly	using	the	Load()	or	LoadWithPartialName()	methods.	The
LoadWithPartialName()	accepts	the	partial	name	of	the	assembly	and	loads	from	the
application	directory	or	the	Global	Assembly	Cache	(GAC):
[void][Reflection.Assembly]::LoadWithPartialName(“Microsoft.SqlServer.Smo”)

Although	you	may	still	see	LoadWithPartialName()	in	some	older	scripts,	this	method	is
now	obsolete	and	should	not	be	used	with	any	new	development.

The	method	Load()	requires	the	fully	qualified	name	of	the	assembly:
	[void]

[Reflection.Assembly]::Load(“Microsoft.SqlServer.Smo,	Version=9.0.242.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”)

In	PowerShell	v2,	assemblies	can	be	added	by	using	Add-Type:
Add-Type	-AssemblyName	“Microsoft.SqlServer.Smo”

When	the	SQLPS	module	was	shipped	with	SQL	Server	2012,	loading	these	assemblies
one	by	one	became	unnecessary,	as	long	as	the	SQLPS	module	is	loaded	using	the
following	code:
Import-Module	SQLPS

There	may	be	cases	where	you	will	still	want	to	load	specific	DLL	versions	if	you	are
dealing	with	specific	SQL	Server	versions.	Alternatively,	you	might	want	to	load	only
specific	assemblies	without	loading	the	whole	SQLPS	module.	In	this	case,	the	Add-Type
command	is	still	the	viable	method	of	bringing	the	assemblies	in.

There’s	more…
When	you	import	the	SQLPS	module,	you	might	see	an	error	about	conflicting	or
unapproved	verbs:

Note
WARNING:	The	names	of	some	imported	commands	from	the	module	SQLPS	include
unapproved	verbs	that	might	make	them	less	discoverable.	To	find	the	commands	with
unapproved	verbs,	run	the	Import-Module	command	again	with	the	Verbose	parameter.

For	a	list	of	approved	verbs,	type	Get-Verb.

This	means	there	are	some	cmdlets	that	do	not	conform	to	the	PowerShell	naming
convention,	but	the	module	and	its	containing	cmdlets	are	still	all	loaded	into	your	host.
To	suppress	this	warning,	import	the	SQLPS	module	with	the	–DisableNameChecking
parameter.

Note
Learn	how	to	load	SMO	assemblies	using	PowerShell	from	the	MSDN	at
https://msdn.microsoft.com/en-us/library/hh245202(v=sql.120).aspx.

https://msdn.microsoft.com/en-us/library/hh245202(v=sql.120).aspx

See	also
	

The	Installing	SQL	Server	Management	Objects	recipe.

Exploring	the	SQL	Server	PowerShell	hierarchy
SQL	Server	started	shipping	with	the	SQLPS	module	in	SQL	Server	2012.	The	SQLPS
module	allows	PowerShell	to	access	SQL	Server-specific	cmdlets	and	functions,	and	also
loads	commonly	used	assemblies	when	working	with	SQL	Server.	This	continues	to	be	the
case	in	SQL	Server	2014.

Launching	PowerShell	from	SQL	Server	Management	Studio	(SSMS)	launches	a
Windows	PowerShell	session	which	imports	the	SQLPS	module	automatically,	and	sets
the	current	context	to	the	item	the	PowerShell	session	was	launched	from.	Database
administrators	and	developers	can	then	start	navigating	the	object	hierarchy	from	there.

Getting	ready
To	follow	this	recipe,	you	should	log	in	to	SQL	Server	2014	Management	Studio.

How	to	do	it…
In	this	recipe,	we	will	navigate	the	SQL	Server	PowerShell	hierarchy	by	launching	a
PowerShell	session	from	SQL	Server	Management	Studio:

	
1.	 Right-click	on	your	instance	node.
2.	 Click	on	Start	PowerShell.

Note	that	this	will	launch	a	PowerShell	session	and	load	the	SQLPS	module.	This
window	looks	similar	to	a	command	prompt,	with	a	prompt	set	to	the	SQL	Server
object	you	launched	this	window	from.	In	the	following	screenshot,	ROGUE	refers
to	the	name	of	my	local	machine:

Note	the	starting	path	in	this	window.	The	screen	now	shows	how	you	could	get	to
the	default	instance	if	you	were	to	navigate	using	the	PowerShell	console	or	ISE:
PS	SQLSERVER:\SQL\<SQL	instance	name>\DEFAULT>

3.	 Type	dir.	This	should	give	you	a	list	of	all	objects	directly	accessible	from	the
current	server	instance;	in	our	case,	from	the	default	SQL	Server	instance	ROGUE.

Note	that	dir	is	an	alias	for	the	cmdlet	Get-ChildItem.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at
http://www.packtpub.com	for	all	the	Packt	Publishing	books	you	have	purchased.	If
you	purchased	this	book	elsewhere,	you	can	visit	http://www.packtpub.com/support
and	register	to	have	the	files	e-mailed	directly	to	you.

This	is	similar	to	the	objects	you	can	find	under	the	instance	node	in	Object
Explorer	in	SQL	Server	Management	Studio.

http://www.packtpub.com
http://www.packtpub.com/support

4.	 While	our	PowerShell	window	is	open,	let’s	explore	the	SQL	Server	PSDrive	or	the
SQL	Server	data	store	which	PowerShell	treats	as	a	series	of	items.	Type	cd	\.	This
will	change	the	path	to	the	root	of	the	current	drive,	which	is	our	SQL	Server
PSDrive.

5.	 Type	dir.	This	will	list	all	items	accessible	from	the	root	SQL	Server	PSDrive.	You
should	see	something	similar	to	the	following	screen:

6.	 Close	this	window.
7.	 Go	back	to	Management	Studio	and	right-click	on	one	of	your	user	databases.
8.	 Click	on	Start	PowerShell.	Note	that	this	will	launch	another	PowerShell	session

with	a	path	that	points	to	the	database	you	right-clicked	from:

Note	the	starting	path	of	this	window	is	different	from	the	starting	path	where	you
first	launched	PowerShell	in	the	earlier	steps.	If	you	type	dir	from	this	location,	you
will	see	all	items	that	are	under	the	AdventureWorks2014	database.

You	can	see	some	of	the	items	enumerated	in	this	screenshot	in	SQL	Server
Management	Studio	Object	Explorer,	if	you	expand	the	AdventureWorks2014
database	node:

How	it	works…
When	PowerShell	is	launched	through	SSMS,	a	context-sensitive	PowerShell	session	is
created	and	it	automatically	loads	the	SQLPS	module.	This	will	be	evident	in	the	prompt,
which	by	default	shows	the	current	path	of	the	object	from	which	the	Start	PowerShell
menu	item	was	clicked	from.

The	SQLPS	module	was	not	always	loaded	when	PowerShell	was	launched	from	SSMS.
With	SQL	Server	2008/2008	R2	it	was	shipped	with	a	SQLPS	utility,	which	is	also
referred	to	as	a	mini	shell.	When	you	started	PowerShell	from	SSMS,	it	was	not	a	full
PowerShell	console	that	was	launched.	It	was	a	constrained,	closed	shell	preloaded	with
SQL	Server	extensions	was	loaded.	This	shell	was	meant	to	be	used	for	SQL	Server	only,
which	proved	to	be	quite	limiting	because	DBAs	and	developers	often	need	to	load
additional	snapins	and	modules	in	order	to	integrate	SQL	Server	with	other	systems
through	PowerShell.	At	that	time,	the	alternative	way	was	to	launch	a	full-fledged
PowerShell	session	and	depending	on	your	PowerShell	version,	either	load	snapins	or	load
the	SQLPS	module.

Since	SQL	Server	2012,	the	original	constrained	mini	shell	has	been	deprecated.	When
you	launch	a	PowerShell	session	from	SSMS	in	SQL	Server	2012	onwards,	what	is
launched	is	the	full-fledged	PowerShell	console,	with	the	updated	SQLPS	module	loaded
by	default.

Once	the	SQLPS	module	is	loaded,	SQL	Server	becomes	exposed	as	a	PowerShell	Drive
(PSDrive),	which	allows	traversing	of	objects	as	if	they	are	folders	and	files.	Familiar
commands	for	traversing	directories	are	supported	in	this	provider,	such	as	dir	or	ls.	Note
that	these	familiar	commands	are	often	just	aliases	to	the	real	cmdlet	name,	in	this	case,
Get-ChildItem.

When	you	launch	PowerShell	from	SSMS,	you	can	immediately	start	navigating	the	SQL
Server	PowerShell	hierarchy.

Discovering	SQL-related	cmdlets	and	modules
In	order	to	be	good	at	working	with	SQL	Server	and	PowerShell,	knowing	how	to	explore
and	discover	cmdlets,	snapins,	and	modules	is	necessary.

Getting	ready
Launch	PowerShell	ISE	as	administrator.	If	you	prefer	the	console,	you	can	also	launch
that	instead,	but	ensure	you	are	running	it	as	administrator.

How	to	do	it…
In	this	recipe,	we	will	explore	SQL-related	cmdlets	and	modules:

	
1.	 To	find	out	how	many	SQL-related	cmdlets	are	in	your	system,	type	the	following	in

your	PowerShell	editor	and	run:
#how	many	commands	from	modules	that

#have	SQL	in	the	name

(Get-Command	-Module	”*SQL*”	–CommandType	Cmdlet).Count

2.	 To	list	the	SQL-related	cmdlets,	type	the	following	in	your	PowerShell	editor	and
run:
#list	all	the	SQL-related	commands

Get-Command	-Module	”*SQL*”	–CommandType	Cmdlet	|

Select-Object	CommandType,	Name,	ModuleName	|

Sort-Object	-Property	ModuleName,	CommandType,	Name	|

Format-Table	–AutoSize

3.	 To	see	which	of	these	modules	are	loaded	in	your	PowerShell	session,	type	the
following	in	your	editor	and	run:
Get-Module	-Name	”*SQL*”

If	you	have	already	used	any	of	the	cmdlets	in	the	previous	step,	then	you	should	see
both	SQLPS	and	SQLASCMDLETS.	Otherwise,	you	will	need	to	load	these	modules
before	you	can	use	them.

4.	 To	explicitly	load	these	modules,	type	the	following	and	run:
Import-Module	-Name	“SQLPS”

Note	that	SQLASCMDLETS	will	be	loaded	when	you	load	SQLPS.

How	it	works…
At	the	core	of	PowerShell,	we	have	cmdlets.	A	cmdlet	(pronounced	commandlet)	is
defined	in	MSDN	as	lightweight	command	that	is	used	in	the	Windows	PowerShell
environment.	It	can	be	a	compiled,	reusable	.NET	code	or	an	advanced	function,	or	it	can
be	a	workflow	that	typically	performs	a	very	specific	task.	All	cmdlets	follow	the	verb-
noun	naming	notation.

PowerShell	ships	with	many	cmdlets.	In	addition,	many	applications	now	also	ship	with
their	own	cmdlets.	For	example,	SharePoint	has	a	fair	number	of	PowerShell	cmdlets	that
help	with	installation,	configuration,	and	administration	of	the	farm,	sites,	and	everything
in	between.	A	list	of	cmdlets	for	SharePoint	2013	can	be	found	at
https://technet.microsoft.com/en-us/library/ff678226.aspx.

A	legacy	way	of	extending	PowerShell	is	by	registering	additional	snapins.	A	Snapin	is	a
binary,	or	a	DLL,	that	can	contain	a	cmdlet.	You	can	create	your	own	snapin	by	building
your	own	.NET	source,	compiling,	and	registering	the	snapin.	You	will	always	need	to
register	snapins	before	you	can	use	them.	Snapins	are	a	popular	way	of	extending
PowerShell.

The	following	table	summarizes	common	tasks	with	snapins:

Task Syntax

List	loaded	Snapins Get-PSSnapin

List	Installed	Snapins Get-PSSnapin	-Registered

Show	commands	in	a	Snapin Get-Command	-Module	“SnapinName”

Load	a	specific	Snapin Add-PSSnapin	“SnapinName”

Since	PowerShell	v2,	modules	are	introduced	as	the	improved	and	preferred	method	of
extending	PowerShell.	A	module	is	a	package	that	can	contain	cmdlets,	providers,
functions,	variables,	and	aliases.	In	PowerShell	v2,	modules	are	not	loaded	by	default,	so
required	modules	need	to	be	explicitly	imported.

Common	tasks	with	modules	are	summarized	in	the	following	table:

Task Syntax

List	loaded	Modules Get-Module

List	Installed	Modules Get-Module	-ListAvailable

Show	commands	in	a	Module Get-Command	-Module	“ModuleName”

https://technet.microsoft.com/en-us/library/ff678226.aspx

Load	a	specific	Module Import-Module	-Name	“ModuleName”

One	of	the	improved	features	of	PowerShell	v3	onwards	is	support	for	autoloading
modules.	You	do	not	need	to	always	explicitly	load	modules	before	using	the	contained
cmdlets.	Using	the	cmdlets	in	your	script	is	enough	to	trigger	PowerShell	to	load	the
module	that	contains	it.

SQL	Server	2014	modules	are	located	at	PowerShell	|	Modules	in	the	install	directory.

There’s	more…
You	can	get	a	list	of	SQLPS	and	SQLASCMDLETS	by	running	the	following	command:
Get-Command	-CommandType	Cmdlet	-Module	SQLPS,SQLASCMDLETS|

Select-Object	Name,	Module	|

Sort-Object	Module,	Name	|

Format-Table	-AutoSize

Here’s	the	list	of	cmdlets	as	of	this	version	of	SQL	Server	2014:
CommandType	Name																																					ModuleName

–––—	–-																																					–––-

					Cmdlet	Add-RoleMember																											SQLASCMDLETS

					Cmdlet	Backup-ASDatabase																								SQLASCMDLETS

					Cmdlet	Invoke-ASCmd																													SQLASCMDLETS

					Cmdlet	Invoke-ProcessCube																							SQLASCMDLETS

					Cmdlet	Invoke-ProcessDimension																		SQLASCMDLETS

					Cmdlet	Invoke-ProcessPartition																		SQLASCMDLETS

					Cmdlet	Merge-Partition																										SQLASCMDLETS

					Cmdlet	New-RestoreFolder																								SQLASCMDLETS

					Cmdlet	New-RestoreLocation																						SQLASCMDLETS

					Cmdlet	Remove-RoleMember																								SQLASCMDLETS

					Cmdlet	Restore-ASDatabase																							SQLASCMDLETS

					Cmdlet	Add-SqlAvailabilityDatabase														SQLPS

					Cmdlet	Add-SqlAvailabilityGroupListenerStaticIp	SQLPS

					Cmdlet	Add-SqlFirewallRule																						SQLPS

					Cmdlet	Backup-SqlDatabase																							SQLPS

					Cmdlet	Convert-UrnToPath																								SQLPS

					Cmdlet	Decode-SqlName																											SQLPS

					Cmdlet	Disable-SqlAlwaysOn																						SQLPS

					Cmdlet	Enable-SqlAlwaysOn																							SQLPS

					Cmdlet	Encode-SqlName																											SQLPS

					Cmdlet	Get-SqlCredential																								SQLPS

					Cmdlet	Get-SqlDatabase																										SQLPS

					Cmdlet	Get-SqlInstance																										SQLPS

					Cmdlet	Get-SqlSmartAdmin																								SQLPS

					Cmdlet	Invoke-PolicyEvaluation																		SQLPS

					Cmdlet	Invoke-Sqlcmd																												SQLPS

					Cmdlet	Join-SqlAvailabilityGroup																SQLPS

					Cmdlet	New-SqlAvailabilityGroup																	SQLPS

					Cmdlet	New-SqlAvailabilityGroupListener									SQLPS

					Cmdlet	New-SqlAvailabilityReplica															SQLPS

					Cmdlet	New-SqlBackupEncryptionOption												SQLPS

					Cmdlet	New-SqlCredential																								SQLPS

					Cmdlet	New-SqlHADREndpoint																						SQLPS

					Cmdlet	Remove-SqlAvailabilityDatabase											SQLPS

					Cmdlet	Remove-SqlAvailabilityGroup														SQLPS

					Cmdlet	Remove-SqlAvailabilityReplica												SQLPS

					Cmdlet	Remove-SqlCredential																					SQLPS

					Cmdlet	Remove-SqlFirewallRule																			SQLPS

					Cmdlet	Restore-SqlDatabase																						SQLPS

					Cmdlet	Resume-SqlAvailabilityDatabase											SQLPS

					Cmdlet	Set-SqlAuthenticationMode																SQLPS

					Cmdlet	Set-SqlAvailabilityGroup																	SQLPS

					Cmdlet	Set-SqlAvailabilityGroupListener									SQLPS

					Cmdlet	Set-SqlAvailabilityReplica															SQLPS

					Cmdlet	Set-SqlCredential																								SQLPS

					Cmdlet	Set-SqlHADREndpoint																						SQLPS

					Cmdlet	Set-SqlNetworkConfiguration														SQLPS

					Cmdlet	Set-SqlSmartAdmin																								SQLPS

					Cmdlet	Start-SqlInstance																								SQLPS

					Cmdlet	Stop-SqlInstance																									SQLPS

					Cmdlet	Suspend-SqlAvailabilityDatabase										SQLPS

					Cmdlet	Switch-SqlAvailabilityGroup														SQLPS

					Cmdlet	Test-SqlAvailabilityGroup																SQLPS

					Cmdlet	Test-SqlAvailabilityReplica														SQLPS

					Cmdlet	Test-SqlDatabaseReplicaState													SQLPS

					Cmdlet	Test-SqlSmartAdmin																							SQLPS

To	learn	more	about	these	cmdlets,	use	the	Get-Help	cmdlet.	For	example,	here’s	the
command	to	learn	more	about	Invoke-Sqlcmd:
Get-Help	Invoke-Sqlcmd

Get-Help	Invoke-Sqlcmd	-Detailed

Get-Help	Invoke-Sqlcmd	-Examples

Get-Help	Invoke-Sqlcmd	-Full

You	can	also	check	out	the	MSDN	article	on	SQL	Server	Database	Engine	Cmdlets	at
http://msdn.microsoft.com/en-us/library/cc281847.aspx.

When	you	load	the	SQLPS	module,	several	assemblies	are	loaded	into	your	host.

To	get	a	list	of	SQLServer-related	assemblies	loaded	with	the	SQLPS	module,	use	the
following	script,	which	will	work	in	both	PowerShell	v2	and	v3:
Import-Module	SQLPS	–DisableNameChecking

[AppDomain]::CurrentDomain.GetAssemblies()	|

Where-Object	{$_.FullName	-match	“SqlServer”	}	|

Select-Object	FullName

If	you	want	to	run	on	v3	or	newer	versions,	you	can	take	advantage	of	the	simplified
syntax:
Import-Module	SQLPS	–DisableNameChecking

[AppDomain]::CurrentDomain.GetAssemblies()	|

Where-Object	FullName	-Match	“SqlServer”	|

Select-Object	FullName

This	will	show	you	all	the	loaded	assemblies,	including	their	public	key	tokens:

http://msdn.microsoft.com/en-us/library/cc281847.aspx

Creating	a	SQL	Server	Instance	Object
Most	of	what	you	will	need	to	do	in	SQL	Server	will	require	a	connection	to	an	instance.
One	way	to	do	this	is	by	creating	an	instance	object	via	SMO.

Getting	ready
Open	up	your	PowerShell	console,	PowerShell	ISE,	or	your	favorite	PowerShell	editor.

You	will	need	to	note	what	your	instance	name	is.	If	you	have	a	default	instance,	you	can
use	your	machine	name.	If	you	have	a	named	instance,	the	format	will	be	<machine
name>\<instance	name>.

How	to	do	it…
If	you	are	connecting	to	your	instance	using	Windows	authentication	and	using	your
current	Windows	login,	the	steps	are	as	follows:

	
1.	 Import	the	SQLPS	module:

#import	SQLPS	module

Import-Module	SQLPS	–DisableNameChecking

$VerbosePreference	=	“SilentlyContinue”

2.	 Store	your	instance	name	in	a	variable:
#create	a	variable	for	your	instance	name

$instanceName	=	“localhost”

3.	 If	you	are	connecting	to	your	instance	using	Windows	authentication	from	the
account	you	are	logged	in	as:
#create	your	server	instance

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

If	you	are	connecting	using	SQL	Authentication,	you	will	need	to	know	the	username
and	password	that	you	will	use	to	authenticate.	In	this	case,	you	will	need	to	add	the
following	code,	which	will	set	the	connection	to	mixed	mode	and	prompt	for	the	username
and	password:
#set	connection	to	mixed	mode

$server.ConnectionContext.set_LoginSecure($false)

#set	the	login	name

#of	course	we	don’t	want	to	hardcode	credentials	here

#so	we	will	prompt	the	user

#note	password	is	passed	as	a	SecureString	type

$credentials	=	Get-Credential

#remove	leading	backslash	in	username

$login	=	$credentials.UserName	$server.ConnectionContext.set_Login($login)

$server.ConnectionContext.set_SecurePassword($credentials.Password)

#check	connection	string

#note	though	that	this	outputs	your	password	in	clear	text

$server.ConnectionContext.ConnectionString

Write-Verbose	“Connected	to	$($server.Name)”

Write-Verbose	“Logged	in	as	$($server.ConnectionContext.	Login)”

How	it	works…
Before	you	can	access	or	manipulate	SQL	Server	programmatically,	you	will	often	need	to
create	references	to	its	objects.	At	the	most	basic	level	is	the	server.

The	server	instance	is	using	the	type	Microsoft.SqlServer.Management.Smo.Server.	By
default,	connections	to	the	server	are	using	a	trusted	connection,	meaning	it	uses	the
Windows	account	you’re	currently	using	when	you	log	into	the	server.	So	all	it	needs	is
the	instance	name	in	its	argument	list:
#create	your	server	instance

$server	=	New-Object	-TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

However,	if	you	need	to	connect	using	a	SQL	login,	you	will	need	to	set	the
ConnectionContext.LoginSecure	property	of	the	SMO	Server	class	setting	to	false:
#set	connection	to	mixed	mode

#note	that	this	authentication	will	fail	if	mixed	mode

#is	not	enabled	in	SQL	Server

$server.ConnectionContext.set_LoginSecure($false)

You	will	also	need	to	explicitly	set	the	username	and	the	password.	The	best	way	to
accomplish	this	is	to	prompt	the	user	for	the	credentials:
#prompt

$credentials	=	Get-Credential

The	Get-Credential	cmdlet	will	display	a	popup	window	that	will	capture	the	login	and
password	entered	by	the	user:
$login	=	$credentials.UserName

Once	we	have	the	login,	we	can	pass	it	to	the	set_Login	method.	The	password	is	already
a	SecureString	type,	which	means	it	is	encrypted.	This	is	the	data	type	required	by	the
set_SecurePassword	method,	so	no	further	conversion	is	needed.	The	commands	are	as
follows:
$server.ConnectionContext.set_Login($login)

$server.ConnectionContext.set_SecurePassword($credentials.Password)

Should	you	want	to	hardcode	the	username	and	just	prompt	for	the	password,	you	can	also
do	this:
$login	=	“belle”

#prompt

$credentials	=	Get-Credential	–Credential	$login

In	the	script,	you	will	also	notice	that	we	are	using	Write-Verbose	instead	of	Write-Host
to	display	our	results.	This	is	because	we	want	to	control	the	output	without	always	going
back	to	our	script	and	removing	the	Write-Host	command.

By	default,	the	script	will	not	display	any	output,	that	is,	the	$VerbosePreference	special
variable	is	set	to	SilentlyContinue.	If	you	want	to	run	the	script	in	verbose	mode,	you
simply	need	to	add	this	in	the	beginning	of	your	script:

$VerbosePreference	=	“Continue”

When	you	are	done,	you	just	need	to	change	the	value	to	SilentlyContinue:
$VerbosePreference	=	“SilentlyContinue”

See	also
	

The	recipe	Loading	SMO	assemblies.
The	recipe	Creating	a	SQL	Server	Instance	Object.

Exploring	SMO	Server	Objects
SMO	comes	with	a	hierarchy	of	objects	that	are	accessible	programmatically.	For
example,	when	we	create	an	SMO	server	variable,	we	can	then	access	databases,	logins,
and	database	level	triggers.	Once	we	get	a	handle	of	individual	databases,	we	can	then
traverse	the	tables,	stored	procedures	and	views	that	it	contains.	Since	many	tasks	involve
SMO	objects,	you	will	be	at	an	advantage	if	you	know	how	to	discover	and	navigate	these
objects.

Getting	ready
Open	up	your	PowerShell	console,	PowerShell	ISE,	or	your	favorite	PowerShell	editor.

You	will	also	need	to	note	what	your	instance	name	is.	If	you	have	a	default	instance,	you
can	use	your	machine	name.	If	you	have	a	named	instance,	the	format	will	be	<machine
name>\<instance	name>.

How	to	do	it…
In	this	recipe,	we	will	start	exploring	the	hierarchy	of	objects	with	SMO:

	
1.	 Import	the	SQLPS	module	as	follows:

Import-Module	SQLPS	-DisableNameChecking

2.	 Create	a	server	instance	as	follows:
$instanceName	=	“localhost”

#code	below	all	in	one	line

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Get	the	SMO	objects	directly	accessible	from	the	$server	object:

$server	|

Get-Member	-MemberType	“Property”	|

Where-Object	Definition	-Like	”*Smo*”

Note
If	you	are	using	PowerShell	v2,	you	will	have	to	change	the	Where-Object	cmdlet
usage	to	use	the	curly	braces	{}	and	the	$_	variable:
Where-Object	{$_.Definition	-like	“Smo*”	}

4.	 Now,	let’s	check	SMO	objects	under	databases:

$server.Databases	|

Get-Member	-MemberType	“Property”	|

Where-Object	Definition	-Like	”*Smo*”

5.	 To	check	out	the	tables,	you	can	type	and	execute	the	following:

$server.Databases[“AdventureWorks2014”].Tables	|

Get-Member	-MemberType	“Property”	|

Where-Object	Definition	-Like	”*Smo*”

How	it	works…
SMO	contains	a	hierarchy	of	objects.	At	the	very	top	there	is	a	server	object,	which	in	turn
contains	objects	such	as	Databases,	Configuration,	SqlMail,	LoginCollection,	and	so
on.	These	objects	in	turn	contain	other	objects,	for	example,	Databases	is	a	collection	that
contains	Database	objects,	and	a	Database	contains	Tables.

Note
You	can	check	out	the	SMO	Object	Model	Diagram	from	the	MSDN	at
https://msdn.microsoft.com/en-ca/library/ms162209.aspx.

One	way	to	navigate	through	the	hierarchy	is	by	creating	a	server	instance	first.	From
here,	you	can	use	Get-Member	to	figure	out	which	properties	belong	to	that	object.	Once
you	find	out,	you	can	start	creating	additional	variables	for	the	member	objects	and	then
use	Get-Member	on	them.	Lather,	rinse,	and	repeat.

https://msdn.microsoft.com/en-ca/library/ms162209.aspx

See	also
	

The	recipe	Loading	SMO	assemblies.
The	recipe	Creating	a	SQL	Server	Instance	Object.

Chapter	2.	SQL	Server	and	PowerShell	Basic	Tasks
In	this	chapter,	we	will	cover:

	
Listing	SQL	Server	instances
Discovering	SQL	Server	services
Starting/stopping	SQL	Server	services
Listing	SQL	Server	configuration	settings
Changing	SQL	Server	Instance	configurations
Searching	for	database	objects
Scripting	SQL	Server	Stored	Procedures
Creating	a	database
Altering	database	properties
Dropping	a	database
Changing	a	database	owner
Creating	a	table
Creating	a	view
Creating	a	stored	procedure
Creating	a	user	defined	function
Creating	a	trigger
Creating	an	index
Executing	a	query	/	SQL	script
Performing	bulk	export	using	Invoke-SqlCmd
Performing	bulk	export	using	the	bcp	command-line	utility
Performing	bulk	import	using	BULK	INSERT
Performing	bulk	import	using	the	bcp	command-line	utility
Connecting	to	an	Azure	SQL	database
Creating	a	table	in	an	Azure	SQL	database

Introduction
In	this	chapter,	we	will	discuss	scripts	and	snippets	of	code	that	accomplish	basic	SQL
Server	tasks	using	PowerShell.	We	will	start	with	simple	tasks	such	as	listing	SQL	Server
instances	and	creating	objects	such	as	tables,	indexes,	stored	procedures,	and	functions	to
get	you	comfortable	with	working	with	SQL	Server	programmatically.

You	will	find	that	many	of	the	recipes	can	be	accomplished	using	PowerShell	and	SQL
Management	Objects	(SMO).	SMO	is	a	library	that	exposes	SQL	Server	classes	that
allow	programmatic	manipulation	and	automation	of	many	database	tasks.	For	some
recipes,	we	will	also	explore	alternative	ways	of	accomplishing	the	same	tasks	using
different	native	PowerShell	cmdlets.

Note
SMO	is	explained	in	more	detail	in	Chapter	1,	Getting	Started	with	SQL	Server	and
PowerShell.

However,	even	if	we	are	exploring	how	to	create	some	common	database	objects	using
PowerShell,	keep	in	mind	that	PowerShell	will	not	always	be	the	best	tool	for	the	task.
There	will	be	tasks	that	are	best	completed	using	T-SQL.	It	is	still	good	to	know	what	is
possible	in	PowerShell	and	how	to	do	it,	so	you	know	that	you	have	alternatives
depending	on	your	requirements	or	situation.

For	the	recipes,	we	are	going	to	use	PowerShell	ISE	quite	a	lot.

If	you	prefer	running	the	script	from	the	PowerShell	console	rather	than	running	the
commands	from	the	ISE,	you	can	save	the	scripts	in	a	.ps1	file	and	run	it	from	the
PowerShell	console.

Listing	SQL	Server	instances
In	this	recipe,	we	will	list	all	SQL	Server	instances	in	the	local	network.

Getting	ready
Log	in	to	the	server	that	has	your	SQL	Server	development	instance	as	an	administrator.

How	to	do	it…
Let’s	look	at	the	steps	to	list	your	SQL	Server	instances:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Let’s	use	the	Start-Service	cmdlet	to	start	the	SQL	Browser	service:

Import-Module	SQLPS	-DisableNameChecking

#out	of	the	box,	the	SQLBrowser	is	disabled.	To	enable:

Set-Service	SQLBrowser	-StartupType	Automatic

#sql	browser	must	be	installed	and	running	for	us

#to	discover	SQL	Server	instances

Start-Service	“SQLBrowser”

3.	 Next,	you	need	to	create	a	ManagedComputer	object	to	get	access	to	instances.	Type
the	following	script	and	run:
$instanceName	=	“localhost”

$managedComputer	=	New-

Object	Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer	$instanceName

#list	server	instances

$managedComputer.ServerInstances

Your	result	should	look	similar	to	the	one	shown	in	the	following	screenshot:

Notice	that	$managedComputer.ServerInstances	gives	you	not	only	instance	names,
but	also	additional	properties	such	as	ServerProtocols,	Urn,	State,	and	so	on.

4.	 Confirm	that	these	are	the	same	instances	you	see	from	SQL	Server	Management
Studio.

5.	 Open	SQL	Server	Management	Studio.	Go	to	Connect	|	Database	Engine.
6.	 In	the	Server	Name	dropdown,	click	on	Browse	for	More.
7.	 Select	the	Network	Servers	tab	and	check	the	instances	listed.	Your	screen	should

look	similar	to	this:

How	it	works…
All	services	in	a	Windows	operating	system	are	exposed	and	accessible	using	Windows
Management	Instrumentation	(WMI).	WMI	is	Microsoft’s	framework	for	listing,
setting,	and	configuring	any	Microsoft-related	resource.	This	framework	follows	Web-
based	Enterprise	Management	(WBEM).	The	Distributed	Management	Task	Force,	Inc.
(http://www.dmtf.org/standards/wbem)	defines	WBEM	as	follows:

A	set	of	management	and	Internet	standard	technologies	developed	to	unify	the
management	of	distributed	computing	environments.	WBEM	provides	the	ability	for
the	industry	to	deliver	a	well-integrated	set	of	standard-based	management	tools,
facilitating	the	exchange	of	data	across	otherwise	disparate	technologies	and
platforms.

In	order	to	access	SQL	Server	WMI-related	objects,	you	can	create	a	WMI
ManagedComputer	instance:
$managedComputer	=	New-

Object	Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer	$instanceName

The	ManagedComputer	object	has	access	to	a	ServerInstance	property,	which	in	turn	lists
all	available	instances	in	the	local	network.	These	instances	however,	are	only	identifiable
if	the	SQL	Server	Browser	service	is	running.

Note
The	SQL	Server	Browser	is	a	Windows	Service	that	can	provide	information	on	installed
instances	in	a	box.	You	need	to	start	this	service	if	you	want	to	list	the	SQL	Server-related
services.

http://www.dmtf.org/standards/wbem

There’s	more…
The	Services	instance	of	the	ManagedComputer	object	can	also	provide	similar
information,	but	you	will	have	to	filter	for	the	server	type	SqlServer:
#list	server	instances

$managedComputer.Services	|	Where-Object	Type	–eq	“SqlServer”	|Select-

Object	Name,	State,	Type,	StartMode,	ProcessId

Your	result	should	look	like	this:

Instead	of	creating	a	WMI	instance	by	using	the	New-Object	method,	you	can	also	use	the
Get-WmiObject	cmdlet	when	creating	your	variable.	Get-WmiObject,	however,	will	not
expose	exactly	the	same	properties	exposed	by	the
Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer	object.

To	list	instances	using	Get-WmiObject,	you	will	need	to	discover	what	namespace	is
available	in	your	environment:
$hostName	=	“localhost”

$namespace	=	Get-WMIObject	-ComputerName	$hostName	-

Namespace	root\Microsoft\SQLServer	-Class	“__NAMESPACE”	|

													Where-Object	Name	-like	“ComputerManagement*”

#see	matching	namespace	objects

$namespace

#see	namespace	names

$namespace	|	Select-Object	-ExpandProperty	“__NAMESPACE”

$namespace	|	Select-Object	-ExpandProperty	“Name”

Note
If	you	are	using	PowerShell	v2,	you	will	have	to	change	the	Where-Object	cmdlet	usage
to	use	the	curly	braces	{}	and	the	$_	variable.	Recall	the	$_	variable	contains	the	current
pipeline	object:
Where-Object	{$_.Name	-like	“ComputerManagement*”	}

For	SQL	Server	2014,	the	namespace	value	is:
ROOT\Microsoft\SQLServer\ComputerManagement12

This	value	can	be	derived	from	$namespace.__NAMESPACE	and	$namespace.Name.	Once

you	have	the	namespace,	you	can	use	this	with	Get-WmiObject	to	retrieve	the	instances.
We	can	use	the	SqlServiceType	property	to	filter.

According	to	MSDN	(http://msdn.microsoft.com/en-us/library/ms179591.aspx),	these	are
the	values	of	SqlServiceType:

SqlServiceType Description

1 SQL	Server	Service

2 SQL	Server	Agent	Service

3 Full-Text	Search	Engine	Service

4 Integration	Services	Service

5 Analysis	Services	Service

6 Reporting	Services	Service

7 SQL	Browser	Service

Thus,	to	retrieve	the	SQL	Server	instances,	we	need	to	provide	the	full	namespace
ROOT\Microsoft\SQLServer\ComputerManagement12.	We	also	need	to	filter	for	SQL
Server	Service	type,	or	SQLServiceType	=	1.	The	code	is	as	follows:
Get-WmiObject	-ComputerName	$hostName

-Namespace	”$($namespace.__NAMESPACE)\$($namespace.Name)”

-Class	SqlService	|

Where-Object	SQLServiceType	-eq	1	|

Select-Object	ServiceName,	DisplayName,	SQLServiceType	|

Format-Table	–AutoSize

Your	result	should	look	similar	to	the	following	screenshot:

Yet	another	way	to	list	all	the	SQL	Server	instances	in	the	local	network	is	by	using	the
System.Data.Sql.SQLSourceEnumerator	class,	instead	of	ManagedComputer.	This	class
has	a	static	method	called	Instance.GetDataSources	that	will	list	all	SQL	Server
instances:
[System.Data.Sql.SqlDataSourceEnumerator]::Instance.GetDataSources()	|

Format-Table	-AutoSize

http://msdn.microsoft.com/en-us/library/ms179591.aspx

When	you	execute,	your	result	should	look	similar	to	the	following:

If	you	have	multiple	SQL	Server	versions,	you	can	use	the	following	code	to	display	your
instances:
#list	services	using	WMI

foreach	($path	in	$namespace)

{

Write-Verbose	“SQL	Services	in:$($path.__NAMESPACE)\$($path.Name)”

Get-WmiObject	-ComputerName	$hostName	`

-Namespace	”$($path.__NAMESPACE)\$($path.Name)”	`

-Class	SqlService	|

Where-Object	SQLServiceType	-eq	1	|

Select-Object	ServiceName,	DisplayName,	SQLServiceType	|

Format-Table	–AutoSize

}

Discovering	SQL	Server	services
In	this	recipe,	we	will	enumerate	all	SQL	Server	services	and	list	their	statuses.

Getting	ready
Check	which	SQL	Server	services	are	installed	in	your	instance.	Go	to	Start	|	Run	and
type	services.msc.	You	should	see	a	screen	similar	to	this:

How	to	do	it…
Let’s	assume	you	are	running	this	script	on	the	server	box:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Add	the	following	code	and	execute:

Import-Module	SQLPS	-DisableNameChecking

#you	can	replace	localhost	with	your	instance	name

$instanceName	=	“localhost”

$managedComputer	=	New-

Object	Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer	$instanceName

#list	services

$managedComputer.Services	|

Select-Object	Name,	Type,	ServiceState,	DisplayName	|

Format-Table	-AutoSize

Your	result	will	look	similar	to	the	one	shown	in	the	following	screenshot:

Items	listed	in	your	screen	will	vary	depending	on	the	features	installed	and	running
in	your	instance

3.	 Confirm	that	these	are	the	services	that	exist	in	your	server.	Check	your	services
window.

How	it	works…
Services	that	are	installed	on	a	system	can	be	queried	using	WMI.	Specific	services	for
SQL	Server	are	exposed	through	SMO’s	WMI	ManagedComputer	object.	Some	of	the
exposed	properties	are	as	follows:

	
ClientProtocols

ConnectionSettings

ServerAliases

ServerInstances

Services

There’s	more…
An	alternative	way	to	get	SQL	Server-related	services	is	by	using	Get-WMIObject.	We	will
need	to	pass	in	the	host	name	as	well	as	the	SQL	Server	WMI	Provider	for	the
ComputerManagement	namespace.	For	SQL	Server	2014,	this	value	is
ROOT\Microsoft\SQLServer\ComputerManagement12.

The	script	to	retrieve	the	services	is	provided	here.	Note	that	we	are	dynamically
composing	the	WMI	namespace.	The	code	is	as	follows:
$hostName	=	“localhost”

$namespace	=	Get-WMIObject	-ComputerName	$hostName	-

NameSpace	root\Microsoft\SQLServer	-Class	“__NAMESPACE”	|

													Where-Object	Name	-like	“ComputerManagement*”

Get-WmiObject	-ComputerName	$hostname	-

Namespace	”$($namespace.__NAMESPACE)\$($namespace.Name)”	-

Class	SqlService	|

Select-Object	ServiceName

If	you	have	multiple	SQL	Server	versions	installed	and	want	to	see	just	the	most	recent
version’s	services,	you	can	limit	to	the	latest	namespace	by	adding	Select-Object	–Last
1:
$namespace	=	Get-WMIObject	-ComputerName	$hostName	-

NameSpace	root\Microsoft\SQLServer	-Class	“__NAMESPACE”	|

													Where-Object	Name	-like	“ComputerManagement*”		|

													Select-Object	–Last	1

Yet	another	alternative	but	less	accurate	way	of	listing	possible	SQL	Server	related
services	is	the	following	snippet	of	code:
#alterative	-	but	less	accurate

Get-Service	*SQL*

This	uses	the	Get-Service	cmdlet	and	filters	base	on	the	service	name.	This	is	less
accurate	because	this	grabs	all	processes	that	have	SQL	in	the	name,	but	may	not
necessarily	be	related	to	SQL	Server.	For	example,	if	you	have	MySQL	installed,	it	will	get
picked	up	as	a	process.	Conversely,	this	will	not	pick	up	SQL	Server-related	services	that
do	not	have	SQL	in	the	name,	such	as	ReportServer.

See	also
	

The	Listing	SQL	Server	instances	recipe.

Starting/stopping	SQL	Server	services
This	recipe	describes	how	to	start	and/or	stop	SQL	Server	services.

Getting	ready
Check	which	SQL	Services	are	installed	in	your	machine.	Go	to	Start	|	Run	and	type
services.msc.	You	should	see	a	screen	similar	to	this:

How	to	do	it…
Let’s	look	at	the	steps	to	toggle	your	SQL	Server	services	states:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Add	the	following	code:

$verbosepreference	=	“Continue”

$services	=	@(“SQLBrowser”,	“ReportServer”)

$hostName	=	“localhost”

$services	|

ForEach-Object	{

			$service	=	Get-Service	-Name	$_

			if($service.Status	-eq	“Stopped”)

			{

						Write-Verbose	“Starting	$($service.Name)	….”

						Start-Service	-Name	$service.Name

			}

			else

			{

						Write-Verbose	“Stopping	$($service.Name)	….”

						Stop-Service	-Name	$service.Name

			}

}

$verbosepreference	=	“SilentlyContinue”

Note
Be	careful;	the	status	may	return	prematurely	as	“started”	when	in	fact	the	service	is
still	in	the	“starting”	state.

3.	 Execute	and	confirm	that	the	service	status	has	changed	accordingly.	Go	to	Start	|
Run	and	type	Services.msc.

For	example,	in	our	sample,	both	SQLBrowser	and	ReportServer	were	initially	running.
Once	the	script	was	executed,	both	services	were	stopped.

How	it	works…
In	this	recipe,	we	picked	two	services,	SQLBrowser	and	ReportServer,	which	we	want
to	manipulate	and	save	into	an	array:
$services	=	@(“SQLBrowser”,	“ReportServer”)

We	then	pipe	the	array	contents	to	a	Foreach-Object	cmdlet,	so	we	can	determine	what
action	to	perform	for	each	service.	For	our	purposes,	if	the	service	is	stopped,	we	want	to
start	it.	Otherwise	we	stop	it.	The	code	is	as	follows:
$services	|

ForEach-Object	{

			$service	=	Get-Service	-Name	$_

			if($service.Status	-eq	“Stopped”)

			{

						Write-Verbose	“Starting	$($service.Name)	….”

						Start-Service	-Name	$service.Name

			}

			else

			{

						Write-Verbose	“Stopping	$($service.Name)	….”

						Stop-Service	-Name	$service.Name

			}

}

You	may	also	want	to	determine	dependent	services,	or	services	that	rely	on	a	particular
service.	It	will	be	good	to	consider	synchronizing	the	starting/stopping	of	these	dependent
services	with	the	main	service	they	depend	on.

To	identify	dependent	services,	you	can	use	the	DependentServices	property	of	the
System.ServiceProcess.ServiceController	class:
$services	|

ForEach-Object	{

			$service	=	Get-Service	-Name	$_

			Write-Verbose	“Services	Dependent	on	$($service.Name)”

			$service.DependentServices	|

			Select-Object	Name

}

To	get	the	list	of	properties	and	methods	of	the
System.ServiceProcess.ServiceController	class,	which	is	the	class	returned	by	Get-
Service	cmdlet,	you	can	use	the	following	snippet:
Get-Service	|Get-Member

An	alternative	way	of	working	with	SQL	Server	services	is	by	using	the
Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer	class.	The	code	is	as
follows:
Import-Module	SQLPS	-DisableNameChecking

$verbosepreference	=	“Continue”

#list	services	you	want	to	start/stop	here

#if	you	want	to	use	the	database	engine,	use	MSSQLSERVER	for

#the	default	instance

$services	=	@(“SQLBrowser”,	“ReportServer”)

$instanceName	=	“localhost”

#create	a	ManagedComputer	variable

$managedComputer	=	New-

Object	Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer	$instanceName

#go	through	each	service	and	toggle	the	state

$services	|

ForEach-Object	{

			$service	=	$managedComputer.Services[$_]

			switch($service.ServiceState)

			{

						“Running”

						{

									Write-Verbose	“Stopping	$($service.Name)”

									$service.Stop()

						}

						“Stopped”

						{

									Write-Verbose	“Starting	$($service.Name)”

									$service.Start()

						}

			}

}

$verbosepreference	=	“SilentlyContinue”

When	using	the	Smo.Wmi.ManagedComputer	object,	you	can	simply	use	the	Stop	method
provided	with	the	class	and	the	Start	method	to	start	the	service.

To	get	the	list	of	properties	and	methods	available	with	the	Smo.Wmi.ManagedComputer
class,	you	can	use	the	following	snippet:
#make	sure	you	have	created	a	ManagedComputer

#instance	before	you	run	this

$managedComputer	|

Get-Member

There’s	more…
To	explore	available	cmdlets	that	can	help	manage	and	maintain	services,	use	the
following	command:
Get-Command	-Name	*Service*	-CommandType	Cmdlet

This	will	enumerate	all	cmdlets	that	have	Service	in	the	name:

All	of	these	cmdlets	relate	to	Windows	services,	with	the	exception	of	New-
WebServiceProxy,	which	is	described	in	MSDN	as	a	cmdlet	that	creates	a	Web	service
proxy	object	that	lets	you	use	and	manage	the	Web	service	in	Windows	PowerShell.

Here	is	a	brief	comparison	between	these	service-oriented	cmdlets	and	the	methods
available	for	the	Service	object	of
Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer,	as	discussed	in	the
recipe:

Service	methods Service-related	cmdlets

Start() Start-Service

Stop() Stop-Service

Continue() Resume-Service

Pause() Suspend-Service

Refresh()

	 Restart-Service

There	isn’t	necessarily	a	one-to-one	mapping	between	the	methods	of	the	Service	class
and	the	Service	cmdlets.	For	example,	there	is	a	Restart-Service	cmdlet,	but	there	isn’t
any	Restart	method.	This	should	not	raise	alarm	bells	though.

Although	it	may	seem	that	some	methods	or	cmdlets	may	be	missing,	it	is	important	to
note	PowerShell	is	a	rich	scripting	platform	and	language.	In	addition	to	its	own	cmdlets,
it	leverages	the	whole	.NET	platform.	Whatever	you	can	do	in	the	.NET	platform,	you	can
probably	do	using	PowerShell.	Even	if	you	think	something	is	not	doable	when	you	look
at	a	specific	class	or	object,	there	is	most	likely	a	cmdlet	somewhere	that	can	perform	that
same	task,	or	vice	versa.	If	you	still	cannot	find	your	ideal	solution,	you	can	create	your
own—be	it	a	class,	a	module,	a	cmdlet,	or	a	function.

See	also
	

The	Discovering	SQL	Server	services	recipe.

Listing	SQL	Server	configuration	settings
This	recipe	walks	through	how	to	list	SQL	Server	configurable	and	nonconfigurable
instance	settings	using	PowerShell.

How	to	do	it…
Let’s	look	at	the	steps	involved	in	listing	SQL	Server	configuration	settings:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

To	explore	what	members	and	methods	are	included	in	the	SMO	server,	use	the
following:
#Explore:	get	all	properties	available	for	a	server	object

#see	http://msdn.microsoft.com/en-us/library/ms212724.aspx

$server	|

Get-Member	|

Where-Object	MemberType	-eq	“Property”

First,	let’s	explore	the	Information	class.
#The	Information	class	lists	nonconfigurable

#instance	settings,	like	BuildNumber,

#OSVersion,	ProductLevel	etc

#This	also	includes	settings	specified	during	install

$server.Information.Properties	|

Select-Object	Name,	Value	|

Format-Table	–AutoSize

This	is	a	partial	list	of	values	that	will	be	returned:

3.	 Next,	let’s	look	at	the	Settings	class.
#The	Settings	lists	some	instance	level

#configurable	settings,	like	LoginMode,

#BackupDirectory	etc

$server.Settings.Properties	|

Select-Object	Name,	Value	|

Format-Table	-AutoSize

You	should	get	a	result	similar	to	the	one	shown	in	the	following	screenshot:

4.	 The	UserOptions	class	lists	user-specific	options:
#The	UserOptions	include	options	that	can	be	set

#for	user	connections,	for	example

#AnsiPadding,	AnsiNulls,	NoCount,	QuotedIdentifier

$server.UserOptions.Properties	|

Select-Object	Name,	Value	|

Format-Table	-AutoSize

We	get	the	following	output:

5.	 The	Configuration	class	contains	instance-specific	settings,	which	are	similar	to
what	you	will	see	when	you	run	sp_configure:
#The	Configuration	class	contains	instance-specific

#settings,	like	AgentXPs,	clr	enabled,	xp_cmdshell

#You	will	normally	see	this	when	you	run

#the	stored	procedure	sp_configure

$server.Configuration.Properties		|

Select-Object	DisplayName,	RunValue,	ConfigValue	|

Format-Table	–AutoSize

We	get	the	following	output:

How	it	works…
Most	SQL	Server	settings	and	configurations	are	exposed	using	SMO	or	WMI,	which
allows	for	these	values	to	be	programmatically	retrieved.

At	the	core	of	accessing	configuration	details	is	the	SMO	Server
(Microsoft.SqlServer.Management.Smo.Server)	class.	This	class	exposes	a	SQL	Server
instance’s	properties,	some	of	which	are	configurable	and	some	are	not.

To	create	an	SMO	Server	class,	you	will	need	to	know	your	instance	name	and	pass	it	as
an	argument:
#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

There	are	four	main	properties	that	store	settings/configurations	that	we	looked	at	in	this
recipe:

Server
Property Description

Information

This	includes	nonconfigurable	instance	settings,	such	as	BuildNumber,
Edition,	OSVersion,	and	ProductLevel.

This	also	includes	settings	specified	during	install,	for	example,
Collation,	MasterDBPath,	and	MasterDBLogPath.

Settings
This	lists	some	instance	level	configurable	settings,	such	as	LoginMode
and	BackupDirectory.

UserOptions
This	has	options	that	can	be	set	for	user	connections,	such	as
AnsiWarnings,	AnsiNulls,	AnsiPadding,	and	NoCount.

Configuration

This	contains	instance-specific	settings	such	as	AgentXPs,	remote
access,	clr	enabled,	and	xp_cmdshell,	which	you	will	normally	see
and	set	when	you	use	the	sp_configure	system	stored	procedure.

There’s	more…
Check	out	the	MSDN	for	complete	documentation	on	SMO	classes:

http://msdn.microsoft.com/en-us/library/ms212724.aspx

http://msdn.microsoft.com/en-us/library/ms212724.aspx

Changing	SQL	Server	Instance	configurations
This	recipe	discusses	how	to	change	instance	configuration	settings	using	PowerShell.

Getting	ready
For	this	recipe,	we	will	perform	the	following	tasks:

	
Change	fill	factor	to	60	percent
Enable	SQL	Server	Agent
Set	Minimum	Server	Memory	to	500	MB
Change	authentication	method	to	Mixed

How	to	do	it…
Let’s	change	some	SQL	Server	settings	using	PowerShell:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run:
<#

run	value	vs	config	value

config_value,”	is	what	the	setting	has	been	set	to	(but	may	or	may	not	be	what	SQL	Server	is	actually	running	now.	Some	settings	don’t	go	into	effect	until	SQL	Server	has	been	restarted,	or	until	the	RECONFIGURE	WITH	OVERRIDE	option	has	been	run,	as	appropriate.)	And	the	last	column,	“run_value,”	is	the	value	of	the	setting	currently	in	effect.

#>

#change	FillFactor

$server.Configuration.FillFactor.ConfigValue	=	60

#enable	SQL	Server	Agent	extended	stored	procedures

$server.Configuration.AgentXPsEnabled.ConfigValue	=	1

#change	minimum	server	memory	to	500MB;	MB	is	default

$server.Configuration.MinServerMemory.ConfigValue	=	500

$server.Configuration.Alter()

#confirm	changes

$server.Configuration.Properties	|

Select-Object	DisplayName,	ConfigValue	|

Format-Table	-AutoSize

#change	authentication	mode

$server.Settings.LoginMode	=	[Microsoft.SqlServer.Management.Smo.ServerLoginMode]::Mixed

#you	can	also	simply	provide	this	without	the	whole

#enumeration	value	but	simply	a	string:

#$server.Settings.LoginMode	=	“Mixed”

$server.Alter()

#confirm	changes

$server.settings.LoginMode

4.	 Confirm	the	changes.	To	confirm	fill	factor,	use	the	following	steps:
1.	 Go	to	SQL	Server	Management	Studio.
2.	 Connect	to	your	instance.
3.	 Right-click	on	your	instance	and	select	Properties	from	the	pop-up	menu.

4.	 Go	to	Database	Settings	and	check	whether	your	fill	factor	has	changed:

5.	 A	side	effect	of	enabling	SQL	Server	Agent	extended	stored	procedures	is	enabling
SQL	Server	Agent.	To	confirm	SQL	Server	Agent	has	been	enabled,	use	the
following	steps:
1.	 Go	to	SQL	Server	Management	Studio.
2.	 Connect	to	your	instance.
3.	 Check	whether	SQL	Server	Agent	for	the	instance	you	modified	is	now

running.

6.	 To	confirm	minimum	server	memory	settings,	use	the	following	steps:
1.	 Go	to	SQL	Server	Management	Studio.
2.	 Right-click	on	your	instance	and	select	Properties.
3.	 Go	to	Memory	and	check	whether	the	value	has	changed	to	what	you	set	it	to.

7.	 To	confirm	the	authentication	mode	change,	use	the	following	steps:
1.	 Go	to	SQL	Server	Management	Studio.
2.	 Connect	to	your	instance.
3.	 Right-click	on	your	instance	and	select	Properties.
4.	 Go	to	Security	and	check	whether	the	instance	is	now	in	SQL	Server	and

Windows	Authentication	mode.

How	it	works…
Depending	on	what	server	properties	you	need	to	change,	you	may	need	to	determine
which	of	the	following	classes	you	may	need	to	access:	Settings,	UserOptions,	or
Configuration.

Once	you	have	determined	which	class	and	property	you	want	to	change,	you	can	change
the	values	and	invoke	the	Alter()	method:
#to	make	Configuration	changes	permanent

$server.Configuration.Alter()

#to	make	Settings	changes	permanent

$server.Alter()

There’s	more…
When	you	run	sp_configure,	you	will	see	a	result	that	shows	both	run	value	and	config
value:

There	is	often	confusion	between	run_value	and	config_value.	The	config_value
variable	is	what	value	the	setting	is	set	to.	The	run_value	variable	is	what	SQL	Server	is
currently	using.	Sometimes,	a	new	value	may	be	set	(config_value)	but	it	isn’t	used	by
SQL	Server	until	the	instance	is	restarted,	or	until	RECONFIGURE	is	run.

See	also
	

The	Listing	SQL	Server	configuration	settings	recipe.

Searching	for	database	objects
In	this	recipe,	we	will	search	database	objects	based	on	a	search	string	using	PowerShell.

Getting	ready
We	will	use	the	AdventureWorks2014	database	in	this	recipe	and	look	for	SQL	Server
objects	with	the	word	Product	in	it.

To	get	an	idea	of	what	we	are	expecting	to	retrieve,	run	the	following	script	in	SQL
Server	Management	Studio:
USE	AdventureWorks2014

GO

SELECT

		*

FROM

		sys.objects

WHERE

		name	LIKE	’%Product%’

			—	check	only	for	table,	view,	function

			—	or	stored	procedure

		AND	[type]	IN	(‘U’,	‘FN’,	‘P’,	‘V’)

ORDER	BY

		[type]

This	will	get	you	23	results.	Remember	this	number.

How	to	do	it…
Let’s	see	how	we	can	search	for	objects	in	your	SQL	Server	database	using	PowerShell:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run:
$databaseName	=	“AdventureWorks2014”

$db	=	$server.Databases[$databaseName]

#what	keyword	are	we	looking	for?

$searchString	=	“Product”

#create	empty	array,	we	will	store	results	here

$results	=	@()

#now	we	will	loop	through	all	database	SMO

#properties	and	look	of	objects	that	match

#the	search	string

$db	|

Get-Member	-MemberType	Property	|

Where-Object	Definition	-like	”*Smo*”	|

ForEach-Object	{

			$type	=	$_.Name

			$db.$type	|

			Where-Object	Name	-like	”*$searchstring*”	|

			ForEach-Object	{

						$result	=	[PSCustomObject]	@{

									ObjectType	=	$type

									ObjectName	=	$_.Name

						}

						$results	+=	$result

			}

}

#display	results

$results	|

Format-Table	-AutoSize

#export	results	to	csv	file

$file	=	“C:\Temp\SearchResults.csv”

$results	|	Export-Csv	-Path	$file	-NoTypeInformation

#display	file	contents	in	notepad

notepad	$file

Your	result	will	look	like	this:

How	it	works…
After	creating	our	usual	SMO	Server	Object,	we	created	an	SMO	database	handle	to	our
AdventureWorks2014	database:
$databasename	=	“AdventureWorks2014”

$db	=	$server.Databases[$databasename]

We	also	defined	our	search	string.	Our	goal	is	to	get	all	database	objects	that	have	the
word	Product	in	it:
#what	keyword	are	we	looking	for?

$searchString	=	“Product”

We	also	create	an	empty	array	with	the	following	code,	where	we	can	save	our	search
results	as	records.	This	will	enable	us	to	display	our	final	results	in	a	tabular	fashion
when	we’re	done	with	our	iteration.
$results	=	@()

The	following	line	allows	us	to	go	through	all	the	database-related	SMO	properties:
$db	|

Get-Member	-MemberType	Property	|

Where-Object	Definition	-like	”*Smo*”

From	here,	we	query	the	contents	of	each	SMO	property	for	members	that	contain	the
keyword	we’re	looking	for:
#now	we	will	loop	through	all	database	SMO

#properties	and	look	of	objects	that	match

#the	search	string

$db	|	

Get-Member	-MemberType	Property	|

Where-Object	Definition	-like	”*Smo*”	|

ForEach-Object	{

			$type	=	$_.Name

			$db.$type	|	

					Where-Object	Name	-like	”*$searchstring*”	|

			ForEach-Object	{

						$result	=	[PSCustomObject]	@{

									ObjectType	=	$type

									ObjectName	=	$_.Name

						}

						$results	+=	$result

			}

}

In	the	inner	Foreach-Object	block,	we	are	building	a	PSCustomObject	that	will	store	the
two	fields	we	want	to	return:	ObjectType	and	ObjectName.	A	PSCustomObject	allows	you
to	wrap	a	set	of	custom	labels	and	values	into	a	PowerShell	object	that	can	easily	be	used
with,	and	piped	to,	other	cmdlets.	This	PSCustomObject	that	we	created,	which	stores	the
matched	database	objects	with	our	search	string,	will	be	then	be	stored	into	the	$results
array.	We	also	strip	out	the	substring	Microsoft.SqlServer.Management.Smo	from	the
resulting	object	types	for	brevity.	The	code	is	as	follows:
$db	|

Get-Member	-MemberType	Property	|

Where-Object	Definition	-like	”*Smo*”	|

ForEach-Object	{

			$type	=	$_.Name

			$db.$type	|

			Where-Object	Name	-like	”*$searchstring*”	|

			ForEach-Object	{

								$result	=	[PSCustomObject]	@{

											ObjectType	=	$type

											ObjectName	=	$_.Name

								}

								$results	+=	$result

			}

}

Lastly,	we	export	our	results	to	a	CSV	file	using	the	Export-Csv	cmdlet,	and	display	the
contents	in	notepad:
#export	results	to	csv	file

$file	=	“C:\Temp\SearchResults.csv”

$results	|	Export-Csv	-Path	$file	-NoTypeInformation

#display	file	contents

notepad	$file

When	you	inspect	your	results,	you	will	notice	two	extra	objects	that	were	not	captured	in
our	T-SQL	statement	in	the	Getting	ready	section.	If	we	compare	the	two	approaches,	our
PowerShell	approach	is	more	complete.	In	addition	to	the	expected	23	results,	PowerShell
has	also	captured:

	
Production:	Schema	object
ProductDescriptionSchemaCollection:	XmlSchemaCollection	object

There’s	more…
Another	way	to	iterate	through	the	objects	is	by	using	the	EnumObjects	method	of	the
SMO	database	variable	$db:
$searchString	=	“Product”

$db.EnumObjects()	|

Where-Object	Name	-like	”*$searchString*”	|

Select	DatabaseObjectTypes,	Name	|

Format-Table	-AutoSize

Yes,	there	is	still	yet	another	alternative.	You	can	look	for	objects	that	match	the	search
string	by	going	through	the	$db	object	properties	one	by	one:
#long	version	is	to	enumerate	explicitly	each	object	type

$db.Tables	|

Where-Object	Name	-like	”*$searchstring*”

$db.StoredProcedures		|

Where-Object	Name	-like	”*$searchstring*”

$db.Triggers	|

Where-Object	Name	-like	”*$searchstring*”

$db.UserDefinedFunctions	|

Where-Object	Name	-like	”*$searchstring*”

#etc

This	method	is	longer	and	less	flexible,	but	it	still	gets	you	what	you	need.	This	would	be
a	faster	alternative	if	you	know	exactly	what	type	of	object	you	are	looking	for.

See	also
	

The	Exploring	SMO	Server	Objects	recipe	of	Chapter	1,	Getting	Started	with	SQL
Server	and	PowerShell

Scripting	SQL	Server	Stored	Procedures
In	this	recipe,	we	will	explore	how	to	script	SQL	Server	objects,	specifically;	how	to	script
all	non-system	and	unencrypted	stored	procedures	in	a	database	and	save	them
individually	in	their	own	.sql	files.

Getting	ready
We	will	use	the	AdventureWorks2014	database	in	this	recipe.	Before	we	start,	let’s	check
which	stored	procedures	are	available	in	this	database	so	that	we	can	cross-check	against
the	scripts	we	are	going	to	create	later.

Open	SQL	Server	Management	Studio	and	navigate	to	the	Programmability	node
under	AdventureWorks2014.	You	should	see	a	list	of	stored	procedures	as	shown	in	the
following	screenshot:

How	to	do	it…
Let’s	see	how	we	can	script	stored	procedures	in	your	SQL	Server	database	using
PowerShell:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Specify	the	database	that	contains	the	objects	you	want	to	script:
$dbName	=	“AdventureWorks2014”

$db	=	$server.Databases[$dbName]

4.	 Add	the	following	script.	Change	the	$filename	value	to	point	to	a	directory	and
folder	that	exists	in	your	system.	Once	the	change	is	done,	run	the	script:
#create	a	Scripter	object

$script	=	New-

Object	Microsoft.SqlServer.Management.Smo.Scripter	$server

#create	a	ScriptingOptions	object

$scriptOptions	=	New-

Object	Microsoft.SqlServer.Management.Smo.ScriptingOptions

$scriptOptions.AllowSystemObjects	=	$false

$scriptOptions.ScriptSchema	=	$true

$scriptOptions.IncludeDatabaseContext	=	$true

$scriptOptions.SchemaQualify	=	$true

$scriptOptions.ScriptBatchTerminator	=	$true

$scriptOptions.NoExecuteAs	=	$true

$scriptOptions.Permissions	=	$true

$scriptOptions.ToFileOnly	=	$true

#assign	the	options	to	the	Scripter	object

$script.Options	=	$scriptOptions

#iterate	over	the	objects	you	want	to	script

#in	our	case,	stored	procedures

#exclude	any	system	objects	or	encrypted	stored	procedures

$db.StoredProcedures	|

Where-Object	IsSystemObject	-eq	$false	|

Where-Object	IsEncrypted	-eq	$false	|

Foreach-Object	{

				#current	stored	procedure

				$sp	=	$_

				#specify	one	file	per	stored	procedure

			#change	the	directory/folder	to	one	that	exists

	#in	your	system

				$filename	=	“C:\DATA\$($dbname)_$($sp.Name).sql” 
				$script.Options.FileName	=	$filename

				#script	current	object

				$script.Script($sp)

}

5.	 Once	the	script	finishes,	go	to	the	directory	where	the	script	saved	the	files.	You
should	find	all	the	stored	procedure	scripts	there,	as	shown	in	the	following
screenshot:

6.	 You	can	script	SQL	objects	from	SQL	Server	Management	Studio	by	right-clicking
on	an	object.

How	it	works…
You	can	script	SQL	objects	from	SQL	Server	Management	Studio	by	right-clicking	on
an	object	and	choosing	the	corresponding	Script	option,	as	shown	in	the	following
screenshot:

SMO	provides	a	few	classes	that	allow	you	to	script	out	the	definitions	of	database	objects
programmatically.	The	Microsoft.SqlServer.Management.Smo.Scripter	class	is	the
main	class	that	retrieves	the	definition	for	the	objects.	We	first	need	to	create	an	instance
of	this	class,	and	then	pass	the	current	server	instance	as	an	argument:
$script	=	New-Object	Microsoft.SqlServer.Management.Smo.Scripter	$server

The	second	class	is	the	Microsoft.SqlServer.Management.Smo.ScriptingOptions	class,
which	allows	us	to	provide	additional	scripting	options.	An	instance	of	this	is	also
required:
$scriptOptions	=	New-

Object	Microsoft.SqlServer.Management.Smo.ScriptingOptions

In	the	ScriptingOptions	instance,	we	can	set	how	we	want	the	script	to	be	generated.
There	are	a	number	of	other	options	that	can	be	programmatically	set.	In	our	recipe,	the
options	we’ve	specified	are:	excluding	system	objects,	schema	qualifying	objects,
including	the	database	context,	scripting	the	schema,	and	scripting	the	batch	terminators
and	permissions.	The	code	is	as	follows:
$scriptOptions.AllowSystemObjects	=	$false

$scriptOptions.ScriptSchema	=	$true

$scriptOptions.IncludeDatabaseContext	=	$true

$scriptOptions.SchemaQualify	=	$true

$scriptOptions.ScriptBatchTerminator	=	$true

$scriptOptions.NoExecuteAs	=	$true

$scriptOptions.Permissions	=	$true

$scriptOptions.ToFileOnly	=	$true

The	Scripter	class	also	needs	an	object	or	a	collection	of	objects	to	script.	Since	we	want
to	create	a	single	file	per	stored	procedure,	we	are	using	the	Scripter	object	in	the
Foreach-Object	cmdlet	and	calling	it	for	each	non-system	stored	procedure	that	is
identified.	The	code	is	as	follows:
$db.StoredProcedures	|

Where-Object	IsSystemObject	-eq	$false	|

Where-Object	IsEncrypted	-eq	$false	|

Foreach-Object	{

				#current	stored	procedure

				$sp	=	$_

				#specify	one	file	per	stored	procedure

				$filename	=	“C:\DATA\$($dbname)_$($sp.Name).sql”

				$script.Options.FileName	=	$filename

				#script	current	object

				$script.Script($sp)

}

The	filename	corresponds	to	the	database	that	owns	the	stored	procedure	and	the	stored
procedure	name.	We	make	sure	the	block	that	generates	the	filename	captures	this:
				#specify	one	file	per	stored	procedure

				$filename	=	“C:\DATA\$($dbname)_$($sp.Name).sql”

				$script.Options.FileName	=	$filename

Scripting	other	objects	in	SQL	Server	should	be	similar	to	this	recipe.	For	example	if	you
wanted	to	script	user	defined	functions,	instead	of	using	the	StoredProcedures	member,
you	should	use	the	UserDefinedFunctions	member	and	change	the	filenames
accordingly:
$db.StoredProcedures

There’s	more…
Check	out	the	MSDN	for	all	the	possible	options	you	can	set	when	programmatically
scripting	SQL	Server	objects:

https://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.smo.scriptingoptions.aspx

https://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.scriptingoptions.aspx

Creating	a	database
This	recipe	walks	through	creating	a	database	with	default	properties	using	PowerShell.

Getting	ready
In	this	example,	we	are	going	to	create	a	database	called	TestDB,	and	we	assume	that	this
database	does	not	yet	exist	in	your	instance.

For	your	reference,	the	equivalent	T-SQL	code	of	this	task	is	as	follows:
CREATE	DATABASE	TestDB

How	to	do	it…
Follow	these	steps	to	create	a	simple	database	in	SQL	Server:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run:
#database	TestDB	with	default	settings

#assumption	is	that	this	database	does	not	yet	exist

$dbName	=	“TestDB”

$db	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Database($server,	$dbName)

$db.Create()

#to	confirm,	list	databases	in	your	instance

$server.Databases	|

Select	Name,	Status,	Owner,	CreateDate

How	it	works…
There	are	two	key	steps	in	creating	a	database	using	SMO	and	PowerShell:	creating	an
SMO	Server	Object	and	creating	an	SMO	database	object.

To	create	the	SMO	Server	Object,	we	need	to	use	the
Microsoft.SqlServer.Management.Smo.Server	class	and	pass	the	SQL	Server	instance
name	as	argument:
$server	=	New-Object	-TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

To	create	the	SMO	database	object,	we	need	to	use	the
Microsoft.SqlServer.Management.Smo.Database	class.	The	SMO	database	constructor
requires	both	the	SMO	Server	handle	and	a	database	object.
$dbName	=	“TestDB”

$db	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Database($server,	$dbName)

The	final	action	is	to	call	the	database	object’s	Create	method,	which	performs	the	actual
database	creation:
$db.Create()

Many	SMO	objects	are	consistent	with	the	methods.	You	will	see	the	Create	method
again	in	several	recipes	used	in	this	chapter.

Altering	database	properties
This	recipe	shows	you	how	to	change	database	properties	using	SMO	and	PowerShell.

Getting	ready
Create	a	database	called	TestDB	by	following	the	steps	in	the	Creating	a	database	recipe.

Using	TestDB,	we	will	perform	the	following	tasks:

	
Change	ANSI	NULLS	Enabled	to	False
Change	ANSI	PADDING	Enabled	to	False
Change	compatibility	version	to	110	(SQL	Server	2012)
Restrict	user	access	to	RESTRICTED_USER
Set	the	database	to	Read	Only

How	to	do	it…
Let’s	look	at	the	steps	involved	in	altering	databases	using	PowerShell:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

Add	the	following	script	and	run:
#database

$dbName	=	“TestDB”

#we	are	going	to	assume	db	exists

$db	=	$server.Databases[$dbName]

#DatabaseOptions

#change	ANSI	NULLS	and	ANSI	PADDING

$db.DatabaseOptions.AnsiNullsEnabled	=	$false

$db.DatabaseOptions.AnsiPaddingEnabled	=	$false

#change	compatibility	level	to	SQL	Server	2012

#available	CompatibilityLevel	values

#for	SQL	Server	2014	are

#Version	2008	(‘Version100’)

#Version	2012	(‘Version110’)

#Version	2014	(‘Version120’)

$db.AutoUpdateStatisticsEnabled	=	$true

$db.CompatibilityLevel	=	[Microsoft.SqlServer.Management.Smo.CompatibilityLevel]::Version110

$db.Alter()

#Change	database	access

#DatabaseUserAccess	enumeration	values:

#multiple,	restricted,	single

$db.DatabaseOptions.UserAccess	=	[Microsoft.SqlServer.Management.Smo.DatabaseUserAccess]::Restricted

$db.Alter()

#some	options	are	not	available	through	the

#DatabaseOptions	property

#so	we	will	need	to	access	the	database	object	directly

#set	to	readonly

$db.DatabaseOptions.ReadOnly	=	$true

$db.Alter()

3.	 Confirm	the	changes.	To	start	confirming,	use	the	following	steps:

1.	 Go	to	SQL	Server	Management	Studio.
2.	 Connect	to	your	instance.

You	will	notice	right	away	in	your	Object	Explorer	that	your	database	is	grayed	out
and	the	status	has	changed	to	(Restricted	User	/	Read-Only),	as	shown	in	the
following	screenshot:

4.	 To	confirm	ANSI	NULLS,	ANSI	PADDING,	and	Compatibility	Level,	use	the
following	steps:
1.	 Right-click	on	the	TestDB	database	and	select	Properties.
2.	 Go	to	the	Options	tab	and	check	whether	the	respective	options	have	been

changed:

How	it	works…
To	alter	database	properties,	you	will	need	to	create	an	SMO	handle	to	your	database:
#we	are	going	to	assume	db	exists

$db	=	$server.Databases[$dbName]

After	this,	you	will	need	to	investigate	which	of	the	properties	contains	the	setting	you
want	to	change.	For	example,	ANSI	NULLS,	ANSI	WARNINGS,	database	access
restriction	options,	and	ReadOnly,	are	available	through	the	DatabaseOptions	property	of
your	database	object:
#DatabaseOptions

#change	ANSI	NULLS	and	ANSI	PADDING

$db.DatabaseOptions.AnsiNullsEnabled	=	$false

$db.DatabaseOptions.AnsiPaddingEnabled	=	$false

#Change	database	access

#DatabaseUserAccess	enum	values:

#multiple,	restricted,	single

$db.DatabaseOptions.UserAccess	=	[Microsoft.SqlServer.Management.Smo.DatabaseUserAccess]::Restricted

$db.Alter()

#set	to	readonly

$db.DatabaseOptions.ReadOnly	=	$true

$db.Alter()

The	properties	AutoUpdateStatisticsEnabled	and	CompatibilityLevel	are	directly
accessible	from	the	$db	object,	this	can	be	done	as	follows:
$db.AutoUpdateStatisticsEnabled	=	$true

$db.CompatibilityLevel	=	[Microsoft.SqlServer.Management.Smo.CompatibilityLevel]::Version110

Note
Note	that	for	SQL	Server	2014,	the	earliest	version	you	can	set	the	compatibility	level	to,
is	SQL	Server	2008	(Version	100).

Once	you’ve	set	the	new	values,	you	can	persist	the	changes	by	invoking	the	Alter
method	of	your	database	object:
$db.Alter()

Finding	exactly	which	property	the	settings	you	are	looking	for	reside	in,	is	half	the	battle,
so	it’s	a	great	idea	to	familiarize	yourself	with	the	properties	of	the	object	you	are
changing.	Technet	and	MSDN	are	great	resources;	there	are	books,	numerous	articles,	and
blog	posts	too.	However,	remember	there	is	help	at	your	fingertips.	The	Get-Member
cmdlet	is	your	friend.	It	helps	you	explore	all	the	properties	and	methods	available	for	a
class:
$db	|	Get-Member

See	also
	

The	Changing	SQL	Server	Instance	configurations	recipe.

Dropping	a	database
This	recipe	shows	how	you	can	drop	a	database	using	PowerShell	and	SMO.

Getting	ready
This	task	assumes	you	have	created	a	database	called	TestDB.	If	you	don’t	have	it,	create
the	database	TestDB	by	following	the	steps	in	the	Creating	a	database	recipe.

How	to	do	it…
Here	are	the	steps	to	drop	your	TestDB	database:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run:
$dbName	=	“TestDB”

#need	to	check	if	database	exists,	and	if	it	does,	drop	it

$db	=	$server.Databases[$dbName]

if	($db)

{

						#we	will	use	KillDatabase	instead	of	Drop

						#Kill	database	will	drop	active	connections	before

						#dropping	the	database

						$server.KillDatabase($dbName)

}

How	it	works…
To	drop	an	SMO	server	or	database	object,	you	can	simply	invoke	the	Drop	method.
However,	if	you	have	ever	tried	dropping	a	database	before,	you	might	have	already
experienced	being	blocked	by	active	connections	to	that	database.	For	this	reason,	we
chose	the	KillDatabase	method,	which	will	kill	active	connections	before	dropping	the
database.	This	option	is	also	available	in	SQL	Server	Management	Studio	when	you
drop	a	database	from	Object	Explorer.	When	you	right-click	on	a	database,	the	Delete
Object	window	will	appear.	At	the	bottom	of	the	window,	there	is	a	checkbox	called
Close	existing	connections.

Changing	database	owner
This	recipe	shows	how	to	programmatically	change	a	SQL	Server	database	owner.

Getting	ready
This	task	assumes	you	have	created	a	database	called	TestDB,	and	a	Windows	account
QUERYWORKS\srogers.	QUERYWORKS\srogers	has	been	created	in	our	test	VM.

Note
For	more	information,	see	Appendix	B,	Create	a	SQL	Server	VM.

If	you	don’t	have	it,	create	the	database	TestDB	by	following	the	steps	in	the	Creating	a
database	recipe.

How	to	do	it…
Let’s	look	at	the	steps	involved	in	changing	a	database	owner:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run:
#create	database	handle

$dbName	=	“TestDB”

$db	=	$server.Databases[$dbName]

#display	current	owner

$db.Owner

#change	owner

#SetOwner	requires	two	parameters:

#loginName	and	overrideIfAlreadyUser

#make	sure	you	provide	a	login	that	exists	in	your	environment

#if	you	don’t	have	any	domain	users,	you	can	use	“sa”

$db.SetOwner(“QUERYWORKS\srogers”,	$true)

#refresh	db

$db.Refresh()

#check	Owner	value

$db.Owner

4.	 Check	the	following:
1.	 Open	SQL	Server	Management	Studio.
2.	 Locate	the	AdventureWorks2008R2	database.
3.	 Right-click	and	select	Properties.
4.	 Select	Options.

How	it	works…
Changing	the	database	owner	is	a	short	and	straightforward	task	in	PowerShell.	First,	you
need	to	create	a	database	handle.

The	only	other	action	required	is	invoking	the	SetOwner	method	of	the
Microsoft.SqlServer.Management.Smo.Database	class,	which	requires	two	parameters:

	
LoginName

OverrideIfAlreadyUser

The	OverrideIfAlreadyUser	option	can	be	set	to	either	true	or	false.	If	set	to	true,
which	means	the	login	already	exists	as	a	user	in	the	target	database,	the	user	is	dropped
and	added	as	owner	again.	If	set	to	false	and	the	login	is	already	mapped	to	that	database,
the	SetOwner	method	will	produce	an	error.

See	also
	

The	Altering	database	properties	recipe.

Creating	a	table
This	recipe	shows	how	to	create	a	table	using	PowerShell	and	SMO.

Getting	ready
We	will	use	the	AdventureWorks2014	database	to	create	a	table	named	Student,	which	has
five	columns	and	two	default	constraints.	To	give	you	a	better	idea	of	what	we	are	trying
to	achieve,	the	equivalent	T-SQL	script	needed	to	create	this	table	is	as	follows:
USE	AdventureWorks2014

GO

CREATE	TABLE	[dbo].[Student](

		[StudentID]	[INT]	IDENTITY(1,1)	NOT	NULL,

		[FName]	[VARCHAR](50)	NULL,

		[LName]	[VARCHAR](50)	NOT	NULL,

		[DateOfBirth]	[DATETIME]	NULL,

		[Age]		AS	(DATEPART(YEAR,GETDATE())-DATEPART(YEAR,[DateOfBirth])),

				CONSTRAINT	[PK_Student_StudentID]	PRIMARY	KEY	CLUSTERED

			(

					[StudentID]	ASC

)

)

GO

ALTER	TABLE	[dbo].

[Student]	ADD		CONSTRAINT	[DF_Student_LName]	DEFAULT	(‘Doe’)	FOR	[LName]

GO

ALTER	TABLE	[dbo].

[Student]	ADD		CONSTRAINT	[DF_Student_DateOfBirth]		DEFAULT	(‘1800-00-

00’)	FOR	[DateOfBirth]

GO

How	to	do	it…
Let’s	create	the	Student	table	using	PowerShell:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Next,	add	code	to	set	up	the	database	and	table	names,	and	to	drop	the	table	if	it
already	exists:
$dbName	=	“AdventureWorks2014”

$tableName	=	“Student”

$db	=	$server.Databases[$dbName]

$table	=	$db.Tables[$tableName]

#if	table	exists	drop

if($table)

{

			$table.Drop()

}

4.	 Add	the	following	script	to	create	the	table	and	run:
#table	class	on	MSDN

#http://msdn.microsoft.com/en-us/library/ms220470.aspx

$table	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Table	-

ArgumentList	$db,	$tableName

#column	class	on	MSDN

#http://msdn.microsoft.com/en-

us/library/microsoft.sqlserver.management.smo.column.aspx

#column	1

$col1Name	=	“StudentID”

$type	=	[Microsoft.SqlServer.Management.SMO.DataType]::Int

$col1	=		New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Column	-

ArgumentList	$table,	$col1Name,	$type

$col1.Nullable	=	$false

$col1.Identity	=	$true

$col1.IdentitySeed	=	1

$col1.IdentityIncrement	=	1

$table.Columns.Add($col1)

#column	2	-	nullable

$col2Name	=	“FName”

$type	=	[Microsoft.SqlServer.Management.SMO.DataType]::VarChar(50)

$col2	=		New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Column	-

ArgumentList		$table,	$col2Name,	$type

$col2.Nullable	=	$true

$table.Columns.Add($col2)

#column	3	-	not	nullable,	with	default	value

$col3Name	=	“LName”

$type	=	[Microsoft.SqlServer.Management.SMO.DataType]::VarChar(50)

$col3	=		New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Column	-

ArgumentList		$table,	$col3Name,	$type

$col3.Nullable	=	$false

$col3.AddDefaultConstraint(“DF_Student_LName”).Text	=	“‘Doe’”

$table.Columns.Add($col3)

#column	4	-	nullable,	with	default	value

$col4Name	=	“DateOfBirth”

$type	=	[Microsoft.SqlServer.Management.SMO.DataType]::DateTime

$col4	=		New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Column	-

ArgumentList		$table,	$col4Name,	$type

$col4.Nullable	=	$true

$col4.AddDefaultConstraint(“DF_Student_DateOfBirth”).Text	=	“‘1800-00-

00’”

$table.Columns.Add($col4)

#column	5

$col5Name	=	“Age”

$type	=	[Microsoft.SqlServer.Management.SMO.DataType]::Int

$col5	=		New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Column	-

ArgumentList		$table,	$col5Name,	$type

$col5.Nullable	=	$false

$col5.Computed	=	$true

$col5.ComputedText	=	“YEAR(GETDATE())	-	YEAR(DateOfBirth)”

$table.Columns.Add($col5)

$table.Create()

5.	 Make	StudentID	the	primary	key	as	follows:
#make	StudentID	a	clustered	PK

#note	this	is	just	a	“placeholder”	right	now	for	PK

#no	columns	are	added	in	this	step

$PK	=	New-Object	-TypeName	Microsoft.SqlServer.Management.SMO.Index	-

ArgumentList	$table,	“PK_Student_StudentID”

$PK.IsClustered	=	$true

$PK.IndexKeyType	=	[Microsoft.SqlServer.Management.SMO.IndexKeyType]::DriPrimaryKey

#identify	columns	part	of	the	PK

$PKcol	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.IndexedColumn	-

ArgumentList	$PK,	$col1Name

$PK.IndexedColumns.Add($PKcol)

$PK.Create()

6.	 Check	whether	the	table	has	been	created	with	the	correct	columns	and	constraints.
The	steps	are	as	follows:
1.	 Open	SQL	Server	Management	Studio.
2.	 Go	to	the	AdventureWorks2014	database	and	expand	Tables.
3.	 Expand	Columns,	Keys,	Constraints,	and	Indexes,	as	shown	in	the	following

screenshot:

How	it	works…
To	create	a	table,	the	first	step	is	to	create	an	SMO	table	object:
$table	=	New-Object	-TypeName	Microsoft.SqlServer.Management.SMO.Table	-

ArgumentList	$db,	$tableName

After	this,	all	columns	have	to	be	defined	one	by	one	and	added	to	the	table	before	the
Create	method	of	the	Microsoft.SqlServer.Management.SMO.Table	class	is	invoked.

Let’s	take	this	step	by	step.	To	create	a	column,	we	first	need	to	identify	the	data	type	we
are	storing	in	the	column,	and	the	properties	of	that	column.

Column	data	types	in	SMO	are	defined	in
Microsoft.SqlServer.Management.SMO.DataType.	Every	T-SQL	data	type	is	pretty	much
represented	in	this	enumeration.	To	use	a	data	type,	the	format	should	be	as	follows:
[Microsoft.SqlServer.Management.SMO.DataType]::DataType

To	create	a	column,	you	will	have	to	specify	the	table	variable,	the	data	type,	the	column
name,	and	whether	it	is	possible	to	make	it	null	or	not:
$col1Name	=	“StudentID”

$type	=	[Microsoft.SqlServer.Management.SMO.DataType]::Int

$col1	=		New-Object	-TypeName	Microsoft.SqlServer.Management.SMO.Column	-

ArgumentList	$table,	$col1Name,	$type

$col1.Nullable	=	$false

Common	column	properties	will	now	be	accessible	to	your	column	variable.	Some
common	properties	are	as	follows:

	
Nullable

Computed

ComputedText

Default	constraint	(by	using	the	AddDefaultConstraint	method)

For	example	consider	the	following	code:
#column	4	-	nullable,	with	default	value

$col4Name	=	“DateOfBirth”

$type	=	[Microsoft.SqlServer.Management.SMO.DataType]::DateTime

$col4	=		New-Object	-TypeName	Microsoft.SqlServer.Management.SMO.Column	-

ArgumentList		$table,	$col4Name,	$type

$col4.Nullable	=	$true

$col4.AddDefaultConstraint(“DF_Student_DateOfBirth”).Text	=	“‘1800-00-00’”

There	are	additional	properties	that	are	exposed	depending	on	the	data	type	you’ve
chosen.	For	example,	[Microsoft.SqlServer.Management.SMO.DataType]::Int	will
allow	you	to	specify	whether	this	is	an	identity	and	let	you	set	the	seed	and	increment.
[Microsoft.SqlServer.Management.SMO.DataType]::Varchar	will	allow	you	to	set	the
length.

Once	you	have	set	the	properties,	you	can	add	these	columns	to	your	table:
$table.Columns.Add($col1)

$table.Columns.Add($col4)

When	everything	is	set	up,	you	can	then	invoke	the	table’s	Create	method:
$table.Create()

To	create	a	primary	key,	you	will	need	to	create	two	other	SMO	objects.	The	first	one	is
the	index	object.	For	this	object,	you	can	specify	what	type	of	index	this	is	and	whether	it
is	clustered	or	nonclustered:
$PK	=	New-Object	-TypeName	Microsoft.SqlServer.Management.SMO.Index	-

ArgumentList	$table,	“PK_Student_StudentID”

$PK.IsClustered	=	$true

$PK.IndexKeyType	=	[Microsoft.SqlServer.Management.SMO.IndexKeyType]::DriPrimaryKey

The	second	object,	IndexedColumn,	specifies	which	columns	are	part	of	the	index:
#identify	columns	part	of	the	PK

$PKcol	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.IndexedColumn	-

ArgumentList	$PK,	$col1Name

If	this	column	is	an	included	column,	simply	set	the	IsIncluded	property	of	the
IndexedColumn	object	to	true.

Once	you’ve	created	all	index	columns,	you	can	add	them	to	the	index	and	invoke	the
index’s	Create	method:
$PK.IndexedColumns.Add($PKcol)

$PK.Create()

You	might	be	thinking	right	now,	that	what	we’ve	just	gone	over	is	a	long	winded	way	to
create	a	table.	You’re	right.	It	is	a	more	verbose	way	to	create	a	table.	However,	keep	in
mind	this	is	just	one	more	way	to	get	things	done.	When	you	need	to	create	a	table	and	T-
SQL	is	just	a	faster	way	to	do	it,	go	for	it.	However,	knowing	how	to	do	it	in	PowerShell
and	SMO	is	just	one	more	tool	in	your	arsenal	for	those	scenarios	where	you	might	need
to	create	the	tables	dynamically	or	more	flexibly.	For	example,	it’ll	be	useful	if	you	need
to	import	the	definitions	stored	in	Excel,	CSV,	of	XML	files	from	multiple	users.

There’s	more…
Check	out	the	complete	list	of	SMO	DataType	classes	from	the	MSDN	at
http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.smo.datatype.aspx.

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.datatype.aspx

See	also
	

The	Create	an	index	recipe.

Creating	a	view
This	recipe	shows	how	to	create	a	view	using	PowerShell	and	SMO.

Getting	ready
We	will	use	the	Person.Person	table	in	the	AdventureWorks2014	database	for	this	recipe.

To	give	you	an	idea	what	we	are	attempting	to	create	in	this	recipe,	this	is	the	T-SQL
equivalent.
CREATE	VIEW	dbo.vwVCPerson

AS

SELECT

			TOP	100

		BusinessEntityID,

		LastName,

		FirstName

FROM

		Person.Person

WHERE

				PersonType	=	‘IN’

GO

How	to	do	it…
Let’s	check	out	the	steps	to	create	a	view	using	PowerShell:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

Add	the	following	script	and	run:
$dbName	=	“AdventureWorks2014”

$db	=	$server.Databases[$dbName]

$viewName	=	“vwVCPerson”

$view	=	$db.Views[$viewName]

#if	view	exists,	drop	it

if	($view)

{

			$view.Drop()

}

$view	=	New-Object	-TypeName	Microsoft.SqlServer.Management.SMO.View	-

ArgumentList	$db,	$viewName,	“dbo”

#TextMode	=	false	meaning	we	are	not

#going	to	explicitly	write	the	CREATE	VIEW	header

$view.TextMode	=	$false

$view.TextBody	=	@”

SELECT

				TOP	100

		BusinessEntityID,

		LastName,

		FirstName

FROM

		Person.Person

WHERE

				PersonType	=	‘IN’

“@

$view.Create()

Test	the	view	from	PowerShell	by	running	the	following	code:
#code	below	all	in	one	line

$result	=	Invoke-Sqlcmd	-Query	“SELECT	*	FROM	vwVCPerson”

-ServerInstance	$instanceName	-Database	$dbName

#display	results

$result	|	Format-Table	-AutoSize

3.	 Check	whether	the	view	has	been	created.	Open	SQL	Server	Management	Studio.
Go	to	the	AdventureWorks2014	database	and	expand	Views,	as	shown	in	the
following	screenshot:

How	it	works…
To	create	a	view	using	SMO	and	PowerShell,	you	first	need	to	create	an	SMO	view
variable,	which	requires	three	parameters:	database	handle,	view	name,	and	schema.	The
code	is	as	follows:
$view	=	New-Object	-TypeName	Microsoft.SqlServer.Management.SMO.View	-

ArgumentList	$db,	$viewName,	“dbo”

You	can	optionally	set	the	view	owner:
$view.Owner	=	“QUERYWORKS\srogers”

The	crux	of	the	view	creation	is	the	view	definition.	You	have	the	option	to	set	the
TextMode	property	to	either	True	or	False.

$view.TextMode	=	$false

$view.TextBody	=	@”

SELECT

				TOP	100

		BusinessEntityID,

		LastName,

		FirstName

FROM

		Person.Person

WHERE

				PersonType	=	‘IN’

“@

If	you	set	the	TextMode	property	to	false,	it	means	you	are	letting	SMO	construct	the
view	header	for	you:
$view.TextMode	=	$false

If	you	set	the	TextMode	property	to	true,	it	means	you	have	to	define	the	TextHeader
property:

$view.TextMode	=	$true

$view.TextHeader	=	“CREATE	VIEW	dbo.vwVCPerson	AS	”

$view.TextBody	=	@”

SELECT

				TOP	100

		BusinessEntityID,

		LastName,

		FirstName

FROM

		Person.Person

WHERE

				PersonType	=	‘IN’

“@

When	all	the	pieces	are	in	place,	you	can	then	invoke	the	view’s	Create	method:
$view.Create()

There’s	more…
When	creating	database	objects	such	as	views,	stored	procedures,	or	functions,	you	are
often	required	to	write	blocks	of	code	for	the	object	definition.	Although	you	can
technically	put	all	these	in	one	line,	it	is	best	to	put	them	in	a	multiline	format	for
readability.

To	embed	these	blocks	of	code	in	PowerShell,	you	will	need	to	use	here-string.	A	here-
string	literal	starts	with	an	@”	and	is	ended	by	“@,	which	must	be	the	first	character	in	its
own	line:

$view.TextBody	=	@”

SELECT

				TOP	100

		BusinessEntityID,

		LastName,

		FirstName

FROM

		Person.Person

WHERE

				PersonType	=	‘IN’

“@

This	construction	might	remind	you	a	little	bit	of	a	C-style	comment,	which	starts	with	/*
and	ends	with	*/,	albeit	using	different	characters.

Creating	a	stored	procedure
This	recipe	shows	how	to	create	an	encrypted	stored	procedure	using	SMO	and
PowerShell.

Getting	ready
The	T-SQL	equivalent	of	the	encrypted	stored	procedure	we	are	about	to	recreate	in
PowerShell	is	as	follows:
CREATE	PROCEDURE	[dbo].[uspGetPersonByLastName]

@LastName	[varchar](50)

WITH	ENCRYPTION

AS

SELECT

			TOP	10

			BusinessEntityID,

			LastName

FROM

			Person.Person

WHERE

			LastName	=	@LastName

How	to	do	it…
Follow	these	steps	to	create	the	uspGetPersonByLastName	stored	procedure	using
PowerShell:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

Add	the	following	script	and	run:
$dbName	=	“AdventureWorks2014”

$db	=	$server.Databases[$dbName]

#storedProcedure	class	on	MSDN:

#http://msdn.microsoft.com/en-

us/library/microsoft.sqlserver.management.smo.storedprocedure.aspx

$sprocName	=	“uspGetPersonByLastName”

$sproc	=	$db.StoredProcedures[$sprocName]

#if	stored	procedure	exists,	drop	it

if	($sproc)

{

			$sproc.Drop()

}

$sproc	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.StoredProcedure	-

ArgumentList	$db,	$sprocName

#TextMode	=	false	means	stored	procedure	header

#is	not	editable	as	text

#otherwise	our	text	will	contain	the	CREATE	PROC	block

$sproc.TextMode	=	$false

$sproc.IsEncrypted	=	$true

#specify	parameter	type

$paramtype	=	[Microsoft.SqlServer.Management.SMO.Datatype]::VarChar(50)

#create	parameter	using	specified	type

$param	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.StoredProcedureParameter	-

ArgumentList	$sproc,”@LastName”,$paramtype

#add	parameter	to	stored	procedure

$sproc.Parameters.Add($param)

#Set	the	TextBody	property	to	define	the	stored	procedure.

$sproc.TextBody	=		@”

SELECT

			TOP	10

			BusinessEntityID,

			LastName

FROM

			Person.Person

WHERE

			LastName	=	@LastName

“@

#	Create	the	stored	procedure	on	the	instance	of	SQL	Server.

$sproc.Create()

#if	later	on	you	need	to	change	properties,	can	use	the	Alter	method

3.	 Check	whether	the	stored	procedure	has	been	created.	The	steps	are	as	follows:
1.	 Open	SQL	Server	Management	Studio.
2.	 Go	to	AdventureWorks2014	database.
3.	 Expand	Programmability	|	Stored	Procedures.

4.	 Check	whether	the	stored	procedure	is	there.

5.	 Test	the	stored	procedure	from	PowerShell.	In	the	same	session,	type	the	following
code	and	run:

$lastName	=	“Abercrombie”

#code	below	all	in	one	line

$result	=	Invoke-Sqlcmd	-

Query	“EXEC	uspGetPersonByLastName	@LastName=’$LastName’”	-

ServerInstance	”$instanceName”

-Database	$dbName

$result	|	Format-Table	-AutoSize

How	it	works…
To	create	a	stored	procedure,	you	first	need	to	initialize	an	SMO	StoredProcedure	object.
When	creating	this	object,	you	need	to	pass	the	database	handle	and	the	stored	procedure
name	as	parameters:
$sproc	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.StoredProcedure	-

ArgumentList	$db,	$sprocName

You	can	then	set	some	properties	of	the	stored	procedure	object,	such	as	whether	it’s
encrypted	or	not:
$sproc.IsEncrypted	=	$true

If	you	specify	TextMode	=	$true,	you	will	need	to	create	the	stored	procedure	header
yourself.	If	you	have	parameters,	these	will	have	to	be	defined	in	your	text	header.	For
example	consider	the	following:

$sproc.TextMode	=	$true

$sproc.TextHeader	=	@”

CREATE	PROCEDURE	[dbo].[uspGetPersonByLastName]

		@LastName	[varchar](50)

AS

“@

$sproc.TextBody	TextBody	=		@”

SELECT

			TOP	10

			BusinessEntityID,

			LastName

FROM

			Person.Person

WHERE

			LastName	=	@LastName

“@

Otherwise,	if	you	set	TextMode	=	$false,	you	are	technically	allowing	PowerShell	to
autogenerate	this	header	for	you	based	on	the	other	properties	and	parameters	you	have
set.	You	will	also	have	to	create	the	parameter	objects	one	by	one	and	add	them	to	the
stored	procedure.	The	code	is	as	follows:

$sproc.TextMode	=	$false

#specify	parameter	type

$paramtype	=	[Microsoft.SqlServer.Management.SMO.Datatype]::VarChar(50)

#create	parameter	using	specified	type

$param	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.StoredProcedureParameter	-

ArgumentList	$sproc,”@LastName”,$paramtype

#add	parameter	to	stored	procedure

$sproc.Parameters.Add($param)

When	creating	the	stored	procedure,	use	here-string	as	you	set	the	definition	to	the
TextBody	property	of	the	stored	procedure	object:
$sproc.TextBody	=		@”

SELECT

			TOP	10

			BusinessEntityID,

			LastName

FROM

			Person.Person

WHERE

			LastName	=	@LastName

“@

Once	the	header,	definition,	and	properties	of	the	stored	procedure	are	in	place,	you	can
invoke	the	Create	method,	which	sends	the	CREATE	PROC	statement	to	SQL	Server	and
creates	the	stored	procedure.	The	code	is	as	follows:
#	Create	the	stored	procedure	on	the	instance	of	SQL	Server.

$sproc.Create()

Creating	a	trigger
This	recipe	shows	how	to	programmatically	create	a	trigger	in	SQL	Server	using	SMO	and
PowerShell

Getting	ready
For	this	recipe,	we	will	use	the	Person.Person	table	in	the	AdventureWorks2014
database.	We	will	create	a	trivial	AFTER	trigger	that	merely	displays	values	from	the
inserted	and	deleted	tables	upon	firing.

The	following	is	the	T-SQL	equivalent	of	what	we	are	going	to	accomplish
programmatically	in	this	section:
CREATE	TRIGGER	[Person].[tr_u_Person]

ON	[Person].[Person]

AFTER		UPDATE

AS

		SELECT

					GETDATE()	AS	UpdatedOn,

					SYSTEM_USER	AS	UpdatedBy,

					i.LastName	AS	NewLastName,

					i.FirstName	AS	NewFirstName,

					d.LastName	AS	OldLastName,

					d.FirstName	AS	OldFirstName

		FROM

					inserted	i

					INNER	JOIN	deleted	d

					ON	i.BusinessEntityID	=	d.BusinessEntityID

How	to	do	it…
Let’s	follow	these	steps	to	create	an	AFTER	trigger	in	PowerShell:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run:
$dbName	=	“AdventureWorks2014”

$db	=	$server.Databases[$dbName]

$tableName	=	“Person”

$schemaName	=	“Person”

#get	a	handle	to	the	Person.Person	table

$table	=	$db.Tables	|

									Where-Object	Schema	-like	”$schemaName”	|

									Where-Object	Name	-like	”$tableName”

$triggerName	=	“tr_u_Person”

#note	here	we	need	to	check	triggers	attached	to	table

$trigger	=	$table.Triggers[$triggerName]

#if	trigger	exists,	drop	it

if	($trigger)

{

			$trigger.Drop()

}

$trigger	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Trigger	-

ArgumentList	$table,	$triggerName

$trigger.TextMode	=	$false

#this	is	just	an	update	trigger

$trigger.Update	=	$true

$trigger.Insert	=	$false

$trigger.Delete	=	$false

#3	options	for	ActivationOrder:	First,	Last,	None

$trigger.InsertOrder	=	[Microsoft.SqlServer.Management.SMO.Agent.ActivationOrder]::None

$trigger.ImplementationType	=	[Microsoft.SqlServer.Management.SMO.ImplementationType]::TransactSql

#simple	example

$trigger.TextBody	=	@”

		SELECT

					GETDATE()	AS	UpdatedOn,

					SYSTEM_USER	AS	UpdatedBy,

					i.LastName	AS	NewLastName,

					i.FirstName	AS	NewFirstName,

					d.LastName	AS	OldLastName,

					d.FirstName	AS	OldFirstName

		FROM

					inserted	i

					INNER	JOIN	deleted	d

					ON	i.BusinessEntityID	=	d.BusinessEntityID

“@

$trigger.Create()

4.	 Check	whether	the	stored	procedure	has	been	created.	Open	SQL	Server	SQL
Server	Management	Studio	and	check	under	the	Person.Person	table,	as	shown	in
the	following	screenshot:

5.	 Test	the	stored	procedure	from	PowerShell:
$firstName	=	“Frankk”

$result	=	Invoke-Sqlcmd	-Query	@”

UPDATE	Person.Person

SET	FirstName	=	’$firstName’

WHERE	BusinessEntityID	=	2081

“@	-ServerInstance	”$instanceName”	-Database	$dbName

$result	|	Format-Table	–AutoSize

Your	result	should	look	similar	to	the	following:

How	it	works…
The	code	for	this	section	is	quite	long,	so	we	will	break	it	down	here.

To	create	a	trigger,	you	need	to	create	a	reference	to	both	the	instance	and	the	database
first.	This	is	something	we	have	done	for	most	of	the	recipes	in	this	chapter,	if	you	have
skipped	the	previous	recipes.

A	trigger	is	bound	to	a	table	or	view.	You	will	need	to	create	a	variable	that	points	to	the
table	you	want	the	trigger	to	attach	to:
$tableName	=	“Person”

$schemaName	=	“Person”

$table	=	$db.Tables	|

									Where-Object	Schema	-like	”$schemaName”	|

									Where-Object	Name	-like	”$tableName”

For	the	purpose	of	this	recipe,	if	the	trigger	exists,	we	will	drop	it:
$trigger	=	$table.Triggers[$triggerName]

#if	trigger	exists,	drop	it

if	($trigger)

{

			$trigger.Drop()

}

Next,	you	need	to	create	an	SMO	trigger	object:
$trigger	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Trigger	-

ArgumentList	$table,	$triggerName

Next,	set	the	TextMode	property.	If	set	to	true,	this	means	you	have	to	define	the	trigger
header	text	yourself.	Otherwise,	SMO	will	automatically	generate	this	for	you.
$trigger.TextMode	=	$false

You	will	also	need	to	define	what	type	of	DML	trigger	this	is.	Your	options	are	INSERT,
UPDATE,	and/or	DELETE	triggers.	Our	example	is	just	an	update	trigger,	so	the	Insert	and
Update	properties	need	to	be	set	to	$false:
#this	is	just	an	update	trigger

$trigger.Update	=	$true

$trigger.Insert	=	$false

$trigger.Delete	=	$false

You	can	also	optionally	define	the	trigger	order.	There	are	three	possible	values	for	the
trigger	activation	order:	First,	Last,	and	None.	This	can	be	specified	as	an	enumeration
value	in	the	format:
[Microsoft.SqlServer.Management.SMO.Agent.ActivationOrder]::<Value>

By	default,	there	is	no	guarantee	in	what	order	the	triggers	will	be	run	by	SQL	Server	(that
is,	None),	but	you	have	the	option	to	set	it	to	First	or	Last.	In	our	example,	we	leave	it	as
default	(that	is,	None),	but	we	still	explicitly	define	it	for	readability:
$trigger.InsertOrder	=	[Microsoft.SqlServer.Management.SMO.Agent.ActivationOrder]::None

Our	trigger	is	also	a	T-SQL	trigger.	SQL	Server	SMO	also	supports	SQLCLR	triggers,
which	will	require	the	enumeration	value	SqlClr.
$trigger.ImplementationType	=	[Microsoft.SqlServer.Management.SMO.ImplementationType]::TransactSql

To	specify	the	trigger	definition,	you	can	set	the	value	of	the	trigger’s	TextBody	property.
You	can	use	here-string	to	assign	the	trigger	code	block	to	the	TextBody:
#simple	example

$trigger.TextBody	=	@”

		SELECT

					GETDATE()	AS	UpdatedOn,

					SYSTEM_USER	AS	UpdatedBy,

					i.LastName	AS	NewLastName,

					i.FirstName	AS	NewFirstName,

					d.LastName	AS	OldLastName,

					d.FirstName	AS	OldFirstName

		FROM

					inserted	i

					INNER	JOIN	deleted	d

					ON	i.BusinessEntityID	=	d.BusinessEntityID

“@

When	ready,	invoke	the	Create()	method	of	the	trigger:
$trigger.Create()

Creating	an	index
This	recipe	shows	how	to	create	a	nonclustered	index	with	an	included	column	using
PowerShell	and	SMO.

Getting	ready
We	will	use	the	Person.Person	table	in	the	AdventureWorks2014	database.	We	will	create
a	nonclustered	index	on	FirstName,	LastName,	and	include	MiddleName.	The	T-SQL
equivalent	of	this	task	is	as	follows:
CREATE	NONCLUSTERED	INDEX	[idxLastNameFirstName]

ON	[Person].[Person]

(

		[LastName]	ASC,

		[FirstName]	ASC

)

INCLUDE	([MiddleName])

GO

How	to	do	it…
Let’s	check	out	how	we	can	create	an	index	using	PowerShell:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run:
$dbName	=	“AdventureWorks2014”

$db	=	$server.Databases[$dbName]

$tableName	=	“Person”

$schemaName	=	“Person”

$table	=	$db.Tables	|

									Where-Object	Schema	-like	”$schemaName”	|

									Where-Object	Name	-like	”$tableName”

$indexName	=	“idxLastNameFirstName”

$index	=	$table.Indexes[$indexName]

#if	index	exists,	drop	it

if	($index)

{

			$index.Drop()

}

$index	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Index	-

ArgumentList	$table,	$indexName

#first	index	column,	by	default	sorted	ascending

#last	parameter	$false	specifies	descending	=	false

$idxCol1	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.IndexedColumn	-

ArgumentList	$index,	“LastName”,	$false

$index.IndexedColumns.Add($idxCol1)

#second	index	column,	by	default	sorted	ascending

#last	parameter	$false	specifies	descending	=	false

$idxCol2	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.IndexedColumn	-

ArgumentList	$index,	“FirstName”,	$false

$index.IndexedColumns.Add($idxCol2)

#included	column

$inclCol1	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.IndexedColumn	-

ArgumentList	$index,	“MiddleName”

$inclCol1.IsIncluded	=	$true

$index.IndexedColumns.Add($inclCol1)

#Set	the	index	properties.

<#

None											-	no	constraint

DriPrimaryKey		-	primary	key

DriUniqueKey		-	unique	constraint

#>

$index.IndexKeyType	=	[Microsoft.SqlServer.Management.SMO.IndexKeyType]::None

$index.IsClustered	=	$false

$index.FillFactor	=	70

#Create	the	index	on	the	instance	of	SQL	Server.

$index.Create()

4.	 Check	whether	the	stored	procedure	has	been	created.

How	it	works…
The	first	step	to	create	an	index	is	to	create	an	SMO	index	object,	which	requires	both	the
table/view	handle	and	the	index	name:
$index	=	New-Object	-TypeName	Microsoft.SqlServer.Management.SMO.Index	-

ArgumentList	$table,	$indexName

The	next	step	is	to	identify	all	index	columns	using	the	IndexedColumn	property	of	the
Microsoft.SqlServer.Management.SMO.Index	class:
#first	index	column,	by	default	sorted	ascending

#last	parameter	$false	specifies	descending	=	false

$idxCol1	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.IndexedColumn	-

ArgumentList	$index,	“LastName”,	$false

$index.IndexedColumns.Add($idxCol1)

#second	index	column,	by	default	sorted	ascending

#last	parameter	$false	specifies	descending	=	false

$idxCol2	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.IndexedColumn	-

ArgumentList	$index,	“FirstName”,	$false

$index.IndexedColumns.Add($idxCol2)

Optionally,	you	can	add	included	columns,	that	is,	columns	that	“tag	along”	with	the	index
but	are	not	part	of	the	indexed	columns.	The	code	is	as	follows:
#included	column

$inclCol1	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.IndexedColumn	-

ArgumentList	$index,	“MiddleName”

$inclCol1.IsIncluded	=	$true

$index.IndexedColumns.Add($inclCol1)

The	type	of	the	index	can	be	specified	using	the	IndexKeyType	property	of	the
Microsoft.SqlServer.Management.SMO.IndexedColumn	class,	which	accepts	three
possible	values:

	
None:	This	is	a	not	a	unique	value
DriPrimaryKey:	This	is	a	primary	key
DriUniqueKey:	This	is	a	unique	key

Additional	properties	can	also	be	set,	including	fill	factor	and	whether	this	key	is	clustered
or	not.	The	code	is	as	follows:
$index.IndexKeyType	=	[Microsoft.SqlServer.Management.SMO.IndexKeyType]::None

$index.IsClustered	=	$false

$index.FillFactor	=	70

When	all	properties	are	set,	invoke	the	Create()	method	of	the	SMO	index	object:
#Create	the	index	on	the	instance	of	SQL	Server.

$index.Create()

There’s	more…
The	SMO	index	object	also	supports	different	kinds	of	indexes:

Index	type What	to	set

Filtered HasFilter

FilterDefinition

FullText IsFullTextKey		=	$true

XML IsXMLIndex=	$true

Spatial IsSpatialIndex	=	$true

To	get	more	information	about	index	options	that	can	be	programmatically	set,	check	out
the	MSDN	documentation	on	SMO	indexes:

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.index.aspx

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.index.aspx

See	also
	

The	Creating	a	table	recipe.

Executing	a	query/SQL	script
This	recipe	shows	how	you	can	execute	either	a	hardcoded	query	or	a	SQL	Script	from
PowerShell.

Getting	ready
Create	a	file	in	your	C:\Temp	folder	called	SampleScript.sql.	This	should	contain	the
following:
SELECT	TOP	10	*

FROM	Person.Person

How	to	do	it…
The	following	are	the	steps	in	executing	a	query	/	SQL	script:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run:
$dbName	=	“AdventureWorks2014”

$db	=	$server.Databases[$dbName]

#execute	a	passthrough	query,	and	export	to	a	CSV	file

#line	continuation	in	code	below	only	happens	at

#the	pipe	(|)	delimiter

Invoke-Sqlcmd	-Query	“SELECT	*	FROM	Person.Person”

-ServerInstance	”$instanceName”	-Database	$dbName	|

Export-Csv	–LiteralPath	“C:\Temp\ResultsFromPassThrough.csv”

-NoTypeInformation

#execute	the	SampleScript.sql,	and	display

#results	to	screen

#line	continuation	in	code	below	only	happens	at

#the	pipe	(|)	delimiter

Invoke-SqlCmd	-InputFile	“C:\Temp\SampleScript.sql”

-ServerInstance	”$instanceName”	-Database	$dbName	|

Select-Object	FirstName,	LastName,	ModifiedDate	|

Format-Table

How	it	works…
Start	warming	up	to	the	Invoke-Sqlcmd	cmdlet.	We	will	be	using	it	a	lot	in	this	book.

As	the	name	suggests,	this	cmdlet	allows	you	to	run	T-SQL	code,	scripts,	and	commands
supported	by	the	SQLCMD	utility.	This	also	allows	you	to	run	XQuery	code.	Invoke-
Sqlcmd	is	your	all-purpose	SQL	utility	cmdlet.

To	get	more	information	about	Invoke-Sqlcmd,	use	the	Get-Help	cmdlet:
Get-Help	Invoke-Sqlcmd	-Full

In	this	recipe,	we	looked	at	two	ways	to	use	Invoke-Sqlcmd.	First,	we	specify	a	query	to
run	and	we	use	the	–Query	option:
#execute	a	passthrough	query,	and	export	to	a	CSV	file

#line	continuation	in	code	below	only	happens	at

#the	pipe	(|)	delimiter

Invoke-Sqlcmd	-Query	“SELECT	*	FROM	Person.Person”

-ServerInstance	”$instanceName”	-Database	$dbName	|

Export-Csv	–LiteralPath	C:\Temp\ResultsFromPassThrough.csv”

-NoTypeInformation

For	the	second	way,	which	requires	running	a	SQL	Script,	we	need	to	specify	the
InputFile	switch:
#execute	the	SampleScript.sql,	and	display

#results	to	screen

#line	continuation	in	code	below	only	happens	at

#the	pipe	(|)	delimiter

Invoke-SqlCmd	-InputFile	“C:\Temp\SampleScript.sql”

-ServerInstance	”$instanceName”	-Database	$dbName	|

Select-Object	FirstName,	LastName,	ModifiedDate	|

Format-Table

Performing	bulk	export	using	Invoke-SqlCmd
This	recipe	shows	how	to	export	contents	of	a	table	to	a	CSV	file	using	PowerShell	and
the	Invoke-SqlCmd	cmdlet.

Getting	ready
Make	sure	you	have	access	to	the	AdventureWorks2014	database.	We	will	use	the
Person.Person	table.	Create	a	C:\Temp	folder,	if	you	don’t	already	have	it	in	your	system.

How	to	do	it…
Follow	these	steps	to	perform	a	bulk	export	using	PowerShell	and	Invoke-sqlcmd:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run:
#database	handle

$dbName	=	“AdventureWorks2014”

$db	=	$server.Databases[$dbName]

#export	file	name

$exportfile	=	“C:\Temp\Person_Person.csv”

$query	=	@”

SELECT

			*

FROM

			Person.Person

“@

Invoke-Sqlcmd	-Query	$query	-ServerInstance	”$instanceName”	-

Database	$dbName	|

Export-Csv	-LiteralPath	$exportfile	-NoTypeInformation

How	it	works…
In	this	recipe,	we	export	the	results	of	a	query	to	a	CSV	file.	There	are	two	core	pieces	to
the	export	approach	in	this	recipe.

The	first	piece	is	executing	the	query,	and	we	use	the	Invoke-Sqlcmd	cmdlet	for	this.	We
specify	the	instance	and	database,	and	then	send	a	query	to	SQL	Server	through	this
cmdlet:

Invoke-Sqlcmd	-Query	$query	-ServerInstance	”$instanceName”	-

Database	$dbName	|

Export-Csv	-LiteralPath	$exportfile	-NoTypeInformation

The	second	piece	is	piping	the	results	to	the	Export-Csv	cmdlet	and	specifying	the	file	the
results	are	supposed	to	be	stored	to.	We	also	specify	the	–NoTypeInformation	variable	so
the	cmdlet	will	omit	the	#TYPE	.NET	information	type	as	the	first	line	in	the	file:
Invoke-Sqlcmd	-Query	$query	-ServerInstance	”$instanceName”	-

Database	$dbName	|

Export-Csv	-LiteralPath	$exportfile	-NoTypeInformation

See	also
The	Execute	a	query	/	SQL	script	recipe.

Performing	bulk	export	using	the	bcp	command-
line	utility
This	recipe	shows	how	to	export	contents	of	a	table	to	a	CSV	file	using	PowerShell	and
bcp.

Getting	ready
Make	sure	you	have	access	to	the	AdventureWorks2014	database.	We	will	export	the
Person.Person	table	to	a	pipe	(|)	delimited,	timestamped	text	file.

Create	a	C:\Temp\Exports	folder,	if	you	don’t	already	have	it	in	your	system.

How	to	do	it…
These	are	the	steps	to	perform	bulk	export	using	bcp:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Add	the	following	script	and	run:

$server	=	“localhost”

$table	=	“AdventureWorks2014.Person.Person”

$curdate	=	Get-Date	-Format	“yyyy-MM-dd_hmmtt”

$foldername	=	“C:\Temp\Exports"

#format	file	name

$formatfilename	=	”$($table)_$($curdate).fmt”

#export	file	name

$exportfilename	=	”$($table)_$($curdate).csv”

$destination_exportfilename	=	”$($foldername)$($exportfilename)”

$destination_formatfilename	=	”$($foldername)$($formatfilename)”

#command	to	generate	format	file

$cmdformatfile	=	“bcp	$table	format	nul	-T	-c	-t	`”|`”	-r	`”\n`”	-

f	`”$($destination_formatfilename)`”	-S$($server)”

#command	to	generate	the	export	file

$cmdexport	=	“bcp	$($table)	out	`”$($destination_exportfilename)`”	-

S$($server)	-T	-f	`”$destination_formatfilename`””

#run	the	format	file	command

Invoke-Expression	$cmdformatfile

#delay	1	sec,	give	server	some	time	to	generate	the	format	file

#sleep	helps	us	avoid	race	conditions

Start-Sleep	-s	1

#run	the	export	command

Invoke-Expression	$cmdexport

#check	the	folder	for	generated	file

explorer.exe	$foldername

	How	it	works…

Using	SQL	Server’s	bcp	is	often	the	faster	way	to	export	records	out	of	SQL	Server.	It	is
also	often	preferred	because	bcp	offers	flexibility	in	the	export	format.

The	default	export	format	of	bcp	uses	a	tab	(\t)	as	a	field	delimiter	and	a	carriage	return
newline	character	(\r\n)	as	a	row	delimiter.	If	you	want	to	change	this,	you	will	need	to
create	and	use	a	format	file	that	specifies	how	you	want	the	export	to	be	formatted.

In	our	recipe,	we	first	timestamped	both	the	format	file	and	the	export	filenames:
$curdate	=	Get-Date	-Format	“yyyy-MM-dd_hmmtt”

$foldername	=	“C:\Temp\Exports"

#format	file	name

$formatfilename	=	”$($table)_$($curdate).fmt”

#export	file	name

$exportfilename	=	”$($table)_$($curdate).csv”

$destination_exportfilename	=	”$($foldername)$($exportfilename)”

$destination_formatfilename	=	”$($foldername)$($formatfilename)”

What	we	are	going	for	is	a	filename	that	has	the	database	name,	schema	name,	table	name,
and	current	system	time	attached	to	it:
AdventureWorks2014.Person.Person_2015-02-20_913PM

We	then	create	the	string	that	will	generate	the	format	file	as	follows:
#command	to	generate	format	file

$cmdformatfile	=	“bcp	$table	format	nul	-T	-c	-t	`”|`”	-r	`”\n`”	-

f	`”$($destination_formatfilename)`”	-S$($server)”

The	format	file	specifies	that	the	export	should:

	
Use	the	character	data	type	(-c)
Use	a	pipe	as	a	column	delimiter	(-t	“|”)
Use	a	newline	as	a	row	terminator	(-r	“\n”)

Note
Note	that	because	the	actual	command	requires	double	quotes,	when	we	construct	the
command,	we	need	to	escape	the	double	quote	within	the	command	with	a	backtick	(`).

The	command	that	is	generated	should	be	similar	to	the	following:
bcp	AdventureWorks2014.Person.Person	format	nul	-T	-c	-t	”|”	-r	”\n”	-

f	“C:\Temp\Exports\AdventureWorks2014.Person.Person_2015-02-20_913PM.fmt”	-

Slocalhost

We	also	construct	the	command	that	will	export	the	records	using	the	format	file	we	just
created:
#command	to	generate	the	export	file

$cmdexport	=	“bcp	$($table)	out	`”$($destination_exportfilename)`”	-

S$($server)	-T	-f	`”$destination_formatfilename`””

This	will	give	us	something	similar	to	the	following:
bcp	AdventureWorks2014.Person.Person	out	“C:\Temp\Exports\	AdventureWorks2014.Person.Person_2015-

02-20_913PM.csv”	-Slocalhost	-T	-

f	“C:\Temp\Exports\	AdventureWorks2014.Person.Person_2015-02-20_913PM.fmt”

When	the	strings	containing	the	commands	are	complete,	we	can	execute	the	command
using	the	Invoke-Expression	cmdlet.	We	run	the	format	file	creation	command	first	and
then	sleep.	We	use	the	Start-Sleep	cmdlet	to	pause	for	1	second	to	ensure	the	format	file
has	been	created	first	before	we	invoke	the	command	to	do	the	actual	export.	The	code	is

as	follows:
#run	the	format	file	command

Invoke-Expression	$cmdformatfile

#delay	1	sec,	give	server	some	time	to	generate

#the	format	file

#sleep	helps	us	avoid	race	conditions

Start-Sleep	-s	1

#run	the	export	command

Invoke-Expression	$cmdexport

If	we	don’t	wait,	there	is	a	chance	that	all	the	commands	will	have	been	executed	really
fast,	and	the	command	to	export	will	run	before	the	format	file	has	been	generated.	This
will	lead	to	an	error,	because	the	bcp	command	will	not	be	able	to	find	the	format	file.

Lastly,	we	open	Windows	Explorer	so	we	can	inspect	the	files	we	generated:
#check	the	folder	for	generated	file

explorer.exe	$foldername

There’s	more…
Read	more	about	the	bcp	format	file	options	from	http://msdn.microsoft.com/en-
us/library/ms191516.aspx.

http://msdn.microsoft.com/en-us/library/ms191516.aspx

See	also
	

The	Performing	bulk	export	using	Invoke-SqlCmd	recipe.

Performing	bulk	import	using	BULK	INSERT
This	recipe	will	walk	through	how	to	import	contents	of	a	CSV	file	to	SQL	Server	using
PowerShell	and	BULK	INSERT.

Getting	ready
To	do	a	test	import,	we	need	to	create	a	Person	table	similar	to	the	Person.Person	table
from	the	AdventureWorks2014	database,	with	some	slight	modifications.

We	will	create	this	in	the	Test	schema;	we	will	remove	some	of	the	constraints	and	keep
this	table	as	simple	and	independent	as	we	can.

To	create	the	table	we	need	for	this	exercise,	open	up	SQL	Server	Management	Studio
and	run	the	following	code:
CREATE	SCHEMA	[Test]

GO

CREATE	TABLE	[Test].[Person](

		[BusinessEntityID]	[int]	NOT	NULL	PRIMARY	KEY,

		[PersonType]	[nchar](2)	NOT	NULL,

		[NameStyle]	[dbo].[NameStyle]	NOT	NULL,

		[Title]	[nvarchar](8)	NULL,

		[FirstName]	[dbo].[Name]	NOT	NULL,

		[MiddleName]	[dbo].[Name]	NULL,

		[LastName]	[dbo].[Name]	NOT	NULL,

		[Suffix]	[nvarchar](10)	NULL,

		[EmailPromotion]	[int]	NOT	NULL,

		[AdditionalContactInfo]	[xml]	NULL,

		[Demographics]	[xml]	NULL,

		[rowguid]	[uniqueidentifier]	ROWGUIDCOL		NOT	NULL,

		[ModifiedDate]	[datetime]	NOT	NULL

)

GO

For	this	recipe,	we	will	import	the	file	you	generated	from	the	previous	recipe,	Performing
Bulk	Export	using	the	bcp	command-line	utility.	Rename	this	file	as	Person.Person.csv
and	save	this	in	the	folder	C:\Temp\Exports.

How	to	do	it…
Let’s	follow	these	steps	to	perform	a	bulk	import	using	BULK	INSERT:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Let’s	add	some	helper	functions	first.	Type	the	following	and	execute:

Import-Module	SQLPS	-DisableNameChecking

function	Import-Person	{

<#

.SYNOPSIS

				Very	simple	function	to	get	number

				of	records	in	Test.Person

.NOTES

				Author					:	Donabel	Santos

.LINK

				http://www.sqlbelle.com

#>

param(

			[string]$instanceName,

			[string]$dbName,

			[string]$fileName

)

$query	=	@”

TRUNCATE	TABLE	Test.Person

GO

BULK	INSERT	AdventureWorks2014.Test.Person

			FROM	`’$fileName`’

			WITH

						(

									FIELDTERMINATOR	=’|’,

									ROWTERMINATOR	=’\n’

)

SELECT	COUNT(*)	AS	NumRecords

FROM	AdventureWorks2014.Test.Person

“@

#check	number	of	records

#code	below	should	be	in	one	line

Invoke-Sqlcmd	-Query	$query	-ServerInstance	$instanceName

-Database	$dbName

}

3.	 Now,	let’s	invoke	the	function	in	the	same	session	as	follows:
$instanceName	=	“localhost”

$dbName	=	“AdventureWorks2014”

$fileName	=	“C:\Temp\Exports\Person.Person.csv”

Import-Person	$instanceName	$dbName	$fileName

How	it	works…
To	import	records	in	a	CSV	or	text	file	into	a	SQL	Server	table	using	the	BULK	INSERT
command,	we	need	to	construct	the	BULK	INSERT	T-SQL	statement	and	execute	this
statement	using	the	Invoke-Sqlcmd	cmdlet:
Invoke-Sqlcmd	-Query	$query	-ServerInstance	$instanceName

-Database	$dbName

However,	we	have	done	things	a	little	bit	differently	than	our	previous	recipes.	In	this
recipe,	we	first	created	a	function	that	encapsulates	all	the	core	import	tasks.

To	create	a	function,	you	first	need	to	create	a	function	header:
function	Import-Person	{

The	function	header	starts	with	the	keyword	function,	followed	by	the	function	name	in
the	verb-noun	format.	The	body	of	the	function	is	encapsulated	by	opening	and	closing
curly	braces	({}).

Right	after	the	function	header,	we	also	create	a	comment-based	help	header	comment:
<#

.SYNOPSIS

				Very	simple	function	to	get	number

				of	records	in	Test.Person

.NOTES

				Author					:	Donabel	Santos

.LINK

				http://www.sqlbelle.com

#>

Block	comments	in	PowerShell	start	with	<#	and	end	with	#>.	In	addition,	this	is	a	special
type	of	block	comment	that	allows	this	function’s	comments	to	be	displayed	in	a	Get-Help
cmdlet.	If	we	use	the	following	command	now:
Get-Help	Import-Person

We	will	get	an	output	similar	to	the	help	you	get	for	any	other	cmdlet:

After	the	function	header	and	comment,	comes	the	parameters.	Our	Import-Person
function	accepts	three	parameters:	instance	name,	database	name,	and	filename.	The	code
is	as	follows:
param(

			[string]$instanceName,

			[string]$dbName,

			[string]$fileName

)

Next,	we	have	the	function	definition.	We	start	by	creating	here-string	that	contains	our
T-SQL	statement:
$query	=	@”

TRUNCATE	TABLE	Test.Person

GO

BULK	INSERT	AdventureWorks2014.Test.Person

			FROM	`’$fileName`’

			WITH

						(

									FIELDTERMINATOR	=’|’,

									ROWTERMINATOR	=’\n’

)

SELECT	COUNT(*)	AS	NumRecords

FROM	AdventureWorks2014.Test.Person

“@

After	our	query	is	constructed,	we	pass	this	to	the	Invoke-Sqlcmd	cmdlet,	which	in	turn
sends	and	executes	this	in	our	SQL	Server	instance.	The	command	is	as	follows:
Invoke-Sqlcmd	-Query	$query	-ServerInstance	”$instanceName”

-Database	$dbName

Functions	in	PowerShell	are	local-scoped	by	default,	but	maintain	a	global	scope	when

run	through	ISE.	In	our	recipe,	once	you	run	the	first	part	of	the	script	that	has	the	function
definition,	this	function	can	be	invoked	any	time	in	the	current	session.	We	can	see	that	the
Import-Person	function	simplifies	our	task	and	needs	only	the	instance	name,	database
name,	and	filename:
$instanceName	=	“localhost”

$dbName	=	“AdventureWorks2014”

$fileName	=	“C:\Temp\Exports\Person.Person.csv”

Import-Person	$instanceName	$dbName	$filename

If	you	are	using	the	shell	and	you	want	this	function	to	persist	globally	across	different
scopes,	save	the	script	as	a	.ps1	file	and	dot	source	it.	Another	way	is	to	prepend	the
function	name	with	global:
function	global:Import-Person	{

See	also
	

The	Executing	a	query	/	SQL	script	recipe.
The	Performing	bulk	import	using	the	bcp	command-line	utility	recipe.

Performing	bulk	import	using	the	bcp	command-
line	utility
This	recipe	will	walk	through	the	process	of	importing	the	contents	of	a	CSV	file	to	SQL
Server	using	PowerShell	and	bcp.

Getting	ready
To	do	a	test	import,	let’s	first	create	a	Person	table	similar	to	the	Person.Person	table
from	the	AdventureWorks2014	database,	with	some	slight	modifications.	We	will	create
this	in	the	Test	schema,	and	we	will	remove	some	of	the	constraints	and	keep	this	table	as
simple	and	independent	as	we	can.

If	Test.Person	does	not	yet	exist	in	your	environment,	let’s	create	it.	Open	up	SQL
Server	Management	Studio	and	run	the	following	code:
CREATE	SCHEMA	[Test]

GO

CREATE	TABLE	[Test].[Person](

		[BusinessEntityID]	[int]	NOT	NULL	PRIMARY	KEY,

		[PersonType]	[nchar](2)	NOT	NULL,

		[NameStyle]	[dbo].[NameStyle]	NOT	NULL,

		[Title]	[nvarchar](8)	NULL,

		[FirstName]	[dbo].[Name]	NOT	NULL,

		[MiddleName]	[dbo].[Name]	NULL,

		[LastName]	[dbo].[Name]	NOT	NULL,

		[Suffix]	[nvarchar](10)	NULL,

		[EmailPromotion]	[int]	NOT	NULL,

		[AdditionalContactInfo]	[xml]	NULL,

		[Demographics]	[xml]	NULL,

		[rowguid]	[uniqueidentifier]	ROWGUIDCOL		NOT	NULL,

		[ModifiedDate]	[datetime]	NOT	NULL

)

GO

For	this	recipe,	we	will	import	the	file	you	generated	from	the	preceding	recipe,
Performing	bulk	export	using	the	bcp	command-line	utility.	Rename	this	file	as
Person.Person.csv	and	save	this	in	the	folder	C:\Temp\Exports.

How	to	do	it…
Let’s	follow	these	steps	to	perform	a	bulk	import	using	bcp:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Let’s	add	some	helper	functions	first.	Type	the	following	and	then	run:

Import-Module	SQLPS	-DisableNameChecking

$instanceName	=	“localhost”

$dbName	=	“AdventureWorks2014”

function	Truncate-Table	{

<#

.SYNOPSIS

				Very	simple	function	to	truncate

				records	from	Test.Person

.NOTES

				Author					:	Donabel	Santos

.LINK

				http://www.sqlbelle.com

#>

param([string]$instanceName,[string]$dbName)

$query	=	@”

TRUNCATE	TABLE	Test.Person

“@

#check	number	of	records

#code	below	should	be	in	a	single	line

Invoke-Sqlcmd	-Query	$query	-ServerInstance	$instanceName

-Database	$dbName

}

function	Get-PersonCount	{

<#

.SYNOPSIS

				Very	simple	function	to	get	number

				of	records	in	Test.Person

.NOTES

				Author					:	Donabel	Santos

.LINK

				http://www.sqlbelle.com

#>

param([string]$instanceName,[string]$dbName)

$query	=	@”

SELECT	COUNT(*)	AS	NumRecords

FROM	Test.Person

“@

#check	number	of	records

#code	below	should	be	in	a	single	line

Invoke-Sqlcmd	-Query	$query	-ServerInstance	$instanceName

-Database	$dbName

}

3.	 Add	the	following	script	and	run:
#let’s	clean	up	the	Test.Person	table	first

Truncate-Table	$instanceName	$dbName

$server	=	“localhost”

$table	=	“AdventureWorks2014.Test.Person”

$importfile	=	“C:\Temp\Exports\Person.Person.csv”

#command	to	import	from	csv

$cmdimport	=	“bcp	$($table)	in	`”$($importfile)`”	-S$server	-T	-c	-

t	`”|`”	-r	`”\n`”	”

#run	the	import	command

Invoke-Expression	$cmdimport

#delay	1	sec,	give	server	some	time	to	import	records

#sleep	helps	us	avoid	race	conditions

Start-Sleep	-s	2

Get-PersonCount	$instanceName	$dbName

How	it	works…
Performing	a	bulk	import	using	bcp	is	a	straightforward	task:	we	need	to	use	the	Invoke-
Expression	cmdlet	and	pass	in	the	bcp	command.	In	this	recipe,	however,	we	have
cleaned	up	our	script	a	little	bit	and	started	off	with	a	couple	of	helper	functions.

The	first	helper	function,	Truncate-Table,	is	a	simple	helper	function	that	truncates	the
Test.Person	table	that	we	want	to	import	the	records	to.	This	function	passes	the
TRUNCATE	TABLE	command	to	SQL	Server	using	the	Invoke-Sqlcmd	cmdlet.	To	use	this
function,	simply	use	the	following	command:
Truncate-Table	$instanceName	$dbName

The	second	helper	function,	Get-PersonCount,	simply	returns	a	count	of	the	records	that
have	been	imported	into	the	Test.Person	table.	It	uses	the	Invoke-Sqlcmd	cmdlet.	To
invoke	the	Get-PersonCount	function,	use	the	following	command:
Get-PersonCount	$instanceName	$dbName

The	core	of	this	recipe	is	in	the	construction	of	the	bcp	import	command:
$server	=	“localhost”

$table	=	“AdventureWorks2014.Test.Person”

$importfile	=	“C:\Temp\Exports\	Person.Person.csv”

#command	to	import	from	csv

$cmdimport	=	“bcp	”	+	$table	+	”	in	”	+	’”’	+	$importfile	+	’”’	+	”	-

S	$server	-T	-c	-t	`”|`”	-r	`”\n`”	”

This	will	give	us	the	bcp	command	that	points	to	the	import	file,	and	it	specifies	the	pipe
as	the	field	delimiter,	and	newline	as	the	row	delimiter:
bcp	AdventureWorks2014.Test.Person	in	“C:\Temp\Exports\	Person.Person.csv”	-

T	-c	-t	”|”	-r	”\n”

Once	this	command	is	constructed,	we	just	need	to	pass	this	to	the	Invoke-Sqlcmd
expression:
Invoke-Expression	$cmdimport

We	also	added	a	little	bit	of	delay	here	(2	seconds)	using	the	Start-Sleep	cmdlet	to	allow
INSERT	before	we	count	the	records.	This	is	a	very	simple	way	to	avoid	race	conditions,
but	it	is	sufficient	for	our	requirements.

See	also
	

The	Performing	bulk	import	using	BULK	INSERT	recipe.
The	Performing	bulk	export	using	the	bcp	command-line	utility	recipe.

Connecting	to	an	Azure	SQL	database
In	this	recipe,	we	will	connect	to	an	Azure-hosted	SQL	Server	database.

Getting	ready
There	are	a	number	of	prerequisites	before	you	can	follow	through	with	this	recipe.	First,
you	must	already	have	a	Windows	Azure	account.	If	you	do	not,	you	will	need	to	set	one
up.

You	also	need	to	have	the	Azure	PowerShell	cmdlets.	If	you	do	not	have	these	installed
yet,	you	can	get	them	by	installing	the	Microsoft	Web	Platform	Installer	from
http://go.microsoft.com/fwlink/p/?linkid=320376&clcid=0x409.	Note	that	this	requires
.NET	4.5

In	addition,	you	also	need	to	already	have	an	Azure	SQL	database	to	connect	to.	You	need
to	note	your	server	name,	database	name,	your	username,	and	your	password.	You	will
need	these	when	connecting	to	your	instance	in	the	recipe.

http://go.microsoft.com/fwlink/p/?linkid=320376&clcid=0x409

How	to	do	it…
The	steps	to	connect	to	your	Azure	SQL	database	using	PowerShell	are	as	follows:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 If	you	haven’t	already	done	so	yet,	you	will	need	to	set	up	connectivity	between	your

workstation	and	Windows	Azure.	Execute	the	following	commands	one	by	one:
1.	 Get	your	Azure	subscription:

Get-AzurePublishSettingsFile

This	will	download	a	settings	file	to	your	local	machine.	Note	where	this	is
stored	or	move	this	to	a	folder	that	you	prefer.

2.	 Import	your	settings	file	using	the	following	command:
Import-AzurePublishSettingsFile	-PublishSettingsFile	“C:\DATA\your-

credentials.publishsettings”

3.	 Set	up	a	firewall	rule	to	allow	your	workstation.	You	will	need	to	replace	the	IP
address	in	the	sample	below	with	your	workstation’s	IP	address:
#get	Azure	SQL	Database	ServerName

$servername	=	Get-AzureSqlDatabaseServer	|	Select-Object	–First	1	-

ExpandProperty	ServerName

	“YourAzureSqlDatabaseServerName”

New-AzureSqlDatabaseServerFirewallRule	-ServerName	$servername	-

RuleName	‘ServerIP’	-

StartIpAddress	’<replace	with	your	external	IP>’	-

EndIpAddress	’<replace	with	your	external	IP>’

#you	can	use	the	following	to	get	your	external	IP

$externalip	=	(Invoke-WebRequest	<url>).Content.Trim()

3.	 Connect	to	your	SQL	Azure	database:
$server	=	Get-AzureSqlDatabase	-ServerName	$servername

4.	 Check	the	database	properties:
$server

Your	screen	should	look	similar	to	the	following:

How	it	works…
To	connect	to	your	Azure	SQL	database,	you	first	need	to	make	sure	your	environment	is
set	up.	This	includes	installing	Azure	cmdlets	and	setting	up	your	workstation	to	access
your	Azure	server	by	adding	subscription	and	firewall	rules.	Alternatively,	you	can	use	a
certificate	to	set	up	that	trust	between	your	instance	and	your	workstation.

Connecting	to	the	instance	is	pretty	straightforward.	You	can	do	this	using	an	Azure
cmdlet	called	Get-AzureSqlDatabase,	which	simply	accepts	a	server	name	and	connects
to	your	instance	as	long	as	the	subscription	and	firewall	rules	are	in	place:
$server	=	Get-AzureSqlDatabase	-ServerName	$servername

There’s	more…
Microsoft	provides	additional	cmdlets	if	you	are	working	with	Azure	using	PowerShell.
This	requires	downloading	the	Azure	cmdlets.	Before	you	install	the	Microsoft	Web
Platform	Installer,	which	contains	the	Azure	cmdlets,	you	will	not	find	any	Azure-related
cmdlets.	The	following	should	yield	no	result:
Get-Command	”*Azure*”

After	you	install,	you	should	find	more	than	500	Azure-related	cmdlets	when	you	run	the
following:
(Get-Command	”*Azure*”).Count

Within	this	set,	you	should	find	more	than	a	handful	related	to	SQL	Server	when	you	run
the	following:
Get-Command	”*Azure*Sql*”

There’s	more…
	

Check	out	the	article	How	to	install	and	configure	Azure	PowerShell	for	more	details
on	setting	up	PowerShell	for	Azure	and	how	to	use	Get-AzurePublishSettingsFile
at	http://azure.microsoft.com/en-us/documentation/articles/install-configure-
powershell.
To	learn	more	about	the	Azure	SQL	Database	cmdlets,	check	out	the	MSDN	page	at
https://msdn.microsoft.com/en-us/library/dn546726.aspx.

http://azure.microsoft.com/en-us/documentation/articles/install-configure-powershell
https://msdn.microsoft.com/en-us/library/dn546726.aspx

Creating	a	table	in	an	Azure	SQL	database
In	this	recipe,	we	will	create	a	table	in	your	Azure	SQL	database.

Getting	ready
The	prerequisites	for	this	recipe	are	similar	to	the	previous	recipe,	Connecting	to	an	Azure
SQL	database.	You	must	have	the	following:

	
A	Windows	Azure	account
Azure	PowerShell	modules	installed
An	existing	Azure	SQL	database
Azure	subscription	set	up	in	your	workstation
Firewall	rules	to	allow	your	workstation	to	connect	to	your	Azure	database

To	follow	along,	you	need	to	note	your	Azure	server	name,	database	name,	your
username,	and	your	password.	You	will	need	these	when	connecting	to	your	instance	in
the	recipe.

If	you	are	not	sure	you	have	the	prerequisites,	I	recommend	that	you	go	back	to	the
previous	recipe,	Connecting	to	an	Azure	SQL	database,	to	ensure	you	can	successfully
connect	to	Azure	using	PowerShell.

How	to	do	it…
Let’s	create	a	table	in	your	Azure	SQL	database	using	PowerShell:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Use	the	following	script	to	connect	to	your	Azure	database	and	run	a	query	that

creates	your	table.	Make	sure	you	replace	the	relevant	variables	with	your	own
connection	settings:
Import-Module	SQLPS	-DisableNameChecking

$query	=	@”

CREATE	TABLE	Student

(

			ID	INT	PRIMARY	KEY,

			FName	VARCHAR(100),

			LName	VARCHAR(100)

)

“@

$azureserver	=	“yourAzureServer.database.windows.net”

$database	=	“School”

$username	=	“yourusername”

$password	=	“yourpassword”

Invoke-SqlCmd	-ServerInstance	$azureserver	-Database	$database	-

Username	$username	-Password	$password	-Query	$query

3.	 Check	whether	the	table	has	been	created.	You	can	do	this	using	PowerShell:
$query	=	@”

SELECT	*

FROM	INFORMATION_SCHEMA.TABLES

“@

Invoke-SqlCmd	-ServerInstance	$azureserver	-Database	$database	-

Username	$username	-Password	$password	-Query	$query

Now,	you	should	see	the	table	you	just	created.

4.	 Alternatively,	you	can	connect	to	your	Azure	SQL	database	using	SQL	Server
Management	Studio	(SSMS).	Provide	the	server	name,	username,	and	password	in
SSMS	when	you	connect.	Once	connected,	navigate	to	the	Tables	node	and	find	the
table	you	just	created.	This	is	shown	in	the	following	screenshot:

How	it	works…
You	can	use	the	Invoke-SqlCmd	cmdlet	to	send	queries	to	your	Azure	SQL	database	in	the
same	way	you	would	for	an	on-premise	instance	of	SQL	Server.	You	just	need	to	make
sure	you’ve	already	set	up	your	workstation	to	have	access	to	the	Azure	server.

To	create	the	table,	simply	specify	the	query	that	creates	the	table.	Pass	this	query	to	the
Invoke-SqlCmd	cmdlet	along	with	the	server	and	database	information:
Invoke-SqlCmd	-ServerInstance	$azureserver	-Database	$database	-

Username	$username	-Password	$password	-Query	$query

Chapter	3.	Basic	Administration
In	this	chapter,	we	will	cover:

	
Creating	a	SQL	Server	instance	inventory
Creating	a	SQL	Server	database	inventory
Listing	installed	hotfixes	and	Service	Packs
Listing	running/blocking	processes
Killing	a	blocking	process
Checking	disk	space	usage
Setting	up	WMI	server	event	alerts
Detaching	a	database
Attaching	a	database
Copying	a	database
Executing	a	SQL	query	to	multiple	servers
Creating	a	filegroup
Adding	a	secondary	data	file	to	a	filegroup
Increasing	data	file	size
Moving	an	index	to	a	different	filegroup
Checking	index	fragmentation
Reorganizing/rebuilding	an	index
Running	DBCC	commands
Setting	up	Database	Mail
Listing	SQL	Server	Jobs
Adding	a	SQL	Server	operator
Creating	a	SQL	Server	Job
Adding	a	SQL	Server	event	alert
Running	a	SQL	Server	Job
Scheduling	a	SQL	Server	Job

Introduction
In	this	chapter,	we	will	tackle	more	administrative	tasks	that	can	be	accomplished	using
PowerShell.	PowerShell	can	help	automate	a	lot	of	the	repetitive,	tedious,	mundane	tasks
that	used	to	take	so	many	clicks	to	accomplish.	Some	of	the	tasks	we	will	look	at	include
checking	disk	space,	checking	instance	and	database	properties,	creating	WMI	alerts,	and
managing	SQL	Server	jobs.

Creating	a	SQL	Server	instance	inventory
In	this	recipe,	we	will	export	SQL	Server	instance	properties	to	a	text	file.

How	to	do	it…
Let’s	see	how	to	create	a	SQL	Server	instance	inventory	file:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run:
#specify	folder	and	filename	to	be	produced

$folder	=	“C:\Temp”

$currdate	=	Get-Date	-Format	“yyyy-MM-dd_hmmtt”

$filename	=	”$($instanceName)_$($currdate).csv”

$fullpath	=	Join-Path	$folder	$filename

#export	all	“server”	object	properties

$server	|

Get-Member	|

Where-Object	Name	-ne	“SystemMessages”	|

Where-Object	MemberType	-eq	“Property”	|

Select-Object	Name,	@{Name=“Value”;Expression={$server.($_.Name)}}	|

Export-Csv	-Path	$fullpath	-NoTypeInformation

#jobs	are	also	extremely	important	to	monitor

#export	all	job	names	+	last	run	date	and	result

$server.JobServer.Jobs	|

Select-Object	@{Name=“Name”;Expression={“Job:	$($_.Name)”}},

				@{Name=“Value”;Expression=

{“Last	run:	$($_.LastRunDate)	($($_.LastRunOutcome))”	}}	|

Export-Csv	-Path	$fullpath	-NoTypeInformation	-Append

#show	file	in	explorer

explorer	$folder

How	it	works…
Using	PowerShell,	you	can	regularly	take	an	inventory	of	your	SQL	Server	instances,	that
is,	get	a	list	of	the	SQL	Server	instances	and	their	properties,	for	auditing	and	archiving
purposes.	It	will	be	easier	to	detect	changes	if	you	know	what	your	baseline	properties	are.
In	this	recipe,	we	save	the	properties	into	a	text	file	in	the	C:\Temp	directory.	Alternatively,
if	you	want	to	use	the	server	temp	directory,	you	can	use	the	following	command:

$folder	=	[environment]::GetEnvironmentVariable(“temp”,“machine”)

If	you	want	to	use	the	user	temp	directory,	you	can	use	the	following	command:

$folder	=	$env:temp

There	are	different	ways	of	extracting	different	SQL	Server	settings	using	PowerShell.
What	we	used	in	this	recipe	is	a	fairly	simple	script,	but	exhaustive.

Let’s	dissect	the	first	part	first.	The	full	block	of	code	is	as	follows:
$server	|

Get-Member	|

Where-Object	Name	-ne	“SystemMessages”	|

Where-Object	MemberType	-eq	“Property”	|

Select-Object	Name,	@{Name=“Value”;Expression={$server.($_.Name)}}	|

Export-Csv	-Path	$fullpath	-NoTypeInformation

The	first	few	lines	retrieve	all	properties	and	methods	of	the	server	object:

$server	|

Get-Member	|

The	next	part	is	as	follows:

Where-Object	Name	-ne	“SystemMessages”	|

Where-Object	MemberType	-eq	“Property”	|

It	retrieves	all	nonsystem	message	properties.	We	filter	out	all	system	messages	because
this	will	list	all	system	messages	stored	in	the	system,	which	will	clutter	our	inventory.
The	code	up	to	this	line	would	normally	lead	to	a	result	that	looks	similar	to	the	one
shown	in	the	following	screenshot:

Notice	that	this	only	lists	the	properties	of	the	server,	but	not	the	actual	values	on	these
properties.

The	next	line	allows	us	to	display	the	property	name	and	the	actual	property	value:

Select-Object	Name,	@{Name=“Value”;Expression={$server.($_.Name)}}	|

This	is	at	the	core	of	retrieving	the	inventory.	Here,	we	select	the	name	of	the	property	and
also	select	the	property	value:
@{Name=“Value”;Expression={$server.($_.Name)}}

The	$server.($_.Name)	retrieves	the	current	property	in	the	pipe.	For	example,	if	the
current	property	in	the	pipeline	is	Collation,	then	this	would	be	translated	to
$server.Collation.

The	last	part	of	this	line	exports	the	results	to	a	text,	comma-separated	value	(CSV)	file:
Export-Csv	-Path	$fullpath	-NoTypeInformation

If	you	want	to	have	a	different	delimiter,	just	add	the	–Delimiter	parameter,	for	example:
Export-Csv	-Path	$fullpath	–Delimiter	”|”	-NoTypeInformation

The	–NoTypeInformation	removes	the	headers	from	the	file.	The	resulting	Excel	file
should	look	similar	to	the	following	screenshot,	which	shows	the	first	few	lines	of	the
resulting	inventory	file:

This	is	not	where	we	stop	our	script	though.	We	also	append	job	information	from	the
server,	including	the	last	run	date	and	last	run	result:
$server.JobServer.Jobs	|

Select-Object	@{Name=“Name”;Expression={“Job:	$($_.Name)”}},

							@{Name=“Value”;Expression=

{“Last	run:	$($_.LastRunDate)	($($_.LastRunOutcome))”	}}	|

Export-Csv	-Path	$fullpath	-NoTypeInformation	-Append

To	get	the	job	details,	we	have	to	use	$server.JobServer.Jobs	instead	of	$server	only.
We	list	the	properties	of	the	Jobs	object:	Name,	LastRunDate,	and	LastRunOutcome.

The	job	details	are	appended	at	the	end	of	the	file,	as	shown	in	the	following	screenshot:

There’s	more…
There	are	different	ways	to	extract	inventory	information.	The	recipe	just	loops	through	all
properties	exposed	with	SMO	and	exports	them	to	our	CSV	file.	However,	you	may	prefer
to	extract	specific	properties	and	eliminate	ones	that	are	not	applicable	to	your	inventory.
This	will	entail	exploring	the	SMO	object	model,	and	working	with	Get-Member	to	nail
down	exactly	which	properties	you	want	exported.	With	this	approach,	the	resulting	CSV
is	going	to	be	more	concise	and	relevant	to	your	needs.

These	are	examples	of	more	explicitly	defined	properties:
$server.Information.EngineEdition

$server.Information.Collation

$server.Settings.LoginMode

$server.Settings.MailProfile

$server.Configuration.AgentXPsEnabled

$server.Configuration.	DatabaseMailEnabled

To	export	to	CSV,	you	can	store	these	properties	in	PSCustomObject	which	can	be	piped	to
the	Export-Csv	cmdlet:
#export	some	“server”	object	properties

#capture	info	you	want	to	capture	into	a	PSCustomObject

#the	PSCustomObject	will	make	it	easier	to	export	to	CSV

$result	=	[PSCustomObject]	@{

	EngineEdition							=	$server.Information.EngineEdition

	Collation											=	$server.Information.Collation

	LoginMode											=	$server.Settings.LoginMode

	MailProfile									=	$server.Settings.MailProfile

	AgentXPsEnabled					=	$server.Configuration.AgentXPsEnabled

}

$result	|

Export-Csv	-Path	$fullpath	-NoTypeInformation

See	also
	

The	Creating	a	SQL	Server	database	inventory	recipe.

Creating	a	SQL	Server	database	inventory
This	recipe	will	explain	the	process	of	retrieving	database	properties	and	saving	it	to	a	file.

Getting	ready
Log	in	to	your	SQL	Server	instance.	Check	which	user	databases	are	available	for	you	to
investigate.	The	same	databases	should	appear	in	your	resulting	file	after	you	run	the
PowerShell	script.

How	to	do	it…
To	create	a	SQL	Server	Database	Inventory,	follow	these	steps:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

Add	the	following	script	and	run:
#specify	folder	and	filename	to	be	produced

$folder	=	“C:\Temp”

$currdate	=	Get-Date	-Format	“yyyy-MM-dd_hmmtt”

$filename	=	”$($instanceName)_db_$($currdate).csv”

$fullpath	=	Join-Path	$folder	$filename

$result	=	@()

#get	properties	of	all	databases	in	instance

$server.Databases	|

ForEach-Object	{

			#current	database	in	pipeline

			$db	=	$_

			#capture	info	you	want	to	capture

			#into	a	PSCustomObject

			#this	make	it	easier	to	export	to	CSV

			$item	=	[PSCustomObject]	@{

					DatabaseName							=	$db.Name

					CreateDate									=	$db.CreateDate

					Owner														=	$db.Owner

					RecoveryModel						=	$db.RecoveryModel

					SizeMB													=	$db.Size

					DataSpaceUsage					=	($db.DataSpaceUsage/1MB).ToString(“0.00”)

					IndexSpaceUsage				=	($db.IndexSpaceUsage/1MB).ToString(“0.00”)

					Collation										=	$db.Collation

					Users														=	(($db.Users	|	ForEach-Object	{$_.Name})	-

Join	”,”)

					UserCount										=	$db.Users.Count

					TableCount									=	$db.Tables.Count

					SPCount												=	$db.StoredProcedures.Count

					UDFCount											=	$db.UserDefinedFunctions.Count

					ViewCount										=	$db.Views.Count

					TriggerCount							=	$db.Triggers.Count

					LastBackupDate					=	$db.LastBackupDate

					LastDiffBackupDate	=	$db.LastDifferentialBackupDate

					LastLogBackupDate		=	$db.LastBackupDate

			}

			#create	a	new	“row”	and	add	to	the	results	array

			$result	+=	$item

}

#export	result	to	CSV

#note	CSV	can	be	opened	in	Excel,	which	is	handy

$result	|

Export-Csv	-Path	$fullpath	-NoTypeInformation

#view	folder	in	Windows	Explorer

explorer	$folder

How	it	works…
We	have	taken	a	slightly	different	approach	with	the	database	inventory	compared	to	the
previous	server	inventory.

In	this	recipe,	we	first	constructed	our	filename	with	a	timestamp:
#specify	folder	and	filename	to	be	produced

$folder	=	“C:\Temp”

$currdate	=	Get-Date	-Format	“yyyy-MM-dd_hmmtt”

$filename	=	”$($instanceName)_db_$($currdate).csv”

$fullpath	=	Join-Path	$folder	$filename

We	then	created	an	empty	array	where	we	can	store	our	data:
$result	=	@()

In	the	next	step,	we	created	PSCustomObject	to	capture	the	information	we	want	from	our
databases	and	store	each	record	in	our	$result	array.	The	PSCustomObject	instance	helps
us	create	our	nice	tabular	result	that	we	can	easily	export	into	our	CSV	file.	The	code	is	as
follows:
$server.Databases	|

ForEach-Object	{

			#current	database	in	pipeline

			$db	=	$_

			#capture	info	you	want	to	capture

			#into	a	PSCustomObject

			#this	make	it	easier	to	export	to	CSV

			$item	=	[PSCustomObject]	@{

					DatabaseName							=	$db.Name

					CreateDate									=	$db.CreateDate

					Owner														=	$db.Owner

					RecoveryModel						=	$db.RecoveryModel

					SizeMB													=	$db.Size

					DataSpaceUsage					=	($db.DataSpaceUsage/1MB).ToString(“0.00”)

					IndexSpaceUsage				=	($db.IndexSpaceUsage/1MB).ToString(“0.00”)

					Collation										=	$db.Collation

					Users														=	(($db.Users	|	ForEach-Object	{$_.Name})	-

Join	”,”)

					UserCount										=	$db.Users.Count

					TableCount									=	$db.Tables.Count

					SPCount												=	$db.StoredProcedures.Count

					UDFCount											=	$db.UserDefinedFunctions.Count

					ViewCount										=	$db.Views.Count

					TriggerCount							=	$db.Triggers.Count

					LastBackupDate					=	$db.LastBackupDate

					LastDiffBackupDate	=	$db.LastDifferentialBackupDate

					LastLogBackupDate		=	$db.LastBackupDate

			}

			#create	a	new	“row”	and	add	to	the	results	array

			$result	+=	$item

}

When	you	export,	you	can	simply	take	what	is	stored	in	$result	and	pass	this	to	Export-

Csv.	The	code	is	as	follows:
$result	|

Export-Csv	-Path	$fullpath	-NoTypeInformation

The	first	few	columns	in	your	result	should	look	like	the	following	screenshot:

A	database	has	many	properties	that	you	may	or	may	not	want	to	capture	in	an	inventory
file.	You	can	optionally	select	which	properties	you	want	to	export.	Remember	you	can
adjust	this	script	as	necessary	to	capture	more	properties	than	those	we’ve	listed	out.

See	also
	

The	Creating	a	SQL	Server	instance	inventory	recipe.

Listing	installed	hotfixes	and	Service	Packs
In	this	recipe,	we	will	check	which	Service	Pack	and	hotfixes/patches	are	installed	on	our
server.

How	to	do	it…
Let’s	explore	the	ways	to	list	hotfixes	and	Service	Packs:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

To	list	the	version	of	SQL	Server	and	Service	Pack	level,	add	the	following	script	and
run:
#the	version	format	is:

#major.minor.build.buildminor

#this	should	tell	you	collectively	at	what

#level	your	install	is

$server.Information.VersionString

#version	of	SQL	Server:

#‘RTM’	=	Original	release	version

#‘SPn’	=	Service	pack	version

#‘CTP’,	=	Community	Technology	Preview	version

$server.Information.ProductLevel

#to	get	hotfixes/updates/patches,	we	can	use

#the	Get-Hotfix	cmdlet

#Get-Hotfix	wraps	the	WMI	class	Win32_QuickFixEngineering

#but	this	may	miss	some	updates	or	properties,

#depending	on	your	OS

#this	also	does	not	include	updates	that	are	supplied	by

#Microsoft	Windows	Installer	(MSI)

#get	all	hotfixes

#note	the	Get-Hotfix	cmdlet	does	not	list	updates

#applied	by	MSI	(Microsoft	Installer)

Get-Hotfix

#check	if	a	specific	hotfix	is	installed

Get-Hotfix	-Id	“KB2620704”

How	it	works…
The	script	for	this	task	can	be	divided	into	two	separate	parts.	The	first	part	is	specifically
an	SQL	Server	script	that	allows	us	to	check	which	version	and	Service	Pack	has	been
installed	in	our	instance.

The	code	that	gives	us	the	Service	Pack	level	is	straightforward:
#version	of	SQL	Server

#‘RTM’	=	Original	release	version

#‘SPn’	=	Service	pack	version

#‘CTP’,	=	Community	Technology	Preview	version

$server.Information.ProductLevel

The	block	that	gives	us	the	version	string	provides	a	little	bit	more	information	than	you
might	guess:
#the	version	format	is:

#major.minor.build.buildminor

#this	should	tell	you	collectively	at	what

#level	your	install	is

$server.Information.VersionString

You	may	get	a	version	such	as	12.0.2480.0,	which	is	a	SQL	Server	with	cumulative
update	6	(build	number	2480.0).	When	you	install	a	hotfix	or	service	pack,	it	should	tell
you	what	build	your	instance	is	going	to	be.

The	second	part	of	the	script	that	uses	Get-Hotfix	is	not	SQL	Server-specific.	The	Get-
Hotfix	cmdlet	can	query	either	the	local	or	a	remote	machine	for	installed	hotfixes.
Simply	calling	Get-Hotfix	will	list	all	installed	hotfixes,	or	you	can	also	pass	a	specific
hotfix	number	(or	KB	number)	and	it	will	query	that	specific	item	for	you:
#check	if	a	specific	hotfix	is	installed

Get-Hotfix	-Id	“KB2620704”

Note	that	there	is	a	documented	limitation	of	Get-Hotfix.	It	is	documented	in	MSDN
(http://msdn.microsoft.com/en-us/library/dd315358.aspx):

This	cmdlet	uses	the	Win32_QuickFixEngineering	WMI	class,	which	represents	small
system-wide	updates	of	the	operating	system.	Starting	with	Windows	Vista,	this	class
returns	only	the	updates	supplied	by	Component	Based	Servicing	(CBS).	It	does	not
include	updates	that	are	supplied	by	Microsoft	Windows	Installer	(MSI)	or	the
Windows	update	site.

Note
To	get	a	complete	picture	of	all	updates,	see	Laerte	Junior’s	Simple-Talk	article	List
updates,	hotfixes,	and	Service	Packs	with	Simple	Commands	at	http://www.simple-
talk.com/blogs/2011/09/08/list-updates-hotfixes-and-service-packs-with-simple-
commands/.

http://msdn.microsoft.com/en-us/library/dd315358.aspx
http://www.simple-talk.com/blogs/2011/09/08/list-updates-hotfixes-and-service-packs-with-simple-commands/

There’s	more…
Some	of	the	terms	used	in	this	recipe	may	be	vaguely	familiar	to	you.	If	so,	let’s	define
some	of	these	terms.	After	all,	you	may	hear	it	again	and	again	in	your	dealings	with	your
network	administrator,	system	administrator,	or	your	DBA:

Terminology Description Cycle

RTM This	is	short	for	Release	to	Manufacturing.	It	is	the	version	of
the	product	that	is	released	to	the	market. N/A

Hotfix

This	is	also	referred	to	as	Quick	Fix	Engineering	(QFE).	It	is
designed	to	address	single	or	isolated	issues,	usually	on	a	per
client	basis.	It	has	to	be	specifically	requested	from	Microsoft,
either	through	a	support	call	or	from	the	site
(https://support.microsoft.com/contactus/emailcontact.aspx?
scid=sw;%5BLN%5D;1422&WS=hotfix).

It	is	distributed	by	Microsoft’s	Customer	Service	and	Support
(CSS)	and	cannot	be	redistributed	by	clients.

N/A

Cumulative
Update
(CU)

This	is	a	package	that	contains	a	bundle	of	hotfixes	that	have
passed	an	acceptance	criteria

Since	it’s	not	fully	regression	tested,	it	should	not	be	applied	by	all
customers.

Every
2
months

Service
Pack

According	to	Microsoft	official	terminology	guide:	is	a	tested,
cumulative	set	of	all	hotfixes,	security	updates,	critical	updates,
and	update.

Every
12-18
months

For	more	information	on	additional	terminologies,	visit
http://support.microsoft.com/kb/824684.

There	is	a	comprehensive,	unofficial	guide	to	the	SQL	Server	builds.	You	can	check	it	out
at	http://sqlserverbuilds.blogspot.com/.

In	addition,	Microsoft	has	a	best	practice	guide	on	applying	hotfixes	and	Service	Packs
that	can	be	found	at	http://technet.microsoft.com/en-
us/library/cc750077.aspx#XSLTsection127121120120.

https://support.microsoft.com/contactus/emailcontact.aspx?scid=sw;%5BLN%5D;1422&WS=hotfix
http://support.microsoft.com/kb/824684
http://sqlserverbuilds.blogspot.com/
http://technet.microsoft.com/en-us/library/cc750077.aspx#XSLTsection127121120120

Listing	running/blocking	processes
This	recipe	lists	processes	in	your	SQL	Server	instance	and	their	status.

Getting	ready
In	order	to	see	blocking	processes	in	your	list,	we	will	have	to	force	some	blocking
queries.

Open	SQL	Server	Management	Studio	and	connect	to	the	instance	you	want	to	test.	We
will	assume	you	have	AdventureWorks2014.	If	not,	you	can	use	a	different	database	and
table	altogether.

Open	two	new	query	windows	for	that	connection.	Type	and	run	the	following	in	the	two
query	windows:
USE	AdventureWorks2014

GO

BEGIN	TRAN

SELECT	*

FROM	dbo.ErrorLog

WITH	(TABLOCKX)

How	to	do	it…
Let’s	see	how	to	list	running	and	blocking	processes	in	SQL	Server	using	PowerShell:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

Run	the	following	script	to	see	all	processes:
#List	all	processes

$server.EnumProcesses()	|

Select-Object	Name,	Spid,	Command,	Status,

Login,	Database,	BlockingSpid	|

Format-Table	–AutoSize

You	should	see	something	similar	to	the	following	screenshot:

3.	 To	list	blocking	processes,	run	the	following	code:

#List	blocking	Processes

#This	assumes	you	already	ran	the	SQL	Script	in	the

#prep	section	to	create	the	blocking	processes

#Otherwise	you	may	not	see	any	results

$server.EnumProcesses()	|

Where-Object	BlockingSpid	-ne	0	|

Select-Object	Name,	Spid,	Command,	Status,

Login,	Database,	BlockingSpid	|

Format-Table	-AutoSize

4.	 Your	result	should	show	the	blocking	process	you	produced	in	the	prep	section:

5.	 Go	back	to	your	SSMS	windows	and	rollback	your	transactions.

How	it	works…
The	SMO	Server	object	has	a	method	named	EnumProcesses	that	simplifies	the	listing	of
running	processes	in	an	instance.	Once	the	SMO	server	object	is	instantiated,	all	you	need
to	invoke	is	the	EnumProcesses	method:
$server.EnumProcesses()	|

Select-Object	Name,	Spid,	Command,	Status,

Login,	Database,	BlockingSpid	|

Format-Table	–AutoSize

If	you	wish	to	display	processes	that	are	blocked,	this	command	can	be	filtered	to	show
processes	where	the	BlockingSpid	is	not	zero	(0),	that	is,	blocked:
Where-Object	BlockingSpid	-ne	0	|

There	are	a	number	of	overloads	for	the	EnumProcesses	method.	An	overload	means	you
can	call	the	same	method	with	different	parameters.	Without	any	parameter,	it	returns	all
processes.	Other	overloads	allow	you	to	perform	the	following	operations:

	
List	processes	excluding	system	processes
List	information	for	a	specific	process	ID
List	processes	for	a	specific	login

The	result	returned	by	EnumProcesses	is	similar	to	the	information	you	get	from	the
system	stored	procedure	sp_who2.	The	information	includes	the	following:

	
Name
Login
Host
Status
Command
Database
Blocking	SPID

There’s	more…
To	learn	more	about	the	EnumProcesses	method,	including	ways	to	use	the	method	with
the	different	overloads,	visit	http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.smo.server.enumprocesses(v=sql.110).aspx.

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.server.enumprocesses(v=sql.110).aspx

See	also
	

The	Killing	a	blocking	process	recipe.

Killing	a	blocking	process
This	recipe	illustrates	how	you	can	kill	a	blocking	process	in	SQL	Server.

Getting	ready
In	order	to	see	blocking	processes	in	your	list,	we	will	have	to	force	some	blocking
queries.	If	you	have	already	done	the	prep	work	in	the	Listing	running/blocking	processes
section,	you	do	not	need	to	do	this	prep	section.	If	you	haven’t,	go	ahead	and	perform	the
following	steps:

	
1.	 Open	SQL	Server	Management	Studio	and	connect	to	the	instance	you	want	to	test.

We	will	assume	you	have	AdventureWorks2014.	If	not,	you	can	use	a	different
database	and	table	altogether.

2.	 Open	two	new	query	windows	for	that	connection.	Type	and	run	the	following	in	the
two	query	windows:
USE	AdventureWorks2014

GO

BEGIN	TRAN

SELECT	*

FROM	dbo.ErrorLog

WITH	(TABLOCKX)

How	to	do	it…
These	are	the	steps	to	kill	a	blocking	SQL	Server	process	in	PowerShell:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

Add	the	following	script	and	run:
$VerbosePreference	=	“Continue”

#This	assumes	you	already	ran	the	SQL	script	in	the

#prep	section	to	create	the	blocking	processes

#Otherwise	you	may	not	see	any	results

$server.EnumProcesses()	|

Where-Object	BlockingSpid	-ne	0	|

ForEach-Object	{

			Write-Verbose	“Killing	SPID	$($_.BlockingSpid)”

			$server.KillProcess($_.BlockingSpid)

}

$VerbosePreference	=	“SilentlyContinue”

How	it	works…
To	kill	a	blocking	process	in	PowerShell	using	SMO	simply	requires	the	invocation	of	the
KillProcess	method	of	the	SMO	Server	class:
$server.KillProcess($_.BlockingSpid)

However,	this	entails	knowing	which	process	ID	needs	to	be	killed.	In	this	recipe,	we’ve
also	identified	via	scripting	which	processes	are	blocking	and	then	killing	them.	Thus,	we
need	to	identify	all	blocking	processes.	The	code	is	as	follows:
$server.EnumProcesses()	|

Where-Object	BlockingSpid	-ne	0	|

ForEach-Object	{

			Write-Verbose	“Killing	SPID	$($_.BlockingSpid)”

			$server.KillProcess($_.BlockingSpid)

}

Once	we’ve	identified	all	blocking	processes,	we	can	kill	the	processes.	In	our	recipe,	we
also	display	which	process	ID	we	are	killing:
$server.EnumProcesses()	|

Where-Object	BlockingSpid	-ne	0	|

ForEach-Object	{

			Write-Verbose	“Killing	SPID	$($_.BlockingSpid)”

			$server.KillProcess($_.BlockingSpid)

}

There’s	more…
We	have	all	run	into	a	situation	where	SQL	Server	is	running	a	process	that	is	out	of
control	and	is	blocking	other	transactions	from	finishing.	Perhaps	the	offending	process
contains	a	query	that	is	missing	a	join	(or	has	an	accidental	cross	join)	or	is	simply	using
too	many	resources	(like	memory).	Using	PowerShell	scripting	can	help	reduce	manual
errors	of	accidentally	killing	a	process	that	wasn’t	blocking.

Note
Killing	a	process	can	be	considered	a	drastic	measure.	Use	this	script	with	extreme
caution.

See	also
	

The	Listing	running/blocking	processes	recipe.

Checking	disk	space	usage
This	recipe	shows	how	to	list	disks	available	for	your	SQL	Server	instance,	how	much	is
used,	and	how	much	is	available.

How	to	do	it…
Follow	these	steps	to	check	the	disk	space	usage:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Add	the	following	script	and	run:

#get	server	list

$servers	=	@(“localhost”)

#this	can	come	from	a	file	instead	of	hardcoding

#the	servers

#servers	=	Get-Content	<filename>

Get-WmiObject	-ComputerName	$servers	-Class	Win32_Volume	|

ForEach-Object	{

			$drive	=	$_

			$item		=	[PSCustomObject]	@{

						Name	=	$drive.Name

						DeviceType	=	switch	($drive.DriveType)

																			{

																				0	{“Unknown”}

																				1	{“No	Root	Directory”}

																				2	{“Removable	Disk”}

																				3	{“Local	Disk”}

																				4	{“Network	Drive”}

																				5	{“Compact	Disk”}

																				6	{“RAM”}

																			}

						SizeGB	=	”{0:N2}”	-f	($drive.Capacity/1GB)

						FreeSpaceGB	=	”{0:N2}”	-f	($drive.FreeSpace/1GB)

						FreeSpacePercent	=	”{0:P0}”	-f	($drive.FreeSpace/$drive.Capacity)

			}

			$item

}	|

Format-Table	-AutoSize

The	result	would	look	similar	to	the	following	screenshot:

How	it	works…
An	essential	task	for	a	database	administrator	is	to	know	how	much	disk	the	database
server	is	consuming.	An	automated	script	can	help	the	administrator	create	an	accurate
profile	of	the	database	server	storage	and	allows	for	scaling	the	system.

For	this	recipe,	we	enlist	the	help	of	the	Windows	Management	Instrumentation
(WMI)	Win32_Volume	class:
Get-WmiObject	-ComputerName	$servers	-Class	Win32_Volume

Note
WMI	is	further	discussed	in	Chapter	2,	SQL	Server	and	PowerShell	Basic	Tasks.

Using	WMI,	we	can	list	all	drives	recognized	on	the	target	machine,	including	removable
drives,	local	hard	drives,	network	disks,	compact	disks,	RAM	disks,	and	clustered	and
mounted	drives.

According	to	MSDN	(http://msdn.microsoft.com/en-
us/library/windows/desktop/aa394515(v=vs.85).aspx):

The	Win32_Volume	class	represents	an	area	of	storage	on	a	hard	disk.	The	class
returns	local	volumes	that	are	formatted,	unformatted,	mounted,	or	offline.

We	use	Win32_Volume	instead	of	Win32_LogicalDisk	for	the	following	reasons:

	
Win32_Volume	does	not	manage	floppy	disk	drives,	but	Win32_LogicalDisk	does.
Since	we’re	dealing	with	databases,	we	do	not	need	the	floppy	disk	drives.	Databases
will	not	be	stored	in	floppy	disks.
Win32_Volume	enumerates	all	volumes,	even	those	that	do	not	have	driven	letters.
This	is	useful	for	databases	that	are	stored	in	volume	mountpoints.

For	the	purpose	of	this	recipe,	we	list	all	disks.	In	reality,	you	will	most	likely	always	filter
to	show	just	the	local	and	networked	hard	drives.	In	the	script,	once	we	capture	the	disks
using	the	Win32_Volume	class,	we	pipe	this	to	the	Select-Object	cmdlet,	where	we
format	our	output.	We	use	PSCustomObject	to	format	the	pertinent	values	we	want
displayed.	Note	that	in	some	of	the	values,	we	used	for	format	specifiers.	For	example,	we
have	used	{0:N1}	for	single	decimal	numeric	values,	and	{0:P0}	for	0	decimal	percent.

An	alternative	to	using	PSCustomObject	is	to	use	the	Name	and	Expression	pair	in	the
Select-Object	cmdlet:
Select	@{Name=“Name”;Expression={$_.Name}},

We	can	also	shorten	this	by	using	N	for	Name	and	E	for	Expression:
Select	@{N=“Name”;E={$_.Name}},

If	you	were	to	use	this	format,	your	code	would	look	something	like	this:
Get-WmiObject	-ComputerName	$servers	-Class	Win32_Volume	|

Select-Object	@{N=“Name”;E={$_.Name}},

							@{N=“DriveLetter”;E={$_.DriveLetter}},

http://msdn.microsoft.com/en-us/library/windows/desktop/aa394515(v=vs.85).aspx

					@{N=“DeviceType”;

									E={switch	($_.DriveType)

																{

																				0	{“Unknown”}

																				1	{“No	Root	Directory”}

																				2	{“Removable	Disk”}

																				3	{“Local	Disk”}

																				4	{“Network	Drive”}

																				5	{“Compact	Disk”}

																				6	{“RAM”}

																}};

														},

				@{N=“Size(GB)”;E={“{0:N1}”	-f($_.Capacity/1GB)}},

				@{N=“FreeSpace(GB)”;E={“{0:N1}”	-f($_.FreeSpace/1GB)}},

				@{N=“FreeSpacePercent”;E={

																if	($_.Capacity	-gt	0)

																{

																			”{0:P0}”	-f($_.FreeSpace/$_.Capacity)

																}

																else

																{

																			0

																}

														}

										}	|

Format-Table	-AutoSize

There’s	more…
Learn	more	about	the	Win32_Volume	by	visiting	http://msdn.microsoft.com/en-
us/library/windows/desktop/aa394515(v=vs.85).aspx.

For	more	information	on	Win32_LogicalDisk,	visit	http://msdn.microsoft.com/en-
us/library/windows/desktop/aa394173(v=vs.85).aspx.

You	can	also	check	out	the	standard	.NET	format	specifiers	at
http://msdn.microsoft.com/en-us/library/dwhawy9k(v=vs.110).aspx.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa394515(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394173(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/dwhawy9k(v=vs.110).aspx

Setting	up	WMI	server	event	alerts
In	this	recipe,	we	will	set	up	a	simple	WMI	server	event	alert	for	a	DDL	event.

Getting	ready
We	will	set	up	an	alert	that	creates	a	text	file	with	timestamp	every	time	there	is	a	DDL
login	event	(any	of	CREATE,	ALTER,	or	DROP).	We	will	utilize	the	WMI	provider	for	server
events	in	this	exercise.

These	are	the	values	you	will	need	to	know:

Item Value

Namespace	(if	using	default
instance)

root\Microsoft\SqlServer\ServerEvents\MSSQLServer

Namespace	(if	using	named
instance)

root\Microsoft\SqlServer\ServerEvents\InstanceName

WMI	query SELECT	*	FROM	DDL_LOGIN_EVENTS

DDL_LOGIN_EVENTS

Properties	(partial	list)

SQLInstance

LoginName

PostTime

SPID

ComputerName

LoginType

For	WMI	events	hitting	SQL	Server,	you	will	also	need	to	ensure	that	the	SQL	Server
Broker	is	running	on	your	target	database.	In	our	case,	we	need	to	ensure	the	broker	is
running	on	the	msdb	database.	We	can	use	the	following	snippet	in	T-SQL	and	run	it	in
SQL	Server	Management	Studio	to	find	that	out:
SELECT

		is_broker_enabled,	*

FROM

		sys.databases

ORDER	BY

		name

Check	the	is_broker_enabled	field	of	msdb	in	the	result:

Alternatively,	you	can	use	PowerShell	to	ensure	the	broker	is	running	on	the	msdb
database:
$server.databases[“msdb”].BrokerEnabled

If	service	broker	is	not	running	on	msdb,	run	the	following	T-SQL	statement	from	SQL
Server	Management	Studio:
ALTER	DATABASE	msdb

SET	ENABLE_BROKER

Alternatively,	you	can	do	this	using	PowerShell:
$database.BrokerEnabled	=	$true

$database.Alter()

How	to	do	it…
Let’s	look	at	the	steps	needed	to	set	up	WMI	Server	Event	Alerts:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Add	the	following	script	and	run:

$namespace	=	“root\Microsoft\SqlServer\ServerEvents\MSSQLSERVER”

#WQL	for	Login	Events

#note	we	will	capture	CREATE,	DROP,	ALTER

#if	you	want	to	more	specific,	use	these	events

#DROP_LOGIN,	CREATE_LOGIN,	ALTER_LOGIN

$query	=	“SELECT	*	FROM	DDL_LOGIN_EVENTS”

#register	the	event

#if	the	event	is	triggered,	it	will	respond	by

#creating	a	timestamped	file	containing	event

#details

Register-WMIEvent	-Namespace	$namespace	-Query	$query	-

SourceIdentifier	“SQLLoginEvent”	-Action	{

		$date	=	Get-Date	-Format	“yyyy-MM-dd_hmmtt”

		$filename	=	“C:\Temp\LoginEvent-$($date).txt”

		New-Item	–ItemType	file	$filename

$msg	=	@”

DDL	Login	Event	Occurred`n

PostTime:	$($event.SourceEventArgs.NewEvent.PostTime)

Instance:	$($event.SourceEventArgs.NewEvent.SQLInstance)

LoginType:	$($event.SourceEventArgs.NewEvent.LoginType)

LoginName:	$($event.SourceEventArgs.NewEvent.LoginName)

SID:							$($event.SourceEventArgs.NewEvent.SID)

SPID:						$($event.SourceEventArgs.NewEvent.SPID)

TSQLCommand:		$($event.SourceEventArgs.NewEvent.TSQLCommand)

“@

$msg	|

Out-File	-FilePath	$filename	-Append

}

3.	 This	sets	up	the	alert.	You	will	see	a	screen	like	this:

4.	 Test	firing	a	DDL	event	and	check	if	the	file	gets	created	as	response	to	the	event:
1.	 Open	SQL	Server	Management	Studio.
2.	 In	a	new	query	window,	execute	the	following	code	that	should	trigger	the	DDL

LOGIN	WMI	event:
USE	[master]

GO

CREATE	LOGIN	[eric]

WITH	PASSWORD=N’P@ssword’,

DEFAULT_DATABASE=[master],

CHECK_EXPIRATION=OFF,

CHECK_POLICY=OFF

GO

5.	 Go	to	your	Temp	folder,	and	check	if	there	is	a	file	created	for	the	LoginEvent:

6.	 Open	the	LoginEvent	file	to	see	the	entries.	The	file	contains	details	of	the	event
information,	including	post	time,	instance	name,	login,	SID	and	T-SQL	statement
used	to	create	the	new	login	has	been	captured	in	this	file	as	shown	in	the	following
figure:

Note
Note	that	this	is	a	fairly	generic	log.	If	you	want	to	narrow	down	exactly	what	login	event
has	happened,	you	can	attach	this	to	more	specific	events	such	as	DROP_LOGIN,
CREATE_LOGIN,	or	ALTER_LOGIN.

How	it	works…
We	are	utilizing	WMI	and	WMI	Query	Language	(WQL)	in	this	recipe.	However,
before	we	can	put	this	into	place,	Service	Broker	has	to	be	enabled	in	your	instance,	as
specified	in	the	Getting	Ready	section.	The	Service	Broker	is	what	the	WMI	provider	uses
to	send	the	SQL	Server	instance	events.

Note
WMI	is	further	discussed	in	Chapter	2,	SQL	Server	and	PowerShell	Basic	Tasks.

	
1.	 The	first	thing	to	identify	is	which	namespace	to	use.	For	our	purposes,	because	we

want	to	capture	the	SQL	Server	events	from	the	default	instance.	Our	namespace	will
be:
$namespace	=	“root\Microsoft\SqlServer\ServerEvents\MSSQLSERVER”

2.	 If	you	have	a	named	instance,	simply	replace	MSSQLSERVER	with	the	instance	name.
3.	 The	next	step	is	to	identify	which	WQL	query	we	need	to	capture	the	events	we	want

to	be	alerted	on.	In	our	case,	it	is	just	DDL_LOGIN_EVENTS.	The	other	available	events
that	you	can	query	are	listed	in	MSDN’s	WMI	Provider	for	Server	Events	Classes
and	Properties	article.	The	code	is	as	follows:
#WQL	for	Login	Events

#note	this	will	capture	CREATE,	DROP,	ALTER

#if	you	want	to	more	specific,	use	these	events

#ROP_LOGIN,	CREATE_LOGIN,	ALTER_LOGIN

$query	=	“SELECT	*	FROM	DDL_LOGIN_EVENTS”

Another	way	to	explore	the	SQL	Server	WMI	Events	is	to	use	a	tool	such	as	WMI
Explorer,	which	is	available	in	CodePlex	(https://wmie.codeplex.com/).	It	is	inspired	by
PowerShell	WMI	Explorer	created	by	Marc	van	Orsouw	(the	PowerShell	guy).

https://wmie.codeplex.com/

Marc	has	provided	instructions	on	his	blog	on	how	to	use	this	tool,	which	is	pretty
straightforward.	Once	you	navigate	to	the
root\Microsoft\SqlServer\ServerEvents\MSSQLSERVER	namespace	and	the
DDL_LOGIN_EVENTS	class,	the	supported	properties	and	methods	will	be	displayed	on	the
right-hand	side	pane.

After	you	finalize	namespace	and	WQL	query,	you	need	to	register	this	as	a	WMI	event.
When	registering	this	event,	we	will	specify	an	Action	section	to	create	a	log	file	with	a
timestamp	each	time	the	event	is	triggered.	This	log	file	will	contain	event	properties	such
as	PostTime,	LoginType,	LoginName,	SID,	SPID,	and	the	T-SQL	command	that	caused	the
event	trigger	to	fire.	The	code	is	as	follows:
Register-WMIEvent	-Namespace	$namespace	-Query	$query	-

SourceIdentifier	“SQLLoginEvent”	-Action	{

		$date	=	Get-Date	-Format	“yyyy-MM-dd_hmmtt”

		$filename	=	“C:\Temp\LoginEvent-$($date).txt”

		New-Item	–ItemType	file	$filename

$msg	=	@”

DDL	Login	Event	Occurred`n

PostTime:	$($event.SourceEventArgs.NewEvent.PostTime)

Instance:	$($event.SourceEventArgs.NewEvent.SQLInstance)

LoginType:	$($event.SourceEventArgs.NewEvent.LoginType)

LoginName:	$($event.SourceEventArgs.NewEvent.LoginName)

SID:							$($event.SourceEventArgs.NewEvent.SID)

SPID:						$($event.SourceEventArgs.NewEvent.SPID)

TSQLCommand:		$($event.SourceEventArgs.NewEvent.TSQLCommand)

“@

$msg	|

Out-File	-FilePath	$filename	-Append

}

The	Register-WmiEvent	translates	the	query	into	SQL	Server	event	notifications,	which	is
handled	by	the	Service	Broker.

To	unregister	the	event,	use	the	Unregister-Event	cmdlet:
Unregister-Event	“SQLLoginEvent”

One	caveat	about	the	Register-WmiEvent	is	that	it’s	a	temporary	registered	event.	This
means	it	will	go	away	if	the	program	hosting	it	stops	or	the	server	gets	restarted.

There’s	more…
The	article	WMI	Provider	for	Server	Events	Classes	and	Properties	can	be	found	at
https://msdn.microsoft.com/en-us/library/ms186449.aspx.

To	learn	more	about	DDL	Event	Groups,	check	out	MSDN	at
https://msdn.microsoft.com/en-us/library/bb510452.aspx.

Also,	check	out	the	MSDN	article	on	Understanding	the	WMI	Provider	for	Server	Events
at	http://msdn.microsoft.com/en-us/library/ms181893.aspx.

WQL	will	become	more	and	more	important	as	you	work	with	more	WMI	events.	There	is
an	excellent	free	e-book	provided	by	one	of	the	prominent	bloggers	in	the	PowerShell
community,	Ravikanth	Chaganti.	You	can	download	his	WQL	e-book	from
http://www.ravichaganti.com/blog/?p=1979.

One	tool	that	can	help	you	explore	the	WMI	properties	and	events	is	Marc	van	Orsouw’s
PowerShell	WMI	Explorer,	explored	in	the	following	article	by	PowerShell	MVP	Jeffery
Hicks	https://4sysops.com/archives/free-mow-powershell-wmi-browser/

https://msdn.microsoft.com/en-us/library/ms186449.aspx
https://msdn.microsoft.com/en-us/library/bb510452.aspx
http://msdn.microsoft.com/en-us/library/ms181893.aspx
http://www.ravichaganti.com/blog/?p=1979
https://4sysops.com/archives/free-mow-powershell-wmi-browser/

Detaching	a	database
In	this	recipe,	we	will	detach	a	database	programmatically.

Getting	ready
For	the	purpose	of	this	recipe,	let’s	create	a	database	called	TestDB	and	put	its	data	files	in
the	C:\DATA	folder.	Open	up	SQL	Server	Management	Studio	and	run	the	following
code:
IF	DB_ID(‘TestDB’)	IS	NOT	NULL

DROP	DATABASE	TestDB

GO

CREATE	DATABASE	[TestDB]

	CONTAINMENT	=	NONE

	ON		PRIMARY

(NAME	=	N’TestDB’,	FILENAME	=	N’C:\DATA\TestDB.mdf’	,	SIZE	=	4096KB	,	FILEGROWTH	=	1024KB),

	FILEGROUP	[FG1]

(NAME	=	N’data1’,	FILENAME	=	N’C:\DATA\data1.ndf’	,	SIZE	=	4096KB	,	FILEGROWTH	=	1024KB),

	FILEGROUP	[FG2]

(NAME	=	N’data2’,	FILENAME	=	N’C:\DATA\data2.ndf’	,	SIZE	=	4096KB	,	FILEGROWTH	=	1024KB)

	LOG	ON

(NAME	=	N’TestDB_log’,	FILENAME	=	N’C:\DATA\TestDB_log.ldf’	,	SIZE	=	1024KB	,	FILEGROWTH	=	10%)

GO

How	to	do	it…
To	detach	a	database	programmatically,	follow	these	steps:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

Add	the	following	script	and	run:
$databaseName	=	“TestDB”

#parameters		accepted	are	databasename,	boolean

#flag	for	updatestatistics,	and	boolean	flag

#for	removeFulltextIndexFile

$server.DetachDatabase($databaseName,	$false,	$false)

How	it	works…
Detaching	a	database	programmatically	is	fairly	straightforward.	The	DetachDatabase
method	of	the	$server	object	accepts	three	parameters:	database	name,	an
updateStatistics	Boolean	flag,	and	a	removeFulltextIndexFile	Boolean	flag.	The
command	is	as	follows:
$server.DetachDatabase($databasename,	$false,	$false)

There	is	another	overload	of	the	DetachDatabase	method	that	accepts	only	two
parameters:	database	name	and	the	updateStatistics	flag.

In	addition,	note	that	there	are	settings	that	may	prevent	you	from	detaching	your
databases,	such	as:

	
Insufficient	privileges	on	the	instance
Database	is	being	replicated
Database	has	a	snapshot

You	can	read	the	full	documentation	from	MSDN	at	http://msdn.microsoft.com/en-
us/library/ms190794.aspx.

http://msdn.microsoft.com/en-us/library/ms190794.aspx

There’s	more…
Capturing	the	mdf,	ndf,	and	ldf	information	can	be	useful	especially	if	you	plan	to	detach
the	database	and	reattach	it	right	away	to	a	different	instance.

One	way	to	get	this	information	is	by	using	the	mdf	file	to	extract	all	the	other	data	and	log
files	that	the	detached	database	uses.	You	can	supply	the	mdf	full	file	path	to	two	methods
to	get	all	information	about	the	data	and	log	files:
$server.EnumDetachedDatabaseFiles($mdfname)

$server.EnumDetachedLogFiles($mdfname)

From	the	script,	you	can	easily	pass	this	information	to	your	Attach	database	script	or
code	block.

See	also
	

The	Attaching	a	database	recipe.

Attaching	a	database
In	this	recipe,	we	will	programmatically	attach	a	database	with	a	primary	data	file	(mdf),
log	file	(ldf),	and	multiple	secondary	data	files	(ndf).

Getting	ready
Before	we	can	attach	a	database,	we	must	have	the	data	files	and	optional	log	files	to
attach.	If	you	have	not	completed	the	section	Detach	a	database,	complete	the	following
steps.

When	we	attach	the	database,	we	will	set	QUERYWORKS\srogers	as	the	owner.	This
principal	has	been	created	with	our	development	VM.	Feel	free	to	replace	the	appropriate
code	with	a	login	available	with	your	system.

We	will	first	create	a	database	called	TestDB.	Open	up	SQL	Server	Management	Studio
and	run	the	following	code:
IF	DB_ID(‘TestDB’)	IS	NOT	NULL

DROP	DATABASE	TestDB

GO

CREATE	DATABASE	[TestDB]

	CONTAINMENT	=	NONE

	ON		PRIMARY

(NAME	=	N’TestDB’,	FILENAME	=	N’C:\DATA\TestDB.mdf’	,	SIZE	=	4096KB	,	FILEGROWTH	=	1024KB),

	FILEGROUP	[FG1]

(NAME	=	N’data1’,	FILENAME	=	N’C:\DATA\data1.ndf’	,	SIZE	=	4096KB	,	FILEGROWTH	=	1024KB),

	FILEGROUP	[FG2]

(NAME	=	N’data2’,	FILENAME	=	N’C:\DATA\data2.ndf’	,	SIZE	=	4096KB	,	FILEGROWTH	=	1024KB)

	LOG	ON

(NAME	=	N’TestDB_log’,	FILENAME	=	N’C:\DATA\TestDB_log.ldf’	,	SIZE	=	1024KB	,	FILEGROWTH	=	10%)

GO

Once	you	have	this,	perform	the	steps	in	the	previous	recipe,	Detaching	a	database.
Alternatively,	you	can	detach	from	SSMS	by	going	to	Object	Explorer	|	TestDB	|	Tasks	|
Detach:

How	to	do	it…
Let’s	look	at	the	steps	in	attaching	a	database:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run:
$databasename	=	“TestDB”

$owner	=	“sa”

#identify	the	primary	data	file

#this	typically	has	the	.mdf	extension

#copy	this	to	an	easily	referenced	location

$mdfname	=	“C:\DATA\TestDB.mdf”

#FYI	only

#view	detached	database	info

$server.DetachedDatabaseInfo($mdfname)	|

Format-Table

#attachdatabase	accepts	a	StringCollection,	so	we	need

#to	add	our	files	in	this	collection

$filecoll	=	New-Object	System.Collections.Specialized.StringCollection

#add	all	data	files

#this	includes	the	primary	data	file

$server.EnumDetachedDatabaseFiles($mdfname)	|

Foreach-Object	{

			$filecoll.Add($_)

}

#add	all	log	files

$server.EnumDetachedLogFiles($mdfname)	|

ForEach-Object	{

				$filecoll.Add($_)

}

<#

http://msdn.microsoft.com/en-

us/library/microsoft.sqlserver.management.smo.attachoptions.aspx

None								Value	=	0.	There	are	no	attach	options.

EnableBroker		Value	=	1.	Enables	Service	Broker.

NewBroker				Value	=	2.	Creates	a	new	Service	Broker	.

ErrorBrokerConversations		Value	=	3.	Stops	all	current	active	Service	Broker	conversations	at	the	save	point	and	issues	an	error	message.

RebuildLog				Value	=	4.	Rebuilds	the	log.

#>

$server.AttachDatabase($databasename,	$filecoll,	$owner,	[Microsoft.SqlServer.Management.Smo.AttachOptions]::None)

How	it	works…
Attaching	a	database	requires	a	little	bit	more	work	compared	to	detaching	a	database.	For
detaching	a	database,	all	you	really	need	to	know	and	supply	is	the	instance	details	and	the
database	name.

For	attaching	a	database,	you	also	will	need	to	supply	at	minimum	all	the	files	(primary
data,	secondary	data,	and	log)	that	the	database	used	to	use.	You	can	attach	a	database
without	supplying	log	files.	SQL	Server	will	recreate	new	log	files	for	you.	While	log	files
are	technically	optional,	it	is	best	if	you	have	preserved	the	log	files	if	this	will	be	needed
later	on	for	any	point-in-time	restore	(applicable	only	to	Bulk	Logged	and	Full	Recovery
Model).

Note
Backup	and	restore	is	covered	in	Chapter	5,	Backup	and	Restore,	Bulk	Logged,	and	Full
are	discussed	in	this	chapter.

Before	we	can	attach	the	database,	we	first	need	to	identify	the	primary	data	file:
#identify	the	primary	data	file

#this	typically	has	the	.mdf	extension

$mdfname	=	“C:\DATA\TestDB.mdf”

Note	that	the	primary	data	files	do	not	have	to	have	the	.mdf	extension,	although	it	is
conventional	to	use	this	extension.

We	also	need	to	create	a	StringCollection	object	that	will	store	all	other	related	data	and
log	files	to	the	database	we	are	attaching.	We	will	pass	this	as	parameter	to	the
AttachDatabase	method	of	the	SMO	server	object:
#attachdatabase	accepts	a	StringCollection,	so	we	need

#to	add	our	files	in	this	collection

$filecoll	=	New-Object	System.Collections.Specialized.StringCollection

Once	we	have	our	primary	data	file	path	and	our	StringCollection	object,	we	can	start
adding	all	the	data	files	listed	in	the	mdf	header	into	our	collection:
#add	all	data	files

$server.EnumDetachedDatabaseFiles($mdfname)	|

Foreach-Object	{

			$filecoll.Add($_)

}

You	can	also	add	all	the	log	file	information	if	this	is	available.	If	not,	you	can	choose	to
rebuild	the	log	when	you	attach:
$server.EnumDetachedLogFiles($mdfname)	|

ForEach-Object	{

				$filecoll.Add($_)

}

If	you	need	to	change	the	location	of	the	files,	you	will	need	to	replace	the	path	before	you
add	the	filename	to	the	collection,	for	example:
$newpath	=	“C:\Temp”

$server.EnumDetachedDatabaseFiles($mdfname)	|

Foreach-Object	{

			$newfile	=	Join-Path	$newpath	(Split-Path	$_	-Leaf)

			$filecoll.Add($newfile)

}

You	can	also	reset	a	few	additional	properties,	including	the	database	owner:
$owner	=	“sa”

Once	ready,	you	can	invoke	the	AttachDatabase	method,	which	accepts	four	parameters:
database	name,	file	collection,	owner,	and	attachment	options.	The	command	is	as
follows:
$server.AttachDatabase($databasename,	$filecoll,	$owner,	[Microsoft.SqlServer.Management.Smo.AttachOptions]::None)

There	are	five	attach	options:	None,	EnableBroker,	NewBroker,
ErrorBrokerConversations,	and	RebuildLog.	If	you	want	to	change	the	attach	option,
simply	replace	the	enumeration	value	to
[Microsoft.SqlServer.Management.Smo.AttachOptions]::<NewValue>.	If	you	do	not
have	the	log	files	handy,	be	sure	to	choose	RebuildLog.

There’s	more…
Read	more	about	the	AttachDatabase	options	at	http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.smo.attachoptions(v=sql.110).aspx.

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.attachoptions(v=sql.110).aspx

See	also
	

The	Detaching	a	database	recipe.

Copying	a	database
In	this	recipe,	we	will	look	at	how	to	copy	a	database	using	PowerShell	and	SMO.

Getting	ready
In	this	recipe,	we	will	create	a	copy	of	the	database	TestDB	and	call	it	TestDB_Copy.	We
will	assume	you	have	the	TestDB	database	already	created	from	previous	recipes.	If	you
do	not	have	it,	you	can	also	substitute	this	with	any	database	you	already	have	in	your
instance.

How	to	do	it…
Let’s	list	the	steps	required	to	copy	a	database	using	PowerShell.

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

Add	the	following	script	and	run:
$databasename	=	“TestDB”

$sourcedatabase	=	$server.Databases[$databasename]

#Create	a	database	to	hold	the	copy	of	your	database

$dbnamecopy	=	”$($databasename)_copy”

$dbcopy	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Database	-

Argumentlist	$server,	$dbnamecopy

$dbcopy.Create()

#need	to	specify	source	database

#Use	SMO	Transfer	Class

$transfer	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Transfer	-

Argumentlist	$sourcedatabase

$transfer.CopyAllTables	=	$true

$transfer.Options.WithDependencies	=	$true

$transfer.Options.ContinueScriptingOnError	=	$true

$transfer.DestinationDatabase	=	$dbnamecopy

$transfer.DestinationServer	=	$server.Name

$transfer.DestinationLoginSecure	=	$true

$transfer.CopySchema	=	$true

#perform	the	actual	transfer

$transfer.TransferData()

3.	 Check	that	the	database	has	been	created.	Go	to	SQL	Server	Management	Studio
and	inspect	the	user	databases	in	Object	Explorer.	You	may	need	to	refresh	Object
Explorer:

How	it	works…
Copying	a	database	using	SMO	is	made	a	lot	simpler	by	the
Microsoft.SqlServer.Management.SMO.Transfer	class.	To	create	a	database	copy,	we
first	need	to	create	an	empty	database	that	will	eventually	hold	the	copied	database:
#Create	a	database	to	hold	the	copy	of	your	database

$dbnamecopy	=	”$($databasename)_copy”

$dbcopy	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Database	-

Argumentlist	$server,	$dbnamecopy

$dbcopy.Create()

We	will	then	need	to	create	an	SMO	Transfer	class,	which	accepts	the	source	database	as
a	parameter:
$transfer	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Transfer	-

Argumentlist	$sourcedatabase

In	the	transfer	object,	you	can	specify	properties	you	want	either	brought	over,	or
excluded,	when	the	copy	happens:
$transfer.CopyAllTables	=	$true

$transfer.Options.WithDependencies	=	$true

$transfer.Options.ContinueScriptingOnError	=	$true

$transfer.DestinationDatabase	=	$dbnamecopy

$transfer.DestinationServer	=	$server.Name

$transfer.DestinationLoginSecure	=	$true

$transfer.CopySchema	=	$true

When	you	are	ready	to	bring	the	data	and	schema	over,	you	can	use	the	TransferData
method,	which	copies	the	structure	and	transfers	over	the	records	to	the	destination
database:
#if	you	want	to	perform	the	actual	transfer

#you	should	use	the	TransferData	method

$transfer.TransferData()

There	is	also	an	option	to	just	script	out	the	transfer	if	you	wish	to	just	generate	the	copy
script.	You	can	achieve	this	using	the	ScriptTransfer	method:
#if	you	want	to	only	produce	a	script	that	will

#“copy”	your	database,	use	the	ScriptTransfer	method

$transfer.ScriptTransfer()

There’s	more…
To	learn	more	about	the	SMO	Transfer	class,	check	out	the	MSDN	documentation	at
http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.smo.transfer.aspx.

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.transfer.aspx

Executing	SQL	query	to	multiple	servers
This	recipe	executes	a	predefined	SQL	query	to	multiple	SQL	Server	instances	specified
in	a	text	file.

Getting	ready
In	this	recipe,	we	will	connect	to	multiple	SQL	Server	instances	and	execute	a	SQL
command	against	all	of	them.

Identify	the	available	instances	for	you	to	run	your	query	on.	Once	you	have	identified	all
the	instances	you	want	to	execute	the	command	to,	create	a	text	file	in	C:\Temp	called
sqlinstances.txt	and	put	each	instance	name	per	line	in	that	file.	For	example:
localhost

localhost\SQL01

How	to	do	it…
Let’s	list	the	steps	required	to	complete	the	task:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run:
#replace	this	with	your	own	file	that	contains

#a	list	of	instances	you	want	to	send	the	query	to

$instances	=	Get-Content	“C:\Temp\sqlinstances.txt”

$query	=	“SELECT	@@SERVERNAME	‘SERVERNAME’,	@@VERSION	‘VERSION’”

$databasename	=	“master”

$instances	|

ForEach-Object	{

			$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-ArgumentList	$_

			Invoke-Sqlcmd	-ServerInstance	$_	-Database	$databasename	-

Query	$query

}

How	it	works…
In	this	script,	we	are	leveraging	the	Invoke-Sqlcmd	cmdlet	to	accomplish	our	task.

We	first	get	all	the	instances	and	temporarily	store	them	in	a	variable.	Note	that	you	can
alternatively	just	pipe	the	results	of	the	Get-Content	cmdlet	to	the	succeeding	cmdlets	in
the	pipeline:
$instances	=	Get-content	“C:\Temp\sqlinstances.txt”

Next,	we	just	define	the	global	query	we	want	to	execute,	and	the	database	we	want	to
execute	it	against,	regardless	of	the	instance.	The	code	is	as	follows:
$query	=	“SELECT	@@SERVERNAME	‘SERVERNAME’,	@@VERSION	‘VERSION’”

$databasename	=	“master”

The	core	of	the	recipe	is	iterating	through	all	instances.	For	each	instance,	we	create	a	new
SMO	server	object	and	use	the	Invoke-Sqlcmd	cmdlet	to	execute	the	query.	Note	that
what	we	are	passing	in	the	pipeline	is	the	instance	name;	thus,	we	need	to	refer	to	it	as	$_
when	we	create	the	SMO	server	object.	The	code	is	as	follows:
$instances	|

ForEach-Object	{

			$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-ArgumentList	$_

			Invoke-Sqlcmd	-ServerInstance	$_	-Database	$databasename	-Query	$query

}

See	also
	

The	Executing	a	query/SQL	script	recipe	of	Chapter	2,	SQL	Server	and	PowerShell
Basic	Tasks

Creating	a	filegroup
This	recipe	describes	how	to	create	a	filegroup	programmatically	using	PowerShell	and
SMO.

Getting	ready
We	will	add	a	filegroup	called	FGActive	to	your	TestDB	database.	In	this	recipe,	this	is	the
T-SQL	equivalent	of	what	we	are	trying	to	accomplish:
ALTER	DATABASE	[TestDB]

ADD	FILEGROUP	[FGActive]

GO

How	to	do	it…
These	are	the	steps	to	add	a	filegroup	to	your	database:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

Add	the	following	script	and	run:
$databasename	=	“TestDB”

$database	=	$server.Databases[$databasename]

$fgname	=	“FGActive”

#For	purposes	of	this	recipe,	we	are	going	to	drop	this

#filegroup	if	it	exists,	so	we	can	recreate	it	without

#any	issues

if	($database.FileGroups[$fgname])

{

			$database.FileGroups[$fgname].Drop()

}

#create	the	filegroup

$fg	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Filegroup	-

Argumentlist	$database,	$fgname

$fg.Create()

3.	 Log	in	to	Management	Studio	and	confirm	that	the	filegroup	has	been	added:
1.	 Right-click	on	the	TestDB	database	and	go	to	Properties.
2.	 On	the	left-hand	side	pane,	click	on	Filegroups	and	check	whether	the

FGActive	filegroup	is	there:

How	it	works…
Adding	a	filegroup	can	be	accomplished	with	very	little	code	in	PowerShell.	This	task
entails	creating	the	file	Microsoft.SqlServer.Management.SMO.Filegroup	object	and
invoking	its	Create	method.
$fg	=	New-Object	-TypeName	Microsoft.SqlServer.Management.SMO.Filegroup	-

Argumentlist	$database,	$fgname

$fg.Create()

If	you	want	to	make	this	filegroup	the	default	filegroup,	it	will	require	adding	data	files	to
this	filegroup	first.

Once	data	files	are	added,	you	can	use	the	following	block	to	make	a	filegroup	the	default
one:
#make	sure	there’s	a	data	file	before	you	set	a

#filegroup	default

#otherwise	you	will	get	an	error

$fg	=	$database.FileGroups[$fgname]

$fg.IsDefault	=	$true

$fg.Alter()

See	also
	

The	Adding	a	secondary	data	file	to	a	filegroup	recipe.

Adding	a	secondary	data	file	to	a	filegroup
This	recipe	walks	you	through	how	to	add	a	secondary	data	file	to	a	filegroup	using
PowerShell	and	SMO.

Getting	ready
In	this	recipe,	we	will	add	a	secondary	data	file	to	the	FGActive	filegroup	we	created	for
the	TestDB	database	in	the	previous	recipe.	If	you	don’t	have	this	filegroup	yet,	you	can
follow	the	recipe,	Creating	a	filegroup.	Alternatively,	you	can	execute	the	following	T-
SQL	statement	in	SQL	Server	Management	Studio	to	create	the	filegroup:
ALTER	DATABASE	[TestDB]

ADD	FILEGROUP	[FGActive]

GO

In	this	recipe,	we	will	accomplish	this	T-SQL	equivalent:
ALTER	DATABASE	[TestDB]

ADD	FILE	(

NAME	=	N’datafile1’,

FILENAME	=	N’C:\Temp\datafile1.ndf’)

TO	FILEGROUP	[FGActive]

GO

How	to	do	it…
To	add	secondary	data	files	to	an	existing	filegroup,	follow	these	steps:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

Add	the	following	script	and	run:
$databasename	=	“TestDB”

$fgname	=	“FGActive”

$database	=	$server.Databases[$databasename]

$fg	=	$database.FileGroups[$fgname]

#Define	a	DataFile	object	on	the	file	group	and	set	the	logical	file	name.

$df	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.DataFile	-

ArgumentList	$fg,	“datafile1”

#Make	sure	to	have	a	directory	created	to	hold	the	designated	data	file

$df.FileName	=	“c:\Temp\datafile1.ndf”

#Call	the	Create	method	to	create	the	data	file	on	the	instance	of	SQL	Server.

$df.Create()

How	it	works…
After	setting	up	your	$server	and	$database	SMO	objects,	you	will	need	to	get	a	handle
to	the	filegroup	you	want	the	secondary	file	added	to.	You	can	get	a	handle	to	the
FileGroups	property	through	the	$database	SMO	object:
$fg	=	$database.FileGroups[$fgname]

Once	the	filegroup	handle	is	in	place,	you	can	create	a
Microsoft.SqlServer.Management.SMO.DataFile	object	and	specify	the	logical
filename:
#Define	a	DataFile	object	on	the	file	group	and	set	the	logical	file	name

$df	=	New-Object	-TypeName	Microsoft.SqlServer.Management.SMO.DataFile	-

ArgumentList	$fg,	“datafile1”

#Make	sure	to	have	a	directory	created	to	hold	the	designated	data	file

$df.FileName	=	“c:\Temp\datafile1.ndf”

The	last	step	is	to	invoke	the	Create	method	of	the	DataFile	object:

#Call	the	Create	method	to	create	the	data	file	on	the	instance	of	SQL	Server.

$df.Create()

See	also
	

The	Creating	a	filegroup	recipe.

Increase	data	file	size
In	this	recipe,	we	will	increase	the	size	of	an	existing	secondary	data	file.

Getting	ready
We	will	use	the	datafile1	data	file	in	the	TestDB	database,	which	was	created	in	the
recipe	Adding	secondary	data	files	to	a	filegroup.	We	will	increase	the	size	to	1	GB.	Feel
free	to	substitute	this	with	a	secondary	data	file	from	a	database	that	exists	in	your
environment.

This	recipe	will	accomplish	this	T-SQL	equivalent:
ALTER	DATABASE	[TestDB]

MODIFY	FILE	(

NAME	=	N’datafile1’,

SIZE	=	2048KB)

GO

How	to	do	it…
To	adjust	the	size	of	a	secondary	data	files	to	an	existing	filegroup,	follow	these	steps:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

Add	the	following	script	and	run:
$databasename	=	“TestDB”

$fgname	=	“FGActive”

$dfname	=	“datafile1”

$database	=	$server.Databases[$databasename]

$fg	=	$database.FileGroups[$fgname]

$df	=	$fg.Files[$dfname]

#Size	is	measured	in	KB

$df.Size	=	2048

$df.Alter()

How	it	works…
In	SQL	Server,	you	can	define	multiple	filegroups	and	each	of	these	filegroups	can	contain
a	set	of	data	files.	To	adjust	the	size	of	a	data	file,	we	first	need	to	get	a	handle	to	the
filegroup	that	contains	the	data	file:
$fg	=	$database.FileGroups[$fgname]

Once	the	filegroup	handle	is	in	place,	you	specify	the	data	file	you	want	to	modify:
$database	=	$server.Databases[$databasename]

$fg	=	$database.FileGroups[$fgname]

$df	=	$fg.Files[$dfname]

Size	is	a	property	of	the	Microsoft.SqlServer.Management.SMO.DataFile	object
measured	in	KB,	which	can	be	set	as	follows:
$df.Size	=	2048

When	you’re	ready	to	apply	the	changes,	invoke	the	Alter	method	of	the	DataFile
object:
$df.Alter()

Other	properties	that	you	can	set	for	a	data	file	include:

	
Name

FileName

Growth

GrowthType

MaxSize

Learn	more	about	the	DataFile	class,	including	its	properties	and	methods,	from	the
MSDN	documentation	page	at	https://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.smo.datafile.aspx.

https://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.datafile.aspx

See	also
	

The	Creating	a	filegroup	recipe.
The	Adding	a	secondary	data	file	to	a	filegroup	recipe.

Moving	an	index	to	a	different	filegroup
This	recipe	illustrates	how	to	move	indexes	to	a	different	filegroup.

Getting	ready
Using	the	TestDB	database,	or	any	database	of	your	choice,	let’s	create	a	table	called
Student	with	a	clustered	primary	key.

Open	SQL	Server	Management	Studio	and	execute	the	following	code:
USE	TestDB

GO

—	this	table	is	going	to	be	stored	to

—	the	default	filegroup

IF	OBJECT_ID(‘Student’)	IS	NOT	NULL

DROP	TABLE	Student

GO

CREATE	TABLE	Student

(

ID	INT	IDENTITY(1,1)	NOT	NULL,

FName	VARCHAR(50),

CONSTRAINT	[PK_Student]	PRIMARY	KEY	CLUSTERED

([ID]	ASC)

)

GO

—	insert	some	sample	data

—	nothing	fancy,	every	student	will	be	called	Joe	for	now	:)

INSERT	INTO	Student(FName)

VALUES(‘Joe’)

GO	20

INSERT	INTO	Student(FName)

SELECT	FName	FROM	Student

GO	10

—	check	how	many	records	are	inserted

—	this	should	give	20480

SELECT	COUNT(*)	FROM	Student

We	want	to	move	the	table	to	a	different	filegroup	called	FGStudent.	Feel	free	to	replace
this	with	your	choice	of	filegroup.	Note	that	the	filegroup	must	already	exist.

The	T-SQL	equivalent	of	what	we	are	trying	to	accomplish	in	this	recipe	is	as	follows:
CREATE	UNIQUE	CLUSTERED	INDEX	PK_Student

ON	dbo.Student

(

			ID	ASC

)

WITH	(DROP_EXISTING=ON,	ONLINE=ON)

ON	FGStudent

GO

How	to	do	it…
Let’s	see	the	steps	required	to	complete	the	task:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

$VerbosePreference	=	“continue”

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

Add	the	following	script	and	run:
$databasename	=	“TestDB”

$database	=	$server.Databases[$databasename]

$tablename	=	“Student”

$table	=	$database.Tables[$tablename]

#display	which	filegroup	the	table	is	on	now

Write-Verbose	“Current:	$($table.FileGroup)”

#now	move	to	a	different	filegroup

#make	sure	this	filegroup	already	exists

#if	not,	create	it

$fgname	=	“FGStudent”

if	(!($database.FileGroups[$fgname]))

{

			$fg	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Filegroup	-

ArgumentList	$database,	$fgname

			$fg.Create()

}

$fg	=	$database.FileGroups[$fgname]

#create	a	datafile	and	specify	the	filename

$df	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.DataFile	-

ArgumentList	$fg,	“studentdata”

#create	a	datafile	and	specify	the	filename

$df.FileName	=	“c:\Temp\studentdata.ndf”

#create	the	datafile

$df.Create()

#now	let’s	recreate	the	clustered	index

#onto	the	new	filegroup

$clusteredindex	=	$table.Indexes	|

Where-Object	IsClustered	-eq	$true

$clusteredindex.FileGroup	=	$fgname

$clusteredindex.Recreate()

#display	which	filegroup	the	table	is	on	now

$table.Refresh()

#display	which	filegroup	the	table	is	on	now

Write-Verbose	“New:	$($table.FileGroup)”

How	it	works…
Your	indexes	might	outgrow	your	initial	space	allocation	for	them,	or	you	may	want	to
place	them	into	a	different	disk	purely	for	performance	reasons.	There	will	be	a	number	of
reasons	to	move	your	indexes	to	a	different	filegroup.	The	good	news	is	PowerShell	and
SMO	can	accomplish	this	task.

For	purposes	of	our	exercise,	the	first	few	steps	are	creating	a	filegroup	called	FGStudent
and	adding	a	secondary	data	file	into	the	new	filegroup.

Note
See	the	recipes	Create	a	filegroup	and	Adding	a	secondary	data	file	to	a	filegroup	for
additional	information.

For	this	recipe,	we	will	be	moving	our	clustered	index	into	a	different	filegroup.	Since	the
Student	table	has	a	clustered	index,	the	clustered	index	becomes	synonymous	to	the	table.
In	SQL	Server,	the	clustered	index	stores	the	data	rows.	Therefore,	to	move	the	table	to	a
different	filegroup	in	this	case	means	moving	the	clustered	index	to	the	new	filegroup.

To	start	off,	we	need	to	capture	the	clustered	index.	The	following	code	implicitly	creates
a	Microsoft.SqlServer.Management.Smo.Index	object	when	you	access	the
$table.Indexes	object	and	assign	it	to	the	$clusteredindex	variable:
$clusteredindex	=	$table.Indexes	|

Where-Object	IsClustered	-eq	$true

After	getting	the	clustered	index	and	storing	it	to	a	variable,	we	will	need	to	specify	the
new	filegroup	this	clustered	index	should	belong	to:
$clusteredindex.FileGroup	=	$fgname

Once	you’ve	specified	the	filegroup,	you	can	invoke	the	Recreate	method	of	the
Microsoft.SqlServer.Management.Smo.Index	object.	Note	that	we	are	recreating	the
index—not	simply	creating	it—because	the	index	already	exists.	The	Recreate	method	is
equivalent	to	CREATE…WITH	DROP	EXISTING:
$clusteredindex.Recreate()

To	check,	you	can	refresh	the	table	and	see	which	filegroup	the	index	is	attached	to:
#display	which	filegroup	the	table	is	on	now

$table.Refresh()

#display	which	filegroup	the	table	is	on	now

Write-Verbose	“New:	$($table.FileGroup)”

There’s	more…
To	move	nonclustered	indexes	to	a	different	filegroup,	you	have	to	follow	the	same
method	described	in	the	previous	recipe.	Here’s	an	example:
$idxname	=	$table.Indexes[“idxname”]

$idxname.FileGroup	=	$fgname

$idxname.Recreate()

$idxname.Refresh()

$idxname.FileGroup

If	you	are	dealing	with	a	clustered	index	that	is	not	a	primary	key,	you	can	also	consider
the	DropAndMove	method	of	the	Microsoft.SqlServer.Management.Smo.Index	object.
This	method	drops	the	clustered	index	and	recreates	it	in	the	specified	filegroup:
$idxname.DropAndMove($fgname)

See	also
	

The	Creating	a	filegroup	recipe.
The	Adding	a	secondary	data	file	to	a	filegroup	recipe.
The	Creating	an	index	recipe	of	Chapter	2,	SQL	Server	and	PowerShell	Basic	Tasks

Checking	index	fragmentation
In	this	recipe,	we	will	look	at	the	steps	to	display	index	fragmentation	using	SMO	and
PowerShell.

Getting	ready
We	will	investigate	the	index	fragmentation	of	the	Person.Person	table	in	the
AdventureWorks2014	database.

How	to	do	it…
Let’s	see	the	steps	required	to	complete	the	task:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run:
$databasename	=	“AdventureWorks2014”

$database	=	$server.Databases[$databasename]

$tableName	=	“Person”

$schemaName	=	“Person”

$table	=	$database.Tables	|

									Where-Object	Schema	-like	$schemaName	|

									Where-Object	Name	-like	$tableName

#From	MSDN:

#EnumFragmentation	enumerates	a	list	of

#fragmentation	information	for	the	index

#using	the	default	fast	fragmentation	option.

$table.Indexes	|

Foreach-Object	{

		$item	=	$_

		$item.EnumFragmentation()	|

		Select-Object	Index_Name,

																Index_Type,

																Pages,

															@{Name=“AvgFragmentation”;

Expression={($_.AverageFragmentation).ToString(“0.0000”)}}

}	|

Format-Table	-AutoSize

The	result	will	look	similar	to	the	one	shown	in	the	following	screenshot:

How	it	works…
The	SMO	Index	class	provides	a	method	called	EnumFragmentation	of	the
Microsoft.SqlServer.Management.Smo.Index	object	that	can	enumerate	fragmentation
of	indexes	in	a	table.

You	can	invoke	the	EnumFragmentation	method	against	all	indexes	in	a	table.	This
method	provides	the	following	information:

In	the	script,	we	looped	through	all	the	indexes	in	the	table	and	invoked	the
EnumFragmentation	method	for	each.	For	each	index	we	display	the	index	name,	type,
number	of	pages,	and	the	AverageFragmentation	property	(formatted	to	display	four
decimal	places).	The	code	is	as	follows:
$table.Indexes	|

Foreach-Object	{

		$item	=	$_

		$item.EnumFragmentation()	|

		Select-Object	Index_Name,

																Index_Type,

																Pages,

@{Name=“AvgFragmentation”;Expression=

{($_.AverageFragmentation).ToString(“0.0000”)}}

}	|

Format-Table	-AutoSize

There’s	more…
You	can	read	more	on	the	EnumFragmentation	method	of	the
Microsoft.SqlServer.Management.Smo.Index	object	from	MSDN,	including	options
you	can	specify	(http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.smo.index.enumfragmentation.aspx).

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.index.enumfragmentation.aspx

See	also
	

The	Reorganizing/rebuilding	an	index	recipe.

Reorganizing/rebuilding	an	index
This	recipe	demonstrates	how	to	reorganize	or	rebuild	an	index.

Getting	ready
We	will	iterate	through	all	the	indexes	in	the	Person.Person	table	in	the
AdventureWorks2014	database	for	this	exercise.

How	to	do	it…
Let’s	see	how	to	reorganize	or	rebuild	indexes	programmatically:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

Add	the	following	script	and	run:
$VerbosePreference	=	“Continue”

$databasename	=	“AdventureWorks2014”

$database	=	$server.Databases[$databasename]

$tableName	=	“Person”

$schemaName	=	“Person”

$table	=	$database.Tables	|

									Where-Object	Schema	-like	$schemaName	|

									Where-Object	Name	-like	$tableName

#From	MSDN:

#EnumFragmentation	enumerates	a	list	of

#fragmentation	information

#for	the	index	using	the	default	fast	fragmentation	option.

$table.Indexes	|

ForEach-Object	{

			$index	=	$_

			$index.EnumFragmentation()	|

			ForEach-Object	{

								$item	=	$_

								#reorganize	if	10	and	30%	fragmentation

								if($item.AverageFragmentation	-ge		10	-and

											$item.AverageFragmentation	-le	30		-and

											$item.Pages	-ge	1000)

								{

											Write-Verbose	“Reorganizing	$index.Name	…	”

											$index.Reorganize()

								}

								#rebuild	if	more	than	30%

								elseif	($item.AverageFragmentation	-gt	30	-and

																$item.Pages	-ge	1000)

								{

											Write-Verbose	“Rebuilding	$index.Name	…	”

											$index.Rebuild()

								}

			}

}

$VerbosePreference	=	“SilentlyContinue”

How	it	works…
The	EnumFragmentation	method	allows	additional	information	about	indexes	to	be
extracted,	such	as	average	fragmentation	and	number	of	pages.	Instead	of	just	blindly
rebuilding	or	reorganizing	all	indexes,	we	can	check	these	properties	and	put	more	smarts
as	to	when	the	indexes	need	to	be	reorganized,	or	rebuilt	(if	at	all).

These	are	the	rules	of	thumb:

	
If	fragmentation	is	more	than	30	percent	and	if	pages	are	more	than	or	equal	to	1,000,
rebuild
If	fragmentation	is	between	10	percent	and	30	percent	and	pages	are	more	than	or
equal	to	1,000,	reorganize

It’s	more	of	a	guideline	to	have	1,000	pages	for	the	index	page	count	(documented	in
articles	and	discussed	in	conferences).	Paul	Randal	has	a	post	explaining	where	this
number	comes	from:	http://www.sqlskills.com/blogs/paul/where-do-the-books-online-
index-fragmentation-thresholds-come-from/.	I	have	used	this	number	in	a	benchmarking
exercise	and	1,000	worked	well	in	that	environment.	Test	this	on	your	system;	you	may
find	that	the	number	of	pages	that	works	for	you	are	a	little	bit	higher	or	a	little	bit	lower.

To	use	this	conditional	rebuild/reorganize	strategy	in	PowerShell,	you	can	use	an	if-else
statement	to	divert	the	action	to	the	correct	code	block,	depending	on	the	fragmentation
and	pages	values:
				#reorganize	if	10	and	30%	fragmentation

				if($item.AverageFragmentation	-ge		10	-and

							$item.AverageFragmentation	-le	30		-and

							$item.Pages	-ge	1000)

				{

							Write-Verbose	“Reorganizing	$index.Name	…	”

							$index.Reorganize()

				}

				#rebuild	if	more	than	30%

				elseif	($item.AverageFragmentation	-gt	30	-and

												$item.Pages	-ge	1000)

				{

							Write-Verbose	“Rebuilding	$index.Name	…	”

							$index.Rebuild()

				}

http://www.sqlskills.com/blogs/paul/where-do-the-books-online-index-fragmentation-thresholds-come-from/

See	also
	

The	Checking	index	fragmentation	recipe.

Running	DBCC	commands
This	recipe	shows	you	some	of	the	DBCC	commands	that	can	be	run	using	PowerShell.

How	to	do	it…
Follow	these	steps	to	run	DBCC	commands:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Some	DBCC	commands	are	built	into	SMO,	so	you	can	just	call	the	methods:
$databasename	=	“AdventureWorks2014”

$database	=	$server.Databases[$databasename]

#RepairType	Values:	AllowDataLost,	Fast,	None,	Rebuild

$database.CheckTables([Microsoft.SqlServer.Management.Smo.RepairType]::None)

How	it	works…
Not	all	DBCC	commands	are	wrapped	in	SMO	methods.	Some	of	the	available	methods
are	on	a	database	level	are	as	follows:

	
CheckAllocations

CheckAllocationsDataOnly

CheckCatalog

CheckTables

CheckTablesDataOnly

To	invoke	the	SMO	DBCC	methods,	you	need	to	get	a	handle	to	the	database	first:
$databasename	=	“AdventureWorks2014”

$database	=	$server.Databases[$databasename]

The	CheckTables	method	requires	a	parameter	for	RepairType,	which	can	be	one	of	the
following:	AllowDataLost,	Fast,	None,	or	Rebuild.
$database.CheckTables([Microsoft.SqlServer.Management.Smo.RepairType]::None)

For	other	DBCC	commands	that	are	not	nicely	wrapped	in	methods,	you	can	still	use	the
Invoke-Sqlcmd	cmdlet:
$query	=	“DBCC	SHRINKFILE(TestDB_Log)”

Invoke-Sqlcmd	-ServerInstance	$instanceName	-Query	$query

Setting	up	Database	Mail
This	recipe	demonstrates	how	to	set	up	Database	Mail	programmatically	using
PowerShell.

Getting	ready
The	assumption	in	this	recipe	is	that	Database	Mail	is	not	yet	configured	on	your	instance.

These	are	the	settings	we	will	use	for	this	recipe:

Setting Value

Mail	Server mail.queryworks.local

Mail	Server	Port 25

E-mail	address	for	Database	Mail	profile dbmail@queryworks.local

SMTP	authentication Basic	authentication

Credentials	for	e-mail	address
Username	is	dbmail@queryworks.local

Password	is	<some	password>

How	to	do	it…
To	set	up	Database	Mail,	follow	these	steps:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	actual	server	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

Add	the	following	script	block	to	create	a	Database	Mail	account	and	run:
#enable	DatabaseMail

#this	is	similar	to	an	sp_configure	TSQL	command

$server.Configuration.DatabaseMailEnabled.ConfigValue	=	1

$server.Configuration.Alter()

$server.Refresh()

#set	up	account

$accountName	=	“DBMail”

$accountDescription	=	“QUERYWORKS	Database	Mail”

$displayName	=	“QUERYWORKS	mail”

$emailAddress	=	“dbmail@queryworks.local”

$replyToAddress	=	“dbmail@queryworks.local”

$mailServerAddress	=	“mail.queryworks.local”

$account	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Mail.MailAccount	-

Argumentlist	$server.Mail,	$accountName,	$accountDescription,	$displayName,	$emailAddress

$account.ReplyToAddress	=	$replyToAddress

$account.Create()

3.	 Check	SQL	Server	Management	Studio	and	confirm	that	a	new	account	has	been
created	in	Database	Mail.	The	steps	are	as	follows:
1.	 Open	SQL	Server	Management	Studio.
2.	 Expand	the	Management	node.
3.	 Right-click	on	Database	Mail	and	choose	Configure	Database	Mail.
4.	 In	the	Select	Configuration	Task	window,	select	the	Manage	Database	Mail

accounts	and	profiles	radio	button.
5.	 In	the	Manage	Profiles	and	Accounts	window,	select	the	option	View,	change,

or	delete	an	existing	account.
4.	 Visually	check	the	Modify	Existing	Account	page.	See	what	settings	have	been

saved	from	executing	your	PowerShell	script.	You	will	see	that	Anonymous
Authentication	has	been	selected	in	the	SMTP	authentication	by	default.

5.	 After	you’ve	confirmed	the	account,	cancel	out	of	the	wizard	and	go	back	to	your
PowerShell	ISE

6.	 Now	we	are	going	to	configure	the	account	to	use.	Add	the	following	to	the	script
and	run:
#default	mail	server	that	was	saved	in	previous	script

#was	the	server	name,	we	need	to	change	this	to	the

#appropriate	mail	server

$mailserver	=	$account.MailServers[$instanceName]

$mailserver.Rename($mailServerAddress)

$mailserver.Alter()

#default	SMTP	authentication	is	Anonymous	Authentication

#we	need	to	set	this	to	use	proper	authentication

$mailserver.SetAccount(“dbmail@queryworks.local”,	“some	password”)

$mailserver.Port	=	25

$mailserver.Alter()

7.	 Check	the	Modify	Existing	Account	window	from	Management	Studio	again.
Check	whether	these	new	settings	have	been	saved.

8.	 After	confirming	the	new	settings,	cancel	out	of	the	wizard	and	go	back	to	your
PowerShell	ISE.

9.	 To	add	a	Database	Mail	profile,	add	the	following	code	to	the	script	and	run:
#create	a	profile

$profileName	=	“DB	Mail	Profile”

$profileDescription=	“Default	DB	Mail	Profile”

if($mailProfile)

{

		$mailProfile.Drop()

}

$mailProfile	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Mail.MailProfile	-

ArgumentList	$server.Mail,	$profileName,	$profileDescription

$mailProfile.Create()

$mailProfile.Refresh()

10.	 Check	the	settings	from	SQL	Server	Management	Studio.	The	steps	are	as	follows:
1.	 Go	back	to	the	Manage	Profiles	and	Accounts	window,	but	this	time	select

View,	change,	or	delete	an	existing	profile.
2.	 Visually	check	the	Manage	Existing	Profile	page.	You	will	see	that	apart	from

the	name	and	description,	the	window	is	still	fairly	empty.

11.	 After	confirming	that	the	new	profile	has	been	created,	cancel	out	of	the	wizard	and
go	back	to	your	PowerShell	ISE.

12.	 Next	we	will	attach	the	Database	Mail	account	to	the	profile	and	make	it	the	default
profile.	Add	the	following	code	to	the	script	and	run:
#add	account	to	the	profile

$mailProfile.AddAccount($accountName,	0)

$mailProfile.AddPrincipal(‘public’,	1)

$mailProfile.Alter()

13.	 Check	the	settings	from	SQL	Server	Management	Studio.	The	steps	are	as	follows:
1.	 Go	back	to	the	Manage	Profiles	and	Accounts	window,	but	this	time	select

View,	change,	or	delete	an	existing	profile.
2.	 Visually	check	the	Manage	Profile	Security	page.	You	will	see	that	the	default

profile	that	has	been	saved.

14.	 After	confirming,	cancel	out	of	the	wizard	and	go	back	to	PowerShell	ISE.
15.	 To	link	the	mail	profile	to	SQL	Server	Agent,	add	the	following	code	to	the	script	and

run:
#link	this	mail	profile	to	SQL	Server	Agent

$server.JobServer.AgentMailType	=	‘DatabaseMail’

$server.JobServer.DatabaseMailProfile	=	$profileName

$server.JobServer.Alter()

#restart	SQL	Server	Agent

$managedComputer	=	New-

Object	Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer	$instanceName

$servicename	=	“SQLSERVERAGENT”

$service	=	$managedComputer.Services[$servicename]

$service.Stop()

$service.Start()

Note
Since	we	are	restarting	SQL	Server	Agent,	you	may	need	to	wait	a	few	minutes	for
to	be	connected	again.

16.	 Once	SQL	Server	Agent	is	back,	check	the	new	settings	from	Management	Studio.
The	steps	are	as	follows:
1.	 Right-click	on	SQL	Server	Agent	and	go	to	Properties.
2.	 Click	on	Alert	System	from	the	left-hand	side	pane.

17.	 Check	the	settings.	The	Enable	Mail	Profile	option	should	be	checked.

18.	 Manually	test	sending	an	e-mail.	Right-click	on	Database	Mail	and	choose	Send
Test	E-mail,	as	shown	in	the	following	screenshot:

19.	 Check	your	mail	client	to	see	whether	you	have	received	the	e-mail.

How	it	works…
Database	Mail	is	a	feature	introduced	in	SQL	Server	2005	that	simplifies	the	sending	of	e-
mails	from	your	SQL	Server	instance.	With	Database	Mail,	you	can	set	up	the	following:

	
Accounts:	This	can	store	the	e-mail	accounts	and	associated	credentials	that
Database	Mail	can	use	to	send	e-mails.
Profiles:	This	can	store	multiple	accounts.	If	an	account	in	a	profile	fails,	the	next
one	in	the	queue	will	be	used.

Database	Mail	is	a	disabled	service	by	default.	To	start	using	it,	you	first	need	to	enable	it:
#enable	DatabaseMail

#this	is	similar	to	an	sp_configure	TSQL	command

$server.Configuration.DatabaseMailEnabled.ConfigValue	=	1

$server.Configuration.Alter()

This	statement	is	equivalent	to	the	following	T-SQL	statement:
EXEC	sp_configure	‘Database	Mail	XPs’,	1

GO

RECONFIGURE

GO

To	continue	setting	up	Database	Mail,	you	need	to	set	up	an	account	first:
#set	up	account

$accountName	=	“DBMail”

$accountDescription	=	“QUERYWORKS	Database	Mail”

$displayName	=	“QUERYWORKS	mail”

$emailAddress	=	“dbmail@queryworks.local”

$replyToAddress	=	“dbmail@queryworks.local”

$mailServerAddress	=	“mail.queryworks.local”

$account	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Mail.MailAccount	-

Argumentlist	$server.Mail,	$accountName,	$accountDescription,	$displayName,	$emailAddress

$account.ReplyToAddress	=	$replyToAddress

$account.Create()

The	next	step	is	to	create	a	profile:
$mailProfile	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Mail.MailProfile	-

ArgumentList	$server.Mail,	$profileName,	$profileDescription

$mailProfile.Create()

$mailProfile.Refresh()

Once	both	the	account(s)	and	profile	are	set	up,	you	need	to	add	the	accounts	to	the	mail
profile:
#add	account	to	the	profile

$mailProfile.AddAccount($accountName,	0)

$mailProfile.AddPrincipal(‘public’,	1)

$mailProfile.Alter()

The	main	reason	behind	setting	up	Database	Mail	is	to	use	this	with	SQL	Server	Agent.	If
this	is	not	set	up,	SQL	Server	Agent	will	not	be	able	to	alert	operators	for	a	job	via	e-
mails.	Setting	up	the	Alert	for	SQL	Server	Agent	is	a	key	step	and	is	often	missed.	The
code	is	as	follows:
#link	this	mail	profile	to	SQL	Server	Agent

$server.JobServer.AgentMailType	=	‘DatabaseMail’

$server.JobServer.DatabaseMailProfile	=	$profileName

$server.JobServer.Alter()

Once	the	Database	Mail	profile	is	hooked	to	SQL	Server	Agent,	you	also	need	to	restart
the	server	before	you	can	start	using	it.

Listing	SQL	Server	Jobs
This	recipe	illustrates	how	to	list	SQL	Server	Jobs	using	PowerShell.

Getting	ready
Do	a	visual	check	of	your	SQL	Server	Jobs	in	your	instance.	You	should	see	the	following
jobs	after	you	run	the	script	in	this	recipe:

How	to	do	it…
These	are	the	steps	to	list	SQL	Server	Jobs:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

Add	the	following	script	and	run:
$jobs=$server.JobServer.Jobs

$jobs	|

Select-Object	Name,	OwnerLoginName,

LastRunDate,	LastRunOutcome	|

Sort-Object	-Property	Name	|

Format-Table	-AutoSize

How	it	works…
Listing	SQL	Server	Jobs	is	a	short,	simple	task	in	PowerShell.	To	list	the	jobs,	you	first
need	to	get	a	handle	to	the	JobServer.Jobs	object:
$jobs=$server.JobServer.Jobs

Once	you	have	the	jobs,	you	can	query	the	properties	you	are	interested	in:
$jobs	|

Select-Object	Name,	OwnerLoginName,

LastRunDate,	LastRunOutcome	|

Sort-Object	-Property	Name	|

Format-Table	-AutoSize

Each	Job	object	exposes	a	variety	of	information	about	the	job.	Here	is	a	partial	list	of
properties	available	with	a	Job	object,	which	includes	Category,	DateCreated,
LastRunDate,	LastRunOutcome,	VersionNumber,	and	JobSchedules:

If	you	want	to	list	only	the	failed	jobs,	pipe	the	results	and	filter	for	LastRunOutcome	of
“Failed”:
$jobs=$server.JobServer.Jobs

$jobs	|

Where-Object	LastRunOutcome	-like	“Failed”	|

Select-Object	Name,	OwnerLoginName,

LastRunDate,	LastRunOutcome	|

Format-Table	-AutoSize

There’s	more…
You	can	learn	more	about	the	SQL	Server	Job	class	and	explore	its	properties	and	methods
at	http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.smo.agent.job.aspx.

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.job.aspx

See	also
	

The	Creating	a	SQL	Server	Job	recipe.

Adding	a	SQL	Server	operator
In	this	recipe,	we’ll	see	how	you	can	create	a	SQL	Server	operator	using	SMO	and
PowerShell.

Getting	ready
For	this	recipe,	we	will	create	an	operator	with	the	following	settings:

Setting	operator Value

Name tstark

E-mail tstark@queryworks.local

If	you	do	not	have	this	account	set	up	in	your	system,	you	can	substitute	this	with	another
available	account	in	your	environment	that	has	an	e-mail	address.	To	set	up	an	operator,
you	must	be	a	sysadmin	for	your	instance.

How	to	do	it…
To	create	an	operator,	follow	these	steps:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

Add	the	following	script	and	run:
$jobserver					=	$server.JobServer

$operatorName		=	“tstark”

$operatorEmail	=	“tstark@queryworks.local”

$operator	=	New-

Object		Microsoft.SqlServer.Management.Smo.Agent.Operator	-

ArgumentList	$jobserver,	$operatorName

$operator.EmailAddress	=	$operatorEmail

$operator.Create()

#verify	by	listing	operators

$jobserver.Operators

3.	 Open	SQL	Server	Management	Studio	and	check	if	the	operator	has	been	created.
Go	to	SQL	Server	Agent	|	Operators.

How	it	works…
To	create	an	operator,	you	must	first	get	a	handle	to	the	JobServer	object	of	your	instance:
$jobserver					=	$server.JobServer

An	operator	will	require	a	name	and	a	method	to	be	contacted.	We	are	going	to	use	e-mail
in	this	case,	but	you	can	also	specify	the	NetSendAddress	and	PagerAddress	properties	of
the	Microsoft.SqlServer.Management.Smo.Agent.Operator	object:
$operatorName		=	“tstark”

$operatorEmail	=	“tstark@queryworks.local”

$operator	=	New-Object		Microsoft.SqlServer.Management.Smo.Agent.Operator	-

ArgumentList	$jobserver,	$operatorName

$operator.EmailAddress	=	$operatorEmail

Once	these	settings	are	in	place,	you	can	just	invoke	the	Create	method	of	the
Microsoft.SqlServer.Management.Smo.Agent.Operator	object	to	persist	the	operator	in
the	instance:
$operator.Create()

There’s	more…
To	learn	more	about	the	SQL	Server	Operator	class,	check	out	the	MSDN	entry	at
http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.smo.agent.operator.aspx.

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.operator.aspx

See	also
	

The	Creating	a	SQL	Server	Job	recipe.
The	Adding	a	SQL	Server	event	alert	recipe.

Creating	a	SQL	Server	Job
In	this	recipe,	we	will	create	a	simple	SQL	Server	job	programmatically.

Getting	ready
We	are	going	to	create	a	simple	job	called	Test	Job	and	set	up	tstark	as	our	operator.	We
added	tstark	as	an	operator	in	the	recipe	Adding	a	SQL	Server	operator.	If	you	don’t
have	tstark,	choose	another	SQL	Server	operator	that’s	available	in	your	instance.

How	to	do	it…
Let’s	look	at	the	steps	required	to	create	a	SQL	Server	Job	programmatically:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

Add	the	following	script	and	run:
$jobName	=	“Test	Job”

#we	will	drop	our	test	job	if	it	exists	already

if($server.JobServer.Jobs[$jobName])

{

			$server.JobServer.Jobs[$jobName].Drop()

}

$job	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Agent.Job	-

Argumentlist	$server.JobServer,	$jobName

#Specify	which	operator	to	inform

$operatorName	=	“tstark”

$operator	=	$server.JobServer.Operators[$operatorName]

$job.OperatorToEmail	=	$operator.Name

#Specify	completion	action

#Values	can	be:	Never,	OnSuccess,	OnFailure,	Always

$job.EmailLevel	=		[Microsoft.SqlServer.Management.SMO.Agent.CompletionAction]::OnFailure

#create

$job.Create()

#apply	to	local	instance	of	SQL	Server

#for	local	we	need	to	specify	”(local)”

$job.ApplyToTargetServer(“(local)”)

#now	let’s	add	a	simple	T-SQL	Job	Step

$jobStep	=	New-

Object	Microsoft.SqlServer.Management.Smo.Agent.JobStep($job,	“Test	Job	Step”)

$jobStep.Subsystem	=	[Microsoft.SqlServer.Management.Smo.Agent.AgentSubSystem]::TransactSql

$jobStep.Command	=	“SELECT	GETDATE()”

$jobStep.OnSuccessAction	=	[Microsoft.SqlServer.Management.Smo.Agent.StepCompletionAction]::QuitWithSuccess

$jobStep.OnFailAction	=	[Microsoft.SqlServer.Management.Smo.Agent.StepCompletionAction]::QuitWithFailure

#create	the	job

$jobStep.Create()

3.	 Check	from	SQL	Server	Management	Studio	if	this	job	has	been	created.

4.	 Go	to	Steps,	and	you	should	see	the	T-SQL	step	we	added:

5.	 Go	to	Notifications,	and	you	should	see	tstark	was	added	as	the	operator	to	receive
the	e-mail	notifications:

How	it	works…
To	create	a	Job	programmatically,	first	create	a
Microsoft.SqlServer.Management.SMO.Agent.Job	object:
$job	=	New-Object	-TypeName	Microsoft.SqlServer.Management.SMO.Agent.Job	-

Argumentlist	$server.JobServer,	“Test	Job”

Next,	specify	the	operator	(this	is	an	optional	step):
#Specify	which	operator	to	inform	and	the	completion	action.

$operatorName	=	“tstark”

$operator	=	$server.JobServer.Operators[$operatorName]

$job.OperatorToEmail	=	$operator.Name

For	the	notification	you	can	select	either	by	e-mail,	net	send,	or	pager.	You	will	also	need
to	specify	when	the	alert	should	happen.	This	can	be	either	Never,	OnSuccess,	OnFailure,
or	Always.	The	code	is	as	follows:
$job.EmailLevel	=	[Microsoft.SqlServer.Management.SMO.Agent.CompletionAction]::OnFailure

When	ready,	invoke	the	Create	method	of	the
Microsoft.SqlServer.Management.SMO.Agent.Job	object.	We	also	need	to	specify	the
target	server	(in	our	case,	just	the	local	instance	of	SQL	Server):
$job.ApplyToTargetServer(“(local)”)

To	add	a	job	step,	you	can	use	the	JobStep	method	of	the	SMO	Agent	class:
#now	let’s	add	a	simple	T-SQL	Job	Step

$jobStep	=	New-

Object	Microsoft.SqlServer.Management.Smo.Agent.JobStep($job,	“Test	Job	Step”)

We	can	create	different	types	of	job	steps	in	SQL	Server,	and	this	is	defined	in	PowerShell
as	AgentSubSystem.	The	possible	values	for	this
Microsoft.SqlServer.Management.Smo.Agent.AgentSubSystem	enumeration	are	as
follows:

	
TransactSql

ActiveScripting

CmdExec

Snapshot

LogReader

Distribution

Merge

QueueReader

AnalysisQuery

AnalysisCommand

Ssis

PowerShell

For	our	simple	step,	we	will	use	a	T-SQL	subsystem.	We	will	also	attach	a	simple	T-SQL
statement	to	this	step	to	retrieve	the	current	system	date	as	a	command:

$jobStep.Subsystem	=	[Microsoft.SqlServer.Management.Smo.Agent.AgentSubSystem]::TransactSql

$jobStep.Command	=	“SELECT	GETDATE()”

We	can	also	define	the	failure	and	completion	actions:
$jobStep.OnSuccessAction	=	[Microsoft.SqlServer.Management.Smo.Agent.StepCompletionAction]::QuitWithSuccess

$jobStep.OnFailAction	=	[Microsoft.SqlServer.Management.Smo.Agent.StepCompletionAction]::QuitWithFailure

When	ready,	we	can	create	the	job	step	by	invoking	the	Create	method	of	the
Microsoft.SqlServer.Management.Smo.Agent.JobStep	object:
$jobStep.Create()

There’s	more…
Check	out	MSDN	for	Microsoft.SqlServer.Management.Smo.Agent.AgentSubSystem
enumeration	(http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.smo.agent.agentsubsystem.aspx).

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.agentsubsystem.aspx

See	also
	

The	Listing	SQL	Server	Jobs	recipe
The	Adding	a	SQL	Server	operator	recipe

Adding	a	SQL	Server	event	alert
In	this	recipe,	we’ll	see	the	steps	for	adding	a	SQL	Server	event	alert.

How	to	do	it…
Let’s	list	the	steps	required	to	complete	the	task:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

Add	the	following	script	and	run:
$jobserver	=	$server.JobServer

#for	purposes	of	our	exercise,	we	will	drop	this

#alert	if	it		already	exists

$alertname	=	“Test	Alert”

$alert	=	$jobserver.Alerts[$alertname]

#if	our	test	alert	exists,	we	will	drop	it	first

if($alert)

{

		$alert.Drop()

}

#Alert	accepts	a	JobServer	and	an	alert	name

$alert		=	New-

Object		Microsoft.SqlServer.Management.Smo.Agent.Alert	$jobserver,	$alertname

$alert.Severity	=	10

#Raise	Alert	when	Message	contains

$alert.EventDescriptionKeyword	=	“failed”

#Set	notification	message

$alert.NotificationMessage	=	“This	is	a	test	alert,	dont	worry”

$alert.Create()

How	it	works…
To	create	an	alert,	you	will	first	need	to	create	a
Microsoft.SqlServer.Management.Smo.Agent.Alert	object:
$alert		=	New-

Object		Microsoft.SqlServer.Management.Smo.Agent.Alert	$jobserver,	“Test	Alert”

This	alert	is	a	SQLServerEvent	alert	type	by	default.	The	available	values	for	the
AlertType	property	that	you	can	specify	programmatically,	as	documented	in	MSDN,	are
as	follows:

	
SQLServerEvent:	This	specifies	an	error	or	event	generated	by	the	SQL	Server
SqlServerPerformanceCondition:	This	specifies	a	condition	applied	to	a	specified
SQL	Server	performance	counter
NonSqlServerEvent:	This	specifies	a	system	event
WmiEvent:	This	specifies	an	event	raised	by	WMI

The	AlertType	property	is	a	read-only	property.	To	choose	an	event	alert	type,	you	will
need	to	set	the	properties	required	for	that	alert	type.	For	example,	if	you	want	to	create	a
WmiEvent	alert,	you	will	need	to	set	the	values	for	WmiEventNamespace	and
WmiEventQuery.

For	the	SQLServerEvent	alert	event	type,	we	will	need	to	specify	either	error	number	or
severity.	You	can	also	optionally	specify	a	keyword	that	can	trigger	this	notification.	The
code	is	as	follows:
$alert.Severity	=	10

#Raise	Alert	when	Message	contains

$alert.EventDescriptionKeyword	=	“failed”

Once	the	alert	settings	have	been	provided,	you	can	also	add	a	notification	message:
$alert.NotificationMessage	=	“This	is	a	test	alert,	dont	worry”

To	create	the	alert,	just	invoke	the	Create	method	of	the
Microsoft.SqlServer.Management.Smo.Agent.Alert	object:
$alert.Create()

There’s	more…
SQL	Server	provides	a	mechanism	to	alert	DBAs	and	other	database	staff	of	possible
issues	or	thresholds	reached	by	the	instances.	If	you	navigate	to	SQL	Server	Agent	and
expand	Alerts,	you	should	see	all	the	alerts	set	up	in	your	instance.

You	can	find	Alerts	under	the	SQL	Server	Agent	node	in	SQL	Server	Management
Studio.	When	you	first	set	up	a	SQL	Server	Agent	Alert,	you	will	see	the	following
window:

The	following	table	summarizes	the	types	of	alerts	you	can	set	up	in	SQL	Server:

Alert	type Description

SQL	Server
Event	Alert

This	is	typically	used	for	specific	error	numbers,	severity,	or	keywords
that	exist	in	the	error	message.

SQL	Server
Performance
Condition	Alert

This	is	typically	set	up	if	a	performance	threshold	is	reached,	for
example,	if	data	file	size	exceeds	100	GB.

WMI	Event
Alert

This	is	used	for	WMI	events	that	you	want	to	flag	within	SQL	Server,
for	example,	if	you	want	to	monitor	if	a	file	gets	created	or	a	deadlock
is	detected	in	one	of	the	instances.

To	learn	more	about	the	Alert	class,	check	out	the	MSDN	documentation	at
http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.smo.agent.alert.aspx.

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.alert.aspx

See	also
	

The	Setting	up	WMI	server	event	alerts	recipe.

Running	an	SQL	Server	Job
In	this	recipe,	we	will	see	how	you	can	run	a	SQL	Server	Job	programmatically.

Getting	ready
In	this	recipe,	we	assume	you	have	a	job	called	Test	Job	in	your	development
environment	that	you	can	run.	This	was	created	in	the	Creating	a	SQL	Server	Job	recipe.
If	you	do	not	have	this	job,	pick	another	job	in	your	system	that	you	can	run.

How	to	do	it…
These	are	the	steps	to	run	a	SQL	Server	Job:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

Add	the	following	script	and	run:
$jobserver	=	$server.JobServer

$jobname	=	“Test	Job”

$job	=	$jobserver.Jobs[$jobname]

$job.Start()

#sleep	to	wait	for	job	to	finish

#check	last	run	date

Start-Sleep	-s	1

$job.Refresh()

$job.LastRunDate

How	it	works…
The	first	step	is	to	get	a	handle	to	your	instance’s	JobServer	object:
$jobserver	=	$server.JobServer

$jobname	=	“Test	Job”

You	also	need	to	specify	the	name	of	the	job	you	want	to	run.	Once	you	get	a	handle	to	the
name,	you	can	just	invoke	the	method	Start	of	the	JobServer.Job	object:

$job	=	$jobserver.Jobs[$jobname]

$job.Start()

If	you	want	to	start	your	job	at	a	specified	step,	you	can	pass	in	the	job	step	name	to	the
Start	method.

To	check	if	it	ran	recently,	you	can	check	the	last	run	date	by	using	the	LastRunDate
property:
$job.Refresh()

$job.LastRunDate

An	alternative	way	to	check	when	the	job	last	ran	is	to	go	to	SQL	Server	Management
Studio,	go	to	that	job,	right-click,	and	select	View	Job	History.	The	window	that	will
appear	should	show	a	history	of	the	times	this	job	has	been	run,	including	the	job	run
status.

See	also
	

The	Scheduling	a	SQL	Server	Job	recipe.

Scheduling	a	SQL	Server	Job
In	this	recipe,	we	will	demonstrate	how	to	schedule	a	SQL	Server	Job	using	PowerShell
and	SMO.

Getting	ready
In	this	recipe,	we	assume	you	have	a	job	called	Test	Job	in	your	development
environment	that	you	can	run.	This	was	created	in	the	Creating	a	SQL	Server	Job	recipe.
If	you	do	not	have	this	job,	pick	another	job	in	your	system	that	you	can	use.

We	will	schedule	this	job	to	run	every	weekend	night	at	10	P.M.

How	to	do	it…
Let’s	look	at	the	steps	to	schedule	a	SQL	Server	Job	using	PowerShell:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

Add	the	following	script	and	run:
$jobserver	=	$server.JobServer

$jobname	=	“Test	Job”

$job	=	$jobserver.Jobs[$jobname]

$jobschedule	=		New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Agent.JobSchedule	-

ArgumentList	$job,	“Every	Weekend	Night	10PM”

#Values	for	FrequencyTypes	are:

#AutoStart,	Daily,	Monthly,	MonthlyRelative,	OneTime,

#OnIdle,	Weekly,	unknown

$jobschedule.FrequencyTypes	=		[Microsoft.SqlServer.Management.SMO.Agent.FrequencyTypes]::Weekly

#schedule	for	every	Saturday	and	Sunday

#can	also	use	65

$jobschedule.FrequencyInterval	=	[Microsoft.SqlServer.Management.SMO.Agent.WeekDays]::WeekEnds

#set	time

#3	parameters	-	hours,	mins,	days

#if	we	don’t	specify	time,	it	will	start	at	midnight

$starttime	=		New-Object	-TypeName	TimeSpan	-ArgumentList	22,	0,	0

$jobschedule.ActiveStartTimeOfDay	=	$starttime

#frequency	of	recurrence

$jobschedule.FrequencyRecurrenceFactor	=	1

$jobschedule.ActiveStartDate	=	“01/01/2015”

#Create	the	job	schedule	on	the	instance	of	SQL	Agent.

$jobschedule.Create()

3.	 Check	the	schedule	from	SQL	Server	Management	Studio.	The	steps	are	as
follows:
1.	 Go	to	Management	Studio.
2.	 Under	SQL	Server	Agent,	double-click	on	Test	Job.

4.	 Click	on	Schedules	on	the	left-hand	side	pane.	Confirm	that	the	schedule	that	was
created.

How	it	works…
To	schedule	a	job,	you	first	need	to	get	a	handle	to	the	job	you	are	scheduling:
$job	=	$jobserver.Jobs[$jobname]

The	next	step	is	to	create	a	Microsoft.SqlServer.Management.SMO.Agent.JobSchedule
object.	You	need	to	pass	the	job	object	and	the	name	of	the	schedule:
$jobschedule	=		New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Agent.JobSchedule	-

ArgumentList	$job,	“Every	Weekend	Night	10PM”

For	this	recipe,	we	wanted	to	schedule	it	every	Saturday	and	Sunday	at	10	P.M.	The
settings	that	need	to	be	set	are	as	follows:

	
FrequencyTypes

FrequencyInterval

ActiveStartTimeOfDay

FrequencyRecurrenceFactor

ActiveStartDate

You	will	notice	that	depending	on	the	schedule	you	want	to	set,	you	may	need	to	skip
some	of	the	settings	or	set	different	properties	altogether.

Note
More	scheduling	examples	are	provided	in	the	There’s	more…	section.

Because	the	schedule	happens	every	week,	we	need	to	set	the	FrequencyType	to	Weekly:
$jobschedule.FrequencyTypes	=		[Microsoft.SqlServer.Management.SMO.Agent.FrequencyTypes]::Weekly

The	different	values	available	for	FrequencyTypes	are	as	follows:

	
AutoStart

Daily

Monthly

MonthlyRelative

OneTime

OnIdle

Weekly

Unknown

For	FrequencyInterval,	we	are	setting	our	job	to	be	run	every	weekend:
#every	Saturday	and	Sunday

#can	also	use	65

$jobschedule.FrequencyInterval	=	[Microsoft.SqlServer.Management.SMO.Agent.WeekDays]::WeekEnds

The	valid	FrequencyInterval	values	are	as	follows:

FrequencyInterval Numeric	value Notes

WeekDays.Sunday 1 20

WeekDays.Monday 2 21

WeekDays.Tuesday 4 22

WeekDays.Wednesday 8 23

WeekDays.Thursday 16 24

WeekDays.Friday 32 25

WeekDays.Saturday 64 26

WeekDays.WeekDays 62 Monday	to	Friday

WeekDays.WeekEnds 65 Saturday	and	Sunday

WeekDays.EveryDay 127 Sunday	to	Saturday

As	documented	in	MSDN,	if	you	decide	to	mix	and	match	the	days,	you	will	have	to	use
logical	OR	to	get	the	value.	For	example,	if	you	want	to	schedule	a	job	for	Wednesday	(8)
and	Thursday	(16),	the	value	you	assign	to	FrequencyInterval	should	be	8+16	=	24.

To	specify	that	the	job	needs	to	run	at	10	P.M.,	we	need	to	use	a	TimeSpan	object,	which
accepts	three	parameters	for	hour,	minute,	and	second:
$starttime	=		New-Object	-TypeName	TimeSpan	-ArgumentList	22,	0,	0

$jobschedule.ActiveStartTimeOfDay	=	$starttime

To	set	the	start	date,	we	need	to	set	the	ActiveStartDate	property	of	the	JobSchedule
object:
$jobschedule.ActiveStartDate	=	“01/01/2015”

The	FrequencyRecurrenceFactor	variable	specifies	how	often	in	this	time	period	the	job
should	run	(in	this	case,	only	once):
#frequency	of	recurrence

$jobschedule.FrequencyRecurrenceFactor	=	1

The	last	piece	is	to	invoke	the	Create()	method:
#Create	the	job	schedule	on	the	instance	of	SQL	Agent.

$jobschedule.Create()

There’s	more…
There	are	a	variety	of	possible	schedules	that	you	may	need	to	set	up	for	jobs	in	your
instance.	Here	are	a	few	more	samples	with	different	variations	to	get	you	started:

	
Every	Weekend	at	10	P.M.
$jobschedule.FrequencyTypes	=		[Microsoft.SqlServer.Management.SMO.Agent.FrequencyTypes]::Weekly

#every	Saturday	and	Sunday

$jobschedule.FrequencyInterval	=	[Microsoft.SqlServer.Management.SMO.Agent.WeekDays]::WeekEnds

#10PM

$starttime	=		New-Object	-TypeName	TimeSpan	-ArgumentList	22,	0,	0

$jobschedule.ActiveStartTimeOfDay	=	$starttime

$jobschedule.FrequencyRecurrenceFactor	=	1

Every	Weekday	from	8	A.M.	to	4	P.M.,	every	half	hour
$jobschedule.FrequencyTypes	=		[Microsoft.SqlServer.Management.SMO.Agent.FrequencyTypes]::Weekly

#every	weekday

$jobschedule.FrequencyInterval	=	62

#every	half	hour

$jobschedule.FrequencySubDayTypes	=	[Microsoft.SqlServer.Management.SMO.Agent.FrequencySubDayTypes]::Minute

$jobschedule.FrequencySubDayInterval	=	30

#from	8-4

$starttime	=		New-Object	-TypeName	TimeSpan	-ArgumentList	8,	0,	0

$jobschedule.ActiveStartTimeOfDay	=	$starttime

$endtime	=	New-Object	-TypeName	TimeSpan	-ArgumentList	16,	0,	0

$jobschedule.ActiveEndTimeOfDay	=	$endtime

Every	month	end	at	11:30	P.M.
$jobschedule.FrequencyTypes	=		[Microsoft.SqlServer.Management.SMO.Agent.FrequencyTypes]::MonthlyRelative

$jobschedule.FrequencyRelativeIntervals	=		[Microsoft.SqlServer.Management.SMO.Agent.FrequencyRelativeIntervals]::Last

#month	end	can	fall	any	day,	so	we’ll	have	to	set

#interval	to	everyday

$jobschedule.FrequencyInterval	=	[Microsoft.SqlServer.Management.SMO.Agent.MonthlyRelativeWeekDays]::EveryDay

$jobschedule.FrequencyRecurrenceFactor	=	1

#start	at	11:30	PM

#3	params	-	hours,	mins,	days

$starttime	=		New-Object	-TypeName	TimeSpan	-ArgumentList	23,	30,	0

$jobschedule.ActiveStartTimeOfDay	=	$starttime

Every	Tuesday	and	Thursday	at	12	P.M.
$jobschedule.FrequencyTypes	=		[Microsoft.SqlServer.Management.SMO.Agent.FrequencyTypes]::Weekly

#every	Tuesday	and	Thursday

#Tuesday	=	4,	Thursday	=	16

#Final	value	=	4	+	16	=	20

$jobschedule.FrequencyInterval	=	20

$jobschedule.FrequencyRecurrenceFactor	=	1

#noon

#3	params	-	hours,	mins,	days

$starttime	=		New-Object	-TypeName	TimeSpan	-ArgumentList	12,	00,	0

$jobschedule.ActiveStartTimeOfDay	=	$	starttime

Every	third	Friday	of	the	month	at	6	A.M.
$jobschedule.FrequencyTypes	=		[Microsoft.SqlServer.Management.SMO.Agent.FrequencyTypes]::MonthlyRelative

$jobschedule.FrequencyRelativeIntervals	=		[Microsoft.SqlServer.Management.SMO.Agent.FrequencyRelativeIntervals]::Third

$jobschedule.FrequencyInterval	=	[Microsoft.SqlServer.Management.SMO.Agent.MonthlyRelativeWeekDays]::Friday

$jobschedule.FrequencyRecurrenceFactor	=	1

#start	at	10:30	PM

$starttime	=		New-Object	-TypeName	TimeSpan	-ArgumentList	6,	00,	0

$jobschedule.ActiveStartTimeOfDay	=	$starttime

Every	last	Thursday	of	the	month	11	P.M.
$jobschedule.FrequencyTypes	=		[Microsoft.SqlServer.Management.SMO.Agent.FrequencyTypes]::MonthlyRelative

$jobschedule.FrequencyRelativeIntervals	=		[Microsoft.SqlServer.Management.SMO.Agent.FrequencyRelativeIntervals]::Last

$jobschedule.FrequencyInterval	=	[Microsoft.SqlServer.Management.SMO.Agent.MonthlyRelativeWeekDays]::Thursday

$jobschedule.FrequencyRecurrenceFactor	=	1

#11PM

$starttime	=		New-Object	-TypeName	TimeSpan	-ArgumentList	23,	00,	0

$jobschedule.ActiveStartTimeOfDay	=	$starttime

It	is	important	to	be	familiar	with	the	different	combinations	of	the	FrequencyType	and
FrequencyInterval	values	when	setting	the	SQL	Server	Job	schedule	programmatically.

You	can	learn	more	about	FrequencyType	from	the	MSDN	page	at
http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.smo.agent.frequencytypes.aspx.

The	FrequencyInterval	documentation	can	be	found	at	http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.smo.agent.jobschedule.frequencyinterval.aspx.

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.frequencytypes.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.jobschedule.frequencyinterval.aspx

See	also
	

The	Listing	SQL	Server	Jobs	recipe
The	Creating	a	SQL	Server	Job	recipe
The	Running	an	SQL	Server	Job	recipe

Chapter	4.	Security
In	this	chapter,	we	will	cover:

	
Listing	SQL	Server	service	accounts
Changing	SQL	Server	service	accounts
Listing	authentication	mode
Changing	authentication	mode
Listing	SQL	Server	log	errors
Listing	failed	login	attempts
Enabling	Common	Criteria	compliance
Listing	logins,	users,	and	database	mappings
Listing	login/user	roles	and	permissions
Creating	a	user-defined	server	role
Creating	a	login
Assigning	permissions	and	roles	to	a	login
Creating	a	database	user
Assigning	permissions	to	a	database	user
Creating	a	database	role
Fixing	orphaned	users
Creating	a	credential
Creating	a	proxy

Introduction
PowerShell	can	help	database	administrators	and	developers	to	automate	security	tasks.
Whether	you	need	to	monitor	repeated	failed	login	attempts	by	parsing	out	event	logs,	or
manage	roles	and	permissions	when	the	number	of	users	in	the	system	is	very	high,
PowerShell	can	help	you	deliver.	This	chapter	will	show	you	the	classes	and	snippets	of
scripts	that	will	help	you	manage	your	SQL	Server	logins	and	database	users
programmatically.

Listing	SQL	Server	service	accounts
We	will	list	service	accounts	in	this	recipe.

How	to	do	it…
These	are	the	steps	for	listing	SQL	Server	service	accounts:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run:
#replace	localhost	with	your	machine	name

#make	sure	you	open	the	appropriate	firewall	ports

$instanceName	=	“localhost”

$managedComputer	=	New-

Object	Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer	$instanceName

#list	services

$managedComputer.Services	|

Select-Object	Name,	ServiceAccount,	ServiceState	|

Format-Table	–AutoSize

You	should	see	a	list	of	services	and	their	service	accounts	in	a	format	like	this:

How	it	works…
A	service	account	is	an	account	created	for	the	exclusive	purpose	of	running	a	service.	To
list	service	accounts,	we	can	use	a	Wmi.ManagedComputer	object:
$managedComputer	=	New-

Object	Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer	$instanceName

The	ManagedComputer	instance	has	a	property	called	ServiceAccount,	which	is	what	we
want	to	list.	It	has	additional	properties,	such	as	Name	and	ServiceState,	which	will	be
useful	to	know	when	you	are	checking	service	accounts:
#list	services

$managedComputer.Services	|

Select-Object	Name,	ServiceAccount,	ServiceState	|

Format-Table	–AutoSize

Alternatively,	instead	of	the	Wmi.ManagedComputer	object,	we	can	use	the	Get-WmiObject
cmdlet	to	list	the	service	accounts.

To	use	Get-WmiObject,	we	must	first	identify	the	hostname	and	the	SQL	Server
namespace:
$hostname	=	“localhost”

$namespace	=	Get-WMIObject	-ComputerName	$hostName	-

NameSpace	root\Microsoft\SQLServer	-Class	“__NAMESPACE”	|

													Where-Object	Name	-like	“ComputerManagement*”

For	SQL	Server	2014,	this	value	is	as	follows:
ROOT\Microsoft\SQLServer\ComputerManagement12

This	value	is	different	for	different	SQL	Server	versions.	It	is
ROOT\Microsoft\SQLServer\ComputerManagement10	for	SQL	Server	2008	and
ROOT\Microsoft\SQLServer\ComputerManagement11	for	SQL	Server	2012.

We	can	then	use	the	following	snippet	with	the	Get-WmiObject	cmdlet	to	list	all	the	SQL
Server	services	and	service	accounts.	The	service	account	is	stored	in	the	StartName
property:
#code	should	be	all	in	one	line

Get-WmiObject	-ComputerName	$hostname

-Namespace	”$($namespace.__NAMESPACE)\$($namespace.Name)”

-Class	SqlService	|

Select-Object	ServiceName,

							DisplayName,

							@{Name=“ServiceAccount”;Expression={$_.StartName}}	|

Format-Table	–AutoSize

See	also
	

The	Changing	SQL	Server	service	account	recipe.
The	Listing	SQL	Server	Instances	recipe	of	Chapter	2,	SQL	Server	and	PowerShell
Basic	Tasks

Changing	SQL	Server	service	account
We	will	see	how	to	change	SQL	Server	accounts	in	this	recipe.

Getting	ready
For	this	recipe,	you	will	need	to	create	another	Windows/Domain	account	that	you	can	use
to	change	the	service	account	to.

In	this	recipe,	we	will	change	the	service	account	for	SQLSERVERAGENT	from
QUERYWORKS\sqlservice	to	QUERYWORKS\sqlagent,	which	are	available	in	the	Virtual
Machine	(VM)	created	in	Appendix	B,	Creating	a	SQL	Server	VM	if	you’ve	created	the
same	VM.	If	you	are	using	a	different	environment,	you	must	substitute	these	with
accounts	that	already	exist	in	your	system.

How	to	do	it…
Let’s	explore	the	code	required	to	change	a	SQL	Server	service	account:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	Wmi.ManagedComputer	object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#default	SQL	Server	instance

$instanceName	=	“localhost”

$managedComputer	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer	-

ArgumentList	$instanceName

Add	the	following	script	and	run:
#get	handle	to	service

#below	is	the	SQL	Server	Agent	service	for	the	default

$servicename	=	“SqlAgent”

$sqlservice	=	$managedComputer.Services	|

Where-Object	Type	-eq	$servicename

#prompt	for	the	new	service	account	credential

$username	=	“QUERYWORKS\sqlagent”

$credential	=	Get-Credential	-credential	$username

#change	service	account

$sqlservice.SetServiceAccount($credential.UserName,	$credential.GetNetworkCredential().Password)

3.	 Confirm	that	the	service	account	has	changed:
#list	services

$managedComputer.Services	|

Where-Object	Name	-eq	$servicename	|

Select-Object	Name,	ServiceAccount,

DisplayName,	ServiceState	|

Format-Table	-AutoSize

How	it	works…
To	change	the	service	account,	the	first	step	is	to	get	a	handle	to	the	service	that	you	want
to	change.	In	this	recipe,	we	get	a	handle	to	SQLSERVERAGENT,	that	is,	we	create	a
PowerShell	variable	that	points	to	our	SQL	Server	Agent	service:
#get	handle	to	service

$servicename	=	“SQLSERVERAGENT”

$sqlservice	=	$managedComputer.Services	|

Where-Object	Type	-eq	$servicename

In	this	recipe,	we	opted	to	prompt	for	the	credential:
#prompt	for	the	new	service	account	credential

$username	=	“QUERYWORKS\sqlagent”

$credential	=	Get-Credential	-credential	$username

The	Get-Credential	cmdlet	prompts	for	both	the	username	and	the	password.	Since	we
pass	in	the	username,	the	username	is	already	populated	in	the	dialog	box	that	appears:

The	Get-Credential	cmdlet	stored	the	password	as	SecureString.	A	SecureString	type
is	text	that	is	encrypted	using	the	Windows	Data	Protection	API
(http://msdn.microsoft.com/en-us/library/ms995355.aspx).

It’s	good	news	because	now	our	password	is	stored	securely	(not	in	plain	text).	There’s	a
caveat	though.	The	SetServiceAccount	method	of	the	Smo.Wmi.ManagedComputer	service
class	accepts	a	string	password,	not	a	SecureString	password.	This	means	that	to	set	the
new	service	account’s	password,	we	need	to	convert	the	password	back	into	a	readable
string	that	the	SetServiceAccount	method	can	accept.	This	can	be	done	by	using
$credential.GetNetworkCredential().password,	which	provides	the	text	equivalent	of
the	password:
$sqlservice.SetServiceAccount($credential.UserName,	$credential.GetNetworkCredential().Password)

Another	alternative,	albeit	a	much	less	secure	one,	is	to	pass	the	password	in	clear	text	(I
think	I	hear	you	saying	“Nooooo”	in	the	background):
#make	sure	no	one	is	looking

http://msdn.microsoft.com/en-us/library/ms995355.aspx

#over	your	shoulder

$username	=	“QUERYWORKS\sqlagent01”

$password	=	“P@ssword”

$sqlservice.SetServiceAccount($username,	$password)

This	snippet	is	provided	to	you	for	reference	only.	I	highly	discourage	you	from
embedding	your	passwords	in	your	script	in	clear	text.

Another	popular	alternative	to	Get-Credential	and	embedding	the	credentials	in	your
script	is	to	make	the	username	and	password	parameters	in	your	script.	For	more
information,	visit	https://technet.microsoft.com/en-us/library/hh847743.aspx.

https://technet.microsoft.com/en-us/library/hh847743.aspx

There’s	more…
It	is	definitely	important	to	understand	what	service	accounts	are	and	how	to	manage
them.	Here	are	a	few	helpful	resources	related	to	service	accounts:

	
Service	Accounts	Step-by-Step	Guide	(http://msdn.microsoft.com/en-
us/library/dd548356(WS.10).aspx)
Create	Windows	PowerShell	Scripts	that	Accept	Credentials
(http://msdn.microsoft.com/en-us/magazine/ff714574.aspx)

http://msdn.microsoft.com/en-us/library/dd548356(WS.10).aspx
http://msdn.microsoft.com/en-us/magazine/ff714574.aspx

See	also
The	Listing	SQL	Server	service	accounts	recipe.

Listing	authentication	mode
In	this	recipe,	we	will	list	the	currently	enabled	authentication	mode	in	your	SQL	Server
instance,	using	PowerShell	and	SMO.

Getting	ready
Confirm	which	authentication	mode	your	instance	is	running.	Go	to	SQL	Server
Management	Studio	and	log	in	to	your	instance.	Once	logged	in,	right-click	on	the
instance	and	go	to	Properties	|	Security:

How	to	do	it…
Let’s	list	the	steps	required	to	list	your	instance’s	current	authentication	mode:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run:
#display	login	mode

$server.settings.LoginMode

How	it	works…
This	is	a	very	short	and	straightforward	recipe.	To	display	the	login	mode,	you	need	to
have	a	handle	to	the	instance	first:
$instanceName	=	“localhost”

$server	=	New-Object	-TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

Once	the	server	handle	is	established,	you	need	to	access	the	server	object’s
Settings.LoginMode	property:
#display	login	mode

$server.settings.LoginMode

This	should	display	the	current	authentication	mode	of	your	instance.

See	also
	

The	Changing	authentication	mode	recipe.

Changing	authentication	mode
In	this	recipe,	we	will	change	SQL	Server	authentication	mode.

Getting	ready
Confirm	which	authentication	mode	your	instance	is	running.	Go	to	SQL	Server
Management	Studio	and	log	in	to	your	instance.	Once	logged	in,	right-click	on	the
instance	and	go	to	Properties	|	Security	(this	is	similar	to	what	we	did	in	the	previous
recipe):

In	this	recipe,	we	will	change	the	authentication	mode	from	Integrated	to	Mixed.	Feel
free	to	do	the	reverse	if	your	settings	are	different	from	what	is	presented	in	the	preceding
image.

How	to	do	it…
Let’s	explore	the	steps	required	to	complete	the	task:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

Add	the	following	script	and	run:
#according	to	MSDN,	there	are	four	(4)	possible

#values	for	LoginMode:

#Normal,	Integrated,	Mixed	and	Unknown

$server.settings.LoginMode	=	[Microsoft.SqlServer.Management.Smo.ServerLoginMode]::Mixed

$server.Alter()

$server.Refresh()

#display	login	mode

$server.settings.LoginMode

How	it	works…
To	change	the	authentication	mode,	you	first	need	to	get	a	handle	to	the	server	instance.
Once	you	have	the	handle,	you	can	assign	a	valid	LoginMode	enumeration	value	to	the
LoginMode	property:
$server.settings.LoginMode	=	[Microsoft.SqlServer.Management.Smo.ServerLoginMode]::Mixed

There	are	four	possible	values:	Normal,	Integrated,	Mixed,	and	Unknown.	Once	the	new
authentication	mode	is	assigned,	you	can	invoke	the	Alter	method	of	the	SMO	server
object.	Optionally,	you	can	also	call	the	Refresh	method	if	you	want	to	display	the	new
value	right	away:
$server.Alter()

$server.Refresh()

Note
Note	that	while	the	GUI	may	reflect	the	change	in	authentication	mode,	the	actual	change
will	not	take	effect	until	the	SQL	Server	service	is	restarted.

There’s	more…
Authentication	mode	in	SQL	Server	identifies	how	login	accounts	can	connect	to	an
instance.	There	are	two	well-known	modes:	Mixed	and	Integrated.

However,	if	you	check	out	the	valid	enumeration	values	for	LoginMode	on	MSDN,	there
are	four:

LoginMode Description

Normal SQL	authentication	only

Integrated Windows	authentication	only

Mixed SQL	and	Windows	authentication

Unknown Unknown

It	is	interesting	to	note	that	the	two	lesser-known	modes,	Normal	and	Unknown,	are	not
accessible	using	SQL	Server	Management	Studio.	If	you	do	try	to	set	these	values	using
PowerShell	and	SMO,	it	will	disable	Authentication	Mode	in	SQL	Server	Management
Studio:
$server.settings.LoginMode	=	[Microsoft.SqlServer.Management.Smo.ServerLoginMode]::Normal

$server.Alter()

$server.Refresh()

In	SQL	Server	Management	Studio,	after	you	set	the	ServerLoginMode	to	Normal,	you
will	see	that	your	Server	authentication	section	is	grayed	out	and	disabled.

For	our	purposes,	we	only	need	to	be	concerned	with	Mixed	and	Integrated.	Normal	and
Unknown	are	legacy	values,	and	they	should	not	be	used	in	today’s	production
environments.

Check	out	the	MSDN	article	explaining	the	different	ServerLoginMode	enumeration
values	at	http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.smo.serverloginmode.aspx.

More	on	legacy	LoginMode	values
Tibor	Karaszi	wrote	a	blog	post	called	Watch	out	for	old	stuff,	which	explains	the	four
ServerLoginMode	values	and	where	we	might	encounter	them
(http://sqlblog.com/blogs/tibor_karaszi/archive/2010/09/15/watch-out-for-old-stuff.aspx)

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.serverloginmode.aspx
http://sqlblog.com/blogs/tibor_karaszi/archive/2010/09/15/watch-out-for-old-stuff.aspx

See	also
	

The	Listing	authentication	mode	recipe.

Listing	SQL	Server	log	errors
In	this	recipe,	we	will	list	SQL	Server	log	errors	past	a	specific	date.

Getting	ready
Go	to	SQL	Server	Management	Studio	and	log	in	to	your	instance.	Once	logged	in,
expand	SQL	Server	Agent	|	Error	Logs	|	Current.

For	our	recipe,	we	will	check	the	logs	that	have	failed	entries	past	March	1,	2015.	Feel
free	to	change	these	parameters	when	you	do	this	recipe.

How	to	do	it…
Let’s	check	how	we	can	list	SQL	Server	errors	using	PowerShell:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

Add	the	following	script	and	run:
#According	to	MSDN:

#ReadErrorLog:	returns	A	StringCollection	system	object

#value	that	contains	an	enumerated	list	of	errors	from

#the	SQL	Server	error	log.

[datetime]$date	=	“2015-03-01”

$server.ReadErrorLog()	|

Where-Object	Text	-like	”*failed*”	|

Where-Object	LogDate	-ge	$date	|

Format-Table	–AutoSize

Your	result	should	look	similar	to	the	following	screenshot:

3.	 Confirm	that	these	entries	exist	in	Error	Logs	via	SQL	Server	Management
Studio.

4.	 Open	SQL	Server	Management	Studio	and	connect	to	your	instance.	Expand	SQL
Server	Agent	|	Error	Logs.

5.	 Double-click	on	Current	Error	Log.	By	default,	this	opens	SQL	Server	Agent	logs.
Change	the	selected	log	to	SQL	Server.

6.	 To	filter,	click	on	the	Filter	icon.	Add	the	failed	string	in	the	Message	Contains
text	field	and	check	the	Apply	filter	checkbox.

7.	 Click	OK	to	see	the	filtered	log	events.
8.	 If	you	want	to	get	generic	errors	from	the	event	log,	add	the	following	script	and	run:

#if	you	want	to	get	all	the	generic	errors	from	the	Event	Log,	you	can	use	this

Get-EventLog	Application	-Source	“MSSQLSERVER”	-EntryType	Error

You	will	get	the	following	output:

9.	 To	check	this,	you	can	go	to	Administrative	Tools	|	Event	Viewer	|	Application	|
Filter	Current	Log.	Check	Error,	Critical,	and	Warning	under	Event	level,	and
choose	MSSQLSERVER	under	Event	sources.	This	is	shown	in	the	following
screenshot:

10.	 This	should	give	you	a	list	of	errors	pertaining	only	to	the	default	instance
MSSQLSERVER.

How	it	works…
SMO	provides	a	way	to	easily	retrieve	and	display	SQL	Server-related	errors.	This	is
through	the	ReadErrorLog	method	of	the	SMO	server	object.	The	ReadErrorLog	method
retrieves	a	list	of	errors	in	the	SQL	Server	error	log.	In	our	recipe,	we	filtered	only	the	log
entries	that	contained	the	word	failed,	and	only	those	that	occurred	after	March	1,	2015.
[datetime]$date	=	“2015-03-01”

$server.ReadErrorLog()	|

Where-Object	Text	-like	”*failed*”	|

Where-Object	LogDate	-ge	$date	|

Format-Table	–AutoSize

You	can	change	this	snippet	to	look	for	other	keywords	that	you	want	to	filter	on,	or	to
retrieve	entries	before	or	after	specific	dates.

Note
You	can	read	more	about	the	ReadErrorLog	method	from	MSDN	at
http://msdn.microsoft.com/en-us/library/ms210384.aspx.

Instead	of	using	the	ReadErrorLog	method,	an	alternative	is	to	use	the	Get-EventLog
cmdlet	and	filter	by	source	and	keyword:
Get-EventLog	Application	-Source	“MSSQLSERVER”	-Message	”*failed*”

The	Get-EventLog	cmdlet	also	supports	a	number	of	switches	that	allow	you	to	further
filter	and	sort	results.	If	you	want	to	display	strictly	Error	entry	types,	you	can	use	the
following:
Get-EventLog	Application	-Source	“MSSQLSERVER”	-EntryType	Error

http://msdn.microsoft.com/en-us/library/ms210384.aspx

See	also
	

The	Listing	failed	login	attempts	recipe.

Listing	failed	login	attempts
This	recipe	lists	failed	login	attempts	in	your	SQL	Server	instance.

Getting	ready
In	order	to	get	some	entries	in	this	recipe,	you	will	need	to	simulate	some	failed	login
attempts	in	your	SQL	Server	instance,	if	you	don’t	already	have	any	previous	failed
logins.	One	way	to	do	this	is	to	try	logging	in	to	SQL	Server	using	SQL	Server
Management	Studio	and	providing	an	incorrect	username	or	password.

How	to	do	it…
To	check	the	failed	login	attempts,	follow	these	steps:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run:
#According	to	MSDN:

#ReadErrorLog	returns	A	StringCollection	system	object

#value	that	contains	an	enumerated	list	of	errors

#from	the	SQL	Server	error	log.

$server.ReadErrorLog()	|

Where-Object	ProcessInfo	-Like	”*Logon*”	|

Where-Object	Text	-Like	”*Login	failed*”	|

Format-Table	-AutoSize

How	it	works…
One	way	to	get	failed	login	attempts	is	by	using	the	ReadErrorLog	method	of	the	SMO
Server	Object	and	filtering	by	the	ProcessInfo	and	Text	properties.	The	ProcessInfo
property	we	are	targeting	is	Logon,	and	we	want	to	display	any	login	activities	that	have
failed:
$server.ReadErrorLog()	|

Where-Object	ProcessInfo	-like	”*Logon*”	|

Where-Object	Text	-like	”*Login	failed*”	|

Format-List

See	also
	

The	Listing	SQL	Server	log	errors	recipe.

Enabling	Common	Criteria	compliance
In	this	recipe,	we	are	going	to	enable	SQL	Server’s	Common	Criteria	compliance	feature.

How	to	do	it…
These	are	the	steps	to	enable	Common	Criteria	compliance	using	PowerShell:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run:
#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

$server.Configuration.CommonCriteriaComplianceEnabled.ConfigValue	=	$true

$server.Configuration.Alter()

You	can	confirm	this	from	SQL	Server	Management	Studio.	Right-click	on	your
instance,	click	on	Properties,	and	select	the	Security	page	from	the	Select	a	page	pane.
In	the	Options	section	at	the	bottom,	you	should	see	the	Enable	Common	Criteria
compliance	checkbox	checked.

How	it	works…
The	Common	Criteria	is	a	set	of	security	standards	maintained	by	the	International
Standards	Organization	(ISO)	that	some	organizations	and	companies,	such	as
governments	and	financial	institutions,	may	need	to	adhere	to.	This	Common	Criteria
compliance	feature	was	introduced	in	SQL	Server	2005	SP1,	but	is	only	available	in	the
Enterprise,	Developer,	and	Evaluation	editions.	This	feature	replaces	the	deprecated	C2
audit	feature	tracing.

To	enable	this	feature	in	SQL	Server	using	PowerShell,	we	simply	have	to	toggle	the	value
of	the	SMO	server	object’s
Configuration.CommonCriteriaComplianceEnabled.ConfigValue	property	to	true.	The
Alter	method	needs	to	be	invoked	to	ensure	this	new	setting	is	saved	to	the	server:
$server.Configuration.CommonCriteriaComplianceEnabled.ConfigValue	=	$true

$server.Configuration.Alter()

There’s	more…
When	enabled,	the	Common	Criteria	enables	the	following,	as	documented	in	MSDN
(https://msdn.microsoft.com/en-us/library/bb326650.aspx):

	
Memory	allocation	is	overwritten	with	a	known	pattern	of	bits	before	memory	is
reallocated	to	a	new	resource.	This	meets	the	Residual	Information	Protection
criteria.
Login	auditing	is	enabled,	which	includes	successful	and	unsuccessful	login	attempts
and	all	attempts	in	between.	This	information	can	also	be	viewed	from
sys.dm_exec_sessions.	This	meets	the	ability	to	view	login	statistics	criteria.
Table-level	DENY	overrides	column-level	GRANT.	This	meets	the	column	GRANT
should	not	override	table	DENY	criteria.

Common	Criteria	is	further	explained,	including	the	framework,	goals,	and	evaluation
criteria,	at	http://en.wikipedia.org/wiki/Common_Criteria.

You	can	learn	more	about	the	versions	of	SQL	Server	that	have	been	certified	by	Common
Critera	(CC,	ISO15408)	at	this	Microsoft	page	http://www.microsoft.com/en-us/server-
cloud/products/sql-server/resources.aspx.

The	Common	Criteria	feature	in	SQL	Server	is	documented	on	this	MSDN	page	at
https://msdn.microsoft.com/en-us/library/bb326650.aspx.

https://msdn.microsoft.com/en-us/library/bb326650.aspx
http://en.wikipedia.org/wiki/Common_Criteria
http://www.microsoft.com/en-us/server-cloud/products/sql-server/resources.aspx
https://msdn.microsoft.com/en-us/library/bb326650.aspx

See	also
	

The	Listing	SQL	Server	configuration	settings	recipe	of	Chapter	2,	SQL	Server	and
PowerShell	Basic	Tasks
The	Changing	SQL	Server	Instance	configurations	recipe	of	Chapter	2,	SQL	Server
and	PowerShell	Basic	Tasks

Listing	logins,	users,	and	database	mappings
This	recipe	lists	logins	and	their	corresponding	usernames	through	database	mappings.

Getting	ready
To	check	logins	and	their	database	mappings	in	SQL	Server	Management	Studio,	log	in
to	SSMS.	Go	to	the	Security	folder,	expand	Logins,	and	double-click	on	a	particular
login.	This	will	show	you	the	Login	Properties	window.	Click	on	the	User	Mapping
option	on	the	left-hand	pane,	as	shown	in	the	following	screenshot:

How	to	do	it…
To	list	logins,	users,	and	database	mappings,	let’s	use	the	following	steps:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

Add	the	following	script	and	run:
#display	login	info

#these	are	two	different	ways	of	displaying	login	info

$server.Logins

$server.EnumWindowsUserInfo()

#List	users,	and	database	mappings

$server.Databases	|

ForEach-Object	{

			#capture	database	object

			$database	=	$_

			#capture	users	in	this	database

			$users	=	$database.Users

			#get	only	non-system	objects

			$users	|

			Where-Object	IsSystemObject	-eq	$false	|

			ForEach-Object	{

						$result	=	[PSCustomObject]	@{

									Login	=	$_.Login

									User	=	$_.Name

									DBName	=	$database.Name

									LoginType	=	$_.LoginType

									UserType	=	$_.UserType

						}

						#display	current	object

						$result

			}

}	|

Format-Table	-AutoSize

We	should	get	a	result	similar	to	this:

How	it	works…
To	display	just	logins,	you	can	use	the	server	object	and	the	Logins	property:
$server.Logins

This	gives	you,	by	default,	a	list	of	logins,	login	types,	and	creation	dates:

An	alternative	way,	if	you	are	only	interested	in	Windows	accounts,	is	using	the
EnumWindowsUserInfo	method	of	the	SMO	server	class,	which	returns	Windows	users
who	have	been	explicitly	given	SQL	Server	access:
$server.EnumWindowsUserInfo()

This	gives	you	a	result	similar	to	the	following	screenshot,	which	lists	the	account	name,
type,	privilege,	mapped	login	name,	and	permission	path:

To	display	only	database	users,	we	can	get	a	handle	to	a	specific	database	and	use	the
Users	property	of	the	database	handle.

The	most	straightforward	way	of	getting	all	the	mappings	is	by	looping	through	all	the
databases,	and	getting	a	handle	to	all	users	in	that	database.	Once	there	is	a	handle	to	the
database	object’s	Users,	you	can	display	properties	such	as	Login,	User,	LoginType,	and
UserType.	Note	that	we	can	use	PSCustomObject	to	temporarily	save	only	the	fields	we
want	to	capture.	This	also	helps	us	structure	the	results,	display	them	as	we	wish,	or	even
export	them	later	on	if	needed.	The	code	is	as	follows:
#List	users,	and	database	mappings

$server.Databases	|

ForEach-Object	{

			#capture	database	object

			$database	=	$_

			#capture	users	in	this	database

			$users	=	$database.Users

			#get	only	non-system	objects

			$users	|

			Where-Object	IsSystemObject	-eq	$false	|

			ForEach-Object	{

						$result	=	[PSCustomObject]	@{

									Login	=	$_.Login

									User	=	$_.Name

									DBName	=	$database.Name

									LoginType	=	$_.LoginType

									UserType	=	$_.UserType

						}

						#display	current	object

						$result

			}

}		|

Format-Table	–AutoSize

There’s	more…
Logins	and	users	are	two	terms	that	are	often	used	interchangeably,	but	shouldn’t	be.	A
login	is	a	server	principal	that	is	used	for	authenticating	who	can	connect	and	who	will
have	access	on	the	instance	level.

SQL	Server	supports	two	types	of	logins:	a	Windows	login	and	a	SQL	login.	A	Windows
login	is	a	Windows-level	principal,	meaning	this	is	seen	and	shared	with	the	Windows	OS
or	domain.	A	SQL	login	is	a	SQL	Server	principal	or	a	login	known	only	to	SQL	Server.

A	user,	on	the	other	hand,	is	a	database	principal.	This	means	it	is	a	database-level	object,
not	a	server-level	object.	A	user	is	often	mapped	to	a	valid	login	using	the	login’s	security
ID.	There	are	cases	when	a	user	isn’t	mapped;	this	is	when	the	user	is	orphaned.	This	can
happen	when	the	database	has	been	moved	or	restored	to	a	different	SQL	Server	Instance
that	does	not	contain	the	original	login.	This	can	also	happen	when	a	login	has	been
removed	from	the	instance,	and	the	related	database	users	have	not	been	cleaned	up	or
reassigned.

See	also
The	Listing	login/user	roles	and	permissions	recipe.

Listing	login/user	roles	and	permissions
This	recipe	shows	how	you	can	list	login	and	user	related	database	mappings,	roles,	and
permissions	for	a	specific	database.

How	to	do	it…
Let’s	check	the	code	needed	to	list	logins,	their	database	mappings,	assigned	roles,	and
permissions:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

Add	the	following	script	and	run:
#list	all	databases	you	want	to	query	in	an	array

#alternatively	you	can	read	this	from	a	file

$databases	=	@(“AdventureWorks2014”)

#we	will	temporarily	store	results	in	an	array

#so	it	will	easier	to	read	and	export

$results	=	@()

$databases	|

ForEach-Object	{

			#capture	current	database	object

			$database	=	$server.Databases[$_]

			#capture	users	in	this	database

			$users	=	$database.Users

			#get	all	database	users	and	list

			#their	properties	and	permissions

			$users	|

			Sort-Object	-Property	Name	|

			Where-Object	IsSystemObject	-eq	$false	|

			ForEach-Object	{

						$user	=	$_

						#list	all	object	permissions	of	current	user

						$database.EnumObjectPermissions($user.Name)	|

						ForEach-Object	{

										$perm	=	$_

										$item	=	[PSCustomObject]	@{

													Login	=	$user.Login

													DBUser	=	$user.Name

													DBName	=	$database.Name

													DBRoles	=	($user.EnumRoles())

													Object	=	$perm.ObjectName

													Permission	=	$perm.PermissionType

										}

										#display	current	object

										$results	+=	$item

						}

			}

}

#display	results

$results	|

Format-Table	-AutoSize

3.	 You	should	see	a	result	similar	to	what	is	shown	in	the	following	screenshot:

How	it	works…
A	database	mapping	determines	which	logins	are	related	to	which	database	users.	A
database	user	is	a	database-level	principal	that	is	mapped	to	a	server	login	via	a	security
ID.

To	display	the	database	mappings,	we	will	need	to	loop	through	a	database	(or	databases)
and	display	the	mappings	using	each	individual	User	object.	In	this	recipe,	we’ve	listed
our	database	in	an	array,	which	you	can	add	databases	to:
$databases	=	@(“AdventureWorks2014”)

Instead	of	storing	in	an	array,	you	can	also	read	the	list	of	databases	from	a	file:
$databases	=	Get-Content	“path\to\database\file.txt”

For	each	database,	we	can	list	all	the	database	users	and	we	ignore	all	system	objects	(such
as	sys,	guest,	or	information_schema):
			$users	|

			Sort-Object	-Property	Name	|

			Where-Object	IsSystemObject	-eq	$false	|

For	each	user,	we	also	display	properties	such	as	the	database	they	belong	to,	the	database
user	name,	the	corresponding	server	login,	and	the	role	memberships	in	the	current
database	using	the	EnumRoles	method	of	the	User	class.	We	also	iterate	through	all	the
database-specific	object-level	permissions	for	the	current	user	by	using	the
EnumObjectPermissions	method	of	the	database	class.	The	code	is	as	follows:
			ForEach-Object	{

						$user	=	$_

						#list	all	object	permissions	of	current	user

						$database.EnumObjectPermissions($user.Name)	|

						ForEach-Object	{

										$perm	=	$_

										$item	=	[PSCustomObject]	@{

													Login	=	$user.Login

													DBUser	=	$user.Name

													DBName	=	$database.Name

													DBRoles	=	($user.EnumRoles())

													Object	=	$perm.ObjectName

													Permission	=	$perm.PermissionType

										}

										#display	current	object

										$results	+=	$item

						}

			}

Iterating	through	EnumObjectPermissions	allows	us	to	capture	all	permissions	granted	to
an	object,	for	example,	a	SELECT	that’s	granted	to	a	table	and	more.

Depending	on	how	many	database	roles	and	permissions	the	users	have,	displaying	the
results	in	a	tabular	format	might	get	truncated.	Another	option	is	to	just	display	the	result
using	Format-List	instead	of	Format-Table.

Yet	another	option	is	just	to	export	the	$results	array	to	a	file,	using	cmdlets	such	as
Export-Csv,	among	others.

See	also
	

The	Listing	logins,	users,	and	database	mappings	recipe.

Creating	a	user-defined	server	role
This	recipe	walks	you	through	how	to	create	a	user-defined	server	role	in	SQL	Server.

Getting	ready
In	this	recipe,	we	will	create	a	user-defined	server	role	called	impersonator	and	add
QUERYWORKS\tstark	as	a	member.	We	are	also	going	to	assign	this	new	role	permissions	to
impersonate	any	login	and	grant	permissions	to	any	unsafe	assembly.

The	T-SQL	equivalent	of	what	we	are	going	to	accomplish	in	this	recipe	is	as	follows:
—	create	custom	server	role

CREATE	SERVER	ROLE	[impersonator]

AUTHORIZATION	[QUERYWORKS\Administrator]

GO

—	add	member

ALTER	SERVER	ROLE	[impersonator]

ADD	MEMBER	[QUERYWORKS\tstark]

GO

—	add	permissions	for	custom	role

GRANT	IMPERSONATE	ANY	LOGIN	TO	[impersonator]

GO

GRANT	UNSAFE	ASSEMBLY	TO	[impersonator]

GO

If	you	are	not	using	the	QueryWorks	VM	that	was	created	in	Appendix	B,	Creating	a	SQL
Server	VM,	you	must	change	the	names,	members,	and	permissions	in	this	recipe	based	on
what’s	available	in	your	development	environment.

How	to	do	it…
These	are	the	steps	to	create	a	new	user-defined	server	role	in	SQL	Server	using
PowerShell:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run:
#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

$serverRoleName	=	“impersonator”

#for	our	exercise,	we	will	drop	the	role

#if	it	already	exists

if	($server.Roles[$serverRoleName])

{

			“Dropping”

			$server.Roles[$serverRoleName].Drop()

}

#create	new	server	role

$serverRole	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.ServerRole	-

ArgumentList	$server,	$serverRoleName

$serverRole.Owner	=	“QUERYWORKS\Administrator”

$serverRole.Create()

#add	member	to	this	server	role

$serverRole.AddMember(“QUERYWORKS\tstark”)

#assign	permissions	to	this	server	role

$permissionset	=	New-

Object	Microsoft.SqlServer.Management.Smo.ServerPermissionSet(

[Microsoft.SqlServer.Management.Smo.ServerPermission]::

ImpersonateAnyLogin)

$permissionset.Add([

Microsoft.SqlServer.Management.Smo.ServerPermission]::

UnsafeAssembly)

$server.Grant($permissionset,	$serverRoleName)

$server.Alter()

$server.Refresh()

#list	all	custom	server	roles

$server.Roles	|

Where-Object	IsFixedRole	-eq	$false

In	the	following	screenshot,	you	can	see	the	user-defined	server	roles	in	the	environment:

How	it	works…
The	ability	to	create	user-defined	server	roles	was	introduced	in	SQL	Server	2012.	This
was	a	welcome	change	because,	for	some	instances,	the	built-in	server	roles	were	just	not
sufficient.	You	may	want	to	grant	specific	groups	more	or	less	permissions	than	what	the
built-in	roles	had.	Before	user-defined	roles,	a	database	administrator	would	have	had	to
assign	these	specific	permissions	to	each	login,	which	can	be	tedious.	This	also	makes
permission	management	at	that	level	harder	to	manage	and	maintain.

To	create	user-defined	server	roles	in	SQL	Server	Management	Studio,	you	can	simply
go	to	the	Security	node	and	right-click	on	Server	Roles	to	see	the	New	Server	Role
option:

In	PowerShell	via	SMO,	this	is	equivalent	to	creating	an	SMO	ServerRole	object	by
providing	an	SMO	Server	Object	and	the	server	role	name,	and	invoking	the	Create
method:
#create	new	role

$serverRole	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.ServerRole	-

ArgumentList	$server,	$serverRoleName

$serverRole.Owner	=	“QUERYWORKS\Administrator”

$serverRole.Create()

In	addition	to	just	creating	the	server,	we	can	also	add	members	to	this	role
programmatically.	The	server	role	object	has	access	to	an	AddMember	method	that	can	be
passed	with	the	login	you	wish	to	include	in	this:
#add	member	to	this	server	role

$serverRole.AddMember(“QUERYWORKS\tstark”)

To	add	permissions,	an	SMO	ServerPermissionSet	object	first	needs	to	be	created.	This
accepts	a	server-level	permission	to	start:
#assign	permissions	to	this	server	role

$permissionset	=	New-

Object	Microsoft.SqlServer.Management.Smo.ServerPermissionSet(

[Microsoft.SqlServer.Management.Smo.ServerPermission]::

ImpersonateAnyLogin)

The	server-level	permission	is	an	enumeration.	In	PowerShell	ISE,	you	can	explore	the
available	values.	You	can	simply	type
[Microsoft.SqlServer.Management.Smo.ServerPermission]::	and	see	a	dropdown	of
the	possible	values:

To	add	additional	permissions,	use	the	Add	method	from	the	PermissionSet	object:
$permissionset.Add([Microsoft.SqlServer.Management.Smo.ServerPermission]::UnsafeAssembly)

To	grant	the	permissions,	use	the	Grant	method	of	the	SMO	server	object.	To	persist	this
on	the	server,	invoke	the	Alter	method:
$server.Grant($permissionset,	$serverRoleName)

$server.Alter()

There’s	more…
Read	more	about	the	ServerPermissionSet	class	from	the	MSDN	at
http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.smo.serverpermissionset.aspx.

Check	out	all	the	ServerPermission	properties	at	http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.smo.serverpermission.aspx.

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.serverpermissionset.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.serverpermission.aspx

See	also
	

The	Assigning	permissions	to	a	database	user	recipe.

Creating	a	login
This	recipe	shows	how	you	can	create	a	SQL	login	using	PowerShell	and	SMO.

Getting	ready
For	this	recipe,	we	will	create	a	SQL	login	called	eric.	Here’s	the	T-SQL	equivalent	of
what	we	are	trying	to	accomplish:
CREATE	LOGIN	[eric]

WITH	PASSWORD=N’YourSuperStrongPassword’,

CHECK_EXPIRATION=OFF

GO

How	to	do	it…
These	are	the	steps	to	create	a	login:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run:
$loginName	=	“eric”

#for	our	recipe

#drop	login	if	it	exists

if	($server.Logins.Contains($loginName))

{

			$server.Logins[$loginName].Drop()

}

$login	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Login	-

ArgumentList	$server,	$loginName

#specify	SQL	Login

$login.LoginType	=	[Microsoft.SqlServer.Management.Smo.LoginType]::SqlLogin

$login.PasswordExpirationEnabled	=	$false

#	prompt	for	password

$pw	=	Read-Host	“Enter	login	password”	–AsSecureString

$login.Create($pw)

How	it	works…
The	first	thing	we	need	to	do,	after	getting	an	SMO	Server	Object	handle,	is	create	an
SMO	Login	object:
$login	=	New-Object	-TypeName	Microsoft.SqlServer.Management.Smo.Login	-

ArgumentList	$server,	$loginName

The	next	step	is	to	identify	what	type	of	login	this	is.	The	possible	LoginType	values	are
AsymmetricKey,	Certificate,	SQLLogin,	WindowsGroup,	and	WindowsUser.	In	our	recipe,
we	are	using	SQLLogin:
$login.LoginType	=	[Microsoft.SqlServer.Management.Smo.LoginType]::SqlLogin

The	login	object	also	has	a	few	settable	properties	such	as	PasswordPolicyEnforced	and
PasswordExpirationEnabled:
$login.PasswordExpirationEnabled	=	$false

When	ready,	you	can	invoke	the	Create	method	of	the	Login	class.	Note	that	the	Create
method	has	a	few	overloads,	some	of	which	allow	you	to	pass	LoginCreateOptions.	In
our	recipe,	we	are	only	passing	in	a	password	which	we	collect	using	a	Read-Host	cmdlet.
We	prompt	the	user	for	the	password,	instead	of	us	hardcoding	it	with	our	script:
$pw	=	Read-Host	“Enter	login	password”	–AsSecureString

$login.Create($pw)

See	also
	

The	Assigning	permissions	and	roles	to	a	login	recipe.
The	Creating	a	database	user	recipe.

Assigning	permissions	and	roles	to	a	login
This	recipe	shows	you	how	to	assign	permissions	and	roles	to	a	login	by	using	PowerShell
and	SMO.

Getting	ready
If	you	haven’t	already	done	so	in	the	Creating	a	login	recipe,	create	a	SQL	login	name
eric.	Alternatively,	choose	another	login	in	your	system	that	you	want	to	use	for	this
recipe.	We	will	be	assigning	the	dbcreator	and	setupadmin	server	roles	to	this	login,	as
well	as	granting	ALTER	permissions	to	any	setting	or	database.	Here’s	the	T-SQL
equivalent	of	what	we	are	trying	to	accomplish:
ALTER	SERVER	ROLE	[dbcreator]

ADD	MEMBER	[eric]

GO

ALTER	SERVER	ROLE	[setupadmin]

ADD	MEMBER	[eric]

GO

GRANT

			ALTER	ANY	DATABASE,

			ALTER	SETTINGS

TO	[eric]

How	to	do	it…
Let’s	list	the	steps	required	to	complete	the	task:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run:
#assumption	is	this	login	already	exists

$loginName	=	“eric”

#assign	server	level	roles

$login	=	$server.Logins[$loginName]

$login.AddToRole(“dbcreator”)

$login.AddToRole(“setupadmin”)

$login.Alter()

#grant	server	level	permissions

$permissionset	=	New-

Object	Microsoft.SqlServer.Management.Smo.ServerPermissionSet([Microsoft.SqlServer.Management.Smo.ServerPermission]::

AlterAnyDatabase)

$permissionset.Add([Microsoft.SqlServer.Management.Smo.ServerPermission]::

AlterSettings)

$server.Grant($permissionset,	$loginName)

#confirm	server	roles

Write-Output	“Memberships:”

$login.ListMembers()

#confirm	permissions

$server.EnumServerPermissions($loginName)	|

Select-Object	Grantee,	PermissionType,	PermissionState	|

Format-Table	-AutoSize

4.	 You	should	get	a	result	similar	to	this	screenshot:

How	it	works…
After	we	create	an	SMO	server	object,	we	create	a	handle	to	the	SMO	login	we	want	to
query:
$loginName	=	“eric”

#assign	server	level	roles

$login	=	$server.Logins[$loginName]

The	login	object	has	an	AddToRole	method	that	we	can	use	to	add	the	login	as	a	member
to	fixed	server	roles:
$login.AddToRole(“dbcreator”)

$login.AddToRole(“setupadmin”)

When	we’re	ready	to	send	this	command	to	SQL	Server,	we	issue	the	Alter	method	of	the
login	object:
$login.Alter()

Now,	we	also	have	the	option	to	assign	specific	permissions	outside	the	role	for	the	login.
This	requires	creating	a	ServerPermissionSet	object.	The	following	command	creates	the
permission	set	and	adds	the	AlterAnyDatabase	permission	to	the	list	of	permissions	that
we	will	be	assigning:
$permissionset	=	New-

Object	Microsoft.SqlServer.Management.Smo.ServerPermissionSet([Microsoft.SqlServer.Management.Smo.ServerPermission]::AlterAnyDatabase)

This	permission	set	can	accommodate	multiple	server-level	permissions.	In	our	recipe,	we
add	another	permission,	AlterSettings,	by	issuing	this	command:
$permissionset.Add([Microsoft.SqlServer.Management.Smo.ServerPermission]::AlterSettings)

To	finalize	the	process,	we	issue	the	Grant	statement	on	the	object,	with	the	parameters
being	the	permission	set	that	we	have	created	and	the	login:
$server.Grant($permissionset,	$loginName)

There’s	more…
Read	more	about	the	ServerPermissionSet	class	at	the	MSDN	at
http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.smo.serverpermissionset.aspx.

Check	out	all	the	ServerPermission	properties	from	http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.smo.serverpermission.aspx.

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.serverpermissionset.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.serverpermission.aspx

See	also
	

The	Creating	a	login	recipe.
The	Creating	a	database	user	recipe.

Creating	a	database	user
This	recipe	shows	how	to	create	a	database	user	by	using	PowerShell	and	SMO.

Getting	ready
If	you	haven’t	already	done	so	in	the	Creating	a	login	recipe,	create	a	SQL	login	called
eric.	Alternatively,	feel	free	to	substitute	this	with	a	login	that	already	exists	in	your
system.

In	our	recipe,	we	will	use	a	login	called	eric,	which	we	will	map	to	a	user	called	eric	in
the	AdventureWorks2014	database.	Here’s	the	T-SQL	equivalent	of	what	we	are	trying	to
accomplish:
USE	[AdventureWorks2014]

GO

CREATE	USER	[eric]

FOR	LOGIN	[eric]

How	to	do	it…
Here	are	the	steps	to	create	a	database	user:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run:
$loginName	=	“eric”

#get	login

$login	=	$server.Logins[$loginName]

#add	a	database	mapping

$databasename	=	“AdventureWorks2014”

$database	=	$server.Databases[$databasename]

$dbUserName	=	“eric”

if($database.Users[$dbUserName])

{

			$database.Users[$dbUserName].Drop()

}

#code	to	create	database	user	is	all	in	one	line

$dbuser	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.User	-

ArgumentList	$database,	$dbUserName

$dbuser.Login	=	$loginName

$dbuser.Create()

How	it	works…
After	creating	the	SMO	server	object,	create	a	handle	to	the	login	you	wish	to	use:
$loginName	=	“eric”

#get	login

$login	=	$server.Logins[$loginName]

Next,	you	need	to	get	a	handle	to	the	database	that	you	want	this	login	to	have	a
corresponding	user	to.	In	our	case,	we	will	be	using	AdventureWorks2014:
$databasename	=	“AdventureWorks2014”

$database	=	$server.Databases[$databasename]

To	create	a	database	user,	we	need	to	instantiate	a
Microsoft.SqlServer.Management.Smo.User	object,	and	pass	the	database	and	database
user	name	as	arguments:
$dbUserName	=	“eric”

#code	to	create	database	user	is	all	in	one	line

$dbuser	=	New-Object	-TypeName	Microsoft.SqlServer.Management.Smo.User	-

ArgumentList	$database,	$dbUserName

$dbuser.Login	=	$loginName

The	final	step	is	to	issue	the	Create	method	on	the	$dbuser	object:
$dbuser.Create()

See	also
	

The	Creating	a	login	recipe.
The	Assigning	permissions	to	a	database	user	recipe.

Assigning	permissions	to	a	database	user
This	recipe	shows	how	to	assign	permissions	to	a	database	user	via	SMO	and	PowerShell.

Getting	ready
In	this	recipe,	we	will	use	the	AdventureWorks2014	database	user	eric	we	created	in
previous	recipes.	We	will	grant	this	user	the	ALTER	and	CREATE	TABLE	permissions.	Here’s
the	T-SQL	equivalent	of	what	we	are	trying	to	accomplish:
USE	[AdventureWorks2014]

GO

GRANT

		ALTER,

		CREATE	TABLE

TO	[eric]

You	can	substitute	this	database	user	with	any	database	user	that	you	already	have	in	your
database.

How	to	do	it…
To	assign	permissions	and	roles	to	a	database	user,	let’s	follow	these	steps:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run:
$databasename	=	“AdventureWorks2014”

$database	=	$server.Databases[$databasename]

#get	a	handle	to	the	database	user	we	want

#to	assign	permissions	to

$dbusername	=	“eric”

$dbuser	=	$database.Users[$dbusername]

#assign	ALTER	DATABASE	permission

$permissionset	=	New-

Object	Microsoft.SqlServer.Management.Smo.DatabasePermissionSet([Microsoft.SqlServer.Management.Smo.DatabasePermission]::Alter)

#assign	CREATE	TABLE	permission

$permissionset.Add([Microsoft.SqlServer.Management.Smo.DatabasePermission]::CreateTable)	|	Out-

Null

#grant	the	permissions

$database.Grant($permissionset,	$dbuser.Name)

#confirm	permissions

$database.EnumDatabasePermissions($dbuser.Name)	|

Select-Object	PermissionState,	PermissionType,	Grantee

4.	 When	the	script	successfully	finishes	executing,	you	should	see	a	screen	similar	to
this:

How	it	works…
To	add	specific	permissions	to	a	database	user,	you	must	first	get	a	handle	to	the	database
user:
$dbusername	=	“eric”

$dbuser	=	$database.Users[$dbusername]

The	next	step	is	to	define	DatabasePermissionSet.	This	object	will	contain	all	the
permissions	you	want	to	assign	to	your	database	user:
#assign	ALTER	DATABASE	permission

$permissionset	=	New-

Object	Microsoft.SqlServer.Management.Smo.DatabasePermissionSet([Microsoft.SqlServer.Management.Smo.DatabasePermission]::Alter)

#assign	CREATE	TABLE	permission

$permissionset.Add([Microsoft.SqlServer.Management.Smo.DatabasePermission]::CreateTable)	|	Out-

Null

Once	you’ve	added	all	the	permissions,	invoke	the	Grant	method	of	the	database	object:
#grant	the	permissions

$database.Grant($permissionset,	$dbuser.Name)

To	list	all	the	permissions	for	the	current	database	user,	we	can	use	the	database’s
EnumDatabasePermissions	method.	This	should	list	whether	a	GRANT,	DENY,	or	REVOKE
permission	has	been	assigned	to	a	particular	permission	and	principal:
#confirm	permissions

$database.EnumDatabasePermissions($dbuser.Name)	|

Select-Object	PermissionState,	PermissionType,	Grantee

There’s	more…
Read	more	about	the	DatabasePermissionSet	class	from	the	MSDN	at
http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.smo.databasepermissionset.aspx.

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.databasepermissionset.aspx

See	also
	

The	Creating	a	database	user	recipe.

Creating	a	database	role
In	this	recipe,	we	will	walk	through	creating	a	custom	database	role.

Getting	ready
In	this	recipe,	we	will	create	a	database	role	called	Custom	Role.	Then,	we	will	grant	it
SELECT	permissions	to	the	HumanResources	schema,	and	ALTER	and	CREATE	TABLE
permissions	to	the	database.

Here’s	the	T-SQL	equivalent	of	what	we	are	trying	to	accomplish:
USE	AdventureWorks2014

GO

CREATE	ROLE	[Custom	Role]

GO

GRANT	SELECT

ON	SCHEMA::[HumanResources]

TO	[Custom	Role]

GRANT	ALTER,	CREATE	TABLE

TO	[Custom	Role]

How	to	do	it…
Let’s	explore	the	steps	for	creating	a	custom	database	role:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

Add	the	following	script	and	run:
$databasename	=	“AdventureWorks2014”

$database	=	$server.Databases[$databasename]

#role

$rolename	=	“Custom	Role”

if($database.Roles[$rolename])

{

			$database.Roles[$rolename].Drop()

}

#let’s	assume	this	custom	role,	we	want	to	grant

#everyone	in	this	role	select,	insert	access

#to	the	HumanResources	Schema,	in	addition	to	the

#CreateTable	permission

$dbrole	=	New-Object	Microsoft.SqlServer.Management.Smo.DatabaseRole	-

ArgumentList	$database,	$rolename

$dbrole.Create()

#verify;	list	database	roles

$database.Roles

#create	a	permission	set	to	contain	SELECT	permissions

#for	the	HumanResources	schema

$permissionset1	=	New-

Object	Microsoft.SqlServer.Management.Smo.ObjectPermissionSet([Microsoft.SqlServer.Management.Smo.ObjectPermission]::Select)

$permissionset1.Add([Microsoft.SqlServer.Management.Smo.ObjectPermission]::Select)

$hrschema	=	$database.Schemas[“HumanResources”]

$hrschema.Grant($permissionset1,	$dbrole.Name)

#create	another	permission	set	that	contains

#CREATE	TABLE	and	ALTER	on	this	database

$permissionset2	=	New-

Object	Microsoft.SqlServer.Management.Smo.DatabasePermissionSet([Microsoft.SqlServer.Management.Smo.DatabasePermission]::CreateTable)

$permissionset2.Add([Microsoft.SqlServer.Management.Smo.DatabasePermission]::Alter)

$database.Grant($permissionset2,	$dbrole.Name)

#to	add	member

#assume	eric	is	already	a	user	in	the	database

$username	=	“eric”

$dbrole.AddMember($username)

#confirm	members	of	new	role

$database.Roles[$rolename].EnumMembers()

#confirm	permissions	of	new	role

$database.EnumDatabasePermissions($dbrole.Name)	|

Select-Object	PermissionState,	PermissionType,	Grantee	|

Format-Table	-AutoSize

3.	 The	enumerated	permissions	of	the	new	role	should	look	similar	to	the	following
screenshot:

How	it	works…
A	database	role	allows	for	easier	management	of	users	and	permissions	on	the	database
level.	To	create	a	database	role,	you	need	to	create	an	instance	of	an	SMO	DatabaseRole
first:
$dbrole	=	New-Object	Microsoft.SqlServer.Management.Smo.DatabaseRole	-

ArgumentList	$database,	“Custom	Role”

$dbrole.Create()

The	next	step	is	to	identify	what	permissions	this	group	needs	to	have.	You	will	need	to
create	a	different	permission	set	for	each	type	of	securable	you	want	to	assign	permissions
to.

In	our	recipe,	we	created	two	permission	sets.	The	first	one	is	at	the	schema	level,
allowing	the	database	user	to	use	the	SELECT	statement	against	all	objects	belonging	to	the
HumanResources	schema:
#create	a	permission	set	to	contain	SELECT	permissions

#for	the	HumanResources	schema

$permissionset1	=	New-

Object	Microsoft.SqlServer.Management.Smo.ObjectPermissionSet([Microsoft.SqlServer.Management.Smo.ObjectPermission]::Select)

$permissionset1.Add([Microsoft.SqlServer.Management.Smo.ObjectPermission]::Select)

$hrschema	=	$database.Schemas[“HumanResources”]

$hrschema.Grant($permissionset1,	$dbrole.Name)

Our	second	permission	set	pertains	to	the	database	securable,	allowing	CREATE	and	ALTER
permissions	to	the	AdventureWorks2014	database:
#create	another	permission	set	that	contains

#CREATE	TABLE	and	ALTER	on	this	database

$permissionset2	=	New-

Object	Microsoft.SqlServer.Management.Smo.DatabasePermissionSet([Microsoft.SqlServer.Management.Smo.DatabasePermission]::CreateTable)

$permissionset2.Add([Microsoft.SqlServer.Management.Smo.DatabasePermission]::Alter)

$database.Grant($permissionset2,	$dbrole.Name)

The	last	step	in	our	recipe	is	to	add	users	to	this	role.	This	step	does	not	need	to	follow
granting	permissions.	This	can	happen	as	soon	as	the	role	is	set	up:
#to	add	member

#assume	eric	is	already	a	user	in	the	database

$username	=	“eric”

$dbrole.AddMember($username)

To	confirm	that	we	have	successfully	added	this	new	member,	we	can	use	the
EnumMembers	method	of	the	SMO	role	object:
#confirm	members	of	new	role

$database.Roles[$rolename].EnumMembers()

To	confirm	the	permissions	of	the	role,	we	can	use	the	EnumDatabasePermissions	of	the
SMO	database	class	to	display	the	PermissionState,	PermissionType,	ObjectName,	and
Grantee	properties:
#confirm	permissions	of	new	role

$database.EnumDatabasePermissions($dbrole.Name)	|

Select-Object	PermissionState,	PermissionType,	Grantee	|

Format-Table	-AutoSize

See	also
	

The	Creating	a	database	user	recipe.

Fixing	orphaned	users
This	recipe	shows	how	you	can	remap	orphaned	database	users	to	valid	logins.

Getting	ready
Let’s	create	an	orphaned	user	for	us	to	use	in	this	recipe.	Open	SQL	Server	Management
Studio	and	execute	the	following	T-SQL	statements:
USE	[master]

GO

CREATE	LOGIN	[baymax]

WITH	PASSWORD=N’P@ssword’,

DEFAULT_DATABASE=[master],

CHECK_EXPIRATION=OFF,

CHECK_POLICY=OFF

GO

USE	[AdventureWorks2014]

GO

CREATE	USER	[baymax]

FOR	LOGIN	[baymax]

GO

USE	[master]

GO

DROP	LOGIN	[baymax]

GO

—	create	another	SQL	login

—	note	this	will	generate	a

—	different	security	ID	(SID)

CREATE	LOGIN	[baymax]

WITH	PASSWORD=N’P@ssword’,

DEFAULT_DATABASE=[master],

CHECK_EXPIRATION=OFF,

CHECK_POLICY=OFF

This	code	has	created	an	orphaned	user	called	baymax	in	the	AdventureWorks2014
database.	Although	we	have	recreated	a	login	with	the	same	name,	this	would	generate	a
different	security	ID	and	leave	the	database	user	orphaned.

How	to	do	it…
Let’s	list	the	steps	to	fix	orphaned	users:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run:
$databasename	=	“AdventureWorks2014”

$database	=	$server.Databases[$databasename]

$loginname	=	“baymax”

$username	=	“baymax”

$user	=	$database.Users[$username]

#display	current	status

$user	|

Select-Object	Parent,	Name,	Login,	LoginType,	UserType

4.	 When	the	script	successfully	finishes	executing,	you	should	see	a	screen	similar	to
the	following	one.	We	can	confirm	that	baymax	is	an	orphaned	user	because	the	Login
value	in	the	result	is	blank,	and	the	UserType	is	NoLogin.

5.	 Let’s	fix	the	orphaned	user	by	remapping	it	to	the	new	valid	login.	Note	that	we	are
going	to	use	a	combination	of	T-SQL	and	the	Invoke-Sqlcmd	cmdlet	to	accomplish
the	remapping	because	of	some	issues	with	SMO,	which	is	discussed	in	the	There’s
More…	section.	The	code	is	as	follows:
$query	=	“ALTER	USER	$($username)	WITH	LOGIN=$($loginname)”

Invoke-Sqlcmd	-ServerInstance	$instanceName	-Query	$query	-

Database	$databasename

#display	current	status

$user.Refresh()

$user	|

Select-Object	Parent,	Name,	Login,	LoginType,	UserType

How	it	works…
An	orphaned	user	is	a	database	user	that	is	not	mapped	anymore	to	a	valid	login	in	the
SQL	Server	instance.	This	may	stem	from	a	number	of	scenarios,	but	more	often,
Windows	logins	get	orphaned	when	you	move	a	database	from	one	server	to	another
server	that	belongs	to	a	different	domain,	for	example,	from	a	production	to	development
environment.	This	also	typically	happens	to	SQL	logins	when	you	move	databases	around,
even	if	the	source	and	destination	instances	belong	in	the	same	domain.

To	fix	an	orphaned	user,	you	need	to	remap	this	orphaned	user	to	a	valid	recognized	login
in	your	instance.	The	core	of	the	solution	lies	in	these	statements:
$query	=	“ALTER	USER	$($username)	WITH	LOGIN=$($loginname)”

Invoke-Sqlcmd	-ServerInstance	$instanceName	-Query	$query	-

Database	$databasename

For	the	most	part,	we	acquired	handles	to	the	database	User	objects	merely	to	display	the
status	of	the	user.	While	it’s	still	orphaned,	the	UserType	will	indicate	NoLogin.

There’s	more…
Following	the	patterns	of	the	previous	recipes,	you	may	have	thought	that	we	should	be
able	to	use	SMO	to	fix	our	orphaned	user.	This	snippet	of	code	should	allow	us	to	remap
the	user:
#unfortunately	this	doesn’t	work

$user.Login	=	“baymax”

$user.Alter()

$user.Refresh()

The	code	makes	sense	syntax-wise;	however,	when	you	execute	this,	it	will	give	an
exception:
System.Management.Automation.MethodInvocationException:	Exception	calling	“Alter”	with	“0”	argument(s):	“Alter	failed	for	User	‘baymax’.	”	–

>	Microsoft.SqlServer.Management.Smo.FailedOperationException:	Alter	failed	for	User	‘baymax’.		–

>	Microsoft.SqlServer.Management.Smo.SmoException:	Modifying	the	Login	property	of	the	User	object	is	not	allowed.	You	must	drop	and	recreate	the	object	with	the	desired	property.

Therefore,	to	make	it	work	using	SMO,	we	will	need	to	drop	and	recreate	the	database
user.	Dropping	and	recreating	can	work	to	an	extent,	but	you	will	have	to	remember	to
reassign	all	permissions	and	roles	to	this	user.	For	some	situations,	this	may	not	be	the
ideal	solution.

See	also
	

The	Listing	logins,	users,	and	database	mappings	recipe.

Creating	a	credential
This	recipe	goes	through	the	code	needed	for	creating	a	SQL	Server	credential.

Getting	ready
In	this	recipe,	we	will	create	a	credential	for	a	domain	account	that	has	access	to	certain
files	and	folders	in	our	system,	QUERYWORKS\filemanager.	Here’s	the	equivalent	T-SQL	of
what	we	are	trying	to	accomplish:
CREATE	CREDENTIAL	[filemanagercred]

WITH	IDENTITY	=	N’QUERYWORKS\filemanager’,

SECRET	=	N’YourSuperStrongPassword’

You	can	substitute	this	with	another	known	Windows	account	you	have	in	your
environment.

How	to	do	it…
These	are	the	steps	to	create	a	credential:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run:
$identity	=	“QUERYWORKS\filemanager”

$credentialName	=	“filemanagercredential”

#for	purposes	of	our	recipe

#we	will	drop	the	credential	if	it	already	exists	if($server.Credentials[$credentialName])

{

	$server.Credentials[$credentialName].Drop()

}

$credential=New-Object	Microsoft.SqlServer.Management.Smo.Credential	-

ArgumentList		$server,	$credentialName

#create	credential

$credential.Create($identity,	“YourSuperStrongPassword”)

#list	credentials

#confirm	new	credential	is	listed

$server.Credentials

How	it	works…
A	credential	in	SQL	Server	allows	a	server	principal	to	connect	to	resources	outside	SQL
Server	using	different	a	identity	or	username/password	combination.	This	is	often	used	to
map	SQL	Server	logins	to	a	Windows	account	needed	to	access	resources	such	as	files,
folders,	and/or	programs	outside	SQL	Server.

Creating	a	credential	in	PowerShell	is	short	and	straightforward.	To	create	a	credential,
you	will	need	to	know	the	username	and	password	of	the	external	account	you	want	to	use
as	the	credential:
$credential=New-Object	Microsoft.SqlServer.Management.Smo.Credential	–

ArgumentList	$server,	$credentialName

$credential.Create($identity,	“YourSuperStrongPassword”)

Although	this	recipe	shows	you	how	to	create	the	credential	by	passing	the	identity	and
password,	I	strongly	discourage	you	from	hardcoding	a	clear	text	password	in	your	script.
You	can	instead	use	the	Get-Credential	cmdlet	to	capture	the	password.

Note
The	Get-Credential	cmdlet	is	used	and	discussed	further	in	the	Changing	SQL	Server
service	account	recipe.

See	also
	

The	Creating	a	proxy	recipe.
The	Changing	SQL	Server	service	account	recipe.

Creating	a	proxy
In	this	recipe,	we	will	create	a	SQL	Server	proxy.

Getting	ready
In	this	recipe,	we	will	map	our	SQL	Server	Agent	service	account
(QUERYWORKS\sqlagent)	to	the	credential	we	created	in	the	previous	recipe,
filemanagercred.	We	are	also	going	to	grant	this	proxy	rights	to	run	the	PowerShell	agent
steps	and	the	Operating	System	(CmdExec)	steps.	Here’s	the	T-SQL	equivalent	of	what	we
are	trying	to	achieve:
EXEC	msdb.dbo.sp_add_proxy

@proxy_name	=	N’filemanagerproxy’,

@credential_name	=	N’filemanagercredential’,

@enabled	=	1,

@description	=	N’Proxy	Account	for	PowerShell	Agent	Job	steps’

EXEC	msdb.dbo.sp_grant_login_to_proxy

@proxy_name	=	N’filemanagerproxy’,

@login_name	=	N’QUERYWORKS\sqlagent’

—	PowerShell	subsystem

EXEC	msdb.dbo.sp_grant_proxy_to_subsystem

@proxy_name	=	N’filemanagerproxy’,

@subsystem_id	=	12

—	CmdExec	subsystem

EXEC	msdb.dbo.sp_grant_proxy_to_subsystem

@proxy_name	=	N’filemanagerproxy’,

@subsystem_id	=	12

You	can	substitute	this	with	known	SQL	Server	principals	and	credentials	in	your
environment.

How	to	do	it…
These	are	the	steps	to	create	a	proxy	in	SQL	Server:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	Object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run:
$proxyName	=	“filemanagerproxy”

$credentialName	=	“filemanagercredential”

$jobServer	=	$server.JobServer

#for	purposes	of	our	recipe

#we	will	drop	the	proxy	account	if	it	already	exists

if($jobServer.ProxyAccounts[$proxyName])

{

			$jobServer.ProxyAccounts[$proxyName].Drop()

}

#line	below	to	create	proxy	object

#should	be	in	one	line

$proxy	=	New-

Object	Microsoft.SqlServer.Management.Smo.Agent.ProxyAccount	-

ArgumentList	$jobServer,	$proxyName,	$credentialName,	$true,	“Proxy	Account	for	PowerShell	Agent	Job	steps”

#create	the	proxy	on	the	server

$proxy.Create()

#add	sql	server	agent	account	-	QUERYWORKS\sqlagent

$agentLogin	=	“QUERYWORKS\sqlagent”

$proxy.AddLogin($agentLogin)

#add	PowerShell	and	CmdExec	Subsystems

$proxy.AddSubSystem([Microsoft.SqlServer.Management.Smo.Agent.AgentSubsystem]::PowerShell)

$proxy.AddSubSystem([Microsoft.SqlServer.Management.Smo.Agent.AgentSubsystem]::CmdExec)

#confirm,	list	proxy	accounts

$jobserver.ProxyAccounts	|

ForEach-Object	{

			$currProxy	=	$_

			#put	all	subsystems	in	a	single	string

			$subsytems	=	($currProxy.EnumSubSystems()	|

																	Select	-ExpandProperty	Name)	-Join	”,”

			$item	=	[PSCustomObject]	@{

						Proxy	=	$currProxy.Name

						Credential	=	$currProxy.CredentialName

						Identity	=	$currProxy.CredentialIdentity

						Subsystems	=	$subsytems

			}

			#display

			$item

}

4.	 When	the	script	successfully	finishes	executing,	you	should	see	a	screen	that	lists	all
the	proxies	in	your	system.	Confirm	that	the	proxy	has	been	created	and	subsystems
have	been	assigned.

How	it	works…
The	first	step	is	to	create	an	SMO	proxy	instance.	This	is	a	pretty	long	line	that	wraps	in
the	page,	but	ensure	that	you	don’t	have	any	new	lines	that	break	it	otherwise	PowerShell
will	complain	about	some	syntax	errors:
#line	below	to	create	proxy	object

#should	be	in	one	line

$proxy=New-Object	Microsoft.SqlServer.Management.Smo.Agent.ProxyAccount	-

ArgumentList	$jobServer,	$proxyName,	$credentialName,	$true,	“Proxy	Account	for	PowerShell	Agent	Job	steps”

#create	the	proxy	on	the	server

$proxy.Create()

To	create	a	proxy,	you	will	need	two	pieces	of	information:	the	server	principal	(login)	you
want	to	use	and	the	SQL	Server	credential	to	map	it	to.	In	our	recipe,	we	mapped	our	SQL
Server	Agent	service	account	QUERYWORKS\sqlagent	to	a	domain	account	called
QUERYWORKS\filemanager	via	the	filemanagercredential	credential:
$agentLogin	=	“QUERYWORKS\sqlagent”

$proxy.AddLogin($agentlogin)

In	SQL	Server,	when	creating	proxies,	we	also	need	to	narrow	down	which	specific
subsystems	the	proxy	can	be	used.	In	our	recipe,	we	specified	the	PowerShell	and
CmdExec	subsystems:
$proxy.AddSubSystem([Microsoft.SqlServer.Management.Smo.Agent.AgentSubsystem]::PowerShell)

$proxy.AddSubSystem([Microsoft.SqlServer.Management.Smo.Agent.AgentSubsystem]::CmdExec)

Other	common	options	include	TransactSQL,	ActiveScripting,	AnalysisCommand,
AnalysisQuery,	and	SSIS.

To	confirm,	we	iterate	through	all	ProxyAccounts	and	use	the	EnumSubsystems	method	of
the	Microsoft.SqlServer.Management.Smo.Agent.ProxyAccount	class	to	display	which
subsytems	are	tied	to	a	proxy:
#confirm,	list	proxy	accounts

$jobserver.ProxyAccounts	|

ForEach-Object	{

			$currProxy	=	$_

			#put	all	subsystems	in	a	single	string

			$subsytems	=	($currProxy.EnumSubSystems()	|

																	Select	-ExpandProperty	Name)	-Join	”,”

			$item	=	[PSCustomObject]	@{

						Proxy	=	$currProxy.Name

						Credential	=	$currProxy.CredentialName

						Identity	=	$currProxy.CredentialIdentity

						Subsystems	=	$subsytems

			}

			#display

			$item

}

You	can	find	the	complete	enumeration	values	from	the	MSDN	at
http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.smo.agent.agentsubsystem.aspx.

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.agentsubsystem.aspx

There’s	more…
You	will	often	encounter	the	need	to	use	proxies	when	you	have	some	principals	that	need
to	access	external	resources,	but	you	don’t	want	to	grant	them	those	extra	permissions
outside	SQL	Server.	One	common	scenario	is	with	your	SSIS	packages.	A	SQL	Server
agent	would	usually	not	have	the	extra	rights	to	access	files	and	folders.	To	avoid	granting
these	extra	rights,	you	will	need	to	map	the	agent	account	to	another	account	that	already
has	these	rights.

See	also
	

The	Creating	a	credential	recipe.

Chapter	5.	Backup	and	Restore
In	this	chapter,	we	will	cover:

	
Changing	database	recovery	model
Checking	last	backup	date
Creating	a	backup	device
Listing	backup	header	and	file	list	information
Creating	a	full	back	up
Creating	a	backup	on	mirrored	media	sets
Creating	a	differential	backup
Creating	a	transaction	log	backup
Creating	a	filegroup	backup
Restoring	a	database	to	a	point	in	time
Performing	an	online	piecemeal	restore
Backing	up	database	to	Azure	Blob	storage
Restoring	database	from	Azure	Blob	storage

Introduction
Knowing	how	to	backup	and	restore	a	database	is	one	of	the	most	fundamental	skills,	that
you	need	to	have	when	managing	your	database	environment.

There	are	different	ways	to	do	backup	and	restore.	It	can	be	done	through	SQL	Server
Management	Studio	(SSMS)	by	using	stored	procedures,	or	through	SQL	Server
Integration	Services	(SSIS).	These	backup	tasks	can	also	be	done	with	PowerShell.	With
all	these	different	options,	the	key	is	to	determine	which	tool	is	best	suited	for	the
particular	task.

Doing	the	backups	and	restores	using	PowerShell	has	its	own	advantages,	including	the
ability	to	automate	backups	across	multiple	servers	and	applications,	and	being	able	to
retrieve,	consolidate,	and	filter	all	backup	histories	if	needed.	SQL	Server	also	comes	with
backup	and	restore	cmdlets,	introduced	in	SQL	Server	2012.	In	addition,	you	can	still	tap
into	SQL	Server	Management	Objects	if	you	need	more	flexibility.

Changing	database	recovery	model
In	this	recipe,	we	will	explore	how	to	change	SQL	Server	recovery	model	using
PowerShell.

Getting	ready
We	will	use	AdventureWorks2014	in	this	exercise	and	change	the	recovery	model	from
Full	to	Simple.	Feel	free	to	substitute	this	with	a	database	of	your	choice.

Check	what	SQL	Server	recovery	model	your	instance	is	set	to.	Using	SSMS,	open	your
Object	Explorer.	Right-click	on	the	database	you	chose,	click	on	Properties,	and	select
Options:

If	your	database	is	set	to	either	Simple	or	Bulk-logged,	change	this	to	Full	and	click	on
OK.	Since	we	will	use	AdventureWorks2014	in	later	exercises,	we	need	to	change	this
recovery	model	back	to	Full	after	this	exercise.

How	to	do	it…
The	steps	to	change	the	recovery	model	are	as	follows:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run:
$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

$databasename	=	“AdventureWorks2014”

$database	=	$server.Databases[$databasename]

#possible	values	for	RecoveryModel	are

#Full,	Simple	and	BulkLogged

$database.DatabaseOptions.RecoveryModel	=	[Microsoft.SqlServer.Management.Smo.RecoveryModel]::Simple

$database.Alter()

$database.Refresh()

#list	Recovery	Model	again

$database.DatabaseOptions.RecoveryModel

#remember	to	change	the	recovery	model	back

#to	full	for	the	next	recipes

How	it	works…
To	change	a	database’s	RecoveryModel	property,	get	a	handle	to	that	database	first:
$databasename	=	“AdventureWorks2014”

$database	=	$server.Databases[$databasename]

Once	you	have	the	handle,	use	the	DatabaseOptions	property	of	the	database	object	to	set
RecoveryModel	to	BulkLogged:
#possible	values	for	RecoveryModel	are

#Full,	Simple	and	BulkLogged

$database.DatabaseOptions.RecoveryModel	=	[Microsoft.SqlServer.Management.Smo.RecoveryModel]::Simple

$database.Alter()

$database.Refresh()

There’s	more…
RecoveryModel	is	a	database	property	that	specifies	what	backup	and	restore	operations
are	allowed	and	permitted.	There	are	three	possible	values	for	RecoveryModel:	Full,
BulkLogged,	and	Simple.

The	Full	and	BulkLogged	recovery	models	allow	the	use	of	log	files	for	backup	and
restore	purposes.	The	Full	recovery	model	uses	the	transaction	log	files	heavily	and
allows	for	point-in-time	recovery.

Note
The	BulkLogged	recovery	model	logs	bulk	events	minimally.	If	there	are	no	bulk	events	in
the	system,	then	point-in-time	recovery	is	possible.	If	there	are	bulk	events,	however,
point-in-time	recoverability	will	be	affected,	and	it	is	possible	that	we’ll	be	unable	to
recover	anything	from	your	log	files	at	all.	Check	out	Paul	Randal’s	blog	post	A	SQL
Server	DBA	myth	a	day:	(28/30)	BULK_LOGGED	recovery	model
(http://www.sqlskills.com/BLOGS/PAUL/post/A-SQL-Server-DBA-myth-a-day-(2830)-
BULK_LOGGED-recovery-model.aspx).

The	Simple	recovery	model	does	not	support	transaction	log	backups	and	restores	at	all.
The	transaction	log	tasks	are	unavailable	(disabled)	when	you	are	in	the	Simple	recovery
model.	You	can	visually	confirm	this	when	you	go	to	your	database	properties	in	SQL
Server	Management	Studio	as	well.	This	means	point-in-time	recovery	is	not	possible,	and
the	window	for	data	loss	could	be	large.	Therefore,	the	Simple	recovery	model	is	not	a
recommended	setting	for	production	servers;	it	can	be	used	for	development	and	sandbox
servers,	or	any	instance	where	data	loss	would	not	be	critical.

The	RecoveryModel	type	you	choose	in	your	environment	will	typically	be	determined	by
a	company’s	Recovery	Point	Objective	(RPO)	and	Recovery	Time	Objective	(RTO);
although,	in	most	cases	the	recommended	setting	would	be	the	Full	recovery	model.

Read	more	about	recovery	models	from	the	MSDN	at	http://msdn.microsoft.com/en-
us/library/ms189275.aspx.

http://www.sqlskills.com/BLOGS/PAUL/post/A-SQL-Server-DBA-myth-a-day-(2830)-BULK_LOGGED-recovery-model.aspx
http://msdn.microsoft.com/en-us/library/ms189275.aspx

See	also
	

The	Altering	database	properties	recipe	in	Chapter	2,	SQL	Server	and	PowerShell
Basic	Tasks.

Checking	last	backup	date
In	this	recipe,	we	will	check	when	databases	have	been	last	backed	up.

Getting	ready
One	way	to	check	when	a	database	was	last	backed	up	is	through	SQL	Server
Management	Studio.	Open	SSMS	and	connect	to	your	instance.	For	example,	if	you	want
to	see	when	AdventureWorks2014	was	last	backed	up,	you	can	right-click	on	this	database
and	select	Properties.	In	the	General	page,	you	should	see	a	section	for	Backup,	which
should	show	you	when	a	database	and	log	were	last	backed	up.

How	to	do	it…
The	steps	to	check	the	last	backup	dates	are	as	follows:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run:
$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

$server.Databases	|

Select-Object	Name,	RecoveryModel,

LastBackupDate,

LastDifferentialBackupDate,

LastLogBackupDate	|

Format-Table	-Autosize

How	it	works…
By	default,	each	database	will	already	contain	properties	that	capture	the	last	backup
dates,	specifically	LastBackupDate,	LastDifferentialBackupDate,	and
LastLogBackupDate.	Once	you	get	a	handle	on	the	database	object,	you	can	simply	query
these	properties.	Your	result	will	look	similar	to	the	following	screenshot:

Note
Note	that	when	you	see	a	date:	01/01/0001	12:00:00	AM	when	querying	a	backup	date,
this	means	that	specific	type	of	backup	has	not	been	performed	yet	in	that	database,	if	the
value	is	under	LastBackupDate,	then	a	full	backup	has	not	been	performed	yet.	If	it	falls
under	LastDifferentialBackupDate,	then	a	differential	backup	hasn’t	been	performed
yet.	The	same	holds	true	if	it	is	under	LastLogBackupDate.

In	the	recipe,	we	simply	displayed	the	results	on	the	screen	using	the	Format-Table
cmdlet.	Alternatively,	you	can	capture	the	results	in	a	file	or	a	table	as	per	your
requirements.

See	also
	

The	Listing	SQL	Server	configuration	settings	recipe	in	Chapter	2,	SQL	Server	and
PowerShell	Basic	Tasks.
The	Listing	SQL	Server	Jobs	recipe	in	Chapter	3,	Basic	Administration.

Creating	a	backup	device
This	recipe	will	show	how	you	can	create	a	backup	device	using	PowerShell.

Getting	ready
We	are	going	to	create	a	backup	device	in	this	recipe.	Here’s	the	T-SQL	equivalent	of	what
we	are	trying	to	accomplish:
EXEC	master.dbo.sp_addumpdevice	@devtype	=	N’disk’,

				@logicalname	=	N’Full	Backups’,

				@physicalname	=	N’C:\Backup\backupfile.bak’

How	to	do	it…
Let’s	list	the	steps	required	to	create	a	backup	device:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run:
$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

#this	file	will	be	created	by	PowerShell/SMO

$backupfilename	=	“Full	Backups”

$backupfile	=	“C:\Backup\backupfile.bak”

#this	line	should	be	in	a	single	line

$backupdevice	=	New-

Object	Microsoft.SqlServer.Management.Smo.BackupDevice	-

ArgumentList	$server,	$backupfilename

#BackupDeviceType	values	are:

#CDRom,	Disk,	FloppyA,	FloppyB,	Tape,	Pipe,	Unknown

$backupdevice.BackupDeviceType	=	[Microsoft.SqlServer.Management.Smo.BackupDeviceType]::Disk

$backupdevice.PhysicalLocation	=	$backupfile

#create	the	specified	backup	device

$backupdevice.Create()

#list	backup	devices	to	confirm

$server.BackupDevices

4.	 To	confirm	from	SQL	Server	Management	Studio,	log	in	to	your	instance	and	expand
Backup	Devices.	You	should	see	the	new	backup	device	you	created	in	PowerShell.

How	it	works…
A	backup	device	is	a	layer	of	abstraction	that	allows	you	to	reference	a	backup	media—be
it	a	file,	network	share,	or	tape—using	a	logical	name	instead	of	specifying	the	full
physical	path.

To	create	a	backup	device	using	PowerShell	and	SMO,	you	need	to	create	a	handle	to	an
SMO	BackupDevice	object:
$backupdevice	=	New-

Object	Microsoft.SqlServer.Management.Smo.BackupDevice	-

ArgumentList	$server,	$backupfilename

You	will	also	need	to	specify	BackupDeviceType	and	the	physical	location	of	the	media.
BackupDeviceType	can	be	CDRom,	Disk,	FloppyA,	FloppyB,	Tape,	Pipe,	or	Unknown.	The
code	is	as	follows:
$instanceName	=	“localhost”

$server	=	New-Object	-TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

$backupdevice.BackupDeviceType	=	[Microsoft.SqlServer.Management.Smo.BackupDeviceType]::Disk

$backupdevice.PhysicalLocation	=	$backupfile

#create	the	specified	backup	device

$backupdevice.Create()

There’s	more…
Learn	more	about	backup	devices,	including	terminologies,	how	to	use	backup	devices,
mirrored	media	sets,	and	archiving	SQL	Server	backups	from	the	following	MSDN	page:

http://msdn.microsoft.com/en-us/library/ms179313.aspx

http://msdn.microsoft.com/en-us/library/ms179313.aspx

See	also
	

The	Listing	backup	header	and	FileList	information	recipe.

Listing	backup	header	and	FileList	information
In	this	recipe,	we	will	see	how	to	list	backup	header	information	from	a	backup	file.

Getting	ready
We	need	to	list	the	existing	backup’s	header	information.

Note
If	you	do	not	have	any	backups	in	your	system	yet,	you	can	go	back	to	any	of	this
chapter’s	Backup	recipes	prior	to	performing	this	recipe.

How	to	do	it…
To	list	the	header	information,	follow	these	steps:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run:
$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

#replace	this	with	your	backup	file

$backupfile	=	“AdventureWorks2014.bak”

#replace	this	with	your	backup	directory

$backupdir	=	$server.Settings.BackupDirectory

#get	full	path

$backupfilepath	=	Join-Path	$backupdir	$backupfile

#SMO	restore	object	will	allow	us	to

#investigate	contents	of	backup

$smoRestore	=	New-Object	Microsoft.SqlServer.Management.Smo.Restore

#add	the	backup	file

$smoRestore.Devices.AddDevice($backupfilepath,	[Microsoft.SqlServer.Management.Smo.DeviceType]::File)

#list	backup	header

$smoRestore.ReadBackupHeader($server)

The	following	screenshot	shows	a	part	of	what	you	will	see	after	you	execute	the
ReadBackupHeader	method.	Notice	that	you	can	see	the	BackupName,	BackupType,
ServerName,	BackupSize,	BackupStartDate,	BackupFinishDate,	and	different	LSN
values.

4.	 To	display	the	file	list	information,	add	the	following	script	and	run:
#get	filelist

$smoRestore.ReadFileList($server)

The	following	screenshot	shows	you	a	partial	screen	of	the	information	you	will	get
with	ReadFileList.	Notice	that	you	can	see	properties	such	as	LogicalName,
PhysicalName,	FileGroupName,	and	Size	of	both	the	data	and	log	files	associated
with	this	backup	file.

How	it	works…
You	will	often	want	to	find	out	more	information	about	the	content	of	your	backup	files.
The	backup	header	and	the	file	list	of	the	backup	files	allow	you	to	retrieve	additional
information	about	the	content	of	a	backup	file	or	backup	device.	Starting	with	SQL	Server
2008,	you	must	have	the	CREATE	DATABASE	permission	before	the	header	information	can
be	listed.

To	start,	we	should	identify	which	backup	file	and	path	we	want	to	investigate:
#replace	this	with	your	backup	file

$backupfile	=	“AdventureWorks2014.bak”

#replace	this	with	your	backup	directory

$backupdir	=	$server.Settings.BackupDirectory

#get	full	path

$backupfilepath	=	Join-Path	$backupdir	$backupfile

Next,	we	create	a	reference	to	an	SMO	Restore	object:
$smoRestore	=	New-Object	Microsoft.SqlServer.Management.Smo.Restore

We	then	add	the	backup	file	to	this	SMO	Restore	object	using	the	AddDevice	method.	We
can	specify	the	full	path	to	the	backup	file	and	the	type	of	device.	The	valid	values	for
DeviceType	are	File,	LogicalDevice,	Pipe,	Tape,	Url,	and	VirtualDevice:
$smoRestore.Devices.AddDevice($backupfilepath,	[Microsoft.SqlServer.Management.Smo.DeviceType]::File)

The	SMO	Restore	object	contains	a	method	called	ReadBackupHeader,	which	lists	all	the
backup	headers	for	all	backup	sets	contained	in	a	backup	device	or	file.	The	information	it
returns	includes	the	following:

	
BackupName	and	description
BackupType

Compressed

ServerName

DatabaseName

DatabaseVersion	and	DatabaseCreationDate
BackupSize

CheckpointLSN

DatabaseBackupLSN

Backup	start	and	finish	date

To	retrieve	the	backup	header,	just	invoke	the	ReadBackupHeader	method	of	the	Restore
object	and	pass	in	the	server	object	as	an	argument:
$smoRestore.ReadBackupHeader($server)

The	file	list	contains	the	actual	database	and	log	files	associated	in	a	particular	backup	set.
Listing	the	file	list	requires	a	very	similar	syntax	to	when	reading	the	backup	header.	We
need	to	invoke	the	method	ReadFileList,	passing	the	server	object	as	an	argument	again:

$smoRestore.ReadFileList($server)

There’s	more…
To	learn	more	about	the	Restore	class,	including	its	properties	and	methods,	check	out
https://msdn.microsoft.com/en-
us/library/Microsoft.SqlServer.Management.Smo.Restore.aspx.

https://msdn.microsoft.com/en-us/library/Microsoft.SqlServer.Management.Smo.Restore.aspx

Creating	a	full	backup
In	this	recipe,	we	will	see	how	to	create	a	full	database	backup	using	PowerShell.

Getting	ready
Using	the	AdventureWorks2014	database,	we	will	create	a	full,	compressed	backup	of	the
database	to	a	timestamped	backup	(.bak)	file	in	the	C:\Backup	folder.	Feel	free	to	use	a
database	of	your	choice	for	this	task.

The	T-SQL	syntax	that	will	be	generated	by	this	PowerShell	recipe	will	look	similar	to	the
following:
BACKUP	DATABASE	[AdventureWorks2014]

TO		DISK	=	N’C:\Backup\AdventureWorks2014_Full_20150314092409.bak’

WITH	NOFORMAT,	INIT,

NAME	=	N’AdventureWorks2014	Full	Backup’,

NOSKIP,	REWIND,	NOUNLOAD,	COMPRESSION,

STATS	=	10,	CHECKSUM

How	to	do	it…
The	steps	to	create	a	full	database	backup	are	as	follows:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run:
$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

$databasename	=	“AdventureWorks2014”

$timestamp	=	Get-Date	-format	yyyyMMddHHmmss

$backupfolder	=	“C:\Backup"

$backupfile	=	”$($databasename)_Full_$($timestamp).bak”

$fullBackupFile	=	Join-Path	$backupfolder	$backupfile

#note	that	we	are	using	backticks	in	this	command

#to	allow	for	a	newline	for	each	parameter

#to	clearly	show	parameters	used

Backup-SqlDatabase	`

-ServerInstance	$instanceName	`

-Database	$databasename	`

-BackupFile	$fullBackupFile	`

-Checksum	`

-Initialize	`

-BackupSetName	”$databasename	Full	Backup”	`

-CompressionOption	On

Because	the	STATS	option	is	on	by	default,	reporting	progress	in	10	percent
increments,	you	should	notice	a	progress	bar	in	PowerShell	ISE	while	the	database	is
being	backed	up:

Note	that	if	you	are	using	the	PowerShell	console,	you	will	also	see	a	progress	bar,
although	it	is	slightly	different	in	appearance.	Once	backup	is	done,	check	your
C:\Backup	directory	and	confirm	that	the	timestamped	backup	file	has	been	created.

4.	 Confirm	by	reading	the	backup	header.	Add	the	following	script	and	run:
#confirm	by	reading	the	header

$smoRestore	=	New-Object	Microsoft.SqlServer.Management.Smo.Restore

$smoRestore.Devices.AddDevice($fullBackupFile,	[Microsoft.SqlServer.Management.Smo.DeviceType]::File)

$smoRestore.ReadBackupHeader($server)

$smoRestore.ReadFileList($server)

How	it	works…
In	this	recipe,	we	first	create	a	timestamped	filename:
$databasename	=	“AdventureWorks2014”

$timestamp	=	Get-Date	-format	yyyyMMddHHmmss

$backupfolder	=	“C:\Backup"

$backupfile	=	”$($databasename)_Full_$($timestamp).bak”

$fullBackupFile	=	Join-Path	$backupfolder	$backupfile

This	will	give	you	a	filename	similar	to	this
C:\Backup\AdventureWorks2014_Full_20150314092409.bak.

Next,	we	use	the	Backup-SqlDatabase	cmdlet.	The	Backup-SqlDatabase	cmdlet	was
introduced	in	SQL	Server	2012	as	part	of	the	SQLPS	module.	This	cmdlet	encapsulates	a
lot	of	the	options	that	used	to	be	available	only	via	SMO.

It	is	imperative	for	this	recipe	that	we	use	Get-Help	for	the	Backup-SqlDatabase	cmdlet
first	to	know	which	parameters	are	available.	The	Backup-SqlDatabase	cmdlet	supports
several	parameter	sets,	which	means	it’s	fairly	flexible	in	the	options	you	can	provide.

Here’s	the	first	part	of	the	results	of	Get-Help	for	this	cmdlet,	just	to	give	you	an	idea:

In	our	recipe,	this	is	the	command	we	executed:
Backup-SqlDatabase	`

-ServerInstance	$instanceName	`

-Database	$databasename	`

-BackupFile	$fullBackupFile	`

-Checksum	`

-Initialize	`

-BackupSetName	”$databasename	Full	Backup”	`

-CompressionOption	On

Note
Note	that	we	used	the	line	continuation	character	backtick	(`)	for	readability	purposes	so

that	we	can	align	each	parameter	on	the	same	position	in	each	line.

Let’s	explain	the	options	we	have	chosen	in	more	detail:

Parameter Explanation

-ServerInstance

$instanceName
Instance	to	backup.

-Database

$databasename
Database	to	backup.

-BackupFile

$fullBackupFile
Backup	filename.

-Checksum
Enable	backup	checksum,	which	can	be	used	in	restore	operation	to	determine
if	backup	file	is	corrupt.

-Initialize Specifies	backup	set	contained	in	the	file	or	backup	device	will	be	overwritten.

-BackupSetName

“$databasename

Full	Backup”

Backup	set	name.

-

CompressionOption

On

Specifies	whether	compression	should	be	applied	to	the	backup	file.

You	can	also	provide	the	complete	enum	reference	for	the	CompressionOption
value:
-CompressionOption

([Microsoft.SqlServer.Management.Smo.BackupCompressionOptions]::On)

Instead	of	compressing	backups,	you	can	also	take	advantage	of	the	new	Compress-
Archive	cmdlet	introduced	in	PowerShell	v5:
$backupfile	=	“C:\Backup\AdventureWorks2014.bak”

$backupzip	=	“C:\Backup\AdventureWorks2014.zip”

#create	the	zipped	file

Compress-Archive	-Path	$backupfile	-DestinationPath	$backupzip	-

CompressionLevel	Optimal

There	are	currently	three	supported	compression	levels	for	the	Compress-Archive	cmdlet:
Fastest,	NoCompression,	and	Optimal.	These	values	should	automatically	show	up	as
dropdown	in	PowerShell	ISE	once	you’ve	typed	the	–CompressionLevel	parameter:

Note
There	are	two	blog	posts	that	discuss	the	reasons	to	use	compression	whenever	possible:

	
Henk	van	der	Valk’s	How	to	increase	SQL	Database	Full	Backup	speed	using
compression	and	Solid	State	Disks	at	http://henkvandervalk.com/how-to-increase-sql-
database-full-backup-speed-using-compression-and-solid-state-disks.
Denis	Gobo	discusses	the	benefits	of	compression,	including	faster	backups,	restores
and	file	transfers	at
http://blogs.lessthandot.com/index.php/datamgmt/dbadmin/testing-backup-
compression-in-sql-server-2008/.

Once	you	get	familiar	with	the	Backup-SqlDatabase	cmdlet,	you	will	realize	that	the
command	and	options	for	all	other	backup	types	will	be	fairly	similar.	You	will	just	need
to	add	or	change	some	of	the	parameters.

http://henkvandervalk.com/how-to-increase-sql-database-full-backup-speed-using-compression-and-solid-state-disks
http://blogs.lessthandot.com/index.php/datamgmt/dbadmin/testing-backup-compression-in-sql-server-2008/

There’s	more…
Although	there	is	already	a	cmdlet	available	for	backing	up	databases,	it	will	be	useful	to
discuss	how	you	can	do	the	backups	via	SMO.	Using	SMO	may	be	the	more	code-heavy
way	of	tackling	a	database	backup	in	PowerShell,	but	it	is	still	very	powerful	and	flexible.

The	cmdlet	can	be	viewed	simply,	as	a	wrapper	to	the	SMO	backup	methods.	Taking	a
peek	at	how	this	is	done	could	be	a	good	exercise.

The	first	steps	in	this	approach	are	similar	to	the	steps	we	have	for	this	recipe:	import
SQLPS	and	create	the	SMO	server	object.	After	that,	create	an	SMO	Backup	object.	The
code	is	as	follows:
$databasename	=	“AdventureWorks2014”

$timestamp	=	Get-Date	-format	yyyyMMddHHmmss

$backupfolder	=	“C:\Backup"

$backupfile	=	”$($databasename)_Full_$($timestamp).bak”

$fullBackupFile	=	Join-Path	$backupfolder	$backupfile

#This	belongs	in	Microsoft.SqlServer.SmoExtended	assembly

$smoBackup	=	New-Object	Microsoft.SqlServer.Management.Smo.Backup

With	a	handle	to	the	SMO	backup	object,	you	will	have	more	granular	control	over	what
values	are	set	to	which	properties.	Action	can	be	Database,	File,	or	Log.	The	code	is	as
follows:
$smoBackup.Action	=	[Microsoft.SqlServer.Management.Smo.BackupActionType]::Database

$smoBackup.BackupSetName	=	”$databasename	Full	Backup”

$smoBackup.Database	=	$databasename

$smoBackup.MediaDescription	=	“Disk”

$smoBackup.Devices.AddDevice($fullBackupFile,	“File”)

$smoBackup.Checksum	=	$true

$smoBackup.Initialize	=	$true

$smoBackup.CompressionOption	=	[Microsoft.SqlServer.Management.Smo.BackupCompressionOptions]::On

You	can	also	optionally	set	up	your	own	event	notification	on	the	backup	progress	using
the	Microsoft.SqlServer.Management.Smo.PercentCompleteEventHandler	and
Microsoft.SqlServer.Management.Common.ServerMessageEventHandler	classes.	The
code	is	as	follows:
#the	notification	part	below	is	optional

#it	just	creates	an	event	handler

#that	indicates	progress	every	20%

$smoBackup.PercentCompleteNotification	=	20

$percentEventHandler	=	[Microsoft.SqlServer.Management.Smo.PercentCompleteEventHandler]	{

			Write-Host	“Backing	up	$($databasename)…$($_.Percent)%”

}

$completedEventHandler	=	[Microsoft.SqlServer.Management.Common.ServerMessageEventHandler]	{

			Write-Host	$_.Error.Message

}

$smoBackup.add_PercentComplete($percentEventHandler)

$smoBackup.add_Complete($completedEventHandler)

After	setting	the	properties,	you	can	invoke	the	SqlBackup	method	of	the	SMO	Backup
class	and	pass	the	server	object:

#backup

$smoBackup.SqlBackup($server)

Alternatively,	when	you	do	a	restore	with	SMO,	the	steps	are	going	to	be	pretty	similar.
You	will	need	to	create	the	SMO	Restore	object,	set	the	properties,	and	call	the
SqlRestore	method	of	the	Restore	class	in	the	end.

More	about	backup	and	PercentCompleteEventHandler
To	learn	more	about	the	BackupRestoreBase	and	PercentCompleteHandler	SMO	classes,
you	can	refer	to	the	following:

	
BackupRestoreBase	at	http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.smo.backuprestorebase.percentcomplete.aspx
PercentCompleteEventHandler	at	http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.smo.percentcompleteeventhandler.aspx

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.backuprestorebase.percentcomplete.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.percentcompleteeventhandler.aspx

See	also
	

The	Creating	a	backup	on	Mirrored	Media	Sets	recipe.
The	Creating	a	differential	backup	recipe.
The	Creating	a	transaction	log	backup	recipe.
The	Creating	a	filegroup	backup	recipe.

Creating	a	backup	on	Mirrored	Media	Sets
In	this	recipe,	we	will	create	a	full	database	backup	on	mirrored	backup	files.

Getting	ready
We	will	use	the	AdventureWorks2014	database	for	this	recipe.	We	will	create	a	mirrored
backup	of	the	database,	and	both	timestamped	backup	files	will	be	stored	in	C:\Backup.
Feel	free	to	substitute	this	with	the	database	you	want	to	use	with	mirrored	backups.

Note
Note	that	mirrored	backups	are	only	supported	in	Developer	or	Enterprise	editions	of	SQL
Server.	Please	ensure	you	have	either	of	these	editions	before	proceeding	with	the	recipe.

Here’s	the	T-SQL	syntax	that	will	be	generated	by	this	PowerShell	recipe:
BACKUP	DATABASE	[AdventureWorks2014]

TO		DISK	=	N’AdventureWorks2014.bak’

MIRROR

TO		DISK	=	N’C:\Backup\AdventureWorks2014_Full_20150314092409_Copy1.bak’

MIRROR	TO		DISK	=	N’C:\Backup\AdventureWorks2014_Full_20150314092409_Copy2.bak’

WITH	FORMAT,	INIT,

NAME	=	N’AdventureWorks2014	Full	Backup’,	SKIP,	REWIND,

NOUNLOAD,	COMPRESSION,	STATS	=	10,	CHECKSUM

How	to	do	it…
To	create	a	backup	on	mirrored	media	sets,	use	the	following	steps:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run:
$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

$databasename	=	“AdventureWorks2014”

#create	filenames,	which	we	will	use	as	Device

$databasename	=	“AdventureWorks2014”

$timestamp	=	Get-Date	-format	yyyyMMddHHmmss

$backupfolder	=	“C:\Backup"

#backup	mirror	1

$backupfile1	=	Join-

Path	$backupfolder	”$($databasename)_Full_$($timestamp)_Copy1.bak”

#backup	mirror	2

$backupfile2	=	Join-

Path	$backupfolder	”$($databasename)_Full_$($timestamp)_Copy2.bak”

#create	a	backup	device	list

#in	this	example,	we	will	only	use

#two	(2)	mirrored	media	sets

#note	a	maximum	of	four	(4)	is	allowed

$backupDevices	=	New-

Object	Microsoft.SqlServer.Management.Smo.BackupDeviceList(2)

#backup	mirror	1

$backupDevices.AddDevice($backupfile1,	[Microsoft.SqlServer.Management.Smo.DeviceType]::File)

#backup	mirror	2

$backupDevices.AddDevice($backupfile2,	[Microsoft.SqlServer.Management.Smo.DeviceType]::File)

#backup	database

#note	that	we	are	using	backticks	in	this	command

#to	allow	for	a	newline	for	each	parameter

#to	clearly	show	parameters	used

Backup-SqlDatabase		`

-ServerInstance	$instanceName	`

-Database	$databasename	`

-BackupSetName	”$databasename	Full	Backup”	`

-Checksum	`

-Initialize	`

-FormatMedia	`

-SkipTapeHeader	`

-MirrorDevices	$backupDevices	`

-CompressionOption	On

4.	 Open	your	C:\Backup	folder	and	confirm	that	the	two	timestamped	backup	files	have
been	created.

How	it	works…
With	SQL	Server,	it	is	possible	to	create	a	backup	with	up	to	four	mirrors	per	media	set.
Mirrored	media	sets	allow	you	to	have	multiple	copies	of	that	backup	which	are	stored	in
different	backup	devices.

For	our	recipe,	we	must	create	a	set	of	files	first,	that	we	will	use	to	save	our	backup	to:
#create	backup	devices

#in	this	example,	we	will	only	use	two	(2)	mirrored	media	sets

#note	a	maximum	of	four	(4)	is	allowed

$databasename	=	“AdventureWorks2014”

$timestamp	=	Get-Date	-format	yyyyMMddHHmmss

$backupfolder	=	“C:\Backup"

#backup	mirror	1

$backupfile1	=	Join-

Path	$backupfolder	”$($databasename)_Full_$($timestamp)_Copy1.bak”

#backup	mirror	2

$backupfile2	=	Join-

Path	$backupfolder	”$($databasename)_Full_$($timestamp)_Copy2.bak”

We	then	need	to	add	these	files’	backup	devices	to	our	BackupDeviceList	object.	The	two
parameters	that	we	pass	to	our	BackupDeviceList	constructor	represent	the	number	of
backup	devices	we	are	adding.	A	maximum	of	four	devices	are	allowed	for	mirrored
media.	The	code	is	as	follows:
$backupDevices	=	New-

Object	Microsoft.SqlServer.Management.Smo.BackupDeviceList(2)

#backup	mirror	1

$backupDevices.AddDevice($backupfile1,	[Microsoft.SqlServer.Management.Smo.DeviceType]::File)

#backup	mirror	2

$backupDevices.AddDevice($backupfile2,	[Microsoft.SqlServer.Management.Smo.DeviceType]::File)

In	the	Backup-SqlDatabase	cmdlet,	the	highlighted	code	below	shows	the	options	that
enable	mirrored	backups:
#backup	database

Backup-SqlDatabase		`

-ServerInstance	$instanceName	`

-Database	$databasename	`

-BackupSetName	”$databasename	Full	Backup”	`

-Checksum	`

-Initialize	`

-FormatMedia	`

-SkipTapeHeader	`

-MirrorDevices	$backupDevices	`

-CompressionOption	On

Note
Note	that	we	used	the	line	continuation	character	backtick	(`)	for	readability	purposes,	so
we	can	align	each	parameter	on	the	same	position	each	line.

Let’s	discuss	some	of	these	highlighted	options	in	detail:

Parameter Explanation

-Initialize
Specifies	the	backup	set	contained	in	the	file	or	backup	device	will	be
overwritten

-FormatMedia
Overwrites	existing	media	header	information,	and	creates	a	new	media
set

-

SkipTapeHeader
Skip	checking	backup	tape	expiration

-MirrorDevices
Allows	backup	on	Mirrored	Media	Sets;	accepts	a	BackupDeviceList
array

There’s	more…
To	learn	more	about	Mirrored	Backup	Media	Sets,	hardware	requirements,	and	related
tasks,	visit	http://msdn.microsoft.com/en-us/library/ms175053.aspx.

http://msdn.microsoft.com/en-us/library/ms175053.aspx

See	also
	

The	Creating	a	full	backup	recipe.
The	Creating	a	differential	backup	recipe.
The	Creating	a	transaction	log	backup	recipe.
The	Creating	a	filegroup	backup	recipe.

Creating	a	differential	backup
This	recipe	will	discuss	how	you	can	create	a	differential	backup	on	your	database.

Getting	ready
We	will	use	the	AdventureWorks2014	database	for	this	recipe.	We	will	create	a	differential
compressed	backup	of	the	database	to	a	timestamped	.bak	file	in	the	C:\Backup	folder.
Feel	free	to	use	a	database	of	your	choice	for	this	task.

The	T-SQL	syntax	that	will	be	generated	by	this	PowerShell	recipe	will	look	like	this:
BACKUP	DATABASE	[AdventureWorks2014]

TO		DISK	=	N’C:\Backup\AdventureWorks2014_Diff_20150314092409.bak’

WITH		DIFFERENTIAL	,	NOFORMAT,	INIT,

NAME	=	N’AdventureWorks2014	Diff	Backup’,

NOSKIP,	REWIND,	NOUNLOAD,	COMPRESSION,

STATS	=	10,	CHECKSUM

How	to	do	it…
Let’s	list	the	steps	required	to	create	a	differential	database	backup:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run:
$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

$databasename	=	“AdventureWorks2014”

$timestamp	=	Get-Date	-format	yyyyMMddHHmmss

$backupfolder	=	“C:\Backup"

$backupfile	=	”$($databasename)_Diff_$($timestamp).bak”

$diffBackupFile	=	Join-Path	$backupfolder	$backupfile

#note	that	we	are	using	backticks	in	this	command

#to	allow	for	a	newline	for	each	parameter

#to	clearly	show	parameters	used

Backup-SqlDatabase		`

-ServerInstance	$instanceName	`

-Database	$databasename	`

-BackupFile	$diffBackupFile	`

-Checksum	`

-Initialize	`

-Incremental	`

-BackupSetName	”$databasename	Diff	Backup”	`

-CompressionOption	On

4.	 Confirm	by	reading	the	backup	header.	Add	the	following	script	and	run:
#confirm	by	reading	the	header

#backup	type	for	differential	is	5

#this	is	a	block	of	code	you	would	want	to	put

#in	a	function	so	you	can	use	anytime

$smoRestore	=	New-Object	Microsoft.SqlServer.Management.Smo.Restore

$smoRestore.Devices.AddDevice($diffBackupFile,	[Microsoft.SqlServer.Management.Smo.DeviceType]::File)

$smoRestore.ReadBackupHeader($server)

$smoRestore.ReadFileList($server)

How	it	works…
A	differential	backup	captures	all	changes	to	a	database	since	the	last	full	backup.	Creating
a	differential	in	PowerShell	is	very	similar	to	creating	a	full	backup	using	the	Backup-
SqlDatabase	cmdlet,	with	a	slight	change	in	the	set	of	options	that	need	to	be	specified.
The	code	is	as	follows:
Backup-SqlDatabase		`

-ServerInstance	$instanceName	`

-Database	$databasename	`

-BackupFile	$diffBackupFile	`

-Checksum	`

-Initialize	`

-Incremental	`

-BackupSetName	”$databasename	Diff	Backup”	`

-CompressionOption	On

The	one	thing	that	differentiates	a	full	and	differential	backup	is	the	–Incremental	option.

Note
More	information	about	options	used	with	the	Backup-SqlDatabase	cmdlet	are	explained
in	more	detail	in	the	Create	a	full	backup	recipe.

There’s	more…
To	do	a	differential	backup	using	SMO,	the	code	will	be	similar	to	the	SMO	code	you
would	use	with	a	full	backup;	just	add	one	more	line:
$smoBackup.Incremental	=	$true

Note
Check	out	a	detailed	example	and	explanation	of	how	to	use	SMO	for	backups	instead	of
the	Backup-SqlDatabase	cmdlet	in	the	recipe	Create	a	full	backup.

See	also
	

The	Creating	a	full	backup	recipe.
The	Creating	a	backup	on	Mirrored	Media	Sets	recipe.
The	Creating	a	transaction	log	backup	recipe.
The	Creating	a	filegroup	backup	recipe.

Creating	a	transaction	log	backup
In	this	recipe,	we	will	create	a	transaction	log	backup.

Getting	ready
We	will	use	the	AdventureWorks2014	database	for	this	recipe.	We	will	create	a
timestamped	transaction	log	backup	file	in	the	C:\Backup	folder.	Feel	free	to	use	a
database	of	your	choice	for	this	task.

Ensure	that	the	recovery	model	of	the	database	you	are	backing	up	is	either	Full	or
BulkLogged.	You	can	use	the	recipe	Changing	database	recovery	model	as	a	reference.
Execute	the	following	command	to	query	the	current	recovery	model	setting	of	your
database:
$database.DatabaseOptions.RecoveryModel

You	can	also	check	this	using	SQL	Server	Management	Studio.	The	steps	are	as	follows:

	
1.	 Log	in	to	SSMS.
2.	 Expand	Databases	and	right-click	on	AdventureWorks2014.
3.	 Go	to	Properties	|	Options	and	check	the	Recovery	Model	value.

The	T-SQL	syntax	that	will	be	generated	by	this	PowerShell	recipe	will	look	similar	to
this:
BACKUP	LOG	[AdventureWorks2014]

TO		DISK	=	N’C:\Backup\AdventureWorks2014_Txn_20150314235319.bak’

	WITH	NOFORMAT,	NOINIT,	NOSKIP,	REWIND,	NOUNLOAD,	STATS	=	10

How	to	do	it…
Let’s	list	the	steps	required	to	create	a	transaction	log	backup:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run:
$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

#create	a	transaction	log	backup

$databasename	=	“AdventureWorks2014”

$timestamp	=	Get-Date	-format	yyyyMMddHHmmss

$backupfolder	=	“C:\Backup"

$backupfile	=	”$($databasename)_Txn_$($timestamp).bak”

$txnBackupFile	=	Join-Path	$backupfolder	$backupfile

#note	that	we	are	using	backticks	in	this	command

#to	allow	for	a	newline	for	each	parameter

#to	clearly	show	parameters	used

Backup-SqlDatabase	`

-BackupAction	Log	`

-ServerInstance	$instanceName	`

-Database	$databasename	`

-BackupFile	$txnBackupFile

How	it	works…
Transaction	log	backups	are	only	permitted	if	the	database	you	are	backing	up	is	in	either
the	Full	or	BulkLogged	recovery	model.	To	create	a	transaction	log	backup	using	the
Backup-SqlDatabase	cmdlet,	there	is	one	option	that	must	be	specified:
Backup-SqlDatabase	`

-BackupAction	Log	`

-ServerInstance	$instanceName	`

-Database	$databasename	`

-BackupFile	$txnBackupFile

When	backing	up	databases,	one	of	the	important	parameters	is	BackupAction.	It	accepts
three	valid	values:	Database,	Files,	and	Log.

You	can	also	optionally	use	the	fully	qualified	name	of	the	BackupActionType
enumeration:
-BackupAction	([Microsoft.SqlServer.Management.Smo.BackupActionType]::Log

The	following	table	lists	some	additional	options	that	you	can	specify	when	doing
transaction	log	backups:

Parameter Explanation

-NoRecovery
This	is	required	when	you	are	taking	tail	log	backups;	it	puts	the
database	in	the	Restoring	state,	and	the	log	is	not	truncated.

-

LogTruncationType

This	accepts	an	SMO	BackupTruncateLogType	enumeration	value:
NoTruncate,	Truncate,	or	TruncateOnly.

There’s	more…
Tail	log	backups	will	contain	any	log	records	that	have	not	been	backed	up	yet.	These
backups	are	usually	taken	in	the	event	of	a	disaster,	or	just	before	a	restore	operation.
Taking	a	tail	log	backup	leaves	the	database	in	a	Restoring	state,	that	is,	in	an
inaccessible	state	to	prevent	further	changes.

To	learn	more	about	tail	log	backups,	visit	http://msdn.microsoft.com/en-
us/library/ms179314.aspx.

http://msdn.microsoft.com/en-us/library/ms179314.aspx

See	also
	

The	Creating	a	backup	on	Mirrored	Media	Sets	recipe.
The	Creating	a	full	backup	recipe.
The	Creating	a	differential	backup	recipe.
The	Creating	a	filegroup	backup	recipe.

Creating	a	filegroup	backup
In	this	recipe,	we	will	create	a	filegroup	backup	using	the	Backup-SqlDatabase
PowerShell	cmdlet.

Getting	ready
For	testing	purposes,	let’s	create	a	small	sample	database	called	StudentDB	that	contains	a
couple	of	filegroups	called	FG1	and	FG2.	Each	filegroup	will	have	two	data	files,	which
will	be	saved	in	the	C:\Temp	folder.

Open	up	SQL	Server	Management	Studio	and	run	the	following	script:
CREATE	DATABASE	[StudentDB]

	ON		PRIMARY

(NAME	=	N’StudentDB’,	FILENAME	=	N’C:\Temp\StudentDB.mdf’),

	FILEGROUP	[FG1]

(NAME	=	N’StudentData1’,	FILENAME	=	N’C:\Temp\StudentData1.ndf’),

(NAME	=	N’StudentData2’,	FILENAME	=	N’C:\Temp\StudentData2.ndf’),

	FILEGROUP	[FG2]

(NAME	=	N’StudentData3’,	FILENAME	=	N’C:\Temp\StudentData3.ndf’)

	LOG	ON

(NAME	=	N’StudentDB_log’,	FILENAME	=	N’C:\Temp\StudentDB.ldf’)

GO

We	will	use	this	database	to	do	our	filegroup	backup.	Feel	free	to	substitute	this	with	a
database	that	already	exists	in	your	instance	which	already	has	filegroups.

How	to	do	it…
These	are	the	steps	required	to	create	a	filegroup	backup:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run:
$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

$databasename	=	“StudentDB”

$timestamp	=	Get-Date	-format	yyyyMMddHHmmss

#create	a	file	to	backup	FG1	filegroup

$backupfolder	=	“C:\Backup"

$backupfile	=	”$($databasename)_FG1_$($timestamp).bak”

$fgBackupFile	=	Join-Path	$backupfolder	$backupfile

#note	that	we	are	using	backticks	in	this	command

#to	allow	for	a	newline	for	each	parameter

#to	clearly	show	parameters	used

Backup-SqlDatabase	`

-BackupAction	Files	`

-DatabaseFileGroup	“FG1”	`

-ServerInstance	$instanceName	`

-Database	$databasename	`

-BackupFile	$fgBackupFile	`

-Checksum	`

-Initialize	`

-BackupSetName	”$databasename	FG1	Backup”	`

-CompressionOption	On

#confirm	by	reading	the	header

#backup	type	for	files	is	4

#this	is	a	block	of	code	you	would	want	to	put

#in	a	function	so	you	can	use	anytime

$smoRestore	=	New-Object	Microsoft.SqlServer.Management.Smo.Restore

$smoRestore.Devices.AddDevice($fgBackupFile,	[Microsoft.SqlServer.Management.Smo.DeviceType]::File)

$smoRestore.ReadBackupHeader($server)

How	it	works…
Backing	up	filegroups	can	be	considered	a	practical	alternative	for	Very	Large	Databases
(VLDBs),	where	a	full	backup	can	take	up	impractical	amounts	of	space	and	time.	With
filegroup	backups,	you	can	strategize	which	filegroups	to	back	up	more	frequently	and
which	ones	less	frequently.	Filegroup	backups	also	enable	you	to	take	advantage	of	online
piecemeal	restores	for	Enterprise	Edition	of	SQL	Server,	starting	with	SQL	Server	2005.

Note
See	the	Performing	an	online	piecemeal	restore	recipe	for	more	details

In	our	recipe,	we	chose	to	backup	FG1.	Our	main	backup	command	looks	like	this:
Backup-SqlDatabase	`

-BackupAction	Files	`

-DatabaseFileGroup	“FG1”	`

-ServerInstance	$instanceName	`

-Database	$databasename	`

-BackupFile	$fgBackupFile	`

-Checksum	`

-Initialize	`

-BackupSetName	”$databasename	FG1	Backup”	`

-CompressionOption	On;

Notice	the	highlighted	lines	of	code.	These	lines	enable	the	filegroup	backups.	In
BackupAction,	we	have	to	specify	Files.	The	other	options	for	BackupAction	are
Database	and	Log.

Once	we	have	specified	we	want	Files,	we	should	also	pass	the	filegroup	name	we	want
to	back	up	using	the	DatabaseFileGroup	parameter.

There’s	more…
To	learn	more	about	backing	up	files	and	filegroups,	visit	http://msdn.microsoft.com/en-
us/library/ms179401.aspx.

http://msdn.microsoft.com/en-us/library/ms179401.aspx

See	also
	

The	Creating	a	backup	on	Mirrored	Media	Sets	recipe.
The	Creating	a	full	backup	recipe.
The	Creating	a	differential	backup	recipe.
The	Creating	a	transaction	log	backup	recipe.
The	Performing	an	online	piecemeal	restore	recipe.

Restoring	a	database	to	a	point-in-time
In	this	recipe,	we	will	use	the	different	backup	files	which	we	have	to	restore	to	a	point-in-
time.

Getting	ready
In	this	recipe,	we	will	use	the	SampleDB	database.	The	SampleDB	database	has	a	single
filegroup	that	contains	a	single	data	file.	We	will	restore	this	database	to	another	SQL
Server	instance,	and	to	a	point-in-time	using	three	different	backup	files	from	three
different	backup	types:

	
Full	backup
Differential	backup
Transaction	log	backup

You	can	use	the	following	script	to	create	your	files	in	B04525	-	Ch05	-	10	-	Restoring
a	Database	to	a	Point	in	Time	–	Prep.ps1	(this	is	available	in	the	code	bundle
available	with	the	book),	which	is	included	in	the	downloadable	files	for	this	book.	The
prep	file	will	perform	the	following	tasks:

	
1.	 Create	a	sample	database	called	SampleDB.
2.	 Create	a	table	called	Record	inside	SampleDB,	which	will	contain	a	date/time	column

that	will	capture	when	records	are	inserted.	This	column	will	help	verify	that	our
point-in-time	restore	works.

3.	 Insert	records	into	the	Record	table	at	one-minute	intervals.	This	is	what	your	table
should	look	like	after	the	prep	file	finishes	executing:

4.	 Create	a	full,	differential	log	file	and	three	transaction	log	backups,	which	will	be
stored	in	a	local	folder	C:\Backup\.	Each	backup	file	will	be	timestamped.	The
following	screenshot	shows	the	result	of	running	the	prep	file.	Your	files	should	be
similar,	just	with	different	timestamp	values.

For	our	recipe,	we	will	restore	the	database	to	a	new	database	called	SampleDB_Restored,
up	to	2015-03-26	18:33:40.	This	means	after	the	point-in-time	restore,	we	should	have
only	four	records	in	the	Record	table:

	
Full	201503261830

Log	2015032618301

Differential	201503261832

Log	201503261833

Again,	feel	free	to	substitute	this	database	with	your	preferred	database	in	your
development	environment.

How	to	do	it…
To	restore	to	a	point	in	time	using	a	full,	differential	log	file	and	several	transaction	log
files,	follow	these	steps:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run:
$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

$originalDBName	=	“SampleDB”

$restoredDBName	=	“SampleDB_Restored”

#location	of	backups

$backupfilefolder	=	“C:\Backup"

#change	this	to	your	restore	point

$restorepoint	=	“2015-03-26	18:33:40”

#remove	restored	database	if	already	exists

if($server.Databases[$restoredDBName])

{

				$server.KillDatabase($restoredDBName)

}

#look	for	the	last	full	backupfile

#alternatively,	you	can	specify	filename

$fullBackupFile	=

Get-ChildItem	$backupfilefolder	-Filter	”*Full*”	|

Sort-Object	-Property	LastWriteTime	-Descending	|

Select-Object	-Last	1

#read	the	filelist	info	within	the	backup	file

#so	that	we	know	which	other	files	we	need	to	restore

$smoRestore	=	New-Object	Microsoft.SqlServer.Management.Smo.Restore

$smoRestore.Devices.AddDevice($fullBackupFile.FullName,	[Microsoft.SqlServer.Management.Smo.DeviceType]::File)

$filelist	=	$smoRestore.ReadFileList($server)

#we	are	putting	the	files	we	read	from	the	filelist

#in	an	array	in	case	we	have	multiple	data

#and	log	files	associated	with	the	database

$relocateFileList	=	@()

$relocatePath	=	“C:\Program	Files\Microsoft	SQL	Server\MSSQL12.MSSQLSERVER\MSSQL\DATA”

<#

#an	alternative	to	using	a	static	path

#is	to	dynamically	assign	the	path

#using	the	following	code:

$relocatePath	=	$server.DefaultFile

if	($relocatePath.Length	-eq	0)	{

	$	relocatePath	=	$server.Information.MasterDBPath

}

#>

foreach($file	in	$fileList)

{

				#restore	to	different	file	name	since

				#the	original	and	new	database	will

				#be	stored	in	the	same	data	folder

				$relocateFile	=	Join-Path	$relocatePath	(Split-

Path	$file.PhysicalName	-

Leaf).Replace($originalDBName,	$restoredDBName)

				#add	to	array

				$relocateFileList	+=	New-

Object	Microsoft.SqlServer.Management.Smo.RelocateFile($file.LogicalName,	$relocateFile)

}

#note	that	we	have	backticks	in	the

#Restore-SqlDatabase	statements	to	make

#the	statement	easier	to	read

#==

#restore	the	full	backup	to	the	new	instance	name

#==

#note	also	we	have	a	NoRecovery	option	because

#we	have	additional	files	to	restore

Restore-SqlDatabase	`

-ReplaceDatabase	`

-ServerInstance	$instanceName	`

-Database	$restoredDBName	`

-BackupFile	$fullBackupFile.FullName	`

-RelocateFile	$relocateFileList	`

-NoRecovery

#==

#restore	last	differential

#note	the	database	is	still	in	Restoring	State

#==

$diffBackupFile	=

Get-ChildItem	$backupfilefolder	-Filter	”*Diff*”	|

Where-Object	LastWriteTime	-ge	$fullBackupFile.LastWriteTime	|

Sort-Object	-Property	LastWriteTime	-Descending	|

Select-Object	-Last	1

Restore-SqlDatabase	`

-ReplaceDatabase	`

-ServerInstance	$instanceName	`

-Database	$restoreddbname	`

-BackupFile	$diffBackupFile.FullName	`

-NoRecovery

#==

#restore	all	transaction	log	backups	from	last

#differential,	stop	at	2015-03-24	18:33:40,

#just	after	the	4th	record	was	inserted

#==

#get	all	transaction	log	files	after	differential

Get-ChildItem	$backupfilefolder	-Filter	”*Log*”	|

Where-Object	LastWriteTime	-gt	$diffBackupFile.LastWriteTime	|

Sort-Object	-Property	LastWriteTime	|

ForEach-Object	{

			$logfile	=	$_

			#restore	with	NoRecovery	if	before	restorepoint

			if	($logfile.LastWriteTime	-lt	$restorepoint)	{

								Restore-SqlDatabase	`

								-ReplaceDatabase	`

								-ServerInstance	$instanceName	`

								-Database	$restoreddbname	`

								-BackupFile	$logfile.FullName	`

								-NoRecovery

				}

				else

				{

								#restore	last	transaction	log	file

								#with	Recovery

								Restore-SqlDatabase	`

								-ReplaceDatabase	`

								-ServerInstance	$instanceName	`

								-Database	$restoreddbname	`

								-BackupFile	$logfile.FullName	`

								-ToPointInTime	$restorepoint

								#exit	out	of	loop

								break

				}

}

How	it	works…
In	this	recipe,	we	are	using	the	Restore-SqlDatabase	cmdlet,	the	counterpart	of	the
Backup-SqlDatabase	cmdlet	that	was	introduced	in	SQL	Server	2012.

Let’s	get	a	high-level	overview	of	how	to	perform	a	point-in-time	restore,	and	then	we	can
break	it	down	and	explain	the	pieces	involved	in	this	recipe:

	
1.	 Gather	your	backup	files.	Identify	upto	the	last	transaction	log	backup	file	that

contains	the	point	you	want	to	restore	to.
2.	 Restore	the	last	good	full	backup	with	NORECOVERY.
3.	 Restore	the	last	good	differential	backup	taken	after	the	full	backup	you	just	restored

with	NORECOVERY.
4.	 Restore	the	transaction	logs	taken	after	your	differential	backup.

You	can	restore	up	to	and	including	the	log	backup	that	contains	the	data	to	the
point	in	time	you	want	to	restore	WITH	NORECOVERY.	You	need	to	restore	the	last
log	backup	to	a	point	in	time,	that	is,	you	need	to	specify	up	to	when	to	restore.
Lastly,	restore	the	database	WITH	RECOVERY	to	make	the	database	accessible	and
ready	to	use.
Alternatively,	you	can	restore	all	transaction	log	backup	files	before	the	log
backup	that	contains	the	data	to	the	point	in	time	you	want	to	restore	WITH
NORECOVERY.	Next,	restore	the	last	log	backup	WITH	RECOVERY	to	a	point	in	time,
that	is,	you	need	to	specify	up	to	when	to	restore.

Gathering	your	backup	files
You	need	to	collect	your	backup	files.	They	don’t	necessarily	have	to	live	in	the	same
folder	or	drive,	but	it	would	be	ideal	as	it	can	simplify	your	restore	script;	you	will	have	a
uniform	folder/drive	to	refer	to.	You	will	also	need	read	permissions	for	these	files.

In	our	recipe,	we	simplified	these	steps.	We	have	collected	our	full,	differential	log	file
and	transaction	log	backup	files	and	stored	them	in	the	C:\Backup\	folder	for	ease	of
access.	If	your	backup	files	reside	in	different	locations,	you	will	just	need	to	adjust	the
directory	references	in	your	script	appropriately.

Once	you	have	the	backup	files,	assuming	you	follow	a	file	naming	convention,	you	can
filter	out	all	the	full	backups	in	your	directory.	In	our	sample,	we	are	using	the	convention
databasename_type_timestamp.bak.	For	this	scenario,	we	can	extract	that	one	full
backup	file	by	specifying	the	keyword	or	pattern	in	our	filename.	We	use	the	Get-
ChildItem	cmdlet	to	filter	for	the	latest	full	backup	file:
#look	for	the	last	full	backupfile

#alternatively,	you	can	specify	filename

$fullBackupFile	=

Get-ChildItem	$backupfilefolder	-Filter	”*Full*”	|

Sort-Object	-Property	LastWriteTime	-Descending	|

Select-Object	-Last	1

Once	you	have	the	full	backup	handle,	you	can	read	filelist,	which	is	stored	in	that
backup	file.	You	can	use	the	ReadFileList	method	that	is	available	with	an	SMO	Restore

object.	Reading	the	filelist	can	help	you	automate,	by	extracting	the	filenames	of	the	data
and	log	files	you	will	need	to	restore.
#read	the	filelist	info	within	the	backup	file

#so	that	we	know	which	other	files	we	need	to	restore

$smoRestore	=	New-Object	Microsoft.SqlServer.Management.Smo.Restore

$smoRestore.Devices.AddDevice($fullBackupFile.FullName,	[Microsoft.SqlServer.Management.Smo.DeviceType]::File)

$filelist	=	$smoRestore.ReadFileList($server)

When	reading	the	filelist,	you	can	extract	the	type	of	file	that	is	stored,	as	shown	in	the
following	screenshot	(highlighted	with	a	box	outline):

The	different	types	of	backup	files	are:

	
L	is	log	file
D	is	database	file
F	is	FullText	catalog

Restoring	the	latest	good	full	backup	with	NORECOVERY
The	first	step	in	restore	operations	is	to	restore	the	latest,	good,	full	backup.	This	provides
you	with	a	baseline	that	you	can	restore	additional	files	to.	The	NORECOVERY	option	is	very
important,	as	it	preserves	(or	does	not	roll	back)	uncommitted	transactions	and	allows
additional	files	to	be	restored.	We	will	be	using	the	NORECOVERY	option	throughout	our
restore	process.

Because	the	full	backup	is	always	the	first	file	that	needs	to	be	restored,	all	the	preparatory
work	required	when	moving	files	also	happens	at	this	stage.

For	our	recipe,	we	want	to	restore	the	database	in	the	same	instance	as	the	original.	For
this	reason,	we	will	need	to	specify	different	filenames	for	the	restored	database’s	data	and

log	files:
(Split-Path	$file.PhysicalName	-

Leaf).Replace($originalDBName,	$restoredDBName)

The	Split-Path	parameter	with	the	–Leaf	switch	takes	the	original	file’s	full	path	and
extracts	only	the	file	name.	The	Replace	method	is	then	used	on	the	extracted	string	to
replace	the	original	database	reference	with	the	new,	restored	database	name.

Our	array	contains	the	Microsoft.SqlServer.Management.Smo.RelocateFile	objects,
which	will	contain	the	logical	and	(relocated)	physical	names	of	our	database	files.	The
full	script	block	that	builds	the	new	file	list	is	as	follows:
#we	are	putting	the	files	we	read	from	the	filelist

#in	an	array	in	case	we	have	multiple	data

#and	log	files	associated	with	the	database

$relocateFileList	=	@()

$relocatePath	=	“C:\Program	Files\Microsoft	SQL	Server\MSSQL12.MSSQLSERVER\MSSQL\DATA”

foreach($file	in	$fileList)

{

				#restore	to	different	file	name	since

				#the	original	and	new	database	will

				#be	stored	in	the	same	data	folder

				$relocateFile	=	Join-Path	$relocatePath	(Split-

Path	$file.PhysicalName	-Leaf).Replace($originalDBName,	$restoredDBName)

				#add	to	array

				$relocateFileList	+=	New-

Object	Microsoft.SqlServer.Management.Smo.RelocateFile($file.LogicalName,	$relocateFile)

}

To	restore	the	database,	we	are	going	to	use	the	Restore-SqlDatabase	cmdlet.	There	are
two	important	options	that	need	to	be	specified	here:	RelocateFile	and	NoRecovery.
RelocateFile	specifies	the	new	file	names,	and	NoRecovery	specifies	that	there	are
additional	files	to	be	restored	after	this:
#restore	the	full	backup	to	the	new	instance	name

#note	we	have	a	NoRecovery	option,	because	we	have

#additional	files	to	restore

Restore-SqlDatabase	`

-ReplaceDatabase	`

-ServerInstance	$instanceName	`

-Database	$restoredDBName	`

-BackupFile	$fullBackupFile.FullName	`

-RelocateFile	$relocateFileList	`

-NoRecovery

Restoring	the	last	good	differential	backup	taken	after	the	full	backup
you	just	restored	with	NORECOVERY
Once	the	full	backup	is	restored,	we	can	add	the	last	good	differential	backup	following
our	full	backup.	This	is	going	to	be	a	less	involved	process,	because	at	this	point	we’ve
already	restored	our	base	database	and	relocated	our	files.	We	need	to	restore	the
differential	backup	NORECOVERY	to	prevent	uncommitted	transactions	from	being	rolled

back.	The	code	is	as	follows:
$diffBackupFile	=

Get-ChildItem	$backupfilefolder	-Filter	”*Diff*”	|

Where-Object	LastWriteTime	-ge	$fullBackupFile.LastWriteTime	|

Sort-Object	-Property	LastWriteTime	-Descending	|

Select-Object	-Last	1

Restore-SqlDatabase	`

-ReplaceDatabase	`

-ServerInstance	$instanceName	`

-Database	$restoreddbname	`

-BackupFile	$diffBackupFile.FullName	`

-NoRecovery

You	may,	or	may	not,	have	a	differential	backup	file	in	your	environment.	If	you	don’t
have	one,	don’t	worry.	It	does	not	affect	the	recoverability	of	the	database	as	long	as	you
have	all	the	transaction	log	backup	files	intact	and	available	for	restore.

Restoring	the	transaction	logs	taken	after	your	differential	backup
After	we	restore	our	differential	backup	file,	we	can	start	restoring	our	transaction	log
backup	files.	These	transaction	log	backup	files	should	be	the	ones	following	your
differential	backup.	You	may	or	may	not	need	the	complete	set	of	log	files	following	your
differential	backup.	If	you	need	to	restore	up	to	the	point	of	a	database	crash,	you	will
need	to	restore	all	transaction	log	backups	including	the	tail	log	backup.	If	not,	you	will
only	need	the	backup	files	up	to	the	time	you	want	to	restore.

For	our	recipe,	we	identify	all	the	transaction	log	files	with	timestamp	after	our	differential
backup	file,	listing	the	oldest	one	first,	to	the	newest	one.

Note
Note	that	we	used	a	specific	naming	convention	for	our	log	files	(that	is,	adding	the	word
Log	on	each	one)	to	allow	us	to	easily	filter	these	files:
Get-ChildItem	$backupfilefolder	-Filter	”*Log*”	|

Where-Object	LastWriteTime	-gt	$diffBackupFile.LastWriteTime	|

Sort-Object	-Property	LastWriteTime

We	then	go	through	all	of	the	files	before	the	restore	point	and	restore	them	with
NoRecovery.	The	code	is	as	follows:
ForEach-Object	{

			$logfile	=	$_

			#restore	with	NoRecovery	if	before	restorepoint

			if	($logfile.LastWriteTime	-lt	$restorepoint)	{

								Restore-SqlDatabase	`

								-ReplaceDatabase	`

								-ServerInstance	$instanceName	`

								-Database	$restoreddbname	`

								-BackupFile	$logfile.FullName	`

								-NoRecovery

				}

				else

				{

								#restore	last	transaction	log	file

								#with	Recovery

								Restore-SqlDatabase	`

								-ReplaceDatabase	`

								-ServerInstance	$instanceName	`

								-Database	$restoreddbname	`

								-BackupFile	$logfile.FullName	`

								-ToPointInTime	$restorepoint

								#exit	out	of	loop

								break

				}

}

Once	we	get	to	the	first	file	past	the	restore	point,	we	restore	this	file	with	Recovery	to	our
specified	point-in-time,	and	exit	out	of	the	loop.	The	code	is	as	follows:
ForEach-Object	{

			$logfile	=	$_

			#restore	with	NoRecovery	if	before	restorepoint

			if	($logfile.LastWriteTime	-lt	$restorepoint)	{

								Restore-SqlDatabase	`

								-ReplaceDatabase	`

								-ServerInstance	$instanceName	`

								-Database	$restoreddbname	`

								-BackupFile	$logfile.FullName	`

								-NoRecovery

				}

				else

				{

								#restore	last	transaction	log	file

								#with	Recovery

								Restore-SqlDatabase	`

								-ReplaceDatabase	`

								-ServerInstance	$instanceName	`

								-Database	$restoreddbname	`

								-BackupFile	$logfile.FullName	`

								-ToPointInTime	$restorepoint

								#exit	out	of	loop

								break

				}

}

At	this	point,	once	the	script	breaks	out	of	the	loop,	all	the	files	up	to	the	restore	point
have	been	restored.	The	database	should	also	be	accessible	at	this	point,	and	all
uncommitted	transactions	should	have	already	been	rolled	back.

An	alternative	to	the	preceding	method	is	to	restore	all	transaction	log	files	with	the
NoRecovery	switch.	This	could	be	a	safer	approach	because	if	we	accidentally	restore	a
backup	file	WITH	RECOVERY,	the	only	way	to	correct	it	is	to	redo	the	entire	restore	process.
This	may	not	be	such	a	big	deal	for	smaller	databases,	but	this	could	be	very	time
consuming	for	bigger	databases.

If	you	are	going	with	this	method	of	restoring	all	log	files	with	NoRecovery,	once	you
have	confirmed	all	the	files	you	need,	have	been	restored,	you	can	restore	the	database
with	RECOVERY.	One	way	to	achieve	this	in	our	recipe	is	by	using	a	T-SQL	statement,	and
passing	the	following	statement	to	the	Invoke-SqlCmd	cmdlet:
#get	the	database	out	of	Restoring	state

#make	the	database	accessible

$sql	=	“RESTORE	DATABASE	$restoreddbname	WITH	RECOVERY”

Invoke-Sqlcmd	-ServerInstance	$instanceName	-Query	$sql

The	RESTORE	DATABASE	command	takes	the	database	from	the	Restoring	state	to	an
accessible	and	ready-to-use	state.	The	RESTORE	command	rolls	back	all	unfinished
transactions	and	readies	the	database	for	use.

There’s	more…
As	a	reference,	you	can	check	out	how	to	do	point-in-time	restore	using	T-SQL.	Visit
http://msdn.microsoft.com/en-us/library/ms179451.aspx.

http://msdn.microsoft.com/en-us/library/ms179451.aspx

See	also
	

The	Creating	a	backup	on	Mirrored	Media	Sets	recipe.
The	Creating	a	full	backup	recipe.
The	Creating	a	differential	backup	recipe.
The	Creating	a	transaction	log	backup	recipe.
The	Performing	an	online	piecemeal	restore	recipe.

Performing	an	online	piecemeal	restore
In	this	recipe,	we	will	perform	an	online	piecemeal	restore.

Getting	ready
We	will	back	up	a	test	database	called	StudentDB	database,	which	has	three	filegroups:
one	primary	filegroup	and	two	custom	filegroups,	FG1	and	FG2,	in	this	recipe.	FG1	and	FG2
will	have	one	secondary	data	file	stored	in	the	C:\DATA	folder.

You	can	use	the	following	script	to	create	your	files	B04525	-	Ch05	-	11	-	Performing
an	Online	PieceMeal	Restore	-	Prep.ps1	(this	is	available	in	the	code	bundle
available	with	the	book),	which	is	included	in	the	downloadable	files	for	this	book.	After
the	script	is	executed,	you	should	see	the	following	database:

This	is	how	the	tables	will	be	structured:

Table Filegroup Data	file	name Data	file	location

Student_PRIMARY PRIMARY StudentDB.mdf Default	data	directory

Student_FG1 FG1 Student_FG1_data C:\DATA

Student_FG2 FG2 Student_FG1_data C:\DATA

Student_TXN PRIMARY StudentDB.mdf Default	data	directory

For	our	recipe,	we	will	restore	only	the	PRIMARY	filegroup,	and	restore	filegroup	FG2	to	a
database	called	StudentDB_RESTORED	in	our	default	SQL	Server	instance.	At	the	end	of
our	task,	only	the	Student_PRIMARY	and	Student_FG2	tables	will	be	accessible.

Feel	free	to	substitute	this	with	a	database	available	in	your	development	environment	that
already	has	separate	filegroups	and	filegroup	backups.

How	to	do	it…
Let’s	list	the	steps	required	to	complete	the	task:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run:
$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

$backupfolder	=	“C:\BACKUP"

$originalDBName	=	“StudentDB”

$restoredDBName	=	“StudentDB_Restored”

#folder	where	data	files	will	be	stored

$relocatePath	=	“C:\Program	Files\Microsoft	SQL	Server\MSSQL12.MSSQLSERVER\MSSQL\DATA”

#for	this	piecemeal	restore,	we	need	to	specify

#files	to	restore

#primary	filegroup

$primaryfgbackup	=	“C:\BACKUP\StudentDB_PRIMARY.bak”

#additional	filegroup(s)	to	restore,	and	filegroup	name

$fg2backup	=	“C:\BACKUP\StudentDB_FG2.bak”

$fg2name	=	“Student_FG2_data”

#transaction	log	backup

$txnbackup	=	“C:\BACKUP\StudentDB_TXN.bak”

#===

#primary	fg

#===

#we	need	to	restore	to	different	file	name

#since	the	original	and	new	database	will

#be	stored	in	the	same	data	folder

$relocateFileList	=	@()

$smoRestore	=	New-Object	Microsoft.SqlServer.Management.Smo.Restore

$smoRestore.Devices.AddDevice($primaryfgbackup	,	[Microsoft.SqlServer.Management.Smo.DeviceType]::File)

#get	all	the	files	specified	in	this	backup,	and

#change	the	filename

$smoRestore.ReadFileList($server)	|

ForEach-Object	{

								$file	=	$_

								$relocateFile	=	Join-Path	$relocatePath	(Split-

Path	$file.PhysicalName	-

Leaf).Replace($originalDBName,	$restoredDBName)

								$relocateFileList	+=	New-

Object	Microsoft.SqlServer.Management.Smo.RelocateFile($file.LogicalName,	$relocateFile)

}

#===

#restore	primary	fg

#Partial	switch	must	be	used	if	restoring	primary	fg

#needs	to	be	only	mdf	and	ldf

#===

Restore-SqlDatabase	`

-Partial	`

-ReplaceDatabase	`

-ServerInstance	$instanceName	`

-Database	$restoredDBName	`

-BackupFile	$primaryfgbackup	`

-RelocateFile	$relocateFileList	`

-NoRecovery

#===

#fg2

#===

$relocateFileList	=	@()

#for	the	custom	filegroup	we	want	to	restore,	we	want	to

#relocate	only	that	filegroup’s	data	files

$smoRestore	=	New-Object	Microsoft.SqlServer.Management.Smo.Restore

$smoRestore.Devices.AddDevice($fg2backup	,	[Microsoft.SqlServer.Management.Smo.DeviceType]::File)

$smoRestore.ReadFileList($server)	|

ForEach-Object	{

				$file	=	$_

				#restore	only	FG2

				if($file.Type	-eq	“D”	-and	$file.FileGroupName	-ne	“PRIMARY”	-

and	$file.LogicalName	-eq	$fg2name)

				{

								$relocateFile	=	Join-Path	$relocatePath	(Split-

Path	$file.PhysicalName	-

Leaf).Replace($originalDBName,	$restoredDBName)

								$relocateFileList	+=	New-

Object	Microsoft.SqlServer.Management.Smo.RelocateFile($file.LogicalName,	$relocateFile)

				}

}

#===

#restore		fg2

#we	don’t	need	the	Partial	switch	anymore

#===

Restore-SqlDatabase		`

-ReplaceDatabase	`

-ServerInstance	$instanceName	`

-Database	$restoredDBName	`

-BackupFile	$fg2backup	`

-RelocateFile	$relocateFileList	`

-NoRecovery

#===

#restore	transaction	log	backup

#this	will	restore	with	recovery

#===

Restore-SqlDatabase	`

-ReplaceDatabase	`

-ServerInstance	$instanceName	`

-Database	$restoredDBName	`

-BackupFile	$txnbackup

How	it	works…
Online	piecemeal	restore	is	an	Enterprise	feature	available	since	SQL	Server	2005.	This
type	of	restore,	also	referred	to	as	a	partial	restore,	allows	you	to	stage	your	restores.	Each
restore	sequence	can	turn	one	or	more	filegroups	online,	leaving	the	rest	offline.	The
power	of	this	feature	is	that	as	soon	as	your	first	filegroups	are	restored,	the	objects	you
have	in	this	filegroup	become	accessible	to	your	end	users	or	applications.

The	first	thing	you	will	need	to	do	is	line	up	your	files.	You	will	need	to	specify	where	the
PRIMARY	filegroup	back	up	is,	any	user	filegroups	you	want	to	restore,	and	the	transaction
log	backup	files.	In	our	recipe,	we	are	also	restoring	the	database	to	a	different	instance,	so
we	will	need	to	relocate	our	database	files.	For	this	reason,	we	must	specify	what	the
filegroup	names	are	for	the	filegroup	we	are	restoring.	The	code	is	as	follows:
#primary	filegroup

$primaryfgbackup	=	“C:\BACKUP\StudentDB_PRIMARY.bak”

#additional	filegroup(s)	to	restore,	and	filegroup	name

$fg2backup	=	“C:\	BACKUP\StudentDB_FG2.bak”

$fg2name	=	“Student_FG2_data”

#transaction	log	backup

$txnbackup	=	“C:\	BACKUP\StudentDB_TXN.bak”

Once	we	have	the	files	lined	up,	we	need	to	create	an	array	that	contains	the	files	we	are
relocating.	Since	we	are	saving	these	files	in	the	same	folder	as	the	original	database’s
files,	we	will	need	to	rename	our	files.	In	our	recipe,	we	simply	replace	the	reference	to
the	original	database	name	to	the	new	restored	name	using	the	string	function	Replace:
$relocateFileList	=	@()

$smoRestore	=	New-Object	Microsoft.SqlServer.Management.Smo.Restore

$smoRestore.Devices.AddDevice($primaryfgbackup	,	[Microsoft.SqlServer.Management.Smo.DeviceType]::File)

#get	all	the	files	specified	in	this	backup,	and

#change	the	filename

$smoRestore.ReadFileList($server)	|

ForEach-Object	{

								$file	=	$_

								$relocateFile	=	Join-Path	$relocatePath	(Split-

Path	$file.PhysicalName	-Leaf).Replace($originalDBName,	$restoredDBName)

								$relocateFileList	+=	New-

Object	Microsoft.SqlServer.Management.Smo.RelocateFile($file.LogicalName,	$relocateFile)

}

We	can	then	use	our	Restore-SqlDatabase	cmdlet	to	restore	the	primary	filegroup	first
with	NORECOVERY.	When	restoring	the	PRIMARY	filegroup,	you	will	need	to	specify	the
option	Partial.	This	Partial	option	indicates	that	we	want	to	start	a	new	piecemeal
restore.	We	only	need	this	in	the	first	restore	sequence.	The	code	is	as	follows:
#===

#restore	primary	fg

#partial	must	be	used	if	restoring	primary	fg

#needs	to	be	only	mdf	and	ldf

#===

Restore-SqlDatabase	`

-Partial	`

-ReplaceDatabase	`

-ServerInstance	$instanceName	`

-Database	$restoredDBName	`

-BackupFile	$primaryfgbackup	`

-RelocateFile	$relocateFileList	`

-NoRecovery

You	have	the	option	to	bring	the	database	online	already,	after	the	primary	filegroup	is
restored.	If	you	are	working	in	simple	recovery	model,	you	can	simply	omit	the	–
NoRecovery	option.	If	your	database	is	in	full	recovery	model,	you	will	need	to	restore	the
transaction	log	backup	files	first,	and	omit	the	–NoRecovery	option	in	the	last	transaction
log	backup	you	are	going	to	restore.

Note
Check	out	how	online	piecemeal	restores	with	full	recovery	model	can	be	accomplished
using	T-SQL:

https://msdn.microsoft.com/en-us/library/ms175541.aspx

To	restore	the	user	filegroups,	we	are	still	going	to	use	an	array	that	contains	the	specific
files	for	specific	filegroup(s)	we	are	restoring.	We	also	still	need	to	rename	the	files,
because	these	files	will	live	in	the	same	path	as	that	of	the	original	database.	The	code	is
as	follows:
$relocateFileList	=	@()

#for	the	custom	filegroup	we	want	to	restore,	we	want	to

#relocate	only	that	filegroup’s	data	files

$smoRestore	=	New-Object	Microsoft.SqlServer.Management.Smo.Restore

$smoRestore.Devices.AddDevice($fg2backup	,	[Microsoft.SqlServer.Management.Smo.DeviceType]::File)

$smoRestore.ReadFileList($server)	|

ForEach-Object	{

				$file	=	$_

				#restore	only	FG2

				if($file.Type	-eq	“D”	-and	$file.FileGroupName	-ne	“PRIMARY”	-

and	$file.LogicalName	-eq	$fg2name)

				{

								#rename

								$relocateFile	=	Join-Path	$relocatePath	(Split-

Path	$file.PhysicalName	-Leaf).Replace($originalDBName,	$restoredDBName)

								$relocateFileList	+=	New-

Object	Microsoft.SqlServer.Management.Smo.RelocateFile($file.LogicalName,	$relocateFile)

				}

}

Once	we	have	the	array	of	relocated	files,	we	can	restore	our	user	filegroup.

Note	that	for	this	statement,	we	no	longer	need	to	specify	the	option	Partial:
#===

https://msdn.microsoft.com/en-us/library/ms175541.aspx

#restore		fg2

#don’t	need	partial	anymore

#===

Restore-SqlDatabase		`

-ReplaceDatabase	`

-ServerInstance	$instanceName	`

-Database	$restoredDBName	`

-BackupFile	$fg2backup	`

-RelocateFile	$relocateFileList	`

-NoRecovery

Lastly,	we	need	to	restore	the	transaction	log	file(s).	If	there	are	multiple	transaction	log
files,	each	transaction	log	file	before	the	final	transaction	log	file	needs	to	be	restored	with
NORECOVERY.	The	last	transaction	log	file	can	be	restored	with	RECOVERY.	In	PowerShell,
this	can	be	done	by	simply	omitting	the	–NoRecovery	switch.	The	code	is	as	follows:
#===

#restore	transaction	log	backup

#===

Restore-SqlDatabase	`

-ReplaceDatabase	`

-ServerInstance	$instanceName	`

-Database	$restoreddbname	`

-BackupFile	$txnbackup

You	should	see	something	like	this	after	you	restore	this	sequence:

It	is	a	little	bit	deceiving	because	it	looks	like	the	whole	database	is	already	available	and
accessible.	However,	since	we	only	restored	FG2,	only	objects	in	FG2	are	truly	accessible.
If	you	try	to	access	any	of	the	objects	that	reside	in	the	unrestored	filegroup,	you	will	get
an	error	similar	to	this:

Msg	8653,	Level	16,	State	1,	Line	2

The	query	processor	is	unable	to	produce	a	plan	for	the	table	or	view	‘Student_FG1’
because	the	table	resides	in	a	filegroup	which	is	not	online.

To	restore	the	rest	of	your	filegroups,	you	can	use	the	same	steps	until	the	final	filegroup
is	restored.	Remember	to	always	restore	the	filegroup	and	then	restore	the	transaction	log
backup.	Lather,	rinse,	and	repeat.

There’s	more…
To	learn	more	about	performing	piecemeal	restores,	visit	http://msdn.microsoft.com/en-
us/library/ms177425.aspx.

http://msdn.microsoft.com/en-us/library/ms177425.aspx

See	also
	

The	Creating	a	filegroup	backup	recipe.

Backing	up	database	to	Azure	Blob	storage
In	this	recipe	we	will	back	up	a	local	database	to	Azure.

Getting	ready
Before	we	can	back	up	our	databases	to	Microsoft	Azure	Blob	storage,	there	are	a	few
things	that	need	to	be	in	place.

	
1.	 First,	your	Azure	storage	needs	to	be	set	up.

2.	 Second,	you	need	to	have	a	container.

3.	 Third,	you	need	to	know	what	your	Azure	storage	access	keys	are.	You	can	get	them
from	your	Azure	storage	page.	The	link	should	be	at	the	bottom	of	the	storage	page
screen,	as	shown	in	the	following	screenshot:

How	to	do	it…
The	steps	to	back	up	your	database	to	Azure	Blob	storage	are	as	follows:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 If	one	does	not	already	exist,	create	a	credential	to	use	for	the	remote	backup:
$instanceName	=	“localhost”

$AzureStorageAccount	=	“replaceThisWithAzureStorageAccount”

$storageKey	=	“replaceThisWithYourStorageKey”

$secureString	=	ConvertTo-SecureString	$storageKey		-AsPlainText	-Force

$credentialName	=	“AzureCredential”

$instanceName	|

New-SqlCredential	-Name	$credentialName		-

Identity	$AzureStorageAccount	-Secret	$secureString

4.	 Add	the	following	script	and	run:
#replace	values	specific	to	your	Azure	account

$blobContainer	=	“replaceWithYourContainerName”

$backupUrlContainer	=	“https://$AzureStorageAccount.blob.core.windows.net/$blobContainer/”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

$databaseName	=	“SampleDB”

Backup-SqlDatabase	`

-ServerInstance	$instanceName	`

-Database	$databaseName	`

-BackupContainer	$backupUrlContainer	`

-SqlCredential	$credentialName	`

-Compression	On

How	it	works…
Microsoft	has	become	a	major	player	in	cloud	services.	In	the	context	of	SQL	Server,	you
can	now	opt	to	back	up	your	databases	to	Azure,	or	more	specifically,	Azure	Blob	storage.

To	backup	to	Azure	Blob	storage,	you	must	first	create	a	credential	that	allows	you	to
connect	to	your	Azure	storage	account.	You	must	create	this	on	every	instance	that	you’re
going	to	use	remote	backup	in.	The	code	is	as	follows:
$instanceName	=	“localhost”

$AzureStorageAccount	=	“replaceThisWithAzureStorageAccount”

$storageKey	=	“replaceThisWithYourStorageKey”

$secureString	=	ConvertTo-SecureString	$storageKey		-AsPlainText	-Force

$credentialName	=	“AzureCredential”

$instanceName	|

New-SqlCredential	-Name	$credentialName		-Identity	$AzureStorageAccount	-

Secret	$secureString

To	perform	the	actual	backup,	you	can	use	the	existing	Backup-SqlDatabase	cmdlet.
Instead	of	specifying	a	filename,	you	have	to	specify	your	backup	URL	container,	which
will	be	a	combination	of	your	storage	account	and	your	Blob	container.	The	code	is	as
follows:
#replace	values	specific	to	your	Azure	account

$blobContainer	=	“replaceWithYourContainerName”

$backupUrlContainer	=	“https://$AzureStorageAccount.blob.core.windows.net/$blobContainer/”

$server	=	New-Object	-TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

$databaseName	=	“SampleDB”

Backup-SqlDatabase	`

-ServerInstance	$instanceName	`

-Database	$databaseName	`

-BackupContainer	$backupUrlContainer	`

-SqlCredential	$credentialName	`

-Compression	On

If	you	want	to	simply	script	the	command	out	and	see	what	this	looks	like	in	T-SQL,	you
can	add	the	–Script	switch	in	your	Backup-SqlDatabase	command.	This	is	what	the
command	will	look	like	in	T-SQL:
BACKUP	DATABASE	[SampleDB]

TO		URL	=	N’https://azureURL/container/autogeneratedfilename.bak’

WITH		CREDENTIAL	=	N’AzureCredential’	,

NOFORMAT,	NOINIT,	NOSKIP,	REWIND,	NOUNLOAD,

COMPRESSION,		STATS	=	10

GO

There’s	more…
Read	more	about	SQL	Server	backup	to	URL	from	the	MSDN	page	at
https://msdn.microsoft.com/en-us/library/dn435916.aspx.

You	can	see	a	number	of	examples	on	backing	up	multiple	databases	on	Azure	using
PowerShell	at	https://msdn.microsoft.com/en-us/library/dn223322.aspx.

In	addition,	Microsoft	provides	guidance	best	practices	and	troubleshooting	when	backing
up	to	Azure	BLOB	storage.	Visit	https://msdn.microsoft.com/en-us/library/jj919149.aspx.

https://msdn.microsoft.com/en-us/library/dn435916.aspx
https://msdn.microsoft.com/en-us/library/dn223322.aspx
https://msdn.microsoft.com/en-us/library/jj919149.aspx

See	also
	

The	Restoring	database	from	Azure	Blob	storage	recipe.

Restoring	database	from	Azure	Blob	storage
This	recipe	walks	you	through	how	to	restore	a	database	to	a	local	instance	from	a	backup
stored	in	Azure.

Getting	ready
For	this	recipe,	you	need	to	have	already	performed	a	backup	to	Azure	Blob	storage.	If
you	haven’t	already	done	so,	you	can	refer	to	the	recipe	Backing	up	database	to	Azure
Blob	storage	to	prepare	your	environment.

How	to	do	it…
These	are	the	steps	to	change	the	recovery	model:

	
1.	 Open	PowerShell	ISE	as	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run:
$AzureStorageAccount	=	“replaceThisWithAzureStorageAccount”

$credentialName	=	“AzureCredential”

#replace	values	specific	to	your	Azure	account

$blobContainer	=	“replaceWithYourContainerName”

$backupUrlContainer	=	“https://$AzureStorageAccount.blob.core.windows.net/$blobContainer/”

$backupfile	=	“replacethiswithyourazurefilename.bak”

$backupfileURL	=	$backupUrlContainer	+	$backupfile

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

$databaseName	=	“SampleDB”

#restore	database

#note	there	are	backticks	in	this	command

#so	we	can	place	each	parameter	in	its	line	to

#make	the	command	more	readable

Restore-SqlDatabase	`

-ServerInstance	$instanceName	`

-Database	$databaseName	`

-SqlCredential	$credentialName	`

-BackupFile	$backupfileURL	`

-Verbose

How	it	works…
Restoring	a	database	with	a	backup	file	that	is	stored	in	Azure	Blob	storage	will	be	similar
to	restoring	a	database	where	the	backup	file	is	restored	locally,	or	on	a	shared	drive.	The
only	difference	is;	when	the	database	is	being	restored,	instead	of	a	filename,	the	backup
file	URL	needs	to	be	provided.	A	credential	also	needs	to	be	provided	in	order	to	access
and	read	the	backup	file	from	Azure.	The	code	is	as	follows:
Restore-SqlDatabase	`

-ServerInstance	$instanceName	`

-Database	$databaseName	`

-SqlCredential	$credentialName	`

-BackupFile	$backupfileURL	`

-Verbose

If	you	are	restoring	the	database	to	the	same	instance	as	the	original	database,	you	will
need	to	provide	the	set	of	new	file	names	that	the	restored	database	will	use.	You	can
achieve	this	using	a	snippet	of	code	we’ve	used	in	previous	recipes	that	replaces
references	to	the	original	database	with	the	new	database	name:

$relocateFileList	=	@()

$relocatePath	=	“C:\Program	Files\Microsoft	SQL	Server\MSSQL12.MSSQLSERVER\MSSQL\DATA”

foreach($file	in	$fileList)

{

				#restore	to	different	file	name	since

				#the	original	and	new	database	will

				#be	stored	in	the	same	data	folder

				$relocateFile	=	Join-Path	$relocatePath	(Split-

Path	$file.PhysicalName	-Leaf).Replace($originalDBName,	$restoredDBName)

				#add	to	array

				$relocateFileList	+=	New-

Object	Microsoft.SqlServer.Management.Smo.RelocateFile($file.LogicalName,	$relocateFile)

}

Once	the	array	has	been	populated,	you	can	use	the	–RelocateFile	parameter	in	the
Restore-SqlDatabase	cmdlet:
Restore-SqlDatabase	`

-ServerInstance	$instanceName	`

-Database	$databaseName	`

-RelocateFile	$relocateFileList	`

-SqlCredential	$credentialName	`

-BackupFile	$backupfileURL	`

-Verbose

If	you	wanted	to	script	the	command	out	and	see	what	this	looks	like	in	T-SQL,	you	can
add	the	–Script	switch	in	your	Restore-SqlDatabase	command.	This	is	what	the
command	will	look	like	in	T-SQL:
RESTORE	DATABASE	[SampleDB]

FROM		URL	=	N’https://azureURL/container/autogeneratedfilename.bak’

WITH		CREDENTIAL	=	N’AzureCredential’	,

NOUNLOAD,	STATS	=	10

There’s	more…
Read	more	about	Restoring	From	Backups	Stored	in	Windows	Azure	from	the	MSDN	page
at	https://msdn.microsoft.com/en-us/library/dn449492.aspx.

https://msdn.microsoft.com/en-us/library/dn449492.aspx

See	also
	

The	Backing	up	database	to	Azure	Blob	storage	recipe.

Chapter	6.	Advanced	Administration
In	this	chapter,	we	will	cover	the	following	topics:

	
Connecting	to	LocalDB
Creating	a	new	LocalDB	instance
Listing	database	snapshots
Creating	a	database	snapshot
Dropping	a	database	snapshot
Enabling	FileStream
Setting	up	a	FileStream	Filegroup
Adding	a	FileTable
Adding	a	full-text	catalog
Adding	a	full-text	index
Creating	a	memory-optimized	table
Creating	a	database	master	key
Creating	a	certificate
Creating	symmetric	and	asymmetric	keys
Setting	up	Transparent	Data	Encryption

Introduction
SQL	Server	matures	and	increases	its	already	rich	feature	sets	in	each	new	version.	You
can	now	easily	store	unstructured	data	and	binary	large	objects	(BLOBs)	in	SQL	Server
using	FileStream	and	FileTables.	SQL	Server	also	supports	different	levels	of	encryption,
including	column-level	encryption	and	database-level	encryption.	In	this	chapter,	we	will
explore	how	to	connect	and	use	LocalDB,	set	up	FileStream	and	FileTables,	configure
full-text	catalogs	and	indexes,	and	enable	Transparent	Database	Encryption	(TDE)	in
order	to	encrypt	your	whole	database.

Connecting	to	LocalDB
In	this	recipe,	we	will	connect	to	the	LocalDB	database.

Getting	ready
LocalDB	is	a	separate	installation	from	your	usual	instance.	LocalDB	needs	to	be	installed
before	you	can	follow	this	recipe.

You	can	download	LocalDB	with	SQL	Server	Express	from	MSDN	downloads	at
https://www.microsoft.com/en-ca/download/details.aspx?id=42299.

https://www.microsoft.com/en-ca/download/details.aspx?id=42299

How	to	do	it…
Let’s	take	a	look	at	the	steps	to	connect	to	LocalDB:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run	it:
$instanceName	=	”(localdb)\MSSQLLocalDB”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

#list	all	databases	in	localdb

$server.Databases

How	it	works…
LocalDB	is	a	flavor	of	SQL	Server	Express	that	is	geared	toward	developers.	You	can
think	of	it	as	a	stripped-down	version	of	SQL	Server	Express—it	is	a	simple	installation
with	no	instance	configuration	or	complicated	management	required.

LocalDB	is	described	by	MSDN	(https://msdn.microsoft.com/en-
us/library/hh510202.aspx)	as	follows:

LocalDB	is	a	lightweight	version	of	Express	that	has	all	its	programmability	features,
yet	runs	in	user	mode	and	has	a	fast,	zero-configuration	installation	and	short	list	of
pre-requisites.	Use	this	if	you	need	a	simple	way	to	create	and	work	with	databases
from	code.	It	can	be	bundled	with	Application	and	Database	Development	tools	like
Visual	Studio	and	or	embedded	with	an	application	that	needs	local	databases.

When	LocalDB	was	introduced	in	SQL	Server	2012,	you	had	to	connect	to	it	using	the
(LocalDB)\v11.0	instance	name.

In	SQL	Server	2014,	the	LocalDB	instance	name	was	changed	to	MSSQLLocalDB.	To
connect	to	it,	you	will	have	to	use	(LocalDB)\MSSQLLocalDB.

Connecting	to	LocalDB	in	PowerShell	is	not	so	different	from	connecting	to	other
databases,	as	shown	in	many	recipes	in	this	book:
$server	=	New-Object	-TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

https://msdn.microsoft.com/en-us/library/hh510202.aspx

There’s	more…
LocalDB	has	been	introduced	as	an	“improved”	SQL	Server	Express

(http://blogs.msdn.com/b/sqlexpress/archive/2011/07/12/introducing-localdb-a-better-sql-
express.aspx).

Alberto	Morillo	(@sqlcoffee)	has	put	together	a	concise	list	of	requirements,	benefits,	and
limitations	of	LocalDB	at	http://www.sqlcoffee.com/SQLServer2012_0004.htm.

LocalDB	is	very	similar	to	SQL	Server	Compact	Edition	(CE);	however,	there	are	some
key	differences.	For	example,	SQL	Server	CE	can	be	embedded	in	the	application,	while
LocalDB	cannot	be	embedded.	There	is	also	better	support	for	programmatic	T-SQL,	such
as	stored	procedures	and	CASE	statements	in	LocalDB	compared	to	SQL	Server	CE.

Erik	Jensen	has	compiled	a	matrix	that	shows	the	difference	between	SQL	Server
Compact,	SQL	Server	Express,	SQL	Server	LocalDB,	and	SQLite	(updated	for	SQL
Server	2014)	at	http://erikej.blogspot.ca/2011/01/comparison-of-sql-server-compact-4-
and.html.

http://blogs.msdn.com/b/sqlexpress/archive/2011/07/12/introducing-localdb-a-better-sql-express.aspx
http://www.sqlcoffee.com/SQLServer2012_0004.htm
http://erikej.blogspot.ca/2011/01/comparison-of-sql-server-compact-4-and.html

See	also
	

The	Creating	a	new	LocalDB	instance	recipe.

Creating	a	new	LocalDB	instance
In	this	recipe,	we	will	create	a	new	LocalDB	instance.

Getting	ready
You	need	to	make	sure	that	LocalDB	is	installed.	You	can	download	LocalDB	with	SQL
Server	Express	from	MSDN	downloads	at	https://www.microsoft.com/en-
ca/download/details.aspx?id=42299.

https://www.microsoft.com/en-ca/download/details.aspx?id=42299

How	to	do	it…
These	are	the	steps	to	create	a	new	LocalDB	instance:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

#create	new	LocalDB	instance

$localDBInstance	=	“NewLocalDB”

$command	=	“SQLLocalDB	create	`”$($localDBInstance)`””

#execute	the	command

Invoke-Expression	$command

#confirm	by	listing	all	instances

$command	=	“SQLLocalDB	i”

Invoke-Expression	$command

How	it	works…
You	can	also	connect	to	and	manage	LocalDB	using	an	executable	utility	called
SQLLocalDB	that	comes	with	the	installation.	Since	this	method	uses	the	executable	and
not	SMO,	you	can	use	Invoke-Expression	cmdlet	and	pass	SQLLocalDB	as	a	parameter.
To	learn	more	about	the	operations	and	parameters	available	in	the	SQLLocalDB	utility,	you
can	open	Command	Prompt	and	run	the	following	command:
SQLLocalDB	/?

One	of	the	operations	supported	is	create	(or	c)	that	allows	you	to	create	a	new	LocalDB
instance.	In	our	recipe,	we	will	construct	a	command	that	we	will	typically	use	in	a	string
variable	when	we	are	at	Command	Prompt	and	pass	this	variable	to	the	Invoke-
Expression	cmdlet:
#create	new	LocalDB	instance

$localDBInstance	=	“NewLocalDB”

$command	=	“SQLLocalDB	create	`”$($localDBInstance)`””

#execute	the	command

Invoke-Expression	$command

There’s	more…
Check	out	the	syntax	and	examples	of	the	SQLLocalDB	utility	on	the	MSDN	page	at
https://msdn.microsoft.com/en-us/library/hh212961.aspx.

https://msdn.microsoft.com/en-us/library/hh212961.aspx

See	also
	

The	Connecting	to	LocalDB	recipe

Listing	database	snapshots
In	this	recipe,	we	will	list	the	database	snapshots	that	are	available	in	your	instance.

Getting	ready
You	may	choose	to	create	a	test	snapshot	if	the	instance	that	you	are	using	does	not	have
any	database	snapshots.	You	can	use	the	following	T-SQL	script,	or	you	can	choose	to
perform	the	Creating	a	database	snapshot	recipe	first	before	we	proceed	with	this	recipe.

How	to	do	it…
The	following	steps	walk	you	through	listing	database	snapshots:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run	it:
$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

$server.Databases	|

Where-Object	IsDatabaseSnapshot	-eq	$true

How	it	works…
A	database	snapshot	is	a	static,	read-only	view	of	a	source	database	at	the	time	its	snapshot
was	created.	Database	snapshots	are	initially	created	as	sparse	files,	that	is,	empty	files.
When	the	original	database	changes	or	gets	updated,	the	original	data	pages	of	the	source
database	are	copied	to	the	database	snapshot,	thus	preserving	what	the	source	database
“looked	like”	at	the	time	the	snapshot	was	created.

Checking	snapshots	that	exist	in	your	instance	using	PowerShell	and	SMO	is	fairly	simple
because	there	is	a	property	called	IsDatabaseSnapshot	that	flags	whether	a	database	is	a
snapshot	or	not:
$server.Databases	|

Where-Object	IsDatabaseSnapshot	-EQ	$true

To	check	which	databases	are	the	bases	(or	sources)	of	snapshots,	you	can	use	the	property
called	IsDatabaseSnapshotBase:
$server.Databases	|

Where-Object	IsDatabaseSnapshotBase	-EQ	$true

There’s	more…
Read	more	about	database	snapshots	in	SQL	Server	from	the	MSDN	page	at

https://msdn.microsoft.com/en-us/library/ms175158.aspx.

https://msdn.microsoft.com/en-us/library/ms175158.aspx

See	also
	

The	Creating	a	database	snapshot	recipe.

Creating	a	database	snapshot
In	this	recipe,	we	will	create	a	database	snapshot.

Getting	ready
SQL	Server	database	snapshots	require	either	the	SQL	Server	Developer	or	Enterprise
edition.	You	can	also	use	the	Evaluation	edition,	which	is	similar	to	the	Enterprise	edition.

We	will	use	the	script	called	B04525	-	Ch06	-	04	-	Creating	a	Database	Snapshot	-
Prep.ps1	to	create	a	sample	database	that	we	will	base	our	snapshot	on.	The	database
created	in	this	script	will	have	multiple	Filegroups	and	data	files.

Alternatively,	you	can	choose	a	source	database	that	you	would	like	to	serve	as	the	base	of
your	snapshot.

How	to	do	it…
Let’s	take	a	look	at	the	steps	to	create	a	database	snapshot:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run	it:
$databaseName	=	“SnapshotDB”

$databaseSnapshotName	=	“SnapshotDB_SS”

#source	database

$db	=	$server.Databases[$databaseName]

#for	our	recipe,	drop	snapshot	if	exists

if($server.Databases[$databaseSnapshotName])

{

				$server.Databases[$databaseSnapshotName].Drop()

}

#database	snapshot

$dbSnapshot	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Database	-

ArgumentList	$instanceName,	$databaseSnapshotName

#original	database	name,	which	serves	as	base

$dbSnapshot.DatabaseSnapshotBaseName	=	$databaseName

#need	to	recreate	all	filegroups	and	files

#in	the	snapshot

$db.FileGroups	|

ForEach-Object	{

			$fg	=	$_

			#add	filegroup	to	snapshot

			$snapshotFG	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.FileGroup	$dbSnapshot,	$fg.Name

			$dbSnapshot.FileGroups.Add($snapshotFG)

			#add	files	to	snapshot

			$fg.Files	|

			ForEach-Object	{

						$file	=	$_

						$snapshotFile	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.DataFile	$snapshotFG,	$file.Name

						#use	different	file	extension	for	snapshot

						$snapshotFile.FileName	=		”$($db.PrimaryFilePath)\$($file.Name).ss”

						#add	file	to	snapshot	filegroup

$dbSnapshot.FileGroups[$snapshotFG.Name].Files.Add($snapshotFile)

			}

}

#create	the	snapshot

$dbSnapshot.Create()

How	it	works…
Creating	a	database	snapshot	is	similar	to	creating	an	actual	database.	The	first	step	is	to
create	a	Microsoft.SqlServer.Management.Smo.Database	object:
$dbSnapshot	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Database	-

ArgumentList	$instanceName,	$databaseSnapshotName

Identifying	the	base	database	is	a	key	piece	of	creating	a	snapshot.	This	can	be	done	by
assigning	the	source	database’s	name	to	the	snapshot’s	DatabaseSnapshotBaseName
property.	Whenever	there	are	changes	in	the	source	that	affect	the	original	data	pages,	the
original	page	will	be	copied	to	the	snapshot:
#original	database	name,	which	serves	as	base

$dbSnapshot.DatabaseSnapshotBaseName	=	$databaseName

In	addition	to	specifying	the	source	database,	we	also	need	to	recreate	all	the	Filegroups
and	files	from	the	base	database.

For	the	Filegroups,	you	will	do	it	as	follows:
#need	to	recreate	all	filegroups	and	files

#in	the	snapshot

$db.FileGroups	|

ForEach-Object	{

			$fg	=	$_

			#add	filegroup	to	snapshot

			$snapshotFG	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.FileGroup	$dbSnapshot,	$fg.Name

			$dbsnapshot.FileGroups.Add($snapshotFG)

			#code	to	add	files	here

}

To	add	the	individual	files	to	their	respective	Filegroups,	we	can	iterate	over	all	the	files	in
that	particular	Filegroup	and	create	this	in	the	snapshot.	In	our	case,	we	create	these	files
with	a	different	extension.	Instead	of	the	default	.mdf	or	.ndf	extension,	we	will	use	the
extension	.ss	which	signifies	snapshot	file:
			$fg.Files	|

			ForEach-Object	{

						$file	=	$_

						$snapshotFile	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.DataFile	$snapshotFG,	$file.Name

						#use	different	file	extension	for	snapshot

						$snapshotFile.FileName	=		”$($db.PrimaryFilePath)\$($file.Name).ss”

						#add	file	to	snapshot	filegroup

$dbSnapshot.FileGroups[$snapshotFG.Name].Files.Add($snapshotFile)

			}

If	you	want	to	script	the	T-SQL	command	instead	of	executing	it	from	PowerShell,	then

you	can	use	the	Script	method	of	the	database	object:
$dbsnapshot.Script()

This	is	what	a	typical	snapshot	of	the	T-SQL	script	will	look	like:
CREATE	DATABASE	[SnapshotDB_SS]	ON

(NAME	=	N’SnapshotDB’,

		FILENAME	=	N’C:\Data\SnapshotDB.ss’),

(NAME	=	N’SnapshotDB_FG1_data’,

		FILENAME	=	N’C:\Data\SnapshotDB_FG1_data.ss’),

(NAME	=	N’SnapshotDB_FG2_data’,

		FILENAME	=	N’C:\Data\SnapshotDB_FG2_data.ss’

)

AS	SNAPSHOT	OF	[SnapshotDB]

See	also
	

The	Listing	database	snapshots	recipe.

Dropping	a	database	snapshot
In	this	recipe,	we	will	drop	an	existing	database	snapshot.

How	to	do	it…
Here	are	the	steps	to	drop	a	database	snapshot:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	–DisableNameChecking

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run	it:
$databaseSnapshotName	=	“SnapshotDB_SS”

#source	database

$db	=	$server.Databases[$databaseName]

#for	our	recipe,	drop	snapshot	if	exists

if($server.Databases[$databaseSnapshotName])

{

				$server.Databases[$databaseSnapshotName].Drop()

}

How	it	works…
Dropping	a	database	snapshot	using	PowerShell	and	SMO	is	very	similar	to	dropping	an
actual	physical	database.	You	need	to	create	a	handle	in	your	database	snapshot	and	use
the	Drop	method:
$server.Databases[$databaseSnapshotName].Drop()

See	also
	

The	Listing	database	snapshots	recipe.
The	Creating	a	database	snapshot	recipe.
The	Dropping	a	database	recipe	of	Chapter	2,	SQL	Server	and	PowerShell	Basic
Tasks

Enabling	FileStream
This	recipe	explains	how	to	enable	FileStream	in	SQL	Server.

How	to	do	it…
Let’s	take	a	look	at	the	steps	to	enable	FileStream	in	SQL	Server:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run	it:
$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

<#

These	are	the	FileStreamLevel	Enumeration	values:

Disabled

TSqlAccess

TSqlFullFileSystemAccess

TSqlLocalFileSystemAccess

#>

#enable

$server.Configuration.FilestreamAccessLevel.ConfigValue	=	[Microsoft.SqlServer.Management.Smo.FileStreamLevel]::TSqlLocalFileSystemAccess

$server.Alter()

How	it	works…
If	you’ve	ever	had	to	maintain	folders	with	images	or	videos	in	them,	and	you	had	to
reference	the	file	paths	(or	URLs)	and	other	metadata	from	SQL	Server,	you	might	have
encountered	challenges	in	keeping	these	two	synchronized.

The	FileStream	feature	in	SQL	Server	allows	you	to	store	unstructured	data	at	the
filesystem-level,	but	still	maintains	the	records	and	transactional	consistency	at	the
database-level.	FileStream	needs	to	be	set	up	at	the	engine-level	and	server-level.

To	enable	filestream,	we	can	get	a	handle	to	the	current	instance	and	use	the	SMO
Server	Configuration	class	to	set	the	FilestreamAccessLevel	property.	Once	this	is	set,
the	Alter	method	can	be	invoked	to	persist	the	change:
#enable	filestream

$server.Configuration.FilestreamAccessLevel.ConfigValue	=	[Microsoft.SqlServer.Management.Smo.FileStreamLevel]::TSqlLocalFileSystemAccess

$server.Alter()

The	FileStream	access	can	be	set	using	T-SQL	using	the	sp_configure	system	stored
procedure	or	using	PowerShell	and	SMO.	The	values	for	the	FileStream	access	are	as
follows:

FileStreamLevel
enumeration	values

sp_configure
value Description

Disabled 0
The	FileStream	support	for	an	instance	is
disabled

TSqlAccess 1 FileStream	for	T-SQL	access	is	enabled

TSqlLocalFileSystemAccess 2 FileStream	for	file	I/O	access	is	enabled

TSqlFullFileSystemAccess 3

FileStream	for	file	I/O	access	and	remote
clients	access	to	FileStream	is	enabled.	It
cannot	be	set	either	by	PowerShell/SMO	or
sp_configure

You	can	set	the	FileStream	access	from	SQL	Server	Configuration	Manager	as	well.

Note
Note	that	the	TSqlFullFileSystemAccess	option	cannot	be	set	using	T-SQL	or	SMO,	but
it	can	only	be	set	from	SQL	Server	Configuration	Manager	(SSCM).	In	SSCM,	you
need	to	select	the	Allow	remote	clients	access	to	FILESTREAM	data	option.	This
restriction	for	filestream	access	level	from	T-SQL	is	documented	in
https://msdn.microsoft.com/en-us/library/cc645956.aspx.

https://msdn.microsoft.com/en-us/library/cc645956.aspx

There’s	more…
	

Read	more	about	SQL	Server	Filestream	from	MSDN	at
https://msdn.microsoft.com/en-ca/library/gg471497.aspx.
Check	out	Microsoft’s	recommended	steps	and	practices	when	enabling	and
configuring	Filestream	at	https://msdn.microsoft.com/en-us/library/cc645923.aspx.

https://msdn.microsoft.com/en-ca/library/gg471497.aspx
https://msdn.microsoft.com/en-us/library/cc645923.aspx

See	also
	

The	Setting	up	a	FileStream	filegroup	recipe.
The	Adding	a	FileTable	recipe.

Setting	up	a	FileStream	filegroup
In	this	recipe,	we	will	add	a	Filestream	Filegroup	to	our	database.

Getting	ready
Before	you	can	use	a	FileStream	Filegroup,	the	FileStream	feature	needs	to	be	first
enabled	on	your	instance.	If	you	haven’t	already	enabled	it,	you	can	follow	the	Enabling
Filestream	recipe	to	enable	it.

How	to	do	it…
Let’s	take	a	look	at	the	steps	to	create	a	FileStream	Filegroup:

	
1.	 Open	the	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	–DisableNameChecking

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Create	a	sample	database	for	this	recipe:
$databaseName	=	“FileStreamDB”

#for	this	recipe	only

#drop	if	it	exists

if($server.Databases[$databaseName])

{

				$server.KillDatabase($databaseName)

}

#create	the	database

$db	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Database	-

ArgumentList	$server,	$databaseName

$db.Create()

4.	 Add	and	run	the	following	script	to	create	the	FileStream	filegroup:
#Add	filestream	filegroup

$fileGroupName	=	“FilestreamData”

$fg	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Filegroup	-

Argumentlist	$db,	$fileGroupName

#change	the	filegroup	type

$fg.FileGroupType	=	[Microsoft.SqlServer.Management.Smo.FileGroupType]::FileStreamDataFileGroup

$fg.IsFileStream	=	$true

#create	the	filegroup

$fg.Create()

#add	data	file

$dataFileName	=	“C:\DATA\FilestreamData”

$dataFile	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.DataFile	-

ArgumentList	$fg,	$dataFileName

$datafile.FileName	=	$dataFileName

#create	data	file

$dataFile.Create()

How	it	works…
Before	you	can	start	with	storing	your	unstructured	data	in	a	filesystem	using	SQL	Server,
using	the	FileStream	feature,	you	first	need	to	ensure	that	a	Filegroup	is	added,	which	is
marked,	to	accept	FileStream.

Using	PowerShell	and	SMO,	this	can	be	achieved	by	adding	a	Filegroup	and	setting	the
type	to	the	FileStreamDataFileGroup	and	IsFileStream	properties	to	true:
#change	the	filegroup	type

$fg.FileGroupType	=	[Microsoft.SqlServer.Management.Smo.FileGroupType]::FileStreamDataFileGroup

$fg.IsFileStream	=	$true

Once	these	properties	are	set,	the	Create	method	can	be	invoked	to	persist	the	changes:
#create	the	filegroup

$fg.Create()

The	equivalent	T-SQL	command	for	this	script	block	is	as	follows.	Notice	that	the	code
block	that	adds	the	Filegroup	has	the	extra	CONTAINS	Filestream	clause,	which	you	will
not	specify	when	you	add	regular	Filegroups:
ALTER	DATABASE	FilestreamDB

ADD	FILEGROUP	FilestreamData

CONTAINS	Filestream

In	the	last	section,	we	will	add	a	data	file	to	the	Filegroup.	The	“data	file”	in	this	case	does
not	specify	an	individual	file,	but	a	directory	that	will	store	the	unstructured	data:
#add	data	file

$dataFileName	=	“C:\DATA\FilestreamData”

$dataFile	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.DataFile	-

ArgumentList	$fg,	$dataFileName

$dataFile.FileName	=	$dataFileName

#create	data	file

$dataFile.Create()

There’s	more…
When	you	are	working	with	the	PowerShell	ISE,	you	can	take	advantage	of	the
Intellisense	to	see	the	different	valid	Filegroup	types	that	you	can	specify:

On	the	console,	you	can	use	the	following	code	to	see	the	valid	values:
[Microsoft.SqlServer.Management.Smo.FilegroupType]	|

Get-Member	|

Out-Host	-paging

See	also
	

The	Enabling	FileStream	recipe.

Adding	a	FileTable
In	this	recipe,	we	will	create	a	FileTable.

Getting	ready
Before	you	can	use	a	FileTable,	the	FileStream	feature	needs	to	be	first	enabled	on	your
instance.	If	you	haven’t	already	enabled	it,	you	can	follow	the	Enabling	FileStream	recipe
to	enable	it.

In	addition,	you	should	also	have	a	Filestream	filegroup.	You	can	follow	the	Setting	up	a
FileStream	filegroup	recipe	to	prepare	this	recipe.

How	to	do	it…
Let’s	take	a	look	at	the	steps	to	create	a	FileTable	using	SMO	and	PowerShell:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	–DisableNameChecking

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run	it:
#filestream	enabled	database

$databaseName	=	“FileStreamDB”

$db	=	$server.Databases[$databaseName]

#get	handle	to	filestream	filegroup

$filegroupName	=	“FilestreamData”

$fg	=	$db.FileGroups[$filegroupName]

#enable	filestream	on	server

$db.FilestreamDirectoryName	=	“FileTable”

$db.FilestreamNonTransactedAccess	=	[Microsoft.SqlServer.Management.Smo.FilestreamNonTransactedAccessType]::Full

$db.Alter()

#for	this	recipe	only

#drop	filetable	if	already	exists

$tableName	=	“MyFiles”

if($db.Tables[$tableName])

{

			$db.Tables[$tableName].Drop()

}

$table	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Table	-

ArgumentList	$db,	$tableName

$table.IsFileTable	=	$true

$table.FileTableDirectoryName	=		“MyFiles”

$table.Create()

How	it	works…
FileTables,	or	a	table	of	files,	are	special	tables	in	SQL	Server	that	allow	you	to	access	and
manage	files	if	the	files	are	stored	in	the	filesystem.	For	example,	adding	a	file	will	be	as
simple	as	dragging	and	dropping	the	file	into	the	FileTable	in	Windows	Explorer.

First,	we	need	to	ensure	the	database	that	we	are	accessing	has
FilestreamNonTransactedAccess	set	to	Full.	This	means	that	Windows	applications	can
access	the	stored	files	without	needing	transactions.	For	example,	this	will	allow	files	to
be	dragged	and	dropped	via	Windows	Explorer:
#enable	filestream	on	server

$db.FilestreamDirectoryName	=	“FileTable”

$db.FilestreamNonTransactedAccess	=	[Microsoft.SqlServer.Management.Smo.FilestreamNonTransactedAccessType]::Full

$db.Alter()

The	equivalent	T-SQL	statement	of	the	preceding	snippet	is	as	follows:
ALTER	DATABASE	[FileTableDB]

SET	FILESTREAM	(

		NON_TRANSACTED_ACCESS	=	FULL,

		DIRECTORY_NAME	=	N’FileTable’

)

After	the	non-transacted	access	is	set,	we	can	create	a	FileTable.	Creating	a	FileTable	is
similar	to	creating	a	regular	table,	but	we	have	to	set	at	least	two	more	properties:
IsFileTable	and	FileTableDirectoryName:
$tableName	=	“MyFiles”

#for	this	recipe	only

#drop	filetable	if	already	exists

if($db.Tables[$tableName])

{

			$db.Tables[$tableName].Drop()

}

$table	=	New-Object	-TypeName	Microsoft.SqlServer.Management.SMO.Table	-

ArgumentList	$db,	$tableName

$table.IsFileTable	=	$true

$table.FileTableDirectoryName	=		“MyFiles”

$table.Create()

Once	this	is	created,	you	can	confirm	the	FileTable	from	SQL	Server	Management	Studio.
Under	the	database	name,	you	will	see	the	Tables	folder,	and	when	you	expand	this,	you
will	see	another	folder	called	FileTables.	When	you	expand	the	columns	of	this	table,	you
will	see	that	there	are	a	number	of	columns	that	are	already	created	that	will	capture	the
file	metadata,	as	shown	in	the	following	screenshot:

When	you	right-click	on	the	FileTable	folder,	you	will	see	an	Explore	FileTable
Directory	option.

When	you	click	on	the	FileTable	directory,	a	shared	folder	will	be	opened.	This	is	where
you	can	manage	your	files	if	they	are	part	of	the	filesystem.

Note	that	this	feature	will	only	work	when	SQL	Server	Management	Studio	and	SQL
Server	are	running	on	the	same	machine.

There’s	more…
Read	more	about	the	FileTable	feature	in	SQL	Server	from	the	MSDN	page	at
https://msdn.microsoft.com/en-us/library/ff929144.aspx.	It	covers	descriptions,
considerations,	and	common	tasks.

https://msdn.microsoft.com/en-us/library/ff929144.aspx

See	also
	

The	Enabling	FileStream	recipe.
The	Setting	up	a	FileStream	filegroup	recipe.
The	Adding	files	to	a	FileTable	recipe	in	Chapter	9,	SQL	Server	Development.

Adding	full-text	catalog
In	this	recipe,	we	will	create	a	full-text	catalog.

Getting	ready
In	this	recipe,	a	full-text	search	component	needs	to	be	installed	on	your	SQL	Server
instance.

Run	the	script	B04525	-	Ch06	-	10	-	Adding	Full-Text	Catalog	-	Prep.ps1	to	ready	the
database	we	will	use	in	this	recipe.	This	script	creates	a	database	called
FullTextCatalogDB	that	contains	a	table	called	Documents.

How	to	do	it…
Let’s	take	a	look	at	the	steps	to	create	a	full-text	catalog:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	–DisableNameChecking

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run	it:
$databaseName	=	“FullTextCatalogDB”

$db	=	$server.Databases[$databaseName]

$catalogName	=	“FTC”

$ftc	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.FullTextCatalog	-

ArgumentList	$db,	$catalogName

$ftc.IsAccentSensitive	=	$true

$ftc.IsDefault	=	$true

$ftc.Create()

How	it	works…
A	full-text	search	allows	you	to	search	for	columns	that	contain	a	lot	of	text	for	keywords,
phrases,	or	even	different	forms	of	a	word.	In	SQL	Server,	you	can	do	a	full-text	search	on
columns	that	have	data	types,	such	as	char,	varchar,	nchar,	nvarchar,	text,	ntext,
image,	xml,	varbinary(max),	or	filestream.

To	enable	a	full-text	search,	a	full-text	catalog	must	first	be	created.	A	full-text	catalog	is	a
special	storage	space	used	to	house	full-text	indexes	that	make	full-text	searches	possible.

To	create	a	full-text	catalog	using	PowerShell	and	SMO,	we	need	to	create	a
Microsoft.SqlServer.Management.Smo.FullTextCatalog	object.	It	needs	the	database
object	and	the	full-text	catalog	names	as	parameters:
$catalogName	=	“FTC”

$ftc	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.FullTextCatalog	-

ArgumentList	$db,	$catalogName

You	can	also	set	properties,	such	as	IsDefault,	IsAccentSensitive,	FileGroup,	and
Owner:
$ftc.IsAccentSensitive	=	$true

$ftc.IsDefault	=	$true

When	you’re	done	setting	up	the	properties,	you	can	invoke	the	Create	method	to	create
the	catalog:
$ftc.Create()

The	equivalent	T-SQL	statement	to	create	the	catalog	is	as	follows:
CREATE	FULLTEXT	CATALOG	[FTC]

WITH	ACCENT_SENSITIVITY	=	ON

AS	DEFAULT

There’s	more…
	

Read	more	about	SQL	Server’s	full-text	search	capabilities	at
https://msdn.microsoft.com/en-us/library/ms142571.aspx.
To	learn	more	about	how	to	create	and	manage	full-text	catalogs,	check	out	the
Microsoft	documentation	at	https://msdn.microsoft.com/en-us/library/bb326035.aspx.

https://msdn.microsoft.com/en-us/library/ms142571.aspx
https://msdn.microsoft.com/en-us/library/bb326035.aspx

See	also
	

The	Adding	a	full-text	index	recipe.

Adding	full-text	index
In	this	recipe,	we	will	create	a	full-text	index.

Getting	ready
Before	we	proceed	with	this	recipe,	ensure	that	you	have	already	created	a	full-text	catalog
in	your	instance.	If	you	haven’t	created	one,	you	can	run	the	B04525	-	Ch06	-	10	-	Adding
Full-Text	Catalog	-	Prep.ps1	file	that	creates	the	sample	database	and	full-text	catalog	and
follow	the	Adding	a	full-text	catalog	recipe	before	proceeding	with	this	recipe.

How	to	do	it…
Let’s	take	a	look	at	the	steps	to	create	a	full-text	index:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	–DisableNameChecking

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run	it:
#database

$databaseName	=	“FullTextCatalogDB”

$db	=	$server.Databases[$databaseName]

#catalog

$catalogName	=	“FTC”

$catalog	=	$db.FullTextCatalogs[$catalogName]

#table

$tableName	=	“Documents”

$table	=	$db.Tables[$tableName]

#create	full-text	index

$fullTextIndex	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.FullTextIndex

#set	full-text	index	properties

$fullTextIndex.Parent	=	$table

$fullTextIndex.CatalogName	=	$catalogName

$fulltextIndex.StopListName	=	“SYSTEM”

#need	to	establish	unique	ID	for	base	table

$fullTextIndex.UniqueIndexName	=	“PK_Documents_DocumentID”

$fullTextIndex.Create()

#specify	index	column

$documentNameCol	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.FullTextIndexColumn	-

ArgumentList	$fullTextIndex,	“Name”

$documentNameCol.Language	=	“English”

$documentNameCol.Create()

#specify	a	type	column

$documentContentCol	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.FullTextIndexColumn	-

ArgumentList	$fullTextIndex,	“Content”

$documentContentCol.Language	=	“English”

$documentContentCol.TypeColumnName	=	“Extension”

#create

$documentContentCol.Create()

How	it	works…
Before	you	create	a	full-text	index,	you	must	ensure	that	you	already	have	a	full-text
catalog	set	up.

To	create	a	full-text	index,	we	have	to	create	a
Microsoft.SqlServer.Management.SMO.FullTextIndex	object:
#create	full-text	index

$fullTextIndex	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.FullTextIndex

You	can	set	several	properties,	including	the	parent	table,	catalog	name,	and	stop	list
name.	In	addition,	you	also	need	to	specify	the	unique	index	in	the	base	table:
#set	full-text	index	properties

$fullTextIndex.Parent	=	$table

$fullTextIndex.CatalogName	=	$catalogName

$fulltextIndex.StopListName	=	“SYSTEM”

#need	to	establish	unique	ID	for	base	table

$fullTextIndex.UniqueIndexName	=	“PK_Documents_DocumentID”

$fullTextIndex.Create()

The	equivalent	T-SQL	statement	to	create	this	index	is	as	follows:
CREATE	FULLTEXT	INDEX	ON	[dbo].[Documents]

KEY	INDEX	[PK_Documents_DocumentID]ON	([FTC])

WITH	(STOPLIST	=	[SYSTEM])

With	a	full-text	index,	you	can	add	additional	text	columns	that	can	be	searched.	In	our
recipe,	we	add	the	Name	columns	to	our	index.	This	will	allow	the	content	of	Name	to	be
full-text	searched:
#specify	column	for	index

$documentNameCol	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.FullTextIndexColumn	-

ArgumentList	$fullTextIndex,	“Name”

$documentNameCol.Language	=	“English”

$documentNameCol.Create()

If	you	were	to	do	this	in	T-SQL,	this	would	be	your	script:
ALTER	FULLTEXT	INDEX

ON	[dbo].[Documents]

ADD

(

			[Name]	LANGUAGE	[English]

)

Because	our	table	also	has	another	field	that	specifies	the	document	type,	we	can	add	this
to	our	full-text	index.	We	can	specify	this	using	the	TypeColumnName	property:
$documentContentCol	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.FullTextIndexColumn	-

ArgumentList	$fullTextIndex,	“Content”

$documentContentCol.Language	=	“English”

$documentContentCol.TypeColumnName	=	“Extension”

$documentContentCol.Create()

The	addition	of	the	type	column	to	T-SQL	is	as	follows:
ALTER	FULLTEXT	INDEX

ON	[dbo].[Documents]

ADD

(

			[Content]	TYPE	COLUMN	[Extension]	LANGUAGE	[English]

)

There’s	more…
You	can	learn	more	about	how	to	create	and	manage	full-text	indexes	at
https://msdn.microsoft.com/en-us/library/cc879306.aspx.

https://msdn.microsoft.com/en-us/library/cc879306.aspx

See	also
	

The	Adding	a	full-text	catalog	recipe.

Creating	a	memory-optimized	table
In	this	recipe,	we	will	create	a	memory-optimized	table	in	SQL	Server.

Getting	ready
Memory-optimized	tables	require	SQL	Server	Developer	and	the	Enterprise	or	Evaluation
edition.

How	to	do	it…
Let’s	take	a	look	at	the	steps	to	create	a	memory-optimized	table:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run	it:
$databaseName	=	“MemoryOptimizedDB”

#for	this	recipe	only

#drop	if	it	exists

if($server.Databases[$databaseName])

{

				$server.KillDatabase($databaseName)

}

$db	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Database	-

ArgumentList	$server,	$databaseName

$db.Create()

#Add	memory	optimized	filegroup

$filegroupName	=	“MemoryOptimizedData”

$fg	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Filegroup	-

Argumentlist	$db,	$filegroupName

#set	the	filegroup	type

$fg.FileGroupType	=	[Microsoft.SqlServer.Management.Smo.FileGroupType]::MemoryOptimizedDataFileGroup

$fg.Create()

#add	data	file

$df	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.DataFile	-

ArgumentList	$fg,	“datafile”

#specify	data	file	path	and	filename

$df.FileName	=	“c:\Temp\memoryoptimizeddata1.ndf”

#create	data	file

$df.Create()

#create	table

$tableName	=	“Student”

$table	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Table	-

ArgumentList	$db,	$tableName

$col1Name	=	“StudentID”

$type	=	[Microsoft.SqlServer.Management.SMO.DataType]::Int

$col1	=		New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Column	-

ArgumentList	$table,	$col1Name,	$type

$col1.Nullable	=	$false

#$col1.Identity	=	$true

#$col1.IdentitySeed	=	1

#$col1.IdentityIncrement	=	1

$table.Columns.Add($col1)

#must	have	a	primary	key

#only	hash	or	nonclustered	indexes	can

#be	created	in	memory	optimized

$index	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.Index	-

Argumentlist	$table,	“PK_Student_StudentID”

$index.IndexType	=	[Microsoft.SqlServer.Management.SMO.IndexType]::NonClusteredIndex

$index.IsClustered	=	$false

$index.IndexKeyType	=	[Microsoft.SqlServer.Management.SMO.IndexKeyType]::DriPrimaryKey

$indexCol	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.IndexedColumn	-

Argumentlist	$index,	$col1Name

$index.IndexedColumns.Add($indexCol)

$table.Indexes.Add($index)

$table.IsMemoryOptimized	=	$true

$table.Durability	=	[Microsoft.SqlServer.Management.Smo.DurabilityType]::SchemaAndData

#create	table

$table.Create()

How	it	works…
SQL	Server	2014	introduces	features,	such	as	In-Memory	OLTP	in	64-bit	Enterprise,
Developer,	or	Evaluation	editions,	which	are	designed	to	make	OLTP	applications	much
faster.	Using	In-Memory	OLTP	can	dramatically	make	OLTP	applications	faster.	If	you
have	a	table	that	you	use	heavily,	you	may	consider	taking	advantage	of	this	new	feature.
Memory-optimized	tables	reside	in	memory.	A	drawback,	however,	is	that	the	whole	table
must	fit	in	the	memory.

To	start	with,	we	need	to	create	a	database	with	a	Filegroup	that	is	memory	optimized:
#set	the	filegroup	type

$fg.FileGroupType	=	[Microsoft.SqlServer.Management.Smo.FileGroupType]::MemoryOptimizedDataFileGroup

$fg.Create()

Once	the	database	is	set	up,	we	can	create	a	table	that	is	memory	optimized.	There	are	a
few	requirements	that	we	need	to	observe.	Here	are	two	requirements	regarding	indexes
that	are	documented	in	MSDN	(https://msdn.microsoft.com/en-us/library/dn133166.aspx):

Memory-optimized	indexes	must	be	created	with	CREATE	TABLE	(SQL	Server).
Disk-based	indexes	can	be	created	with	CREATE	TABLE	and	CREATE	INDEX.

Each	memory-optimized	table	must	have	at	least	one	index.	Note	that	each	PRIMARY
KEY	constraint	implicitly	creates	an	index.	Therefore,	if	a	table	has	a	primary	key,	it
has	an	index.	A	primary	key	is	a	requirement	for	a	durable	memory-optimized	table.

In	our	recipe,	we	need	to	create	an	index	during	our	table	creation	script.	We	also	need	to
specify	that	this	index	is	a	primary	key	nonclustered	index:
#must	have	a	primary	key

#only	hash	or	nonclustered	indexes	can

#be	created	in	memory	optimized

$index	=	New-Object	-TypeName	Microsoft.SqlServer.Management.SMO.Index	-

Argumentlist	$table,	“PK_Student_StudentID”

$index.IndexType	=	[Microsoft.SqlServer.Management.SMO.IndexType]::NonClusteredIndex

$index.IsClustered	=	$false

$index.IndexKeyType	=	[Microsoft.SqlServer.Management.SMO.IndexKeyType]::DriPrimaryKey

$indexCol	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.SMO.IndexedColumn	-

Argumentlist	$index,	$col1Name

$index.IndexedColumns.Add($indexCol)

$table.Indexes.Add($index)

The	other	requirement	that	we	need	to	fulfill	is	to	set	a	couple	of	table	properties	to
indicate	that	this	table	is	memory	optimized	(IsMemoryOptimized)	and	durable
(Durability):
$table.IsMemoryOptimized	=	$true

$table.Durability	=	[Microsoft.SqlServer.Management.Smo.DurabilityType]::SchemaAndData

Once	we	set	the	properties,	we	can	invoke	the	Create	method:
$table.Create()

https://msdn.microsoft.com/en-us/library/dn133166.aspx

The	T-SQL	equivalent	of	creating	a	memory-optimized	table	looks	like	this:
CREATE	TABLE	[dbo].[Student]

(

		[StudentID]	[int]	NOT	NULL,

			CONSTRAINT	[PK_Student_StudentID]	PRIMARY	KEY	NONCLUSTERED

			(

					[StudentID]

)

)WITH	(MEMORY_OPTIMIZED	=	ON	,	DURABILITY	=	SCHEMA_AND_DATA)

There’s	more…
	

You	can	learn	more	about	SQL	Server’s	memory-optimized	tables	at
https://msdn.microsoft.com/en-us/library/dn133165.aspx.
Guidelines	for	using	indexes	in	memory-optimized	tables	can	be	found	on	the	MSDN
page	at	https://msdn.microsoft.com/en-us/library/dn133166.aspx.
You	can	find	the	requirements	for	memory-optimized	tables	at
https://msdn.microsoft.com/en-us/library/dn170449.aspx.
Read	more	about	SQL	Server	Management	Objects	Support	for	In-Memory	OLTP	at
https://msdn.microsoft.com/en-us/library/dn133168.aspx.

https://msdn.microsoft.com/en-us/library/dn133165.aspx
https://msdn.microsoft.com/en-us/library/dn133166.aspx
https://msdn.microsoft.com/en-us/library/dn170449.aspx
https://msdn.microsoft.com/en-us/library/dn133168.aspx

See	also
	

The	Creating	a	table	recipe	in	Chapter	2,	SQL	Server	and	PowerShell	Basic	Tasks.

Creating	a	database	master	key
In	this	recipe,	we	will	create	a	database	master	key.

Getting	ready
In	this	recipe,	we	will	create	a	database	master	key	for	the	master	database.	You	can
substitute	a	different	database	for	this	exercise	if	you	wish.

The	T-SQL	equivalent	of	what	we	are	trying	to	accomplish	is	as	follows:
USE	master

GO

CREATE	MASTER	KEY

ENCRYPTION	BY	PASSWORD	=	‘P@ssword’

How	to	do	it…
Let’s	take	a	look	at	the	steps	required	to	complete	the	task:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run	it:
$VerbosePreference	=	“Continue”

$masterdb	=		$server.Databases[“master”]

if($masterdb.MasterKey	-eq	$null)

{

			$masterkey	=	New-

Object	Microsoft.SqlServer.Management.Smo.MasterKey	-

ArgumentList	$masterdb

			$masterkey.Create(“P@ssword”)

			Write-Verbose	“Master	Key	Created	:	$($masterkey.CreateDate)”

}

$VerbosePreference	=	“SilentlyContinue”

4.	 If	successful,	you	will	see	a	one-line	message	that	contains	the	successful	message
and	the	date	on	which	the	master	key	was	created	as	the	output.

How	it	works…
A	database	master	key	is	required	if	you	want	to	do	any	database-level	encryption.	It	is
used	to	encrypt	keys	and	certificates	in	a	specific	database.

Creating	a	database	master	key	is	straightforward.	You	need	to	create	an	SMO	MasterKey
object:
$masterkey	=	New-Object	Microsoft.SqlServer.Management.Smo.MasterKey	-

ArgumentList	$masterdb

$masterkey.Create(“P@ssword”)

There	are	a	couple	of	overloads	to	the	Create	method	of	the	MasterKey	class.	In	our
recipe,	we	chose	to	provide	a	password.	The	alternative	is	to	pass	both	a	decryption	and
encryption	password.

If	the	database	master	key	already	exists,	you	may	not	necessarily	be	able	to	drop	it	right
away.	If	there	are	encryption	objects	already	created,	that	are	being	protected	by	the
database	master	key,	you	must	first	drop	those	encryption	objects	before	you	drop	the
database	master	key.	Once	there	are	no	more	dependent	objects,	you	can	use	the	following
PowerShell	code	to	drop	the	master	key:
#drop	master	key

$masterkey.Drop()

There’s	more…
You	can	learn	more	about	the	MasterKey	class	from	the	MSDN	page	at
http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.smo.masterkey.aspx.

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.masterkey.aspx

See	also
	

The	Creating	a	certificate	recipe.

Creating	a	certificate
This	recipe	shows	how	you	can	create	a	certificate	using	PowerShell	and	SMO.

Getting	ready
In	this	recipe,	we	will	create	a	certificate	called	Test	Certificate	that	is	protected	by	the
database	master	key.	You	will	need	to	make	sure	that	the	database	master	key	has	been
created	first	for	the	database.

The	T-SQL	equivalent	of	what	we	are	trying	to	accomplish	in	this	recipe	is	as	follows:
CREATE	CERTIFICATE	[Test	Certificate]

WITH	SUBJECT	=	N’This	is	a	test	certificate.’,

START_DATE	=	N‘04/10/2015’,

EXPIRY_DATE	=	N‘04/10/2017’

How	to	do	it…
Let’s	take	a	look	at	the	steps	required	to	complete	the	task:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run	it:
$certificateName	=	“Test	Certificate”

$masterdb	=		$server.Databases[“master”]

if	($masterdb.Certificates[$certificateName])

{

		$masterdb.Certificates[$certificateName].Drop()

}

$certificate	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Certificate	-

argumentlist	$masterdb,	$certificateName

#set	properties

$certificate.StartDate	=	Get-Date

$certificate.Subject	=	“This	is	a	test	certificate.”

$certificate.ExpirationDate	=	(Get-Date).AddYears(2)

$certificate.ActiveForServiceBrokerDialog	=	$false

#create	certificate

#you	can	optionally	provide	a	password,	but	this

#certificate	we	created	is	protected	by	the	master	key

$certificate.Create(“SUppLYStr0NGPassw0RDH3r3”)

#display	all	properties

$certificate	|

Select-Object	*

4.	 When	the	certificate	is	created	and	the	script	is	executed,	the	resulting	screen	will
look	like	this:

5.	 To	confirm	this	via	T-SQL,	we	can	use	the	sys.certificates	DMV	to	list	all	the
certificates.	Open	SQL	Server	Management	Studio	and	execute	the	following	T-
SQL	statement:
SELECT	*

FROM	sys.certificates

WHERE	[name]	=	‘Test	Certificate’

How	it	works…
To	create	a	certificate,	you	need	to	first	create	an	SMO	Certificate	object:
$certificate	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Certificate	-

argumentlist	$masterdb,	$certificateName

There	are	a	few	properties	that	we	can	set	for	an	SMO	Certificate	object.	In	this	recipe,
we	set	the	StartDate,	Subject,	and	ExpirationDate	properties:
$certificate.StartDate	=	Get-Date

$certificate.Subject	=	“This	is	a	test	certificate.”

$certificate.ExpirationDate	=	(Get-Date).AddYears(2)

$certificate.ActiveForServiceBrokerDialog	=	$false

If	you	want	to	create	a	certificate	that	is	protected	by	the	database	master	key,	you	just
need	to	invoke	the	Create	method	of	the	Certificate	class	and	provide	a	strong
password:
$certificate.Create(“SUppLYStr0NGPassw0RDH3r3”)

There’s	more…
A	certificate	is	essentially	a	digitally	signed	document	that	binds	a	public	key	with	an
identity	and	is	used	to	prove	authenticity	of	ownership.	This	helps	prevent	malicious
impersonations,	that	is,	somebody	or	something	“pretending”	to	be	someone	or	something
they	are	not.

You	can	learn	more	about	certificates	from	the	http://msdn.microsoft.com/en-
us/library/ms189586.aspx.

http://msdn.microsoft.com/en-us/library/ms189586.aspx

See	also
	

The	Creating	a	database	master	key	recipe.

Creating	symmetric	and	asymmetric	keys
In	this	recipe,	we	will	create	symmetric	and	asymmetric	keys.

Getting	ready
In	this	recipe,	we	will	use	the	TestDB	database.	If	you	don’t	already	have	this	database,	log
in	to	SQL	Server	Management	Studio	and	execute	the	following	T-SQL	code:
IF	DB_ID(‘TestDB’)	IS	NULL

CREATE	DATABASE	TestDB

GO

We	will	also	work	with	a	database	user	called	eric	in	our	TestDB	database.	This	user	will
map	to	the	SQL	login	eric.	Feel	free	to	create	this	user	using	the	Creating	a	database	user
recipe	of	Chapter	4,	Security,	as	a	reference.	Alternatively,	execute	the	following	T-SQL
code	from	SQL	Server	Management	Studio	or	replace	it	with	an	existing	login/database
user	in	your	system:
Use	TestDB

GO

CREATE	USER	[eric]

FOR	LOGIN	[eric]

How	to	do	it…
Let’s	take	a	look	at	the	steps	required	to	complete	the	task:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run	it:
#database	handle

$databasename	=	“TestDB”

$database	=	$server.Databases[$databasename]

#create	a	database	master	key

#if	this	doesn’t	exist	yet

$dbmk	=	New-Object	Microsoft.SqlServer.Management.Smo.MasterKey	-

ArgumentList	$database

$dbmk.Create(“P@ssword”)

#==

#	Create	Asymmetric	Key

#==

#this	is	equivalent	to:

<#

USE	TestDB

GO

CREATE	ASYMMETRIC	KEY	[EncryptionAsymmetricKey]

AUTHORIZATION	[eric]

WITH	ALGORITHM	=	RSA_2048

#>

$asymk	=	New-Object	Microsoft.SqlServer.Management.Smo.AsymmetricKey	-

ArgumentList	$database,	“EncryptionAsymmetricKey”

#replace	this	with	a	known	database	user	in	the

#database	you	are	using	for	this	recipe

$asymk.Owner	=	“eric”

$asymk.Create([Microsoft.SqlServer.Management.Smo.AsymmetricKeyEncryptionAlgorithm]::Rsa2048)

#create	certificate	first	to	be	used	for	Symmetric	Key

$cert	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Certificate	-

argumentlist	$database,	“Encryption”

$cert.StartDate	=	Get-Date

$cert.Subject	=	“This	is	a	test	certificate.”

$cert.ExpirationDate	=	(Get-Date).AddYears(2)

$cert.Create()

#create	a	symmetric	key	based	on	certificate

$symk	=	New-Object	Microsoft.SqlServer.Management.Smo.SymmetricKey	-

ArgumentList	$database,	“EncryptionSymmetricKey”

$symkenc	=	New-

Object	Microsoft.SqlServer.Management.Smo.SymmetricKeyEncryption	([Microsoft.SqlServer.Management.Smo.KeyEncryptionType]::Certificate,	“Encryption”)

$symk.Create($symkenc,	[Microsoft.SqlServer.Management.Smo.SymmetricKeyEncryptionAlgorithm]::TripleDes)

#list	each	object	we	created

$dbmk

$cert.Name

$asymk

$symk

4.	 The	resulting	screen	will	look	similar	to	the	following	screenshot:

5.	 Alternatively,	you	can	use	the	following	T-SQL	statement	to	confirm	the	existence	of
the	database	master	key,	certificate,	symmetric,	and	asymmetric	keys	that	we	created
in	this	recipe:
SELECT		‘DB	Master	Key’	,

								is_master_key_encrypted_by_server

FROM				sys.databases

WHERE			[name]	=	‘TestDB’

SELECT		‘Certificate’	,	*

FROM				sys.certificates

WHERE			[name]	=	‘Encryption’

SELECT		‘Asymmetric	Key’	,	*

FROM				sys.asymmetric_keys

WHERE			[name]	=	‘EncryptionAsymmetricKey’

SELECT		‘Symmetric	Key’	,	*

FROM				sys.symmetric_keys

WHERE			[name]	=	‘EncryptionSymmetricKey’

How	it	works…
Before	we	create	a	symmetric	or	asymmetric	key,	we	have	to	first	create	a	database	master
key.	MSDN	defines	a	database	master	key	as	follows:

a	symmetric	key	that	is	used	to	protect	the	private	keys	of	certificates	and	asymmetric
keys	that	are	present	in	the	database.

Here	is	how	you	would	create	a	database	master	key	using	PowerShell	and	SMO:
$dbmk	=	New-Object	Microsoft.SqlServer.Management.Smo.MasterKey	-

ArgumentList	$database

$dbmk.Create(“P@ssword”)

Once	the	database	master	key	is	in	place,	we	can	create	our	Symmetric	and	Asymmetric
keys.	This	is	equivalent	to	the	following	T-SQL	statement:
USE	TestDB

GO

CREATE	MASTER	KEY	ENCRYPTION

BY	PASSWORD	=	‘P@ssword’

To	create	the	asymmetric	key,	you	need	to	create	an	SMO	asymmetric	key	instance	and
assign	an	owner	and	encryption	algorithm.	The	available
AsymmetricKeyEncryptionAlgorithm	values	are	CryptographicProviderDefined,
Rsa512,	Rsa1024,	and	Rsa2048:
$asymk	=	New-Object	Microsoft.SqlServer.Management.Smo.AsymmetricKey	-

ArgumentList	$database,	“EncryptionAsymmetricKey”

#replace	this	with	a	known	user	in	your	instance

$asymk.Owner	=	“EncryptionUser”

$asymk.Create([Microsoft.SqlServer.Management.Smo.AsymmetricKeyEncryptionAlgorithm]::Rsa2048)

To	create	a	symmetric	key,	we	must	first	create	a	certificate:
#create	certificate	first	to	be	used	for	Symmetric	Key

$cert	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Certificate	-

argumentlist	$database,	“Encryption” $cert.StartDate	=	”(Get-
Date).AddYears(2)

$cert.Subject	=	“This	is	a	test	certificate.”

$cert.ExpirationDate	=	(Get-Date).AddYears(2)

$cert.Create()

If	you	were	to	do	this	in	T-SQL,	this	would	be	the	equivalent	script:
CREATE	CERTIFICATE	[Encryption]

WITH	SUBJECT	=	N’This	is	a	test	certificate.’,

START_DATE	=	N‘04/10/2015’,

EXPIRY_DATE	=	N‘04/10/2017’

If	you	want	to	use	dynamic	dates,	the	preceding	T-SQL	snippet	can	be	adjusted	to	use
Dynamic	SQL	and	retrieve	the	current	date	using	the	T-SQL	GETDATE()	functions,	and	we
can	add	two	years	using	DATEADD().

To	create	a	symmetric	key	based	on	the	certificate,	we	should	first	instantiate	a	SMO
SymmetricKey	object:

$symk	=	New-Object	Microsoft.SqlServer.Management.Smo.SymmetricKey	-

ArgumentList	$database,	“EncryptionSymmetricKey”

We	then	need	to	specify	the	SymmetricKey	encryption	type.	The	available	values	are
SymmetricKey,	Certificate,	Password,	AsymmetricKey,	and	Provider.
$symkenc	=	New-

Object	Microsoft.SqlServer.Management.Smo.SymmetricKeyEncryption	([Microsoft.SqlServer.Management.Smo.KeyEncryptionType]::Certificate,	“Encryption”)

When	we	create	SymmetricKey,	we	need	to	also	specify	which	algorithm	to	use.	The
available	SymmetricKeyAlgorithm	values	are	CryptographicProviderDefined,	RC2,	RC4,
Des,	TripleDes,	DesX,	Aes128,	Aes192,	Aes256,	and	TripleDes3Key:
$symk.Create($symkenc,	[Microsoft.SqlServer.Management.Smo.SymmetricKeyEncryptionAlgorithm]::TripleDes)

The	equivalent	T-SQL	will	look	like	this:
CREATE	SYMMETRIC	KEY	[EncryptionSymmetricKey]

WITH	ALGORITHM	=	TRIPLE_DES

ENCRYPTION	BY	CERTIFICATE	[Encryption]

There’s	more…
Symmetric	and	asymmetric	keys	can	be	used	to	set	up	cell-level	encryption	in	SQL	Server.
The	typical	steps	to	set	up	cell-level	encryption	are	as	follows:

	
1.	 Create	a	master	key
2.	 Create	a	certificate	or	asymmetric	key
3.	 Create	a	symmetric	key	that	is	protected	by	a	certificate	or	asymmetric	key
4.	 Open	a	symmetric	key,	then	encrypt	or	decrypt	and	later	close	a	symmetric	key

You	can	learn	more	about	Symmetric	and	Asymmetric	keys	from	the	MSDN	article	at

http://support.microsoft.com/kb/246071.

Another	MSDN	article	that	walks	you	through	the	process	of	encrypting	a	column	of	data
using	T-SQL	is	available	at	http://msdn.microsoft.com/en-us/library/ms179331.aspx.

http://support.microsoft.com/kb/246071
http://msdn.microsoft.com/en-us/library/ms179331.aspx

See	also
	

The	Creating	a	database	master	key	recipe.
The	Creating	a	certificate	recipe.

Setting	up	Transparent	Data	Encryption
This	recipe	shows	how	you	can	set	up	Transparent	Data	Encryption	using	PowerShell	and
SMO.

Getting	ready
Transparent	Data	Encryption	(TDE)	is	supported	only	in	Enterprise,	Developer,	or
Evaluation	editions.

In	this	recipe,	we	will	enable	TDE	on	the	TestDB	database.	If	you	don’t	already	have	this
test	database,	log	in	to	SQL	Server	Management	Studio	and	execute	the	following	T-SQL
code:
IF	DB_ID(‘TestDB’)	IS	NULL

CREATE	DATABASE	TestDB

GO

You	should	already	have	a	database	master	key	for	this	TestDB	database.	If	you	don’t	have
one,	create	it	using	the	Creating	a	database	master	key	recipe.

How	to	do	it…
These	are	the	steps	to	set	up	TDE	programmatically:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run	it:
#if	not	yet	created,	create	a	master	key

$masterdb	=		$server.Databases[“master”]

if($masterdb.MasterKey	-eq	$null)

{

			$masterkey	=	New-

Object	Microsoft.SqlServer.Management.Smo.MasterKey	-

ArgumentList	$masterdb

			$masterkey.Create(“P@ssword”)

}

#if	not	yet	created,	create	or	obtain	a	certificate

#protected	by	the	master	key

$certificateName	=	“Test	Certificate”

if	($masterdb.Certificates[$certificateName])

{

		$masterdb.Certificates[$certificateName].Drop()

}

$certificate	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Certificate	-

argumentlist	$masterdb,	$certificateName

#create	certificate	protected	by	the	master	key

$certificate.StartDate	=	“April	10,	2015”

$certificate.Subject	=	“This	is	a	test	certificate.”

$certificate.ExpirationDate	=	“April	10,	2017”

#you	can	optionally	provide	a	password,	but	this

#certificate	we	created	is	protected	by	the	master	key

$certificate.Create()

#create	a	database	encryption	key

$databaseName	=	“TestDB”

$database	=	$server.Databases[$databaseName]

$dbencryption	=	New-

Object	Microsoft.SqlServer.Management.Smo.DatabaseEncryptionKey

$dbencryption.Parent	=	$database

$dbencryption.EncryptionAlgorithm	=	[Microsoft.SqlServer.Management.Smo.DatabaseEncryptionAlgorithm]::Aes256

$dbencryption.EncryptionType	=		[Microsoft.SqlServer.Management.Smo.DatabaseEncryptionType]::ServerCertificate

#associate	certificate	name

$dbencryption.EncryptorName	=	$certificateName

$dbencryption.Create()

#enable	TDE

$database.EncryptionEnabled	=	$true

$database.Alter()

$database.Refresh()

#display	TDE	setting

$database.EncryptionEnabled

$databasename	=	“TestDB”

$database	=	$server.Databases[$databasename]

4.	 The	last	line	should	say	True	if	Transparent	Data	Encryption	was	successfully	turned
on	for	TestDB.

5.	 Alternatively,	you	can	use	the	following	T-SQL	statement	to	confirm	this:
SELECT

			db.name,

			db.is_encrypted,

			dm.encryption_state,

			dm.percent_complete,

			dm.key_algorithm,

			dm.key_length

FROM

			sys.databases	db

			LEFT	OUTER	JOIN	sys.dm_database_encryption_keys	dm

		ON	db.database_id	=	dm.database_id

6.	 This	will	give	you	a	list	of	all	your	databases	in	your	instance	and	identify	which
ones	are	encrypted.

The	encryption_state	=	3	means	that	the	encryption	of	that	database	has	already	been
completed.	Also,	notice	that	tempdb	is	also	encrypted.	By	default,	if	any	user	databases	are
encrypted,	then	tempdb	also	automatically	gets	encrypted.

How	it	works…
Transparent	Data	Encryption	is	supported	only	in	Enterprise,	Developer,	or	Evaluation
editions.

There	are	a	few	preparatory	steps	required	to	enable	Transparent	Data	Encryption.

You	first	need	to	create	a	master	key.	The	following	script	is	a	simple	script	to	do	so,	or
you	can	also	refer	to	the	Creating	a	database	master	key	recipe:
#if	not	yet	created,	create	a	master	key

$masterdb	=		$server.Databases[“master”]

if($masterdb.MasterKey	-eq	$null)

{

			$masterkey	=	New-Object	Microsoft.SqlServer.Management.Smo.MasterKey	-

ArgumentList	$masterdb

			$masterkey.Create(“P@ssword”)

}

You	will	then	need	to	create	a	certificate	stored	in	the	master	database	and	protected	by	the
database	master	key	for	the	master	database:
$certificateName	=	“Test	Certificate”

if	($masterdb.Certificates[$certificateName])

{

		$masterdb.Certificates[$certificateName].Drop()

}

$certificate	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Certificate	-

argumentlist	$masterdb,	$certificateName

#create	certificate	protected	by	the	master	key

$certificate.StartDate	=	“April	10,	2015”

$certificate.Subject	=	“This	is	a	test	certificate.”

$certificate.ExpirationDate	=	“April	10,	2017”

#you	can	optionally	provide	a	password,	but	this

#certificate	we	created	is	protected	by	the	master	key

$certificate.Create()

The	preceding	script	block	is	equivalent	to	the	following	T-SQL	command:
USE	master

GO

CREATE	CERTIFICATE	[Encryption]

WITH	SUBJECT	=	N’This	is	a	test	certificate.’,

START_DATE	=	N‘04/10/2015’,

EXPIRY_DATE	=	N‘04/10/2017’

After	the	certificate	has	been	created,	the	next	step	is	to	create	a	database	encryption	key
that	is	protected	by	the	certificate.	This	key	is	needed	to	enable	Transparent	Data
Encryption	on	a	user	database:
#create	a	database	encryption	key

$dbencryption	=	New-

Object	Microsoft.SqlServer.Management.Smo.DatabaseEncryptionKey

We	need	to	associate	this	with	the	database	for	which	we	want	to	turn	on	the	TDE:
$databaseName	=	“TestDB”

$database	=	$server.Databases[$databaseName]

$dbencryption.Parent	=	$database

When	creating	a	database	encryption	key,	we	also	need	to	specify	the	encryption
algorithm.	The	available	encryptions	are	Aes128,	Aes192,	Aes256,	and	TripleDes:
$dbencryption.EncryptionAlgorithm	=	[Microsoft.SqlServer.Management.Smo.DatabaseEncryptionAlgorithm]::Aes256

We	also	need	to	associate	this	key	with	the	certificate	that	we	previously	created.	The
possible	DatabaseEncryptionType	values	are	ServerCertificate	and
ServerAsymmetricKey:
$dbencryption.EncryptionType	=		[Microsoft.SqlServer.Management.Smo.DatabaseEncryptionType]::ServerCertificate

#associate	certificate	name

$dbencryption.EncryptorName	=	$certificateName

You	are	now	ready	to	create	the	database	encryption	key:
$dbencryption.Create()

The	equivalent	T-SQL	statement	to	create	a	database	encryption	key	is	as	follows:
CREATE	DATABASE	ENCRYPTION	KEY

WITH	ALGORITHM	=	AES_256

ENCRYPTION	BY	SERVER	CERTIFICATE	[Test	Certificate]

At	this	point,	the	preparatory	steps	to	enable	TDE	are	complete.	We	can	now	turn	on	TDE
and	alter	our	target	database:
#enable	TDE

$database.EncryptionEnabled	=	$true

$database.Alter()

$database.Refresh()

In	the	background,	this	change	generates	the	following	T-SQL	statement:
ALTER	DATABASE	[TestDB]

SET	ENCRYPTION	ON

There’s	more…
Transparent	Data	Encryption	is	introduced	in	SQL	Server	2008	as	a	solution	for	database-
level	encryption.	If	TDE	is	turned	on,	data	in	the	data	and	log	files	are	encrypted.	This	will
also	automatically	encrypt	tempdb.

	
Read	more	about	Transparent	Data	Encryption	from	MSDN	at
http://msdn.microsoft.com/en-us/library/bb934049.aspx.
Check	out	encryption_state	values	of	sys.dm_database_encryption_keys	from
MSDN	at	http://msdn.microsoft.com/en-us/library/bb677274.aspx.

http://msdn.microsoft.com/en-us/library/bb934049.aspx
http://msdn.microsoft.com/en-us/library/bb677274.aspx

See	also
	

The	Creating	a	certificate	recipe.
The	Altering	database	properties	recipe	in	Chapter	2,	SQL	Server	and	PowerShell
Basic	Tasks.

Chapter	7.	Audit	and	Policies
In	this	chapter,	we	will	cover	the	following	topics:

	
Enabling/disabling	change	tracking
Configuring	SQL	Server	Audit
Listing	facets	and	their	properties
Listing	policies
Exporting	a	policy
Importing	a	policy
Creating	a	condition
Creating	a	policy
Evaluating	a	policy
Running	and	saving	a	profile	trace	event
Extracting	the	contents	of	a	trace	file

Introduction
Part	of	a	SQL	Server	DBA	or	developer’s	regular	tasks	include	tracking	changes,	auditing
databases	and	tables,	and	ensuring	that	instances	comply	with	the	organizational	policies.
SQL	Server	has	features	that	allow	all	of	these	tasks	to	be	accomplished	more	easily.	In
this	chapter,	we	will	take	a	look	at	how	to	enable	tracking	and	auditing	in	SQL	Server.	We
will	also	take	a	look	at	how	to	use	PowerShell	in	order	to	enable	and	use	Policy	Based
Management	(PBM)	in	SQL	Server	to	ensure	compliance	of	settings	and	configurations
with	company	rules.

Enabling/disabling	change	tracking
This	recipe	shows	you	how	you	can	enable	and	disable	change	tracking	in	your	target
database.

Getting	ready
In	this	recipe,	we	will	use	a	test	database	called	TestDB.	If	you	do	not	already	have	this
database,	log	in	to	SQL	Server	Management	Studio	and	execute	the	following	T-SQL
code:
IF	DB_ID(‘TestDB’)	IS	NULL

CREATE	DATABASE	TestDB

GO

You	need	to	check	which	of	your	databases	have	change	tracking	enabled.	To	do	this,
connect	to	your	instance	using	SQL	Server	Management	Studio,	and	type	in	the
following	T-SQL	statement:
SELECT

		DB_NAME(database_id)	AS	‘DB’,

		*

FROM

		sys.change_tracking_databases

How	to	do	it…
To	enable/disable	change	tracking,	perform	the	following	steps:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Add	the	following	script	and	run	it:
$databaseName	=	“TestDB”

$database	=	$server.Databases[$databaseName]

#enable	the	Change	Tracking	feature

$database.ChangeTrackingEnabled

$database.ChangeTrackingEnabled	=	$true

$database.Alter()

$database.Refresh()

#confirm

$database.ChangeTrackingEnabled

4.	 To	disable	change	tracking,	you	just	need	to	set	the	ChangeTrackingEnabled
database	property	to	false	and	invoke	the	Alter	method	again:
$database.ChangeTrackingEnabled	=	$false

$database.Alter()

How	it	works…
Change	Tracking	is	a	database-level	feature	that	can	be	turned	on	or	off	using	the	database
object’s	ChangeTrackingEnabled	property.	Once	you	get	a	handle	to	the	database,	you	can
set	this	property	to	a	true	or	false	Boolean	value,	followed	by	an	invocation	of	the	Alter
method:
$database.ChangeTrackingEnabled

$database.ChangeTrackingEnabled	=	$true

$database.Alter()

There’s	more…
Change	Tracking	(CT)	is	a	feature	introduced	in	SQL	Server	2008.	It	is	a	lightweight
solution	that	enables	developers	and	administrators	alike	to	detect	whether	changes	have
been	done	to	a	user	table	they	are	monitoring.	This	is	a	pretty	lightweight	solution	because
it	only	tracks	those	changes	that	have	occurred	and	does	not	keep	track	of	all	intermediate
changes,	which	is	what	the	Enterprise	feature,	Change	Data	Capture	(CDC),	is	capable
of	doing.

	
Learn	more	about	Change	Tracking	from	MSDN	at	https://msdn.microsoft.com/en-
us/library/bb933875.aspx.
Mike	Byrd	from	Solarwinds	has	a	great	article	on	how	to	use	Change	Tracking	for
near	bullet-proof	ETL	at	http://logicalread.solarwinds.com/sql-server-change-
tracking-bulletproof-etl-p1-mb01/#.VXQ0L8-vGUk.
Leonard	Mwangi	from	Alexander	Open	Systems	also	has	a	great	article	on	Change
Tracking	in	SQL	Server	Pro,	including	the	downside	of	this	feature	at
http://sqlmag.com/sql-server-2012/tracking-changes-sql-server-2012.

https://msdn.microsoft.com/en-us/library/bb933875.aspx
http://logicalread.solarwinds.com/sql-server-change-tracking-bulletproof-etl-p1-mb01/#.VXQ0L8-vGUk
http://sqlmag.com/sql-server-2012/tracking-changes-sql-server-2012

See	also
	

The	Altering	database	properties	recipe	in	Chapter	2,	SQL	Server	and	PowerShell
Basic	Tasks.

Configuring	SQL	Server	Audit
In	this	recipe,	we	will	set	up	SQL	Server	Audit	to	track	failed	logins.

How	to	do	it…
These	are	the	steps	required	to	configure	and	test	SQL	Server	Audit:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Use	the	following	script	to	first	create	SQL	Server	Audit	that	uses	a	file	destination:
$auditName	=	“FileAudit”

#if	it	exists,	disable	then	drop

if($server.Audits[$auditName])

{

			$server.Audits[$auditName].Disable()

			$server.Audits[$auditName].Drop()

}

$serverAudit	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Audit	$server,	$auditName

#set	the	destination	as	file

$serverAudit.DestinationType	=	[Microsoft.SqlServer.Management.Smo.AuditDestinationType]::File

#specify	the	folder	where	audit	will	be	saved

$serverAudit.FilePath	=	“C:\Audit"

#create

$serverAudit.Create()

#enable

$serverAudit.Enable()

4.	 Create	a	Server	Audit	Specification	using	the	following	script:
$serverAuditSpecName	=	“FileSpecAudit”

#if	exists,	disable	then	drop

if($server.ServerAuditSpecifications[$serverAuditSpecName])

{

			$server.ServerAuditSpecifications[$serverAuditSpecName].Disable()

			$server.ServerAuditSpecifications[$serverAuditSpecName].Drop()

}

$serverAuditSpec	=	New-

Object	Microsoft.SqlServer.Management.Smo.ServerAuditSpecification	$server,	$serverAuditSpecName

#which	Audit	does	this	belong	to?

$serverAuditSpec.AuditName	=	$auditName

#set	up	which	server	event	will	be	monitored/audited

$auditActionType	=	[Microsoft.SqlServer.Management.Smo.AuditActionType]::FailedLoginGroup

#create	the	specification	detail

$serverAuditSpecDetail	=	New-

Object	Microsoft.SqlServer.Management.Smo.AuditSpecificationDetail($auditActionType)

#add	specification	detail	to	audit	specification

$serverAuditSpec.AddAuditSpecificationDetail($serverAuditSpecDetail)

#create

$serverAuditSpec.Create()

#enable

$serverAuditSpec.Enable()

How	it	works…
SQL	Server	Audit	allows	events	to	be	tracked,	monitored,	and	logged	either	at	the
instance-level	or	database-level.	SQL	Server	Audit	leverages	extended	events,	which	is	a
lightweight	monitoring	system	that	is	built	into	SQL	Server.

There	are	two	main	components	of	SQL	Server	Audit:	SQL	Server	Audit	and	SQL	Server
Audit	specification.

A	SQL	Server	Audit	is	securable	at	an	instance-level.	This	is	where	the	events	will	be
stored.	There	are	three	options	for	an	audit	destination:	File,	Security	Log,	or
Application	Log.	You	can	see	these	options	when	you	create	an	Audit	from	SQL	Server
Management	Studio:

To	do	this	in	PowerShell	and	SMO,	you	need	to	create	a
Microsoft.SqlServer.Management.Smo.Audit	object	after	you’ve	initialized	your	SMO
server	object:
$auditName	=	“FileAudit”

$serverAudit	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Audit	$server,	$auditName

You	can	then	set	the	DestinationType	property.	The	three	values	are	File,
ApplicationLog,	and	SecurityLog:
#set	the	destination	as	file

$serverAudit.DestinationType	=	[Microsoft.SqlServer.Management.Smo.AuditDestinationType]::File

Since	we	are	setting	the	audit	to	a	file	destination,	we	need	to	specify	which	folder	the
audit	files	will	be	saved	in:

#specify	the	folder	where	audit	will	be	saved

$serverAudit.FilePath	=	“C:\Audit"

Once	the	destination	type	and	file	path	are	set,	we	can	create	the	Audit:
$serverAudit.Create()

By	default,	SQL	Server	Audit	is	created	in	a	disabled	state.	To	enable	this,	invoke	the
Enable	method:
$serverAudit.Enable()

Once	it	has	been	created	and	enabled,	you	can	see	Audits	from	SQL	Server	Management
Studio:

If	you	want	to	see	what	the	equivalent	T-SQL	script	would	be	like,	you	can	invoke	the
Script	method.	It	will	give	you	the	following	output:
CREATE	SERVER	AUDIT	[FileAudit]

TO	FILE

(FILEPATH	=	N’C:\Audit'

		,MAXSIZE	=	0	MB

		,MAX_ROLLOVER_FILES	=	2147483647

		,RESERVE_DISK_SPACE	=	OFF

)

WITH

(QUEUE_DELAY	=	1000

		,ON_FAILURE	=	CONTINUE

		,AUDIT_GUID	=	‘ece733bf-e087-4bbc-971c-474465b1fe8b’

)

ALTER	SERVER	AUDIT	[FileAudit]	WITH	(STATE	=	ON)

The	second	component	of	setting	up	SQL	Server	Audit	is	the	Audit	Specification.	The
Audit	Specification	is	where	you	identify	the	events	or	actions	that	you	want	to	monitor
and	track.	The	Audit	Specification	belongs	to	an	Audit	that	identifies	how	the	actions	are
going	to	be	recorded.

Note
The	SQL	Server	Audit	Action	Groups	and	Actions	are	listed	at

https://msdn.microsoft.com/en-us/library/cc280663.aspx.

https://msdn.microsoft.com/en-us/library/cc280663.aspx

The	Audit	Specification	can	also	be	at	the	server-level	or	database-level.

In	our	recipe,	we	created	a	Server	Audit	specification	and	specified	which	Audit	it	belongs
to:
$serverAuditSpecName	=	“FileSpecAudit”

$serverAuditSpec	=	New-

Object	Microsoft.SqlServer.Management.Smo.ServerAuditSpecification	$server,	$serverAuditSpecName

#which	Audit	does	this	belong	to?

$serverAuditSpec.AuditName	=	$auditName

In	addition	to	specifying	which	audit	it’s	tied	to,	we	also	need	to	specify	the	actions	or
events	that	it	needs	to	monitor.	In	our	case,	we	want	it	to	monitor	failed	logins:
#set	up	which	server	event	will	be	monitored/audited

$auditActionType	=	[Microsoft.SqlServer.Management.Smo.AuditActionType]::FailedLoginGroup

This	action	type	needs	to	be	an	AuditSpecificationDetail,	which	needs	to	be	added	to
our	Server	Audit	Specification	object:
#create	the	specification	detail

$serverAuditSpecDetail	=	New-

Object	Microsoft.SqlServer.Management.Smo.AuditSpecificationDetail($auditActionType)

#add	specification	detail	to	audit	specification

$serverAuditSpec.AddAuditSpecificationDetail($serverAuditSpecDetail)

As	with	the	server	audit,	this	Audit	Specification	can	be	created	and	enabled:
#create

$serverAuditSpec.Create()

#enable

$serverAuditSpec.Enable()

Once	it’s	created,	you	can	view	it	from	SQL	Server	Management	Studio:

The	equivalent	T-SQL	script	to	create	the	Server	Audit	Specification	is	as	follows:
CREATE	SERVER	AUDIT	SPECIFICATION	[FileSpecAudit]

FOR	SERVER	AUDIT	[FileAudit]

ADD	(FAILED_LOGIN_GROUP)

WITH	(STATE	=	ON)

You	can	now	test	SQL	Server	Audit.	Go	ahead	and	try	to	log	in	with	an	invalid	account.
These	invalid	login	attempts	will	be	captured	by	SQL	Server	Audit.	You	can	check	the
entries	from	SQL	Server	Management	Studio	by	right-clicking	on	the	Audit	object	and
choosing	View	Audit	Logs:

This	will	open	up	the	Log	File	Viewer	prompt,	and	you	can	see	the	entry	for	the	invalid
login	attempt:

There’s	more…
	

Learn	more	about	SQL	Server	Audit	from	the	MSDN	page	at
https://msdn.microsoft.com/en-us/library/cc280386.aspx.
The	SMO	Audit	class	and	its	properties	and	methods	are	documented	in	MSDN	at
https://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.smo.audit.aspx.
Learn	more	about	SQL	Server	Extended	Events	at	https://msdn.microsoft.com/en-
us/library/bb630282.aspx.

https://msdn.microsoft.com/en-us/library/cc280386.aspx
https://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.audit.aspx
https://msdn.microsoft.com/en-us/library/bb630282.aspx

See	also
	

The	Listing	SQL	Server	log	errors	recipe	of	Chapter	4,	Security
The	Listing	failed	login	attempts	recipe.

Listing	facets	and	their	properties
In	this	recipe,	we	will	list	all	available	facets	and	their	properties.

How	to	do	it…
Let’s	take	a	look	at	the	steps	for	listing	facets	and	their	properties:

	
1.	 Open	PowerShell	ISE	as	an	administrator.	Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

2.	 Add	the	following	script	and	run	it:
$result	=	@()

[Microsoft.SqlServer.Management.Dmf.PolicyStore]::Facets	|

ForEach-Object	{

			$facet	=	$_

			$facet.FacetProperties	|

			ForEach-Object	{

							$property	=	$_

							$item	=	[PSCustomObject]	@{

										Name	=	$facet.Name

										PropertyName	=	$property.Name

										PropertyType	=	$property.PropertyType

							}

							$result	+=	$item

			}

}

$result	|

Format-Table

3.	 When	the	script	successfully	finishes	executing,	the	resulting	screen	should	display
all	the	facets	and	their	properties.

How	it	works…
Facets	are	introduced	with	SQL	Server	2008’s	Policy	Based	Management	(PBM)
feature.	PBM	is	a	feature	that	allows	database	administrators	and	professionals	to	manage
their	SQL	Server	instances	by	defining	policies	and	identifying	which	properties	in	SQL
Server	are	in	compliance	or	violation	with	these	policies.

Facets	are	defined	in	MSDN	as	follows:

A	set	of	logical	properties	that	model	the	behavior	or	characteristics	for	certain	types
of	managed	targets.	Simply,	these	are	the	SQL	Server	components	manageable
through	PBM.

To	explore	facets	available	in	SQL	Server,	you	need	to	connect	to	the	PolicyStore	class,
using	the	Microsoft.SqlServer.Management.Dmf.PolicyStore	namespace:
[Microsoft.SqlServer.Management.Dmf.PolicyStore]::Facets

Note	that	Declarative	Management	Framework	(DMF)	is	the	legacy	PBM	name	(that
is,	the	name	it	was	given	before	PBM	was	released	on	the	market).	Although	the	feature
was	renamed,	not	all	the	libraries	were.	This	is	why	you	will	see	DMF	sprinkled	with
some	of	the	SMO	names.

In	this	recipe,	we	iterate	through	all	the	facets	and	display	the	facet	name,	facet	property
name,	and	type:
[Microsoft.SqlServer.Management.Dmf.PolicyStore]::Facets	|

ForEach-Object	{

For	each	facet,	we	extract	the	respective	facet	properties	and	store	them	in	an	array	so	that
we	can	view	all	the	facets	and	their	properties	in	a	single	tabular	view:
[Microsoft.SqlServer.Management.Dmf.PolicyStore]::Facets	|

ForEach-Object	{

			$facet	=	$_

			$facet.FacetProperties	|

			ForEach-Object	{

							$property	=	$_

							$item	=	[PSCustomObject]	@{

										Name	=	$facet.Name

										PropertyName	=	$property.Name

										PropertyType	=	$property.PropertyType

							}

							$result	+=	$item

			}

}

$result	|

Format-Table

To	explore	more	about	facets,	use	the	$facet	object	and	pipe	it	to	Get-Member:
			$facet	|	Get-Member

There’s	more…
	

You	can	learn	more	about	how	to	administer	SQL	Server	using	Policy	Based
Management	at	https://msdn.microsoft.com/en-us/library/bb510667.aspx.
Dan	Jones,	project	manager	of	the	SQL	Server	Manageability	team	at	Microsoft,
explains	the	origin	of	the	term	facet	on	his	blog	at
http://blogs.msdn.com/b/sqlpbm/archive/2008/05/24/facets.aspx.

https://msdn.microsoft.com/en-us/library/bb510667.aspx
http://blogs.msdn.com/b/sqlpbm/archive/2008/05/24/facets.aspx

See	also
	

The	Listing	policies	recipe.
The	Creating	a	policy	recipe.

Listing	policies
In	this	recipe,	we	will	list	policies	deployed	in	our	SQL	Server	instance.

Getting	ready
Check	which	policies	are	being	used	in	your	environment	using	SQL	Server
Management	Studio.	Connect	to	SSMS	and	navigate	to	Management	|	Policy	Based
Management	|	Policies:

These	are	the	same	policies	you	should	get	after	you	run	the	PowerShell	script	in	this
recipe.

How	to	do	it…
To	list	policies	using	PowerShell,	perform	the	following	steps:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run	it:
#replace	with	your	server	information

$connectionString	=	“server=‘localhost’;Trusted_Connection=true”

$conn	=	New-

Object	Microsoft.SqlServer.Management.Sdk.Sfc.SqlStoreConnection($connectionString)

#NOTE	notice	how	the	namespace	is	still	called	DMF

#DMF	-	declarative	management	framework

#DMF	was	the	old	reference	to	Policy	Based	Management

$policyStore	=	New-

Object	Microsoft.SqlServer.Management.DMF.PolicyStore($conn)

#display	policies	for	this	instance

$policyStore.Policies	|

Select	Name,	CreateDate,

Condition,	ObjectSet,	Enabled	|

Format-List

4.	 When	the	script	successfully	finishes	executing,	the	resulting	screen	will	display	all
the	policies	registered	in	your	instance:

How	it	works…
To	list	the	policies	in	your	instance,	you	need	to	connect	to	the	PolicyStore	class,	which
is	connected	to	your	SQL	Server	instance.	Note	that	the	PolicyStore	class	requires	a
different	type	of	Connection	compared	to	the	SMO	server	connections	that	we	have	been
making	in	the	previous	recipes.

To	connect	to	the	PolicyStore	class,	you	first	need	to	create	Sfc.SqlStoreConnection.
This	accepts	a	connection	string	that	identifies	your	server	name,	the	authentication
method,	and/or	details:
$connectionString	=	“server=‘localhost’;Trusted_Connection=true”

$conn	=	New-

Object	Microsoft.SQlServer.Management.Sdk.Sfc.SqlStoreConnection($connectionString)

Once	Sfc.SqlStoreConnection	has	been	established,	you	can	connect	to	the	PolicyStore
class:
#NOTE	notice	how	the	namespace	is	still	called	DMF

#DMF	-	declarative	management	framework

#DMF	was	the	old	reference	to	Policy	Based	Management

$policyStore	=	New-

Object	Microsoft.SqlServer.Management.DMF.PolicyStore($conn)

Once	you	have	a	handle	to	the	PolicyStore	class,	you	can	use	the	Policies	object	and
list	the	name,	create	date,	and	condition,	among	other	properties:
$policyStore.Policies	|

Select	Name,	CreateDate,	Condition,	ObjectSet,	Enabled	|	Format-List

The	PolicyStore	class	has	several	other	properties	and	members	that	you	may	find	useful
as	you	start	scripting	to	get	more	information	on	policies	in	your	instance.	You	can	pipe
the	$policyStore	object	to	the	Get-Member	cmdlet	to	learn	more	about	this.	The	methods
that	you	may	find	useful	are	CreatePolicyFromFacet,	EnumPoliciesOnFacet,
EnumPolicyCategories,	ImportPolicy,	PurgeHealthState,	Refresh,	and
RepairPolicyAutomation.

There’s	more…
To	learn	more	about	the	SqlStoreConnection	class,	check	out	the	MSDN	documentation
page	at	http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.sdk.sfc.sqlstoreconnection.aspx.

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.sdk.sfc.sqlstoreconnection.aspx

See	also
	

The	Listing	facets	and	their	properties	recipe.

Exporting	a	policy
In	this	recipe,	we	will	export	a	policy	to	an	XML	file	using	PowerShell.

Getting	ready
In	this	recipe,	we	will	export	a	policy	called	Password	Expiry	to	an	XML	file.	To	do	this,
we	must	first	create	this	policy.	Alternatively,	instead	of	creating	this	policy,	you	can
substitute	this	Password	Expiry	policy	with	another	policy	that	exists	in	your	system.	The
steps	to	create	this	policy	are	as	follows:

	
1.	 Log	in	to	SQL	Server	Management	Studio	and	navigate	to	Management	|	Policy

Management.
2.	 Right-click	on	Conditions	and	select	New	Condition.
3.	 Create	a	new	condition	as	follows:

1.	 Set	Name	to	Password	Expiry	Condition.
2.	 Select	Login	Options	for	Facet.
3.	 Use	@PasswordExpirationEnabled	=	True	for	Expression.

4.	 Click	on	OK	when	done.

5.	 Right-click	on	Policies	and	select	New	Policy.
6.	 Create	a	new	policy	as	follows:

1.	 Type	Password	Expiry	for	the	Name	property.
2.	 Use	“Password	Expiry	Condition”	for	the	Condition.
3.	 Leave	the	checkbox	for	Against	Targets	checked,	since	we	want	to	target	every

login.
4.	 Change	Evaluation	Mode	to	On	demand.
5.	 Change	Server	Restriction	to	None.

7.	 Click	on	OK	when	done.

How	to	do	it…
To	export	a	policy	to	an	XML	file,	perform	the	following	steps:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run	it:
$connectionString	=	“server=‘localhost’;Trusted_Connection=true”

#policy	to	export

$policyName	=	“Password	Expiry”

#where	to	export

$exportFolder	=	“C:\Temp"

#set	up	connection

$conn	=	New-

Object	Microsoft.SQlServer.Management.Sdk.Sfc.SqlStoreConnection($connectionString)

#NOTE	this	is	still	called	DMF,	which	stands	for

#PBM’s	old	name,	Declarative	Management	Framework

$policyStore	=	New-

Object	Microsoft.SqlServer.Management.DMF.PolicyStore($conn)

#get	handle	to	policy	you	want	to	export

$policy	=	$policyStore.Policies[$policyName]

#where	to	export

$policyFileName	=	”$($policy.Name).xml”

$exportPath	=	Join-Path	$exportFolder	$policyFileName

#create	an	XML	writer,	to	enable	us	to

#write	an	XML	file

$XMLWriter	=	[System.Xml.XmlWriter]::Create($exportPath)

$policy.Serialize($XMLWriter)

$XMLWriter.Close()

How	it	works…
Policies	are	stored	as	XML	documents,	so	these	policies	can	be	easily	exported	as	XML
files.

To	export	a	policy,	you	first	need	to	get	a	handle	to	the	PolicyStore	class:
$policyStore	=	New-

Object	Microsoft.SqlServer.Management.DMF.PolicyStore($conn)

Once	the	connection	to	the	PolicyStore	class	is	established,	you	can	get	a	handle	to	the
policy	you	want	to	export:
#policy	to	export

$policyName	=	“Password	Expiry”

#get	handle	to	policy	you	want	to	export

$policy	=	$policyStore.Policies[$policyName]

Exporting	the	policy	requires	writing	the	contents	of	the	policy	to	an	XML	file	in	your
filesystem.	You	need	to	first	specify	what	the	exported	filename	should	be	and	where	it
should	be	stored:
#where	to	export

$exportFolder	=	“C:\Temp"

#where	to	export

$policyFileName	=	”$($policy.Name).xml”

$exportPath	=	Join-Path	$exportFolder	$policyFileName

To	do	the	actual	export,	we	will	need	to	use	the	XMLWriter	class.	This	will	read	the	policy
saved	in	our	SQL	Server	instance	and	write	it	to	disk:
#create	an	XML	writer,	to	enable	us	to

#write	an	XML	file

$XMLWriter	=	[System.Xml.XmlWriter]::Create($exportPath)

$policy.Serialize($XMLWriter)

$XMLWriter.Close()

Once	this	is	done,	double-check	the	file	that	was	created.	When	you	open	it,	you	will	see
the	XML	structure	used	to	store	your	policies.	To	confirm	that	the	export	format	is	not
corrupted,	you	can	choose	to	delete	the	current	policy	you	have	and	import	the	file	that
was	created	by	this	recipe.

There’s	more…
To	export	a	policy	from	SQL	Server	Management	Studio,	you	can	right-click	on	the
policy	and	select	Export	Policy,	as	shown	in	the	following	screenshot:

See	also
	

The	Listing	policies	recipe.
The	Importing	a	policy	recipe.

Importing	a	policy
This	recipe	will	show	you	how	you	can	import	a	policy	stored	as	an	XML	file	into	SQL
Server.

Getting	ready
In	this	recipe,	we	will	use	an	XML	policy	that	comes	with	the	default	SQL	Server
installation.	This	policy	is	called	Database	Page	Verification.xml	and	is	stored	in
C:\Program	Files	(x86)\Microsoft	SQL

Server\120\Tools\Policies\DatabaseEngine\1033.

Feel	free	to	substitute	this	with	a	policy	that	is	available	in	your	system.

How	to	do	it…
These	are	the	steps	required	to	import	a	policy	using	PowerShell:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run	it:
$connectionString	=	“server=‘localhost’;Trusted_Connection=true”

#set	up	connection

$conn	=	New-

Object	Microsoft.SQlServer.Management.Sdk.Sfc.SqlStoreConnection($connectionString)

#NOTE	this	is	still	called	DMF,	which	stands	for

#PBM’s	old	name,	Declarative	Management	Framework

$policyStore	=	New-

Object	Microsoft.SqlServer.Management.DMF.PolicyStore($conn)

#you	can	replace	this	with	your	own	file

$policyXmlPath	=	“C:\Program	Files	(x86)\Microsoft	SQL	Server\120\Tools\Policies\DatabaseEngine\1033\Database	Page	Verification.xml”

$xmlReader	=	[System.Xml.XmlReader]::Create($policyXmlPath)

#ready	to	import

$policyStore.ImportPolicy($xmlReader,	[Microsoft.SqlServer.Management.Dmf.ImportPolicyEnabledState]::Unchanged,	$true,	$true)

#list	policies	to	confirm

$policyStore.Policies

4.	 All	the	loaded	policies	should	be	listed	when	the	script	has	finished	executing.	Check
whether	the	Database	Page	Verification	policy	is	included	in	the	list	or	not.

How	it	works…
To	import	a	policy	defined	in	an	XML	file,	you	will	first	need	to	connect	to	the
PolicyStore	class:
$connectionString	=	“server=‘localhost’;Trusted_Connection=true”

#set	up	connection

$conn	=	New-

Object	Microsoft.SQlServer.Management.Sdk.Sfc.SqlStoreConnection($connectionString)

#NOTE	this	is	still	called	DMF,	which	stands	for

#PBM’s	old	name,	Declarative	Management	Framework

$policyStore	=	New-

Object	Microsoft.SqlServer.Management.DMF.PolicyStore($conn)

You	will	also	need	to	specify	the	file	that	you	want	to	import.	For	our	recipe,	we	are	using
the	one	that	comes	with	your	SQL	Server	installation,	which	is	located	in	the
Tools\Policies\DatabaseEngine	folder:
#you	can	replace	this	with	your	own	file

$policyXmlPath	=	“C:\Program	Files	(x86)\Microsoft	SQL	Server\120\Tools\Policies\DatabaseEngine\1033\Database	Page	Verification.xml”

This	XML	file	needs	to	be	created	in	our	script	using	an	XMLReader	class:
$xmlReader	=	[System.Xml.XmlReader]::Create($policyXmlPath) 

Once	the	XMLReader	object	is	created	with	the	content	of	the	policy,	we	can	use	the
ImportPolicy	method	of	the	PolicyStore	object	to	import	the	definition	into	SQL
Server:
$policyStore.ImportPolicy($xmlReader,	[Microsoft.SqlServer.Management.Dmf.ImportPolicyEnabledState]::Unchanged,	$true,	$true)

If	you	want	to	import	all	policies,	you	can	get	all	the	XML	files	from	the	default	path	for
the	policies	using	the	Get-ChildItem	cmdlet.	Iterate	through	each	file	and	load	each	of
them	using	the	ImportPolicy	method:
$xmlPath	=	“C:\Program	Files	(x86)\Microsoft	SQL	Server\120\Tools\Policies\DatabaseEngine\1033"

Get-ChildItem	-Path	”$($xmlPath)*.xml”	|

ForEach-Object	{

		$xmlReader	=	[System.Xml.XmlReader]::Create($_.FullName)

		$policyStore.ImportPolicy($xmlReader,	[Microsoft.SqlServer.Management.Dmf.ImportPolicyEnabledState]::Unchanged,	$true,	$true)	|

			Out-Null

}

There’s	more…
The	ImportPolicy	class	accepts	the	following	four	parameters:

	
An	XMLReader	that	contains	the	policy
ImportEnabledState

overwriteExistingPolicy:	this	has	a	Boolean	value
overwriteExistingCondition	this	has	a	Boolean	value

See	also
	

The	Listing	policies	recipe.
The	Exporting	a	policy	recipe.

Creating	a	condition
In	this	recipe,	we	will	create	a	condition	that	will	later	be	used	for	a	policy,
programmatically.

Getting	ready
In	this	recipe,	we	will	create	a	condition	called	xp_cmdshell	is	disabled	that	checks	the
Server	Security	facet,	XPCmdShellEnabled.

How	to	do	it…
These	are	the	steps	required	to	create	a	condition:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SQL	Server	object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

$connectionString	=	“server=‘localhost’;Trusted_Connection=true”

$conn	=	New-

Object	Microsoft.SQlServer.Management.Sdk.Sfc.SqlStoreConnection($connectionString)

$policyStore	=	New-

Object	Microsoft.SqlServer.Management.DMF.PolicyStore($conn)

3.	 Add	the	following	script	and	run	it:
$conditionName	=	“xp_cmdshell	is	disabled”

if	($policyStore.Conditions[$conditionName])

{

					#we	cannot	delete	a	condition	referenced	by	a	policy

					#before	we	remove	the	condition

					#we	must	remove	the	dependent	policies

										$policyStore.Conditions[$conditionName].EnumDependentPolicies()	|

						ForEach-Object	{

										$policy	=	$_

										$policy.Drop()

						}

				#now	remove	the	condition

				$policyStore.Conditions[$conditionName].Drop()

}

#facet	name

#we	are	retrieving	facet	name	in	this	manner	because

#some	facet	names	are	different	from	the	display	names

#note	this	is	PowerShell	V3	syntax	Where-Object	syntax

#beginning	in	Windows	PowerShell	3.0,	Where-Object	adds

#comparison	operators	as	parameters	in	a	Where-Object	command

$selectedFacetDisplayName	=	“Server	Security”

$selectedFacet	=	[Microsoft.SqlServer.Management.Dmf.PolicyStore]::Facets	|

Where-Object	DisplayName	-eq	$selectedFacetDisplayName

#display,	for	visual	reference

$selectedfacet.Name

#create	condition

$condition	=	New-

Object	Microsoft.SqlServer.Management.Dmf.Condition($conn,	$conditionName)

$condition.Facet	=	$selectedFacet.Name

#a	condition	consists	of	a	facet,	an	operator,

#and	a	value	to	compare	to

$op	=	[Microsoft.SqlServer.Management.Dmf.OperatorType]::EQ

$attr	=	New-

Object	Microsoft.SqlServer.Management.Dmf.ExpressionNodeAttribute(“XPCmdShellEnabled”)

$value	=	[Microsoft.SqlServer.Management.Dmf.ExpressionNode]::ConstructNode($false)

#create	the	expression	node

#this	is	equivalent	to	”@XPCmdShellEnabled	=	false”

$expressionNode	=	New-

Object	Microsoft.SqlServer.Management.Dmf.ExpressionNodeOperator($op,	$attr,	$value)

#display	expression	node	that	was	constructed

$expressionNode

#assign	the	expression	node	to	the	condition,	and	create

$condition.ExpressionNode	=	$expressionNode

$condition.Create()

#confirm	by	displaying		conditions	in	PolicyStore

$policyStore.Conditions	|

Where-Object	Name	-eq	$conditionName	|

Select-Object	Name,	Facet,	ExpressionNode	|

Format-Table	-AutoSize

4.	 When	the	script	finishes	execution	of	this	code,	you	will	see	the	new	condition
displayed	in	the	resulting	output:

To	confirm	visually	from	SQL	Server	Management	Studio,	connect	to	SSMS.

5.	 Go	to	Management	and	then	go	to	Policy	Management	|	Conditions.

6.	 Double-click	on	the	xp_cmdshell	is	disabled	condition.

How	it	works…
Creating	a	condition	for	Policy	Based	Management	requires	creating	what	is	called	an
expression	node.	This	is	the	expression	that	will	be	utilized	by	policies,	and	evaluated	to
be	true	or	false:
#a	condition	consists	of	a	facet,	an	operator,

#and	a	value	to	compare	to

$op	=	[Microsoft.SqlServer.Management.Dmf.OperatorType]::EQ

$attr	=	New-

Object	Microsoft.SqlServer.Management.Dmf.ExpressionNodeAttribute(“XPCmdShellEnabled”)

$value	=	[Microsoft.SqlServer.Management.Dmf.ExpressionNode]::ConstructNode($false)

To	put	these	together,	we	use	the	ExpressionNodeOperator	class	of	the
Microsoft.SqlServer.Management.Dmf	namespace	to	construct	the	final	expression
node.	The	constructor,	or	special	method	to	create	a	new	object	of	this	class	accepts	an
operator	type,	a	left	expression,	and	a	right	expression:
#create	the	expression	node

#this	is	equivalent	to	”@XPCmdShellEnabled	=	false”

$expressionNode	=	New-

Object	Microsoft.SqlServer.Management.Dmf.ExpressionNodeOperator($op,	$attr,	$value)

Some	conditions	are	straightforward	and	will	not	require	ExpressionNodeOperator	to
construct	them.	For	example,	let’s	take	a	look	at	the	following	conditions:

	
@Size	<=	100

@ID	>=	4

Name	=	‘sqlagent’

The	constructed	expression	node	needs	to	be	assigned	to	the	condition	object:
#assign	the	expression	node	to	the	condition,	and	create

$condition.ExpressionNode	=	$expressionNode

Once	the	expression	has	been	assigned,	we	can	invoke	the	Create	method	of	the
Microsoft.SqlServer.Management.Dmf.Condition	class	to	create	the	condition	in	SQL
Server:
$condition.Create()

There’s	more…
Here	are	a	few	useful	links	to	ExpressionNodes	and	ExpressionNodeOperator:

	
ExpressionNodeOperator:	https://msdn.microsoft.com/en-us/library/cc286169.aspx
ExpressionNode:	https://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.dmf.expressionnode.aspx

https://msdn.microsoft.com/en-us/library/cc286169.aspx
https://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.dmf.expressionnode.aspx

See	also
	

The	Creating	a	policy	recipe.

Creating	a	policy
In	this	recipe,	we	will	create	a	policy	programmatically	using	PowerShell.

Getting	ready
In	this	recipe,	we	will	use	the	condition	called	xp_cmdshell	is	disabled,	which	we
created	in	a	previous	recipe,	to	create	a	policy	called	xp_cmdshell	must	be	disabled.
Feel	free	to	substitute	this	with	a	condition	that	is	available	in	your	instance.

How	to	do	it…
These	are	the	steps	required	to	create	a	policy:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SQL	Server	object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

$connectionString	=	“server=‘localhost’;Trusted_Connection=true”

$conn	=	New-

Object	Microsoft.SQlServer.Management.Sdk.Sfc.SqlStoreConnection($connectionString)

$policyStore	=	New-

Object	Microsoft.SqlServer.Management.DMF.PolicyStore($conn)

3.	 Add	the	following	script	and	run	it:
$policyName	=	“xp_cmdshell	must	be	disabled”

$conditionName	=	“xp_cmdshell	is	disabled”

if	($policyStore.Policies[$policyName])

{

			$policyStore.Policies[$policyName].Drop()

}

#facet	name	this	policy	refers	to

$selectedFacetDisplayName	=	“Server	Security”

$selectedFacet	=	[Microsoft.SqlServer.Management.Dmf.PolicyStore]::Facets	|

Where-Object	DisplayName	-eq	$selectedFacetDisplayName

#create	objectset

#objectset	represents	a	policy-based	management

#set	of	objects

$objectsetName	=	”$($policyName)_ObjectSet”

#remove	first	if	this	object	set	already	exists

if($policyStore.ObjectSets[$objectsetName])

{

			$policyStore.ObjectSets[$objectsetName].Drop()

}

$objectset	=	New-

Object		Microsoft.SqlServer.Management.Dmf.ObjectSet($policyStore,	$objectsetName)

$objectset.Facet	=	$selectedFacet.Name

$objectset.Create()

#to	confirm,	display	objectset	name

$objectset.Name

$policyStore.ObjectSets	|

Where-Object	Name	-eq	$objectsetName	|

Format-List

#create	policy

$policy	=	New-

Object	Microsoft.SQLServer.Management.Dmf.Policy	($conn,	$policyName)

#assumption	here	is	condition	has	been	pre-created

#if	not,	see	recipe	for	creating	a	condition

$policy.Condition=$conditionName

$policy.ObjectSet	=	$objectsetName

$policy.AutomatedPolicyEvaluationMode=

[Microsoft.SqlServer.Management.Dmf.AutomatedPolicyEvaluationMode]::None

$policy.Create()

#confirm,	display	policies

$policyStore.Policies	|

Where-Object	Name	-eq	$policyName

How	it	works…
To	start,	you	need	to	create	a	Policy	instance:
#create	policy

$policy	=	New-

Object	Microsoft.SQLServer.Management.Dmf.Policy	($conn,	$policyName)

Before	you	create	a	policy,	you	need	to	make	sure	that	you	have	condition(s)	available	that
you	can	use	to	attach	to	your	policy.	In	our	recipe,	we	will	use	the	xp_cmdshell	is
disabled	condition.

Note
The	xp_cmdshell	is	disabled	condition	is	created	in	the	Create	a	condition	recipe.

To	attach	a	condition	to	a	policy,	you	can	assign	this	to	the	policy’s	condition	property:
#assumption	here	is	conditions	have	been	pre-created

$policy.Condition=$conditionName

Policy	Based	Management	also	requires	an	object	set.	An	object	set	is	defined	in	MSDN
as	an	object	that	represents	a	policy-based	management	set	of	objects.	The	object	set
provides	the	target	objects	for	the	policy,	in	our	case,	our	facet:
#create	objectset

#objectset	represents	a	policy-based	management	set	of	objects

$objectsetName	=	”$($policyName)_ObjectSet”

$objectset	=	New-

Object		Microsoft.SqlServer.Management.Dmf.ObjectSet($policyStore,	$objectsetName)

$objectset.Facet	=	$selectedfacet.Name

$objectset.Create()

You	will	also	need	to	specify	what	the	evaluation	mode	is.	The	valid	values	for	the
evaluation	mode	are	as	follows:

Evaluation	mode Description

None No	policy	checking

Enforce Use	DDL	triggers	to	evaluate	or	prevent	policy	violations

CheckOnChanges Use	event	notification	to	evaluate	a	policy	when	changes	happen

CheckOnSchedule Use	SQL	Server	Agent	to	evaluate	a	policy	based	on	a	schedule

Not	all	facets	support	all	possible	evaluation	modes.	Most	facets	support	OnDemand	(for
example,	None)	and	OnSchedule.	Aaron	Bertrand	posted	a	blog	called	Policy-Based
Management:	Which	facets	support	which	evaluation	methods?	that	provides	a	way	to
determine	which	evaluation	methods	are	supported	by	each	facet
(http://sqlblog.com/blogs/aaron_bertrand/archive/2011/10/03/policy-based-management-
which-facets-support-which-evaluation-methods.aspx).

http://sqlblog.com/blogs/aaron_bertrand/archive/2011/10/03/policy-based-management-which-facets-support-which-evaluation-methods.aspx

For	our	purposes,	we	will	just	choose	None	or	OnDemand:
$policy.AutomatedPolicyEvaluationMode=

[Microsoft.SqlServer.Management.Dmf.AutomatedPolicyEvaluationMode]::None

When	ready,	invoke	the	Create	method	of	the	policy	object:
$policy.Create()

There’s	more…
The	complete	EvaluationMode	enumeration	values	can	be	found	at
http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.dmf.automatedpolicyevaluationmode(v=sql.110).aspx

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.dmf.automatedpolicyevaluationmode(v=sql.110).aspx

See	also
	

The	Creating	a	condition	recipe.

Evaluating	a	policy
In	this	recipe,	we	will	evaluate	a	policy	against	our	SQL	Server	instance.

Getting	ready
In	this	recipe,	we	will	evaluate	the	xp_cmdshell	must	be	disabled	policy,	which	we
created	in	a	previous	recipe.	We	also	want	to	export	this	to	an	XML	file	and	there	are	two
different	ways	of	evaluating	the	policy.	Use	the	Exporting	a	policy	recipe	to	export	the
xp_cmdshell	must	be	disabled	policy	and	save	it	in	C:\Temp.	Alternatively,	you	can
perform	the	following	steps:

	
1.	 Log	in	to	SQL	Server	Management	Studio.
2.	 Go	to	Management	|	Policy	Management	and	select	Policies.
3.	 Right-click	on	the	xp_cmdshell	must	be	disabled	policy	and	select	Export	Policy.
4.	 Save	this	policy	in	C:\Temp.

Feel	free	to	substitute	this	with	a	policy	that	is	available	in	your	instance.

How	to	do	it…
These	are	the	steps	required	to	evaluate	a	policy	using	PowerShell:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	and	create	a	new	SQL	Server	object	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

$instanceName	=	“localhost”

$connectionString	=	“server=‘localhost’;Trusted_Connection=true”

$conn	=	New-

Object	Microsoft.SQlServer.Management.Sdk.Sfc.SqlStoreConnection($connectionString)

$policyStore	=	New-

Object	Microsoft.SqlServer.Management.DMF.PolicyStore($conn)

3.	 Add	the	following	script	and	run	it:
$policyName	=	“xp_cmdshell	must	be	disabled”

$policy	=	$policyStore.Policies[$policyName]

#evaluate	using	the	Evaluate()	method

$policy.Evaluate([Microsoft.SqlServer.Management.DMF.AdHocPolicyEvaluationMode]::Check,$conn)

#check	evaluation	history

Write-Host	”$(“=”	*	100)‘n	Evaluation	Histories’n$(“=”	*	100)”

$policy.EvaluationHistories

#an	alternative	way	to	invoke	a	policy	is

#to	use	the	Invoke-PolicyEvaluation	cmdlet	instead

#of	using	the	Evaluate()	method

#however	you	need	to	have	a	handle	to	the	actual	XML	file

#this	alternative	way	allows	you	to	capture	the	results

#which	you	can	save	to	another	XML	file

#assuming	we	have	this	policy	definition	in

$file	=	“C:\Temp\$($policyName).xml”

$result	=	Invoke-PolicyEvaluation	-Policy	$file	-

TargetServer	$instanceName

#display	results

Write-Host	”$(“=”	*	100)‘n	Invocation	Result’n$(“=”	*	100)”

$result

4.	 Your	result	should	look	like	the	following	screenshot:

How	it	works…
In	this	recipe,	we	will	cover	a	couple	of	ways	to	evaluate	a	policy.

The	first	way	is	using	the	Policy	object.	We	first	need	to	get	a	handle	to	the	Policy
object:
$policyName	=	“xp_cmdshell	must	be	disabled”

$policy	=	$policyStore.Policies[$policyName]

The	policy	object	has	a	method	called	Evaluate,	which	we	can	invoke	as	follows:
$policy.Evaluate([Microsoft.SqlServer.Management.DMF.AdHocPolicyEvaluationMode]::Check,$conn)

The	Evaluate	method	returns	a	Boolean	value—true	if	every	object	you	evaluated	the
policy	against	is	in	compliance	with	the	policy,	and	false	otherwise.

An	alternative	way	to	invoke	a	policy	is	using	the	Invoke-PolicyEvaluation	cmdlet.	You
will	need	to	provide	the	full	path	of	the	XML	file	that	contains	the	policy.	This	cmdlet	also
returns	the	result	of	the	evaluation,	also	in	the	XML	format,	which	you	can	either	display
or	save	in	a	file:
$result	=	Invoke-PolicyEvaluation	-Policy	$file	-TargetServer	$instanceName

There’s	more…
To	get	more	information	on	Invoke-PolicyEvaluation,	type	the	following	command:
Get-Help	Invoke-PolicyEvaluation

You	will	quickly	find	out	that	this	cmdlet	allows	you	to:

	
Evaluate	policies	against	your	target	objects
Retrieve	results	in	an	XML	format,	which	you	can	redirect	to	an	XML	file	for	storage
Reconfigure	objects	in	the	target	set

See	also
	

The	Creating	a	policy	recipe.

Running	and	saving	a	profiler	trace	event
In	this	recipe,	we	will	run	and	save	a	profiler	trace	event	using	PowerShell.

Getting	ready
To	run	and	save	a	profiler	trace	event,	we	will	need	to	use	the	x86	Version	of	PowerShell
and/or	PowerShell	ISE.	This	is	unfortunate,	but	some	of	the	classes	that	we	need	to	use	are
only	supported	in	32-bit	mode.

In	this	recipe,	we	will	need	to	use	the	standard	trace	template	definition	file	(TDF)	as	our
starting	template	for	the	trace	we’re	going	to	run.	This	can	be	found	in	C:\Program	Files
(x86)\Microsoft	SQL	Server\120\Tools\Profiler\Templates\Microsoft	SQL

Server\110\Standard.tdf.

For	our	purposes,	we	are	also	going	to	limit	the	number	of	events	to	10.

How	to	do	it…
Let’s	take	a	look	at	the	steps	to	run	and	save	a	profiler	trace	event:

	
1.	 Open	PowerShell	ISE	(x86)	as	an	administrator.	Note	that	it	is	important	to	use	the

x86	PowerShell	console	or	ISE	for	this	recipe,	otherwise	you	will	get	errors	when
you	run	the	following	script.

If	you	are	using	the	command	line	or	using	this	in	a	script,	you	can	also	execute	the
following	command	to	enter	an	x86	shell:
&”$env:windir\syswow64\windowspowershell\v1.0\powershell.exe”

2.	 Import	the	SQLPS	module	and	create	a	new	SMO	Server	object	as	follows:
#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

#replace	this	with	your	instance	name

$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

3.	 Import	the	additional	Microsoft.SqlServer.ConnectionInfo	and
Microsoft.SqlServer.ConnectionInfoExtended	libraries.	These	are	needed	to	use
our	TraceFile	and	TraceServer	classes.	You	can	use	the	Add-Type	cmdlet	to	add
these	libraries:
Add-Type	-

AssemblyName	“Microsoft.SqlServer.ConnectionInfo,	Version=12.0.0.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”

Add-Type	-

AssemblyName	“Microsoft.SqlServer.ConnectionInfoExtended,		Version=12.0.0.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”

4.	 Add	the	following	script	and	run	it:
#create	SqlConnectionInfo	object,

#specifically	required	to	run	the	traces

#need	to	specifically	use	the	ConnectionInfoBase	type

[Microsoft.SqlServer.Management.Common.ConnectionInfoBase]$conn	=	New-

Object	Microsoft.SqlServer.Management.Common.SqlConnectionInfo	-

ArgumentList	“localhost”

$conn.UseIntegratedSecurity	=	$true

#create	new	TraceServer	object

#The	TraceServer	class	can	start	and	read	traces

$trcserver	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Trace.TraceServer

#need	to	get	a	handle	to	a	Trace	Template

#in	this	case	we	are	using	the	Standard	template

#that	comes	with	Microsoft

$standardTemplate	=	“C:\Program	Files	(x86)\Microsoft	SQL	Server\120\Tools\Profiler\Templates\Microsoft	SQL	Server\120\Standard.tdf”

$trcserver.InitializeAsReader($conn,$standardTemplate)	|	Out-Null

$received	=	0

#where	do	you	want	to	write	the	trace?

#here	we	compose	a	timestamped	file

$folder	=	“C:\Temp"

$currdate	=	Get-Date	-Format	“yyyy-MM-dd_hmmtt”

$filename	=	”$($instanceName)_trace_$($currdate).trc”

$outputtrace	=	Join-Path	$folder	$filename

#number	of	events	to	capture

$numevents	=	10

#create	new	TraceFile	object

#and	initialize	as	writer

#The	TraceFile	class	can	read	and	write	a	Trace	File

$trcwriter	=	New-Object	Microsoft.SqlServer.Management.Trace.TraceFile

$trcwriter.InitializeAsWriter($trcserver,$outputtrace)	|	Out-Null

while	($trcserver.Read())

{

				#write	incoming	trace	to	file

				$trcwriter.Write()	|	Out-Null

				$received++

				#we	don’t	know	how	many	columns	are	included

				#in	the	template	so	we	will	have	to	loop	if	we

				#want	to	capture	and	display	all	of	them

				#get	number	of	columns

				#we	need	to	subtract	1	because	column	array

				#is	zero-based,	ie	index	starts	at	0

				$cols	=	($trcserver.FieldCount)	-1

				#we’ll	need	to	dynamically	create	a	hash	table	to

				#contain	the	trace	events

				#because	we	need	to	dynamically	build	this	hash	table

				#based	on	number	of	columns	included	in	a	template,

				#we’ll	have	to	store	the	code	to	build	the	hash	table

				#as	string	first	and	then	invoke	expression

				#to	actually	build	the	hash	table	in	PowerShell

				$hashtablestr	=	”’$hashtable	=	’$null;	‘n”

				$hashtablestr	+=	”’$hashtablestr	=	@{		‘n”

				for($i	=	0;$i	-le	$cols;	$i++)

				{

							$colname	=	$trcserver.GetName($i)

							#add	each	column	to	our	hash	table

							#we	will	not	capture	the	binary	data

							if($colname	-ne	“BinaryData”)

							{

								$colvalue	=	$trcserver.GetValue($trcserver.GetOrdinal($colname))

								$hashtablestr	+=	”’”$($colname)’”=’”$($colvalue)’”	‘n”

							}

				}

				$hashtablestr	+=	”}”

				#create	the	real	hash	table

				Invoke-Expression	$hashtablestr

				#display

				$item	=	New-Object	PSObject	-Property	$hashtable

				$item	|	Format-List

				if($received	-ge	$numevents)

				{

							break

				}

}

$trcwriter.Close()

$trcserver.Close()

5.	 What	you	should	see	in	your	PowerShell	ISE	results	pane	is	a	stream	of	events	that
are	happening	in	SQL	Server,	which	is	similar	to	what	you	would	see	if	you	were
running	SQL	Server	Profiler.

How	it	works…
This	is	a	long	recipe.	There	are	quite	a	few	things	going	on	here.	What	we	are	doing	is
simulating	what	you	can	do,	and	see,	with	SQL	Server	Profiler	using	PowerShell.	There
will	be	cases	where	this	will	be	useful	and	cases	where	SQL	Server	Profiler	is	still	the
right	tool	for	the	job.	Regardless,	it	is	good	to	know	how	to	do	it	using	PowerShell.

To	start,	it	is	important	to	use	PowerShell	ISE	(x86),	instead	of	the	usual	(x64)	version
that	we	have	been	using	in	other	recipes.	The	classes	that	we	need	to	use	are	only
supported	in	32-bit	mode.

We	first	need	to	load	a	few	extra	libraries,	ConnectionInfo	and
ConnectionInfoExtended,	because	we	will	need	to	pass	these	as	arguments	to	the
TraceServer	class	constructor	when	we	are	creating	our	TraceServer	object:
Add-Type	-

AssemblyName	“Microsoft.SqlServer.ConnectionInfo,	Version=12.0.0.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”

Add-Type	-

AssemblyName	“Microsoft.SqlServer.ConnectionInfoExtended,		Version=12.0.0.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”

If	you	are	not	sure	of	the	details	of	the	assembly	that	you	want	to	load,	you	can	use	the
following	script	as	a	reference	to	display	the	assembly	details,	including	the	name,
version,	culture,	and	public	key	token:
[AppDomain]::CurrentDomain.GetAssemblies()	|

ForEach-Object	{

			$item	=	$_

			if	($item.FullName.Contains(“YourSearchString”))

			{

						$item	|	Select	FullName

			}

}

Next,	we	need	to	create	a	SqlConnectionInfo	connection	object	that	needs	to	be	stored	in
a	ConnectionInfoBase	class:
#create	SqlConnectionInfo	object,

#specifically	required	to	run	the	traces

[Microsoft.SqlServer.Management.Common.ConnectionInfoBase]

$conn	=	New-

Object	Microsoft.SqlServer.Management.Common.SqlConnectionInfo	-

ArgumentList	“localhost”

$conn.UseIntegratedSecurity	=	$true

There	are	a	couple	of	classes	specific	to	Trace	that	we	need	to	initialize.	The	first	one	is
the	TraceServer,	which	will	enable	us	to	start	and	read	the	traces:
#create	new	TraceServer	object

#The	TraceServer	class	can	start	and	read	traces

$trcserver	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Trace.TraceServer

We	will	need	to	initialize	this	as	Reader,	and	we	need	to	pass	our	connection	object	and
the	path	to	our	Standard	Trace	Template:

#need	to	get	a	handle	to	a	Trace	Template

#in	this	case	we	are	using	the	Standard	template

#that	comes	with	Microsoft

$standardTemplate	=	“C:\Program	Files	(x86)\Microsoft	SQL	Server\120\Tools\Profiler\Templates\Microsoft	SQL	Server\120\Standard.tdf”

$trcserver.InitializeAsReader($conn,$standardTemplate)	|

Out-Null

The	goal	of	our	recipe	is	to	start	and	read	the	trace,	as	well	as	write	new	trace	events	to	a
trace	file.	To	achieve	this,	we	need	to	create	a	TraceFile	object,	which	allows	you	to
write	the	Trace	file:
#create	new	TraceFile	object

#and	initialize	as	writer

#The	TraceFile	class	can	read	and	write	a	Trace	File

$trcwriter	=	New-Object	Microsoft.SqlServer.Management.Trace.TraceFile

$trcwriter.InitializeAsWriter($trcserver,$outputtrace)	|

Out-Null

Once	the	TraceServer	and	TraceFile	objects	are	set	up,	we	can	start	reading	the	trace.
This	will	need	to	happen	in	a	loop:
while	($trcserver.Read())

This	start	of	the	while	loop	will	go	on	as	long	as	there	are	events	being	captured	by	our
TraceServer	object.

Inside	the	loop,	we	do	two	things.	The	first	thing	that	we	do	is	we	write	these	events	to	a
trace	file,	using	our	TraceFile	object	called	$trcwriter:
				$trcwriter.Write()

The	second	thing	that	we	do	is	display	the	trace.	For	this	particular	exercise,	we	want	to
capture	the	events	and	be	able	to	display	them	in	a	tabular	fashion	if	we	need	to.	To	do
this,	we	can	store	this	event	data	in	a	hash	table	and	display	it	before	the	end	of	the	loop.
This	is	a	little	bit	challenging	to	do	if	you	do	not	know	which	columns	and	how	many
columns	are	being	captured.	This	will	depend	on	the	trace	template	you	are	using.	To
accommodate	different	templates,	we’ll	first	determine	how	many	columns	are	being
captured	by	the	TraceServer	object.	Note	that	when	we	retrieve	the	columns	from	the
TraceServer	object,	the	column	index	will	start	at	zero	(0),	so	we	need	to	subtract	1	from
the	total	number	of	columns	to	avoid	any	index	out	of	bounds	errors:
$cols	=	($trcserver.FieldCount)	-1

Based	on	the	columns,	we	can	dynamically	build	our	hash.	We	can	use	the	GetName
method	of	the	TraceServer	object	to	get	the	name	of	the	incoming	column	and	the
GetValue	and	GetOrdinal	methods	of	the	TraceServer	class	to	extract	the	value	of	the
column	coming	in:
$hashtablestr	=	”’$hashtable	=	’$null;	‘n”

$hashtablestr	+=	”’$hashtable	=	@{		‘n”

				for($i	=	0;$i	-le	$cols;	$i++)

				{

							$colname	=	$trcserver.GetName($i)

							#add	each	column	to	our	hash

							#we	will	not	capture	the	binary	data

							if($colname	-ne	“BinaryData”)

							{

										$colvalue	=	$trcserver.GetValue($trcserver.GetOrdinal($colname))

										$hashtablestr	+=	”’”$($colname)’”=’”$($colvalue)’”	‘n”

							}

				}

				$hashtablestr	+=	”}”

This	is	an	example	of	the	dynamically	constructed	hash	code:

We	then	take	this	dynamically	created	code	to	create	the	actual	hash	table	using	the
Invoke-Expression	cmdlet:
Invoke-Expression	$hashtablestr

Once	the	hash	is	created,	we	can	display	it	on	the	screen:
				#display

				$item	=	New-Object	PSObject	-Property	$hashtable

				$item	|	Format-List

When	we	are	done	with	our	loop,	we	need	to	close	both	the	TraceServer	and	TraceFile
handles:
$trcwriter.Close()

$trcserver.Close()

There’s	more…
Check	out	the	article	in	MSDN	called	Trace	and	Replay	Objects:	A	New	API	for	SQL
Server	Tracking	and	Replay	at	https://msdn.microsoft.com/en-us/library/ms345134.aspx

It	is	a	little	bit	outdated	but	is	still	very	relevant	if	you	want	to	work	programmatically
with	traces	using	.NET	languages.

https://msdn.microsoft.com/en-us/library/ms345134.aspx

See	also
	

The	Extracting	the	contents	of	a	trace	file	recipe.

Extracting	the	contents	of	a	trace	file
In	this	recipe,	we	will	extract	the	contents	of	a	trace	(.trc)	file	using	PowerShell.

Getting	ready
We	will	need	to	use	the	x86	Version	of	PowerShell	and/or	PowerShell	ISE	for	this	recipe.
This	is	unfortunate,	but	some	of	the	classes	that	we	need	to	use	are	only	supported	in	32-
bit	mode.

In	this	recipe,	we	will	use	a	previously	saved	trace	(.trc)	file.	Feel	free	to	substitute	this
with	a	trace	file	that	is	available.

How	to	do	it…
Let’s	take	a	look	at	how	we	can	extract	the	contents	of	a	trace	file:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Import	additional	libraries.	These	are	needed	to	use	our	TraceFile	and	TraceServer
classes.	We	do	this	as	follows:
Add-Type	-

AssemblyName	“Microsoft.SqlServer.ConnectionInfo,	Version=12.0.0.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”

Add-Type	-

AssemblyName	“Microsoft.SqlServer.ConnectionInfoExtended,		Version=12.0.0.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”

4.	 Add	the	following	script	and	run	it:
#get	the	last	trace	file	we	saved	in	C:\Temp

			$path	=	Get-ChildItem	C:\temp*.trc	|

											Select-Object	-First	1

$trcreader	=	New-Object	Microsoft.SqlServer.Management.Trace.TraceFile

$trcreader.InitializeAsReader($path)

#extract	all

$result	=	@()

while($trcreader.Read())

{

			#let’s	extract	only	the	ones	that

			#took	more	than	1000ms

			$duration	=	$trcreader.GetValue($trcreader.GetOrdinal(“Duration”))

			if($duration	-ge	1000)

			{

								$cols	=	($trcreader.FieldCount)	-1

								#we	need	to	dynamically	build	the	hash	table	string

								#because	we	don’t	know	how	many	columns

								#are	in	the	incoming	trace	file

								$hashtablestr	=	”’$hashtable	=	@{		‘n”

								for($i	=	0;$i	-le	$cols;	$i++)

								{

											$colname	=	$trcreader.GetName($i)

											#don’t	include	binary	data

											if($colName	-ne	“BinaryData”)

											{

													$colvalue	=	$trcreader.GetValue($trcreader.GetOrdinal($colname))

													$hashtablestr	+=	”’”$($colname)’”=’”$($colvalue)’”	‘n”

											}

								}

								$hashtablestr	+=	”}”

								#create	the	real	hash	table

								Invoke-Expression	$hashtablestr

								$item	=	New-Object	PSObject	-Property	$hashtable

								$result	+=	$item

				}

}

$trcreader.Close()

#display

$result	|	Format-List

Once	the	script	finishes	executing,	the	results	on	your	screen	should	look	similar	to	the
following	screenshot:

How	it	works…
To	extract	the	contents	of	a	trace	(.trc)	file,	we	first	need	to	load	a	few	extra	libraries,
ConnectionInfo	and	ConnectionInfoExtended.	These	contain	the	TraceFile	class	we
need	to	use	in	this	recipe:
Add-Type	-

AssemblyName	“Microsoft.SqlServer.ConnectionInfo,	Version=12.0.0.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”

Add-Type	-

AssemblyName	“Microsoft.SqlServer.ConnectionInfoExtended,		Version=12.0.0.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”

We	then	need	to	create	a	TraceFile	object,	which	is	initialized	as	a	reader:
#get	the	last	trace	file	we	saved	in	C:\Temp

$path	=	Get-ChildItem	C:\temp*.trc	|

					Select-Object	-First	1

$trcreader	=	New-Object	Microsoft.SqlServer.Management.Trace.TraceFile

$trcreader.InitializeAsReader($path)

To	read	all	the	contents,	we	need	to	put	the	reader	in	a	while	loop	and	keep	on	iterating
while	there	are	events	in	the	trace	file	to	be	read:
			while($trcreader.Read())

In	our	recipe,	we	only	considered	events	that	had	a	duration	longer	than	1000ms:
						#let’s	extract	only	the	ones	that	took	more	than	1000ms

						$duration	=	$trcreader.GetValue($trcreader.GetOrdinal(“Duration”))

The	GetOrdinal	method	of	the	TraceFile	class	allows	you	to	get	the	nth	column	in	which
we	find	Duration.	Using	this,	we	can	pass	it	to	the	GetValue	method	of	the	TraceFile
class	to	extract	the	value	in	that	column	position.

Also,	note	that	in	our	recipe,	we	extract	all	the	columns	except	the	BinaryData	column	in
the	trace	file.	We	do	this	by	looping	through	all	the	columns	and	putting	them	into	a	hash
table	that	we	build	dynamically:
#we	need	to	dynamically	build	the	hash	table	string

#because	we	don’t	know	how	many	columns	are	in	the

#incoming	trace	file

$hashtablestr	=	”’$hashtable	=	@{		‘n”

for($i	=	0;$i	-le	$cols;	$i++)

{

				$colname	=	$trcreader.GetName($i)

				#don’t	include	binary	data

				if($colName	-ne	“BinaryData”)

				{

				$colvalue	=	$trcreader.GetValue($trcreader.GetOrdinal($colname))

				$hashstr	+=	”’”$($colname)’”=’”$($colvalue)’”	‘n”

				}

}

$hashtablestr	+=	”}”

This	is	an	example	of	the	dynamically	constructed	hash	table:

Once	the	hash	table	string	is	built,	we	can	use	the	Invoke-Expression	cmdlet	to	create	the
real	hash	table:
	#create	the	real	hash	table

	Invoke-Expression	$hashtablestr

We	then	store	this	in	an	array,	which	we	display	after	the	loop	is	finished:
											$item	=	New-Object	PSObject	-Property	$hashtable

											$result	+=	$item

							}

			}

			$trcreader.Close()

#display

$result	|	Format-List

An	alternative	to	dynamically	building	the	hash	table	is	to	explicitly	identify	the	columns
you	want	to	include	in	the	hash.	This	is	doable	only	if	you	are	familiar	with	the	template
used	when	capturing	the	trace	file.	The	syntax	you	will	use	will	be	similar	to	this:
$hashtable	=	@{	“EventClass”=$trcreader.GetValue($trcreader.GetOrdinal(“EventClass”))“TextData”=$trcreader.GetValue($trcreader.GetOrdinal(“TextData”))	“Duration”=$trcreader.GetValue($trcreader.GetOrdinal(“Duration”))

}

$item	=	New-Object	PSObject	-Property		$hashtable

$result	+=	$item

See	also
	

The	Running	and	saving	a	profiler	trace	event	recipe.

Chapter	8.	High	Availability	with	AlwaysOn
In	this	chapter,	we	will	cover	the	following	topics:

	
Installing	the	Failover	Cluster	feature	on	Windows
Enabling	TCP	and	named	pipes	in	SQL	Server
Enabling	AlwaysOn	in	SQL	Server
Creating	and	enabling	a	HADR	endpoint
Granting	the	CONNECT	permission	to	a	HADR	endpoint
Creating	an	AlwaysOn	Availability	Group
Joining	secondary	replicas	to	an	Availability	Group
Adding	an	availability	database	to	an	Availability	Group
Creating	an	Availability	Group	listener
Testing	the	Availability	Group	failover
Monitoring	the	health	of	an	Availability	Group

Introduction
There	are	several	high	availability	disaster	recovery	(HADR)	solutions	supported	in
SQL	Server	with	the	different	versions	that	you	may	be	familiar	with	or	have	implemented
in	your	environments,	such	as	transaction	log	shipping,	database	mirroring,	and
transactional	replication.	On	the	Windows	server-side,	you	can	also	use	Windows	Server
Failover	Clustering	(WSFC).	This	chapter	focuses	on	AlwaysOn.

SQL	Server	AlwaysOn	is	meant	to	replace	database	mirroring,	which	was	deprecated	in
SQL	Server	2012,	and	addresses	the	limitations	that	database	mirroring	faced.	Some	of	the
commonly	cited	limitations	of	database	mirroring	include	the	following:

	
Having	only	one	unreadable	mirror
Inability	to	failover	multiple	dependent	databases	as	groups

SQL	Server	AlwaysOn	addresses	these	shortcomings.	AlwaysOn	is	an	Enterprise-only
feature	that	leverages	Windows	Server	Failover	Clustering	and	provides	some	of	the
following	benefits:

	
An	AlwaysOn	configuration	can	have	up	to	four	readable	secondary	replicas	with
different	synchronization	modes
AlwaysOn	secondary	replicas	allow	reporting,	backups,	and	DBCC	statements	on	the
secondary	replicas
An	AlwaysOn	configuration	does	not	require	shared	storage,	in	contrast	to	the	typical
shared	storage	requirement	for	clustered	SQL	Server	instances

There	are	a	few	prerequisites	before	AlwaysOn	can	be	configured	in	your	environment.
We	will	cover	the	high	level	requirements	in	this	chapter.	To	read	the	complete
documentation	on	pre-requisites,	visit	the	following	MSDN	page:

https://msdn.microsoft.com/en-CA/library/ff878487.aspx.

For	this	chapter,	we	will	need	to	access	an	environment	that	will	allow	us	to	demonstrate
how	to	configure	AlwaysOn.	You	can	build	this	environment	using	the	SQL	Server
Developer	edition	or	trial	edition,	as	both	of	these	have	all	the	Enterprise	features.	The
setup	is	illustrated	in	the	following	diagram:

https://msdn.microsoft.com/en-CA/library/ff878487.aspx

There	is	a	total	of	four	virtual	machines	in	this	setup,	which	are	all	in	the
queryworks.local	domain:

	
SQLDC:	This	is	a	domain	controller
SQL01:	This	is	a	primary	replica
SQL02:	This	is	a	secondary	replica
SQL03:	This	is	a	secondary	replica

All	these	VMs	are	set	up	in	Windows	Server	2012	R2	with	Hyper-V	feature	installed:

To	perform	the	exercises	in	this	chapter,	you	will	need	to	have	access	to	a	test	environment
that	has	a	similar	setup.

Installing	the	Failover	Cluster	feature	on	Windows
In	this	recipe,	we	will	install	the	Failover	Cluster	feature	on	Windows	Server	2012	R2.

Getting	ready
Log	in	to	each	of	the	Windows	Server	2012	R2	servers	that	will	participate	in	the
AlwaysOn	configuration	and	perform	the	following	steps	for	each	of	the	nodes.

How	to	do	it…
These	are	the	steps	required	to	install	the	Failover	Cluster	feature	on	each	node:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Type	the	following	command	to	check	whether	the	Failover	Clustering	feature	is

turned	on:
Get-WindowsFeature	Failover*	|

Format-Table	–Autosize

If	it	is	already	installed,	you	will	see	a	result	similar	to	the	following	screenshot:

3.	 If	the	feature	is	not	yet	installed,	install	it	using	the	following	PowerShell	script:
Install-WindowsFeature	-Name	Failover-Clustering	`

–IncludeManagementTools

How	it	works…
Although	this	task	is	not	directly	related	to	SQL	Server,	enabling	the	Failover	Clustering
feature	in	Windows	Server	is	essential	to	AlwaysOn.

PowerShell	provides	a	cmdlet	called	Install-WindowsFeature	that	enables
administrators	to	install	features	via	a	script	instead	of	using	the	GUI	Server	Manager.
This	is	how	you	can	install	the	Failover	Clustering	feature	in	the	script:
Install-WindowsFeature	-Name	Failover-Clustering	`

–IncludeManagementTools

This	can	also	be	done	by	navigating	to	Server	Manager	|	Add	Roles	and	Features	and
adding	the	component	from	the	Features	window:

There	are	additional	cmdlets	that	you	can	use	to	test	and	get	more	information	about	your
cluster.	For	example,	to	get	the	cluster	name,	you	can	use	a	cmdlet	called	Get-Cluster.
When	your	cluster	is	set	up,	you	can	use	a	cmdlet	called	Get-ClusterNode,	and	you	will
get	a	list	of	the	nodes	that	are	part	of	the	cluster:

To	get	the	cluster	resources,	you	can	use	the	following	cmdlet:
Get-ClusterResource

To	discover	additional	cluster-related	cmdlets,	you	can	use	the	Get-Command	cmdlet	with
the	*Cluster*	name	pattern:
Get-Command	*Cluster*

There’s	more…
	

Read	more	about	Windows	Server	Failover	Clustering	at
https://msdn.microsoft.com/en-us/library/hh831579.aspx.
Another	great	resource	to	help	you	understand	how	this	feature	works	with	SQL
Server	is	the	MSDN	Windows	Server	Failover	Clustering	(WSFC)	with	SQL	Server
article	at	https://msdn.microsoft.com/en-CA/library/hh270278.aspx.

https://msdn.microsoft.com/en-us/library/hh831579.aspx
https://msdn.microsoft.com/en-CA/library/hh270278.aspx

Enabling	TCP	and	named	pipes	in	SQL	Server
In	this	recipe,	we	will	enable	two	network	protocols	in	SQL	Server.

Getting	ready
For	this	recipe,	we	will	execute	the	code	on	each	of	the	nodes,	both	local	and	remote,	that
will	participate	in	the	AlwaysOn	configuration.

To	do	this,	we	must	first	ensure	that	PSRemoting	is	turned	on	in	every	node.	Log	in	to	each
of	the	nodes,	launch	PowerShell	or	PowerShell	ISE	as	an	administrator,	and	enable
remoting	using	the	following	script:
Enable-PSRemoting	-Force

In	addition,	check	the	currently	enabled	protocols	in	SQL	Server.	You	can	go	to	SQL
Server	Configuration	Manager	and	check	these	protocols	from	the	SQL	Server	Network
Configuration	node.	By	default,	Named	Pipes	and	TCP/IP	are	disabled:

You	can	also	do	this	check	from	PowerShell:
[System.Reflection.Assembly]::LoadWithPartialName(‘Microsoft.SqlServer.SMO’)

$instanceName	=	“SQL01”

$server	=	New-Object	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

#check	TCP

$server.TcpEnabled

#check	Named	Pipe

$server.NamedPipesEnabled

How	to	do	it…
Perform	the	following	steps	to	enable	additional	networking	protocols	in	SQL	Server:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

$cred	=	Get-Credential

foreach	($node	in	Get-ClusterNode)

{

			Write-Host	“Processing	$($node.Name)”

			#execute	command	on	the	remote	hosts

			Invoke-Command	-ComputerName	$node.Name	-Credential	$cred	-

ScriptBlock	{

							Import-Module	SQLPS	-DisableNameChecking

							#create	ManagedComputer	object

							$wmi	=	New-

Object	Microsoft.SqlServer.Management.Smo.WMI.ManagedComputer

							#get	current	machine	name

							$computerName	=	$env:COMPUTERNAME

							#compose	URI	to	the	server	protocol

							$uri	=	“ManagedComputer[@Name=’$($computerName)’]/ServerInstance[@Name=‘MSSQLSERVER’]/ServerProtocol”

							#enable	TCP

							$tcp	=	$wmi.GetSmoObject($uri	+	”[@Name=‘Tcp’]”)

							$tcp.IsEnabled	=	$true

							$tcp.Alter()

							$tcp.Refresh()

							#enabled	named	pipe

							$np	=	$wmi.GetSmoObject($uri	+	”[@Name=‘Np’]”)

							$np.IsEnabled	=	$true

							$np.Alter()

							$np.Refresh()

			}

}

3.	 Once	the	script	finishes	the	execution,	you	should	be	able	to	confirm	that	the
protocols	have	been	enabled.

How	it	works…
SQL	Server’s	network	protocols	identify	what	kind	of	connections	are	allowed.

A	default	SQL	Server	installation	will	give	you	three	protocols:

	
Shared	memory:	This	is	the	simplest	protocol	and	requires	that	the	clients	reside	in
the	same	machine	as	the	SQL	Server	instance	before	they	are	allowed	to	connect.
Named	pipes:	They	are	useful	in	local	area	networks	(LANs)	and	allow	memory	to
be	“shared”	among	processes.	According	to	MSDN,	a	part	of	memory	is	used	by	one
process	to	pass	information	to	another	process,	so	that	the	output	of	one	is	the	input
of	the	other.
TCP/IP:	This	is	probably	the	most	common	and	popular	protocol	and	allows
interconnectivity	not	just	within	the	LAN	but	also	outside	it	from	a	WAN.

In	AlwaysOn,	we	will	have	multiple	nodes	that	may	or	may	not	reside	in	the	same
network.	It	is	important	that	these	protocols	are	enabled	to	ensure	smooth
interconnectivity	between	the	different	instances,	roles,	and	components.

There’s	more…
You	can	explore	the	concepts	introduced	in	this	recipe	in	more	detail:

	
The	Enable-PSRemoting	permission	allows	remote	commands	to	be	executed	on	a
machine.	Check	out	the	syntax	and	usage	at	https://msdn.microsoft.com/en-
us/library/hh849694.aspx
Learn	more	about	the	supported	network	protocols	in	SQL	Server	from	the
documentation	page	at	https://msdn.microsoft.com/en-us/library/ms187892.aspx
The	official	documentation	for	enabling	and	disabling	network	protocols	in	SQL
Server	via	the	GUI	or	PowerShell	can	be	found	at	https://msdn.microsoft.com/en-
us/library/ms191294.aspx

https://msdn.microsoft.com/en-us/library/hh849694.aspx
https://msdn.microsoft.com/en-us/library/ms187892.aspx
https://msdn.microsoft.com/en-us/library/ms191294.aspx

Enabling	AlwaysOn	in	SQL	Server
In	this	recipe,	we	will	enable	the	AlwaysOn	feature	in	SQL	Server.

Getting	ready
Check	whether	the	AlwaysOn	feature	is	enabled.	You	can	do	this	from	the	GUI	by
launching	SQL	Server	Configuration	Manager,	right-clicking	on	the	SQL	Server
database	engine	service,	and	selecting	Properties.	Click	on	the	AlwaysOn	High
Availability	tab:

You	can	also	do	this	using	PowerShell	by	running	the	following	code:
$instanceName	=	“SQL01”

$server	=	New-Object	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

#check	AlwaysOn

$server.IsHadrEnabled

To	check	this	feature	against	multiple	nodes,	you	can	use	the	following	code	snippet:
$nodeNames	=	Get-ClusterNode	|

													Select-Object	–ExpandProperty	Name

Foreach-Object	($instanceName	in	$nodeNames)	{

			$server	=	New-Object	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

			#check	AlwaysOn

			$server.IsHadrEnabled

}

How	to	do	it…
Perform	the	following	steps	to	enable	AlwaysOn	in	SQL	Server:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run	it:
#enable	AlwaysOn	for	all	active	nodes	in	the	cluster

foreach	($node	in	Get-ClusterNode)

{

			Write-Host	“Processing	$($node.Name)”

			#enable	AlwaysOn

			Enable-SqlAlwaysOn	-ServerInstance	$node.Name	-Force

			#targeting	default	instance

			$serviceName	=	“MSSQLSERVER”

			$service	=	Get-Service	-ComputerName	$node.Name	`

														-Name	$serviceName

			#restart	service

			Stop-Service	$service	-Force

			Start-Service	$service

}

4.	 Once	the	services	have	been	restarted,	AlwaysOn	should	already	be	enabled.	You
will	be	able	to	see	this	feature	checked	in	SQL	Server	Configuration	Manager:

How	it	works…
After	the	Windows	Server	Failover	Clustering	feature	has	been	installed,	the	next
component	to	be	enabled	is	the	AlwaysOn	feature	from	the	SQL	Server	instance.	There	is
a	PowerShell	Enable-SqlAlwaysOn	cmdlet	that	enables	this	task	to	be	scripted	and
automated:
#enable	AlwaysOn

Enable-SqlAlwaysOn	-ServerInstance	$node.Name	-Force

This	feature	needs	to	be	enabled	for	all	the	nodes	in	the	cluster.

To	disable	this	feature,	you	can	use	the	Disable-SqlAlwaysOn	cmdlet.

There’s	more…
Check	out	Enable	and	Disable	AlwaysOn	Availability	Groups	(SQL	Server)	at
https://msdn.microsoft.com/en-us/library/ff878259.aspx.

https://msdn.microsoft.com/en-us/library/ff878259.aspx

Creating	and	enabling	the	HADR	endpoint
In	this	recipe,	we	will	create	and	enable	the	AlwaysOn	endpoint	for	all	the	nodes.

Getting	ready
For	this	recipe,	we	will	use	port	5022	for	the	AlwaysOn	communication	for	all	the	nodes.
To	ensure	that	this	works,	an	exception	in	the	firewall	needs	to	be	created	for	this	port	for
all	the	instances.	If	you	are	using	an	isolated	development	environment,	you	need	to	first
turn	off	the	firewall	to	get	this	recipe	to	work,	without	having	to	tinker	with	the	firewall.

We	are	also	going	to	execute	the	code	on	all	the	nodes.	For	the	following	recipe	to	work,
PSRemoting	needs	to	be	turned	on	in	every	node.	Log	in	to	each	of	the	nodes,	launch
PowerShell	or	PowerShell	ISE	as	an	administrator,	and	enable	remoting	using	the
following	script:
Enable-PSRemoting	-Force

How	to	do	it…
The	following	steps	will	create	and	enable	the	AlwaysOn	endpoint:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

#prompt	for	credential

$cred	=	Get-Credential

#process	each	node

foreach	($node	in	Get-ClusterNode)

{

			Write-Host	“Processing	$($node.Name)”

			#execute	command	on	remote	hosts

			Invoke-Command	-ComputerName	$node.Name	-Credential	$cred	-

ScriptBlock	{

							Import-Module	SQLPS	-DisableNameChecking

							$instance	=	$env:COMPUTERNAME

							#create	server	object

							$server	=	New-

Object	Microsoft.SqlServer.Management.Smo.Server	$instance

							#get	a	handle	to	the	“AlwaysOnEndpoint”

							$endpoint	=	$null

							$endpoint	=	$server.Endpoints	|

							Where-Object	EndpointType	-eq	“DatabaseMirroring”	|

							Where-Object	Name	-eq	“AlwaysOnEndpoint”	|

							Select-Object	-First	1

							#drop	if	endpoint	exists

							if($endpoint	-ne	$null)

							{

										#drop	endpoint

										Write-Host	“Dropping	endpoint	…”

										$endpoint.Drop()

							}

							$port	=	5022

							$owner	=	“QUERYWORKS\Administrator”

							$endpointName	=	“AlwaysOnEndpoint”

							$path	=	“SQLSERVER:\SQL\$($instance)\DEFAULT”

							$endpoint	=	New-SqlHADREndpoint	-Port	$port	`

																	-Owner	$owner	-Encryption	Supported	`

																	-EncryptionAlgorithm	Aes	`

																	-Name	$endpointName	`

																	-Path	$path

							#if	successfully	created,	start	the	endpoint

							if($endpoint	-ne	$null)

							{

										Set-SqlHADREndpoint	-InputObject	$endpoint	`

										-State	“Started”

										#this	is	the	SQL	Server	domain	service	account

										#make	sure	this	account	is	added	as	principal

										#to	the	SQL	Server	instance

										$endpointAccount	=	“QUERYWORKS\sqlservice”

										#assign	CONNECT	permission	to	the	endpoint

										$permissionSet	=	New-

Object	Microsoft.SqlServer.Management.Smo.ObjectPermissionSet([Microsoft.SqlServer.Management.Smo.ObjectPermission]::Connect)

										$endpoint.Grant($permissionSet,$endpointAccount)

							}

			}

}

3.	 Once	the	script	executes	successfully,	you	should	be	able	to	visually	check	the
endpoint	from	SQL	Server	Management	Studio:

How	it	works…
An	endpoint	is	a	way	to	connect	to	SQL	Server.	This	manifests	as	a	server	object	that
contains	a	connection	string	in	the	following	format:
<protocol>://<domain>:<port	number>

In	our	case,	we	will	dedicate	port	5022	to	each	of	the	machine	names	such	as	TCP	and	the
AlwaysOn	configuration.	Here	is	an	example	of	the	fully	qualified	domain	name
(FQDN):
TCP://SQL01.queryworks.local:5022

There	is	an	AlwaysOn	cmdlet	called	New-SqlHADREndpoint	that	allows	the	endpoint	to	be
created.	This	requires	the	port	number,	owner,	encryption	algorithm,	name,	and	path.	The
path	refers	to	the	SQL	Server	PSProvider	path	of	the	instance:
$port	=	5022

$owner	=	“QUERYWORKS\Administrator”

$endpointName	=	“AlwaysOnEndpoint”

$path	=	“SQLSERVER:\SQL\$($instance)\DEFAULT”

$endpoint	=	New-SqlHADREndpoint	-Port	$port	`

												-Owner	$owner	-Encryption	Supported	`

												-EncryptionAlgorithm	Aes	`

												-Name	$endpointName	`

												-Path	$path

This	is	equivalent	to	the	following	T-SQL	code:
CREATE	ENDPOINT	[AlwaysOnEndpoint]

		STATE=STARTED

		AS	TCP	(LISTENER_PORT	=	5022,	LISTENER_IP	=	ALL)

		FOR	DATA_MIRRORING	(ROLE	=	ALL,

						AUTHENTICATION	=	WINDOWS	NEGOTIATE,	ENCRYPTION	=	SUPPORTED	ALGORITHM	AES

)

Once	the	endpoint	has	been	created,	we	will	start	the	endpoint:
	Set-SqlHADREndpoint	-InputObject	$endpoint	-State	“Started”

In	addition	to	starting	the	endpoint,	we	also	need	to	ensure	that	the	account	we’re	using	for
AlwaysOn	has	the	CONNECT	privileges	to	the	endpoint.	To	do	this,	we	need	to	get	a	handle
to	the	endpoint	and	use	an	ObjectPermissionSet	variable	to	provide	the	privileges	that
we	want	to	assign	to	that	endpoint:
#make	sure	this	account	is	added	as	principal

#to	the	SQL	Server	instance

$endpointAccount	=	“QUERYWORKS\sqlservice”

#assign	the	CONNECT	permission

$permissionSet	=	New-

Object	Microsoft.SqlServer.Management.Smo.ObjectPermissionSet([Microsoft.SqlServer.Management.Smo.ObjectPermission]::Connect)

$endpoint.Grant($permissionSet,$endpointAccount)

This	is	equivalent	to	the	following	T-SQL	command:

GRANT	CONNECT

ON	ENDPOINT::AlwaysOnEndpoint

TO	[QUERYWORKS\sqlservice]

There’s	more…
Additional	information	on	how	to	create	a	database	mirroring	endpoint	can	be	found	at
https://msdn.microsoft.com/en-us/library/ms190456.aspx.

https://msdn.microsoft.com/en-us/library/ms190456.aspx

See	also
	

The	Granting	the	CONNECT	permission	to	the	HADR	endpoint	recipe.

Granting	the	CONNECT	permission	to	the	HADR
endpoint
In	this	recipe,	we	will	grant	the	CONNECT	permission	to	an	existing	SQL	Server	principle.

Getting	ready
Identify	the	SQL	Server	principle	that	you	will	use	for	AlwaysOn	that	will	need	the
CONNECT	permission.

How	to	do	it…
Perform	the	following	steps	to	grant	the	CONNECT	permission	to	an	endpoint:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

Import-Module	SQLPS	-DisableNameChecking

$instanceName	=	“SQL01”

$endpointName	=	“AlwaysOnEndpoint”

$endpointAccount	=	“QUERYWORKS\sqlservice”

$server	=	New-

Object	Microsoft.SqlServer.Management.Smo.Server	$instanceName

$endpoint	=	$server.Endpoints[$endpointName]

#identify	the	Connect	permission	object

$permissionSet	=	New-

Object	Microsoft.SqlServer.Management.Smo.ObjectPermissionSet([Microsoft.SqlServer.Management.Smo.ObjectPermission]::Connect)

#grant	permission

$endpoint.Grant($permissionSet,$endpointAccount)

How	it	works…
To	assign	permissions	to	an	endpoint	using	PowerShell,	a	handle	to	the	server	instance
needs	to	be	created:
$server	=	New-

Object	Microsoft.SqlServer.Management.Smo.Server	$instanceName

Once	the	server	object	has	been	created,	we	can	connect	directly	to	the	endpoint	by
referencing	the	endpoint’s	name:
$endpoint	=	$server.Endpoints[$endpointName]

Once	this	is	done,	an	ObjectPermissionSet	object	can	be	created.	This	accepts	a	series	of
permissions.	In	our	example,	we	are	only	passing	it	the
[Microsoft.SqlServer.Management.Smo.ObjectPermission]::Connect	enumeration
value:
#identify	permission

$permissionSet	=	New-

Object	Microsoft.SqlServer.Management.Smo.ObjectPermissionSet([Microsoft.SqlServer.Management.Smo.ObjectPermission]::Connect)

Additional	permissions	can	be	easily	seen	in	PowerShell	ISE,	thanks	to	the	Intellisense
feature	introduced	in	PowerShell	V3:

The	last	step	is	to	invoke	the	Grant()	method	from	the	endpoint	object	to	persist	the	new
permission	set:
#grant	permission

$endpoint.Grant($permissionSet,$endpointAccount)

This	is	equivalent	to	the	following	T-SQL	command:
GRANT	CONNECT

ON	ENDPOINT::AlwaysOnEndpoint

TO	[QUERYWORKS\sqlservice]

There’s	more…
Read	the	Set	Up	Login	Accounts	for	Database	Mirroring	or	AlwaysOn	Availability	Groups
(SQL	Server)	article	to	understand	the	permissions	required	for	AlwaysOn	at
https://msdn.microsoft.com/en-ca/library/ms366346.aspx.

https://msdn.microsoft.com/en-ca/library/ms366346.aspx

See	also
	

The	Creating	and	enabling	the	HADR	endpoint	recipe.

Creating	an	AlwaysOn	Availability	Group
In	this	recipe,	we	will	create	an	Availability	Group	in	the	primary	instance.

Getting	ready
It	is	worth	having	a	refresher	on	some	of	the	AlwaysOn	terminology:

	
A	primary	is	the	active	instance	and	is	the	source	of	all	the	updates.	This	was
referred	to	as	the	principal	in	database	mirroring.
A	secondary	is	the	instance	that	receives	all	the	updates	from	the	primary.	In
database	mirroring,	this	was	referred	to	as	the	mirror	and	was	unreadable	because	it
was	left	in	the	restoring	state.	In	AlwaysOn,	there	can	be	up	to	four	secondary
replicas	with	different	synchronization	modes.	Secondary	replicas	can	also	be
readable.
An	Availability	Group	defines	the	unit	of	a	failover.	This	includes	defining	the
group	of	user	databases	called	availability	databases,	which	will	failover	together.
According	to	MSDN,	an	availability	group	supports	a	set	of	primary	databases	and
one	to	eight	sets	of	corresponding	secondary	databases.	An	availability	group	also
identifies	the	specific	SQL	Server	instance.
An	availability	replica	maintains	a	local	copy	of	each	database	in	the	availability
group.	There	are	two	types	of	availability	replicas:	primary	and	secondary.	There	can
only	be	one	primary	replica	that	will	host	the	user	databases	that	are	readable	and
writeable.	There	can	be	up	to	four	secondary	replicas.
The	availability	mode	identifies	whether	the	replicas	will	use	synchronous	or
asynchronous	commit	mode.	In	synchronous	commit	mode,	the	primary	replica	will
wait	for	an	acknowledgement	from	the	secondary	replica	that	the	transaction	has
been	written	to	the	log.	This	prevents	data	loss;	however,	this	may	result	in	blocking
because	the	primary	replica	will	not	process	transactions	until	the	acknowledgement
is	received	or	the	timeout	period	is	reached.	In	asynchronous	commit	mode,	the
primary	replica	does	not	wait	for	any	confirmation	from	the	secondary	replica.	This
may,	however,	result	in	data	loss.
The	failover	mode	identifies	how	the	secondary	replica	can	take	over	the	primary
replica’s	role	if	the	primary	replica	fails.	During	a	failover,	a	role	reversal	will	take
place.	If	the	availability	mode	is	in	synchronous-commit	mode,	a	failover	can	be
automatic	or	manual.	If	the	mode	is	in	asynchronous-commit	mode,	only	a	manual
failover	is	available.

For	this	recipe,	make	sure	that	you	have	access	to	the	environment	that	will	host
AlwaysOn.	In	the	following	recipe,	the	following	nodes	are	ready	to	be	utilized	for
AlwaysOn:

	
SQL01	as	a	primary	replica
SQL02	as	a	secondary	replica
SQL03	as	a	secondary	replica

In	addition,	you	should	also	back	up	the	database	in	the	primary	instance	that	you	want	to
use	as	part	of	the	availability	group.	Choose	an	existing	database	from	the	first	node	and
add	$db	to	the	name	of	that	database.	You	can	store	the	instance	name	of	the	primary	node

in	another	variable	called	$primary.

You	can	use	the	following	script	to	back	up	your	database:
Import-Module	SQLPS	-DisableNameChecking

$backupDirectory	=	”\SQL01\Backups”

$fullBackup	=	Join-Path	$backupDirectory	”$db.bak”

$txnBackup	=	Join-Path	$backupDirectory	”$db.trn”

#create	a	full	backup

Backup-SqlDatabase	$db	$fullBackup	`

-ServerInstance	$primary	-BackupAction	Database

#create	a	transaction	log	backup

Backup-SqlDatabase	$db	$txnBackup	`

-ServerInstance	$primary	-BackupAction	Log

How	to	do	it…
Perform	the	following	steps	to	create	the	AlwaysOn	Availability	Group	as	well	as	the
primary	and	secondary	replicas:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

Import-Module	SQLPS	-DisableNameChecking

$AGName	=	“SQLAG”

$db	=	“QueryWorksDB”

#create	primary	replica

$primaryReplica	=	New-SqlAvailabilityReplica	`

-Name	“SQL01”	`

-EndpointUrl	“TCP://SQL01:5022”	`

-AsTemplate	-FailoverMode	Automatic	`

-AvailabilityMode	SynchronousCommit	`

-Version	12

#create	first	secondary	replica

$secondaryReplica1	=	New-SqlAvailabilityReplica	`

-Name	“SQL02”	`

-EndpointUrl	“TCP://SQL02:5022”	`

-AsTemplate	-FailoverMode	Automatic	`

-AvailabilityMode	SynchronousCommit	`

-Version	12

#create	second	secondary	replica

$secondaryReplica2	=	New-SqlAvailabilityReplica	`

-Name	“SQL03”	`

-EndpointUrl	“TCP://SQL03:5022”	`

-AsTemplate	-FailoverMode	Manual	`

-AvailabilityMode	AsynchronousCommit	`

-Version	12

#PSProvider	path	of	primary	instance

$primaryPath	=	“SQLSERVER:\SQL\SQL01\DEFAULT”

#create	availability	group	in	primary	instance

New-SqlAvailabilityGroup	`

-Path	$primaryPath	-Name	$AGName	`

-

AvailabilityReplica	($primaryReplica,	$secondaryReplica1,	$secondaryReplica2)	`

-Database	$db

3.	 Once	the	query	is	executed,	you	can	check	SQL	Server	Management	Studio.	Go	to
the	AlwaysOn	High	Availability	node	and	you	will	see	the	SQLAG	Availability
Group.	Under	it,	you	will	find	the	replicas:

How	it	works…
In	this	recipe,	we	accomplished	a	few	tasks.	First,	we	created	our	primary	replica.	To
create	a	replica	using	PowerShell,	we	can	use	the	New-SqlAvailabilityReplica	cmdlet:
#create	primary	replica

$primaryReplica	=	New-SqlAvailabilityReplica	`

-Name	“SQL01”	`

-EndpointUrl	“TCP://SQL01:5022”	`

-AsTemplate	-FailoverMode	Automatic	`

-AvailabilityMode	SynchronousCommit	`

-Version	12

The	New-SqlAvailabilityReplica	cmdlet	accepts	the	replica	name,	endpoint	URL,
failover	mode,	availability	mode,	and	version	as	parameters.	The	available	FailoverMode
values	are:	Automatic,	Manual,	and	Unknown.	The	AvailabilityMode	values	are:
AsynchronousCommit,	SynchronousCommit,	and	Unknown.	The	–AsTemplate	parameter
creates	the	definition	of	the	replica	in	memory,	which	is	needed	to	create	the	Availability
Group.

Additional	parameters	available	with	New-SqlAvailabilityReplica	include	the
following:

	
SessionTimeout

ConnectionModeInPrimaryRole

ConnectionModeInSecondaryRole

BackupPriority

ReadOnlyRoutingList

ReadOnlyRoutingConnectionUrl

The	syntax	for	creating	the	secondary	replicas	is	similar	to	the	syntax	for	creating	the
primary	replicas,	with	changes	to	the	endpoint	URL	and	the	failover	and	availability
modes:
$secondaryReplica1	=	New-SqlAvailabilityReplica	`

-Name	“SQL02”	`

-EndpointUrl	“TCP://SQL02:5022”	`

-AsTemplate	-FailoverMode	Automatic	`

-AvailabilityMode	SynchronousCommit	`

-Version	12

#create	second	secondary	replica

$secondaryReplica2	=	New-SqlAvailabilityReplica	`

-Name	“SQL03”	`

-EndpointUrl	“TCP://SQL03:5022”	`

-AsTemplate	-FailoverMode	Manual	`

-AvailabilityMode	AsynchronousCommit	`

-Version	12

Once	the	replicas	are	set	up,	the	availability	group	can	be	created	using	the	New-
SqlAvailabilityGroup	cmdlet.	This	cmdlet	accepts	the	SQL	Server	PSProvider	path	of
the	primary	instance,	the	availability	group	name,	the	list	of	secondary	replicas,	and	the

availability	database:
#PSProvider	path	of	primary	instance

$primaryPath	=	“SQLSERVER:\SQL\SQL01\DEFAULT”

#create	availability	group	in	primary	instance

New-SqlAvailabilityGroup	`

-Path	$primaryPath	-Name	$AGName	`

-

AvailabilityReplica	($primaryReplica,	$secondaryReplica1,	$secondaryReplica2)	`

-Database	$db

The	equivalent	T-SQL	statement	for	creating	the	Availability	Group	is	as	follows:
CREATE	AVAILABILITY	GROUP	[SQLAG]

FOR	DATABASE	[QueryWorksDB]

REPLICA	ON

N’SQL01’	WITH

(ENDPOINT_URL	=	N’TCP://SQL01:5022’,

FAILOVER_MODE	=	AUTOMATIC,

AVAILABILITY_MODE	=	SYNCHRONOUS_COMMIT),

N’SQL02’	WITH

(ENDPOINT_URL	=	N’TCP://SQL02:5022’,

FAILOVER_MODE	=	AUTOMATIC,

AVAILABILITY_MODE	=	SYNCHRONOUS_COMMIT),

N’SQL03’	WITH

(ENDPOINT_URL	=	N’TCP://SQL03:5022’,

FAILOVER_MODE	=	MANUAL,

AVAILABILITY_MODE	=	ASYNCHRONOUS_COMMIT);

GO

If	some	of	the	replica	settings	need	to	be	changed	later	on,	you	can	use	the	Set-
SqlAvailabilityReplica	cmdlet	to	make	the	changes	to	existing	replicas.

There’s	more…
There	is	an	MSDN	page	dedicated	to	creating	Availability	Groups	in	PowerShell,	which
can	be	found	at	https://msdn.microsoft.com/en-us/library/gg492181.aspx.

https://msdn.microsoft.com/en-us/library/gg492181.aspx

Joining	the	secondary	replicas	to	Availability
Group
In	this	recipe,	we	will	join	the	secondary	replicas	to	an	existing	Availability	Group.

Getting	ready
Before	we	proceed	with	this	recipe,	the	availability	group	needs	to	be	created.	Let’s	take	a
look	at	the	Creating	an	AlwaysOn	Availability	Group	recipe.

As	documented	on	MSDN,	the	prerequisites	to	join	the	secondary	replicas	are	as	follows:

	
The	primary	replica	should	be	online
The	join	command	to	join	the	secondary	replicas	to	the	availability	group	needs	to
take	place	at	the	secondary	server	instance	that	hosts	the	secondary	replicas
The	secondary	instance	must	be	able	to	connect	to	the	database	mirroring	endpoint	of
the	primary	instance

Since	we	need	to	execute	the	command	on	the	secondary	instances,	we	can	use
PowerShell	remoting	to	send	the	command	to	the	remote	hosts.	Ensure	that	PSRemoting	is
turned	on	in	every	node.	If	PSRemoting	is	disabled,	log	in	to	each	of	the	nodes,	launch
PowerShell	or	PowerShell	ISE	as	an	administrator,	and	enable	remoting	using	the
following	script:
Enable-PSRemoting	-Force

How	to	do	it…
The	following	steps	walk	you	through	how	to	join	the	secondary	replicas	to	the
availability	group:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

#secondary	nodes	list

$secondaryList	=“SQL02,SQL03”.Split(“,”)

$cred	=	Get-Credential

#execute	command	for	each	node

foreach	($secondary	in	$secondaryList)

{

			Invoke-Command	-ComputerName	$secondary	-Credential	$cred	-

ScriptBlock	{

								Import-Module	SQLPS	-DisableNameChecking

								$instance	=	$env:COMPUTERNAME

								$path	=	“SQLSERVER:\SQL\$($instance)\DEFAULT”

								$AGName	=	“SQLAG”

								#join	current	node	to	availability	group

								Join-SqlAvailabilityGroup	`

								-Path	$path	`

								-Name	$AGName

				}

}

3.	 Once	the	script	has	been	executed,	you	can	check	whether	the	secondary	replicas,
SQL02	and	SQL03,	are	now	online	and	part	of	the	SQLAG	Availability	Group	from
SQL	Server	Management	Studio:

How	it	works…
After	a	secondary	replica	is	added	to	an	AlwaysOn	Availability	Group,	it	must	be	joined	to
the	Availability	Group.	To	do	this,	we	can	use	the	Join-SqlAvailabilityGroup	cmdlet,
which	accepts	the	SQL	Server	PSProvider	path	and	the	Availability	Group	name:
								$instance	=	$env:COMPUTERNAME

								$path	=	“SQLSERVER:\SQL\$($instance)\DEFAULT”

								$AGName	=	“SQLAG”

								#join	current	node	to	availability	group

								Join-SqlAvailabilityGroup	`

								-Path	$path	`

								-Name	$AGName	-Verbose

Since	there	are	no	parameters	that	target	the	node	to	execute	this	on,	this	command	needs
to	be	executed	on	the	secondary	instance.	You	can	do	this	by	either	logging	in	to	the
secondary	instance	and	running	the	preceding	code	there	or	using	PowerShell	remoting	to
essentially	accomplish	the	same	task.

After	the	secondary	replicas	are	joined	to	the	availability	group,	the	database	should	be
restored	to	each	secondary	instance.	You	can	use	the	following	script	to	restore	the
database	from	backup	files	created	before	the	availability	group	was	created:
Import-Module	SQLPS	-DisableNameChecking

#list	of	secondary	replicas

$secondaryList	=	@(“SQL02”,	“SQL03”)

$cred	=	Get-Credential

#execute	code	to	each	instance

foreach	($secondary	in	$secondaryList)

{

			Invoke-Command	-ComputerName	$secondary	-Credential	$cred	-ScriptBlock	{

								Import-Module	SQLPS	-DisableNameChecking

								$instance	=	$env:COMPUTERNAME

								Write-Host	“Processing	$instance”

								$db	=	“QueryWorksDB”

								$backupDirectory	=	”\SQL01\Backups”

								#compose	full	file	path

								$fullBackup	=	Join-Path	$backupDirectory	”$db.bak”

								$txnBackup	=	Join-Path	$backupDirectory	”$db.trn”

								#restore	full	backup

								Restore-SqlDatabase	-Database	$db	`

								-BackupFile	$fullBackup	`

								-ServerInstance	$instance	`

								-RestoreAction	Database	-NoRecovery

								#restore	transaction	log	backup

								Restore-SqlDatabase	-Database	$db	`

								-BackupFile	$txnBackup	`

								-ServerInstance	$instance	`

								-RestoreAction	Log	`

								-NoRecovery

				}

}

There’s	more…
Read	the	Join	a	secondary	replica	to	an	Availability	Group	(SQL	Server)	article	to	learn
more	about	the	prerequisites	and	syntax	to	perform	the	join	from	MSDN	at
https://msdn.microsoft.com/en-us/library/ff878473.aspx.

https://msdn.microsoft.com/en-us/library/ff878473.aspx

See	also
	

The	Creating	an	AlwaysOn	Availability	Group	recipe.

Adding	an	availability	database	to	an	Availability
Group
In	this	recipe,	we	will	add	an	availability	database	to	an	Availability	Group.

Getting	ready
Before	we	proceed	with	this	recipe,	ensure	that	you	have	already	created	the	availability
group	in	the	primary	instance.

The	prerequisites	for	adding	an	availability	database,	as	documented	on	MSDN,	are	as
follows:

	
You	must	be	connected	to	the	server	instance	that	hosts	the	primary	replica
The	database	must	reside	on	the	server	instance	that	hosts	the	primary	replica	and
comply	with	the	prerequisites	and	restrictions	for	availability	databases

How	to	do	it…
Perform	the	following	steps	to	add	an	availability	database	to	an	existing	availability
group:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

Import-Module	SQLPS	-DisableNameChecking

$AGName	=	“SQLAG”

$dbName	=	“QueryWorksDB”

$secondaryList	=	@(“SQL02”,	“SQL03”)

$cred	=	Get-Credential

foreach	($secondary	in	$secondaryList)

{

				$server	=	New-

Object	Microsoft.SqlServer.Management.Smo.Server	$secondary

				#get	handle	to	availability	group

				$ag	=	$server.AvailabilityGroups[$AGName]

				#add	database

				Add-SqlAvailabilityDatabase	-InputObject	$ag	`

				-Database	$dbName

}

3.	 When	the	script	finishes	the	execution,	you	can	check	SQL	Server	Management
Studio	and	see	the	availability	database	in	the	AlwaysOn	High	Availability	node:

How	it	works…
The	availability	database	needs	to	be	added	to	each	secondary	instance.	To	do	this,	we
created	a	list	of	the	secondary	instances:
$secondaryList	=	@(“SQL02”,	“SQL03”)

Instead	of	listing	the	secondary	instances	like	this,	we	can	also	save	them	in	a	file	and	use
the	Get-Content	cmdlet	to	read	them	to	the	array.

Once	the	array	has	been	populated	with	the	list,	we	need	to	loop	through	each	instance.
For	each	instance,	we	create	an	SMO	Server	object:
$server	=	New-Object	Microsoft.SqlServer.Management.Smo.Server	$secondary

From	the	server	object,	we	can	access	the	availability	group	based	on	the	availability
group	name:
#get	handle	to	availability	group

$ag	=	$server.AvailabilityGroups[$AGName]

To	add	the	availability	database,	we	can	use	the	Add-SqlAvailabilityDatabase	cmdlet
and	pass	the	Availability	Group	object	and	the	database	name:
#add	database

Add-SqlAvailabilityDatabase	-InputObject	$ag	`

-Database	$dbName

There’s	more…
	

Learn	more	about	adding	databases	by	reading	the	Add	a	database	to	an	Availability
Group	(SQL	Server)	article	found	at	https://msdn.microsoft.com/en-
us/library/hh213078.aspx
For	details	about	adding	secondary	databases	to	an	availability	group,	check	out	the
Join	a	secondary	database	to	an	Availability	Group	(SQL	Server)	article	at
https://msdn.microsoft.com/en-us/library/ff878535.aspx

https://msdn.microsoft.com/en-us/library/hh213078.aspx
https://msdn.microsoft.com/en-us/library/ff878535.aspx

Creating	an	Availability	Group	listener
In	this	recipe,	we	will	create	an	Availability	Group	listener	for	an	Availability	Group.

Getting	ready
We	will	use	the	following	information	for	this	recipe.	You	will	need	to	change	these	values
based	on	your	environment	configuration:

Configuration Value

Availability	Group	(AG)	Name SQLAGListener

Primary	Replica	Instance SQL01

AG	Listener	Name SQLAGListener

AG	Listener	IP	Address 192.168.1.200

AG	Listener	Subnet	Mask 255.255.255.0

AG	Listener	Port	Number 1433

How	to	do	it…
Perform	the	following	steps	to	create	and	configure	an	Availability	Group	listener:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

Import-Module	SQLPS	-DisableNameChecking

$AGName	=	“SQLAG”

$AGListenerName	=	“SQLAGListener”

$AGListenerPort	=	1433

$AGListenerIPAddress	=	“192.168.1.200”

$AGListenerSubnetMask	=	“255.255.255.0”

$primary	=	“SQL01”

#server	object

$server	=	New-Object	Microsoft.SqlServer.Management.Smo.Server	$primary

#availability	group	object

$AG	=	$server.AvailabilityGroups[$AGName]

#for	our	recipe,	if	listener	already	exists,

#remove	it	first

if	($AG.AvailabilityGroupListeners[$AGListenerName]	-ne	$null)

{

			$AG.AvailabilityGroupListeners[$AGListenerName].Drop()

}

$AGListener	=	New-

Object	Microsoft.SqlServer.Management.Smo.AvailabilityGroupListener	-

ArgumentList	$AG,	$AGListenerName

$AGListenerIP	=	New-

Object	Microsoft.SqlServer.Management.Smo.AvailabilityGroupListenerIPAddress	-

ArgumentList	$AGListener

$AGListener.PortNumber	=	$AGListenerPort

$AGListenerIP.IsDHCP	=	$false

$AGListenerIP.IPAddress	=	$AGListenerIPAddress

$AGListenerIP.SubnetMask	=	$AGListenerSubnetMask

#add	the	listener	IP

$AGListener.AvailabilityGroupListenerIPAddresses.Add($AGListenerIP)

#create	listener

$AGListener.Create()

3.	 When	the	script	finishes	the	execution,	you	will	see	the	Availability	Group	listener
named	SQLAG	listed	in	SQL	Server	Management	Studio:

How	it	works…
An	Availability	Group	listener	is	a	virtual	server	name	that	listens	to	incoming
connections	and	directs	the	communication	to	a	readable	replica,	whether	it’s	the	primary
or	secondary.

The	first	part	of	the	script	is	to	create	variables	for	all	the	values	that	are	needed	to	create
the	listener:
$AGName	=	“SQLAG”

$AGListenerName	=	“SQLAGListener”

$AGListenerPort	=	1433

$AGListenerIPAddress	=	“192.168.1.200”

$AGListenerSubnetMask	=	“255.255.255.0”

$primary	=	“SQL01”

In	this	example,	we	are	keeping	the	port	number	1433,	which	is	the	default	SQL	Server
port	number.	This	simplifies	the	connection	because	only	the	listener	name	will	need	to	be
specified	in	the	application.	If	you	choose	to	use	a	nonstandard	port,	the	listener	name	and
port	number	should	be	supplied	in	the	following	format:
<listener	name>,<port	number>

There	needs	to	be	an	availability	group	object,	and	we	can	access	this	from	the	SMO
Server	object:
#server	object

$server	=	New-Object	Microsoft.SqlServer.Management.Smo.Server	$primary

#availability	group	object

$AG	=	$server.AvailabilityGroups[$AGName]

In	this	recipe,	we	are	utilizing	the	SMO	AvailabilityGroupListener	class	to	create	the
Availability	Group	listener	object:
$AGListener	=	New-

Object	Microsoft.SqlServer.Management.Smo.AvailabilityGroupListener	-

ArgumentList	$AG,	$AGListenerName

An	IP	address	object	also	needs	to	be	created	using	the
AvailabilityGroupListenerIPAddress	class.	Using	this	class,	we	can	also	port	number,
IP	address,	and	subnet	mask.	We	can	also	specify	whether	the	IP	address	is	Dynamic	Host
Configuration	Protocol	(DHCP)	or	not,	which	technically	allows	dynamic	IP	addresses;
in	which	case,	you	will	not	need	to	assign	a	specific	IP	address:
$AGListenerIP	=	New-

Object	Microsoft.SqlServer.Management.Smo.AvailabilityGroupListenerIPAddress	-

ArgumentList	$AGListener

$AGListener.PortNumber	=	$AGListenerPort

$AGListenerIP.IsDHCP	=	$false

$AGListenerIP.IPAddress	=	$AGListenerIPAddress

$AGListenerIP.SubnetMask	=	$AGListenerSubnetMask

This	IP	address	object	needs	to	be	added	to	the	AG	listener	object	using	the	Add()	method
of	the	AvailabilityGroupListenerIPAddresses	member:
#add	the	listener	IP

$AGListener.AvailabilityGroupListenerIPAddresses.Add($AGListenerIP)

The	last	action	is	to	invoke	the	Create()	method	to	create	the	listener:
#create	listener

$AGListener.Create()

The	equivalent	T-SQL	statement	to	create	the	listener	is	as	follows:
ALTER	AVAILABILITY	GROUP	[SQLAG]

ADD	LISTENER	N’SQLAGListener’

(

			WITH	IP

			((N‘192.168.1.200’,	N‘255.255.255.0’)

)

,	PORT=1433);

Once	the	listener	has	been	configured,	you	will	be	able	to	connect	to	the	listener	from
SQL	Server	Management	Studio:

There’s	more…
Read	more	about	Availability	Group	listeners	from	Availability	Group	Listeners,	Client
Connectivity,	and	Application	Failover	(SQL	Server)	at	https://msdn.microsoft.com/en-
us/library/hh213417.aspx.

https://msdn.microsoft.com/en-us/library/hh213417.aspx

Testing	the	Availability	Group	failover
In	this	recipe,	we	will	failover	our	availability	group	to	our	secondary	replica.

Getting	ready
To	follow	this	recipe,	your	AlwaysOn	availability	group	should	already	be	set	up	and	the
primary/secondary	replicas	should	be	functional.	If	it’s	not	yet	set	up,	you	can	use	the
previous	recipes	in	this	chapter	to	set	up	your	AlwaysOn	availability	group.

In	this	recipe,	we	will	failover	from	the	primary	replica	(SQL01)	to	our	secondary	replica
(SQL02).	Before	doing	this,	let’s	visually	check	whether	the	availability	group	looks	like
SQL02.	Open	SQL	Server	Management	Studio	and	go	to	the	AlwaysOn	High
Availability	node.	Here	is	what	SQL02	looks	like:

Notice	that	beside	the	SQLAG	availability	group	name	is	the	indicator	(Secondary).	This
should	change	to	Primary	after	we	failover.

How	to	do	it…
The	following	steps	show	you	how	to	failover	an	Availability	Group:

	
1.	 Log	in	to	the	secondary	replica	that	you	want	to	failover	to.	In	this	recipe,	it’s	SQL02.
2.	 Open	PowerShell	ISE	as	an	administrator.
3.	 Add	the	following	script	and	run	it:

Import-Module	SQLPS	–DisableNameChecking

$AGName	=	“SQLAG”

$instanceName	=	“SQL02”

$path	=	“SQLServer:\SQL\$($instanceName)\DEFAULT\AvailabilityGroups\$($AGName)”

#failover

Switch-SqlAvailabilityGroup	–Path	$path

4.	 Once	the	script	has	been	executed,	check	the	status	of	your	AlwaysOn	availability
group	in	SQL02.	You	will	notice	that	the	indicator	beside	the	SQLAG	availability
group	name	will	now	say	(Primary):

You	can	also	connect	to	the	AG	listener	to	view	the	AlwaysOn	dashboard,	as	the
dashboard	in	the	first	node	may	not	be	functional	right	after	the	failover.

How	it	works…
Microsoft	provides	a	cmdlet	that	allows	you	to	failover	an	availability	group.	The	Switch-
SqlAvailabilityGroup	cmdlet	starts	the	failover	process	in	the	secondary	replica	you’re
currently	logged	on	to.	We	can	pass	the	SQL	Server	PSProvider	path	to	the	availability
group	to	this	cmdlet:
#all	in	one	line

$path	=	“SQLServer:\SQL\$($instanceName)\DEFAULT\AvailabilityGroups\$($AGName)”

#failover

Switch-SqlAvailabilityGroup	–Path	$path

A	few	other	parameters	that	can	be	used	are	AllowDataLoss	and	Force.	The
AllowDataLoss	parameter	indicates	a	force	failover,	but	you	will	be	prompted	to	confirm
that	this	is	the	action	you	want	to	undertake.	The	Force	parameter	suppresses	the
confirmation.

The	equivalent	T-SQL	command	to	failover	is	as	follows:
ALTER	AVAILABILITY	GROUP	[SQLAG]	FAILOVER

There’s	more…
There	are	a	number	of	resources	that	will	help	you	learn	more	about	planned	and	manual
failovers	with	AlwaysOn:

	
Microsoft	documents	how	to	perform	planned	failovers,	including	limitations,
restrictions,	and	permissions	required	before	the	task	can	be	performed	at
https://msdn.microsoft.com/en-us/library/hh231018.aspx
There	is	also	documentation	on	how	to	perform	forced	manual	failovers,	including
recommendations	and	tasks	to	be	done	after	the	failover	happens,	which	can	be	found
at	https://msdn.microsoft.com/en-us/library/ff877957.aspx

https://msdn.microsoft.com/en-us/library/hh231018.aspx
https://msdn.microsoft.com/en-us/library/ff877957.aspx

Monitoring	the	health	of	an	Availability	Group
In	this	recipe,	we	will	see	a	few	snippets	that	will	help	us	monitor	the	health	of	an
AlwaysOn	Availability	Group.

Getting	ready
To	follow	this	recipe,	your	AlwaysOn	availability	group	should	already	be	set	up	and	the
primary/secondary	replicas	should	be	functional.	If	not,	you	can	use	the	previous	recipes
in	this	chapter	to	set	up	your	AlwaysOn	Availability	Group.

In	PowerShell,	there	are	three	cmdlets	that	we	will	use	to	test	AlwaysOn	health.	To	use
these	cmdlets,	you	need	the	following	permissions:

	
CONNECT

VIEW	SERVER	STATE

VIEW	ANY	DEFINITION

How	to	do	it…
We	will	see	how	to	monitor	an	Availability	Group’s	health	using	PowerShell	by	following
these	steps:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

Import-Module	SQLPS	-DisableNameChecking

$instanceName	=	“SQL01”

$AGName	=	“SQLAG”

#SMO	server	object

$server	=	New-

Object	Microsoft.SqlServer.Management.Smo.Server		$instanceName

#test	availability	group	health

$AGPath	=	“SQLSERVER:\SQL\$($instanceName)\DEFAULT\AvailabilityGroups\$($AGName)”

Test-SqlAvailabilityGroup	-Path	$AGPath

#check	all	AG	properties	using	SMO

$server.AvailabilityGroups[$AGName]	|

Select-Object	*

#test	availability	replica	health

$AGReplicaPath	=	“SQLSERVER:\SQL\$($instanceName)\DEFAULT\AvailabilityGroups\$($AGName)\AvailabilityReplicas\$($instanceName)”

Test-SqlAvailabilityReplica	-Path	$AGReplicaPath

#check	availability	replica	properties	using	SMO

$server.AvailabilityGroups[$AGName].AvailabilityReplicas	|	Select-

Object	*

#test	availability	database	replica	state	health

$AGReplicaStatePath	=	“SQLSERVER:\SQL\$($instanceName)\DEFAULT\AvailabilityGroups\$($AGName)\DatabaseReplicaStates”

Get-ChildItem	$AGReplicaStatePath	|

Test-SqlDatabaseReplicaState

#check	database	replica	state	properties	using	SMO

$server.AvailabilityGroups[$AGName].DatabaseReplicaStates	|	Select-

Object	*

Once	this	script	has	been	executed,	you	will	see	a	series	of	results	that	provide	insight	into
your	AlwaysOn	Availability	Group’s	health.	The	results	are	discussed	in	more	depth	in	the
How	it	works…	section.

How	it	works…
Before	we	dive	deep	into	the	script,	it’s	worth	mentioning	that	there	is	an	AlwaysOn
dashboard	that	you	can	launch	from	SQL	Server	Management	Studio.	When	you	right-
click	on	the	AlwaysOn	High	Availability	node,	select	Show	Dashboard:

This	will	reveal	a	SQL	Server	Reporting	Services	(SSRS)	report	that	provides	an
overview	of	the	health	of	the	Availability	Group	and	its	components:

You	can	get	the	information	this	dashboard	displays	using	a	PowerShell	script.	The	script
in	this	recipe	is	a	collection	of	snippets	that	can	be	used	to	monitor	AlwaysOn.	Let’s	take	a
look	at	them	in	more	detail.

SQL	Server	provides	a	few	cmdlets	that	will	help	you	check	the	operational	health	of
availability	groups,	replicas,	and	replica	states.	PowerShell’s	Intellisense	will	pick	these
up	once	you	start	typing	Test-Sql:

The	Test-SqlAvailabilityGroup,	Test-SqlAvailabilityReplica,	and	Test-
SqlDatabaseReplicaState	cmdlets	will	test	the	health	by	executing	defined	policies
against	the	appropriate	AlwaysOn	object.	The	three	possible	outcomes	are:	Healthy,
Warning,	and	Error.

To	use	the	cmdlets,	either	the	SQL	Server	PSProvider	path	can	be	provided	or	the
appropriate	object	can	be	piped	to	it.	We	will	see	both	of	these	variations	when	we	use
these	cmdlets.

Here	is	what	you	can	expect	when	you	run	the	Test-SqlAvailabilityGroup	cmdlet:

This	cmdlet	simply	returns	whether	the	availability	group	is	“healthy”	or	not,	based	on	the
results	of	the	policies	that	were	run.	This	cmdlet	also	has	some	additional	parameters,
including	ShowPolicyDetails,	which	will	show	you	the	result	of	each	policy	evaluation
and	AllowUserPolicies,	which	runs	user	policies	created	under	the	AlwaysOn	policy
categories.

If	you	want	to	get	more	information,	you	can	use	SMO	and	create	a	handle	to	the
Availability	Group,	pipe	the	object	to	the	Select-Object	cmdlet,	and	pull	all	available
fields:
#check	all	AG	properties	using	SMO

$server.AvailabilityGroups[$AGName]	|

Select-Object	*

The	result	of	the	preceding	snippet	will	look	like	this:

Note	that	from	here,	we	can	get	additional	information,	such	as	LocalReplicaRole,
PrimaryReplicaServerName,	AvailabilityReplicas,	AvailabilityDatabases
DatabaseReplicaStates,	and	AvailabilityGroupListeners.

The	second	Test-SqlAvailabilityReplica	cmdlet	tests	all	the	replicas.	We	need	to	pass
the	SQL	Server	PSProvider	path	to	the	Availability	Group	replica:
#test	availability	replica	health

$AGReplicaPath	=	“SQLSERVER:\SQL\$($instanceName)\DEFAULT\AvailabilityGroups\$($AGName)\AvailabilityReplicas\$($instanceName)”

Test-SqlAvailabilityReplica	-Path	$AGReplicaPath

The	result	looks	like	the	following	screenshot:

If	you	want	more	information,	you	can	use	SMO	to	create	an	object	that	references	the
availability	replica.	You	can	then	display	all	its	properties:

#check	availability	replica	properties	using	SMO

$server.AvailabilityGroups[$AGName].AvailabilityReplicas	|	Select-Object	*

Part	of	the	information	this	returns	for	each	replica	includes	Name,	Parent	(which	is	the
availability	group	it	belongs	to),	AvailabilityMode,	BackupPriority,	EndpointURL,
FailoverMode,	Role,	and	SessionTimeout.	The	following	is	a	partial	screenshot	of	the
result:

The	third	Test-SqlDatabaseReplicaState	cmdlet	tests	the	availability	database	health	of
all	the	replicas.	In	this	example,	we	use	Get-ChildItem	to	get	to	the
DatabaseReplicaStates	path	and	then	pipe	this	object	to	the	Test-
SqlDatabaseReplicateState	cmdlet:
#test	availability	database	replica	state	health

$AGReplicaStatePath	=	“SQLSERVER:\SQL\$($instanceName)\DEFAULT\AvailabilityGroups\$($AGName)\DatabaseReplicaStates”

Get-ChildItem	$AGReplicaStatePath	|

Test-SqlDatabaseReplicaState

This	cmdlet	returns	a	set	of	information	for	each	database	replica.	A	sample	partial	result
looks	like	the	following	screenshot:

If	you	want	to	get	more	information,	you	can	create	an	SMO	object	of	the
DatabaseReplicaStates	property	of	the	availability	group:
#check	database	replica	state	properties	using	SMO

$server.AvailabilityGroups[$AGName].DatabaseReplicaStates	|	Select-Object	*

A	sample	partial	result	is	as	follows:

Note	that	this	provides	a	lot	of	detailed	information	to	the	Logical	Sequence	Number
(LSN)	details,	including	LastCommitLSN,	LastHardenedLSN,	LastReceivedLSN,
LastRedoneLSN,	and	LastSentLSN.

Overall,	these	snippets	provide	a	way	to	peek	into	your	AlwaysOn	Availability	Group’s
health.	This	is	just	the	start.	You	can	pull	in	additional	information	and	properties	that	will
more	accurately	provide	metrics	on	your	AlwaysOn	configuration	using	additional	SQL
Server	objects	and	tools.

There’s	more…
	

The	Use	AlwaysOn	policies	to	view	the	health	of	an	Availability	Group	(SQL	Server)
article	will	be	helpful	in	understanding	how	to	monitor	AlwaysOn	health,	which	can
be	found	at	https://msdn.microsoft.com/en-CA/library/hh510210.aspx
The	official	SQL	Server	AlwaysOn	team	blog	features	a	two-part	series	that	explains
the	AlwaysOn	health	model.	The	URLs	for	the	articles	are	as	follows:

http://bit.ly/alwaysonhealth-p1
http://bit.ly/alwaysonhealth-p2

https://msdn.microsoft.com/en-CA/library/hh510210.aspx
http://bit.ly/alwaysonhealth-p1
http://bit.ly/alwaysonhealth-p2

Chapter	9.	SQL	Server	Development
In	this	chapter,	we	will	cover	the	following	topics:

	
Importing	data	from	a	text	file
Exporting	records	to	a	text	file
Adding	files	to	FileTable
Inserting	XML	into	SQL	Server
Extracting	XML	from	SQL	Server
Creating	an	RSS	feed	from	the	SQL	Server	content
Applying	XSL	to	an	RSS	feed
Creating	a	JSON	file	from	SQL	Server
Storing	binary	data	into	SQL	Server
Extracting	binary	data	from	SQL	Server
Creating	a	new	assembly
Listing	user-defined	assemblies
Extracting	user-defined	assemblies

Introduction
SQL	Server	has	seen	immense	enhancements	and	support	to	different	components	that
were	traditionally	not	supported	natively	in	databases,	such	as	XML	and	Common
Language	Runtime	(CLR)	assemblies.	This	chapter	explores	how	you	can	use
PowerShell	to	simplify	and	automate	some	of	the	tasks	you	need	to	do	with	these	items.

To	do	the	exercises	in	this	chapter,	perform	the	following	steps:

	
1.	 Create	a	sample	database	named	SampleDB	and	use	it	for	the	tasks	in	this	chapter:

CREATE	DATABASE	SampleDB

2.	 Download	the	files	for	this	chapter	from	the	Packt	website	and	save	them	to	your
local	drive.	You	will	find	the	following	folders	in	your	downloaded	package:

Text	files

BLOB	files

CLR	files

XML	files

Importing	data	from	a	text	file
In	this	recipe,	we	will	import	some	pipe-delimited	files	into	an	existing	table	in	our	SQL
Server	instance.

Getting	ready
In	this	recipe,	we	will	create	an	empty	table	called	SampleText	in	your	database	instance:
CREATE	TABLE	[dbo].[SampleText]

(

		[CustomerID]	[varchar](20)	NOT	NULL	PRIMARY	KEY,

		[LastName]	[varchar](50)	NOT	NULL,

		[FirstName]	[varchar](50)	NOT	NULL,

		[Phone]	[char](20)	NOT	NULL,

		[AddressLine]	[varchar](50)	NULL,

		[City]	[varchar](20)	NULL,

		[State]	[char](5)	NULL,

		[Country]	[varchar](10)	NOT	NULL

)

We	will	import	records	in	the	file	called	Customers.txt	into	the	SampleText	table.	The
text	file	is	a	pipe-delimited	text	file	that	contains	values	for	all	the	columns	in	the
SampleText	table:

How	to	do	it…
The	following	steps	will	import	a	text	file	into	a	SQL	Server	table:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run	it:
$VerbosePreference	=	“Continue”

#change	this	to	the	path	where	you	have	Customers.txt

$file	=	“C:\DATA\Customers.txt”

$fieldDelimiter	=	”|”

$rowDelimiter	=	”\n”

$instanceName	=	“localhost”

$databaseName	=	“SampleDB”

#compose	the	bcp	command

$bcpcmd	=	“bcp	SampleText	in	`”$file`”	-S	$instanceName	-

d	$databaseName	-T	-t	`”$fieldDelimiter`”	-r	`”$rowDelimiter`”	-c	”

#execute	the	bcp	command

Invoke-Expression	-Command	$bcpcmd

$VerbosePreference	=	“SilentlyContinue”

Once	the	script	finishes	the	execution,	the	SampleText	table	will	get	populated	with	the
records	in	the	file.	There	should	be	23	new	records.

How	it	works…
There	are	a	few	ways	to	import	“clean”	text	files	into	SQL	Server	tables.	By	clean,	we
mean	text	files	that	do	not	require	additional	cleaning	or	transformation.	Here	are	some	of
the	ways	to	do	it:

	
The	bcp	utility
The	BULK	INSERT	T-SQL	command
The	Import/Export	Wizard	from	SSMS
SQL	Server	Integration	Services	(SSIS)
The	.NET	SqlBulkCopy	class

In	this	recipe,	we	used	the	bcp	utility,	which	is	a	lightweight	utility	for	importing	and
exporting	files.	The	bcp	utility	is	installed	when	you	install	the	SQL	Server	tools.	We	will
use	this	utility	in	other	recipes	in	the	chapter.

Since	we	are	using	an	executable	utility,	we	need	to	first	compose	the	command	that	we
need	to	execute.	The	command	is	as	follows:
$bcpcmd	=	“bcp	SampleText	in	`”$file`”	-S	$instanceName	-d	$databaseName	-

T	-t	`”$fieldDelimiter`”	-r	`”$rowDelimiter`”	-c	”

This	is	the	bcp	command	that	you	will	typically	run	in	Command	Prompt	or	a	batch	file.
This	will	produce	a	command	similar	to	the	following	command	after	the	replacement	of
the	variable:

bcp	SampleText	in	C:\DATA\Customers.txt”	-S	localhost	-d	SampleDB	-T	-

t	”|”	-r	”\n”	-c.

This	line	indicates	that	we	want	to	import	a	file	called	Customers.txt	into	the	SampleText
table	in	the	SampleDB	database	which	is	in	the	local	SQL	Server	instance.	The	field
delimiter	is	a	pipe	|	and	row	delimiter	is	a	newline	\n.

Once	the	command	is	composed,	we	can	pass	the	variable	that	has	the	command	to	the
Invoke-Expression	cmdlet:
#execute	the	bcp	command

Invoke-Expression	-Command	$bcpcmd

There’s	more…
If	you	do	a	fair	bit	of	import	and	export	in	SQL	Server,	it	is	worthwhile	to	understand	the
options	available	with	bcp:

	
Learn	more	about	the	bcp	utility	and	all	the	available	switches	and	parameters	from
the	MSDN	page	at	https://msdn.microsoft.com/en-ca/library/ms162802.aspx.
Here	is	another	good	article	on	the	Data	Loading	Performance	Guide	at
https://technet.microsoft.com/en-us/library/dd425070(SQL.100).aspx.

https://msdn.microsoft.com/en-ca/library/ms162802.aspx
https://technet.microsoft.com/en-us/library/dd425070(SQL.100).aspx

Exporting	records	to	a	text	file
In	this	recipe,	we	will	export	records	to	a	pipe-delimited	text	file	in	a	SQL	Server	table.

Getting	ready
For	this	recipe,	choose	a	table	with	records	that	you	want	to	export	to	a	text	file.

How	to	do	it…
The	following	steps	will	import	a	text	file	into	a	SQL	Server	table:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run	it:
$instanceName	=	“localhost”

$databaseName	=	“SampleDB”

$filename	=	“C:\DATA\Customers.txt”

$delimiter	=	”|”

Invoke-SqlCmd	-Query	“SELECT	*	FROM	SampleText”	-

ServerInstance	$instanceName	-Database	$databaseName	|

Export-Csv	-Delimiter	$delimiter	-NoType	$fileName

Once	the	script	finishes	the	execution,	check	the	text	file	that	was	created.

How	it	works…
As	with	the	import	recipe,	there	are	a	few	ways	to	export	records	to	text	files.	Here	are
some	of	the	ways	to	do	this:

	
The	bcp	utility
The	Import/Export	Wizard	from	SSMS
SQL	Server	Integration	Services

In	this	recipe,	however,	we	are	taking	advantage	of	the	Invoke-SqlCmd	and	Export-Csv
cmdlets.

First,	we	run	a	SELECT	query	on	the	SQL	Server	instance	via	Invoke-SqlCmd:

Invoke-SqlCmd	-Query	“SELECT	*	FROM	SampleText”	-

ServerInstance	$instanceName	-Database	$databaseName	|

Export-Csv	-Delimiter	$delimiter	-NoType	$fileName

However,	instead	of	displaying	the	results,	we	pass	the	results	to	the	Export-Csv
PowerShell	cmdlet	that	allows	us	to	specify	a	few	options,	including	the	delimiter:
Invoke-SqlCmd	-Query	“SELECT	*	FROM	SampleText”	-

ServerInstance	$instanceName	-Database	$databaseName	|

Export-Csv	-Delimiter	$delimiter	-NoType	$fileName

If	you	are	exporting	to	the	Unicode	format,	you	can	simply	add	the	–Encoding	option:
Export-Csv	-Delimiter	$delimiter	-NoType	$fileName	-Encoding	Unicode

Note	that	this	uses	a	fairly	simplistic	export.	If	you	need	to	have	more	flexibility,	you	can
explore	bcp	with	format	files,	which	is	demonstrated	in	other	recipes	in	this	chapter.

There’s	more…
Learn	more	about	the	bcp	utility	and	all	the	available	switches	and	parameters	from	the
MSDN	page	at	https://msdn.microsoft.com/en-ca/library/ms162802.aspx.

https://msdn.microsoft.com/en-ca/library/ms162802.aspx

Adding	files	to	a	FileTable
In	this	recipe,	we	will	programmatically	add	files	to	a	FileTable.

Getting	ready
Before	you	proceed	with	this	recipe,	you	need	to	have	a	FileTable	in	your	database.	If	you
do	not	have	one	yet,	you	can	follow	the	Adding	a	FileTable	recipe	in	Chapter	6,	Advanced
Administration,	to	set	one	up.	Alternatively,	you	can	run	the	prep	file	B04525	-	Ch09	-	03
-	Adding	Files	to	FileTable	Prep.ps1	from	the	code	bundle.

How	to	do	it…
Let’s	take	a	look	at	the	steps	required	to	add	multiple	files	to	our	FileTable	using
PowerShell	and	SMO:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run	it:
$instanceName	=	“localhost”

$databaseName	=	“FilestreamDB”

$tableName	=	“MyFiles”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

$db	=	$server.Databases[$databaseName]

$table	=	$db.Tables[$tableName]

#what	is	the	filetable	directory?

$ftdir	=	”\”	+	$server.Name	+

									”"		+	$server.FilestreamShareName	+

									”"		+	$db.FilestreamDirectoryName	+

									”"		+	$table.FileTableDirectoryName

#create	a	new	PSDrive

New-PSDrive	-Name	target	-PSProvider	FileSystem	-Root	$ftdir	|	Out-Null

$sourceFolder	=	“C:\DATA”

Get-ChildItem	-Path	$sourceFolder	|

Where-Object	PSIsContainer	-EQ	$false	|

ForEach-Object	{

			$file	=	$_

			Copy-Item	-Path	$file.FullName	-Destination	target:

}

#remove	PSDrive	when	done

Remove-PSDrive	target

How	it	works…
When	you	want	to	add	files	to	a	FileTable	manually,	you	can	simply	choose	the	Explore
FileTable	Directory	from	SQL	Server	Management	Studio.	This	opens	a	network
directory	where	you	can	drag	and	drop	files.	Any	files	that	you	add	will	produce	a	record
in	the	FileTable	with	the	corresponding	metadata.

Copying	files	to	local	folders	using	PowerShell	is	also	straightforward:
Copy-Item	c:\MyFolder	c:\MyOtherFolder	-Recurse

Copying	files	from	the	filesystem	to	SQL	Server	FileTable	requires	a	little	bit	more	setup.

First,	we	need	to	compose	the	Uniform	Naming	Convention	(UNC)	path	to	the	FileTable
in	our	database.	This	is	how	we	can	do	it	in	PowerShell	after	we’ve	set	up	the	SMO
variables	to	our	server,	database,	and	table:
$ftdir	=	”\”	+	$server.Name	+

									”"		+	$server.FilestreamShareName	+

									”"		+	$db.FilestreamDirectoryName	+

									”"		+	$table.FileTableDirectoryName

The	path	will	look	like	the	following	command:
\Rogue\mssqlserver\FileTable\MyFiles

You	may	be	tempted	to	now	use	the	Copy-Item	cmdlet	to	copy	your	files	to	this	shared
directory	as	follows:
$sourceFolder	=	“C:\DATA”

Get-ChildItem	-Path	$sourceFolder	|

Where-Object	PSIsContainer	-EQ	$false	|

ForEach-Object	{

			$file	=	$_

			Copy-Item	-Path	$file.FullName	-Destination	$ftdir

}

Unfortunately,	this	will	give	the	following	error:

Error:	Copy-Item	:	Source	and	destination	path	did	not	resolve	to	the	same	provider.

What	we	need	to	do	is	to	create	a	new	PSDrive	and	use	this	as	the	destination	for	our
Copy-Item	cmdlet:
#create	a	new	PSDrive

New-PSDrive	-Name	target	-PSProvider	FileSystem	-Root	$ftdir	|	Out-Null

Once	we	have	the	new	drive,	we	can	now	copy	all	the	files	to	the	FileTable	using	the	new
PSDrive	name:
$sourceFolder	=	“C:\Files”

Get-ChildItem	-Path	$sourceFolder	|

Where-Object	PSIsContainer	-EQ	$false	|

ForEach-Object	{

			$file	=	$_

			Copy-Item	-Path	$file.FullName	-Destination	target:

}

When	done,	and	if	you	are	not	going	to	use	PSDrive	anymore,	you	can	remove	it:
Remove-PSDrive	target

There’s	more…
Learn	more	about	how	to	work	with	directories	and	paths	in	FileTables	at
https://msdn.microsoft.com/en-us/library/gg492087.aspx.

https://msdn.microsoft.com/en-us/library/gg492087.aspx

See	also
	

The	Setting	up	a	FileStream	filegroup	recipe	in	Chapter	6,	Advanced	Administration.
The	Adding	a	FileTable	recipe	from	Chapter	6,	Advanced	Administration.

Inserting	XML	into	SQL	Server
In	this	recipe,	we	will	insert	the	content	of	some	XML	files	into	a	SQL	Server	table	that
has	XML	columns.

Getting	ready
We	will	create	a	sample	table	that	we	can	use	for	this	recipe.	Run	the	following	script	in
SQL	Server	Management	Studio	to	create	a	table	named	SampleXML	that	has	an	XML
field:
USE	SampleDB

GO

IF	OBJECT_ID(‘SampleXML’)	IS	NOT	NULL

				DROP	TABLE	SampleXML

GO

CREATE	TABLE	SampleXML

(

			ID	INT	IDENTITY(1,	1)	NOT	NULL	PRIMARY	KEY,

			FileName	VARCHAR(200)	,

			InsertedDate	DATETIME	DEFAULT	GETDATE()	,

			InsertedBy	VARCHAR(100)	DEFAULT	SUSER_SNAME()	,

			XMLStuff	XML	,

			FileExtension	VARCHAR(50)

)

Create	a	directory	called	C:\DATA\	if	it	does	not	exist	and	copy	the	sample	XML	files	that
come	with	the	book	scripts.	Alternatively,	you	can	use	your	own	directory	and	XML	files.

How	to	do	it…
These	are	the	steps	required	to	insert	the	contents	of	XML	files	into	SQL	Server:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run	it:
$VerbosePreference	=	“Continue”

#define	variables	for	directory,	instance,	database

$xmlDirectory	=	“C:\DATA"

$instanceName	=	“localhost”

$databaseName	=	“SampleDB”

#get	all	XML	files	from	your	XML	directory

Get-ChildItem	$xmlDirectory	-Filter	”*.xml”	|

ForEach-Object	{

				$xmlFile	=	$_

				#display	XML	file	currently	being	imported

				Write-Verbose	“Importing		$($xmlFile.FullName)	…”

				#escape	single	quotes

				#because	we	are	passing	the

				#XML	content	to	a	T-SQL	statement

				[string]$xml	=	(Get-Content	$xmlFile.FullName)	-replace	”’”,	”””

$query	=	@”

INSERT	INTO	SampleXML

(FileName,XMLStuff,FileExtension)

VALUES(‘$($_.Name)’,’$xml’,’.xml’)

“@

				Invoke-Sqlcmd	-ServerInstance	$instanceName	-

Database	$databaseName	-Query	$query

}

$VerbosePreference	=	“SilentlyContinue”

When	you	are	done,	open	SQL	Server	Management	Studio	and	query	the	SampleXML
table.	You	will	find	the	XML	files	inserted	into	the	table:

How	it	works…
Inserting	the	contents	of	an	XML	file	into	a	SQL	Server	XML	column	can	be	easily	done
with	a	combination	of	T-SQL	and	PowerShell.

PowerShell	can	perform	file-related	functions,	while	T-SQL	can	do	the	INSERT	statements
more	effectively.

The	first	step	in	this	recipe	is	to	loop	through	a	set	of	XML	files:
Get-ChildItem	$xmlDirectory	-Filter	”*.xml”

We	then	pipe	this	to	a	Foreach-Object	cmdlet	that	enables	each	file	to	be	inserted	into	the
table.	In	the	Foreach-Object	cmdlet,	we	display	which	file	we	are	importing	first:
			#display	XML	file	currently	being	imported

			Write-Verbose	“Importing		$($xmlFile.FullName)	…”

We	then	extract	the	content	of	each	XML	file.	As	we	will	pass	the	content	as	text	back	to
the	server,	we	need	to	make	sure	that	we	escape	all	single	quotes.	Otherwise,	the	string
that	we	want	to	insert	will	be	erroneously	terminated:
[string]$xml	=	(Get-Content	$xmlFile.FullName)	-replace	”’”,	”””

Once	the	XML	content	is	saved	in	a	variable,	we	can	compose	an	INSERT	statement	to
insert	that	into	our	table	that	has	the	XML	column.	Note	that	our	INSERT	statement	is	using
a	here-string	variable:
$query	=	@”

INSERT	INTO	SampleXML

(FileName,XMLStuff,FileExtension)

VALUES(‘$($_.Name)’,’$xml’,’.xml’)

“@

Note
Remember	that	a	here-string	variable	allows	you	to	easily	create	variables	containing
multi-line	text.	The	text	needs	to	start	with	@”,	and	end	with	“@	in	a	line	by	itself.	There
should	be	no	characters	before	the	ending	“@.

To	perform	the	insert,	we	can	use	the	Invoke-SqlCmd	cmdlet	and	pass	our	INSERT	query:
Invoke-Sqlcmd	-ServerInstance	$instanceName	-Database	$databaseName	-

Query	$query

There’s	more…
Learn	more	about	SQL	Server	XML	support	from	MSDN	at
http://msdn.microsoft.com/en-us/library/ms187339.aspx.

Learn	more	about	variable	expansion	in	strings	and	here-strings	from	the	Windows
PowerShell	blog	at	http://blogs.msdn.com/b/powershell/archive/2006/07/15/variable-
expansion-in-strings-and-herestrings.aspx.

http://msdn.microsoft.com/en-us/library/ms187339.aspx
http://blogs.msdn.com/b/powershell/archive/2006/07/15/variable-expansion-in-strings-and-herestrings.aspx

See	also
	

The	Extracting	XML	from	SQL	Server	recipe	of	Chapter	9,	SQL	Server	Development

Extracting	XML	from	SQL	Server
In	this	recipe,	we	will	extract	the	XML	content	from	SQL	Server	and	save	each	record	in
individual	files	in	the	filesystem.

Getting	ready
For	this	recipe,	we	will	use	the	table	that	we	created	in	the	previous	recipe,	Inserting	XML
into	SQL	Server,	to	extract	files.	Feel	free	to	use	your	own	tables	that	have	XML	columns;
just	ensure	that	you	change	the	table	name	in	the	script.

How	to	do	it…
These	are	the	steps	required	to	extract	XML	from	SQL	Server:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run	it:
$VerbosePreference	=	“Continue”

$instanceName	=	“localhost”

$databaseName	=	“SampleDB”

$sourceFolder	=	“C:\	XML	Files"

$destinationFolder	=	“C:\XML	Files"

#we	will	save	all	retrieved	files	in	a	new	folder

$newFolder	=	“XML	$(Get-Date	-format	‘yyyy-MMM-dd-hhmmtt’)”

$newfolder	=	Join-Path	-Path	”$($destinationFolder)”	-

ChildPath	$newFolder

#if	the	path	exists,	will	error	silently	and	continue

New-Item	-ItemType	directory	-Path	$newFolder	-

ErrorAction	SilentlyContinue

#query	to	get	XML	content	from	database

$query	=	@”

SELECT	FileName,	XMLStuff

FROM	SampleXML

WHERE	XMLStuff	IS	NOT	NULL

“@

Invoke-Sqlcmd	-ServerInstance	$instanceName	-Database	$databaseName	-

Query	$query	-MaxCharLength	99999999	|

ForEach-Object	{

			$record	=	$_

		Write-Verbose	“Retrieving	$($record.FileName)	…”

		[xml]$xml	=	$record.XmlStuff

		$xml.Save((Join-Path	-Path	$newfolder	-

ChildPath	”$($record.FileName)”))

}

#open	folder	with	the	files

explorer	$newFolder

$VerbosePreference	=	“SilentlyContinue”

4.	 When	you	are	done,	go	to	your	folder	and	you	will	see	something	similar	to	the
following	screenshot:

How	it	works…
SQL	Server	has	a	great	support	for	querying	and	manipulating	XML	stored	in	SQL	Server
tables,	but	needs	external	support	if	these	files	need	to	be	extracted	and	saved	in	the
filesystem.	PowerShell	can	definitely	help	in	this	area.

We	first	create	a	new	timestamped	folder	where	we	can	store	our	retrieved	XML	files.
This	will	help	us	keep	track	of	the	files	that	were	downloaded	at	any	specific	time.	We	use
the	New-Item	cmdlet	to	create	this	new	folder.	If	the	folder	already	exists,	no	error	will	be
displayed	since	we	specified	the	-ErrorAction	SilentlyContinue	parameter:
#we	will	save	all	retrieved	files	in	a	new	folder

$newFolder	=	“XML	$(Get-Date	-format	‘yyyy-MMM-dd-hhmmtt’)”

$newfolder	=	Join-Path	-Path	”$($destinationFolder)”	-ChildPath	$newFolder

#if	the	path	exists,	will	error	silently	and	continue

New-Item	-ItemType	directory	-Path	$newFolder	-ErrorAction	SilentlyContinue

We	then	construct	our	T-SQL	statement	to	retrieve	the	XML	data	from	our	table:
$query	=	@”

SELECT	FileName,	XMLStuff

FROM	SampleXML

WHERE	XMLStuff	IS	NOT	NULL

“@

We	can	pass	this	to	the	Invoke-Sqlcmd	cmdlet	to	retrieve	all	our	XML	records.	We	also
have	to	specify	a	big	number	for	the	MaxCharLength	variable,	which	defines	the	maximum
number	of	characters	returned	for	columns,	because	the	content	of	the	XML	files	that	we
want	to	retrieve	will	be	big.	By	default,	the	MaxCharLength	value	is	4000:

Invoke-Sqlcmd	-ServerInstance	$instanceName	-Database	$databaseName	-

Query	$query	-MaxCharLength	99999999	|

ForEach-Object	{

			$record	=	$_

		Write-Verbose	“Retrieving	$($record.FileName)	…”

		[xml]$xml	=	$record.XmlStuff

		$xml.Save((Join-Path	-Path	$newfolder	-ChildPath	”$($record.FileName)”))

}

For	each	record	returned	in	our	query	result,	we	save	the	content	in	a	strongly	typed	XML
variable	by	putting	[xml]	right	beside	our	$xml	variable:
Invoke-Sqlcmd	-ServerInstance	$instanceName	-Database	$databaseName	-

Query	$query	-MaxCharLength	99999999	|

ForEach-Object	{

			$record	=	$_

		Write-Verbose	“Retrieving	$($record.FileName)	…”

		[xml]$xml	=	$record.XmlStuff

		$xml.Save((Join-Path	-Path	$newfolder	-ChildPath	”$($record.FileName)”))

}

The	XML	variable,	because	it	is	an	XML	object,	will	inherit	a	Save	method	that	allows
you	to	save	the	content	in	the	filesystem:
Invoke-Sqlcmd	-ServerInstance	$instanceName	-Database	$databaseName	-

Query	$query	-MaxCharLength	99999999	|

ForEach-Object	{

			$record	=	$_

		Write-Verbose	“Retrieving	$($record.FileName)	…”

		[xml]$xml	=	$record.XmlStuff

		$xml.Save((Join-Path	-Path	$newfolder	-ChildPath	”$($record.FileName)”))

See	also
	

The	Inserting	XML	into	SQL	Server	recipe.

Creating	an	RSS	feed	from	SQL	Server	content
In	this	recipe,	we	will	create	an	RSS	feed	from	SQL	Server	content.

Getting	ready
For	this	recipe,	we	will	use	a	simple	query	to	populate	our	RSS	feed.	We	will	list	our
database	list	from	sys.databases	and	use	it	as	fictional	content	for	our	RSS	file.

How	to	do	it…
These	are	the	steps	required	to	create	an	RSS	feed	using	T-SQL	and	PowerShell:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run	it:
$instanceName	=	“localhost”

$databaseName	=	“SampleDB”

$timestamp	=	Get-Date	-format	“yyyy-MMM-dd-hhmmtt”

$rssFileName	=	“C:\XML	Files\rss_$timestamp.xml”

#values	to	be	used	for	RSS

$rssTitle	=	“QueryWorks	Latest	News”

$rssLink	=	“http://www.queryworks.ca/rss.xml”

$rssDescription	=	“What’s	new	in	the	world	of	QueryWorks”

#use	r	as	date	formatter	to	get

#date	in	RFC1123Pattern

$rssDate	=	(Get-Date	-Format	r)

$rssManagingEditor	=	“info@queryworks.ca”

$rssGenerator	=	“SQL	Server	2014	XML	and	PowerShell”

$rssDocs	=	“http://www.queryworks.ca/rss.xml”

$query	=	@”

DECLARE	@rssbody	XML

SET	@rssbody	=	(SELECT

																		name	AS	‘title’	,

																		collation_name	AS	‘description’	,

																		‘false’	AS	‘guid/@isPermaLink’	,

																		‘http://www.queryworks.ca/?p=’	+

														CAST(database_id	AS	VARCHAR(5))	AS	‘guid’

																	FROM

														sys.databases

																	FOR	XML	PATH(‘item’)	,	TYPE)

SELECT	@rssbody

“@

$rssFromSQL	=	Invoke-Sqlcmd	-ServerInstance	$instanceName	-

Database	$databaseName	-Query	$query

#extract	the	RSS	from	the	SQL	Server	result

[string]	$rssBody	=	$rssFromSQL.Column1.ToString()

#create	the	final	RSS

$rsstext	=	@”

<?xml	version=“1.0”	encoding=“UTF-8”	?>

<rss	version=“2.0”	xmlns:atom=“http://www.w3.org/2005/Atom”>

<channel>

		<title><![CDATA[$rssTitle]]></title>

				<atom:link	href=“http://www.queryworks.ca/rss.xml”	rel=“self”	type=“application/rss+xml”	/>

				<link>$rssLink</link>

				<description><![CDATA[$rssDescription]]></description>

				<pubDate>$rssDate</pubDate>

				<lastBuildDate>$rssDate</lastBuildDate>

				<managingEditor>$rssManagingEditor</managingEditor>

				<generator>$rssGenerator</generator>

				<docs>$rssDocs</docs>

				$rssBody

</channel>

</rss>

“@

[xml]	$rss	=	$rsstext

$rss.Save($rssFileName)

4.	 When	the	script	has	finished	executing,	open	the	RSS	file.	The	content	of	the	file
should	look	similar	to	this:

To	validate,	w3.org	has	an	RSS	feed	validator	at	http://validator.w3.org/feed/?.	Use	the
Validate	by	Direct	Input	tab	and	copy	the	contents	of	the	file	to	the	text	area.	Click	on
the	Validate	button.	If	it	is	validated,	you	will	see	a	message	similar	to	this:

http://validator.w3.org/feed/?

How	it	works…
SQL	Server	has	embraced	support	for	XML	since	Version	2005.	While	creating	the
content	for	RSS	feeds	is	doable	using	T-SQL	in	SQL	Server,	there	are	still	some
challenges	with	composing	the	RSS	file.	For	example,	the	RSS	file	should	have	the
following	header:
<?xml	version=“1.0”	encoding=“UTF-8”	?>

Although	adding	this	line	at	the	beginning	of	the	content	is	doable	in	SQL	Server,	it	is	not
very	straightforward.	It	will	take	few	CAST	to	get	your	RSS	feed	content	properly
formatted.	When	you	are	done	with	the	formatting,	you	will	still	need	to	use	another
means	or	tool	to	save	this	in	an	XML	file.

Combining	T-SQL	with	PowerShell	allows	you	to	accomplish	creating	the	RSS	feed	file
with	ease.

The	first	thing	we	do	is	define	a	timestamped	filename:
$timestamp	=	Get-Date	-format	“yyyy-MMM-dd-hhmmtt”

$rssFileName	=	“C:\DATA\rss_$timestamp.xml”

We	then	have	to	define	the	parameters	we	want	to	use	to	populate	our	RSS	header.	These
include	the	title,	link,	description,	date,	managingEditor,	generator,	and	docs
variables.	We	will	insert	these	variables	later	in	the	actual	RSS	feed	string:
#values	to	be	used	for	RSS

$rssTitle	=	“QueryWorks	Latest	News”

$rssLink	=	“http://www.queryworks.ca/rss.xml”

$rssDescription	=	“What’s	new	in	the	world	of	QueryWorks”

#use	r	as	date	formatter	to	get

#date	in	RFC1123Pattern

$rssDate	=	(Get-Date	-Format	r)

$rssManagingEditor	=	“info@queryworks.ca”

$rssGenerator	=	“SQL	Server	2014	XML	and	PowerShell”

$rssDocs	=	“http://www.queryworks.ca/rss.xml”

To	retrieve	data	from	our	SQL	Server	table,	we	define	a	here-string	query.	Note	that	in
order	to	get	the	content	in	the	XML	format,	we	use	FOR	XML	PATH	with	our	query:
$query	=	@”

DECLARE	@rssbody	XML

SET	@rssbody	=	(SELECT

																		name	AS	‘title’	,

																		collation_name	AS	‘description’	,

																		‘false’	AS	‘guid/@isPermaLink’	,

																		‘http://www.queryworks.ca/?p=’	+

														CAST(database_id	AS	VARCHAR(5))	AS	‘guid’

																	FROM

														sys.databases

																	FOR	XML	PATH(‘item’)	,	TYPE)

SELECT	@rssbody

“@

This	query	will	give	you	a	result	similar	to	this:

When	we	execute	the	query,	we	can	use	the	Invoke-Sqlcmd	cmdlet	and	capture	the	result
using	another	PowerShell	variable:
$rssFromSQL	=	Invoke-Sqlcmd	-ServerInstance	$instanceName	-

Database	$databaseName	-Query	$query

Remember	that	our	result	from	our	Invoke-Sqlcmd	cmdlet	is	still	a	table,	so	we	need	to
extract	just	the	XML	content	from	the	result.	We	do	this	by	extracting	what’s	been
returned	in	Column1	(that	is,	the	first	column	of	the	result)	and	saving	this	as	a	string:
#extract	the	RSS	from	the	SQL	Server	result

[string]	$rssBody	=	$rssFromSQL.Column1.ToString()

Once	we	have	all	the	information,	we	can	formulate	the	RSS	file.	Note	that	we	are	using
here-string	as	the	main	template,	and	each	tag	is	populated	by	the	values	that	we	set	for
our	RSS-related	variables.	These	are	the	variables	(shown	in	bold)	embedded	in	here-
string:
#create	the	final	RSS

$rsstext	=	@”

<?xml	version=“1.0”	encoding=“UTF-8”	?>

<rss	version=“2.0”	xmlns:atom=“http://www.w3.org/2005/Atom”>

<channel>

		<title><![CDATA[$rssTitle]]></title>

				<atom:link	href=“http://www.queryworks.ca/rss.xml”	rel=“self”	type=“application/rss+xml”	/>

				<link>$rssLink</link>

				<description><![CDATA[$rssDescription]]></description>

				<pubDate>$rssDate</pubDate>

				<lastBuildDate>$rssDate</lastBuildDate>

				<managingEditor>$rssManagingEditor</managingEditor>

				<generator>$rssGenerator</generator>

				<docs>$rssDocs</docs>

				$rssBody

</channel>

</rss>

“@

To	validate	and	create	the	file,	we	need	to	create	a	strongly	typed	XML	variable.	We	are
trying	to	accomplish	multiple	goals	this	way.	This	can	check	for	well-formed	XML.	If	the
XML	is	not	well	formed,	we	will	get	an	error	when	we	try	to	assign	our	content	to	the
XML	variable:
#this	can	validate	the	RSS	file

[xml]	$rss	=	$rsstext

The	XML	object	also	comes	with	a	Save	method	that	allows	us	to	save	the	content	to	a	file
on	a	disk:
$rss.Save($rssFileName)

There’s	more…
Really	Simple	Syndication	(RSS)	allows	items	such	as	blog	entries	and	news	items	to	be
syndicated	or	published	automatically	and	consumed	by	RSS	readers	from	different
devices.	An	RSS	feed	is	nothing	more	than	a	specific-formatted	XML	file	that	contains
specific	information	such	as	author,	title,	description,	and	so	on.

	
Learn	more	about	RSS	feeds	and	their	variations	at
http://cyber.law.harvard.edu/rss/rss.html	and	http://www.rss-specifications.com/rss-
specifications.htm.
On	the	SQL	Server	side,	to	learn	more	about	creating	XML	documents	from	your
records,	check	out	the	FOR	XML	clause	at	http://msdn.microsoft.com/en-
us/library/ms190922.aspx.

http://cyber.law.harvard.edu/rss/rss.html
http://www.rss-specifications.com/rss-specifications.htm
http://msdn.microsoft.com/en-us/library/ms190922.aspx

See	also
	

The	Applying	XSL	to	an	RSS	feed	recipe.

Applying	XSL	to	an	RSS	feed
In	this	recipe,	we	will	create	a	styled	HTML	file	based	on	an	existing	RSS	feed	and	XSL
(stylesheet).

Getting	ready
The	files	needed	for	this	recipe	are	included	in	the	downloadable	book	scripts	from	the
Packt	website.	Once	you’ve	downloaded	the	files,	copy	the	XML	Files\RSS	folder	to	your
local	C:\	directory.	This	folder	will	have	two	files:	one	sample	RSS	feed
(sample_rss.xml)	and	one	XSL	file	(rss_style.xsl).

How	to	do	it…
These	are	the	steps	required	for	styling	an	RSS	feed:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

#replace	these	with	the	paths	of	the	files	in	your	system

Set-Alias	ie	”$env:programfiles\Internet”

#remove	$rss	variable	if	it	already	exists

if	($rss)

{

			Remove-Variable	-Name	“rss”

}

#replace	these	with	the	paths	of	the	files	in	your	system

$xsl	=	“C:\DATA\RSS\rss_style.xsl”

$rss	=	“C:\DATA\RSS\sample_rss.xml”

$styled_rss	=	“C:\DATA\RSS\sample_result.html”

$xslt	=	New-Object	System.Xml.Xsl.XslCompiledTransform

$xslt.Load($xsl)

$xslt.Transform($rss,	$styled_rss)

#load	the	resulting	styled	html

#in	Internet	Explorer

Set-Alias	ie	”$env:programfiles\Internet	Explorer\iexplore.exe”

ie	$styled_rss

3.	 When	done,	an	Internet	Explorer	browser	will	open	and	show	a	page	similar	to	this:

How	it	works…
Extensible	Stylesheet	Language	(XSL)	is	a	stylesheet,	which	is	similar	to	its	“cousin”
CSS	that	defines	how	an	XML	document	can	be	styled	and	potentially	transformed.

Although	this	recipe	may	not	be	directly	related	to	SQL	Server,	knowing	how	to	apply	this
may	benefit	the	SQL	Server	professional.

To	style	our	RSS	feed,	we	will	first	create	some	variables	that	contain	our	.xsl	and	.xml
files	(or	the	RSS	feed	file).	For	our	recipe,	we	will	style	the	RSS	to	produce	an	HTML
file,	so	we	will	create	a	variable	to	reference	this	new	file	as	well:
$xsl	=	“C:\DATA\RSS\rss_style.xsl”

$rss	=	“C:\DATA\RSS\sample_rss.xml”

$styled_rss	=	“C:\DATA\RSS\sample_result.html”

The	content	of	our	XSL	file	looks	like	this:

It	is	important	to	show	you	a	sample	section	of	the	XSL	to	help	visually	map	where	the
RSS	items	are	incorporated.

The	styling	of	the	XML	with	XSL	is	done	using	the	XslCompiledTransform	.NET	class:
$xslt	=	New-Object	System.Xml.Xsl.XslCompiledTransform

To	transform	our	RSS	feed,	which	is	a	simple	XML	file,	into	a	styled	HTML	file,	the	XSL
(stylesheet)	needs	to	be	loaded	using	the	Load	method	of	the	XslCompiledTransform
variable:

$xslt.Load($xsl)

The	actual	transformation	and	styling	happens	when	the	Transform	method	of	the
XslCompiledTransform	object	is	invoked	and	passed	to	the	XML	content	and	a	handle	(or
variable)	to	the	resulting	HTML	file:
$xslt.Transform($rss,	$styled_rss)

The	last	piece	of	code	we	added	is	just	to	display	the	resulting	HTML	file	in	Internet
Explorer.	We	create	an	alias	for	Internet	Explorer	using	the	Set-Alias	cmdlet,	and	use	it
to	open	our	resulting	HTML	file:
#load	the	resulting	styled	html

#in	Internet	Explorer

Set-Alias	ie	”$env:programfiles\Internet	Explorer\iexplore.exe”

ie	$styled_rss

There’s	more…
	

To	learn	more	about	XSL,	visit	the	w3.org	official	XSL	documentation	at
http://www.w3.org/Style/XSL/WhatIsXSL.html.
In	addition,	check	out	the	MSDN	documentation	on	the	XslCompiledTransform
.NET	class	at	http://msdn.microsoft.com/en-
us/library/system.xml.xsl.xslcompiledtransform.aspx.

http://www.w3.org/Style/XSL/WhatIsXSL.html
http://msdn.microsoft.com/en-us/library/system.xml.xsl.xslcompiledtransform.aspx

See	also
	

The	Creating	an	RSS	feed	from	SQL	Server	content	recipe.

Creating	a	JSON	file	from	SQL	Server
In	this	recipe,	we	will	create	a	JSON	file	from	records	that	we	retrieve	from	SQL	Server.

Getting	ready
For	this	recipe,	choose	a	table	with	records	that	you	want	to	export	to	a	JSON	file.

How	to	do	it…
The	following	steps	walk	you	through	how	to	create	a	JSON	file	from	SQL	Server	records
using	PowerShell:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run	it:
$VerbosePreference	=	“Continue”

$instanceName	=	“localhost”

$databaseName	=	“SampleDB”

$fileName	=	“C:\DATA\Customers.json”

Invoke-SqlCmd	-Query	“SELECT	*	FROM	SampleText”	-

ServerInstance	$instanceName	-Database	$databaseName	|

ConvertTo-Json	-Depth	1		|

Out-File	-FilePath	$fileName

$VerbosePreference	=	“SilentlyContinue”

4.	 When	you	are	done,	check	the	file	created.	The	JSON	file	will	look	like	this:

How	it	works…
JavaScript	Object	Notation	(JSON)	files	are	used	for	data	interchange,	the	same	way
XML	files	are	used	for	data	interchange.	JSON	is	lightweight	and	is	becoming	a	popular
format,	especially	for	web	applications.

PowerShell	has	a	cmdlet	called	the	ConvertTo-Json	cmdlet,	which	was	introduced	in
PowerShell	V3.	One	way	to	easily	create	a	JSON	file	from	records	in	SQL	Server	is	to	use
Invoke-SqlCmd	to	retrieve	the	records:

Invoke-SqlCmd	-Query	“SELECT	*	FROM	SampleText”	-

ServerInstance	$instanceName	-Database	$databaseName	|

ConvertTo-Json	-Depth	1		|

Out-File	-FilePath	$fileName

The	result	of	the	Invoke-SqlCmd	cmdlet	can	be	piped	to	the	ConvertTo-Json	cmdlet:
Invoke-SqlCmd	-Query	“SELECT	*	FROM	SampleText”	-

ServerInstance	$instanceName	-Database	$databaseName	|

ConvertTo-Json	-Depth	1		|

Out-File	-FilePath	$fileName

Lastly,	the	result	of	the	ConvertTo-Json	cmdlet	can	be	piped	to	the	Out-File	cmdlet,
which	produces	the	actual	.json	file:
Invoke-SqlCmd	-Query	“SELECT	*	FROM	SampleText”	-

ServerInstance	$instanceName	-Database	$databaseName	|

ConvertTo-Json	-Depth	1		|

Out-File	-FilePath	$fileName

There’s	more…
Learn	more	about	the	ConvertTo-Json	cmdlet	from	the	MSDN	page	at
https://technet.microsoft.com/en-us/library/hh849922.aspx.

https://technet.microsoft.com/en-us/library/hh849922.aspx

Storing	binary	data	in	SQL	Server
In	this	recipe,	we	will	store	some	binary	data,	including	some	images,	a	PDF,	and	a	Word
document,	in	SQL	Server.

Getting	ready
Let’s	create	a	sample	table	that	we	can	use	for	this	recipe.	Run	the	following	script	in	SQL
Server	Management	Studio	to	create	a	table	called	SampleBLOB	that	has	a	BLOB,	or
VARBINARY(MAX),	field:
USE	SampleDB

GO

IF	OBJECT_ID(‘SampleBLOB’)	IS	NOT	NULL

				DROP	TABLE	SampleBLOB

GO

CREATE	TABLE	SampleBLOB

(

						ID	INT	IDENTITY(1,	1)	NOT	NULL	PRIMARY	KEY,

						FileName	VARCHAR(200)	,

						InsertedDate	DATETIME	DEFAULT	GETDATE()	,

						InsertedBy	VARCHAR(100)	DEFAULT	SUSER_SNAME()	,

						BLOBStuff	VARBINARY(MAX)	,

						FileExtension	VARCHAR(50)

)

Create	a	directory	called	C:\DATA\	if	it	doesn’t	already	exist	and	copy	the	sample	BLOB
files	that	come	with	the	book	scripts,	or	use	your	own	directory	and	BLOB	files.

How	to	do	it…
These	are	the	steps	required	to	save	binary	data	in	SQL	Server:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run	it:
$VerbosePreference	=	“Continue”

$instanceName	=	“localhost”

$databaseName	=	“SampleDB”

$folderName	=	“C:\DATA"

#get	all	files

Get-ChildItem	$folderName	|

Where-Object	PSIsContainer	-eq	$false	|

ForEach-Object	{

			$blobFile	=	$_

			$fileExtension	=	$blobFile.Extension

			#learn	more	about	Write-Verbose	from	Appendix	A	and

			#https://technet.microsoft.com/en-us/library/hh849951.aspx

			Write-Verbose	“Importing	file	$($blobFile.FullName)…”

$query	=	@”

INSERT	INTO	SampleBLOB

(FileName,	FileExtension,	BLOBStuff)

SELECT	’$blobFile’,’$fileExtension’,*

FROM	OPENROWSET(BULK	N’$folderName$blobFile’,	SINGLE_BLOB)	as	tmpImage

“@

Invoke-Sqlcmd	-ServerInstance	$instanceName	-Database	$databaseName	-

Query	$query

#wait	for	query	to	finish

Start-Sleep	-Seconds	2

}

$VerbosePreference	=	“SilentlyContinue”

4.	 After	the	script	has	run,	open	SQL	Server	Management	Studio	and	query	the
SampleBLOB	table.	You	will	find	the	BLOB	files	inserted	into	the	table:

How	it	works…
Inserting	the	contents	of	a	binary	file	into	a	SQL	Server	table	can	be	made	easier	with	the
combination	of	T-SQL	and	PowerShell.

In	this	recipe,	we	have	a	few	files:	a	PDF,	Word	document,	and	few	images	that	we	want
to	store	in	SQL	Server.

To	start,	we	first	need	to	define	from	which	folder	we	are	importing	and	to	which	instance
and	database	we	are	importing:
$instanceName	=	“localhost”

$databaseName	=	“SampleDB”

$folderName	=	“C:\DATA"

We	then	pipe	a	series	of	cmdlets	to	accomplish	our	task.	First,	we	use	the	Get-ChildItem
cmdlet	to	get	all	our	files.	In	our	recipe,	we	import	all	the	files	in	C:\BLOB\	Files:
#get	all	files

Get-ChildItem	$folderName	|

Where-Object	PSIsContainer	-eq	$false		|

We	exclude	folders	by	specifying	Where-Object	PSIsContainer	-eq	$false.	Of	course,
you	have	an	option	of	filtering	by	file	extensions	if	you	want.	You	can	just	add	the	–
Include	parameter	to	Get-ChildItem	and	specify	which	extensions	you	want	to	import,	as
follows:
Get-ChildItem	-Path	“C:\DATA*.*”	-Include	*.jpg,*.png

The	Foreach-Object	cmdlet	then	takes	each	file	we	retrieve	and	composes	a	T-SQL
statement	that	inserts	the	file	into	our	SampleBLOB	table.	We	use	OPENROWSET	to	import	the
contents	of	the	binary	file	as	SINGLE_BLOB:
			$blobFile	=	$_

			$fileExtension	=	$blobFile.Extension

			Write-Verbose	“Importing	file	$($blobFile.FullName)…”

$query	=	@”

INSERT	INTO	SampleBLOB

(FileName,	FileExtension,	BLOBStuff)

SELECT	’$blobFile’,’$fileExtension’,	*

FROM	OPENROWSET(BULK	N’$folderName$blobFile’,	SINGLE_BLOB)	as	tmpImage

“@

This	T-SQL	statement	is	then	passed	to	the	Invoke-Sqlcmd	cmdlet,	which	executes	the
statement	on	our	instance.	We	also	sleep	for	two	seconds	to	give	the	command	some	time
to	complete:
Invoke-Sqlcmd	-ServerInstance	$instanceName	-Database	$databaseName	-

Query	$query

Start-Sleep	-Seconds	2

There’s	more…
Read	more	about	the	OPENROWSET	method	at	http://msdn.microsoft.com/en-
us/library/ms190312.aspx.

http://msdn.microsoft.com/en-us/library/ms190312.aspx

See	also
	

The	Extracting	binary	data	from	SQL	Server	recipe.

Extracting	binary	data	from	SQL	Server
In	this	recipe,	we	will	extract	the	binary	content	from	SQL	Server	and	save	it	back	to
individual	files	in	the	filesystem.

Getting	ready
For	this	recipe,	we	will	use	the	table	that	we	created	in	the	previous	recipe,	Storing	binary
data	in	SQL	Server,	to	extract	files.	Feel	free	to	use	your	own	tables	that	have	the
VARBINARY(MAX)	columns;	just	ensure	that	you	change	the	table	name	in	the	script.

In	addition	to	our	SampleBLOB	table,	we	will	create	an	empty	table	with	a	single
VARBINARY(MAX)	table.	We	will	use	this	to	facilitate	the	creation	of	a	format	file	we	need
to	export	binary	data	out	of	SQL	Server	using	bcp:
USE	SampleDB

GO

IF	OBJECT_ID(‘EmptyBLOB’)	IS	NOT	NULL

				DROP	TABLE	EmptyBLOB

GO

CREATE	TABLE	EmptyBLOB

(

				BLOBStuff	VARBINARY(MAX)

)

How	to	do	it…
These	are	the	steps	required	to	extract	binary	data	from	SQL	Server:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 First,	we	will	create	a	bcp	format	file.	Add	the	following	script	and	run	it:
$instanceName	=	“localhost”

$databaseName	=	“SampleDB”

$timestamp	=	Get-Date	-format	“yyyy-MMM-dd-hhmmtt”

$emptyBLOB	=	“SampleDB.dbo.EmptyBLOB”

$formatFileName	=	“C:\DATA\blob$($timestamp).fmt”

$fmtcmd	=	“bcp	`”$emptyBLOB`”	format	nul	-T	-N		-

f	`”$formatFilename`”	-S	$instanceName”

#create	the	format	file

Invoke-Expression	-Command	$fmtcmd

#now	there	is	a	problem,	by	default	the	format	file

#will	use	8	as	prefix	length	for	varbinary

#we	need	this	to	be	zero,	so	we	will	replace

(Get-Content	$formatFileName)	|

ForEach-Object	{

			$_	-replace	“8”,	“0”

}	|

Set-Content	$formatFileName

4.	 After	our	format	file	is	created,	we	will	export	our	BLOB	content	from	SQL	Server
to	files	in	our	filesystem.	Run	the	following	script:
$folderName	=	“C:\DATA"

$newFolderName	=	“Retrieved	BLOB	$timestamp”

$newFolder	=	Join-Path	-Path	”$($folderName)”	-ChildPath	$newFolderName

#if	folder	does	not	exist,	create

if(!(Test-Path	-Path	$newFolder))

{

			New-Item	-ItemType	directory	-Path	$newFolder

}

$query	=	@”

SELECT	ID,	FileName

FROM	SampleBLOB

“@

Invoke-Sqlcmd	-ServerInstance	$instanceName	-Database	$databaseName	-

Query	$query	|

ForEach-Object	{

				$item	=	$_

			Write-Verbose	“Retrieving	$($item.FileName)	…”

				$newFileName	=	Join-Path	$newFolder	$item.FileName

#query

$blobQuery	=	@”

SELECT	BLOBStuff

FROM	SampleBLOB

WHERE	ID	=	$($item.ID)

“@

#bcp	command

$cmd	=	“bcp	`”$blobQuery`”	queryout	`”$newFileName`”	-S	$instanceName	-

T	-d	$databaseName	-f	`”$formatFileName`””

Invoke-Expression	$cmd

}

#show	retrieved	files

explorer	$newFolder

$VerbosePreference	=	“SilentlyContinue”

5.	 When	you	are	done,	you	will	see	the	files	in	the	folder	that	the	script	created:

How	it	works…
To	retrieve	a	BLOB,	or	binary	large	object,	from	SQL	Server	and	save	it	back	to	the
filesystem,	we	utilize	a	combination	of	T-SQL	and	PowerShell	cmdlets.

The	most	important	part	of	retrieving	binary	data	and	saving	it	back	to	a	file	format	is
preserving	the	raw	format	and	encoding.	We	export	our	data	using	bcp	with	a	format	file.
To	help	us	create	this	format	file,	we	created	a	simple	table	in	our	prep	section	that	has	a
single	VARBINARY(MAX)	column.

To	create	the	format	file,	we	first	use	the	dynamically	built	bcp	command	that	will	create
the	format	file:
$fmtcmd	=	“bcp	`”$emptyBLOB`”	format	nul	-T	-N		-f	`”$formatfilename`”	-

S	$instanceName”

A	fully	composed	command	will	look	similar	to	the	following	command:
bcp	“SampleDB.dbo.EmptyBLOB”	format	nul	-T	-N		-f	“C:\BLOB	Files\blob2015-

May-10-0840PM.fmt”	-S	localhost

The	options	we	specified	in	our	bcp	are	(based	on	books	online)	mentioned	in	the
following	table:

Option Description

format

nul	–f
This	specifies	the	non-XML	format	file

-T This	indicates	a	trusted	connection

-N
This	specifies	to	perform	bcp	using	native	data	types	for	noncharacter	data
and	Unicode	character	data

To	create	the	file,	we	can	use	the	Invoke-Expression	command	to	execute	the	bcp
command	against	the	server:
Invoke-Expression	-Command	$fmtcmd

The	format	file	will	look	like	this:

Unfortunately,	the	bcp	command	that	creates	the	format	file	automatically	assigned	a
prefix	length	of	eight	(8)for	our	SQLBINARY	data.	This	will	create	problems	for	our	binary
file	because	it	adds	additional	characters	to	our	file,	which	can	“corrupt”	the	file.	We	want
to	replace	this	prefix	length	with	zero	(0),	and	we	do	it	using	the	following	code:
(Get-Content	$formatFileName)	|

ForEach-Object	{

			$_	-replace	“8”,	“0”

}	|

Set-Content	$formatFileName

Once	our	format	file	is	ready,	we	create	our	timestamped	folder:
$newFolderName	=	“Retrieved	BLOB	$timestamp”

$newFolder	=	Join-Path	-Path	”$($folderName)”	-ChildPath	$newfoldername

#if	folder	already	exists,	will	error	silently	and	continue

New-Item	-ItemType	directory	-Path	$newfolder	-ErrorAction	SilentlyContinue

We	then	get	all	the	records	from	our	SampleBLOB	table.	We	will	first	only	get	the	ID	and
FileName	variables:
$query	=	@”

SELECT	ID,	FileName

FROM	SampleBLOB

“@

Invoke-Sqlcmd	-ServerInstance	$instanceName	-Database	$databaseName	-

Query	$query	|

For	each	record	we	retrieve	that	contains	the	ID	and	FileName	variables,	we	query	SQL
Server	again,	but	this	time	for	the	binary	content.	We	use	this	query	in	another	bcp
command	we	are	constructing.	This	bcp	command	uses	the	format	file	that	we	created	in
the	previous	section.	We	pass	this	bcp	command	again	to	the	Invoke-Expression	cmdlet
to	create	the	binary	file	in	the	filesystem:
ForEach-Object	{

				$item	=	$_

				Write-Verbose	“Retrieving	$($item.FileName)	…”

				$newFileName	=	Join-Path	$newFolder	$item.FileName

$blobQuery	=	@”

SELECT	BLOBStuff

FROM	SampleBLOB

WHERE	ID	=	$($item.ID)

“@

#bcp	command

$cmd	=	“bcp	`”$blobQuery`”	queryout	`”$newFileName`”	-S	$instanceName	-T	-

d	$databaseName	-f	`”$formatFileName`””

Invoke-Expression	$cmd

}

There’s	more…
Read	more	about	bcp	at	http://msdn.microsoft.com/en-us/library/ms162802.aspx.

http://msdn.microsoft.com/en-us/library/ms162802.aspx

See	also
	

The	Storing	binary	data	in	SQL	Server	recipe.

Creating	a	new	assembly
In	this	recipe,	we	will	create	a	new	user-defined	assembly.

Getting	ready
Create	a	folder	named	C:\CLR	Files	and	copy	the	QueryWorksCLR.dll	file	that	comes
with	the	book’s	sample	files	to	this	folder.

We	will	load	this	to	the	SampleDB	database.	Feel	free	to	use	a	database	accessible	to	you;
just	ensure	that	you	replace	the	database	name	in	the	script.

How	to	do	it…
These	are	the	steps	required	to	create	a	new	assembly	in	SQL	Server:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run	it:
$instanceName	=	“localhost”

$databaseName	=	“SampleDB”

$assemblyName	=	“QueryWorksCLR”

$assemblyFile	=	“C:\CLR	Files\QueryWorksCLR.dll”

#this	is	for	SAFE	assemblies	only

$query	=	@”

CREATE	ASSEMBLY	$assemblyName

FROM	’$assemblyFile’

WITH	PERMISSION_SET	=	SAFE

“@

Invoke-Sqlcmd	-ServerInstance	$instanceName	-Database	$databaseName	-

Query	$query

When	you	are	done,	open	SQL	Server	Management	Studio.	Go	to	the	database	and
navigate	to	Programmability	|	Assemblies.	Check	whether	the	assembly	has	been
created	or	not,	as	shown	in	the	following	screenshot:

How	it	works…
Starting	with	Version	2005,	SQL	Server	has	supported	integration	with	the	Common
Language	Runtime	(CLR).	This	means	that	you	can	create	.NET	code	in	your	language
of	preference,	compile	it	into	Dynamic	Linked	Library	(DLL)	files,	and	create	these	as
SQL	Server	database	objects	called	assemblies.

Creating	an	assembly	in	SQL	Server	can	be	straightforward.	In	this	recipe,	we	looked	at
the	simplest	case,	where	we	create	an	assembly	with	the	SAFE	access.

To	create	the	assembly,	we	need	to	specify	where	the	DLL	is	located	and	pass	it	to	a
CREATE	ASSEMBLY	T-SQL	statement:
$assemblyFile	=	“C:\CLR	Files\QueryWorksCLR.dll”

#this	is	for	SAFE	assemblies	only

$query	=	@”

CREATE	ASSEMBLY	$assemblyName

FROM	’$assemblyFile’

WITH	PERMISSION_SET	=	SAFE

“@

Once	the	parameters	are	defined,	we	simply	use	the	Invoke-Sqlcmd	cmdlet	to	create	the
assembly:
Invoke-Sqlcmd	-ServerInstance	$instanceName	-Database	$databaseName	-

Query	$query

Note
Note	that	in	SQL	Server,	an	assembly	can	be	successfully	created	and	database	objects	can
be	created	from	it	(for	example,	SQLCLR	functions	and	stored	procedures),	but	these	will
not	be	usable	until	SQLCLR	integration	has	been	enabled	in	your	instance.	This	can	be
done	using	the	T-SQL	system	stored	procedure,	sp_configure,	or	using	PowerShell.

To	enable	SQLCLR	using	T-SQL,	we	can	use	the	following	command:
EXEC	sp_configure	‘show	advanced	options’,	1

GO

RECONFIGURE

GO

EXEC	sp_configure	‘clr	enabled’,	1

GO

RECONFIGURE

GO

To	do	the	same	thing	using	PowerShell,	we	can	use	the	following	snippet	after	we	create
the	$server	SMO	object:
$server.Configuration.IsSqlClrEnabled.ConfigValue	=	1

$server.Alter()

There’s	more…
CLRs	can	be	very	powerful	components	in	a	SQL	Server	environment,	so	we	need	to
control	what	is	allowed	and	not	allowed.	A	lot	of	this	can	be	controlled	through	Code
Access	Security	(CAS).	There	are	three	security	levels,	and	simply	put,	these	are	the
differences	between	them:

Permission
setting Description

SAFE

This	is	restricted	to	internal	computation	and	local	SQL	Server
access
This	cannot	access	external	resources,	such	as	files,	folders,	and
so	on

EXTERNAL_ACCESS

This	allows	external	access	to	files,	registry,	networks,	and	so	on
By	default,	this	executes	as	the	SQL	Server	service	account

UNSAFE

This	is	the	least	restrictive
This	can	potentially	do	anything	CLRs	can	do

We	have	only	covered	how	to	deploy	the	SAFE	assemblies.	EXTERNAL_ACCESS	and	UNSAFE
can	be	a	bit	more	complicated	and	will	require	creating	certificates,	logins,	and
symmetric/asymmetric	keys.

Note
Check	out	the	section	on	creating	EXTERNAL_ACCESS	and	UNSAFE	assemblies	from	the
MSDN	article	CLR	Integration	Code	Access	Security	at	http://msdn.microsoft.com/en-
us/library/ms345101.aspx.

Note	that	this	article	strongly	encourages	not	to	set	the	TRUSTWORTHY	property	of	your
database	to	ON.

http://msdn.microsoft.com/en-us/library/ms345101.aspx

See	also
	

The	Listing	user-defined	assemblies	recipe.
The	Extracting	user-defined	assemblies	recipe.

Listing	user-defined	assemblies
In	this	recipe,	we	will	list	the	user-defined	assemblies	in	a	SQL	Server	database.

Getting	ready
We	can	use	the	SampleDB	database	that	we	used	in	the	previous	recipe,	or	you	can
substitute	this	with	any	database	that	is	accessible	to	you	that	has	some	user-defined
assemblies.

How	to	do	it…
These	are	the	steps	required	to	list	user-defined	assemblies:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Add	the	following	script	and	run	it:
$instanceName	=	“localhost”

$server	=	New-Object	-

TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

$databaseName	=	“SampleDB”

$database	=	$server.Databases[$databaseName]

#list	assemblies	except	system	assemblies

$database.Assemblies	|

Where-Object	IsSystemObject	-eq	$false

How	it	works…
Listing	user-defined	assemblies	is	a	straightforward	task.

After	importing	the	SQLPS	module,	we	create	a	server	handle	and	database	handle:
$instanceName	=	“localhost”

$server	=	New-Object	-TypeName	Microsoft.SqlServer.Management.Smo.Server	-

ArgumentList	$instanceName

$databaseName	=	“SampleDB”

$database	=	$server.Databases[$databaseName]

An	assembly	is	a	database-level	object,	which	means	that	we	can	access	assemblies
through	our	database	variable.	We	also	want	to	filter	out	any	system	assemblies:
$database.Assemblies	|

Where-Object	IsSystemObject	-eq	$false

There’s	more…
Learn	more	about	SQLCLR	assemblies	from	MSDN	at	http://msdn.microsoft.com/en-
us/library/ms254498.aspx.

http://msdn.microsoft.com/en-us/library/ms254498.aspx

See	also
	

The	Extracting	user-defined	assemblies	recipe.

Extracting	user-defined	assemblies
In	this	recipe,	we	will	extract	user-defined	assemblies	and	resave	these	back	to	the
filesystem	as	DLLs.

Getting	ready
We	can	use	the	SampleDB	database	that	we	used	in	the	previous	recipe,	or	you	can
substitute	this	with	any	database	that	is	accessible	to	you	that	has	some	user-defined
assemblies.

How	to	do	it…
These	are	the	steps	required	to	extract	user-defined	assemblies:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 First,	we	will	create	a	bcp	format	file.	Add	the	following	script	and	run	it:
$VerbosePreference	=	“Continue”

$instanceName	=	“localhost”

$timestamp	=	Get-Date	-format	“yyyy-MMM-dd-hhmmtt”

$emptyBLOB	=	“SampleDB.dbo.EmptyBLOB”

$formatFileName	=	“C:\CLR	Files\clr$($timestamp).fmt”

$fmtcmd	=	“bcp	`”$emptyBLOB`”	format	nul	-T	-N		-

f	`”$formatfilename`”	-S	$instanceName”

#create	the	format	file

Invoke-Expression	-Command		$fmtcmd

#now	there	is	a	problem,	by	default	the	format	file

#will	use	8	as	prefix	length	for	varbinary

#we	need	this	to	be	zero,	so	we	will	replace

(Get-Content	$formatFileName)	|

ForEach-Object	{

			$_	-replace	“8”,	“0”

}	|

Set-Content	$formatFileName

4.	 Add	the	following	script	and	run	it:
$databaseName	=	“SampleDB”

$folderName	=	“C:\CLR	Files"

$newFolderName	=	“Retrieved	CLR	$timestamp”

$newFolder	=	Join-Path	-Path	”$($folderName)”	-ChildPath	$newFolderName

#if	the	path	exists,	will	error	silently	and	continue

New-Item	-ItemType	directory	-Path	$newfolder	-

ErrorAction	SilentlyContinue

#get	all	user	defined	assemblies

$query	=	@”

SELECT

								af.file_id	AS	ID,

								a.name	+	’.dll’	AS	FileName

FROM

								sys.assembly_files	af

								INNER	JOIN	sys.assemblies	a

								ON	af.assembly_id	=	a.assembly_id

WHERE

								a.is_user_defined		=	1

“@

Invoke-Sqlcmd	-ServerInstance	$instanceName	-Database	$databaseName	-

Query	$query	|

ForEach-Object	{

				$item	=	$_

				Write-Verbose	“Retrieving	$($item.FileName)	…”

				$newFileName	=	Join-Path	$newFolder	$item.FileName

$blobQuery	=	@”

SELECT

								af.content

FROM

								sys.assembly_files	af

WHERE

								af.file_id	=	$($item.ID)

“@

#bcp	command

$cmd	=	“bcp	`”$blobQuery`”	queryout	`”$newFileName`”	-S	$instanceName	-

T	-d	$databaseName	-f	`”$formatFileName`””

Invoke-Expression	$cmd

}

#display	files

explorer	$newFolder

$VerbosePreference	=	“SilentlyContinue”

5.	 Once	done,	you	can	check	out	the	file	you	generated.	Your	extracted	file(s)	will	look
similar	to	this:

How	it	works…
When	we	deploy	SQLCLR	assemblies,	the	definition	of	each	assembly	is	saved	in	the
target	database.	There	may	be	times	when	you	want	to	extract	these	back	to	their	DLL
binary	forms.	Retrieving	and	saving	the	DLL	back	into	the	filesystem	is	similar	to
retrieving	and	saving	BLOB	data	back	into	the	filesystem.

The	first	thing	we	do	is	to	create	a	format	file.

Note
Refer	to	the	Extracting	binary	data	from	SQL	Server	recipe	for	details	on	creating	the
format	file	for	BLOB	retrieval.

Once	we	have	the	format	file,	we	create	a	timestamped	folder	where	we	will	store	our
retrieved	DLLs.	This	will	help	us	keep	track	of	what	we	extracted	and	when:
$folderName	=	“C:\CLR	Files"

$newFolderName	=	“Retrieved	CLR	$timestamp”

$newFolder	=	Join-Path	-Path	”$($folderName)”	-ChildPath	$newFolderName

#if	the	path	exists,	will	error	silently	and	continue

New-Item	-ItemType	directory	-Path	$newfolder	-ErrorAction	SilentlyContinue

We	construct	a	T-SQL	statement	to	retrieve	all	user-defined	assemblies	in	our	target
database.	We	can	get	the	definition	of	the	assemblies	from	sys.assembly_files.	To	get
only	user-defined	assemblies,	we	must	filter	sys.assembly	for	is_user_defined	=	1.	If
we	do	not	filter,	we	may	potentially	get	other	files	that	were	deployed	with	this	assembly,
such	as	debug	files,	especially	when	the	assembly	is	deployed	from	SQL	Server	data	tools.
Alternatively,	if	you	want	to	export	only	a	selection,	you	can	include	a	filter	in	your
SELECT	statement:
#get	all	user	defined	assemblies

$query	=	@”

SELECT

								af.file_id	AS	ID,

								a.name	+	’.dll’	AS	FileName

FROM

								sys.assembly_files	af

								INNER	JOIN	sys.assemblies	a

								ON	af.assembly_id	=	a.assembly_id

WHERE

								a.is_user_defined		=	1

“@

We	then	pass	this	T-SQL	statement	to	the	Invoke-Sqlcmd	cmdlet:
Invoke-Sqlcmd	-ServerInstance	$instanceName	-Database	$databaseName	-

Query	$query	|

For	each	record	returned	to	us,	we	then	compose	another	query	that	will	retrieve	the
binary	contents	of	the	current	DLL	from	sys.assembly_files	by	passing	its	file_id,	and
save	this	back	to	the	filesystem	using	bcp	and	the	format	file	that	we	created	at	the
beginning	of	the	recipe:

ForEach-Object	{

				$item	=	$_

				Write-Verbose	“Retrieving	$($item.FileName)	…”

				$newFileName	=	Join-Path	$newFolder	$item.FileName

$blobQuery	=	@”

SELECT

								af.content

FROM

								sys.assembly_files	af

WHERE

								af.file_id	=	$($item.ID)

“@

#bcp	command	

$cmd	=	“bcp	`”$blobQuery`”	queryout	`”$newFileName`”	-S	$instanceName	-T	-

d	$databaseName	-f	`”$formatFileName`””

Invoke-Expression	$cmd

}

To	ensure	that	we	have	maintained	the	integrity	of	the	DLL	file,	we	can	use	a	decompiler
to	peek	into	what	is	in	the	DLL	file.	There	are	a	few	free	ones,	such	as	JetBrains	dotPeek
or	Telerik	JustDecompiler.	If	all	is	well,	you	will	be	able	to	see	all	the	classes	and	the
definition	of	the	methods	when	you	open	this	file	in	the	decompiler.	Otherwise,	the
decompiler	will	not	be	able	to	load	this	file.

See	also
	

The	Listing	user-defined	assemblies	recipe.
The	Creating	a	new	assembly	recipe.

Chapter	10.	Business	Intelligence
In	this	chapter,	we	will	cover	the	following	topics:

	
Listing	items	in	your	SSRS	Report	Server
Listing	SSRS	report	properties
Using	ReportViewer	to	view	your	SSRS	report
Downloading	an	SSRS	report	in	Excel	and	as	a	PDF
Creating	an	SSRS	folder
Creating	an	SSRS	data	source
Changing	an	SSRS	report’s	data	source	reference
Uploading	an	SSRS	report	to	Report	Manager
Downloading	all	SSRS	report	RDL	files
Adding	a	user	with	a	role	to	an	SSRS	report
Creating	folders	in	an	SSIS	package	store	and	MSDB
Deploying	an	SSIS	package	to	a	package	store
Executing	an	SSIS	package	stored	in	a	filesystem	or	a	package	store
Downloading	an	SSIS	package	to	a	file
Creating	an	SSISDB	catalog
Creating	an	SSISDB	folder
Deploying	an	ISPAC	file	to	SSISDB
Executing	an	SSIS	package	stored	in	SSISDB
Listing	SSAS	cmdlets
Listing	SSAS	instance	properties
Backing	up	an	SSAS	database
Restoring	an	SSAS	database
Processing	an	SSAS	cube

Introduction
Over	the	years	and	various	versions,	SQL	Server	has	increased	its	Business	Intelligence
(BI)	support	and	capabilities.	Its	BI	stack—reporting	services,	integration	services,	and
analysis	services	have	become	strong	players	in	today’s	BI	market.

PowerShell	offers	capabilities	to	automate	and	manage	any	BI-related	tasks	from
rendering	SQL	Server	Reporting	Services	(SSRS)	reports,	to	deploying	the	new	SQL
Server	Integration	Services	(SSIS)	2012	ISPAC	files,	to	backing	up	and	restoring	SQL
Server	Analysis	Services	(SSAS)	cubes.

Listing	items	in	your	SSRS	Report	Server
In	this	recipe,	we	will	list	items	in	an	SSRS	Report	Server	that	is	configured	in	native
mode.

Getting	ready
Identify	your	SSRS	2014	Report	Server	URL.	We	will	need	to	reference	the
ReportService2010	web	service,	and	you	can	reference	it	using:
<ReportServer	URL>/ReportService2010.asmx

For	this	recipe,	we	will	use	the	default	Windows	credential	to	authenticate	to	the	server.

How	to	do	it…
Let’s	explore	the	code	required	to	list	items	in	your	SSRS	Report	Server	that	is	configured
in	native	mode:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

$reportServerUri		=	“http://localhost/ReportServer/ReportService2010.asmx”

$proxy	=	New-WebServiceProxy	-Uri	$reportServerUri	-

UseDefaultCredential

#list	all	children

$proxy.ListChildren(“/”,	$true)	|

Select-Object	Name,	TypeName,	Path,	CreationDate	|

Format-Table	-AutoSize

#if	you	want	to	list	only	reports

$proxy.ListChildren(“/”,	$true)	|

Where-Object	TypeName	-eq	“Report”	|

Select-Object	Name,	TypeName,	Path,	CreationDate	|

Format-Table	-AutoSize

Here	is	a	sample	result:

How	it	works…
The	SSRS	ReportService2010	web	service	provides	an	API	that	allows	objects	in	the
Report	Server	to	be	managed	programmatically,	whether	the	Report	Server	is	configured
for	native	mode	or	SharePoint	integrated	mode.

This	recipe	assumes	a	SQL	Server	Reporting	Services	native	mode	install,	although	listing
reports	in	SSRS	SharePoint	integrated	mode	should	employ	a	similar	approach.

Note
Learn	more	about	the	differences	between	SSRS	native	mode	versus	SharePoint	integrated
mode	from	the	deployment	guide	document	at	https://technet.microsoft.com/en-
us/library/bb326345.aspx.

The	first	step	is	to	get	a	handle	to	create	a	web	service	proxy.	A	web	service	proxy	in
PowerShell	allows	you	to	manage	the	web	service	as	you	would	for	any	other	PowerShell
object.	To	create	a	new	web	service	proxy,	you	need	to	use	the	New-WebServiceProxy
cmdlet	and	pass	to	it	the	web	service	URL	as	follows:
$reportServerUri		=	“http://localhost/ReportServer/ReportService2010.asmx”

$proxy	=	New-WebServiceProxy	-Uri	$reportServerUri	-UseDefaultCredential

To	display	all	the	items	in	the	Report	Server,	we	just	need	to	call	the	ListChildren
method	of	the	ReportingService2010	web	proxy	object.	This	will	list	all	items	it	can	find
in	the	path	that	we	specified;	in	this	case,	the	root	“/”:
#list	all	children

$proxy.ListChildren(“/”,	$true)	|

Select-Object	Name,	TypeName,	Path,	CreationDate	|

Format-Table	-AutoSize

If	you	want	to	list	just	the	reports,	we	can	pipe	the	results	of	the	ListChildren	method
and	filter	for	TypeName	=	“Report”.	Note	that	in	the	old	version	of	the	web	service,	the
ReportService2005	property	was	called	Type	instead	of	TypeName:
#if	you	want	to	list	only	reports

$proxy.ListChildren(“/”,	$true)	|

Where-Object	TypeName	-eq	“Report”	|

Select-Object	Name,	TypeName,	Path,	CreationDate	|

Format-Table	-AutoSize

https://technet.microsoft.com/en-us/library/bb326345.aspx

There’s	more…
Learn	more	about	the	SSRS	Report	Server	web	service	endpoints	from	MSDN	at
http://msdn.microsoft.com/en-us/library/ms155398.aspx.

In	addition,	the	following	articles	will	be	helpful	when	you	are	working	with	SSRS
programmatically	using	PowerShell:

	
Check	out	the	MSDN	articles	for	New-WebServiceProxy	at
http://msdn.microsoft.com/en-us/library/dd315258.aspx.
Check	out	the	MSDN	articles	for	Report	Server	Namespace	Management	Methods	at
http://msdn.microsoft.com/en-us/library/ms152872.

http://msdn.microsoft.com/en-us/library/ms155398.aspx
http://msdn.microsoft.com/en-us/library/dd315258.aspx
http://msdn.microsoft.com/en-us/library/ms152872

See	also
	

The	Listing	SSRS	report	properties	recipe.

Listing	SSRS	report	properties
In	this	recipe,	we	will	list	a	single	SSRS	report’s	properties.

Getting	ready
To	follow	this	recipe,	first	identify	your	SSRS	2012	Report	Server	URL.	We	will	need	to
reference	the	ReportService2010	web	service,	and	you	can	reference	it	using
<ReportServer	URL>/ReportService2010.asmx

You	also	need	to	specify	your	Report	Manager	URI	in	the	$reportServerUri	variable.

Lastly,	pick	a	report	deployed	in	your	SSRS	2012	Report	Manager.	Note	the	path	to	the
report	item,	and	replace	the	$reportPath	variable	with	your	own	path.

How	to	do	it…
Here	are	the	steps	required	to	list	SSRS	report	properties:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

$reportServerUri		=	“http://localhost/ReportServer/ReportService2010.asmx”

$proxy	=	New-WebServiceProxy	-Uri	$reportServerUri	-

UseDefaultCredential

$reportPath	=	”/Customer	Reports/Customer	List”

#list	this	report’s	properties

$proxy.ListChildren(“/”,	$true)	|

Where-Object	Path	-eq	$reportPath

A	sample	result	is	as	follows:

How	it	works…
To	get	SSRS	2014	report	properties,	we	must	first	get	a	web	service	proxy:
$reportServerUri		=	http://localhost/ReportServer/ReportService2010.asmx

$proxy	=	New-WebServiceProxy	-Uri	$reportServerUri	-UseDefaultCredential

We	must	also	identify	which	report	we	want	to	display	properties	for:
$reportPath	=	”/Customer	Reports/Customer	List”

Once	we	get	a	proxy	and	we	know	which	report	we	are	querying,	we	need	to	get	the
catalog	items	that	are	related	to	this	Report	Server	instance.	We	do	this	using	the
ListChildren	method	of	the	proxy	object	and	by	specifying	a	path	to	traverse	starting
from	the	root	“/”	path	recursively.	We	specify	a	recursive	lookup	by	passing	the	Boolean
value	$true	as	a	second	parameter	to	ListChildren:
$proxy.ListChildren(“/”,	$true)	|

Where-Object	Path	-eq	$reportPath

To	narrow	down	the	displayed	properties	to	just	our	report’s,	we	can	pipe	the	result	of	the
ListChildren	method	to	the	Where-Object	cmdlet	and	filter	only	by	reports	that	match
$reportPath:
$proxy.ListChildren(“/”,	$true)	|

Where-Object	Path	-eq	$reportPath

Note	that	a	report	in	the	ReportServer2010	web	service	is	a	CatalogItem	class,	not	a
Report	class,	which	was	available	in	previous	SSRS	versions.	If	you	pipe	the	preceding
code	to	the	Get-Member	cmdlet,	you	will	see	the	TypeName	at	the	beginning	of	the
displayed	results:
TypeName:	Microsoft.PowerShell.Commands.NewWebserviceProxy.AutogeneratedTypes.WebServiceProxy1tServer_Report

Service2010_asmx.CatalogItem

There’s	more…
To	learn	more	about	the	CatalogItem	class,	check	out	http://msdn.microsoft.com/en-
us/library/reportservice2010.catalogitem

http://msdn.microsoft.com/en-us/library/reportservice2010.catalogitem

See	also
	

The	Listing	items	in	your	SSRS	Report	Server	recipe.

Using	ReportViewer	to	view	your	SSRS	report
This	recipe	shows	how	to	display	a	report	using	the	ReportViewer	redistributable.

Getting	ready
In	previous	versions	of	SSRS,	the	ReportViewer	redistributable	was	a	separate	download
and	this	needed	to	be	installed	on	your	machine	prior	to	following	this	recipe.	As	of	SSRS
2014,	the	ReportViewer	2014	runtime	is	part	of	the	SQL	Server	Data	Tools	(SSDT-BI)
installation.	At	the	time	of	writing,	SSDT-BI	for	SQL	Server	2014	and	Visual	Studio	2013
can	be	found	at	https://msdn.microsoft.com/en-us/library/mt204009.aspx.

You	will	also	need	to	identify	your	SSRS	2014	Report	Server	URL.	We	will	need	to
reference	the	ReportService2010	web	service,	and	you	can	reference	it	using:
<ReportServer	URL>/ReportService2010.asmx

Lastly,	pick	a	report	you	want	to	display	using	the	ReportViewer	object.	Identify	the	full
path,	and	replace	the	value	of	the	$reportViewer.ServerReport.ReportPath	variable	in
the	script.

https://msdn.microsoft.com/en-us/library/mt204009.aspx

How	to	do	it…
This	list	shows	how	we	can	display	a	report	using	the	ReportViewer	object:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Load	the	assembly	for	ReportViewer	as	follows:

#load	the	ReportViewer	WinForms	assembly

Add-Type	-

AssemblyName	“Microsoft.ReportViewer.WinForms,	Version=12.0.0.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”

#load	the	Windows.Forms	assembly

Add-Type	-AssemblyName	“System.Windows.Forms”

Add	the	following	script	and	run	it:
$reportViewer	=	New-Object	Microsoft.Reporting.WinForms.ReportViewer

$reportViewer.ProcessingMode	=	“Remote”

$reportViewer.ServerReport.ReportServerUrl	=	“http://localhost/ReportServer”

$reportViewer.ServerReport.ReportPath	=	”/Customer	Reports/Customer	List”

#adjust	report	size

$reportViewer.Height	=	600

$reportViewer.Width	=	800

$reportViewer.RefreshReport()

#create	a	windows	new	form

$form	=	New-Object	Windows.Forms.Form

#we’re	going	to	make	the	just	slightly	bigger

#than	the	ReportViewer

$form.Height	=	610

$form.Width=	810

#form	is	not	resizable

$form.FormBorderStyle	=	“FixedSingle”

#do	not	allow	user	to	maximize

$form.MaximizeBox	=	$false

$form.Controls.Add($reportViewer)

#show	the	report	in	the	form

$reportViewer.Show()

#show	the	form

$form.ShowDialog()

3.	 After	you	run	the	script,	here	is	a	sample	result.	Notice	how	the	top	bar	is	similar	to
the	top	bar	in	your	Report	Manager:

How	it	works…
The	ReportViewer	object	is	a	control	that	allows	you	to	embed	and	display	an	SSRS
report	into	a	web	or	Windows	form,	and	supplies	the	user	with	a	familiar	interface	they
might	be	accustomed	to	seeing	when	using	the	Report	Manager.	This	control	always
connects	back	to	the	Report	Server	when	processing	and	rendering	the	report.

The	ReportViewer	object	is	a	redistributable	package	that	does	not	come	with	Reporting
Services	installations;	you	will	need	to	download	and	install	this	separately.	Refer	to	the
Getting	ready	section.

In	this	recipe,	we	are	displaying	a	specific	report	in	a	Windows	form.

To	start,	we	have	to	load	the	assemblies	related	to	ReportViewer	and	Windows	forms:
#load	the	ReportViewer	WinForms	assembly

Add-Type	-

AssemblyName	“Microsoft.ReportViewer.WinForms,	Version=12.0.0.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”

#load	the	Windows.Forms	assembly

Add-Type	-AssemblyName	“System.Windows.Forms”

We	need	to	load	the	strong	name	of	the	ReportViewer.WinForms	assembly	using	the	Add-
Type	cmdlet,	that	is,	to	load	it	with	the	assembly	name,	version,	culture,	and	public	key
token	information.	To	determine	the	strong	name,	you	can	open	C:\Windows\assembly
and	check	the	properties	of	the	Microsoft.ReportViewer.WinForms	assembly.	Note	that
you	may	get	multiple	versions	of	the	assembly	if	you	have	different	versions	of	the
ReportViewer	redistributable	installed	on	your	system.	In	the	following	screenshot,	you
can	see	that	there	are	two	WinForms	assembly:

Once	the	assembly	is	loaded,	we	then	have	to	create	a	ReportViewer	object:
$reportViewer	=	New-Object	Microsoft.Reporting.WinForms.ReportViewer

We	also	need	to	set	some	properties	that	specify	where	and	how	the	report	is	going	to	be
fetched:

$reportViewer.ProcessingMode	=	“Remote”

$reportViewer.ServerReport.ReportServerUrl	=	“http://localhost/ReportServer”

$reportViewer.ServerReport.ReportPath	=	”/Customer	Reports/Customer	List”

The	ProcessingMode	property	can	either	be	Local	or	Remote.	The	ReportServerUrl	and
ReportPath	properties	are	properties	of	the	ServerReport	object,	and	these	should	point
to	your	report	server	and	the	full	path	to	your	report.	Should	you	need	to	specify	the
credentials	to	connect	to	the	Report	Manager,	you	will	need	to	set	the	ReportCredentials
property	as	follows:
$reportViewer.ServerReport.ReportServerCredentials.NetworkCredentials=	New-

Object	System.Net.NetworkCredential(“username”,	“password”)

We	then	also	specify	the	ReportViewer	dimensions:
$reportViewer.Height	=	600

$reportViewer.Width	=	800

$reportViewer.RefreshReport()

For	this	recipe,	we	embedded	the	ReportViewer	object	in	a	Windows	form,	and	lastly,
showed	it	as	a	dialog	form.	Since	we	have	preset	the	size	of	the	report	to	800	X	600,	we
are	going	to	disable	the	maximize	button	and	the	resizability	of	the	window	to	prevent
users	from	resizing	the	form	and	seeing	only	empty	spaces	when	the	form	is	resized:
#create	a	windows	new	form

$form	=	New-Object	Windows.Forms.Form

#we’re	going	to	make	the	just	slightly	bigger

#than	the	ReportViewer

$form.Height	=	610

$form.Width=	810

#form	is	not	resizable

$form.FormBorderStyle	=	“FixedSingle”

#do	not	allow	user	to	maximize

$form.MaximizeBox	=	$false

$form.Controls.Add($reportViewer)

#show	the	report	in	the	form

$reportViewer.Show()

#show	the	form

$form.ShowDialog()

There’s	more…
	

To	learn	more	about	the	ReportViewer	Class,	visit	http://msdn.microsoft.com/en-
us/library/microsoft.reporting.winforms.reportviewer.aspx.
Refer	to	the	ReportViewer	Properties	at	http://msdn.microsoft.com/en-
us/library/microsoft.reporting.webforms.reportviewer_properties.
To	learn	more	about	ReportViewer	Web	Server	and	Windows	Forms	Controls,	check
out	http://msdn.microsoft.com/en-us/library/ms251771.aspx.

http://msdn.microsoft.com/en-us/library/microsoft.reporting.winforms.reportviewer.aspx
http://msdn.microsoft.com/en-us/library/microsoft.reporting.webforms.reportviewer_properties
http://msdn.microsoft.com/en-us/library/ms251771.aspx

See	also
	

The	Downloading	an	SSRS	report	in	Excel	and	as	a	PDF	recipe.

Downloading	an	SSRS	report	in	Excel	and	as	a
PDF
This	recipe	shows	you	how	to	download	an	SSRS	report	in	Excel	and	PDF	format.

Getting	ready
In	previous	versions	of	SSRS,	the	ReportViewer	redistributable	was	a	separate	download
and	this	needed	to	be	installed	on	your	machine	prior	to	following	this	recipe.	As	of	SSRS
2014,	the	Report	Viewer	2014	runtime	is	part	of	the	SSDT-BI	installation.	At	the	time	of
writing,	SSDT-BI	for	SQL	Server	2014	and	Visual	Studio	2013	can	be	found	at
https://msdn.microsoft.com/en-us/library/mt204009.aspx.

After	installing	the	ReportViewer	control,	select	a	report	that	you	wish	to	download	as	an
Excel	or	PDF	version.

This	recipe	demonstrates	how	to	download	a	report	published	to	a	local	Report	Server	and
export	it	to	Excel	and	as	a	PDF.	The	report	is	in	the	/Customer	Reports/Customer	List
path.	Alternatively,	choose	a	report	you	wish	to	download	and	replace	the
$reportViewer.ServerReport.ReportPath	variable	with	the	report	path	in	your
environment.

https://msdn.microsoft.com/en-us/library/mt204009.aspx

How	to	do	it…
Let’s	explore	the	code	required	to	view	your	report	in	Excel	and	as	a	PDF:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Load	the	ReportViewer	assembly:

Add-Type	-

AssemblyName	“Microsoft.ReportViewer.WinForms,	Version=12.0.0.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”

3.	 Add	the	following	script	to	create	and	open	the	Excel	file:
$reportViewer	=	New-Object	Microsoft.Reporting.WinForms.ReportViewer

$reportViewer.ProcessingMode	=	“Remote”

$reportViewer.ServerReport.ReportServerUrl	=	“http://localhost/ReportServer”

$reportViewer.ServerReport.ReportPath	=	”/Customer	Reports/Customer	List”

#required	variables	for	rendering

$mimeType	=	$null

$encoding	=	$null

$extension	=	$null

$streamids	=	$null

$warnings	=	$null

#export	to	Excel

$excelFile	=	“C:\Temp\Customer	List.xls”

$bytes	=	$reportViewer.ServerReport.Render(“Excel”,	$null,	

																		[ref]	$mimeType,	

																		[ref]	$encoding,	

												[ref]	$extension,	

												[ref]	$streamids,	

												[ref]	$warnings)

$fileStream	=	New-

Object	System.IO.FileStream($excelFile,	[System.IO.FileMode]::OpenOrCreate)

$fileStream.Write($bytes,	0,	$bytes.Length)

$fileStream.Close()

#open	the	generated	excel	document

$excel	=	New-Object	-comObject	Excel.Application

$excel.visible	=	$true

$excel.Workbooks.Open($excelFile)	|	Out-Null

4.	 Add	the	following	script	to	create	and	open	the	PDF	file:
#export	to	PDF

$pdfFile	=	“C:\Temp\Customer	List.pdf”

$bytes	=	$reportViewer.ServerReport.Render(“PDF”,	$null,

																		[ref]	$mimeType,

																		[ref]	$encoding,

												[ref]	$extension,

												[ref]	$streamids,

												[ref]	$warnings)

$fileStream	=	New-

Object	System.IO.FileStream($pdfFile,	[System.IO.FileMode]::OpenOrCreate)

$fileStream.Write($bytes,	0,	$bytes.Length)

$fileStream.Close()

#open	the	PDF	file	using	the	default	PDF	application

[System.Diagnostics.Process]::Start($pdfFile)

How	it	works…
For	this	recipe,	we	need	to	load	the	ReportViewer	assembly,	which	will	render	the	SSRS
report	from	the	Report	Manager	into	different	formats:
Add-Type	-

AssemblyName	“Microsoft.ReportViewer.WinForms,	Version=12.0.0.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”

We	also	need	to	set	the	properties	of	the	report:
$reportViewer	=	New-Object	Microsoft.Reporting.WinForms.ReportViewer

$reportViewer.ProcessingMode			=	“Remote”

$reportViewer.ServerReport.ReportServerUrl	=	“http://localhost/ReportServer”

$reportViewer.ServerReport.ReportPath	=	”/Customers/Customer	Contact	Numbers”

There	are	also	a	few	variables	that	we	need	to	declare	to	render	our	report.	We	need	to
declare	these	because	they	need	to	be	passed	by	reference	to	the	Render	method	of
ReportViewer:
#required	variables	for	rendering

$mimeType	=	$null

$encoding	=	$null

$extension	=	$null

$streamids	=	$null

$warnings	=	$null

We	need	to	render	the	report	first	as	an	Excel	file.	The	ReportViewer	handle	has	a	Render
method	that	allows	the	report	to	be	rendered	in	different	formats,	including	Excel,	PDF,
and	image.	To	render	a	report	to	Excel,	we	must	invoke	the	ServerReport.Render
method.	The	first	parameter	that	we	pass	is	for	the	format	and	it	should	be	“Excel”.	We
will	also	pass	five	output	parameters	for	MIME	type,	encoding,	extension,	stream	IDs,	and
warnings,	respectively.	We	need	to	assign	the	result	of	this	method’s	invocation	to	a	byte
variable:
#export	to	Excel

$excelFile	=	“C:\Temp\Customer	List.xls”

$bytes	=	$reportViewer.ServerReport.Render(“Excel”,	$null,

																		[ref]	$mimeType,

																		[ref]	$encoding,

												[ref]	$extension,

												[ref]	$streamids,

												[ref]	$warnings)

To	create	an	Excel	file	based	on	what	was	rendered,	we	should	use	a
System.IO.FileStream	object:
$fileStream	=	New-

Object	System.IO.FileStream($excelFile,	[System.IO.FileMode]::OpenOrCreate)

$fileStream.Write($bytes,	0,	$bytes.Length)

$fileStream.Close()

When	done,	we	create	an	Excel.Application	COM	object.	We	pass	the	filename,	and
open	the	workbook	using	the	Excel	object’s	Workbooks.Open	method:

#let’s	open	up	our	excel	document

$excel	=	New-Object	-comObject	Excel.Application

$excel.visible	=	$true

$excel.Workbooks.Open($excelFile)	|	Out-Null

To	render	the	report	in	PDF	format,	the	same	ServerReport.Render	method	can	be
invoked,	but	this	time,	we	pass	“PDF”	instead	of	“Excel”	as	the	first	parameter:
$pdfFile	=	“C:\Temp\Customer	List.pdf”

$bytes	=	$reportViewer.ServerReport.Render(“PDF”,	$null,

																								[ref]	$mimeType,

																								[ref]	$encoding,

																[ref]	$extension,

																[ref]	$streamids,

																[ref]	$warnings)

Saving	the	rendered	PDF	document	also	requires	using	the	System.IO.FileStream	object:
$fileStream	=	New-

Object	System.IO.FileStream($pdfFile,	[System.IO.FileMode]::OpenOrCreate)

$fileStream.Write($bytes,	0,	$bytes.Length)

$fileStream.Close()

The	[System.Diagnostics.Process]::Start	method	is	then	used	to	open	the	PDF	using
the	default	application	installed	to	run	PDFs:
#let’s	open	up	our	PDF	application

[System.Diagnostics.Process]::Start($pdfFile)

There’s	more…
	

To	learn	more	about	ReportViewer	Web	Server	and	Windows	Form	Controls,	visit
http://msdn.microsoft.com/en-us/library/ms251771.aspx.
To	learn	more	about	the	ServerReport.Render	Method,	visit
https://msdn.microsoft.com/en-
us/library/microsoft.reporting.webforms.serverreport.render.aspx.

http://msdn.microsoft.com/en-us/library/ms251771.aspx
https://msdn.microsoft.com/en-us/library/microsoft.reporting.webforms.serverreport.render.aspx

See	also
	

The	Using	ReportViewer	to	view	your	SSRS	report	recipe.

Creating	an	SSRS	folder
In	this	recipe,	we	create	a	timestamped	SSRS	folder.

Getting	ready
Identify	your	SSRS	2014	Report	Server	URL.	We	will	need	to	reference	the
ReportService2010	web	service,	and	you	can	reference	it	using
<ReportServer	URL>/ReportService2010.asmx

How	to	do	it…
Let’s	explore	the	code	required	to	create	an	SSRS	folder	programmatically:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

$reportServerUri		=	“http://localhost/ReportServer/ReportService2010.asmx”

$proxy	=	New-WebServiceProxy	-Uri	$reportServerUri	-

UseDefaultCredential

#A	workaround	we	have	to	do	to	ensure

#we	don’t	get	any	namespace	clashes	is	to

#capture	automatically	generated	namespace

#this	is	a	workaround	to	avoid	namespace	clashes

#resulting	in	using	–Class	with	New-WebServiceProxy

$type	=	$Proxy.GetType().Namespace

#formulate	data	type	we	need

$datatype	=	($type	+	’.Property’)

#display	datatype,	just	for	our	reference

$datatype

#create	new	Property

#if	we	were	using	–Class	SSRS,	this	would	be	similar	to

#$property	=	New-Object	SSRS.Property

$property	=	New-Object	($datatype)

$property.Name	=	“Description”

$property.Value	=	“Created	by	PowerShell”

$folderName	=	“Sales	Reports	”	+	(Get-Date	-format	“yyyy-MMM-dd-

hhmmtt”)

#Report	SSRS	Properties

#http://msdn.microsoft.com/en-us/library/ms152826.aspx

$numProperties	=	1

$properties	=	New-Object	($datatype	+	’[]’)$numProperties

$properties[0]	=	$property

$proxy.CreateFolder($folderName,	”/”,	$properties)

#display	new	folder	in	IE

Set-Alias	ie	”$env:programfiles\Internet	Explorer\iexplore.exe”

ie	“http://localhost/Reports”

#uncomment	below	if	your	browser	does	not	open

#start	“http://localhost/Reports”

Once	done,	Internet	Explorer	will	open	your	SSRS	Report	Manager.	You	can	verify	that
the	folder	has	been	created,	as	shown	in	the	following	screenshot:

How	it	works…
To	create	a	folder,	or	any	item,	in	your	Report	Server,	we	have	to	first	create	a	handle	to
the	Report	Server	web	service	by	creating	a	proxy:
$reportServerUri		=	“http://localhost/ReportServer/ReportService2010.asmx”

$proxy	=	New-WebServiceProxy	-Uri	$reportServerUri	-UseDefaultCredential

Typically,	when	you	check	the	sample	code,	you	will	find	that	the	–Class	switch	is
specified	with	the	New-WebServiceProxy	cmdlet,	as	follows:
$proxy	=	New-WebServiceProxy	-Uri	$reportServerUri	-UseDefaultCredential	-

Class	SSRS2008

We	don’t	use	–Class	in	this	recipe	because	of	a	couple	of	issues,	which	are	as	follows:

	
When	run	from	the	PowerShell	console,	the	script	runs	once	and	does	not	run
subsequent	times	in	the	same	session.	You	will	have	to	close	the	shell	(CLI)	to
release	the	previously	created	proxy	object	that	holds	that	namespace.	As	far	as	the
web	server	proxy	is	concerned,	this	namespace	has	already	been	created	and	we	will
not	recreate	it	again.	Remember	that	what	we	created	is	just	a	proxy.	The	actual
object	was	allocated	not	in	our	session	but	on	the	server.
When	run	from	the	PowerShell	ISE,	you	will	get	a	different	host	of	issues,	including
errors	that	say	the	namespace	cannot	be	recognized.

Note
Refer	to	http://www.sqlmusings.com/2012/02/04/resolving-ssrs-and-powershell-new-
webserviceproxy-namespace-issue/	for	more	details	on	using	the	–Class	switch	for	the
New-WebServiceProxy	cmdlet.

On	the	other	hand,	if	we	do	not	use	a	namespace,	a	different	issue	arises.	The
automatically	generated	namespace	is	unpredictable.	For	example,	a	sample	namespace	is
as	follows:
PS	C:\Users\Administrator>	$Proxy.GetType().Namespace

Microsoft.PowerShell.Commands.NewWebserviceProxy.AutogeneratedTypes.WebServiceProxy1tServer_ReportService2010

_asmx

This	poses	a	problem	because	we	need	to	refer	to	this	namespace	when	we	create	any
ReportService2010	object.	To	work	around	this	issue,	we	can	omit	the	–Class	and
dynamically	capture	the	namespace,	and	subsequently	use	it	when	creating	our	SSRS
objects.

In	the	following	script,	we	are	creating	a	Property	object	that	we	are	going	to	use	for	our
folder:
#capture	automatically	generated	namespace

#this	is	a	workaround	to	avoid	namespace	clashes

#resulting	in	using	–Class	with	New-WebServiceProxy

$type	=	$Proxy.GetType().Namespace

#formulate	data	type	we	need

$datatype	=	($type	+	’.Property’)

http://www.sqlmusings.com/2012/02/04/resolving-ssrs-and-powershell-new-webserviceproxy-namespace-issue/

#display	datatype,	just	for	our	reference

$datatype

#create	new	Property

#if	we	were	using	–Class	SSRS,	this	would	be	similar	to

#$property	=	New-Object	SSRS.Property

$property	=	New-Object	($datatype)

Once	we	have	created	the	Property	object,	we	can	assign	the	values.	One	property	that	we
can	set	for	a	folder	is	Description:
$property.Name	=	“Description”

$property.Value	=	“Created	by	PowerShell”

$folderName	=	“Sales	Reports	”	+	(Get-Date	-format	“yyyy-MMM-dd-hhmmtt”)

We	then	need	to	add	this	to	a	Property[]	array,	which	is	what	the	CreateFolder	method
of	the	proxy	accepts.	Note	that	when	we	create	this	array,	we	still	need	to	create	this
dynamically,	which	is	similar	to	how	we	created	our	Property	object:
#Report	SSRS	Properties

#http://msdn.microsoft.com/en-us/library/ms152826.aspx

$numProperties	=	1

$properties	=	New-Object	($datatype	+	’[]’)$numProperties

$properties[0]	=	$property

When	done,	we	can	create	the	folder	using	the	CreateFolder	method	that	accepts	the
folder	name,	parent,	and	properties	array:
$proxy.CreateFolder($folderName,	”/”,	$properties)

The	last	step	in	this	recipe	is	to	create	an	alias	for	IE	and	launch	our	Report	Manager	to
verify	that	the	folder	has	been	created:
#display	new	folder	in	IE

Set-Alias	ie	”$env:programfiles\Internet	Explorer\iexplore.exe”

ie	“http://localhost/Reports”

There’s	more…
To	learn	more	about	the	namespace	collision	issue	mentioned	in	this	recipe	when	dealing
with	New-WebServiceProxy,	check	out	http://www.sqlmusings.com/2012/02/04/resolving-
ssrs-and-powershell-new-webserviceproxy-namespace-issue/.

Check	out	the	ReportService2010.CreateFolder	method	at
http://msdn.microsoft.com/en-
us/library/reportservice2010.reportingservice2010.createfolder.aspx.

http://www.sqlmusings.com/2012/02/04/resolving-ssrs-and-powershell-new-webserviceproxy-namespace-issue/
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.createfolder.aspx

See	also
	

The	Creating	an	SSRS	folder	recipe.

Creating	an	SSRS	data	source
In	this	recipe,	we	will	create	an	SSRS	data	source.

Getting	ready
In	this	recipe,	we	will	create	a	data	source	called	Sample	that	is	stored	in	the	/Data
Sources	folder.	This	data	source	uses	integrated	authentication	and	points	to	the
AdventureWorks2014	database.

Before	we	start,	we	will	need	to	identify	the	typical	information	needed	for	a	data	source,
which	is	shown	in	the	following	table:

Property Value

Data	source	name Sample

Data	source	type SQL

Connection	string Data	Source=localhost;Initial

Catalog=AdventureWorks2014

Credentials Integrated

Parent	(that	is,	a	folder	where	this	data	source
will	be	placed;	it	must	already	exist)

/Data	Sources

Note
Note	that	the	/Data	Sources	folder	is	the	default	folder	that	gets	created	when	you	deploy
reports	to	Report	Server	via	SSDT.

These	are	the	same	pieces	of	information	that	you	will	find	when	you	go	to	a	data	source’s
properties	in	your	Report	Manager:

How	to	do	it…
These	are	the	steps	required	to	create	an	SSRS	data	source	using	PowerShell:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

$reportServerUri		=	“http://localhost/ReportServer/ReportService2010.asmx”

$proxy	=	New-WebServiceProxy	-Uri	$reportServerUri	-

UseDefaultCredential

$type	=	$Proxy.GetType().Namespace

#create	a	DataSourceDefinition

$dataSourceDefinitionType	=	($type	+	’.DataSourceDefinition’)

$dataSourceDefinition	=	New-Object($dataSourceDefinitionType)

$dataSourceDefinition.CredentialRetrieval	=	“Integrated”

$dataSourceDefinition.ConnectString	=	“Data	Source=localhost;Initial	Catalog=AdventureWorks2014”

$dataSourceDefinition.extension	=	“SQL”

$dataSourceDefinition.enabled	=	$true

$dataSourceDefinition.Prompt	=	$null

$dataSourceDefinition.WindowsCredentials	=	$false

#NOTE	this	is	SSRS	native	mode

#CreateDataSource	method	accepts	the	following	parameters:

#	1.	datasource	name

#	2.	parent	(data	folder)	–	must	already	exist

#	3.	overwrite

#	4.	data	source	definition

#	5.	properties

$dataSource	=	“Sample”

$parent	=	”/Data	Sources”

$overwrite	=	$true

$newDataSource	=	$proxy.CreateDataSource($dataSource,	$parent,	$overwrite,$dataSourceDefinition,	$null)

3.	 When	done,	open	your	Report	Manager	and	confirm	that	the	data	source	has	been
created:

How	it	works…
To	create	a	data	source	programmatically,	we	first	need	to	get	a	web	service	proxy:
$reportServerUri		=	“http://localhost/ReportServer/ReportService2010.asmx”

$proxy	=	New-WebServiceProxy	-Uri	$reportServerUri	-UseDefaultCredential

We	then	need	to	capture	the	automatically	generated	namespace.	We	will	use	this	in	later
steps:
$type	=	$Proxy.GetType().Namespace

We	then	need	to	create	a	DataSourceDefinition	object.	We	start	with	using	our
automatically	generated	namespace	to	help	us	create	a	new	DataSourceDefinition
object:
#create	a	DataSourceDefinition

$dataSourceDefinitionType	=	($type	+	’.DataSourceDefinition’)

$dataSourceDefinition	=	New-Object($dataSourceDefinitionType)

Note
Refer	to	the	How	it	works…	section	of	the	Creating	an	SSRS	folder	recipe	for	additional
details	on	automatically	generated	namespace	issues.

We	then	need	to	specify	the	properties	of	DataSourceDefinition:

	
CredentialRetrieval:	This	specifies	how	to	retrieve	credentials	when	Report	Server
needs	to	connect	to	the	data	source.	It	can	be	one	of	the	following:	None,	Prompt,
Integrated,	or	Store.
ConnectionString:	This	is	the	connection	string	to	the	data	source.
Extension:	This	is	the	data	source	extension	and	can	be	either:	SQL,	OLEDB,	ODBC,	or	a
custom	extension.

We	also	set	the	prompt	property	to	false	so	that	the	report	does	not	prompt	for	credentials
when	run,	and	set	WindowsCredentials	to	false	so	that	the	report	does	not	pass	credentials
as	Windows	credentials:
$dataSourceDefinition.CredentialRetrieval	=	“Integrated”

$dataSourceDefinition.ConnectString	=	“Data	Source=localhost;Initial	Catalog=AdventureWorks2014”

$dataSourceDefinition.extension	=	“SQL”

$dataSourceDefinition.enabled	=	$true

$dataSourceDefinition.Prompt	=	$null

$dataSourceDefinition.WindowsCredentials	=	$false

To	create	a	data	source	in	native	mode,	we	need	to	use	the	CreateDataSource	method,
which	accepts	five	parameters:

	
Data	source	name
Parent
Overwrite
Data	source	definition
Properties

The	code	is	as	follows:
$dataSource	=	“Sample”

$parent	=	”/Data	Sources”

$overwrite	=	$true

$newDataSource	=	$proxy.CreateDataSource($dataSource,	$parent,	$overwrite,$dataSourceDefinition,	$null)

There’s	more…
To	learn	more	about	the	ReportService.DataSourceDefinition	class,	visit
http://msdn.microsoft.com/en-us/library/reportservice2010.datasourcedefinition.aspx.

http://msdn.microsoft.com/en-us/library/reportservice2010.datasourcedefinition.aspx

See	also
	

The	Creating	an	SSRS	folder	recipe.
The	Changing	an	SSRS	report’s	data	source	reference	recipe.

Changing	an	SSRS	report’s	data	source	reference
In	this	recipe,	we	will	update	an	SSRS	report’s	data	source.

Getting	ready
In	this	recipe,	we	will	change	the	data	source	of	the	/Customer	Reports/Customer	Sales
report,	which	originally	uses	the	data	source	reference	/Data
Sources/AdventureWorks2014	to	point	to	/Data	Sources/Sample.

Alternatively,	pick	an	existing	report	in	your	environment	and	the	data	source	you	want
this	report	to	reference.	Note	the	names	and	path	to	these	items.

How	to	do	it…
Let’s	take	a	look	at	the	steps	to	change	an	SSRS	report’s	data	source:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

$reportServerUri		=	“http://localhost/ReportServer/ReportService2010.asmx”

$proxy	=	New-WebServiceProxy	-Uri	$reportServerUri	-

UseDefaultCredential

#get	autogenerated	namespace

$type	=	$proxy.GetType().Namespace

#specify	which	report’s	data	source	to	change

$reportPath	=	”/Customer	Reports/Customer	Sales”

#look	for	the	report	in	the	catalog	items	array

#note	we	are	using	PowerShell	V3	Where-Object	syntax

$report	=	$proxy.ListChildren(“/”,	$true)	|

										Where-Object	Path	-eq	$reportPath

#get	current	data	source	name

#this	needs	to	be	the	same	name	in	the	RDL

$dataSourceName		=	$($proxy.GetItemDataSources($report.Path)).Name

#specify	new	data	source	reference

$newDataSourcePath		=	”/Data	Sources/Sample”

#dynamically	create	data	types	based	on	the	new

#autogenerated	namespace

$dataSourceType	=	($type	+	’.DataSource’)

$numItems	=	1

$dataSourceArrayType	=	($type	+	’.DataSource[]’)

$dataSourceReferenceType	=	($type	+	’.DataSourceReference’)

#create	a	data	source	array	containing

#the	new	data	source	path

$dataSourceArray	=	New-Object	($datasourceArrayType)$numItems

$dataSourceArray[0]	=	New-Object	($dataSourceType)

$dataSourceArray[0].Name	=	$dataSourceName

$dataSourceArray[0].Item	=	New-Object	($dataSourceReferenceType)

$dataSourceArray[0].Item.Reference	=	$newDataSourcePath

#set	the	new	data	source

$proxy.SetItemDataSources($report.Path,	$dataSourceArray)

You	can	confirm	the	changes	by	opening	the	Report	Manager	and	opening	that	report’s
Data	Sources.	Ensure	that	the	data	source	reference	now	points	to	the	correct	path:

How	it	works…
In	order	to	change	a	report’s	data	source,	we	must	first	get	a	handle	to	this	report.

The	first	step	is	to	create	a	web	server	proxy:
$reportServerUri		=	“http://localhost/ReportServer/ReportService2010.asmx”

$proxy	=	New-WebServiceProxy	-Uri	$reportServerUri	-UseDefaultCredential

In	this	recipe,	we	will	also	create	a	few	ReportService2010	objects,	so	we	will	need	to
capture	the	dynamically	generated	namespace:
$type	=	$proxy.GetType().Namespace

Note
Refer	to	the	How	it	works…	section	of	the	Creating	an	SSRS	folder	recipe	for	additional
details	on	automatically	generated	namespace	issues.

We	then	need	to	get	a	handle	to	the	report.	In	order	to	do	this,	we	need	to	capture	all	the
Report	Server	objects	and	extract	the	report	that	matches	the	path	we	specified:
#look	for	the	report	in	the	catalog	items	array

#note	we	are	using	PowerShell	V3	Where-Object	syntax

$report	=	$proxy.ListChildren(“/”,	$true)	|

										Where-Object	Path	-eq	$reportPath

We	also	need	to	capture	the	report’s	current	data	source	name	using	the
GetItemDataSources	method	of	the	proxy	object.	We	need	to	keep	the	same	name,	even	if
we	change	the	data	source	path	it	references.

Note
Note	that	paths,	report	names,	data	source	names,	and	references	are	case	sensitive.

In	the	following	code,	we	are	capturing	the	current	data	source	name	from	the	current
report’s	data	source:
#get	current	data	source	name

#this	needs	to	be	the	same	name	in	the	RDL

$dataSourceName		=	$($proxy.GetItemDataSources($report.Path)).Name	

#specify	new	data	source	reference

$newDataSourcePath		=	”/Data	Sources/Sample”

The	next	step	is	to	create	a	data	source	array	(DataSource[])	object.	As	we	have	a
dynamically	generated	namespace,	we	must	first	compose	the	data	types	dynamically
based	on	the	namespace	stored	in	the	$type	variable:
#dynamically	create	data	types	based	on	the	new

#autogenerated	namespace

$dataSourceType	=	($type	+	’.DataSource’)

$numItems	=	1

$dataSourceArrayType	=	($type	+	’.DataSource[]’)

$dataSourceReferenceType	=	($type	+	’.DataSourceReference’)

To	create	a	data	source	array,	we	use	the	new	types:
#create	a	data	source	array	containing

#the	new	data	source	path

$dataSourceArray	=	New-Object	($datasourceArrayType)$numItems

$dataSourceArray[0]	=	New-Object	($dataSourceType)

$dataSourceArray[0].Name	=	$dataSourceName		

$dataSourceArray[0].Item	=	New-Object	($dataSourceReferenceType)

$dataSourceArray[0].Item.Reference	=	$newDataSourcePath

We	are	now	ready	to	call	the	SetItemDataSources	method	of	the	proxy	object	to	change
our	report’s	data	source	reference.	This	method	accepts	a	catalog	item	name	path	and	data
source	array:
$proxy.SetItemDataSources($report.Path,	$dataSourceArray)

There’s	more…
To	learn	more	about	the	SetItemDataSources	method,	check	out
http://msdn.microsoft.com/en-
us/library/reportservice2010.reportingservice2010.setitemdatasources.aspx.

http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.setitemdatasources.aspx

See	also
	

The	Creating	an	SSRS	folder	recipe.
The	Creating	an	SSRS	data	source	recipe.

Uploading	an	SSRS	report	to	Report	Manager
In	this	recipe,	we	will	upload	an	SSRS	report	(.rdl	file)	to	the	Report	Manager.

Getting	ready
You	can	use	the	sample	RDL	file	that	comes	with	this	cookbook	and	save	it	in	the	C:\SSRS
folder.	The	sample	RDL	file	uses	the	AdventureWorks2014	sample	database.	Alternatively,
use	an	RDL	file	that	is	readily	available	to	you.	Make	sure	to	update	the	RDL	file
reference	in	the	script	to	reflect	where	your	report	file	is	located.

How	to	do	it…
These	are	the	steps	required	to	upload	an	RDL	file	to	the	Report	Manager:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

$reportServerUri		=	“http://localhost/ReportServer/ReportService2010.asmx”

$proxy	=	New-WebServiceProxy	-Uri	$reportServerUri	-

UseDefaultCredential	

$type	=	$proxy.GetType().Namespace

#specify	where	the	RDL	file	is	

$rdl	=	“C:\SSRS\Customer	Contact	List.rdl”

#extract	report	name	from	the	RDL	file

$reportName	=		[System.IO.Path]::GetFileNameWithoutExtension($rdl)

#get	contents	of	the	RDL

$byteArray	=	Get-Content	$rdl	-Encoding	Byte

#The	fully	qualified	URL	for	the	parent	folder	that	will	contain	the	item.

$parent	=	”/Customer	Reports”

$overwrite	=	$true

$warnings	=	$null

#create	report

$report	=	$proxy.CreateCatalogItem(“Report”,	$reportName,	$parent,	$overwrite,	$byteArray,	$null,	[ref]$warnings)

#data	source	name	must	match	what’s	in	the	RDL

$dataSourceName	=	“DS_CUSTOMERLIST”

#data	source	path	should	match	what’s	in	the	report	server

$dataSourcePath	=	”/Data	Sources/AdventureWorks2014”

#when	we	upload	the	report,	if	the	

#data	source	from	the	source	is	different

#or	has	a	different	path	from	what’s	in	the

#report	manager,	the	data	source	will	be	broken

#and	we	will	need	to	update

#create	our	data	type	references

$dataSourceArrayType	=	($type	+	’.DataSource[]’)

$dataSourceType	=	($type	+	’.DataSource’)

$dataSourceReferenceType	=	($type	+	’.DataSourceReference’)

#create	data	source	array

$numDataSources	=	1

$dataSourceArray	=	New-Object	($dataSourceArrayType)$numDataSources

$dataSourceReference	=	New-Object	($dataSourceReferenceType)

#update	data	source

$dataSourceArray[0]	=	New-Object	($dataSourceType)

$dataSourceArray[0].Name	=	$dataSourceName

$dataSourceArray[0].Item	=	New-Object	($dataSourceReferenceType)

$dataSourcearray[0].Item.Reference	=	$dataSourcePath

$proxy.SetItemDataSources($report.Path,	$dataSourceArray)

How	it	works…
First,	we	create	a	web	service	proxy	object:
$reportServerUri		=	“http://localhost/ReportServer/ReportService2010.asmx”

$proxy	=	New-WebServiceProxy	-Uri	$reportServerUri	-UseDefaultCredential

$type	=	$Proxy.GetType().Namespace

We	then	need	to	specify	the	path	to	the	RDL	file.	In	this	recipe,	we	will	keep	the	filename
the	same	as	the	RDL	filename,	without	the	extension:
#specify	where	the	RDL	file	is

$rdl	=	“C:\SSRS\Customer	Contact	List.rdl”

#extract	report	name	from	the	RDL	file

$reportName	=		[System.IO.Path]::GetFileNameWithoutExtension($rdl)

We	need	to	extract	the	contents	of	the	RDL	file	to	create	the	report	programmatically.	To
do	so,	we	will	use	the	Get-Content	cmdlet,	but	using	the	–Encoding	switch	will	ensure
that	we	preserve	the	encoding	used	in	the	report:
#get	contents	of	the	RDL

$byteArray	=	Get-Content	$rdl	-Encoding	Byte

To	create	the	report,	we	need	to	use	the	CreateCatalogItem	method	of	the	proxy	object
that	accepts	the	catalog	item	type,	report	name,	parent,	overwrite	Boolean	flag,	contents	of
the	RDL	file,	and	warnings	variable:
#The	fully	qualified	URL	for	the	parent	folder	that	will	contain	#the	item.

$parent	=	”/Customer	Reports”

$overwrite	=	$true

$warnings	=	$null

#create	report

$report	=	$proxy.CreateCatalogItem(“Report”,	$reportName,	$parent,	$overwrite,	$byteArray,	$null,	[ref]$warnings)

The	supported	CatalogItem	types	in	native	mode	are	as	follows:

	
Report

DataSet

Resource

DataSource

Model

At	this	point,	the	report	is	already	uploaded	to	the	server.	However,	if	the	data	source	path
stored	in	the	report	is	different	from	where	the	data	source	is	located	in	the	server,	the
report	will	still	not	be	usable.

To	change	the	data	source,	we	must	create	a	DataSource	array	and	change	only	the
DataSourceReference.	We	change	the	report’s	data	source	reference	using	the
SetItemDataSources	method	of	the	proxy	object:
#data	source	name	must	match	what’s	in	the	RDL

$dataSourceName	=	“DS_CUSTOMERLIST”

#data	source	path	should	match	what’s	in	the	report	server

$dataSourcePath	=	”/Data	Sources/AdventureWorks2014”

#when	we	upload	the	report,	if	the

#data	source	from	the	source	is	different

#or	has	a	different	path	from	what’s	in	the

#report	manager,	the	data	source	will	be	broken

#and	we	will	need	to	update

#create	our	data	type	references

$dataSourceArrayType	=	($type	+	’.DataSource[]’)

$dataSourceType	=	($type	+	’.DataSource’)

$dataSourceReferenceType	=	($type	+	’.DataSourceReference’)

#create	data	source	array

$numDataSources	=	1

$dataSourceArray	=	New-Object	($dataSourceArrayType)$numDataSources

$dataSourceReference	=	New-Object	($dataSourceReferenceType)

#update	data	source

$dataSourceArray[0]	=	New-Object	($dataSourceType)

$dataSourceArray[0].Name	=	$dataSourceName

$dataSourceArray[0].Item	=	New-Object	($dataSourceReferenceType)

$dataSourcearray[0].Item.Reference	=	$dataSourcePath

$proxy.SetItemDataSources($report.Path,	$dataSourceArray)

Note
Refer	to	the	Changing	an	SSRS	report’s	data	source	reference	recipe	for	more	details	on
the	steps.

There’s	more…
Check	out	more	information	on	the	CreateCatalogItem	method	at
http://msdn.microsoft.com/en-
us/library/reportservice2010.reportingservice2010.createcatalogitem.aspx.

http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.createcatalogitem.aspx

See	also
	

The	Using	ReportViewer	to	view	your	SSRS	report	recipe.
The	Downloading	an	SSRS	report	in	Excel	and	as	aPDF	recipe.

Downloading	all	SSRS	report	RDL	files
This	recipe	shows	how	you	can	download	all	RDL	files	from	your	Report	Server.

Getting	ready
In	this	recipe,	we	will	download	all	RDL	files	from	the	SSRS	Report	Server	into	C:\SSRS\
in	a	subfolder	structure	that	mimics	the	folder	structure	in	the	Report	Server.

Identify	your	SSRS	2012	Report	Server	URL.	We	need	to	reference	the
ReportService2010	web	service,	and	you	can	reference	it	using	the	following	command:
<ReportServer	URL>/ReportService2010.asmx

How	to	do	it…
Let’s	explore	the	code	required	to	download	the	RDL	files	from	your	Report	Server:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

$VerbosePreference	=	“Continue”

$reportServerUri		=	“http://localhost/ReportServer/ReportService2010.asmx”

$proxy	=	New-WebServiceProxy	-Uri	$reportServerUri	-

UseDefaultCredential

$destinationFolder	=	“C:\SSRS"

#create	a	new	folder	where	we	will	save	the	files

#we’ll	use	a	time-stamped	folder,	format	similar	

#to	2012-Mar-28-0850PM

$ts	=	Get-Date	-format	“yyyy-MMM-dd-hhmmtt”

$folderName	=	“RDL	Files	$($ts)”

$fullFolderName	=	Join-Path	-Path	”$($destinationFolder)”	-

ChildPath	$folderName

#If	the	path	exists,	will	error	silently	and	continue

New-Item	-ItemType	Directory	-Path	$fullFolderName	-

ErrorAction	SilentlyContinue

#get	all	reports

#second	parameter	means	recursive

#CHANGE	ALERT:	

#in	ReportingService2005	-	Type

#in	ReportingService2010	-	TypeName

$proxy.ListChildren(“/”,	$true)	|	

Select-Object	TypeName,	Path,	ID,	Name	|	

Where-Object	TypeName	-eq	“Report”	|

ForEach-Object	{

				$item	=	$_

				[string]$path	=	$item.Path

				$pathItems=$path.Split(“/”)	

				#get	path	name	we	will	mirror	structure	

				#when	we	save	the	file

				$reportName	=	$pathitems[$pathItems.Count	-1]

				$subfolderName	=	$path.Trim($reportName)

				$fullSubfolderName	=	Join-Path	-Path	”$($fullFolderName)”	-

ChildPath	$subfolderName

				#If	the	path	exists,	will	error	silently	and	continue

				New-Item	-ItemType	directory	-Path	$fullSubfolderName	-

ErrorAction	SilentlyContinue

				#CHANGE	ALERT:	

				#in	ReportingService2005	-	GetReportDefinition

				#in	ReportingService2010	-	GetItemDefinition

				#use	$Proxy	|	gm	to	learn	more

				[byte[]]	$reportDefinition	=	$proxy.GetItemDefinition($item.Path)	

				

				#note	here	we’re	forcing	the	actual	definition	to	be	

				#stored	as	a	byte	array

				#if	you	take	out	the	@()	from	the	

				#MemoryStream	constructor,	

				#you’ll	get	an	error

				[System.IO.MemoryStream]	$memStream	=	New-

Object	System.IO.MemoryStream(@(,$reportDefinition))

				#save	the	XML	file	

				$rdlFile	=	New-Object	System.Xml.XmlDocument

				$rdlFile.Load($memStream)	|	Out-Null

				

				$fullReportFileName	=	”$($fullSubfolderName)$($item.Name).rdl”

				Write-Verbose	“Saving	$($fullReportFileName)”

				$rdlFile.Save($fullReportFileName)

}

Write-Verbose	“Done	downloading	your	RDL	files	to		$($fullFolderName)”

$VerbosePreference	=	“SilentlyContinue”

How	it	works…
This	recipe	will	recreate	the	entire	folder	structure	of	the	Report	Manager	and	save	the
appropriate	RDL	files	in	their	respective	folders.

To	do	this,	we	first	create	a	proxy	to	the	ReportService2010	web	service:
$reportServerUri		=	“http://localhost/ReportServer/ReportService2010.asmx”

$proxy	=	New-WebServiceProxy	-Uri	$reportServerUri	-UseDefaultCredential

We	also	need	to	specify	where	we	want	to	store	the	downloaded	RDL	files:
$destinationFolder	=	“C:\SSRS"

We	also	need	to	create	a	new	timestamped	folder	where	we	will	store	the	RDL	files:
$ts	=	Get-Date	-format	“yyyy-MMM-dd-hhmmtt”

$folderName	=	“RDL	Files	$($ts)”

$fullFolderName	=	Join-Path	-Path	”$($destinationFolder)”	-

ChildPath	$folderName

We	then	get	all	report	items.	Note	that	we	have	to	filter	these	to	return	only	items	with
TypeName	=	Report:
$proxy.ListChildren(“/”,	$true)	|	

Select-Object	TypeName,	Path,	ID,	Name	|	

Where-Object	TypeName	-eq	“Report”	|

ForEach-Object	{

We	can	pass	all	the	Report	items	to	the	Foreach-Object	cmdlet	so	that	we	can	download
each	RDL	file	from	Report	Manager.	For	each	report,	we	need	to	investigate	the	path.	If
the	path	contains	a	series	of	folders,	we	need	to	recreate	these	folders	in	our	destination
folder:
				$item	=	$_

				[string]$path	=	$item.Path

				$pathItems=$path.Split(“/”)	

				#get	path	name	we	will	mirror	structure	

				#when	we	save	the	file

				$reportName	=	$pathitems[$pathItems.Count	-1]

				$subfolderName	=	$path.Trim($reportName)

				$fullSubfolderName	=	Join-Path	-Path	”$($fullFolderName)”	-

ChildPath	$subfolderName

				#If	the	path	exists,	will	error	silently	and	continue

				New-Item	-ItemType	directory	-Path	$fullSubfolderName	-

ErrorAction	SilentlyContinue

Once	we	have	created	the	folder	structure,	we	can	get	the	report	definition	using	the
GetItemDefinition	method	of	the	proxy	object.	This	needs	to	be	stored	in	a	byte	array	in
order	to	ensure	that	we	store	unaltered,	raw	bytes	of	the	report:
				#CHANGE	ALERT:	

				#in	ReportingService2005	-	GetReportDefinition

				#in	ReportingService2010	-	GetItemDefinition

				#use	$Proxy	|	gm	to	learn	more

				[byte[]]	$reportDefinition	=	$proxy.GetItemDefinition($item.Path)	

				

				#note	here	we’re	forcing	the	actual	definition	to	be	

				#stored	as	a	byte	array

				#if	you	take	out	the	@()	from	the	

				#MemoryStream	constructor,	

				#you’ll	get	an	error

				[System.IO.MemoryStream]	$memStream	=	New-

Object	System.IO.MemoryStream(@(,$reportDefinition))

We	can	then	store	the	memory	stream	in	an	XmlDocument	object,	which	in	turn	can	save
the	file	back	in	the	filesystem,	if	given	a	complete	file	path	and	name:
				#save	the	XML	file	

				$rdlFile	=	New-Object	System.Xml.XmlDocument

				$rdlFile.Load($memStream)	|	Out-Null

				

				$fullReportFileName	=	”$($fullSubfolderName)$($item.Name).rdl”

				Write-Verbose	“Saving	$($fullReportFileName)”

				$rdlFile.Save($fullReportFileName)

The	script	will	display	all	the	reports	it	is	downloading	and	provide	a	message	once	all
downloads	are	complete:

There’s	more…
Check	out	these	MSDN	articles:

	
The	GetItemDefinition	method,	which	is	available	at
http://msdn.microsoft.com/en-
us/library/reportservice2010.reportingservice2010.getitemdefinition.aspx.
The	MemoryStream	class,	which	is	available	at	http://msdn.microsoft.com/en-
us/library/system.io.memorystream.aspx.

http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.getitemdefinition.aspx
http://msdn.microsoft.com/en-us/library/system.io.memorystream.aspx

See	also
	

The	Using	ReportViewer	to	view	your	SSRS	report	recipe.
The	Downloading	an	SSRS	report	in	Excel	and	as	a	PDF	recipe.

Adding	a	user	with	a	role	to	SSRS	report
In	this	recipe,	we	will	add	a	user	with	a	few	roles	to	SSRS.

Getting	ready
In	this	recipe,	we	will	add	QUERYWORKS\tstark	as	a	browser	and	Content	Manager	to	the
customer	list	report.

For	your	environment,	you	can	identify	a	user	you	want	to	add	to	an	existing	report	and
which	roles	you	want	to	assign	to	them.

How	to	do	it…
Let’s	explore	the	code	required	to	add	a	user	with	a	role	to	SSRS:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

$reportServerUri		=	“http://localhost/ReportServer/ReportService2010.asmx”

$proxy	=	New-WebServiceProxy	-Uri	$reportServerUri	-

UseDefaultCredential

$type	=	$Proxy.GetType().Namespace

$itemPath	=	”/Customer	Reports/Customer	List”

#this	will	hold	all	the	group/users	for	a	report

$newPolicies	=	@()

$inherit	=	$null

#list	current	report	users

$proxy.GetPolicies($itemPath,	[ref]$inherit)

	

#NOTE	that	when	we	change	policies,	it	will	

#automatically	break	inheritance

#ALSO	NOTE	that	when	you	programmatically	mess	

#with	policies,	you	will	need	to	“re-add”	users	that	were	

#already	there,	if	you	want	them	to	keep	on	having	access

#to	your	reports	

#this	gets	all	users	who	currently	have	

#access	to	this	report

#need	pass	$inherit	by	reference

$proxy.GetPolicies($itemPath,	[ref]$inherit)	|

ForEach-Object	{

				#re-add	existing	policies

		$newPolicies	+=	$_

}

$policyDataType	=	($type	+	’.Policy’)

$newPolicy	=	New-Object	($policyDataType)

#use	a	domain	account	that	exists	in	your	system

$newPolicy.GroupUserName	=	“QUERYWORKS\tstark”	

#alternatively	you	can	use:

#$newPolicy.GroupUserName	=	$env:username	

#a	policy	must	have	roles

$roleDataType	=	($type	+	’.Role’)

$newRole	=	New-Object	($roleDataType)

$newRole.Name	=	“Browser”

	

#add	the	role	to	the	policy

$newPolicy.roles	+=	$newRole

#a	policy	must	have	roles

$roleDataType	=	($type	+	’.Role’)

$newRole	=	New-Object	($roleDataType)

$newRole.Name	=	“Content	Manager”

	

#add	the	role	to	the	policy

$newPolicy.roles	+=	$newRole

	

#check	if	this	user	already	exists	in	your	policy	array

#if	user	does	not	exist	yet	with	current	role,	add	policy

if	($($newPolicies	|	

						ForEach-Object	{$_.GroupUserName})	-

notcontains	$newPolicy.GroupUserName)

{

		$newPolicies	+=	$newPolicy

}

#set	the	policies

$proxy.SetPolicies($itemPath,$newPolicies)

#list	new	report	users

$proxy.GetPolicies($itemPath,	[ref]$inherit)

When	done,	check	the	report	that	you	just	added	a	user	to,	from	Report	Manager.	Go	to	its
Properties	and	take	a	look	at	its	security	settings.	Note	that	the	user	has	been	added,	but
inheritance	is	broken,	as	illustrated	by	the	checkboxes,	and	the	extra	menu	item	called
Revert	to	Parent	Security	has	been	added.

How	it	works…
When	adding	or	changing	users	in	an	SSRS	report	programmatically,	we	will	need	to	get	a
handle	to	the	whole	policy	object,	add	or	change	the	users	or	roles,	and	then	reapply	the
policy.	Because	this	is	manually	changing	a	single	item’s	security,	inheritance	is
automatically	broken	for	this	item.

First,	we	need	to	create	a	proxy	and	extract	the	dynamically	created	namespace:
$reportServerUri		=	“http://localhost/ReportServer/ReportService2010.asmx”

$proxy	=	New-WebServiceProxy	-Uri	$reportServerUri	-UseDefaultCredential

$type	=	$proxy.GetType().Namespace

Note
Refer	to	the	How	it	works…	section	of	the	Creating	an	SSRS	folder	recipe	for	additional
details	on	automatically	generated	namespace	issues.

We	also	need	to	specify	the	path	of	the	report	we	want	to	change:
$itemPath	=	”/Customer	Reports/Customer	List”

To	change	policies,	we	will	need	to	resave	existing	policies.	We	will	do	this	by	retrieving
the	current	users	and	roles	using	the	GetPolicies	method	of	the	proxy	object	and	saving
them	to	an	array.	The	$inherit	variable	will	hold	whether	that	item	inherits	its	security
policy	from	its	parent	or	not:
$newPolicies	=	@()

$inherit	=	$null

	

#this	gets	all	users	who	currently	have	

#access	to	this	report

#need	pass	$inherit	by	reference

$proxy.GetPolicies($itemPath,	[ref]$inherit)	|

ForEach-Object	{

				#re-add	existing	policies

		$newPolicies	+=	$_

}

We	then	need	to	specify	the	account	we	are	adding.	This	needs	to	be	held	in	a
ReportingService2010.Policy	object	and	can	either	be	a	user	or	group	name:
$policyDataType	=	($type	+	’.Policy’)

$newPolicy	=	New-Object	($policyDataType)

$newPolicy.GroupUserName	=	“QUERYWORKS\tstark”	

Next,	we	add	the	roles	that	will	be	associated	with	this	group	or	user:
#a	policy	must	have	roles

$roleDataType	=	($type	+	’.Role’)

$newRole	=	New-Object	($roleDataType)

$newRole.Name	=	“Browser”

	

#add	the	role	to	the	policy

$newPolicy.roles	+=	$newRole

#a	policy	must	have	roles

$roleDataType	=	($type	+	’.Role’)

$newRole	=	New-Object	($roleDataType)

$newRole.Name	=	“Content	Manager”

	

#add	the	role	to	the	policy

$newPolicy.roles	+=	$newRole

Once	the	new	account	and	roles	are	in	place,	we	need	to	add	it	to	our	policy	array,	which
contains	all	existing	policies	for	the	item:
#check	if	this	user	already	exists	in	your	policy	array

#if	user	does	not	exist	yet	with	current	role,	add	policy

if	($($newPolicies	|	ForEach-Object	{$_.GroupUserName})	-

notcontains	$newPolicy.GroupUserName)

{

		$newPolicies	+=	$newPolicy

}

When	everything	is	set,	we	can	call	the	SetPolicies	method	of	the	proxy	object:
#set	the	policies

$proxy.SetPolicies($itemPath,$newPolicies)

There’s	more…
Check	out	these	MSDN	articles:

	
The	GetPolicies	method,	which	is	available	at	http://msdn.microsoft.com/en-
us/library/reportservice2010.reportingservice2010.getpolicies.
The	SetPolicies	method,	which	is	available	at	http://msdn.microsoft.com/en-
us/library/reportservice2010.reportingservice2010.setpolicies.
The	InheritParentSecurity	method,	which	is	available	at
http://msdn.microsoft.com/en-
us/library/reportservice2010.reportingservice2010.inheritparentsecurity.

http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.getpolicies
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.setpolicies
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.inheritparentsecurity

Creating	folders	in	an	SSIS	package	store	and
MSDB
In	this	recipe,	we	will	see	how	to	create	a	folder	in	the	SSIS	instance	and	package	store.

Getting	ready
For	this	recipe,	we	will	create	a	timestamped	folder	prefixed	with	the	word	QueryWorks.
Feel	free	to	replace	it	with	your	folder	name	by	changing	the	$newFolder	variable.

How	to	do	it…
These	are	the	steps	required	to	create	folders	in	the	package	store	and	SSIS	instance:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	ManagedDTS	assembly	as	follows:

#add	ManagedDTS	assembly

Add-Type	-

AssemblyName	“Microsoft.SqlServer.ManagedDTS,	Version=12.0.0.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”

3.	 Add	the	following	script	and	run	it:
$server	=	“localhost”

#create	new	app

$app	=	New-Object		“Microsoft.SqlServer.Dts.Runtime.Application”

$ts	=	Get-Date	-format	“yyyy-MMM-dd-hhmmtt”

$newFolder	=	“QueryWorks	File	System	$($ts)”

#folder	in	package	store

#will	appear	under	“Stored	Packages	>	File	System”

if	(!$app.FolderExistsOnDtsServer(“\File	System\$($newFolder)”,	$server))

{

				$app.CreateFolderOnDtsServer(“\File	System",	$newFolder,	$server)

}

#folder	in	SSIS	instance	

#will	appear	under	“Stored	Packages	>	MSDB”

$newFolder	=	“QueryWorks	SSIS	$($ts)”

if	(!$app.FolderExistsOnSqlServer($newFolder,	$server,	$null,	$null))

{

				$app.CreateFolderOnSqlServer(“",	$newFolder,	$server,	$null,	$null)

}

When	the	script	finishes	the	execution,	connect	to	the	Integration	Services	instance.
Expand	both	the	File	System	and	MSDB	nodes	and	confirm	that	the	folders	have	been
created,	as	shown	in	the	following	screenshot:

How	it	works…
The	Microsoft.SqlServer.ManagedDTS	assembly	exposes	SSIS	2005	and	2008	objects
for	programmatic	access.	Although	this	can	be	considered	“legacy”	SSIS	when	SQL
Server	2012	was	introduced,	this	method	is	still	supported	and	will	still	be	used	by
developers.

To	create	folders	in	the	package	store	and	SSIS	instance,	we	must	first	load	the
ManagedDTS	assembly.	We	need	to	do	this	explicitly	because	this	assembly	does	not	come
with	the	SQLPS	module:
#add	ManagedDTS	assembly

Add-Type	-

AssemblyName	“Microsoft.SqlServer.ManagedDTS,	Version=12.0.0.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”

We	then	need	to	create	an	application	object,	which	contains	the	methods	to	create	the
folders:
$server	=	“localhost”

#create	new	app

$app	=	New-Object	(“Microsoft.SqlServer.Dts.Runtime.Application”)

To	create	the	folder	in	the	SSIS	package	store,	we	first	check	whether	the	folder	is	already
created.	If	not,	we	create	the	folder	using	the	CreateFolderOnDtsServer	method	of	the
DTS	Application	object,	which	accepts	the	parent	path,	new	folder	name,	and	server
name:
#folder	in	package	store

#will	appear	under	“Stored	Packages	>	File	System”

if	(!$app.FolderExistsOnDtsServer(“\File	System\$($newFolder)”,	$server))

{

				$app.CreateFolderOnDtsServer(“\File	System",	$newFolder,	$server)

}

Creating	the	folder	in	the	SSIS	instance	is	very	similar	to	creating	folders	in	the	package
store.	However,	the	methods	to	check	and	create	the	instance	folders	accept	more
parameters.	Both	the	FolderExistsOnSqlServer	and	CreateFolderOnSqlServer	methods
of	the	DTS	application	object	accept	two	extra	parameters	for	the	username	and	password
used	to	authenticate	to	SQL	Server:
#folder	in	SSIS	instance	

#will	appear	under	“Stored	Packages	>	MSDB”

$newFolder	=	“QueryWorks	SSIS	$($ts)”

if	(!$app.FolderExistsOnSqlServer($newFolder,	$server,	$null,	$null))

{

				$app.CreateFolderOnSqlServer(“",	$newFolder,	$server,	$null,	$null)

}

There’s	more…
To	learn	more	about	the	Application	class,	visit	http://msdn.microsoft.com/en-
us/library/ms211665.

http://msdn.microsoft.com/en-us/library/ms211665

See	also
The	Creating	an	SSISDB	folder	recipe.

Deploying	an	SSIS	package	to	the	package	store
In	this	recipe,	we	will	deploy	an	SSIS	package	(.dtsx)	to	the	SSIS	package	store.

Getting	ready
In	this	recipe,	we	will	use	a	Customer	Package.dtsx	package	saved	in	C:\SSIS	and
deploy	this	to	our	SSIS	instance.	The	package	will	be	saved	in	the	\File
System\QueryWorks	package	folder.

To	follow	this	recipe,	use	a	.dtsx	package	that	is	readily	available	in	your	environment
and	decide	where	you	want	it	deployed.

How	to	do	it…
Let’s	explore	the	code	required	to	deploy	an	SSIS	.dtsx	file:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	ManagedDTS	assembly	as	follows:

#add	ManagedDTS	assembly

Add-Type	-

AssemblyName	“Microsoft.SqlServer.ManagedDTS,	Version=12.0.0.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”

3.	 Add	the	following	script	and	run	it:
$server	=	“localhost”

#create	new	app

$app	=	New-Object	“Microsoft.SqlServer.Dts.Runtime.Application”

#specify	package	to	be	deployed

$dtsx	=	“C:\SSIS\Customer	Package.dtsx”

$package	=	$app.LoadPackage($dtsx,	$null)

#where	are	we	going	to	deploy?

$SSISPackageStorePath	=	”\File	System\QueryWorks”

$destinationName	=	”$($SSISPackageStorePath)\$($package.Name)”

#save	to	the	package	store

$app.SaveToDtsServer($package,	$events,	$destinationName,	$server)

When	done,	log	in	to	the	SSIS	instance	in	Management	Studio	and	confirm	that	the
package	has	been	deployed:

How	it	works…
Deploying	a	.dtsx	file	to	the	package	store	in	the	filesystem,	or	the	msdb	database,	is
considered	a	“legacy”	way	of	deploying	SSIS	packages	in	SQL	Server	2012.	This	is	now
referred	to	as	a	Package	Deployment	model.

Note
Refer	to	the	Deploying	an	ISPAC	file	to	SSISDB	recipe	for	more	details	on	deploying	SSIS
Projects	in	SQL	Server	2014.

Although	this	may	be	considered	“legacy”	already,	this	may	still	be	the	preferred	way	to
deploy	packages	in	some	environments	for	a	while.

To	deploy	programmatically,	we	must	first	create	a	handle	to	the	ManagedDTS	assembly:
#add	ManagedDTS	assembly

Add-Type	-

AssemblyName	“Microsoft.SqlServer.ManagedDTS,	Version=12.0.0.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”

After	loading	the	ManagedDTS	object,	we	need	to	create	an	Application	object:
$server	=	“localhost”

#create	new	app

$app	=	New-Object	“Microsoft.SqlServer.Dts.Runtime.Application”

We	then	need	to	load	the	SSIS	.dtsx	package	into	a	variable	using	the	LoadPackage
method	of	the	DTS	Application	object.	We	will	load	the	package	from	the	C:\SSIS	folder
where	we	saved	the	Customer	Package.dtsx:
#deploy	a	package

$dtsx	=	“C:\SSIS\Customer	Package.dtsx”

$package	=	$app.LoadPackage($dtsx,	$null)

We	also	need	to	specify	where	the	package	is	going	to	be	deployed.	If	the	package	is	to	be
deployed	to	the	filesystem,	we	prefix	the	path	with	\File	System\;	if	to	the	database,	we
prefix	\MSDB\:
#where	are	we	going	to	deploy?

$SSISPackageStorePath	=	”\File	System\QueryWorks”

$destinationName	=	”$($SSISPackageStorePath)\$($package.Name)”

#save	to	the	package	store

$app.SaveToDtsServer($package,	$events,	$destinationName,	$server)

If	you	want	to	save	it	in	the	MSDB	folder,	you	will	have	to	use	the	SaveToSQLServer
method	instead	of	the	SaveToDtsServer	method.

There’s	more…
Check	out	the	Application.LoadPackage	method	documentation	from	MSDN	at
http://msdn.microsoft.com/en-us/library/ms188550.aspx.

http://msdn.microsoft.com/en-us/library/ms188550.aspx

See	also
The	Deploying	an	ISPAC	file	to	SSISDB	recipe.

Executing	an	SSIS	package	stored	in	a	package
store	or	filesystem
In	this	recipe,	we	will	execute	an	SSIS	package	using	PowerShell.

Getting	ready
In	this	recipe,	we	will	execute	the	Customer	Package,	which	is	saved	in	the	package	store,
and	we	will	also	execute	the	C:\SSIS\SamplePackage.dtsx	file	directly	from	the
filesystem.

Alternatively,	you	can	locate	an	available	SSIS	package	in	your	system	that	you	want	to
execute	instead.	Identify	whether	this	package	is	stored	in	the	filesystem	or	in	the	SSIS
package	store.

How	to	do	it…
Let’s	explore	the	code	required	to	execute	an	SSIS	package	programmatically	using
PowerShell:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	ManagedDTS	assembly	as	follows:

#add	ManagedDTS	assembly

Add-Type	-

AssemblyName	“Microsoft.SqlServer.ManagedDTS,	Version=12.0.0.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”

3.	 Add	the	following	script	and	run	it:
$server	=	“localhost”

#create	new	app	we’ll	use	for	SSIS

$app	=	New-Object	“Microsoft.SqlServer.Dts.Runtime.Application”

#execute	package	in	SSIS	Package	Store

$packagePath	=	”\File	System\QueryWorks\Customer	Package”

$package	=	$app.LoadFromDtsServer($packagePath,	$server,$null)

$package.Execute()

#execute	package	saved	in	filesystem

$packagePath	=	“C:\SSIS\Customer	Package.dtsx”

$package	=	$app.LoadPackage($packagePath,	$null)

$package.Execute()					

How	it	works…
In	SQL	Server	2012,	SSIS	packages	are	deployed	with	their	corresponding	parameters	and
environments	to	the	SSISDB	catalog.	SQL	Server	2012	and	2014	still	support	the	“legacy”
way	of	storing	packages,	which	is	through	the	filesystem,	package	store,	or	MSDB.

The	default	package	store	is	in	<SQL	Server	Install	Directory>\120\DTS\Packages.

The	first	step	is	to	load	the	ManagedDTS	assembly	and	create	an	Application	object:
#add	ManagedDTS	assembly

Add-Type	-

AssemblyName	“Microsoft.SqlServer.ManagedDTS,	Version=12.0.0.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”

#create	new	app	we’ll	use	for	SSIS

$app	=	New-Object	“Microsoft.SqlServer.Dts.Runtime.Application”

To	load	a	package	stored	in	the	package	store,	we	need	to	use	the	LoadFromDtsServer
method	of	the	DTS	Application	object	and	supply	it	with	three	parameters:	the	path	to	the
package	relative	to	the	filesystem,	server	name,	and	a	third	parameter	for	events,	which	we
will	leave	as	null:
$packagePath	=	”\File	System\QueryWorks\Customer	Package”

$package	=	$app.LoadFromDtsServer($packagePath,	$server,$null)

If	a	package	is	stored	in	the	filesystem,	we	have	to	use	the	LoadPackage	method	of	the	DTS
Application	object	and	pass	the	path	of	the	package	to	it:
$packagePath	=	“C:\SSIS\Customer	Package.dtsx”

$package	=	$app.LoadPackage($packagePath,	$null)

If	you	still	have	packages	deployed	in	MSDB,	you	can	also	execute	these	packages	using
the	LoadFromSqlServer	method	of	the	DTS	Application	object:
$packagePath	=	”\MSDB\SamplePackage”

$package	=	$app.LoadFromSqlServer($packagePath,	$server,	$null,	$null,	$null)

$package.Execute()

There’s	more…
Before	a	package	can	be	executed,	it	must	first	be	loaded.	Check	out	different	methods	to
load	an	SSIS	package:

	
The	LoadFromSqlServer	Method	can	be	found	at	http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.dts.runtime.application.loadfromsqlserver.aspx.
The	LoadFromDtsServer	Method	can	be	found	at	http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.dts.runtime.application.loadfromdtsserver.aspx.
The	LoadPackage	Method	can	be	found	at	http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.dts.runtime.application.loadpackage.aspx.

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.dts.runtime.application.loadfromsqlserver.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.dts.runtime.application.loadfromdtsserver.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.dts.runtime.application.loadpackage.aspx

See	also
The	Executing	an	SSIS	package	stored	in	SSISDB	recipe.

Downloading	an	SSIS	package	to	a	file
This	recipe	will	download	an	SSIS	package	back	to	a	.dtsx	file.

Getting	ready
Locate	a	package	stored	in	the	package	store	that	you	want	to	download	to	the	filesystem.
Note	the	path	to	this	package.

How	to	do	it…
These	are	the	steps	required	to	download	an	SSIS	package:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	ManagedDTS	assembly	as	follows:

#add	ManagedDTS	assembly

Add-Type	-

AssemblyName	“Microsoft.SqlServer.ManagedDTS,	Version=12.0.0.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”

3.	 Add	the	following	script	and	run	it:
$server	=	“localhost”

#create	new	app

$app	=	New-Object	“Microsoft.SqlServer.Dts.Runtime.Application”

$timestamp	=	Get-Date	-format	“yyyy-MMM-dd-hhmmtt”

$destinationFolder	=	“C:\SSIS\SSIS	$($timestamp)”

#If	the	path	exists,	will	error	silently	and	continue

New-Item	-ItemType	Directory	-Path	$destinationFolder	-

ErrorAction	SilentlyContinue

$packageToDownload	=	“Customer	Package”

$packageParentPath	=	”\File	System\QueryWorks”

#download	the	specified	package

#here	we’re	dealing	with	package	in	

#the	SSIS	Package	store

$app.GetDtsServerPackageInfos($packageParentPath,$server)	|

Where-Object	Flags	-eq	“Package”	|

ForEach-Object	{

				$package	=	$_

				$packagePath	=	”$($package.Folder)\$($package.Name)”

				#check	if	this	package	does	exist	in	the	Package	Store

				if($app.ExistsOnDtsServer($packagePath,	$server))

				{

								$fileName	=	Join-

Path	$destinationFolder	”$($package.Name).dtsx”

								$newPackage	=	$app.LoadFromDtsServer($packagePath,	$server,$null)

								$app.SaveToXml($fileName,	$newPackage,	$null)

				}

}

How	it	works…
The	first	step	is	to	load	the	ManagedDTS	assembly	and	create	an	application	object:
#add	ManagedDTS	assembly

Add-Type	-

AssemblyName	“Microsoft.SqlServer.ManagedDTS,	Version=12.0.0.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”

$server	=	“KERRIGAN”

#create	new	app

$app	=	New-Object	“Microsoft.SqlServer.Dts.Runtime.Application”

We	will	also	define	our	variables	for	the	timestamp,	destination	folder,	and	the	package
that	we	want	to	download:
$timestamp	=	Get-Date	-format	“yyyy-MMM-dd-hhmmtt”

$destinationFolder	=	“C:\SSIS\SSIS	$($timestamp)”

#If	the	path	exists,	will	error	silently	and	continue

New-Item	-ItemType	Directory	-Path	$destinationFolder	-

ErrorAction	SilentlyContinue

$packageToDownload	=	“Customer	Package”

$packageParentPath	=	”\File	System\QueryWorks”

We	then	retrieve	all	packages	using	the	GetDtsServerPackageInfos	method	of	the	DTS
application	object:
$app.GetDtsServerPackageInfos($packageParentPath,$server)	|

Where-Object	Flags	-eq	“Package”	|

ForEach-Object	{

For	each	package,	we	check	whether	this	matches	the	package	we	wanted	to	download.	If
it	does,	we	can	use	the	LoadFromDtsServer	method	to	load	the	package,	and	use	the
SaveToXml	method	to	save	the	package	back	to	the	filesystem.	Remember	that	a	.dtsx	file
is	simply	an	XML	file:
ForEach-Object	{

				$package	=	$_

				$packagePath	=	”$($package.Folder)\$($package.Name)”

				#check	if	this	package	does	exist	in	the	Package	Store

				if($app.ExistsOnDtsServer($packagePath,	$server))

				{

								$fileName	=	Join-Path	$destinationFolder	”$($package.Name).dtsx”

								$newPackage	=	$app.LoadFromDtsServer($packagePath,	$server,$null)

								$app.SaveToXml($fileName,	$newPackage,	$null)

				}

}

Note	that	the	file	will	be	saved	in	our	timestamped	folder.	You	can	definitely	change	this
filename	to	whatever	suits	your	requirements.

There’s	more…
Learn	more	about	the	following	MSDN	articles:

	
The	Application.SaveToXml	Method,	which	is	available	at
http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.dts.runtime.application.savetoxml.aspx.
The	LoadFromDtsServer	Method,	which	is	available	at
http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.dts.runtime.application.loadfromdtsserver.aspx.

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.dts.runtime.application.savetoxml.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.dts.runtime.application.loadfromdtsserver.aspx

See	also
The	Deploying	an	SSIS	package	to	the	package	store	recipe.

Creating	an	SSISDB	catalog
In	this	recipe,	we	will	create	an	SSISDB	catalog.

Getting	ready
To	create	an	SSISDB	catalog,	we	must	first	enable	SQLCLR	on	the	instance.	Log	in	to	SQL
Server	Management	Studio,	and	use	the	system	stored	procedure	sp_configure	to	enable
CLR.	Execute	the	following	T-SQL	script:
sp_configure	‘clr	enabled’,	1

GO

RECONFIGURE

GO

How	to	do	it…
These	are	the	steps	required	to	create	SSISDB	programmatically:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	as	follows:

Import-Module	SQLPS	-DisableNameChecking

3.	 Load	the	IntegrationServices	assembly	as	follows:
Add-Type	-

AssemblyName	“Microsoft.SqlServer.Management.IntegrationServices,	Version=12.0.0.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”				

4.	 Add	the	following	script	and	run	it:
$instanceName	=	“localhost”

$connectionString	=	“Data	Source=$instanceName;Initial	Catalog=master;Integrated	Security=SSPI”							

																	

$conn	=	New-

Object	System.Data.SqlClient.SqlConnection	$connectionString												

$SSISServer	=	New-

Object	Microsoft.SqlServer.Management.IntegrationServices.IntegrationServices	$conn				

if(!$SSISServer.Catalogs[“SSISDB”])

{

				#constructor	accepts	three	(3)	parameters:

				#parent,	name,	password

				$SSISDB	=	New-

Object	Microsoft.SqlServer.Management.IntegrationServices.Catalog	($SSISServer,	“SSISDB”,	“P@ssword”)											

				$SSISDB.Create()		

}	

How	it	works…
SQL	Server	2012	introduced	the	SSIS	catalog	for	Integration	Services.	The	catalog	is
implemented	as	a	database	called	SSISDB	that	stores	Integration	Services	objects	(projects,
packages,	and	parameters)	and	logs	when	projects	are	deployed	using	the	new	Project
Deployment	model.	This	database	is	accessible	from	SQL	Server	Management	Studio
(SSMS)	and	can	be	queried	like	any	regular	database.	The	following	screenshot	shows
where	SSISDB	is	in	SSMS:

To	create	SSISDB	programmatically,	we	must	first	load	the	IntegrationServices
assembly.	This	assembly	exposes	the	SSIS	Catalog	Managed	Object	Model	to	allow
programmatic	access	to	the	new	SSIS	objects:
Add-Type	-

AssemblyName	“Microsoft.SqlServer.Management.IntegrationServices,	Version=12.0.0.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”													

To	figure	out	the	version	and	public	key	token,	you	can	check	out	C:\Windows\assembly,
and	check	the	properties	of	this	assembly:

First,	we	need	to	create	a	SQLConnection	object	that	we	need	to	pass	to	the
IntegrationServices	constructor:
$instanceName	=	“localhost”

$connectionString	=	“Data	Source=$instanceName;Initial	Catalog=master;Integrated	Security=SSPI;”																								

$conn	=	New-

Object	System.Data.SqlClient.SqlConnection	$connectionString												

We	then	need	to	create	an	IntegrationServices	object:
$SSISServer	=	New-

Object	Microsoft.SqlServer.Management.IntegrationServices.IntegrationServices	$conn				

To	create	an	SSISDB	catalog,	we	create	a	new	Catalog	object,	which	accepts	three
parameters:	the	IntegrationServices	server	object,	name	of	the	catalog	(SSISDB),	and	a
password:
if(!$SSISServer.Catalogs[“SSISDB”])

{

				#constructor	accepts	three	(3)	parameters:

				#parent,	name,	password

				$SSISDB	=	New-

Object	Microsoft.SqlServer.Management.IntegrationServices.Catalog	($SSISServer,	“SSISDB”,	“P@ssword”)											

				$SSISDB.Create()		

}

There’s	more…
	

Check	out	additional	information	about	SQL	Server	2012	SSIS	at
http://msdn.microsoft.com/en-us/library/gg471508.aspx.
To	learn	more	about	the	SSISDB	catalog	from	MSDN,	visit
http://msdn.microsoft.com/en-us/library/hh479588.aspx.
Refer	to	the	properties	and	methods	for	the	new	IntegrationServices	assembly	at
http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.integrationservices(v=sql.110).aspx.

http://msdn.microsoft.com/en-us/library/gg471508.aspx
http://msdn.microsoft.com/en-us/library/hh479588.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.integrationservices(v=sql.110).aspx

See	also
The	Deploying	an	ISPAC	file	to	SSISDB	recipe.

Creating	an	SSISDB	folder
In	this	recipe,	we	will	create	a	folder	in	the	SSISDB	catalog.

Getting	ready
In	this	recipe,	we	assume	that	the	SSISDB	catalog	has	been	created.	We	will	create	a
folder	called	QueryWorks	inside	the	SSISDB	catalog.

How	to	do	it…
These	are	the	steps	required	to	create	a	folder	in	SSISDB:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Load	the	IntegrationServices	assembly	as	follows:
Add-Type	-

AssemblyName	“Microsoft.SqlServer.Management.IntegrationServices,	Version=12.0.0.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”				

4.	 Add	the	following	script	and	run	it:
$instanceName	=	“localhost”

$connectionString	=	“Data	Source=$instanceName;Initial	Catalog=master;Integrated	Security=SSPI”																							

$conn	=	New-

Object	System.Data.SqlClient.SqlConnection	$connectionString												

$SSISServer	=	New-

Object	Microsoft.SqlServer.Management.IntegrationServices.IntegrationServices	$conn				

$SSISDB	=	$SSISServer.Catalogs[“SSISDB”]

#create	QueryWorks	catalog	folder	here	

$folderName	=	“QueryWorks”

$folderDescription	=	“New	SSISDB	folder”

$SSISDBFolder	=	New-

Object	Microsoft.SqlServer.Management.IntegrationServices.CatalogFolder	($SSISDB,	$folderName,	$folderDescription)												

$SSISDBFolder.Create()

When	done,	log	in	to	Management	Studio	and	connect	to	your	database	engine.	Expand
Integration	Services	Catalog,	and	check	whether	the	folder	has	been	created	under	the
SSISDB	node:

How	it	works…
A	folder	in	an	SSISDB	catalog	can	hold	multiple	projects	and	environments.

To	create	a	folder	inside	SSISDB,	also	called	a	catalog	folder,	we	must	first	get	a	handle	to
SSISDB.	The	core	code	required	to	do	this	is	as	follows:
$SSISServer	=	New-

Object	Microsoft.SqlServer.Management.IntegrationServices.IntegrationServices	$conn				

$SSISDB	=	$SSISServer.Catalogs[“SSISDB”]

Once	we	have	the	SSISDB	handle,	creating	the	folder	is	straightforward.	It	requires
creating	a	new	CatalogFolder	object.	The	constructor	takes	the	SSISDB	object,	name	of
the	catalog	folder,	and	description:
#create	QueryWorks	catalog	folder	here	

$folderName	=	“QueryWorks”

$folderDescription	=	“New	SSISDB	folder”

$SSISDBFolder	=	New-

Object	Microsoft.SqlServer.Management.IntegrationServices.CatalogFolder	($SSISDB,	$folderName,	$folderDescription)												

The	Create()	method	will	persist	the	catalog	folder	in	SSISDB:
$SSISDBFolder.Create()

There’s	more…
Check	out	the	properties	and	methods	supported	by	the	CatalogFolder	class	at
http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.integrationservices.catalogfolder.aspx.

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.integrationservices.catalogfolder.aspx

See	also
	

The	Creating	an	SSISDB	catalog	recipe.
The	Deploying	an	ISPAC	file	to	SSISDB	recipe.

Deploying	an	ISPAC	file	to	SSISDB
You	will	see	how	to	deploy	an	ISPAC	file	to	SSISDB.

Getting	ready
In	this	recipe,	we	will	deploy	a	deployment	Customer	Package	Project.ispac	package
file.	Alternatively,	pick	an	available	ISPAC	file	in	your	environment	that	you	want	to	use.
In	this	recipe,	change	the	$ispacFilePath	variable’s	value	to	reflect	your	file.

How	to	do	it…
Let’s	explore	the	code	required	to	deploy	an	ISPAC	file:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Load	the	IntegrationServices	assembly	as	follows:
Add-Type	-

AssemblyName	“Microsoft.SqlServer.Management.IntegrationServices,	Version=12.0.0.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”				

4.	 Add	the	following	script	and	run	it:
$instanceName	=	“localhost”

$connectionString	=	“Data	Source=$instanceName;Initial	Catalog=master;Integrated	Security=SSPI”																							

$conn	=	New-

Object	System.Data.SqlClient.SqlConnection	$connectionString												

$SSISServer	=	New-

Object	Microsoft.SqlServer.Management.IntegrationServices.IntegrationServices	$conn				

$SSISDB	=	$SSISServer.Catalogs[“SSISDB”]

$SSISDBFolderName	=	“QueryWorks”

$SSISDBFolder	=	$SSISDB.Folders[$SSISDBFolderName]

$ispacFilePath	=	“C:\SSIS\Customer	Package	Project.ispac”

[byte[]]	$ispac	=	[System.IO.File]::ReadAllBytes($ispacFilePath)												

$SSISDBFolder.DeployProject(“Customer	Package	Project”,	$ispac)

When	done,	log	in	to	Management	Studio	and	expand	Integration	Services	Catalogs.
Under	SSISDB,	open	the	QueryWorks	folder,	and	confirm	that	the	Customer	Package
Project	has	been	deployed,	as	shown	in	the	following	screenshot:

How	it	works…
SQL	Server	2012	supports	two	deployment	models:	the	Package	Deployment	model	and
Project	Deployment	model.	The	Package	Deployment	model	is	the	older,	“legacy”	way	of
deploying,	where	packages	are	deployed	as	standalone	entities.	The	newer	Project
Deployment	model	is	the	default	mode	supported	when	you	create	a	new	SSIS	project	in
SQL	Server	Data	Tools	(SSDT),	previously	known	as	Business	Intelligence
Development	Studio	(BIDS).

In	the	Package	Deployment	model,	everything	that	is	needed	to	deploy	a	project	is
packaged	into	a	single	file	with	an	.ispac	extension.	This	file	is	created	when	you	deploy
the	SSIS	2012	project.	Although	it	appears	to	be	a	single	file,	you	will	discover	that	this	is
a	series	of	files	that	have	been	compressed.	Simply	change	the	.ispac	extension	to	.zip
and	extract	the	file.	You	will	see	something	similar	to	the	files	shown	in	the	following
screenshot:

A	package	manifest	has	been	created	when	the	SSIS	was	built	in	SSDT,	in	addition	to	the
package	files	and	parameter	file.

To	deploy	the	.ispac	file	programmatically	using	PowerShell	and	the	new	SSIS	object
model,	we	first	need	to	load	the	IntegrationServices	assembly	and	create	a	handle	to
the	IntegrationServices	object:
Add-Type	-

AssemblyName	“Microsoft.SqlServer.Management.IntegrationServices,	Version=12.0.0.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”				

$instanceName	=	“localhost”

$connectionString	=	“Data	Source=$instanceName;Initial	Catalog=master;Integrated	Security=SSPI”																							

$conn	=	New-

Object	System.Data.SqlClient.SqlConnection	$connectionString												

$SSISServer	=	New-

Object	Microsoft.SqlServer.Management.IntegrationServices.IntegrationServices	$conn				

The	next	step	is	to	get	a	handle	to	the	folder	where	the	ISPAC	file	will	be	deployed.	This
means	that	we	need	to	get	a	handle	to	each	object	in	the	hierarchy	that	leads	to	the	folder,
that	is,	create	a	handle	to	SSISDB	and	then	to	the	folder:
$SSISDB	=	$SSISServer.Catalogs[“SSISDB”]

$SSISDBFolderName	=	“QueryWorks”

$SSISDBFolder	=	$SSISDB.Folders[$SSISDBFolderName]

Once	we	have	a	handle	to	the	folder,	we	need	to	read	the	byte	content	of	the	ISPAC	file,
and	use	the	DeployProject	method	of	the	SSISDB	folder	object	available	with	the	catalog
folder	object:
$ispacFilePath	=	“C:\SSIS\Customer	Package	Project.ispac”

[byte[]]	$ispac	=	[System.IO.File]::ReadAllBytes($ispacFilePath)												

$SSISDBFolder.DeployProject(“Customer	Package	Project”,	$ispac)

There’s	more…
	

To	learn	more	about	the	specification,	check	out	[MS-ISPAC]:	Integration	Services
Project	Deployment	File	Format	structure	specification,	visit
http://msdn.microsoft.com/en-us/library/ff952821.
Refer	to	the	properties	and	methods	for	the	new	IntegrationServices	assembly	at
http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.integrationservices.aspx.

http://msdn.microsoft.com/en-us/library/ff952821
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.integrationservices.aspx

See	also
	

The	Creating	an	SSISDB	catalog	recipe.
The	Creating	an	SSISDB	folder	recipe.

Executing	an	SSIS	package	stored	in	SSISDB
In	this	recipe,	we	execute	a	package	stored	in	SSISDB.

Getting	ready
In	this	recipe,	we	execute	the	package	that	comes	with	the	customer	package	project	that
was	deployed	in	the	Deploying	an	ISPAC	file	to	SSISDB	recipe.	Alternatively,	replace	the
variables	for	folder,	project,	and	package	names.

How	to	do	it…
Let’s	explore	the	code	required	to	execute	a	package	in	SSISDB:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLPS	module	as	follows:

#import	SQL	Server	module

Import-Module	SQLPS	-DisableNameChecking

3.	 Load	the	IntegrationServices	assembly	as	follows:
Add-Type	-

AssemblyName	“Microsoft.SqlServer.Management.IntegrationServices,	Version=12.0.0.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”

4.	 Add	the	following	script	and	run	it:
$instanceName	=	“localhost”

$connectionString	=	“Data	Source=$instanceName;Initial	Catalog=master;Integrated	Security=SSPI;”																							

$conn	=	New-

Object	System.Data.SqlClient.SqlConnection	$constr												

$SSISServer	=	New-

Object	Microsoft.SqlServer.Management.IntegrationServices.IntegrationServices	$conn				

$SSISDB	=	$SSISServer.Catalogs[“SSISDB”]

$SSISDBFolderName	=	“QueryWorks”

$SSISDBFolder	=	$SSISDB.Folders[$SSISDBFolderName]

$projectName=	“Customer	Package	Project”

$packageName=	“Customer	Package.dtsx”

$SSISDBFolder.Projects[$projectName].Packages[$packageName].Execute($false,	$null)

Once	the	script	finishes	the	execution,	it	will	return	the	process	ID	of	the	execution.

	
1.	 Confirm	this	process	ID	against	the	execution	of	the	report.
2.	 Connect	to	Management	Studio	and	go	to	Integration	Services	Catalog.	Right-click

on	the	package	that	you	executed	using	the	script	and	go	to	Reports	|	Standard
Reports	|	All	Executions.

3.	 You	will	see	the	All	Executions	report	rendered.	Confirm	that	the	ID	returned	by	the
script	is	in	the	report.	You	can	also	check	the	execution	start	time	(not	shown	in	the
following	screenshot,	but	it	is	in	the	third,	rightmost	column	of	the	report).

How	it	works…
To	execute	a	package	stored	in	the	SSISDB	catalog,	we	need	to	first	get	a	handle	to	the
package.	To	get	a	handle	to	the	package,	we	must	first	get	to	the	SSISDB	catalog:
$connectionString	=	“Data	Source=$instanceName;Initial	Catalog=master;Integrated	Security=SSPI;”																							

$conn	=	New-Object	System.Data.SqlClient.SqlConnection	$constr												

$SSISServer	=	New-

Object	Microsoft.SqlServer.Management.IntegrationServices.IntegrationServices	$conn				

$SSISDB	=	$SSISServer.Catalogs[“SSISDB”]

We	also	need	to	have	access	to	the	folder	where	the	package	is	saved:
$SSISDBFolderName	=	“QueryWorks”

$SSISDBFolder	=	$SSISDB.Folders[$SSISDBFolderName]

To	execute,	we	must	trace	where	the	package	is	and	invoke	the	Execute	method	of	the
Package	object.	The	method	accepts	two	parameters:	a	Boolean	value	for
use32RuntimeOn64	and	an	EnvironmentReference:
$projectName=	“Customer	Package	Project”

$packageName=	“Customer	Package.dtsx”

$SSISDBFolder.Projects[$projectName].Packages[$packageName].Execute($false,	$null)

This	method	returns	the	process	ID	of	the	execution.

There’s	more…
Check	out	the	MSDN	articles	related	to	PackageInfo	at	http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.integrationservices.packageinfo.aspx.

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.integrationservices.packageinfo.aspx

See	also
The	Executing	an	SSIS	package	stored	in	a	package	store	or	filesystem	recipe.

Listing	SSAS	cmdlets
This	recipe	lists	the	available	SSAS	cmdlets	in	SQL	Server	2014.

How	to	do	it…
Let’s	explore	the	code	required	to	list	the	SSAS	cmdlets:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

Get-Command	-Module	SQLASCmdlets

This	will	give	a	result	similar	to	this:

How	it	works…
A	handful	of	SSAS	cmdlets	were	introduced	in	SQL	Server	2012	and	carried	over	to	SQL
Server	2014.	You	can	import	the	SQLASCMDLETS	module	to	start	using	the	new	cmdlets.

To	list	the	new	AS	cmdlets,	simply	use	Get-Command:

Get-Command	-Module	SQLASCmdlets

You	will	notice	that	some	of	the	common	SSAS	tasks	have	been	wrapped	in	cmdlets,	such
as	Backup-ASDatabase,	Restore-ASDatabase,	Invoke-ASCmd,	Invoke-ProcessCube,	and
so	on.

There’s	more…
Check	out	these	MSDN	articles:

	
Analysis	Services	PowerShell,	which	is	available	at	http://msdn.microsoft.com/en-
us/library/hh213141.aspx.
Analysis	Services	PowerShell	Reference,	which	is	available	at
http://msdn.microsoft.com/en-us/library/hh758425.aspx.

http://msdn.microsoft.com/en-us/library/hh213141.aspx
http://msdn.microsoft.com/en-us/library/hh758425.aspx

See	also
The	Listing	SSAS	instance	properties	recipe.

Listing	SSAS	instance	properties
We	will	list	SSAS	instance	properties	in	this	recipe.

How	to	do	it…
Let’s	explore	the	code	required	to	list	SSAS	instance	properties:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLASCmdlets	module	as	follows:

Import-Module	SQLASCmdlets	-DisableNameChecking

3.	 Add	the	following	script	and	run	it:
#Connect	to	your	Analysis	Services	server	

$SSASServer	=	New-Object	Microsoft.AnalysisServices.Server

$instanceName	=	“localhost”

$SSASServer.connect($instanceName)

#get	all	properties

$SSASServer	|	

Select-Object	*

You	will	see	a	result	similar	to	this:

How	it	works…
To	get	SSAS	instance	properties,	we	first	need	to	load	the	SQLASCmdlets	module:
Import-Module	SQLASCmdlets	-DisableNameChecking

We	then	need	to	create	an	Analysis	Server	object	and	connect	to	our	instance:
#Connect	to	your	Analysis	Services	server	

$SSASServer	=	New-Object	Microsoft.AnalysisServices.Server

$instanceName	=	“localhost”

$SSASServer.connect($instanceName)

Once	we	get	a	handle	to	our	SSAS	instance,	we	can	display	its	properties:
#get	all	properties

$SSASServer	|	

Select-Object	*

Note	that	in	SQL	Server	2012,	there	are	two	flavors	of	Analysis	Services:
multidimensional	and	tabular.	You	can	identify	this	by	checking	the	ServerMode
properties.

There’s	more…
Check	out	these	MSDN	articles	related	to	the	SQL	Server	Analysis	Services	class	at
http://msdn.microsoft.com/en-us/library/microsoft.analysisservices.server.aspx.

http://msdn.microsoft.com/en-us/library/microsoft.analysisservices.server.aspx

See	also
The	Listing	SSAS	cmdlets	recipe.

Backing	up	an	SSAS	database
In	this	recipe,	we	will	create	an	SSAS	database	backup.

Getting	ready
Choose	an	SSAS	database	you	want	to	back	up,	and	replace	the	–Name	parameter	in	the
recipe.	Ensure	that	you	are	running	PowerShell	with	administrator	privileges	to	the	SSAS
instance.

How	to	do	it…
These	are	the	steps	required	to	create	an	SSAS	database	backup:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLASCmdlets	module	as	follows:

#import	SQLASCmdlets	module

Import-Module	SQLASCmdlets	-DisableNameChecking

3.	 Add	the	following	script	and	run	it:
$instanceName	=	“localhost”	

$backupfile	=	“C:\Temp\AWDW.abf”

Backup-ASDatabase	-BackupFile	$backupfile	-Name	“AWDW”	-

Server	$instanceName	-AllowOverwrite	-ApplyCompression

How	it	works…
The	Backup-ASDatabase	cmdlet	allows	multidimensional	or	tabular	SSAS	databases	to	be
backed	up	to	a	file.	In	this	recipe,	we	chose	to	do	a	compressed	backup	for	the	AWDW	SSAS
database	to	an	Analysis	Services	Backup	file	(.abf):
$instanceName	=	“localhost”	

$backupfile	=	“C:\Temp\AWDW.abf”

Backup-ASDatabase	-BackupFile	$backupfile	-Name	“AWDW”	-

Server	$instanceName	-AllowOverwrite	-ApplyCompression

Other	switches	that	can	be	set	using	the	Backup-ASDatabase	cmdlet	are	as	follows:

	
-BackupRemotePartitions	<SwitchParameter>

-FilePassword	<SecureString>

-Locations	<Microsoft.AnalysisServices.BackupLocation[]>

-Server	<string>

-Credential	<PSCredential>

There’s	more…
To	learn	more	about	the	Backup-ASDatabase	cmdlet,	visit	http://msdn.microsoft.com/en-
us/library/hh479574.aspx.

http://msdn.microsoft.com/en-us/library/hh479574.aspx

See	also
The	Restoring	an	SSAS	database	recipe.

Restoring	an	SSAS	database
You	will	see	how	to	restore	an	SSAS	database	in	this	recipe.

Getting	ready
Locate	your	SSAS	backup	file,	and	replace	the	backup	file	parameter	with	the	location	of
your	file.

How	to	do	it…
Let’s	explore	the	code	required	to	restore	an	SSAS	database:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLASCmdlets	module	as	follows:

#import	SQLASCmdlets	module

Import-Module	SQLASCmdlets	-DisableNameChecking

3.	 Add	the	following	script	and	run	it:
$instanceName	=	“localhost”

$backupfile	=	“C:\Temp\AWDW.abf”

Restore-ASDatabase	-RestoreFile	$backupfile	-Server	$instanceName	-

Name	“AWDW”	-AllowOverwrite

How	it	works…
The	Restore-ASDatabase	allows	multidimensional	or	tabular	SSAS	databases	to	be
restored	when	provided	with	a	backup	file:
$instanceName	=	“localhost”

$backupfile	=	“C:\Temp\AWDW.abf”

Restore-ASDatabase	-RestoreFile	$backupfile	-Server	$instanceName	-

Name	“AWDW”	-AllowOverwrite

There’s	more…
To	learn	more	about	the	Restore-ASDatabase	cmdlet,	visit	http://msdn.microsoft.com/en-
us/library/hh510169.aspx.

http://msdn.microsoft.com/en-us/library/hh510169.aspx

See	also
The	Backing	up	an	SSAS	database	recipe.

Processing	an	SSAS	cube
In	this	recipe,	we	will	process	an	SSAS	cube.

Getting	ready
Choose	a	cube	that	is	readily	available	in	your	SSAS	instance.

How	to	do	it…
Let’s	explore	the	code	required	to	process	an	SSAS	cube:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Import	the	SQLASCmdlets	module	as	follows:

#import	SQLASCmdlets	module

Import-Module	SQLASCmdlets	-DisableNameChecking

3.	 Add	the	following	script	and	run	it:
$instanceName	=	“localhost”

Invoke-ProcessCube	-Name	“AW”	-Server	$instanceName	-Database	“AWDW”	-

ProcessType	([Microsoft.AnalysisServices.ProcessType]::ProcessFull)

To	check	whether	the	cube	has	been	processed,	perform	the	following	steps:

	
1.	 Go	to	Management	Studio	and	connect	to	SQL	Server	Analysis	Services.	Right-

click	on	the	cube	you	just	processed	and	go	to	Properties:

2.	 In	the	General	section,	check	the	Last	Processed	value.	It	should	be	updated	to
when	the	script	finished	executing,	as	shown	in	the	following	screenshot:

How	it	works…
Processing,	or	reprocessing,	a	cube	is	a	common	task	that	needs	to	be	done	in	an	SSAS
environment	on	a	regular	basis.	Processing	a	cube	ensures	that	your	cube	has	the	latest
data	that	has	been	loaded	to	the	source	data	warehouse,	and	ensures	any	changes	to	the
cube’s	structure	are	in	place.

The	Invoke-Process	cmdlet	simplifies	this	process	if	you	are	doing	this	task	using
PowerShell:
Invoke-ProcessCube	-Name	“AWDW”	-Database	“AWDW”	-

ProcessType	([Microsoft.AnalysisServices.ProcessType]::ProcessFull)

All	that	we	need	to	specify	is	the	cube	name	and	SSAS	database	where	this	cube	belongs.
Processing	cubes	requires	administrative	privileges	on	the	SSAS	instance.

There	are	different	processing	types	that	can	be	specified	with	the	–ProcessType	switch,
including	ProcessFull,	ProcessAdd,	and	ProcessUpdate.

There’s	more…
	

Check	out	the	MSDN	articles	related	to	the	Invoke-ProcessCube	cmdlet	at
http://msdn.microsoft.com/en-us/library/hh510171.aspx.
To	learn	more	about	the	different	processing	options	and	settings	for	Analysis
Services,	check	out	http://msdn.microsoft.com/en-us/library/ms174774.aspx.

http://msdn.microsoft.com/en-us/library/hh510171.aspx
http://msdn.microsoft.com/en-us/library/ms174774.aspx

See	also
	

The	Backing	up	an	SSAS	database	recipe.
The	Restoring	an	SSAS	database	recipe.

Chapter	11.	Helpful	PowerShell	Snippets
In	this	chapter,	we	will	cover	the	following	topics:

	
Documenting	the	PowerShell	script	for	Get-Help
Getting	history
Getting	a	timestamp
Getting	more	error	messages
Listing	processes
Getting	aliases
Exporting	to	CSV	and	XML
Using	Invoke-Expression
Testing	regular	expressions
Managing	folders
Manipulating	files
Compressing	files
Searching	for	files
Reading	an	event	log
Sending	an	e-mail
Embedding	C#	Code
Creating	an	HTML	report
Parsing	XML
Extracting	data	from	a	web	service
Using	PowerShell	remoting

Introduction
In	this	chapter,	we	tackle	a	variety	of	recipes	that	are	not	SQL	Server-specific;	but	you
may	find	them	useful	as	you	use	PowerShell	with	SQL	Server.	Often,	you	will	need	to
compress	(or	zip)	files,	create	timestamped	files,	analyze	event	logs	for	recent	system
errors,	export	a	list	of	processes	to	CSV	or	XML,	or	even	access	web	services.	Here,	you
will	find	code	snippets	that	you	can	use	in	existing	or	new	scripts,	or	whenever	you	need
them.

Documenting	PowerShell	script	for	Get-Help
In	this	recipe,	we	will	take	a	look	at	how	to	use	header	comments	in	your	script.
Formatting	the	header	comments	in	a	specific	way	will	enable	them	to	be	utilized	by	the
Get-Help	cmdlet.

How	to	do	it…
In	this	recipe,	we	will	explore	the	comment-based	help:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script:

<#

.SYNOPSIS

			Creates	a	full	database	backup

.DESCRIPTION

			Creates	a	full	database	backup	using	specified	instance	name	and	database	name

			This	will	place	the	backup	file	to	the	default	backup	directory	of	the	instance

.PARAMETER	instanceName

			instance	where	database	to	be	backed	up	resides

.PARAMETER	databaseName

			database	to	be	backed	up

.EXAMPLE

			PS	C:\PowerShell>	.\Backup-Database.ps1	-

instanceName	“QUERYWORKS\SQL01”	-databaseName	“pubs”

.EXAMPLE

			PS	C:\PowerShell>	.\Backup-Database.ps1	-

instance	“QUERYWORKS\SQL01”	-database	“pubs”

.NOTES

			To	get	help:

			Get-Help	.\Backup-Database.ps1

#>

param

(

			[Parameter(Position=0)]

			[alias(“instance”)]

			[string]$instanceName,

			[Parameter(Position=1)]

			[alias(“database”)]

			[string]$databaseName

)

function	main	

{

			#this	is	just	a	stub	file

}

#clear	the	screen

cls

#get	general	help

Get-Help	“C:\PowerShell\Backup-Database.ps1”

#get	examples

Get-Help	“C:\PowerShell\Backup-Database.ps1”	-Examples

3.	 Save	the	script	as	C:\PowerShell\Backup-Database.ps1.

4.	 Execute	the	script	from	the	PowerShell	ISE	without	any	parameters.

Note
Check	Appendix	A,	PowerShell	Primer,	for	more	information	on	how	to	execute	scripts
from	the	PowerShell	console.

Here	is	a	sample	result:

How	it	works…
Introduced	in	PowerShell	V2,	the	comment-based	help	enables	you	to	provide	additional
information	of	a	script	or	cmdlet	by	creating	comment	blocks	that	follow	a	specified
format.	This	help	content	can	be	viewed	when	you	use	the	Get-Help	cmdlet.

For	this	to	work,	the	comment	block	must	be	the	first	section	in	a	script	or	the	first	lines	in
a	function.	Once	it	has	been	composed,	the	script	or	the	function	name	can	be	passed	as	a
parameter	to	Get-Help.

Some	of	the	common	keywords	and	sections	of	the	comment-based	help	are	as	follows:
<#

.SYNOPSIS

			summary

.DESCRIPTION

			Description

.PARAMETER	parameter1Name

			Parameter	description

.PARAMETER	parameter1Name

			Parameter	description

.EXAMPLE

			Usage	example;	Appears	when	you	use	–examples	

.EXAMPLE

			Usage	example;	Appears	when	you	use	–examples

.NOTES

			Additional	notes;	Appears	when	you	use	–full

#>

Additional	sections	that	can	be	used,	as	documented	in	MSDN,	are	as	follows:

	
.INPUTS:	Microsoft	.NET	Framework	types	of	objects	that	can	be	piped	to	the
function	or	script
.OUTPUTS:	Microsoft	.NET	Framework	types	of	objects	that	the	cmdlet	returns
.LINK:	Related	topic
.ROLE:	User	role	for	the	help	topic

There’s	more…
	

Learn	more	about	the	comment-based	help	from	the	MSDN	page	at
https://technet.microsoft.com/en-us/library/hh847834.aspx.
Refer	to	Microsoft	guidelines	on	how	to	write	cmdlet	help	at
https://msdn.microsoft.com/en-us/library/aa965353(VS.85).aspx.
Although	a	little	bit	outdated,	Don	Jones’	article	on	how	to	write	the	help
documentation,	WTFM:	Writing	the	Fabulous	Manual,	is	still	relevant	and
informative,	which	is	available	at	https://technet.microsoft.com/en-
us/magazine/ff458353.aspx.

https://technet.microsoft.com/en-us/library/hh847834.aspx
https://msdn.microsoft.com/en-us/library/aa965353(VS.85).aspx
https://technet.microsoft.com/en-us/magazine/ff458353.aspx

Getting	history
You	can	recall	the	commands	you	typed	in	the	PowerShell	console	using	the	Get-History
cmdlet.

How	to	do	it…
This	is	how	to	redisplay	the	console	history:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Run	the	following	command:

Get-History

How	it	works…
By	default,	PowerShell	will	keep	64	previous	commands	in	the	buffer	and	allow	you	to
recall	these	commands	when	you	run	Get-History.	The	Get-History	command	will
display	the	last	32	commands,	but	you	can	also	specify	how	many	lines	you	want	to
display	by	specifying	the	–Count	parameter:

#get	last	10

Get-History	–Count	10

If	you	want	to	reexecute	any	of	the	commands	that	you	see	in	your	history,	you	can	use	the
Invoke-History	cmdlet	and	provide	it	with	the	history	ID.	For	example,	if	you	want	to	re-
execute	ID	7,	you	can	use	the	following	command:

Invoke-History	–ID	7

Getting	a	timestamp
In	this	recipe,	we	simply	get	the	system’s	current	timestamp.

How	to	do	it…
This	is	how	we	will	get	the	timestamp:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

$timestamp	=	Get-Date	-Format	“yyyy-MMM-dd-hhmmtt”

#display	timestamp

$timestamp

Here	is	a	sample	result:

How	it	works…
Often,	we	find	ourselves	needing	the	timestamp	to	append	to	different	files	we	create	or
modify.	To	get	the	timestamp	in	PowerShell,	we	simply	have	to	use	the	Get-Date	cmdlet,
which	gives	the	following	default	format:

To	change	the	format,	we	can	use	the	–Format	switch,	which	accepts	a	format	string.	In
this	recipe,	we	used	the	yyyy-MMM-dd-hhmmtt	format.

There	are	a	number	of	standard	format	strings	that	return	preformatted	datetimes,	or	you
can	also	compose	your	own	format	string.	The	common	format	strings,	as	documented	in
MSDN,	are	as	follows:

Format	pattern Description

tt AM/PM	designator

ss Seconds	with	leading	zero

mm Minutes	with	leading	zero

dd Day	of	month	with	leading	zero

dddd Full	name	of	the	day	of	the	week

hh 12-hour	clock	with	leading	zero

HH 24-hour	clock	with	leading	zero

dd Day	of	month	with	leading	zero

dddd Full	name	of	the	day	of	the	week

MM Numeric	month	with	leading	zero

MMM Abbreviated	month	name

MMMM Full	month	name

yy Two-digit	year

yyyy Four-digit	year

There’s	more…
The	following	links	are	helpful	to	understand	how	to	use	and	format	dates	in	PowerShell:

	
The	DateTimeFormatInfo	Class	at	http://msdn.microsoft.com/en-
us/library/system.globalization.datetimeformatinfo.aspx.
Standard	Date	and	Time	Format	Strings	at	http://msdn.microsoft.com/en-
us/library/az4se3k1.aspx.
The	Windows	PowerShell	Tip	of	the	Week—Formatting	Dates	and	Times	at
http://technet.microsoft.com/en-us/library/ee692801.aspx.
MSDN	Get-Date	at	http://technet.microsoft.com/en-us/library/hh849887.

http://msdn.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.aspx
http://msdn.microsoft.com/en-us/library/az4se3k1.aspx
http://technet.microsoft.com/en-us/library/ee692801.aspx
http://technet.microsoft.com/en-us/library/hh849887

Getting	more	error	messages
In	this	recipe,	we	will	learn	how	to	display	additional	error	messages.

How	to	do	it…
Let’s	take	a	look	at	how	to	display	additional	error	messages:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

Clear-Host

$error[0]	|	Format-List	-Force

How	it	works…
PowerShell	supports	some	variables	called	automatic	variables	that	store	the	state
information	or	environment	information,	such	as	arguments,	events,	user	directories,
profile	information,	or	error	codes.	The	$error	is	an	automatic	array	variable	that	holds
all	the	error	objects	that	are	encountered	in	your	PowerShell	session.	To	display	the	last
error	message,	you	can	use	the	following	code:
$error[0]	|	

Format-List	-Force

This	method	is	particularly	useful	when	you	are	working	with	SQL	Server	and	you
encounter	an	exception.	When	you	run	this	command,	you	get	the	full	stack	trace;
therefore,	you	get	a	more	complete	picture	of	exactly	what	went	wrong.	For	example,
when	you	run	your	script,	it	just	reports	that	there	is	an	exception	in	a	certain	line.	When
you	use	$error,	you	might	find	out	that	the	constraint	you	are	trying	to	create	already
exists	in	the	table.

To	check	the	number	of	errors	contained	in	your	variable,	you	can	use	the	following	code:
$error.Count

The	$error	works	like	a	circular	buffer.	By	default,	the	$error	stores	the	last	256	errors
in	your	session.	If	you	want	to	increase	the	number	of	error	objects	the	array	can	store,
you	can	set	the	$MaximumErrorCount	variable	to	a	new	value:
$MaximumErrorCount	=	300

If	you	want	to	clear	all	the	errors,	you	can	use	the	clear	method:
$error.Clear()

To	get	more	information	about	variables	that	are	set	in	your	session,	you	can	use	the
following	command:
Get-Variable	|	

Select-Object	Name,	Value,	Options	|	

Format-Table	-AutoSize

A	partial	list	of	special	variables	is	presented	in	the	following	table:

Special	Variable Description

$_ Current	pipeline	object

$args Arguments	passed	to	a	function

$error Stores	the	last	error

$home User’s	home	directory

$host Host	information

$match Regex	matches

$PSHome Install	directory	of	PowerShell

$pid Process	ID	(PID)	of	PowerShell	process

$pwd Present	working	directory

$true Boolean	true

$false Boolean	false

$null Null	value

Listing	processes
In	this	recipe,	we	will	list	processes	in	the	system.

How	to	do	it…
Let’s	list	processes	using	PowerShell:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it	to	list	processes	on	the	screen:

#list	all	processes	to	screen

Get-Process

#list	10	most	recently	started	processes

Get-Process	|	

Sort-Object	-Property	StartTime	-Descending	|	

Select-Object	Name,	StartTime,	Path,	Responding	-First	10

3.	 Add	the	following	script	and	run	it	to	list	and	save	the	processes	to	a	text	file:
#save	processes	to	a	text	file

$txtFile	=	“C:\Temp\processes.txt”

Get-Process	|	

Out-File	-FilePath	$txtFile	-Force

#display	text	file	in	notepad

notepad	$txtFile

4.	 Add	the	following	script	and	run	it	to	save	the	processes	to	a	CSV	file:
#save	processes	to	a	csv	file

$csvFile	=	“C:\Temp\processes.csv”

Get-Process	|	

Export-Csv	-Path	$csvFile	-Force	-NoTypeInformation

#display	first	five	lines	in	file

Get-Content	$csvFile	-totalCount	5

5.	 Add	the	following	script	and	run	it	to	save	the	processes	to	XML:
$xmlFile	=	“C:\Temp\processes.xml”

#get	top	5	CPU-heavy	processes	that	start	with	S

Get-Process	|	

Where-Object	ProcessName	-like	“S*”	|	

Sort-Object	-Property	CPU	-Descending	|	

Select-Object	Name,	CPU	-First	5	|	

Export-Clixml	-path	$xmlFile	-Force

#display	in	Internet	Explorer

Set-Alias	ie	”$env:programfiles\Internet	Explorer\iexplore.exe”

ie	$xmlFile

How	it	works…
In	this	recipe,	we	have	used	the	Get-Process	cmdlet	to	display	processes	in	the	system.
We	explored	a	few	variations	in	this	recipe.

The	first	example	lists	all	processes:
Get-Process	|

The	second	example	is	slightly	different.	We	pipe	the	results	of	Get-Process	and	get	only
the	10	most	recently	started	processes.	We	achieve	this	by	sorting	the	StartTime	in
descending	order	and	selecting	only	the	top	10:
Sort-Object	-Property	StartTime	-Descending	|

Select-Object	Name,	StartTime,	Path,	Responding	-First	10

Note	that	this	will	throw	some	errors	because	there	are	system	processes	that	are	not
accessible	to	nonelevated	users.

Following	is	an	example	access	error:

Refer	to	the	article	for	more	information	on	this	security	issue	at
http://blogs.technet.com/b/heyscriptingguy/archive/2010/08/07/weekend-scripter-boot-
tracing-with-windows-powershell.aspx.

The	results	of	Get-Process	can	be	piped	to	other	cmdlets	and	exported	to	different	file
formats,	such	as	a	text	file,	CSV	file,	or	XML.

To	pipe	results	to	a	text	file,	we	can	use	the	Out-File	cmdlet:
$txtFile	=	“C:\Temp\processes.txt”

Get-Process	|	

Out-File	-FilePath	$txtFile	-Force

#display	text	file	in	notepad

notepad	$txtFile

To	create	a	CSV	file,	we	can	use	the	Export-Csv	cmdlet.	In	this	sample,	we	also	read	back
the	first	five	lines	of	the	CSV	file	that	we	just	created:
$csvFile	=	“C:\Temp\processes.csv”

Get-Process	|	

Export-Csv	-Path	$csvFile	-Force	-NoTypeInformation

#display	first	five	lines	in	file

Get-Content	$csvFile	-totalCount	5

If	you	require	an	XML	format,	you	can	achieve	this	using	the	Export-Clixml	cmdlet.	In
this	recipe,	we	also	filter	for	only	processes	that	start	with	S,	and	we	only	get	the	top	five

http://blogs.technet.com/b/heyscriptingguy/archive/2010/08/07/weekend-scripter-boot-tracing-with-windows-powershell.aspx

CPU-heavy	processes:
$xmlFile	=	“C:\Temp\processes.xml”

#get	top	5	CPU-heavy	processes	that	start	with	S

Get-Process	|	

Where-Object	ProcessName	-like	“S*”	|	

Sort-Object	-Property	CPU	-Descending	|	

Select-Object	Name,	CPU	-First	5	|	

Export-Clixml	-path	$xmlFile	-Force

#display	in	Internet	Explorer

Set-Alias	ie	”$env:programfiles\Internet	Explorer\iexplore.exe”

ie	$xmlFile

The	last	two	lines	simply	create	an	alias	for	Internet	Explorer,	and	then	display	the	XML
file.

There’s	more…
	

To	learn	more	about	Using	the	Get-Process	Cmdlet,	check	out
http://msdn.microsoft.com/en-us/library/ee176855.aspx.
Refer	to	MSDN	Get-Process,	which	is	available	at	http://msdn.microsoft.com/en-
us/library/hh849832.

http://msdn.microsoft.com/en-us/library/ee176855.aspx
http://msdn.microsoft.com/en-us/library/hh849832

See	also
The	Exporting	to	CSV	and	XML	recipe.

Getting	aliases
In	this	recipe,	we	take	a	look	at	aliases	in	PowerShell.

How	to	do	it…
Let’s	check	out	aliases	in	PowerShell:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

#list	all	aliases	

Get-Alias

#get	members	of	Get-Alias

Get-Alias	|	

Get-Member

#list	cmdlet	that	is	aliased	as	dir

$alias:dir

#list	cmdlet	that	is	aliased	as	ls

$alias:ls

#get	all	aliases	of	Get-ChildItem

Get-Alias	-Definition	“Get-ChildItem”

How	it	works…
An	alias	in	PowerShell	is	a	different	name	that	you	can	use	for	a	cmdlet.	Some	cmdlets
already	come	with	a	handful	of	aliases,	but	you	can	create	your	own	aliases	for	cmdlets	as
well.

The	Get-Alias	returns	all	PowerShell	aliases.	PowerShell’s	building	blocks	are	cmdlets
that	are	named	using	the	<Verb-Noun>	convention.	For	example,	to	list	contents	of	a
directory,	we	use	Get-ChildItem.	There	are,	however,	better-known	ways	to	get	this
information	such	as	dir	if	running	the	Windows	Command	Prompt	and	ls	if	running	in	a
Nix	environment.	Aliases	allow	most	well-known	commands	to	run	from	within
PowerShell.	To	list	all	aliases,	use	the	following	code:
#list	all	aliases	

Get-Alias

To	get	the	members	of	Get-Alias,	we	can	pipe	the	result	of	Get-Alias	to	Get-Member:
Get-Alias	|	

Get-Member

If	there	is	a	well-known	command,	such	as	dir	or	ls	that	is	supported	in	PowerShell,	and
if	you	are	curious	to	know	which	cmdlet	it	refers	to,	you	can	use	the	following	command:
#list	cmdlet	that	is	aliased	as	dir

$alias:dir

#list	cmdlet	that	is	aliased	as	ls

$alias:ls

On	the	other	hand,	if	you	want	to	know	all	aliases	for	a	cmdlet,	you	can	use	the	following
command:
Get-Alias	-Definition	“Get-ChildItem”

PowerShell	also	allows	you	to	create	your	own	alias.	For	example,	if	you	want	to	use	the
gci2	alias	instead	of	Get-ChildItem,	you	can	use	the	Set-Alias	cmdlet	to	do	so:
Set-Alias	gci2	Get-ChildItem	

To	confirm,	you	can	either	use	Get-Alias	to	see	all	the	aliases	that	are	now	available	in
your	system,	or	you	can	specify	the	alias	you	just	created:
Get-Alias	gci2

There’s	more…
To	learn	more	about	the	Get-Alias	cmdlet,	visit	http://msdn.microsoft.com/en-
us/library/hh849948.

http://msdn.microsoft.com/en-us/library/hh849948

Exporting	to	CSV	and	XML
In	this	recipe,	we	pipe	the	results	of	the	Get-Process	cmdlet	to	a	CSV	and	XML	file.

How	to	do	it…
These	are	the	steps	required	to	export	to	CSV	and	XML:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

$csvFile	=	“C:\Temp\sample.csv”

Get-Process	|	

Export-Csv	-path	$csvFile	-Force	-NoTypeInformation

#display	text	file	in	notepad

notepad	$csvFile	

$xmlFile	=	“C:\Temp\process.xml”

Get-Process	|	

Export-Clixml	-path	$xmlFile		-Force

#display	text	file	in	notepad

notepad	$xmlFile	

How	it	works…
PowerShell	provides	a	few	cmdlets	that	support	exporting	data	to	files	of	different
formats.	The	Export-Csv	cmdlet	saves	information	to	a	comma-separated	value	file,	and
the	Export-Clixml	cmdlet	exports	the	piped	data	to	XML:
$csvFile	=	“C:\Temp\sample.csv”

Get-Process	|

Export-Csv	-path	$csvFile	-Force	-NoTypeInformation

#display	text	file	in	notepad

notepad	$csvFile	

$xmlFile	=	“C:\Temp\process.xml”

Get-Process	|

Export-Clixml	-path	$xmlFile		-Force

#display	file	in	notepad

notepad	$xmlFile	

The	Export-Csv	cmdlet	converts	each	object	passed	to	it	from	the	pipeline	into	a	row	in
the	resulting	CSV	file.	Although	the	default	delimiter	is	a	comma,	this	can	be	changed	to
other	characters	using	the	–Delimiter	switch.	You	can	also	start	appending	data	using	the
–Append	switch,	which	was	added	in	PowerShell	V3.

The	Export-Clixml	cmdlet	converts	data	passed	to	it	into	XML	and	saves	it	to	a	file.	The
resulting	XML	is	similar	to	what	the	ConvertTo-Xml	cmdlet	would	return.

There’s	more…
The	following	links	are	helpful	in	learning	more	about	Export-Csv	and	Export-Clixml:

	
Refer	to	MSDN	Export-Csv,	which	is	available	at	http://msdn.microsoft.com/en-
us/library/hh849932.
Refer	to	MSDN	Export-Clixml,	which	is	available	at	http://msdn.microsoft.com/en-
us/library/hh849916.

http://msdn.microsoft.com/en-us/library/hh849932
http://msdn.microsoft.com/en-us/library/hh849916

Using	Invoke-Expression
In	this	recipe,	we	will	use	the	Invoke-Expression	cmdlet	to	compress	some	files	using	a
free	compression	utility.

Getting	ready
For	this	recipe,	we	will	use	the	7-Zip	application	to	compress	some	files.	Download	7-Zip
from	http://www.7-zip.org/.

http://www.7-zip.org/

How	to	do	it…
Let’s	check	out	the	Invoke-Expression	cmdlet:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

$VerbosePreference	=	“Continue”

$program	=	”`“C:\Program	Files\7-Zip\7z.exe`””

#arguments

$7zargs	=	”	a	-tzip	”

$zipFile	=	”	`“C:\Temp\new	archive.zip`”	”

$directoryToZip	=	”	`“C:\Temp\old`”	”

#compose	the	command

$cmd	=	”&	$program	$7zargs	$zipFile	$directoryToZip	”

#display	final	command

Write-Verbose	$cmd

#execute	the	command

Invoke-Expression	$cmd

$VerbosePreference	=	“SilentlyContinue”

How	it	works…
The	Invoke-Expression	cmdlet	allows	PowerShell	expressions	to	run	from	PowerShell.
These	expressions	can	consist	of	other	PowerShell	statements	and	functions,	or	they	can
contain	executables	and	arguments.

In	this	recipe,	we	are	composing	the	command	to	run	7z.exe	and	passing	a	folder	name	to
it,	which	needs	to	be	compressed	into	a	ZIP	file.

The	challenge	faced	most	often	with	using	Invoke-Expression	is	to	make	sure	that	the
full	path	of	the	program,	or	the	full	arguments,	are	all	properly	escaped.	In	our	recipe,	we
individually	compose	the	strings	for	the	executable	and	arguments.	All	the	strings	are
escaped	with	a	back	tick:
$program	=	”`“C:\Program	Files\7-Zip\7z.exe`””

#arguments

$7zargs	=	”	a	-tzip	”

$zipFile	=	”	`“C:\Temp\new	archive.zip`”	”

$directoryToZip	=	”	`“C:\Temp\old`”	”

#compose	the	command

$cmd	=	”&	$program	$7zargs	$zipFile	$directoryToZip	”

#display	final	command

Write-Verbose	$cmd

When	we	display	the	command,	we	will	see	that	the	double	quotes	are	preserved:

The	preceding	ampersand	is	considered	a	call	operator,	and	this	whole	expression	is	meant
to	run	7z.exe	and	compress	the	C:\Temp\old	folder	into	a	file	called	new	archive.zip.

Finally,	running	the	expression	requires	using	the	Invoke-Expression	cmdlet	and	passing
the	string	command	argument:

Invoke-Expression	$cmd

There’s	more…
Learn	more	about	the	Invoke-Expression	cmdlet	from	the	MSDN	page	at
http://msdn.microsoft.com/en-us/library/hh849893.

http://msdn.microsoft.com/en-us/library/hh849893

Testing	regular	expressions
In	this	recipe,	we	are	going	to	explore	some	ways	to	use	and	test	regular	expressions.

How	to	do	it…
Let’s	check	out	regular	expressions	in	PowerShell:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

$VerbosePreference	=	“Continue”

#check	if	valid	email	address

$str	=	“info@sqlbelle.com”

$pattern	=	”^[A-Z0-9._%+-]+@[A-Z0-9.-]+.(?:[A-Z]

{2}|com|org|net|gov|ca|mil|biz|info|mobi|name|aero|jobs|museum)$”

if	($str	-match	$pattern)

{

			Write-Verbose	“Valid	Email	Address”

}

else

{	

		Write-Verbose	“Invalid	Email	Address”

}

#another	way	to	test	

[Regex]::Match($str,	$pattern)

#can	also	use	regex	in	switch

$str	=	“V1A	2V1”

$str	=	“90250”

switch	-regex	($str)

{

			”(^\d{5}$)|(^\d{5}-\d{4}$)”	

			{	

								Write-Verbose	“Valid	US	Postal	Code”	

			}

			”[A-Za-z]\d[A-Za-z]\s*\d[A-Za-z]\d”

			{

								Write-Verbose	“Valid	Canadian	Postal	Code”	

			}

			default	

			{	

								Write-Verbose	“Don’t	Know”	

			}

}

#use	regex	and	extract	matches

#to	create	named	groups	-	use	format	?<groupname>

$str	=	“Her	number	is	(604)100-

1004.	Sometimes	she	can	be	reached	at	(604)100-1005.”

$pattern	=	@”

(?<phone>\(\d{3}\)\d{3}-\d{4})

“@

$m	=	[regex]::Matches($str,	$pattern)

#list	individual	phones

$m	|	

Foreach-Object	{

			Write-Verbose	”$($_.Groups[“phone”].Value)”

}

$VerbosePreference	=	“SilentlyContinue”

How	it	works…
A	regular	expression	is	a	string	pattern—for	example,	a	pattern	for	a	valid	ZIP	code	or	an
e-mail	address	that	can	be	used	to	compare	strings.

We	have	looked	at	a	few	ways	to	use	and	test	regular	expressions	in	this	recipe.

Here	are	some	of	the	common	patterns:

Pattern Description

\ Escape	character

^ Beginning	of	line

$ End	of	line

* Matches	zero	or	many	times

? Matches	zero	or	one	time

+ Matches	one	or	more	times

. Matches	a	single	character	except	newline

pattern1|pattern2 Matches	either	of	the	patterns

pattern{m} Matches	a	pattern	exactly	m	times

pattern{m,n} Matches	minimum	m	to	a	maximum	n	times

pattern{m,	} Matches	minimum	m	times

[abcd] Matches	any	character	in	a	set

[a-d] Matches	any	character	in	a	range

[^abcd] Matches	characters	NOT	in	a	set

\n Newline

\r Carriage	return

\b Word	boundary

\B Non-word	boundary

\d Digits:	0-9

\D Non-digit

\w Word	character;	equivalent	to	[A-Za-z0-9_]

\W Non-word	character

\s Space	character

\S Non	whitespace	character

PowerShell	has	the	–match	and	–replace	operators	that	allow	strings	to	be	matched	or
replaced	against	a	pattern.	PowerShell	also	supports	the	static	methods	of	the	Regex	class,
such	as	[regex]::Match	and	[regex]::Matches.

In	the	first	example,	we	will	check	for	a	valid	e-mail	address	and	we	will	use	the	–match
operator:
#check	if	valid	email	address

$str	=	info@sqlbelle.com

$pattern	=	”^[A-Z0-9._%+-]+@[A-Z0-9.-]+.(?:[A-Z]

{2}|com|org|net|gov|ca|mil|biz|info|mobi|name|aero|jobs|museum)$”

if	($str	-match	$pattern)

{

			Write-Verbose	“Valid	Email	Address”

}

else

{	

		Write-Verbose	“Invalid	Email	Address”

}

Regular	expressions	can	also	be	used	in	a	switch	statement.	In	our	example,	we	will
check	whether	our	string	is	either	a	valid	US	or	Canadian	postal	code:
#can	also	use	regex	in	switch

$str	=	“V1A	2V1”

switch	-regex	($str)

{

			”(^\d{5}$)|(^\d{5}-\d{4}$)”	

			{	

								Write-Verbose	“Valid	US	Postal	Code”	

			}

			”[A-Za-z]\d[A-Za-z]\s*\d[A-Za-z]\d”

			{

								Write-Verbose	“Valid	Canadian	Postal	Code”	

			}

			default	

			{	

								Write-Verbose	“Don’t	Know”	

			}

}

If	there	is	a	possibility	of	multiple	matches,	we	can	use	the	[regex]::Matches	operator,
and	pipe	the	result	to	a	Foreach-Object	cmdlet	to	display	the	group	matches:
#use	regex	and	extract	matches

#to	create	named	groups	-	use	format	?<groupname>

$str	=	“Her	number	is	(604)100-

1004.	Sometimes	she	can	be	reached	at	(604)100-1005.”

$pattern	=	@”

(?<phone>\(\d{3}\)\d{3}-\d{4})

“@

$m	=	[regex]::Matches($str,	$pattern)

#list	individual	phones

$m	|	

Foreach-Object	{

			Write-Verbose	”$($_.Groups[“phone”].Value)”

}

The	pattern	we	are	using	is	a	named	group	that	is	specified	by	the	(?<phone>)	label.
Anything	that	is	matched	by	the	pattern	in	the	parenthesis	can	later	be	referred	to	by	the
phone	label.

There’s	more…
The	following	links	are	useful	in	learning	more	about	regular	expressions	in	general	and	in
the	context	of	PowerShell:

	
For	more	information	on	Regex	Methods,	visit	http://msdn.microsoft.com/en-
us/library/axa83z9t.
Refer	to	Regular	Expression	Language—Quick	Reference,	which	is	available	at
http://msdn.microsoft.com/en-us/library/az24scfc.aspx.
Refer	to	the	PowerShell	admin	regex	article,	which	is	available	at
http://www.powershelladmin.com/wiki/Powershell_regular_expressions.

http://msdn.microsoft.com/en-us/library/axa83z9t
http://msdn.microsoft.com/en-us/library/az24scfc.aspx
http://www.powershelladmin.com/wiki/Powershell_regular_expressions

Managing	folders
In	this	recipe,	we	will	explore	different	cmdlets	that	support	folder	management.

How	to	do	it…
Let’s	take	a	look	at	different	cmdlets	that	can	be	used	for	folders:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

#list	folders	ordered	by	name	descending

$path	=	“C:\Temp”	

#get	directories	only

Get-Childitem	$path	|	

Where-Object	PSIsContainer

#create	folder

$newFolder	=	“C:\Temp\NewFolder”

New-Item	-Path	$newFolder	-ItemType	Directory	-Force

#check	if	folder	exists	

Test-Path	$newFolder

#copy	folder

$anotherFolder	=	“C:\Temp\NewFolder2”

Copy-Item	$newFolder	$anotherFolder	-Force

#move	folder

Move-Item	$anotherFolder	$newFolder

#delete	folder

Remove-Item	$newFolder	-Force	-Recurse

How	it	works…
Here	are	some	cmdlets	that	support	folder	manipulation:

Cmdlet Description

Get-

ChildItem

This	lists	all	directories	in	a	path:
#get	directories	only	Get-

Childitem	$path	|	Where	PSIsContainer

Test-Path
This	checks	whether	a	folder	exists:
Test-Path	$newFolder

New-Item
This	creates	a	new	folder:
PS>	NewItem	-Path	$newFolder	-ItemType	Directory	-Force

Copy-Item
This	copies	a	folder:
Copy-Item	$newFolder	$anotherFolder	-Force

Move-Item
This	moves	a	folder	to	a	different	location:
Move-Item	$anotherFolder	$newFolder

Remove-Item
This	deletes	a	folder	and	all	its	contents:
Remove-Item	$newFolder	-Force	-Recurse

There’s	more…
Refer	to	the	following	links	to	understand	how	to	work	with	files	and	folders	via	scripting
languages:

	
Files	and	Folders,	Part	1	(TechNet,	by	the	Microsoft	Scripting	Guys)	at
http://technet.microsoft.com/en-us/library/ee176983.
Files	and	Folders,	Part	2	(TechNet,	by	the	Microsoft	Scripting	Guys)	at
http://technet.microsoft.com/en-us/library/ee176985.
Files	and	Folders,	Part	3	(TechNet,	by	the	Microsoft	Scripting	Guys)	at
http://technet.microsoft.com/en-us/library/ee176988.

http://technet.microsoft.com/en-us/library/ee176983
http://technet.microsoft.com/en-us/library/ee176985
http://technet.microsoft.com/en-us/library/ee176988

See	also
The	Manipulating	files	recipe.

Manipulating	files
In	this	recipe,	we	will	take	a	look	at	different	cmdlets	that	help	you	manipulate	files.

How	to	do	it…
Let’s	explore	different	ways	to	manage	files:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

#create	file

$timestamp	=	Get-Date	-format	“yyyy-MMM-dd-hhmmtt”

$path	=	“C:\Temp"

$fileName	=	”$timestamp.txt”

$fullPath	=	Join-Path	$path	$fileName

New-Item	-Path	$path	-Name	$fileName	-ItemType	“File”

#check	if	file	exists	

Test-Path	$fullPath

#copy	file

$path	=	“C:\Temp"

$newFileName	=	$timestamp	+	“_2.txt”

$fullPath2	=	Join-Path	$path	$newFileName

Copy-Item	$fullPath	$fullPath2	

#move	file

$newFolder	=	“C:\Data”

Move-Item	$fullPath2	$newFolder

#append	to	file

Add-Content	$fullPath	“Additional	Item”

#show	contents	of	file

notepad	$fullPath

#merge	file	contents

$newContent	=	Get-Content	“C:\Temp\processes.txt”

Add-Content	$fullPath	$newContent

#show	contents	of	file

notepad	$fullPath

#delete	file

Remove-Item	$fullPath

How	it	works…
Here	are	some	of	the	cmdlets	that	support	file	manipulation:

Cmdlet Description

Test-Path
This	checks	whether	a	file	exists:
Test-Path	$fullpath

Join-Path
This	combines	a	path	and	child	path:
Join-Path	$path	$fileName

New-Item
This	creates	a	new	file:
New-Item	-Path	$path	-Name	$fileName	-ItemType	“File”

Get-Content
This	retrieves	the	content	of	a	file:
Get-Content	“C:\Temp\processes.txt”

Add-Content
This	appends	the	content	to	a	file:
Add-Content	$fullPath	$newContent

Copy-Item
This	copies	a	file:
Copy-Item	$fullPath	$fullPath2	

Move-Item
This	moves	a	file	to	a	different	location:
Move-Item	$fullPath2	$newFolder

Remove-Item
This	deletes	a	file:
Remove-Item	$fullPath

There’s	more…
Refer	to	the	following	links	to	understand	how	to	work	with	files	and	folders	via	scripting
languages:

	
Files	and	Folders,	Part	1	(TechNet,	by	the	Microsoft	Scripting	Guys):
http://technet.microsoft.com/en-us/library/ee176983.
Files	and	Folders,	Part	2	(TechNet,	by	the	Microsoft	Scripting	Guys):
http://technet.microsoft.com/en-us/library/ee176985.
Files	and	Folders,	Part	3	(TechNet,	by	the	Microsoft	Scripting	Guys):
http://technet.microsoft.com/en-us/library/ee176988.

http://technet.microsoft.com/en-us/library/ee176983
http://technet.microsoft.com/en-us/library/ee176985
http://technet.microsoft.com/en-us/library/ee176988

See	also
The	Managing	folders	recipe.

Compressing	files
In	this	recipe,	we	will	use	the	Compress-Archive	cmdlet	to	compress	or	ZIP	some	files.

How	to	do	it…
The	following	steps	walk	you	through	compressing	files	using	PowerShell:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

#replace	the	variable	values	with	your

#folder	and	destination	file	values

#search	for	file	with	specific	extension

$folderToCompress	=	“C:\Temp\MyFiles”

$destinationFile	=	$folderToCompress	+	”.zip”

Compress-Archive	-Path	$folderToCompressfolderToCompress	–

DestinationPath	$destinationFile	–CompressionLevel	Fastest	-Update

How	it	works…
PowerShell	V5	introduces	a	new	cmdlet	that	compresses	files.	Compress-Archive	is	an
elegant	way	to	archive	or	ZIP	files.	It	accepts	a	folder	or	list	of	files	to	be	zipped	and	the
destination	file.	If	you	want	to	specify	multiple	files,	you	need	to	list	them	separated	by	a
comma:

Compress-Archive	-

LiteralPath	C:\Data\Resume.docx,	C:\MyFiles\CoverLetter.pdf	–

CompressionLevel	Optimal	-DestinationPath	C:\Data\MyApplication.Zip

You	can	also	specify	the	compression	level	to	be	Fastest,	Optimal,	or	NoCompression.

If	you	need	to	unzip	or	expand	the	files,	you	can	use	the	complementing	Expand-Archive
cmdlet,	which	is	also	introduced	in	PowerShell	V5.

Searching	for	files
In	this	recipe,	we	will	search	for	files	based	on	filenames,	attributes,	and	content.

How	to	do	it…
Let’s	explore	different	ways	to	use	Get-ChildItem	to	search	for	files:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

#search	for	file	with	specific	extension

$path	=	“C:\Temp”

Get-ChildItem	-Path	$path	-Include	*.sql	-Recurse

#search	for	file	based	on	date	creation	

#use	LastWriteTime	for	date	modification

[datetime]$startDate	=		“2015-05-01”

[datetime]$endDate	=		“2015-05-24”	

#note	date	is	at	12	midnight

#sample	date	Sunday,	May	24,	2015	12:00:00	AM

#search	for	the	file

Get-ChildItem	-Path	$path	-Recurse	|	

Where-Object	CreationTime	-ge	$startDate	|	

Where-Object	CreationTime	-le	$endDate	|	

Sort-Object	-Property	LastWriteTime

#list	files	greater	than	10MB

Get-ChildItem	$path	-Recurse	|	

Where-Object	Length	-ge	10Mb	|	

Select-Object	Name,		

@{Name=“MB”;Expression={“{0:N2}”	-f	($_.Length/1MB)}}	|	

Sort-Object	-Property	Length	-Descending	|	

Format-Table	–AutoSize

#search	for	content	of	file

#search	TXT,	CSV	and	SQL	files	that	contain	

#the	word	“QueryWorks”

$pattern	=	“QueryWorks”

Get-ChildItem	-Path	$path	-Include	*.txt,	*.csv,	*.sql	-Recurse	|	

Select-String	-Pattern	$pattern

How	it	works…
The	Get-ChildItem	cmdlet	displays	contents	of	a	given	path:

Get-ChildItem

You	can	also	use	the	gci,	ls,	or	dir	aliases	instead	of	Get-ChildItem	when	typing	this
command.

We	can	pipe	the	results	of	Get-ChildItem	to	a	Where-Object	cmdlet	to	filter	the	results.
For	example,	if	we	want	to	look	for	only	.sql	files,	we	will	use	the	following	command:
#search	for	file	with	specific	extension

$path	=	“C:\Temp”

Get-ChildItem	-Path	$path	-Include	*.sql	-Recurse

To	get	files	created	within	a	date	range,	we	pipe	the	results,	and	in	the	Where-Object
cmdlet,	we	filter	based	on	the	CreationTime	property.	Note	that	dates	are	automatically
assigned	a	timestamp	of	midnight,	and	the	following	example	actually	gets	all	files	created
between	May	1	and	May	24:
#search	for	file	based	on	date	creation	

#use	LastWriteTime	for	date	modification

[datetime]$startDate	=		“2015-05-01”

[datetime]$endDate	=		“2015-05-24”	

#note	date	is	at	12	midnight

#sample	date	Sunday,	May	24,	2015	12:00:00	AM

Get-ChildItem	-Path	$path	-Recurse	|	

Where-Object	CreationTime	-ge	$startDate	|	

Where-Object	CreationTime	-le	$endDate	|	

Sort-Object	-Property	LastWriteTime

To	filter	files	based	on	file	size,	we	can	filter	the	files	using	the	Length	property.	Note	that
PowerShell	supports	the	KB	(kilobyte),	MB	(megabyte),	GB	(gigabyte),	TB	(terabyte),	and	PB
(petabyte)	constants:
#list	files	greater	than	10MB

Get-ChildItem	$path	-Recurse	|	

Where-Object	Length	-ge	10Mb	|	

Select	Name,		

@{Name=“MB”;Expression={“{0:N2}”	-f	($_.Length/1MB)}}	|	

Sort-Object	-Property	Length	-Descending	|	

Format-Table	–AutoSize

The	last	example	showcases	the	use	of	the	–Include	switch	with	the	Get-ChildItem
cmdlet,	which	allows	the	cmdlet	to	selectively	include	only	specific	files	based	on	the
pattern	that	was	passed.	This	example	also	highlights	how	we	can	search	not	only
filenames	and	paths,	but	the	actual	contents	of	the	file	using	the	Select-String	cmdlet.
The	Select-String	cmdlet	can	only	search	for	text	files;	however,	it	cannot	search	for
other	proprietary	formats	such	as	.doc,	.docx,	and	.pdf:
#search	for	content	of	file

#search	TXT,	CSV	and	SQL	files	that	contain	

#the	word	“QueryWorks”

$pattern	=	“QueryWorks”

Get-ChildItem	-Path	$path	-Include	*.txt,	*.csv,	*.sql	-Recurse	|	

Select-String	-Pattern	$pattern

There’s	more…
To	learn	more	about	Get-ChildItem,	visit	http://msdn.microsoft.com/en-
us/library/hh849800.

http://msdn.microsoft.com/en-us/library/hh849800

See	also
The	Getting	aliases	recipe.

Reading	an	event	log
In	this	recipe,	we	will	read	the	event	log.

How	to	do	it…
Let’s	take	a	look	at	how	we	can	read	the	Windows	event	log	from	PowerShell:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

Get-EventLog	-LogName	Application	-Newest	20	-EntryType	Error

How	it	works…
Reading	the	event	log	is	straightforward	in	PowerShell.	We	can	do	this	using	the	Get-
EventLog	cmdlet.	This	cmdlet	accepts	a	few	switches	that	includes	LogName	and
EntryType:
Get-EventLog	-LogName	Application	-Newest	20	-EntryType	Error

Some	of	the	possible	LogName	values	are	follows:

	
Application
HardwareEvents
Internet	Explorer
Security
System
Windows	PowerShell

You	can	alternatively	pass	the	name	of	a	custom	log	that	is	available	in	your	system	to	it.

The	EntryType	can	be	of	the	following	types:

	
Error
FailureAudit
Information
SuccessAudit
Warning

In	this	recipe,	we	also	use	the	–Newest	switch	to	filter	only	for	the	newest	20	error	events.

An	alternative	way	of	using	Get-EventLog	is	Get-WinEvent.	Many	administrators	prefer
this	method,	including	our	technical	reviewer,	Chrissy	LeMaire,	because	it	is	more	robust
and	faster.	To	use	Get-WinEvent	in	order	to	get	the	five	most	recent	entries	in	your
Application	log,	you	can	use	this	command:
Get-WinEvent	-LogName	“Application”	-MaxEvents	5	|	

Sort-Object	-Property	TimeCreated	-Descending

There’s	more…
To	learn	more	about	the	Get-EventLog	cmdlet,	visit	http://msdn.microsoft.com/en-
us/library/hh849834.

To	learn	more	about	Get-WinEvent,	visit	https://technet.microsoft.com/en-
us/library/hh849682.aspx.

http://msdn.microsoft.com/en-us/library/hh849834
https://technet.microsoft.com/en-us/library/hh849682.aspx

Sending	an	e-mail
In	this	recipe,	we	send	an	e-mail	with	an	attachment.

Getting	ready
Before	proceeding,	identify	the	following	in	your	environment:

	
An	SMTP	server
A	recipient’s	e-mail	address
A	sender’s	e-mail	address
An	attachment

How	to	do	it…
These	are	the	steps	required	to	send	an	e-mail:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

$file	=	“C:\Temp\processes.csv”

$timestamp	=	Get-Date	-format	“yyyy-MMM-dd-hhmmtt”

#note	we	are	using	backticks	to	put	each	parameter

#in	its	own	line	to	make	code	more	readable

Send-MailMessage	`

-SmtpServer	“queryworks.local”	`

-To	“administrator@queryworks.local”	`

-From	“powershell@sqlbelle.local”	`

-Subject	“Process	Email	-	$file	-	$timestamp”	`

-Body	“Here	ya	go”	`

-Attachments	$file

How	it	works…
One	way	to	send	an	e-mail	using	PowerShell	is	using	the	Send-MailMessage	cmdlet.
Some	of	the	switches	it	accepts	are	as	follows:

	
-SmtpServer

-To

-Cc

-Bcc

-Credential

-From

-Subject

-Body

-Attachments

-UseSsl

There’s	more…
To	learn	more	about	the	Send-MailMessage	cmdlet,	visit	http://msdn.microsoft.com/en-
us/library/hh849925.aspx.

http://msdn.microsoft.com/en-us/library/hh849925.aspx

Embedding	C#	code
In	this	recipe,	we	will	embed	and	execute	C#	code	in	our	PowerShell	script.

How	to	do	it…
Let’s	explore	how	to	embed	C#	code	in	PowerShell:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

#define	code

#note	this	can	also	come	from	a	file

$code	=	@”

using	System;

public	class	HelloWorld

{

			public	static	string	SayHello(string	name)

			{

						return	(String.Format(“Hello	there	{0}”,	name));

			}

			public	string	GetLuckyNumber(string	name)

			{

						Random	random	=	new	Random();

						int	randomNumber	=	random.Next(0,	100);

						string	message	=	String.Format(“{0},	your	lucky”	+

																							”	number	for	today	is	{1}”,	

																							name,	randomNumber);

						return	message;

			}

}

“@

#add	this	code	to	current	session

Add-Type	-TypeDefinition	$code

#call	static	method

[HelloWorld]::SayHello(“belle”)

#create	instance

$instance	=	New-Object	HelloWorld

#call	instance	method

$instance.GetLuckyNumber(“belle”)

How	it	works…
We	can	use	C#	code	from	within	PowerShell.	This	will	require	constructing	a	class	in	a
here-string	and	adding	this	class	as	a	type	to	the	session	using	the	Add-Type	cmdlet.	The
Add-Type	cmdlet	allows	the	construction	of	the	class	in	the	session,	or	to	all	sessions,	if
created	within	the	PowerShell	profile.	This	method	of	embedding	C#	code	has	been
supported	since	PowerShell	V2.

In	the	recipe,	we	use	a	very	simple	class	defined	in	a	here-string:
$code	=	@”

using	System;

public	class	HelloWorld

{

			public	static	string	SayHello(string	name)

			{

						return	(String.Format(“Hello	there	{0}”,	name));

			}

			public	string	GetLuckyNumber(string	name)

			{

						Random	random	=	new	Random();

						int	randomNumber	=	random.Next(0,	100);

						string	message	=	String.Format(“{0},	your	lucky”	+

																							”	number	for	today	is	{1}”,	

																							name,	randomNumber);

						return	message;

			}

}

“@

This	code	does	not	have	to	be	built	and	hardcoded	within	the	script.	It	can	be	read	from
another	file	using	the	Get-Content	cmdlet	and	stored	in	the	$code	variable.

To	put	this	class	in	effect	in	the	current	session,	we	use	the	Add-Type	cmdlet:
#add	this	code	to	current	session

Add-Type	-TypeDefinition	$code

Note	that	this	class	has	both	a	static	and	nonstatic	method.	To	call	the	static	method,	we
must	use	the	class	name:
#call	static	method

[HelloWorld]::SayHello(“belle”)

To	call	the	nonstatic	method,	we	must	first	instantiate	an	object	and	then	call	the	method
using	the	object:
#call	instance	method

$instance.GetLuckyNumber(“belle”)

There’s	more…
Refer	to	MSDN	Add-Type,	which	is	available	at	http://msdn.microsoft.com/en-
us/library/hh849914.

http://msdn.microsoft.com/en-us/library/hh849914

Creating	an	HTML	report
In	this	recipe,	we	will	create	an	HTML	report	based	on	the	system’s	services.

How	to	do	it…
These	are	the	steps	required	to	create	an	HTML	report	using	PowerShell:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

#simple	CSS	Style

$style	=	@”

<style	type=‘text/css’>

		td	{border:1px	solid	gray;}	

		.stopped{background-color:	#E01B1B;}

</style>

“@	

#let’s	get	content	from	Get-Service

#and	output	this	to	a	styled	HTML	

Get-Service	|	

ConvertTo-Html	-Property	Name,	Status	-Head	$style	|	

Foreach-Object	{	

				#if	service	is	running,	use	green	background

				if	($_	-like	”*<td>Stopped</td>*”)	

				{

						$_	-replace	”<tr>”,	”<tr	class=‘stopped’>”

				}	

				else	

				{	

						#display	normally

						$_	

				}	

		}	|	

Out-File	“C:\Temp\sample.html”	-force

#open	the	page	in	Internet	Explorer

Set-Alias	ie	”$env:programfiles\Internet	Explorer\iexplore.exe”

ie	“C:\Temp\sample.html”

The	following	screenshot	shows	a	sample	result:

How	it	works…
In	this	recipe,	we	piped	the	result	of	the	Get-Service	cmdlet,	which	returns	all	services,
into	the	ConvertTo-HTML	cmdlet.	The	ConvertTo-HTML	cmdlet	formats	the	results	as
HTML.	This	cmdlet	also	allows	you	to	configure	what	goes	into	an	HTML	<head>	tag.
This	is	where	you	can	typically	add	your	CSS	styles	and	JavaScript.

Once	the	file	has	been	created,	we	set	an	alias	to	Internet	Explorer	and	just	display	the
resulting	HTML	file	in	the	browser.

There’s	more…
To	learn	more	about	the	ConvertTo-HTML	cmdlet,	visit	http://msdn.microsoft.com/en-
us/library/hh849944.

http://msdn.microsoft.com/en-us/library/hh849944

Parsing	XML
In	this	recipe,	we	will	parse	sample	XML	using	PowerShell.

Getting	ready
In	this	recipe,	we	will	use	Vancouver’s	2012	daily	weather	data,	which	can	be	downloaded
from	http://www.climate.weatheroffice.gc.ca/climateData/dailydata_e.html?
Prov=BC&StationID=889&Year=2012&Month=4&Day=30&timeframe=2.

http://www.climate.weatheroffice.gc.ca/climateData/dailydata_e.html?Prov=BC&StationID=889&Year=2012&Month=4&Day=30&timeframe=2

How	to	do	it…
Let’s	take	a	look	at	how	we	can	parse	XML	files:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

$vancouverXML	=	“C:\XML	Files\eng-daily-01012012-12312012.xml”

$uri	=	“http://climate.weather.gc.ca/climateData/bulkdata_e.html?

format=xml&stationID=889&Year=2012&Month=4&Day=1&timeframe=2&submit=Download+Data”

#download	Vancouver	weather	into	XML	file

Invoke-WebRequest	-Uri	$uri	-OutFile	$vancouverXML	

[xml]	$xml	=	Get-Content	$vancouverXML

#get	number	of	entries

$xml.climatedata.stationdata.Count

#store	max	temps	in	array

$maxtemp	=	$xml.climatedata.stationdata	|	

Foreach-Object	

{	

			[int]$_.maxtemp.”#text”	

}

#list	all	daily	max	temperatures

$maxtemp	|	

Sort-Object	-Descending

#get	max	temperature	recorded	in	2012

$maxtemp	|	

Sort-Object	-Descending	|	

Select-Object	-First	1

How	it	works…
Using	Invoke-WebRequest,	we	can	download	the	data	we	want	to	work	with,	to	an	XML
file	that	is	saved	locally	on	our	system:
$vancouverXML	=	“C:\XML	Files\eng-daily-01012012-12312012.xml”

$uri	=	“http://climate.weather.gc.ca/climateData/bulkdata_e.html?

format=xml&stationID=889&Year=2012&Month=4&Day=1&timeframe=2&submit=Download+Data”

#download	Vancouver	weather	into	XML	file

Invoke-WebRequest	-Uri	$uri	-OutFile	$vancouverXML	

One	of	the	key	things	to	do	when	working	with	XML	data	is	to	make	sure	the	data	is
stored	as	an	XML	object.	In	our	recipe,	we	get	the	contents	of	the	file	using	Get-Content,
and	store	it	in	the	strongly	typed	$xml	variable.	We	know	that	it	is	strongly	typed	because
we	have	placed	the	[xml]	data	type	at	the	time	of	declaring	a	variable	:
$vancouverXML	=	“C:\XML	Files\eng-daily-01012012-12312012.xml”

[xml]	$xml	=	Get-Content	$vancouverXML

The	following	screenshot	is	an	example	of	how	the	file	is	formatted:

To	know	how	many	records	are	in	the	file,	we	can	traverse	the	stationdata	nodes	and
count	the	records:
#get	number	of	entries

$xml.climatedata.stationdata.Count

To	manipulate	the	maxtemp	data,	we	can	loop	through	all	the	nodes	and	extract	the	values
to	an	array:
#store	max	temps	in	array

$maxtemp	=	$xml.climatedata.stationdata	|	

Foreach-Object	

{	

			[int]$_.maxtemp.”#text”	

}

In	an	array,	we	can	further	manipulate	it.	For	example,	we	can	now	easily	sort	as	needed,
or	get	the	overall	maximum	value	if	required:
#list	all	daily	max	temperatures

$maxtemp	|	

Sort-Object	-Descending

#get	max	temperature	recorded	in	2012

$maxtemp	|	

Sort-Object	-Descending	|	

Select-Object	-First	1

Extracting	data	from	a	web	service
In	this	recipe,	we	will	extract	data	from	a	free,	public	web	service.

How	to	do	it…
Let’s	explore	how	to	access	and	retrieve	data	from	a	web	service:

	
1.	 Open	PowerShell	ISE	as	an	administrator.
2.	 Add	the	following	script	and	run	it:

#delayed	stock	quote	URI

$stockUri	=	“http://ws.cdyne.com/delayedstockquote/delayedstockquote.asmx”

$stockproxy	=	New-WebServiceProxy	-Uri	$stockUri	-UseDefaultCredential	

#get	quote

$stockresult	=	$stockProxy.GetQuote(“MSFT”,””)

#display	results

$stockresult.StockSymbol

$stockresult.DayHigh

$stockresult.DayLow

$stockresult.LastTradeDateTime

How	it	works…
To	work	with	a	web	service,	we	first	need	to	create	a	proxy	object	that	will	allow	us	to
access	the	methods	available	in	a	web	service.	We	can	achieve	this	using	the	New-
WebProxy	cmdlet,	which	accepts	the	web	service	URI:
$stockUri	=	“http://ws.cdyne.com/delayedstockquote/delayedstockquote.asmx”

This	URI	points	to	a	free	web	service	that	provides	delayed	stock	quote	values.	If	we	go	to
this	URI	from	the	browser,	this	is	what	we	are	going	to	see:

We	can	see	that	this	web	service	has	a	method	called	GetQuote,	which	retrieves	the	current
stock	quote.	This	accepts	a	stock	symbol	and	license	key.	In	our	script,	we	call	this	method
using	our	proxy	object:
#get	quote

$stockresult	=	$stockProxy.GetQuote(“MSFT”,””)

If	we	were	to	plug	these	values	into	the	browser,	this	is	a	sample	result	that	we	might	get:

To	display	these	in	our	script,	we	simply	need	to	know	how	to	traverse	the	nodes,	from	the
root	to	the	values	we	want	to	display.	In	our	case,	we	want	to	display	to	StockSymbol,
DayHigh,	DayLow,	and	LastTradeDateTime:
#display	results

$stockresult.StockSymbol

$stockresult.DayHigh

$stockresult.DayLow

$stockresult.LastTradeDateTime

There’s	more…
To	learn	more	about	the	New-WebServiceProxy	cmdlet,	visit
http://msdn.microsoft.com/en-us/library/hh849841.

If	you	encounter	errors	on	namespaces,	you	may	need	to	dynamically	generate	them	in
your	PowerShell	script	instead	of	relying	on	the	default	namespace.	Here	is	an	article	on
how	to	resolve	dynamic	namespaces	in	SSRS	at	http://sqlbelle.com/2012/02/04/resolving-
ssrs-and-powershell-new-webserviceproxy-namespace-issue/.

Patrik	Lindström	also	addressed	a	similar	issue	on	how	to	resolve	namespaces	in	Stack
Overflow	at	http://stackoverflow.com/questions/12516512/in-powershell-to-consume-a-
soap-complextype-to-keep-a-soap-service-hot/12528404#12528404.

http://msdn.microsoft.com/en-us/library/hh849841
http://sqlbelle.com/2012/02/04/resolving-ssrs-and-powershell-new-webserviceproxy-namespace-issue/
http://stackoverflow.com/questions/12516512/in-powershell-to-consume-a-soap-complextype-to-keep-a-soap-service-hot/12528404#12528404

Using	PowerShell	remoting
In	this	recipe,	we	will	use	PowerShell	remoting	to	execute	commands	on	a	remote
machine.

Getting	ready
To	work	with	remoting	in	PowerShell,	we	first	need	to	identify	which	remote	machine	we
want	to	use.	In	this	recipe,	we	will	assume	that	there	are	two	machines	in	the	same	domain
that	we	can	use.

Log	in	to	the	machine	you	want	to	use	for	remoting.	We	will	refer	to	this	as	<Remote
Machine	Name>.	PowerShell	remoting	needs	to	be	enabled	on	this	machine.

Note
Check	out	the	system	and	permission	requirements	for	running	PowerShell	remoting	from
MSDN	about_Remote_Requirements	(http://msdn.microsoft.com/en-
us/library/hh847859.aspx).

To	turn	on	remoting,	open	the	PowerShell	console	in	<Remote	Machine	Name>	using
elevated	privileges.	Right-click	on	the	PowerShell	console	and	go	to	Run	as
Administrator.	Execute	the	following	command:

PS>	Enable-PSRemoting

You	will	be	prompted	to	confirm	the	changes	a	couple	of	times.	Answer	A	(or	Yes	to	All)
to	these	questions.

The	remote	computer	<Remote	Machine	Name>	also	needs	to	be	added	as	a	trusted	host.
Open	a	PowerShell	console	as	an	administrator	from	the	local	machine	and	run	the
following	command:

Set-Item	wsman:localhost\client\trustedhosts	-value	<Remote	Machine	Name>

http://msdn.microsoft.com/en-us/library/hh847859.aspx

How	to	do	it…
Let’s	explore	how	to	access	and	retrieve	data	from	a	web	service:

	
1.	 Open	a	PowerShell	console	as	an	administrator	from	the	local	machine.	Right-click

on	the	PowerShell	console	icon	and	select	Run	as	administrator.
2.	 Let’s	first	execute	a	remote	command:

Invoke-Command	-ComputerName	<Remote	Machine	Name>	-

Credential	“QUERYWORKS\Administrator”	-ScriptBlock	{

			Get-Wmiobject	win32_computersystem

}

3.	 Next,	let’s	start	an	interactive	remoting	session	to	the	remote	machine	name.	We	will
provide	our	credentials	to	the	machine	by	specifying	the	–Credential	parameter:
Enter-PSSession	-ComputerName	<Remote	Machine	Name>	-

Credential	“QUERYWORKS\Administrator”	

Note	that	as	soon	as	we	are	authenticated,	the	prompt	changes	to	indicate	that	we	are
now	in	the	remote	machine.

4.	 Let’s	execute	a	simple	command	in	our	remoting	session.	Execute	the	following
command:

Get-Wmiobject	win32_computersystem

You	will	see	the	results	of	Get-

WmiObject,	but	note	that	the	prompt	still	displays	the	remote	machine	name.

5.	 Exit	out	of	the	session	by	typing	exit.

How	it	works…
PowerShell	remoting	allows	you	to	connect	and	execute	PowerShell	commands	on	remote
machines.	PowerShell	remoting	uses	Web	Services	for	Management	(WSMan)	to
communicate	with	a	remote	machine,	and	Windows	Remote	Management	(WinRM)
service	on	the	remote	machine	to	listen	for	incoming	WSMan	requests.

There	are	different	ways	to	execute	remote	commands.	We	can	use	the	Invoke-Command
cmdlet	to	establish	a	remote	connection,	execute	our	command(s)	and	get	our	results,	and
disconnect.	The	command(s)	we	want	to	execute	can	either	be	placed	in	the	–ScriptBlock
parameter	or	in	a	file	specified	with	the	–FilePath	parameter.	In	our	recipe,	we	used	–
ScriptBlock:
Invoke-Command	-ComputerName	<Remote	Machine	Name>	-

Credential	“QUERYWORKS\Administrator”	-Authentication	Negotiate	-

ScriptBlock	{

			Get-Wmiobject	win32_computersystem

}

We	have	also	chosen	to	provide	our	credentials	to	<Remote	Machine	Name>	by	specifying
the	–Credential	parameter.	You	can	choose	to	prompt	for	both	username	and	password
using	the	Get-Credential	cmdlet,	and	passing	this	to	the	Invoke-Command:

$credential	=	Get-Credential

Another	way	to	execute	a	remote	command	is	by	establishing	an	interactive	session	in	a
remote	machine.	We	do	this	using	the	Enter-PSSession	cmdlet:

Enter-PSSession	-ComputerName	<Remote	Machine	Name>	-

Credential	“QUERYWORKS\Administrator”	-Authentication	Negotiate

Once	the	remoting	interactive	session	is	started,	you	will	notice	that	the	PowerShell
prompt	changes	to	show	the	remote	computer’s	name.	We	can	then	start	executing
commands	in	this	session.

What	we’ve	shown	in	this	recipe	is	just	a	very	brief	example	of	how	you	can	use
PowerShell	remoting.	To	learn	more	about	PowerShell	remoting,	including	system	and
permission	requirements,	how	to	set	up	HTTPS,	and	so	on,	make	sure	that	you	check	the
recommended	additional	resources	in	the	There’s	more…	section.

There’s	more…
The	following	links	will	help	you	understand	and	work	with	PowerShell	remoting:

	
MSDN	remoting	requirements	are	available	at	http://msdn.microsoft.com/en-
us/library/hh847859.aspx.
Layman’s	Guide	to	PowerShell	2.0	Remoting	by	Ravikanth	Chaganti
http://www.ravichaganti.com/blog/?p=1305.
An	Introduction	to	PowerShell	Remoting	(5-part	series):

http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/23/an-introduction-
to-powershell-remoting-part-one.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/24/an-introduction-
to-powershell-remoting-part-two-configuring-powershell-remoting.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/25/an-introduction-
to-powershell-remoting-part-three-interactive-and-fan-out-remoting.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/26/an-introduction-
to-powershell-remoting-part-four-sessions-and-implicit-remoting.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/27/an-introduction-
to-powershell-remoting-part-five-constrained-powershell-endpoints.aspx

Secrets	of	PowerShell	Remoting	at	https://www.penflip.com/powershellorg/secrets-
of-powershell-remoting.

http://msdn.microsoft.com/en-us/library/hh847859.aspx
http://www.ravichaganti.com/blog/?p=1305
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/23/an-introduction-to-powershell-remoting-part-one.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/24/an-introduction-to-powershell-remoting-part-two-configuring-powershell-remoting.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/25/an-introduction-to-powershell-remoting-part-three-interactive-and-fan-out-remoting.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/26/an-introduction-to-powershell-remoting-part-four-sessions-and-implicit-remoting.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/27/an-introduction-to-powershell-remoting-part-five-constrained-powershell-endpoints.aspx
https://www.penflip.com/powershellorg/secrets-of-powershell-remoting

Appendix	A.	PowerShell	Primer
In	this	appendix,	we	will	cover	the	following	topics:

	
Understanding	the	need	for	PowerShell
Setting	up	the	environment
Running	PowerShell	scripts
Learning	PowerShell	basics
Understanding	a	scripting	syntax
Converting	scripts	into	functions
Listing	notable	PowerShell	features
Learning	more	about	PowerShell

Introduction
This	appendix	is	a	very	short	primer	to	get	you	up	and	running	with	PowerShell.	We	cover
the	basics	of	the	language	and	syntax;	however,	we	will	not	go	into	in-depth	details	and
variations.

Understanding	the	need	for	PowerShell
PowerShell	is	both	a	scripting	environment	and	scripting	language	meant	to	support
administrators	and	developers	alike	in	automating	and	integrating	processes	and
environments.

You	may	already	be	familiar	with	other	tools	or	languages	that	will	help	you	accomplish
your	task,	and	you	may	be	asking	why	you	should	even	bother	learning	PowerShell.	It	is
important	to	note	that	PowerShell	is	just	another	tool,	but	it	can	be	a	very	powerful	one	if
used	in	the	appropriate	situations.

There	are	different	reasons	for	using	PowerShell,	which	are	as	follows:

	
Running	a	script	is	faster	than	clicking	on	an	application’s	user	interface:	If	we
minimize	clicks,	or	eliminate	them	in	some	cases,	the	task	can	potentially	be	done
much	faster.	Think	about	compressing,	copying,	archiving,	and	renaming	multiple
files.	If	we	had	to	rely	on	the	UI,	this	task	may	take	much	longer.	However,	if	we	can
bake	the	logic	into	a	script	that	performs	all	the	steps,	we	can	run	this	script	when	we
need	to	do	the	same	task.	We	would	be	faster	and	more	efficient	in	accomplishing
this	task.
Learning	and	mastering	one	language	instead	of	five	or	ten:	Instead	of	using	a
duct-taped	mishmash	of	scripting	languages	(batch	file	for	some	items,	VBScript,
Perl,	and	COM),	we	can	now	use	one	single	language	to	handle	most	tasks.
PowerShell	is	supported	by	different	Microsoft	applications	through	libraries	of
cmdlets	that	come	with	applications,	such	as	Microsoft	Exchange,	SharePoint,	and
SQL	Server.	This	makes	integration	and	automation	among	these	products	easier	and
more	seamless.
Leveraging	the	.NET	library:	The	.NET	library	provides	a	rich	collection	of	classes
that	pretty	much	covers	most	programmatic	items	you	can	think	of	such	as	forms,
database	connectivity,	networking,	and	so	on.
Taking	advantage	of	the	fact	that	PowerShell	is	already	built	into	and	supported
in	different	applications:	More	and	more	Microsoft	products	are	being	shipped	with
a	growing	number	of	PowerShell	cmdlets	because	PowerShell	scripting	is	part	of
Microsoft’s	Common	Engineering	Criteria	program
(https://technet.microsoft.com/en-us/library/ff460855.aspx).	Windows	Server,
Exchange,	Active	Directory,	SharePoint,	and	SQL	Server,	to	name	a	few,	all	have
some	PowerShell	support.

https://technet.microsoft.com/en-us/library/ff460855.aspx

Setting	up	the	environment
Before	we	can	start	talking	about	PowerShell,	we	first	need	to	make	sure	you	have	access
to	an	environment	that	has	PowerShell.

PowerShell	V5	comes	natively	with	these	operating	systems:	Windows	8	and	Windows
Server	2012.	You	can	also	install	PowerShell	V5	on	Windows	7,	Windows	Server	2008,
and	Windows	Server	2008	R2	by	installing	the	Windows	Management	Framework	5.0,
which	contains	PowerShell	V5.

Running	PowerShell	scripts
It	is	now	time	to	run	your	script.	In	the	following	sections,	we	will	see	how	you	can	run
your	PowerShell	scripts	through	the	command	shell	or	the	Integrated	Scripting
Environment	(ISE).

Through	shell	or	through	the	ISE
You	can	run	ad	hoc	commands	using	the	shell	or	the	Integrated	Scripting	Environment
(ISE).

Depending	on	your	operating	system,	you	may	have	a	different	navigation	path	to	open
the	PowerShell	console.	An	easy	way	is	to	use	Windows	Search	to	look	for	Windows
PowerShell.	Often,	when	managing	your	servers	or	performing	administrative	tasks,	you
will	need	to	run	PowerShell	as	an	administrator.	To	do	this,	right-click	on	PowerShell	and
select	Run	as	administrator.

Once	the	console	is	ready,	you	can	type	your	commands	and	press	Enter	to	see	the	results.
For	example,	to	display	10	running	processes,	you	can	use	the	Get-Process	cmdlet,	as
shown	in	the	following	screenshot:

You	can	also	use	the	ISE	to	perform	this	task.	Search	for	the	PowerShell	ISE	and	launch	it
as	an	administrator.	The	ISE	comes	with	a	script	editor,	where	you	can	type	your
command	and	press	the	run	button	(the	green	arrow	icon).

Typically,	you	can	save	your	commands	in	a	script	file	with	the	.ps1	extension,	and	run
them	from	the	shell	in	any	of	a	few	different	ways:

	
1.	 From	the	PowerShell	console,	run	the	following	command:

PS	C:\PowerShell>	.\My	Script.ps1”

2.	 From	the	PowerShell	console,	using	the	(&)	call	operator:
PS	C:\	>&“C:\PowerShell\My	Script.ps1”

3.	 From	the	PowerShell	console,	using	dot	sourcing.	Dot	sourcing	simply	means	that

you	prepend	a	dot	and	space	to	your	invocation.	You	can	invoke	your	script	using	dot
sourcing	to	persist	variables	and	functions	in	your	session:
PS	C:\PowerShell	>	.	”.\My	Script.ps1”

PS	C:\>	.	“C:\PowerShell\My	Script.ps1”

4.	 From	Command	Prompt,	run	the	following	command:
C:\	>powershell.exe	-ExecutionPolicyRemoteSigned	-

File	“C:\PowerShell\My	Script.ps1”

Note
Learn	more	about	advantages	and	disadvantages	of	dot	sourcing	from	the	article	by
Ed	Wilson,	also	known	as	the	Microsoft	Scripting	Guy,	in	his	article	Hey,	Scripting
Guy!	Why	Would	I	Even	Want	to	Use	Functions	in	My	Windows	PowerShell	Scripts?
at	http://blogs.technet.com/b/heyscriptingguy/archive/2009/12/23/hey-scripting-guy-
december-23-2009.aspx.

http://blogs.technet.com/b/heyscriptingguy/archive/2009/12/23/hey-scripting-guy-december-23-2009.aspx

The	execution	policy
PowerShell	scripts	are	not	authorized	to	just	run.	We	learned	in	IT	that	trusting	scripts	and
authorizing	them	to	launch	and	run	automatically	can	create	havoc	in	systems,	particularly
because	of	the	prevalence	of	malicious	scripts	and	code.	Remember	the	infamous	I	Love
You	virus	(https://en.wikipedia.org/wiki/ILOVEYOU).	It	took	off	because,	at	that	time,	it
was	so	easy	to	launch	a	script	just	by	double-clicking	on	the	.vbs	file.

To	avoid	problems	such	as	these,	PowerShell	scripts	by	default	are	blocked	from	running.
This	means	that	you	cannot	just	accidentally	double-click	on	a	PowerShell	script	and
execute	it.

The	rules	that	determine	which	PowerShell	scripts	can	run	are	contained	in	the	execution
policy.	This	will	need	to	be	set	ahead	of	time.	The	different	settings	are	explained	in	the
following	table:

Restricted This	is	the	default	execution	policy.	PowerShell	will	not	run	any	scripts.

AllSigned PowerShell	will	run	only	signed	scripts.

RemoteSigned PowerShell	will	run	signed	scripts	or	locally	created	scripts.

Unrestricted PowerShell	will	run	any	scripts,	signed	or	not.

Bypass
PowerShell	will	not	block	any	scripts	and	will	prevent	any	prompts	or
warnings.

Undefined PowerShell	will	remove	the	set	execution	policy	in	the	current	user	scope.

To	determine	what	your	current	setting	is,	you	can	use	the	Get-ExecutionPolicy	cmdlet:
PS	C:\>Get-ExecutionPolicy

If	you	try	to	run	a	script	without	setting	the	proper	execution	policy,	you	may	get	an	error,
which	is	similar	to	the	following:

File	C:\Sample	Script.ps1	cannot	be	loaded	because	the	execution	of	scripts	is
disabled	on	this	system.	For	more	information,	see	about_execution_policies.

To	change	the	execution	policy,	use	Set-ExecutionPolicy	as	follows:
PS	C:\>Set-ExecutionPolicyRemoteSigned

Typically,	if	you	need	to	run	a	script	that	does	a	lot	of	administrative	tasks,	you	will	run
the	script	as	an	administrator.

To	learn	more	about	execution	policies,	run	the	following	script:
helpabout_execution_policies

For	more	information	on	how	to	sign	your	script,	use	the	following	command:
helpabout_signing

https://en.wikipedia.org/wiki/ILOVEYOU

Learning	PowerShell	basics
Let’s	explore	some	PowerShell	basic	concepts.

Cmdlets
Cmdlets,	pronounced	as	“commandlets“,	are	the	foundation	of	PowerShell.	Cmdlets	are
small	commands	or	specialized	commands.	The	naming	convention	for	cmdlets	follows
the	verb-noun	format,	such	as	Get-Command	or	Invoke-Expression.	PowerShell	V3	boasts
a	lot	of	new	cmdlets,	including	cmdlets	to	manipulate	JSON	(ConvertFrom-Json	and
ConvertTo-Json),	web	services	(Invoke-RestMethod	and	Invoke-WebRequest),	and
background	jobs	(Register-JobEvent,	Resume-Job,	and	Suspend-Job).	In	addition	to
built-in	cmdlets,	there	are	also	downloadable	community	PowerShell	extensions	such	as
SQLPSX,	which	can	be	downloaded	from	http://sqlpsx.codeplex.com/.

Many	cmdlets	accept	parameters.	Parameters	can	either	be	specified	by	a	name	or
position.	Let’s	take	a	look	at	a	specific	example.	The	syntax	for	the	Get-ChildItem	cmdlet
is	as	follows:
Get-ChildItem	[[-Path]	<string[]>]	[[-Filter]	<string>]

[-Include	<string[]>]	[-Exclude	<string[]>]

[-Recurse]	[-Force]	[-Name]

[-UseTransaction]	[<CommonParameters>]

The	Get-ChildItem	cmdlet	gets	all	the	children	in	a	specified	path.	For	example,	to	get	all
files	with	a	.txt	extension	in	the	C:\Temp	folder,	we	can	use	Get-ChildItem	with	the	–
Path	and	–Filter	parameters:
Get-ChildItem-Path”C:\Temp”-Filter”*.csv”

We	can	alternatively	omit	the	parameter	names	by	passing	the	parameter	values	by
position.	When	passing	parameters	by	position,	the	order	in	which	the	values	are	passed
matters.	They	need	to	be	in	the	same	order	in	which	the	parameters	are	defined	in	the	Get-
ChildItem	cmdlet:
Get-ChildItem”C:\Temp””*.csv”

To	learn	the	order	in	which	parameters	are	expected	to	come,	you	can	use	the	Get-Help
cmdlet:
Get-Help	Get-ChildItem

http://sqlpsx.codeplex.com/

Learning	PowerShell
The	best	way	to	learn	PowerShell	is	to	explore	the	cmdlets	and	try	them	out	as	you	learn
them.	The	best	way	to	learn	is	to	explore.	Young	Jedi,	you	need	to	get	acquainted	with
these	three	cmdlets:	Get-Command,	Get-Help,	and	Get-Member.

Get-Command
There	are	a	lot	of	cmdlets	and	this	list	is	just	going	to	get	bigger.	It	will	be	hard	to
remember	all	the	cmdlets	except	for	the	handful	that	you	use	day	in	and	day	out.	To	help
you	look	for	cmdlets,	besides	using	the	search	engine,	you	can	use	the	Get-Command
cmdlet.

To	list	all	cmdlets,	run	this	command:
Get-Command

To	list	cmdlets	with	names	that	match	some	string	patterns,	you	can	use	the	–Name
parameter	and	the	asterisk	(*)	wildcard:
Get-Command-Name”*Event*”

To	get	cmdlets	from	a	specific	module,	run	the	following	command:
Get-Command-ModuleSQLASCMDLETS

Get-Help
Now	that	you’ve	found	the	command	you’re	looking	for,	how	do	you	use	it?	The	best	way
to	get	help	is	to	use	Get-Help	(no	pun	intended).	The	Get-Help	cmdlet	provides	the	syntax
of	a	cmdlet,	examples,	and	some	additional	notes	or	links	wherever	available:
Get-Help	Backup-SqlDatabase

Get-Help	Backup-SqlDatabase–Examples

Get-Help	Backup-SqlDatabase-Detailed

Get-Help	Backup-SqlDatabase-Full

The	different	parameters:	Examples,	Detailed,	Full,	and	Online	will	determine	the
amount	of	information	that	will	be	displayed.	The	Online	parameter	opens	up	the	online
help	in	a	browser.

You	may	get	prompted	to	download	the	updated	help.	You	can	download	it	when	you	are
prompted,	or	you	can	preempt	this	by	downloading	the	help	files	before	you	use	Get-Help
using	the	Update-Help	cmdlet.

Note
You	can	find	the	syntax	for	Get-Help	at	https://technet.microsoft.com/en-
us/library/hh849720.aspx.

Only	certain	topics	are	supported	using	the	–Online	switch.	This	is	a	known	issue.	You
can	find	more	information	on	the	Microsoft	Connect	item	at
https://connect.microsoft.com/PowerShell/feedback/details/781697/get-help-online-
doesnt-work-for-some-topics.

Get-Member

https://technet.microsoft.com/en-us/library/hh849720.aspx
https://connect.microsoft.com/PowerShell/feedback/details/781697/get-help-online-doesnt-work-for-some-topics

To	really	understand	a	command	or	object	and	explore	what’s	available,	you	can	use	the
Get-Member	cmdlet.	This	will	list	all	the	properties	and	methods	of	an	object,	or	anything
incoming	from	the	pipeline:
$dt=	(Get-Date)

$dt|	Get-Member

Starter	notes
We’re	almost	ready	to	start	learning	the	syntax.	However,	here	are	a	few	last	notes,	some
things	to	keep	in	mind	about	PowerShell	as	you	learn	it.	Keep	a	mental	note	of	these
items,	and	you’re	ready	to	go	full-steam	ahead.

PowerShell	is	object-oriented	and	works	with	.NET
PowerShell	works	with	objects	and	can	take	advantage	of	the	objects’	methods	and
properties.	PowerShell	can	also	leverage	the	ever-growing	.NET	framework	library.	It	can
import	any	of	the	.NET	classes,	and	reuse	any	of	the	already	available	classes.

You	can	find	out	the	base	class	of	an	object	using	the	GetType	method,	which	comes	with
all	objects:
$dt=	Get-Date

$dt.GetType()	#DateTime	is	the	base	type

To	investigate	an	object,	you	can	always	use	the	Get-Member	cmdlet:
$dt|	Get-Member

To	leverage	the	.NET	libraries,	you	can	import	them	in	your	script.	A	sample	import	of	the
.NET	libraries	is	as	follows:
#load	the	Windows.Forms	assembly

Add-Type	-AssemblyName”System.Windows.Forms”

There	will	be	cases	when	you	may	have	multiple	versions	of	the	same	assembly	name.	In
these	cases,	you	will	need	to	specify	the	strong	name	of	the	assembly	with	the	Add-Type
cmdlet.	This	means	that	you	will	need	to	supply	the	AssemblyName,	Version,	Culture,	and
PublicKeyToken	parameters:
#load	the	ReportViewerWinForms	assembly

Add-Type	-

AssemblyName”Microsoft.ReportViewer.WinForms,	Version=12.0.0.0,	Culture=neutral,	PublicKeyToken=89845dcd8080cc91”

To	determine	the	strong	name,	you	can	open	C:\Windows\assembly	and	navigate	to	the
assembly	you	want	to	load.	You	can	either	check	the	displayed	properties	or	right-click	on
the	particular	assembly	and	select	Properties.

Cmdlets	may	have	aliases	or	you	can	create	one
We	may	already	know	some	scripting	or	programming	languages	and	may	already	have
preferences	on	how	we	do	things.	For	example,	when	listing	directories	from	Command
Prompt,	we	may	be	on	autopilot	when	we	type	dir.	In	PowerShell,	listing	directories	can
be	accomplished	by	the	Get-ChildItem	cmdlet.	Don’t	worry,	you	can	still	use	dir	if	you
prefer.	If	there	is	another	name	you	want	to	use	instead	of	Get-ChildItem,	you	can	create
your	own	alias.

To	find	out	aliases	of	a	cmdlet,	you	can	use	Get-Alias.	For	example,	to	get	the	aliases	of
Get-ChildItem,	you	can	execute	the	following	command:
Get-Alias-Definition”Get-ChildItem”

To	create	your	own	alias,	you	can	use	New-Alias:
New-Alias”list”	Get-ChildItem

Here	are	some	of	the	common	aliases	already	built-in	in	PowerShell:

Cmdlet Alias

Foreach-Object %,	Foreach

Where-Object ?,	Where

Sort-Object Sort

Compare-Object compare,	diff

Write-Output echo,write

Get-Help help,	man

Get-Content cat,	gc,	type

Get-ChildItem dir,	gci,	ls

Copy-Item copy,	cp,	cpi

Move-Item mi,	move,	mv

Remove-Item del,	erase,	rd,	ri,	rm,	rmdir

Get-Process gps,	ps

Stop-Process kill,	spps

Get-Location gl,	pwd

Set-Location cd,	chdir,	sl

Clear-Host clear,	cls

Get-History h,	ghy,	history

You	can	chain	commands
You	can	take	the	result	from	one	command	and	use	it	as	an	input	to	another	command.
The	operator	to	chain	commands	is	a	vertical	bar	(|)	called	a	pipe.	This	feature	to	chain
commands	makes	PowerShell	really	powerful.	This	can	also	make	your	statements	more
concise.

If	you	are	familiar	with	the	Unix/Linux	environment,	pipes	are	must-haves	and	are
incredibly	valuable	tools.

Let’s	take	a	look	at	an	example.	Let’s	export	the	newest	log	entries	(only	time	and	source
fields)	to	a	text	file	in	the	JSON	format:

	
1.	 We	need	to	get	the	newest	log	entries:

Get-EventLog	-LogNameApplication	-Newest	10

2.	 We	need	only	the	time	and	source	fields.	Based	on	what	we	get	from	the	previous
step,	we	need	to	execute	the	following	command:
Select	Time,	Source

3.	 We	need	to	convert	to	JSON.	Using	the	previous	step’s	results	as	input,	we	need	to
execute	this	command:
ConvertTo-Json

4.	 We	need	to	save	it	to	a	file.	We	now	want	to	take	what	we	have	in	step	3	and	put	it

into	a	file:
Out-File-FilePath”C:\Temp\json.txt”-Force

5.	 The	complete	command	will	be	as	follows:
Get-EventLog	-LogNameApplication	-Newest	10|

Select-ObjectTime,Source|

ConvertTo-Json|

Out-File	-FilePath”C:\Temp\json.txt”	-Force

This	is	just	a	simple	example	of	how	you	can	chain	commands,	but	this	should	give	you
an	idea	of	how	it	can	be	done.

Filter	left,	format	right
When	you	chain	commands,	especially	when	your	last	actions	are	for	formatting	the
result,	you	want	to	do	this	as	efficiently	as	possible.	Otherwise,	you	may	use	a	lot	of
resources	to	format	data	and	end	up	only	needing	to	display	a	few.	It	is	best	to	first	trim
your	data,	before	you	pass	them	down	the	pipeline	for	formatting.

Package	and	reuse
Functions	and	modules	allow	you	to	package	up	the	logic	you	built	in	your	scripts	and	put
it	in	reusable	structures.	A	function	can	be	simply	described	as	a	“callable”	code	block.	A
module	allows	you	to	put	together	a	library	of	variables	and	functions	that	can	be	loaded
into	any	session	and	allows	you	to	use	these	variables	and	functions.

Your	goal	should	be	to	package	up	most	of	what	you’ve	already	built	in	scripts,	put	it	into
functions,	and	later	compile	them	into	a	module.	As	a	best	practice,	you	should	make	a
habit	of	making	your	functions	return	objects	so	that	they	can	be	combined	with	other
scripts	and	behave	like	regular	cmdlets.

Note
Converting	your	scripts	into	functions	is	tackled	at	a	later	section	in	this	appendix.

Common	cmdlets
Typically,	cmdlets	are	categorized	into	their	main	purpose	or	functionality	based	on	the
verb	used	in	their	name.	Here	is	a	partial	list	of	cmdlets	to	explore.	Note	that	many	cmdlet
names	are	self-documenting:

Utility

ConvertFrom-Csv

ConvertFrom-Json

ConvertTo-Csv

ConvertTo-Html

ConvertTo-Json

ConvertTo-Xml

Export-Clixml

Export-Csv

Format-List

Format-Table

Get-Alias

Get-Date

Get-Member

Import-Clixml

Import-Csv

Read-Host

Management

Get-ChildItem

Get-Content

Get-EventLog

Get-HotFix

Get-Process

Get-Service

Get-WmiObject

New-WebServiceProxy

Start-Process

Start-Service

Security

ConvertFrom-SecureString

ConvertTo-SecureString

Get-Credential

Get-ExecutionPolicy

Set-ExecutionPolicy

Scripting	syntax
We	will	now	dive	into	the	specifics	of	the	PowerShell	syntax.

Statement	terminators
A	semicolon	is	typically	a	mandatory	statement	terminator	in	many	programming	and
scripting	languages.	PowerShell	considers	both	a	newline	and	semicolon	as	statement
terminators,	although	using	the	newline	is	more	common.	The	caveat	for	using	the
newline	is	that	the	previous	line	must	be	a	complete	statement	before	it	gets	executed.

Escape	and	line	continuation
The	backtick	(`)	is	a	peculiar	character	in	PowerShell,	and	it	has	a	double	meaning.	You
can	typically	find	this	character	on	your	keyboard	above	the	left	Tab	key,	and	it	is	on	the
same	key	as	the	tilde	~	symbol.

The	backtick	is	the	escape	character	in	PowerShell.	Some	of	the	common	characters	that
need	to	be	escaped	are	as	follows:

Escaped	character Description

`n Newline

`r Carriage	return

`’ Single	quote

`” Double	quote

`0 Null

PowerShell	also	uses	the	backtick	(`)	as	a	line	continuation	character.

Note
A	technical	reviewer,	Chrissy	LeMaire,	points	out	an	interesting	fact	about	the	backtick.	It
is	used	as	a	line	continuation	character	because	it	actually	escapes	the	newline.	Interesting
tidbit!

You	may	find	yourself	writing	a	long	chain	of	commands	and	may	want	to	put	different
parts	of	the	command	into	different	lines	to	make	the	code	more	readable.	If	you	do	so,
you	need	to	make	sure	to	put	a	backtick	at	the	end	of	each	line	you	are	continuing;
otherwise,	PowerShell	treats	the	newline	as	a	statement	terminator.	You	also	need	to	make
sure	that	there	are	not	any	extra	spaces	after	the	backtick:
Invoke-Sqlcmd	`

-Query	$query	`

-ServerInstance	$instanceName	`

-Database	$dbName

Variables
Variables	are	placeholders	for	values.	Variables	in	PowerShell	start	with	a	dollar	($)	sign:
$a=10

By	default,	variables	are	loosely	and	dynamically	typed,	which	means	that	the	variable
assumes	the	data	type	based	on	the	value	of	the	content:
$a=10

$a.GetType()		#Int32

$a=“Hello”

$a.GetType()		#String

$a=Get-Date

$a.GetType()		#DateTime

Note	how	the	data	type	changes	based	on	the	value	we	assign	to	the	variable.	You	can,
however,	create	strongly	typed	variables:
[int]$a=10

$a.GetType()		#Int32

When	we	have	a	strongly	typed	variable,	we	can	no	longer	just	haphazardly	assign	it	any
value.	If	we	do,	we	will	get	an	error:
$a=“Hello”

<#	Error

Cannot	convert	value	“Hello”	to	type	“System.Int32”.	Error:	“Input	string	was	not	in	a	correct	format.”

At	line:3char:1

+	$a	=	“Hello”

+	~~~~~~~~~~~~

				+	CategoryInfo										:	MetadataError:	(:)	[],	ArgumentTransformationMetadataException

				+	FullyQualifiedErrorId	:	RuntimeException

#>

We	have	also	mentioned	in	the	previous	section	that	PowerShell	is	object	oriented.
Variables	in	PowerShell	are	automatically	created	as	objects.	Depending	on	the	data	type,
variables	are	packaged	with	their	own	attributes	and	methods.	To	explore	what	properties
and	methods	are	available	with	a	data	type,	use	the	Get-Member	cmdlet:

Here-string
There	may	be	times	when	you	need	to	create	a	string	variable	that	will	contain	multiple
lines	of	code.	You	should	create	these	as	here-string.

A	here-string	data	type	is	a	string	that	often	contains	large	blocks	of	text.	It	starts	with
@”	and	must	end	with	a	line	that	contains	only	“@	.	For	here-string	terminating
characters,	make	sure	this	is	placed	in	its	own	line	and	there	are	no	other	characters	and	no
spaces	before	or	after	it:
$query=@”

INSERT	INTO	SampleXML

(FileName,XMLStuff,FileExtension)

VALUES(‘$xmlfile’,’$xml’,’$fileextension’)

“@

String	interpolation
When	working	with	strings,	you	need	to	remember	that	using	a	double	quote	evaluates
enclosed	variables,	that	is,	variables	are	replaced	with	their	values.	For	example,	run	the
following	code	snippet:
$today=	Get-Date

Write-Host	“Today	is	$today”

#result

#Today	is	07/04/2015	19:48:24

This	behavior	may	sometimes	cause	issues	especially	if	you	need	to	use	multiple	variables
in	continuation;	as	in	the	following	case,	where	we	want	to	combine	$name,	underscore
(_),	$ts,	and	.txt	to	create	a	timestamped	filename:
$name	=	“belle”

$ts	=	Get-Date	-Format	yyyy-MMM-dd

$filename	=	””$name_$ts.txt””

$filename	=	”$($name)_$($ts).txt”

Write-Host	$filename

This	will	give	an	incorrect	result	because	it	will	look	for	$name_	and	$ts,	but	since	it
cannot	find	$name_,	the	final	filename	that	we	get	is	2015-Jul-04.txt	and	not
belle_2015-Jul-04.txt.

To	resolve	this	issue,	we	can	use	any	of	the	following	to	ensure	proper	interpolation:
$filename	=	”$($name)_$($ts).txt”

Write-Host	$filename

$filename	=	”${name}_${ts}.txt”

Write-Host	$filename

$filename	=	”{0}_{1}.txt”	-f	$name,	$ts

Write-Host	$filename

A	single	quote,	on	the	other	hand,	preserves	the	actual	variable	name	and	does	not
interpolate	the	value:
$today=	Get-Date

Write-Host	‘Today	is	$today’

#result

#Today	is	$today

You	can	also	store	actual	commands	in	a	string.	However,	this	is	treated	as	a	string	unless
you	prepend	it	with	an	ampersand	(&),	which	is	PowerShell’s	invoke	or	call	operator:
$cmd=“Get-Process”

$cmd#just	displays	Get-Process,	treated	as	string

&$cmd#actually	executes	Get-Process

Operators
The	operators	used	in	PowerShell	may	not	be	readily	familiar	to	you	even	if	you	have
already	done	some	programming	before.	This	is	because	the	operators	in	PowerShell	do
not	use	the	common	operator	symbols.

PowerShell Traditional Meaning

-eq == Equal	to

-ne <>	or	!= Not	equal	to

-match

-notmatch
	 Match	using	regex;	searches	anywhere	in	a	string

-contains

-notcontains
	 Check	whether	the	match	exists	in	the	collection	or	array.

-like

-notlike
	

Wildcard	match

asterisk	(*)	for	zero	or	more	characters

question	mark	(?)	for	any	single	character

-clike

-cnotlike
	 Case-sensitive	wildcard	match

-not ! Negation

-lt < Less	than

-le <= Less	than	or	equal	to

-gt > Greater	than

-ge >= Greater	than	or	equal	to

-and && Logical	and

-or || Logical	or

-bor | Bitwise	or

-band & Bitwise	and

-xor ^ Exclusive	or

Note	that	many	operators	perform	case-insensitive	string	comparisons	by	default.	If	you
want	to	do	case-sensitive	matching,	prepend	with	c.	For	example,	–ceq,	-clike,	and	-
cnotlike.

Displaying	messages
Often,	we	will	need	to	display	or	log	messages	as	our	scripts	execute.	PowerShell	provides
a	few	cmdlets	to	help	us	accomplish	this:
Get-Command	-Name	”*Write*”	-CommandTypeCmdlet

This	will	give	a	list	of	our	Write-related	cmdlets:

Cmdlet Description

Write-Debug
This	displays	a	debug	message	on	the	console.	It	is

typically	used	with$DebugPreference	=	“Continue”.

Write-Error This	displays	a	nonterminating	error	message	on	the	console.

Write-EventLog This	writes	a	message	to	the	Windows	event	log.

Write-Host This	displays	a	string	message	on	the	host.

Write-Output This	writes	an	object	to	the	pipeline.

Write-Progress This	displays	a	progress	bar.

Write-Verbose
This	displays	a	verbose	message	on	the	console.

It	is	typically	used	with	$VerbosePreference	=	“Continue”.

Write-Warning This	displays	a	warning	message	on	the	console.

Although	some	of	these	cmdlets	seem	similar,	there	are	some	fundamental	differences.	For
example,	Write-Host	and	Write-Output	seem	to	display	the	same	messages	on	the
screen.	The	Write-Host	cmdlet,	however,	simply	displays	a	string,	but	Write-Output
writes	objects	that	have	properties	that	can	be	queried	and	can	eventually	be	used	in	the
pipeline.

We	use	Write-Verbose	a	fair	bit	in	the	recipes	in	this	book.	Write-Verbose	does	not
automatically	display	messages	on	the	host.	It	relies	on	the	$VerbosePreference	setting.
By	default,	$VerbosePreference	is	set	to	SilentlyContinue,	but	it	can	also	be	set	to
Continue,	which	allows	us	to	display	messages	used	with	Write-Verbose	on	the	screen:
$VerbosePreference	=	““Continue””

$folderName	=	““C:\BLOB	Files"”

#using	PowerShell	V2	style	Where-Object	syntax

Get-ChildItem	$folderName	|

Where-Object	{$_.PSIsContainer	-eq	$false}		|

ForEach-Object	{

			$blobFile	=	$_

			Write-Verbose	““Importing	file	$($blobFile.FullName)…””

}

$VerbosePreference	=	“SilentlyContinue”

This	is	an	elegant	way	of	turning	all	messages	on	or	off,	without	needing	to	change	the
script.

Comments
Comments	are	important	in	any	programming	or	scripting	language.	Comments	are	often
used	to	document	logic	and	sometimes	a	chain	of	changes	to	the	script.

Single-line	comments	start	with	a	hash	sign	(#):
#this	is	a	single	line	comment

Block	comments	start	with	<#	and	end	with	#>:
<#

this	is	a	block	comment

#>

PowerShell	also	supports	what’s	called	Comment-Based	Help.	This	feature	allows	you	to
put	a	special	comment	block	at	the	start	of	your	script,	or	in	the	beginning	of	your
function,	that	allows	the	script	or	function	to	be	looked	up	using	Get-Help.	A	sample	of
this	type	of	comment	block	is	as	follows:
<#

.SYNOPSIS

			Creates	a	full	database	backup

.DESCRIPTION

			Creates	a	full	database	backup	using	specified	instance	name	and	database	name

			This	will	place	the	backup	file	to	the	default	backup	directory	of	the	instance

.PARAMETER	instanceName

			instance	where	database	to	be	backed	up	resides

.PARAMETER	databaseName

			database	to	be	backed	up

.EXAMPLE

			PS	C:\PowerShell>	.\Backup-Database.ps1	-

instanceName”QUERYWORKS\SQL01”	-databaseName”pubs”

.EXAMPLE

			PS	C:\PowerShell>	.\Backup-Database.ps1	-instance	“QUERYWORKS\SQL01”	-

database	“pubs”

.NOTES

			To	get	help:

			Get-Help	.\Backup-Database.ps1

.LINK

			http://msdn.microsoft.com/en-us/library/hh245198.aspx

#>

To	look	up	the	help,	you	can	simply	type	a	Get-Help	cmdlet	followed	by	the	script
filename	or	function	name:
PS>Get-Help	.\Backup-Database.ps1

Special	variables
PowerShell	also	has	some	special	variables.	These	special	variables	do	not	need	to	be
created	ahead	of	time;	they	are	already	available.	Some	of	the	special	variables	are	as
follows:

Special	variable Description

$_ Current	pipeline	object

$args Arguments	passed	to	a	function

$error An	array	that	stores	all	errors

$home User’s	home	directory

$host Host	information

$match Regex	matches

$profile Path	to	a	profile,	if	available

$PSHome Install	a	directory	of	PowerShell

$PSISE PowerShell	Scripting	Environment	object

$pid Process	ID	(PID)	of	a	PowerShell	process

$pwd Present	Working	Directory

$true Boolean	true

$false Boolean	false

$null Null	value

Special	characters
A	few	more	special	characters	worth	noting	down	are	explained	in	the	following	table,
which	you	may	find	in	many	scripts	you	work	with:

Character Name Description

| Pipe Command	chaining;	the	output	from	one	command	to	input	to
another

` Backtick An	escape	or	continuation	character

@ At	sign An	array

# Hash	sign A	comment

[]
Square
brackets For	indexes	and	strongly	typed	variables

() Parentheses For	array	members;	for	calling	functions

& Ampersand A	call	operator

*
Start	or
asterisk A	wildcard	character

% Percent An	alias	for	Foreach-Object

?
Question
mark An	alias	for	Where-Object

+ Plus Addition;	a	string	concatenation	operator

Conditions
PowerShell	supports	conditional	statements	using	if-else	or	switch	statements.	These
two	constructs	allow	you	to	check	for	a	condition,	and	consequently	execute	different
blocks	of	code	if	the	condition	is	met	or	not.	Note	that	PowerShell	treats	null/empty	as
false.

Let’s	take	a	look	at	an	example	of	an	if-else	block:
$answer=Read-Host”Which	course	are	you	taking?”

if	($answer-eq”COMP	4677”)

{

Write-Host”That’s	SQL	Server	Administration”

}

elseif	($answer-eq”COMP	4678”)

{

Write-Host”That’s	SQL	Server	Development”

}

else

{

Write-Host”That’s	another	course”

}

Note
Note	that	the	elseif	and	else	blocks	are	optional.	They	don’t	need	to	be	defined	if	you
do	not	have	a	separate	code	to	execute	if	the	condition	is	not	met.

An	equivalent	switch	block	can	be	written	for	the	preceding	code:
$answer=Read-Host”Which	course	are	you	taking?”

switch	($answer)

{

“COMP	4677”

				{

Write-Host”That’s	SQL	Server	Administration”

				}

“COMP	4678”

				{

Write-Host”That’s	SQL	Server	Development”

				}

default

				{

Write-Host”That’s	another	course”

				}

}

Note	that	these	two	constructs	can	be	functionally	equivalent	for	simple	comparisons.	The
choice	to	use	one	over	the	other	hinges	on	preference	and	readability.	If	there	are	many
choices,	the	switch	can	definitely	make	the	code	more	readable.

Regular	expressions
Regular	expressions,	more	commonly	referred	to	as	regex,	specify	a	string	pattern	to
match.	Regex	can	be	extremely	powerful	and	is	often	used	when	dealing	with	massive
amounts	of	text.	The	area	of	bioinformatics,	for	example,	tends	to	rely	heavily	on	regular
expressions	for	gene	pattern	matching.

Regex	can	also	be	quite	confusing	especially	for	beginners.	It	has	its	own	set	of	patterns
and	wildcards,	and	it	is	up	to	you	to	put	these	together	to	ensure	that	you	are	matching
what	you	need	to	be	matched.

Note
Refer	to	the	Testing	regular	expressions	recipe	in	Chapter	11,	Helpful	PowerShell
Snippets.

Arrays
Arrays	are	collections	of	items.	Often,	we	find	ourselves	in	situations	where	we	need	to
store	a	group	of	items,	either	for	further	processing	or	for	exporting:
#ways	to	create	an	array

$myArray=	@()	#empty

$myArray=1,2,3,4,5

$myArray=	@(1,2,3,4,5)

#array	of	processes	consuming	>30%	CPU

$myArray=	(Get-Process|Where-Object		CPU	-gt30)

Arrays	can	either	be	a	fixed	size	or	not.	Fixed-size	arrays	are	instantiated	with	a	fixed
number	of	items.	Some	of	the	typical	methods	such	as	Add	or	Remove	cannot	be	used	with
fixed-size	arrays:
$myArray=	@()

$myArray+=	1,2,3,4,5

$myArray+=6,7,8

$myArray.Add(9)	#error	because	array	is	fixed	size

Removing	an	item	from	a	fixed	array	is	a	little	bit	tricky.	Although	arrays	have	the	Remove
and	RemoveAt	methods	to	remove	entries	based	on	a	value	and	index,	respectively,	we
cannot	use	these	with	fixed-size	arrays.	To	remove	an	item	from	a	fixed-size	array,	we	will
need	to	reassign	the	new	set	of	values	to	the	array	variable:
#remove	6

$myArray=$myArray-ne6

#remove	7

$myArray=$myArray-ne7

To	create	a	dynamic-sized	array,	you	will	need	to	declare	the	array	as	an	array	list	and	add
items	using	the	Add	method.	This	also	supports	removing	items	from	the	list	using	the
Remove	method:
$myArray=New-ObjectSystem.Collections.ArrayList

$myArray.Add(1)

$myArray.Add(2)

$myArray.Add(3)

$myArray.Remove(2)

We	can	use	indexes	to	retrieve	information	from	the	array:
#retrieve	first	item

$myArray[0]

#retrieve	first	3	items

$myArray[0..2]

We	can	also	retrieve	information	based	on	some	comparison	or	condition:
#retrieving	anything	>	3

$myArray-gt3

Hash	tables
A	hash	table	is	also	a	collection.	This	is	different	from	an	array,	however,	because	hashes
are	collections	of	key-value	pairs.	Hashes	are	also	called	associative	arrays	or	hash	tables:
#simple	hash

$simplehash=	@{

“BCIT”=“BC	Institute	of	Technology”

“CST”=“Computer	Systems	Technology”

“CIT”=“Computer	Information	Technology”

}

$simplehash.Count

#hash	containing	process	IDs	and	names

$hash=	@{}

Get-Process|

Foreach-Object	{

			$hash.Add($_.Id,$_.Name)

}

$hash.GetType()

To	access	items	in	a	hash,	we	can	refer	to	the	hash	table	variable	and	retrieve	information
based	on	the	stored	key:
$simplehash[“BCIT”]

$simplehash.BCIT

Loops
A	loop	allows	you	to	repeatedly	execute	block(s)	of	code	based	on	some	condition.	There
are	different	types	of	loop	support	in	PowerShell.	For	all	intents	and	purposes,	you	may
use	all	of	these	types,	but	it’s	always	useful	to	be	aware	of	what’s	available	and	doable.

This	is	a	while	loop,	where	the	condition	is	tested	at	the	beginning	of	the	block:
$i=1

while($i-le5)

{

#code	block

$i

$i++

}

There	is	also	support	for	the	do	while	loop,	where	the	condition	is	tested	at	the	bottom	of
the	block:
$i=1

do

{

#code	block

$i

$i++

}	while($i-le5)

The	for	loop	allows	you	to	loop	a	specified	number	of	times,	based	on	a	counter	that	you
create	in	the	for	header:
for($i=1;	$i-le5;	$i++)

{

$i

}

There	is	yet	another	type	of	loop,	a	foreach	loop.	This	loop	is	a	little	bit	different	because
it	works	with	arrays	or	collections.	It	allows	a	block	of	code	to	be	executed	for	each	item
in	a	collection:
$backupcmds=Get-Command	-Name	”*Backup*”	-CommandTypeCmdlet

foreach($backupcmdin$backupcmds)

{

$backupcmd|Get-Member

}

If	you’re	a	developer,	this	code	might	look	very	familiar	to	you.	In	PowerShell,	however,
you	can	use	pipelining	to	make	your	code	more	concise:
Get-Command	-Name	”*Backup*”	-CommandTypeCmdlet|

Foreach-Object

{

			#recall	that	$_	is	the	current	pipeline	object

$_|Get-Member

}

Use	the	foreach	loop	operator	when	the	collection	of	objects	is	small	enough	so	that	it	can
be	loaded	into	memory.	For	example,	an	array	of	20	string	values.

Use	the	ForEach-Object	cmdlet	when	you	want	to	pass	only	one	object	at	a	time	through
the	pipeline,	minimizing	the	memory	usage.	For	example,	a	directory	containing	10,000
files.

Error	handling
When	developing	functions	or	scripts,	it	is	important	to	think	beyond	just	the	functionality
you	are	trying	to	achieve.	You	also	want	to	handle	exceptions,	or	errors,	when	they
happen.	We	all	want	our	scripts	to	gracefully	exit	if	something	goes	wrong,	rather	than
displaying	some	rather	intimidating	or	cryptic	error	messages.

Developers	in	the	house	will	be	familiar	with	the	concept	of	try/catch/finally.	This	is	a
construct	that	allows	us	to	put	the	code	we	want	to	run	in	one	block	(try),	exception
handling	code	in	another	(catch),	and	any	must-execute	housekeeping	blocks	in	a	final
block	(finally):
$dividend	=20

$divisor	=0

try

{

				$result	=	$dividend/$divisor

}

catch

{

Write-Host	(“======”*20)

Write-Host”Exception	$error[0]”

Write-Host	(“======”*20)

}

finally

{

Write-Host”Housekeeping	block”

Write-Host”Must	execute	by	hook	or	by	crook”

}

Converting	scripts	into	functions
A	function	is	a	reusable,	callable	code	block(s).	A	function	can	accept	parameters	and	can
produce	different	results.

A	typical	anatomy	of	a	PowerShell	function	looks	like	this:
function	Do-Something

{

<#

							comment	based	help

				#>

param

				(

#parameters

)

#blocks	of	code

}

To	illustrate,	let’s	create	a	very	simple	function	that	takes	a	report	server	URL	and	lists	all
items	in	that	report	server.

Note
When	naming	functions,	it	is	recommended	that	you	adhere	to	the	verb-noun	convention.
The	verb	also	needs	to	be	approved;	otherwise,	you	may	get	a	warning	similar	to	when
you	import	the	SQLPS	module:

WARNING:	The	names	of	some	imported	commands	from	the	‘sqlps’	module	include
unapproved	verbs	that	might	make	them	less	discoverable.	To	find	the	commands	with
unapproved	verbs,	run	the	Import-Module	command	again	with	the	verbose	parameter.
For	a	list	of	approved	verbs,	type	Get-Verb.

This	function	will	take	in	a	parameter	for	the	report	server	URL	and	another	switch	called
$ReportsOnly,	which	can	toggle	displaying	between	all	items	or	only	report	items:
function	Get-SSRSItems

{

<#

							comment	based	help

				#>

param

				(

							[Parameter(Position=0,Mandatory=$true)]

							[alias(“reportServer”)]

							[string]$ReportServerUri,

							[switch]$ReportsOnly

)

				Write-Verbose	“Processing	$($ReportServerUri)	…”

				$proxy	=	New-WebServiceProxy	-Uri	$ReportServerUri-UseDefaultCredential

				if	($ReportsOnly)

				{

								$proxy.ListChildren(“/”,	$true)	|

								Where-Object	TypeName	-eq”Report”

				}

				else

				{

								$proxy.ListChildren(“/”,	$true)

				}

}

To	call	this	function,	we	can	pass	in	the	value	for	–ReportServerUri	and	also	set	the	–
ReportsOnly	switch:
$server	=	“http://server1/ReportServer/ReportService2010.asmx”

Get-SSRSItems	-ReportsOnly	-ReportServerUri	$server	|

Select-Object	Path,	TypeName	|

Format-Table	-AutoSize

To	allow	your	function	to	behave	more	like	a	cmdlet	and	work	with	the	pipeline,	we	will
need	to	add	the	[CmdletBinding()]	attribute.	We	can	also	change	the	parameters	to
enable	values	to	come	from	the	pipeline	using	ValueFromPipeline=$true.	Inside	the
function	definition,	we	will	need	to	add	three	blocks:

	
BEGIN:	Preprocessing;	anything	in	this	block	will	be	executed	once	when	the	function
is	called
PROCESS:	Actual	processing	that	is	done	for	each	item	that	is	passed	in	the	pipeline
END:	Post-processing;	this	block	will	be	executed	once	before	the	function	terminates
executing

We	will	also	need	to	specify	in	the	parameter	block	that	we	want	to	accept	input	from	the
pipeline.

A	revised	function	is	as	follows:
function	Get-SSRSItems

{

<#

							comment	based	help

				#>

				[CmdletBinding()]

param

				(

							[Parameter(Position=0,Mandatory=$true,

ValueFromPipeline=$true,

ValueFromPipelineByPropertyName=$true)]

							[alias(“reportServer”)]

							[string]$ReportServerUri,

							[switch]$ReportsOnly

)

				BEGIN

				{

				}

				PROCESS

				{

								Write-Verbose	“Processing	$($ReportServerUri)	…”

								$proxy	=	New-WebServiceProxy	`

																	-Uri	$ReportServerUri	-UseDefaultCredential

								if	($ReportsOnly)

								{

										$proxy.ListChildren(“/”,	$true)	|

										Where-Object	TypeName	-eq”Report”

								}

								else

								{

									$proxy.ListChildren(“/”,	$true)

								}

				}

				END

				{

								Write-Verbose	“Finished	processing”

				}

}

To	invoke,	we	can	pipe	an	array	of	servers	to	the	Get-SSRSItems	function,	and	this
automatically	maps	the	servers	to	our	–ReportServerUri	parameter	as	we	specified
ValueFromPipeline=$true.	Note	that	Get-SSRSItems	will	get	invoked	for	each	value	in
our	array:
$servers	=	@(“http://server1/ReportServer/ReportService2010.asmx”,	“http://server2/ReportServer/ReportService2010.asmx”)

$servers	|

Get-SSRSItems	-Verbose	-ReportsOnly	|

Select-Object	Path,	TypeName	|

Format-Table	–AutoSize

Listing	notable	PowerShell	features
Before	you	dive	deeper	into	PowerShell,	it’s	worth	noting	down	the	features	that	have
been	added	to	PowerShell	over	the	last	few	versions.	They	are	as	follows:

Improvements	to	the	Integrated	Scripting	Environment	(ISE):	Many	of	the
improvements	such	as	Intellisense,	autocomplete	(tab	completion),	command	window,	and
live	syntax	checking	were	introduced	in	PowerShell	V3.	Although	subtle,	the	ISE	has	kept
on	improving	through	the	versions.

OneGet:	PowerShell’s	OneGet	has	been	added	in	PowerShell	V5	to	ease	the	process	of
finding,	listing,	managing,	and	installing	packages	from	web-based	repositories	and
installing	them.	If	you	have	worked	with	*nix	machines	and	environments	before,	this
new	feature	is	similar	to	apt-get	or	Red	Hat	Package	Manager(RPM).

Note
In	Windows	10,	this	module	has	been	renamed	as	PackageManagement.	To	learn	more
about	this	module,	visit
http://blogs.technet.com/b/packagemanagement/archive/2015/04/29/introducing-
packagemanagement-in-windows-10.aspx.

To	use	OneGet,	simply	import	the	module:
Import-Module	–Name	OneGet

http://blogs.technet.com/b/packagemanagement/archive/2015/04/29/introducing-packagemanagement-in-windows-10.aspx

The	OneGet	feature	by	default,	works	with	the	default	provider,	PowerShellGallery.

Note
To	learn	more	about	the	PowerShellGallery,	visit
https://www.powershellgallery.com/pages/GettingStarted.

It	can	also	work	with	the	Chocolatey	repository	(https://chocolatey.org/),	a	community-
driven	machine	package	manager.	The	PowerShell	team	does	mention	that	support	for
additional	repositories	are	in	their	roadmap.

To	search	for	packages	that	can	be	installed	using	OneGet,	you	can	run	the	following
command:
Find-Package	–Source	Chocolatey

To	install	a	package,	MagicDisc,	you	can	use	the	following	command:
Find-Package	-Name	MagicDisc	|	Install-Package

PowerShell	will	also	keep	you	updated	on	the	progress	of	the	installation	in	a	command-
line	fashion:

https://www.powershellgallery.com/pages/GettingStarted
https://chocolatey.org/

To	check	how	many	packages	are	available	to	be	installed	via	OneGet,	you	can	use	the
following	command:
@(Find-Package).Count

At	the	time	of	writing	this	appendix,	there	are	2,649	packages	available.

With	this	great	power	(OneGet),	comes	great	responsibility.	Make	sure	that	you	understand
what	this	feature	does	for	you,	what	the	security	risks	are,	and	evaluate	packages	before
you	download	and	install	them.

Note
BoeProx,	PowerShell	MVP,	has	a	blog	post	that	discusses	OneGet	in	more	detail.	You	can
refer	to	http://learn-powershell.net/2014/04/03/checking-out-oneget-in-powershell-v5/.

PowerShellGet:	The	PowerShellGet	package	is	very	similar	to	OneGet.	The
PowerShellGet	package	is	a	wrapper	around	OneGet	and	provides	more	PowerShell-
specific	package	management.	At	the	time	of	writing	this	book,	you	can	search	for
modules	using	Find-Module	of	the	PowerShellGet	package	and	look	for	the	Desired
State	Configuration(DSC)	sources	using	Find-DscResource	of	the	PowerShellGet
package.

PowerShell	Classes:	While	PowerShell	has	always	been	object-based,	there	has	been	no
true	support	for	creating	true	classes,	until	now.	Starting	V5,	PowerShell	supports	the
creation	of	user-defined	classes	using	constructs	that	you	would	use	in	an	object-oriented
programming	language.	Here	is	a	very	simple	example	that	creates	a	class	with	one
property	and	one	method:

http://learn-powershell.net/2014/04/03/checking-out-oneget-in-powershell-v5/

class	CustomClass

{

			[Int]	$NumProcessors

CustomClass([Int]$p_NumProcessors)

			{

						$this.NumProcessors	=	$p_NumProcessors

			}

			#method

			[void]	SetNumProcessors([Int]	$p_NewNum)

			{

						$this.NumProcessors	=	$p_NewNum

			}

}

$myClass	=	[CustomClass]::new(4)

#display

$myClass

#change

$myClass.SetNumProcessors(8)

PowerShell	debugging:	PowerShell	V5	comes	with	a	number	of	improvements	that	will
help	you	with	debugging:

	
You	can	now	break	into	the	debugger	from	either	the	console	(Ctrl	+	B)	or	from	the
ISE	(Ctrl	+	B)
You	can	do	remote	debugging	from	the	ISE
You	can	debug	runspaces	using	runspace-specific	cmdlets:

Get-Runspace

Debug-Runspace

Enable-RunspaceDebug

Disable-RunspaceDebug

Get-RunspaceDebug

Network	Switch	cmdlets:	PowerShell	V5	introduces	a	number	of	cmdlets	that	allow	you
to	configure,	manage,	and	support	Windows	Server	2012	R2	logo-certified	network
switches.	Here	is	a	partial	list	of	Network	Switch-related	cmdlets	in	PowerShell	V5:

Transcription	and	logging:	The	Start-Transcript	and	Stop-Transcript	cmdlets	help
you	record	and	capture	all	the	commands	that	you	issue	in	a	PowerShell	session.	These	are
supported	in	the	console	but	not	in	the	ISE.	In	PowerShell	V5,	these	two	cmdlets	work
within	the	ISE	as	well.

Archive	cmdlets:	There	is	no	need	for	you	to	go	out	and	look	for	another	tool	to	help	you
zip	and	unzip	your	files	and	folders.	PowerShell	V5	comes	with	two	cmdlets	that	will	help
you	do	this	from	PowerShell:	Compress-Archive	and	Expand-Archive.	Here	is	a	simple
example	of	how	you	can	compress	files	from	a	folder:
#code	all	in	one	line

Compress-Archive	-Path	C:\MyFiles*	-DestinationPathC:\Temp\MyFiles.zip

Desired	State	Configuration:	An	introduction	of	Desired	State	Configuration	(DSC)
was	one	of	the	highlights	of	PowerShell	V4.	DSC	is	defined	in	MSDN
(https://msdn.microsoft.com/en-ca/library/dn249912.aspx)	as	“a	new	management
platform	in	Windows	PowerShell	that	enables	deploying	and	managing	configuration	data
for	software	services	and	managing	the	environment	in	which	these	services	run.”	DSC
has	extended	PowerShell	to	allow	you	to	declaratively	specify	your	“desired
configurations“.	To	get	a	list	of	functions	and	cmdlets	related	to	DSC,	you	can	use	the
following	command:
Get-Command	–Module	PSDesiredStateConfiguration

https://msdn.microsoft.com/en-ca/library/dn249912.aspx

The	current	list	is	as	follows:

Updateable	help:	Instead	of	bundling	the	help	files	with	the	PowerShell	installation,
which	often	remains	static	and	easily	becomes	outdated,	PowerShell	help	files	can	be
downloaded	and	updated	on	demand	in	PowerShell	V3.	Using	the	Update-Help	cmdlet,
the	most	up-to-date	help	files	will	be	installed	on	your	system.

Workflows:	Introduced	in	PowerShell	V3,	PowerShell	Workflows	(PSWF),	as	stated	in
MSDN	(http://msdn.microsoft.com/en-us/library/jj134242.aspx),	“help	automate	the
distribution,	orchestration,	and	completion	of	multi-computer	tasks,	freeing	users	and
administrators	to	focus	on	higher-level	tasks“.	PSWF	leverages	Windows	Workflow
Foundation	4.0	for	the	declarative	framework	but	using	familiar	PowerShell	syntax	and
constructs.	Check	out	the	MSDN	article	on	how	to	get	started	with	Windows	PowerShell
Workflow.

Robust	sessions:	In	PowerShell	V3,	sessions	can	be	retained	amidst	network
interruptions.	These	sessions	will	remain	open	until	they	time	out.

Module	auto	loading:	In	PowerShell	V3,	modules	can	be	autoloaded,	that	is,	they	don’t
have	to	be	explicitly	loaded.	If	you	use	a	cmdlet	that	belongs	to	a	module	that	hasn’t	been
loaded	yet,	this	will	trigger	PowerShell	to	search	PSModulePath	and	load	the	first	module
that	contains	this	cmdlet.	This	is	something	we	can	easily	test:
#=====================================

#TEST	1

#=====================================

#check	current	modules	in	session

Get-Module

#use	cmdlet	from	CimCmdlets	module,	which

#is	not	loaded	yet

Get-CimInstancewin32_bios

http://msdn.microsoft.com/en-us/library/jj134242.aspx

#note	new	module	loaded	CimCmdlets

Get-Module

#=====================================

#TEST	2

#=====================================

#use	cmdlet	from	SQLPS	module,	which

#is	not	loaded	yet

Invoke-Sqlcmd	-Query	“SELECT	GETDATE()”	-ServerInstance”localhost”

#note	new	modules	loaded	SQLPS	and	SQLASCmdlets

Get-Module

PSCustomObject:	In	PowerShell	V3,	you	can	create	custom	objects	more	cleanly	using
PSCustomObject.	Creating	custom	objects	are	quite	useful	especially	when	you	need	to
bring	together	properties	from	different	objects	or	components.	Here	is	a	simple	example:
[PSCustomObject]	@{

			Database	=	$db.Name

FileGroup	=	$fg.Name

FileName	=	$file.FileName

}

Web	service	support:	PowerShell	V3	introduced	the	Invoke-WebRequest	cmdlet	that
sends	HTTP	or	HTTPS	requests	to	a	web	service	and	returns	the	object-based	content	that
can	be	easily	manipulated	in	PowerShell.	You	can	download	websites	using	PowerShell
(check	out	Lee	Holmes’	article	on	this	at
http://www.leeholmes.com/blog/2012/03/31/how-to-download-an-entire-wordpress-blog/).

Simplified	language	syntax:	In	PowerShell	V3,	some	syntax	has	been	simplified.

What	you	used	to	write	in	V1	and	V2	with	curly	braces	and	$_	like	this:
Get-Service	|	Where-Object	{	$_.Status	-eq’Running’	}

This	can	now	be	rewritten	in	V3	onward	as	follows:
Get-Service	|	Where-Object	Status	-eq’Running’

Note
Read	more	about	the	Windows	Management	Framework	V5.0	announcement	at
http://blogs.technet.com/b/windowsserver/archive/2014/04/03/windows-management-
framework-v5-preview.aspx.

http://www.leeholmes.com/blog/2012/03/31/how-to-download-an-entire-wordpress-blog/
http://blogs.technet.com/b/windowsserver/archive/2014/04/03/windows-management-framework-v5-preview.aspx

Exploring	more	PowerShell
We	have	barely	touched	PowerShell	basics,	but	this	appendix	should	give	you	an	idea	how
to	use	PowerShell.	To	learn	more	about	PowerShell,	pick	up	a	book	or	two	that	dives	deep
into	the	PowerShell	syntax	and	its	intricacies.	There	are	also	a	number	of	sites	and	blogs
that	have	collections	of	articles	on	PowerShell.	The	following	are	a	few	resources	you
might	find	useful	with	your	PowerShell	adventure:

	
PowerShell	team:Windows	PowerShell	Blog:	http://blogs.msdn.com/powershell/
PowerShell.com:	http://www.powershell.com
PowerShell	Magazine:	http://www.powershellmagazine.com/
MSDN	Channel	9	PowerShell	Webcasts:	http://channel9.msdn.com/tags/PowerShell/
PowerScripting	Podcasts:	http://powerscripting.wordpress.com/

http://blogs.msdn.com/powershell/
http://www.powershell.com
http://www.powershellmagazine.com/
http://channel9.msdn.com/tags/PowerShell/
http://powerscripting.wordpress.com/

Appendix	B.	Creating	a	SQL	Server	VM
In	this	appendix,	we	will	cover	the	following	topics:

	
Terminologies
Downloading	software
VM	details	and	accounts
Creating	an	empty	virtual	machine
Installing	Windows	Server	2012	R2	as	a	guest	OS
Installing	VMWare	tools
Configuring	a	domain	controller	(optional)
Creating	domain	accounts
Installing	SQL	Server	2014	on	a	VM
Configuring	Reporting	Services	in	native	mode
Installing	sample	databases
Installing	PowerShell	V5

Introduction
One	of	the	best	ways	to	learn	and	understand	SQL	Server	and	the	components	that	interact
with	it	is	by	creating	a	virtual	machine	that	has	the	version	of	SQL	Server	you	want	to	use.
I	typically	use	SQL	Server	virtual	machines	for	my	development	and	administration
classes.	I	want	the	students	to	have	full	autonomy	over	the	machines	they	are	using	so	that
they	can	try	different	features	and	configurations	without	worrying	about	affecting	the
host	machines	too	much.	If	anything	goes	awry,	they	can	simply	remove	the	offending
VM	and	recreate	it.

This	appendix	is	a	simple	guide	to	help	you	create	virtual	machines	to	work	with	SQL
Server	and	PowerShell.	This	can	be	considered	a	starting	point	for	more	complex	virtual
machine	configurations	you	may	want	to	explore.

If	you	want	to	be	up	and	running	faster,	you	can	also	consider	some	predefined	template
environments;	you	can	check	out	companies	such	as	CloudShare	that	enables	you	to	build
production-like	environments	in	a	short	time	for	a	fee.	Check	out	their	template	library	at
http://www.cloudshare.com/cloudshare-template-library.

http://www.cloudshare.com/cloudshare-template-library

Terminologies
Let’s	start	off	with	some	terminologies:

Terminology Description

Virtual
machine,	or
VM

This	is	essentially	a	standalone	computer	installed	within	another
platform/OS.

A	virtual	machine	is	also	sometimes	called	a	guest	machine.	This
typically	provides	a	complete	system	platform	with	its	own	set	of
operating	system,	hardware	configurations,	and	installed	software
packages,	but	it	still	runs	on	top	of	a	“host”	machine	that	has	the	main	OS
(operating	system)	and	the	physical	hardware.

There	are	different	applications	that	can	create	and	run	virtual	machines.	A
partial	list	includes	the	following:

	
VMware	Workstation	Player	(free)	which	is	available	at
http://www.vmware.com/products/player/.
VMware	Workstation	Pro	or	other	VMWare	products	which	is
available	at
http://www.vmware.com/products/workstation/overview.html.
Windows	Server	Hyper-V	Server	2012	R2	which	is	available	at
https://www.microsoft.com/en-us/evalcenter/evaluate-hyper-v-server-
2012-r2.
VirtualBox	which	is	available	at
https://www.virtualbox.org/wiki/Downloads.
Microsoft	Azure	Virtual	Machines	which	is	available	at
http://azure.microsoft.com/en-us/services/virtual-machines/

ISO	file

This	is	a	disk	image;	an	archive	file	of	an	optical	disc	in	a	format	defined
by	the	International	Organization	for	Standardization	(ISO).	This
contains	archived	CD/DVD	content.

In	a	VM,	an	ISO	file	can	be	treated	as	a	“real”	CD/DVD.	All	you	need	to
do	is	to	point	the	CD/DVD	settings	to	the	ISO	file	path.

If	you	need	to,	you	can	also	burn	the	ISO	file	to	CD/DVD,	or	you	can
create	ISO	files	using	any	CD/DVD	image	file	processing	tool,	such	as:

	
PowerISO	from	http://www.poweriso.com/	link.
MagicISO	from	http://www.magiciso.com/	link.
Free	ISO	Creator	from	http://www.minidvdsoft.com/isocreator/	link.
Nero	Burning	Software	from	http://www.nero.com/enu/	link.

http://www.vmware.com/products/player/
http://www.vmware.com/products/workstation/overview.html
https://www.microsoft.com/en-us/evalcenter/evaluate-hyper-v-server-2012-r2
https://www.virtualbox.org/wiki/Downloads
http://azure.microsoft.com/en-us/services/virtual-machines/
http://www.poweriso.com/
http://www.magiciso.com/
http://www.minidvdsoft.com/isocreator/
http://www.nero.com/enu/

Service
account

This	is	the	account	used	to	run	services	running	on	a	Windows	operating
system.	To	learn	more	about	service	accounts,	visit
https://msdn.microsoft.com/en-
ca/library/windows/desktop/ms686005.aspx.

https://msdn.microsoft.com/en-ca/library/windows/desktop/ms686005.aspx

Downloading	software
We	will	use	VMware	Player,	a	free	virtual	machine	application,	and	the	trial	versions	for
Windows	Server	2012	R2,	SQL	Server	2014,	Windows	Management	Framework,	and
optionally	Visual	Studio	2010:

	
1.	 Download	and	install	VMware	player	from

http://www.vmware.com/products/player/.	You	can	find	the	VMWare	player
documentation	at	http://www.vmware.com/support/pubs/player_pubs.html.

2.	 Download	the	Windows	Server	2012	R2	trial	version	ISO	file	(or	if	you	have	a
licensed	copy,	use	that)	from	https://www.microsoft.com/en-us/evalcenter/evaluate-
windows-server-2012-r2.

3.	 Download	the	SQL	Server	2014	trial	version	ISO	file	(or	if	you	have	a	licensed	copy,
use	that)	from	https://www.microsoft.com/en-us/evalcenter/evaluate-sql-server-2014.

4.	 Download	the	Windows	Management	Framework	5.	At	the	time	of	writing	this	book,
Windows	Management	Framework	5	Preview	April	2015	is	available	at
https://www.microsoft.com/en-us/download/details.aspx?id=46889.

5.	 Download	SQL	Server	Data	Tools	and	SQL	Server	Data	Tools	Business	Intelligence
(optional)	from	https://msdn.microsoft.com/en-us/library/mt204009.aspx.

6.	 If	you	are	planning	to	create	some	SQLCLR	assemblies,	you	will	need	Visual	Studio
Professional	(optional).	SQL	Server	Data	Tools	(SSDT)	is	not	sufficient	for	creating
the	assemblies.	You	can	download	Visual	Studio	from
https://www.visualstudio.com/en-us/products/vs-2015-product-editions.aspx.

http://www.vmware.com/products/player/
http://www.vmware.com/support/pubs/player_pubs.html
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2012-r2
https://www.microsoft.com/en-us/evalcenter/evaluate-sql-server-2014
https://www.microsoft.com/en-us/download/details.aspx?id=46889
https://msdn.microsoft.com/en-us/library/mt204009.aspx
https://www.visualstudio.com/en-us/products/vs-2015-product-editions.aspx

VM	details	and	accounts
You	will	need	to	identify	your	virtual	machine	details,	such	as	a	virtual	machine	name,
instance	name,	and	service	account.	The	following	table	is	a	sample	form	that	you	can	use
as	a	reference:

Item Description

Virtual	machine	name SQL2014VM

Virtual	machine	computer	name PHOENIX

Domain QUERYWORKS

Virtual	machine	computer	administrator
account

UserName:	Administrator

Password:	P@ssword

SQL	Server	instances
Default:	PHOENIX	(localhost	can	also	be
used)

Named:	PHOENIX\SQL01

SQL	Server	service	account
UserName:	QUERYWORKS\sqlservice

Password:	P@ssword

SQL	Server	agent	account
UserName:	QUERYWORKS\sqlagent

Password:	P@ssword

Additional	domain	accounts
QUERYWORKS\tstark

QUERYWORKS\srogers

QUERYWORKS\todinson

You	need	to	log	in	to	the	VM	when	it’s	ready:

For	logging	in	to	the	VM	navigate	to	Player	|	Send	Ctrl	+	Alt	+	Del.

Additional	VMWare	shortcuts	can	be	found	at
http://www.vmware.com/support/ws55/doc/ws_learning_keyboard_shortcuts.html.

http://www.vmware.com/support/ws55/doc/ws_learning_keyboard_shortcuts.html

Creating	an	empty	virtual	machine
Once	you	have	downloaded	the	software	packages,	you	need	to	configure	your	virtual
machine.	Once	ready,	we	will	create	our	empty	virtual	machine.	We	will	call	our	virtual
machine	SQL2014VM:

	
1.	 Launch	VMware	Player.
2.	 On	the	initial	screen,	click	on	the	Create	New	Virtual	Machine	button.
3.	 You	can	also	do	this	by	navigating	to	File	|	Create	New	Virtual	Machine.
4.	 On	the	New	Virtual	Machine	Wizard	screen,	select	I	will	install	operating	system

later.	This	option	will	allow	you	to	have	more	flexibility	to	configure	the	operating
system	later.

5.	 On	the	Select	a	Guest	Operating	System	screen,	select	Microsoft	Windows	for	the
guest	operating	system,	and	select	Windows	Server	2012	from	the	Version	drop-
down	menu.

6.	 Choose	a	name	for	your	virtual	machine.	We	will	name	our	virtual	machine
SQL2014VM.	If	you	prefer,	you	can	also	change	the	location	of	your	VM:

7.	 We	will	allocate	hard	drive	space	for	our	virtual	machine.	In	this	tutorial,	we	will
allocate	40	GB	disk	space	and	choose	to	split	the	virtual	disk	into	2	GB	files.	Feel
free	to	adjust	it	as	you	see	fit	for	your	own	use.	You	can	allocate	a	bigger	disk	space
if	you	want	to	use	this	VM	for	some	data	warehouses	and	cubes:

8.	 On	the	Ready	to	Create	Virtual	Machine	screen,	click	on	Finish.

Installing	Windows	Server	2012	R2	as	guest	OS
To	install	the	operating	system,	we	first	need	to	mount	the	Windows	Server	ISO	and	play
the	virtual	machine.	After	this,	we	can	follow	the	installation	wizard:

	
1.	 Launch	VMware	Player.
2.	 Select	SQL2014VM	and	then	select	Edit	virtual	machine	settings.
3.	 Let’s	increase	the	memory	settings—adjust	this	based	on	your	available	hardware

configurations.	For	our	purposes,	we	will	increase	the	memory	to	4	GB	(or	4096
MB),	but	you	can	definitely	set	this	higher	if	you	wish.	Just	make	sure	you	have
enough	memory	still	left	for	your	host	OS	and	other	VMs	that	you	may	be	running
simultaneously:

4.	 Select	CD/DVD	and	choose	the	Use	ISO	image	file	button.	Navigate	to	Windows
Server	2012	R2	ISO	and	click	on	OK.

5.	 Go	back	to	the	main	VMWare	Player	screen,	and	while	SQL2012VM	is	selected,
click	on	Play	Virtual	Machine.

6.	 Since	we’ve	mounted	the	ISO,	the	Windows	Server	installation	screen	will	be
displayed	when	the	VM	starts.	Now,	we’ll	need	to	follow	the	installation	for
Windows	Server	2012	R2.

7.	 For	the	installation	language,	we	will	select	English	and	keyboard	will	be	US.
8.	 When	prompted	to	install,	select	Install	Now.
9.	 When	asked	about	the	operating	system	to	install,	we	will	choose	Windows	Server

2012	R2	Standard	(Server	with	a	GUI),	but	feel	free	to	choose	a	different	edition
that	you	want	to	explore.

Note
The	Server	Core	edition	is	bare-bones	version	of	Windows	Server,	which	many
administrators	prefer,	because	of	the	lower	overhead	and	removal	of	unnecessary

services	for	certain	server	roles.	This	may	become	the	recommended	edition	for
production	systems	in	future.	To	learn	more	about	Server	Core,	visit
https://msdn.microsoft.com/en-us/library/dd184075.aspx.

10.	 Accept	the	license	terms	and	click	on	Next.
11.	 When	prompted	for	the	type	of	installation,	select	Custom:	Install	Windows	only

(advanced).	This	installs	a	new	copy	of	Windows	on	your	blank	virtual	machine.
12.	 In	the	Install	Windows	dialog	box,	select	Disk	0	Unallocated	space.
13.	 Let	the	installation	complete.	Note	that	the	VM	will	be	restarted	a	few	times	by	the

installation	process.
14.	 In	one	of	the	restarts,	you	will	be	prompted	to	change	the	password.	Type	in	the

administrator	password.	When	done,	click	on	the	arrow.	You	will	now	be	able	to	log
in	to	your	new	VM.

15.	 By	default,	the	Server	Manager	dashboard	screen	will	be	displayed	when	you	first
log	in.	On	this	screen,	you	can	manage	the	server,	add	roles	and	features,	and
configure:

https://msdn.microsoft.com/en-us/library/dd184075.aspx

16.	 Click	on	Local	Server,	which	is	in	the	left-hand	pane.	Click	on	Computer	Name	to
change	the	computer	name	and	computer	description	and	set	the	following	options:
1.	 In	the	Computer	description	textbox,	type	SQL2014	VM.
2.	 Click	on	the	Change	button.
3.	 In	the	Computer	name	textbox,	type	your	computer	name.	For	this	tutorial,	we

will	use	PHOENIX.

17.	 Click	on	Ok	and	then	Apply.	You	will	be	prompted	to	restart	the	VM;	select	Restart
Later.

18.	 For	our	purposes,	disable	the	firewall.	In	the	Customize	Settings	dialog	box,	choose
to	turn	off	Windows	firewall	for	both	private	and	public	networks.	This	is	definitely
not	recommended	on	production	systems,	but	for	our	exercises,	this	will	be	sufficient.

19.	 Activate	windows.	Leave	the	Serial	Number	textbox	blank	and	click	on	Activate.
Once	the	activation	has	been	successful,	and	if	you’ve	used	the	trial	version	of	the
operating	system,	you	will	see	a	window	indicating	that	your	license	is	valid	for	180
days.

20.	 Restart	the	VM.
21.	 We	are	almost	ready.	In	the	Server	Manager	window,	click	on	Local	Server,	which

is	in	the	left-hand	pane,	and	then	click	on	Windows	Update	from	the	Properties
screen.	Currently,	it	should	say	Not	configured.

22.	 Click	on	Let	me	choose	my	settings,	which	is	the	link	below	Turn	on	automatic
updates.	By	doing	this,	we	will	disable	automatic,	ongoing	updates	for	this	VM.

23.	 Under	Important	Updates,	choose	Never	check	for	updates	and	click	on	OK.
24.	 In	the	Properties	window,	click	on	Last	installed	updates.	It	should	currently	say

Never.	Click	on	check	updates.	If	there	are	any	important	updates,	we	need	to	install
them.	Otherwise,	you	will	see	the	message	Your	pc	is	up	to	date.	No	updates	are
available.

25.	 When	prompted	to	restart,	click	on	OK.	Once	the	VM	has	restarted,	log	in	to	the
VM.

26.	 Now,	let’s	disable	IE	Enhanced	Security	Configuration.	In	Server	Manager,	click
on	Local	Server,	which	is	in	the	left-hand	pane,	and	then	click	on	the	option	beside
IE	Enhanced	Security	Configuration.	This	is	by	default	set	to	On.

27.	 Choose	Off	for	both	Administrators	and	Users.	Click	on	OK.

28.	 Restart	your	VM.

Installing	VMware	tools
For	an	enhanced	VM	experience,	we	need	to	install	VMware	tools:

	
1.	 Launch	VMWare	Player.
2.	 Play	SQL2014VM.
3.	 In	the	Player	menu,	select	Install	VMWare	Tools.
4.	 When	the	AutoPlay	dialog	comes	up,	click	on	Run	setup.exe.
5.	 Select	the	Typical	setup	type	and	click	on	Next.	Follow	the	wizard	to	completion.
6.	 Once	the	installation	is	done,	you	will	be	prompted	to	restart.	Click	on	Yes.

Making	a	snapshot	as	a	baseline
Once	you	have	your	base	virtual	machine	set	up,	it	is	a	good	idea	to	take	a	snapshot	if
your	VM	application	allows	it.	You	may	want	to	create	a	snapshot	to	preserve	the	current
state	of	your	snapshot	and	to	enable	you	to	go	back	to	this	state	later	on.

VMware	workstation	allows	you	to	take	snapshots.	The	option	is	accessible	from	the
menu	item:

When	you	take	a	snapshot,	all	you	need	to	provide	is	the	name	and	optionally	a
description:

You	can	check	the	following	YouTube	video	for	VMware	Snapshot	Best	Practices	at
https://www.youtube.com/watch?v=A8KOh4CzmQc.

https://www.youtube.com/watch?v=A8KOh4CzmQc

VMware	also	has	an	article	on	Understanding	virtual	machine	snapshots	in	VMware	ESXi
and	ESX,	which	is	available	at	http://kb.vmware.com/selfservice/microsites/search.do?
language=en_US&cmd=displayKC&externalId=1015180.

http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1015180

Configuring	a	domain	controller	(optional)
In	a	production	environment,	it	is	not	recommended	that	you	install	the	domain	controller
with	any	of	your	other	server	software.	Doing	so	will	have	a	negative	impact	on	your	SQL
Server	installation,	as	outlined	in	https://msdn.microsoft.com/en-
us/library/ms143506.aspx#DC_support.

It	is	still	helpful	to	have	access	to	a	domain	controller	to	get	a	feel	of	how	a	“production
environment”	works,	or	understand	how	to	create	and	manage	domain	accounts,	among
other	tasks.	If	you	have	a	spare	VM	(or	if	you	can	create	another	one),	it	would	be	best	to
install	your	domain	controller	on	a	different	VM.	However,	if	you	are	working	with	only	a
single	VM,	we	can	install	this	role	on	the	same	machine.	Make	sure	you	note	down	the
limitations	as	specified	in	https://msdn.microsoft.com/en-
us/library/ms143506.aspx#DC_support.

If	you	want	to	mimic	a	production	setup,	you	can	create	another	Windows	Server	2012	R2
VM	with	a	different	computer	name,	and	perform	the	following	steps:

	
1.	 Launch	VMWare	Player.
2.	 Play	SQL2014VM.
3.	 Log	in	to	the	VM.
4.	 In	Server	Manager,	click	on	the	Manage	menu	item	and	select	Add	Roles	and

Features	from	the	drop-down	menu.	This	will	launch	the	Add	Roles	and	Features
Wizard.

https://msdn.microsoft.com/en-us/library/ms143506.aspx#DC_support
https://msdn.microsoft.com/en-us/library/ms143506.aspx#DC_support

5.	 On	the	Select	installation	type	screen,	choose	Role-based	or	feature-based
installation,	which	will	configure	a	single	server	by	adding	roles	and	role	services
and	features:

6.	 On	the	Select	destination	server	screen,	select	the	current	server:

7.	 On	the	Select	server	roles	screen,	choose	Active	Directory	Domain	Services.
8.	 This	action	will	trigger	the	display	of	another	window,	prompting	Add	features	that

are	required	for	Active	Directory	Domain	Services.	Click	on	Add	Features.

9.	 Click	on	Next	until	you	get	to	the	Confirm	installation	selections	screen.	Check
Restart	the	destination	server	automatically	if	required	and	click	on	Install.

10.	 Once	the	Active	Directory	Domain	Services	feature	has	been	installed,	a	link	will
appear	on	the	result	screen.

11.	 Click	on	Promote	this	server	to	a	domain	controller	link	on	the	result	screen.

12.	 Select	create	a	new	forest.	Type	queryworks.local	in	the	Root	domain	name
textbox	and	click	on	Next.

13.	 In	Forest	functional	level,	select	Windows	Server	2012	R2.	In	Type	the	Directory
Services	Restore	Mode	(DSRM)	password	textbox,	type	a	password	and	click	on
Next.

14.	 Under	DNS	Options,	you	will	receive	a	warning	about	a	DNS	delegation	that	cannot
be	created	because	of	a	missing	authoritative	parent	zone.	For	purposes	of	our
exercise,	you	can	ignore	this	warning	since	we	will	not	be	integrating	this	server	to
an	existing	DNS	infrastructure.

15.	 On	the	Additional	Options	screen,	confirm	the	NETBIOS	domain	name.	In	our
case,	it	should	be	QUERYWORKS.

16.	 Review	and	confirm	the	paths	for	the	AD	DS	database	and	SYSVOL.

17.	 On	the	Review	Options	screen,	review	to	ensure	that	all	the	options	are	correct	and
click	on	Next.

18.	 On	the	Prerequisites	Check	screen,	you	may	receive	some	warnings.	One	warning	is
about	the	server	having	a	dynamically	assigned	IP	address.	For	our	purposes,	this	is
acceptable.	Note	that	if	this	option	is	chosen,	it	is	assumed	that	a	DHCP	server	is
already	available	on	the	network.	Otherwise,	the	server	will	use	an	APIPA	scheme,	or
Automatic	Private	IP	Addressing	(APIPA),	which	does	not	work	well	with	domain
controllers.

19.	 Click	on	Install	to	complete	the	Active	Directory	Domain	Services	configuration.
The	server	will	be	restarted.

20.	 Once	the	virtual	machine	is	back	online,	you	will	notice	that	the	login	screen	now
shows	the	domain	information	QUERYWORKS\Administrator.

Creating	domain	accounts
In	this	section,	we	will	create	some	domain	accounts	that	we	will	use	for	our	exercises.	We
will	create	the	following	domain	accounts:

	
QUERYWORKS\sqlservice

QUERYWORKS\sqlagent

QUERYWORKS\tstark

QUERYWORKS\srogers

QUERYWORKS\todinson

To	add	these	accounts,	perform	the	following	steps:

	
1.	 Launch	SQL2014VM	and	log	in.
2.	 In	Server	Manager,	click	on	the	Tools	menu	item	and	select	Active	Directory	Users

and	Computers.
3.	 In	the	Active	Directory	Users	and	Computers	window,	expand	queryworks.local.

Right-click	on	Users	and	navigate	to	New	|	User.
4.	 In	Full	Name	and	User	logon	name,	type	sqlservice	and	click	on	Next,	as	shown

in	the	following	screenshot:

5.	 Type	the	password	and	then	check	User	cannot	change	password	and	password
never	expires,	as	shown	in	the	following	screenshot:

6.	 Click	on	Next	and	then	on	Finish.
7.	 Repeat	steps	3-6	for	creating	the	rest	of	the	users	and	any	additional	ones	you

identify:
sqlagent

tstark

srogers

todinson

Installing	SQL	Server	2014	on	a	VM
Before	we	install	SQL	Server	2014,	we	need	to	ensure	that	.NET	3.5	and	.NET	3.5	Service
Pack	1	are	installed	on	your	VM.

.NET	3.5	is	a	feature	you	can	install	from	Server	Manager.

.NET	3.5	Service	Pack	1	can	be	downloaded	from	https://www.microsoft.com/en-
ca/download/details.aspx?id=22.

Once	these	are	installed,	the	following	steps	will	walk	you	through	installing	SQL	Server
2014	on	your	virtual	machine:

	
1.	 Launch	VMWare	Player.
2.	 Play	SQL2014VM	and	log	in	using	the	administrator	domain	account.
3.	 Go	to	Player	|	Removable	Devices	|	CD/DVD	|	Settings.

4.	 Change	the	ISO	image	file	path	to	the	SQL	Server	2012	ISO	file	and	click	on	OK.
5.	 Once	you	click	on	OK,	the	Autoplay	window	will	appear.	Click	on	Run

SETUP.EXE.	If	Autoplay	does	not	appear,	open	Windows	Explorer	and	navigate	to
the	DVD	drive	to	run	setup.exe.	This	will	open	the	SQL	Server	Installation
Center	window.

6.	 Select	Installation	from	the	left-hand	pane	and	choose	New	SQL	Server	stand-
alone	installation	or	add	features	to	an	existing	installation.

7.	 In	the	Product	Key	window,	accept	the	default	values	and	click	on	Next.
8.	 In	the	License	Terms	window,	select	I	accept	the	license	terms	and	click	on	Next.
9.	 In	the	Microsoft	Update	window,	select	User	Microsoft	Update	to	check	for

updates	(recommended).
10.	 In	the	Install	Rules	window,	possible	issues	may	be	flagged.	For	our	purposes,	we

expect	to	see	a	warning	because	of	the	domain	controller	and	the	firewall,	as	shown
in	the	following	screenshot:

https://www.microsoft.com/en-ca/download/details.aspx?id=22

For	security	reasons,	it	is	recommended	that	you	do	not	install	SQL	Server	on	top	of
the	domain	controller,	as	discussed	in	the	article	at	http://msdn.microsoft.com/en-
us/library/ms143506.aspx.	For	our	purposes,	however,	it	is	acceptable.

11.	 On	the	Setup	Role	screen,	select	SQL	Server	Feature	Installation,	as	shown	in	the
following	screenshot:

http://msdn.microsoft.com/en-us/library/ms143506.aspx

12.	 In	the	Feature	Selection	window,	make	sure	that	you	choose	the	following	options:
Database	Engine	Services	(all	components)
Analysis	Services
Reporting	Services	-	Native
Client	Tools	Connectivity
SQL	Server	Data	Tools
Integration	Services
Documentation	Components
Management	Tools	-	Basic
Management	Tools	-	Complete

Feel	free	to	choose	additional	features	you	want	to	try.	In	addition,	adjust	the
directories	if	you	want	to	store	the	SQL	Server	files	somewhere	other	than	the	default
directories.	When	done	making	adjustments,	click	on	Next.

13.	 The	installation	wizard	will	now	check	Feature	Rules.	If	there	are	any	errors
reported,	make	sure	that	you	resolve	them	before	continuing	with	the	installation.
Click	on	Next.

14.	 In	the	Instance	Configuration	window,	select	Default	instance.

15.	 In	the	Server	Configuration	window,	in	the	Service	Accounts	tab,	set	up	the	service
accounts.

16.	 In	the	Server	Configuration	window,	under	the	Collation	tab,	keep	the	default
settings	as	is:	SQL_Latin1_General_CP1_CI_AS	for	Database	Engine	and
Latin1_General_CI_AS	for	Analysis	Services.

17.	 In	the	Database	Engine	Configuration	window,	under	the	Server	Configuration
tab,	keep	the	default	settings	for	Windows	authentication	mode	as	is	and	click	on
Add	Current	User.

18.	 In	the	Database	Engine	Configuration	window,	under	the	Data	Directories	tab,
keep	the	default	settings.

19.	 In	the	Database	Engine	Configuration	window,	under	the	FILESTREAM	tab,
check	all	checkboxes	to	enable	filestream.

20.	 In	the	Analysis	Services	Configuration	window,	under	the	Server	Configuration
tab,	select	Multidimensional	and	Data	Mining	Mode	and	click	on	Add	Current
User.

21.	 In	the	Analysis	Services	Configuration	window,	under	the	Data	Directories	tab,
keep	the	default	settings.

22.	 In	the	Reporting	Services	Configuration	window,	under	the	Reporting	Services
Native	Mode	section,	select	Install	only.

23.	 Click	on	Next	to	go	to	the	Feature	Configuration	Rules	window.	If	there	are	any
errors,	you	need	to	address	them	before	you	proceed.

24.	 Click	on	Next	to	go	to	the	Ready	to	Install	window.	Review	all	the	features,	and
click	on	Install	once	all	the	features	have	been	reviewed	and	confirmed.

25.	 Once	the	installation	is	complete,	close	the	setup	window.

Configuring	Reporting	Services	in	native	mode
Once	SQL	Server	2014	is	installed,	we	can	configure	Reporting	Services	in	native	mode.

Note
You	can	learn	more	about	the	differences	between	SSRS	native	mode	and	SharePoint
integrated	mode	from	the	deployment	guide	document	available	at
https://technet.microsoft.com/en-us/library/bb326345.aspx.

	
1.	 Open	SQL	Server	2014	Reporting	Services	Configuration	Manager.
2.	 Connect	to	the	default	instance:

3.	 Click	on	Service	Account.	Double-check	the	service	account	assigned	to	run
Reporting	Services.	If	it	is	properly	set,	we	do	not	need	to	make	any	changes	in	this
window.

https://technet.microsoft.com/en-us/library/bb326345.aspx

4.	 Click	on	Web	Service	URL.	We	will	accept	the	default	values	and	then	click	on
Apply.

5.	 Click	on	Database	and	then	click	on	the	Change	Database	button.	This	will	launch
another	set	of	windows.

6.	 Select	create	a	new	report	server	database,	as	shown	in	the	following	screenshot:

7.	 Leave	the	default	database	name	as	Report	Server	and	click	on	Next.

8.	 For	Authentication	Type,	select	Service	Credentials	and	then	click	on	Next.

9.	 Review	your	summary	and	click	on	Next.

10.	 When	the	configurations	have	been	successfully	applied,	click	on	Finish.	Note	that
the	original	Report	Server	Database	screen	will	now	be	populated	with	the	newly
configured	values.

11.	 Click	on	Report	Manager	URL	and	then	click	on	Apply.

12.	 Test	the	URL	by	launching	Internet	Explorer.	In	the	browser,	type
http://localhost/Reports	(this	is	the	same	URL	as
http://PHOENIX:80/Reports):

Installing	sample	databases
The	SQL	Server	sample	databases	can	be	found	at
http://msftdbprodsamples.codeplex.com/.

You	can	choose	to	install	both	SQL	Server	2014	OLTP	and	DW	samples.	If	you	are	going
to	try	the	recipes	that	involve	Analysis	Services	cubes,	then	you	definitely	have	to	install
the	DW	samples.

Complete	instructions	on	how	to	install	the	sample	databases	can	be	found	at
http://social.technet.microsoft.com/wiki/contents/articles/3735.sql-server-samples-readme-
en-us.aspx#Readme_for_Adventure_Works_Sample_Databases.

http://msftdbprodsamples.codeplex.com/
http://social.technet.microsoft.com/wiki/contents/articles/3735.sql-server-samples-readme-en-us.aspx#Readme_for_Adventure_Works_Sample_Databases

Installing	PowerShell	V5
As	Windows	Server	2012	R2	does	not	natively	come	with	PowerShell	V5,	at	the	time	of
the	writing	this	book,	we	will	need	to	install	it	separately.

	
1.	 Launch	VMWare	Player.
2.	 Play	SQL2014VM,	and	log	in.
3.	 Download	and	install	the	Windows	Management	Framework	5.	This	will	install

PowerShell	V5,	including	the	PowerShell	V5	ISE	(Integrated	Scripting
Environment).	At	the	time	of	writing	this	book,	this	framework	can	be	downloaded
from	https://www.microsoft.com/en-us/download/details.aspx?id=46889	and	the
binary	is	WindwosBlue-KB3055381-x64.msu.

4.	 After	the	installation	is	complete,	restart	your	VM.
5.	 Confirm	that	PowerShell	V5	is	installed	by	launching	the	PowerShell	console.	Type

$host.version	in	the	console,	and	you	will	see	the	value	5	for	the	Major	build,	as
shown	in	the	following	screenshot:

https://www.microsoft.com/en-us/download/details.aspx?id=46889

Using	SQL	Server	on	a	Windows	Azure	VM
If	you	are	interested	in	using	SQL	Server	on	a	Windows	Azure	VM,	you	can	check	out	the
Microsoft	Virtual	Academy	video	on	SQL	Server	in	Windows	Azure	Virtual	Machines
Jump	Start,	which	can	be	found	at	https://www.microsoftvirtualacademy.com/en-
us/training-courses/sql-server-in-windows-azure-virtual-machines-jump-start-8293?
l=2OlYzCYy_1004984382.

https://www.microsoftvirtualacademy.com/en-us/training-courses/sql-server-in-windows-azure-virtual-machines-jump-start-8293?l=2OlYzCYy_1004984382

Index
A
	

Add-Type
URL	/	There’s	more…

Alert	class
URL	/	There’s	more…

alert	types
defining	/	There’s	more…
SQL	Server	Event	Alert	/	There’s	more…
SQL	Server	Performance	Condition	Alert	/	There’s	more…
WMI	Event	Alert	/	There’s	more…

aliases
obtaining	/	Getting	aliases,	How	it	works…

AlwaysOn	Availability	Group
creating	/	Creating	an	AlwaysOn	Availability	Group,	Getting	ready,	How	to	do
it…,	How	it	works…

AlwaysOn	feature
benefits	/	Introduction
enabling,	in	SQL	Server	/	Enabling	AlwaysOn	in	SQL	Server,	How	to	do	it…,
How	it	works…
URL	/	There’s	more…

AlwaysOn	health,	monitoring
URL	/	There’s	more…

AlwaysOn	health	model
URL	/	There’s	more…

AlwaysOn	terminologies
primary	/	Getting	ready
secondary	/	Getting	ready
availability	databases	/	Getting	ready
availability	replica	/	Getting	ready
availability	mode	/	Getting	ready
synchronous	commit	mode	/	Getting	ready
asynchronous	commit	mode	/	Getting	ready
failover	mode	/	Getting	ready

Analysis	Services
URL	/	There’s	more…

Analysis	Services	PowerShell
URL	/	There’s	more…

Analysis	Services	PowerShell	Reference
URL	/	There’s	more…

Application.LoadPackage	method
URL	/	There’s	more…

Application.SaveToXml	Method

URL	/	There’s	more…
Application	class

URL	/	There’s	more…
asymmetric	key

creating	/	Getting	ready,	How	to	do	it…,	How	it	works…,	There’s	more…
AttachDatabase	options

URL	/	There’s	more…
authentication	mode

listing	/	Listing	authentication	mode,	How	to	do	it…,	How	it	works…
changing	/	Changing	authentication	mode,	Getting	ready,	How	it	works…,
There’s	more…,	More	on	legacy	LoginMode	values

Automatic	Private	IP	Addressing	(APIPA)
about	/	Configuring	a	domain	controller	(optional)

availability	database
adding,	to	Availability	Group	/	Adding	an	availability	database	to	an	Availability
Group,	How	to	do	it…,	How	it	works…
prerequisites	/	Getting	ready

Availability	Group
secondary	replicas,	joining	to	/	Joining	the	secondary	replicas	to	Availability
Group,	Getting	ready,	How	it	works…,	There’s	more…
prerequisites	and	syntax,	URL	/	There’s	more…
availability	database,	adding	to	/	Adding	an	availability	database	to	an
Availability	Group,	How	to	do	it…,	How	it	works…

Availability	Group	failover
testing	/	Testing	the	Availability	Group	failover,	How	to	do	it…,	There’s	more…

Availability	Group	listener
creating	/	Creating	an	Availability	Group	listener,	How	to	do	it…,	How	it
works…
URL	/	There’s	more…

Availability	Groups,	in	PowerShell
URL	/	There’s	more…

Azure	Blob	storage
database,	backing	up	/	Backing	up	database	to	Azure	Blob	storage,	How	to	do
it…,	How	it	works…
database,	restoring	from	/	Restoring	database	from	Azure	Blob	storage,	How	it
works…
references	/	There’s	more…

Azure	BLOB	storage
best	practices	and	troubleshooting,	URL	/	There’s	more…

Azure	SQL	database
connecting	to	/	Connecting	to	an	Azure	SQL	database,	How	to	do	it…,	How	it
works…,	There’s	more…
table,	creating	/	Creating	a	table	in	an	Azure	SQL	database,	How	to	do	it…,
How	it	works…

Azure	SQL	Database	cmdlets
URL	/	There’s	more…

B
	

backing	up	files	and	filegroups
URL	/	There’s	more…

backtick	(`)
about	/	Escape	and	line	continuation

backtick	(`)	character
URL	/	Line	continuation

backup
creating,	on	Mirrored	Media	Sets	/	Creating	a	backup	on	Mirrored	Media	Sets,
How	to	do	it…,	How	it	works…

Backup-ASDatabase	cmdlet
URL	/	There’s	more…

backup	device
creating	/	Creating	a	backup	device,	How	to	do	it…,	There’s	more…

backup	files
gathering	/	Gathering	your	backup	files

backup	header
listing	/	Listing	backup	header	and	FileList	information,	How	to	do	it…,	How	it
works…

BackupRestoreBase
defining	/	More	about	backup	and	PercentCompleteEventHandler
URL	/	More	about	backup	and	PercentCompleteEventHandler

backup	types
full	backup	/	Getting	ready
differential	backup	/	Getting	ready
transaction	log	backup	/	Getting	ready

bcp
URL	/	There’s	more…

bcp	command-line	utility
used,	for	performing	bulk	export	/	Performing	bulk	export	using	the	bcp
command-line	utility,	How	to	do	it…
used,	for	performing	bulk	import	/	Performing	bulk	import	using	the	bcp
command-line	utility,	Getting	ready,	How	it	works…

bcp	format	file	options
URL	/	There’s	more…

bcp	utility
URL	/	There’s	more…,	There’s	more…
references	/	There’s	more…

binary	data
storing,	in	SQL	Server	/	Storing	binary	data	in	SQL	Server,	Getting	ready,	How
to	do	it…,	How	it	works…
extracting,	from	SQL	Server	/	Extracting	binary	data	from	SQL	Server,	How	to
do	it…,	How	it	works…

binary	large	objects	(BLOBs)

about	/	Introduction
blocking	process

killing	/	Killing	a	blocking	process,	How	to	do	it…,	There’s	more…
BoeProx,	PowerShell	MVP

URL	/	Listing	notable	PowerShell	features
bulk	export

performing,	Invoke-SqlCmd	used	/	Performing	bulk	export	using	Invoke-
SqlCmd,	How	it	works…
performing,	bcp	command-line	utility	used	/	Performing	bulk	export	using	the
bcp	command-line	utility,	How	to	do	it…

bulk	import
performing,	BULK	INSERT	used	/	Performing	bulk	import	using	BULK
INSERT,	How	to	do	it…,	How	it	works…
performing,	bcp	command-line	utility	used	/	Performing	bulk	import	using	the
bcp	command-line	utility,	Getting	ready,	How	it	works…

BULK	INSERT
used,	for	performing	bulk	import	/	Performing	bulk	import	using	BULK
INSERT,	How	to	do	it…,	How	it	works…

Bulk	Logged	and	Full	Recovery	Model
about	/	How	it	works…

BulkLogged	recovery
URL	/	There’s	more…

Business	Intelligence	(BI)
about	/	Introduction

Business	Intelligence	Development	Studio	(BIDS)
about	/	How	it	works…

C
	

-Class	switch
URL	/	How	it	works…

C#	code
embedding	/	Embedding	C#	code,	How	it	works…

CatalogFolder	class
URL	/	There’s	more…

CatalogItem	class
URL	/	There’s	more…

certificate
creating	/	Creating	a	certificate,	How	to	do	it…,	There’s	more…
URL	/	There’s	more…

Change	Data	Capture	(CDC)
about	/	There’s	more…

change	tracking
enabling	/	Enabling/disabling	change	tracking,	How	to	do	it…
disabling	/	Enabling/disabling	change	tracking,	How	to	do	it…

Change	Tracking	(CT)
about	/	There’s	more…
references	/	There’s	more…

Chocolatey	repository
URL	/	Listing	notable	PowerShell	features

Client	Tools	SDK
installing	/	Getting	ready

cmdlets	/	Cmdlets
writing,	URL	/	There’s	more…
defining,	that	support	folder	manipulation	/	How	it	works…,	How	it	works…
archiving	/	Listing	notable	PowerShell	features

cmdlets,	for	SharePoint	2013
URL	/	How	it	works…

Code	Access	Security	(CAS)
about	/	There’s	more…

CodePlex
URL	/	How	it	works…

comma-separated	value	(CSV)
about	/	How	it	works…

commandlets
about	/	Cmdlets

comment-based	help
about	/	How	it	works…
URL	/	There’s	more…

Comment-Based	Help
about	/	Comments

comment-based	help	header	comment

creating	/	How	it	works…
Common	Criteria

URL	/	There’s	more…
Common	Criteria	compliance

enabling	/	Enabling	Common	Criteria	compliance,	How	to	do	it…,	How	it
works…

Common	Criteria	feature,	in	SQL	Server
URL	/	There’s	more…

Common	Engineering	Criteria	program
URL	/	Understanding	the	need	for	PowerShell

Common	Language	Runtime	(CLR)
about	/	Introduction,	How	it	works…

compression	and	Solid	State	Disks
references	/	How	it	works…

condition
creating	/	Creating	a	condition,	How	to	do	it…,	How	it	works…

configuration	values
URL	/	How	it	works…

ConvertTo-HTML	cmdlet
URL	/	There’s	more…

ConvertTo-Json	cmdlet
URL	/	There’s	more…

CreateCatalogItem	method
URL	/	There’s	more…

CSV	and	XML
exporting	to	/	Exporting	to	CSV	and	XML,	How	it	works…

Cumulative	Update	(CU)
about	/	There’s	more…

Customer	Service	and	Support	(CSS)
about	/	There’s	more…

D
	

data
importing,	from	text	file	/	Importing	data	from	a	text	file,	How	to	do	it…,
There’s	more…
extracting,	from	web	service	/	Extracting	data	from	a	web	service,	How	it
works…,	There’s	more…

database
creating	/	Creating	a	database,	How	it	works…
dropping	/	Dropping	a	database,	How	to	do	it…
detaching	/	Detaching	a	database,	How	to	do	it…,	There’s	more…
references	/	How	it	works…
attaching	/	Attaching	a	database,	Getting	ready,	How	to	do	it…,	How	it	works…
copying	/	Copying	a	database,	How	to	do	it…,	How	it	works…
restoring,	to	point-in-time	/	Restoring	a	database	to	a	point-in-time,	Getting
ready,	How	it	works…
backing	up,	to	Azure	Blob	storage	/	Backing	up	database	to	Azure	Blob	storage,
How	to	do	it…,	How	it	works…

Database	Mail
setting	up	/	Setting	up	Database	Mail,	How	to	do	it…,	How	it	works…

database	mappings
listing	/	Listing	logins,	users,	and	database	mappings,	How	to	do	it…,	How	it
works…,	There’s	more…

database	master	key
creating	/	Creating	a	database	master	key,	How	it	works…

database	mirroring
limitations	/	Introduction

database	mirroring	endpoint
URL	/	There’s	more…

database	objects
searching	/	Searching	for	database	objects,	How	it	works…,	There’s	more…

database	owner
changing	/	Changing	database	owner,	How	to	do	it…,	How	it	works…

DatabasePermissionSet	class
URL	/	There’s	more…

database	properties
altering	/	Altering	database	properties,	How	to	do	it…,	How	it	works…

database	recovery	model
changing	/	Changing	database	recovery	model,	Getting	ready,	How	it	works…,
There’s	more…

database	role
creating	/	Creating	a	database	role,	How	to	do	it…,	How	it	works…

database	snapshot
listing	/	Listing	database	snapshots,	How	to	do	it…
URL	/	There’s	more…

creating	/	Creating	a	database	snapshot,	How	it	works…
dropping	/	Dropping	a	database	snapshot,	How	to	do	it…

database	user
creating	/	Creating	a	database	user,	How	to	do	it…,	How	it	works…
permissions,	assigning	to	/	Assigning	permissions	to	a	database	user,	Getting
ready,	How	to	do	it…

DataFile	class
URL	/	How	it	works…

data	file	size
increasing	/	Increase	data	file	size,	How	it	works…

data	source	reference,	SSRS	report
changing	/	Changing	an	SSRS	report’s	data	source	reference,	How	to	do	it…,
How	it	works…

dates,	in	PowerShell
references	/	There’s	more…

DBCC	commands
running	/	Running	DBCC	commands,	How	to	do	it…

DDL	Event	Groups
URL	/	There’s	more…

Declarative	Management	Framework	(DMF)
about	/	How	it	works…

Desired	State	Configuration	(DSC)
about	/	How	to	do	it…,	There’s	more…,	Listing	notable	PowerShell	features
URL	/	There’s	more…,	Listing	notable	PowerShell	features

Desired	State	Configuration(DSC)
about	/	Listing	notable	PowerShell	features

differential	backup
creating	/	Creating	a	differential	backup,	How	to	do	it…,	There’s	more…

directories	and	paths,	in	FileTables
URL	/	There’s	more…

disk-based	indexes
about	/	How	it	works…

disk	space	usage
checking	/	Checking	disk	space	usage,	How	to	do	it…,	How	it	works…,	There’s
more…

domain	accounts
creating	/	Creating	domain	accounts

domain	controller	(optional)
configuring	/	Configuring	a	domain	controller	(optional)
URL	/	Configuring	a	domain	controller	(optional)

Dynamic	Host	Configuration	Protocol	(DHCP)
about	/	How	it	works…

Dynamic	Linked	Library	(DLL)
about	/	How	it	works…

dynamic	namespaces,	in	SSRS
URL	/	There’s	more…

E
	

e-mail
sending	/	Sending	an	e-mail,	There’s	more…

empty	virtual	machine
creating	/	Creating	an	empty	virtual	machine

Enable-PSRemoting	permission
URL	/	There’s	more…

encryption_state	values,	of	sys.dm_database_encryption_keys
URL	/	There’s	more…

enumeration	values
URL	/	How	it	works…

EnumFragmentation	method
URL	/	There’s	more…

EnumProcesses	method
URL	/	There’s	more…

environment
setting	up	/	Setting	up	the	environment

error	messages
obtaining	/	Getting	more	error	messages,	How	it	works…

evaluation	methods
URL	/	How	it	works…

evaluation	mode
defining	/	How	it	works…

EvaluationMode	enumeration	values
URL	/	There’s	more…

event	log
reading	/	Reading	an	event	log,	How	it	works…

Execution	Policy	settings
about	/	Execution	Policy

Export-Clixml
URL	/	There’s	more…

Export-Csv
URL	/	There’s	more…

ExpressionNode
URL	/	See	also

ExpressionNodeOperator
URL	/	There’s	more…

Extensible	Stylesheet	Language	(XSL)
about	/	How	it	works…
URL	/	There’s	more…

F
	

Fabulous	Manual
URL	/	There’s	more…

facets
listing	/	Listing	facets	and	their	properties,	How	it	works…
properties,	listing	/	Listing	facets	and	their	properties,	How	it	works…
URL	/	There’s	more…

failed	login	attempts
listing	/	Listing	failed	login	attempts,	How	it	works…

Failover	Cluster	feature
installing,	on	Windows	/	Installing	the	Failover	Cluster	feature	on	Windows,
How	to	do	it…,	How	it	works…,	There’s	more…

file
SSIS	package,	downloading	to	/	Downloading	an	SSIS	package	to	a	file,	How	it
works…

filegroup
creating	/	Creating	a	filegroup,	How	to	do	it…,	How	it	works…
secondary	data	file,	adding	to	/	Adding	a	secondary	data	file	to	a	filegroup,	How
it	works…
index,	moving	to	/	Moving	an	index	to	a	different	filegroup,	How	to	do	it…,
How	it	works…,	There’s	more…

filegroup	backup
creating	/	Creating	a	filegroup	backup,	How	it	works…

FileList	information
listing	/	Listing	backup	header	and	FileList	information,	How	to	do	it…,	How	it
works…

files
adding,	to	FileTable	/	Adding	files	to	a	FileTable,	How	to	do	it…,	How	it
works…
manipulating	/	Manipulating	files,	How	it	works…
compressing	/	Compressing	files,	How	it	works…
searching	/	Searching	for	files,	How	it	works…

FileStream
enabling	/	Enabling	FileStream,	How	it	works…,	There’s	more…
URL	/	There’s	more…

FileStream	Filegroup
setting	up	/	Setting	up	a	FileStream	filegroup,	How	to	do	it…,	How	it	works…,
There’s	more…

FileTable
adding	/	Adding	a	FileTable,	How	it	works…
files,	adding	to	/	Adding	files	to	a	FileTable,	How	to	do	it…,	How	it	works…

FileTable	feature
URL	/	There’s	more…

folders

managing	/	Managing	folders,	There’s	more…
references	/	There’s	more…,	There’s	more…

format	file
defining	/	How	to	do	it…

format	strings
defining	/	How	it	works…

FOR	XML	clause
URL	/	There’s	more…

FrequencyInterval	documentation
URL	/	There’s	more…

FrequencyType
URL	/	There’s	more…

full-text	catalog
adding	/	Adding	full-text	catalog,	How	to	do	it…,	How	it	works…
references	/	There’s	more…

full-text	index
adding	/	Adding	full-text	index,	How	to	do	it…,	How	it	works…
URL	/	There’s	more…,	How	it	works…

full	backup
creating	/	Creating	a	full	backup,	How	to	do	it…,	How	it	works…,	There’s
more…

fully	qualified	domain	name	(FQDN)
about	/	How	it	works…

functions
scripts,	converting	into	/	Converting	scripts	into	functions

G
	

Get-Alias	cmdlet
URL	/	There’s	more…

Get-ChildItem
URL	/	There’s	more…

Get-Credential
URL	/	How	it	works…

Get-Credential	cmdlet
about	/	How	it	works…

Get-EventLog	cmdlet
URL	/	There’s	more…

Get-Help	cmdlet
PowerShell	script,	documenting	for	/	Documenting	PowerShell	script	for	Get-
Help,	How	to	do	it…,	How	it	works…,	There’s	more…
URL	/	Get-Help

Get-Hotfix
URL	/	How	it	works…
references	/	How	it	works…

Get-Process	Cmdlet
references	/	There’s	more…

Get-WinEvent
URL	/	There’s	more…

GetItemDefinition	method
URL	/	There’s	more…

GetPolicies	method
URL	/	There’s	more…

Global	Assembly	Cache	(GAC)
about	/	How	it	works…

Graphical	User	Interface	(GUI)
about	/	Introduction

guest	machine
about	/	Terminologies

guest	OS
Windows	Server	2012	R2,	installing	as	/	Installing	Windows	Server	2012	R2	as
guest	OS

H
	

HADR	endpoint
creating	/	Creating	and	enabling	the	HADR	endpoint,	How	to	do	it…,	How	it
works…
enabling	/	Creating	and	enabling	the	HADR	endpoint,	How	to	do	it…,	How	it
works…
CONNECT	permission,	granting	to	/	Granting	the	CONNECT	permission	to	the
HADR	endpoint,	How	it	works…,	There’s	more…

health,	of	Availability	Group
monitoring	/	Monitoring	the	health	of	an	Availability	Group,	How	to	do	it…,
How	it	works…,	There’s	more…

high	availability	disaster	recovery	(HADR)
about	/	Introduction

history
obtaining	/	Getting	history,	How	it	works…

hotfix
about	/	There’s	more…
URL	/	There’s	more…

hotfixes	and	service	packs
URL	/	There’s	more…

HTML	report
creating	/	Creating	an	HTML	report,	How	to	do	it…,	How	it	works…

I
	

I	Love	You	virus
URL	/	The	execution	policy

In-Memory	OLTP
URL	/	There’s	more…

index
creating	/	Creating	an	index,	How	to	do	it…,	How	it	works…,	There’s	more…
moving,	to	different	filegroup	/	Moving	an	index	to	a	different	filegroup,	How	to
do	it…,	How	it	works…,	There’s	more…
reorganizing	/	Reorganizing/rebuilding	an	index,	How	it	works…
rebuilding	/	Reorganizing/rebuilding	an	index,	How	it	works…
references	/	How	it	works…

index	fragmentation
checking	/	Checking	index	fragmentation,	How	to	do	it…,	How	it	works…,
There’s	more…

InheritParentSecurity	method
URL	/	There’s	more…

installed	hotfixes
listing	/	Listing	installed	hotfixes	and	Service	Packs,	How	it	works…,	There’s
more…

Integrated	Scripting	Environment	(ISE)
about	/	How	to	do	it…,	Running	PowerShell	scripts,	Listing	notable	PowerShell
features

IntegrationServices	assembly
URL	/	There’s	more…,	There’s	more…

Integration	Services	Project	Deployment	File	Format
URL	/	There’s	more…

Intellisense	feature
about	/	How	it	works…

International	Organization	for	Standardization	(ISO)
about	/	Terminologies

International	Standards	Organization	(ISO)
about	/	How	it	works…

Invoke-Expression
using	/	Using	Invoke-Expression,	How	it	works…

Invoke-Expression	cmdlet
URL	/	There’s	more…

Invoke-ProcessCube	cmdlet
URL	/	There’s	more…

Invoke-SqlCmd
used,	for	performing	bulk	export	/	Performing	bulk	export	using	Invoke-
SqlCmd,	How	it	works…

invoke	code	and	executables,	in	PowerShell
URL	/	Running	scripts

ISO	Creator
URL	/	Terminologies

ISPAC	file
deploying,	to	SSISDB	/	Deploying	an	ISPAC	file	to	SSISDB,	How	to	do	it…,
How	it	works…,	There’s	more…

J
	

JavaScript	Object	Notation	(JSON)
about	/	How	it	works…

JSON	file
creating,	from	SQL	Server	/	Creating	a	JSON	file	from	SQL	Server,	How	to	do
it…,	How	it	works…

K
	

KB	number
about	/	How	it	works…

L
	

last	backup	date
checking	/	Checking	last	backup	date,	How	to	do	it…,	How	it	works…

line	continuation
defining	/	Line	continuation

LoadFromDtsServer	Method
URL	/	There’s	more…,	There’s	more…

LoadFromSqlServer	Method
URL	/	There’s	more…

LoadPackage	Method
URL	/	There’s	more…

LocalDB
connecting	to	/	Connecting	to	LocalDB,	How	it	works…,	There’s	more…
URL	/	How	it	works…,	Getting	ready
about	/	How	it	works…
references	/	There’s	more…

LocalDB,	with	SQL	Server	Express
URL	/	Getting	ready

LocalDB	instance
creating	/	Creating	a	new	LocalDB	instance,	How	it	works…

log	backups
URL	/	There’s	more…

Logical	Sequence	Number	(LSN)
about	/	How	it	works…

login
creating	/	Creating	a	login,	How	to	do	it…,	How	it	works…
permissions	and	roles,	assigning	to	/	Assigning	permissions	and	roles	to	a	login,
How	to	do	it…,	How	it	works…

login/user	roles	and	permissions
listing	/	Listing	login/user	roles	and	permissions,	How	it	works…

logins
listing	/	Listing	logins,	users,	and	database	mappings,	How	to	do	it…,	How	it
works…,	There’s	more…

M
	

MagicISO
URL	/	Terminologies

Management	Object	Framework	(MOF)
about	/	There’s	more…

MasterKey	class
URL	/	There’s	more…

memory-optimized	indexes
about	/	How	it	works…

memory-optimized	table
creating	/	Creating	a	memory-optimized	table,	How	to	do	it…,	How	it	works…

memory-optimized	tables
references	/	There’s	more…

MemoryStream	class
URL	/	There’s	more…

Microsoft	Azure	Virtual	Machines
URL	/	Terminologies

Microsoft	Connect	item
URL	/	Get-Help

Microsoft	Web	Platform	Installer
URL	/	Getting	ready

Mirrored	Backup	Media	Sets
URL	/	There’s	more…

Mirrored	Media	Sets
backup,	creating	/	Creating	a	backup	on	Mirrored	Media	Sets,	How	to	do	it…,
How	it	works…

MSDN
URL	/	There’s	more…

MSDN	Channel	9	PowerShell	Webcasts
URL	/	Exploring	more	PowerShell

multiple	database,	backing	up
URL	/	There’s	more…

multiple	servers
SQL	query,	executing	to	/	Executing	SQL	query	to	multiple	servers,	How	to	do
it…,	How	it	works…

N
	

.NET	3.5
about	/	Installing	SQL	Server	2014	on	a	VM
URL	/	Installing	SQL	Server	2014	on	a	VM

.NET	format	specifiers
URL	/	There’s	more…

named	pipes
enabling,	in	SQL	Server	/	Enabling	TCP	and	named	pipes	in	SQL	Server,	How
to	do	it…

namespace	collision	issue
URL	/	There’s	more…

Nero	Burning	Software
URL	/	Terminologies

network	protocols,	in	SQL	Server
URL	/	There’s	more…

Network	Switch	cmdlets
about	/	Listing	notable	PowerShell	features

New-WebServiceProxy
URL	/	There’s	more…

New-WebServiceProxy	cmdlet
URL	/	There’s	more…

newline
about	/	Statement	terminators

NORECOVERY	option
used,	for	restoring	latest	good	full	backup	/	Restoring	the	latest	good	full	backup
with	NORECOVERY
used,	for	restoring	last	good	differential	backup	/	Restoring	the	last	good
differential	backup	taken	after	the	full	backup	you	just	restored	with
NORECOVERY

notable	PowerShell	features
listing	/	Listing	notable	PowerShell	features

O
	

online	piecemeal	restore
performing	/	Performing	an	online	piecemeal	restore,	How	to	do	it…,	How	it
works…
URL	/	How	it	works…

OPENROWSET	method
URL	/	There’s	more…

operating	systems,	for	SQL	Server	2014
URL	/	How	to	do	it…

orphaned	users
fixing	/	Fixing	orphaned	users,	How	to	do	it…,	How	it	works…,	There’s	more…

P
	

PackageInfo
URL	/	There’s	more…

PackageManagement	module
URL	/	Listing	notable	PowerShell	features

package	store
SSIS	package,	deploying	to	/	Deploying	an	SSIS	package	to	the	package	store,
How	to	do	it…,	How	it	works…

parameters
ACTION	/	How	it	works…
IACCEPTSQLSERVERLICENSETERMS	/	How	it	works…
UPDATEENABLED	/	How	it	works…
FEATURES	/	How	it	works…
INSTANCENAME	/	How	it	works…
AGTSVCACCOUNT	/	How	it	works…
AGTSVCSTARTUPTYPE	/	How	it	works…
SQLCOLLATION	/	How	it	works…
SQLSVCACCOUNT	/	How	it	works…
SQLSYSADMINACCOUNTS	/	How	it	works…
TCPENABLED	/	How	it	works…
references	/	How	it	works…

parameters,	full	backup
defining	/	How	it	works…

parameters,	log	backups
defining	/	How	it	works…

parameters,	Mirrored	Backup	Media	Sets
defining	/	How	it	works…

patterns
defining	/	How	it	works…

PercentCompleteEventHandler
defining	/	More	about	backup	and	PercentCompleteEventHandler
URL	/	See	also

permissions,	AlwaysOn
URL	/	There’s	more…

piecemeal	restores
performing,	URL	/	There’s	more…

planned	failovers
references	/	There’s	more…

point-in-time	restore
performing	/	How	it	works…
URL	/	There’s	more…

policies
listing	/	Listing	policies,	How	to	do	it…,	How	it	works…

policy

exporting	/	Exporting	a	policy,	Getting	ready,	How	to	do	it…,	How	it	works…
importing	/	Importing	a	policy,	How	to	do	it…,	How	it	works…,	See	also
creating	/	Creating	a	policy,	How	it	works…
evaluating	/	Evaluating	a	policy,	How	to	do	it…,	There’s	more…

Policy	Based	Management	(PBM)
about	/	Introduction,	How	it	works…

PowerISO
URL	/	Terminologies

PowerScripting	Podcasts
URL	/	Exploring	more	PowerShell

PowerShell
about	/	Introduction,	Introduction,	Introduction
using	/	Introduction,	Understanding	the	need	for	PowerShell
modules	/	PowerShell	modules
used,	for	installing	SQL	Server	/	Installing	SQL	Server	using	PowerShell,	How
to	do	it…,	How	it	works…,	There’s	more…
used,	for	executing	SSIS	package	/	Executing	an	SSIS	package	stored	in	a
package	store	or	filesystem,	How	to	do	it…,	How	it	works…
need	for	/	Understanding	the	need	for	PowerShell
learning	/	Learning	PowerShell
Get-Command	/	Get-Command
Get-Help	/	Get-Help
Get-Member	/	Get-Member
defining	/	Starter	notes,	Cmdlets	may	have	aliases	or	you	can	create	one
working,	with	.NET	/	PowerShell	is	object-oriented	and	works	with	.NET
cmdlets	/	Cmdlets	may	have	aliases	or	you	can	create	one,	Common	cmdlets
aliases,	defining	/	Cmdlets	may	have	aliases	or	you	can	create	one
commands,	chaining	/	You	can	chain	commands
formatting	/	Filter	left,	format	right
package	/	Package	and	reuse
reusing	/	Package	and	reuse
classes	/	Listing	notable	PowerShell	features
debugging	/	Listing	notable	PowerShell	features
exploring	/	Exploring	more	PowerShell
references	/	Exploring	more	PowerShell

PowerShell	admin	regex	article
URL	/	There’s	more…

PowerShell	basics
learning	/	Learning	PowerShell	basics,	Cmdlets
cmdlets	/	Cmdlets

PowerShellGallery
URL	/	Listing	notable	PowerShell	features

PowerShell	ISE	(x86)
using	/	How	it	works…

PowerShell	Magazine
URL	/	Exploring	more	PowerShell

PowerShell	remoting
using	/	Using	PowerShell	remoting,	Getting	ready,	How	it	works…,	There’s
more…
references	/	There’s	more…

PowerShell	script
documenting,	for	Get-Help	/	Documenting	PowerShell	script	for	Get-Help,	How
to	do	it…,	How	it	works…,	There’s	more…

PowerShell	scripts
running	/	Running	PowerShell	scripts

PowerShell	scripts,	running
through	shell	/	Through	shell	or	through	the	ISE
through	ISE	/	Through	shell	or	through	the	ISE
execution	policy	/	The	execution	policy

PowerShell	team	blog
URL	/	See	also

PowerShell	V5
installing	/	Installing	PowerShell	V5
URL	/	Installing	PowerShell	V5

PowerShell	versions
running	/	Running	different	PowerShell	versions

PowerShell	WMI	Explorer
URL	/	There’s	more…

PowerShell	Workflows	(PSWF)
about	/	Listing	notable	PowerShell	features
URL	/	Listing	notable	PowerShell	features

processes
listing	/	Listing	processes,	How	to	do	it…,	How	it	works…

Process	ID	(PID)
about	/	How	it	works…

profiler	trace	event
running	/	Running	and	saving	a	profiler	trace	event,	How	to	do	it…,	How	it
works…
saving	/	Running	and	saving	a	profiler	trace	event,	How	to	do	it…,	How	it
works…
URL	/	There’s	more…

program
running,	as	administrator	/	Running	as	an	administrator

properties,	data	file
defining	/	How	it	works…

properties,	settings/configurations
Information	/	How	it	works…
Settings	/	How	it	works…
UserOptions	/	How	it	works…
Configuration	/	How	it	works…

protocols,	SQL	Server	installation
shared	memory	/	How	it	works…

named	pipes	/	How	it	works…
TCP/IP	/	How	it	works…

proxy
creating	/	Creating	a	proxy,	How	to	do	it…,	How	it	works…,	There’s	more…

PSCustomObject
about	/	Listing	notable	PowerShell	features

Q
	

query/SQL	script
executing	/	Executing	a	query/SQL	script,	How	it	works…

Quick	Fix	Engineering	(QFE)
about	/	There’s	more…

R
	

ReadErrorLog	method
URL	/	How	it	works…

Really	Simple	Syndication	(RSS)
about	/	There’s	more…

records
exporting,	to	text	file	/	Exporting	records	to	a	text	file,	How	it	works…

recovery	model
URL	/	There’s	more…

Recovery	Point	Objective	(RPO)
about	/	There’s	more…

Recovery	Time	Objective	(RTO)
about	/	There’s	more…

Red	Hat	Package	Manager(RPM)
about	/	Listing	notable	PowerShell	features

Regex	Methods
URL	/	There’s	more…

regular	expressions
testing	/	Testing	regular	expressions,	How	it	works…,	There’s	more…
URL	/	There’s	more…

Reporting	Services
configuring,	in	native	mode	/	Configuring	Reporting	Services	in	native	mode
URL	/	Configuring	Reporting	Services	in	native	mode

Report	Manager
SSRS	report,	uploading	to	/	Uploading	an	SSRS	report	to	Report	Manager,	How
it	works…,	There’s	more…

Report	Server	Namespace	Management	Methods
URL	/	There’s	more…

ReportService.DataSourceDefinition	class
URL	/	There’s	more…

ReportService2010.CreateFolder	method
URL	/	There’s	more…

ReportViewer
used,	for	viewing	SSRS	report	/	Using	ReportViewer	to	view	your	SSRS	report,
How	to	do	it…,	How	it	works…

ReportViewer	Class
URL	/	There’s	more…

ReportViewer	Properties
URL	/	There’s	more…

ReportViewer	Web	Server	and	Windows	Form	Controls
URL	/	There’s	more…

ReportViewer	Web	Server	and	Windows	Forms	Controls
URL	/	There’s	more…

Residual	Information	Protection

about	/	There’s	more…
Restore-ASDatabase	cmdlet

URL	/	There’s	more…
Restore	class

URL	/	There’s	more…
RSS	feed

creating,	from	SQL	Server	content	/	Creating	an	RSS	feed	from	SQL	Server
content,	How	to	do	it…,	How	it	works…
XSL,	applying	to	/	Applying	XSL	to	an	RSS	feed,	How	it	works…,	There’s
more…

RSS	feeds
URL	/	There’s	more…

RTM	(Release	to	Manufacturing)
about	/	There’s	more…

running/blocking	processes
listing	/	Listing	running/blocking	processes,	How	to	do	it…,	How	it	works…,
There’s	more…

S
	

@sqlcoffee
URL	/	There’s	more…

sample	code
working	with	/	Working	with	the	sample	code,	How	to	do	it…

sample	databases
installing	/	Installing	sample	databases
installing,	URL	/	Installing	sample	databases

sample	databases,	SQL	Server
URL	/	Installing	sample	databases

scripts
running	/	Running	scripts
converting,	into	functions	/	Converting	scripts	into	functions

secondary	databases
references	/	There’s	more…

secondary	data	file
adding,	to	filegroup	/	Adding	a	secondary	data	file	to	a	filegroup,	How	it
works…

security	issue
URL	/	How	it	works…

security	levels
SAFE	/	There’s	more…
EXTERNAL_ACCESS	/	There’s	more…
UNSAFE	/	There’s	more…
URL	/	There’s	more…

semicolon
about	/	Statement	terminators

Send-MailMessage	cmdlet
URL	/	There’s	more…

Server	Core
URL	/	Installing	Windows	Server	2012	R2	as	guest	OS

ServerLoginMode	enumeration	values
URL	/	There’s	more…,	More	on	legacy	LoginMode	values

Server	Management	Objects	(SMO)
about	/	Installing	SQL	Server	Management	Objects

ServerPermission	properties
URL	/	There’s	more…,	There’s	more…

ServerPermissionSet	class
URL	/	There’s	more…,	There’s	more…

ServerReport.Render	Method
URL	/	There’s	more…

service-oriented	cmdlets
and	service	methods,	comparing	/	There’s	more…

service	accounts

references	/	There’s	more…
URL	/	Terminologies

Service	Pack
about	/	There’s	more…

Service	Packs
listing	/	Listing	installed	hotfixes	and	Service	Packs,	How	it	works…,	There’s
more…

SetItemDataSources	method
URL	/	There’s	more…

SetPolicies	method
URL	/	There’s	more…

settings,	execution	policy
Restricted	/	The	execution	policy
AllSigned	/	The	execution	policy
RemoteSigned	/	The	execution	policy
Unrestricted	/	The	execution	policy
Bypass	/	The	execution	policy
Undefined	/	The	execution	policy

setup	parameters
URL	/	How	it	works…

SMO	assemblies
loading	/	Loading	SMO	assemblies,	There’s	more…
URL	/	There’s	more…

SMO	classes
URL	/	There’s	more…

SMO	DataType	classes
URL	/	There’s	more…

SMO	indexes
URL	/	There’s	more…

SMO	index	object
indexes,	defining	/	There’s	more…

SMO	Object	Model	Diagram
URL	/	How	it	works…

SMO	Server	Objects
exploring	/	Exploring	SMO	Server	Objects,	How	to	do	it…

SMO	Transfer	class
URL	/	There’s	more…

Snapin
about	/	How	it	works…
tasks,	defining	/	How	it	works…

snapshot
making,	as	baseline	/	Making	a	snapshot	as	a	baseline

software
downloading	/	Downloading	software

special	variables
defining	/	How	it	works…,	Special	variables

SQL-related	cmdlets	and	modules
discovering	/	Discovering	SQL-related	cmdlets	and	modules,	How	to	do	it…,
How	it	works…,	There’s	more…

SQL	Authentication
about	/	How	to	do	it…

SQLCLR	assemblies
URL	/	There’s	more…

SQLLocalDB	utility
URL	/	There’s	more…

SQL	Management	Objects	(SMO)
about	/	Introduction

SQLPS
about	/	There’s	more…

SQLPSX
URL	/	Cmdlets

SQL	query
executing,	to	multiple	servers	/	Executing	SQL	query	to	multiple	servers,	How
to	do	it…,	How	it	works…

SQL	Server
URL	/	How	to	do	it…,	There’s	more…,	Installing	SQL	Server	2014	on	a	VM
installing,	PowerShell	used	/	Installing	SQL	Server	using	PowerShell,	How	to
do	it…,	How	it	works…,	There’s	more…
TCP,	enabling	in	/	Enabling	TCP	and	named	pipes	in	SQL	Server,	How	to	do
it…
named	pipes,	enabling	in	/	Enabling	TCP	and	named	pipes	in	SQL	Server,	How
to	do	it…,	How	it	works…
AlwaysOn	feature,	enabling	in	/	Enabling	AlwaysOn	in	SQL	Server,	How	to	do
it…,	How	it	works…
XML,	inserting	into	/	Inserting	XML	into	SQL	Server,	How	to	do	it…,	How	it
works…
XML,	extracting	from	/	Extracting	XML	from	SQL	Server,	How	to	do	it…,
How	it	works…
JSON	file,	creating	from	/	Creating	a	JSON	file	from	SQL	Server,	How	to	do
it…,	How	it	works…
binary	data,	storing	/	Storing	binary	data	in	SQL	Server,	Getting	ready,	How	to
do	it…,	How	it	works…
binary	data,	extracting	from	/	Extracting	binary	data	from	SQL	Server,	How	to
do	it…,	How	it	works…
using,	on	Windows	Azure	VM	/	Using	SQL	Server	on	a	Windows	Azure	VM

SQL	Server,	on	Windows	Azure	VM
URL	/	Using	SQL	Server	on	a	Windows	Azure	VM

SQL	Server	2012	SSIS
URL	/	There’s	more…

SQL	Server	2014
installing,	on	VM	/	Installing	SQL	Server	2014	on	a	VM

SQL	Server	2014	trial	version	ISO	file

URL	/	Downloading	software
SQL	Server	Analysis	Services	(SSAS)

about	/	Introduction
SQL	Server	Analysis	Services	class

URL	/	There’s	more…
SQL	Server	Audit

configuring	/	Configuring	SQL	Server	Audit,	How	to	do	it…,	How	it	works…,
There’s	more…
URL	/	How	it	works…
references	/	There’s	more…

SQL	Server	Backup
URL	/	There’s	more…

SQL	Server	backups
URL	/	There’s	more…

SQL	Server	binary
URL	/	How	it	works…

SQL	Server	Browser
about	/	How	it	works…

SQL	Server	builds
URL	/	There’s	more…

SQL	Server	Configuration	Manager	(SSCM)
about	/	How	it	works…

SQL	Server	configuration	settings
listing	/	Listing	SQL	Server	configuration	settings,	How	to	do	it…,	How	it
works…

SQL	Server	content
RSS	feed,	creating	from	/	Creating	an	RSS	feed	from	SQL	Server	content,	How
to	do	it…,	How	it	works…

SQL	Server	credential
creating	/	Creating	a	credential,	How	to	do	it…

SQL	Server	Database	Engine	Cmdlets
URL	/	There’s	more…

SQL	Server	database	inventory
creating	/	Creating	a	SQL	Server	database	inventory,	How	it	works…

SQL	Server	Data	Tools	(SSDT)
about	/	How	it	works…
URL	/	Downloading	software

SQL	Server	Data	Tools	(SSDT-BI)
about	/	Getting	ready
URL	/	Getting	ready

SQL	Server	Data	Tools	Business	Intelligence
URL	/	Downloading	software

SQL	Server	event	alert
adding	/	Adding	a	SQL	Server	event	alert,	How	it	works…,	There’s	more…

SQL	Server	Extended	Events
URL	/	There’s	more…

SQL	Server	Filestream
URL	/	There’s	more…

SQL	Server	installation
Wizard,	using	/	How	it	works…
via	command	prompt	/	How	it	works…
via	configuration	file	/	How	it	works…
via	SysPrep	/	How	it	works…

SQL	Server	Instance	configurations
changing	/	Changing	SQL	Server	Instance	configurations,	How	to	do	it…,
There’s	more…

SQL	Server	instance	inventory
creating	/	Creating	a	SQL	Server	instance	inventory,	How	it	works…,	There’s
more…

SQL	Server	Instance	Object
creating	/	Creating	a	SQL	Server	Instance	Object,	How	to	do	it…,	How	it
works…

SQL	Server	Instances
listing	/	Listing	SQL	Server	instances,	How	to	do	it…,	How	it	works…,	There’s
more…

SQL	Server	Integration	Services	(SSIS)
about	/	Introduction,	How	it	works…,	Introduction

SQL	Server	Job
running	/	Running	an	SQL	Server	Job,	How	it	works…
scheduling	/	Scheduling	a	SQL	Server	Job,	How	to	do	it…,	How	it	works…,
There’s	more…

SQL	Server	Job	class
URL	/	There’s	more…

SQL	Server	Jobs
listing	/	Listing	SQL	Server	Jobs,	How	to	do	it…,	How	it	works…
creating	/	Creating	a	SQL	Server	Job,	How	to	do	it…,	How	it	works…
URL	/	There’s	more…

SQL	Server	log	Errors
listing	/	Listing	SQL	Server	log	errors,	How	to	do	it…,	How	it	works…

SQL	Server	Management	Objects
installing	/	Installing	SQL	Server	Management	Objects,	Getting	ready,	How	to
do	it…

SQL	Server	Management	Studio
about	/	Getting	ready

SQL	Server	Management	Studio	(SSMS)
about	/	Exploring	the	SQL	Server	PowerShell	hierarchy,	How	to	do	it…,
Introduction,	How	it	works…

SQL	Server	objects
URL	/	There’s	more…

SQL	Server	operator
adding	/	Adding	a	SQL	Server	operator,	How	it	works…,	There’s	more…
URL	/	There’s	more…

SQL	Server	PowerShell	documentation
URL	/	See	also

SQL	Server	PowerShell	hierarchy
exploring	/	Exploring	the	SQL	Server	PowerShell	hierarchy,	How	to	do	it…,
How	it	works…

SQL	Server	Reporting	Services	(SSRS)
about	/	How	it	works…,	Introduction

SQL	Server	service	account
changing	/	Changing	SQL	Server	service	account,	How	to	do	it…,	How	it
works…

SQL	Server	service	accounts
listing	/	Listing	SQL	Server	service	accounts,	How	it	works…

SQL	Server	Services
discovering	/	Discovering	SQL	Server	services,	How	to	do	it…,	There’s	more…
starting	/	Starting/stopping	SQL	Server	services,	How	to	do	it…,	How	it
works…,	There’s	more…
stopping	/	Starting/stopping	SQL	Server	services,	How	to	do	it…,	How	it
works…,	There’s	more…

SQL	Server	Stored	Procedures
scripting	/	Scripting	SQL	Server	Stored	Procedures,	How	to	do	it…,	How	it
works…

SQL	Server	XML	support
URL	/	There’s	more…

SqlServiceType
values	/	There’s	more…

SqlStoreConnection	class
URL	/	There’s	more…

SSAS	cmdlets
listing	/	Listing	SSAS	cmdlets,	How	it	works…

SSAS	cube
processing	/	Processing	an	SSAS	cube,	How	to	do	it…,	How	it	works…

SSAS	database
backing	up	/	Backing	up	an	SSAS	database,	How	it	works…
restoring	/	Restoring	an	SSAS	database,	How	it	works…

SSAS	instance	properties
listing	/	Listing	SSAS	instance	properties,	How	it	works…

SSDT-BI
URL	/	Getting	ready

SSISDB
SSIS	package	stored,	executing	/	Executing	an	SSIS	package	stored	in	SSISDB,
How	to	do	it…,	How	it	works…

SSISDB	catalog
creating	/	Creating	an	SSISDB	catalog,	How	to	do	it…,	How	it	works…,
There’s	more…
URL	/	There’s	more…

SSISDB	folder

creating	/	Creating	an	SSISDB	folder,	How	to	do	it…,	How	it	works…
ISPAC	file,	deploying	to	/	Deploying	an	ISPAC	file	to	SSISDB,	How	to	do	it…,
How	it	works…,	There’s	more…

SSIS	instance	and	package	store
folders,	creating	/	Creating	folders	in	an	SSIS	package	store	and	MSDB,	How	to
do	it…,	How	it	works…

SSIS	package
deploying,	to	package	store	/	Deploying	an	SSIS	package	to	the	package	store,
How	to	do	it…,	How	it	works…
executing,	PowerShell	used	/	Executing	an	SSIS	package	stored	in	a	package
store	or	filesystem,	How	to	do	it…,	How	it	works…
downloading,	to	file	/	Downloading	an	SSIS	package	to	a	file,	How	it	works…

SSIS	package	stored
executing,	in	SSISDB	/	Executing	an	SSIS	package	stored	in	SSISDB,	How	to
do	it…,	How	it	works…

SSRS	data	source
creating	/	Creating	an	SSRS	data	source,	Getting	ready,	How	to	do	it…,	How	it
works…

SSRS	folder
creating	/	Creating	an	SSRS	folder,	How	to	do	it…,	How	it	works…

SSRS	native	mode,	versus	SharePoint	integrated	mode
URL	/	How	it	works…

SSRS	report
viewing,	ReportViewer	used	/	Using	ReportViewer	to	view	your	SSRS	report,
How	to	do	it…,	How	it	works…
downloading,	in	Excel	/	Downloading	an	SSRS	report	in	Excel	and	as	a	PDF,
How	to	do	it…,	How	it	works…,	There’s	more…
downloading,	in	PDF	/	Downloading	an	SSRS	report	in	Excel	and	as	a	PDF,
How	to	do	it…,	How	it	works…,	There’s	more…
uploading,	to	Report	Manager	/	Uploading	an	SSRS	report	to	Report	Manager,
How	it	works…,	There’s	more…
user,	adding	with	role	to	/	Adding	a	user	with	a	role	to	SSRS	report,	How	to	do
it…,	How	it	works…

SSRS	report	properties
listing	/	Listing	SSRS	report	properties,	How	to	do	it…,	How	it	works…

SSRS	report	RDL	files
downloading	/	Downloading	all	SSRS	report	RDL	files,	How	it	works…

SSRS	Report	Server
items,	listing	/	Listing	items	in	your	SSRS	Report	Server,	How	it	works…
URL	/	There’s	more…

Stack	Overflow
URL	/	There’s	more…

stored	procedure
creating	/	Creating	a	stored	procedure,	How	to	do	it…,	How	it	works…

supported	network	protocols
URL	/	There’s	more…

symmetric	and	asymmetric	keys
references	/	There’s	more…

symmetric	key
creating	/	Creating	symmetric	and	asymmetric	keys,	How	to	do	it…,	How	it
works…,	There’s	more…

syntax
scripting	/	Scripting	syntax
statement	terminators	/	Statement	terminators
escape	and	line	continuation	/	Escape	and	line	continuation
variables	/	Variables
operators	/	Operators
messages,	displaying	/	Displaying	messages
comments	/	Comments
special	variables	/	Special	variables
special	characters	/	Special	characters
conditions	/	Conditions
regular	expressions	/	Regular	expressions
arrays	/	Arrays
hash	tables	/	Hash	tables
loops	/	Loops
error	handling	/	Error	handling

SysPrep
URL	/	How	it	works…

system	and	permission	requirements,	for	PowerShell
URL	/	Getting	ready

T
	

T-SQL
using	/	Introduction
URL	/	How	it	works…

table
creating	/	Creating	a	table,	How	to	do	it…,	How	it	works…
creating,	in	Azure	SQL	database	/	Creating	a	table	in	an	Azure	SQL	database,
How	to	do	it…,	How	it	works…

TCP
enabling,	in	SQL	Server	/	Enabling	TCP	and	named	pipes	in	SQL	Server,	How
to	do	it…

Technet	Script	Center
URL	/	There’s	more…

template	definition	file	(TDF)
about	/	Getting	ready

template	library,	CloudShare
URL	/	Introduction

terminologies
URL	/	There’s	more…
Virtual	machine,	or	VM	/	Terminologies
ISO	file	/	Terminologies
service	account	/	Terminologies

text	file
data,	importing	/	Importing	data	from	a	text	file,	How	to	do	it…,	There’s	more…
records,	exporting	/	Exporting	records	to	a	text	file,	How	it	works…

timestamp
obtaining	/	Getting	a	timestamp,	How	it	works…

trace	file	contents
extracting	/	Extracting	the	contents	of	a	trace	file,	How	to	do	it…,	How	it
works…

transaction	log	backup
creating	/	Creating	a	transaction	log	backup,	Getting	ready,	How	it	works…

transaction	logs
restoring,	after	differential	backup	/	Restoring	the	transaction	logs	taken	after
your	differential	backup

Transparent	Database	Encryption	(TDE)
about	/	Introduction

Transparent	Data	Encryption	(TDE)
setting	up	/	Setting	up	Transparent	Data	Encryption,	How	to	do	it…,	How	it
works…,	There’s	more…
about	/	Getting	ready
URL	/	There’s	more…

trigger
creating	/	Creating	a	trigger,	How	to	do	it…,	How	it	works…

U
	

Uniform	Naming	Convention	(UNC)
about	/	How	it	works…

user-defined	assembly
creating	/	Creating	a	new	assembly,	How	it	works…,	There’s	more…
listing	/	Listing	user-defined	assemblies,	How	it	works…
extracting	/	Extracting	user-defined	assemblies,	How	to	do	it…,	How	it	works…

user-defined	Server	role
creating	/	Creating	a	user-defined	server	role,	Getting	ready,	How	to	do	it…,
How	it	works…

users
listing	/	Listing	logins,	users,	and	database	mappings,	How	to	do	it…,	How	it
works…,	There’s	more…

V
	

validator
URL	/	How	to	do	it…

variable	expansion,	in	strings
URL	/	There’s	more…

variables
here-string	data	type	/	Here-string
string	interpolation	/	String	interpolation

Very	Large	Databases	(VLDBs)
about	/	How	it	works…

view
creating	/	Creating	a	view,	How	to	do	it…,	How	it	works…,	There’s	more…

VirtualBox
URL	/	Terminologies

Virtual	Machine	(VM)
about	/	Getting	ready

Visual	Studio
URL	/	Downloading	software

VM
defining	/	VM	details	and	accounts
references	/	VM	details	and	accounts
SQL	Server	2014,	installing	on	/	Installing	SQL	Server	2014	on	a	VM

VMware
reference	/	Making	a	snapshot	as	a	baseline

VMware	player
URL	/	Downloading	software

VMWare	player	documentation
URL	/	Downloading	software

VMware	Snapshot	Best	Practices
reference	/	Making	a	snapshot	as	a	baseline

VMware	tools
installing	/	Installing	VMware	tools

VMware	Workstation	Player
URL	/	Terminologies

VMware	Workstation	Pro
URL	/	Terminologies

W
	

weather	data
URL	/	Getting	ready

Web-based	Enterprise	Management	(WBEM)
about	/	How	it	works…
URL	/	How	it	works…

web	service
data,	extracting	from	/	Extracting	data	from	a	web	service,	How	it	works…

Web	Services	for	Management	(WSMan)
about	/	How	it	works…

Win32_LogicalDisk
URL	/	There’s	more…

Win32_Volume	class
about	/	How	it	works…
URL	/	There’s	more…

Windows
Failover	Cluster	feature,	installing	on	/	Installing	the	Failover	Cluster	feature	on
Windows,	How	to	do	it…,	How	it	works…,	There’s	more…

Windows	Azure	VM
SQL	Server,	using	on	/	Using	SQL	Server	on	a	Windows	Azure	VM

Windows	Data	Protection	API
URL	/	How	it	works…

Windows	Management	Framework	(WMF)
about	/	How	to	do	it…
URL	/	How	to	do	it…

Windows	Management	Framework	5	Preview	April	2015
URL	/	Downloading	software

Windows	Management	Framework	V5.0
URL	/	Listing	notable	PowerShell	features

Windows	Management	Instrumentation	(WMI)
about	/	How	it	works…,	How	it	works…
URL	/	How	it	works…

Windows	PowerShell	Scripts
URL	/	Through	shell	or	through	the	ISE

Windows	Remote	Management	(WinRM)
about	/	How	it	works…

Windows	Server	2012	R2
installing,	as	guest	OS	/	Installing	Windows	Server	2012	R2	as	guest	OS

Windows	Server	2012	R2	trial	version	ISO	file
URL	/	Downloading	software

Windows	Server	Failover	Clustering
URL	/	There’s	more…
references	/	There’s	more…

Windows	Server	Failover	Clustering	(WSFC)

about	/	Introduction
Windows	Server	Hyper-V	Server	2012	R2

URL	/	Terminologies
WMI

about	/	How	it	works…
WMI	Provider	for	Server	Events

URL	/	There’s	more…
WMI	Provider	for	Server	Events	Classes	and	Properties

URL	/	There’s	more…
WMI	Query	Language	(WQL)

about	/	How	it	works…
WMI	server	event	alerts

setting	up	/	Setting	up	WMI	server	event	alerts,	Getting	ready,	How	to	do	it…,
How	it	works…,	There’s	more…
values,	defining	/	Getting	ready

WQL	e-book
URL	/	There’s	more…

Write-related	cmdlets
defining	/	Displaying	messages

X
	

XML
inserting,	into	SQL	Server	/	Inserting	XML	into	SQL	Server,	How	to	do	it…,
How	it	works…
extracting,	from	SQL	Server	/	Extracting	XML	from	SQL	Server,	How	to	do
it…,	How	it	works…
parsing	/	Parsing	XML,	How	it	works…

XSL
applying,	to	RSS	feed	/	Applying	XSL	to	an	RSS	feed,	How	it	works…

XslCompiledTransform	.NET	class
URL	/	There’s	more…

xSqlPs	module
about	/	There’s	more…

xSqlServerInstall
about	/	There’s	more…

Z
	

7-Zip
URL	/	Getting	ready

Table	of	Contents
SQL	Server	2014	with	PowerShell	v5	Cookbook

Credits

About	the	Author

Acknowledgments

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Instant	updates	on	new	Packt	books

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Sections

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Getting	Started	with	SQL	Server	and	PowerShell

Introduction

Working	with	SQL	Server	and	PowerShell

Running	as	an	administrator

Execution	Policy

Running	scripts

Running	different	PowerShell	versions

Line	continuation

PowerShell	modules

Working	with	the	sample	code

How	to	do	it…

See	also

Installing	SQL	Server	using	PowerShell

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Installing	SQL	Server	Management	Objects

Getting	ready

How	to	do	it…

There’s	more…

Loading	SMO	assemblies

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Exploring	the	SQL	Server	PowerShell	hierarchy

Getting	ready

How	to	do	it…

How	it	works…

Discovering	SQL-related	cmdlets	and	modules

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Creating	a	SQL	Server	Instance	Object

Getting	ready

How	to	do	it…

How	it	works…

See	also

Exploring	SMO	Server	Objects

Getting	ready

How	to	do	it…

How	it	works…

See	also

2.	SQL	Server	and	PowerShell	Basic	Tasks

Introduction

Listing	SQL	Server	instances

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Discovering	SQL	Server	services

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Starting/stopping	SQL	Server	services

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Listing	SQL	Server	configuration	settings

How	to	do	it…

How	it	works…

There’s	more…

Changing	SQL	Server	Instance	configurations

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Searching	for	database	objects

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Scripting	SQL	Server	Stored	Procedures

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Creating	a	database

Getting	ready

How	to	do	it…

How	it	works…

Altering	database	properties

Getting	ready

How	to	do	it…

How	it	works…

See	also

Dropping	a	database

Getting	ready

How	to	do	it…

How	it	works…

Changing	database	owner

Getting	ready

How	to	do	it…

How	it	works…

See	also

Creating	a	table

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	a	view

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Creating	a	stored	procedure

Getting	ready

How	to	do	it…

How	it	works…

Creating	a	trigger

Getting	ready

How	to	do	it…

How	it	works…

Creating	an	index

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Executing	a	query/SQL	script

Getting	ready

How	to	do	it…

How	it	works…

Performing	bulk	export	using	Invoke-SqlCmd

Getting	ready

How	to	do	it…

How	it	works…

See	also

Performing	bulk	export	using	the	bcp	command-line	utility

Getting	ready

How	to	do	it…

There’s	more…

See	also

Performing	bulk	import	using	BULK	INSERT

Getting	ready

How	to	do	it…

How	it	works…

See	also

Performing	bulk	import	using	the	bcp	command-line	utility

Getting	ready

How	to	do	it…

How	it	works…

See	also

Connecting	to	an	Azure	SQL	database

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

There’s	more…

Creating	a	table	in	an	Azure	SQL	database

Getting	ready

How	to	do	it…

How	it	works…

3.	Basic	Administration

Introduction

Creating	a	SQL	Server	instance	inventory

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	a	SQL	Server	database	inventory

Getting	ready

How	to	do	it…

How	it	works…

See	also

Listing	installed	hotfixes	and	Service	Packs

How	to	do	it…

How	it	works…

There’s	more…

Listing	running/blocking	processes

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Killing	a	blocking	process

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Checking	disk	space	usage

How	to	do	it…

How	it	works…

There’s	more…

Setting	up	WMI	server	event	alerts

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Detaching	a	database

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Attaching	a	database

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Copying	a	database

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Executing	SQL	query	to	multiple	servers

Getting	ready

How	to	do	it…

How	it	works…

See	also

Creating	a	filegroup

Getting	ready

How	to	do	it…

How	it	works…

See	also

Adding	a	secondary	data	file	to	a	filegroup

Getting	ready

How	to	do	it…

How	it	works…

See	also

Increase	data	file	size

Getting	ready

How	to	do	it…

How	it	works…

See	also

Moving	an	index	to	a	different	filegroup

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Checking	index	fragmentation

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Reorganizing/rebuilding	an	index

Getting	ready

How	to	do	it…

How	it	works…

See	also

Running	DBCC	commands

How	to	do	it…

How	it	works…

Setting	up	Database	Mail

Getting	ready

How	to	do	it…

How	it	works…

Listing	SQL	Server	Jobs

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Adding	a	SQL	Server	operator

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	a	SQL	Server	Job

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Adding	a	SQL	Server	event	alert

How	to	do	it…

How	it	works…

There’s	more…

See	also

Running	an	SQL	Server	Job

Getting	ready

How	to	do	it…

How	it	works…

See	also

Scheduling	a	SQL	Server	Job

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

4.	Security

Introduction

Listing	SQL	Server	service	accounts

How	to	do	it…

How	it	works…

See	also

Changing	SQL	Server	service	account

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Listing	authentication	mode

Getting	ready

How	to	do	it…

How	it	works…

See	also

Changing	authentication	mode

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

More	on	legacy	LoginMode	values

See	also

Listing	SQL	Server	log	errors

Getting	ready

How	to	do	it…

How	it	works…

See	also

Listing	failed	login	attempts

Getting	ready

How	to	do	it…

How	it	works…

See	also

Enabling	Common	Criteria	compliance

How	to	do	it…

How	it	works…

There’s	more…

See	also

Listing	logins,	users,	and	database	mappings

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Listing	login/user	roles	and	permissions

How	to	do	it…

How	it	works…

See	also

Creating	a	user-defined	server	role

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	a	login

Getting	ready

How	to	do	it…

How	it	works…

See	also

Assigning	permissions	and	roles	to	a	login

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	a	database	user

Getting	ready

How	to	do	it…

How	it	works…

See	also

Assigning	permissions	to	a	database	user

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	a	database	role

Getting	ready

How	to	do	it…

How	it	works…

See	also

Fixing	orphaned	users

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	a	credential

Getting	ready

How	to	do	it…

How	it	works…

See	also

Creating	a	proxy

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

5.	Backup	and	Restore

Introduction

Changing	database	recovery	model

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Checking	last	backup	date

Getting	ready

How	to	do	it…

How	it	works…

See	also

Creating	a	backup	device

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Listing	backup	header	and	FileList	information

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Creating	a	full	backup

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

More	about	backup	and	PercentCompleteEventHandler

See	also

Creating	a	backup	on	Mirrored	Media	Sets

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	a	differential	backup

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	a	transaction	log	backup

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	a	filegroup	backup

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Restoring	a	database	to	a	point-in-time

Getting	ready

How	to	do	it…

How	it	works…

Gathering	your	backup	files

Restoring	the	latest	good	full	backup	with	NORECOVERY

Restoring	 the	 last	 good	differential	 backup	 taken	 after	 the	 full	 backup	you	 just	 restored
with	NORECOVERY

Restoring	the	transaction	logs	taken	after	your	differential	backup

There’s	more…

See	also

Performing	an	online	piecemeal	restore

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Backing	up	database	to	Azure	Blob	storage

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Restoring	database	from	Azure	Blob	storage

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

6.	Advanced	Administration

Introduction

Connecting	to	LocalDB

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	a	new	LocalDB	instance

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Listing	database	snapshots

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	a	database	snapshot

Getting	ready

How	to	do	it…

How	it	works…

See	also

Dropping	a	database	snapshot

How	to	do	it…

How	it	works…

See	also

Enabling	FileStream

How	to	do	it…

How	it	works…

There’s	more…

See	also

Setting	up	a	FileStream	filegroup

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Adding	a	FileTable

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Adding	full-text	catalog

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Adding	full-text	index

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	a	memory-optimized	table

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	a	database	master	key

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	a	certificate

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	symmetric	and	asymmetric	keys

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Setting	up	Transparent	Data	Encryption

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

7.	Audit	and	Policies

Introduction

Enabling/disabling	change	tracking

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Configuring	SQL	Server	Audit

How	to	do	it…

How	it	works…

There’s	more…

See	also

Listing	facets	and	their	properties

How	to	do	it…

How	it	works…

There’s	more…

See	also

Listing	policies

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Exporting	a	policy

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Importing	a	policy

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	a	condition

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	a	policy

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Evaluating	a	policy

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Running	and	saving	a	profiler	trace	event

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Extracting	the	contents	of	a	trace	file

Getting	ready

How	to	do	it…

How	it	works…

See	also

8.	High	Availability	with	AlwaysOn

Introduction

Installing	the	Failover	Cluster	feature	on	Windows

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Enabling	TCP	and	named	pipes	in	SQL	Server

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Enabling	AlwaysOn	in	SQL	Server

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Creating	and	enabling	the	HADR	endpoint

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Granting	the	CONNECT	permission	to	the	HADR	endpoint

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	an	AlwaysOn	Availability	Group

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Joining	the	secondary	replicas	to	Availability	Group

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Adding	an	availability	database	to	an	Availability	Group

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Creating	an	Availability	Group	listener

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Testing	the	Availability	Group	failover

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Monitoring	the	health	of	an	Availability	Group

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

9.	SQL	Server	Development

Introduction

Importing	data	from	a	text	file

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Exporting	records	to	a	text	file

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Adding	files	to	a	FileTable

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Inserting	XML	into	SQL	Server

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Extracting	XML	from	SQL	Server

Getting	ready

How	to	do	it…

How	it	works…

See	also

Creating	an	RSS	feed	from	SQL	Server	content

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Applying	XSL	to	an	RSS	feed

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	a	JSON	file	from	SQL	Server

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Storing	binary	data	in	SQL	Server

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Extracting	binary	data	from	SQL	Server

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	a	new	assembly

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Listing	user-defined	assemblies

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Extracting	user-defined	assemblies

Getting	ready

How	to	do	it…

How	it	works…

See	also

10.	Business	Intelligence

Introduction

Listing	items	in	your	SSRS	Report	Server

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Listing	SSRS	report	properties

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Using	ReportViewer	to	view	your	SSRS	report

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Downloading	an	SSRS	report	in	Excel	and	as	a	PDF

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	an	SSRS	folder

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	an	SSRS	data	source

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Changing	an	SSRS	report’s	data	source	reference

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Uploading	an	SSRS	report	to	Report	Manager

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Downloading	all	SSRS	report	RDL	files

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Adding	a	user	with	a	role	to	SSRS	report

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Creating	folders	in	an	SSIS	package	store	and	MSDB

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Deploying	an	SSIS	package	to	the	package	store

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Executing	an	SSIS	package	stored	in	a	package	store	or	filesystem

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Downloading	an	SSIS	package	to	a	file

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	an	SSISDB	catalog

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	an	SSISDB	folder

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Deploying	an	ISPAC	file	to	SSISDB

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Executing	an	SSIS	package	stored	in	SSISDB

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Listing	SSAS	cmdlets

How	to	do	it…

How	it	works…

There’s	more…

See	also

Listing	SSAS	instance	properties

How	to	do	it…

How	it	works…

There’s	more…

See	also

Backing	up	an	SSAS	database

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Restoring	an	SSAS	database

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Processing	an	SSAS	cube

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

11.	Helpful	PowerShell	Snippets

Introduction

Documenting	PowerShell	script	for	Get-Help

How	to	do	it…

How	it	works…

There’s	more…

Getting	history

How	to	do	it…

How	it	works…

Getting	a	timestamp

How	to	do	it…

How	it	works…

There’s	more…

Getting	more	error	messages

How	to	do	it…

How	it	works…

Listing	processes

How	to	do	it…

How	it	works…

There’s	more…

See	also

Getting	aliases

How	to	do	it…

How	it	works…

There’s	more…

Exporting	to	CSV	and	XML

How	to	do	it…

How	it	works…

There’s	more…

Using	Invoke-Expression

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Testing	regular	expressions

How	to	do	it…

How	it	works…

There’s	more…

Managing	folders

How	to	do	it…

How	it	works…

There’s	more…

See	also

Manipulating	files

How	to	do	it…

How	it	works…

There’s	more…

See	also

Compressing	files

How	to	do	it…

How	it	works…

Searching	for	files

How	to	do	it…

How	it	works…

There’s	more…

See	also

Reading	an	event	log

How	to	do	it…

How	it	works…

There’s	more…

Sending	an	e-mail

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Embedding	C#	code

How	to	do	it…

How	it	works…

There’s	more…

Creating	an	HTML	report

How	to	do	it…

How	it	works…

There’s	more…

Parsing	XML

Getting	ready

How	to	do	it…

How	it	works…

Extracting	data	from	a	web	service

How	to	do	it…

How	it	works…

There’s	more…

Using	PowerShell	remoting

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

A.	PowerShell	Primer

Introduction

Understanding	the	need	for	PowerShell

Setting	up	the	environment

Running	PowerShell	scripts

Through	shell	or	through	the	ISE

The	execution	policy

Learning	PowerShell	basics

Cmdlets

Learning	PowerShell

Get-Command

Get-Help

Get-Member

Starter	notes

PowerShell	is	object-oriented	and	works	with	.NET

Cmdlets	may	have	aliases	or	you	can	create	one

You	can	chain	commands

Filter	left,	format	right

Package	and	reuse

Common	cmdlets

Scripting	syntax

Statement	terminators

Escape	and	line	continuation

Variables

Here-string

String	interpolation

Operators

Displaying	messages

Comments

Special	variables

Special	characters

Conditions

Regular	expressions

Arrays

Hash	tables

Loops

Error	handling

Converting	scripts	into	functions

Listing	notable	PowerShell	features

Exploring	more	PowerShell

B.	Creating	a	SQL	Server	VM

Introduction

Terminologies

Downloading	software

VM	details	and	accounts

Creating	an	empty	virtual	machine

Installing	Windows	Server	2012	R2	as	guest	OS

Installing	VMware	tools

Making	a	snapshot	as	a	baseline

Configuring	a	domain	controller	(optional)

Creating	domain	accounts

Installing	SQL	Server	2014	on	a	VM

Configuring	Reporting	Services	in	native	mode

Installing	sample	databases

Installing	PowerShell	V5

Using	SQL	Server	on	a	Windows	Azure	VM

Index

	SQL Server 2014 with PowerShell v5 Cookbook
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Instant updates on new Packt books
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Getting Started with SQL Server and PowerShell
	Introduction
	Working with SQL Server and PowerShell
	Running as an administrator
	Execution Policy
	Running scripts
	Running different PowerShell versions
	Line continuation
	PowerShell modules
	Working with the sample code
	How to do it...
	See also
	Installing SQL Server using PowerShell
	Getting ready
	How to do it...
	How it works...
	There's more...
	Installing SQL Server Management Objects
	Getting ready
	How to do it...
	There's more...
	Loading SMO assemblies
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Exploring the SQL Server PowerShell hierarchy
	Getting ready
	How to do it...
	How it works...
	Discovering SQL-related cmdlets and modules
	Getting ready
	How to do it...
	How it works...
	There's more...
	Creating a SQL Server Instance Object
	Getting ready
	How to do it...
	How it works...
	See also
	Exploring SMO Server Objects
	Getting ready
	How to do it...
	How it works...
	See also
	2. SQL Server and PowerShell Basic Tasks
	Introduction
	Listing SQL Server instances
	Getting ready
	How to do it...
	How it works...
	There's more...
	Discovering SQL Server services
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Starting/stopping SQL Server services
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Listing SQL Server configuration settings
	How to do it...
	How it works...
	There's more...
	Changing SQL Server Instance configurations
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Searching for database objects
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Scripting SQL Server Stored Procedures
	Getting ready
	How to do it...
	How it works...
	There's more...
	Creating a database
	Getting ready
	How to do it...
	How it works...
	Altering database properties
	Getting ready
	How to do it...
	How it works...
	See also
	Dropping a database
	Getting ready
	How to do it...
	How it works...
	Changing database owner
	Getting ready
	How to do it...
	How it works...
	See also
	Creating a table
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating a view
	Getting ready
	How to do it...
	How it works...
	There's more...
	Creating a stored procedure
	Getting ready
	How to do it...
	How it works...
	Creating a trigger
	Getting ready
	How to do it...
	How it works...
	Creating an index
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Executing a query/SQL script
	Getting ready
	How to do it...
	How it works...
	Performing bulk export using Invoke-SqlCmd
	Getting ready
	How to do it...
	How it works...
	See also
	Performing bulk export using the bcp command-line utility
	Getting ready
	How to do it...
	There's more...
	See also
	Performing bulk import using BULK INSERT
	Getting ready
	How to do it...
	How it works...
	See also
	Performing bulk import using the bcp command-line utility
	Getting ready
	How to do it...
	How it works...
	See also
	Connecting to an Azure SQL database
	Getting ready
	How to do it...
	How it works...
	There's more...
	There's more...
	Creating a table in an Azure SQL database
	Getting ready
	How to do it...
	How it works...
	3. Basic Administration
	Introduction
	Creating a SQL Server instance inventory
	How to do it...
	How it works...
	There's more...
	See also
	Creating a SQL Server database inventory
	Getting ready
	How to do it...
	How it works...
	See also
	Listing installed hotfixes and Service Packs
	How to do it...
	How it works...
	There's more...
	Listing running/blocking processes
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Killing a blocking process
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Checking disk space usage
	How to do it...
	How it works...
	There's more...
	Setting up WMI server event alerts
	Getting ready
	How to do it...
	How it works...
	There's more...
	Detaching a database
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Attaching a database
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Copying a database
	Getting ready
	How to do it...
	How it works...
	There's more...
	Executing SQL query to multiple servers
	Getting ready
	How to do it...
	How it works...
	See also
	Creating a filegroup
	Getting ready
	How to do it...
	How it works...
	See also
	Adding a secondary data file to a filegroup
	Getting ready
	How to do it...
	How it works...
	See also
	Increase data file size
	Getting ready
	How to do it...
	How it works...
	See also
	Moving an index to a different filegroup
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Checking index fragmentation
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Reorganizing/rebuilding an index
	Getting ready
	How to do it...
	How it works...
	See also
	Running DBCC commands
	How to do it...
	How it works...
	Setting up Database Mail
	Getting ready
	How to do it...
	How it works...
	Listing SQL Server Jobs
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Adding a SQL Server operator
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating a SQL Server Job
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Adding a SQL Server event alert
	How to do it...
	How it works...
	There's more...
	See also
	Running an SQL Server Job
	Getting ready
	How to do it...
	How it works...
	See also
	Scheduling a SQL Server Job
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	4. Security
	Introduction
	Listing SQL Server service accounts
	How to do it...
	How it works...
	See also
	Changing SQL Server service account
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Listing authentication mode
	Getting ready
	How to do it...
	How it works...
	See also
	Changing authentication mode
	Getting ready
	How to do it...
	How it works...
	There's more...
	More on legacy LoginMode values
	See also
	Listing SQL Server log errors
	Getting ready
	How to do it...
	How it works...
	See also
	Listing failed login attempts
	Getting ready
	How to do it...
	How it works...
	See also
	Enabling Common Criteria compliance
	How to do it...
	How it works...
	There's more...
	See also
	Listing logins, users, and database mappings
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Listing login/user roles and permissions
	How to do it...
	How it works...
	See also
	Creating a user-defined server role
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating a login
	Getting ready
	How to do it...
	How it works...
	See also
	Assigning permissions and roles to a login
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating a database user
	Getting ready
	How to do it...
	How it works...
	See also
	Assigning permissions to a database user
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating a database role
	Getting ready
	How to do it...
	How it works...
	See also
	Fixing orphaned users
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating a credential
	Getting ready
	How to do it...
	How it works...
	See also
	Creating a proxy
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	5. Backup and Restore
	Introduction
	Changing database recovery model
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Checking last backup date
	Getting ready
	How to do it...
	How it works...
	See also
	Creating a backup device
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Listing backup header and FileList information
	Getting ready
	How to do it...
	How it works...
	There's more...
	Creating a full backup
	Getting ready
	How to do it...
	How it works...
	There's more...
	More about backup and PercentCompleteEventHandler
	See also
	Creating a backup on Mirrored Media Sets
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating a differential backup
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating a transaction log backup
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating a filegroup backup
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Restoring a database to a point-in-time
	Getting ready
	How to do it...
	How it works...
	Gathering your backup files
	Restoring the latest good full backup with NORECOVERY
	Restoring the last good differential backup taken after the full backup you just restored with NORECOVERY
	Restoring the transaction logs taken after your differential backup
	There's more...
	See also
	Performing an online piecemeal restore
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Backing up database to Azure Blob storage
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Restoring database from Azure Blob storage
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	6. Advanced Administration
	Introduction
	Connecting to LocalDB
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating a new LocalDB instance
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Listing database snapshots
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating a database snapshot
	Getting ready
	How to do it...
	How it works...
	See also
	Dropping a database snapshot
	How to do it...
	How it works...
	See also
	Enabling FileStream
	How to do it...
	How it works...
	There's more...
	See also
	Setting up a FileStream filegroup
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Adding a FileTable
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Adding full-text catalog
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Adding full-text index
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating a memory-optimized table
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating a database master key
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating a certificate
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating symmetric and asymmetric keys
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Setting up Transparent Data Encryption
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	7. Audit and Policies
	Introduction
	Enabling/disabling change tracking
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Configuring SQL Server Audit
	How to do it...
	How it works...
	There's more...
	See also
	Listing facets and their properties
	How to do it...
	How it works...
	There's more...
	See also
	Listing policies
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Exporting a policy
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Importing a policy
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating a condition
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating a policy
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Evaluating a policy
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Running and saving a profiler trace event
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Extracting the contents of a trace file
	Getting ready
	How to do it...
	How it works...
	See also
	8. High Availability with AlwaysOn
	Introduction
	Installing the Failover Cluster feature on Windows
	Getting ready
	How to do it...
	How it works...
	There's more...
	Enabling TCP and named pipes in SQL Server
	Getting ready
	How to do it...
	How it works...
	There's more...
	Enabling AlwaysOn in SQL Server
	Getting ready
	How to do it...
	How it works...
	There's more...
	Creating and enabling the HADR endpoint
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Granting the CONNECT permission to the HADR endpoint
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating an AlwaysOn Availability Group
	Getting ready
	How to do it...
	How it works...
	There's more...
	Joining the secondary replicas to Availability Group
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Adding an availability database to an Availability Group
	Getting ready
	How to do it...
	How it works...
	There's more...
	Creating an Availability Group listener
	Getting ready
	How to do it...
	How it works...
	There's more...
	Testing the Availability Group failover
	Getting ready
	How to do it...
	How it works...
	There's more...
	Monitoring the health of an Availability Group
	Getting ready
	How to do it...
	How it works...
	There's more...
	9. SQL Server Development
	Introduction
	Importing data from a text file
	Getting ready
	How to do it...
	How it works...
	There's more...
	Exporting records to a text file
	Getting ready
	How to do it...
	How it works...
	There's more...
	Adding files to a FileTable
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Inserting XML into SQL Server
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Extracting XML from SQL Server
	Getting ready
	How to do it...
	How it works...
	See also
	Creating an RSS feed from SQL Server content
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Applying XSL to an RSS feed
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating a JSON file from SQL Server
	Getting ready
	How to do it...
	How it works...
	There's more...
	Storing binary data in SQL Server
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Extracting binary data from SQL Server
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating a new assembly
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Listing user-defined assemblies
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Extracting user-defined assemblies
	Getting ready
	How to do it...
	How it works...
	See also
	10. Business Intelligence
	Introduction
	Listing items in your SSRS Report Server
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Listing SSRS report properties
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Using ReportViewer to view your SSRS report
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Downloading an SSRS report in Excel and as a PDF
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating an SSRS folder
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating an SSRS data source
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Changing an SSRS report's data source reference
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Uploading an SSRS report to Report Manager
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Downloading all SSRS report RDL files
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Adding a user with a role to SSRS report
	Getting ready
	How to do it...
	How it works...
	There's more...
	Creating folders in an SSIS package store and MSDB
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Deploying an SSIS package to the package store
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Executing an SSIS package stored in a package store or filesystem
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Downloading an SSIS package to a file
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating an SSISDB catalog
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating an SSISDB folder
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Deploying an ISPAC file to SSISDB
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Executing an SSIS package stored in SSISDB
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Listing SSAS cmdlets
	How to do it...
	How it works...
	There's more...
	See also
	Listing SSAS instance properties
	How to do it...
	How it works...
	There's more...
	See also
	Backing up an SSAS database
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Restoring an SSAS database
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Processing an SSAS cube
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	11. Helpful PowerShell Snippets
	Introduction
	Documenting PowerShell script for Get-Help
	How to do it...
	How it works...
	There's more...
	Getting history
	How to do it...
	How it works...
	Getting a timestamp
	How to do it...
	How it works...
	There's more...
	Getting more error messages
	How to do it...
	How it works...
	Listing processes
	How to do it...
	How it works...
	There's more...
	See also
	Getting aliases
	How to do it...
	How it works...
	There's more...
	Exporting to CSV and XML
	How to do it...
	How it works...
	There's more...
	Using Invoke-Expression
	Getting ready
	How to do it...
	How it works...
	There's more...
	Testing regular expressions
	How to do it...
	How it works...
	There's more...
	Managing folders
	How to do it...
	How it works...
	There's more...
	See also
	Manipulating files
	How to do it...
	How it works...
	There's more...
	See also
	Compressing files
	How to do it...
	How it works...
	Searching for files
	How to do it...
	How it works...
	There's more...
	See also
	Reading an event log
	How to do it...
	How it works...
	There's more...
	Sending an e-mail
	Getting ready
	How to do it...
	How it works...
	There's more...
	Embedding C# code
	How to do it...
	How it works...
	There's more...
	Creating an HTML report
	How to do it...
	How it works...
	There's more...
	Parsing XML
	Getting ready
	How to do it...
	How it works...
	Extracting data from a web service
	How to do it...
	How it works...
	There's more...
	Using PowerShell remoting
	Getting ready
	How to do it...
	How it works...
	There's more...
	A. PowerShell Primer
	Introduction
	Understanding the need for PowerShell
	Setting up the environment
	Running PowerShell scripts
	Through shell or through the ISE
	The execution policy
	Learning PowerShell basics
	Cmdlets
	Learning PowerShell
	Get-Command
	Get-Help
	Get-Member
	Starter notes
	PowerShell is object-oriented and works with .NET
	Cmdlets may have aliases or you can create one
	You can chain commands
	Filter left, format right
	Package and reuse
	Common cmdlets
	Scripting syntax
	Statement terminators
	Escape and line continuation
	Variables
	Here-string
	String interpolation
	Operators
	Displaying messages
	Comments
	Special variables
	Special characters
	Conditions
	Regular expressions
	Arrays
	Hash tables
	Loops
	Error handling
	Converting scripts into functions
	Listing notable PowerShell features
	Exploring more PowerShell
	B. Creating a SQL Server VM
	Introduction
	Terminologies
	Downloading software
	VM details and accounts
	Creating an empty virtual machine
	Installing Windows Server 2012 R2 as guest OS
	Installing VMware tools
	Making a snapshot as a baseline
	Configuring a domain controller (optional)
	Creating domain accounts
	Installing SQL Server 2014 on a VM
	Configuring Reporting Services in native mode
	Installing sample databases
	Installing PowerShell V5
	Using SQL Server on a Windows Azure VM
	Index

